切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9305阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, txEN7!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ._+cvXy  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lpi"@3  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y S3~sA  
    S5>s&  
    v^A+LZ*d  
    tPyk^NJ;  
    EBhdP  
    function z = zernfun(n,m,r,theta,nflag) aEf3hB*~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. b'wy{~l@  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9nY`rF8@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LhG\)>Y%  
    %   unit circle.  N is a vector of positive integers (including 0), and $(}rTm  
    %   M is a vector with the same number of elements as N.  Each element F:/x7]7??Z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) = gF035  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, |JkfAnrN$I  
    %   and THETA is a vector of angles.  R and THETA must have the same zw#n85=  
    %   length.  The output Z is a matrix with one column for every (N,M) qV=:2m10x  
    %   pair, and one row for every (R,THETA) pair. Na@bXcz)  
    % ,ye}p 1M  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike c b-IRGF  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), MkW=sD_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral tE %g)hL-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d==0 @`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized MKbcJZe  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QC'Ru'8S  
    % ;R= n<=Axa  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?j&hG|W9<z  
    %   They are used in disciplines such as astronomy, optics, and xLed];2G  
    %   optometry to describe functions on a circular domain. S(@kdL  
    % |GMo"[  
    %   The following table lists the first 15 Zernike functions. iM!Ya!  
    % ")KqPD6k  
    %       n    m    Zernike function           Normalization _DxHJl  
    %       -------------------------------------------------- -k + jMH  
    %       0    0    1                                 1  hh4R  
    %       1    1    r * cos(theta)                    2 ?22U0UF  
    %       1   -1    r * sin(theta)                    2 gWgp:;Me  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ILr=< j  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1 b 7jNkQ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) k'r}@-X  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Y. J!]|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Mbc&))A  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) a~Dk@>+P>  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) G^B> C  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9(t(sP_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |ufL s  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <M\&zHv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Tdh(J",d  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) RP$u/x"b  
    %       -------------------------------------------------- yF\yxdUX#  
    % \me5"ZU  
    %   Example 1: Q z(n41@`  
    % ,>aa2  
    %       % Display the Zernike function Z(n=5,m=1) jyD~ER}J  
    %       x = -1:0.01:1; -ED} 6E  
    %       [X,Y] = meshgrid(x,x); * WV=Xp  
    %       [theta,r] = cart2pol(X,Y); J4ZHE\  
    %       idx = r<=1; R?u(aY)P  
    %       z = nan(size(X)); ' pgP QM<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); a4UwhbH  
    %       figure \ Bj{.jL  
    %       pcolor(x,x,z), shading interp u<8b5An;  
    %       axis square, colorbar dnomnY(*<  
    %       title('Zernike function Z_5^1(r,\theta)') $y6 <2w%b  
    % A|LO!P,w  
    %   Example 2: n UmyPQ~  
    % #OPEYJ;*9d  
    %       % Display the first 10 Zernike functions d<d3j9u(#  
    %       x = -1:0.01:1; inh:b .,B  
    %       [X,Y] = meshgrid(x,x); 8#;=>m%  
    %       [theta,r] = cart2pol(X,Y); zg3kU65PJE  
    %       idx = r<=1; \dJhDR  
    %       z = nan(size(X)); PP{ 9Y Vr  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 7tWC<#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; A:Wr5`FJ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; E"9(CjbQ[  
    %       y = zernfun(n,m,r(idx),theta(idx)); <y8oYe_!  
    %       figure('Units','normalized') ntLEk fK{  
    %       for k = 1:10 dV[G-p  
    %           z(idx) = y(:,k); f2[R2sto@  
    %           subplot(4,7,Nplot(k)) ?fH1?Z\'K  
    %           pcolor(x,x,z), shading interp hu$eO'M_  
    %           set(gca,'XTick',[],'YTick',[]) $M)SsD~  
    %           axis square hlL$3.]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =s!0EwDH3  
    %       end ~bkO8tn  
    % 2b7-=/[6  
    %   See also ZERNPOL, ZERNFUN2. ~qQZhu"  
    zHA::6OgPN  
    #&T O(bk  
    %   Paul Fricker 11/13/2006 C W#:'  
    @]q^O MLY  
    W+ ;=8S  
    ~588M 8~  
    la<.B^  
    % Check and prepare the inputs: [3bPoAr\  
    % ----------------------------- lv=q( &  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g;=VuQuP|  
        error('zernfun:NMvectors','N and M must be vectors.') ic`BDkNO  
    end rwJ U;wy  
    )qb'tZz/g_  
    %JrZMs>  
    if length(n)~=length(m) (Ff}Y.4  
        error('zernfun:NMlength','N and M must be the same length.') ~2\Sn-`  
    end EA(4xj&:U  
    ["f6Ern  
    MoN0w.V  
    n = n(:); Wz.iDRFl  
    m = m(:); }O7sP^  
    if any(mod(n-m,2)) {,JO}Dmu5  
        error('zernfun:NMmultiplesof2', ... QP.Lq }  
              'All N and M must differ by multiples of 2 (including 0).') rlR!Tc>  
    end (9RfsV4^  
    ]?+i6 [6U  
    MrB#=3pT  
    if any(m>n) HhQ0>  
        error('zernfun:MlessthanN', ... ;+XrCy!.)L  
              'Each M must be less than or equal to its corresponding N.') Lo'pNJH;$  
    end zEU[u7%  
    9[zxq`qT}+  
    Hc'Pp{| X  
    if any( r>1 | r<0 ) +ZNOvcsV  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') z*h:Nt%.  
