切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9201阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Y 1v9sMN,  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, R*S9[fqC[  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ui:WbH<b{  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? {S l#z }@s  
    ,$4f#)  
    VK)vb.:  
    +)J;4B  
    z8VcV*6  
    function z = zernfun(n,m,r,theta,nflag) <I 5F@pe'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. yzH(\ x  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JCe%;U  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /-FvC^Fj  
    %   unit circle.  N is a vector of positive integers (including 0), and =qWcw7!"  
    %   M is a vector with the same number of elements as N.  Each element 0R21"]L_M  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }Mv$Up  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, |XGj97#M  
    %   and THETA is a vector of angles.  R and THETA must have the same @XJzM]*w&  
    %   length.  The output Z is a matrix with one column for every (N,M) =\ek;d0Tqb  
    %   pair, and one row for every (R,THETA) pair. ]?un'$%e  
    % )G+D6s23  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J]AkWEiCJ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y| dw>qO  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `T#Jiq E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, TWU[/ >K  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized " J4?Sb<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g6D7Y<}d  
    % &m PR[{  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~DL-@*&  
    %   They are used in disciplines such as astronomy, optics, and :q>uj5%  
    %   optometry to describe functions on a circular domain. m=K46i+NE  
    % D!g \-y  
    %   The following table lists the first 15 Zernike functions. Jx+e_k$gHO  
    % |a|##/  
    %       n    m    Zernike function           Normalization ~[Fh+t(Y  
    %       -------------------------------------------------- px=k&|l  
    %       0    0    1                                 1 }VU7wMk  
    %       1    1    r * cos(theta)                    2 LlF|VR&P.  
    %       1   -1    r * sin(theta)                    2 4 (>8tP\Y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #TG7WF 5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B]nu \!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [QZ8M@Gty#  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @{ CP18~:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) i6-&$<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) G<m6Sf  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (?vKe5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) qX"m"ko  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qK jUp"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8mn zxtk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zI& ).  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) X[E!q$ag  
    %       -------------------------------------------------- ?y|8bw<  
    % 3E$h W  
    %   Example 1: FdE9k\E#/)  
    % +\GuZ5`  
    %       % Display the Zernike function Z(n=5,m=1) gk^`-`P  
    %       x = -1:0.01:1; s~b!3l`gu  
    %       [X,Y] = meshgrid(x,x); 3bK=Q3N  
    %       [theta,r] = cart2pol(X,Y); w:|YOeP  
    %       idx = r<=1; VthM`~3  
    %       z = nan(size(X)); i}_d&.DbF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); # n\|Q\W  
    %       figure /zTx+U.\I  
    %       pcolor(x,x,z), shading interp WW3! ,ln_  
    %       axis square, colorbar sOBuJx${m  
    %       title('Zernike function Z_5^1(r,\theta)') |Qz"Z<sNYw  
    % Sd?+j;/"  
    %   Example 2: (jtkY_  
    % '(fCi  
    %       % Display the first 10 Zernike functions pP^"p"<s  
    %       x = -1:0.01:1; b l]YPx8  
    %       [X,Y] = meshgrid(x,x); 3BK_$Fy  
    %       [theta,r] = cart2pol(X,Y); r.10b]b  
    %       idx = r<=1; <,+6:NmT  
    %       z = nan(size(X)); 'l41];_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; yoVN|5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 1vL$k[^&d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; NVG`XL  
    %       y = zernfun(n,m,r(idx),theta(idx)); |n %<p  
    %       figure('Units','normalized') n1@ Or=5  
    %       for k = 1:10 dY$jg  
    %           z(idx) = y(:,k); V?C_PMa  
    %           subplot(4,7,Nplot(k)) e*/ya8p?  
    %           pcolor(x,x,z), shading interp tg%C>O  
    %           set(gca,'XTick',[],'YTick',[]) 3=Va0}#&  
    %           axis square 0qk.NPMB0  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tbq_ Rg7s  
    %       end zE_t(B(Q  
    % _^Lg}@t  
    %   See also ZERNPOL, ZERNFUN2. mqv!"rk'w  
    d A' h7D  
    OJ4-p&1  
    %   Paul Fricker 11/13/2006 ~glFB`?[  
    BGZvgMxLJ  
    -"X} )N2  
    n 7 m!   
