切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9050阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l"RX`N@In  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m'Z233Nt"  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? YNc%[S[u^1  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xb0hJ~e  
    _X;^'mqf~  
    y;Q_8|,F  
    3!Zd]1$  
    Smo^/K`f9  
    function z = zernfun(n,m,r,theta,nflag) ##Z:/SU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. j+]>x]c0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'IP'g,o++  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ir qlU  
    %   unit circle.  N is a vector of positive integers (including 0), and )XMSQ ="m  
    %   M is a vector with the same number of elements as N.  Each element NSHWs%Zc  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) bBAZr`<&U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Sd' uXX@  
    %   and THETA is a vector of angles.  R and THETA must have the same 8U0y86q>)E  
    %   length.  The output Z is a matrix with one column for every (N,M) (S0MqX*  
    %   pair, and one row for every (R,THETA) pair. .x$+R%5U  
    % tvP_LNMF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5Ft bZ1L  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !tCw)cou  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1lfkb1BM  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8NudY3cU!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized -q&VV,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hEsCOcEG  
    % \ lP c,8)  
    %   The Zernike functions are an orthogonal basis on the unit circle. eHF#ME  
    %   They are used in disciplines such as astronomy, optics, and iOPv % [  
    %   optometry to describe functions on a circular domain. \MsAdYR  
    % go m< V?$  
    %   The following table lists the first 15 Zernike functions. c 6}d{B[  
    % JTNQz  
    %       n    m    Zernike function           Normalization @Rj&9/\L  
    %       -------------------------------------------------- _zI9 5  
    %       0    0    1                                 1 mC n,I  
    %       1    1    r * cos(theta)                    2 vi4u `  
    %       1   -1    r * sin(theta)                    2 5xwztcR-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *GbC`X)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ylLQKdcL  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 9bl&\Ykt.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) '{\VO U  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #R"9(Q&  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %CfJ.;BDNE  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C16MzrB}(N  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) l?NRQTG  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b9)%,3-  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) M<r' j $g  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 699z@>$}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) " _jIqj6C  
    %       -------------------------------------------------- {r`l  
    % rhMsZ={M  
    %   Example 1: S h=E.!  
    % ?Vb=W)Es  
    %       % Display the Zernike function Z(n=5,m=1) Ljq/f& c  
    %       x = -1:0.01:1; g[@Kd  
    %       [X,Y] = meshgrid(x,x); dD1`[%  
    %       [theta,r] = cart2pol(X,Y); O}MY:6Pe  
    %       idx = r<=1; yrnB]$hf  
    %       z = nan(size(X)); ^-w:D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7e/Uc!&*  
    %       figure S+R<wv ,6  
    %       pcolor(x,x,z), shading interp }+nC}A"BC  
    %       axis square, colorbar ! o:m*:  
    %       title('Zernike function Z_5^1(r,\theta)') \bCm]w R  
    % lInq=  
    %   Example 2: 24:;vcb  
    % ; @ h{-@  
    %       % Display the first 10 Zernike functions +)^F9LPl  
    %       x = -1:0.01:1; iH#~eg  
    %       [X,Y] = meshgrid(x,x); ;y%lOYm  
    %       [theta,r] = cart2pol(X,Y); `x lsvK>  
    %       idx = r<=1; !X(Lvt/  
    %       z = nan(size(X)); pL]C]HGv  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;tf1 #6{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4HVZ;,q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0AY23/  
    %       y = zernfun(n,m,r(idx),theta(idx)); S]KcAz(fX  
    %       figure('Units','normalized') %:h)8e-;  
    %       for k = 1:10 T3[\;ib}  
    %           z(idx) = y(:,k); ~cz] Rhq  
    %           subplot(4,7,Nplot(k)) ^b~&}uU  
    %           pcolor(x,x,z), shading interp }pbyC  
    %           set(gca,'XTick',[],'YTick',[]) W'E!5T^  
    %           axis square t LdBnf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Cc0`Ylx~(  
    %       end 6`]R)i]  
    % df nmUE  
    %   See also ZERNPOL, ZERNFUN2. &32qv` V_  
    4;M  
    f_Y[I :  
    %   Paul Fricker 11/13/2006 7ks09Cy  
    >-r\]/^  
    rFM`ne<zh  
    Fm3-Sn|Po  
    8 2&JYx  
    % Check and prepare the inputs: p)f OAr  
    % ----------------------------- #E2`KGCzW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AU}lKq7%  
        error('zernfun:NMvectors','N and M must be vectors.') sRE$*^i  
    end e!l!T@ pf  
    5{zXh  
    z:^Kr"=n  
    if length(n)~=length(m) q =b.!AZy  
        error('zernfun:NMlength','N and M must be the same length.') Xj&{M[k<  
    end ]}<.Y[!S  
    ibl^A=  
    -WB? hmx  
    n = n(:); =w?-R\  
    m = m(:); NS#qein~i  
    if any(mod(n-m,2)) iv?'&IUfK  
        error('zernfun:NMmultiplesof2', ... .bB_f7TH.  
