切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9125阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, {IPn\Bka  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _SIs19"lR  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +yb$[E*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )n}]]^Sc  
    J'ZFIT_>  
    6"Lsui??  
    AqbT{,3yW  
    @SC-vc  
    function z = zernfun(n,m,r,theta,nflag) oIvnF:c  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cxD}t'T  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L);||]B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the r($_>TS&"  
    %   unit circle.  N is a vector of positive integers (including 0), and B2G5h baA  
    %   M is a vector with the same number of elements as N.  Each element $]%<r?MUb-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) n `m_S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, adO!Gs9f?  
    %   and THETA is a vector of angles.  R and THETA must have the same 9IvcKzS2  
    %   length.  The output Z is a matrix with one column for every (N,M) 1R2o6`_  
    %   pair, and one row for every (R,THETA) pair. qBBYckS.  
    % NT;x1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cCh0?g7nV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yxCM l.  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral fs rg2:kQ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, loeLj4""  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized N8 kb-2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )7I.N]=  
    % TDl!qp @  
    %   The Zernike functions are an orthogonal basis on the unit circle. HTDyuqs  
    %   They are used in disciplines such as astronomy, optics, and jA-5X?!In  
    %   optometry to describe functions on a circular domain. vfJ3idvo*w  
    % ayH%  qp  
    %   The following table lists the first 15 Zernike functions. mo|PrLV  
    % ^A 11h6I  
    %       n    m    Zernike function           Normalization %Rd~|$@>x  
    %       -------------------------------------------------- -B*<Q[_  
    %       0    0    1                                 1 6VH90KAT  
    %       1    1    r * cos(theta)                    2 a(}VA|l  
    %       1   -1    r * sin(theta)                    2 2H?I'<NoC  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) kMl@v`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +EST58  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ' 1P=^  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^A *]&%(h  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1H&?UP4=(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wR Xn9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) u=@h`5-fp  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ?AV&@EX2C  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4f4 i1i:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) I~p8#<4#b  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9n>$}UI\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) e;A^.\SP  
    %       -------------------------------------------------- ^MW\t4pZ  
    % )Lc<;=w'9  
    %   Example 1: #*yM2H"7,;  
    % 9N~8s6Ob  
    %       % Display the Zernike function Z(n=5,m=1) *? K4!q'  
    %       x = -1:0.01:1; `a9k!3_L  
    %       [X,Y] = meshgrid(x,x); 93Mdp9v+i  
    %       [theta,r] = cart2pol(X,Y); , @%C8Z  
    %       idx = r<=1; QL)>/%yU  
    %       z = nan(size(X)); F5N>Uqr*oN  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); v!<PDw2'  
    %       figure O`wYMng)  
    %       pcolor(x,x,z), shading interp CRZi;7`*1  
    %       axis square, colorbar 2 ) TG  
    %       title('Zernike function Z_5^1(r,\theta)') o &BPG@n  
    % hAV2F #  
    %   Example 2: YPF&U4CN  
    % x @1px&^  
    %       % Display the first 10 Zernike functions +(;8@"u  
    %       x = -1:0.01:1; b@=z rhQ  
    %       [X,Y] = meshgrid(x,x); `4VO&lRm  
    %       [theta,r] = cart2pol(X,Y); Xtci0eS#V  
    %       idx = r<=1; y#b;uDY  
    %       z = nan(size(X)); <A#5v\{.;~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O24Jj\"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 5a=nF9/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; jA4PDHf+  
    %       y = zernfun(n,m,r(idx),theta(idx)); L7SEswMti  
    %       figure('Units','normalized') n_<mPU  
    %       for k = 1:10 Y.DwtfE  
    %           z(idx) = y(:,k); d32@M~vD  
    %           subplot(4,7,Nplot(k)) S 3R|8?|  
    %           pcolor(x,x,z), shading interp s{yJ:WncI  
    %           set(gca,'XTick',[],'YTick',[]) IYuyj(/!  
    %           axis square $Llta,ULE  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OI~}e,[2z  
    %       end C= >B_EO  
    % .|T2\M  
    %   See also ZERNPOL, ZERNFUN2. j h; 9 [  
    ^fkCyE;=  
    fucUwf\_  
    %   Paul Fricker 11/13/2006 N1PECLS?  
    M[A-1]'  
    0r1g$mKb  
    m'd^?Qc  
    g<f P:/  
    % Check and prepare the inputs: SEYGy+#K  
    % ----------------------------- SV&kWbS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P?uf?{  
        error('zernfun:NMvectors','N and M must be vectors.') #-,g&)`]  
    end <#>Oy&E  
    DYX-5~;!  
