下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y{@P1{
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, (Nm}3 p
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /#:Rd^
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? c Bg,k[,
dCa}ITg
S`ax*`
3Ne9%"
TS\9<L9S
function z = zernfun(n,m,r,theta,nflag) (~q#\
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. - 3C* P
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GS$ZvO
% and angular frequency M, evaluated at positions (R,THETA) on the ?BWHr(J
% unit circle. N is a vector of positive integers (including 0), and .jvSAV5B
% M is a vector with the same number of elements as N. Each element +vSCR(n
% k of M must be a positive integer, with possible values M(k) = -N(k) "Czz,;0
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, #citwMW
% and THETA is a vector of angles. R and THETA must have the same dE 3i=
% length. The output Z is a matrix with one column for every (N,M) X{5v?4wI
% pair, and one row for every (R,THETA) pair. _F}IF9{?G
% L4\SBO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B
rez&3[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [$hptQv
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,:0Q1~8
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u@GRN`yn
% and theta=0 to theta=2*pi) is unity. For the non-normalized p2pTs&}S
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ymwx(Pm
% TSc~$Q]
% The Zernike functions are an orthogonal basis on the unit circle. hEyX~f
% They are used in disciplines such as astronomy, optics, and Y{%4F%Oy
% optometry to describe functions on a circular domain. UgF) J
% ]&3s6{R
% The following table lists the first 15 Zernike functions. WHlD%u
% K[iY{
% n m Zernike function Normalization g\
8#:@at
% -------------------------------------------------- &Iv\jhq
% 0 0 1 1 ki[;ZmQqY
% 1 1 r * cos(theta) 2 }V1DyLg:
% 1 -1 r * sin(theta) 2 hN>('S-cq
% 2 -2 r^2 * cos(2*theta) sqrt(6)
H B::0l<
% 2 0 (2*r^2 - 1) sqrt(3) %f_)<NP9=
% 2 2 r^2 * sin(2*theta) sqrt(6) LV}UBao5n
% 3 -3 r^3 * cos(3*theta) sqrt(8) m NUN6qVP~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) BxSk%$J
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) '0'"k2"vC
% 3 3 r^3 * sin(3*theta) sqrt(8) }Q{
=:X9
% 4 -4 r^4 * cos(4*theta) sqrt(10) pl
jV|.?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r6O7&Me<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) syWv'Y[k?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) SX_kr^#
% 4 4 r^4 * sin(4*theta) sqrt(10) Y(#d8o}}#
% -------------------------------------------------- (5f5P84x
% %0ll4"
% Example 1: |x _-I#H
% /tI d#/Y
% % Display the Zernike function Z(n=5,m=1) *tq|x[<
% x = -1:0.01:1; ;55tf
l
% [X,Y] = meshgrid(x,x); w*&n(zJF>
% [theta,r] = cart2pol(X,Y); 1+16i=BF)
% idx = r<=1; tj"v0u?zW
% z = nan(size(X)); y]z)jqX<
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +(QMy&DtS
% figure Mm>zpB`qP
% pcolor(x,x,z), shading interp zVc7q7E
% axis square, colorbar g6[/F-3Qlf
% title('Zernike function Z_5^1(r,\theta)') ZbZAx:L
% 2;Y@3d:z
% Example 2: aIn)']
% ?c=R"Yg$
% % Display the first 10 Zernike functions w]o:c(x@
% x = -1:0.01:1; /JK-}E
% [X,Y] = meshgrid(x,x); %U=S6<lbj;
% [theta,r] = cart2pol(X,Y); r2E>sHw
% idx = r<=1; dCoi>PO
% z = nan(size(X)); RAD4q"}k
% n = [0 1 1 2 2 2 3 3 3 3]; t9f4P^V`
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ZZ]OR;8
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ={mPg+Ei'
% y = zernfun(n,m,r(idx),theta(idx)); t]u(jX)
% figure('Units','normalized') Pt PGi^
% for k = 1:10 % L %1g
% z(idx) = y(:,k); = h<? /Krs
% subplot(4,7,Nplot(k)) XoH[MJC
% pcolor(x,x,z), shading interp 0w'y#U)&8
% set(gca,'XTick',[],'YTick',[]) {d?4;Kd
% axis square n&3iv^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'n>3`1E,
% end .qqb>7|q
% RIVL 0Ig
% See also ZERNPOL, ZERNFUN2. :ET3&J
L
_Pfx_+
v8'`gY
% Paul Fricker 11/13/2006 [MQJ71(3
>arO$|W
Ch \ed|u
)/+eLRN5G
sjkKaid
% Check and prepare the inputs: a'>$88tl
% ----------------------------- 9
.&Or4>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G0 nH Z6
error('zernfun:NMvectors','N and M must be vectors.') [!dnm1
end R.2KYhp,
+,F=
-
c~pUhx1(
if length(n)~=length(m) 8x^H<y=O
error('zernfun:NMlength','N and M must be the same length.') LO$#DHPt
end ?%za:{
xXY)KI
N[
xo)?XFM2
n = n(:); 6(<~1{
X%
m = m(:); qK6
uU9z
if any(mod(n-m,2)) Lm*LJ_+ B
error('zernfun:NMmultiplesof2', ... "- j@GCme
'All N and M must differ by multiples of 2 (including 0).') xeP;"J}
end N5w]2xz!
