切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8957阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, tJZ3P@ L  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'n4 iW  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? S"Mm_<A$@  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Tyt1a>! qA  
    ev%}\^Vl[  
    .V\: )\<|  
    ? EXYLG  
    ^WmP,Xf#  
    function z = zernfun(n,m,r,theta,nflag) 2W vf[2Xw  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. C(lGW,!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2f7]= snCG  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ($*R>*6<x  
    %   unit circle.  N is a vector of positive integers (including 0), and _t;Mi/\P  
    %   M is a vector with the same number of elements as N.  Each element PvqG5-L~W  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) J+=+0{}  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, dI$M9;  
    %   and THETA is a vector of angles.  R and THETA must have the same m<| *  
    %   length.  The output Z is a matrix with one column for every (N,M) B>,&{ah/5J  
    %   pair, and one row for every (R,THETA) pair. Wd/m]]W8Q  
    % cuo'V*nWQ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Jx4"~ 4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kESnlmy@J  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral L&h90Az1W  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4Q n5Mr@<  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4]%v%6 4U  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +'QE-#%{=  
    % v* /}s :a  
    %   The Zernike functions are an orthogonal basis on the unit circle. $g!~T!p=  
    %   They are used in disciplines such as astronomy, optics, and rk .tLk  
    %   optometry to describe functions on a circular domain. 6=i@t tAK  
    % a  C<  
    %   The following table lists the first 15 Zernike functions. 9a lMC  
    % R`!'c(V  
    %       n    m    Zernike function           Normalization Mg76v<mv<  
    %       -------------------------------------------------- i2(lqhaP  
    %       0    0    1                                 1 e!JC5Al7  
    %       1    1    r * cos(theta)                    2 :~{x'`czJ  
    %       1   -1    r * sin(theta)                    2 3X A8\Mg  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,CA3Q.y>|  
    %       2    0    (2*r^2 - 1)                    sqrt(3) U CF'%R  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) mj9r#v3.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) i*-L_!cc:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) }Gg:y?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r&?i>.Kz8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) |$aTJ9 Iq:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) NM:\T1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) AEr8^6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @Ap~Wok  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^t#W?rxp&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) hAv.rjhw_  
    %       -------------------------------------------------- K\a=bA}DG  
    % huw|J<$  
    %   Example 1: /WWD;keP5  
    % Zbobi,  
    %       % Display the Zernike function Z(n=5,m=1) .|Zt&5osI  
    %       x = -1:0.01:1; .S =^)  
    %       [X,Y] = meshgrid(x,x); #Kd^t =k  
    %       [theta,r] = cart2pol(X,Y); ^jxV  
    %       idx = r<=1; Zr U9oy&!C  
    %       z = nan(size(X)); _yJAn\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %qj8*1  
    %       figure g8^YDrH  
    %       pcolor(x,x,z), shading interp DEcsFC/SK  
    %       axis square, colorbar Rx>>0%e.  
    %       title('Zernike function Z_5^1(r,\theta)') \vQjTM-7  
    % eH9Ofhsry  
    %   Example 2: BQTibd  
    % vq&u19iP  
    %       % Display the first 10 Zernike functions JTn\NSa  
    %       x = -1:0.01:1; [TFd|ywn  
    %       [X,Y] = meshgrid(x,x); ++)3*+N+  
    %       [theta,r] = cart2pol(X,Y); q!+&|F  
    %       idx = r<=1; ?6=u[))M&  
    %       z = nan(size(X)); 2Yt+[T*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; V<%eWT)x7C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; jR[3{ Reo  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; E,nxv+AQ  
    %       y = zernfun(n,m,r(idx),theta(idx)); h &R1"  
    %       figure('Units','normalized') +>uiI4g  
    %       for k = 1:10 f8c'`$O  
    %           z(idx) = y(:,k); a\BV%'Zqg  
    %           subplot(4,7,Nplot(k)) ~7}aW#  
    %           pcolor(x,x,z), shading interp WzwH;!  
    %           set(gca,'XTick',[],'YTick',[]) GV"HkE;  
    %           axis square 8:)W!tr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NEb M>1>^  
    %       end BD (Y =g  
    % g* & |Eq/  
    %   See also ZERNPOL, ZERNFUN2. 7\?0d!  
