切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9013阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ~ z&A  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 58ZiCvqv  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? oZcwbo8  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $m0x8<7nu  
    9^*YYK}%  
    fy-Z{  
    NX #d}M^V  
    o*ED!y7  
    function z = zernfun(n,m,r,theta,nflag) `} Zbfe~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. nKJ7K8)  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N I=Dk'M  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7tO$'q*h  
    %   unit circle.  N is a vector of positive integers (including 0), and ?-&D'  
    %   M is a vector with the same number of elements as N.  Each element yzzre>F  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) b2kbuk]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, g<tTZD\g  
    %   and THETA is a vector of angles.  R and THETA must have the same GYmBxX87  
    %   length.  The output Z is a matrix with one column for every (N,M) _<}5[(qu  
    %   pair, and one row for every (R,THETA) pair. Wk#-LkI  
    % ${,eQ\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ij5=f0^4.  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :q[n1 O[Ch  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral rd~W.b_b  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, kAQZj3P]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &Zy=vk*  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =QO[zke:  
    % \@" . GM%  
    %   The Zernike functions are an orthogonal basis on the unit circle. MQMy Z:  
    %   They are used in disciplines such as astronomy, optics, and -t#a*?"$w  
    %   optometry to describe functions on a circular domain. L k+1r8  
    % ##ea-"m8  
    %   The following table lists the first 15 Zernike functions. fx"+ZR  
    % `l#$l3v+  
    %       n    m    Zernike function           Normalization "T[jQr  
    %       -------------------------------------------------- 6U3@-+lF  
    %       0    0    1                                 1 Y[]t_o)  
    %       1    1    r * cos(theta)                    2 3;gtuqwD$  
    %       1   -1    r * sin(theta)                    2 9f[[%80  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )F2tV ]k\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) g7yHhF>%X  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -T6%3>h  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 5i&V ~G  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +~]g&Mf6o  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3<E$m *  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p{PYUW"?^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Ci:QIsu*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2b` M(QL  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) DQQjx>CK  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) . M $D  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \{mJO>x  
    %       -------------------------------------------------- +'4dP#  
    % )fr\ V."  
    %   Example 1: \~1+T  
    % bv];Gk*Z-  
    %       % Display the Zernike function Z(n=5,m=1) W5g!`f  
    %       x = -1:0.01:1; \Nyxi7  
    %       [X,Y] = meshgrid(x,x); _9 O'  
    %       [theta,r] = cart2pol(X,Y); mmK_xu~f28  
    %       idx = r<=1; 'FXZ`+r|  
    %       z = nan(size(X)); =Bx~'RYl1d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4(ZV\}j1  
    %       figure =MLL-a1  
    %       pcolor(x,x,z), shading interp [! BH3J!  
    %       axis square, colorbar |g+5rVbd  
    %       title('Zernike function Z_5^1(r,\theta)') @h3)! #\ N  
    % @>ZjeDG>  
    %   Example 2: =LzW#s=O  
    % c:TP7"vG  
    %       % Display the first 10 Zernike functions DR=1';63  
    %       x = -1:0.01:1; 2F{IDcJI\  
    %       [X,Y] = meshgrid(x,x); ~5529  
    %       [theta,r] = cart2pol(X,Y); $sJfxh r  
    %       idx = r<=1; n\Nl2u& m  
    %       z = nan(size(X)); ;hDr+&J|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; tBQ> p.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \)WjkhG<w#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Lo4t:H&  
    %       y = zernfun(n,m,r(idx),theta(idx)); LOzKpvGl  
    %       figure('Units','normalized') H_]kR&F8  
    %       for k = 1:10 #Xly5J  
    %           z(idx) = y(:,k); $!w%=  
    %           subplot(4,7,Nplot(k)) B\yid@e  
    %           pcolor(x,x,z), shading interp wl9icrR>  
    %           set(gca,'XTick',[],'YTick',[]) WFG/vzJ  
    %           axis square .}s a2-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5<poN)"  
    %       end y 6< tV.  
    % ;<H2N0qJ(  
    %   See also ZERNPOL, ZERNFUN2. i=@*F$,  
    ]ghPbS@  
    *uR'eXW  
    %   Paul Fricker 11/13/2006 i YkNtqn/  
    C? S%fF  
    ^<-SW]x  
    DK;-2K  
    u)-l+U.  
    % Check and prepare the inputs: K~R{q+  
    % ----------------------------- 6yqp<D0SP)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8qveKS]vZ  
        error('zernfun:NMvectors','N and M must be vectors.') \)*qW[C$a  
    end 9"TPDU7"  
    }$jIvb,3?  
