下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, /'sv7hg+
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $ln8Cpbca
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? d=D-s
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ./#YUIC
l~i?
pey=zR!
AS7L
B*Tn@t W
function z = zernfun(n,m,r,theta,nflag) Q;]JVT1
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. $aV62uNf
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N pF{jIXu
% and angular frequency M, evaluated at positions (R,THETA) on the -G(me"Cu
% unit circle. N is a vector of positive integers (including 0), and O] @E8<?^
% M is a vector with the same number of elements as N. Each element EhxpMTS
% k of M must be a positive integer, with possible values M(k) = -N(k) Lc{AB!Br
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 0P$1=oK
% and THETA is a vector of angles. R and THETA must have the same %e~xO x
% length. The output Z is a matrix with one column for every (N,M) #AJW-+1g.=
% pair, and one row for every (R,THETA) pair. |Xt.[1
% E_
wVAz3
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y
bhFDx
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2:38CdkYp
% with delta(m,0) the Kronecker delta, is chosen so that the integral /6')B !&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, QP(0
% and theta=0 to theta=2*pi) is unity. For the non-normalized $
VT)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]l,D,d81
% EtcT:k?y
% The Zernike functions are an orthogonal basis on the unit circle. 1SExlU
% They are used in disciplines such as astronomy, optics, and e$[O J<t
% optometry to describe functions on a circular domain. 8 0tA5AP
% U#z"t&o=L
% The following table lists the first 15 Zernike functions. $|~<6A{y
% \D@j`o
% n m Zernike function Normalization if*V-$[I
% -------------------------------------------------- )]fsl_Yq
% 0 0 1 1 /HdXJL9B
% 1 1 r * cos(theta) 2 JWNN5#=fQ
% 1 -1 r * sin(theta) 2 Ok!P~2J
% 2 -2 r^2 * cos(2*theta) sqrt(6) " .7@
% 2 0 (2*r^2 - 1) sqrt(3) ]3 "0#Y
% 2 2 r^2 * sin(2*theta) sqrt(6) %p 6Ms
% 3 -3 r^3 * cos(3*theta) sqrt(8) zDvV%+RW)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _}F&^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) k8s)PN
% 3 3 r^3 * sin(3*theta) sqrt(8) evyjHc Cx
% 4 -4 r^4 * cos(4*theta) sqrt(10) &]TniQH
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b7sfr!t_d
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) WsHDIp
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d:'{h"M6
% 4 4 r^4 * sin(4*theta) sqrt(10) TAYh#T=S
% -------------------------------------------------- Ic'D#m
% c}@E@Y`@w
% Example 1: n*\o. :f
% \l!+l
% % Display the Zernike function Z(n=5,m=1) iHv+I~/
% x = -1:0.01:1; y6$a:6
% [X,Y] = meshgrid(x,x); HM% +Y47a
% [theta,r] = cart2pol(X,Y); (dg,w*t'
% idx = r<=1; gt8dFcm|s
% z = nan(size(X));
I bD
u+~)
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (-S^L'v62v
% figure p*<Jg l
% pcolor(x,x,z), shading interp )7.)fY$
% axis square, colorbar ThV>gn5
% title('Zernike function Z_5^1(r,\theta)') n.l#(`($4
% ep8UWxB5
% Example 2: hJSvx
% Uh0g !zzp
% % Display the first 10 Zernike functions iQO4IT
% x = -1:0.01:1; LVUA"'6V
% [X,Y] = meshgrid(x,x); ]y#'U
% [theta,r] = cart2pol(X,Y); .s\lfBo9
% idx = r<=1; f>Rux1Je4
% z = nan(size(X)); \`y:#N<c
% n = [0 1 1 2 2 2 3 3 3 3]; 2sGKn
a
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;L$-_Z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; FRxR/3&
% y = zernfun(n,m,r(idx),theta(idx)); !>F70
% figure('Units','normalized') r1HG$^
% for k = 1:10 {`):X _$T
% z(idx) = y(:,k); mX>N1zAz
% subplot(4,7,Nplot(k)) #j Tkz
% pcolor(x,x,z), shading interp %vO(.A+
% set(gca,'XTick',[],'YTick',[]) k;cIEEdZD
% axis square mx)!] B"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @tSB^&jUWu
% end \dQc!)&C9
% /[?}LrDO
% See also ZERNPOL, ZERNFUN2. !n;3jAl&$
+tk`$g
H`M|B<.
% Paul Fricker 11/13/2006 Ab[o~X"
qUfoEpW2=6
p"P+8"`
[Q:mq=<Z%
F=Xb_Gd`
% Check and prepare the inputs: 0to`=;JI
% ----------------------------- </'n={+q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K Zg NL|
error('zernfun:NMvectors','N and M must be vectors.') b~UWFX#U
end :^W}$7$T
:2KPvp7?
