下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, hqdC9?\
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, c8H9_6
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Cij$GYkv
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &Xj {:s#
oUnq"]
`M towXj
#i'C
7[(Lrx.pM
function z = zernfun(n,m,r,theta,nflag) L{4),65
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3U :YA&K(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v)wY
% and angular frequency M, evaluated at positions (R,THETA) on the UwvGr h
% unit circle. N is a vector of positive integers (including 0), and $`-SVC
% M is a vector with the same number of elements as N. Each element ]Om'naD
% k of M must be a positive integer, with possible values M(k) = -N(k) Lg\8NtP
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ,AGM?&A
% and THETA is a vector of angles. R and THETA must have the same {o Q(<&Aw
% length. The output Z is a matrix with one column for every (N,M) tg4LE?nv
% pair, and one row for every (R,THETA) pair. u&hDjE
% m^W*[^p
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !Qj)tS#Az
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a>-}\GXTA
% with delta(m,0) the Kronecker delta, is chosen so that the integral W)G2Cs?p
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cij]&$;Q
% and theta=0 to theta=2*pi) is unity. For the non-normalized +H2m<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FU [8:o62
% # CP9^R S
% The Zernike functions are an orthogonal basis on the unit circle. lq7 8gOg{
% They are used in disciplines such as astronomy, optics, and __oY:d(~
% optometry to describe functions on a circular domain. LS R_x$G+t
% %OezaNOtm
% The following table lists the first 15 Zernike functions. tal>b]B;
% M6o
xtt4
% n m Zernike function Normalization (9WL+S
% -------------------------------------------------- F:[Nw#gj/
% 0 0 1 1 (r#5O9|S
% 1 1 r * cos(theta) 2 A1#4nkkc9
% 1 -1 r * sin(theta) 2 =H.<"7
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2
% 2 0 (2*r^2 - 1) sqrt(3) /r::68_KQP
% 2 2 r^2 * sin(2*theta) sqrt(6) 0XBBA0tq
% 3 -3 r^3 * cos(3*theta) sqrt(8) -$sl!%HO%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) bv:0EdVr
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;L\!g%a
% 3 3 r^3 * sin(3*theta) sqrt(8) T_5*iwI
% 4 -4 r^4 * cos(4*theta) sqrt(10) ue^?/{OuT
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F1{?]>G
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2yi*eR
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y4)ZUv,}
% 4 4 r^4 * sin(4*theta) sqrt(10) A$H+4L
% -------------------------------------------------- #2ZrdD"5kQ
% ~x+:44*
% Example 1: L:k@BCQM
% $w";*">:0
% % Display the Zernike function Z(n=5,m=1) rS,*s'G
% x = -1:0.01:1; 4X(1
% [X,Y] = meshgrid(x,x); f//j{P[
% [theta,r] = cart2pol(X,Y); flm,r<*}
% idx = r<=1; nkr,
% z = nan(size(X)); ^Yf)lV&[
% z(idx) = zernfun(5,1,r(idx),theta(idx)); k`iq<b
% figure 6bA~mC^&
% pcolor(x,x,z), shading interp M Z|c7f&`
% axis square, colorbar //'xR8Z
% title('Zernike function Z_5^1(r,\theta)') b& _i/n(
% YDZ1@N}^B
% Example 2: m\}\RnZu
% |RvpEy76
% % Display the first 10 Zernike functions |~=?vw<W
% x = -1:0.01:1; q6m87O9
% [X,Y] = meshgrid(x,x); ')yF0
% [theta,r] = cart2pol(X,Y); W:;`
% idx = r<=1; F_M~!]<na
% z = nan(size(X)); HPd+Bd
% n = [0 1 1 2 2 2 3 3 3 3]; Tg{dIh.Q~O
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; wZ\e3H z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }ii]cY
% y = zernfun(n,m,r(idx),theta(idx)); ~;O=
7
% figure('Units','normalized') k{u%p <
% for k = 1:10 ?G%, k
LJJ
% z(idx) = y(:,k); 644hQW&W
% subplot(4,7,Nplot(k)) @]VvqCk
% pcolor(x,x,z), shading interp +~pc%3*
% set(gca,'XTick',[],'YTick',[]) D .oS8'
% axis square 5>z:[OdY*
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5
a*'N~
% end Yf2+@E
% XM5;AcD
% See also ZERNPOL, ZERNFUN2. +_|cZlQ&
(>Q9jNW
i5~ /+~
% Paul Fricker 11/13/2006 mG8
>FMT#x t
83 ^,'Z
KSpC%_LC
2YP"nj#
% Check and prepare the inputs: ?` ZGM
% ----------------------------- me}Gb a
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |2t7mat
error('zernfun:NMvectors','N and M must be vectors.') EuimZW\V
end <J_,9&\J
<K.C?M(9
p6eDd"Y
if length(n)~=length(m) XtH_+W+O
error('zernfun:NMlength','N and M must be the same length.') ?\p%Mx?
