切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9260阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (>/Dw|,m  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Uu<sntyv  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @eD2<e  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? l'X?S(fiV  
    sRI=TE]s  
    yyYbB]D  
    k1  txY  
    Wn)A/Z ^r  
    function z = zernfun(n,m,r,theta,nflag) 1 bx^Pt)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7 5cr!+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3_['[}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1F%*k &R  
    %   unit circle.  N is a vector of positive integers (including 0), and _O'rZ5}&  
    %   M is a vector with the same number of elements as N.  Each element nHL>}Yg  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) E?W!.hbA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, y#SD-# I-  
    %   and THETA is a vector of angles.  R and THETA must have the same >w'?DV>u|  
    %   length.  The output Z is a matrix with one column for every (N,M) Xwqf Wd_  
    %   pair, and one row for every (R,THETA) pair. fxCPGj  
    % a}8>(jtSt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike oz7udY=]0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gl4 f9Ff  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral j-\^ }K.&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xn#I7]]G  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized t7& GCZ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5|H(N}S_  
    % Ib<+m%Ac  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6j.(l4}  
    %   They are used in disciplines such as astronomy, optics, and K0bmU(Xxp  
    %   optometry to describe functions on a circular domain. vVRCM  
    % 9n2%7dLQ*  
    %   The following table lists the first 15 Zernike functions. jfhDi6N  
    % i7E7%~S  
    %       n    m    Zernike function           Normalization [ Sa C  
    %       -------------------------------------------------- ;C@^wI  
    %       0    0    1                                 1 X| 0`$f  
    %       1    1    r * cos(theta)                    2 'g, x}6  
    %       1   -1    r * sin(theta)                    2 yru}f;1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D+nj[8y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }Z%{QJ$z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &_TjRj"  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 15yV4wHr  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) T_ #oMXZ/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iK23`@&% _  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) JN|#   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Tp.iRFFkP  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U0=zuRr n  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =Qq^=3@h  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tWy<9TF  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) hndRg Co  
    %       -------------------------------------------------- JHOBg{Wg  
    % Nv#, s_hG  
    %   Example 1: {dH<Un(4Z  
    % ]qT r4`.  
    %       % Display the Zernike function Z(n=5,m=1) L{ ^@O0S  
    %       x = -1:0.01:1; xVo)!83+Q  
    %       [X,Y] = meshgrid(x,x); QE6-(/  
    %       [theta,r] = cart2pol(X,Y); +m},c-,=$w  
    %       idx = r<=1; E^ti !4{<  
    %       z = nan(size(X)); !!pi\J?sk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); uw&,pq  
    %       figure d|HM  
    %       pcolor(x,x,z), shading interp e;Z`&  
    %       axis square, colorbar _Pm}]Y:_  
    %       title('Zernike function Z_5^1(r,\theta)') lBC-G*#  
    % _ q1|\E%`h  
    %   Example 2: c.> (/  
    % lt"*y.%@b  
    %       % Display the first 10 Zernike functions Q";eyYdOL  
    %       x = -1:0.01:1; +u)$o  
    %       [X,Y] = meshgrid(x,x); )}lV41u  
    %       [theta,r] = cart2pol(X,Y); M- A}(r +J  
    %       idx = r<=1; I=-;*3g6  
    %       z = nan(size(X)); K?I&,t_*R  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =f|a?j,f~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Um|Tf]q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; XOFaS '.  
    %       y = zernfun(n,m,r(idx),theta(idx)); SZ){1Hu  
    %       figure('Units','normalized') +Enff0 =+  
    %       for k = 1:10 &1Iy9&y  
    %           z(idx) = y(:,k); cW%O-  
    %           subplot(4,7,Nplot(k)) Ez-o*&  
    %           pcolor(x,x,z), shading interp 0_.hU^fP  
    %           set(gca,'XTick',[],'YTick',[]) U /Fomu  
    %           axis square {bEEQCweNJ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ApBThW *E  
    %       end J8'zvH&I  
    % +.uk#K0o  
    %   See also ZERNPOL, ZERNFUN2. =hlu, By  
    &d;$k  
    a^,RbV/  
    %   Paul Fricker 11/13/2006 M] *pBc(o0  
    TR20{8"  
    ?Ea"%z*c5  
