下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, {IPn\Bka
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _SIs19"lR
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +yb$[E*
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )n}]]^Sc
J'ZFIT_>
6"Lsui??
AqbT{,3yW
@SC-vc
function z = zernfun(n,m,r,theta,nflag) oIvnF:c
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cxD}t'T
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L);||]B
% and angular frequency M, evaluated at positions (R,THETA) on the r($_>TS&"
% unit circle. N is a vector of positive integers (including 0), and B2G5hbaA
% M is a vector with the same number of elements as N. Each element $]%<r?MUb-
% k of M must be a positive integer, with possible values M(k) = -N(k) n`m_S
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, adO!Gs9f?
% and THETA is a vector of angles. R and THETA must have the same 9IvcKzS2
% length. The output Z is a matrix with one column for every (N,M) 1R2o6`_
% pair, and one row for every (R,THETA) pair. qBBYckS.
% NT;x1
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cCh0?g7nV
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yxC Ml.
% with delta(m,0) the Kronecker delta, is chosen so that the integral fsrg2:kQ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, loeLj4""
% and theta=0 to theta=2*pi) is unity. For the non-normalized
N8kb-2
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )7I.N]=
% TDl!qp @
% The Zernike functions are an orthogonal basis on the unit circle. HTDyuqs
% They are used in disciplines such as astronomy, optics, and jA-5X?!In
% optometry to describe functions on a circular domain. vfJ3idvo*w
% ayH%
qp
% The following table lists the first 15 Zernike functions. mo|PrLV
% ^A11h6I
% n m Zernike function Normalization %Rd~|$@>x
% -------------------------------------------------- -B *<Q[_
% 0 0 1 1 6VH90KAT
% 1 1 r * cos(theta) 2 a(}VA|l
% 1 -1 r * sin(theta) 2 2H?I'<NoC
% 2 -2 r^2 * cos(2*theta) sqrt(6) kMl @v`
% 2 0 (2*r^2 - 1) sqrt(3) +EST58
% 2 2 r^2 * sin(2*theta) sqrt(6) ' 1P=^
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^A *]&%(h
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1H&?UP4=(
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) wRXn9
% 3 3 r^3 * sin(3*theta) sqrt(8) u=@h`5-fp
% 4 -4 r^4 * cos(4*theta) sqrt(10) ?AV&@EX2C
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4f4 i1i:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) I~p8#<4#b
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9n>$}UI\
% 4 4 r^4 * sin(4*theta) sqrt(10) e;A^.\SP
% -------------------------------------------------- ^MW\t4pZ
% )Lc<;=w'9
% Example 1: #*yM2H"7,;
% 9N~8s6Ob
% % Display the Zernike function Z(n=5,m=1) * ?
K4!q'
% x = -1:0.01:1; `a9k!3_L
% [X,Y] = meshgrid(x,x); 93Mdp9v+i
% [theta,r] = cart2pol(X,Y); , @%C8Z
% idx = r<=1; QL)>/%yU
% z = nan(size(X)); F5N>Uqr*oN
% z(idx) = zernfun(5,1,r(idx),theta(idx)); v!<PDw2'
% figure O`wYMng)
% pcolor(x,x,z), shading interp CRZi;7`*1
% axis square, colorbar 2
) TG
% title('Zernike function Z_5^1(r,\theta)') o &BPG@n
% hAV2F#
% Example 2: YPF&U4CN
% x @1px&^
% % Display the first 10 Zernike functions +(;8@"u
% x = -1:0.01:1; b@=zrhQ
% [X,Y] = meshgrid(x,x); `4VO&lRm
% [theta,r] = cart2pol(X,Y); Xtci0eS#V
% idx = r<=1; y#b;uDY
% z = nan(size(X)); <A#5v\{.;~
% n = [0 1 1 2 2 2 3 3 3 3]; O24Jj\"
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5a=nF9/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; jA4PDH f+
% y = zernfun(n,m,r(idx),theta(idx)); L7SEswMti
% figure('Units','normalized') n_<mPU
% for k = 1:10 Y.DwtfE
% z(idx) = y(:,k); d32@M~vD
% subplot(4,7,Nplot(k)) S3R|8?|
% pcolor(x,x,z), shading interp s{yJ:WncI
% set(gca,'XTick',[],'YTick',[]) IYuyj(/!
% axis square $Llta,ULE
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OI~}e,[2z
% end C=>B_EO
% .|T2\M
% See also ZERNPOL, ZERNFUN2. j h;
9
[
^fkCyE;=
fucUwf\_
% Paul Fricker 11/13/2006 N1PECLS?
M[A-1]'
0r1g$mKb
m'd^?Qc
g<fP:/
% Check and prepare the inputs: SEYG y+#K
% ----------------------------- SV&kWbS
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P?uf?{
error('zernfun:NMvectors','N and M must be vectors.') #-,g&)`]
end <# >Oy&E
DYX-5~;!
