下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, w7(jSPB
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ckglDhC
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? o
0-3[W'x<
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? U2lDTRt
?qdZ]M4e
\-Oq/g{j
*/T.]^
MPexc5_
function z = zernfun(n,m,r,theta,nflag) \Y>!vh X
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. [K*>W[n
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $@ous4&
% and angular frequency M, evaluated at positions (R,THETA) on the e=8z,.Xk
% unit circle. N is a vector of positive integers (including 0), and QJsud{ada
% M is a vector with the same number of elements as N. Each element U{)|z-n
% k of M must be a positive integer, with possible values M(k) = -N(k) /]_a\x5Ss
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, JUf{;nt
% and THETA is a vector of angles. R and THETA must have the same Q>G lA
% length. The output Z is a matrix with one column for every (N,M) |JR;E$
% pair, and one row for every (R,THETA) pair. 7%%FYHMO:
% UC u4S >
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nB8JdM2h{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), T|/B}srm
% with delta(m,0) the Kronecker delta, is chosen so that the integral na%DF@Rt#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |t1ij'N
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?HsQ417.H
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. viLK\>>
% U1.w%b,
% The Zernike functions are an orthogonal basis on the unit circle. "!fvEE
% They are used in disciplines such as astronomy, optics, and 4!I;U>b b
% optometry to describe functions on a circular domain. *Dz<Pi^
% |?kZfr&9q
% The following table lists the first 15 Zernike functions. tH}$j
% 7jf%-X
% n m Zernike function Normalization M_ GN3
% -------------------------------------------------- P ]prrKZe,
% 0 0 1 1 ssWSY(j]
% 1 1 r * cos(theta) 2 jP{W|9@(
% 1 -1 r * sin(theta) 2 `H^?jX>7
% 2 -2 r^2 * cos(2*theta) sqrt(6) _(TYR*
% 2 0 (2*r^2 - 1) sqrt(3) t$*V*gK{
% 2 2 r^2 * sin(2*theta) sqrt(6) ^T{ww=/v
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1z#0CX}Y/H
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) TqZ&X|G
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [h3y8O
% 3 3 r^3 * sin(3*theta) sqrt(8) 3Mw2;.rk
% 4 -4 r^4 * cos(4*theta) sqrt(10) cc$L56q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :'t+*{ff
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) bSKe@4C
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GOzV#
% 4 4 r^4 * sin(4*theta) sqrt(10) =$^<@-;
% -------------------------------------------------- 6{qI
% >o#^)LN
% Example 1: W l4T}j
% 2f=7`1RCD
% % Display the Zernike function Z(n=5,m=1) IIrXI8'}
% x = -1:0.01:1; }+" N
'
% [X,Y] = meshgrid(x,x); nj@l5[
% [theta,r] = cart2pol(X,Y); ?9?eA^X%
% idx = r<=1; R24ZjbKL
% z = nan(size(X)); =Y0>b4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); >`@c9
m
% figure S]P80|!|
% pcolor(x,x,z), shading interp VgoN=S
% axis square, colorbar :Hn*|+'
% title('Zernike function Z_5^1(r,\theta)') }EW@/; kC
% "]"!"#aMv
% Example 2: N?7vcN+-t)
% p-6(>,+E[
% % Display the first 10 Zernike functions ]Q%|69H}B
% x = -1:0.01:1; UB4 M=R|
% [X,Y] = meshgrid(x,x); T9c=As_EM
% [theta,r] = cart2pol(X,Y); 9 aE.jpN
% idx = r<=1; )/:r$n7
% z = nan(size(X)); f\Fk+)e@
% n = [0 1 1 2 2 2 3 3 3 3]; -d|VXD5N
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; upJ|`,G{
% Nplot = [4 10 12 16 18 20 22 24 26 28]; W/U_:^[-
% y = zernfun(n,m,r(idx),theta(idx)); bhIyq4N
% figure('Units','normalized') 5:=ECtKi
% for k = 1:10 o`!7~n
% z(idx) = y(:,k); XO=UKk+EK
% subplot(4,7,Nplot(k)) _QhB0/C
% pcolor(x,x,z), shading interp @k ~_ w#
% set(gca,'XTick',[],'YTick',[]) GmA5E
% axis square LPOZA`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *@C4~Zo
% end WLb*\
% NWGSUUa
% See also ZERNPOL, ZERNFUN2. =t+{)d.w
) ny,vcU]
CkJU5D
% Paul Fricker 11/13/2006 NW$C1(oT
%/^kr ZD
D-/aS5wM
6Wos6_
&.\|w
% Check and prepare the inputs: ,r,~1oV<"
% ----------------------------- X@ljZ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'm;M+:l
6
error('zernfun:NMvectors','N and M must be vectors.') owA0I'|V-A
end ~vCfMV[F
+Rtz`V1d
%PsDS
if length(n)~=length(m) 0P5!fXs*
error('zernfun:NMlength','N and M must be the same length.') #$vef
end U2 tsHm.O
")q{>tV
pvz*(u
n = n(:); .>(?c92
m = m(:); '.@'^80iQ
if any(mod(n-m,2)) u%^Lu.l_c
error('zernfun:NMmultiplesof2', ... J.`z;0]op
'All N and M must differ by multiples of 2 (including 0).') jU#/yM"Y
end O1o.^i$-M
&wZ ggp
Kb_R "b3v
if any(m>n) !U,^+"l'GP
error('zernfun:MlessthanN', ... 8e'0AI_>
'Each M must be less than or equal to its corresponding N.') =jik33QV<
end m_%1IJ
2u[:3K-@,
nP9@yI*7
if any( r>1 | r<0 ) cx]O#b6B.
error('zernfun:Rlessthan1','All R must be between 0 and 1.') dYg}qad5:
end a0"gt"qA
M y:9
N*PF&MyB
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) imx/hz!
error('zernfun:RTHvector','R and THETA must be vectors.') lR!Sdd} -
end I#Q
Tmg.
)shzJ9G
1}E`K#
r = r(:); o W)M&$oS
theta = theta(:); LzEAA{
length_r = length(r); Ozk^B{{o
if length_r~=length(theta) Yx_[vLm
error('zernfun:RTHlength', ... q8:Z.<%8
'The number of R- and THETA-values must be equal.') K_V44f1f
end r9Ux=W\
WgdL^PN(h
{IeW~S'&
% Check normalization: #vy:aq<bjE
% -------------------- &jg