下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, tJZ3P@ L
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'n4
iW
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? S"Mm_<A$@
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Tyt1a>!qA
ev%}\^Vl[
.V\:)\<|
?
EXYLG
^WmP,Xf#
function z = zernfun(n,m,r,theta,nflag) 2W vf[2Xw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. C(lGW,!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2f7]=snCG
% and angular frequency M, evaluated at positions (R,THETA) on the ($*R>*6<x
% unit circle. N is a vector of positive integers (including 0), and _t;Mi/\P
% M is a vector with the same number of elements as N. Each element PvqG5-L~W
% k of M must be a positive integer, with possible values M(k) = -N(k) J+=+0{}
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, dI$M9;
% and THETA is a vector of angles. R and THETA must have the same m<| *
% length. The output Z is a matrix with one column for every (N,M) B>,&{ah/5J
% pair, and one row for every (R,THETA) pair. Wd/m]]W8Q
% cuo'V*nWQ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Jx4"~ 4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kESnlmy@J
% with delta(m,0) the Kronecker delta, is chosen so that the integral L&h90Az1W
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4Q
n5Mr@<
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4]%v%64U
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +'QE-#%{=
% v* /}s :a
% The Zernike functions are an orthogonal basis on the unit circle. $g!~T!p=
% They are used in disciplines such as astronomy, optics, and rk .tLk
% optometry to describe functions on a circular domain. 6=i@ttAK
% a C<
% The following table lists the first 15 Zernike functions. 9a lMC
% R`!'c(V
% n m Zernike function Normalization Mg76v<mv<
% -------------------------------------------------- i2(lqhaP
% 0 0 1 1 e!JC5Al7
% 1 1 r * cos(theta) 2 :~{x'`czJ
% 1 -1 r * sin(theta) 2 3X
A8\Mg
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,CA3Q.y>|
% 2 0 (2*r^2 - 1) sqrt(3) UCF'%R
% 2 2 r^2 * sin(2*theta) sqrt(6) mj9r#v3.
% 3 -3 r^3 * cos(3*theta) sqrt(8) i*-L_!cc:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) }Gg:y?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r&?i>.Kz8
% 3 3 r^3 * sin(3*theta) sqrt(8) |$aTJ9 Iq:
% 4 -4 r^4 * cos(4*theta) sqrt(10) NM:\T1
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) AEr8^6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @Ap~Wok
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^t#W?rxp&
% 4 4 r^4 * sin(4*theta) sqrt(10) hAv.rjhw_
% -------------------------------------------------- K\a=bA}DG
% huw|J<$
% Example 1: /WWD;keP5
% Zbobi,
% % Display the Zernike function Z(n=5,m=1) .|Zt&5osI
% x = -1:0.01:1; .S=^)
% [X,Y] = meshgrid(x,x); #Kd^t=k
% [theta,r] = cart2pol(X,Y); ^jxV
% idx = r<=1; Zr
U9oy&!C
% z = nan(size(X)); _yJAn\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); %qj8*1
% figure g8^YDrH
% pcolor(x,x,z), shading interp DEcsFC/SK
% axis square, colorbar R x>>0%e.
% title('Zernike function Z_5^1(r,\theta)') \vQjTM-7
% eH9Ofhsry
% Example 2: BQTibd
% vq&u19iP
% % Display the first 10 Zernike functions JTn\NSa
% x = -1:0.01:1; [TFd|ywn
% [X,Y] = meshgrid(x,x); ++)3*+N+
% [theta,r] = cart2pol(X,Y); q!+&|F
% idx = r<=1; ?6=u[))M&
% z = nan(size(X)); 2Yt+[T*
% n = [0 1 1 2 2 2 3 3 3 3]; V<%eWT)x7C
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; jR[3{ Reo
% Nplot = [4 10 12 16 18 20 22 24 26 28];
E,nxv+AQ
% y = zernfun(n,m,r(idx),theta(idx)); h
&R1"
% figure('Units','normalized') +>uiI4g
% for k = 1:10 f8c'`$O
% z(idx) = y(:,k); a\BV%'Zqg
% subplot(4,7,Nplot(k)) ~7}aW#
% pcolor(x,x,z), shading interp WzwH;!
% set(gca,'XTick',[],'YTick',[]) GV"Hk E;
% axis square 8:)W!tr
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NEb M>1>^
% end BD(Y=g
% g*& |Eq/
% See also ZERNPOL, ZERNFUN2. 7\?0d!
