下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, g~EJja;
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .32]$vx
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? wGfU@!m
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4Eq$f (QJ
md8r"
Kts#e:k@
-X#Zn>#
Kfho:e,
function z = zernfun(n,m,r,theta,nflag) E3X6-J|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. z:C
VzK,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N pJ*x[y
% and angular frequency M, evaluated at positions (R,THETA) on the gWcl@|I;\
% unit circle. N is a vector of positive integers (including 0), and s&-m!|P
% M is a vector with the same number of elements as N. Each element a#i;*J
% k of M must be a positive integer, with possible values M(k) = -N(k) mx`C6G5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1t"
% and THETA is a vector of angles. R and THETA must have the same E3bS Q
% length. The output Z is a matrix with one column for every (N,M) rp*f)rJ
% pair, and one row for every (R,THETA) pair. 1_}*aQ
% I"/p^@IX
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yHS=8!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U&W{;myt
% with delta(m,0) the Kronecker delta, is chosen so that the integral _&0_@
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YcJZG|[
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7v9l+OX,6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [d+f#\ut
% )m .KV5K!
% The Zernike functions are an orthogonal basis on the unit circle. q'u^v PO
% They are used in disciplines such as astronomy, optics, and 0<3)K[m~H
% optometry to describe functions on a circular domain. &%."$rC/0b
% 5&}~W)"9
% The following table lists the first 15 Zernike functions. >>}4b2U
% UA@(D
% n m Zernike function Normalization F/ BB]gUB
% -------------------------------------------------- FbxrBM
% 0 0 1 1 p$r=jF&
% 1 1 r * cos(theta) 2 /b3b0VfF
% 1 -1 r * sin(theta) 2 QIZ }7
% 2 -2 r^2 * cos(2*theta) sqrt(6) $]eU'!2)
% 2 0 (2*r^2 - 1) sqrt(3) GabYxYK
% 2 2 r^2 * sin(2*theta) sqrt(6) qY^OO~[
% 3 -3 r^3 * cos(3*theta) sqrt(8) ySyA!Z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Oj6PmUK4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) yht|0mZV
% 3 3 r^3 * sin(3*theta) sqrt(8) yb)!jLnH
% 4 -4 r^4 * cos(4*theta) sqrt(10) k%UE^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
5X2&hG*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _ ^5w f
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0Q\6GCzN\
% 4 4 r^4 * sin(4*theta) sqrt(10)
Tk(ciwB
% -------------------------------------------------- t[L0kF9en
% \UKr|[P
% Example 1: *AEN
% !U}dYB:O
% % Display the Zernike function Z(n=5,m=1) NkWU5E!
% x = -1:0.01:1; rnB-e?>
% [X,Y] = meshgrid(x,x); :el]IH
% [theta,r] = cart2pol(X,Y); 3ya_47D
% idx = r<=1; .nXOv]
% z = nan(size(X)); eUa2"=M
% z(idx) = zernfun(5,1,r(idx),theta(idx)); @.JhL[f
% figure njO5 YYOu
% pcolor(x,x,z), shading interp nJEm&"AI
% axis square, colorbar ,yZvT7
% title('Zernike function Z_5^1(r,\theta)') KW&5&~)2
% fU@{!;|Pz
% Example 2: \EP<r
% 51:NL[[6
% % Display the first 10 Zernike functions \\\%pBT7]\
% x = -1:0.01:1; {5<3./5O
% [X,Y] = meshgrid(x,x); } v#Tm
% [theta,r] = cart2pol(X,Y); sA(
e
% idx = r<=1; Tyc`U&
% z = nan(size(X)); $@H]0<3,
% n = [0 1 1 2 2 2 3 3 3 3]; Ni"M.O);t
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; )vO?d~x|
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _*(n2'2B
% y = zernfun(n,m,r(idx),theta(idx)); 3`V#ImV>
% figure('Units','normalized') %XIPPEHU
% for k = 1:10 Yv}V =O%
% z(idx) = y(:,k); ryk(Am<
% subplot(4,7,Nplot(k)) 9eA2v{!S
% pcolor(x,x,z), shading interp 7od6`k
% set(gca,'XTick',[],'YTick',[]) qXI>x6?*
% axis square uif1)y`Q$C
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =#tQhg,_
% end s>i`=[qFc
% Ucj
eB
% See also ZERNPOL, ZERNFUN2. D_n(T')
]`p*ZTr)\
Us5P?}
% Paul Fricker 11/13/2006 AD_aI
%7
:cx}I
fu}ZOPu
4tv}5llSG
0vu$dxb[
% Check and prepare the inputs: O@$wU9D<
% ----------------------------- 1:L _qL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "JHdF&
error('zernfun:NMvectors','N and M must be vectors.') w_O3];
end u0Nag=cU
v5aHe_?lp
$)V_oQSqn
if length(n)~=length(m) G)vq+L5%
error('zernfun:NMlength','N and M must be the same length.') h x_,>\@
end ?3X(`:KB
.Xq4QR .
