下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, |KSd@
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4?Mb>\n%<^
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? z@@w?>*
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :5 XNV6^|
H(f~B<7q
FCO5SX#-g
Vf?+->-?{
XP#j9CF#.
function z = zernfun(n,m,r,theta,nflag) N~I2~f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q.SLiI
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fa#xEWaFr
% and angular frequency M, evaluated at positions (R,THETA) on the ]WZ_~8
% unit circle. N is a vector of positive integers (including 0), and />1Ndj
% M is a vector with the same number of elements as N. Each element /JaCbT?*T
% k of M must be a positive integer, with possible values M(k) = -N(k) nsO!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, We7~tkl(
% and THETA is a vector of angles. R and THETA must have the same r2:n
wlG
% length. The output Z is a matrix with one column for every (N,M) p4},xQzB
% pair, and one row for every (R,THETA) pair. N6CWEIJ
% G55-{y9Q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |a!AgvNF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _"BYnPq@wb
% with delta(m,0) the Kronecker delta, is chosen so that the integral fAx7_}k/ m
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, aDJ\%
% and theta=0 to theta=2*pi) is unity. For the non-normalized c;\}R#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M9mC\Iz[
% 3@u<Sa
% The Zernike functions are an orthogonal basis on the unit circle. jpND"`Q
% They are used in disciplines such as astronomy, optics, and @WcK<Qho
% optometry to describe functions on a circular domain. "zU}]|R
% "YIrqk
% The following table lists the first 15 Zernike functions. [Yt!uhww
% :4o08M%
% n m Zernike function Normalization KIt:ytFx
% -------------------------------------------------- @S#>:o|
% 0 0 1 1 S@Rw+#QE
% 1 1 r * cos(theta) 2 %onUCN<O`
% 1 -1 r * sin(theta) 2 K@ZK@++
% 2 -2 r^2 * cos(2*theta) sqrt(6) &zVF!xNy&
% 2 0 (2*r^2 - 1) sqrt(3) e;LJdd
% 2 2 r^2 * sin(2*theta) sqrt(6) 8<z]rLQw?%
% 3 -3 r^3 * cos(3*theta) sqrt(8) REd"}zDI
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) q2qbbQ6H
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <@;Y.76~
% 3 3 r^3 * sin(3*theta) sqrt(8) ZY%]F,Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) }lN@J,q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1PwqWg-\\
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) gQpF(P
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mDn*v(
f
% 4 4 r^4 * sin(4*theta) sqrt(10) Vq7L:,N9
% -------------------------------------------------- %m8;Lh-X
% eURy]
% Example 1: eBZ^YY<*g
% TF)OBN~/
% % Display the Zernike function Z(n=5,m=1) caA>; +aBH
% x = -1:0.01:1; eK
}AVz}k
% [X,Y] = meshgrid(x,x); GyE-fB4C
% [theta,r] = cart2pol(X,Y); [Tha
j
% idx = r<=1; =M]f7lJ
% z = nan(size(X)); 4AI\'M"d
% z(idx) = zernfun(5,1,r(idx),theta(idx)); U p1&(
% figure MGUzvSf
% pcolor(x,x,z), shading interp #N`~.96
% axis square, colorbar )"j)9RQ}
% title('Zernike function Z_5^1(r,\theta)') 3U#z {%
% 9v7l@2/
% Example 2: }m6zu'CV
% aL63=y
% % Display the first 10 Zernike functions IvLo&6swW
% x = -1:0.01:1; *W()|-[V3
% [X,Y] = meshgrid(x,x); z6B(}(D
% [theta,r] = cart2pol(X,Y); "^A4 !.
% idx = r<=1; &<</[h/B/F
% z = nan(size(X)); 2l43/aCq
% n = [0 1 1 2 2 2 3 3 3 3]; uo`O$k<;
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; #&+0hS
% Nplot = [4 10 12 16 18 20 22 24 26 28]; l#8SlRji
% y = zernfun(n,m,r(idx),theta(idx)); Y..
% figure('Units','normalized') |RUx)&
% for k = 1:10 k(Z+(Y'{q~
% z(idx) = y(:,k); "*o54z5"
% subplot(4,7,Nplot(k)) FI,>v`
% pcolor(x,x,z), shading interp =*Z=My}3~
% set(gca,'XTick',[],'YTick',[]) dQfVdqg
% axis square $ t' .
