切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9383阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, PW%ith1)<  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 5l@} 1n  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? q]f7D\ M  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Ep;?%o,G  
    R`$jF\"`r  
    h&i(Kfv*  
    Cp!9 "J:  
    GGwwdB\x'  
    function z = zernfun(n,m,r,theta,nflag) 6(?@B^S>2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. E`HA0/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $ #/8l58  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 2vB,{/GXP  
    %   unit circle.  N is a vector of positive integers (including 0), and XFs7kTY  
    %   M is a vector with the same number of elements as N.  Each element dk1q9Tx  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 65@GXn[W_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, f#AuZ]h  
    %   and THETA is a vector of angles.  R and THETA must have the same `lm'_~=`&  
    %   length.  The output Z is a matrix with one column for every (N,M) X`&Us  
    %   pair, and one row for every (R,THETA) pair. 7}\AhQ, S  
    % &<#1G u_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jJYCGK$=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YH%U$eS#g  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral %#4;'\'5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PDc4ok`)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized MW^FY4V1m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &q4~WRnzJk  
    % :T6zT3(")D  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8Rw:SU9H?T  
    %   They are used in disciplines such as astronomy, optics, and S+6YD0  
    %   optometry to describe functions on a circular domain. g&B7Y|Es  
    % ( Ygy%O%  
    %   The following table lists the first 15 Zernike functions. JSh'iYJ .  
    % O*/Utl  
    %       n    m    Zernike function           Normalization .'+JA:3R  
    %       -------------------------------------------------- Z$Ps_Ik  
    %       0    0    1                                 1 w U]8hkl?  
    %       1    1    r * cos(theta)                    2 nf _(_O=  
    %       1   -1    r * sin(theta)                    2 ZFX}=?+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) j _E(h.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >4>. Ycp  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -"^"& )  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R. ryy  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) xXV15%&  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Nt<Ac&6 s  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) zhRF>Y`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ou|3%&*"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hZe9Y?)  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) H lFVc  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Um/ g&k  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) S=w~bz, /  
    %       -------------------------------------------------- z}VCiS0  
    % =5pwNi_S  
    %   Example 1: J{EK}'  
    % \FO 4A  
    %       % Display the Zernike function Z(n=5,m=1) uWXxK"J.  
    %       x = -1:0.01:1; kmfz.:j{  
    %       [X,Y] = meshgrid(x,x); L<<v   
    %       [theta,r] = cart2pol(X,Y); eBECY(QMQ  
    %       idx = r<=1; K}S=f\Q]  
    %       z = nan(size(X)); TSL/zTLDJ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); M@.?l=1X  
    %       figure gd31ds!G  
    %       pcolor(x,x,z), shading interp -Xgup,}?  
    %       axis square, colorbar kP~ ;dJD  
    %       title('Zernike function Z_5^1(r,\theta)') # zd}xla0]  
    % ,n5 [Y)  
    %   Example 2: 5bK:sht  
    % =PBJ+"DQs  
    %       % Display the first 10 Zernike functions '_=XfTF  
    %       x = -1:0.01:1; "0"8Rp&V|  
    %       [X,Y] = meshgrid(x,x); BxxqzN+  
    %       [theta,r] = cart2pol(X,Y); 5i3 nz=~o  
    %       idx = r<=1; V SH64  
    %       z = nan(size(X)); DGAg#jh  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ~65lDFY/  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; N;,N6&veK/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v".u#G'u  
    %       y = zernfun(n,m,r(idx),theta(idx));  #Bn7Cc  
    %       figure('Units','normalized') I1Gk^wO  
    %       for k = 1:10 <J1$s_^`  
    %           z(idx) = y(:,k); ws}>swR,  
    %           subplot(4,7,Nplot(k)) e-{4qt  
    %           pcolor(x,x,z), shading interp >\!>CuU  
    %           set(gca,'XTick',[],'YTick',[]) ^UpwVKdP  
    %           axis square o|a]Q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QN m.8c$  
    %       end TH}+'m  
    % P\|i<Ds_M  
    %   See also ZERNPOL, ZERNFUN2. !}uev  
    myY@Wp  
    Uw_z9ZL  
    %   Paul Fricker 11/13/2006 h5#V,$  
    .l&<-l;UQ  
    Ne,u\q3f  
    p>]2o\["  
    W>7o ec  
    % Check and prepare the inputs: Vt," 5c  
    % ----------------------------- V$ss[fX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qg@Wzs7c~  
        error('zernfun:NMvectors','N and M must be vectors.') Mio~CJ"?  
