下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Y
1v9sMN,
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, R*S9[fqC[
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ui:WbH<b{
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? {Sl#z}@s
,$4f#)
VK)vb.:
+)J;4B
z8VcV*6
function z = zernfun(n,m,r,theta,nflag) <I
5F@pe'
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. yzH(\ x
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JCe%;U
% and angular frequency M, evaluated at positions (R,THETA) on the /-FvC^Fj
% unit circle. N is a vector of positive integers (including 0), and =qWcw7!"
% M is a vector with the same number of elements as N. Each element 0R21"]L_M
% k of M must be a positive integer, with possible values M(k) = -N(k) }Mv$Up
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, | XGj97#M
% and THETA is a vector of angles. R and THETA must have the same @XJzM]*w&
% length. The output Z is a matrix with one column for every (N,M) =\ek;d0Tqb
% pair, and one row for every (R,THETA) pair. ]?un'$%e
% )G+D6s23
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J]AkWEiCJ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y|
dw>qO
% with delta(m,0) the Kronecker delta, is chosen so that the integral `T#Jiq E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, TWU[/>K
% and theta=0 to theta=2*pi) is unity. For the non-normalized " J4?Sb <
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g6D7Y<}d
% &mPR[{
% The Zernike functions are an orthogonal basis on the unit circle. ~DL-@*&
% They are used in disciplines such as astronomy, optics, and :q>uj5%
% optometry to describe functions on a circular domain. m=K46i+NE
% D!g\-y
% The following table lists the first 15 Zernike functions. Jx+e_k$gHO
% |a|##/
% n m Zernike function Normalization ~[Fh+t(Y
% -------------------------------------------------- px=k&|l
% 0 0 1 1 }VU7wMk
% 1 1 r * cos(theta) 2 LlF|VR&P.
% 1 -1 r * sin(theta) 2 4 (>8tP\Y
% 2 -2 r^2 * cos(2*theta) sqrt(6) #TG7WF5
% 2 0 (2*r^2 - 1) sqrt(3) B]nu \!
% 2 2 r^2 * sin(2*theta) sqrt(6) [QZ8M@Gty#
% 3 -3 r^3 * cos(3*theta) sqrt(8) @{ CP18~:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) i6-&$<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) G<m6Sf
% 3 3 r^3 * sin(3*theta) sqrt(8) (?vKe5
% 4 -4 r^4 * cos(4*theta) sqrt(10) qX"m"ko
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qKjUp"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8mnzxtk
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zI&).
% 4 4 r^4 * sin(4*theta) sqrt(10) X[E!q$ag
% -------------------------------------------------- ?y|8bw<
% 3E$h
W
% Example 1: FdE9k\E#/)
% +\GuZ5`
% % Display the Zernike function Z(n=5,m=1) gk^`-`P
% x = -1:0.01:1; s~b!3l`gu
% [X,Y] = meshgrid(x,x); 3bK=Q3N
% [theta,r] = cart2pol(X,Y); w:|YOeP
% idx = r<=1; VthM`~3
% z = nan(size(X)); i}_d&.DbF
% z(idx) = zernfun(5,1,r(idx),theta(idx)); # n\|Q\W
% figure /zTx+U.\I
% pcolor(x,x,z), shading interp WW3! ,ln_
% axis square, colorbar sOBuJx${m
% title('Zernike function Z_5^1(r,\theta)') |Qz"Z<sNYw
% Sd?+j;/"
% Example 2: ( jtkY_
% '(fCi
% % Display the first 10 Zernike functions pP^"p"<s
% x = -1:0.01:1; b l]YPx8
% [X,Y] = meshgrid(x,x); 3BK_$Fy
% [theta,r] = cart2pol(X,Y); r.10b]b
% idx = r<=1; <,+6:NmT
% z = nan(size(X)); 'l41];_
% n = [0 1 1 2 2 2 3 3 3 3]; yoVN|5
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 1vL$k[^&d
% Nplot = [4 10 12 16 18 20 22 24 26 28]; NVG`XL
% y = zernfun(n,m,r(idx),theta(idx)); |n %<p
% figure('Units','normalized')
n1@ Or=5
% for k = 1:10 dY$jg
% z(idx) = y(:,k); V?C_PMa
% subplot(4,7,Nplot(k)) e*/ya 8p?
% pcolor(x,x,z), shading interp tg%C>O
% set(gca,'XTick',[],'YTick',[]) 3=Va0}#&
% axis square 0qk.NPMB0
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tbq_Rg7s
% end zE_t(B(Q
% _^Lg}@t
% See also ZERNPOL, ZERNFUN2. mqv!"rk'w
d
A' h7D
OJ4-p&1
% Paul Fricker 11/13/2006 ~glFB`?[
BGZvgMxLJ
-"X}
)N2
n 7m!
