切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8974阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, umP nw  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 27gHgz}}  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %tkqWK:  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? [ x>Pf1  
    ("A45\5  
     e#5WX  
    Onqapm0  
    }k AE  
    function z = zernfun(n,m,r,theta,nflag) ~jKIuO/  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. fPN/Mxu  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ';.TQ_I7Y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7y&=YCkc7  
    %   unit circle.  N is a vector of positive integers (including 0), and b^i$2$9_  
    %   M is a vector with the same number of elements as N.  Each element Q +hOW-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) b^[>\s'  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, vyc<RjS_x  
    %   and THETA is a vector of angles.  R and THETA must have the same DDIRJd<J  
    %   length.  The output Z is a matrix with one column for every (N,M) ajRht +{  
    %   pair, and one row for every (R,THETA) pair. "nJMS6HJ[  
    % D3 +|Os)  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike dh}"uM}a  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :zC=JvKT  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ]nV_K}!w  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, sk5=$My  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 0*^f EoV  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  svo%NQ  
    % ,EH-Sf2Cb  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]mJ9CP8P1c  
    %   They are used in disciplines such as astronomy, optics, and )jI4]6  
    %   optometry to describe functions on a circular domain. Z^F>sUMR  
    % WZA1nzRc  
    %   The following table lists the first 15 Zernike functions. /q]fG  
    % -[=@'N P  
    %       n    m    Zernike function           Normalization S]ndnxy"b  
    %       -------------------------------------------------- ^l(,'>Cn  
    %       0    0    1                                 1 L(y~ ,Kc  
    %       1    1    r * cos(theta)                    2 pOy(XUV9O  
    %       1   -1    r * sin(theta)                    2 ctgH/SU  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q\~#cLJ/  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 4`CO>Q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2Sy:wt  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) AnsJ3C  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) y}QqS/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Exi#@-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T/L\|_:'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /KiaLS  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ) \cnz  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) l9 rN!Q|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  !vr A\d  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;%n(ARZ#  
    %       -------------------------------------------------- A[88IMZs  
    % 0,LUi*10  
    %   Example 1: E&vCzQ  
    % iQh:y:Jo1&  
    %       % Display the Zernike function Z(n=5,m=1) F>u/Lh!  
    %       x = -1:0.01:1; kx0w?A8-  
    %       [X,Y] = meshgrid(x,x); ^> d"D  
    %       [theta,r] = cart2pol(X,Y); tN)Vpb\J  
    %       idx = r<=1; :d~&Dt<c  
    %       z = nan(size(X)); G~lnX^46"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /X\:3P  
    %       figure Z!?T&:  
    %       pcolor(x,x,z), shading interp ciPaCrV  
    %       axis square, colorbar dfeN_0` -  
    %       title('Zernike function Z_5^1(r,\theta)') Bm^8"SSN  
    % (n{!~'3  
    %   Example 2: xiQd[[(sM  
    % sMw"C~XL  
    %       % Display the first 10 Zernike functions s[*I210  
    %       x = -1:0.01:1; vinn|_s%  
    %       [X,Y] = meshgrid(x,x); 0c#|LF_  
    %       [theta,r] = cart2pol(X,Y); tUFXx\p  
    %       idx = r<=1; Yceex}X*5  
    %       z = nan(size(X)); M<)Vtn  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ~qW"v^<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .V^h<d{  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; kL}*,8s{  
    %       y = zernfun(n,m,r(idx),theta(idx)); >3ASrM+>w  
    %       figure('Units','normalized') k*T&>$k}^  
    %       for k = 1:10 (7P VfS>;  
    %           z(idx) = y(:,k); w >#.id[k  
    %           subplot(4,7,Nplot(k))  O6!:Qd  
    %           pcolor(x,x,z), shading interp qB=%8$J  
    %           set(gca,'XTick',[],'YTick',[]) =$%_asQJ  
    %           axis square rOq>jvy  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r%oXO]X  
    %       end v.]W{~PI2V  
    % ) ]]PhGX~  
    %   See also ZERNPOL, ZERNFUN2. oo,3mat2C  
    H h;o<N>U  
    N%8aLD  
    %   Paul Fricker 11/13/2006 o,y {fv:ki  
    2W`<P2IA  
    ;ZLfb n3\  
    "C%* 'k  
    LfS]m>>e  
    % Check and prepare the inputs: :j!N7c{  
    % ----------------------------- A v%'#1w<"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q\v^3u2;m`  
        error('zernfun:NMvectors','N and M must be vectors.') q"^T}d d,  
    end N%+C5e<  
    *6*/kV? F  
    fyt`$y_E[  
    if length(n)~=length(m) ?9AtFT  
        error('zernfun:NMlength','N and M must be the same length.') ,n+~S^r  
    end S QVyCxcX_  
    fxk6q$'  
    syLpnNx=  
    n = n(:); Dmv@ljwO  
    m = m(:); ?f[U8S}  
    if any(mod(n-m,2)) 0Fm,F&12  
        error('zernfun:NMmultiplesof2', ... +q4AK<y-  
              'All N and M must differ by multiples of 2 (including 0).') .1& F p  
    end W_N!f=HW  
    ^c]lEo  
    Lv?e[GA  
    if any(m>n) {VrjDj+Xy  
        error('zernfun:MlessthanN', ... #AUz.WHD  
              'Each M must be less than or equal to its corresponding N.')  ~/kx  
    end ['n;e:*  
    a7Rg!%r  
    q!zsGf {  
    if any( r>1 | r<0 ) `JL&x|q o  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \a\ApD  
    end .FXn=4l'vV  
    !>5!Fb=Sy  
    .!hB tR  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +'!vm6  
        error('zernfun:RTHvector','R and THETA must be vectors.') KUqD<Jj?  