    7mBL#T2   
    %q^]./3p  
    % Check and prepare the inputs: /ep~/#Ia  
    % ----------------------------- xnOlV  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z;s-t\C  
        error('zernfun:NMvectors','N and M must be vectors.') b>WT-.b0  
    end vL0Ol -Vt  
    7F~+z7(h  
    Y6a|\K|  
    if length(n)~=length(m) tTt~W5lo  
        error('zernfun:NMlength','N and M must be the same length.') b<7f:drVC  
    end Awh)@iTL  
    E(#2/E6  
    @xE Q<g  
    n = n(:); ] ={Hq9d@  
    m = m(:); H'>  
    if any(mod(n-m,2)) w (1a{m?ht  
        error('zernfun:NMmultiplesof2', ... q4oZJ-`  
              'All N and M must differ by multiples of 2 (including 0).') ^e ii 4  
    end P $S P4F  
    Q!v[b{]8  
    NBX/V^  
    if any(m>n) nc)`ISI  
        error('zernfun:MlessthanN', ... TH &B9  
              'Each M must be less than or equal to its corresponding N.') d\M !o*U  
    end a6_`V;  
    %b9M\  
    ,?+yu6eLb  
    if any( r>1 | r<0 ) 3}+ \&[  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,d#4Ib  
    end I5]zOKlVR  
    )3  
    KMZ`Wn=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {'%=tJ[YX  
        error('zernfun:RTHvector','R and THETA must be vectors.') %<t/xAge  
    end @$]h[   
    |Oe6OCPf  
    ;nE}%lT  
    r = r(:); HFOp4  
    theta = theta(:); V5+a[`]  
    length_r = length(r); 8z"Yo7no  
    if length_r~=length(theta) c/RG1w  
        error('zernfun:RTHlength', ... |a+8-@-Tj  
              'The number of R- and THETA-values must be equal.') MZ'HMYed   
    end 2X`M&)"X  
    |wx1 [xZ  
    {;U:0BPI3  
    % Check normalization: szHUHW~;J  
    % -------------------- &n|gPp77$  
    if nargin==5 && ischar(nflag) *6L^A`_1]  
        isnorm = strcmpi(nflag,'norm'); @Klj!2cv$  
        if ~isnorm 0dW1I|jR  
            error('zernfun:normalization','Unrecognized normalization flag.') ~gN'";1i  
        end c1[;a>  
    else E2MpMR  
        isnorm = false; -84Z8?_  
    end ?jbam! A  
    Iu8=[F>  
    |d K-r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Hg4Ut/0  
    % Compute the Zernike Polynomials 2k_Bo~.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c1i7Rc{q  
     f$3  
    `8I&(k<wLe  
    % Determine the required powers of r: 0^=S:~G  
    % ----------------------------------- ?k#% AM  
    m_abs = abs(m); #p]O n87>  
    rpowers = []; hY!G>d{J  
    for j = 1:length(n) dn Xc- <  
        rpowers = [rpowers m_abs(j):2:n(j)]; aozk,{9-  
    end (&S v $L@  
    rpowers = unique(rpowers); kQ +   
    4[?Q*f!  
    Vr'Z5F*@  
    % Pre-compute the values of r raised to the required powers, N|DY)W  
    % and compile them in a matrix: ;$Y?j8g  
    % ----------------------------- m#Cp.|>kP4  
    if rpowers(1)==0 )~6974  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NoMC* ",b>  
        rpowern = cat(2,rpowern{:}); 3]'3{@{} H  
        rpowern = [ones(length_r,1) rpowern]; SNQ+ XtoO  
    else %UmE=V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zMa`olTZ  
        rpowern = cat(2,rpowern{:}); o}T]f(>}  
    end m2;%|QE(  
    fqcyCu7Ep  
    YXvKDw'95  
    % Compute the values of the polynomials: KksbhN{AB  
    % -------------------------------------- \sk,3b-&'  
    y = zeros(length_r,length(n)); ;j$84o{  
    for j = 1:length(n) f:TW<  
        s = 0:(n(j)-m_abs(j))/2; m>iuy:ti  
        pows = n(j):-2:m_abs(j); R{T4AZ@,'  
        for k = length(s):-1:1 _7Z$"  
            p = (1-2*mod(s(k),2))* ... * 08LW|:,  
                       prod(2:(n(j)-s(k)))/              ... !%Ak15o  
                       prod(2:s(k))/                     ... KT3[{lr  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0xC!d-VIJ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); b`^$2RM&  
            idx = (pows(k)==rpowers); ,yB-jk?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2uB.0  
        end @-hy:th#  
         LcF0:h'  
        if isnorm })J]D~!p  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X3nwA#If1  
        end -/h$Yb  
    end DU;]Q:r{  
    % END: Compute the Zernike Polynomials 2W}RXqV<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y$(G)Fs  
    &P\T{d2"  
    9<R:)Df  
    % Compute the Zernike functions: *6uiOtH  
    % ------------------------------ zP5HTEz  
    idx_pos = m>0; &=f%(,+  
    idx_neg = m<0; UOa{J|k>h  
    77)C`]0(  
    QII>XJ9  
    z = y; P| G:h&  
    if any(idx_pos) il:+O08_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *{XbC\j  
    end ?f a/}|T  
    if any(idx_neg) U7{, *  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RlpW)\{j?  
    end %cBJ haR{(  
    wt-)5f'{  
    I+}h+[W  
    % EOF zernfun &ed.%:  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  O4dJ> O  
    Ru9QQaHE  
    DDE还是手动输入的呢? g4EC[>5!r  
    #?DwOUw  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究