切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8699阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, |KSd@   
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4?Mb>\n%<^  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? z@@w?>*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :5 XNV6^|  
    H(f~B<7q  
    FCO5SX#-g  
    Vf?+->-?{  
    XP#j9CF#.  
    function z = zernfun(n,m,r,theta,nflag) N~I2~f  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q.SLiI  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fa#xEWaFr  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]WZ_~8  
    %   unit circle.  N is a vector of positive integers (including 0), and />1Ndj  
    %   M is a vector with the same number of elements as N.  Each element /JaCbT?*T  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) nsO!   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, We7~tkl(  
    %   and THETA is a vector of angles.  R and THETA must have the same r2:n wlG  
    %   length.  The output Z is a matrix with one column for every (N,M) p4} ,xQzB  
    %   pair, and one row for every (R,THETA) pair. N 6CWEIJ  
    % G55-{y9Q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |a!AgvNF  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _"BYnPq@wb  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral fAx7_}k/ m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, aDJ\%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c;\}R#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M9mC\Iz[  
    % 3@u<Sa  
    %   The Zernike functions are an orthogonal basis on the unit circle. jpND"`Q  
    %   They are used in disciplines such as astronomy, optics, and @WcK<Qho  
    %   optometry to describe functions on a circular domain. "zU}]|R  
    % "YIrqk  
    %   The following table lists the first 15 Zernike functions. [Yt!uhww  
    % :4o08M%  
    %       n    m    Zernike function           Normalization KIt:ytFx  
    %       -------------------------------------------------- @S#>:o|  
    %       0    0    1                                 1 S@Rw+#QE  
    %       1    1    r * cos(theta)                    2 %onUCN<O`  
    %       1   -1    r * sin(theta)                    2 K@Z K@++  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &zVF!xNy&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) e;LJdd  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8<z]rLQw?%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) REd"}zDI  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) q2qbbQ6H  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) <@;Y.76~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ZY%]F,Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }lN@J,q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1PwqW g-\\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gQpF(P  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mDn*v( f  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Vq7L:,N9  
    %       -------------------------------------------------- %m8;Lh- X  
    % eURy]  
    %   Example 1: eBZ^YY<*g  
    % TF)OBN~/  
    %       % Display the Zernike function Z(n=5,m=1) caA>; +aBH  
    %       x = -1:0.01:1; eK }AVz}k  
    %       [X,Y] = meshgrid(x,x); GyE-fB4C  
    %       [theta,r] = cart2pol(X,Y);  [Tha j  
    %       idx = r<=1; =M]f7lJ  
    %       z = nan(size(X)); 4AI\'M"d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); U p1&(  
    %       figure MGUzvSf  
    %       pcolor(x,x,z), shading interp #N`~. 96  
    %       axis square, colorbar )"j)9RQ}  
    %       title('Zernike function Z_5^1(r,\theta)') 3U#z {%  
    % 9v7l@2/  
    %   Example 2: }m6zu'CV  
    % aL63=y  
    %       % Display the first 10 Zernike functions IvLo&6swW  
    %       x = -1:0.01:1; *W()|-[V3  
    %       [X,Y] = meshgrid(x,x); z6B(}(D  
    %       [theta,r] = cart2pol(X,Y); "^A4!.  
    %       idx = r<=1; &<</[h/B/F  
    %       z = nan(size(X)); 2l43/aCq  
    %       n = [0  1  1  2  2  2  3  3  3  3]; uo`O$k<;  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #&+0hS  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; l#8SlRji  
    %       y = zernfun(n,m,r(idx),theta(idx)); Y..   
    %       figure('Units','normalized') |R Ux)&  
    %       for k = 1:10 k(Z+(Y'{q~  
    %           z(idx) = y(:,k); "*o54z5"  
    %           subplot(4,7,Nplot(k)) FI,>v`  
    %           pcolor(x,x,z), shading interp =*Z=My}3~  
    %           set(gca,'XTick',[],'YTick',[]) dQfVdqg  
    %           axis square $t' .  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r81YL  
    %       end P.bBu  
    % |%JJ S^)  
    %   See also ZERNPOL, ZERNFUN2. !mFx= +  
    =3rPE"@,[  
    voRr9E*n  
    %   Paul Fricker 11/13/2006 ~RSOUrR  
    Eq>3|(UT  
    CJA5w[m  
    _is<.&f6  
    nZ?BC O  
    % Check and prepare the inputs: MB42 3{j  
    % ----------------------------- >*ey 7g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \VL[,z=q.  
