切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9182阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i4s_:%+  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, zPn 2  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢?  J*FUJT  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xN CU5  
    o<Y[GW1pg  
    & @rXt!  
    B57MzIZi]  
    &8xwR   
    function z = zernfun(n,m,r,theta,nflag) Um2RLM%  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. T;`2t;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Kd;Iu\4hv  
    %   and angular frequency M, evaluated at positions (R,THETA) on the yhG%@vSq  
    %   unit circle.  N is a vector of positive integers (including 0), and DqN<bu2  
    %   M is a vector with the same number of elements as N.  Each element 0Q4i<4 XW  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -~=?g9fGm6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u}Q cyG^  
    %   and THETA is a vector of angles.  R and THETA must have the same Lh;U2pA  
    %   length.  The output Z is a matrix with one column for every (N,M) u/ZV35z  
    %   pair, and one row for every (R,THETA) pair. h#JX$9  
    % zz* *HwRt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike lv!8)GX|  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7,7-E&d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 2m{d>  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, T:=ST3#m  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )kk10AZV-E  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )1, U~+JFU  
    % a>8&B  
    %   The Zernike functions are an orthogonal basis on the unit circle. cf+EQY  
    %   They are used in disciplines such as astronomy, optics, and [M/0Qx[,  
    %   optometry to describe functions on a circular domain. ,+GS.]8<  
    % 5`\"UC7?%  
    %   The following table lists the first 15 Zernike functions. =lZtI6tZ  
    % $eiW2@  
    %       n    m    Zernike function           Normalization LTWiCI  
    %       -------------------------------------------------- %n@ ^$&,&;  
    %       0    0    1                                 1 E/@  
    %       1    1    r * cos(theta)                    2 VKMgcfbHr/  
    %       1   -1    r * sin(theta)                    2 ?A]/ M~3B  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 9!?Ywc>0#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 'PWX19  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Jt(RF*i  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) u2 t=*<X  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Dn[uzY6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -^ R?O  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 76(/(v.x  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Zdy{e|-Zn  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >J) 9&?  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?M B Od9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y&L Lx[8 ^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) XImX1GH  
    %       -------------------------------------------------- e4LJ3y&z"  
    % C Ef*:kr  
    %   Example 1: eZ8DW6l*  
    % au#/Q  
    %       % Display the Zernike function Z(n=5,m=1) /*e6('9s  
    %       x = -1:0.01:1; PS$g *x  
    %       [X,Y] = meshgrid(x,x); utU ;M*  
    %       [theta,r] = cart2pol(X,Y); &fe67#0r)  
    %       idx = r<=1; 4L/nEZ!Nsu  
    %       z = nan(size(X)); +FH@|~^O  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); oS^g "hQ`\  
    %       figure 4 z^7T  
    %       pcolor(x,x,z), shading interp }6"l`$=Ev  
    %       axis square, colorbar  N<~LgH  
    %       title('Zernike function Z_5^1(r,\theta)') 1Vx>\A  
    % _sAcvKH  
    %   Example 2: \ 0/m$V.  
    % s1bb2R  
    %       % Display the first 10 Zernike functions :"'*1S*  
    %       x = -1:0.01:1; L~("C  
    %       [X,Y] = meshgrid(x,x); 2$b JMx>  
    %       [theta,r] = cart2pol(X,Y); ^VsE2CX  
    %       idx = r<=1; 4}-G<7*  
    %       z = nan(size(X)); t1ers> h  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <9]J/w+  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zNM*xPgS  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; d)kOW!5\  
    %       y = zernfun(n,m,r(idx),theta(idx)); cb }OjM F  
    %       figure('Units','normalized') nCDG PzJ  
    %       for k = 1:10 a y$CUw  
    %           z(idx) = y(:,k); ?OFfU  4  
    %           subplot(4,7,Nplot(k)) 4mvnFY}   
    %           pcolor(x,x,z), shading interp ,z~"Mst  
    %           set(gca,'XTick',[],'YTick',[]) l p|`n  
    %           axis square "u)Le6.  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VV"w{#XKw  
    %       end DD}YbuO7  
    % afE8Kqa:H  
    %   See also ZERNPOL, ZERNFUN2. M_h8{  
    7c83g2|%   
    VNwOD-b/]  
    %   Paul Fricker 11/13/2006 iL|5}x5\  
    hE7rnn{  
    U~w8yMxX  
    NInZ~4:  
    p\Fxt1Y@X  
    % Check and prepare the inputs: ee {K5G  
    % ----------------------------- Z|xgZG{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C=t9P#g*.  