    SPY4l*kX  
    % Check and prepare the inputs: Tx0l^(n  
    % ----------------------------- &xjeZh4-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '<KzWxuC  
        error('zernfun:NMvectors','N and M must be vectors.') dD}!E  
    end t.tdY  
    lL6qK&;  
    G)wIxm$?0  
    if length(n)~=length(m) ^p!4`S  
        error('zernfun:NMlength','N and M must be the same length.')  zFk@Y  
    end y1zep\-D  
    ?$\y0lHw/7  
    WX9pJ9d  
    n = n(:); KqT~MPl  
    m = m(:); #$(wfb9  
    if any(mod(n-m,2)) #p^r)+\3=  
        error('zernfun:NMmultiplesof2', ... OJ\rT.{  
              'All N and M must differ by multiples of 2 (including 0).') 4!r> ^a  
    end gH zjI[WI  
    M[ZuXH}  
    )B' U_*  
    if any(m>n) ;o0o6pF  
        error('zernfun:MlessthanN', ... *tZ#^YG{(  
              'Each M must be less than or equal to its corresponding N.') -?AaRwZ,  
    end N~A#itmdx  
    \ml6B6  
    5`3f"(ay/  
    if any( r>1 | r<0 ) 8!AMRE  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') j']Q-s(s  
    end 4MOA}FZ~  
    YJ{d\j  
    aE2 3[So  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) umWZ]8  
        error('zernfun:RTHvector','R and THETA must be vectors.') WsCzC_'j.  
    end 8Bnw//_pT  
    V6ioQx=K#  
    b!' bu  
    r = r(:); R.)U<`||  
    theta = theta(:); fJ3qL# '  
    length_r = length(r); uPpRzp  
    if length_r~=length(theta) y'k4>,`9e  
        error('zernfun:RTHlength', ... I({ 7a i  
              'The number of R- and THETA-values must be equal.') [+st?;"GF  
    end |k4ZTr]?  
    zA/W+j$:  
    Q nqU!6k@  
    % Check normalization: #dGg !D  
    % -------------------- r4xq%hy  
    if nargin==5 && ischar(nflag) AOaf,ZF 8  
        isnorm = strcmpi(nflag,'norm'); nA]dQ+5sT  
        if ~isnorm Y e}y_W  
            error('zernfun:normalization','Unrecognized normalization flag.') =;3|?J0=  
        end []Z| *+=Q  
    else [vaG{4m  
        isnorm = false; *X;g Y  
    end ;61m  
    Xklp6{VH9  
    j1>77C3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~5wCehSb  
    % Compute the Zernike Polynomials j$]t`6gG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FJ}QKDQW=  
    3A} n tA!  
    #V8='qD  
    % Determine the required powers of r: 00G[ `a5  
    % ----------------------------------- r`cCHZo/V  
    m_abs = abs(m); V]PTAhc  
    rpowers = []; +WwQ!vWWd  
    for j = 1:length(n) Te> 7I  
        rpowers = [rpowers m_abs(j):2:n(j)]; ryx<^q  
    end F ,{nG[PL  
    rpowers = unique(rpowers); _}!Q4K  
    zoOm[X=?3  
    vfegIoZ  
    % Pre-compute the values of r raised to the required powers, ;8g#"p*&  
    % and compile them in a matrix: va;d[D,  
    % ----------------------------- wrn[q{dX  
    if rpowers(1)==0 (>0d+ KT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZrA\a#z"<  
        rpowern = cat(2,rpowern{:}); y::;e#.  
        rpowern = [ones(length_r,1) rpowern]; SQ5*?u\  
    else (7ew&u\Li  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~ilbW|s?=k  
        rpowern = cat(2,rpowern{:});  fV}\  
    end FZA8@J|Q4  
    /p>"|z  
    ]jHB'Y  
    % Compute the values of the polynomials: 8`VMdo9  
    % -------------------------------------- ~:)$~g7>b  
    y = zeros(length_r,length(n)); I/WnF"yP  
    for j = 1:length(n) w.l#Z} k  
        s = 0:(n(j)-m_abs(j))/2; u'K<-U8H  
        pows = n(j):-2:m_abs(j); 59^@K"J  
        for k = length(s):-1:1 DO03vN  
            p = (1-2*mod(s(k),2))* ... \0WMb  
                       prod(2:(n(j)-s(k)))/              ... Y\p yl  
                       prod(2:s(k))/                     ... ydns_Z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,(`@ZFp$  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +Kq>r|;  
            idx = (pows(k)==rpowers); c= a+7>  
            y(:,j) = y(:,j) + p*rpowern(:,idx); cR5<.$aY  
        end Y5MHd>m  
         b vu` =  
        if isnorm \R-u+ci$ZY  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x(b&r g.-0  
        end %okEN !=  
    end e#'`I^8l  
    % END: Compute the Zernike Polynomials *Nt6 Ufq6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >M1/m=a  
    pb{P[-f  
    AN~1E@"  
    % Compute the Zernike functions: J)fS2Ni+  
    % ------------------------------ _ _)Z Q  
    idx_pos = m>0; ;C"J5RA  
    idx_neg = m<0; F}01ikXDb'  
    X2e|[MWkp  
    ;c>Yr ?^  
    z = y; &erNVD5o  
    if any(idx_pos) +bO{U C[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7k$8i9#  
    end '[-/X a['  
    if any(idx_neg) k Dv)g  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); J5o"JRJ"  
    end 2hp x%H  
    &1[5b8H;+  
    7CIje=u.q  
    % EOF zernfun U50X`J  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  q4i8Sp>  
    $:[BB ,$  
    DDE还是手动输入的呢? 4E>(Y98  
    >U<nEnB$?  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究