切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9323阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IM~2=+  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, g,5Tr_  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? - |&&lxrwh  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? QetyuhS~  
    7,Q>>%/0P  
    5'[b:YC  
    p6W|4_a?  
    XlU`jv+  
    function z = zernfun(n,m,r,theta,nflag) &X OFc.u  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /~;om\7r  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 59M\uVWR  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y`!Zk$8  
    %   unit circle.  N is a vector of positive integers (including 0), and (<xl _L:*.  
    %   M is a vector with the same number of elements as N.  Each element /}$D&KwYg  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4:Id8r zz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _T.k/a  
    %   and THETA is a vector of angles.  R and THETA must have the same ._US8  
    %   length.  The output Z is a matrix with one column for every (N,M) Hn!13+fS  
    %   pair, and one row for every (R,THETA) pair. 4,qhWe`/  
    % ppK`7J>Z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9._owKj  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0}I aWd^4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 4b :q84  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [,/~*L;7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized bGe@yXId5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *VgiJ  
    % n]fMl:77  
    %   The Zernike functions are an orthogonal basis on the unit circle. {#4F}@Q  
    %   They are used in disciplines such as astronomy, optics, and 3DS&-rN  
    %   optometry to describe functions on a circular domain. g.T:72"  
    % ^K'@W  
    %   The following table lists the first 15 Zernike functions. yJ?S7+b  
    % \*5${[  
    %       n    m    Zernike function           Normalization E8] kd  
    %       -------------------------------------------------- :2(U3~3:  
    %       0    0    1                                 1 -|_MC^)  
    %       1    1    r * cos(theta)                    2 gis;)al  
    %       1   -1    r * sin(theta)                    2 zX}t1:nc  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 20A`]-D  
    %       2    0    (2*r^2 - 1)                    sqrt(3) V(3=j)#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  w0`8el;  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) fm1yZX?`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 6g&Ev'  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) S>V+IKW;(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) b .|k j  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) XsbYWJdds  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =C 7WQ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) YML]pNB  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qPF`=#  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 5)iOG#8qJ  
    %       -------------------------------------------------- omzG/)M:O  
    % 2R];Pv  
    %   Example 1: ce:p*  
    %  HvzXAd  
    %       % Display the Zernike function Z(n=5,m=1)  x>$e*  
    %       x = -1:0.01:1; wGg_ vAn  
    %       [X,Y] = meshgrid(x,x); V;29ieE!  
    %       [theta,r] = cart2pol(X,Y); +o-jMvK9  
    %       idx = r<=1; 7m:ZG  
    %       z = nan(size(X)); 'M!M$<j  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); IRyZ0$r:e\  
    %       figure cPy/}A  
    %       pcolor(x,x,z), shading interp Mqv[7.|  
    %       axis square, colorbar I>JBGR`j  
    %       title('Zernike function Z_5^1(r,\theta)') }\0ei(%H  
    % *WaqNMD[%  
    %   Example 2: qsWy <yL+  
    % LY;Fjb yU  
    %       % Display the first 10 Zernike functions zd|n!3;  
    %       x = -1:0.01:1; 0TWd.+  
    %       [X,Y] = meshgrid(x,x); HT ."J  
    %       [theta,r] = cart2pol(X,Y); sOVU>tb\'  
    %       idx = r<=1; TyhO+;  
    %       z = nan(size(X)); Kv9Z.DY  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0p]v#z}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; z3I |jy1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r4mz   
    %       y = zernfun(n,m,r(idx),theta(idx)); _Wqy,L;J  
    %       figure('Units','normalized') v =d16  
    %       for k = 1:10 )M><09  
    %           z(idx) = y(:,k); gCq'#G\Z  
    %           subplot(4,7,Nplot(k)) D$N;Qb  
    %           pcolor(x,x,z), shading interp =;"=o5g_  
    %           set(gca,'XTick',[],'YTick',[]) V]NCFG  
    %           axis square QQJf;p7  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) d}Q% I  
    %       end YD;G+"n?T  
    % <*(^QOM  
    %   See also ZERNPOL, ZERNFUN2. jn(%v]  
    >L ')0<!&  
    "+E\os72|  
    %   Paul Fricker 11/13/2006 _"*}8{|  
    *:"@  
    +z 4E:v  
    Wdi`Z E  
    u}b%-:-  
    % Check and prepare the inputs: #a9O3C/MP  
    % ----------------------------- Al=ByX@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $,P:B%]  
        error('zernfun:NMvectors','N and M must be vectors.') XBoq/kbw!  
