下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ~ z&A
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 58ZiCvqv
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? oZcwbo8
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $m0x8<7nu
9^*YYK}%
fy-Z{
NX #d}M^V
o*ED!y7
function z = zernfun(n,m,r,theta,nflag) `}Zbfe~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. nKJ7K8)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N I=Dk'M
% and angular frequency M, evaluated at positions (R,THETA) on the 7tO$'q*h
% unit circle. N is a vector of positive integers (including 0), and ?-& D'
% M is a vector with the same number of elements as N. Each element yzzre>F
% k of M must be a positive integer, with possible values M(k) = -N(k) b2kbuk]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, g<tTZD\g
% and THETA is a vector of angles. R and THETA must have the same GYmB xX87
% length. The output Z is a matrix with one column for every (N,M) _<}5[(qu
% pair, and one row for every (R,THETA) pair. Wk#-LkI
% ${,eQ\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ij5=f0^4.
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :q[n1
O[Ch
% with delta(m,0) the Kronecker delta, is chosen so that the integral rd~W.b_b
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, kAQ Zj3P]
% and theta=0 to theta=2*pi) is unity. For the non-normalized &Zy=vk*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =QO[zke:
% \@"
.
GM%
% The Zernike functions are an orthogonal basis on the unit circle. MQMy Z:
% They are used in disciplines such as astronomy, optics, and -t#a*?"$w
% optometry to describe functions on a circular domain. Lk+1r8
% ##ea-"m8
% The following table lists the first 15 Zernike functions. fx"+ZR
% `l#$l3v+
% n m Zernike function Normalization "T[jQr
% -------------------------------------------------- 6U3@-+lF
% 0 0 1 1 Y[]t_o)
% 1 1 r * cos(theta) 2 3;gtuqwD$
% 1 -1 r * sin(theta) 2 9f[[%80
% 2 -2 r^2 * cos(2*theta) sqrt(6) )F2tV ]k\
% 2 0 (2*r^2 - 1) sqrt(3) g7yHhF>%X
% 2 2 r^2 * sin(2*theta) sqrt(6) -T6%3>h
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5i&V ~G
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) +~]g&Mf6o
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3<E$m*
% 3 3 r^3 * sin(3*theta) sqrt(8) p{PYUW"?^
% 4 -4 r^4 * cos(4*theta) sqrt(10) Ci:QIsu*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2b` M(QL
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) DQQjx>CK
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) . M$D
% 4 4 r^4 * sin(4*theta) sqrt(10) \{mJO>x
% -------------------------------------------------- +'4 dP#
% )fr\V."
% Example 1: \~1+T
% bv];Gk*Z-
% % Display the Zernike function Z(n=5,m=1) W5g!`f
% x = -1:0.01:1; \Nyxi7
% [X,Y] = meshgrid(x,x); _9
O'
% [theta,r] = cart2pol(X,Y); mmK_xu~f28
% idx = r<=1; 'FXZ`+r|
% z = nan(size(X)); =Bx~'RYl1d
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4(ZV\}j1
% figure =MLL-a1
% pcolor(x,x,z), shading interp [!
BH3J!
% axis square, colorbar |g+5rVbd
% title('Zernike function Z_5^1(r,\theta)') @h3)!#\N
% @>ZjeDG>
% Example 2: =LzW#s=O
% c:T P7"vG
% % Display the first 10 Zernike functions DR=1';63
% x = -1:0.01:1; 2F{IDcJI\
% [X,Y] = meshgrid(x,x); ~5529
% [theta,r] = cart2pol(X,Y); $sJfxh
r
% idx = r<=1; n\Nl2u& m
% z = nan(size(X)); ;hDr+&J|
% n = [0 1 1 2 2 2 3 3 3 3]; tBQ>
p.
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \)WjkhG<w#
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Lo4t:H&
% y = zernfun(n,m,r(idx),theta(idx)); LOzKpvGl
% figure('Units','normalized') H_]kR&F8
% for k = 1:10 #Xly5J
% z(idx) = y(:,k); $!w%=
% subplot(4,7,Nplot(k)) B\yid@e
% pcolor(x,x,z), shading interp wl9icrR>
% set(gca,'XTick',[],'YTick',[]) WF G/vzJ
% axis square .}s a2-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5 <poN)"
% end y
6<tV.
% ;<H2N0qJ(
% See also ZERNPOL, ZERNFUN2. i=@*F$,
]ghPbS@
*uR'eXW
% Paul Fricker 11/13/2006 iYkNtqn/
C? S %fF
^<-SW]x
DK;-2K
u)-l+U.
% Check and prepare the inputs: K~R{q+
% ----------------------------- 6yqp<D0SP)
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8qveKS]vZ
error('zernfun:NMvectors','N and M must be vectors.') \)*qW[C$a
end 9"TPDU7"
}$jIvb,3?
