下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, H\ F:95
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, wW>A_{Y
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +^60T$
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ag [ZW
j eoz*Dz
o#3ly-ht
"@V Y
h4fJvOk|!
function z = zernfun(n,m,r,theta,nflag) E(>=rD /+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,Vc6Gwm
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6'k<+IR
% and angular frequency M, evaluated at positions (R,THETA) on the 9ijfRqI=x
% unit circle. N is a vector of positive integers (including 0), and J,'M4O\S
% M is a vector with the same number of elements as N. Each element mE+*)gb:Rd
% k of M must be a positive integer, with possible values M(k) = -N(k) em%4Ap
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, fK>L!=Q
% and THETA is a vector of angles. R and THETA must have the same W=N+VqK
% length. The output Z is a matrix with one column for every (N,M) fDv2JdiU
% pair, and one row for every (R,THETA) pair. @LF,O}[2J
% }T(D7|^R
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <sb~ ^B
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P)Jgs
% with delta(m,0) the Kronecker delta, is chosen so that the integral K@
I9^b
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $*^7iT4q_t
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]E5o1eeg
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D+TD 95t
% 03$mYS_?
% The Zernike functions are an orthogonal basis on the unit circle. `V}q-Zdy
% They are used in disciplines such as astronomy, optics, and f z'@_4hg
% optometry to describe functions on a circular domain. ZF!h<h&,
% Kn5~d(:
% The following table lists the first 15 Zernike functions. ER%^!xA
% ~[t[y~Hup
% n m Zernike function Normalization G30-^Tr
% -------------------------------------------------- wON!MhA;
% 0 0 1 1 `'DmDg
% 1 1 r * cos(theta) 2 KjD/o?JUr
% 1 -1 r * sin(theta) 2 T$8)u'-pa
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4>wP7`/+y
% 2 0 (2*r^2 - 1) sqrt(3) =Qy<GeY
% 2 2 r^2 * sin(2*theta) sqrt(6) j\eI0b @*
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8SMxw~9$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) T^zXt?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) X]ipI$'+C
% 3 3 r^3 * sin(3*theta) sqrt(8) /:cd\A}
% 4 -4 r^4 * cos(4*theta) sqrt(10) A#e%^{q$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9SX +
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #|uCgdi
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \[;0KV_
% 4 4 r^4 * sin(4*theta) sqrt(10) /ixp&Z|7
% -------------------------------------------------- ^
gdaa>L
% jk;j2YNPw
% Example 1: =>m<GvQz
% iDpSj!x/_
% % Display the Zernike function Z(n=5,m=1) pIc#L>{E
% x = -1:0.01:1; tR#OjkvX
% [X,Y] = meshgrid(x,x); 2R[:]-b
% [theta,r] = cart2pol(X,Y); *IB4[6
% idx = r<=1; =O~_Q-
% z = nan(size(X)); Sh/08+@+L:
% z(idx) = zernfun(5,1,r(idx),theta(idx)); x'8x
% figure
{y)=eX9
% pcolor(x,x,z), shading interp FnwJ+GTu
% axis square, colorbar Pd8![Z3
% title('Zernike function Z_5^1(r,\theta)') B`EJb71^Xy
% x[cL
Bc<
% Example 2: 4VHn \
% R!HXhQ
% % Display the first 10 Zernike functions YX!iL6?~
% x = -1:0.01:1; T~-ycVc
% [X,Y] = meshgrid(x,x); t$` r4Lb9/
% [theta,r] = cart2pol(X,Y); %[GsD9_-
% idx = r<=1; |44Ploz2b
% z = nan(size(X)); kpuz]a7pK
% n = [0 1 1 2 2 2 3 3 3 3]; ;xy"\S]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \UA[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Xu{1".\
% y = zernfun(n,m,r(idx),theta(idx)); ]>!K3kB
% figure('Units','normalized') aHD]k8m z
% for k = 1:10 RTYvS5G
% z(idx) = y(:,k); HVRZ[Y<^
% subplot(4,7,Nplot(k)) 6 W/`07'
% pcolor(x,x,z), shading interp P1!qbFDv8
% set(gca,'XTick',[],'YTick',[]) [z:!j$K
% axis square YqscZ(L:y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _YRFet[,m
% end 'B|JAi?
% ]U+LJOb
% See also ZERNPOL, ZERNFUN2.
_O?`@g?i
GblA9F7
*tA1az-jO
% Paul Fricker 11/13/2006 =F|{#F
Zpt\p7WQ
}PlRx6r@
Z{*\S0^ST
RbB.q p
% Check and prepare the inputs: /PVk{3
% ----------------------------- &$+AXzn
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RU|Q]Ymx
error('zernfun:NMvectors','N and M must be vectors.') 4Z3su^XR
end L;z?aZ7n
1~gnc|?
cVv=*81\
if length(n)~=length(m) Da*?x8sSL
error('zernfun:NMlength','N and M must be the same length.') <sbu;dQ`
end 70?\ugxA
f_OQ./`
=IZT(8
n = n(:); "x0^#AVg
m = m(:); s S+MqBh&I
if any(mod(n-m,2)) gT.sjd
error('zernfun:NMmultiplesof2', ... VD*6g%p
'All N and M must differ by multiples of 2 (including 0).') "S[450%
end ,>a&"V^k
"Fr.fhh'~
bL`TySX
if any(m>n) 6q\bB
error('zernfun:MlessthanN', ... dFxIF;C>/
'Each M must be less than or equal to its corresponding N.') l:~/<`o
end k=$TGqQY?
c^xIm'eob
LVM%"sd?
if any( r>1 | r<0 ) Y(ykng
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >b}o~F^J
end mthA4sz
g{)dP!}
oCv.Ln1;Z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R%WCH?B<}
error('zernfun:RTHvector','R and THETA must be vectors.') 3pROf#M
end QVT5}OzMt
a5^]20Fa
~vhE|f
r = r(:); `$IK`O
theta = theta(:); Pj^{|U2 1
length_r = length(r); s\(k<Ks
if length_r~=length(theta) +) om^e@.
error('zernfun:RTHlength', ... 2,oKVm+
'The number of R- and THETA-values must be equal.') :S83vE81WK
end J4C.+![!Ah
fw~Bza\e
>2)OiQ`zg
% Check normalization: UgSB>V<?
% -------------------- wmL'F:UP
if nargin==5 && ischar(nflag) qr^3R&z!}
isnorm = strcmpi(nflag,'norm'); 8'[7
)I=
if ~isnorm ua$GNm
error('zernfun:normalization','Unrecognized normalization flag.') f}ji?p
end d"mkL-
else n,(sBOQ
isnorm = false; %(#y5yJ ]
end i>A s;*
4B1v4g8}
%XDc,AR[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /t57!&
% Compute the Zernike Polynomials nNV'O(x}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /9*B)m"
%N6A+5H
x /S}Q8!"}
% Determine the required powers of r: 7kLz[N6Ll
% ----------------------------------- KP^V>9q
m_abs = abs(m); /4V#C-
rpowers = []; 6I4\q.^qw
for j = 1:length(n) qJs<#MQ2
rpowers = [rpowers m_abs(j):2:n(j)]; wu!59pL
end sqwGsO$#
rpowers = unique(rpowers); zkrM/ @p#
@f~RdO3
UgNu`$m+
% Pre-compute the values of r raised to the required powers, [A~xy'T
% and compile them in a matrix: %D34/=(X
% ----------------------------- S(lO(gY
if rpowers(1)==0 z+wA
rPxc
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]i)c{y
rpowern = cat(2,rpowern{:}); IB"w&