    end w2db=9  
    2+_a<5l~  
    HuJc*op-6  
    if length(n)~=length(m) $<yhEvv  
        error('zernfun:NMlength','N and M must be the same length.') P0pBR_:o  
    end "([/G?QAG  
    |nE4tN#J<  
    @fb"G4o`:  
    n = n(:); xHMFYt+0$G  
    m = m(:); M*f]d`B  
    if any(mod(n-m,2)) s VHk;:e>x  
        error('zernfun:NMmultiplesof2', ... 7Ja*T@ !h  
              'All N and M must differ by multiples of 2 (including 0).') z0OxJe  
    end yM~bUmSg  
    MqJ5|C.q  
    ^qnmKA>"F  
    if any(m>n) YZ`SF"Bd(  
        error('zernfun:MlessthanN', ... GC:q6}  
              'Each M must be less than or equal to its corresponding N.') ES?*w@x  
    end `XpQR=IOMb  
    S*$?~4{R  
    +:"0 %(  
    if any( r>1 | r<0 ) X'-Yz7J?o  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') a ydNSgu  
    end G:p85k `  
    &7oL2 Wf  
    +FAj30  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lPI~5N8  
        error('zernfun:RTHvector','R and THETA must be vectors.') JJM<ywPGp  
    end Px&_6}YWy  
    P:t .Nr"  
    l<BV{Gl  
    r = r(:); 3 ye  
    theta = theta(:); Rq%Kw > {&  
    length_r = length(r); |?s sHW  
    if length_r~=length(theta) ?*%_:fB  
        error('zernfun:RTHlength', ... bi^?SH\  
              'The number of R- and THETA-values must be equal.') ,T`,OZm  
    end #K6cBfqI  
    P/dnH  
    8'HS$J;C  
    % Check normalization: F,{mF2U*$  
    % -------------------- o$buoGSPc  
    if nargin==5 && ischar(nflag) C!a1.&HHZ7  
        isnorm = strcmpi(nflag,'norm'); bD{k=jum  
        if ~isnorm mr^3Y8 $s  
            error('zernfun:normalization','Unrecognized normalization flag.') @(~:JP?KNC  
        end 80wzn,o S  
    else ##*]2Dy  
        isnorm = false; 4G?^#+|^  
    end (rd [tc  
    6oNcj_?7?q  
    \7uM5 k}l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {VL@U$'oI  
    % Compute the Zernike Polynomials yjg&/6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pp s-,*m  
    R2gV(L(!!  
    +7^p d9F.  
    % Determine the required powers of r: v$W[(  
    % ----------------------------------- dy&UF,l6  
    m_abs = abs(m); $KO2+^%y  
    rpowers = []; w_xca(  
    for j = 1:length(n) odsFgh  
        rpowers = [rpowers m_abs(j):2:n(j)]; :Ko6.|  
    end q.VYPkEib  
    rpowers = unique(rpowers); u] };QR  
    RhH 1nf2UR  
    Y~-y\l;Tr  
    % Pre-compute the values of r raised to the required powers, OegeZV  
    % and compile them in a matrix: kkF)Tro\  
    % ----------------------------- >s f g`4  
    if rpowers(1)==0 {P]C>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6 :] N%  
        rpowern = cat(2,rpowern{:}); X,7y|tb  
        rpowern = [ones(length_r,1) rpowern]; &)%+DUV|  
    else S{rltT-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6'r8.~O  
        rpowern = cat(2,rpowern{:}); ViPC Yt`of  
    end IW 3k{z  
    c+9L6}D  
    4hL%J=0:  
    % Compute the values of the polynomials: ?m |}}a  
    % -------------------------------------- '4[=*!hs!  
    y = zeros(length_r,length(n)); l@4_D;b3o"  
    for j = 1:length(n) vxOqo)yO  
        s = 0:(n(j)-m_abs(j))/2; xc:E>-  
        pows = n(j):-2:m_abs(j); <Kd(fFe  
        for k = length(s):-1:1 qN)y-N.LI(  
            p = (1-2*mod(s(k),2))* ... YAr6 cl  
                       prod(2:(n(j)-s(k)))/              ... _rT\?//B  
                       prod(2:s(k))/                     ... %9J@##+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;*<tU n^t  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); T{k P9 4  
            idx = (pows(k)==rpowers); MzJCiX^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); G*fo9eu5$  
        end oJz2-P mX  
         bbK};u  
        if isnorm 5Q?Jm~H9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B`~EA] d  
        end W$rWg>4>  
    end 0 &zp  
    % END: Compute the Zernike Polynomials GXtMX ha,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dcl$?  
    #DTKz]i?  
    zX>W 8P  
    % Compute the Zernike functions: ;c(a)_1  
    % ------------------------------ n~N>;m P  
    idx_pos = m>0; 9DxHdpOk  
    idx_neg = m<0; 2/LSB8n|  
     zUfq.   
    m[9.'@ ye  
    z = y; 2ym(fk.6{  
    if any(idx_pos) rFRcK>X\L  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5)k8(kH  
    end Xwm3# o.&)  
    if any(idx_neg) Da=EAG-{7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8Bf >  
    end BG>Y[u\N  
    ~M C|  
    x84!/n^z  
    % EOF zernfun )dXa:h0RZ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ? <?Ogq"<  
    g~lv/.CnA+  
    DDE还是手动输入的呢? MZgaQUg  
    }:m#}s  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究