切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9435阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, h-ii-c?R@0  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, BQ Pmo1B  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? D{B?2}X  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @lj|  
    06Wqfzceb  
    G7&TMg7i  
    rlKR <4H  
    aDRcVA$*  
    function z = zernfun(n,m,r,theta,nflag) 9k;,WU(K<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9DA |;|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Nksm&{=6S  
    %   and angular frequency M, evaluated at positions (R,THETA) on the %.=}v7&<z  
    %   unit circle.  N is a vector of positive integers (including 0), and ~4~r  
    %   M is a vector with the same number of elements as N.  Each element D?_K5a&v,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Ps@']]4>W  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }lp37,  
    %   and THETA is a vector of angles.  R and THETA must have the same Un K7&Uo  
    %   length.  The output Z is a matrix with one column for every (N,M) {FFdMdxy-  
    %   pair, and one row for every (R,THETA) pair. UPGUJ>2Z  
    % ]Y I9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike L/jaUt[,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;B 8Q,.t>x  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >)M1X?HI5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E \/[hT  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 6Pl|FI JF  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3&})gU&a  
    % 5/nL[4Z  
    %   The Zernike functions are an orthogonal basis on the unit circle. >Gpq{Ph[  
    %   They are used in disciplines such as astronomy, optics, and I4@XOwl{P  
    %   optometry to describe functions on a circular domain. -6DRX  
    % q~9-A+n  
    %   The following table lists the first 15 Zernike functions. E:8*o7  
    % =OF hM7  
    %       n    m    Zernike function           Normalization b_TI_  
    %       -------------------------------------------------- EFC+7L(j  
    %       0    0    1                                 1 mce qZv  
    %       1    1    r * cos(theta)                    2 H14Q-2U1xa  
    %       1   -1    r * sin(theta)                    2 op`9(=DJ]  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7k*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) x"q]~u<rB  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) rEWJ3*Hb  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) lkT :e)w  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ;&=jSgr8  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~!Sd|e:4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) CqEbQ>?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3]vVuQK.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |c0^7vrC  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Q*<KX2O  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s\mA3t  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 3=n6N TL  
    %       -------------------------------------------------- P+f}r^4}  
    % "mBM<rEn*  
    %   Example 1: fCUx93,>z  
    % wY ItG"+6  
    %       % Display the Zernike function Z(n=5,m=1) +&7V@  
    %       x = -1:0.01:1; `l]Lvk8O  
    %       [X,Y] = meshgrid(x,x); $!wU [/k  
    %       [theta,r] = cart2pol(X,Y); ^|Z'}p|&  
    %       idx = r<=1; uEb:uENk'(  
    %       z = nan(size(X)); \r:*`Z*y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y%vAEQ2j=  
    %       figure /(8"]f/  
    %       pcolor(x,x,z), shading interp 3T.V*&  
    %       axis square, colorbar `WH$rx!  
    %       title('Zernike function Z_5^1(r,\theta)') 9BZ B1o X  
    % 1,=:an  
    %   Example 2: H_f8/H  
    % !k% PP  
    %       % Display the first 10 Zernike functions m^XO77"  
    %       x = -1:0.01:1; aR3jeB,=x  
    %       [X,Y] = meshgrid(x,x); Kkq-x'gt^  
    %       [theta,r] = cart2pol(X,Y); 3\RD %[}  
    %       idx = r<=1; 7HW:;2dL  
    %       z = nan(size(X)); (.=Y_g.  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Y}BP ]#1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +PE-j| D  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; fSd|6iFH  
    %       y = zernfun(n,m,r(idx),theta(idx)); O$,  
    %       figure('Units','normalized') F#|y,<}<  
    %       for k = 1:10 &v0]{)PO  
    %           z(idx) = y(:,k); ?J2A.x5` a  
    %           subplot(4,7,Nplot(k)) @ ,oc%m  
    %           pcolor(x,x,z), shading interp NpGi3>5  
    %           set(gca,'XTick',[],'YTick',[]) `scW.Vem  
    %           axis square sT1k]duT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KJJ:fG8'  
    %       end 4J[zNB]  
    % 3M?O(oO  
    %   See also ZERNPOL, ZERNFUN2. !EKt$8W  
    9~=zD9,|iA  
    JJ1>)S}X-  
    %   Paul Fricker 11/13/2006 4I&(>9 @z<  
    5yt=~  
    l4$ sku-  
    r&xIVFPI[  
    GmNCw5F  
    % Check and prepare the inputs: O9N!SQs80  
    % ----------------------------- 'eBD/w5U  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \y271}'  
        error('zernfun:NMvectors','N and M must be vectors.') ;B |  
    end LodP,\T  
    }.D18bE(  
    3c#^@Bj(-e  
    if length(n)~=length(m) [@/p 8I  
        error('zernfun:NMlength','N and M must be the same length.') \YJQN3^46>  
    end JcYY*p  
    XSof{:V  
    ~Qif-|[V  
    n = n(:); `vzMuL;  
    m = m(:); J#H,QYnf(L  
    if any(mod(n-m,2)) 4_>;|2  
        error('zernfun:NMmultiplesof2', ... M*n94L=Sg&  
              'All N and M must differ by multiples of 2 (including 0).') OU` !c[O  
    end (D[~Z!   