9AgTrP
m\hzQ9
% Paul Fricker 11/13/2006 6|-V{
ZgP~VB0)$
6yN8(&`
bI_T\Eft
zcn/LF
% Check and prepare the inputs: qP}187Q1
% ----------------------------- k,mgiGrQ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) eM$NVpS3
error('zernfun:NMvectors','N and M must be vectors.') z9B""ws
end x&kM /z?/
;`f14Fb
e2X\ll
if length(n)~=length(m) VoTnm
error('zernfun:NMlength','N and M must be the same length.') t(RJc
end V4.&"0\n #
v,VCbmc
d}Y\;'2,
n = n(:); _,?<r&>v6
m = m(:); Q2L>P<87T
if any(mod(n-m,2)) H`:2J8
error('zernfun:NMmultiplesof2', ... ,@#))2<RK
'All N and M must differ by multiples of 2 (including 0).') Yi5^#G
end fUg<+|v*
~g|Z6-?4Jj
nbMxQODk
if any(m>n) pmIOV~K
error('zernfun:MlessthanN', ... R|&Rq(ow"
'Each M must be less than or equal to its corresponding N.') fQkfU;5
end 1_of;=9V
Mkj`
XDt MFig
if any( r>1 | r<0 ) 5(+PIKCjC
error('zernfun:Rlessthan1','All R must be between 0 and 1.') IOjp'6Yr
end 6Kbc:wlR
xRI7_8Jpyn
/~O>He
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =,])xzG%
error('zernfun:RTHvector','R and THETA must be vectors.') 0eP ]
end sT*D]J
2
DT Cwf
|}-bMQ|
r = r(:); Nf!g1D"U
theta = theta(:); \|gE=5!Am=
length_r = length(r); BWWO=N
if length_r~=length(theta) 3tjF4C>h|
error('zernfun:RTHlength', ... @BfJb[A#
'The number of R- and THETA-values must be equal.') wi gs1
end q9h3/uTv
GI[TD?s
9Ev<t\B
% Check normalization: v><c@a=[
% -------------------- 2I|`j^
if nargin==5 && ischar(nflag) l+vD`aJ 3
isnorm = strcmpi(nflag,'norm'); aob+_9o
if ~isnorm W0 n?S
"
error('zernfun:normalization','Unrecognized normalization flag.') X"k:+
end )/y7Fh
else 'xP&u<(F
isnorm = false; a7fFp9l!
end JH|]B|3
%A$5mi^
@fc-[pv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E-`3}"{
% Compute the Zernike Polynomials V'q?+p]
a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 28!
ke
s?5vJ:M
Xr
1
O?bT,"b
% Determine the required powers of r: E^`-:L(_
% -----------------------------------
Nt
w?~%
m_abs = abs(m); V"Sa9P{y"
rpowers = []; w:VD[\h
for j = 1:length(n) gr^TL1(
rpowers = [rpowers m_abs(j):2:n(j)]; j6: jN-z
end x##0s5Qn
rpowers = unique(rpowers); i<b-$9
Pxvf"SXX
>lV'}0u)
% Pre-compute the values of r raised to the required powers, rHa*WA;TE
% and compile them in a matrix: DP8%/CV!*
% ----------------------------- ;TC"n!ew
if rpowers(1)==0 "OO)m](w
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jl"su:y
rpowern = cat(2,rpowern{:}); j2RdBoCt
rpowern = [ones(length_r,1) rpowern]; }|OwUdE!R9
else EvKzpxCh
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I'E7mb<2
rpowern = cat(2,rpowern{:}); 2;w`W58
end &e6!/y&
~Jh1$O,9o
L"tzUYxg
% Compute the values of the polynomials: q"e]\Tb=we
% -------------------------------------- YvG=P<_xw
y = zeros(length_r,length(n)); sR4B/1'E
for j = 1:length(n) bgYUsc*uR
s = 0:(n(j)-m_abs(j))/2; {ldt/dl~
pows = n(j):-2:m_abs(j); DS1{~_>nFu
for k = length(s):-1:1 8Drz
i!}
p = (1-2*mod(s(k),2))* ... agkGUK/
prod(2:(n(j)-s(k)))/ ... WS ^,@>A
prod(2:s(k))/ ... p/U{*i]t
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;Rljx3!N
prod(2:((n(j)+m_abs(j))/2-s(k))); I<rT\':9
idx = (pows(k)==rpowers); 0T7t.
y(:,j) = y(:,j) + p*rpowern(:,idx); 0Lf4^9N
end VTa%
IG Ax+3V
if isnorm !pZ<{|cH
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); UDT\Xc
end a D+4uGN
end Yi j^hs@eV
% END: Compute the Zernike Polynomials I.[Lv7U-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iax0V
aka)#0l .
}P'c8$
% Compute the Zernike functions: cLf<YF
% ------------------------------ `&9iC 4P
idx_pos = m>0; v5\5:b{/
idx_neg = m<0; Za,myuI+
T&4f}g/
@T Ha [|(S
z = y; <aLS4
if any(idx_pos) $XI.`L *g
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [MuZ^'dR
end jV[;e15+
if any(idx_neg) k1.%ZZMM
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); nV`U{}x
end ? G`6}NP
K)9Rw2-AJ
UM/!dt}DnF
% EOF zernfun l8khu)\n4R