切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9119阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, u<tbbKM  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, +US!YU  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? x_N'TjS^{  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 30#s aGV  
    _?m(V=z>  
    y| i,|  
    0WW2i{7`U  
    |P HT694Uz  
    function z = zernfun(n,m,r,theta,nflag) OUPUixz2Z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. >=I|xY,  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _ @NL;w:!  
    %   and angular frequency M, evaluated at positions (R,THETA) on the NdA[C|_8}f  
    %   unit circle.  N is a vector of positive integers (including 0), and s^G.]%iU  
    %   M is a vector with the same number of elements as N.  Each element |}s*E_/[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) NqazpB*  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u^ +7hkk  
    %   and THETA is a vector of angles.  R and THETA must have the same X"|['t  
    %   length.  The output Z is a matrix with one column for every (N,M) B dj!ia;H  
    %   pair, and one row for every (R,THETA) pair. *SbMqASv4G  
    % OhQgF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n`?aC|P2s  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gZ3u=uME  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _lJ!R:*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, r"3=44St  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized FF`T\&u  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. shy-Gu&  
    % K,;E5  
    %   The Zernike functions are an orthogonal basis on the unit circle. wY{-BuXv  
    %   They are used in disciplines such as astronomy, optics, and F3[T.sf  
    %   optometry to describe functions on a circular domain. TTX5EDCrC  
    % Q2w_X8  
    %   The following table lists the first 15 Zernike functions. j ?3wvw6T  
    % E1aHKjLQ  
    %       n    m    Zernike function           Normalization y{B=-\O]  
    %       -------------------------------------------------- 7?!d^$B  
    %       0    0    1                                 1 ?DS@e@lx  
    %       1    1    r * cos(theta)                    2 5K1)1E/Fu  
    %       1   -1    r * sin(theta)                    2 B?gOHG*vd>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) lBLARz&c#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) k<nZ+! M  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `t>l:<@%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) A7Cm5>Y_S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `iFmrC<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #K_ii)n  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) lwxaMjaL4K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) })H wh).  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h ohfE3rd  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Zgp4`)}:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8+Lm's=W*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !3c\NbU  
    %       -------------------------------------------------- [x=s(:qy  
    % IYE~t  
    %   Example 1: )Yh+c=6 ?  
    % &.)^ %Tp\z  
    %       % Display the Zernike function Z(n=5,m=1) <Uk}o8E  
    %       x = -1:0.01:1; /Vx7mF:  
    %       [X,Y] = meshgrid(x,x); c)6m$5]  
    %       [theta,r] = cart2pol(X,Y); lne4-(DJ  
    %       idx = r<=1; ,a{P4Bq  
    %       z = nan(size(X)); RtkEGxw*^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); DD+7V@  
    %       figure ?um;s-x)  
    %       pcolor(x,x,z), shading interp P[G)sA_"  
    %       axis square, colorbar "b~+;<}Q  
    %       title('Zernike function Z_5^1(r,\theta)') ^&9zw\x;z  
    % #X+JHl  
    %   Example 2: G=s}12/Z"{  
    % p;`>e>$  
    %       % Display the first 10 Zernike functions [t m_Mg  
    %       x = -1:0.01:1; pTth}JM>  
    %       [X,Y] = meshgrid(x,x); hIYNhZv  
    %       [theta,r] = cart2pol(X,Y); y;m|  
    %       idx = r<=1; H*?t^  
    %       z = nan(size(X)); @(EAq<5{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; a Yg6H2Un  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Si4!R+4w  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9R!atPz9  
    %       y = zernfun(n,m,r(idx),theta(idx)); gMi0FO'  
    %       figure('Units','normalized') nI?[rCM  
    %       for k = 1:10 W 8<&gh+  
    %           z(idx) = y(:,k); { T/[cu<  
    %           subplot(4,7,Nplot(k)) d~])K#oJ  
    %           pcolor(x,x,z), shading interp @o].He@L<j  
    %           set(gca,'XTick',[],'YTick',[]) |"q5sym8Y_  
    %           axis square /* (Kr'c  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *P[ hy  
    %       end f=+mIZ  
    % (fH#I tf  
    %   See also ZERNPOL, ZERNFUN2. '0;l]/i.  
