下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, F%Xj'=
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, u%o2BLx
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &jg..R
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? mbij& 0
(M>[D!Yt
^an3&
0R#T 3K}
]TE,N$X
function z = zernfun(n,m,r,theta,nflag) 7U@;X~c
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. >~nc7j
u
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2feiD?0
% and angular frequency M, evaluated at positions (R,THETA) on the *0*1.>Vg
% unit circle. N is a vector of positive integers (including 0), and k*?Axk#
% M is a vector with the same number of elements as N. Each element p$qpC$F
% k of M must be a positive integer, with possible values M(k) = -N(k) >+9f{FP
9
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {JJq/[j
% and THETA is a vector of angles. R and THETA must have the same $aY*1UVq
% length. The output Z is a matrix with one column for every (N,M) I6jDRC0<
% pair, and one row for every (R,THETA) pair. 5kRP
Sfh
% 6 4fB$
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ogOUrJ}P
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), THFzC/~Q
% with delta(m,0) the Kronecker delta, is chosen so that the integral mYE 8]4
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A9?h*/$
% and theta=0 to theta=2*pi) is unity. For the non-normalized I3#h
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;;*'<\lP.j
% qoifzEc`U
% The Zernike functions are an orthogonal basis on the unit circle. ,h#U<CnP#
% They are used in disciplines such as astronomy, optics, and f&n6;N
% optometry to describe functions on a circular domain. b<1k$0J6
% Hq>"rrVhx
% The following table lists the first 15 Zernike functions. b8>2Y'X
% 5bfd8C
% n m Zernike function Normalization ?HsQ417.H
% -------------------------------------------------- viLK\>>
% 0 0 1 1 U1.w%b,
% 1 1 r * cos(theta) 2 "!fvEE
% 1 -1 r * sin(theta) 2 4!I;U>b b
% 2 -2 r^2 * cos(2*theta) sqrt(6) {m<NPtp910
% 2 0 (2*r^2 - 1) sqrt(3) bnm3
cR:h"
% 2 2 r^2 * sin(2*theta) sqrt(6) ZeL v!
% 3 -3 r^3 * cos(3*theta) sqrt(8) ';CL;A ;
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) kOQq+_Y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7[b]%i
% 3 3 r^3 * sin(3*theta) sqrt(8) b{Qg$ZJeR
% 4 -4 r^4 * cos(4*theta) sqrt(10) B?-~f^*,jG
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _w'N
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) W=$cQ(x4Z
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B(omD3jzN
% 4 4 r^4 * sin(4*theta) sqrt(10) _LOV&83O(
% -------------------------------------------------- <+/:}S4w)
% " %,KZI
% Example 1: [h3y8O
% 3Mw2;.rk
% % Display the Zernike function Z(n=5,m=1) cc$L56q
% x = -1:0.01:1; ^EG@tB $<
% [X,Y] = meshgrid(x,x); /F3bZ3F
% [theta,r] = cart2pol(X,Y); Bl
>)G X\l
% idx = r<=1; gmU0/z3&
% z = nan(size(X)); 1>$}N?u:T
% z(idx) = zernfun(5,1,r(idx),theta(idx)); kJOSGrg
% figure ?puZqVu5
% pcolor(x,x,z), shading interp ~I_v {
% axis square, colorbar V*|#j0}b
% title('Zernike function Z_5^1(r,\theta)') 60A
E~
% MmvMuX]#)
% Example 2: e@GR[0~
% M<sY_<z
% % Display the first 10 Zernike functions YXBU9T{r
% x = -1:0.01:1; Za&.sg3RG
% [X,Y] = meshgrid(x,x); B F,rZZL
% [theta,r] = cart2pol(X,Y); +(*;F4>
% idx = r<=1; v)TFpV6b{p
% z = nan(size(X)); 2u>
[[U1:
% n = [0 1 1 2 2 2 3 3 3 3]; tSZd0G<A<o
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ,%L>TD'48s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,z*-93H1
% y = zernfun(n,m,r(idx),theta(idx)); z ]d^%>Ef
% figure('Units','normalized') oI!L2
% for k = 1:10 Yy_o*Ozq
% z(idx) = y(:,k); #4iiY6
% subplot(4,7,Nplot(k)) *>ilT5q
% pcolor(x,x,z), shading interp ?;//%c8,.
% set(gca,'XTick',[],'YTick',[]) @t;WdbxB%
% axis square w(y#{!%+
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )R QX1("O
% end N~w4|q!]
