切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9067阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [dFxW6n  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, =zXpeo&|m  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? rb%P30qc4  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ghd~p@4  
    ?cr;u~-=  
    d{&+xl^ll  
    !q~s-~d^  
    %j=dKd>  
    function z = zernfun(n,m,r,theta,nflag) $K^"a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. g[Ah> 5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NylN-X7[#  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Woa5Ov!n0  
    %   unit circle.  N is a vector of positive integers (including 0), and aWek<Y~+  
    %   M is a vector with the same number of elements as N.  Each element )0`;leli  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6NJ"ty9Bp  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !>b>"\b  
    %   and THETA is a vector of angles.  R and THETA must have the same q a#Fa)g*  
    %   length.  The output Z is a matrix with one column for every (N,M) 6PT ,m  
    %   pair, and one row for every (R,THETA) pair. K"Vv=  
    % t3u"2B7oG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HZCEr6}(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Nkn0G _  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral s`xp6\$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, QE}S5#_"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized uS bOGhP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m8$6FN  
    % +o(t5O[G  
    %   The Zernike functions are an orthogonal basis on the unit circle. W%b<(T;  
    %   They are used in disciplines such as astronomy, optics, and 0z/tceW'F  
    %   optometry to describe functions on a circular domain. Lx,"jA/  
    % hXM8`iFW5  
    %   The following table lists the first 15 Zernike functions. jV8mn{<  
    % CeS8I-,  
    %       n    m    Zernike function           Normalization )u]J`.OA  
    %       -------------------------------------------------- #)q}Jw4]j  
    %       0    0    1                                 1 1;3oGuHj8  
    %       1    1    r * cos(theta)                    2 +l@H[r;$  
    %       1   -1    r * sin(theta)                    2 OGg9e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) z*ZEw  
    %       2    0    (2*r^2 - 1)                    sqrt(3) sp0& " &5  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 7!w@u6Q  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1qbd6D|t  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WGKN>nV  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) fL ng[&  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P 482D)  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &+6XdhX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #rMMOu9r2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) i0{pm q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sY7:Lzs.,  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) >T;"bc b  
    %       -------------------------------------------------- H`]nY`HYg  
    % mm/U9hbp%  
    %   Example 1: >WE3$Q>bi  
    % ?|TVz!3  
    %       % Display the Zernike function Z(n=5,m=1) Ks@S5:9sp  
    %       x = -1:0.01:1; LdI)  
    %       [X,Y] = meshgrid(x,x); /:>qhRFJA:  
    %       [theta,r] = cart2pol(X,Y); ^~-i>gTD  
    %       idx = r<=1; 4Cke(G  
    %       z = nan(size(X)); \2-!%i,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $EW31R5h<s  
    %       figure GBtBmV/`  
    %       pcolor(x,x,z), shading interp 'e02rqip{  
    %       axis square, colorbar mA(K`"Bfh  
    %       title('Zernike function Z_5^1(r,\theta)') 'P32G?1C&p  
    % l -_voOP  
    %   Example 2: VF!?B>  
    % \hQ[5>  
    %       % Display the first 10 Zernike functions E}c(4RY  
    %       x = -1:0.01:1; <i^Bq=E<rJ  
    %       [X,Y] = meshgrid(x,x); XD{U5.z>y  
    %       [theta,r] = cart2pol(X,Y); vmAMlgZ8{<  
    %       idx = r<=1; 8wwqV{O7  
    %       z = nan(size(X)); gC;y>YGP  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X/lLM`  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; hEsCOcEG  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \ lP c,8)  
    %       y = zernfun(n,m,r(idx),theta(idx)); eHF#ME  
    %       figure('Units','normalized') QUb#;L@okn  
    %       for k = 1:10 \v9IbU*js  
    %           z(idx) = y(:,k); )b"H]"  
    %           subplot(4,7,Nplot(k)) Im{50%Y  
    %           pcolor(x,x,z), shading interp \:8~na+(  
    %           set(gca,'XTick',[],'YTick',[]) uTA /E9OY  
    %           axis square TU$/3fp*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &zlwV"W  
    %       end tq}sXt  
    % qg:R+`z  
    %   See also ZERNPOL, ZERNFUN2. @}!1Uk3ud  
    %lbSV}V)  
    wg^#S  
    %   Paul Fricker 11/13/2006 ;{ XKZ}  
    T2Z;)e$m_  
    i]Lt8DiRq  
    <?&GBCe  
    9'o!9_j  
    % Check and prepare the inputs: b9)%,3-  
    % ----------------------------- M<r' j $g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7_.z3K m:  
        error('zernfun:NMvectors','N and M must be vectors.') Fo3[KW)8I  
    end } Ga@bY6  
    Q mOG2  
    @R9zLL6#7  
    if length(n)~=length(m) 6b9Ddb*  
        error('zernfun:NMlength','N and M must be the same length.') '$ ~.x|  
    end }C/u>89%q  
    sDK lbb  
    M]!R}<]{  
    n = n(:); Kw3fpNd  
    m = m(:); Z_}vjk~s  
    if any(mod(n-m,2)) p H5IBIf'  
        error('zernfun:NMmultiplesof2', ... DOaEz?2)  
              'All N and M must differ by multiples of 2 (including 0).') "V&2 g?  
