11.1 定义材料要定义材料,请执行以下步骤。 GqI^$5? 步骤 执行 eB78z@ 1) 从“文件”菜单中,选择“新建”。出现“初始属性”对话框(参见图2) Tv<iHHp %Yg;s'F>#q 图2.初始属性对话框 mf'N4y%
使用“初始属性”对话框指定基本参数。 这些参数可以稍后在会话框中进行更改,因为希望这些参数较少地改变,因此在项目创建开始时对其进行设置。 例如,预期诸如折射率之类的属性在设计会话中将比设计中的其他属性(例如系统几何形状)更少地改变。 轮廓是用来确定横向平面中波导几何形状的规格。通道波导包含多层结构,光纤具有圆形横截面,扩散波导具有渐变折射率指数。 这些定义在设计会话中比几何体布局更改地更少。 jK#y7E h'<}N 2) 单击“轮廓”和“材料”。将出现“轮廓设计器”窗口(参见图3)。 :<=!v5 SK mD:d,,~ 图3.轮廓设计器窗口 $V~r*#$.
OptiBPM Designer1是我们正在使用的项目的临时名称。 保存项目时,可以给它一个更有意义的名称。 o$m64l BBw`8! 3) 在OptiBPM_Designer1的目录下,在“材料”文件夹下,右键单击“电介质”文件夹。 pr\yc 出现一个右键菜单。 y6'Fi(2yw
YH^_d3A; 4) 选择新建。 sJX/YGHt 出现Dielectric1对话框(参见图4)。 V-CPq Tk9*@kqv 图4.介质对话框
%*<k5#Yq 5) 键入以下信息: J={$q1@lq 名称:Core L1`^~m| 折射率(Re :):1.46 Q;{yIa$ $ 6) 单击各向异性选项卡并键入折射率Re的实部: 1.46 j4le../N 7) 要保存材料,请单击“存储”。 Q{!lLka 名称Core出现在目录中的Dielectric文件夹和对话框标题栏中。
U KF/v 注意:您可以打开对话框,或关闭对话框以防止“轮廓设计器”窗口变得混乱。 4hztYOhJ{ geWis(#J 折射率有两种定义,因为在2D计算中,折射率通常不是物理指标,而是有效的指标。 2D标签是保存有效折射率的地方; 当有效折射率放置在2D选项卡中时,仅在执行2D模拟时才使用。 3D BPM和模式解算器将使用其他选项卡中的定义。 ?rWqFM:hb 8) 单击各向异性选项卡 kf0zL3| 在项目中的某个时刻,可能会使用其他BPM模拟器,可以接受各向异性材料。 各向异性材料的特征在于介电常数张量(见图5)。 材料Core可以在这种环境中使用(尽管它本身不是各向异性的),因此默认情况下,OptiBPM会自动设置适当的对角线介电常数张量,即主对角线中的n2。 如果需要指定各向异性材料,请取消选中默认复选框并输入相应的常数(参见图5)。 AqvRzi(Y &by,uVb=|{ 图5.3D各向异性标签
|hehROUn 9) 重复步骤3)至6),并键入以下信息(参见图6) 5Ga>qIM 名字:Clad *#Hi W) 折射率(Re :):1.44 -:m;ePK 10) 要保存信息,请单击“存储”。 %,MCnu&Z Clad出现在目录和对话框标题栏中的Dielectric文件夹中。 |!dyk<}oIu F {]: 图6 包层定义 [X)+(-J
11.2 定义2D和3D通道轮廓 LLg ']9 要提供2D和3D轮廓的定义,请执行以下步骤。 JGf6*D"O 步骤 操作 j*Q/vY!T 1) 在OptiBPM_Designer1下的“Profiles”文件夹下的目录下,右键单击“Channel”文件夹。 >DQl&:-)t 出现一个右键菜单。 ('W#r" 2) 选择新建。 |A7Yv 出现“通道”对话框。 M9]O!{sq 注意:要确保您可以查看所有场,请最大化ChannelPro对话框。 S
D]d/|y 3) 输入轮廓文件名称:BuriedWg @fT*fv
4) 提供2D配置轮廓定义: AZorz Q]s • 在2D轮廓定义下,在“材料”组合框列表中,单击新定义的材质“Core”。 Q5r cPU>A 通过选择Core,如果2D模拟器被调用,与配置文件名称BuriedWg相关联的波导内的任何点将具有Core的2D规范中定义的折射率。 v*QobI G=!Y ~q g 图7 2D轮廓定义 W$N_GR'4
