切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9026阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, H\ F :95  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, wW>A_{Y  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +^60T$  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ag [ZW  
    jeoz* Dz  
    o#3ly-ht  
    "@V Y  
    h4fJvOk|!  
    function z = zernfun(n,m,r,theta,nflag) E(>=rD/+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,Vc6Gwm  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6' k<+IR  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 9ijfRqI=x  
    %   unit circle.  N is a vector of positive integers (including 0), and J,'M4O\S  
    %   M is a vector with the same number of elements as N.  Each element mE+*)gb:Rd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) em%4Ap  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, fK>L!=Q  
    %   and THETA is a vector of angles.  R and THETA must have the same W=N+VqK  
    %   length.  The output Z is a matrix with one column for every (N,M) fDv2JdiU  
    %   pair, and one row for every (R,THETA) pair. @LF,O}[2J  
    % }T(D7|^R  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <sb~ ^B  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P) Jgs  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral K@ I 9^b  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $*^7iT4q_t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]E5o1eeg  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D+TD 95t  
    % 03$mYS_?  
    %   The Zernike functions are an orthogonal basis on the unit circle. `V}q-Zdy  
    %   They are used in disciplines such as astronomy, optics, and f z'@_4hg  
    %   optometry to describe functions on a circular domain. ZF!h<h&,  
    % Kn5~d(:  
    %   The following table lists the first 15 Zernike functions. ER%^!xA  
    % ~[t[y~Hup  
    %       n    m    Zernike function           Normalization G30-^Tr   
    %       -------------------------------------------------- wON!MhA;  
    %       0    0    1                                 1 ` 'DmDg  
    %       1    1    r * cos(theta)                    2 KjD/o?JUr  
    %       1   -1    r * sin(theta)                    2 T$8)u'-pa  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4>wP7`/+y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) =Qy<GeY  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j\eI0b @*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8SMxw~9$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) T^zXt?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X]ipI$'+C  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /:cd\A}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A#e%^{q$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9SX +  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #|uCgdi  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \[;0 KV_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) /ixp&Z|7  
    %       -------------------------------------------------- ^ gdaa>L  
    % jk;j2YNPw  
    %   Example 1: =>m<GvQz  
    % iDpSj!x/_  
    %       % Display the Zernike function Z(n=5,m=1) pIc#L>{E  
    %       x = -1:0.01:1; tR# OjkvX  
    %       [X,Y] = meshgrid(x,x); 2R[:]-b  
    %       [theta,r] = cart2pol(X,Y); *I B4[6  
    %       idx = r<=1; =O~_Q-  
    %       z = nan(size(X)); Sh/08+@+L:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x'8x   
    %       figure  {y)=eX9  
    %       pcolor(x,x,z), shading interp Fn wJ+GTu  
    %       axis square, colorbar Pd8![Z3  
    %       title('Zernike function Z_5^1(r,\theta)') B`EJb71^Xy  
    % x[cL Bc<  
    %   Example 2: 4VHn  \  
    % R!HXhQ  
    %       % Display the first 10 Zernike functions YX!iL6?~  
    %       x = -1:0.01:1; T~-ycVc  
    %       [X,Y] = meshgrid(x,x); t$`r4Lb9/  
    %       [theta,r] = cart2pol(X,Y); %[GsD9_-  
    %       idx = r<=1; |44Ploz2b  
    %       z = nan(size(X)); kpuz]a7pK  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;xy"\S]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \UA[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Xu{1".\  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]>!K3kB  
    %       figure('Units','normalized') aHD]k8 m z  
    %       for k = 1:10 RTYvS5 G  
    %           z(idx) = y(:,k); HVRZ[Y<^  
    %           subplot(4,7,Nplot(k)) 6W/`07 '  
    %           pcolor(x,x,z), shading interp P1!qbFDv8  
    %           set(gca,'XTick',[],'YTick',[]) [z:!j$K  
    %           axis square YqscZ(L:y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _YRFet[,m  
    %       end 'B |JAi?  
    % ]U+ LJOb  
    %   See also ZERNPOL, ZERNFUN2. _O?`@g?i  
    GblA9F7  
    *tA1az-jO  
    %   Paul Fricker 11/13/2006 =F|{# F  
    Zpt\p7WQ  
    }PlRx6r@  
    Z{*\S0^ST  
    RbB.q p  
    % Check and prepare the inputs: /PVk{3  
    % ----------------------------- &$+AXzn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RU|Q ]Ymx  
        error('zernfun:NMvectors','N and M must be vectors.') 4Z3su^XR  
    end L;z?a Z7n  
     1~gnc|?  
