切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9302阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?=h{`Ci^ $  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, X%._:st  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "*E%?MG  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? R_2JP C  
    s$ 2@|;  
    Qm X(s  
    ~y(- j[  
    L4'FL?~I  
    function z = zernfun(n,m,r,theta,nflag) IL]VY1'#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. yS[Z%]bvU  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N P]G`Y>#$r  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -a[] #v9  
    %   unit circle.  N is a vector of positive integers (including 0), and 8f<[Bu ze  
    %   M is a vector with the same number of elements as N.  Each element 2$O @T]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Bld$<uU  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $3Ct@}=n  
    %   and THETA is a vector of angles.  R and THETA must have the same i>C:C>~  
    %   length.  The output Z is a matrix with one column for every (N,M) eiaL zI,O  
    %   pair, and one row for every (R,THETA) pair. ^{T3lQvt  
    % LA.xLU3  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike u9*}@{,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -PSI^%TR#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bt,^-gt@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j:9kJq>mv  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ^vjN$JB  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )k8=< =s  
    % ;$y(Tvd;  
    %   The Zernike functions are an orthogonal basis on the unit circle. w-%H\+J  
    %   They are used in disciplines such as astronomy, optics, and q1Si*?2W  
    %   optometry to describe functions on a circular domain. Oop;Y^gG}  
    % oO4 Wwi  
    %   The following table lists the first 15 Zernike functions. ,xew3c'(W  
    % o[bG(qHZ  
    %       n    m    Zernike function           Normalization e%'$Vx0kA  
    %       -------------------------------------------------- :A,V<Es}I"  
    %       0    0    1                                 1 iTt"Ik'  
    %       1    1    r * cos(theta)                    2 _ G!lQ)1  
    %       1   -1    r * sin(theta)                    2 -T4{PM  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {P_~_5o_  
    %       2    0    (2*r^2 - 1)                    sqrt(3) AFWcTz6#d  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y#AwuC K  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) NW`.RGLI<  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) a<%WFix  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) U/2g N H  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }TZ5/zn.Dw  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) )K8k3]y&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4'W|'4'b  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) zv]-(<B  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \*H/YByTb  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %($qg-x  
    %       -------------------------------------------------- ?gb"S,  
    % 2roPZj  
    %   Example 1: nu] k<^I5|  
    % 3,bA&c3  
    %       % Display the Zernike function Z(n=5,m=1) r3l}I 6  
    %       x = -1:0.01:1; Z1FO.[FV  
    %       [X,Y] = meshgrid(x,x); "3{xa;c  
    %       [theta,r] = cart2pol(X,Y); z[DUktZl  
    %       idx = r<=1; PXcpROg56  
    %       z = nan(size(X)); eB78z@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); TR,,=3n  
    %       figure C+Wb_  
    %       pcolor(x,x,z), shading interp j=)Cyg3_%  
    %       axis square, colorbar t@1e9uR  
    %       title('Zernike function Z_5^1(r,\theta)') )^uLZMNaI  
    % c h<Fi%)  
    %   Example 2: cve(pkl  
    % e0HG"z4  
    %       % Display the first 10 Zernike functions R0;c'W)  
    %       x = -1:0.01:1; $EbxV"b+  
    %       [X,Y] = meshgrid(x,x); 36JVnW;  
    %       [theta,r] = cart2pol(X,Y); =iRi 9r'l  
    %       idx = r<=1; 5n r}5bum  
    %       z = nan(size(X)); |EaGKC(   
    %       n = [0  1  1  2  2  2  3  3  3  3]; (| Am  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !arcQ:T@G  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -[s*R%w  
    %       y = zernfun(n,m,r(idx),theta(idx)); j-ugsV`2=*  
    %       figure('Units','normalized') [UquI "  
    %       for k = 1:10 Z~8Xp  
    %           z(idx) = y(:,k); R:B-4  
    %           subplot(4,7,Nplot(k)) Qp<?[C}'W  
    %           pcolor(x,x,z), shading interp  M}}9  
    %           set(gca,'XTick',[],'YTick',[]) qt}vM*0}V  
    %           axis square epm  t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2GcQh]ohc  
    %       end !h7`W*::  
    % E=w$r  
    %   See also ZERNPOL, ZERNFUN2. XZuJ<]}X,  
    71cc6T  
    mwCNfwb:  
    %   Paul Fricker 11/13/2006 1j6ZSE/*|  
    q|om^:n.  
