下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, /K#t$O4
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, b&Dc DX
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? . PzlhTL7
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^:b%QO
8:BPXdiK
5UFR^\e
I+) Acy;
-H@Gyw
function z = zernfun(n,m,r,theta,nflag) QU&b5!;&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Jy,Dcl
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Wcgy:4K3
% and angular frequency M, evaluated at positions (R,THETA) on the H:~41f[
% unit circle. N is a vector of positive integers (including 0), and (I bT5
% M is a vector with the same number of elements as N. Each element ]FJpe^
ua
% k of M must be a positive integer, with possible values M(k) = -N(k) AT#&`Ew
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, SI:+I4i
% and THETA is a vector of angles. R and THETA must have the same =Vgj=19X(
% length. The output Z is a matrix with one column for every (N,M) 0FDfB;
% pair, and one row for every (R,THETA) pair. </K"\EU
% `_IgH
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k5>K/;*9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KcGM=z?:
% with delta(m,0) the Kronecker delta, is chosen so that the integral EZm6WvlxSI
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x)X=sX.
% and theta=0 to theta=2*pi) is unity. For the non-normalized GC{)3)_ t
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5"f')MKUV9
% ,j4 ;:F
% The Zernike functions are an orthogonal basis on the unit circle. py,B6UB5
% They are used in disciplines such as astronomy, optics, and ^-CQ9r*
% optometry to describe functions on a circular domain. ))M; .b.D
% ^9})@,(D
% The following table lists the first 15 Zernike functions. ]-o0HY2
% 49o5"M(
% n m Zernike function Normalization rb+&]
% -------------------------------------------------- q@;z((45
% 0 0 1 1 P1f?'i?J
% 1 1 r * cos(theta) 2 axTvA(k9
% 1 -1 r * sin(theta) 2 bDLPA27
% 2 -2 r^2 * cos(2*theta) sqrt(6) a0Y/,S*K
% 2 0 (2*r^2 - 1) sqrt(3) 3{mu 77
% 2 2 r^2 * sin(2*theta) sqrt(6) 2
{lo
% 3 -3 r^3 * cos(3*theta) sqrt(8) :
"[dr~.
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) WcyN,5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) v{ F/Bifo
% 3 3 r^3 * sin(3*theta) sqrt(8) L0_qHLY
% 4 -4 r^4 * cos(4*theta) sqrt(10) [u_-x3`
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :y)'_p *l/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) mVYLI!n}0#
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *@'\4OO
% 4 4 r^4 * sin(4*theta) sqrt(10) zt 1Pu
/e
% --------------------------------------------------
1*_wJ
% 0K-jF5i$`
% Example 1: `>@n6>f
% 33O@jbs@
% % Display the Zernike function Z(n=5,m=1) |w(@a:2kw
% x = -1:0.01:1; c&Pgz~iP
% [X,Y] = meshgrid(x,x); ,+0>p
% [theta,r] = cart2pol(X,Y); N?d4Pu1m
% idx = r<=1; YuWsE4$
% z = nan(size(X)); "{0
o"k
% z(idx) = zernfun(5,1,r(idx),theta(idx)); tqY)
% figure &H!#jh\w
% pcolor(x,x,z), shading interp W
s!N%%g
% axis square, colorbar 1mw<$'pm0
% title('Zernike function Z_5^1(r,\theta)') '-F
}(9M
% \lVX~r4
% Example 2: M[ea!an
% u$c)B<.UR
% % Display the first 10 Zernike functions t:m2[U_}
% x = -1:0.01:1; utq*<,^
% [X,Y] = meshgrid(x,x); B]K@'#
% [theta,r] = cart2pol(X,Y); /? n 9c;w
% idx = r<=1; $x&\9CRM
% z = nan(size(X)); g->cgExj
% n = [0 1 1 2 2 2 3 3 3 3]; *
%p6+D-C
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !=(~e':Gv
% Nplot = [4 10 12 16 18 20 22 24 26 28]; {0fQ"))"
% y = zernfun(n,m,r(idx),theta(idx)); cGw* edgp6
% figure('Units','normalized') pU`4bT(w%
% for k = 1:10 28L3"c
% z(idx) = y(:,k); Cc:m~e6r
% subplot(4,7,Nplot(k)) ZbJUOa?WF
% pcolor(x,x,z), shading interp y%CaaK=V3
% set(gca,'XTick',[],'YTick',[]) oI9Jp`
% axis square Ws[[Me,=
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NJb5HoYZ
% end fL7ym,?