        error('zernfun:NMvectors','N and M must be vectors.') =1\mLI}@  
    end 8x-(7[#e<g  
    %$N,6}n  
    k\Y*tY#2  
    if length(n)~=length(m) : . PRM+  
        error('zernfun:NMlength','N and M must be the same length.') u7  
    end a,h]DkD  
    y"k %Wa`*  
    HGF&'@dn  
    n = n(:); 3|%058bF  
    m = m(:); I~4!8W-Y  
    if any(mod(n-m,2)) >z7 3uKA(  
        error('zernfun:NMmultiplesof2', ... ^ywDa^;-  
              'All N and M must differ by multiples of 2 (including 0).') LTuT"}dT[  
    end m#<Jr:-  
    _k#GjAPM  
    N~P1^x~  
    if any(m>n) T.W^L'L `  
        error('zernfun:MlessthanN', ... ~=9S AJr]  
              'Each M must be less than or equal to its corresponding N.') `6(Zc"/ \m  
    end VO~%O.>  
    39L_O RMH  
    iNilk!d6Q3  
    if any( r>1 | r<0 ) .)<l69ZD Z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7rG+)kHG  
    end *JAC+<~d  
    '(-H#D.oy'  
    R ^ZOcONd-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Mkr &30il[  
        error('zernfun:RTHvector','R and THETA must be vectors.') dptfIBYc+  
    end 5}a.<  
    l| y.6v  
    3p]\l ]=  
    r = r(:); g_0| `Sm  
    theta = theta(:); p_vl dTIW  
    length_r = length(r); #CcEI  
    if length_r~=length(theta) "{Hl! Zq/  
        error('zernfun:RTHlength', ... (}s& 84!  
              'The number of R- and THETA-values must be equal.') P=7X+}@  
    end NKTy!zWh  
    BAi`{?z$<  
    uN1VkmtDO  
    % Check normalization: N`4XlD  
    % -------------------- .m.Ga|;  
    if nargin==5 && ischar(nflag) >v f-,B  
        isnorm = strcmpi(nflag,'norm'); p+0gE5  
        if ~isnorm :4)(Qa(  
            error('zernfun:normalization','Unrecognized normalization flag.') WJ^]mpH9  
        end 8l'W[6  
    else *3s-=.U~  
        isnorm = false; Bd- &~s^  
    end :yTr:FoF  
    %gWQ}QF  
    bYqv)_8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \.>7w 1p  
    % Compute the Zernike Polynomials *IIA"tC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QO>';ul5  
    E~VV19Bv]/  
    R / ND f`  
    % Determine the required powers of r: {&L^|X  
    % ----------------------------------- C6Cr+TScH  
    m_abs = abs(m); `P <#kt  
    rpowers = []; ].2t7{64  
    for j = 1:length(n) "zkQu  
        rpowers = [rpowers m_abs(j):2:n(j)]; `VvQems  
    end rz&'wCiOO  
    rpowers = unique(rpowers); Q [C26U  
    h<bhH=6~  
    K;w2qc.+  
    % Pre-compute the values of r raised to the required powers, KP 6vb@(6  
    % and compile them in a matrix: ><xmw=  
    % ----------------------------- qM6hE.J   
    if rpowers(1)==0 %I{>H%CjE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $G{j[iLY  
        rpowern = cat(2,rpowern{:}); l<+PA$+}}  
        rpowern = [ones(length_r,1) rpowern]; 'X6Z:dZY  
    else C+"c^9[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FBvh7D.hV  
        rpowern = cat(2,rpowern{:}); oE6`]^^  
    end !"&-k:|g  
    wLb:FB2  
    wmIe x  
    % Compute the values of the polynomials: 5 8 7;2  
    % -------------------------------------- pzaU'y#PM  
    y = zeros(length_r,length(n)); ^q#[oO  
    for j = 1:length(n) Ul6|LTY  
        s = 0:(n(j)-m_abs(j))/2; NHe)$%a=H  
        pows = n(j):-2:m_abs(j); X Q CE`m  
        for k = length(s):-1:1 cP\z*\dS  
            p = (1-2*mod(s(k),2))* ... sjb.Ezoq3  
                       prod(2:(n(j)-s(k)))/              ... "C(yuVK1G  
                       prod(2:s(k))/                     ... B}.:7,/0  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <QC7HR  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); l9OpaOVfJ  
            idx = (pows(k)==rpowers); 87W!R<G  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9Kg yt  
        end OU}eTc(FeC  
         4_sJ0=z-  
        if isnorm pLCS\AUTsv  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <m\<yZ2aa  
        end 0rz1b6F5,  
    end H1L)9oa  
    % END: Compute the Zernike Polynomials AzSu_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yl lZ5<}  
    kPiY|EH  
    GAZRQ  
    % Compute the Zernike functions:  o0>|  
    % ------------------------------ =wW M\f`=  
    idx_pos = m>0; S'W,AkT  
    idx_neg = m<0; ^suQ7#g  
    =:zPT;K  
    >HRNB&]LdP  
    z = y; "Da-e\yA  
    if any(idx_pos) \8m9^Z7IfK  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Nnr[@^M5  
    end sD2,!/'  
    if any(idx_neg) 4nP4F +  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9 nY|S{L  
    end x?lRObHK  
    oU @!R  
    IVZUB*wv)b  
    % EOF zernfun %3"3V1  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^t7u4w!  
    0(f+a_2^Q  
    DDE还是手动输入的呢? ilJ`_QN  
    /J_ ],KdU  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究