切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9450阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, g~EJja;  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .32]$vx  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? wGfU@!m  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4Eq$f (QJ  
    md8r"  
    Kts#e:k@  
    -X#Zn>#  
    Kfho:e,  
    function z = zernfun(n,m,r,theta,nflag) E3X6-J|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. z:C VzK,  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N pJ*x[y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gWcl@|I;\  
    %   unit circle.  N is a vector of positive integers (including 0), and s&-m!|P  
    %   M is a vector with the same number of elements as N.  Each element a#i;*J  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) mx`C6G5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1t"  
    %   and THETA is a vector of angles.  R and THETA must have the same E3bS Q  
    %   length.  The output Z is a matrix with one column for every (N,M) rp*f)rJ  
    %   pair, and one row for every (R,THETA) pair. 1_}* aQ  
    % I"/p^@IX  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yHS=8!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U&W{;myt  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _&0_@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YcJZG|[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7v9l+OX,6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [d+f#\ut  
    % )m . KV5K!  
    %   The Zernike functions are an orthogonal basis on the unit circle. q'u^v PO  
    %   They are used in disciplines such as astronomy, optics, and 0<3)K[m~H  
    %   optometry to describe functions on a circular domain. &%."$rC/0b  
    % 5&}~W)"9  
    %   The following table lists the first 15 Zernike functions. >>}4b2U  
    % UA@(D  
    %       n    m    Zernike function           Normalization F/BB]gUB  
    %       -------------------------------------------------- FbxrBM  
    %       0    0    1                                 1 p$r=jF&  
    %       1    1    r * cos(theta)                    2 /b3b0VfF  
    %       1   -1    r * sin(theta)                    2 QIZ }7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) $]eU'!2)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) GabY xYK  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) qY^OO~[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ySyA!Z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Oj6PmUK4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) yht|0mZV  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) yb)!jLnH  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) k%UE^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5X2&hG*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _ ^5w f  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0Q\6GCzN\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Tk(ciwB  
    %       -------------------------------------------------- t[L0kF9en  
    % \UKr|[P  
    %   Example 1: *AEN  
    % !U}dYB:O  
    %       % Display the Zernike function Z(n=5,m=1) NkWU5E!  
    %       x = -1:0.01:1; rnB-e?>  
    %       [X,Y] = meshgrid(x,x); :el]IH  
    %       [theta,r] = cart2pol(X,Y); 3ya_47D  
    %       idx = r<=1; .nXOv]  
    %       z = nan(size(X)); eUa2"=M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); @.JhL[f  
    %       figure njO5 YYOu  
    %       pcolor(x,x,z), shading interp nJEm&"AI  
    %       axis square, colorbar ,yZvT7  
    %       title('Zernike function Z_5^1(r,\theta)') KW&5&~)2  
    % fU@{!;|Pz  
    %   Example 2: \EP<r  
    % 51:NL[[6  
    %       % Display the first 10 Zernike functions \\\%pBT7]\  
    %       x = -1:0.01:1; {5<3./5O  
    %       [X,Y] = meshgrid(x,x); } v#Tm  
    %       [theta,r] = cart2pol(X,Y); sA( e  
    %       idx = r<=1; Tyc`U&  
    %       z = nan(size(X)); $@H]0<3,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Ni"M.O);t  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )vO?d~x|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _*(n2'2B  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3`V #ImV>  
    %       figure('Units','normalized') %XIPPEHU  
    %       for k = 1:10 Yv}V =O%  
    %           z(idx) = y(:,k); ryk(Am<  
    %           subplot(4,7,Nplot(k)) 9eA2v{!S  
    %           pcolor(x,x,z), shading interp 7od6`k   
    %           set(gca,'XTick',[],'YTick',[]) qXI>x6?*  
    %           axis square uif1)y`Q$C  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =#tQhg,_  
    %       end s>i`=[qFc  
    % Uc j eB  
    %   See also ZERNPOL, ZERNFUN2. D_n(T ')  
    ]`p*ZTr)\  
    Us5P?}  
    %   Paul Fricker 11/13/2006 AD_aI %7  
    :cx}I  
    fu}ZOPu  
    4tv}5llSG  
    0vu$dxb[  
    % Check and prepare the inputs: O@$wU9 D<  
    % ----------------------------- 1:L _qL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "JHd F&  
        error('zernfun:NMvectors','N and M must be vectors.') w_O3];  
    end u0Nag=cU  
    v5aHe_?lp  
    $)V_oQSqn  
    if length(n)~=length(m) G)vq+L5%  
        error('zernfun:NMlength','N and M must be the same length.') h x _,>\@  
    end ?3X(`:KB  
    .Xq4QR .  