    end Ow wH 45  
    jx!)N>  
    =<_xUh.  
    if any(m>n) W*QD'  
        error('zernfun:MlessthanN', ... *SzP7]1m  
              'Each M must be less than or equal to its corresponding N.') @(JcM=  
    end ]3 YJE P  
    U;D!m+.HK  
    u ?7(A %  
    if any( r>1 | r<0 ) zawU  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') HLg/=VF7?  
    end miCt)Qd  
    WiH%URFB  
    -TU7GCb=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U/>f" F  
        error('zernfun:RTHvector','R and THETA must be vectors.') d;Z<")  
    end %RL\t5 TV  
    8JAA?0L"'  
    fa=#S  
    r = r(:); c ^G\w+_  
    theta = theta(:); /wK5YN.em  
    length_r = length(r); j2cLb  
    if length_r~=length(theta) U u(ysN4`  
        error('zernfun:RTHlength', ... KwN o/x| v  
              'The number of R- and THETA-values must be equal.') &32qv` V_  
    end 4;M  
    mn{8"@Z  
    nZfTK>)A0  
    % Check normalization: +uM1#-+h  
    % -------------------- tE]g*]o  
    if nargin==5 && ischar(nflag) 9r fR  
        isnorm = strcmpi(nflag,'norm'); s{NEP/QQJ  
        if ~isnorm zid?yuP  
            error('zernfun:normalization','Unrecognized normalization flag.') #StD]d  
        end GD}3 r:wDs  
    else "6~pTHT  
        isnorm = false; r62x*?/  
    end Hig=PG5I  
    79~,KFct  
    >a%NC'~rc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;wbQTp2  
    % Compute the Zernike Polynomials ~=Z&l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0Tp?ED_  
    HPCzh  
    )?%FU?2jrn  
    % Determine the required powers of r: "z69jxXo  
    % ----------------------------------- xp7,0'(;  
    m_abs = abs(m); aj20, w  
    rpowers = []; A]Zp1XEG  
    for j = 1:length(n) /R''R:j  
        rpowers = [rpowers m_abs(j):2:n(j)]; @\i6m]\X  
    end "monuErg&  
    rpowers = unique(rpowers); +%>s\W+?]  
    si/F\NDT   
    j$Vv'on  
    % Pre-compute the values of r raised to the required powers, P~#!-9?  
    % and compile them in a matrix: {dg3 qg~  
    % ----------------------------- a { L`C"rJ  
    if rpowers(1)==0 C:hfI;*7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @@*->  
        rpowern = cat(2,rpowern{:}); %+w>`k3(N  
        rpowern = [ones(length_r,1) rpowern]; +#6WORH0S  
    else ci+Pg9sS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j^1T3 +  
        rpowern = cat(2,rpowern{:}); e=%7tK*  
    end `Vw9j,G  
    'P)xY-15  
    j+*VP  
    % Compute the values of the polynomials: V(L~t=k$  
    % -------------------------------------- 8!TbJVR  
    y = zeros(length_r,length(n)); BgA\l+  
    for j = 1:length(n) ba% [!  
        s = 0:(n(j)-m_abs(j))/2; 29Kuq;6  
        pows = n(j):-2:m_abs(j); =oluw|TCe7  
        for k = length(s):-1:1 A~ '2ki5$g  
            p = (1-2*mod(s(k),2))* ... 1UJ(._0hR  
                       prod(2:(n(j)-s(k)))/              ... Bo`fy/x#  
                       prod(2:s(k))/                     ... E,xCfS)  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~r]ZD)  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); J,;; `sf  
            idx = (pows(k)==rpowers); Fz?ON1\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `tVBV :4\  
        end K^J;iu4  
         N ]}Re$5  
        if isnorm 'an{<82i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7Hf6$2Wh  
        end |E53 [:p  
    end K *{C:Y  
    % END: Compute the Zernike Polynomials #Jy+:|jJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D?}LKs[  
    <!y_L5S|   
    /Or76kE  
    % Compute the Zernike functions: J%aW^+O  
    % ------------------------------ 3 cT  
    idx_pos = m>0; Yl&eeM  
    idx_neg = m<0; Z B`!@/3X  
    kC01s  
    5`^"<wNI  
    z = y; ,G"?fQ7zR  
    if any(idx_pos) x)BG%{h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); csRba;Z[  
    end 7vNS@[8  
    if any(idx_neg) 6:v8J1G(<  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0w< iz;30  
    end k,X)PQc  
    aMm`G}9n  
    1ikkm7  
    % EOF zernfun s<E_74q1  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  NugJjd56x  
    *YtITyDS3>  
    DDE还是手动输入的呢? Nc;7KMOIA  
    F." L{g  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究