下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, J9Ou+6 u(
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, CI
:`<PZ\-
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Q~Hh\L t
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .G(llA}
)+"'oY$]}
Ru>uL@w
nJ"YIT1K]p
HJ[/|NZU$
function z = zernfun(n,m,r,theta,nflag) _uKZ Ml
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. d,tU#N{Q6
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !F4@KAv
% and angular frequency M, evaluated at positions (R,THETA) on the n?ctLbg
% unit circle. N is a vector of positive integers (including 0), and 'vq:D$A
% M is a vector with the same number of elements as N. Each element RJH,
% k of M must be a positive integer, with possible values M(k) = -N(k) <b?!jV7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -,aeM~
% and THETA is a vector of angles. R and THETA must have the same RZ7(J
% length. The output Z is a matrix with one column for every (N,M) |vMpXiMxxT
% pair, and one row for every (R,THETA) pair. L IVU^Os.
% G0{H5_h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike b}wC|\s
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?EpSC&S\
% with delta(m,0) the Kronecker delta, is chosen so that the integral +|{RE.DL
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Q33"u/-v
% and theta=0 to theta=2*pi) is unity. For the non-normalized ,7)C"
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. za9)Q=6FD
% Y<b-9ai<w
% The Zernike functions are an orthogonal basis on the unit circle. kR@Yl Yo
% They are used in disciplines such as astronomy, optics, and maY4g&'f
% optometry to describe functions on a circular domain. kctzNGF|
% 8W+gl=C~
% The following table lists the first 15 Zernike functions. l|+BC
% Rqy0Q8K<
% n m Zernike function Normalization p!V>XY'N^
% -------------------------------------------------- qG/fE'(j&
% 0 0 1 1 9W>Y#V~|v!
% 1 1 r * cos(theta) 2 f0SAP0M3
% 1 -1 r * sin(theta) 2 m8JR@!t7
% 2 -2 r^2 * cos(2*theta) sqrt(6) u=NSsTP&
% 2 0 (2*r^2 - 1) sqrt(3) /.eeO k
% 2 2 r^2 * sin(2*theta) sqrt(6) *tX{MSYW
% 3 -3 r^3 * cos(3*theta) sqrt(8) =GBI0&U
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `L5~mb;7*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) f8<o8*`7
% 3 3 r^3 * sin(3*theta) sqrt(8) $RwB_F
% 4 -4 r^4 * cos(4*theta) sqrt(10) OR Wm
C!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $hVYTy~}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ]:$
O{y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C#=bW'C
% 4 4 r^4 * sin(4*theta) sqrt(10) 0 Hw-59MK
% -------------------------------------------------- c<BO gNr
% y3;q_4.
% Example 1: 5ZPzPUa8~
% Gy Qm/I
% % Display the Zernike function Z(n=5,m=1) 3PUAH
% x = -1:0.01:1; qxJQPz
% [X,Y] = meshgrid(x,x); W"xP(7X
% [theta,r] = cart2pol(X,Y); ^D_/=4rz8
% idx = r<=1; +~U=C9[gj
% z = nan(size(X)); O^I[
(8Y8
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "4j:[9vR\
% figure wVA|!>v
% pcolor(x,x,z), shading interp fKa\7{R
% axis square, colorbar 5[9bWB{
% title('Zernike function Z_5^1(r,\theta)') >(tn "2
% ~ZlC
'
% Example 2: zN_:nY>
% oXt,e
% % Display the first 10 Zernike functions 6`"M
% x = -1:0.01:1; 7C?.L70ZY
% [X,Y] = meshgrid(x,x); l??;3kh1
% [theta,r] = cart2pol(X,Y); kao}(?x%
% idx = r<=1; Y/8K;U|
% z = nan(size(X)); I#FF*@oeM
% n = [0 1 1 2 2 2 3 3 3 3]; $
Cjk
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; bv
dR"G
% Nplot = [4 10 12 16 18 20 22 24 26 28]; i"^<CR@e
% y = zernfun(n,m,r(idx),theta(idx)); D~&Mwsi
% figure('Units','normalized') F[7x*-NO-
% for k = 1:10 2#/p|$;Ec'
% z(idx) = y(:,k); <<|H=![
% subplot(4,7,Nplot(k)) )06iV
% pcolor(x,x,z), shading interp 9<]a!:!^
% set(gca,'XTick',[],'YTick',[]) lZt(&^T
% axis square 6j8<Q 2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6=PiVwI
% end M\+* P,i
% W)SjQp6
% See also ZERNPOL, ZERNFUN2. [ij,RE7,T
I(n* _bFq
=ziy`#fm,
% Paul Fricker 11/13/2006 gw3NS8
A+
qG>DTKIU
=O{~Q3z@s
WA.\*Nqz e
/k"hH\Pp
% Check and prepare the inputs: %bX0 mN
% ----------------------------- 02]xJo
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O'}llo
error('zernfun:NMvectors','N and M must be vectors.')
