切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8933阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, X"lPXoCN  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m?*}yM  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Q#M@!&  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &![3{G"+>l  
    /zV&ebN]  
    W w\M3Q`h  
    awu18(;J  
    \7]0vG  
    function z = zernfun(n,m,r,theta,nflag) x)GpNkx:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .0 }eg$d  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [C@ |q Ah  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $DS|jnpV  
    %   unit circle.  N is a vector of positive integers (including 0), and *,az`U  
    %   M is a vector with the same number of elements as N.  Each element lW6$v* s9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,y5,+:Y ~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, we?# Dui  
    %   and THETA is a vector of angles.  R and THETA must have the same rHngYcjR  
    %   length.  The output Z is a matrix with one column for every (N,M) ^W#161&  
    %   pair, and one row for every (R,THETA) pair. =2J^ '7  
    % FqwH:Fcr:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike I) ]"`2w2w  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :}0>IPW-V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @'IRh9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6 rp(<D/_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized e2F{}N  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )wqG^yv  
    % >8;EeRvI  
    %   The Zernike functions are an orthogonal basis on the unit circle. j;TXZ`|(  
    %   They are used in disciplines such as astronomy, optics, and "WF@T  
    %   optometry to describe functions on a circular domain. fmgXh)=  
    % ?q{HS&k  
    %   The following table lists the first 15 Zernike functions. +%sMd]$,n  
    % #EG$HX]  
    %       n    m    Zernike function           Normalization -F7P$/9  
    %       -------------------------------------------------- lD9QS ;  
    %       0    0    1                                 1 %r =9,IJ  
    %       1    1    r * cos(theta)                    2 O n/q&h5  
    %       1   -1    r * sin(theta)                    2 ' Bx"i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^7l+ Of b3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) K6Z/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) o$q})!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) BWF>;*Xro  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .QVN&UyZ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2]:Z7Ji  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Ci9]#)"c  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 8{4SaT.-Rm  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )`5=6i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) IeN~ E'~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lY$9-Q(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Gr&YzbSX  
    %       -------------------------------------------------- N!lQ;o'  
    % ;Z6ngS  
    %   Example 1: &zV; p  
    % ,z5B"o{Et  
    %       % Display the Zernike function Z(n=5,m=1) wN]]t~K)Q  
    %       x = -1:0.01:1; wNm1H[{  
    %       [X,Y] = meshgrid(x,x); b}HwvS:  
    %       [theta,r] = cart2pol(X,Y); It#T\fU  
    %       idx = r<=1; B%(-UTQf  
    %       z = nan(size(X)); +/ U6p!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Jp 7m$D%  
    %       figure 9 v 3%a3  
    %       pcolor(x,x,z), shading interp O>,Rsj!e  
    %       axis square, colorbar Lq#$q>!K  
    %       title('Zernike function Z_5^1(r,\theta)') ~0V,B1a  
    % v43FU3  
    %   Example 2: UPcx xtC  
    % (@i2a  
    %       % Display the first 10 Zernike functions #`qP7E w  
    %       x = -1:0.01:1; AGMrBd|J{  
    %       [X,Y] = meshgrid(x,x); mO^ )k  
    %       [theta,r] = cart2pol(X,Y);  j|owU  
    %       idx = r<=1; _FxQl ]@  
    %       z = nan(size(X)); (5h+b_eB  
    %       n = [0  1  1  2  2  2  3  3  3  3]; C ^ 1;r9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; v=J[p;H^H  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ov|/=bzro  
    %       y = zernfun(n,m,r(idx),theta(idx)); x.%x|6G*  
    %       figure('Units','normalized') e)#f`wM  
    %       for k = 1:10 oGKk2oP  
    %           z(idx) = y(:,k); mvXIh";  
    %           subplot(4,7,Nplot(k)) 94'0X  
    %           pcolor(x,x,z), shading interp _ lE d8Cb  
    %           set(gca,'XTick',[],'YTick',[]) tdi^e;:?  
    %           axis square k:DAko}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RxUzJ  
    %       end {w52]5l  
    % L4!T  
    %   See also ZERNPOL, ZERNFUN2. NsF8`r g  
    $E6bu4I  
    JXAH/N& i  
    %   Paul Fricker 11/13/2006 I%tJLdL  
    ZnZ`/zNO  
    " "{#~X}  
    0u=FlQ }h  
    Af XlV-v  
    % Check and prepare the inputs: LgJUMR8vUO  
    % ----------------------------- ;S}_/'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '[`pU>9  
        error('zernfun:NMvectors','N and M must be vectors.') 2[~|6 @n  
    end @ $2xiE.[  
    'D[g{LkL  
    VjGtEIew  
    if length(n)~=length(m) IiB"F<&[j{  
        error('zernfun:NMlength','N and M must be the same length.') 'w`3( ':=  
    end KiYz]IM$4  
    +&qj`hA-b  
    xO<Uz"R  
    n = n(:); Wer.VL  
    m = m(:); 1gh<nn  
    if any(mod(n-m,2)) -Ou@T#h"  
        error('zernfun:NMmultiplesof2', ... &!KW[]i%9}  
              'All N and M must differ by multiples of 2 (including 0).') a[ A*9%a  
    end sHf.xc  
    @ZtDjxN &  
    7!jb ID~  
    if any(m>n) s*UO!bHa  
        error('zernfun:MlessthanN', ... !fK9YW(Im  
              'Each M must be less than or equal to its corresponding N.') gFAtIx4  
    end , Vr'F  
    #7"*Pxb#A  
    ;6/dFOZn  
    if any( r>1 | r<0 ) L0EF CQ7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |^T?5=&Kt  
    end f) @-X!  