SPY4l*kX
% Check and prepare the inputs: Tx0l^(n
% ----------------------------- &xjeZh4-
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '<KzWxuC
error('zernfun:NMvectors','N and M must be vectors.') dD}!E
end t.tdY
lL6qK&;
G)wIxm$?0
if length(n)~=length(m) ^p !4`S
error('zernfun:NMlength','N and M must be the same length.') zFk@Y
end y1zep\-D
?$\y0lHw/7
WX9pJ9d
n = n(:); KqT~MPl
m = m(:); #$(wfb9
if any(mod(n-m,2)) #p^r)+\3=
error('zernfun:NMmultiplesof2', ... OJ\rT.{
'All N and M must differ by multiples of 2 (including 0).') 4!r>
^a
end gHzjI[WI
M[ZuXH}
)B'U_*
if any(m>n) ;o0o6pF
error('zernfun:MlessthanN', ... *tZ#^YG{(
'Each M must be less than or equal to its corresponding N.') -?Aa RwZ,
end N~A#itmdx
\ml6B6
5`3f"(ay/
if any( r>1 | r<0 ) 8!AMRE
error('zernfun:Rlessthan1','All R must be between 0 and 1.') j']Q-s(s
end 4MOA}FZ~
YJ{d\j
aE2
3[So
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) umWZ]8
error('zernfun:RTHvector','R and THETA must be vectors.') WsCzC_'j.
end 8Bnw//_pT
V6ioQx=K#
b!'
bu
r = r(:); R.)U<`| |
theta = theta(:); fJ3qL#'
length_r = length(r); uPpRzp
if length_r~=length(theta) y'k4>,`9e
error('zernfun:RTHlength', ... I({ 7a i
'The number of R- and THETA-values must be equal.') [+st?;"GF
end |k4ZTr]?
zA/W+j$:
Q nqU!6k@
% Check normalization: #dGg !D
% -------------------- r4xq%hy
if nargin==5 && ischar(nflag) AOaf ,ZF
8
isnorm = strcmpi(nflag,'norm'); nA]dQ+5sT
if ~isnorm Ye}y_W
error('zernfun:normalization','Unrecognized normalization flag.') =;3|?J0=
end []Z| *+=Q
else [vaG{4m
isnorm = false; *X;g
Y
end ;6 1m
Xklp6{VH9
j1>77C3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~5wCehSb
% Compute the Zernike Polynomials j$]t`6gG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FJ}QKDQW=
3A} ntA!
#V8='qD
% Determine the required powers of r: 00G[`a5
% ----------------------------------- r`cCHZo/V
m_abs = abs(m); V]PTAhc
rpowers = []; +WwQ!vWWd
for j = 1:length(n)
Te>7I
rpowers = [rpowers m_abs(j):2:n(j)]; ryx<^q
end F
,{nG[PL
rpowers = unique(rpowers); _ }!Q4K
zoOm[X=?3
vfegIoZ
% Pre-compute the values of r raised to the required powers, ;8g#"p*&
% and compile them in a matrix: va;d[D,
% ----------------------------- wrn[q{dX
if rpowers(1)==0 (>0d+ KT
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZrA\a#z"<
rpowern = cat(2,rpowern{:}); y::;e#.
rpowern = [ones(length_r,1) rpowern]; SQ5*?u\
else (7ew&u\Li
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~ilbW|s?=k
rpowern = cat(2,rpowern{:}); fV}\
end FZA8@J|Q4
/p>"|z
]jHB'Y
% Compute the values of the polynomials: 8`VMdo9
% -------------------------------------- ~:)$~g7>b
y = zeros(length_r,length(n)); I/WnF"yP
for j = 1:length(n) w.l#Z} k
s = 0:(n(j)-m_abs(j))/2; u'K<-U8H
pows = n(j):-2:m_abs(j); 59^@K"J
for k = length(s):-1:1 DO03vN
p = (1-2*mod(s(k),2))* ... \0 WMb
prod(2:(n(j)-s(k)))/ ... Y\p
yl
prod(2:s(k))/ ... ydns_Z
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,(`@ZFp$
prod(2:((n(j)+m_abs(j))/2-s(k))); +Kq>r|;
idx = (pows(k)==rpowers); c=
a+7>
y(:,j) = y(:,j) + p*rpowern(:,idx); cR5<.$aY
end Y5MHd>m
b vu` =
if isnorm \R-u+ci$ZY
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x(b&r g.-0
end %okEN!=
end e#'`I^8l
% END: Compute the Zernike Polynomials *Nt6 Ufq6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >M1/m=a
pb{P[-f
AN~1E@"
% Compute the Zernike functions: J)fS2Ni+
% ------------------------------ _ _)Z Q
idx_pos = m>0; ;C"J5RA
idx_neg = m<0; F}01ikXDb'
X2e|[MWkp
;c>Yr?^
z = y; &e rNVD5o
if any(idx_pos) +bO{UC[
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7k$8i9#
end '[-/Xa['
if any(idx_neg) kDv)g
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); J5o"JRJ"
end 2hpx%H
&1[5b8H;+
7CIje=u.q
% EOF zernfun U50X`J