    z l`m1k-X  
    -ewR:Y@j  
    if any(m>n) n}Eu^^d  
        error('zernfun:MlessthanN', ... tkm@&e=e%  
              'Each M must be less than or equal to its corresponding N.') whe%o  
    end }BW&1*M{  
    S=S/]]e  
    o_=4Ex "  
    if any( r>1 | r<0 ) VWt=9D;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 61QA<Wb  
    end :Nf(:D8  
    19[oXyFI  
    oR`rs[Kj  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #s(ob `0|  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ar~<l2,{r  
    end a5m[ N'kah  
    dm"x?[2:  
    :''Swi<H  
    r = r(:); \kKd:C{  
    theta = theta(:); Qt\:A!'jw  
    length_r = length(r); D&K9!z"]  
    if length_r~=length(theta) Ok)f5")N %  
        error('zernfun:RTHlength', ... (qR;6l  
              'The number of R- and THETA-values must be equal.') GMZ6 dK  
    end 1Hhr6T^)  
    Iao?9,NL9O  
    wAu]U6!  
    % Check normalization: dm_Pz\ *  
    % -------------------- 4W2.K0Ca  
    if nargin==5 && ischar(nflag) 9MJ:]F5+  
        isnorm = strcmpi(nflag,'norm'); *1-0s*T  
        if ~isnorm ^o>WCU=  
            error('zernfun:normalization','Unrecognized normalization flag.') L~h:>I+pG  
        end . WJ  
    else " +{2!  
        isnorm = false; n(LO`{  
    end ;B2&#kot7  
    Nf* .r  
    =Gj~:|;$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pHoxw|'Y  
    % Compute the Zernike Polynomials |;aZi?Ek[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w AdaP9h  
    je#LD  
    Hr]  
    % Determine the required powers of r: ]X7_ji(l,  
    % ----------------------------------- QTF1~A\  
    m_abs = abs(m); ~ [/jk !G  
    rpowers = []; *'-C/  
    for j = 1:length(n) Z s| *+[  
        rpowers = [rpowers m_abs(j):2:n(j)]; ]fh(b)8_,  
    end bM_fuy55Op  
    rpowers = unique(rpowers); 5i{J0/'Xu)  
    c>c4IQ&d  
    zA|lbJz=GY  
    % Pre-compute the values of r raised to the required powers, YsiH=x  
    % and compile them in a matrix: ;InMgo,  
    % ----------------------------- A? jaS9 &)  
    if rpowers(1)==0  xi<}n#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6W]C`  
        rpowern = cat(2,rpowern{:}); d6m&nj  
        rpowern = [ones(length_r,1) rpowern]; 3 AP=  
    else |V}tTx1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .2rpQa/h  
        rpowern = cat(2,rpowern{:}); S+eu3nMq  
    end dF! B5(  
    J.g6<n  
    xf8e"mD  
    % Compute the values of the polynomials: 9P#kV@%(0c  
    % -------------------------------------- n^55G>"0|  
    y = zeros(length_r,length(n)); c":2<:D&  
    for j = 1:length(n) Kn?h  
        s = 0:(n(j)-m_abs(j))/2; }43qpJe8U  
        pows = n(j):-2:m_abs(j); )VG>6x  
        for k = length(s):-1:1 BlT)hG(M>  
            p = (1-2*mod(s(k),2))* ... (<Cg|*s  
                       prod(2:(n(j)-s(k)))/              ... 4 8; b  
                       prod(2:s(k))/                     ... f/.f08  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... DtS7)/<T  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4}0YLwgJ  
            idx = (pows(k)==rpowers); n#?y;Y\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >*^SQ{9  
        end nemC-4}  
         +>Y]1IlI  
        if isnorm J5f}-W@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ?%Q=l;W.  
        end .k up[d(  
    end Ya<V@qd  
    % END: Compute the Zernike Polynomials a>Aq/=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eAQ-r\h'2  
    BG 4TUt  
    d[H`Fe6h  
    % Compute the Zernike functions: :UKc:JVNM  
    % ------------------------------ hv|-`}#0  
    idx_pos = m>0; @L607[!?  
    idx_neg = m<0; mZ?QtyljT  
    u?z,Vs"  
    VS~+W=5}  
    z = y; LH@Kn?R6  
    if any(idx_pos) }KftV nD?  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BoARM{m  
    end m("KLp8  
    if any(idx_neg) < jX5}@`z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u<Ch]m+  
    end "r@G V5ED  
    $.ctlWS8l{  
    64'sJc.   
    % EOF zernfun c|iTRco  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |tFg9RT  
    Ece=loV*l  
    DDE还是手动输入的呢? <4"Bb_U  
    f!B\X*|  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究