    YZ0en1ly  
    if length(n)~=length(m) i#k-)N _$  
        error('zernfun:NMlength','N and M must be the same length.') ]x2Jpk99a  
    end _Aa[?2 O  
    ,NDh@VYe  
    3Q",9(D  
    n = n(:); G OpjRA@  
    m = m(:); fVYiwE=F  
    if any(mod(n-m,2)) d5Qd'  
        error('zernfun:NMmultiplesof2', ... 9x(}F<L  
              'All N and M must differ by multiples of 2 (including 0).') <_t5:3HL  
    end J=):+F=  
    (s0 88O  
    \4aKLr  
    if any(m>n) `Z:3` 7c  
        error('zernfun:MlessthanN', ... )i @1X H"D  
              'Each M must be less than or equal to its corresponding N.') i!L;? `F{  
    end eO'xkm  
    P 4QkY#v  
    tR<L`?4  
    if any( r>1 | r<0 ) L%f;J/  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }hCaNQ&jH  
    end y5_XHi@u~o  
    [g+y_@9s  
    $:e)$Xnn-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A';n6ne%i  
        error('zernfun:RTHvector','R and THETA must be vectors.') )i0 $j)R  
    end +5-]iKh  
    [yC"el6PM  
    $~=2{  
    r = r(:); ;,dkJ7M  
    theta = theta(:); v`SY6;<2  
    length_r = length(r); -Un=T X  
    if length_r~=length(theta) AeaPK  
        error('zernfun:RTHlength', ... E3f9<hm   
              'The number of R- and THETA-values must be equal.') dnwdFsf  
    end qC..\{z  
    *2=W5LaK.  
    {S *!B  
    % Check normalization: izf~w^/  
    % -------------------- 7 W{~f?Sh  
    if nargin==5 && ischar(nflag) O~6Q;qP  
        isnorm = strcmpi(nflag,'norm'); xZyeX34{M;  
        if ~isnorm XCm\z9F  
            error('zernfun:normalization','Unrecognized normalization flag.') H*rx{F?  
        end y@`~9$  
    else sQtf,e|p  
        isnorm = false; LE K/mCL  
    end HlPG3LD!  
    "5}%"-#  
    ]n5"Z,K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a.DX%C /5  
    % Compute the Zernike Polynomials f^?uY8<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% um[!|g/  
    (]XbPW  
    +zsZNJ(U  
    % Determine the required powers of r: xs%LRF# u  
    % ----------------------------------- uY;R8CiD  
    m_abs = abs(m); h@@d{{IqT  
    rpowers = []; bDWeU}  
    for j = 1:length(n) -\Z `z}D  
        rpowers = [rpowers m_abs(j):2:n(j)]; W' ep6O  
    end AK*N  
    rpowers = unique(rpowers); 4\6: \  
    9 mPIykAj8  
    |l7%l&!  
    % Pre-compute the values of r raised to the required powers, 2tf6GX:  
    % and compile them in a matrix: s}ADk-7  
    % ----------------------------- *,lh:  
    if rpowers(1)==0 6/6Rah!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EZib1g&:R/  
        rpowern = cat(2,rpowern{:}); 6IP$n($2  
        rpowern = [ones(length_r,1) rpowern]; Yj|]Uff8O  
    else -CD\+d  "  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RqLNp?V%  
        rpowern = cat(2,rpowern{:}); bxwkTKr'  
    end HH8;J66I&  
    T4r5s  
    ~+HoSXu@E  
    % Compute the values of the polynomials: ~;unpym'  
    % -------------------------------------- OJ/SYZ.r  
    y = zeros(length_r,length(n)); J?%}=_fsa  
    for j = 1:length(n) 7tgFDLA  
        s = 0:(n(j)-m_abs(j))/2; JMlV@t7y<  
        pows = n(j):-2:m_abs(j); *vnXlV4L  
        for k = length(s):-1:1 yN\e{;z`  
            p = (1-2*mod(s(k),2))* ... U -EhPAB@  
                       prod(2:(n(j)-s(k)))/              ... ?2ItB`<(  
                       prod(2:s(k))/                     ... #s2B%X  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3SNL5  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \84v-VK  
            idx = (pows(k)==rpowers); (Z-l/)Q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); mW4%2fD[  
        end O>V(cmqE`  
         `FJ|W6%  
        if isnorm *eUc.MX6x  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); VT=K"`EpQ  
        end fg&eoI'f  
    end -(IC~   
    % END: Compute the Zernike Polynomials =g~j=v ,e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~R.dPUr  
    Ld(NhB'7  
    m^I,}1H4  
    % Compute the Zernike functions: /IR#A%U  
    % ------------------------------ IU!Ht>  
    idx_pos = m>0; Wx]d $_  
    idx_neg = m<0; Mo^`\ /x!  
    f=aIXhiYU  
    6)[< )?A.[  
    z = y; /P+q}L %  
    if any(idx_pos) gyu6YD8L  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r]LCvsVa  
    end o8z)nOTO;  
    if any(idx_neg) kX2d7yQZz  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "&QH6B1U6H  
    end 7=k^M, a  
    >I<PO.c!  
    $}tjS3klr  
    % EOF zernfun kuKa8c  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  kiUk4&1  
    r"wtZ]69  
    DDE还是手动输入的呢? &ab|2*3?X  
    ;ojiJ ?jU  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究