切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9000阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, f=k_U[b4>  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, za%gD  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? u6nO\.TTtY  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? rJZR8bo  
    H*j!_>W  
    cY5w,.Q/!  
    ]p8 zT|bv  
    7s0\`eXo/  
    function z = zernfun(n,m,r,theta,nflag) 3v@h&7<E  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0iYo&q'n  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lZAXDxhnT  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Rh}}8 sv  
    %   unit circle.  N is a vector of positive integers (including 0), and 5?MaKNm}  
    %   M is a vector with the same number of elements as N.  Each element ]_BH"ng}  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ZDG~tCh=@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, yk y% +@2q  
    %   and THETA is a vector of angles.  R and THETA must have the same e2e!"kEF  
    %   length.  The output Z is a matrix with one column for every (N,M) G9^xv  
    %   pair, and one row for every (R,THETA) pair. IRGcE&m  
    % :8K}e]!c1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q<j9l'dHG  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \TZSn1isZX  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @9eN\b%I^H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2x>7>;>  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized dz?On\66  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lE gjv,  
    % T|8:_4/l  
    %   The Zernike functions are an orthogonal basis on the unit circle. 0 N"N$f  
    %   They are used in disciplines such as astronomy, optics, and lb$_$+@Vr  
    %   optometry to describe functions on a circular domain. [YP{%1*RM  
    % 55 '  
    %   The following table lists the first 15 Zernike functions. U shIQh  
    % DK eB%k  
    %       n    m    Zernike function           Normalization NRny]!  
    %       -------------------------------------------------- O wuc9  
    %       0    0    1                                 1 #}Yrxf  
    %       1    1    r * cos(theta)                    2 &<x.D]FA]  
    %       1   -1    r * sin(theta)                    2 e!PB3I  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %&_^I*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) w >2sr^!y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) S)g:+P  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 6I: 6+n  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Unv'm5/L  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _P=+\ [|y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) d#TA20`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) n\)1Bz  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `LNhamp  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) j g//I<D  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u7^(?"x  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~|9VVeE  
    %       -------------------------------------------------- 9Vqy<7i1  
    % V y$*v  
    %   Example 1: O!%T<2i3  
    % 76"4Q!  
    %       % Display the Zernike function Z(n=5,m=1) 4d%0a%Z  
    %       x = -1:0.01:1; ,cL;,YN  
    %       [X,Y] = meshgrid(x,x); 2,dWD<h  
    %       [theta,r] = cart2pol(X,Y); (:qc[,m  
    %       idx = r<=1; =w}JAEE|(i  
    %       z = nan(size(X)); ,,BP}f+l$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 6F!B*lr  
    %       figure 9Q^cE\j  
    %       pcolor(x,x,z), shading interp l_/(J)|a  
    %       axis square, colorbar FLs$  
    %       title('Zernike function Z_5^1(r,\theta)') @J&korU  
    % C+uW]]~I)  
    %   Example 2: t))MZw&@  
    % m0 As t<u  
    %       % Display the first 10 Zernike functions EwX&Cj".  
    %       x = -1:0.01:1; w8>h6x "  
    %       [X,Y] = meshgrid(x,x); 5e$1KN`  
    %       [theta,r] = cart2pol(X,Y); );':aX j  
    %       idx = r<=1; tH)j EY9  
    %       z = nan(size(X)); h Fik>B#!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; GkX Se)#p  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; C&>*~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Bp_R"DS7A  
    %       y = zernfun(n,m,r(idx),theta(idx)); BaW4 s4u  
    %       figure('Units','normalized') _<LL@IX  
    %       for k = 1:10 B Z|A&;  
    %           z(idx) = y(:,k); g&c ~grD  
    %           subplot(4,7,Nplot(k)) / n_s"[I4  
    %           pcolor(x,x,z), shading interp z,4mg6gt  
    %           set(gca,'XTick',[],'YTick',[]) gT_KOO0n  
    %           axis square dgF%&*Il]O  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $GFR7YC 7  
    %       end ;5bd<N  
    % i-Rn,}v  
    %   See also ZERNPOL, ZERNFUN2. ey=KAt  
    H:]cBk^[,  
    P2a5<#_|  
    %   Paul Fricker 11/13/2006 [K.1 X=O}  
    >4jE[$p]"  
