切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9225阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, p}(pIoyUF  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, gaU1A"S}  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^C70b)68  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 8<PQ31  
    UKzXz0  
    M{Hy=:K+  
    dr^MW?{a\  
    yt1dYF0Xq  
    function z = zernfun(n,m,r,theta,nflag) *IIuGtS  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `{  ` W-C  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ((T6z$:hA  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )| 0(#R  
    %   unit circle.  N is a vector of positive integers (including 0), and !<= ^&\A  
    %   M is a vector with the same number of elements as N.  Each element aqKrf(Rv  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) O[W/=j[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, wH]Y1 m  
    %   and THETA is a vector of angles.  R and THETA must have the same lc\%7-%:5  
    %   length.  The output Z is a matrix with one column for every (N,M) LjPpnjU  
    %   pair, and one row for every (R,THETA) pair. r;SOAucX  
    % s(cC ;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *s$:"g-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &FY7 D<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5;X3{$y  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OEhDRU%k  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )Ag{S[yZ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8RjFp2) W  
    % "J>8ZUP  
    %   The Zernike functions are an orthogonal basis on the unit circle. H' %#71  
    %   They are used in disciplines such as astronomy, optics, and `Tc"a_p9t  
    %   optometry to describe functions on a circular domain. 9"f  
    % DT3koci(  
    %   The following table lists the first 15 Zernike functions. #D .hZ=!  
    % F&$~]R=&  
    %       n    m    Zernike function           Normalization Cp^`-=r+  
    %       -------------------------------------------------- q*7:L  
    %       0    0    1                                 1 g<^-[w4/  
    %       1    1    r * cos(theta)                    2 rn RWL4  
    %       1   -1    r * sin(theta)                    2 lX/:e=  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %6E:SI 4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8XD_p);Oy  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Huf;A1.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) aPm2\Sq$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) PZk"!I<oN  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) cHX~-:KOr  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +k\cmDcb  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Y InPmR  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2-beq<I  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) KEo?Cy?%ff  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^b6yN\,S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =O>E>Q  
    %       -------------------------------------------------- Ti$_V_  
    % x,UP7=6  
    %   Example 1: kerBy\^  
    % %a|m[6+O  
    %       % Display the Zernike function Z(n=5,m=1) Ue(\-b\)  
    %       x = -1:0.01:1; S3ZI C\2  
    %       [X,Y] = meshgrid(x,x); t)hi j&wzu  
    %       [theta,r] = cart2pol(X,Y); !#dp [,nk  
    %       idx = r<=1; VF:95F;@  
    %       z = nan(size(X)); MS;^@>|wj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 91M5F$  
    %       figure SHRn $<  
    %       pcolor(x,x,z), shading interp oa6&?4K?F  
    %       axis square, colorbar (lt{$0   
    %       title('Zernike function Z_5^1(r,\theta)') 4rUOk"li  
    % }NKnV3G/Z  
    %   Example 2: ~2[mZias  
    % b)7v-1N  
    %       % Display the first 10 Zernike functions tgC)vZ&a  
    %       x = -1:0.01:1; 2X6L'!=  
    %       [X,Y] = meshgrid(x,x);  mT,#"k8  
    %       [theta,r] = cart2pol(X,Y); <ToRPx&E  
    %       idx = r<=1; oW3|b2D  
    %       z = nan(size(X)); }s:~E2?In  
    %       n = [0  1  1  2  2  2  3  3  3  3]; > *soc!#Y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; R<;;Ph  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $y,tR.5.)[  
    %       y = zernfun(n,m,r(idx),theta(idx)); bp>M&1^KY  
    %       figure('Units','normalized') naVbcY  
    %       for k = 1:10 ?<1~KLPMhY  
    %           z(idx) = y(:,k); o8fY!C)  
    %           subplot(4,7,Nplot(k)) ,AwX7gx22  
    %           pcolor(x,x,z), shading interp ^wz 2e  
    %           set(gca,'XTick',[],'YTick',[]) G{gc]7\=Cd  
    %           axis square f0+vk'Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]|_+lik#  
    %       end +!$]a^3l  
    % 2*a5pFkb  
    %   See also ZERNPOL, ZERNFUN2. <aQ5chf7  
     1t }  
    *vOk21z77d  
    %   Paul Fricker 11/13/2006 f7:}t+d  
    gl 27&'?E*  
    ^xQPj6P}  
    @4=Az1W*  
    GezMqt;2  
    % Check and prepare the inputs: W~/{ct$Y  
    % ----------------------------- ;e$YM;;d  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A+hA'0isF@  
        error('zernfun:NMvectors','N and M must be vectors.') {'yr)(:2M  
    end +aN"*//i  
    (e4 #9  
    :M8y 2f h  
    if length(n)~=length(m) /6:qmh2  
        error('zernfun:NMlength','N and M must be the same length.') 8wMwS6s:  
    end j+("4b'  
    '<xV]k|v  
    ]A:8x`z#F  
    n = n(:); .JV y}^Q\  
    m = m(:); EkoT U#w5  
    if any(mod(n-m,2)) [F 24xC+  
        error('zernfun:NMmultiplesof2', ... Mb-AzGsV  
              'All N and M must differ by multiples of 2 (including 0).') ~>XqR/v  
    end ydMSL25<+  
    .$o A~  
    %:Z_~7ZR  
    if any(m>n) Xn02p,,  
        error('zernfun:MlessthanN', ... u{S"NEc  
              'Each M must be less than or equal to its corresponding N.') 7m8(8$-6  
    end 6[-[6%o#z  
    onl,R{,`0  
    /rHlFl|Wy  
    if any( r>1 | r<0 ) B7PdavO#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +v< \l=  
    end d<[L^s9  
    v1p^=" IHI  
    . f!dH  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) rTqGtmulG  
        error('zernfun:RTHvector','R and THETA must be vectors.') %DM0Z8P$B-  
    end "O~kIT?/v  
    E6zPN?\ <  
    ?_eHvw  
    r = r(:); SGu`vN]  
    theta = theta(:); /!fJ`pu!  
