下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, X"lPXoCN
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m?*}yM
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Q#M@!&
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &![3{G"+>l
/zV&ebN]
Ww\M3Q`h
awu18(;J
\7]0vG
function z = zernfun(n,m,r,theta,nflag) x)GpNkx:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .0 }eg$d
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [C@|qAh
% and angular frequency M, evaluated at positions (R,THETA) on the $DS|jnpV
% unit circle. N is a vector of positive integers (including 0), and *,az`U
% M is a vector with the same number of elements as N. Each element lW6$v*
s9
% k of M must be a positive integer, with possible values M(k) = -N(k) ,y5,+:Y
~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, we?#
Dui
% and THETA is a vector of angles. R and THETA must have the same rHngYcjR
% length. The output Z is a matrix with one column for every (N,M) ^W#161&
% pair, and one row for every (R,THETA) pair. =2J^
'7
% FqwH:Fcr:
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike I)]"`2w2w
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :}0>IPW-V
% with delta(m,0) the Kronecker delta, is chosen so that the integral
@'IRh9
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6 rp(<D/_
% and theta=0 to theta=2*pi) is unity. For the non-normalized e2F{}N
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )wqG^yv
% >8;EeRvI
% The Zernike functions are an orthogonal basis on the unit circle. j; TXZ`|(
% They are used in disciplines such as astronomy, optics, and "WF@T
% optometry to describe functions on a circular domain. fmgXh)=
% ?q{HS&k
% The following table lists the first 15 Zernike functions. +%sMd]$,n
% #EG$HX]
% n m Zernike function Normalization -F7P$/9
% -------------------------------------------------- lD9QS ;
% 0 0 1 1 %r
=9,IJ
% 1 1 r * cos(theta) 2 O
n/q&h5
% 1 -1 r * sin(theta) 2 'Bx"i
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^7l+ Ofb3
% 2 0 (2*r^2 - 1) sqrt(3) K6Z/
% 2 2 r^2 * sin(2*theta) sqrt(6) o$q})!
% 3 -3 r^3 * cos(3*theta) sqrt(8) BWF>;*Xro
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) .QVN&UyZ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 2]:Z7Ji
% 3 3 r^3 * sin(3*theta) sqrt(8) Ci9]#)"c
% 4 -4 r^4 * cos(4*theta) sqrt(10) 8{4SaT.-Rm
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )`5=6i
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) IeN~E'~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lY$9-Q(
% 4 4 r^4 * sin(4*theta) sqrt(10) Gr&YzbSX
% -------------------------------------------------- N!lQ;o'
% ;Z 6ngS
% Example 1: &zV;p
% ,z5B"o{Et
% % Display the Zernike function Z(n=5,m=1) wN]]t~K)Q
% x = -1:0.01:1; wNm 1H[{
% [X,Y] = meshgrid(x,x); b}HwvS:
% [theta,r] = cart2pol(X,Y); It#T\fU
% idx = r<=1; B%(-UTQf
% z = nan(size(X)); +/U6p!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Jp 7m$D%
% figure 9v3%a3
% pcolor(x,x,z), shading interp O>,Rsj!e
% axis square, colorbar Lq#$q>!K
% title('Zernike function Z_5^1(r,\theta)') ~0V,B1a
% v43FU3
% Example 2: UPcx xtC
% (@i2a
% % Display the first 10 Zernike functions #`qP7E w
% x = -1:0.01:1; AGMrBd|J{
% [X,Y] = meshgrid(x,x); mO^)k
% [theta,r] = cart2pol(X,Y); j|owU
% idx = r<=1; _FxQl]@
% z = nan(size(X)); (5h+b_eB
% n = [0 1 1 2 2 2 3 3 3 3]; C^ 1;r9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v=J[p;H^H
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ov|/=bzro
% y = zernfun(n,m,r(idx),theta(idx)); x.%x|6G*
% figure('Units','normalized') e)#f`wM
% for k = 1:10 oGKk2oP
% z(idx) = y(:,k); mvXIh";
% subplot(4,7,Nplot(k)) 94'0X
% pcolor(x,x,z), shading interp _ lE
d8Cb
% set(gca,'XTick',[],'YTick',[]) tdi^e;:?
