下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :vX%0|
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, s5rD+g]E`
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? jw9v&/-
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? O$}.b=N9
M2N8?Ycv3
~!!\#IX
TYb$+uY
\hZ%NLj
function z = zernfun(n,m,r,theta,nflag) ]d-.Mw,'
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. \ ZE[7Ae
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N PkI+z_
% and angular frequency M, evaluated at positions (R,THETA) on the ];4!0\M
% unit circle. N is a vector of positive integers (including 0), and FOk;=+
% M is a vector with the same number of elements as N. Each element x(vQ%JC
% k of M must be a positive integer, with possible values M(k) = -N(k) w3ni@'X8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, KMz!4N
% and THETA is a vector of angles. R and THETA must have the same W.?/p~
% length. The output Z is a matrix with one column for every (N,M) Zi.' V
% pair, and one row for every (R,THETA) pair. i/%lB
% (or"5}\6-
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Pv/v=s>X
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), giX[2`^NG
% with delta(m,0) the Kronecker delta, is chosen so that the integral |Ia9bg'1U
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |Rz.Pt6
% and theta=0 to theta=2*pi) is unity. For the non-normalized {\(MMTQ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F{!pii5O9
% 8>,w8(Nt
% The Zernike functions are an orthogonal basis on the unit circle. sqtz^K ROM
% They are used in disciplines such as astronomy, optics, and w|-3X
% optometry to describe functions on a circular domain. &.\7='$F
% +IWH7 qRtp
% The following table lists the first 15 Zernike functions. %z-*C'j5H
% )/%5f{+}
% n m Zernike function Normalization e5>'H!)
% -------------------------------------------------- ;6Yg}L
% 0 0 1 1 xF8n=Lc
% 1 1 r * cos(theta) 2 P .m@|w&.K
% 1 -1 r * sin(theta) 2 ur\6~'l4
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~qrSHn}+PU
% 2 0 (2*r^2 - 1) sqrt(3) v62_VT2v
% 2 2 r^2 * sin(2*theta) sqrt(6) xBVOIc[4(
% 3 -3 r^3 * cos(3*theta) sqrt(8) =+Fb\HvX{
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) p@su:B2Rl
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {h7 vJ^
% 3 3 r^3 * sin(3*theta) sqrt(8) QMsq4yJ)%
% 4 -4 r^4 * cos(4*theta) sqrt(10) oT):#,s
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I[Lg0H8
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 7;fC%Fq
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GXVx/)H
% 4 4 r^4 * sin(4*theta) sqrt(10) *y?HaU
% -------------------------------------------------- 8m?(* [[
% A~bSB
n: '
% Example 1: P3&s<mh
% D4!;*2t
% % Display the Zernike function Z(n=5,m=1) 6iyl8uL0J
% x = -1:0.01:1; -[L\:'Gp5
% [X,Y] = meshgrid(x,x); @%Ld\8vdfJ
% [theta,r] = cart2pol(X,Y); iY,C0=n5Y
% idx = r<=1; qY#*LqV
% z = nan(size(X)); qjP~F
% z(idx) = zernfun(5,1,r(idx),theta(idx)); rF-SvSj}
% figure +Y sGH~jX
% pcolor(x,x,z), shading interp 9j>2C
% axis square, colorbar &-yRa45?
% title('Zernike function Z_5^1(r,\theta)') bE
!SW2:M
% Fvl\.
% Example 2: mrP48#Y+l
% _Sr7b#)o
% % Display the first 10 Zernike functions X3:z=X&Zd
% x = -1:0.01:1; 1_]X
% [X,Y] = meshgrid(x,x); 9&eY<'MgP
% [theta,r] = cart2pol(X,Y); )/$J$'mcxd
% idx = r<=1; >zW2w2O3
% z = nan(size(X)); D$}8GYq
% n = [0 1 1 2 2 2 3 3 3 3]; M%S7cIX
]F
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |u>(~6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; "[_j8,t`
% y = zernfun(n,m,r(idx),theta(idx)); 'v6@5t19j
% figure('Units','normalized') dw"Es;^
% for k = 1:10 IgX &aW
% z(idx) = y(:,k); q`c!!Lg
% subplot(4,7,Nplot(k)) 5~[7|Y
% pcolor(x,x,z), shading interp m^3x%ENZ
% set(gca,'XTick',[],'YTick',[]) ^5sA*%T4
% axis square ZbYC3_7w
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u5oM;#{@-
% end MYS`@%ZV#k
% 90Ki.K 0
% See also ZERNPOL, ZERNFUN2. Fc5.?X-
JQ1MuE'
MbRTOH
% Paul Fricker 11/13/2006 V+E8{|dYL
d+q],\"R
_re# b?
