下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, >n^780S|
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, /3&MUB*z&y
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? xHMFYt+0$G
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |Ve,Y
PD&gC88
(zh[1[a
3{fg3?
|c^ ?tR<
function z = zernfun(n,m,r,theta,nflag) AJm$(3?/D
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FWA?mde
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !I.}[9N
% and angular frequency M, evaluated at positions (R,THETA) on the LT"H-fTgs
% unit circle. N is a vector of positive integers (including 0), and GC:q6}
% M is a vector with the same number of elements as N. Each element g(Q1d-L4e
% k of M must be a positive integer, with possible values M(k) = -N(k) <Se9aD
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, z$WLx
% and THETA is a vector of angles. R and THETA must have the same 7B)1U_L0H
% length. The output Z is a matrix with one column for every (N,M) r!
HXhl
% pair, and one row for every (R,THETA) pair. xJ2I@*DN
% G:p85k`
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yOt#6Vw
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R3;%eyu
% with delta(m,0) the Kronecker delta, is chosen so that the integral H>A6VDu
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4(8trD6
% and theta=0 to theta=2*pi) is unity. For the non-normalized Z`u$#<ukX
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f:-l}Zj
% .p, VZ9
% The Zernike functions are an orthogonal basis on the unit circle. ),-gy~
% They are used in disciplines such as astronomy, optics, and Lm=;Y6'`N
% optometry to describe functions on a circular domain. @0 /qP<E
% |/vJ+aKq
% The following table lists the first 15 Zernike functions. marZA'u%B1
% P6R_W
% n m Zernike function Normalization h='F,r5#2
% -------------------------------------------------- (v%24bv
% 0 0 1 1 V*{rHp{=p
% 1 1 r * cos(theta) 2 Yu>DgMW
% 1 -1 r * sin(theta) 2 fj))Hnt(|
% 2 -2 r^2 * cos(2*theta) sqrt(6) :Ys~Lt54
% 2 0 (2*r^2 - 1) sqrt(3) kQ}n~Hn
% 2 2 r^2 * sin(2*theta) sqrt(6) {X&lgj
% 3 -3 r^3 * cos(3*theta) sqrt(8) r]UF<*$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \?d3Pn5`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) +)iMJ]>
% 3 3 r^3 * sin(3*theta) sqrt(8) :#pdyJQ_
% 4 -4 r^4 * cos(4*theta) sqrt(10) ANy*'/f
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lOk8VlH<h
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =i&,I{3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Cq"KKuf
% 4 4 r^4 * sin(4*theta) sqrt(10) ^w.hI5ua)
% -------------------------------------------------- -g]Rs!w'
% <ZF|2
% Example 1: #uw&u6*\q
% jk{(o09
% % Display the Zernike function Z(n=5,m=1) R<Lf>p>_
% x = -1:0.01:1; Z0jgUq`r
% [X,Y] = meshgrid(x,x); 12KC4,C&1i
% [theta,r] = cart2pol(X,Y); )&Oc7\J,
% idx = r<=1; ^k;]"NR
% z = nan(size(X)); IB/3=4n^|
% z(idx) = zernfun(5,1,r(idx),theta(idx)); t82'K@sq
% figure o)/Pr7Qn
% pcolor(x,x,z), shading interp NEIkG>\7q
% axis square, colorbar 6(Pan%
% title('Zernike function Z_5^1(r,\theta)') La;G S
% BVNW1<_:
% Example 2: rtRbr_
% zKO7`.*
% % Display the first 10 Zernike functions e "A"
% x = -1:0.01:1; lUm(iYv;H
% [X,Y] = meshgrid(x,x); &0Yg:{k$
% [theta,r] = cart2pol(X,Y); ]R#:Bq!F
% idx = r<=1; \=AA,Il
% z = nan(size(X)); '7-Yo
Q
% n = [0 1 1 2 2 2 3 3 3 3]; #]kjyT0
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; HYmC3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; W]9*dabem
% y = zernfun(n,m,r(idx),theta(idx)); a>'ez0C
% figure('Units','normalized') 50W+!'
% for k = 1:10 LH8jT
% z(idx) = y(:,k); d,V#5l-6
% subplot(4,7,Nplot(k)) <+i(CGw
% pcolor(x,x,z), shading interp L>1hiD&
% set(gca,'XTick',[],'YTick',[]) i2~uhGJ
% axis square amu;grH
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #) aLD0p
% end 3'0Pl8
% d;Vy59}eY
% See also ZERNPOL, ZERNFUN2. H\67Pd(Z6
`6D?te
Ymk?@mV4
% Paul Fricker 11/13/2006 Ke\\B o,
;]>kp^C#
GM%+yS}(P
hmO2s/~
mgq!)
