切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9417阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )FF>IFHG  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 52 fA/sx  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? w$z}r  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? UEM(@zD]  
    7hlO#PYZ  
    AX;8^6.F3  
    sk,ox~0R  
    vq^f}id  
    function z = zernfun(n,m,r,theta,nflag) &,c``z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. oX S1QT`B  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N  \N!AXD  
    %   and angular frequency M, evaluated at positions (R,THETA) on the P@$/P99  
    %   unit circle.  N is a vector of positive integers (including 0), and xLNtIzx  
    %   M is a vector with the same number of elements as N.  Each element Tx|Ir+f6L  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) juka0/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, hb zC#@ q  
    %   and THETA is a vector of angles.  R and THETA must have the same -@yh> 8v  
    %   length.  The output Z is a matrix with one column for every (N,M) Pe3@d|-,MU  
    %   pair, and one row for every (R,THETA) pair. x(etb<!jd  
    % )Dw,q~xgg0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .aAL]-Rj  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uxtWybv  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral u37'~&o{U  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )uj Ex7&c  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /'].lp  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M=F xB;v  
    % q3.j"WaP  
    %   The Zernike functions are an orthogonal basis on the unit circle. 66/3|83Z  
    %   They are used in disciplines such as astronomy, optics, and =(NB%}  
    %   optometry to describe functions on a circular domain. 0B@SN)<kH  
    % y.#")IAF  
    %   The following table lists the first 15 Zernike functions. ^W'fA{sr  
    % 8$85^Of  
    %       n    m    Zernike function           Normalization Xu< k3oD7  
    %       -------------------------------------------------- ZHU5SXu  
    %       0    0    1                                 1 *c~T@m~DR  
    %       1    1    r * cos(theta)                    2 \ e\?I9  
    %       1   -1    r * sin(theta)                    2 1crnm J!C  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D7lK30  
    %       2    0    (2*r^2 - 1)                    sqrt(3) WHsgjvh"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) pk?w\A}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) #E? (vA1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) y.e^hRKb  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (qqOjz   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Z*y`R XE  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %_+2@\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {["\.ZS|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) t]y D-3'l&  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [5zx17'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o.w\l\  
    %       -------------------------------------------------- ?no fUD.  
    % #33fGmd[  
    %   Example 1: P_?gq>E8  
    % mL{B!Q  
    %       % Display the Zernike function Z(n=5,m=1) 8P^I TL z%  
    %       x = -1:0.01:1; o7J  
    %       [X,Y] = meshgrid(x,x); vy0X_DPCr  
    %       [theta,r] = cart2pol(X,Y); :`-,Lbg  
    %       idx = r<=1; 56+s~hG  
    %       z = nan(size(X)); lsNrAA%m  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +=q$x Ia  
    %       figure ]w;rfn9D  
    %       pcolor(x,x,z), shading interp ^* J2'X38I  
    %       axis square, colorbar Wc,~{  
    %       title('Zernike function Z_5^1(r,\theta)') yRSTk2N@  
    % #JgH}|&a$  
    %   Example 2: M)eO6oX|  
    % [q/Abz'i  
    %       % Display the first 10 Zernike functions qQA}Z*( m  
    %       x = -1:0.01:1; +?u~APjNN  
    %       [X,Y] = meshgrid(x,x); gZLP\_CL  
    %       [theta,r] = cart2pol(X,Y); xl6,s>ob  
    %       idx = r<=1; w8kOVN2b  
    %       z = nan(size(X)); O\E/. B  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (yF:6$:#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; K8>zF/# +  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^cczJOxB  
    %       y = zernfun(n,m,r(idx),theta(idx)); Sz^ veh?  
    %       figure('Units','normalized') tNGp\~  
    %       for k = 1:10 b~'"^ Bts*  
    %           z(idx) = y(:,k); E"+QJ~!  
    %           subplot(4,7,Nplot(k)) k"NVV$;  
    %           pcolor(x,x,z), shading interp JHz [7  
    %           set(gca,'XTick',[],'YTick',[]) Min ^>  
    %           axis square 9cf:pXMi  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G]+&!4  
    %       end Qa.<K{m#?  
