下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, u<tbbKM
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, +US!YU
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? x_N'TjS^{
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 30#s aGV
_?m(V=z>
y|i,|
0WW2i{7`U
|P
HT694Uz
function z = zernfun(n,m,r,theta,nflag) OUPUixz2Z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. >=I|xY,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _ @NL;w:!
% and angular frequency M, evaluated at positions (R,THETA) on the NdA[C|_8}f
% unit circle. N is a vector of positive integers (including 0), and s^G.]%iU
% M is a vector with the same number of elements as N. Each element |}s*E_/[
% k of M must be a positive integer, with possible values M(k) = -N(k) NqazpB*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, u^+7hkk
% and THETA is a vector of angles. R and THETA must have the same X"|['t
% length. The output Z is a matrix with one column for every (N,M) B
dj!ia;H
% pair, and one row for every (R,THETA) pair. *SbMqASv4G
% OhQgF
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n`?aC|P2s
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gZ3u=uME
% with delta(m,0) the Kronecker delta, is chosen so that the integral _lJ!R:*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, r"3=44St
% and theta=0 to theta=2*pi) is unity. For the non-normalized FF`T\&u
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. shy-Gu&
% K,;E5
% The Zernike functions are an orthogonal basis on the unit circle. wY{-BuXv
% They are used in disciplines such as astronomy, optics, and F3[T.sf
% optometry to describe functions on a circular domain. TTX5EDCrC
% Q2w_X8
% The following table lists the first 15 Zernike functions. j?3wvw6T
% E1aHKjLQ
% n m Zernike function Normalization y{B=-\O]
% -------------------------------------------------- 7?!d^$B
% 0 0 1 1 ?DS@e@lx
% 1 1 r * cos(theta) 2 5K1)1E/Fu
% 1 -1 r * sin(theta) 2 B?gOHG*vd>
% 2 -2 r^2 * cos(2*theta) sqrt(6) lBLARz&c#
% 2 0 (2*r^2 - 1) sqrt(3) k<nZ+! M
% 2 2 r^2 * sin(2*theta) sqrt(6) `t>l:<@%
% 3 -3 r^3 * cos(3*theta) sqrt(8) A7Cm5>Y_S
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `iFmrC<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) #K_ii)n
% 3 3 r^3 * sin(3*theta) sqrt(8) lwxaMjaL4K
% 4 -4 r^4 * cos(4*theta) sqrt(10) })H wh).
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hohfE3rd
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Zgp4`)}:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8+Lm's=W*
% 4 4 r^4 * sin(4*theta) sqrt(10) !3c\NbU
% -------------------------------------------------- [x=s(:qy
% IYE~t
% Example 1: )Yh+c=6
?
% &.)^
%Tp\z
% % Display the Zernike function Z(n=5,m=1) <Uk}o8E
% x = -1:0.01:1; /Vx7mF:
% [X,Y] = meshgrid(x,x); c)6m$5]
% [theta,r] = cart2pol(X,Y); lne4-(DJ
% idx = r<=1; ,a{P4Bq
% z = nan(size(X)); RtkEGxw*^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); DD+7V@
% figure ?um;s-x)
% pcolor(x,x,z), shading interp P[G)sA_"
% axis square, colorbar "b~+;<}Q
% title('Zernike function Z_5^1(r,\theta)') ^&9zw\x;z
% #X+JHl
% Example 2: G=s}12/Z"{
% p;`>e>$
% % Display the first 10 Zernike functions [t m_Mg
% x = -1:0.01:1; pTth}JM>
% [X,Y] = meshgrid(x,x); hIYNhZv
% [theta,r] = cart2pol(X,Y); y;m|
% idx = r<=1; H*?t^
% z = nan(size(X)); @(EAq<5{
% n = [0 1 1 2 2 2 3 3 3 3]; a Yg6H2Un
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Si4!R+4w
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 9R!atPz9
% y = zernfun(n,m,r(idx),theta(idx)); gMi0FO'
% figure('Units','normalized') nI?[rCM
% for k = 1:10 W 8<&gh+
% z(idx) = y(:,k); { T/[cu<
% subplot(4,7,Nplot(k)) d~])K#oJ
% pcolor(x,x,z), shading interp @o].He@L<j
% set(gca,'XTick',[],'YTick',[]) |"q5sym8Y_
% axis square /*(Kr'c
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *P[hy
% end f=+mIZ
% (fH#I tf
% See also ZERNPOL, ZERNFUN2. '0;l]/i.