    Bj1%}B  
    LXK!4(xaW  
    /j$=?Rp  
    % Check and prepare the inputs: GeTk/tU  
    % ----------------------------- a&x:_vv  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) OQ&N]P2p  
        error('zernfun:NMvectors','N and M must be vectors.') VFL^-tXnA^  
    end 9Q%lS  
     >Ua'*  
    ^~;ia7V&2  
    if length(n)~=length(m) N! 7}B  
        error('zernfun:NMlength','N and M must be the same length.') WHY/x /$  
    end R~4X?@ZB  
    80*hi)ux[  
    cx$IWQf2  
    n = n(:); 3$nK   
    m = m(:); Sp80xV_B  
    if any(mod(n-m,2)) Y/kq!)u;%L  
        error('zernfun:NMmultiplesof2', ... x/umwT,ov  
              'All N and M must differ by multiples of 2 (including 0).') D#b*M)X"  
    end \;)g<TwL  
    E7fQ9]  
    a)JXxst  
    if any(m>n) =Z  
        error('zernfun:MlessthanN', ... fz=?QEG  
              'Each M must be less than or equal to its corresponding N.') #m.e9MU  
    end }_]AQN$'G  
    TC?B_;a  
    C7FQc {  
    if any( r>1 | r<0 ) sQa;l]O:NC  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') iPTQqx-m$7  
    end ,Y/B49  
    V.P<>~W  
    Dcvul4Q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TVD~Ix  
        error('zernfun:RTHvector','R and THETA must be vectors.') E$)|Kv^  
    end b&U1^{(  
    }tW-l*\U  
    L/"};VI  
    r = r(:); D*%am|QL  
    theta = theta(:); G%erh}0~  
    length_r = length(r); H2s:M  
    if length_r~=length(theta) X_TjJmc  
        error('zernfun:RTHlength', ... 35& ^spb  
              'The number of R- and THETA-values must be equal.') &u.{]Yjx  
    end KS$t  
    e^Zm09J  
    :5NMgR.d  
    % Check normalization: ^3$l!>me  
    % -------------------- /| v.A\ :  
    if nargin==5 && ischar(nflag) c* {6T}VZr  
        isnorm = strcmpi(nflag,'norm'); _RbfyyaN  
        if ~isnorm *): |WDR  
            error('zernfun:normalization','Unrecognized normalization flag.') 9(N  
        end 1Z# $X`  
    else vA/SrX.  
        isnorm = false; o&?c,FwN  
    end :\OSHs<M  
    ,Xn2xOP  
    &kg^g%%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5*YoK)2J  
    % Compute the Zernike Polynomials  ,&hv x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Hf`i~6  
    0\dmp'j]  
    PM\Ju]  
    % Determine the required powers of r: }>xwiSF?  
    % ----------------------------------- KZppQ0  
    m_abs = abs(m); DKIH{:L7  
    rpowers = []; u\*9\ G  
    for j = 1:length(n) RQ,#TbAe  
        rpowers = [rpowers m_abs(j):2:n(j)]; $Ll9ak}  
    end [3m\~JtS  
    rpowers = unique(rpowers); * 65/gG8>  
    z#tIa  
    o<Zlm)"%1  
    % Pre-compute the values of r raised to the required powers, ]01`r/->\  
    % and compile them in a matrix: {*yvvb  
    % ----------------------------- 3(BL  
    if rpowers(1)==0 *()['c#CC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ],]Rv#`  
        rpowern = cat(2,rpowern{:}); %B%_[<B  
        rpowern = [ones(length_r,1) rpowern];  T~[:oil  
    else OIblBQ!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +4?Lwp'q  
        rpowern = cat(2,rpowern{:}); 6 4_}"fU  
    end UQl?_ [G  
    .vu7$~7  
    t+?Bb7p,H  
    % Compute the values of the polynomials: N<)CG,/w[M  
    % -------------------------------------- M)bQvjj  
    y = zeros(length_r,length(n)); FuHBzBoM=  
    for j = 1:length(n) ';I}6N  
        s = 0:(n(j)-m_abs(j))/2; X7*F~LFr j  
        pows = n(j):-2:m_abs(j); ;+hh|NiQ  
        for k = length(s):-1:1 ~apt, hl  
            p = (1-2*mod(s(k),2))* ... [3Q0KCZ0(  
                       prod(2:(n(j)-s(k)))/              ... ,->ihxf  
                       prod(2:s(k))/                     ... c^r8<KlI9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7[m+r:y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); xs"i_se  
            idx = (pows(k)==rpowers); ]es|%j 2  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <XeDJ8 '  
        end 2/?Zp=|j\  
         ~fXNj-'RW  
        if isnorm uKJ:)oyaCP  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); iuV4xyp  
        end `c Gks  
    end jX7K- L  
    % END: Compute the Zernike Polynomials O/~T+T%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TNu% _ 34  
    ?0Q3F  
    l#0zHBc  
    % Compute the Zernike functions: eb_.@.a  
    % ------------------------------ ('z=/"(l  
    idx_pos = m>0; Z518J46o  
    idx_neg = m<0; QV[&2&&^<<  
    FWW4n_74  
    6qZQ20h  
    z = y; ?_]Y8f  
    if any(idx_pos) s\*p|vc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e9p/y8gC  
    end [MeivrJ+  
    if any(idx_neg) Il =6t  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); eXl?f_9  
    end c^|8qvS $  
    }u^bTR?3  
    2zj` H9  
    % EOF zernfun Ijh RSrCv  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  sVO|Ghy65  
    fN`Prs A  
    DDE还是手动输入的呢? BT:b&"AR[  
    H1 ev W  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究