切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9462阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +:jT=V"X  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &217l2X /  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? x;BbTBc>  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^%oUmwP<$  
    pF=g||gS  
    ":?T%v>  
    -[#n+`M  
    1ywU@].6J]  
    function z = zernfun(n,m,r,theta,nflag) +zOOdSFk.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. w5~i^x  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ? S=W&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the D>T],3U(H  
    %   unit circle.  N is a vector of positive integers (including 0), and ySN V^+  
    %   M is a vector with the same number of elements as N.  Each element =)<3pGO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {M~lbU  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2C+(":=}  
    %   and THETA is a vector of angles.  R and THETA must have the same ;\)=f6N  
    %   length.  The output Z is a matrix with one column for every (N,M) %I4zQiJ%  
    %   pair, and one row for every (R,THETA) pair. <ZPZk'53<f  
    % J0<p4%Cf  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike \x\.  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :pKG\A  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m24v@?*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]gd/}m)1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized DR+,Y2!_GT  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~\_T5/I%  
    % 2 g`[u|  
    %   The Zernike functions are an orthogonal basis on the unit circle. )BV=|,j  
    %   They are used in disciplines such as astronomy, optics, and $@[)nvV\  
    %   optometry to describe functions on a circular domain. r:l96^xs  
    % pz}mF D&[  
    %   The following table lists the first 15 Zernike functions. ,a(O`##Bn  
    % JAb$M{t  
    %       n    m    Zernike function           Normalization nX x=1*X  
    %       -------------------------------------------------- ;lfWu U%R  
    %       0    0    1                                 1 *=nO  
    %       1    1    r * cos(theta)                    2 NtZ6$o<Y  
    %       1   -1    r * sin(theta)                    2 t3F?>G#y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) fNhT;Bux  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (.^8^uc 7X  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @!H '+c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) C!UEXj`l9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !]DuZ=  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {OxWcK\2@h  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 23E 0~O  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) H @!#;w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]tVl{" .{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Va9q`XbyO  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #MM &BC  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4]BJ0+|mT  
    %       -------------------------------------------------- l BiovT  
    % cF.mb*$K  
    %   Example 1: ,olwwv_8G  
    % d^aNR Lv  
    %       % Display the Zernike function Z(n=5,m=1) {[3YJkrM  
    %       x = -1:0.01:1; @ M[Q$:  
    %       [X,Y] = meshgrid(x,x); NWISS  
    %       [theta,r] = cart2pol(X,Y); m`9^.>]P  
    %       idx = r<=1; |3@=CE7G  
    %       z = nan(size(X)); &:8T$U V  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); m3?e]nL4W  
    %       figure XtW_  
    %       pcolor(x,x,z), shading interp _7 `E[&v  
    %       axis square, colorbar FE6C6dW{  
    %       title('Zernike function Z_5^1(r,\theta)') R~c1)[[E  
    % qc-C>Ra  
    %   Example 2: Y\8+}g;KR  
    %  ^@q#$/z  
    %       % Display the first 10 Zernike functions QN #)F  
    %       x = -1:0.01:1; cdp{W  
    %       [X,Y] = meshgrid(x,x); SQIdJG^:  
    %       [theta,r] = cart2pol(X,Y); 44Qk;8*  
    %       idx = r<=1; 5&%fkZ0  
    %       z = nan(size(X)); @U7Dunu*f  
    %       n = [0  1  1  2  2  2  3  3  3  3]; syMm`/*/G-  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }bgo )<i  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |8;? *s`H  
    %       y = zernfun(n,m,r(idx),theta(idx)); >Fh#DmQ  
    %       figure('Units','normalized') |UZOAGiBg  
    %       for k = 1:10 ^je528%H  
    %           z(idx) = y(:,k); >W~=]&7{s4  
    %           subplot(4,7,Nplot(k)) &?}1AQAYg  
    %           pcolor(x,x,z), shading interp @YNGxg~*g  
    %           set(gca,'XTick',[],'YTick',[]) W^|J/Y48  
    %           axis square ReqE?CeV  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G|V\^.f<  
    %       end m9b(3  
    % i0i`k^bA  
    %   See also ZERNPOL, ZERNFUN2. 7uA\&/ ,  
    ;r=?BbND?  
    M%;"c?g  
    %   Paul Fricker 11/13/2006 >gGil|I  
    cS 4T\{B;  
    Nc"NObe  
    1!s!wQgS  
    @|]G0&gn&?  
