下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ''tCtG"
Xi
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6o6I]QL
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? K|]/BjB/
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \8g'v@$wG
)\Am:?RH;
g=n{G@ *N
FN\*x:g
_\;0E!=p
function z = zernfun(n,m,r,theta,nflag) *PM#ngLX}r
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. T\q:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S"HdjEF7\
% and angular frequency M, evaluated at positions (R,THETA) on the }p5_JXBV
% unit circle. N is a vector of positive integers (including 0), and r'8qZJgm
% M is a vector with the same number of elements as N. Each element ~bf4_5
% k of M must be a positive integer, with possible values M(k) = -N(k) f\xmv|8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, _0}u0fk
% and THETA is a vector of angles. R and THETA must have the same i]9C"Kw$L
% length. The output Z is a matrix with one column for every (N,M) q#=HBSyM
% pair, and one row for every (R,THETA) pair. ia@ |+r
% s5h}MXIXw
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Y O&@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9k/L m
% with delta(m,0) the Kronecker delta, is chosen so that the integral KrdEB0qh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :er(YWF:
% and theta=0 to theta=2*pi) is unity. For the non-normalized ncrg`<'/,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Hsn'"
% ox*1F+Xri
% The Zernike functions are an orthogonal basis on the unit circle. PzOnS
% They are used in disciplines such as astronomy, optics, and >$,P )cB'
% optometry to describe functions on a circular domain. 1_WP\@O
% Qo32oT[DM
% The following table lists the first 15 Zernike functions. #/_{(P
% >
a;iX.K
% n m Zernike function Normalization X!_&%^L'
% -------------------------------------------------- #N"m[$;QR
% 0 0 1 1 G 9|2
KUG
% 1 1 r * cos(theta) 2 X$e*s\4
% 1 -1 r * sin(theta) 2 ,p{naT%R
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]~2iducB,
% 2 0 (2*r^2 - 1) sqrt(3) |sd G<+
% 2 2 r^2 * sin(2*theta) sqrt(6) :_}xN!9LA
% 3 -3 r^3 * cos(3*theta) sqrt(8) _K}q%In
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Sl/]1[|mb
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,Qx]_gZ`
% 3 3 r^3 * sin(3*theta) sqrt(8) ; [G:
% 4 -4 r^4 * cos(4*theta) sqrt(10) -L+kt_>
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G9NI`]k
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) nNq<x^@83
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v4<W57oH
% 4 4 r^4 * sin(4*theta) sqrt(10) )$RV)
% -------------------------------------------------- )X?oBNsj
% EsGf+-}|!0
% Example 1: ((C|&$@M
% d(|q&b:
% % Display the Zernike function Z(n=5,m=1) E*O($tS
% x = -1:0.01:1; 3CgID6[Sy
% [X,Y] = meshgrid(x,x); l]4=W<N
% [theta,r] = cart2pol(X,Y); XwUa|"X6
% idx = r<=1; ~P#mvQE)
% z = nan(size(X)); /v^'5j1o
% z(idx) = zernfun(5,1,r(idx),theta(idx)); R\|,GZ!`+
% figure 1aQm r=,
% pcolor(x,x,z), shading interp udu<Nis4
% axis square, colorbar VcGl8~#9
% title('Zernike function Z_5^1(r,\theta)') UAPd["`)y
% k:I,$"y4
% Example 2: Pr1qX5> =
% }/dk2!?ig
% % Display the first 10 Zernike functions }[Z'Sg]s
% x = -1:0.01:1; ("\{=XAQ
% [X,Y] = meshgrid(x,x); ] L97k(:Ib
% [theta,r] = cart2pol(X,Y); dzEi^*
(8
% idx = r<=1; u8T@W}FX
% z = nan(size(X)); P&sWn?q Ol
% n = [0 1 1 2 2 2 3 3 3 3]; ~4khIz
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; XjF@kQeM=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; qmFG
% y = zernfun(n,m,r(idx),theta(idx)); -Y@tx fu-
% figure('Units','normalized') a;t}'GQGk
% for k = 1:10 Bhxs(NO
% z(idx) = y(:,k); RI@\cJ\}
% subplot(4,7,Nplot(k)) o>_})WM1[
% pcolor(x,x,z), shading interp R|n
% set(gca,'XTick',[],'YTick',[]) "aOs#4N
% axis square AY{KxCrb^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tGgxI D
% end 2uOYuM[7gH
% i}VF$XN
% See also ZERNPOL, ZERNFUN2. JcWp14~e
]:OrGD"
/QY F|%7!
% Paul Fricker 11/13/2006 4~,Z ' k
I)rO|
4T31<wk
\P*_zd@%
1ZI1+TDH
% Check and prepare the inputs: . :Skc
% ----------------------------- +b(};(wL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Fp/{L
error('zernfun:NMvectors','N and M must be vectors.') rS{}[$Zpl
end #73pryXV
[3jJQ3O,
~Jk&!IE2
if length(n)~=length(m) h+}BtKA
error('zernfun:NMlength','N and M must be the same length.') xj3qOx$
end 1(gs({
hyH[`wiq
$Z:O&sD{
n = n(:); 053bM)qW
m = m(:); #RBrii-,
if any(mod(n-m,2)) j(=w4Sd_W
error('zernfun:NMmultiplesof2', ... {Sf[<I
'All N and M must differ by multiples of 2 (including 0).') C(ij_>
end UGSZg|&6#*
&"^F;z/
a_RY Yj
if any(m>n) 2aj1IBnz6/
error('zernfun:MlessthanN', ... lI<jYd
0fZ
'Each M must be less than or equal to its corresponding N.') ~w?02FU
end =6u@JpOl
oX|T&"&
pR61bl)
if any( r>1 | r<0 ) ^ Oh
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `,qft[1
end BS9VwG<Z
AJ\&>6GZ(b
Cz0FA]-g
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lL}NiN-)t
error('zernfun:RTHvector','R and THETA must be vectors.') Sc7 Ftb%
end N&HI)X2&
QQrldc(I
x4WCAqi/2
r = r(:); ubwM*P
theta = theta(:); Q;]JVT1
length_r = length(r); 'z$$ZEz!C
if length_r~=length(theta) *?FVLE
error('zernfun:RTHlength', ... :W.H#@'(
'The number of R- and THETA-values must be equal.') ,<v0(
end ^%r6+ey
V&*IZt&
;|q<t
% Check normalization: 8!E.3'jb
% -------------------- rfqwxr45h
if nargin==5 && ischar(nflag) qYK^S4L
isnorm = strcmpi(nflag,'norm'); KN}#8.'>3
if ~isnorm x3q^}sj%
error('zernfun:normalization','Unrecognized normalization flag.') MTu\T
end fx;rMGa
else W'C>Fn}lO?
isnorm = false; ~/L:$
end S%iK);
OG5{oH#K
J :O!4gI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8,U~ p<Gz
% Compute the Zernike Polynomials #_DpiiS,.Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fi i(dmn
riIubX#
~<[+!&<U
% Determine the required powers of r: `NIb?/!f
% ----------------------------------- Z)7{~xq
m_abs = abs(m); K2xB%m1LK
rpowers = []; Z>g72I%X
for j = 1:length(n) @Tu`0=8
rpowers = [rpowers m_abs(j):2:n(j)]; E=I'$*C\D
end ji/`OS-iq
rpowers = unique(rpowers); k4']q
`i`P}W!F
``/L18
% Pre-compute the values of r raised to the required powers, 7h\is
% and compile them in a matrix: \@@ G\\)er
% ----------------------------- {8m&Z36E
if rpowers(1)==0 MSCH6R"5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2+&