下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, n;Bb/Z!~
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, h'y"`k-
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^ ` LqNG
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &'6/H/J
3.W[]zH/u
!}Xoqamm
u\LNJo| B
PUQ",;&y1
function z = zernfun(n,m,r,theta,nflag) FjCGD4x1N
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .7Mf(1:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )>@S8v,(
% and angular frequency M, evaluated at positions (R,THETA) on the o z*;q]
% unit circle. N is a vector of positive integers (including 0), and -A#p22D,5
% M is a vector with the same number of elements as N. Each element ; Z:[LJd
% k of M must be a positive integer, with possible values M(k) = -N(k) E/cV59
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, bjVk9XvH6
% and THETA is a vector of angles. R and THETA must have the same 461g7R%r
% length. The output Z is a matrix with one column for every (N,M) SkuR~!
% pair, and one row for every (R,THETA) pair. =g+}4P
% !wp1Df[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f*%kHfaXgN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), BX/3{5Y>{
% with delta(m,0) the Kronecker delta, is chosen so that the integral dN5{W0_
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, h$5[04.Q
% and theta=0 to theta=2*pi) is unity. For the non-normalized
wra0bS)4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (d4btcg
% kN=&"
% The Zernike functions are an orthogonal basis on the unit circle. EE9w^.3a
% They are used in disciplines such as astronomy, optics, and cWW?@_
% optometry to describe functions on a circular domain. @c^ Dl
% I>?oVY6M@u
% The following table lists the first 15 Zernike functions. HH*y$
% J~%43!X\K
% n m Zernike function Normalization 9#9 UzKX#
% -------------------------------------------------- :
UeK0
% 0 0 1 1 8"%Es
% 1 1 r * cos(theta) 2 oC`F1!SfOO
% 1 -1 r * sin(theta) 2 $w(RJ/
% 2 -2 r^2 * cos(2*theta) sqrt(6) NP;W=A F
% 2 0 (2*r^2 - 1) sqrt(3) ,rMDGZm?
% 2 2 r^2 * sin(2*theta) sqrt(6) [ar0{MPYd
% 3 -3 r^3 * cos(3*theta) sqrt(8) eN])qw{
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V'9.l6l
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) gqS9 {K(f
% 3 3 r^3 * sin(3*theta) sqrt(8) mx^Ga=:
?
% 4 -4 r^4 * cos(4*theta) sqrt(10) w_{tS\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +q&Hj|;8r
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) I|rb"bG
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?tYZ/
% 4 4 r^4 * sin(4*theta) sqrt(10) |Gic79b
% -------------------------------------------------- yzN[%/
% NQ`D"n
% Example 1: ;<Q%d~$xy}
% hDxq9EF
% % Display the Zernike function Z(n=5,m=1) (;#c[eKy
% x = -1:0.01:1; ZVgfrvZP
% [X,Y] = meshgrid(x,x); W6<oy
% [theta,r] = cart2pol(X,Y); zT>!xGTu7~
% idx = r<=1; }JFTe
g
% z = nan(size(X)); +vkmS
% z(idx) = zernfun(5,1,r(idx),theta(idx)); l5-[a
% figure s| p I`
% pcolor(x,x,z), shading interp b`X''6
% axis square, colorbar oPi>]#X
% title('Zernike function Z_5^1(r,\theta)') BwT[SI<Sg
% >._d2.Q'
% Example 2: n^nE&'[?0g
% krfXvQJwJ
% % Display the first 10 Zernike functions oz&`3`
% x = -1:0.01:1; 9JFN8Gf*)
% [X,Y] = meshgrid(x,x); BpIyw
% [theta,r] = cart2pol(X,Y); 'dwW~4|B
% idx = r<=1; ~
*&\5rPb
% z = nan(size(X)); _)45G"M
% n = [0 1 1 2 2 2 3 3 3 3]; sqKx?r72
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; JY
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Et3]n$
% y = zernfun(n,m,r(idx),theta(idx)); [rx9gOOa&
% figure('Units','normalized') _V$'nz#>e
% for k = 1:10 7Bj,{9^aJ
% z(idx) = y(:,k); Z8E<^<|
% subplot(4,7,Nplot(k)) vK!`#W`X
% pcolor(x,x,z), shading interp E !!,JnU
% set(gca,'XTick',[],'YTick',[]) x^K4&'</
% axis square ~YH?wdT
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P3"R2-
% end Um+_S@h
% ]c>@RXY'
% See also ZERNPOL, ZERNFUN2. }StzhV{GS
:{a< ~n`
pX%:XpC!h
% Paul Fricker 11/13/2006 gBqDx|G
h:fiUCw
ZN8j})lE
jZ.yt+9
dgP eH8_
% Check and prepare the inputs: 'OnfU{Ai
% ----------------------------- ?("O.<
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n=!T(Hk
error('zernfun:NMvectors','N and M must be vectors.') 1h@qcom9K_
end {]>c3=~FQb
m4m-JD|v
ZO/e!yju
if length(n)~=length(m) {N~mDUoJ|
error('zernfun:NMlength','N and M must be the same length.') hi,="
/9
end ]({-vG\m
u
8o!
