下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ja+PVf
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hmr 2(f%U
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? L<[%tv V
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? +9R@cUr
T!Z).PA#
HCZVvsG
%SN"<O!
9UE)4*5
function z = zernfun(n,m,r,theta,nflag) }^zsN`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. X@H/"B%u2
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R 9b0D>Lxt
% and angular frequency M, evaluated at positions (R,THETA) on the W9/HM !
% unit circle. N is a vector of positive integers (including 0), and gfly?)V nF
% M is a vector with the same number of elements as N. Each element Q ?R3aJ
% k of M must be a positive integer, with possible values M(k) = -N(k) X}_Gk5q*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, DW0N}>Gp*
% and THETA is a vector of angles. R and THETA must have the same pRGag~h|E
% length. The output Z is a matrix with one column for every (N,M) vhKHiw9L
% pair, and one row for every (R,THETA) pair. i.0.oy>
% 87yZd8+)
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BL1d=%2R
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /#g
P#Z%
% with delta(m,0) the Kronecker delta, is chosen so that the integral MWJ}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f yhBfA:u
% and theta=0 to theta=2*pi) is unity. For the non-normalized Tga%-xr+
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {YF(6wVl
% [K""6D
% The Zernike functions are an orthogonal basis on the unit circle. >Q[3t79^
% They are used in disciplines such as astronomy, optics, and .njk^,N
% optometry to describe functions on a circular domain. 8M8Odz\3 q
% lkJ"f{4f
% The following table lists the first 15 Zernike functions. i>%A0.9
% W=\45BJ
% n m Zernike function Normalization tx ,q=.(
% -------------------------------------------------- XWag+K
% 0 0 1 1 V2>+s
y
% 1 1 r * cos(theta) 2 U%rq(`;
% 1 -1 r * sin(theta) 2 Fuy"JmeR
% 2 -2 r^2 * cos(2*theta) sqrt(6) N<^)tR8+
% 2 0 (2*r^2 - 1) sqrt(3) &.[I}KH|B
% 2 2 r^2 * sin(2*theta) sqrt(6) _t?#
% 3 -3 r^3 * cos(3*theta) sqrt(8) _@OS,A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) =hi{J
M
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) #MUY!
% 3 3 r^3 * sin(3*theta) sqrt(8) 7\[)5j
% 4 -4 r^4 * cos(4*theta) sqrt(10) Nj=0bg"Qg5
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U<I]_]
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) RwUosh\W
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K@tEL Yb
% 4 4 r^4 * sin(4*theta) sqrt(10) O'h f8w
% -------------------------------------------------- rUh2[z8:
% ^X ~S}MX
% Example 1: 2hsRYh
% W5Vh+'3
% % Display the Zernike function Z(n=5,m=1)
z-_$P)[c
% x = -1:0.01:1; qi$nG_<<Z
% [X,Y] = meshgrid(x,x); SA%uGkm:e
% [theta,r] = cart2pol(X,Y); m2[]`Ir^@
% idx = r<=1; L [&|<<c
% z = nan(size(X)); pU1miA '
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {Kz!)uaC
% figure }U|0F#0$
% pcolor(x,x,z), shading interp Q'rgh+6
% axis square, colorbar VI]~uTV
% title('Zernike function Z_5^1(r,\theta)') +<bvh<]Od
% N"s"^}M\
% Example 2: 7n]ukqZ
% ^ddC a
% % Display the first 10 Zernike functions @*BVS'\
% x = -1:0.01:1; Mh]4K"cs
% [X,Y] = meshgrid(x,x); m=rMx]k
% [theta,r] = cart2pol(X,Y); OV|n/~
% idx = r<=1; `#4q7v~>oe
% z = nan(size(X)); Rk#p zD
% n = [0 1 1 2 2 2 3 3 3 3]; X 4\V4_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; -J>f,zA
% Nplot = [4 10 12 16 18 20 22 24 26 28]; gO#%*
W
% y = zernfun(n,m,r(idx),theta(idx)); b8**M'k
% figure('Units','normalized') r4Xaa<
% for k = 1:10 {t|Q9&
% z(idx) = y(:,k); ce:wF#Qs
% subplot(4,7,Nplot(k)) .rQcg.8/B
% pcolor(x,x,z), shading interp ;gLOd5*0
% set(gca,'XTick',[],'YTick',[]) v%7Gh-P
% axis square M[cAfu
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1d OB|
% end `jec|i@oO
% .|@2Uf
% See also ZERNPOL, ZERNFUN2. @H}{?-XyA
}U?:al/m
6Ev+!!znu
% Paul Fricker 11/13/2006 m -0}Pe9L
NfZC}
?}HZJ@:lB
`aSbGMz
4U3 `g
% Check and prepare the inputs: Q)\[wYMt
% ----------------------------- <?h(Dchq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &FG0v<f5Pv
error('zernfun:NMvectors','N and M must be vectors.') ,(f({l[J}
end ' pIC~
rpc;*t+z
JFq<sY!