    gi3F` m  
    >F|>cc>_E  
    %   Paul Fricker 11/13/2006 aL\PGdgO  
    &N$<e(K  
    lf`{zc r:  
    do hA0  
    EgEa1l!NSQ  
    % Check and prepare the inputs: a K[&V't~  
    % -----------------------------  \{_q.;}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7uqzm  
        error('zernfun:NMvectors','N and M must be vectors.') O0x,lq  
    end Qab>|eSm  
    ^do9*YejX;  
    n1ZbRV  
    if length(n)~=length(m) df8k7D;~e  
        error('zernfun:NMlength','N and M must be the same length.') q~F|  
    end c1(RuP:S  
    {f_={k  
    5+4IN5o]=  
    n = n(:); Pjf"CW+A  
    m = m(:); JJ-( Sl  
    if any(mod(n-m,2)) ;J( 8 L  
        error('zernfun:NMmultiplesof2', ... 3lL-)<0A(  
              'All N and M must differ by multiples of 2 (including 0).') =`oCLsz=  
    end r.=K~A  
    @}u*|P*  
    =osk+uzzG  
    if any(m>n) C\3rJy(VJ  
        error('zernfun:MlessthanN', ... Ys9[5@7  
              'Each M must be less than or equal to its corresponding N.') >{n,L6_ t  
    end H\"sgoJ  
    >0y'Rgfe  
    f1RWP@iar  
    if any( r>1 | r<0 ) wD}l$ & +  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Vi$~-6n&  
    end bTNgjc  
    JPI3[.o  
    yf.~XUk^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) / y40(l?  
        error('zernfun:RTHvector','R and THETA must be vectors.') G^|:N[>B  
    end Pl06:g2I  
    8}x:`vDK  
    e`_LEv  
    r = r(:); GT.,  
    theta = theta(:); !x=~g"d<&  
    length_r = length(r); z]y.W`i   
    if length_r~=length(theta) wo{gG?B  
        error('zernfun:RTHlength', ... z=\&i\>;Z+  
              'The number of R- and THETA-values must be equal.') %)8}X>xq  
    end Q~]uC2Mw  
    &vMb_;~B  
    <?.&^|kS  
    % Check normalization: [#vH'y  
    % -------------------- VQt0  4?  
    if nargin==5 && ischar(nflag) Hyl%mJ  
        isnorm = strcmpi(nflag,'norm'); ',@3>T**  
        if ~isnorm ^98~U\ar  
            error('zernfun:normalization','Unrecognized normalization flag.') /& {A!.;  
        end K#d`Hyx  
    else `wEb<H  
        isnorm = false; `cUl7 'j  
    end CAWNDl4  
    e{K 215  
    xwq (N_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y\k#*\'Y~  
    % Compute the Zernike Polynomials 8C:z"@o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3z?> j]  
    ~rKrpb]ow  
    hd<c&7|G'  
    % Determine the required powers of r: F^BS/Yag  
    % ----------------------------------- lT?v^\(H  
    m_abs = abs(m); $k%2J9O  
    rpowers = []; .@U@xRu7|  
    for j = 1:length(n) s};{ZAtE  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9~XA q^e  
    end *vxk@ `K~  
    rpowers = unique(rpowers); D=Gtq6jd  
    WX?IYQ+  
    *)T^Ch D,  
    % Pre-compute the values of r raised to the required powers, b=NxUd O  
    % and compile them in a matrix: ?P`K7  
    % ----------------------------- 7,o7Cf2z  
    if rpowers(1)==0 i%]EEVmN  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6SkaH<-&K  
        rpowern = cat(2,rpowern{:});  "Og7rl  
        rpowern = [ones(length_r,1) rpowern]; pJ"qu,w  
    else ]Ie 0S~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Be2DN5)  
        rpowern = cat(2,rpowern{:}); Ckuh:bs  
    end 6j]0R*B7`Q  
    k"iOB-@B+  
    [!#L6&:a8  
    % Compute the values of the polynomials: <)c)%'v  
    % -------------------------------------- |N7M^  
    y = zeros(length_r,length(n)); /]Md~=yNp  
    for j = 1:length(n) &.Qrs :U  
        s = 0:(n(j)-m_abs(j))/2; Yu^4VXp~M%  
        pows = n(j):-2:m_abs(j); MaQqs=  
        for k = length(s):-1:1 P* BmHz4KL  
            p = (1-2*mod(s(k),2))* ... %RRNJf}z  
                       prod(2:(n(j)-s(k)))/              ... 37.S\ gO]  
                       prod(2:s(k))/                     ... F_{Yo?_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... oQVgyj.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); WO>nIo5Y  
            idx = (pows(k)==rpowers); s)D;a-F  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $ >eCqC3  
        end c]o'xd,T8\  
         <^jQo<kU  
        if isnorm /{n-Y/j p  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vw/J8'  
        end (vJNHY M  
    end {ROVvs`  
    % END: Compute the Zernike Polynomials }V`"s^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y/7\?qfTk  
    ~P **O~  
    :J&oX <nF^  
    % Compute the Zernike functions: Jk n>S#SZ  
    % ------------------------------ 4!yzsPJL  
    idx_pos = m>0; ={&j07,*a  
    idx_neg = m<0; wc4{)qDE  
    Kn;"R:  
    D'Df JwA  
    z = y; bwMm#f  
    if any(idx_pos) .[OUI  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !?h;wR  
    end }(73Syl#  
    if any(idx_neg) Am|%lj+1z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K Z91-  
    end !z3jTv  
    ZKTz ,  
    E*K;H8}s  
    % EOF zernfun 6?J i7F  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Yr[\|$H5  
    ge8ZsaiU  
    DDE还是手动输入的呢? {;6`_-As%  
    a<bwzX|.  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究