m]?Z_*1
n = n(:); IRbyW?/Xv
m = m(:); o^epXIrIPi
if any(mod(n-m,2)) ^t'mW;C$4
error('zernfun:NMmultiplesof2', ... CFFb>d
'All N and M must differ by multiples of 2 (including 0).') n~629 &
end KZ2[.[(Ph
F>\,`wP
CmB_g?K
if any(m>n) Q# hRnM
error('zernfun:MlessthanN', ... _&l8^MD
'Each M must be less than or equal to its corresponding N.') /[TOy2/;%b
end i\CA6I
2_pF#M9
xCZ_x$bk
if any( r>1 | r<0 ) 44e]sT.B
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,g?ny<#o
end =G}a%)?As\
1NP
})OS2F
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yepRJ%mp
error('zernfun:RTHvector','R and THETA must be vectors.') mW{;$@PLF"
end Fizrsr 6%
*z[vp2
TN
bkJ bnW=
r = r(:); |it*w\+M
theta = theta(:); !EIH"`>!
length_r = length(r); 04U|Frc
if length_r~=length(theta) <pk*z9
error('zernfun:RTHlength', ... /D"T\KNWr
'The number of R- and THETA-values must be equal.') bbjba36RO
end <qR$ `mLN
hp)>Nzdx
)#AYb
% Check normalization: oVw4M2!"K
% -------------------- 8
o}5QOW
if nargin==5 && ischar(nflag) O
?T~>|
isnorm = strcmpi(nflag,'norm'); }!^h2)'7
if ~isnorm b_Y+XXb<
error('zernfun:normalization','Unrecognized normalization flag.') Kvg=7o
end .Vt|;P}
else gp9O%g3'
isnorm = false; MNs<yQ9I'
end |Kd6.Mx
ai?uJ}
Q3>qT84
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "dCIg{j
% Compute the Zernike Polynomials E{6ku=2F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v
Z10Rb8
J.rS@Z`~7
|!K&h(J|
% Determine the required powers of r: No\#N/1@P
% -----------------------------------
#4|RaI|.
m_abs = abs(m); !$HuH6_[
rpowers = []; q[/g3D\G
for j = 1:length(n) pXNhU88
rpowers = [rpowers m_abs(j):2:n(j)]; Oi?Q^ISxP
end <@`K^g;W
rpowers = unique(rpowers); m@nGXl'!
@dQr^'h
9>+>s ?IgK
% Pre-compute the values of r raised to the required powers, (NUXK
% and compile them in a matrix: 7h9oY<W
% ----------------------------- [vtDtwL
if rpowers(1)==0 #~j $J
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >]}VD "\
rpowern = cat(2,rpowern{:}); 36'J9h\
rpowern = [ones(length_r,1) rpowern]; b5g^{bzwu
else ip'v<%,Q3"
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _`Kh8G
{e
rpowern = cat(2,rpowern{:}); R&s/s`pLW
end yYOV:3!"
fx 0 8>r
h%:wIkZ/
% Compute the values of the polynomials: N+SA$wG
% -------------------------------------- P9\y~W
y = zeros(length_r,length(n)); y~_x
for j = 1:length(n) ~=wBF
s = 0:(n(j)-m_abs(j))/2; XF{2'x_R
pows = n(j):-2:m_abs(j); $_
$%L0)5
for k = length(s):-1:1 j,,#B4b
p = (1-2*mod(s(k),2))* ... j+<!4 0#
prod(2:(n(j)-s(k)))/ ... >VjtKSN
prod(2:s(k))/ ... lItr*,A]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /XRgsF
prod(2:((n(j)+m_abs(j))/2-s(k))); D622:Y886
idx = (pows(k)==rpowers); e /XOmv
y(:,j) = y(:,j) + p*rpowern(:,idx); ICo Z<;p
end tSDp>0yZ3
X pXhg*}K
if isnorm 2b
{Y1*
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7.5\LTM>9e
end xT9+l1_
end hy"p8j7_
% END: Compute the Zernike Polynomials GmGq69]J*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <.7W:s,f=
a(o[ bH.|;
/7*qa G
% Compute the Zernike functions: lSId<v?C>
% ------------------------------ AMgvk`<f
idx_pos = m>0; nDC5/xB
idx_neg = m<0; BcGQpv&x
]*S_fme
,@gDY9Q3r/
z = y; /=OSGIJzm
if any(idx_pos) of<>M4/g4y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Pb D|7IM
end r52,f%nlm
if any(idx_neg) $PbN=@
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); QQjMC'
end OaxE3bDT
NOmSLIgt7
=TI|uD6T
% EOF zernfun r3 {o_w