% axis square k:DAko}
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RxUzJ
% end {w52]5l
% L4!T
% See also ZERNPOL, ZERNFUN2. NsF8`rg
$E6bu4I
JXAH/N&i
% Paul Fricker 11/13/2006 I%tJLdL
ZnZ`/zNO
"
"{#~X}
0u=FlQ
}h
AfX lV-v
% Check and prepare the inputs: LgJUMR8vUO
% ----------------------------- ;S}_/'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '[`pU>9
error('zernfun:NMvectors','N and M must be vectors.') 2[~|6@n
end @ $2xiE.[
'D[g{LkL
VjGtEIew
if length(n)~=length(m) IiB"F<&[j{
error('zernfun:NMlength','N and M must be the same length.') 'w`3( ':=
end KiYz]IM$4
+&qj`hA-b
xO<Uz"R
n = n(:); Wer.VL
m = m(:); 1gh<nn
if any(mod(n-m,2)) -Ou@T#h"
error('zernfun:NMmultiplesof2', ... &!KW[]i%9}
'All N and M must differ by multiples of 2 (including 0).') a[A*9%a
end sHf.xc
@ZtDjxN
&
7!jbID~
if any(m>n) s* UO!bH a
error('zernfun:MlessthanN', ... !fK9YW(Im
'Each M must be less than or equal to its corresponding N.') gFAtIx4
end ,Vr'F
#7"*Pxb#A
;6/dFOZn
if any( r>1 | r<0 ) L0EF
CQ7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') |^T?5=&Kt
end f) @-X!
`uLH3sr
B<6Ye9zuG
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~ -zch=+u
error('zernfun:RTHvector','R and THETA must be vectors.') a_amO<!
end m+'vrxTY
$i.)1.x
L_QJS2
r = r(:); '.1_anE]
theta = theta(:);
s2;b-0
length_r = length(r); (^;Fyf/
if length_r~=length(theta) yp\sJc`
error('zernfun:RTHlength', ... V>:ubl8j0l
'The number of R- and THETA-values must be equal.') 8"KaW2/%
end ~E*`+kD
#P5tTCM
^E= w3g&
% Check normalization: &0*IN
nlc?
% -------------------- ]q<Zc>OC
if nargin==5 && ischar(nflag) }RN&w]<
isnorm = strcmpi(nflag,'norm'); -1 <*mbb0
if ~isnorm f]37Xl%I
error('zernfun:normalization','Unrecognized normalization flag.') @-G^Jm9~\m
end ,/6 aA7(
else -9> oB
isnorm = false; _7Rp.)[&
end 3|9
U`@
gy6Pf4Yo
GMJ</xG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U6
$)e.FO
% Compute the Zernike Polynomials <{kr5<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bj`mQMC
:$?^ID
+c-?1j
% Determine the required powers of r: r'~^BLT`#
% ----------------------------------- G~fM!F0
m_abs = abs(m); 0tyS=X;#e
rpowers = []; \g<=n&S?
for j = 1:length(n) Ed +"F{!eQ
rpowers = [rpowers m_abs(j):2:n(j)]; +*vg)F:
end E[E7Gsmq V
rpowers = unique(rpowers); Cp[
NVmN
0Z<&M|G
QGpAG#M9?
% Pre-compute the values of r raised to the required powers, %YbcI|i]<0
% and compile them in a matrix: LH]<+Zren
% ----------------------------- L6E8A?>5rD
if rpowers(1)==0 B`i5lD
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *eb2()B%
rpowern = cat(2,rpowern{:}); 'I8K1Q=/
rpowern = [ones(length_r,1) rpowern]; *oca
else l1MVC@'pvP
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ln
C5"
rpowern = cat(2,rpowern{:}); 8fX<,*#I
end ~L7@,d :
P}RewMJ$L
qTD^Vz
V
% Compute the values of the polynomials: xhmrep6+<
% -------------------------------------- hEv}g
y = zeros(length_r,length(n)); e
)?~
for j = 1:length(n) @x@*=
s = 0:(n(j)-m_abs(j))/2; ^qP}/H[QT
pows = n(j):-2:m_abs(j); H 6~6hg
for k = length(s):-1:1 n%Df6zQ<@s
p = (1-2*mod(s(k),2))* ...
~.H*"
prod(2:(n(j)-s(k)))/ ... V.U9Q{y"
prod(2:s(k))/ ... 4IH,:w=ofN
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1{pU:/_W
prod(2:((n(j)+m_abs(j))/2-s(k))); BJ,9C.|
idx = (pows(k)==rpowers); d?Y|w3lB
y(:,j) = y(:,j) + p*rpowern(:,idx); SV}C]<
end [;n/|/m,
DtrR< &m
if isnorm ?5e]^H}
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _I1:|y
end WXzSf.8p|
end W-UMX',0zS
% END: Compute the Zernike Polynomials i`hr'}x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZgD%*bH*B
6-oy%OnN
o<Z
% Compute the Zernike functions: G&LOjd2
% ------------------------------ ~ WO
idx_pos = m>0; qVDf98
idx_neg = m<0; ccPTJ/%$
jF r[T
! O~:
z = y; Z|k>)pv@
if any(idx_pos) uz%<K(:Ov
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); N">4I)
end lNwqWOWy
if any(idx_neg) X{YY)}^
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *@1(!A
end $2gX!)
4
[K"e{W3
v%2 @M
% EOF zernfun E@(nKe&6T_