下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l"RX`N@In
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m'Z233Nt"
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? YNc%[S[u^1
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xb0hJ~e
_X;^'mqf~
y;Q_8|,F
3!Zd]1$
Smo^/K`f9
function z = zernfun(n,m,r,theta,nflag) ##Z:/SU
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. j+]>x]c0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'IP'g,o++
% and angular frequency M, evaluated at positions (R,THETA) on the irqlU
% unit circle. N is a vector of positive integers (including 0), and )XMSQ ="m
% M is a vector with the same number of elements as N. Each element NSHWs%Zc
% k of M must be a positive integer, with possible values M(k) = -N(k) bBAZr`<&U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Sd'
uXX@
% and THETA is a vector of angles. R and THETA must have the same 8U0y86q>)E
% length. The output Z is a matrix with one column for every (N,M) (S0MqX*
% pair, and one row for every (R,THETA) pair. .x$+R%5U
% tvP_LN MF
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5FtbZ1L
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !tCw)cou
% with delta(m,0) the Kronecker delta, is chosen so that the integral 1lfkb1BM
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8NudY3cU!
% and theta=0 to theta=2*pi) is unity. For the non-normalized -q&VV,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hEsCOcEG
% \
lP
c,8)
% The Zernike functions are an orthogonal basis on the unit circle. eHF#ME
% They are used in disciplines such as astronomy, optics, and iOPv
% [
% optometry to describe functions on a circular domain. \MsAdYR
% go m<V?$
% The following table lists the first 15 Zernike functions. c 6}d{B[
% JTNQz
% n m Zernike function Normalization @Rj&9/\L
% -------------------------------------------------- _zI95
% 0 0 1 1 mC
n,I
% 1 1 r * cos(theta) 2 vi4u `
% 1 -1 r * sin(theta) 2 5xwztcR-
% 2 -2 r^2 * cos(2*theta) sqrt(6) *GbC`X)
% 2 0 (2*r^2 - 1) sqrt(3) ylLQKdcL
% 2 2 r^2 * sin(2*theta) sqrt(6) 9bl&\Ykt.
% 3 -3 r^3 * cos(3*theta) sqrt(8) '{\VOU
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #R"9(Q&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) %CfJ.;BDNE
% 3 3 r^3 * sin(3*theta) sqrt(8) C16MzrB}(N
% 4 -4 r^4 * cos(4*theta) sqrt(10) l?NRQTG
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b9)%,3-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) M<r'j $g
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 699z@>$}
% 4 4 r^4 * sin(4*theta) sqrt(10) " _jIqj6C
% -------------------------------------------------- { r`l
% rhMsZ={M
% Example 1: Sh=E.!
% ?Vb=W)Es
% % Display the Zernike function Z(n=5,m=1) Ljq/f&
c
% x = -1:0.01:1; g[@Kd
% [X,Y] = meshgrid(x,x); dD1`[%
% [theta,r] = cart2pol(X,Y); O}MY:6Pe
% idx = r<=1; yrnB]$hf
% z = nan(size(X)); ^-w:D
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7e/Uc!&*
% figure S+R<wv,6
% pcolor(x,x,z), shading interp }+nC}A"BC
% axis square, colorbar !
o:m*:
% title('Zernike function Z_5^1(r,\theta)') \bCm]wR
% lInq=
% Example 2: 24:;vcb
% ;
@
h{-@
% % Display the first 10 Zernike functions +)^F9LPl
% x = -1:0.01:1; iH#~eg
% [X,Y] = meshgrid(x,x); ;y%l OYm
% [theta,r] = cart2pol(X,Y); `x lsvK>
% idx = r<=1; !X(Lvt/
% z = nan(size(X)); pL]C]HGv
% n = [0 1 1 2 2 2 3 3 3 3]; ;tf1#6{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 4HVZ;,q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0AY23/
% y = zernfun(n,m,r(idx),theta(idx)); S]KcAz( fX
% figure('Units','normalized') %:h)8e-;
% for k = 1:10 T3[\;ib}
% z(idx) = y(:,k); ~cz]Rhq
% subplot(4,7,Nplot(k)) ^b~&}uU
% pcolor(x,x,z), shading interp }pbyC
% set(gca,'XTick',[],'YTick',[]) W'E!5T^
% axis square t LdBnf
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Cc0`Y lx~(
% end 6`]R)i]
% df
nmUE
% See also ZERNPOL, ZERNFUN2. &32qv`
V_
4;M
f_Y[I:
% Paul Fricker 11/13/2006 7ks09Cy
>-r\]/^
rFM`ne<zh
Fm3-Sn|Po
82&JYx
% Check and prepare the inputs: p)f OAr
% ----------------------------- #E2`KGCzW
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AU}lKq7%
error('zernfun:NMvectors','N and M must be vectors.') sRE$*^i
end e!l!T@
pf
5{zXh
z:^Kr"=n
if length(n)~=length(m) q =b.!AZy
error('zernfun:NMlength','N and M must be the same length.') Xj&{M[k<
end ]}<.Y[!S
ibl^A=
-WB?hmx
n = n(:); =w?-R\
m = m(:); NS#qein~i
if any(mod(n-m,2)) iv?'&IUfK
error('zernfun:NMmultiplesof2', ... .bB_f7TH.