YZ0en1ly
if length(n)~=length(m) i#k-)N _$
error('zernfun:NMlength','N and M must be the same length.') ]x2Jpk99a
end _Aa[?2 O
,NDh@VYe
3Q",9(D
n = n(:); G OpjRA@
m = m(:); fVYiwE=F
if any(mod(n-m,2)) d5Qd'
error('zernfun:NMmultiplesof2', ... 9x(}F<L
'All N and M must differ by multiples of 2 (including 0).') <_t5:3HL
end J=):+F=
(s088O
\4aKLr
if any(m>n) `Z:3`7c
error('zernfun:MlessthanN', ... )i @1XH"D
'Each M must be less than or equal to its corresponding N.') i!L;? `F{
end eO'xkm
P 4QkY#v
tR<L`?4
if any( r>1 | r<0 ) L%f;J/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') }hCaNQ&jH
end y5_XHi@u~o
[g +y_@9s
$:e)$Xnn-
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A';n6ne%i
error('zernfun:RTHvector','R and THETA must be vectors.') )i0 $j)R
end +5-]iKh
[yC"el6PM
$~=2{
r = r(:); ;,dkJ7M
theta = theta(:); v`SY6;<2
length_r = length(r); -Un=TX
if length_r~=length(theta) AeaPK
error('zernfun:RTHlength', ... E3f9<hm
'The number of R- and THETA-values must be equal.') dnwdFsf
end qC..\{z
*2=W5LaK.
{S*!B
% Check normalization: izf~w^/
% -------------------- 7 W{~f?Sh
if nargin==5 && ischar(nflag) O~6Q;q P
isnorm = strcmpi(nflag,'norm'); xZyeX34{M;
if ~isnorm XCm\z9F
error('zernfun:normalization','Unrecognized normalization flag.') H*rx{ F?
end y@`~ 9$
else sQtf,e|p
isnorm = false; LEK/mCL
end HlPG3LD!
"5}%"-#
]n5"Z,K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a.DX%C/5
% Compute the Zernike Polynomials f^?uY8<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% um[!|g/
(]XbPW
+zsZNJ(U
% Determine the required powers of r: xs%LRF#u
% ----------------------------------- uY;R8CiD
m_abs = abs(m); h@@d{{IqT
rpowers = []; bDWeU}
for j = 1:length(n) -\Z `z}D
rpowers = [rpowers m_abs(j):2:n(j)]; W' ep6O
end AK *N
rpowers = unique(rpowers); 4\6:\
9 mPIykAj8
|l7%l&!
% Pre-compute the values of r raised to the required powers, 2tf6GX:
% and compile them in a matrix: s}ADk-7
% ----------------------------- *,lh:
if rpowers(1)==0 6/6Rah!
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EZib1g&:R/
rpowern = cat(2,rpowern{:}); 6IP$n($2
rpowern = [ones(length_r,1) rpowern]; Yj|]Uff8O
else -CD\+d "
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RqLNp?V%
rpowern = cat(2,rpowern{:}); bxwkTKr'
end HH8;J66I&
T4r5s
~+HoSXu@E
% Compute the values of the polynomials: ~;unpym'
% --------------------------------------
OJ/SYZ.r
y = zeros(length_r,length(n)); J?%}=_fsa
for j = 1:length(n) 7tgFDLA
s = 0:(n(j)-m_abs(j))/2; JMlV@t7y<
pows = n(j):-2:m_abs(j); *vnXlV4L
for k = length(s):-1:1 yN\e{;z`
p = (1-2*mod(s(k),2))* ... U-EhPAB@
prod(2:(n(j)-s(k)))/ ... ?2ItB `<(
prod(2:s(k))/ ... #s2B%X
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3SNL5
prod(2:((n(j)+m_abs(j))/2-s(k))); \84v-VK
idx = (pows(k)==rpowers); (Z-l/)Q
y(:,j) = y(:,j) + p*rpowern(:,idx); mW4%2fD[
end O>V(cmqE`
`FJ|W6%
if isnorm *eUc.MX6x
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); VT=K"`EpQ
end fg&eoI'f
end -(IC~
% END: Compute the Zernike Polynomials =g~j=v,e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~R.dPUr
Ld(NhB'7
m^I,}1H4
% Compute the Zernike functions: /IR#A%U
% ------------------------------ IU!Ht>
idx_pos = m>0; Wx]d $_
idx_neg = m<0; Mo^`\/x!
f=aIXhiYU
6)[<)?A.[
z = y; /P+q}L%
if any(idx_pos) gyu6YD8L
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r]LCvsVa
end o8z)nOTO;
if any(idx_neg) kX2d7yQZz
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "&QH6B1U6H
end 7=k^M, a
>I<PO.c!
$}tjS3klr
% EOF zernfun kuKa8c