切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9217阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, hqdC9?\  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, c8 H9_6  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Cij$GYkv  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &Xj{:s#  
    oUnq"]  
    `M towXj  
    #i'C  
    7[(Lrx.pM  
    function z = zernfun(n,m,r,theta,nflag) L{4),65  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3U :YA&K(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v)wY  
    %   and angular frequency M, evaluated at positions (R,THETA) on the UwvGr h  
    %   unit circle.  N is a vector of positive integers (including 0), and $`-SVC  
    %   M is a vector with the same number of elements as N.  Each element ]Om'naD  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Lg\8NtP   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ,AGM?&A  
    %   and THETA is a vector of angles.  R and THETA must have the same {o Q(<&Aw  
    %   length.  The output Z is a matrix with one column for every (N,M) tg4LE?nv  
    %   pair, and one row for every (R,THETA) pair. u&hDjE  
    %  m^W*[ ^p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !Qj)tS#Az  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a>-}\GXTA  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral W)G2Cs?p  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cij]&$;Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +H2m<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FU [8:o62  
    % # CP9^R S  
    %   The Zernike functions are an orthogonal basis on the unit circle. lq78gOg{  
    %   They are used in disciplines such as astronomy, optics, and __oY:d(~  
    %   optometry to describe functions on a circular domain. LS R_x$G+t  
    % %OezaNOtm  
    %   The following table lists the first 15 Zernike functions. tal>b]B;  
    % M6o xtt4  
    %       n    m    Zernike function           Normalization (9WL+S  
    %       -------------------------------------------------- F:[Nw#gj/  
    %       0    0    1                                 1 (r#5O9|S  
    %       1    1    r * cos(theta)                    2 A1#4nkkc9  
    %       1   -1    r * sin(theta)                    2 =H.<"7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)   2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /r::68_KQP  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 0XBBA0t q  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -$sl!%HO%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) bv:0EdVr  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ;L\!g%a  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T_5*iwI  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ue^?/{OuT  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F1{?]>G  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2yi*eR  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y4)ZUv,}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A$H+4L  
    %       -------------------------------------------------- #2ZrdD"5kQ  
    % ~x +:44*  
    %   Example 1: L:k@BCQM  
    % $w";*">:0  
    %       % Display the Zernike function Z(n=5,m=1) rS,* s'G  
    %       x = -1:0.01:1; 4X(1   
    %       [X,Y] = meshgrid(x,x); f//j{P[  
    %       [theta,r] = cart2pol(X,Y); flm,r<*}  
    %       idx = r<=1; nkr,  
    %       z = nan(size(X)); ^Yf)lV&[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); k`iq<b  
    %       figure 6bA~mC^&  
    %       pcolor(x,x,z), shading interp MZ|c7f&`  
    %       axis square, colorbar //'xR8Z  
    %       title('Zernike function Z_5^1(r,\theta)') b& _i/n(  
    % YDZ1@N}^B  
    %   Example 2: m\}\RnZu  
    % |RvpEy7 6  
    %       % Display the first 10 Zernike functions |~=?vw< W  
    %       x = -1:0.01:1; q6m87O9  
    %       [X,Y] = meshgrid(x,x); ')yF0  
    %       [theta,r] = cart2pol(X,Y); W:;`  
    %       idx = r<=1; F_M~!]<na  
    %       z = nan(size(X));  HPd+Bd  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Tg{dIh.Q~O  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; wZ\e3H z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }ii]c Y  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~; O= 7  
    %       figure('Units','normalized') k{u%p<  
    %       for k = 1:10 ?G%, k LJJ  
    %           z(idx) = y(:,k); 644hQW&W  
    %           subplot(4,7,Nplot(k)) @]VvqCk  
    %           pcolor(x,x,z), shading interp +~pc% 3*  
    %           set(gca,'XTick',[],'YTick',[]) D.oS8'   
    %           axis square 5>z:[OdY*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5  a*'N~  
    %       end Yf2+@E  
    % XM5;AcD  
    %   See also ZERNPOL, ZERNFUN2. +_|cZlQ&  
    (>Q9jNW  
    i5~ /+~  
    %   Paul Fricker 11/13/2006 mG8  
    >FMT#x t  
    83 ^,'Z  
    KSpC%_LC  
    2YP"nj#  
    % Check and prepare the inputs: ?` ZGM  
    % ----------------------------- me}Gb a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |2t7mat  
        error('zernfun:NMvectors','N and M must be vectors.') EuimZW\V  
    end <J_,9&\J  
    <K.C?M(9  
    p6eDd"Y  
    if length(n)~=length(m) XtH_+W+O  
        error('zernfun:NMlength','N and M must be the same length.') ?\p%Mx?   