通道轮廓文件由外延方向的层和这些在3D轮廓面板中被定义层组成。 DyG3|5s1R 5) 要指定3D轮廓定义: y ']>J+b0 a. 在3D轮廓定义下,键入以下信息: >
zh%CF$ 层名称:Channel1(通道1) O~9
%!LAu 宽度:1.0 ;f[Ki$7 厚度:2 }@4m@_gR? 偏移量:0 \Yz>=rY b. 在材料清单中,选择Core。 ]s s0~2 c. 单击添加。 O9A.WSJ
>} 您输入的信息显示在3D配置文件定义窗口中。 CCp{ZH s 6) 要保存通道轮廓文件,请单击“存储”。 "f~S3 ?^!2 BuriedWg出现在目录中的Channel文件夹中,在Profile Designer标题栏和设计底部的选项卡上(参见图8)。 +uKlg#wqc 图8 定义通道轮廓
7) 要返回OptiBPM布局设计器窗口,请最小化“轮廓设计器”窗口。 h -+vM9j 出现OptiBPM GUI和初始属性对话框。 `BMg\2Ud* C#p$YQf 11.3定义布局设置 HvK<>9 要定义布局设置,请执行以下步骤: c%Yvj 步骤 操作 =iRc& 1) 在“初始属性”对话框中,单击“默认波导”标签。 o9# 2) 键入以下值: 8~EDmg[ 宽度:4.0 /81Ux@,(e 注意:所有波导将使用该值作为默认宽度。 G#)>D$Ck# 3) 在轮廓列表中,单击新定义的BuriedWg(参见图9)。 x<P$$G/ 注意:可以随时更改默认的或者相关联的任意单个波导(在“波导布局设计器”中,选择“编辑”>“默认波导”)。 J@H9nw+Q @;fdf 3ian 图9初始属性对话框 - 默认波导选项卡 9O?.0L
要在平面视图中指定分析区域的大小: jbn{5af 4) 单击“晶圆尺寸”选项卡。 P00d#6hPJ 键入以下值(参见图10)。 pJVzT,poh 长度:800 G#Nh)ff 宽度:40 p<`q^D
4kT| /bp 图10初始属性对话框 - “晶圆尺寸”选项卡
指定任意点的材料并不包含波导内部(对于2D计算): @&S4j]rq 5) 单击“2D晶圆属性”选项卡 \5k[ "8~ 6) 在晶圆折射率中,在“材质”列表中,单击“包层”。 wP6~HiC E4HG`_cWb 在3D计算的情况下,需要提供更多的信息,因为通常用于基底的材料与用于包层的材料不同。 另外,需要规定层的厚度。 在这种情况下,我们在掩埋波导中以相同的材料来定义基底和包层。 注意,这不是基底或包层的实际厚度。 相反,这些数字指定计算窗口的边界。 基底的理想厚度将是足够大以容纳被分析的波导模式,但又不能太厚以避免网格的精度受损。 在实际工作中,随着波导设计经验的增加,这些尺寸将需要在后期进行优化。 但是,可以稍后更改这些尺寸(在“波导布局设计器”中,选择“编辑”>“晶圆属性”)。 PsEm(.z 要指定与任何不在任何波导内的点相关联的材料进行3D计算: b@Ik
c< 7) 单击“3D晶片属性”选项卡。 I^[R]Js 8) 在“包层”面板中,选择“材料:包层”,然后键入“厚度”:17。 TWQf2 9) 在“基底”面板中,选择“材料:包层”,然后键入“厚度”:15 lK9us
]b.@i&M 图11初始属性对话框 - “3D晶圆属性”选项卡
10) 要将设置应用于布局,请单击“确定”。 C"<l} 将显示项目布局窗口。 SBAq,F' 注意:最大化项目布局窗口并调整放大倍率(+ - 按钮),使布局在屏幕上显示为适当的大小。 rV"<1y:g 将项目保存为GettingStarted.bpd,以恢复目前已完成。 如果要保留记录此项目中间步骤的文件,请使用SaveAs功能。 保存文件后,轮廓设计器中树的名称为“GettingStarted”,保存的名称将替换临时名称“OptiBPMDesigner 1”(见图7)。 同样,如果您在OptiBPM中打开其他项目,则将在轮廓设计器中创建与新打开的项目名称相同的新分支。 `w@fxv
G! zV=p
...... 4M6o+WV
uz&CUvos
未完待续