g i3F`
m
>F|>cc>_E
% Paul Fricker 11/13/2006 aL\PGdgO
&N$<e(K
lf`{zc r:
dohA0
EgEa1l!NSQ
% Check and prepare the inputs: a
K[&V't~
% ----------------------------- \{_q.;}
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7uqzm
error('zernfun:NMvectors','N and M must be vectors.') O0x,lq
end Qab>|eSm
^do9*YejX;
n1ZbRV
if length(n)~=length(m) df8k7D;~e
error('zernfun:NMlength','N and M must be the same length.') q~F|
end c1(RuP:S
{f_={k
5+4IN5o]=
n = n(:); Pjf"CW+A
m = m(:); JJ-( Sl
if any(mod(n-m,2)) ;J( 8
L
error('zernfun:NMmultiplesof2', ... 3lL-)<0A(
'All N and M must differ by multiples of 2 (including 0).') =`oCLsz=
end r.=K~A
@}u*|P*
=osk+uzzG
if any(m>n) C\3rJy(VJ
error('zernfun:MlessthanN', ... Ys9[5@7
'Each M must be less than or equal to its corresponding N.') >{n,L6_t
end H\" sgoJ
>0y'Rgfe
f1RWP@iar
if any( r>1 | r<0 ) wD}l$& +
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Vi$~-6n&
end bTNgjc
JPI3[.o
yf.~XUk^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) / y40(l?
error('zernfun:RTHvector','R and THETA must be vectors.') G^|:N[>B
end Pl06:g2I
8}x:`vDK
e`_LEv
r = r(:); GT.,
theta = theta(:); !x=~g"d<&
length_r = length(r); z]y.W`i
if length_r~=length(theta) wo{gG?B
error('zernfun:RTHlength', ... z=\&i\>;Z+
'The number of R- and THETA-values must be equal.') %)8}X>xq
end Q~]uC2Mw
&vMb_;~B
<?.&^|kS
% Check normalization: [#vH'y
% -------------------- VQt0 4?
if nargin==5 && ischar(nflag) Hyl%mJ
isnorm = strcmpi(nflag,'norm'); ',@3>T**
if ~isnorm ^98~U\ar
error('zernfun:normalization','Unrecognized normalization flag.') /& {A!.;
end K#d`Hyx
else `wEb<H
isnorm = false; `cUl7 'j
end CAWNDl4
e{K 215
xwq
(N_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y\k#*\'Y~
% Compute the Zernike Polynomials 8C:z"@ o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3z?> j]
~rKrpb]ow
hd<c&7|G'
% Determine the required powers of r: F^BS/Yag
% ----------------------------------- lT?v^\(H
m_abs = abs(m); $k%2J9O
rpowers = []; .@U@xRu7|
for j = 1:length(n) s} ;{ZAtE
rpowers = [rpowers m_abs(j):2:n(j)]; 9~XAq^e
end *vxk@`K~
rpowers = unique(rpowers); D=Gtq6jd
WX?IYQ+
*)T^ChD,
% Pre-compute the values of r raised to the required powers, b=NxUd O
% and compile them in a matrix:
?P`K7
% ----------------------------- 7,o7Cf2 z
if rpowers(1)==0 i%]EEVmN
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6SkaH<-&K
rpowern = cat(2,rpowern{:}); "Og7rl
rpowern = [ones(length_r,1) rpowern]; pJ"qu,w
else ]Ie 0S~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Be2DN5)
rpowern = cat(2,rpowern{:}); Ckuh:bs
end 6j]0R*B7`Q
k"iOB-@B+
[!#L6&:a8
% Compute the values of the polynomials: <)c)%'v
% -------------------------------------- |N 7M^
y = zeros(length_r,length(n)); /]Md~=yNp
for j = 1:length(n) &.Qrs:U
s = 0:(n(j)-m_abs(j))/2; Yu^4VXp~M%
pows = n(j):-2:m_abs(j); MaQqs=
for k = length(s):-1:1 P* BmHz4KL
p = (1-2*mod(s(k),2))* ... %RRNJf}z
prod(2:(n(j)-s(k)))/ ... 37.S\gO]
prod(2:s(k))/ ... F_{Yo?_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... oQVgyj.
prod(2:((n(j)+m_abs(j))/2-s(k))); WO>nIo5Y
idx = (pows(k)==rpowers); s)D;a-F
y(:,j) = y(:,j) + p*rpowern(:,idx); $>eCqC3
end c]o'xd,T8\
<^jQo<kU
if isnorm /{n-Y/jp
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vw/J8'
end (vJNHY M
end {ROVvs`
% END: Compute the Zernike Polynomials }V`"s^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y/7\?qfTk
~P**O~
:J&oX
<nF^
% Compute the Zernike functions: Jk
n>S#SZ
% ------------------------------ 4!yzsPJL
idx_pos = m>0; ={&j07,*a
idx_neg = m<0; wc4{)qDE
Kn;"R:
D'DfJwA
z = y; bwMm#f
if any(idx_pos) .[OUI
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !?h;wR
end } (73Syl#
if any(idx_neg) Am|%lj+1z
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K
Z91-
end !z3jTv
ZKTz
,
E*K;H8}s
% EOF zernfun 6?Ji7F