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r81YL
% end P.bBu
% |%JJ
S^)
% See also ZERNPOL, ZERNFUN2. !mFx= +
=3rPE"@,[
voRr9E*n
% Paul Fricker 11/13/2006 ~RSOUrR
Eq>3|(UT
CJA5w[m
_is<.&f6
nZ?BCO
% Check and prepare the inputs: MB423{j
% ----------------------------- >*ey 7g
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \VL[,z=q.
error('zernfun:NMvectors','N and M must be vectors.') E\N?D
end tB"amv
D3#/*Ky
8y;W+I(71
if length(n)~=length(m) l"%|VWZ{iq
error('zernfun:NMlength','N and M must be the same length.') 4&r+K`C0
end Kg0Vbzvb
V|.3Z\(
H\ A!oB,sw
n = n(:); HC,YmO:df"
m = m(:); ODn6%fp%
if any(mod(n-m,2)) JZ6{W
error('zernfun:NMmultiplesof2', ... XGE:ZVpW
'All N and M must differ by multiples of 2 (including 0).') y(&JE^GfX
end =|IB=
k$</7IuH
2`(-l{3
if any(m>n) O_8ERxj
g]
error('zernfun:MlessthanN', ... {~DYf*RZ
'Each M must be less than or equal to its corresponding N.') %MyA;{-F6
end 3nt&Sf
r(` ;CY]@
j&(2ze:=*$
if any( r>1 | r<0 ) D8P<mIu}Y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &0*l=!:G^
end '0g1v7Gx
%V-\ |cw
[Af&K22M(X
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) q0Fq7rWP
error('zernfun:RTHvector','R and THETA must be vectors.') ]@OGp:Hz
end O[Xl*9P
usiv`.
M0`nr}g
r = r(:); }^uUw&
theta = theta(:); E@\e37e
length_r = length(r); +5Z0-N@
if length_r~=length(theta) UF)rBAv(/
error('zernfun:RTHlength', ... QC.WR'.
'The number of R- and THETA-values must be equal.') `<ITLT
end hNB;29r~
Eq-fR~<9
$Z)Dvy|
% Check normalization: 96;17h$
% -------------------- .J' 8d"+
if nargin==5 && ischar(nflag) |+Z,
7~!
isnorm = strcmpi(nflag,'norm'); !=C4=xv
if ~isnorm 87%t=X
error('zernfun:normalization','Unrecognized normalization flag.') =jdO2MgSg*
end f!;i$Oif
else rDkAeX0
isnorm = false; vlCjh! x
end HM%n`1ZU
$2E n^
DX.u"&Mm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F\!;}z
% Compute the Zernike Polynomials Q:Q)-|,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~[XDK`B
($*bwqp]}
T[M?:~
% Determine the required powers of r: Be+'&+
% ----------------------------------- @O+yxGA
m_abs = abs(m); I@P[}XS
rpowers = []; 3/8o)9f.
for j = 1:length(n) :)}iWKAse
rpowers = [rpowers m_abs(j):2:n(j)]; \&]M \
end xB:,l'\G
rpowers = unique(rpowers); uyP)5,
a?6
r4u0
]d?`3{h9LD
% Pre-compute the values of r raised to the required powers, :~loy'
% and compile them in a matrix: PETrMu<
% ----------------------------- E :*!an
if rpowers(1)==0 1\q(xka{
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qF=D,Dlz
rpowern = cat(2,rpowern{:}); ^_3idLE
rpowern = [ones(length_r,1) rpowern]; r AMnM>`
else '5wa"/ ?w
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V1Dwh@iS
rpowern = cat(2,rpowern{:}); Gxv@ a
end |Q:$G!/
XG
]yfux`
=]E(iR_&
% Compute the values of the polynomials: p?X.I]=vRv
% -------------------------------------- +B^/ =3P
y = zeros(length_r,length(n)); @PuJre4!;L
for j = 1:length(n) $s.:wc^
s = 0:(n(j)-m_abs(j))/2; v=nq P{
pows = n(j):-2:m_abs(j); |J2_2a/"
for k = length(s):-1:1 cv;&ff2%?
p = (1-2*mod(s(k),2))* ... w[\*\'Vm0
prod(2:(n(j)-s(k)))/ ... 'vj45b
prod(2:s(k))/ ... t,=
ta{
a
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <&TAN L
prod(2:((n(j)+m_abs(j))/2-s(k))); O_0|Q@
idx = (pows(k)==rpowers); z=<T[Uy
y(:,j) = y(:,j) + p*rpowern(:,idx); owZjQ
end 1B=vrGq
3;~1rw=$<
if isnorm m8$6FN
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +o(t5O[G
end X!&DKE
end 0z/tceW'F
% END: Compute the Zernike Polynomials Lx,"jA/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \c>9f"jS_
)v;>6(
EHkb{Q8
% Compute the Zernike functions: _1hc^j
% ------------------------------ F6h3M~uR
idx_pos = m>0; \k0%7i[nZ/
idx_neg = m<0; }
IFZ$Y
]B=B@UO@.
?XL [[vyr
z = y; }$#e&&)n
if any(idx_pos) KCJ zE>
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r4dG83qg
end -"u}lCz>
if any(idx_neg) |M#b`g$JO,
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _IOeO
end x,IU]YW@
QZef=
X'.}#R1
% EOF zernfun QD]Vfj4+