    3,Dc}$t  
    n = n(:); ZS@Gt  
    m = m(:); 7RH1,k  
    if any(mod(n-m,2)) @U~i<kt  
        error('zernfun:NMmultiplesof2', ... dIQxU  
              'All N and M must differ by multiples of 2 (including 0).') D^R=  
    end ^xBF$ua37)  
    YlF<S49loC  
    @Ido6Z7  
    if any(m>n) A7|CG[wZ  
        error('zernfun:MlessthanN', ... 5x( [fG  
              'Each M must be less than or equal to its corresponding N.') |H.i$8_A  
    end J.R|Xd  
    ~E]ct F  
    _8-iO.T+2  
    if any( r>1 | r<0 ) S 54N  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') I U Mt^z  
    end c^4^z"Mo`  
    r)9&'m.:  
    +{qX,  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,3m]jp'  
        error('zernfun:RTHvector','R and THETA must be vectors.') __F?iRrCM  
    end N2 vA/  
    aJQx"6 c?  
    R a> k#pQ  
    r = r(:); T7wy{;  
    theta = theta(:); ~^6[SbVb  
    length_r = length(r); R<5GG|(B  
    if length_r~=length(theta) hI&ugdf  
        error('zernfun:RTHlength', ... U',.'"m  
              'The number of R- and THETA-values must be equal.') ]VYv>o`2  
    end 2jMV6S9  
    r87)?-B  
    l'pu?TP{a  
    % Check normalization: G>3]A5  
    % -------------------- >z(AQ  
    if nargin==5 && ischar(nflag) -zzM!1@F  
        isnorm = strcmpi(nflag,'norm'); =p1aF/1$I  
        if ~isnorm # 1S*}Q<k  
            error('zernfun:normalization','Unrecognized normalization flag.') ,wI$O8"!j  
        end d G}.T_l  
    else X2 Z E9b  
        isnorm = false; -T s8y  
    end (c'=jJX  
    `u./2]n  
    rO_|_nV[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I jK  
    % Compute the Zernike Polynomials v7V.,^6+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mp8FYPjZ  
    qWQ7:*DL  
    i8]2y  
    % Determine the required powers of r: &_DRrp0CN  
    % ----------------------------------- Rk1B \L|M  
    m_abs = abs(m); ;yc|=I ^  
    rpowers = []; l7.W2mg  
    for j = 1:length(n) @V9qbr= Z  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ab"mX0n  
    end OG M9e!  
    rpowers = unique(rpowers); Cb{n4xKW6  
    O_f+#K)  
    ! uC`7a  
    % Pre-compute the values of r raised to the required powers, af:wg]g  
    % and compile them in a matrix: UUzu`>upB  
    % ----------------------------- z3RlD"F1  
    if rpowers(1)==0 np>RxiB^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ar+<n 2;[  
        rpowern = cat(2,rpowern{:}); HjX!a29Wf  
        rpowern = [ones(length_r,1) rpowern]; )2U#<v^  
    else dHcGe{T^(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rm-6Az V  
        rpowern = cat(2,rpowern{:}); ]h Dy]  
    end F(-1m A&-  
    U?MKZL7  
    0 .& B  
    % Compute the values of the polynomials: $U uSrX&  
    % -------------------------------------- @.4e^Km  
    y = zeros(length_r,length(n)); \F|L y >g  
    for j = 1:length(n) Jkc1ih`^  
        s = 0:(n(j)-m_abs(j))/2; ,| \62B`  
        pows = n(j):-2:m_abs(j); v7"Hvp3w  
        for k = length(s):-1:1 QQd%V#M?  
            p = (1-2*mod(s(k),2))* ... [n53 eC  
                       prod(2:(n(j)-s(k)))/              ... JD\:bI  
                       prod(2:s(k))/                     ... m[@7!.0=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qJ;T$W=NG  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \X'{ ee  
            idx = (pows(k)==rpowers); 9Q!X~L|\S  
            y(:,j) = y(:,j) + p*rpowern(:,idx); G8JwY\  
        end . PzlhTL7  
         ng ZkBX  
        if isnorm [5v[Zqud  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  2iUdTy$  
        end c'9-SY1'~  
    end -&#H@Gyw  
    % END: Compute the Zernike Polynomials 7qyv.{+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qi_De '@  
    b,?@_*qv+  
    zLG5m]G4D  
    % Compute the Zernike functions: )xJo/{?  
    % ------------------------------ uW.)(l  
    idx_pos = m>0; ^,Sl^ 9K  
    idx_neg = m<0;  c`'2  
    ;2m<#~@0  
    S?Y,sl+A:  
    z = y; }y-b<J ?H  
    if any(idx_pos) l!B)1  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [*-DtbEk  
    end ^J DiI7  
    if any(idx_neg) fbbk;Rq.'3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N XwQvm;q  
    end :Fm{U0;"  
    kEM5eY  
    lP@/x+6tg  
    % EOF zernfun sA3=x7j%c  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  CCJ!;d;&87  
    "1rZwFI0l  
    DDE还是手动输入的呢? zmI?p4,  
    }}v04~  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究