切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8869阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ja+PVf  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hmr2(f%U  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? L<[%tvV  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? +9R@cUr  
    T!Z).PA#  
    HCZVvsG  
    %SN"<O!  
    9UE)4*5  
    function z = zernfun(n,m,r,theta,nflag) }^zsN`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. X@H/"B%u2  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R 9b0D>Lxt  
    %   and angular frequency M, evaluated at positions (R,THETA) on the W9/HM!  
    %   unit circle.  N is a vector of positive integers (including 0), and gfly?)VnF  
    %   M is a vector with the same number of elements as N.  Each element Q ?R3aJ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) X}_Gk5q*  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DW0N}>Gp*  
    %   and THETA is a vector of angles.  R and THETA must have the same pRGag~h|E  
    %   length.  The output Z is a matrix with one column for every (N,M) vhKHiw9L  
    %   pair, and one row for every (R,THETA) pair. i.0.oy>  
    % 87yZd8+)  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BL1d= %2 R  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /#g P#Z%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral MWJ}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f yhBfA:u  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Tga%-xr+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {YF(6wVl  
    % [K""6D  
    %   The Zernike functions are an orthogonal basis on the unit circle. >Q[3t79^  
    %   They are used in disciplines such as astronomy, optics, and .njk^,N  
    %   optometry to describe functions on a circular domain. 8M8Odz\3 q  
    % lkJ"f{4f  
    %   The following table lists the first 15 Zernike functions. i>%A0.9  
    % W=\45BJ  
    %       n    m    Zernike function           Normalization tx,q=.(  
    %       -------------------------------------------------- XWag+K  
    %       0    0    1                                 1 V2 >+s y  
    %       1    1    r * cos(theta)                    2 U%rq(`;  
    %       1   -1    r * sin(theta)                    2 Fuy"JmeR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) N<^)tR8+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) &.[I}KH|B  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _t?#  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _@OS,A  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =hi{J M  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #MUY!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 7\[)5j  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Nj=0bg"Qg5  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U<I]_]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) RwUosh\W  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K@tELYb  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) O'h f8w  
    %       -------------------------------------------------- rUh2[z8:  
    % ^X ~S}MX  
    %   Example 1: 2hsRYh  
    % W5Vh+'3  
    %       % Display the Zernike function Z(n=5,m=1) z-_$P)[c  
    %       x = -1:0.01:1; qi$nG_<<Z  
    %       [X,Y] = meshgrid(x,x); SA%uGkm:e  
    %       [theta,r] = cart2pol(X,Y); m2[]`Ir^@  
    %       idx = r<=1; L [&|<<c  
    %       z = nan(size(X)); pU1miA '  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); {Kz!)uaC  
    %       figure }U|0F#0$  
    %       pcolor(x,x,z), shading interp Q'rgh+6  
    %       axis square, colorbar V I]~uTV  
    %       title('Zernike function Z_5^1(r,\theta)') +<bvh<]Od  
    % N"s"^}M\  
    %   Example 2: 7n]ukqZ  
    % ^ddC a  
    %       % Display the first 10 Zernike functions @*BVS'\  
    %       x = -1:0.01:1; Mh]4K" cs  
    %       [X,Y] = meshgrid(x,x); m= rMx]k  
    %       [theta,r] = cart2pol(X,Y); OV|n/~  
    %       idx = r<=1; `#4q7v~>oe  
    %       z = nan(size(X)); Rk#p zD  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X 4\V4_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -J>f,zA  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; gO#%*  W  
    %       y = zernfun(n,m,r(idx),theta(idx)); b8**M'k  
    %       figure('Units','normalized') r4Xaa<  
    %       for k = 1:10 {t|Q9&  
    %           z(idx) = y(:,k); ce:wF#Qs  
    %           subplot(4,7,Nplot(k)) .rQcg.8/B  
    %           pcolor(x,x,z), shading interp ;gLOd5*0  
    %           set(gca,'XTick',[],'YTick',[]) v%7Gh -P  
    %           axis square M[cAfu  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1 dOB|  
    %       end `jec|i@oO  
    % .|@2Uf  
    %   See also ZERNPOL, ZERNFUN2. @H}{?-XyA  
    }U?:al/m  
    6Ev+!!znu  
    %   Paul Fricker 11/13/2006 m -0}Pe9L  
    NfZC}  
    ?}HZJ@:lB  
    `aSbGMz  
    4U3 `g  
    % Check and prepare the inputs: Q)\[wYMt  
    % ----------------------------- <?h(Dchq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &FG0v<f5Pv  
        error('zernfun:NMvectors','N and M must be vectors.') ,(f({l[J}  
    end ' pIC~  
    rpc;*t+z  
    JFq<sY!  