if length(n)~=length(m) *0m|`-
T
error('zernfun:NMlength','N and M must be the same length.') qp{~OW3
end %~P3t=r
S[{,+{b0
WBR# Ux
n = n(:); E:;MI{;7
m = m(:); AoY!f'Z
if any(mod(n-m,2)) !&5|:96o
error('zernfun:NMmultiplesof2', ... /Mj|Px%
'All N and M must differ by multiples of 2 (including 0).') :lu "14
end 5sSAH
7!;zkou
&{q<
if any(m>n) Ym6v 4k!@O
error('zernfun:MlessthanN', ... pcQgWjfS
'Each M must be less than or equal to its corresponding N.')
^CD?SP"i
end js!C`]1
BU|)lU5)z
ilZQ/hOBH
if any( r>1 | r<0 ) '<'5BeU
error('zernfun:Rlessthan1','All R must be between 0 and 1.') aGAr24]y
end >h.HW
x4,[5N"}YK
7jGfQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v^ v \6uEP
error('zernfun:RTHvector','R and THETA must be vectors.') A)&CI6(
end &qM8)2Y
J&B5Ll
@z:E]O}
r = r(:); &8I*N6p:%/
theta = theta(:); ,$U~<Zd
length_r = length(r); 40z1Qkmaey
if length_r~=length(theta) C=2DxdZG
error('zernfun:RTHlength', ... <9c{Kt.5(
'The number of R- and THETA-values must be equal.') ]@~%i=.7
end eU.C<Tv:8
$LcMG,8%_
xNa66A-8
% Check normalization: !#W3Q
% -------------------- i 1Kq(7
if nargin==5 && ischar(nflag) /SyAjZ
isnorm = strcmpi(nflag,'norm'); ~_IQ:]k
if ~isnorm Sggl*V/q
error('zernfun:normalization','Unrecognized normalization flag.') Spn)M79
end b|iIdDK
else +|x%a2?x:
isnorm = false; 4UK>Vzn
end I!Mkss xc
TI\EkKu"
?{xD{f$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DyA1zwp}
% Compute the Zernike Polynomials irP*:QM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `b%^_@Fb
N8=-=]0G
U* uMMb}$
% Determine the required powers of r: l}k'ZX 4
% ----------------------------------- LI^D\
m_abs = abs(m); cl |}0Q5
rpowers = []; d(Hqj#`-31
for j = 1:length(n) "-j96
KD
rpowers = [rpowers m_abs(j):2:n(j)]; N vTp1kI]
end T0.sL9
rpowers = unique(rpowers); ooP{Q r
D&pX0
@\M^Zuo
% Pre-compute the values of r raised to the required powers, B\l 0kiNT
% and compile them in a matrix: E`{DX9^
% ----------------------------- MBnxF^c&P
if rpowers(1)==0 }SyK)W5Y
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )-Z*/uF^
rpowern = cat(2,rpowern{:}); A
PrrUo
rpowern = [ones(length_r,1) rpowern]; 3#GIZL}!x
else nZG
zez
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <I 0om(P
rpowern = cat(2,rpowern{:}); wDW/?lT&
end 73_-7'^mQ
Xq "Es
[57`V&c5
% Compute the values of the polynomials: g>`D!n::n
% -------------------------------------- T)Q_dF.N
y = zeros(length_r,length(n)); $ f||!g
for j = 1:length(n) fzAkUvo
s = 0:(n(j)-m_abs(j))/2; N P5K1:
pows = n(j):-2:m_abs(j); JXR]G
for k = length(s):-1:1 UPPlm\wb*
p = (1-2*mod(s(k),2))* ... [HQ/MkP-Z
prod(2:(n(j)-s(k)))/ ... J,s:CBCGL
prod(2:s(k))/ ... B]mMwqM#
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... NzN"_o jM
prod(2:((n(j)+m_abs(j))/2-s(k))); KT AQ6k
idx = (pows(k)==rpowers); '(ZT}N
y(:,j) = y(:,j) + p*rpowern(:,idx); _c-(T&u<
end {Z
Ld_VGW
yS3or(K
if isnorm W@zuN)U
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Z|)1 ftcC
end c>Ri6=C
end Nus]]Iy-g
% END: Compute the Zernike Polynomials bfpoX,:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )n[=)"rf
(m=1yj9
U!E}(9
tb
% Compute the Zernike functions: $Il
% ------------------------------ {M=*>P]E
idx_pos = m>0; ic l]H
idx_neg = m<0; B@ msGb C
x5rLGt
rEbH<|
z = y; s0Z)BR #
if any(idx_pos) $1Wb`$
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Xn>>hzj-x?
end x|()f3{.
if any(idx_neg) r`RLDN!`
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }9!}T~NMs
end yL
-}E
T[c-E*{hR
#q-fRZ:P
% EOF zernfun sI09X6)