切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8994阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ''tCtG" Xi  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6o6I]QL  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? K|]/BjB/  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \8g'v@$wG  
    )\Am:?RH;  
    g=n{G@*N  
    FN\*x:g  
    _\;0E!=p  
    function z = zernfun(n,m,r,theta,nflag) *PM#ngLX}r  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. T\q:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S"H djEF7\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }p5_JXBV  
    %   unit circle.  N is a vector of positive integers (including 0), and r'8qZJgm  
    %   M is a vector with the same number of elements as N.  Each element ~bf4_5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) f\xmv|8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _0}u0fk  
    %   and THETA is a vector of angles.  R and THETA must have the same i]9C"Kw$L  
    %   length.  The output Z is a matrix with one column for every (N,M) q#=HBSyM  
    %   pair, and one row for every (R,THETA) pair. ia@ |+r  
    % s5h}MXIXw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Y O&@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9k /L m  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral KrdEB0qh  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :er(YWF:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ncrg`<'/,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Hsn'"  
    % ox*1F+Xri  
    %   The Zernike functions are an orthogonal basis on the unit circle. PzOnS   
    %   They are used in disciplines such as astronomy, optics, and >$,P )cB'  
    %   optometry to describe functions on a circular domain. 1_WP\@ O  
    % Qo32oT[DM  
    %   The following table lists the first 15 Zernike functions. #/_{(P  
    % > a;iX.K  
    %       n    m    Zernike function           Normalization X!_&%^L'  
    %       -------------------------------------------------- #N"m[$;QR  
    %       0    0    1                                 1 G9|2 KUG  
    %       1    1    r * cos(theta)                    2 X$e*s\4  
    %       1   -1    r * sin(theta)                    2 ,p{naT%R  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]~2iducB,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |sdG<+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :_}xN!9LA  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _K}q%In  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Sl/]1[|mb  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,Qx]_gZ`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ; [G:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) -L +kt_>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G9NI`]k  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) nNq<x^@83  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v4<W57oH  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) )$RV)  
    %       -------------------------------------------------- )X?oBNsj  
    % EsGf+-}|!0  
    %   Example 1: ((C|&$@M  
    % d(|q&b:  
    %       % Display the Zernike function Z(n=5,m=1) E*O($tS  
    %       x = -1:0.01:1; 3CgID6[Sy  
    %       [X,Y] = meshgrid(x,x); l]4=W<N  
    %       [theta,r] = cart2pol(X,Y); XwUa|"X6  
    %       idx = r<=1; ~P#mvQE)  
    %       z = nan(size(X)); /v^ '5j1o  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); R\|,GZ!`+  
    %       figure 1aQm r=,  
    %       pcolor(x,x,z), shading interp udu<Nis4  
    %       axis square, colorbar VcGl8~#9  
    %       title('Zernike function Z_5^1(r,\theta)') UAPd["`)y  
    % k:I,$"y4  
    %   Example 2: Pr1q X5>=  
    % }/dk2!?ig  
    %       % Display the first 10 Zernike functions }[Z'Sg]s  
    %       x = -1:0.01:1; ("\{=XA Q  
    %       [X,Y] = meshgrid(x,x); ]L97k(:Ib  
    %       [theta,r] = cart2pol(X,Y); dzEi^* (8  
    %       idx = r<=1; u8T@W}FX  
    %       z = nan(size(X)); P&sWn?q Ol  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ~4khIz  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; XjF@kQeM=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; qmFG  
    %       y = zernfun(n,m,r(idx),theta(idx)); -Y@tx fu-  
    %       figure('Units','normalized') a;t}'GQGk  
    %       for k = 1:10 Bhxs(NO  
    %           z(idx) = y(:,k); RI@\cJ\}  
    %           subplot(4,7,Nplot(k)) o>_})WM1[  
    %           pcolor(x,x,z), shading interp R|n  
    %           set(gca,'XTick',[],'YTick',[]) "aOs#4N  
    %           axis square AY{KxCr b^  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tGgxID  
    %       end 2uOYuM[7gH  
    % i}VF$XN  
    %   See also ZERNPOL, ZERNFUN2. JcWp14~e  
    ]:OrGD"  
    /QY F|%7!  