uZ2v;]\Y6
&;@b&p+
if any(m>n) J,^pt Ql
error('zernfun:MlessthanN', ... \")YKN=W
'Each M must be less than or equal to its corresponding N.') |H+k?C-w
end k+Ma_H`
C1Pt3
qLW-3W;WUH
if any( r>1 | r<0 ) y/sWy1P7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9J;H.:WH
end fssL'DD
[vjkU7;7A
9
<kkzy
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) s<r.+zqW
error('zernfun:RTHvector','R and THETA must be vectors.') <T.3ZZ%
end C O%O<_C
"w|k\1D
$hE'b9qx
r = r(:); FO'.
a
theta = theta(:); 'xrbg]b%
length_r = length(r); z5*O@_r+.b
if length_r~=length(theta) e~
78'UH
error('zernfun:RTHlength', ... E Pd.atA
'The number of R- and THETA-values must be equal.') P2:Q+j:PX
end <T_Nlar^^
;k41+O:f@
>'1Q"$;
% Check normalization: v!'@NW_
% -------------------- "RJk7]p`*
if nargin==5 && ischar(nflag) 4#7@KhK}
isnorm = strcmpi(nflag,'norm'); O"-PNF,J
if ~isnorm em9]WSfZ@`
error('zernfun:normalization','Unrecognized normalization flag.') ?L#SnnE
end ~z1KD)^
else 9B;Sk]y
isnorm = false; q}A3"$-F
end }?q nwx.
?>\]%$5o
.
;@)5"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UUEDCtF)
% Compute the Zernike Polynomials zUgkY`]:BJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l'{goy f
p*&LEjaVM4
3{LvKe
% Determine the required powers of r: ]jY)M<:J4
% ----------------------------------- I8%'Z>E(
m_abs = abs(m); yExyx?j.
rpowers = []; oD}FJvV
for j = 1:length(n) dSOn\+
rpowers = [rpowers m_abs(j):2:n(j)]; 'nDT.i
end BMj&*p8R
rpowers = unique(rpowers); gLxyRbVI
gGdYh.K&e5
F5Q. Vh
% Pre-compute the values of r raised to the required powers, K$v Rk5U
% and compile them in a matrix: .p0n\$r
% ----------------------------- Ay6rUN1ef
if rpowers(1)==0 yrYaKh
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L8K 3&[l%
rpowern = cat(2,rpowern{:}); !skWe~/
rpowern = [ones(length_r,1) rpowern]; 9* Twx&
else 6)<o O(
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dZYJ(7%
rpowern = cat(2,rpowern{:}); VM|)\?Q
end z'K7J'(R
1'pQ,
^[z\KmUqt
% Compute the values of the polynomials: %7wzGtM]ps
% -------------------------------------- 5.HztNL
y = zeros(length_r,length(n)); 8A]q!To
for j = 1:length(n) W" ,jZ"7
s = 0:(n(j)-m_abs(j))/2; 61wG:
pows = n(j):-2:m_abs(j); g\nL
n#
for k = length(s):-1:1 acZ|H
p = (1-2*mod(s(k),2))* ... +hhbp'%
prod(2:(n(j)-s(k)))/ ... .7Bav5 ;
prod(2:s(k))/ ... ,ZW.P`
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pG=zGx4
prod(2:((n(j)+m_abs(j))/2-s(k))); +Ws}a
idx = (pows(k)==rpowers); \`9|~!,Ix7
y(:,j) = y(:,j) + p*rpowern(:,idx); Jpnp'
end DYk->)
iZ;jn8
if isnorm \/%Q PE8
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (8F?yBu
end cJ{P,K
end -*j;
% END: Compute the Zernike Polynomials a2)*tbM9\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EHJc*WFPU-
^w}Ib']X
yf>,oNIAg
% Compute the Zernike functions: o%Q'<0d
% ------------------------------ S%|'
/cFo
idx_pos = m>0; GDe$p;#"9g
idx_neg = m<0; @d9*<>@:
2uB26SEIl
*Y>'v%
z = y; Jq@LZ2^
if any(idx_pos) tXGcwoOB
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); aq**w?l
end fP*C*4#X
if any(idx_neg) O4 URr
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N.J:Qn`(
end j}Mpc;XOc
Qd=/e pkm
(VRnv
% EOF zernfun v3]M;Y\