% gm-m_cB<
% See also ZERNPOL, ZERNFUN2. [qMFLY$
-quWnn/
2K8?S
% Paul Fricker 11/13/2006 )bM #s">Y
F%}0q&
\mBH6GS
S b9In_*
0
e>ZF? (a0
% Check and prepare the inputs: N1O& fMz
% ----------------------------- u_5O<UP5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /f:)I.FUm
error('zernfun:NMvectors','N and M must be vectors.') JE`mB}8s/
end LGOeBEAMV^
${/"u3a_
m^8KHa
if length(n)~=length(m) P p}N-me>_
error('zernfun:NMlength','N and M must be the same length.') Cw=wU/)
end PR&D67:Jy
Ul<'@A8
BBub'
n = n(:); ATeXOe
m = m(:); }x[d]fcC
if any(mod(n-m,2)) s1[_Pk;!
error('zernfun:NMmultiplesof2', ... 4zF|}aiQ
'All N and M must differ by multiples of 2 (including 0).') l*+"0
end ]Tje6iF
Se
o3 a6o
rQncW~
if any(m>n) $jd>=TU|
error('zernfun:MlessthanN', ... _t:l:x.;T
'Each M must be less than or equal to its corresponding N.') XZcT-w7
end zEQ<Q\"1
C~2/ 5
>PsP y.
if any( r>1 | r<0 ) "4{_amgm&<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') (okCZ-_Jn
end IZm_/
,|: a7b]
brQkVt_)EE
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I6]|dA3G
error('zernfun:RTHvector','R and THETA must be vectors.') }T?MWcG4
end m_%1IJ
mErXdb|L
>.D0McQg
r = r(:); (1bz.N8z
theta = theta(:); ZKGS?z
length_r = length(r); %j].'
;
if length_r~=length(theta) pai>6p
error('zernfun:RTHlength', ... '~-Lxvf'
'The number of R- and THETA-values must be equal.') iL-I#"qT,
end 23/!k}G"
(%fl
o:\RJig<
% Check normalization: O<R6^0B42
% -------------------- x8a?I T.
if nargin==5 && ischar(nflag) n'/w(o$&
isnorm = strcmpi(nflag,'norm'); hT&,5zaWdv
if ~isnorm o6pnTu
error('zernfun:normalization','Unrecognized normalization flag.') AgsMk
end 9T47U; _)
else @jW_
rj:<
isnorm = false; 2Yx6.e<
end d[.kGytUt
(}Ql#q
K
k_9tz}Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [aF?1KxNMt
% Compute the Zernike Polynomials 8wz4KG3SK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rK*s/mX <
q+{-p?;;
, #yE#8
% Determine the required powers of r: Na^1dn
% ----------------------------------- Sf}>~z2
m_abs = abs(m); ]McLace&
rpowers = []; 9.|+KIRb
for j = 1:length(n) 3G9YpA_}X
rpowers = [rpowers m_abs(j):2:n(j)]; fGiN`j}j
end O)MKEMuA
rpowers = unique(rpowers); \?[#>L4
_=Y]ZX`j
6h
N~<
% Pre-compute the values of r raised to the required powers, $Yt29AQ
% and compile them in a matrix: #Zpp*S55
% ----------------------------- 2}u hPW+
if rpowers(1)==0 zCD?5*7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); a z
7Vy-
rpowern = cat(2,rpowern{:}); %T*lcg
rpowern = [ones(length_r,1) rpowern]; pb`F_->uq
else sk~rjH]-g$
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nnmn@t(%r
rpowern = cat(2,rpowern{:}); uROt h_/
end Q>nq~#3?
3A k,M-Jp
<@n/[ +3
% Compute the values of the polynomials: )2}{fFa%
% -------------------------------------- GzK{.xf
y = zeros(length_r,length(n)); o#{D;'
for j = 1:length(n) Wy%q9x]}
s = 0:(n(j)-m_abs(j))/2; )t{oyBT
pows = n(j):-2:m_abs(j); e*uaxh+7
for k = length(s):-1:1 SsDz>PP
p = (1-2*mod(s(k),2))* ... 58*s\*V`\
prod(2:(n(j)-s(k)))/ ... lhTjG,U=
prod(2:s(k))/ ... Vg/{;uLAe
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w[z^B&
prod(2:((n(j)+m_abs(j))/2-s(k))); hGcq>Cvf
idx = (pows(k)==rpowers);
a
+Q9kh
y(:,j) = y(:,j) + p*rpowern(:,idx); y3$i?}?A
end d$s1l
4VPL
-":6
if isnorm Pze$QBNoRd
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >#B%gxff
end D%umL/[]
end s
z/7cLo
% END: Compute the Zernike Polynomials %y33evX/B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &R/)#NAp
/hf}f=7kH
L,.Ae
i9
% Compute the Zernike functions: 7]YLe+Ds
% ------------------------------ m8H|cQ@Uu
idx_pos = m>0; p~I+ZYWF'
idx_neg = m<0; m/n_e g
XF(I$Mxl6
^8aj\xe(
z = y; tfj6#{M5
if any(idx_pos) 8qn1?Lb
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0\%/:2
end r_T\%
if any(idx_neg) xh[Mmq/R
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?"PUw3V3lB
end ,"
O^hWG ~o
B2VC:TG>
% EOF zernfun F{ J>=TC