切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8763阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :vX%0|  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, s5rD+g]E`  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? jw9v&/-  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? O$}.b=N9  
    M2N8?Ycv3  
    ~ !!\#IX  
    TYb$+uY  
    \hZ%NL j  
    function z = zernfun(n,m,r,theta,nflag) ]d-.Mw,'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. \ ZE[7Ae  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N PkI+z_  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ];4!0\M  
    %   unit circle.  N is a vector of positive integers (including 0), and FOk;=+  
    %   M is a vector with the same number of elements as N.  Each element x(vQ %JC  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) w3ni@'X8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, KMz!4N  
    %   and THETA is a vector of angles.  R and THETA must have the same W.?/p~  
    %   length.  The output Z is a matrix with one column for every (N,M) Z i.' V  
    %   pair, and one row for every (R,THETA) pair. i/%l B  
    % (or"5}\6-  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Pv/ v=s>X  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), giX[2`^NG  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |Ia9bg'1U  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |Rz.Pt6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {\(MMTQ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F{!pii5O9  
    % 8>,w8(Nt  
    %   The Zernike functions are an orthogonal basis on the unit circle. sqtz^K ROM  
    %   They are used in disciplines such as astronomy, optics, and w|-3X  
    %   optometry to describe functions on a circular domain. &.\7='$F  
    % +IWH7qRtp  
    %   The following table lists the first 15 Zernike functions. %z-*C'j5H  
    % )/%5f{+}  
    %       n    m    Zernike function           Normalization e5>'H!)  
    %       -------------------------------------------------- ;6Yg}L  
    %       0    0    1                                 1 xF8n=Lc  
    %       1    1    r * cos(theta)                    2 P .m@|w&.K  
    %       1   -1    r * sin(theta)                    2 ur\6~'l4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~qrSHn}+PU  
    %       2    0    (2*r^2 - 1)                    sqrt(3) v62_VT2v  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) xBVOIc[4(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =+Fb\HvX{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) p@su:B2Rl  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {h7 vJ^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) QMsq4yJ)%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) oT):#,s  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I[Lg0H8  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  7;fC%Fq  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G XVx/) H  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *y?HaU  
    %       -------------------------------------------------- 8m?(* [[  
    % A~bSB n: '  
    %   Example 1: P3&s<mh  
    % D4!;*2t  
    %       % Display the Zernike function Z(n=5,m=1) 6iyl8uL0J  
    %       x = -1:0.01:1; -[L\:'Gp5  
    %       [X,Y] = meshgrid(x,x); @%Ld\8vdfJ  
    %       [theta,r] = cart2pol(X,Y); iY,C0=n5Y  
    %       idx = r<=1; qY#*LqV  
    %       z = nan(size(X)); qjP~F  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); rF-SvSj}  
    %       figure +Y sGH~jX  
    %       pcolor(x,x,z), shading interp 9j>2C  
    %       axis square, colorbar &-yRa45?  
    %       title('Zernike function Z_5^1(r,\theta)') bE !SW2:M  
    % Fvl\.  
    %   Example 2: mrP48#Y+l  
    % _Sr7b#)o  
    %       % Display the first 10 Zernike functions X3:z=X&Zd  
    %       x = -1:0.01:1; 1_] X  
    %       [X,Y] = meshgrid(x,x); 9&eY<'MgP  
    %       [theta,r] = cart2pol(X,Y); )/$J$'mcxd  
    %       idx = r<=1; >zW2w2O3  
    %       z = nan(size(X)); D$}8GYq  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M%S7cIX ]F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |u>(~6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "[_j8,t`  
    %       y = zernfun(n,m,r(idx),theta(idx)); 'v6@5t19j  
    %       figure('Units','normalized') dw"Es;^  
    %       for k = 1:10 IgX &aW  
    %           z(idx) = y(:,k); q`c!!Lg  
    %           subplot(4,7,Nplot(k)) 5~[7|Y  
    %           pcolor(x,x,z), shading interp m^3x%ENZ  
    %           set(gca,'XTick',[],'YTick',[]) ^5sA*%T4  
    %           axis square ZbYC3_7w  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u5oM;#{@-  
    %       end MYS`@%ZV#k  
    % 90Ki.K0  
    %   See also ZERNPOL, ZERNFUN2. Fc5.?X-  
    JQ1MuE'  
    MbRTOH  
    %   Paul Fricker 11/13/2006 V+E8{|dYL  
    d+q],\"R  
    _re# b?  