.RmFYV0,
if length(n)~=length(m) Y*#xo7#B
error('zernfun:NMlength','N and M must be the same length.') p9jC-&:
end 5`3x(=b
k5>UAea_
Qq6'[Od
n = n(:); PCwc=
m = m(:); \5tG>>c i
if any(mod(n-m,2)) Vs TgK
error('zernfun:NMmultiplesof2', ... $hc=H
'All N and M must differ by multiples of 2 (including 0).') CF3x\6.q}
end r<kgYU`
j|8!gW
_N:$|O#
if any(m>n) v6G1y[Wl
error('zernfun:MlessthanN', ... |11vm#
'Each M must be less than or equal to its corresponding N.') X9PbU1o;
end 1?w=v|b:P)
#*rJI3
[f\Jcjc
if any( r>1 | r<0 ) :@5{*o
error('zernfun:Rlessthan1','All R must be between 0 and 1.') W\-`}{B_/
end ]["%e9#aX
s#<fj#S
@H$8;CRM
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) f6J]=9jU
error('zernfun:RTHvector','R and THETA must be vectors.') rRe^7xGe7
end ?f9M59(l
Q_p&~ PNy5
q.R(>ZcV
r = r(:); F3vywN1$,
theta = theta(:); '4 d4i
length_r = length(r); ;o)'dK
if length_r~=length(theta) s)E8}-v
error('zernfun:RTHlength', ... YJ6:O{AL1
'The number of R- and THETA-values must be equal.') Y5 ;a
end )?OdD7gd
@r[SqGa:
TDZ==<C
% Check normalization: &\ca ? #
% -------------------- lH?jqp
if nargin==5 && ischar(nflag) <V}q8k
isnorm = strcmpi(nflag,'norm'); Q}^Ip7T
if ~isnorm 0827z
error('zernfun:normalization','Unrecognized normalization flag.') %CYo,
e
end D1+1j:m
else b 1.S21
isnorm = false; G6{'|CV
end ^w%%$9=:r
,_H H8[&
HCrQ+r{g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .|u`s,\
% Compute the Zernike Polynomials
BUwL?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% doTbol?+
$?!]?{K
\>*.+?97
% Determine the required powers of r: )uAY_()/
% ----------------------------------- _vb'3~'S
m_abs = abs(m); ts(u7CJd
rpowers = []; rSt5@f?
for j = 1:length(n) hC8WRxEGq
rpowers = [rpowers m_abs(j):2:n(j)]; `-CN\
end K_ymA,&()
rpowers = unique(rpowers); C7R3W,
{[:C_Up)f
t90M]EAV
% Pre-compute the values of r raised to the required powers, >`&2]Wc)
% and compile them in a matrix: rZ+4kf6S
% ----------------------------- *k#"@
if rpowers(1)==0 ks phO-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z~h6^h
rpowern = cat(2,rpowern{:}); "(W;rl
rpowern = [ones(length_r,1) rpowern]; {5
pK8
else Vb#a ,t
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,<K+.7,)E
rpowern = cat(2,rpowern{:}); vy5Fw&?"
end ,J+L_S+B~
4Zu1G#(zP
d])ctxB
% Compute the values of the polynomials: P-[})Z=
% -------------------------------------- 8<0P Ssx
y = zeros(length_r,length(n));
ox<&T|
for j = 1:length(n) kl~/tbf
s = 0:(n(j)-m_abs(j))/2; h#}w18l
pows = n(j):-2:m_abs(j); Jb$G
for k = length(s):-1:1 {*n<A{$[
m
p = (1-2*mod(s(k),2))* ... u"oO._a(
prod(2:(n(j)-s(k)))/ ... kmTYRl
)j
prod(2:s(k))/ ... _3%:m||,XP
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XNx$^I=
prod(2:((n(j)+m_abs(j))/2-s(k))); gQSVPbzK
idx = (pows(k)==rpowers); `Rq|*:LV
y(:,j) = y(:,j) + p*rpowern(:,idx); 5*A5Y E-
end IQC[ewk
^{IZpT3
if isnorm 'l!\2Wv2
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
%X\A|V&
end #6#n4`%ER
end I:oEt
% END: Compute the Zernike Polynomials f^QC4hf0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Va.TUz4
=$bF[3D
#E=8kbD7
% Compute the Zernike functions: vf>d{F^rv
% ------------------------------ <G<5)$
S
idx_pos = m>0; GK,{$SC+=
idx_neg = m<0; 03|nP$g
%=2sz>M+
EI?8/c
z = y; ;xw9#.d#D
if any(idx_pos) mT@Gf>}/A
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); D}}?{pe
end Z-ci[Zv
if any(idx_neg) =,ax"C?pR
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); kk<%VKC
end k0\a7$}F
0&|M/
60%fva
% EOF zernfun g%]<sRl:-