    (B5G?cB9  
    if length(n)~=length(m) TzJN,]F!M  
        error('zernfun:NMlength','N and M must be the same length.') wW~2]*n  
    end 4<|]k?@  
    *v&RGY[>  
    F2=97 =R  
    n = n(:); Q>$v~v?9  
    m = m(:); PR0]:t)E  
    if any(mod(n-m,2)) gqd#rjtfz  
        error('zernfun:NMmultiplesof2', ... T28#?Lp6]  
              'All N and M must differ by multiples of 2 (including 0).') RWYA`  
    end &CgD smJo#  
    :M16ijkx  
    -[z;y73]t  
    if any(m>n) 2cL<`  
        error('zernfun:MlessthanN', ... rE 8-MB  
              'Each M must be less than or equal to its corresponding N.') KVBz=  
    end 90a= 39kI  
    *&s_u)b  
    lOZZ-  
    if any( r>1 | r<0 ) Jh1fM`kB5K  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A]1](VQ)4  
    end Flsf5 Tr0  
    ZC"p^~U_e[  
    H`sV\'`!}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qmhHHFjQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') \TjsXy=:)  
    end "Z <1Msz  
    3~ylBJJ  
    hz!.|U@,{<  
    r = r(:); 0t8-oui  
    theta = theta(:); [||$1u\%  
    length_r = length(r); *=rl<?tX  
    if length_r~=length(theta) {>#Ya;E  
        error('zernfun:RTHlength', ... -4.+&'  
              'The number of R- and THETA-values must be equal.') +m_quQ/ys  
    end K\#+;\V  
    0[^f9NZ>-  
    :0/I2:  
    % Check normalization: L]Uy+[gg  
    % -------------------- &12.|  
    if nargin==5 && ischar(nflag) -O\`G<s%  
        isnorm = strcmpi(nflag,'norm'); YIfbcR5  
        if ~isnorm yo5|~"yZY  
            error('zernfun:normalization','Unrecognized normalization flag.') \7RP6o  
        end wNn6".S   
    else cOcm9m#  
        isnorm = false; \O[Cae:^?  
    end *&7Av7S  
    i9Qx{f88  
    uTQ/_$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2!A/]:[F  
    % Compute the Zernike Polynomials SKGYmleR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8d-_'MXk3  
    ZDlMkHJ  
    Vx'_fb?wap  
    % Determine the required powers of r: Y`%:hvy~  
    % ----------------------------------- Q!c*2hI  
    m_abs = abs(m); I_Q'+d  
    rpowers = []; Xcb\N  
    for j = 1:length(n) ,{$:Q}`  
        rpowers = [rpowers m_abs(j):2:n(j)]; US-P>yF  
    end "[76>\'H  
    rpowers = unique(rpowers); uCx\Bt"VI  
    mhL,:UE  
    )!'SSVaRs  
    % Pre-compute the values of r raised to the required powers, OX!9T.j  
    % and compile them in a matrix: 9k1n-po  
    % ----------------------------- Lf3:' n  
    if rpowers(1)==0 Pl U!-7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); z"|^Y|`m  
        rpowern = cat(2,rpowern{:}); C;_10Rb2ut  
        rpowern = [ones(length_r,1) rpowern]; Eg>MG87  
    else 6tVB}UKs  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m3,i{  
        rpowern = cat(2,rpowern{:}); -[Q%Vv!8  
    end RV-7y^[]^  
    -3A#a_fu  
    B+ +:7!  
    % Compute the values of the polynomials: Ao2t=vg  
    % -------------------------------------- HKV]Rn  
    y = zeros(length_r,length(n)); ht ` !@B  
    for j = 1:length(n) +v/_R{ M  
        s = 0:(n(j)-m_abs(j))/2; t\X5B]EZ  
        pows = n(j):-2:m_abs(j); *G^ QS"%  
        for k = length(s):-1:1 to2dkU  
            p = (1-2*mod(s(k),2))* ... .M!HVq47m  
                       prod(2:(n(j)-s(k)))/              ... 4Y[tx]<  
                       prod(2:s(k))/                     ... J=ZNx;{6  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s-[_%  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Z8Qmj5'[  
            idx = (pows(k)==rpowers); Zj%l (OVq  
            y(:,j) = y(:,j) + p*rpowern(:,idx); zmF_-Q`c  
        end !>TH#sU$  
         Gz@'W%6yaV  
        if isnorm 5\lOZYHX  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); zrri&QDF<  
        end ^<Q+=\h  
    end v<$a .I(  
    % END: Compute the Zernike Polynomials \^i/:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wS9EC}s:Q  
    $ba3dqbCW  
    B/7c`V  
    % Compute the Zernike functions: %Sf%XNtu  
    % ------------------------------ A46Xei:Ow  
    idx_pos = m>0; jw]~g+x#$  
    idx_neg = m<0; D=i)AZqMPp  
    ;b-Y$<  
    8SR~{  
    z = y; %3!DRz  
    if any(idx_pos) q3<Pb,Z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |hk?'WGc`0  
    end g)nsP  
    if any(idx_neg) S jgjGJw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CvS}U%   
    end bdEc ?  
    `KgIr,Q)  
    W6:ei.d+NS  
    % EOF zernfun Wz',>&a  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  lz=DP:/&  
    z?a<&`W  
    DDE还是手动输入的呢? ,<,ige  
    WGxe3(d  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究