切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9187阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, HS.eK#:N  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 3!KyO)8  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? t,~feW,  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 7*+tG7I @  
    x` 4|^ u  
    | m#"  
    meD83,L~N  
    h?QGJ^#8  
    function z = zernfun(n,m,r,theta,nflag) Vvn~G.&)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `j6O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z4k'c+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uY&t9L8  
    %   unit circle.  N is a vector of positive integers (including 0), and w\JTMS$  
    %   M is a vector with the same number of elements as N.  Each element t4zKI~cO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Fp+fZU  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, pW<l9W  
    %   and THETA is a vector of angles.  R and THETA must have the same 9KL)5_6 M  
    %   length.  The output Z is a matrix with one column for every (N,M) 9*a"^  
    %   pair, and one row for every (R,THETA) pair. {ZUgyGE{  
    % 2N&S__  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Jk`0yJi$q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @ +>>TGC  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral W 6R/{H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n}J!?zZc  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized vf!lhV-UG+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O2~Q(q'   
    % D'Kiy  
    %   The Zernike functions are an orthogonal basis on the unit circle. :<6gP(  
    %   They are used in disciplines such as astronomy, optics, and ,u5iiR  
    %   optometry to describe functions on a circular domain. 9+'*  
    % e1H2w? s  
    %   The following table lists the first 15 Zernike functions. 2Gc0pBqx  
    % _BND{MsX  
    %       n    m    Zernike function           Normalization 0[-@<w ^j  
    %       -------------------------------------------------- a^)@ }4  
    %       0    0    1                                 1 \k%j  
    %       1    1    r * cos(theta)                    2 )5<c8lzp  
    %       1   -1    r * sin(theta)                    2 0fw>/"v  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) mN" g~o*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) \lpvRZ\L&g  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [58qC:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P7 qzZ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Tu=~iQ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iB*1Yy0DC  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p=dM2>  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) E>1%7" i<  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nhB.>ReAi  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 97^)B4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R@[1a+}5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?fvK<0S`  
    %       -------------------------------------------------- o[k,{`M0  
    % 9t{Iv({6p  
    %   Example 1: <)$JA  
    % cx+%lco!  
    %       % Display the Zernike function Z(n=5,m=1) Y-P?t+l  
    %       x = -1:0.01:1; QqB9I-_  
    %       [X,Y] = meshgrid(x,x); x3=SMN|a  
    %       [theta,r] = cart2pol(X,Y); "tU,.U  
    %       idx = r<=1; Vdb X4^V  
    %       z = nan(size(X)); kO' NT:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4nD U-P#f  
    %       figure tzG.)Uqs  
    %       pcolor(x,x,z), shading interp a q]bF%7  
    %       axis square, colorbar BA`K,#Ft7  
    %       title('Zernike function Z_5^1(r,\theta)') cD9axlJ  
    % $&FeR*$|g  
    %   Example 2: `;3fnTI:1  
    % e`t-:~'  
    %       % Display the first 10 Zernike functions fTV3lyk  
    %       x = -1:0.01:1; @l&>C#K\  
    %       [X,Y] = meshgrid(x,x); \`|OAC0a  
    %       [theta,r] = cart2pol(X,Y); -h#9sl->  
    %       idx = r<=1; f>ilk Q`  
    %       z = nan(size(X)); 1y6{3AZm<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;c0z6E /  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; t|cTl/i 4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Jrw R:_+|  
    %       y = zernfun(n,m,r(idx),theta(idx)); =o,6iJ^?$m  
    %       figure('Units','normalized') 9>[ *y8[:0  
    %       for k = 1:10 Tf.DFfV#y  
    %           z(idx) = y(:,k); W< :7z  
    %           subplot(4,7,Nplot(k)) 52z{   
    %           pcolor(x,x,z), shading interp ~|=goHmm[  
    %           set(gca,'XTick',[],'YTick',[]) PG'+vl  
    %           axis square dW"=/UW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zr1A4%S"  
    %       end )\fLS d  
    % ;Km74!.e7  
    %   See also ZERNPOL, ZERNFUN2. {*t0WE&1t  
    </) HcRj'e  
    .L))EB  
    %   Paul Fricker 11/13/2006 C?7I(b:  
    }:4b_-&Q5  
    .a]9rQQ&_  
     ^#&:-4/  
    } ^n346^  
    % Check and prepare the inputs: H 5'Ke+4.e  
    % ----------------------------- 9 az{j 1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i>=!6Hu2  
        error('zernfun:NMvectors','N and M must be vectors.') a X:,1^  
    end *BAR`+;U  
    Gq9pJ  
    geSH3I   
    if length(n)~=length(m) +|TFxaVz  
        error('zernfun:NMlength','N and M must be the same length.') >sm<$'vZ/  
    end >):^Zs  
    !5=S 2<UX  
    ^Qa!{9o[  
    n = n(:); [vyi_0[  
    m = m(:); 5BB: .  
