切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8780阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, jZ{S{"j  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, s~]nsqLt9p  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?Y hua9  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? D 1hKjB&  
    KT g$^"\  
    A|>C3S  
    *UyV@  
    "BVz5?  
    function z = zernfun(n,m,r,theta,nflag) yZ!Eu#81  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,^<+5TYM7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N0qC/da1  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Iiy:<c  
    %   unit circle.  N is a vector of positive integers (including 0), and #63/;o:l$  
    %   M is a vector with the same number of elements as N.  Each element rL,)Tc|"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) wl{p,[]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Z?X$8o^Z  
    %   and THETA is a vector of angles.  R and THETA must have the same @Op8^8$`  
    %   length.  The output Z is a matrix with one column for every (N,M) AQiP2`?  
    %   pair, and one row for every (R,THETA) pair. <m6Xh^Ko;  
    % yav)mO~QU6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "=".ne  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PCLSY8N  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hx2C<;s4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KOmP-q=6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized |v1 K@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. | 5L1\O8#  
    % {//F>5~[  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3=<iGX"z  
    %   They are used in disciplines such as astronomy, optics, and `-/l$A} U  
    %   optometry to describe functions on a circular domain. Y(:OfC?  
    % g~y9j88?  
    %   The following table lists the first 15 Zernike functions. n47=eKd70  
    % =3zn Ta }  
    %       n    m    Zernike function           Normalization a:| 4q  
    %       -------------------------------------------------- aW6+Up+G*  
    %       0    0    1                                 1 "aBd0i&  
    %       1    1    r * cos(theta)                    2 >C-_Zv<!T\  
    %       1   -1    r * sin(theta)                    2 >=`c [=:Z_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) n% ` r  
    %       2    0    (2*r^2 - 1)                    sqrt(3) QlS5B.h,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ATzNV=2s  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) b$ x"&&   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) op|mRJBq;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &53#`WgJ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) wqwJpWIe  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kr*c?^b  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) OhW=F2OIV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) n>E*g|a  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YT5>pM-%  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) )PG,K 4z  
    %       -------------------------------------------------- B@;)$1-UT  
    % rq1kj 8%2  
    %   Example 1: &V?q d{39  
    % 6|KX8\, A@  
    %       % Display the Zernike function Z(n=5,m=1) VBX# !K1Q  
    %       x = -1:0.01:1; p\{+l;`  
    %       [X,Y] = meshgrid(x,x); Z M+Hb_6f  
    %       [theta,r] = cart2pol(X,Y); 0lRH Yu  
    %       idx = r<=1; zkp Apj].  
    %       z = nan(size(X)); 2 &Byq  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0v@/I<  
    %       figure F3Y>hs):7  
    %       pcolor(x,x,z), shading interp }R1`ThTM  
    %       axis square, colorbar YSV,q@I&1  
    %       title('Zernike function Z_5^1(r,\theta)') 2*citB{  
    % 99!{[gOv  
    %   Example 2: q`aY.dD=O  
    % O8r"M8  
    %       % Display the first 10 Zernike functions >-w=7,?'?z  
    %       x = -1:0.01:1; Idlu1g  
    %       [X,Y] = meshgrid(x,x); ^-IsK#r.k  
    %       [theta,r] = cart2pol(X,Y); ?nZ <?  
    %       idx = r<=1; d# 3tQ*G/  
    %       z = nan(size(X)); -m160k3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #eC;3Kq#-  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; w"v'dU^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p? ?/r  
    %       y = zernfun(n,m,r(idx),theta(idx)); n r>{ uTa  
    %       figure('Units','normalized') Q$)|/Y))  
    %       for k = 1:10 /Tj"Fl\h  
    %           z(idx) = y(:,k); F36ViN\b  
    %           subplot(4,7,Nplot(k)) b|dCEmFt  
    %           pcolor(x,x,z), shading interp Yg)V*%0n  
    %           set(gca,'XTick',[],'YTick',[]) d=Do@) m|  
    %           axis square (b%y$D  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &^IcL!t[  
    %       end +V9B  
    % z@~&Kwf\}  
    %   See also ZERNPOL, ZERNFUN2. OF&h=1De,  
    z9 w&uZzi  
    U+;>S$  
    %   Paul Fricker 11/13/2006 ^QAiySR`0  
    y5/6nvH_6  
    |WAD $3  
    ch>Vv"G>  
    ~g1, !Wl  
    % Check and prepare the inputs: 3l%,D: ?  