    end 0.+Z;j  
    $nd-[xV  
    wGQhr="  
    n = n(:); d=5}^v#4  
    m = m(:); |~" A:gf  
    if any(mod(n-m,2)) >J75T1PH=  
        error('zernfun:NMmultiplesof2', ... t%YX-@  
              'All N and M must differ by multiples of 2 (including 0).') Qmc;s{-r;  
    end |9i/)LRXe  
    IM&7h! l"|  
    z1KC$~{O  
    if any(m>n) s? \9i6  
        error('zernfun:MlessthanN', ... a!J ow?(  
              'Each M must be less than or equal to its corresponding N.') Kd[`mkmS  
    end 02 c.;ka3  
    &+r ;>  
    Px?At5  
    if any( r>1 | r<0 ) AYQh=$)(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') [F-u'h< *l  
    end g}og@UY7#  
    =`.5b:e  
    t:j07 ,1~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &T/9y W[L  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9qO:K79|  
    end K}*p(1$u  
    Q_|S^hx Q  
    iO=uXN1g  
    r = r(:); {aa,#B] i  
    theta = theta(:); aKU8" 5  
    length_r = length(r); n7!Lwq2  
    if length_r~=length(theta) 8{=( #]  
        error('zernfun:RTHlength', ... ]~x/8%e76  
              'The number of R- and THETA-values must be equal.') 8P y_Y>  
    end @KRn3$U  
    p){RS q  
    5}^08Xl  
    % Check normalization: n_ NG~ /x  
    % -------------------- n)7$xYuH  
    if nargin==5 && ischar(nflag) ia.B@u1/  
        isnorm = strcmpi(nflag,'norm'); O NzdCgY  
        if ~isnorm yT9RNo/w  
            error('zernfun:normalization','Unrecognized normalization flag.') bIl0rx[`  
        end [67f;?b  
    else Y%cA2V\#m  
        isnorm = false; -OGy-"  
    end Evgq}3  
    7(iRz  
    szs3x-g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vh.tk^&  
    % Compute the Zernike Polynomials ?BZ`mrH^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FrM~6A_  
    Y`p&*O  
    QL!+.y%  
    % Determine the required powers of r: qBrZg  
    % ----------------------------------- T7nX8{l[RG  
    m_abs = abs(m); :v ~q  
    rpowers = []; .Eyk?"^  
    for j = 1:length(n) C^v -&*v  
        rpowers = [rpowers m_abs(j):2:n(j)]; oa|*-nw  
    end !{aA*E{  
    rpowers = unique(rpowers); mP+yjRw  
    5Kxk9{\8  
    siZ_JJW  
    % Pre-compute the values of r raised to the required powers, #EK8Qe_  
    % and compile them in a matrix: 4T\/wyq0  
    % ----------------------------- }n8;A;axi  
    if rpowers(1)==0 dV*rnpN  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \(t>(4s_~  
        rpowern = cat(2,rpowern{:}); ,+evP=(cX  
        rpowern = [ones(length_r,1) rpowern]; 9uoj3Rh<  
    else TmH13N]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;XuE Mq,Di  
        rpowern = cat(2,rpowern{:}); ITPp T  
    end <T[ui  
    p arG  
    RxG./GY  
    % Compute the values of the polynomials: OvG|=  
    % -------------------------------------- 1caod0gor  
    y = zeros(length_r,length(n)); HBGA lZ  
    for j = 1:length(n) UHHKI)(  
        s = 0:(n(j)-m_abs(j))/2; r}Av"  
        pows = n(j):-2:m_abs(j); T<GD!j(  
        for k = length(s):-1:1 mQuaO# I,  
            p = (1-2*mod(s(k),2))* ... (19<8a9G  
                       prod(2:(n(j)-s(k)))/              ... 84cH|j`w  
                       prod(2:s(k))/                     ... K<(sqH  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .?]_yX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \,t<{p_Q  
            idx = (pows(k)==rpowers); 6VE5C g  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ]`9K|v  
        end Xh!Pg)|E  
         P$(}}@  
        if isnorm W4Q]<<6&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ux]@p rAq  
        end xK'IsMo[  
    end ^Z+D7Q  
    % END: Compute the Zernike Polynomials :N:8O^D^<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3&:fS|L~c  
    EOC"a}Cq-  
    yBKlp08J  
    % Compute the Zernike functions: L@GD$F=<0  
    % ------------------------------ 7?#32B Gr  
    idx_pos = m>0; VHNiTp  
    idx_neg = m<0; 1k i"UF/  
    ~cwwB{  
    `^{P,N>X  
    z = y; BT0hx!Ti  
    if any(idx_pos) LXl! !i%  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); L,L7WObA  
    end F tjm@:X  
    if any(idx_neg) NE"fyX`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); G$<0_0GF  
    end gvYs<,:  
    gp2)35  
    nsk 6a  
    % EOF zernfun $S{j}74[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  rfjQx]3pB  
    Ot?rsr  
    DDE还是手动输入的呢? -Q; w4@  
    iaB5t<t1r  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究