切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9169阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, "E6*.EtTN#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Zdm7As]  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "P@jr{zvMd  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? E76#xsyhF  
    S 6|#9C&  
    IGtpL[.;/  
    &`9p.  
    DC5^k[m  
    function z = zernfun(n,m,r,theta,nflag) -%g$~MZ?'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. DUAI  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N OX  r%b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d hp-XIA;  
    %   unit circle.  N is a vector of positive integers (including 0), and p1blPBlp  
    %   M is a vector with the same number of elements as N.  Each element /3!c ;(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) V*C%r:5 ,v  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, lDV}vuM<4  
    %   and THETA is a vector of angles.  R and THETA must have the same >,&@j,?']  
    %   length.  The output Z is a matrix with one column for every (N,M) SFiK_;  
    %   pair, and one row for every (R,THETA) pair. v95O)cC:W  
    % bRhc8#kw)  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k,kr7'Q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1c%ee$Q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral !L=RhMI  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, DMcH, _(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ],3#[n[ m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3rUuRsXn  
    % .:nV^+)  
    %   The Zernike functions are an orthogonal basis on the unit circle. \D<w:\P  
    %   They are used in disciplines such as astronomy, optics, and /ta5d;@  
    %   optometry to describe functions on a circular domain. 0<n*8t?A-  
    % PE\.JU  
    %   The following table lists the first 15 Zernike functions. uDWxIP,m  
    % /M3UK  
    %       n    m    Zernike function           Normalization U =G}@Y  
    %       -------------------------------------------------- E;vF :?|  
    %       0    0    1                                 1 ~:ldGfb|  
    %       1    1    r * cos(theta)                    2 e0nr dM[i  
    %       1   -1    r * sin(theta)                    2 ; { MK  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gl$Ks+o d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) + bU*"5"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @}8~TbP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) G)S (a4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :=J^"c  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,+Bp>=pvs  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Bw`7ND}&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) @|i f^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .GM}3(1fX`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) RY4b <i3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /KCJ)0UU  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) bFv,.(h'  
    %       -------------------------------------------------- ))<1"7D^^  
    % z/Kjz$l!  
    %   Example 1: {=q$k=ib  
    % ui[E,W~  
    %       % Display the Zernike function Z(n=5,m=1) @'ln)RT,  
    %       x = -1:0.01:1; Tx|}ke~  
    %       [X,Y] = meshgrid(x,x); -UMPt"o  
    %       [theta,r] = cart2pol(X,Y); iYE7BUH=  
    %       idx = r<=1; _Dv<  
    %       z = nan(size(X)); |vI1C5e  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s&gzv=v  
    %       figure 1vG]-T3VC  
    %       pcolor(x,x,z), shading interp rRK^vfoJ`  
    %       axis square, colorbar YO3$I!(  
    %       title('Zernike function Z_5^1(r,\theta)') {Iu9%uR>@  
    % ]JUb;B;Z  
    %   Example 2: jr=>L:  
    % f]*_]J/  
    %       % Display the first 10 Zernike functions YM(` E9{h  
    %       x = -1:0.01:1; ,];4+&|8kW  
    %       [X,Y] = meshgrid(x,x); 3SU:Xd(\o  
    %       [theta,r] = cart2pol(X,Y); `Qg#`  
    %       idx = r<=1; Y2B ",v"  
    %       z = nan(size(X)); u]Eyb),Gy  
    %       n = [0  1  1  2  2  2  3  3  3  3]; i]L4kh5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H)Kt!v8  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @|1/yQgi  
    %       y = zernfun(n,m,r(idx),theta(idx)); >@T(^=Q  
    %       figure('Units','normalized') pEn3:.l<  
    %       for k = 1:10 _Q $D6+  
    %           z(idx) = y(:,k); 49;2tl;F  
    %           subplot(4,7,Nplot(k)) ~nSGN%  
    %           pcolor(x,x,z), shading interp m$UrY(6d  
    %           set(gca,'XTick',[],'YTick',[]) t622b?w  
    %           axis square \!_:<"nX.  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /P8`)?f~y  
    %       end bns([F  
    % 9W~3E^x  
    %   See also ZERNPOL, ZERNFUN2. EXrOP]Kl  
    y9>?  