    % ----------------------------- oM<!I0"gC+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 14D 7U/zer  
        error('zernfun:NMvectors','N and M must be vectors.') y|.fR>5  
    end 7"q+"0G  
    y-#  
    MdH97L)L.0  
    if length(n)~=length(m) tKZ&1E  
        error('zernfun:NMlength','N and M must be the same length.') Px?Ao0)Z,  
    end 5!AV!A_Jp  
    =dM.7$6) R  
    D#7_T KX  
    n = n(:); T;!ukGoFP  
    m = m(:); JA)o@[l F  
    if any(mod(n-m,2)) T^$g N|  
        error('zernfun:NMmultiplesof2', ... 1s`)yu^`v  
              'All N and M must differ by multiples of 2 (including 0).') JzMZB"Z?  
    end @8nLQh^  
    ^Cg^ `n?@b  
    ]jc_=I6)  
    if any(m>n) &Vt2be*  
        error('zernfun:MlessthanN', ... :)p)=c8%  
              'Each M must be less than or equal to its corresponding N.') O4EIE)c  
    end d=XpO*v,[  
    't( }Rq@  
    5g``30:o  
    if any( r>1 | r<0 ) ]4Y/xi-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') d(fPECv(  
    end fw' r.  
    o\ngR\>  
    ?j/kOD0  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) '@TI48 J+  
        error('zernfun:RTHvector','R and THETA must be vectors.') H&X:!xa5  
    end JI"/N`-?;b  
    /vjGjb=3U  
    %bP~wl~  
    r = r(:);  {l2N&  
    theta = theta(:); (=1q!c`  
    length_r = length(r); 53 @oP  
    if length_r~=length(theta) (kIz  
        error('zernfun:RTHlength', ... dhHEE|vrz  
              'The number of R- and THETA-values must be equal.') -Z%F mv8  
    end 3J%V%}mD  
    RF_[?O)Q  
    HU &)  
    % Check normalization: yl-fbYH  
    % -------------------- =}JBA>q(  
    if nargin==5 && ischar(nflag) GQN98Y+h  
        isnorm = strcmpi(nflag,'norm'); b5j*xZv  
        if ~isnorm Lt1U+o[ot  
            error('zernfun:normalization','Unrecognized normalization flag.') -bypuMQ-p  
        end  SLkuT`*  
    else lv4(4$T  
        isnorm = false; ~,ynJ]_aJB  
    end W`$[j0  
    !@u&{"{`  
    \a\= gn   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .nEs:yn  
    % Compute the Zernike Polynomials E0QPE5_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fk>l{W}e)  
    T2wv0sHlt  
    ~r<p@k=.#0  
    % Determine the required powers of r: A 4j<\xL  
    % ----------------------------------- R"*R99  
    m_abs = abs(m); HsnG4OE  
    rpowers = []; `(!NYx  
    for j = 1:length(n) GR%{T'ZD`  
        rpowers = [rpowers m_abs(j):2:n(j)]; ic-IN~J-  
    end )1f+ld%R  
    rpowers = unique(rpowers); d$K=c1  
    wcZbmJ:  
    I}+;ME|<2  
    % Pre-compute the values of r raised to the required powers, f&ytK  
    % and compile them in a matrix: ==N` !+  
    % ----------------------------- [Ct=F|  
    if rpowers(1)==0 H`-=?t  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ExCM<$,  
        rpowern = cat(2,rpowern{:}); tMFsA`ng  
        rpowern = [ones(length_r,1) rpowern]; ^ av6HFQ  
    else aG! *WHt  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R}r~p?(M  
        rpowern = cat(2,rpowern{:}); nUc;/  
    end KCUU#t|8V\  
    BwxnDeG)  
    3OP.12^  
    % Compute the values of the polynomials: QR"bYQ  
    % -------------------------------------- B3mS]  
    y = zeros(length_r,length(n)); ',ZF5T5z@  
    for j = 1:length(n) FLZSK:3B]  
        s = 0:(n(j)-m_abs(j))/2; T%(C-Quh  
        pows = n(j):-2:m_abs(j); F;u_7OM  
        for k = length(s):-1:1 ;cKH1  
            p = (1-2*mod(s(k),2))* ... cy|%sf`  
                       prod(2:(n(j)-s(k)))/              ... L-\ =J  
                       prod(2:s(k))/                     ... r`6:Q&&  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g9KTn4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); b,@aqu  
            idx = (pows(k)==rpowers); gn ?YF`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); eA=WGy@IcN  
        end /0lC KU!=  
         )(m0cP{7  
        if isnorm {.CMD9F[  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -(#-I $z  
        end 51by  
    end l Y'N4x7n  
    % END: Compute the Zernike Polynomials CPv iR<ms_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z\? E3j  
    >(3\k iYS  
    OeElMRU"  
    % Compute the Zernike functions: ;..o7I  
    % ------------------------------ pQWHG#?7  
    idx_pos = m>0; por/^=e{Y  
    idx_neg = m<0; j~`\XX{>  
    v`DI<Lt  
    3fr^ T  
    z = y; >w|*ei:@S  
    if any(idx_pos) gfy19c 9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); vl:J40Kfn  
    end >t  <pFh  
    if any(idx_neg) ^Q.,\TL01  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YF[f Z  
    end +(?>-3_z  
    v]"L]/"  
    k<j"~S1  
    % EOF zernfun cpZc9;@IC  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ,_aM`%q?Fj  
    bK"SKV  
    DDE还是手动输入的呢? NL=|z=q  
    QZp6YSz.4  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究