下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, wpYk`Lr
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *l{epum;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 5v)bs\x6
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? mN}szW,
AK,'KO%{=
a{r"$>0
QK+,63@D\=
#f) TAA
function z = zernfun(n,m,r,theta,nflag) 7~QI4'e
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. s$>n U
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }}$@Tij19[
% and angular frequency M, evaluated at positions (R,THETA) on the h#O9TB
% unit circle. N is a vector of positive integers (including 0), and jw=PeT|
% M is a vector with the same number of elements as N. Each element o zn&>k
% k of M must be a positive integer, with possible values M(k) = -N(k) ceE]^X;p
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, eIalcBY
% and THETA is a vector of angles. R and THETA must have the same 5[SwF&zZ
% length. The output Z is a matrix with one column for every (N,M) y`buY+5l
% pair, and one row for every (R,THETA) pair. O7VEyQqf5
% ').)0;
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CUI+@|]%
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .7^(~&5N
% with delta(m,0) the Kronecker delta, is chosen so that the integral
#O}}pF
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $\h-F8|JMX
% and theta=0 to theta=2*pi) is unity. For the non-normalized *PnO$q@`
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &Q~W{.
% k*fU:q1
% The Zernike functions are an orthogonal basis on the unit circle. WM
?a1j
% They are used in disciplines such as astronomy, optics, and *"8Ls0!
% optometry to describe functions on a circular domain. 4)8VmCW
% K-C,n~-
% The following table lists the first 15 Zernike functions. (?\+
% 1Y'4 g3T
% n m Zernike function Normalization d6QrB"J`
% -------------------------------------------------- }psRgF
% 0 0 1 1 v>} +->f
% 1 1 r * cos(theta) 2 Blzvn19'h
% 1 -1 r * sin(theta) 2 7:u+cv
% 2 -2 r^2 * cos(2*theta) sqrt(6) /VT/KT{
% 2 0 (2*r^2 - 1) sqrt(3) ;z4F-SYQ
% 2 2 r^2 * sin(2*theta) sqrt(6) h7"U1'b
% 3 -3 r^3 * cos(3*theta) sqrt(8) !B%em%Tv
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Y\-xX:n.\
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,sAAV%">
% 3 3 r^3 * sin(3*theta) sqrt(8) bJ!\eI%ld
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1}DA| !~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 11yXI[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) NAvR^"I~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \s5Uvws
% 4 4 r^4 * sin(4*theta) sqrt(10) V+ ("kz*
% -------------------------------------------------- o2ggHZe/=@
% J/4T =:\
% Example 1: XJ4f;U
% f*XCWr
% % Display the Zernike function Z(n=5,m=1) 1z-.e$&z
% x = -1:0.01:1; DQXUh#t\(]
% [X,Y] = meshgrid(x,x); lWId
0eNS
% [theta,r] = cart2pol(X,Y); ,D+ydr
% idx = r<=1; [v"Z2F<.=
% z = nan(size(X)); j1K3|E
% z(idx) = zernfun(5,1,r(idx),theta(idx)); SU ~a()"
% figure LBK{-(%
% pcolor(x,x,z), shading interp 0
jth}\9
% axis square, colorbar .r<aPy$
% title('Zernike function Z_5^1(r,\theta)') ':wf%_Iw
% |qUGB.Q
% Example 2: nTqU~'d'
% Pq omi!1
% % Display the first 10 Zernike functions ^Q s}2%
% x = -1:0.01:1; MuY:(zC%
% [X,Y] = meshgrid(x,x); 'K,\
% [theta,r] = cart2pol(X,Y); q`<:CfCt
% idx = r<=1; yV{B,T`W
% z = nan(size(X)); c1'@_Is
% n = [0 1 1 2 2 2 3 3 3 3]; l'+3
6
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; wGArR7r
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |RiJ>/MK\
% y = zernfun(n,m,r(idx),theta(idx)); QO'Hyf t
% figure('Units','normalized') i?6&4
% for k = 1:10 ,&t+D-s<f
% z(idx) = y(:,k); i<Vc~!pT
% subplot(4,7,Nplot(k)) +FTc/r
% pcolor(x,x,z), shading interp YP2VSK2Q
% set(gca,'XTick',[],'YTick',[]) lYx_8x2
% axis square 03 @aG
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `>:5[Y
% end A>@#eyB
% OM\J4"YV$
% See also ZERNPOL, ZERNFUN2. t}q
e_c
;28d7e}
u;`]U$Qq9
% Paul Fricker 11/13/2006 i1
E|lp)
(0$~T}lH
JmI%7bH@
B@,r8)D
o^"+X7)
% Check and prepare the inputs: Ma^jy.