    +F8{4^w1  
    |(>`qL{|  
    % Check and prepare the inputs: Dp([r  
    % ----------------------------- G"<#tif9K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b)d;eS  
        error('zernfun:NMvectors','N and M must be vectors.') fN&\8SPE  
    end E!9WZY  
    A(FnU:  
    }4|EHhG  
    if length(n)~=length(m) JsJP%'^/R  
        error('zernfun:NMlength','N and M must be the same length.') Y2r}W3F=  
    end keAoJeG,J  
    f% pT-#  
    tMxd e+ $y  
    n = n(:); nI*.(+h  
    m = m(:); @_+aX.,  
    if any(mod(n-m,2)) iOk ;o=  
        error('zernfun:NMmultiplesof2', ... )E^S+ps  
              'All N and M must differ by multiples of 2 (including 0).') PQ&*(G  
    end *S,~zOYN  
    ix!xLm9\  
    Hl$W+e|tj  
    if any(m>n) ) D@j6r  
        error('zernfun:MlessthanN', ... AP&//b,^M  
              'Each M must be less than or equal to its corresponding N.') #t ;`  
    end d0(zB5'}  
    E5ce=$o  
    uM2@&)u  
    if any( r>1 | r<0 ) F/oqYk9`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'ITq\1z  
    end $mQ0w~:@  
    =]7o+L4  
    t8^1wA@@V  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &hYgu3O  
        error('zernfun:RTHvector','R and THETA must be vectors.') K<>kT4  
    end nTy]sPn  
    r:H]`Uo'r  
    r: K1PO  
    r = r(:); I  C  
    theta = theta(:); !d72f8@9  
    length_r = length(r); F&B\ X  
    if length_r~=length(theta) _ Sr}3  
        error('zernfun:RTHlength', ... i~';1 .g  
              'The number of R- and THETA-values must be equal.') *tXyd<_Hd  
    end !xsfhLZK  
    ER"69zQg|2  
    @]Cg5QW>T  
    % Check normalization: X-["{  
    % -------------------- @DysM~I  
    if nargin==5 && ischar(nflag) xC`!uPk/pL  
        isnorm = strcmpi(nflag,'norm'); :33@y%>L  
        if ~isnorm }N g P`m  
            error('zernfun:normalization','Unrecognized normalization flag.') #mQ@4k9i  
        end c -+NWC  
    else .+:iAnf  
        isnorm = false; 9j 2t|D4uT  
    end :j&enP5R(q  
    j9 nw,x$  
    ?ko#N?hgI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s$M(-"mg  
    % Compute the Zernike Polynomials !ho^:}m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ] ?DU8  
    B>2R-pa4~  
    '<Zm>L&  
    % Determine the required powers of r: g>/Y}{sL-  
    % ----------------------------------- .QvD603%5  
    m_abs = abs(m); 6 >kULp  
    rpowers = []; EFX2>&mWo8  
    for j = 1:length(n) f}-'67*Y  
        rpowers = [rpowers m_abs(j):2:n(j)]; aXe&c^AR  
    end Dz}i-tw+  
    rpowers = unique(rpowers); digc7;8L  
    gFaZ ._  
    `J.,dqGb  
    % Pre-compute the values of r raised to the required powers, x=*&#; Y|  
    % and compile them in a matrix: [> HKRVy  
    % ----------------------------- Cut~k"lv  
    if rpowers(1)==0 Z)rW>I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 't<iB&wgF  
        rpowern = cat(2,rpowern{:}); "| '~y}v_  
        rpowern = [ones(length_r,1) rpowern]; ? }HK!feU  
    else 'va[)~!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3&-rOc  
        rpowern = cat(2,rpowern{:}); $f:uBhM  
    end tJ(xeb  
    OUulG16kK  
    YSnh2 Bq  
    % Compute the values of the polynomials: LHY7_"u#  
    % -------------------------------------- '?rR>$s  
    y = zeros(length_r,length(n));  Zmu  
    for j = 1:length(n) p $Tk;;wm  
        s = 0:(n(j)-m_abs(j))/2; T<]{:\*n  
        pows = n(j):-2:m_abs(j); #cY[c1cNv  
        for k = length(s):-1:1 Y:\msq1xp  
            p = (1-2*mod(s(k),2))* ... !Rv ;~f/2  
                       prod(2:(n(j)-s(k)))/              ... :2/L1A)O  
                       prod(2:s(k))/                     ... YIe1AF}   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }c,b]!:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); IyO 0~Vx>  
            idx = (pows(k)==rpowers); vj?{={Y  
            y(:,j) = y(:,j) + p*rpowern(:,idx); T}Tv}~!f  
        end PZ]tl  
         cK$yr)7  
        if isnorm vobC/m  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,hzRqFg2  
        end 4?pb!@l  
    end  ai 4k?  
    % END: Compute the Zernike Polynomials {6u)EJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vQ< ~-E  
    p3P8@M  
    Fyvo;1a  
    % Compute the Zernike functions: D`XXR}8V  
    % ------------------------------ nlv,j&  
    idx_pos = m>0; Yn?beu'  
    idx_neg = m<0; n@pwOHQn<|  
    _9BL7W $;  
    y [McdlH m  
    z = y; SK}jhm"y  
    if any(idx_pos) h2Q'5G  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A"*=K;u/|m  
    end FG${w.e<  
    if any(idx_neg) &N.pW=%,N  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q^[t</_ N  
    end bidFBldKl  
    ?8 }pZ_j  
    XL*M#Jx  
    % EOF zernfun P(PBOB97  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5477
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  A;X3z-[[  
    l ?b*T#uIk  
    DDE还是手动输入的呢?  R`o Xkj  
    cjtcEW  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究