    %   Paul Fricker 11/13/2006 4~,Z 'k  
    I )rO|  
    4T31<wk  
    \P*_zd@%  
    1ZI1+TDH  
    % Check and prepare the inputs: . :Skc  
    % ----------------------------- +b(};(wL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Fp/{L  
        error('zernfun:NMvectors','N and M must be vectors.') rS{}[$Zpl  
    end #7 3pryXV  
    [3jJQ3O,  
    ~Jk& !IE2  
    if length(n)~=length(m) h+}BtKA  
        error('zernfun:NMlength','N and M must be the same length.') xj3 qOx$  
    end 1(gs({  
    hyH[`wiq  
    $Z:O&sD{  
    n = n(:); 053bM)qW  
    m = m(:); #RBrii-,  
    if any(mod(n-m,2)) j(=w4Sd_W  
        error('zernfun:NMmultiplesof2', ... {Sf[<I  
              'All N and M must differ by multiples of 2 (including 0).') C(ij_>  
    end UGSZg|&6#*  
    &"^F;z/  
    a_RY Yj  
    if any(m>n) 2aj1IBnz6/  
        error('zernfun:MlessthanN', ... lI<jYd 0fZ  
              'Each M must be less than or equal to its corresponding N.') ~w? 02FU  
    end =6u@ JpOl  
    oX|T&"&  
    pR61bl)  
    if any( r>1 | r<0 ) ^ Oh  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') `,qft[1  
    end BS9VwG <Z  
    AJ\&>6GZ(b  
    Cz0FA]-g  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lL}NiN-)t  
        error('zernfun:RTHvector','R and THETA must be vectors.') Sc7 Ftb%  
    end N&HI)X2&  
    QQrldc(I  
    x4WCAqi/2  
    r = r(:); ubwM*P  
    theta = theta(:); Q;]JVT1  
    length_r = length(r); 'z$$ZEz!C  
    if length_r~=length(theta) *?FVLE  
        error('zernfun:RTHlength', ... :W.H#@'(  
              'The number of R- and THETA-values must be equal.') ,<v0(  
    end ^%r6+ey  
    V&*IZt&  
    ;|q<t  
    % Check normalization: 8!E.3'jb  
    % -------------------- rfqwxr45h  
    if nargin==5 && ischar(nflag) qYK^S4L  
        isnorm = strcmpi(nflag,'norm'); KN}#8.'>3  
        if ~isnorm x3q^}sj%  
            error('zernfun:normalization','Unrecognized normalization flag.') MTu\T  
        end fx;rMGa  
    else W'C>Fn}lO?  
        isnorm = false; ~/L:$  
    end S%iK);  
    OG5{oH#K  
    J :O!4gI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8,U~ p<Gz  
    % Compute the Zernike Polynomials #_DpiiS,.Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fi i(dmn  
    riIubX#  
    ~<[+!&<U  
    % Determine the required powers of r: `NIb? /!f  
    % ----------------------------------- Z)7{~xq  
    m_abs = abs(m); K2xB%m1LK  
    rpowers = []; Z>g72I%X  
    for j = 1:length(n) @Tu`0 =8  
        rpowers = [rpowers m_abs(j):2:n(j)]; E=I'$*C \D  
    end ji/`OS-iq  
    rpowers = unique(rpowers); k4'] q  
    `i`P}W!F  
     ``/L18  
    % Pre-compute the values of r raised to the required powers, 7h\is  
    % and compile them in a matrix: \@@G\\)er  
    % ----------------------------- {8m&Z36E  
    if rpowers(1)==0 MSCH6R"5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2+&;jgBP  
        rpowern = cat(2,rpowern{:}); xm{?h,U,  
        rpowern = [ones(length_r,1) rpowern]; &{Z+p(3Gj  
    else nE]rPRU}[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HhynU/36  
        rpowern = cat(2,rpowern{:}); T\gs  
    end 1UMEbb  
    TzKM~a#  
    7m#EqF$P  
    % Compute the values of the polynomials: uH89oA/H  
    % -------------------------------------- bc(MN8b]j  
    y = zeros(length_r,length(n)); f&vMv.  
    for j = 1:length(n) 5Ew( 0K[  
        s = 0:(n(j)-m_abs(j))/2; ^]o H}lwO  
        pows = n(j):-2:m_abs(j); ~>@~U]  
        for k = length(s):-1:1 bPTtA;u  
            p = (1-2*mod(s(k),2))* ... KpGx<+0p  
                       prod(2:(n(j)-s(k)))/              ... 2bCfY\k  
                       prod(2:s(k))/                     ... Q&I #  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... - +a,Ej  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3HyOQD"{  
            idx = (pows(k)==rpowers); &k'<xW?x  
            y(:,j) = y(:,j) + p*rpowern(:,idx); f/dJRcDl<  
        end "nz\YQdg  
         ^li3*#eT  
        if isnorm Y2VfJ}%Q  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .5\@G b.8  
        end >a975R*g  
    end #H6YI3 `G  
    % END: Compute the Zernike Polynomials |Ua);B~F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fx!D:.)/G  
    -3ePCAtXbe  
    |OLXb+ 7X  
    % Compute the Zernike functions: ;=joQWNDm  
    % ------------------------------ u.A}&'H  
    idx_pos = m>0; 6"_pCkn;c<  
    idx_neg = m<0; O1\4WG%  
    ?n# $y@U  
    ]U#of O  
    z = y; T @^ S:K  
    if any(idx_pos) Fug4u?-n  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); GJWGT`"  
    end e;v"d!H/  
    if any(idx_neg) %e[E@H7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Bvvja C  
    end `Hw][qy#  
    -~c-mt  
    Z'A 3\f   
    % EOF zernfun yf*'=q  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  EKcPJ\7  
    !oXFDC3k  
    DDE还是手动输入的呢? >`&2]Wc)  
    :zo5`[P  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究