    end ~'l.g^p bv  
    D#,P-0+%  
    w_!]_6%{b  
    r = r(:); +b]+5!  
    theta = theta(:); *aF<#m v  
    length_r = length(r); 6+[7UH~pm^  
    if length_r~=length(theta) 9>"To  
        error('zernfun:RTHlength', ... 7EAkY`Op  
              'The number of R- and THETA-values must be equal.') mT2Fn8yC1  
    end UF00K1dbz  
    Eo }mSd  
    z2lEHa?w  
    % Check normalization: UE9r1g`z  
    % -------------------- C}{$'#DV2  
    if nargin==5 && ischar(nflag) yXx}'=&!0  
        isnorm = strcmpi(nflag,'norm'); y$e'-v  
        if ~isnorm {~ngI<  
            error('zernfun:normalization','Unrecognized normalization flag.') %r*zd0*<n1  
        end CL$mK5u  
    else `)W}4itm  
        isnorm = false; Dab1^H!KT  
    end &v^LxLt+s  
    ei8OLcw:x  
    'J`%[,@V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HEjrat;5  
    % Compute the Zernike Polynomials An e.sS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R3$K[Lv,  
    5!PU+9Kh  
    MyOdWD&7  
    % Determine the required powers of r: X192Lar  
    % ----------------------------------- 0r+%5}|-K  
    m_abs = abs(m); ^vmyiF  
    rpowers = []; h.6yI  
    for j = 1:length(n) m"!!)  
        rpowers = [rpowers m_abs(j):2:n(j)]; ;ml;{<jI  
    end K6.*)7$#  
    rpowers = unique(rpowers); DaW_-:@s  
    4V7{5:oa  
    '~E&^K5hr  
    % Pre-compute the values of r raised to the required powers, @,-xaZ[  
    % and compile them in a matrix: m3k}Q3&6Z  
    % ----------------------------- ,!f*OWnZ  
    if rpowers(1)==0 QMzBx*g(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7ST[XLwt%}  
        rpowern = cat(2,rpowern{:}); PT|W{RlNl  
        rpowern = [ones(length_r,1) rpowern]; 5 s>$  
    else Z50]g  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); CW Y'q  
        rpowern = cat(2,rpowern{:}); P(W7,GD,k  
    end =^P<D&%q  
    Mp ~E $f  
    Ywf.,V  
    % Compute the values of the polynomials: ;&|ja]r  
    % -------------------------------------- hIw<gb4J%  
    y = zeros(length_r,length(n)); 7:1c5F~M  
    for j = 1:length(n) 1x]U&{do  
        s = 0:(n(j)-m_abs(j))/2; Nvs8t%  
        pows = n(j):-2:m_abs(j); WZ'3  
        for k = length(s):-1:1 bf `4GD(  
            p = (1-2*mod(s(k),2))* ... HzM^Zn57%  
                       prod(2:(n(j)-s(k)))/              ... w*ig[{ I  
                       prod(2:s(k))/                     ... 5w`v 3o  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... h]<Ld9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); p3*}!ez4  
            idx = (pows(k)==rpowers); !9i,V{$c`"  
            y(:,j) = y(:,j) + p*rpowern(:,idx); n-dO |3,  
        end cT8jG ,+"}  
         ] w FFGy  
        if isnorm itM6S$  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  _tN"<9v.  
        end aU2O5z&  
    end Xb42R1  
    % END: Compute the Zernike Polynomials -lyT8qZ:(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JLRw`V,o7  
    X LPO_ tD  
    RaAi9b[/S  
    % Compute the Zernike functions: Fk>/  
    % ------------------------------ !E> *Mn  
    idx_pos = m>0; q]tPsX5{*  
    idx_neg = m<0; `7Ni bZX0  
    LZyUlz  
    '1=t{Rw  
    z = y; :t]YPt  
    if any(idx_pos) j ij:}.d6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]]+wDhxH  
    end K!k,]90Ko  
    if any(idx_neg) H;}V`}c<`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }(dhXOf\q  
    end :h N*  
    -.1x!~.jX  
    (M6B$:  
    % EOF zernfun 0W9,uC2:N  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ce\]o^4  
    P}KN*Hn.  
    DDE还是手动输入的呢? rJ4 O_a5/  
    ]vMr@JM-G  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究