切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9087阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, F~l3?3ZV  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;_Rx|~!!  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? .PAkW2\#  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =v;-{oN!  
    \ I?;%  
    WVN Q}KY  
    }lxvXVc{I  
    )E[5lD61  
    function z = zernfun(n,m,r,theta,nflag) aF;&#TsB  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {YGz=5^  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'g=yJ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xd .I5  
    %   unit circle.  N is a vector of positive integers (including 0), and +qz)KtJS  
    %   M is a vector with the same number of elements as N.  Each element M"9 zK[cz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) UxS;m4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "BVz5?  
    %   and THETA is a vector of angles.  R and THETA must have the same yZ!Eu#81  
    %   length.  The output Z is a matrix with one column for every (N,M) +pcj8K%  
    %   pair, and one row for every (R,THETA) pair. AV2q*  
    % W#lvH=y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y1 }d(%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x1}q!)e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .e"jnP~  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Zgg7pL)#c  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "pWdz}!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. V.-?aXQ*  
    % no/]Me!j=  
    %   The Zernike functions are an orthogonal basis on the unit circle. <#s-hQ  
    %   They are used in disciplines such as astronomy, optics, and <HzAh<_@F  
    %   optometry to describe functions on a circular domain. "FXS;Jf  
    % 0}^-, Q,  
    %   The following table lists the first 15 Zernike functions. 9nG] .@ H  
    % U1"t|KW8  
    %       n    m    Zernike function           Normalization ROjjN W`W  
    %       -------------------------------------------------- & 9]KkY=  
    %       0    0    1                                 1 *g,?13Q_  
    %       1    1    r * cos(theta)                    2 kK1qFe?]  
    %       1   -1    r * sin(theta)                    2 LNN:GD)>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) c df ll+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) LQh\j|e9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) sTA/2d  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) r2](~&i2  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) h#n8mtt&i  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) L$Leo6<3a  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6m.Ku13;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) j0%0yb{-^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RYV6hp)|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) eFnsf}(Iy  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L|2COX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $HXB !$d  
    %       -------------------------------------------------- 2 Lam vf  
    % kR6 t .  
    %   Example 1: (wlsn6h  
    % XF7W'^  
    %       % Display the Zernike function Z(n=5,m=1) !Q(xOc9>Ug  
    %       x = -1:0.01:1; #pe{:f?  
    %       [X,Y] = meshgrid(x,x); L~oFW'  
    %       [theta,r] = cart2pol(X,Y); lQsQRp  
    %       idx = r<=1; >4ct[fW+  
    %       z = nan(size(X)); avpw+M6+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !U#++Zig%  
    %       figure \i,cL)HM  
    %       pcolor(x,x,z), shading interp NI1HUUZz  
    %       axis square, colorbar osd^SnL1/5  
    %       title('Zernike function Z_5^1(r,\theta)') IP'igX  
    % +_g T|vlU  
    %   Example 2: "pZ3  
    % h3kHI?jMWG  
    %       % Display the first 10 Zernike functions ILi5WuOYX  
    %       x = -1:0.01:1; NVj J/  
    %       [X,Y] = meshgrid(x,x); 2 &Byq  
    %       [theta,r] = cart2pol(X,Y); 0v@/I<  
    %       idx = r<=1; N-rm k  
    %       z = nan(size(X)); K7hf m%`N  
    %       n = [0  1  1  2  2  2  3  3  3  3]; YF -w=Y6  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; j&/.[?K  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; aVP|:OAj  
    %       y = zernfun(n,m,r(idx),theta(idx)); eCp|QSXE  
    %       figure('Units','normalized') fl"y@;;#h  
    %       for k = 1:10 >-w=7,?'?z  
    %           z(idx) = y(:,k); UPKi/)C;  
    %           subplot(4,7,Nplot(k)) lkfFAwnc  
    %           pcolor(x,x,z), shading interp |nEV Oy>'  
    %           set(gca,'XTick',[],'YTick',[]) ^2r}_ AX  
    %           axis square s3-ktZ@  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l;BX\S  
    %       end ,8I AhQa  
    % 8sIrG  
    %   See also ZERNPOL, ZERNFUN2. KupMndK  
    5FSv"=  
    B/=q_.1F>  
    %   Paul Fricker 11/13/2006 16QbB;  
    Q==v!"Gi|  
    Q H_W\W  
    xD  
    I/Jp,~JT*  
    % Check and prepare the inputs: &ZE\@Vc  
    % ----------------------------- h_~|O [5|)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c,q"}nE8w  
        error('zernfun:NMvectors','N and M must be vectors.') %%~}Lw  
    end _?s %MNaX  
    p%"yBpSK  
    DAnb.0  
    if length(n)~=length(m)  |.C    
        error('zernfun:NMlength','N and M must be the same length.') )@qup _M@  
    end ^QAiySR`0  
    y5/6nvH_6  
    m`$>:B  
    n = n(:); C6d]tLE  
    m = m(:); ]&:b<]K3  
    if any(mod(n-m,2)) #jZ@l3  
        error('zernfun:NMmultiplesof2', ... mhk/>+hF  
              'All N and M must differ by multiples of 2 (including 0).') Q)S>VDLA  
    end C,r`I/;  
    _IL2-c8  
    rAx"~l.=  
    if any(m>n) Q0cY/'>4  
        error('zernfun:MlessthanN', ... xb>n&ym?  