(B5G?cB9
if length(n)~=length(m) TzJN,]F!M
error('zernfun:NMlength','N and M must be the same length.') wW~2]*n
end 4<|]k?@
*v&RGY[>
F2=97=R
n = n(:); Q>$v~v?9
m = m(:); PR0]:t)E
if any(mod(n-m,2)) gqd#rjtfz
error('zernfun:NMmultiplesof2', ... T28#?Lp6]
'All N and M must differ by multiples of 2 (including 0).') RWYA`
end &CgD smJo#
:M16ijkx
-[z;y73]t
if any(m>n) 2cL<`
error('zernfun:MlessthanN', ... rE
8-MB
'Each M must be less than or equal to its corresponding N.') KVBz=
end 90a=
39kI
*&s_u)b
lOZZ-
if any( r>1 | r<0 ) Jh1fM`kB5K
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A]1](VQ)4
end Flsf5 Tr0
ZC"p^~U_e[
H`sV\'`!}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qmhHHFjQ
error('zernfun:RTHvector','R and THETA must be vectors.') \TjsXy=:)
end "Z
<1Msz
3~ylBJJ
hz!.|U@,{<
r = r(:); 0t8-oui
theta = theta(:); [||$1u\%
length_r = length(r); *=rl<?tX
if length_r~=length(theta) {>#Ya;E
error('zernfun:RTHlength', ... -4.+&'
'The number of R- and THETA-values must be equal.') +m_quQ/ys
end K\#+;\V
0[^f9NZ>-
:0/I2:
% Check normalization: L]Uy+[gg
% -------------------- &12.|
if nargin==5 && ischar(nflag) -O\`G<s%
isnorm = strcmpi(nflag,'norm'); YIfbcR5
if ~isnorm yo5|~"yZY
error('zernfun:normalization','Unrecognized normalization flag.') \7RP6o
end wNn6".S
else cOcm9m#
isnorm = false; \O[Cae:^?
end *&7Av7S
i9Qx{f88
uTQ/_$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2!A/]:[F
% Compute the Zernike Polynomials SKGYmleR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8d-_'MXk3
ZDlMkHJ
Vx'_fb?wap
% Determine the required powers of r: Y`%:hvy~
% ----------------------------------- Q!c*2hI
m_abs = abs(m); I_Q '+d
rpowers = []; Xcb\N
for j = 1:length(n) ,{$:Q}`
rpowers = [rpowers m_abs(j):2:n(j)]; US-P>yF
end "[76>\'H
rpowers = unique(rpowers); uCx\Bt"VI
mhL,:UE
)!'SSVaRs
% Pre-compute the values of r raised to the required powers, OX!9T.j
% and compile them in a matrix: 9k1n-po
% ----------------------------- Lf3:' n
if rpowers(1)==0 Pl
U!-7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); z"|^Y|`m
rpowern = cat(2,rpowern{:}); C;_10Rb2ut
rpowern = [ones(length_r,1) rpowern]; Eg>MG87
else 6tVB}UKs
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m3 ,i{
rpowern = cat(2,rpowern{:}); -[Q%Vv!8
end RV-7y^[]^
-3A#a_fu
B+ +:7!
% Compute the values of the polynomials: Ao2t=vg
% -------------------------------------- HKV]Rn
y = zeros(length_r,length(n)); ht` !@B
for j = 1:length(n) +v/_R{ M
s = 0:(n(j)-m_abs(j))/2; t\X5B ]EZ
pows = n(j):-2:m_abs(j); *G^QS"%
for k = length(s):-1:1 to2dkU
p = (1-2*mod(s(k),2))* ... .M!HVq47m
prod(2:(n(j)-s(k)))/ ... 4Y[tx]<
prod(2:s(k))/ ... J=ZNx;{6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s-[ _%
prod(2:((n(j)+m_abs(j))/2-s(k))); Z8Qmj5'[
idx = (pows(k)==rpowers); Zj%l (OVq
y(:,j) = y(:,j) + p*rpowern(:,idx); zmF_-Q`c
end !>TH#sU$
Gz@'W%6yaV
if isnorm 5\lOZYHX
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); zrri&QDF<
end ^<Q+=\h
end v<$a .I(
% END: Compute the Zernike Polynomials \^i/:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wS9EC}s:Q
$ba3dqbCW
B/7c`V
% Compute the Zernike functions: %Sf%XNtu
% ------------------------------ A46Xei:Ow
idx_pos = m>0; jw]~g+x#$
idx_neg = m<0; D=i)AZqMPp
;b-Y$<
8SR ~{
z = y; %3!DRz
if any(idx_pos) q3<Pb,Z
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |hk?'WGc`0
end g)nsP
if any(idx_neg) SjgjGJw
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CvS}U%
end bdEc?
`KgIr,Q)
W6:ei.d+NS
% EOF zernfun Wz',>&a