% ----------------------------- vhrf 89-q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DB' 0
error('zernfun:NMvectors','N and M must be vectors.') 8MJJ w;
end Q]k<Y
t%=7v)IOE
yE$PLM
if length(n)~=length(m) j_8 Y Fz5
error('zernfun:NMlength','N and M must be the same length.') 5PeS/%uT@
end }%< ?]
boo361L
hg)Xr5>
n = n(:); VdHT3r
m = m(:); NdXHpq;
if any(mod(n-m,2)) DSrU7#
error('zernfun:NMmultiplesof2', ... U4 !bW
'All N and M must differ by multiples of 2 (including 0).') RM2Ik_IH[l
end \((iR>^|
clE9I<1v
Ni_H1G
if any(m>n) Xoe|]@U`
error('zernfun:MlessthanN', ... ]*2),H1
c
'Each M must be less than or equal to its corresponding N.') ~MG6evm &
end 1WUSp;JMl
h3MdQlJ&
TDh)}Ms
if any( r>1 | r<0 ) "Lp.*o
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'n &p5%
end t>bzo6cj
iQG!-.aX
x93@[B*%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .n 9.y8C
error('zernfun:RTHvector','R and THETA must be vectors.') P3oYk_oW
end PQHztS"
GkAd"<B
c1H.v^Y5
r = r(:); *lfjsrPu
theta = theta(:); { 53FR
length_r = length(r); CmU@8-1
if length_r~=length(theta) K9<8FSn
error('zernfun:RTHlength', ... 9jal D
X
'The number of R- and THETA-values must be equal.') JYdb^j2c
end _J,**AZ~z
4 9qa
l)u%`Hcn
% Check normalization: dwA"QVp{
% -------------------- }z]d]
if nargin==5 && ischar(nflag) mF6-f#t>H+
isnorm = strcmpi(nflag,'norm'); /X}1%p
if ~isnorm HhbBt'fH
error('zernfun:normalization','Unrecognized normalization flag.') RoqkT|#$
end bmT%?it
else !?,,
ZD
isnorm = false; N_%@_$3G]
end 4H8r[
}&v}S6T
Qf:e;1F!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t>[QW`EeP
% Compute the Zernike Polynomials (kL"*y/"p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P]+B}))
~kc#"^sJ
!'$*Z(
% Determine the required powers of r: =ejcP&-V/
% ----------------------------------- uP9b^LEoN
m_abs = abs(m); Bc=(1ty)
rpowers = []; O"\4[HE^
for j = 1:length(n) |!o C7!+0^
rpowers = [rpowers m_abs(j):2:n(j)]; l$u52e!7
end $QiMA,
rpowers = unique(rpowers); -jjB2xP
%|jS`kj
3W'fEh5
% Pre-compute the values of r raised to the required powers, r/h\>s+N
% and compile them in a matrix: >MYxj}I4{z
% ----------------------------- 7w73,r/D8A
if rpowers(1)==0 $1=7^v[U
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FBE|pG7
rpowern = cat(2,rpowern{:}); MR
"f)
rpowern = [ones(length_r,1) rpowern]; =eA|gt
else EW$drY@
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A!Tl
rpowern = cat(2,rpowern{:}); ^!tX+`,6^
end aZf/WiR2
a" s2N%{
bUgg2iFS
% Compute the values of the polynomials: :$I"n\
% --------------------------------------
*twGIX
y = zeros(length_r,length(n)); =p|IWn{P
for j = 1:length(n) @<K<"`~H
s = 0:(n(j)-m_abs(j))/2; CC^D4]ug
pows = n(j):-2:m_abs(j); \d:Q%S
for k = length(s):-1:1 T4x%3-4;
p = (1-2*mod(s(k),2))* ... O+!4KNN.-
prod(2:(n(j)-s(k)))/ ... 05F/&+V
prod(2:s(k))/ ... !>(uhuTBF
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >V.?XZ nt
prod(2:((n(j)+m_abs(j))/2-s(k))); %)i&|AV"
idx = (pows(k)==rpowers); LR&MhG7
y(:,j) = y(:,j) + p*rpowern(:,idx); :r{-:
end Ry[7PLn]
Q`i@['?p
if isnorm vU *: M8k
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6$#,$a O
end .i\FK@2
end cLyf[z)W
% END: Compute the Zernike Polynomials $.C\H,H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FqyxvL.
{]Mwuqn
n\9IRuYO
% Compute the Zernike functions: Pjq'c+4.yL
% ------------------------------ T6y~iNd<
idx_pos = m>0; gZHgL7@
idx_neg = m<0; p#c41_?'e
4UbqYl3|a
P^o@x,V!&
z = y; jR\pYRK
if any(idx_pos) 5[2kk5,
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;(mNjxA
end p` ~=v4;b
if any(idx_neg) }#g]qK
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <Hv/1:k}
end 5_A*IC]
O<fy^[r:`
CeU=A9
% EOF zernfun b~ )@e9