下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, PW%ith1)<
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 5l@}1n
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? q]f7D\ M
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Ep;?%o ,G
R`$jF\"`r
h&i(Kfv*
Cp!9 "J:
GGwwdB\x'
function z = zernfun(n,m,r,theta,nflag) 6(?@B^S>2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. E`HA0/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $#/8l58
% and angular frequency M, evaluated at positions (R,THETA) on the 2vB,{/GXP
% unit circle. N is a vector of positive integers (including 0), and XFs7kTY
% M is a vector with the same number of elements as N. Each element dk1q9Tx
% k of M must be a positive integer, with possible values M(k) = -N(k) 65@GXn[W_
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, f#AuZ]h
% and THETA is a vector of angles. R and THETA must have the same `lm '_~=`&
% length. The output Z is a matrix with one column for every (N,M) X`&Us
% pair, and one row for every (R,THETA) pair. 7}\AhQ, S
% &<#1G
u_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jJYCGK$=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YH%U$eS#g
% with delta(m,0) the Kronecker delta, is chosen so that the integral %#4;'\'5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PDc4ok`)
% and theta=0 to theta=2*pi) is unity. For the non-normalized MW^FY4V1m
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &q4~WRnzJk
% :T6zT3(")D
% The Zernike functions are an orthogonal basis on the unit circle. 8Rw:SU9H?T
% They are used in disciplines such as astronomy, optics, and S+6YD0
% optometry to describe functions on a circular domain. g&B7Y|Es
% ( Ygy%O%
% The following table lists the first 15 Zernike functions. JSh'iYJ.
% O*/Utl
% n m Zernike function Normalization .'+JA:3R
% -------------------------------------------------- Z$Ps_Ik
% 0 0 1 1 wU]8hkl?
% 1 1 r * cos(theta) 2 nf_(_O=
% 1 -1 r * sin(theta) 2 ZFX}=?+
% 2 -2 r^2 * cos(2*theta) sqrt(6) j _E(h.
% 2 0 (2*r^2 - 1) sqrt(3) >4>.
Ycp
% 2 2 r^2 * sin(2*theta) sqrt(6) -"^"& )
% 3 -3 r^3 * cos(3*theta) sqrt(8) R. ryy
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) xXV15%&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Nt<Ac&6
s
% 3 3 r^3 * sin(3*theta) sqrt(8) zhRF>Y`
% 4 -4 r^4 * cos(4*theta) sqrt(10) ou|3%&*"
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hZe9 Y?)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) H lFVc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Um/ g&k
% 4 4 r^4 * sin(4*theta) sqrt(10) S=w ~bz,/
% -------------------------------------------------- z} VCiS0
% =5pwNi_S
% Example 1: J{EK}'
% \FO
4A
% % Display the Zernike function Z(n=5,m=1) uWXxK"J.
% x = -1:0.01:1; kmfz.:j{
% [X,Y] = meshgrid(x,x); L<<v
% [theta,r] = cart2pol(X,Y); eBECY(QMQ
% idx = r<=1; K}S=f\Q]
% z = nan(size(X)); TSL/zTLDJ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); M@.?l=1X
% figure gd31d s!G
% pcolor(x,x,z), shading interp -Xgup,}?
% axis square, colorbar kP~ ;dJD
% title('Zernike function Z_5^1(r,\theta)') #zd}xla0]
% ,n5 [Y)
% Example 2: 5bK:sht
% =PBJ+"DQs
% % Display the first 10 Zernike functions '_=XfTF
% x = -1:0.01:1; "0"8Rp&V|
% [X,Y] = meshgrid(x,x); BxxqzN+
% [theta,r] = cart2pol(X,Y); 5i3nz=~o
% idx = r<=1; V SH64
% z = nan(size(X)); DGAg#jh
% n = [0 1 1 2 2 2 3 3 3 3]; ~65lDFY/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; N;,N6&veK/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; v".u#G'u
% y = zernfun(n,m,r(idx),theta(idx)); #Bn7Cc
% figure('Units','normalized') I1Gk^wO
% for k = 1:10 <J1$s_^`
% z(idx) = y(:,k); ws}>swR,
% subplot(4,7,Nplot(k)) e-{4qt
% pcolor(x,x,z), shading interp >\!>CuU
% set(gca,'XTick',[],'YTick',[]) ^UpwVKdP
% axis square o|a]Q
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QNm.8c$
% end TH}+'m
% P\|i<Ds_M
% See also ZERNPOL, ZERNFUN2. !}uev
myY@Wp
Uw_z9ZL
% Paul Fricker 11/13/2006 h5#V,$
.l&<-l;UQ
Ne,u\q3f
p>]2o\["
W>7 o
ec
% Check and prepare the inputs: Vt,"5c
% ----------------------------- V$ss[fX
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qg@Wzs7c~
error('zernfun:NMvectors','N and M must be vectors.') Mio~CJ"?
