切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9345阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 9YD\~v;x  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 802H$P^ps  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? zEj#arSE4  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? {{\ce;hN  
    7tRi"\[5  
    +"dv7  
    Jd_;@(Eg=  
    /N6}*0Ru  
    function z = zernfun(n,m,r,theta,nflag) O#)jr-vXdV  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cL G6(<L  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8#w)X/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?F_)-  
    %   unit circle.  N is a vector of positive integers (including 0), and lNz]H iD  
    %   M is a vector with the same number of elements as N.  Each element FH8k'Hxg  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 22&;jpL'?  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, YHB9mZi  
    %   and THETA is a vector of angles.  R and THETA must have the same 1Ipfw  
    %   length.  The output Z is a matrix with one column for every (N,M) E"6X|I n  
    %   pair, and one row for every (R,THETA) pair. nn+_TMu  
    % I-kWS 4  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .XS9,/S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), rQb7?O@-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral V%*b@zv  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wP<07t[-g  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @}&_Dvf  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?s2^zT  
    % VL\t>n  
    %   The Zernike functions are an orthogonal basis on the unit circle. lyv4fP  
    %   They are used in disciplines such as astronomy, optics, and '#.#$8l  
    %   optometry to describe functions on a circular domain. d|lpec  
    % cE\>f8 I  
    %   The following table lists the first 15 Zernike functions. i{Ds&{  
    % \~~}N4  
    %       n    m    Zernike function           Normalization wNYg$d0M  
    %       -------------------------------------------------- ;j9\b9m  
    %       0    0    1                                 1 @1:0h9%  
    %       1    1    r * cos(theta)                    2 2YlH}fnH  
    %       1   -1    r * sin(theta)                    2 9t$]X>}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D +RiM~LH8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) oyvKa g  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /?*]lH.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) k XrlSaIc  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +?dl`!rE  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %JyXbv3m,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2VoKr)  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) M{mSd2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (Un_!)  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) m@Rtlb  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =0    
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;j%BK(5  
    %       -------------------------------------------------- k[kju%i4  
    % Vsnuy8~k  
    %   Example 1: :O= \<t  
    % }`\/f  
    %       % Display the Zernike function Z(n=5,m=1) /.z;\=;[n!  
    %       x = -1:0.01:1; g(|{')8?d  
    %       [X,Y] = meshgrid(x,x); 6"f}O<M 5H  
    %       [theta,r] = cart2pol(X,Y); ~Z'w)!h  
    %       idx = r<=1; 8|%^3O 0X  
    %       z = nan(size(X)); >e,mg8u6$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Wwujh2g"0|  
    %       figure cC'x6\a  
    %       pcolor(x,x,z), shading interp UVQ7L9%?f  
    %       axis square, colorbar 7msAhz  
    %       title('Zernike function Z_5^1(r,\theta)') T0zn,ej  
    %  ._O  
    %   Example 2: hr GH}CU"  
    % Tr0B[QF  
    %       % Display the first 10 Zernike functions $*R/tJ.  
    %       x = -1:0.01:1; U}k9 Py  
    %       [X,Y] = meshgrid(x,x); \ZU1J b1c  
    %       [theta,r] = cart2pol(X,Y); A:l@_*C..  
    %       idx = r<=1; jPZaD>!  
    %       z = nan(size(X)); cWyW~Ek  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^ vilgg~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; j _L@U2i  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3&&9_`r&_  
    %       y = zernfun(n,m,r(idx),theta(idx)); ={>Lrig:l  
    %       figure('Units','normalized') &0zT I?c  
    %       for k = 1:10 j z58E}  
    %           z(idx) = y(:,k);  Q6'x\  
    %           subplot(4,7,Nplot(k)) 03E4cYxt5  
    %           pcolor(x,x,z), shading interp 9d[5{" 2j  
    %           set(gca,'XTick',[],'YTick',[]) { FZ=olZ  
    %           axis square rE9I>|tX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Z[__"^}  
    %       end V-'K6mn;  
    % w }^ I  
    %   See also ZERNPOL, ZERNFUN2. o6 E!IX+  
    sm[94,26  
    QTX8 L  
    %   Paul Fricker 11/13/2006 YW u cvw&  
    p~ HW5\4  
    ivDGZI9  
    t58e(dgi  
    l7#yZ*<v  
    % Check and prepare the inputs: ,C%eBna4Iq  
    % ----------------------------- 26T"XW'_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9$`lIy@B  
        error('zernfun:NMvectors','N and M must be vectors.') Q'_z<V  
    end A+hT3;lp  
    b)(?qfXWP  
    !*6CWV0  
    if length(n)~=length(m) m3Il3ZY.  
        error('zernfun:NMlength','N and M must be the same length.') hW!)w  
    end mU}F!J#6  
    !,V{zTR  
    cuy1DDl  
    n = n(:); rV08ad  
    m = m(:); ( =~&+z  
    if any(mod(n-m,2)) !uQPc   
        error('zernfun:NMmultiplesof2', ... .9Y)AtJTS  
              'All N and M must differ by multiples of 2 (including 0).') y~()|L[  
    end yR(x+ Gs{]  
    o,|[GhtHqs  
    lz1 wO5%h  
    if any(m>n) ~ vqa7~}m  
        error('zernfun:MlessthanN', ... OS8q( 2z?s  
              'Each M must be less than or equal to its corresponding N.') r@ZJ{4\Q  
    end W`c'=c  
    /0Ax*919j  
    {nLjY|*  
    if any( r>1 | r<0 ) BcI |:qv|  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +TXX$)3%  
    end !.d@L6  
    (<^yqH?  