    [8b,}i 1  
    %   Paul Fricker 11/13/2006 5ZPe=SQ{  
    ju@5D h  
    hny):59f  
    2Y+8!4^L a  
    HVz,liq  
    % Check and prepare the inputs: 8r 4 L4  
    % ----------------------------- s)e'}y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3XeCaq'N  
        error('zernfun:NMvectors','N and M must be vectors.') -54  
    end #f 4"  
    }&o*ZY-1  
    Mv O!p  
    if length(n)~=length(m) " * Qwaq_  
        error('zernfun:NMlength','N and M must be the same length.') S(5aJ[7Zm  
    end aJ"Tt>Y[.~  
    nKoc%TNqe  
    c20'{kH  
    n = n(:); <XfCQq/  
    m = m(:); 'x-PQQ  
    if any(mod(n-m,2)) 2yFXX9!@  
        error('zernfun:NMmultiplesof2', ... u}[Z=V  
              'All N and M must differ by multiples of 2 (including 0).') ;zbF~5e  
    end =}12S:Qhj  
    r|bvpZV  
    %mda=%Yn  
    if any(m>n) (:p&[HNuN  
        error('zernfun:MlessthanN', ... b;[u=9ez  
              'Each M must be less than or equal to its corresponding N.') CDz-IQi  
    end ^<@9ph  
    wN])"bmB  
    X5@rPGc  
    if any( r>1 | r<0 ) <.d0GD`^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') oXR%A7  
    end ,a I0Aw  
    /FZ@Z]Q0G  
    e:BKdZGW  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) n{~W s^d  
        error('zernfun:RTHvector','R and THETA must be vectors.') LZ@4,Uj  
    end U[S#axak  
    GUe&WW:Sqk  
    R ks3L  
    r = r(:); iG[an*#X  
    theta = theta(:); jocu=Se@  
    length_r = length(r); 8bB'[gJ]{  
    if length_r~=length(theta) FafOd9>AO  
        error('zernfun:RTHlength', ... V m1U00lM{  
              'The number of R- and THETA-values must be equal.') &k5 Z|d|  
    end !J}Bv  
    T/^ /U6JB  
    Ou _bM n  
    % Check normalization: Jmln*,Ol7  
    % -------------------- F1@gYNbI,  
    if nargin==5 && ischar(nflag) T/%s7!E  
        isnorm = strcmpi(nflag,'norm'); ;b[% L&  
        if ~isnorm 1or4s{bmo  
            error('zernfun:normalization','Unrecognized normalization flag.') ?PIOuN=  
        end o3hsPzOQx  
    else Os?`!1-  
        isnorm = false; e1dT~l  
    end * Yr)>;^  
    +fd^$Qd%K  
    [T;0vv8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )w8h2=l  
    % Compute the Zernike Polynomials r@3VN~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `N~;X~XFk  
    7W[}7Y   
    3|Q:tt'|#  
    % Determine the required powers of r: )g9&fGYf  
    % ----------------------------------- p;dH[NW  
    m_abs = abs(m); n lsQf3  
    rpowers = []; Ly?gpOqu5  
    for j = 1:length(n) ,X&lVv#  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9S0I<<m  
    end 9PA\Eo|Yb  
    rpowers = unique(rpowers); blcd]7nK  
    fA u^%jiU  
    _MfB,CS  
    % Pre-compute the values of r raised to the required powers, H|4O`I;~(  
    % and compile them in a matrix: nf5Ld"|%9  
    % ----------------------------- n>tYeN)F<  
    if rpowers(1)==0 :7t~p&J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R 2uo ZA,  
        rpowern = cat(2,rpowern{:}); 'aQ"&GX@  
        rpowern = [ones(length_r,1) rpowern]; Si#b"ls'  
    else 1&~u:RUXe  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nV-A0"z_&  
        rpowern = cat(2,rpowern{:}); cn$E?&-  
    end 1!"0fZh9U  
    !5Ko^:+Y  
    /s3AZ j9  
    % Compute the values of the polynomials: ~3 Y)o|D3  
    % -------------------------------------- |->{NU Z{  
    y = zeros(length_r,length(n)); 4tTK5`7N  
    for j = 1:length(n)  9x/HQ(1  
        s = 0:(n(j)-m_abs(j))/2; +(iM]L$Fw%  
        pows = n(j):-2:m_abs(j); r5XG$:$8\  
        for k = length(s):-1:1 agqB#,i  
            p = (1-2*mod(s(k),2))* ... @Iz vObK  
                       prod(2:(n(j)-s(k)))/              ... e%w>QN`  
                       prod(2:s(k))/                     ... -b "7WBl  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0FfBD[E:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); klduJ T >  
            idx = (pows(k)==rpowers); |?n=~21"1O  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >OVi{NyT  
        end @.f@N;z  
         5|!x0H;  
        if isnorm UXVjRY`M.\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); M7 &u_Cn?  
        end &B\tcF  
    end i $H aE)qZ  
    % END: Compute the Zernike Polynomials je1f\N45  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wkK61a h6  
    [H5TtsQ[  
    sw{,l"]<  
    % Compute the Zernike functions: \TS t  
    % ------------------------------ +2!J3{[J  
    idx_pos = m>0; 0S <;T+WA  
    idx_neg = m<0; ;/#E!Ja/ u  
    <>`+" O}  
    uM,bO*/f  
    z = y; 5K13    
    if any(idx_pos) uBI?nv,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); w*`5b!+/  
    end >VnkgY  
    if any(idx_neg) euO!+9p  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %pmowo~{  
    end <Y9vc:S  
     *r Y6  
    ^'Wkb7L  
    % EOF zernfun '+ 1<7jl&I  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  y J*`OU#  
    1!_$HA  
    DDE还是手动输入的呢? %+gYZv-  
    <$bM*5sHF>  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究