              'Each M must be less than or equal to its corresponding N.') 23-t$y]  
    end C4{\@v}t  
    A)z PaXZ  
    f>r3$WKj  
    if any( r>1 | r<0 ) z Bt`L,^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') poD \C;o"  
    end j`R<90~/  
    i u1KRuaF[  
    T|@#w%c''  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Taf n:Nw}  
        error('zernfun:RTHvector','R and THETA must be vectors.') U,<]J*b(@4  
    end 5r4gmy>  
    BF36V\  
    k(EMp1[:nN  
    r = r(:); 1n'$Ji7  
    theta = theta(:); 4TUtY:  
    length_r = length(r); A)hhnb0o  
    if length_r~=length(theta) s=N#CE  
        error('zernfun:RTHlength', ... uxO J3  
              'The number of R- and THETA-values must be equal.') I1)-,/nEjg  
    end PW%1xHLfk  
    L)F1NuR  
    v**z$5x9  
    % Check normalization: W|dpFh`  
    % -------------------- 94|yvh.B  
    if nargin==5 && ischar(nflag) ]U,CKJF%/  
        isnorm = strcmpi(nflag,'norm'); gg-};0P-  
        if ~isnorm 9?;@*x  
            error('zernfun:normalization','Unrecognized normalization flag.') B6bOEPQ  
        end r<*O  
    else s=d+GMa  
        isnorm = false; x(PKFn  
    end pe()f/Jx(  
    $n= O  
    (*,8KLV_i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $PSY:Zz  
    % Compute the Zernike Polynomials 4:vTxNs&S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u#`+[AC`  
    X JY5@I.  
    r6`\d k  
    % Determine the required powers of r: NZLXN  
    % ----------------------------------- 6b?`:$Cw3)  
    m_abs = abs(m); X Orcygb2  
    rpowers = []; XRa(sXA3  
    for j = 1:length(n) D_d|=i  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ic'Q5kfM  
    end gnt45]@{  
    rpowers = unique(rpowers); }^"0T-ua  
    3AURzU  
    #?9 Q{0e  
    % Pre-compute the values of r raised to the required powers, Kax#OYLpg  
    % and compile them in a matrix: &hayR_F9  
    % ----------------------------- 0G5'Y;8  
    if rpowers(1)==0 y%4 Gp  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |olNA*4  
        rpowern = cat(2,rpowern{:}); '61i2\[lZQ  
        rpowern = [ones(length_r,1) rpowern]; S'o ]=&  
    else Xo Y7/&&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R<_?W#$j  
        rpowern = cat(2,rpowern{:}); ga-{!$b*  
    end :zlpfm2  
    Ik j=`,a2B  
    `<^*jB@P  
    % Compute the values of the polynomials: $A`xhh[  
    % -------------------------------------- i\Yl  
    y = zeros(length_r,length(n)); ivfXat-  
    for j = 1:length(n) /xySwSmh3  
        s = 0:(n(j)-m_abs(j))/2; "u;YI=+  
        pows = n(j):-2:m_abs(j); iK!dr1:wSw  
        for k = length(s):-1:1 &]< 3 ~6n  
            p = (1-2*mod(s(k),2))* ... xP{-19s1]  
                       prod(2:(n(j)-s(k)))/              ... xW>ySEf  
                       prod(2:s(k))/                     ... Z:@6Lv?CN  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... MiJ6n[iv  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); WL l_'2h  
            idx = (pows(k)==rpowers); &~#iIk~%  
            y(:,j) = y(:,j) + p*rpowern(:,idx); G>%AZr{M  
        end t?{B_Bf  
         %cX"#+e  
        if isnorm d+6]u_J  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mV?&%>*(f  
        end |SQ|qbe=  
    end jWvtv ng  
    % END: Compute the Zernike Polynomials o.Oq__>$H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0|XKd24BN  
    LkBZlh_  
    FXahZW~Ol  
    % Compute the Zernike functions: 5 y   
    % ------------------------------ F;u_7OM  
    idx_pos = m>0; ;cKH1  
    idx_neg = m<0; cy|%sf`  
    ?TpUf  
    CISO<z0  
    z = y; :.uk$jx  
    if any(idx_pos) yNa;\UF  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `T"rG }c  
    end J} TfRrf  
    if any(idx_neg) YEv Lhh  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S~)w\(r  
    end 5mgHlsDzu  
    [i7YVwG4  
    LA4<#KP  
    % EOF zernfun iW;i!,  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  bUwn}_7b  
    SLL3v,P(7  
    DDE还是手动输入的呢? D/ybFk  
    b}^S.;vNj  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究