% Check and prepare the inputs: B `~EA] d
% ----------------------------- W$rWg>4>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0
&zp
error('zernfun:NMvectors','N and M must be vectors.') GXtMX ha,
end K4c:k;
V
'o>)E>
>cu%C s=m
if length(n)~=length(m) #z*,CU#S9d
error('zernfun:NMlength','N and M must be the same length.') _ E;T"SC
end 9DxHdpOk
y_Y(Xx3
Z2% HQL2
n = n(:); Rh!UbEPjC
m = m(:); "O&93#8
if any(mod(n-m,2)) HN5m %R&`
error('zernfun:NMmultiplesof2', ... Kg[OUBv
'All N and M must differ by multiples of 2 (including 0).') {"y/;x/
end )h{&O
,s
[XfR`@
7L{1S
v
if any(m>n) `fu_){
error('zernfun:MlessthanN', ... Gm=qn]c
'Each M must be less than or equal to its corresponding N.') *o6}>;
end ^X=Q{nB
WRh5v8Wz0
37#&:[w>
if any( r>1 | r<0 ) fE#(M +(<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') QQ*sjK.(
end {%V(Dd[B6
;O"?6d0
oxwbq=a6yV
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9BCW2@Kp
error('zernfun:RTHvector','R and THETA must be vectors.') XH%L]
end
*LT~:Gs#
o>el"0rn.h
Y[
G_OoU
r = r(:); .Ro/ioq
theta = theta(:); :cT)M(o
length_r = length(r); 7FB?t<x
if length_r~=length(theta) jk AjYR .
error('zernfun:RTHlength', ... M&Uy42,MR
'The number of R- and THETA-values must be equal.') ?bTfQH
vX
end U&!TA(Yr
54
lD+%E
C"hN2Z!CD|
% Check normalization: 615Ya<3f8
% -------------------- D31X {dJ
if nargin==5 && ischar(nflag) q!Du
J
isnorm = strcmpi(nflag,'norm'); #8$?#
dT
if ~isnorm ;Rrh$Ag
error('zernfun:normalization','Unrecognized normalization flag.') jUe@xis<T
end %b6$N_M{H1
else X\}l" ]
isnorm = false; =o@;K~-
end Ss3p6%V/
oV|O`n
iHa?b2=)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o+A7hBM^
% Compute the Zernike Polynomials Z%t_1t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OgQdyU
rTPgHK]?l
7CIN!vrC|1
% Determine the required powers of r: =|t-0'RsN
% ----------------------------------- &i#$ia r
m_abs = abs(m); |;ztK[(
rpowers = []; TCr4-"`r-{
for j = 1:length(n) T(J'p4
rpowers = [rpowers m_abs(j):2:n(j)]; Ln"wjO,
end _&<n'fK[
rpowers = unique(rpowers); AIF?>wgq
m%'nk"p9
Y.^L^ "%dF
% Pre-compute the values of r raised to the required powers, inh0p^
% and compile them in a matrix: _&gi4)q
% ----------------------------- ,OE&e*1
if rpowers(1)==0 C$[d~1t6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?
SFBUX(p
rpowern = cat(2,rpowern{:}); 1\}vU
rpowern = [ones(length_r,1) rpowern]; x|H`%Z
else J_Lmy7~xbD
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q_M N
rpowern = cat(2,rpowern{:}); coP->&(@U#
end r\NqY.U&
A8{jEJ=)P
aZ#FKp^8H
% Compute the values of the polynomials: VB |?S|<
% -------------------------------------- /MZ<vnN7f
y = zeros(length_r,length(n)); I
_nQTWcm
for j = 1:length(n) Llfl I
s = 0:(n(j)-m_abs(j))/2; !)s(Lv%]
pows = n(j):-2:m_abs(j); 2)}n"ibbT
for k = length(s):-1:1 L.n@;*
p = (1-2*mod(s(k),2))* ... "?"
:
prod(2:(n(j)-s(k)))/ ... ]RVu[k8
prod(2:s(k))/ ... H.5
6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 'gwh:
prod(2:((n(j)+m_abs(j))/2-s(k))); Lg:1zC
idx = (pows(k)==rpowers); bz*@[NQ
y(:,j) = y(:,j) + p*rpowern(:,idx); _@5Xmr
end 5Xq+lLW>
'+Dsmoy
if isnorm T(!1\ TB
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ly=.
end pF;.nt)
end qe]D4K8`Q3
% END: Compute the Zernike Polynomials /[R=-s ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0s n$QmW:
FFT)m^4p.
lrrTeE*
% Compute the Zernike functions: ,NO[Piok
% ------------------------------ YPK@BmAdE
idx_pos = m>0; 5'!fi]Z
idx_neg = m<0; z)Rkd0/X
Kz'GAm\
ak 7%
z = y; K1
f1T
if any(idx_pos) {`HbpM<=m]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kQ\GVI11?
end ib,`0=0= O
if any(idx_neg) qq)5)S
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +17!v_4^
end 3.Fko<D4jD
F|%PiC,,qO
G|cjI*
% EOF zernfun ,xwiJfG;
]