     9AgTrP  
    m\hzQ9  
    %   Paul Fricker 11/13/2006 6|-V{  
    ZgP~VB0)$  
    6yN8 (&`  
    bI_T\Eft  
    zc n/LF  
    % Check and prepare the inputs: qP}187Q1  
    % ----------------------------- k,mgiGrQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e M$NVpS3  
        error('zernfun:NMvectors','N and M must be vectors.') z9B" "ws  
    end x&kM /z?/  
    ;`f14Fb  
    e2 X\ll  
    if length(n)~=length(m) VoTnm   
        error('zernfun:NMlength','N and M must be the same length.') t(R Jc  
    end V4.&"0\n#  
    v, VCbmc  
    d}Y\; '2,  
    n = n(:); _,?<r&>v6  
    m = m(:); Q2L>P<87T  
    if any(mod(n-m,2)) H`:2J8   
        error('zernfun:NMmultiplesof2', ... ,@#))2<RK  
              'All N and M must differ by multiples of 2 (including 0).') Yi5^# G  
    end fUg<+|v*  
    ~g|Z6-?4Jj  
    nbMxQOD k  
    if any(m>n) pmIOV~K  
        error('zernfun:MlessthanN', ... R|&Rq(ow"  
              'Each M must be less than or equal to its corresponding N.') fQkfU;5  
    end 1_of;=9V  
    Mkj`  
    XDtMFig  
    if any( r>1 | r<0 ) 5(+PI KCjC  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') IOjp'6Yr  
    end 6Kbc:wlR  
    xRI7_8Jpyn  
    /~O>He  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =,])xzG%  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0eP ]  
    end sT*D]J 2  
    DT Cwf  
    |}-bMQ|  
    r = r(:); Nf!g1D"U  
    theta = theta(:); \|gE=5!Am=  
    length_r = length(r); BWWO=N  
    if length_r~=length(theta) 3tjF4C>h|  
        error('zernfun:RTHlength', ... @BfJb[A#  
              'The number of R- and THETA-values must be equal.') wigs1  
    end q9h 3/uTv  
    GI[TD?s  
    9Ev<t \B  
    % Check normalization: v><c@a=[  
    % -------------------- 2I|`j^  
    if nargin==5 && ischar(nflag) l+vD`aJ3  
        isnorm = strcmpi(nflag,'norm'); aob+_9o  
        if ~isnorm W0 n?S "  
            error('zernfun:normalization','Unrecognized normalization flag.') X"k:+  
        end )/y7Fh  
    else 'xP&u<(F  
        isnorm = false; a7fFp 9l!  
    end JH|]B|3  
    %A$5mi^  
    @fc-[pv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E-`3}"{  
    % Compute the Zernike Polynomials V'q?+p] a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 28! ke  
    s?5vJ:M Xr  
    1 O?bT,"b  
    % Determine the required powers of r: E^`-:L(_  
    % -----------------------------------  Nt w?~%  
    m_abs = abs(m); V"Sa9P{y"  
    rpowers = []; w:VD[\h  
    for j = 1:length(n) gr^T L1(  
        rpowers = [rpowers m_abs(j):2:n(j)]; j6:jN-z  
    end x##0s5Qn  
    rpowers = unique(rpowers); i< b-$9  
    Pxvf"SXX  
    >lV'}0u)  
    % Pre-compute the values of r raised to the required powers, rHa*WA;TE  
    % and compile them in a matrix: DP8%/CV!*  
    % ----------------------------- ;TC"n!ew  
    if rpowers(1)==0 "OO)m](w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jl"su:y  
        rpowern = cat(2,rpowern{:}); j2RdBoCt  
        rpowern = [ones(length_r,1) rpowern]; }|OwUdE!R9  
    else EvKzpxCh  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I'E7mb<2  
        rpowern = cat(2,rpowern{:}); 2;w`W58  
    end &e6!/y&  
    ~Jh1$O,9o  
    L"tzUYxg  
    % Compute the values of the polynomials: q"e]\Tb=we  
    % -------------------------------------- YvG=P<_xw  
    y = zeros(length_r,length(n)); sR4B/1'E  
    for j = 1:length(n) bgYUsc*uR  
        s = 0:(n(j)-m_abs(j))/2; {ldt/dl~  
        pows = n(j):-2:m_abs(j); DS1{~_>nFu  
        for k = length(s):-1:1 8Drz i!}  
            p = (1-2*mod(s(k),2))* ... agkGUK/  
                       prod(2:(n(j)-s(k)))/              ... WS ^,@>A  
                       prod(2:s(k))/                     ... p/U{*i ]t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;Rljx3!N  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); I<rT\':9  
            idx = (pows(k)==rpowers); 0T7t.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0Lf4 ^9N  
        end VTa%  
         IG Ax+3V  
        if isnorm !pZ<{|cH  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); UDT\Xc  
        end aD+4uGN  
    end Yi j^hs@eV  
    % END: Compute the Zernike Polynomials I.[Lv7U-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iax0V  
    aka)#0l .  
    }P'c8$  
    % Compute the Zernike functions: cLf<YF  
    % ------------------------------ `&9iC 4P  
    idx_pos = m>0; v5\5:b {/  
    idx_neg = m<0; Za,myuI+  
    T& 4f} g/  
    @THa[|(S  
    z = y; <aLS4  
    if any(idx_pos) $XI.`L *g  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [MuZ^'dR  
    end jV[;e15+  
    if any(idx_neg) k1.%ZZMM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); nV`U{}x  
    end ? G`6}NP  
    K)9Rw2-AJ  
    UM/!dt}DnF  
    % EOF zernfun l8khu)\n4R  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ?W{+[OXs  
    X2@Ef2EkM  
    DDE还是手动输入的呢? U8 Zb&6  
    a1~|?PCbY  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究