    if length(n)~=length(m) *0m|`- T  
        error('zernfun:NMlength','N and M must be the same length.') qp{~OW3  
    end %~P3t=r  
    S[{,+{b0  
    WBR# Ux  
    n = n(:); E:;MI{;7  
    m = m(:); AoY!f'Z  
    if any(mod(n-m,2)) !&5|:96o  
        error('zernfun:NMmultiplesof2', ... /Mj|Px%  
              'All N and M must differ by multiples of 2 (including 0).') :lu"14  
    end 5sSAH  
    7!;zkou  
    &{q<  
    if any(m>n) Ym6v4k!@O  
        error('zernfun:MlessthanN', ... pcQgWjfS  
              'Each M must be less than or equal to its corresponding N.') ^CD? SP"i  
    end js!C`]1  
    BU|)lU5)z  
    ilZQ/hOBH  
    if any( r>1 | r<0 ) '<'5BeU  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') aGAr24]y  
    end >h.HW  
    x4,[5N"}YK  
    7jGfQ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v^ v \6uEP  
        error('zernfun:RTHvector','R and THETA must be vectors.') A)&CI6(  
    end &q M8)2Y  
    J&B5Ll  
    @z:E]O}  
    r = r(:); &8I*N6p:%/  
    theta = theta(:); ,$U~<Zd  
    length_r = length(r); 40z1Qkmaey  
    if length_r~=length(theta) C=2DxdZG  
        error('zernfun:RTHlength', ... <9c{Kt.5(  
              'The number of R- and THETA-values must be equal.') ]@~%i=. 7  
    end eU.C<Tv:8  
    $LcMG,8%_  
    xNa66A-8  
    % Check normalization: !#W3Q  
    % -------------------- i 1Kq (7  
    if nargin==5 && ischar(nflag) /SyAjZ  
        isnorm = strcmpi(nflag,'norm'); ~ _IQ:]k  
        if ~isnorm Sggl*V/q  
            error('zernfun:normalization','Unrecognized normalization flag.') Spn)M79  
        end b|iIdDK  
    else +|x%a2?x:  
        isnorm = false; 4UK>Vzn  
    end I!Mkss xc  
    TI\EkKu"  
    ?{xD{f$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DyA1zwp}  
    % Compute the Zernike Polynomials irP*:QM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `b%^_@Fb  
    N8=-=]0G  
    U* uMMb}$  
    % Determine the required powers of r: l}k'ZX4  
    % ----------------------------------- LI^D\  
    m_abs = abs(m); cl |}0Q5  
    rpowers = []; d(Hqj#`-31  
    for j = 1:length(n) "-j96 KD  
        rpowers = [rpowers m_abs(j):2:n(j)]; N vTp1kI]  
    end T0.sL9  
    rpowers = unique(rpowers); ooP{Q r  
    D&pX0  
    @\M^Zuo  
    % Pre-compute the values of r raised to the required powers, B\l0kiNT  
    % and compile them in a matrix: E`{DX9^  
    % ----------------------------- MBnxF^c&P  
    if rpowers(1)==0 }SyK)W5Y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )-Z*/uF^  
        rpowern = cat(2,rpowern{:}); A PrrUo  
        rpowern = [ones(length_r,1) rpowern]; 3#GIZ L}!x  
    else nZG zez  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <I0om(P  
        rpowern = cat(2,rpowern{:}); wD W/?lT&  
    end 73_-7'^mQ  
    Xq"Es  
    [57`V &c5  
    % Compute the values of the polynomials: g>`D!n::n  
    % -------------------------------------- T)Q_dF.N  
    y = zeros(length_r,length(n)); $ f||!g  
    for j = 1:length(n) fzAkUvo  
        s = 0:(n(j)-m_abs(j))/2; N P5K1:  
        pows = n(j):-2:m_abs(j); JXR]G  
        for k = length(s):-1:1 UPPlm\wb*  
            p = (1-2*mod(s(k),2))* ... [HQ/MkP-Z  
                       prod(2:(n(j)-s(k)))/              ... J,s:CBCGL  
                       prod(2:s(k))/                     ... B]mMwqM#  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... NzN"_ojM  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); KTAQ6k  
            idx = (pows(k)==rpowers); '(ZT }N  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _c-(T&u<  
        end {Z Ld_VGW  
         yS3or(K  
        if isnorm W@zu N)U  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Z|)1ftcC  
        end c>Ri6=C  
    end Nus]]Iy-g  
    % END: Compute the Zernike Polynomials bfpoX,:   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )n[=)"rf  
    (m=1yj9  
    U!E}(9 tb  
    % Compute the Zernike functions: $Il  
    % ------------------------------ {M= *>P]E  
    idx_pos = m>0; ic l]H  
    idx_neg = m<0; B@ ms Gb C  
    x5rLGt  
    rEbH< |  
    z = y; s0 Z)BR #  
    if any(idx_pos) $1Wb`$  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Xn>>hzj-x?  
    end x|()f 3{.  
    if any(idx_neg) r`RLDN!`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }9!}T~NMs  
    end yL -}E  
    T[c-E*{hR  
    #q-fRZ:P  
    % EOF zernfun s I09X6)  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  -pQ?ybQ  
    tT]mMlKJ  
    DDE还是手动输入的呢? v#:?:<  
    }Gx@1)??  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究