3,Dc}$t
n = n(:); ZS@ Gt
m = m(:); 7RH1,k
if any(mod(n-m,2)) @U~i<kt
error('zernfun:NMmultiplesof2', ... dI[hQxU
'All N and M must differ by multiples of 2 (including 0).') D^R=
end ^xBF$ua37)
YlF<S49loC
@Ido6Z7
if any(m>n) A7|CG[wZ
error('zernfun:MlessthanN', ... 5x([fG
'Each M must be less than or equal to its corresponding N.') |H.i$8_A
end J.R|Xd
~E]ct F
_8-iO.T+2
if any( r>1 | r<0 ) S 54N
error('zernfun:Rlessthan1','All R must be between 0 and 1.') I UMt^z
end c^4^z"Mo`
r)9&'m .:
+{qX,
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,3m]jp'
error('zernfun:RTHvector','R and THETA must be vectors.') __F?iRrCM
end N2 vA/
aJQx"6c?
R a> k#pQ
r = r(:); T7wy{;
theta = theta(:); ~^6[SbVb
length_r = length(r); R<5GG|(B
if length_r~=length(theta) hI&ugdf
error('zernfun:RTHlength', ... U',.'"m
'The number of R- and THETA-values must be equal.') ]VYv>o`2
end 2jMV6S9
r87)?-B
l'pu?TP{a
% Check normalization: G>3]A5
% -------------------- >z(AQ
if nargin==5 && ischar(nflag) -zzM!1@F
isnorm = strcmpi(nflag,'norm'); =p1aF/1$I
if ~isnorm # 1S*}Q<k
error('zernfun:normalization','Unrecognized normalization flag.') ,wI$O8"!j
end dG}.T_l
else X2Z
E9b
isnorm = false; -T
s8y
end (c'=jJX
`u. /2]n
rO_|_nV[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
IjK
% Compute the Zernike Polynomials v7V.,^6+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mp8FYPjZ
qWQ7:*DL
i8]2y
% Determine the required powers of r: &_DRrp0CN
% ----------------------------------- Rk1B \L|M
m_abs = abs(m); ;yc|=I^
rpowers = []; l7.W2mg
for j = 1:length(n) @V9qbr=Z
rpowers = [rpowers m_abs(j):2:n(j)]; Ab"mX0n
end OG M9e!
rpowers = unique(rpowers); Cb{n4xKW6
O_f+#K)
!uC`7a
% Pre-compute the values of r raised to the required powers, af:wg]g
% and compile them in a matrix: UUzu`>upB
% ----------------------------- z3RlD"F1
if rpowers(1)==0 np>RxiB^
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ar+<n 2;[
rpowern = cat(2,rpowern{:}); HjX!a29Wf
rpowern = [ones(length_r,1) rpowern]; )2U#<v^
else dHcGe{T^(
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rm-6Az V
rpowern = cat(2,rpowern{:}); ]h
Dy]
end F(-1m A&-
U?MKZL7
0.& B
% Compute the values of the polynomials: $U uSrX&
% -------------------------------------- @.4e^Km
y = zeros(length_r,length(n)); \F|L y >g
for j = 1:length(n) Jkc1ih`^
s = 0:(n(j)-m_abs(j))/2; ,| \62B`
pows = n(j):-2:m_abs(j); v7"Hvp3w
for k = length(s):-1:1 QQd%V#M?
p = (1-2*mod(s(k),2))* ... [n53eC
prod(2:(n(j)-s(k)))/ ... JD\:bI
prod(2:s(k))/ ... m[@7!.0=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qJ;T$W=NG
prod(2:((n(j)+m_abs(j))/2-s(k))); \X'{ e e
idx = (pows(k)==rpowers); 9Q!X~L|\S
y(:,j) = y(:,j) + p*rpowern(:,idx); G8JwY\
end . PzlhTL7
ngZkBX
if isnorm [5v[Zqud
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2iUdTy$
end c'9-SY1'~
end -H@Gyw
% END: Compute the Zernike Polynomials 7qyv.{+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qi_De
'@
b,?@_*qv+
zLG5m]G4D
% Compute the Zernike functions: )xJo/{?
% ------------------------------ uW.)(l
idx_pos = m>0; ^,Sl^ 9K
idx_neg = m<0; c`'2
;2m<#~@0
S?Y,sl+A:
z = y; }y-b<J?H
if any(idx_pos) l!B)1
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [*-DtbEk
end ^JDiI7
if any(idx_neg) fbbk;Rq.'3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N XwQvm;q
end :Fm{U0;"
kEM5eY
lP@/x+6tg
% EOF zernfun sA3=x7j%c