    cVv=*81\  
    if length(n)~=length(m) Da*?x8sSL  
        error('zernfun:NMlength','N and M must be the same length.') <sbu;dQ`  
    end 70?\ugxA  
    f_OQ./`  
    =IZT(8  
    n = n(:); "x0^#AVg  
    m = m(:); s S+MqBh&I  
    if any(mod(n-m,2)) gT. sj d  
        error('zernfun:NMmultiplesof2', ... VD*6g%p  
              'All N and M must differ by multiples of 2 (including 0).') "S[450%  
    end , >a&"V^k  
    "Fr.fhh'~  
    bL`TySX  
    if any(m>n) 6q\bB  
        error('zernfun:MlessthanN', ... dFxIF;C>/  
              'Each M must be less than or equal to its corresponding N.') l:~/<`o  
    end k=$TGqQY?  
    c^xIm'eob  
    LVM%"sd?  
    if any( r>1 | r<0 ) Y(y kng  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >b}o~F^J  
    end mthA4sz  
    g{)dP!}  
    oCv.Ln1;Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R%WCH?B<}  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3pROf#M  
    end QVT5}OzMt  
    a5^] 20Fa  
    ~vhE|f  
    r = r(:); `$IK`O  
    theta = theta(:); Pj^{|U21  
    length_r = length(r); s\(k<Ks  
    if length_r~=length(theta) +)om^e@.  
        error('zernfun:RTHlength', ... 2,oKVm+  
              'The number of R- and THETA-values must be equal.') :S83vE81WK  
    end J4C.+![!Ah  
    fw~Bza\e  
    >2)OiQ`zg  
    % Check normalization: UgSB>V<?  
    % -------------------- wmL'F:UP  
    if nargin==5 && ischar(nflag) qr^3R&z!}  
        isnorm = strcmpi(nflag,'norm'); 8'[7 )I=  
        if ~isnorm ua$GNm  
            error('zernfun:normalization','Unrecognized normalization flag.') f}ji?p  
        end d"mkL-  
    else n,(sBOQ  
        isnorm = false; %(#y 5yJ]  
    end i>A s;*  
    4B1v4g8}  
    %XDc,AR[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /t57!&  
    % Compute the Zernike Polynomials nNV'O(x}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /9*B)m"  
    %N6A+5H  
    x /S}Q8!"}  
    % Determine the required powers of r: 7kLz[N6Ll  
    % ----------------------------------- KP^V>9q  
    m_abs = abs(m); /4V#C-  
    rpowers = []; 6I4\q.^qw  
    for j = 1:length(n) qJs<#MQ2  
        rpowers = [rpowers m_abs(j):2:n(j)]; wu!59pL  
    end sqwGsO$#  
    rpowers = unique(rpowers); zkrM/ @p#  
    @f~RdO3  
    UgN u`$m+  
    % Pre-compute the values of r raised to the required powers, [A~xy'T  
    % and compile them in a matrix: %D34/=(X  
    % ----------------------------- S(l O(gY  
    if rpowers(1)==0 z+wA rPxc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]i)c{y  
        rpowern = cat(2,rpowern{:}); IB"w&sBy  
        rpowern = [ones(length_r,1) rpowern]; '~<m~UXvD#  
    else d#Y^>"|$.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); OA1uY83"  
        rpowern = cat(2,rpowern{:}); u;"TTN  
    end Lc,Pom  
    KnQ*vM*VM  
    3?9IJ5p  
    % Compute the values of the polynomials: RDi]2  
    % -------------------------------------- ~s*)f.l  
    y = zeros(length_r,length(n)); QB uMJm  
    for j = 1:length(n) =pO^7g  
        s = 0:(n(j)-m_abs(j))/2; $\BE&4g  
        pows = n(j):-2:m_abs(j); <n];mfh1  
        for k = length(s):-1:1 cWaSn7p!X  
            p = (1-2*mod(s(k),2))* ... =E4LRKn  
                       prod(2:(n(j)-s(k)))/              ... Egp/f|y  
                       prod(2:s(k))/                     ... n8 i] z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ay ;S4c/_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pfDc9PMj  
            idx = (pows(k)==rpowers); kk@fL  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 61>.vT8P  
        end _x'6]f{n  
         Xll}x+'uZK  
        if isnorm C.yQ=\U2  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); IGQaDFr  
        end T{.pM4Hd  
    end f!uwzHA`?  
    % END: Compute the Zernike Polynomials 3g,`.I_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u(>^3PJ+  
    ]"hFC<w  
    x(6SG+Kr  
    % Compute the Zernike functions: <I\/n<*  
    % ------------------------------ kR-SE5`Jk  
    idx_pos = m>0; hHGoP0/o  
    idx_neg = m<0; <4si/=  
    fI}to&qk  
    36Zf^cFJ  
    z = y; ^e_hLX\SW  
    if any(idx_pos) feDlH[$  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); H9`)BbR  
    end IqaT?+O\?r  
    if any(idx_neg) N=5a54!/  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]?kZni8j_  
    end JV^=v@Z3  
    qFCOUl  
    N1}sHyVq7  
    % EOF zernfun KE5kOU;  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  P[G)sA_"  
    q<x/Hat)  
    DDE还是手动输入的呢? m^!Z_]A![  
    W@M:a  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究