    end AJH-V 6  
    B\!.o=<h  
    jG3i )ALx  
    if length(n)~=length(m) | [lM2  
        error('zernfun:NMlength','N and M must be the same length.') e6?h4}[+*  
    end s8N\cOd#i  
    Me*]Bh  
     ,  
    n = n(:); 7e-l`]  
    m = m(:); Y|iALrx  
    if any(mod(n-m,2)) $r=Ud >  
        error('zernfun:NMmultiplesof2', ... FVcoo V  
              'All N and M must differ by multiples of 2 (including 0).') ^^Tu/YC9x  
    end Ot} E  
    =#<TE~n2(  
    3l@={Ts  
    if any(m>n) AiO29<  
        error('zernfun:MlessthanN', ... sf5koe  
              'Each M must be less than or equal to its corresponding N.') _,4f z(  
    end  HRKe 7#e  
    Et+N4w  
    Ci ? +Sl  
    if any( r>1 | r<0 ) ^*]0quu=z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') k iCg+@nT  
    end b1;80P/:D  
    Y<S,Xr;J:  
    /\KB*dX  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) [Hww3+~+  
        error('zernfun:RTHvector','R and THETA must be vectors.') tXTa>Q  
    end <3>Ou(F  
    *lIK?"mo  
    G =+sW  
    r = r(:); a[GlqaQy+-  
    theta = theta(:); B/Lx,  
    length_r = length(r); NY ZPh%x  
    if length_r~=length(theta) r,x;q  
        error('zernfun:RTHlength', ... +'x`rk  
              'The number of R- and THETA-values must be equal.') HBL)_c{/O  
    end ; . c]0  
    }cE,&n  
    BS#@ehdig  
    % Check normalization: T%xB|^lf  
    % -------------------- X] /r'Tz  
    if nargin==5 && ischar(nflag) }IGr%C(3%  
        isnorm = strcmpi(nflag,'norm'); @&]j[if (s  
        if ~isnorm xF_ Y7rw1w  
            error('zernfun:normalization','Unrecognized normalization flag.') $IQ  !g  
        end 3L4lk8Dd  
    else $N=A,S  
        isnorm = false; 3D k W  
    end TUiXE~8=  
    h"')D  
    xgtdmv%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tp`by 1s  
    % Compute the Zernike Polynomials ^6ZA2-f/<8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %9=^#e+pE  
    ~OEP)c\k  
    SN'LUwaMp!  
    % Determine the required powers of r: +aV>$Y  
    % ----------------------------------- 8KW}XG  
    m_abs = abs(m); R)#D{/#FW  
    rpowers = []; atFj Vk^  
    for j = 1:length(n) ue$\ i=jw  
        rpowers = [rpowers m_abs(j):2:n(j)]; c`y[V6q9  
    end Sj}@5 X6 C  
    rpowers = unique(rpowers); <vA^%D<\~  
    ]RQQg,|D  
    lBL;aTzo  
    % Pre-compute the values of r raised to the required powers, o;\0xuM@  
    % and compile them in a matrix: VzMoWD;  
    % ----------------------------- ]`y4n=L.  
    if rpowers(1)==0 ~-6Kl3Y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6pQ#Zg()vp  
        rpowern = cat(2,rpowern{:}); o_EXbS]C  
        rpowern = [ones(length_r,1) rpowern]; |]]Xee]  
    else >\$qF  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); abCcZ<=|b  
        rpowern = cat(2,rpowern{:}); t4UKG&[a  
    end M>0=A  
    ^C@uP9g  
    r+>E`GGQ  
    % Compute the values of the polynomials: U^~K-!0  
    % -------------------------------------- W9Bl'e  
    y = zeros(length_r,length(n)); ho@f}4jhQ3  
    for j = 1:length(n) ^`\c;!)F<  
        s = 0:(n(j)-m_abs(j))/2; vBQ5-00YY=  
        pows = n(j):-2:m_abs(j); ~c :e0}  
        for k = length(s):-1:1 ?U2ed)zzw  
            p = (1-2*mod(s(k),2))* ... ?Gj$$IAe  
                       prod(2:(n(j)-s(k)))/              ... gV!Eotq  
                       prod(2:s(k))/                     ... ^,b*.6t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aM3%Mx?w  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); E[6JHBE*r  
            idx = (pows(k)==rpowers); )-[ 2vhXz  
            y(:,j) = y(:,j) + p*rpowern(:,idx); yK0Q,   
        end Wb!%_1dER  
         ?a~=CC@  
        if isnorm 3. Qf^p  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _jK\+Zf  
        end HPCgv?E3  
    end <k5FlvE2  
    % END: Compute the Zernike Polynomials brNe13d3~"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @"kA&=0;|J  
    N*lq)@smq  
    av gGz8  
    % Compute the Zernike functions: RV^2[Gdi  
    % ------------------------------ ph30/*8  
    idx_pos = m>0; b UAjt>+  
    idx_neg = m<0; %g0"Kj5  
    /,/T{V[  
    + yS"pOT  
    z = y; Nt&}T  
    if any(idx_pos) u-pE ;|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); g84~d(\?  
    end } ~=53$+  
    if any(idx_neg) s:R>uGYOd  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Zx55mSfx:  
    end hof$0Fg  
    A! <R?  
    mh.0% 9`9  
    % EOF zernfun A,lcR:@w  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  x`WP*a7Fk]  
    9K@`n:Rw  
    DDE还是手动输入的呢? iNe;h|  
    BCJo/m  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究