        error('zernfun:NMvectors','N and M must be vectors.') E\N?D  
    end tB"amv  
    D3#/*Ky  
    8y;W+I(71  
    if length(n)~=length(m) l"%|VWZ{iq  
        error('zernfun:NMlength','N and M must be the same length.') 4&r+K`C0  
    end Kg0Vbzvb  
    V|.3Z\(  
    H\A!oB,sw  
    n = n(:); HC,YmO:df"  
    m = m(:); ODn6%fp%  
    if any(mod(n-m,2)) JZ6{W  
        error('zernfun:NMmultiplesof2', ... XGE:ZVpW  
              'All N and M must differ by multiples of 2 (including 0).') y(&JE^GfX  
    end =|IB=  
    k$</7 IuH  
    2`(-l{3  
    if any(m>n) O_8ERxj g]  
        error('zernfun:MlessthanN', ... {~DYf*RZ  
              'Each M must be less than or equal to its corresponding N.') %MyA;{-F6  
    end 3nt&Sf  
    r(`;CY]@  
    j&(2ze:=*$  
    if any( r>1 | r<0 ) D8P<mIu}Y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &0*l=!:G^  
    end '0g1v7Gx  
    %V-\|cw   
    [Af&K22M(X  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) q0Fq7rWP  
        error('zernfun:RTHvector','R and THETA must be vectors.') ]@OGp:Hz  
    end O[Xl*9P  
    usiv`.  
    M0`nr}g  
    r = r(:); }^uUw&   
    theta = theta(:); E@\e37e  
    length_r = length(r); +5Z0-N@  
    if length_r~=length(theta) UF)rBAv(/  
        error('zernfun:RTHlength', ... QC.WR'.  
              'The number of R- and THETA-values must be equal.') `<IT LT  
    end hNB;29r~  
    Eq-fR~< 9  
    $Z)Dvy|  
    % Check normalization: 96;17h$  
    % -------------------- .J' 8d"+  
    if nargin==5 && ischar(nflag) |+Z, 7~!  
        isnorm = strcmpi(nflag,'norm'); !=C4=xv  
        if ~isnorm 87%t=X  
            error('zernfun:normalization','Unrecognized normalization flag.') =jdO2MgSg*  
        end f!;i$Oif  
    else rDkAeX0  
        isnorm = false; vlCjh! x  
    end HM%n`1ZU  
    $2E n^  
    DX.u"&Mm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F\ !;}z  
    % Compute the Zernike Polynomials Q:Q) -|,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~[XDK`B  
    ($*bwqp]}  
    T[M?:~  
    % Determine the required powers of r: B e+'&+  
    % ----------------------------------- @O+yxGA  
    m_abs = abs(m); I@P[}XS  
    rpowers = []; 3/8o)9f.  
    for j = 1:length(n) :)}iWKAse  
        rpowers = [rpowers m_abs(j):2:n(j)]; \&]M \  
    end xB:,l'\G  
    rpowers = unique(rpowers); uyP)5,  
    a?6 r4u0  
    ]d?`3{h9LD  
    % Pre-compute the values of r raised to the required powers, :~loy'  
    % and compile them in a matrix: P ETrMu<  
    % ----------------------------- E :*!an  
    if rpowers(1)==0 1\q(xka{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qF=D,Dlz  
        rpowern = cat(2,rpowern{:}); ^_3idLE  
        rpowern = [ones(length_r,1) rpowern]; r AMnM>`  
    else '5wa"/ ?w  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V1Dwh@iS  
        rpowern = cat(2,rpowern{:}); Gxv@a   
    end | Q:$G!/  
    XG ]yfux`  
    =]E(iR_&  
    % Compute the values of the polynomials: p?X.I]=vRv  
    % -------------------------------------- +B^ / =3P  
    y = zeros(length_r,length(n)); @PuJre4!;L  
    for j = 1:length(n) $s.:wc^  
        s = 0:(n(j)-m_abs(j))/2; v=nq P{  
        pows = n(j):-2:m_abs(j); |J2_2a/"  
        for k = length(s):-1:1 cv;&ff2%?  
            p = (1-2*mod(s(k),2))* ... w[\*\'Vm0  
                       prod(2:(n(j)-s(k)))/              ...  'vj45b  
                       prod(2:s(k))/                     ... t,= ta{ a  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <&TAN L  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); O_0|Q@  
            idx = (pows(k)==rpowers); z=<T[Uy  
            y(:,j) = y(:,j) + p*rpowern(:,idx); owZj Q  
        end 1B= vrGq  
         3;~1rw=$<  
        if isnorm m8$6FN  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +o(t5O[G  
        end X!&DKE  
    end 0z/tceW'F  
    % END: Compute the Zernike Polynomials Lx,"jA/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \c>9f"jS_  
    )v;>6(  
    EHkb{Q8  
    % Compute the Zernike functions: _1hc^j  
    % ------------------------------ F6h3M~uR  
    idx_pos = m>0; \k0%7i[nZ/  
    idx_neg = m<0; } IFZ$Y  
    ]B=B@UO@.  
    ?XL[[vyr  
    z = y; }$#e&&)n  
    if any(idx_pos) K CJ zE>  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r4dG83qg  
    end -"u}lCz>  
    if any(idx_neg) |M#b`g$JO,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _IOeO  
    end x,IU]YW@  
    QZef=  
    X'.}#R1  
    % EOF zernfun QD]Vfj4+  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  e7t).s)b{  
    P1vr}J  
    DDE还是手动输入的呢? F_/]9tz?;  
    2" ~!Pu^.j  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究