td(M#a-
end JAn1{<Ky
$-@$i`Kf/
h<[+HsI
if length(n)~=length(m) h[ 6hM^n
error('zernfun:NMlength','N and M must be the same length.') 1 2]fQkp
end iTNqWU-o
LnMwx#^*
i@<~"~>]7
n = n(:); e.6Dl_
m = m(:); (@ea|Fd#4
if any(mod(n-m,2)) J/4y|8T/y
error('zernfun:NMmultiplesof2', ... c%YDt`
'All N and M must differ by multiples of 2 (including 0).') It
2UfW
end ~2N-k1'-'
'=TTa
a0zG(7.D
if any(m>n) %9c|%#3
error('zernfun:MlessthanN', ... bBE^^9G=Z
'Each M must be less than or equal to its corresponding N.') 4NVgOr:
end ;x>;jS.t
ehc<|O9tY
&9kiO
if any( r>1 | r<0 ) ye r>
x
error('zernfun:Rlessthan1','All R must be between 0 and 1.') NFoZ4R1gy
end 5|WOBOh>`&
-"Gl
4)
@]3*B%t
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
l/ V&s<
error('zernfun:RTHvector','R and THETA must be vectors.') HRRngk#lV
end \3 KfD'L
"<dN9l>
`03<0L
r = r(:); -g2{681`r
theta = theta(:); Q}uG/HI
length_r = length(r); *!u?
if length_r~=length(theta) mahi7eU
P
error('zernfun:RTHlength', ... Fi{mr*}
'The number of R- and THETA-values must be equal.') x\;GoGsez
end U~g@TfU;
z`9l<Q/
:Ba-u
% Check normalization: /2:Q6J
% --------------------
,(hY%M&\
if nargin==5 && ischar(nflag) u-/3(dKt
isnorm = strcmpi(nflag,'norm'); :+pPrGj"
if ~isnorm xhD$e=
g
error('zernfun:normalization','Unrecognized normalization flag.') `1p?*9Ssn
end # 8qyg<F
else s#Q_Gu
isnorm = false; WA$ p_% r=
end "w1(g=n
%~(~W>^A
Cs;<'[_?YO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <d<RK@2-
% Compute the Zernike Polynomials $pBr
&,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I_L;T
j)<[j&OWw
]J~g'">
% Determine the required powers of r: 7#/|VQX<A
% ----------------------------------- |=OpzCs
m_abs = abs(m); @>9A$w$H|a
rpowers = []; Q~CpP9%
for j = 1:length(n) $@4e(Zrmo
rpowers = [rpowers m_abs(j):2:n(j)]; Kk56/(_S
end 6NKF'zh
rpowers = unique(rpowers); ~)!VV)
9/QS0
c; d"XiA
% Pre-compute the values of r raised to the required powers, Suj}MEiv
% and compile them in a matrix: V'$oTZ`
% ----------------------------- yL4 -4
if rpowers(1)==0 @%keTTZ
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 92NC]_jw
rpowern = cat(2,rpowern{:}); /T4VJ{D
rpowern = [ones(length_r,1) rpowern]; k4*! Q_A
else T7X!#j"\
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jS}'cm-
rpowern = cat(2,rpowern{:}); zZw@c?
end Hm<M@M$aG
_fe0,
l+'`BBh*]
% Compute the values of the polynomials: 4jPwL|#
% -------------------------------------- 4I+.^7d
y = zeros(length_r,length(n)); jFS'I*1+
for j = 1:length(n) L)=8mF.
s = 0:(n(j)-m_abs(j))/2; oO}>i0ax*
pows = n(j):-2:m_abs(j); Y~}QJ+`?
for k = length(s):-1:1 QDl)92z
p = (1-2*mod(s(k),2))* ... CJtr0M<U+
prod(2:(n(j)-s(k)))/ ... xg4T` ])
prod(2:s(k))/ ... "&s9cO.H
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... MH2OqiCI
prod(2:((n(j)+m_abs(j))/2-s(k))); .Lp Nm'=R
idx = (pows(k)==rpowers); U5 -zB)V
y(:,j) = y(:,j) + p*rpowern(:,idx); v^57j:sD
end L)j]~^P$-
`mWQWx$V!
if isnorm vC s6#PR$
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oa?!50d
end DPR;$yV
end ktdz@f
% END: Compute the Zernike Polynomials 9 #.<E5:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f45;fT>
lsN/$M|}
{: Am9B
% Compute the Zernike functions: D6"~fjHh
% ------------------------------ Qj{$dqmDN
idx_pos = m>0; p,!fIx
idx_neg = m<0; `,hW;p>-
7Q<Kha
wGZ>iLe:
z = y; &T5fH!?4
if any(idx_pos) e@6RC bj
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7/[TE
end _m)gO/02A
if any(idx_neg) ~Tpe,juG_
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); w+URCj
end 3W%f#d$`
|SwZi'p
!-
Cs?
% EOF zernfun $l0eI