    end iGSJ\  
    nfF$h}<o+  
    ?D.+D(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =gI41Y]  
        error('zernfun:RTHvector','R and THETA must be vectors.') <~5O-.G]  
    end I+H~ 5zq.  
    iOg4(SPci  
    "W"^0To  
    r = r(:); UgAp9$=z  
    theta = theta(:); iGhvQmd(/*  
    length_r = length(r); 6Yn>9llo}=  
    if length_r~=length(theta) v^@)&,  
        error('zernfun:RTHlength', ... |Jn|GnM  
              'The number of R- and THETA-values must be equal.') g0j)k6<6(Y  
    end c+3`hVV  
    x4_MbUe  
    g6%]uCFB  
    % Check normalization: ns>$  
    % -------------------- 3`yO&upk  
    if nargin==5 && ischar(nflag) QUW`Yc  
        isnorm = strcmpi(nflag,'norm'); 0YFXF  
        if ~isnorm 12U]=  
            error('zernfun:normalization','Unrecognized normalization flag.') uQvTir*e  
        end ]6B9\C.2-_  
    else eR \duZ!`  
        isnorm = false; _ +DL   
    end ]0*aE  
    Axsezr/  
    5zBA]1PY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F2}Fuupb.  
    % Compute the Zernike Polynomials ]]K?Q )9x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fX`u"`o5  
    t$nJmfzm  
    Gw3+TvwU+Q  
    % Determine the required powers of r: `[5xncZ-  
    % ----------------------------------- &zF>5@fM  
    m_abs = abs(m); n7bVL#Sq[  
    rpowers = []; ((A@VcX  
    for j = 1:length(n) F%-@_IsG#  
        rpowers = [rpowers m_abs(j):2:n(j)]; y\^zxG*]'  
    end "b`#RohCi  
    rpowers = unique(rpowers); e2 c'Wab  
    ]|g2V a~-  
    jdG2u p  
    % Pre-compute the values of r raised to the required powers, tcj "rV{G  
    % and compile them in a matrix: Zzjx; SF  
    % ----------------------------- Dst;sLr[,  
    if rpowers(1)==0 wA$7SWC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Eh8GqFEM  
        rpowern = cat(2,rpowern{:}); Bbs1U  
        rpowern = [ones(length_r,1) rpowern]; OU%"dmSDk  
    else P?V+<c{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :G 5p`;hGo  
        rpowern = cat(2,rpowern{:}); #a=]h}&1?  
    end  #B~ ;j5  
    c;]\$#2  
    8(4!x$,Z5  
    % Compute the values of the polynomials: n R,QG8  
    % -------------------------------------- NW6;7nWb  
    y = zeros(length_r,length(n)); (E0WZ $f}  
    for j = 1:length(n) h>!h|Ma  
        s = 0:(n(j)-m_abs(j))/2; :;Z/$M16B  
        pows = n(j):-2:m_abs(j); esTL3 l{[  
        for k = length(s):-1:1 Ne+Rs+~4  
            p = (1-2*mod(s(k),2))* ... L-E &m*%  
                       prod(2:(n(j)-s(k)))/              ... [!%5(Ro_  
                       prod(2:s(k))/                     ... /E<Q_/'Z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ThX3@o  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); xBxiBhqzF  
            idx = (pows(k)==rpowers); aU;X&g+_)  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }}k%.Qb  
        end 3\Xk)a_  
         (.N n|lY<i  
        if isnorm ,Dv*<La`\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 17'd~-lE  
        end < !m.+  
    end v+x<X5u  
    % END: Compute the Zernike Polynomials ]Y]]X[@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9`92 >  
    OiA uL:D  
    Vyi.:lL _8  
    % Compute the Zernike functions: }OIe!  
    % ------------------------------ -sv%A7i  
    idx_pos = m>0; ,$t1LV;o=  
    idx_neg = m<0; 392(N(  
    2gK]w$H7!  
    .^A4w;jPU  
    z = y; y$fMMAN7  
    if any(idx_pos) rOLZiET  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VTL_I^p  
    end . h)VR 5?j  
    if any(idx_neg) )kjQ W&)g  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); " TCJT390  
    end uM 'n4oH  
    >{Ayzz>v  
    |(tl a_LE  
    % EOF zernfun <=|^\r !}&  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  S}/ZHo  
    QUXr#!rPY|  
    DDE还是手动输入的呢? s<C66z  
    6h[fk.W_  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究