'All N and M must differ by multiples of 2 (including 0).') S6 $S%$
end ,cWO Ak
82~UI'f \
8d-; ;V
if any(m>n) -3qB,KT
error('zernfun:MlessthanN', ... nR6~oB{-
'Each M must be less than or equal to its corresponding N.') 0(Vbji
end i`gsT[JQRX
h76#HUBr!
wHBkaPO!
if any( r>1 | r<0 ) E(4ti]'4
error('zernfun:Rlessthan1','All R must be between 0 and 1.') W:3u$LTf*f
end ~{n_rKYV
[])M2_
Q# }} 1}Ja
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j23OgbI
error('zernfun:RTHvector','R and THETA must be vectors.') gu/eC
end pCb@4nb
J@"Pv~R
$&qB,>5=X
r = r(:); j+*VP
theta = theta(:); V(L~t=k$
length_r = length(r); 8!TbJVR
if length_r~=length(theta) H+F?)VX}oA
error('zernfun:RTHlength', ... OZbwquF@
'The number of R- and THETA-values must be equal.') 29Kuq ;6
end =oluw|TCe7
Z"lL=0rY/
3hmuF6y~
% Check normalization: x~$P.X7(~
% -------------------- $sU?VA'h
if nargin==5 && ischar(nflag) ";`ddN3
isnorm = strcmpi(nflag,'norm'); )3.udx
if ~isnorm 9*[!uu
error('zernfun:normalization','Unrecognized normalization flag.') !#rZeDmw
end 7V 4iPx
else RT9fp(6*
isnorm = false; X-3L4@T:?
end T)3#U8sT
,ZD!Qb
vn
.wM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0+/L?J3
% Compute the Zernike Polynomials #Jy+:|jJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %N/I;`
[dk|lkj@u\
VDPqI+z
% Determine the required powers of r: Fy`VQ\%7t
% ----------------------------------- E-X-LR{CC
m_abs = abs(m); ^M,t`r{
rpowers = []; kC01s
for j = 1:length(n) 56>Zqtp*
rpowers = [rpowers m_abs(j):2:n(j)]; l2gI2Cioa
end oMLpl3pl
rpowers = unique(rpowers); &'WgBjP
n-Dr/c4
WN>.+qM~8
% Pre-compute the values of r raised to the required powers, g|"z'_
% and compile them in a matrix: 5;`([oX|_
% ----------------------------- klT6?'S
if rpowers(1)==0 \Y>^L{
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Lg9]kpOpa
rpowern = cat(2,rpowern{:}); bkmX@+Pe
rpowern = [ones(length_r,1) rpowern]; q1r\60M
else `gfK#0x#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4yQ4lU,r
rpowern = cat(2,rpowern{:}); j[iJo
5
end 7; TS
,{J2i#g<
;f?OT7>kN
% Compute the values of the polynomials: *:BNLM
% -------------------------------------- )lB-D;3[_
y = zeros(length_r,length(n)); @a%,0Wn
for j = 1:length(n) %04>R'mN
s = 0:(n(j)-m_abs(j))/2; I #1_
pows = n(j):-2:m_abs(j); TCmWn$LeE
for k = length(s):-1:1 nqgfAQsE)
p = (1-2*mod(s(k),2))* ... U!3nn#!yE
prod(2:(n(j)-s(k)))/ ... ?B@hCd)
prod(2:s(k))/ ... J#Bz)WmR
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #kLM=a/_NO
prod(2:((n(j)+m_abs(j))/2-s(k))); i;6\tK"!
idx = (pows(k)==rpowers); q/Q^\HTk
y(:,j) = y(:,j) + p*rpowern(:,idx); <u4GIi
<sm
end _32ltnBX
dH?pQ
if isnorm Rv.W~FE^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qpp:h_E
end h2=zvD;
end Q>TaaGc
% END: Compute the Zernike Polynomials {sX*SbJt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LwY_6[Ef
[C771~BL>
Bfi9%:eG
% Compute the Zernike functions: FuEHO 6nx
% ------------------------------ s15f <sp
idx_pos = m>0; KO{}+~,.6
idx_neg = m<0; =%2 E|/
\sp7[}Sw
%}'sFum`
z = y; n[ba
if any(idx_pos) $PrzJc
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); tG%R_$*
end J3$`bK6F6
if any(idx_neg) KxJJ?WyM
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \+cQiN b@
end em>CSBx
Xk7zXah
}f6.eqBX4
% EOF zernfun ;`F0
%0d