下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )FF>IFHG
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 52 fA/sx
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? w$z}r
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛?
UEM(@zD]
7hlO#PYZ
AX;8^6.F3
sk,ox~0R
vq^f}id
function z = zernfun(n,m,r,theta,nflag) &,c``z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. oX S1QT`B
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \N!AXD
% and angular frequency M, evaluated at positions (R,THETA) on the P@$/P99
% unit circle. N is a vector of positive integers (including 0), and xLNtIzx
% M is a vector with the same number of elements as N. Each element Tx|Ir+f6L
% k of M must be a positive integer, with possible values M(k) = -N(k) juka0/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, hb zC#@q
% and THETA is a vector of angles. R and THETA must have the same -@yh>8v
% length. The output Z is a matrix with one column for every (N,M) Pe3@d|-,MU
% pair, and one row for every (R,THETA) pair. x(etb<!jd
% )Dw,q~xgg0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .aAL]-Rj
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uxtWybv
% with delta(m,0) the Kronecker delta, is chosen so that the integral u37'~&o{U
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )uj Ex7&c
% and theta=0 to theta=2*pi) is unity. For the non-normalized /'].lp
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M=FxB;v
% q3.j"WaP
% The Zernike functions are an orthogonal basis on the unit circle. 66/3|83Z
% They are used in disciplines such as astronomy, optics, and =(NB%}
% optometry to describe functions on a circular domain. 0B@SN)<kH
% y .#")IAF
% The following table lists the first 15 Zernike functions. ^W'fA{sr
% 8$85^Of
% n m Zernike function Normalization Xu<k3oD7
% --------------------------------------------------
ZHU5SXu
% 0 0 1 1 *c~T@m~DR
% 1 1 r * cos(theta) 2 \
e\?I9
% 1 -1 r * sin(theta) 2 1crnmJ!C
% 2 -2 r^2 * cos(2*theta) sqrt(6) D7lK30
% 2 0 (2*r^2 - 1) sqrt(3) WHsgjvh"
% 2 2 r^2 * sin(2*theta) sqrt(6) pk?w\A}
% 3 -3 r^3 * cos(3*theta) sqrt(8) #E?(vA1
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) y.e^h RKb
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (qqOjz
% 3 3 r^3 * sin(3*theta) sqrt(8) Z*y`R
XE
% 4 -4 r^4 * cos(4*theta) sqrt(10) %_+2@\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {["\.ZS|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) t]y
D-3'l&
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [5zx17'
% 4 4 r^4 * sin(4*theta) sqrt(10) o.w\l\
% -------------------------------------------------- ?nofUD.
% #33fGmd[
% Example 1: P_?gq>E8
% mL{B!Q
% % Display the Zernike function Z(n=5,m=1) 8P^ITL z%
% x = -1:0.01:1; o7J
% [X,Y] = meshgrid(x,x); vy0X_DPCr
% [theta,r] = cart2pol(X,Y); :`-,Lbg
% idx = r<=1; 56+s~hG
% z = nan(size(X)); lsNrAA%m
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +=q$ x Ia
% figure ]w;rfn9D
% pcolor(x,x,z), shading interp ^* J2'X38I
% axis square, colorbar Wc,~ {
% title('Zernike function Z_5^1(r,\theta)') yRSTk2N@
% #JgH}|&a$
% Example 2: M)eO6oX|
% [q/Abz'i
% % Display the first 10 Zernike functions qQA}Z*(m
% x = -1:0.01:1; +?u~APjNN
% [X,Y] = meshgrid(x,x); gZLP\_CL
% [theta,r] = cart2pol(X,Y); xl6,s>ob
% idx = r<=1; w8kOVN2b
% z = nan(size(X)); O\E /. B
% n = [0 1 1 2 2 2 3 3 3 3]; (yF:6$:#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; K8>zF/# +
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^cczJOxB
% y = zernfun(n,m,r(idx),theta(idx)); Sz^
veh?
% figure('Units','normalized')
tNGp\~
% for k = 1:10 b~'"^ Bts*
% z(idx) = y(:,k); E"+QJ~!
% subplot(4,7,Nplot(k)) k"NVV$;
% pcolor(x,x,z), shading interp JHz
[ 7
% set(gca,'XTick',[],'YTick',[]) Min
^>
% axis square 9cf:pXMi
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G]+&!4
% end Qa.<K{m#?