% irNGURLm
% See also ZERNPOL, ZERNFUN2. DiF=<} >x
S8+Xk= x
L 6){wQ%c
% Paul Fricker 11/13/2006 ]*+ozAG4
8H_3.MK
Pm]6E[zC
C%<[mM
{5U;9: sO6
% Check and prepare the inputs: I(r ^q"
% ----------------------------- K ;2tY+I
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O$B]#]L+
error('zernfun:NMvectors','N and M must be vectors.') rvRtR/*?j
end 9V&%_.Z
JcxhI]E
P)~PrTa%
if length(n)~=length(m) ,,r%Y&:`6
error('zernfun:NMlength','N and M must be the same length.') )2mi6[qs0l
end T`46\KkN
fSdv%$;Hc
m?hC!n>
n = n(:); ;p%a!Im_<
m = m(:); F9]j{'#
if any(mod(n-m,2)) Fs7/3
error('zernfun:NMmultiplesof2', ... /OaLkENgvf
'All N and M must differ by multiples of 2 (including 0).') xKz^J
SF
end DUiqt09`~
:Vq gmn
9I/o;Js
if any(m>n) HPs$R[
error('zernfun:MlessthanN', ... v`B7[B4K3
'Each M must be less than or equal to its corresponding N.') +O:Qw[BL/Z
end Ftj3`Mu
$H ^hK0?'
C(C4R+U
if any( r>1 | r<0 ) XiI@Px?FL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Kx 6_Vp
end kEWC
L's_lC
~DcX}VCm
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $@q)IK%FDL
error('zernfun:RTHvector','R and THETA must be vectors.') 39?iX'*p
end }Tn]cL{]C
72} MspzUt
CDei+ q
r = r(:); [Fe`}F}Co8
theta = theta(:); d;|Pp;dc
length_r = length(r); KcP86H52I
if length_r~=length(theta) z (r Q6
error('zernfun:RTHlength', ... =kohQ d.n
'The number of R- and THETA-values must be equal.') zLuej'
end )DuOo83n["
l"!.aIY"e
RH^8 "%\
% Check normalization: zzy%dc
% -------------------- ro7\}O:I
if nargin==5 && ischar(nflag) {$ 4fRxj
isnorm = strcmpi(nflag,'norm'); T>d-f=(9KH
if ~isnorm o
<8L,u(U
error('zernfun:normalization','Unrecognized normalization flag.')
Aki8#
end !0ySS {/
else 31k.{dnm
isnorm = false; <9YRSE[Ed
end MzsDWx;eJ
d@pD5n=m;
Ab
-uK|<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draY/
% Compute the Zernike Polynomials azz6_qk8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '~%1p_0dq
D_D<N(O
)(b]-
)
% Determine the required powers of r: !HM{imT
% ----------------------------------- Q/r9r*>z
m_abs = abs(m); Rer\='
rpowers = []; 6~V$0Y>]
for j = 1:length(n) FkR9-X<
rpowers = [rpowers m_abs(j):2:n(j)]; Hb=4k)-/]
end #rqLuqw
rpowers = unique(rpowers); " GkBX
a_w#,^/P
5`*S'W}\>
% Pre-compute the values of r raised to the required powers, &,2XrXiFu
% and compile them in a matrix: IIUoB!`
% ----------------------------- {LVii}<
if rpowers(1)==0 "zJ1vIZY
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9a"[-B:
rpowern = cat(2,rpowern{:}); pJ"Wg@+
rpowern = [ones(length_r,1) rpowern]; gI6./;;x
else ko*Ir@SDv
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _n@#Lufx
rpowern = cat(2,rpowern{:}); 3iJ4VL7
end L|EvI.f
]re1$W#*
_dVzvk`_R
% Compute the values of the polynomials: E$=!l{Ms
% -------------------------------------- w4<1*u@${
y = zeros(length_r,length(n)); b;`gxXeL
for j = 1:length(n) '@i/?rNi%N
s = 0:(n(j)-m_abs(j))/2; 03L+[F&"?
pows = n(j):-2:m_abs(j); nAG2!2_8
for k = length(s):-1:1 $(K[W}
p = (1-2*mod(s(k),2))* ... SwpS6
prod(2:(n(j)-s(k)))/ ... 4,!#E0
prod(2:s(k))/ ... _@;t^j+l
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }p$>V,u
prod(2:((n(j)+m_abs(j))/2-s(k))); A
'rfoA6
idx = (pows(k)==rpowers); a` A V
y(:,j) = y(:,j) + p*rpowern(:,idx); b/HhGA0
end 4\a K C%5
v\PqhI y"
if isnorm @
U
xO!
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n=WwB(}q
end P!3)-apP\
end NK;%c-r0v7
% END: Compute the Zernike Polynomials FY+0r67]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /J )MW{;O
ER<LP@3k
rg64f'+Eug
% Compute the Zernike functions: $!%/Kk4M
% ------------------------------ 9`]Gosz
idx_pos = m>0; N]udZhkn
idx_neg = m<0; ^0py
uOUgU$%zqH
d*$$E
z = y; bYQvh/(J
if any(idx_pos) =+;l>mn?O
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?XN=Er^
end $_ IvzbOh
if any(idx_neg) o|O730"2F
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _rt+OzZ*L
end zrVw l\&
2%P{fJbwd
yIy'"BCxM
% EOF zernfun :@#9P,"