end 0.+Z;j
$nd-[xV
wGQ hr="
n = n(:); d=5}^v#4
m = m(:); |~"A:gf
if any(mod(n-m,2)) >J75T1PH=
error('zernfun:NMmultiplesof2', ... t%YX-@
'All N and M must differ by multiples of 2 (including 0).') Qmc;s{-r;
end |9i/)LRXe
IM&7h!
l"|
z1KC$~{O
if any(m>n)
s?\9i6
error('zernfun:MlessthanN', ... a!J ow?(
'Each M must be less than or equal to its corresponding N.') Kd[`mkmS
end 02c.;ka3
&+r
;>
Px?At5
if any( r>1 | r<0 ) AYQh=$)(
error('zernfun:Rlessthan1','All R must be between 0 and 1.') [F-u'h< *l
end g}og@UY7#
=`.5b:e
t:j07 ,1~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &T/9yW[L
error('zernfun:RTHvector','R and THETA must be vectors.') 9qO:K79|
end K}*p(1$u
Q_|S^hxQ
iO= uXN1g
r = r(:); {aa,#B]i
theta = theta(:); aKU8"
5
length_r = length(r); n7!Lwq2
if length_r~=length(theta) 8{=(#]
error('zernfun:RTHlength', ... ]~x/8%e76
'The number of R- and THETA-values must be equal.') 8 P y_Y>
end @KRn3$U
p){RSq
5}^08Xl
% Check normalization: n_NG~/x
% -------------------- n)7$xYuH
if nargin==5 && ischar(nflag) ia.B@u1/
isnorm = strcmpi(nflag,'norm'); O
NzdCgY
if ~isnorm yT9RNo/w
error('zernfun:normalization','Unrecognized normalization flag.') bIl0rx[`
end [67f; ?b
else Y%cA2V\#m
isnorm = false; - OGy-"
end Evgq}3
7(iRz
szs3x-g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vh.tk^&
% Compute the Zernike Polynomials ?BZ`mrH^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FrM~6A_
Y `p&*O
QL!+.y%
% Determine the required powers of r: qBrZg
% ----------------------------------- T7nX8{l[RG
m_abs = abs(m); :v ~q
rpowers = []; .Eyk?"^
for j = 1:length(n) C^v- &*v
rpowers = [rpowers m_abs(j):2:n(j)]; oa|*-nw
end ! { aA*E{
rpowers = unique(rpowers); mP+yjRw
5Kxk9{\8
siZ_JJW
% Pre-compute the values of r raised to the required powers, #EK8Qe_
% and compile them in a matrix: 4T\/wyq0
% ----------------------------- }n8;A;axi
if rpowers(1)==0 dV*rnpN
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \(t>(4s_~
rpowern = cat(2,rpowern{:}); ,+evP=(cX
rpowern = [ones(length_r,1) rpowern]; 9uoj3Rh<
else TmH13N]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;XuEMq,Di
rpowern = cat(2,rpowern{:}); ITPpT
end <T[ui
p arG
RxG./GY
% Compute the values of the polynomials: OvG |=
% -------------------------------------- 1caod0gor
y = zeros(length_r,length(n)); HBGA
lZ
for j = 1:length(n) UHHKI)(
s = 0:(n(j)-m_abs(j))/2; r}Av"
pows = n(j):-2:m_abs(j); T<GD !j(
for k = length(s):-1:1 mQuaO#
I,
p = (1-2*mod(s(k),2))* ... (19<8a9G
prod(2:(n(j)-s(k)))/ ... 84cH|j`w
prod(2:s(k))/ ... K<(sqH
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .?]_yX
prod(2:((n(j)+m_abs(j))/2-s(k))); \,t<{p_Q
idx = (pows(k)==rpowers); 6VE5C
g
y(:,j) = y(:,j) + p*rpowern(:,idx); ]`9K|v
end Xh!Pg)|E
P$(}}@
if isnorm W4Q]<<6&
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ux]@prA q
end xK 'IsMo[
end ^Z+D7Q
% END: Compute the Zernike Polynomials :N:8O^D^<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3&:fS|L~c
EOC"a}Cq-
yBKlp08J
% Compute the Zernike functions: L@GD$F=<0
% ------------------------------ 7?#32B
Gr
idx_pos = m>0; VHNiTp
idx_neg = m<0; 1ki"UF/
~cwwB{
`^{P,N>X
z = y;
BT0hx!Ti
if any(idx_pos) LXl! !i%
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); L,L7WObA
end F
tjm@:X
if any(idx_neg) NE"fyX`
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); G$<0_0GF
end gvYs<,:
gp2)35
nsk
6a
% EOF zernfun $S{j}74[