    % Check and prepare the inputs: Xiw@  
    % ----------------------------- jRwa0Px(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ytob/tc  
        error('zernfun:NMvectors','N and M must be vectors.') F b2p(.  
    end ip674'bq7R  
    s%bUgO%&  
    l"?]BC~  
    if length(n)~=length(m) ,aYU$~o#  
        error('zernfun:NMlength','N and M must be the same length.') [DL|Ht>  
    end `M6YblnJZ  
    Ba<#1p7_  
    ^K/G5  
    n = n(:); `_ 0)kdu  
    m = m(:); "p`o]$Wv  
    if any(mod(n-m,2)) Djyp3uUA/  
        error('zernfun:NMmultiplesof2', ... m"q/,}DR  
              'All N and M must differ by multiples of 2 (including 0).') |thad!?  
    end a6P!Wzb  
    " C&x ,Ic  
    $oc9 |Q 7  
    if any(m>n) BZ}`4W'  
        error('zernfun:MlessthanN', ... .2/,XwIr  
              'Each M must be less than or equal to its corresponding N.') ?|)rv  
    end )L|C'dJ<k`  
    h9U+ %=^O  
    ,Z?m`cx  
    if any( r>1 | r<0 ) 9Dy)nm^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >Rr!rtc'x  
    end {dDq*sLf  
    /jvO XS\M  
    i5Eeg`NMl  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h^`{ .TlN  
        error('zernfun:RTHvector','R and THETA must be vectors.') cu:-MpE  
    end #*+;B93 )  
     w}"!l G  
    /^~p~HKtx  
    r = r(:); pAMo XJ`  
    theta = theta(:); U>bP}[&S  
    length_r = length(r); jm4)gmC  
    if length_r~=length(theta) \I:UC %  
        error('zernfun:RTHlength', ... /%-o.hT  
              'The number of R- and THETA-values must be equal.') IC\E,m  
    end +J%6bn)U  
    o}d2N/T  
    QZ#3Bn%B5  
    % Check normalization: ys/`{:w8p  
    % -------------------- LPb]mC6#  
    if nargin==5 && ischar(nflag) ,!jR:nApE  
        isnorm = strcmpi(nflag,'norm'); JThk Wx  
        if ~isnorm \f6lT3"VN  
            error('zernfun:normalization','Unrecognized normalization flag.') <\+Po<)3j  
        end 3e#x)H/dr  
    else zI1(F67d`  
        isnorm = false; /7.wQeL9  
    end :fl*w""V@  
    r$94J'_  
    )~1.<((<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D`1I;Tb#  
    % Compute the Zernike Polynomials GOUY_&}tL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZCj>MA  
    ^ b=5 6~[  
    [^h/(a`  
    % Determine the required powers of r: 6-D%)Z(  
    % ----------------------------------- D WsCYo  
    m_abs = abs(m); >+zAWK9  
    rpowers = []; J11dqj  
    for j = 1:length(n) 8''9@xz  
        rpowers = [rpowers m_abs(j):2:n(j)]; ^H f+du  
    end 1!K !oY  
    rpowers = unique(rpowers); FEge+`{,  
    W ]a7&S  
    Y+|L 3'H  
    % Pre-compute the values of r raised to the required powers, -HO6K) ur  
    % and compile them in a matrix: ?,.HA@T%  
    % ----------------------------- 40`9t Xn  
    if rpowers(1)==0 #-l!`\@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V5hp Y ]  
        rpowern = cat(2,rpowern{:}); pE9aT5 L  
        rpowern = [ones(length_r,1) rpowern]; Fcu Eeca  
    else ,e}mR>i=e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J R 8 Z6  
        rpowern = cat(2,rpowern{:}); " 8~f  
    end 8 /:X& &  
    +OV%B .  
    q g) Af  
    % Compute the values of the polynomials: Dx9$H++6$X  
    % -------------------------------------- ^EnNbFI  
    y = zeros(length_r,length(n)); p{\qSPK  
    for j = 1:length(n) sDz)_;;%  
        s = 0:(n(j)-m_abs(j))/2; l4R<`b\Jt  
        pows = n(j):-2:m_abs(j); |H3?ox*  
        for k = length(s):-1:1 <z~2d  
            p = (1-2*mod(s(k),2))* ... RZcx4fL}x  
                       prod(2:(n(j)-s(k)))/              ... m-~V+JU;x  
                       prod(2:s(k))/                     ... r"Hbr Qn  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]%vGC^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); EhmUX@k],  
            idx = (pows(k)==rpowers); ogkz(wZ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 6KBzlj0T+  
        end GN~[xXJU  
         x"zjN'|  
        if isnorm S'v V"  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .=et{\  
        end WF3DGqs_]  
    end KoxGxHz^Y3  
    % END: Compute the Zernike Polynomials yhJA;&}>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4{Yy05PFS  
    oF 1W}DtA  
    UIm[DYMS  
    % Compute the Zernike functions: xPn'yo  
    % ------------------------------ U_ N5~#9   
    idx_pos = m>0; hPEp0("  
    idx_neg = m<0; -Ib+#pX  
    $9 &Q.Kpq>  
    G{&yzHAuae  
    z = y; ci{9ODN  
    if any(idx_pos) 6x (L&>F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); priT 7!  
    end b}}1TnS)  
    if any(idx_neg) [EW$7 se~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Tvksf!ba  
    end 1b %T_a  
    &?5{z\;1"  
    jU3;jm.)  
    % EOF zernfun Ok~W@sYST  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^YJ^+:D(  
    %FWfiFV|<  
    DDE还是手动输入的呢? AUjTcu>i  
    =U7D}n hS-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究