    % =R#Qx,  
    %   See also ZERNPOL, ZERNFUN2. zUKmxy@  
    1+9W+$=h2  
    fb{`` ,nO  
    %   Paul Fricker 11/13/2006 y^%n'h{  
    ~(Q)"s\1I  
    I_<I&{N>  
    P"W2(d  
    g=QDu7Ux  
    % Check and prepare the inputs: H-~6Z",1  
    % ----------------------------- XmEq2v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !q9+9 *6  
        error('zernfun:NMvectors','N and M must be vectors.') |2abmuR0  
    end ^c&L,!_)H  
    N'g>MBdI  
    xL{a  
    if length(n)~=length(m) :/ Q   
        error('zernfun:NMlength','N and M must be the same length.') *Eo?k<:zPm  
    end /Y'Vh^9/T  
    :a$\/E=  
    "br,/Dk>MX  
    n = n(:); So0f)`A  
    m = m(:); BsEF'h'Owh  
    if any(mod(n-m,2)) }UWL-TkEjF  
        error('zernfun:NMmultiplesof2', ... gREzZ+([  
              'All N and M must differ by multiples of 2 (including 0).') b*`lk2oMa/  
    end -?mfE+kt  
    B5X(ykaX~  
    Ed_N[ I   
    if any(m>n) )rekY;  
        error('zernfun:MlessthanN', ... r7b1-  
              'Each M must be less than or equal to its corresponding N.') 89o/F+_b  
    end @}@Z8$G^  
     CCL   
    7PtN?;rP  
    if any( r>1 | r<0 ) sOU1n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') B]uc<`f  
    end /(iFcMT  
    ]=>F.GE  
    1IZ3=6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1`a5C.v  
        error('zernfun:RTHvector','R and THETA must be vectors.') >AcrG]  
    end 22.8PO0  
    [[;e)SoA  
    Pmh8sw  
    r = r(:); fpFhn  
    theta = theta(:); {&\jW!&n  
    length_r = length(r); vvKEv/pN7  
    if length_r~=length(theta) 8C67{^`::  
        error('zernfun:RTHlength', ... "x3lQ  
              'The number of R- and THETA-values must be equal.') {= F /C,-  
    end c.>oe*+  
    =y0C1LD+  
    ~v6OsH%vx  
    % Check normalization: J2 'Nd'  
    % -------------------- EUN81F?  
    if nargin==5 && ischar(nflag) +\F'iAs@  
        isnorm = strcmpi(nflag,'norm'); cd$m25CxC  
        if ~isnorm { S3ZeN,kZ  
            error('zernfun:normalization','Unrecognized normalization flag.') Fsif6k=4  
        end NhaI<J  
    else 0tEYU:Qu  
        isnorm = false; cp#JBH O  
    end 1T-8K r  
    (2:/8\_P  
    ( 5tvfz%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *#tJM.Z  
    % Compute the Zernike Polynomials Y#u}tE d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gx\&_) w N  
    W9D86]3Y  
    r=X}%~_8X  
    % Determine the required powers of r: dIRm q+d^  
    % ----------------------------------- 1:f9J  
    m_abs = abs(m); 1n:8s'\  
    rpowers = []; _Jme!Oaa  
    for j = 1:length(n) v" OY 1<8  
        rpowers = [rpowers m_abs(j):2:n(j)]; 6P5Ih  
    end Q 4f/Z  
    rpowers = unique(rpowers); /+\uqF8F  
    -Xxqm%([71  
    `"&d a#N]  
    % Pre-compute the values of r raised to the required powers, rzh#CnL3  
    % and compile them in a matrix: Db;G@#x  
    % ----------------------------- |aT| l^2R@  
    if rpowers(1)==0 `<\1[HJ\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +(C6#R<LI  
        rpowern = cat(2,rpowern{:}); .)<(Oj|4  
        rpowern = [ones(length_r,1) rpowern]; 8;Yx<woR  
    else HA2k [F@3^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1rkE yh??  
        rpowern = cat(2,rpowern{:}); &8]d }-e  
    end =y/8 ^^  
    N(y\dL=v  
    Kd=%tNp  
    % Compute the values of the polynomials: { Fawt:  
    % -------------------------------------- uoXAQ6k  
    y = zeros(length_r,length(n)); rfNm&!K  
    for j = 1:length(n) IuNiEtKx  
        s = 0:(n(j)-m_abs(j))/2; ^V#@QPK9  
        pows = n(j):-2:m_abs(j); /4 vG3  
        for k = length(s):-1:1 *g[^.Sg  
            p = (1-2*mod(s(k),2))* ... ^sVX)%  
                       prod(2:(n(j)-s(k)))/              ... _c, '>aH=  
                       prod(2:s(k))/                     ... "87ghj_}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?ON-+u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4Qo]n re!  
            idx = (pows(k)==rpowers); <K8\n^i~c  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V( -mD  
        end *7h!w!LN~  
         4*'pl.rb>  
        if isnorm Pri`K/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %YSu8G_t  
        end 8'f4 Od ?  
    end R0L&*Bjm  
    % END: Compute the Zernike Polynomials <oo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ui@2s;1t  
    9Iz%ht  
    <_XWWT%  
    % Compute the Zernike functions: 86\S?=J-b  
    % ------------------------------ {WPobP"  
    idx_pos = m>0; RW}"2  
    idx_neg = m<0; Fm # w2o  
    tWoh''@#  
    sRrzp=D  
    z = y; ea~:}!-P  
    if any(idx_pos) _<NMyRJo  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :P@rkT3Qt  
    end k}0^&Quc4  
    if any(idx_neg) 3l3'bw2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .?!N^_ Ez3  
    end DNj "SF(J  
    #*g5u{k'P  
    5GPo*Qpl  
    % EOF zernfun Ko/ I#)  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  1[*{(e  
    yt+}K)Hz  
    DDE还是手动输入的呢? X{g%kf,D=  
    %G@5!|J  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究