+F8{4^w1
|(>`qL{|
% Check and prepare the inputs: Dp([r
% ----------------------------- G"<#tif9K
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b)d;eS
error('zernfun:NMvectors','N and M must be vectors.') fN&\8SPE
end E!9WZY
A(FnU:
}4|EHhG
if length(n)~=length(m) JsJP%'^/R
error('zernfun:NMlength','N and M must be the same length.') Y2r}W3F=
end keAoJeG,J
f% pT-#
tMxde+$y
n = n(:); nI*.(+h
m = m(:); @_+aX.,
if any(mod(n-m,2)) iOk;o=
error('zernfun:NMmultiplesof2', ... ) E^S+ps
'All N and M must differ by multiples of 2 (including 0).') PQ&*(G
end *S,~zOYN
ix!xLm9\
Hl$W+e|tj
if any(m>n) ) D@j6r
error('zernfun:MlessthanN', ... AP&//b,^M
'Each M must be less than or equal to its corresponding N.') #t
;`
end d0(zB5'}
E5ce=$o
uM2@&)u
if any( r>1 | r<0 ) F/oqYk9`
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'ITq\1z
end $mQ0w~:@
=]7o+L4
t8^1wA@@V
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &hYgu3O
error('zernfun:RTHvector','R and THETA must be vectors.') K<>kT4
end nTy]sPn
r:H]`Uo'r
r: K1PO
r = r(:); I C
theta = theta(:); !d72f8@9
length_r = length(r); F&B\ X
if length_r~=length(theta) _S r}3
error('zernfun:RTHlength', ... i~';1
.g
'The number of R- and THETA-values must be equal.') *tXyd<_Hd
end !xsfhLZK
ER"69zQg|2
@]Cg5QW>T
% Check normalization: X-["{
% -------------------- @DysM~I
if nargin==5 && ischar(nflag) xC`!uPk/pL
isnorm = strcmpi(nflag,'norm'); :33@y%>L
if ~isnorm }Ng P`m
error('zernfun:normalization','Unrecognized normalization flag.') #mQ@4k9i
end c-+NWC
else .+:iAnf
isnorm = false; 9j2t|D4uT
end :j&enP5R(q
j9
nw,x$
?ko#N?hgI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s$M(-"mg
% Compute the Zernike Polynomials !ho^:}m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ] ?DU8
B>2R-pa4~
'< Zm>L&
% Determine the required powers of r: g>/Y}{sL-
% ----------------------------------- .QvD603%5
m_abs = abs(m); 6 >kU Lp
rpowers = []; EFX2>&mWo8
for j = 1:length(n) f}-'67*Y
rpowers = [rpowers m_abs(j):2:n(j)]; aXe&c^AR
end Dz }i-tw+
rpowers = unique(rpowers); digc7;8L
gFaZ ._
`J.,dqGb
% Pre-compute the values of r raised to the required powers,
x=*Y|
% and compile them in a matrix: [> HKRVy
% ----------------------------- Cut~k"lv
if rpowers(1)==0 Z)rW>I
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 't<iB&wgF
rpowern = cat(2,rpowern{:}); "| '~y}v_
rpowern = [ones(length_r,1) rpowern]; ?}HK!feU
else 'va[)~!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3&-rOc
rpowern = cat(2,rpowern{:}); $ f:uBhM
end tJ(xeb
OUulG16kK
YSnh2 Bq
% Compute the values of the polynomials: LHY7_"u#
% -------------------------------------- '?rR>$s
y = zeros(length_r,length(n)); Zmu
for j = 1:length(n) p$Tk;;wm
s = 0:(n(j)-m_abs(j))/2; T<]{:\*n
pows = n(j):-2:m_abs(j); #cY[c1cNv
for k = length(s):-1:1 Y:\msq1xp
p = (1-2*mod(s(k),2))* ... !Rv ;~f/2
prod(2:(n(j)-s(k)))/ ... :2/L1A)O
prod(2:s(k))/ ... YIe1AF}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }c,b]!:
prod(2:((n(j)+m_abs(j))/2-s(k))); IyO0~Vx>
idx = (pows(k)==rpowers); vj?{={Y
y(:,j) = y(:,j) + p*rpowern(:,idx); T}Tv}~!f
end PZ]tl
cK$yr)7
if isnorm vobC/m
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,hzRqFg2
end 4?pb!@l
end ai 4 k?
% END: Compute the Zernike Polynomials {6u)EJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vQ<
~-E
p3P8@M
Fyvo;1a
% Compute the Zernike functions: D`XXR}8V
% ------------------------------ nlv,j&
idx_pos = m>0; Yn?beu'
idx_neg = m<0; n@pwOHQn<|
_9BL7W $;
y[McdlH m
z = y; SK}jhm"y
if any(idx_pos) h2Q'5G
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A"*=K;u/|m
end FG${w.e<
if any(idx_neg) &N.pW=%,N
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q^[t</_N
end bidFBldKl
?8
}pZ_ j
XL*M#Jx
% EOF zernfun P(PBOB97