    if any(mod(n-m,2)) |Y]4PT#EE  
        error('zernfun:NMmultiplesof2', ... _!Ir|j.A  
              'All N and M must differ by multiples of 2 (including 0).') -5sKJt]+i  
    end b*W01ist  
    IO}53zn<l  
    T6fm`uL&L  
    if any(m>n) ])H[>.?K  
        error('zernfun:MlessthanN', ... Q,< V)  
              'Each M must be less than or equal to its corresponding N.') bz\-%$^k  
    end o=y0=,:a?9  
    ud:5_*  
    CKr5L  
    if any( r>1 | r<0 ) E7>D:BQ\2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /O&{fo  
    end k{-#2Qz  
    \9`76*X6 c  
    s2t9+ZA+s  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fsz:A"0H  
        error('zernfun:RTHvector','R and THETA must be vectors.') \S[I:fw#&  
    end b,):&M~p  
    b_rHt s  
    ?Oyps7hXx  
    r = r(:); 5tQZf'pHfd  
    theta = theta(:); 5VhJ*^R`y  
    length_r = length(r); 8q_"aa,`  
    if length_r~=length(theta) 8\B]!  
        error('zernfun:RTHlength', ... c-q=Ct  
              'The number of R- and THETA-values must be equal.') %+0V0.  
    end \:D"#s%x  
    o* C_9M  
    =@y ?Np^A  
    % Check normalization: #[ ?E,  
    % -------------------- 1XPYI  
    if nargin==5 && ischar(nflag) l7vxTj@(-  
        isnorm = strcmpi(nflag,'norm'); Z|6,*XEc   
        if ~isnorm ^&Wa? m.  
            error('zernfun:normalization','Unrecognized normalization flag.') "`Mowp*  
        end x_$`#m{hL5  
    else 1yV+~)by3  
        isnorm = false; g=L80$1  
    end GW\66$|  
    z6x`O-\  
    ViYfK7Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !@4 i:,p@  
    % Compute the Zernike Polynomials Z+g9!@'a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jN T+?2  
    <tto8Y j  
    l _gJC.  
    % Determine the required powers of r: 4c9 a"v  
    % ----------------------------------- g#b9xTG J^  
    m_abs = abs(m); s|\\"3  
    rpowers = []; X<mlaXwrA  
    for j = 1:length(n) x". !&5  
        rpowers = [rpowers m_abs(j):2:n(j)]; gnN"6r1  
    end xZ(ryE%  
    rpowers = unique(rpowers); )];Bo.QA  
    CRs@x` 5ue  
    FW)VyVFmk  
    % Pre-compute the values of r raised to the required powers, p-XO4Pc 6  
    % and compile them in a matrix: Z~1uyr(  
    % ----------------------------- K7c[bhi_w  
    if rpowers(1)==0 hI 1or4V  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); PWk\#dJN&  
        rpowern = cat(2,rpowern{:}); oe<DP7e  
        rpowern = [ones(length_r,1) rpowern]; &>P<Zw-  
    else `lA_knS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,#U[)}im  
        rpowern = cat(2,rpowern{:}); zEk /15  
    end H*HL:o-[  
    "/nbcQ*s*E  
    YF)k0bu&;  
    % Compute the values of the polynomials: qNi`OVh&  
    % -------------------------------------- [,56oMd~  
    y = zeros(length_r,length(n)); %U6A"?To  
    for j = 1:length(n) E<sd\~~A:  
        s = 0:(n(j)-m_abs(j))/2; WS//0  
        pows = n(j):-2:m_abs(j); 7#(0GZN9h%  
        for k = length(s):-1:1 aM+Am,n`@  
            p = (1-2*mod(s(k),2))* ... 3?e~J"WXC5  
                       prod(2:(n(j)-s(k)))/              ... q~`dxq`}  
                       prod(2:s(k))/                     ... nzU;Bi^m  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 89Ir}bCr  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }#h`1 uV  
            idx = (pows(k)==rpowers); |u]IOw&1  
            y(:,j) = y(:,j) + p*rpowern(:,idx); *vzEfmN:d  
        end '0w</g  
         3~1Gts  
        if isnorm 8]D0)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 83J6 3Xa  
        end 1my1m  
    end $,zW0</P*l  
    % END: Compute the Zernike Polynomials 6aLRnH"Ud  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9yz@hdG  
    r @}N6U~*  
    8([ MR  
    % Compute the Zernike functions: }N&? 8s=  
    % ------------------------------ Z/czAr@4  
    idx_pos = m>0; G=]ox*BY  
    idx_neg = m<0; f,x;t-o+R  
    Y#QXvo%  
    mLx=Zes:.  
    z = y; 05:?5M4};  
    if any(idx_pos) k~F;G=P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U(Tl$#Bt  
    end ;;6$d{  
    if any(idx_neg) +NbiUCMX  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 67XUhnE  
    end F ^Bk  @  
    vVP.9(  
    cyo[HI?WM  
    % EOF zernfun Fv*Et-8tN5  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  P3: t 4^  
    ?KOw~-u  
    DDE还是手动输入的呢? I](a 5i  
    4$[o;t>  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究