新光学芯片可实现高效“深度学习”
基于人工神经网络的“深度学习”计算机系统,能够模仿大脑从积累的例子中学习的方式,已经成为计算机科学的热门话题。除了技术,如人脸和语音识别软件可以使用,这些系统可以读取大量的医疗数据从而发现模式可用于医疗诊断,或创造出新药物的化学公式。 但是,这些系统必须执行的计算是非常复杂和苛刻的,即使是最强大的计算机运行起来也会很吃力。 如今,麻省理工学院和其他地方的一个研究小组已经开发出一种新的方法,利用光而不是电,他们说这可以大大提高某些深层计算的速度和效率。他们的研究结果发表在近期的《自然光子》杂志上,由麻省理工大学的Yichen Shen,研究生Nicholas Harris,教授Marin Soljacic和Dirk Englund等八人共同完成。 |