下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Qqp_(5S|>
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, & XS2q0-x
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? c"nowbf
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )K=%s%3h<
bc+~g>o
dC&OjBQ
.G ^-.p
D=B$ Pv9%
function z = zernfun(n,m,r,theta,nflag) W0zRV9"P
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <7U\@si4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3q$[r_
% and angular frequency M, evaluated at positions (R,THETA) on the ]lX`[HX7
% unit circle. N is a vector of positive integers (including 0), and >9WJa 5{
% M is a vector with the same number of elements as N. Each element >i6sJ)2?>
% k of M must be a positive integer, with possible values M(k) = -N(k) fX
^hO+f
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, X.q,
% and THETA is a vector of angles. R and THETA must have the same u-8b,$@Z>'
% length. The output Z is a matrix with one column for every (N,M) q=EHB5!q
% pair, and one row for every (R,THETA) pair. & bKl(,
% J?oI%r7^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _1c0pQ ^}3
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W2$MH: j
% with delta(m,0) the Kronecker delta, is chosen so that the integral 6Kvo Ho
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Nld y76|g
% and theta=0 to theta=2*pi) is unity. For the non-normalized &["s/!O1 R
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z<yLu'48)A
% lQ8h -Tz
% The Zernike functions are an orthogonal basis on the unit circle. GiZv0>*x
% They are used in disciplines such as astronomy, optics, and #Nv^F
% optometry to describe functions on a circular domain. K@f@vyw]
% 6-fdfU
% The following table lists the first 15 Zernike functions. Gu#Vc.e
% 8Q{"W"]O7
% n m Zernike function Normalization tj'xjX
% -------------------------------------------------- {Vw\#/,
% 0 0 1 1 -ho%9LW%|
% 1 1 r * cos(theta) 2 1*aO2dOq
% 1 -1 r * sin(theta) 2 a-cLy*W,~
% 2 -2 r^2 * cos(2*theta) sqrt(6) rexNsKRK_
% 2 0 (2*r^2 - 1) sqrt(3) r_x|2 AoO
% 2 2 r^2 * sin(2*theta) sqrt(6) Qm"&=<
% 3 -3 r^3 * cos(3*theta) sqrt(8) [$Dzf<0
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) {4y#+[
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) rWP
-Rm
% 3 3 r^3 * sin(3*theta) sqrt(8) tk5zq-/d
% 4 -4 r^4 * cos(4*theta) sqrt(10) <dD)>Y.
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X([8TR
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @^2?97i
c
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l%_r 3W
% 4 4 r^4 * sin(4*theta) sqrt(10) tl=H9w&@
% -------------------------------------------------- t@;r~Sb
% yrF"`/zv6|
% Example 1: ;4'pucq5/
% m]?C @ina
% % Display the Zernike function Z(n=5,m=1) W"v"mjYud
% x = -1:0.01:1; +_T`tmQ
% [X,Y] = meshgrid(x,x); m ]h<y
% [theta,r] = cart2pol(X,Y); MQY}}a-oug
% idx = r<=1; <k'%rz
% z = nan(size(X)); rqi/nW
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \-W|)H
% figure tR Cz[M&
% pcolor(x,x,z), shading interp Yo*.? Mq'
% axis square, colorbar ~PtIq.BY
% title('Zernike function Z_5^1(r,\theta)') W7` fI*lc
% -z~;f<+I`
% Example 2: k
d9<&.y{
% -<{;.~nI.
% % Display the first 10 Zernike functions _)U.5f<
% x = -1:0.01:1; h]jy):9L
% [X,Y] = meshgrid(x,x); b6?&h:{k
% [theta,r] = cart2pol(X,Y); v,d
bto0
% idx = r<=1; >+FaPym
% z = nan(size(X)); vve L|j
% n = [0 1 1 2 2 2 3 3 3 3]; Rn_FYP
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; >X_5o^s2s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; d=DQS>Nz
% y = zernfun(n,m,r(idx),theta(idx)); _'0C70
% figure('Units','normalized') p9-s' F|@i
% for k = 1:10 NiSH$MJ_
% z(idx) = y(:,k); %F}i2!\<L
% subplot(4,7,Nplot(k)) -(lCM/h
% pcolor(x,x,z), shading interp EXEB A&*
% set(gca,'XTick',[],'YTick',[]) ' 4.T1i,
% axis square !dV2:`|+
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -d4|EtN
% end })yB2Q0
% !T"jvDYH
% See also ZERNPOL, ZERNFUN2. 8)ykXx/f@
x(+H1D\W
`LOW)|6r`
% Paul Fricker 11/13/2006 X.GK5Phd
VC X^D)[-
E}g)q;0v|2
JFu9_=%+
A&S n^mw
% Check and prepare the inputs: `kYcTFk
% ----------------------------- 7V2xg h!W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rHp2I6.0a
error('zernfun:NMvectors','N and M must be vectors.') )?;+<,
end 'Bwv-J
K"jS,a?s 6
dCA!
R"HD
if length(n)~=length(m) .$ X|96~$
error('zernfun:NMlength','N and M must be the same length.') tF:AqR:(~
end FWW*f
_L
=`ECM7
Th!;zu^t
n = n(:); /8wfI_P>M"
m = m(:); slQEAqG)B
if any(mod(n-m,2)) 57Bxx__S4`
error('zernfun:NMmultiplesof2', ... fb8)jd'~}O
'All N and M must differ by multiples of 2 (including 0).') zG)vmysJf
end @xeJ$
rlu
]oLyvG
V-9\@'gc
if any(m>n) DJb9] ,=a
error('zernfun:MlessthanN', ... wpg7xx!
'Each M must be less than or equal to its corresponding N.') 9p, PW A
end CrB4%W:{
_9y!,ST
"j8`)XXa(
if any( r>1 | r<0 ) SQJ+C%
error('zernfun:Rlessthan1','All R must be between 0 and 1.') g?N^9B,$2
end #$;}-*
jAdZS\?w
EE-wi@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V8rS~'{\
error('zernfun:RTHvector','R and THETA must be vectors.') 6^)eW+
end q[(1zG%NbA
<k 'zz:[c!
/
5/mx
r = r(:); {f\{{JJ]
theta = theta(:); 7c!#e=W@B
length_r = length(r); XEBj=5sG
if length_r~=length(theta) #nq_R
error('zernfun:RTHlength', ... ZgfhNI\
'The number of R- and THETA-values must be equal.') YjiMUi\V
end &