    -:m;ePK  
    %,MCnu&Z  
    Es zwg  
    % Check and prepare the inputs: |Wj)kr !|  
    % ----------------------------- #O^H? 3Q3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x2/|i? ZO  
        error('zernfun:NMvectors','N and M must be vectors.') 3j0/&ON  
    end .t xgb  
    7*OO k"9  
    P$2J`b[H$  
    if length(n)~=length(m) @\Sa)  
        error('zernfun:NMlength','N and M must be the same length.') _x z_D12  
    end iBxCk^  
    A) p}AEBc  
    @fT*fv   
    n = n(:); AZorzQ]s  
    m = m(:); x 3#1  
    if any(mod(n-m,2)) 5|x FY/%  
        error('zernfun:NMmultiplesof2', ... Iqe4O~)  
              'All N and M must differ by multiples of 2 (including 0).') /J3e[?78u  
    end dnNC = siY  
    Tx0/3^\>8A  
    jN 5Hku[?  
    if any(m>n) q+dY&4&u  
        error('zernfun:MlessthanN', ... 6YrkS;_HS  
              'Each M must be less than or equal to its corresponding N.') 6*kY7  
    end }0?642 =-  
    <|Bh;;  
    Lh"Je-x<<  
    if any( r>1 | r<0 ) 4eYj.=I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') W$B>O  
    end i+Px &9o<9  
    k x6%5%  
    '\l(.N  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) waQNX7Xdn  
        error('zernfun:RTHvector','R and THETA must be vectors.') jr*A1y*  
    end sBu=@8R]y  
    :r:5a(sq  
    wX#=l?,K  
    r = r(:); 0+;.T1?  
    theta = theta(:); '7 6}6G%  
    length_r = length(r); U[c,cdA  
    if length_r~=length(theta) 9HRYk13ae  
        error('zernfun:RTHlength', ... xRP#}i:m  
              'The number of R- and THETA-values must be equal.') -#Yg B5  
    end zbx,qctYo$  
    !a ~>;+  
    D^04b< O<x  
    % Check normalization: {_ww1'|A  
    % -------------------- ^g~Asz5]  
    if nargin==5 && ischar(nflag) p44d&9  
        isnorm = strcmpi(nflag,'norm'); aIRCz=N  
        if ~isnorm K4N~ApLB+  
            error('zernfun:normalization','Unrecognized normalization flag.') %$Wt"~WE"O  
        end :!N 5daK  
    else [}9R9G>"  
        isnorm = false; PsEm(.z  
    end b@Ik c<  
    OlRBv foh8  
    CP|N2rb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r{#od 7;  
    % Compute the Zernike Polynomials un6grvxr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WsL*P .J  
    X"y rA;,o  
    `T{{wty  
    % Determine the required powers of r: hh{4r} |  
    % ----------------------------------- 2l{g$44  
    m_abs = abs(m); VDx=Tsu-  
    rpowers = []; dU3UCD+2y  
    for j = 1:length(n) ;f^.7|  
        rpowers = [rpowers m_abs(j):2:n(j)]; )j4]Y dJ  
    end VZ}^1e  
    rpowers = unique(rpowers); "7JO~T+v  
    fR~_5 pt7  
    {uL<$;#i  
    % Pre-compute the values of r raised to the required powers, ?<#6=  
    % and compile them in a matrix: <o3e0JCq  
    % ----------------------------- {Rc/Ten  
    if rpowers(1)==0 ,6}HAC $  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C^aP)& qt  
        rpowern = cat(2,rpowern{:}); YnNB#x8|  
        rpowern = [ones(length_r,1) rpowern]; Fm`hFBKW  
    else $iEM$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Vu*yEF}  
        rpowern = cat(2,rpowern{:}); ot;j6eAH~E  
    end G{knO?BK  
    a,#f%#J\  
    c;&m}ImLe.  
    % Compute the values of the polynomials: s!9.o_k  
    % -------------------------------------- !Q*.Dw()[  
    y = zeros(length_r,length(n)); kmi[u8iXD_  
    for j = 1:length(n) SWz+.W{KQ"  
        s = 0:(n(j)-m_abs(j))/2; NC>rZS]  
        pows = n(j):-2:m_abs(j); {e/12q  
        for k = length(s):-1:1 q+19EJ(  
            p = (1-2*mod(s(k),2))* ... wlAlIvIT  
                       prod(2:(n(j)-s(k)))/              ... ,LSF@1|Fx  
                       prod(2:s(k))/                     ... !qV{OXdrB  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Cj _Q9/  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 54JZEc  
            idx = (pows(k)==rpowers); (Vf&,b@U_  
            y(:,j) = y(:,j) + p*rpowern(:,idx); - A x$Y  
        end 4+:Q"  
         z;zy k  
        if isnorm HN7(-ml=B  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); QjWv?tm  
        end MQ$[jOAqP  
    end eZ[CqUJ&  
    % END: Compute the Zernike Polynomials czi$&(N0w$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g:dw%h  
    6^H64jM  
    Pg{Dy>&2`I  
    % Compute the Zernike functions: lf4-Ci*X  
    % ------------------------------ UAFl+d!  
    idx_pos = m>0; 4rO07)~l  
    idx_neg = m<0; SuB;Nb7r`  
    -m(9*b{h@  
    ~%qHJ4C  
    z = y; S`8 h]vX  
    if any(idx_pos) Pz,kSxe=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S)iv k x  
    end :UoZ`O~  
    if any(idx_neg) 94=Wy-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %C" wUAY  
    end t4GG@`  
    awB1ryrOF  
    [c +[t3dz  
    % EOF zernfun sTP`xaY  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  kq +`.  
    k6.<zs0  
    DDE还是手动输入的呢? VaKBS/y"  
    (.[HE ~ s?  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究