    length_r = length(r); 8vQR'<,  
    if length_r~=length(theta) A=wG};%_  
        error('zernfun:RTHlength', ... g}pD%  
              'The number of R- and THETA-values must be equal.') &0]5zQ  
    end 6FY.kN\  
    }b]eiPWN  
    `1uGU[{x  
    % Check normalization: ;,s9jw  
    % -------------------- &@=W+A=c~  
    if nargin==5 && ischar(nflag) =MT'e,T  
        isnorm = strcmpi(nflag,'norm'); ,c&gw tdl  
        if ~isnorm L3A2A  
            error('zernfun:normalization','Unrecognized normalization flag.') ,&L}^Up  
        end dWdD^>8Ef  
    else "28zLo3  
        isnorm = false; ;=WwJ Np~  
    end -A zOujSS  
    x"r,l/gzy  
    3-'3w,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *%*B o9a/  
    % Compute the Zernike Polynomials | ^G38  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [s{[ .0P]+  
    MBAj.J  
    i!gS]?*DH  
    % Determine the required powers of r: RT${7=  
    % ----------------------------------- Wb[k2V  
    m_abs = abs(m); L|B! ]}  
    rpowers = []; a ,"   
    for j = 1:length(n) S&QXf<v  
        rpowers = [rpowers m_abs(j):2:n(j)]; zRbY]dW  
    end _3.rPS,s  
    rpowers = unique(rpowers); cICf V,j  
    }9&dY!h +  
    )sNPWn8<Uy  
    % Pre-compute the values of r raised to the required powers, I?^(j;QpS  
    % and compile them in a matrix: ci/qm\JI<<  
    % ----------------------------- O<E8,MCA[a  
    if rpowers(1)==0 u:mndTpB6x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4c[/%e:\-  
        rpowern = cat(2,rpowern{:}); $x,EPRNs  
        rpowern = [ones(length_r,1) rpowern]; SPXv i0Jg  
    else "YW Z&_n**  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _3< P(w{  
        rpowern = cat(2,rpowern{:}); :wG )  
    end ]"~ x  
    `WnsM; 1Y"  
    xaVn.&Wl  
    % Compute the values of the polynomials: Hp>L}5 y[  
    % -------------------------------------- C!ch !E#  
    y = zeros(length_r,length(n)); 'GT^araz  
    for j = 1:length(n) :Z x|=  
        s = 0:(n(j)-m_abs(j))/2; J_;*@mW  
        pows = n(j):-2:m_abs(j); EB*C;ms  
        for k = length(s):-1:1 lRNm &3:-  
            p = (1-2*mod(s(k),2))* ... +vxOCN4}v  
                       prod(2:(n(j)-s(k)))/              ... *C<;yPVc  
                       prod(2:s(k))/                     ... lfre-pS+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /sj*@HF=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Ow.DBL)x'>  
            idx = (pows(k)==rpowers); O6vxp?:^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); '5LdiSk  
        end 5[4nFa}R:5  
         6q>}M  
        if isnorm CWocb=E  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); - jCj_@n  
        end L#uU. U=  
    end vhAgX0k  
    % END: Compute the Zernike Polynomials AI|+*amTd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O5Z9`_9<  
    YB<nz<;JR  
    tfZ@4%'  
    % Compute the Zernike functions: M=lU`Sm  
    % ------------------------------ :8hI3]9  
    idx_pos = m>0; GZ,MC?W  
    idx_neg = m<0; _> x}MW+  
    vSC1n8 /  
    6@t&  
    z = y; I:G8B5{J  
    if any(idx_pos) d;]m wLB0  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); p6K~b  
    end &)gc{(4$  
    if any(idx_neg) 6 /5,n0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T^(W _S  
    end JJ%@m;~  
    0<a|=kZ  
    BV:Ca34&  
    % EOF zernfun `[g$EXX  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  T90O.]S  
    qfl!>  
    DDE还是手动输入的呢? b'+Wf#.]f0  
    y4jiOhF<d  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究