end AJH-V
6
B\!.o=<h
jG3i
)ALx
if length(n)~=length(m) |[lM2
error('zernfun:NMlength','N and M must be the same length.') e6?h4}[+*
end s8N\cOd#i
Me*]Bh
,
n = n(:); 7e-l`]
m = m(:); Y|iALrx
if any(mod(n-m,2)) $r=Ud >
error('zernfun:NMmultiplesof2', ... FVcooV
'All N and M must differ by multiples of 2 (including 0).') ^^Tu/YC9x
end Ot}
E
=#<TE~n2(
3l@={Ts
if any(m>n) AiO29<
error('zernfun:MlessthanN', ... sf5koe
'Each M must be less than or equal to its corresponding N.') _,4f z(
end
HRKe 7#e
Et+N4w
Ci
? +Sl
if any( r>1 | r<0 ) ^*]0quu=z
error('zernfun:Rlessthan1','All R must be between 0 and 1.') k iCg+@nT
end b1;80P/:D
Y<S,Xr;J:
/\KB*dX
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) [Hww3+~+
error('zernfun:RTHvector','R and THETA must be vectors.') tXTa>Q
end <3>Ou(F
*lIK?" mo
G =+ sW
r = r(:); a[GlqaQy+-
theta = theta(:); B/Lx,
length_r = length(r); NY
ZPh%x
if length_r~=length(theta) r,x;q
error('zernfun:RTHlength', ... +'x`rk
'The number of R- and THETA-values must be equal.') HBL)_c{/O
end ;
. c]0
}cE,&n
BS#@ehdig
% Check normalization: T%xB|^lf
% -------------------- X] /r'Tz
if nargin==5 && ischar(nflag) }IGr%C(3%
isnorm = strcmpi(nflag,'norm'); @&]j[if(s
if ~isnorm xF_ Y7rw1w
error('zernfun:normalization','Unrecognized normalization flag.') $IQ !g
end 3L4lk8Dd
else $N=A, S
isnorm = false; 3D
k W
end TUiXE~8=
h"')D
xgt dmv%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tp`by
1s
% Compute the Zernike Polynomials ^6ZA2-f/<8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %9=^#e+pE
~OEP)c\k
SN'LUwaMp!
% Determine the required powers of r: +aV>$Y
% -----------------------------------
8KW}XG
m_abs = abs(m); R)#D{/#FW
rpowers = []; atFj Vk^
for j = 1:length(n) ue$\i =jw
rpowers = [rpowers m_abs(j):2:n(j)]; c`y[V6q9
end Sj}@5 X6 C
rpowers = unique(rpowers); <vA^%D<\~
]RQQg,|D
lBL;aTzo
% Pre-compute the values of r raised to the required powers, o;\0xuM@
% and compile them in a matrix: VzMoWD;
% ----------------------------- ]`y4n=L.
if rpowers(1)==0
~-6Kl3Y
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6pQ#Zg()vp
rpowern = cat(2,rpowern{:}); o_EXbS]C
rpowern = [ones(length_r,1) rpowern]; |]]Xee]
else >\$qF
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); abCcZ<=|b
rpowern = cat(2,rpowern{:}); t4UKG&[a
end M>0=A
^C@uP9g
r+>E`GGQ
% Compute the values of the polynomials: U^~K-!0
% -------------------------------------- W9Bl'e
y = zeros(length_r,length(n)); ho@f}4jhQ3
for j = 1:length(n) ^`\c;!)F<
s = 0:(n(j)-m_abs(j))/2; vBQ5-00YY=
pows = n(j):-2:m_abs(j); ~c :e0}
for k = length(s):-1:1 ?U2ed)zzw
p = (1-2*mod(s(k),2))* ... ?Gj$$IAe
prod(2:(n(j)-s(k)))/ ... gV!Eotq
prod(2:s(k))/ ... ^,b*.6t
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aM3%Mx?w
prod(2:((n(j)+m_abs(j))/2-s(k))); E[6JHBE*r
idx = (pows(k)==rpowers); )-[ 2vhXz
y(:,j) = y(:,j) + p*rpowern(:,idx); yK0Q,
end Wb!%_1dER
?a~=CC@
if isnorm 3.Qf^p
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _jK\+Zf
end HPCgv?E3
end <k5FlvE2
% END: Compute the Zernike Polynomials brNe13d3~"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @"kA&=0;|J
N*lq)@smq
av gGz8
% Compute the Zernike functions: RV^2[Gdi
% ------------------------------ ph30 /*8
idx_pos = m>0; bUAjt>+
idx_neg = m<0; %g0"Kj5
/,/T{V[
+yS"pOT
z = y; Nt&}T
if any(idx_pos) u-pE
;|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); g84~d(\?
end } ~=53$+
if any(idx_neg) s:R>uGYOd
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Zx55mSfx:
end hof$0Fg
A!<R?
mh.0%
9`9
% EOF zernfun A,lcR:@w