              'All N and M must differ by multiples of 2 (including 0).') S6 $S%$  
    end ,cWO Ak  
    82~UI'f \  
    8d-; ;V  
    if any(m>n) -3qB,KT  
        error('zernfun:MlessthanN', ... nR6~oB{-  
              'Each M must be less than or equal to its corresponding N.') 0(Vbji  
    end i`gsT[JQRX  
    h76#HUBr!  
    wHBkaPO!  
    if any( r>1 | r<0 ) E(4ti]'4  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') W:3u$LTf*f  
    end ~{n_rKYV  
    [])M2_  
    Q#}} 1}Ja  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j23OgbI  
        error('zernfun:RTHvector','R and THETA must be vectors.') gu/eC  
    end pCb@4n b  
    J@"Pv~R  
    $ &qB,>5=X  
    r = r(:); j+*VP  
    theta = theta(:); V(L~t=k$  
    length_r = length(r); 8!TbJVR  
    if length_r~=length(theta) H+F?)VX}oA  
        error('zernfun:RTHlength', ... OZbwquF@  
              'The number of R- and THETA-values must be equal.') 29Kuq;6  
    end =oluw|TCe7  
    Z"lL=0rY/  
    3hmuF6y~  
    % Check normalization: x~$P.X7(~  
    % -------------------- $sU?VA'h  
    if nargin==5 && ischar(nflag) ";`ddN3  
        isnorm = strcmpi(nflag,'norm'); )3.udx  
        if ~isnorm 9*[!uu  
            error('zernfun:normalization','Unrecognized normalization flag.') !#rZ eDmw  
        end 7V4 iPx  
    else RT9fp(6*  
        isnorm = false; X-3L4@T:?  
    end T)3#U8sT  
    , ZD!Qb  
    vn .wM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0+/L?J3  
    % Compute the Zernike Polynomials #Jy+:|jJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %N/I;`  
    [dk|lkj@u\  
    VDPqI+z  
    % Determine the required powers of r: Fy`VQ\%7t  
    % ----------------------------------- E-X-LR{CC  
    m_abs = abs(m); ^M,t`r{  
    rpowers = []; kC01s  
    for j = 1:length(n) 56>Zqtp*  
        rpowers = [rpowers m_abs(j):2:n(j)]; l2 gI2Cioa  
    end oMLpl3pl  
    rpowers = unique(rpowers); &'WgBjP  
    n-Dr/c4  
    WN>.+qM~8  
    % Pre-compute the values of r raised to the required powers, g|"z'_  
    % and compile them in a matrix: 5;`([oX|_  
    % ----------------------------- klT6?'S  
    if rpowers(1)==0 \Y>^L{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Lg9]kpOpa  
        rpowern = cat(2,rpowern{:}); bkmX@+Pe  
        rpowern = [ones(length_r,1) rpowern]; q1r\ 60M  
    else `gfK#0x#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4yQ4lU,r  
        rpowern = cat(2,rpowern{:}); j[iJo 5  
    end 7; T S  
    ,{J2i#g<  
    ;f?OT7>kN  
    % Compute the values of the polynomials: *:BN LM  
    % -------------------------------------- )lB-D;3[_  
    y = zeros(length_r,length(n)); @a%,0Wn  
    for j = 1:length(n) %04>R'mN  
        s = 0:(n(j)-m_abs(j))/2; I #1_  
        pows = n(j):-2:m_abs(j); TCmWn$LeE  
        for k = length(s):-1:1 nqgfAQsE)  
            p = (1-2*mod(s(k),2))* ... U!3nn#!yE  
                       prod(2:(n(j)-s(k)))/              ... ?B@hCd)  
                       prod(2:s(k))/                     ... J#Bz )WmR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #kLM=a/_NO  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i;6\tK"!  
            idx = (pows(k)==rpowers); q/Q^\HTk  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <u4GIi <sm  
        end _32ltnBX  
         dH?pQ   
        if isnorm Rv.W~FE^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qpp:h_E  
        end h2=zvD;  
    end Q>TaaGc  
    % END: Compute the Zernike Polynomials {sX*SbJt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LwY_6[Ef  
    [C771~BL>  
    Bfi9%:eG  
    % Compute the Zernike functions: FuEHO6nx  
    % ------------------------------ s15f <sp  
    idx_pos = m>0; KO{}+~,.6  
    idx_neg = m<0; =%2 E|/  
    \sp7[}Sw  
    %}'sFu m`  
    z = y; n[ba  
    if any(idx_pos) $PrzJc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); tG%R_$*  
    end J3$`bK6F6  
    if any(idx_neg) KxJJ?WyM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \+cQiN b@  
    end e m>CSBx  
    Xk7zXah  
    }f6.eqBX4  
    % EOF zernfun ;`F0 %0d  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  C' ny 2>uA  
    Z*`CK^^~  
    DDE还是手动输入的呢? %n{E/06f  
    F lbL`@4M  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究