% =R #Qx,
% See also ZERNPOL, ZERNFUN2. zUKmx y@
1+9W+$=h2
fb{``,nO
% Paul Fricker 11/13/2006 y^%n'h{
~(Q)"s\1I
I_<I&{N>
P"W2(d
g=QDu7Ux
% Check and prepare the inputs: H-~6Z",1
% ----------------------------- XmEq2v
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !q9+9 *6
error('zernfun:NMvectors','N and M must be vectors.') |2abmuR0
end ^c&L,!_)H
N'g>MBdI
xL{a
if length(n)~=length(m) :/Q
error('zernfun:NMlength','N and M must be the same length.') *Eo?k<:zPm
end /Y'Vh^9/T
:a$\/E =
"br,/Dk>MX
n = n(:); So0f)`A
m = m(:); BsEF'h'Owh
if any(mod(n-m,2)) }UWL-TkEjF
error('zernfun:NMmultiplesof2', ... gREzZ+([
'All N and M must differ by multiples of 2 (including 0).') b*`lk2oMa/
end -?mfE+kt
B5X(ykaX~
Ed_N[I
if any(m>n) )rekY;
error('zernfun:MlessthanN', ... r7b1-
'Each M must be less than or equal to its corresponding N.') 89o/F+ _b
end @}@Z8$G^
CC L
7PtN?;rP
if any( r>1 | r<0 ) sOU1n
error('zernfun:Rlessthan1','All R must be between 0 and 1.') B]uc<`f
end /(iFcMT
]=>F.GE
1IZ3=6
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1`a5C.v
error('zernfun:RTHvector','R and THETA must be vectors.') >AcrG]
end 22.8PO0
[[;e)SoA
Pmh8sw
r = r(:); fpFhn
theta = theta(:); {&\jW!&n
length_r = length(r); vvKEv/pN7
if length_r~=length(theta) 8C67{^`::
error('zernfun:RTHlength', ... "x 3lQ
'The number of R- and THETA-values must be equal.') {=F/C,-
end c.>oe*+
=y0C1LD+
~v6OsH%vx
% Check normalization: J2'Nd'
% -------------------- EUN81F?
if nargin==5 && ischar(nflag) +\F'iAs@
isnorm = strcmpi(nflag,'norm'); cd$m25CxC
if ~isnorm {
S3ZeN,kZ
error('zernfun:normalization','Unrecognized normalization flag.') Fsif6k=4
end NhaI<J
else
0tEYU:Qu
isnorm = false; cp#JBHO
end 1T-8K
r
(2:/8\_P
( 5tvfz%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *# tJM.Z
% Compute the Zernike Polynomials Y#u}tE
d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gx\&_)w N
W9D86]3Y
r=X}%~_8X
% Determine the required powers of r: dIRm q+d^
% ----------------------------------- 1:f9J
m_abs = abs(m); 1n:8s'\
rpowers = []; _Jme!Oaa
for j = 1:length(n) v"OY 1<8
rpowers = [rpowers m_abs(j):2:n(j)]; 6P5Ih
end Q4f/Z
rpowers = unique(rpowers); /+\uqF8F
-Xxqm%([71
`"&da#N]
% Pre-compute the values of r raised to the required powers, rzh#CnL3
% and compile them in a matrix: Db;G@#x
% ----------------------------- |aT| l^2R@
if rpowers(1)==0 `<\1[HJ\
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +(C6#R<LI
rpowern = cat(2,rpowern{:}); .)<(Oj|4
rpowern = [ones(length_r,1) rpowern]; 8;Yx<woR
else HA2k[F@3^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1rkE yh??
rpowern = cat(2,rpowern{:}); &8] d }-e
end =y/8^^
N(y\dL=v
Kd=%tNp
% Compute the values of the polynomials: { Fawt:
% -------------------------------------- uoXAQ6k
y = zeros(length_r,length(n)); rfNm&!K
for j = 1:length(n) IuNiEtKx
s = 0:(n(j)-m_abs(j))/2;
^V#@QPK9
pows = n(j):-2:m_abs(j); /4vG3
for k = length(s):-1:1 *g[^.Sg
p = (1-2*mod(s(k),2))* ... ^sVX)%
prod(2:(n(j)-s(k)))/ ... _c,'>aH=
prod(2:s(k))/ ... "87ghj_}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?ON-+u
prod(2:((n(j)+m_abs(j))/2-s(k))); 4Qo]nre!
idx = (pows(k)==rpowers); <K8\n^i~c
y(:,j) = y(:,j) + p*rpowern(:,idx); V( -mD
end *7h!w!LN~
4*'pl.rb>
if isnorm Pri`K/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %YSu8G_t
end 8'f4 Od ?
end R0L&*Bjm
% END: Compute the Zernike Polynomials <oo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ui@2s;1t
9Iz%ht
<_XWWT%
% Compute the Zernike functions: 86\S?=J-b
% ------------------------------ {WPobP"
idx_pos = m>0; RW }"2
idx_neg = m<0; Fm #w2o
tWoh''@#
sRrzp=D
z = y; ea~:}!-P
if any(idx_pos) _<NMyRJo
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :P@rkT3Q t
end k}0^&Quc4
if any(idx_neg) 3l3'bw2
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .?!N^_ Ez3
end DNj"SF(J
#*g5u{k'P
5GPo*Qpl
% EOF zernfun Ko/ I#)