    `uLH3sr  
    B<6Ye9zuG  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~-zch=+u  
        error('zernfun:RTHvector','R and THETA must be vectors.') a_amO<!   
    end m+'vrxTY  
    $i.)1.x  
    L_QJS2  
    r = r(:); '.1_anE]  
    theta = theta(:); s2;b-0  
    length_r = length(r); (^ ;Fyf/  
    if length_r~=length(theta) yp\s Jc`  
        error('zernfun:RTHlength', ... V>:ubl8j0l  
              'The number of R- and THETA-values must be equal.') 8"KaW2/%  
    end ~E*`+kD  
    #P5tTCM  
    ^E= w3g&  
    % Check normalization: &0*IN nlc?  
    % -------------------- ]q<Zc>OC  
    if nargin==5 && ischar(nflag) }RN&w ]<  
        isnorm = strcmpi(nflag,'norm'); -1<*mbb0  
        if ~isnorm f]37Xl%I  
            error('zernfun:normalization','Unrecognized normalization flag.') @-G^Jm9~\m  
        end ,/6 aA7(  
    else -9> oB  
        isnorm = false; _7Rp.)[&  
    end 3|9 U`@  
    gy6Pf4Yo  
    GMJ</xG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U6 $)e.FO  
    % Compute the Zernike Polynomials <{k r5<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bj`mQMC  
    :$?^ID  
    +c-?1j  
    % Determine the required powers of r: r'~^BLT`#  
    % ----------------------------------- G~fM!F0   
    m_abs = abs(m); 0tyS=X;#e  
    rpowers = []; \g<=n&S?  
    for j = 1:length(n) Ed+"F{!eQ  
        rpowers = [rpowers m_abs(j):2:n(j)]; +*vg) F:  
    end E[E7GsmqV  
    rpowers = unique(rpowers); Cp[ NVmN  
    0Z<&M|G  
    QGpAG#M9?  
    % Pre-compute the values of r raised to the required powers, %YbcI|i]<0  
    % and compile them in a matrix: LH]<+Zren  
    % ----------------------------- L6E8A?>5rD  
    if rpowers(1)==0 B`i 5lD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *eb2()B%  
        rpowern = cat(2,rpowern{:}); 'I8K1Q=/  
        rpowern = [ones(length_r,1) rpowern]; *oca   
    else l1MVC@'pvP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ln C5"  
        rpowern = cat(2,rpowern{:}); 8fX<,*#I  
    end ~L7@,d:  
    P}RewMJ$L  
    qTD^Vz V  
    % Compute the values of the polynomials: xhmrep6+<  
    % -------------------------------------- hEv}g  
    y = zeros(length_r,length(n)); e ) ?~  
    for j = 1:length(n) @x @*=  
        s = 0:(n(j)-m_abs(j))/2; ^qP}/H[QT  
        pows = n(j):-2:m_abs(j); H 6~6hg  
        for k = length(s):-1:1 n%Df6zQ<@s  
            p = (1-2*mod(s(k),2))* ... ~.H*"  
                       prod(2:(n(j)-s(k)))/              ... V.U9Q{y"  
                       prod(2:s(k))/                     ... 4IH,:w=ofN  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1{pU:/_W  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); BJ,9C.|  
            idx = (pows(k)==rpowers); d?Y|w3lB  
            y(:,j) = y(:,j) + p*rpowern(:,idx); SV}C]<  
        end [;n/|/m,  
         DtrR< &m  
        if isnorm ?5e]^H}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _I1:|y  
        end WXzSf.8p|  
    end W-UMX',0zS  
    % END: Compute the Zernike Polynomials i`hr'}x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZgD%*bH*B  
    6-oy%OnN  
     o<Z  
    % Compute the Zernike functions: G &LOjd 2  
    % ------------------------------ ~  WO  
    idx_pos = m>0; qVDf98  
    idx_neg = m<0; ccPTJ/%$  
    jFr[T  
    ! O~:  
    z = y; Z|k>)pv@  
    if any(idx_pos) uz%<K(:Ov  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); N ">4I)  
    end lNwqWOWy  
    if any(idx_neg) X{YY)}^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *@1(!A  
    end $2gX!)  
    4 [K"e{W3  
    v%2@M  
    % EOF zernfun E@(nKe&6T_  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  FvyC$vip  
    xA>3]<O  
    DDE还是手动输入的呢? Exz(t'  
    ?OBB)hj  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究