    'C"9QfK  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y*X_T,K 8  
        error('zernfun:RTHvector','R and THETA must be vectors.') F_CYYGZ  
    end Yk=PS[f  
    M![J2=  
    CHz+814  
    r = r(:); hP15qKy  
    theta = theta(:); `]%|f  
    length_r = length(r); AM!G1^c  
    if length_r~=length(theta) H)n9O/u  
        error('zernfun:RTHlength', ... 8YbE`32  
              'The number of R- and THETA-values must be equal.') EY tQw(!Q  
    end M3q|l7|9  
    <i,U )Tt^C  
    "s{5O>  
    % Check normalization: 6fw(T.Pe  
    % -------------------- 0\eIQp  
    if nargin==5 && ischar(nflag) lv04g} W  
        isnorm = strcmpi(nflag,'norm'); |j7,Mu+  
        if ~isnorm 13>0OKg`#  
            error('zernfun:normalization','Unrecognized normalization flag.') 5k.oW=  
        end ^0 -:G6H  
    else J@u;H$@/y  
        isnorm = false; >6?__v]9G  
    end 2 O%`G+\)  
    .hifsB~  
    &wV]"&-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ajEjZ6  
    % Compute the Zernike Polynomials n^g|Ja  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]iUx p+  
    9?SZNL['V  
    xU4 +|d  
    % Determine the required powers of r: k=jk`c{<[  
    % ----------------------------------- V{!J-nO  
    m_abs = abs(m); xsD($_  
    rpowers = []; =o$sxb E(  
    for j = 1:length(n) LA}S yt\F  
        rpowers = [rpowers m_abs(j):2:n(j)];  B\o Mn  
    end T: =lz:}I  
    rpowers = unique(rpowers); \hx1o\  
     A|<jX}  
    s*-n^o-  
    % Pre-compute the values of r raised to the required powers, H<PtAYFS  
    % and compile them in a matrix: r2,.abo  
    % ----------------------------- U`2e{>'4t  
    if rpowers(1)==0 bAx-"Lu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); oY933i@l)P  
        rpowern = cat(2,rpowern{:}); _I:/ZF5  
        rpowern = [ones(length_r,1) rpowern]; FG.em  
    else Q$zO83  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aWR}R>E  
        rpowern = cat(2,rpowern{:}); Hl{S]]z  
    end *GL/aEI<$  
    KbA?7^zo`  
    Z$/xy"  
    % Compute the values of the polynomials: ,F,X ,  
    % -------------------------------------- 8Dj c c z  
    y = zeros(length_r,length(n)); AP'*Nh@Ik(  
    for j = 1:length(n) R#%(5-Zu#R  
        s = 0:(n(j)-m_abs(j))/2; 7/I,HxXp!  
        pows = n(j):-2:m_abs(j); i OW#>66d  
        for k = length(s):-1:1 Brf5dT49  
            p = (1-2*mod(s(k),2))* ... (>nGQS]H  
                       prod(2:(n(j)-s(k)))/              ... H|3:6x  
                       prod(2:s(k))/                     ... `erV$( M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jIC_[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [XEkz#{  
            idx = (pows(k)==rpowers); ~?d Nd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >7jbgHB  
        end &,{fw@#)_  
         ;$.J3!  
        if isnorm _Xk.p_uh  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Rwz0poG`WG  
        end CDQW !XHc  
    end f4 P8Oz  
    % END: Compute the Zernike Polynomials ywGd>@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }`% *W`9b  
    vq(0OPj8r[  
    kmP]SO?tx  
    % Compute the Zernike functions: 7z JRJ*NB  
    % ------------------------------ pwL ;A3$|  
    idx_pos = m>0; WW4vn|0v  
    idx_neg = m<0; gQ Fjr_IS#  
    JTSlWq4  
    zzTfYf)  
    z = y; 6e9,PS  
    if any(idx_pos) B-ngn{Yc   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X' H[7 ^W  
    end l;R%= P?'F  
    if any(idx_neg) <D<4BnZ(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Pg,b-W?n*  
    end oHd FMD@  
    I&}L*Z?`  
    n}F&1Z  
    % EOF zernfun \<JSkr[h!"  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Mmxlp .l  
    j}%ja_9S  
    DDE还是手动输入的呢? O~T@rX9f  
    BcL{se9<  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究