切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9476阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, n;Bb/Z!~  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, h'y"`k -  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^ `LqNG  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &'6/H/J  
    3.W[]zH/u  
    !}Xoqamm  
    u\LNJo| B  
    PUQ",;&y1  
    function z = zernfun(n,m,r,theta,nflag) FjCGD4x1N  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .7Mf(1:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )>@S8v,(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the o z*;q]  
    %   unit circle.  N is a vector of positive integers (including 0), and -A#p22D,5  
    %   M is a vector with the same number of elements as N.  Each element ; Z:[LJd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) E/cV59  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, bjVk9XvH6  
    %   and THETA is a vector of angles.  R and THETA must have the same 461g7R%r  
    %   length.  The output Z is a matrix with one column for every (N,M) SkuR~!  
    %   pair, and one row for every (R,THETA) pair. =g+}4P  
    % !wp1Df[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f*%kHfaXgN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), BX/3{5Y>{  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral dN5{W0_  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, h$5[04.Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized wra0bS)4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (d4btcg  
    %  kN=&"  
    %   The Zernike functions are an orthogonal basis on the unit circle. EE 9w^.3a  
    %   They are used in disciplines such as astronomy, optics, and cWW?@ _  
    %   optometry to describe functions on a circular domain. @c^ Dl  
    % I>?oVY6M@u  
    %   The following table lists the first 15 Zernike functions. HH*y$  
    % J~%43!X\K  
    %       n    m    Zernike function           Normalization 9#9 UzKX#  
    %       -------------------------------------------------- : UeK0  
    %       0    0    1                                 1 8"%Es  
    %       1    1    r * cos(theta)                    2 oC`F1!SfOO  
    %       1   -1    r * sin(theta)                    2 $w(RJ/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) NP;W=A F  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ,rMDGZm?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [ar0{MPYd  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) eN])qw{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) V'9.l6l   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) gqS9{K(f  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) mx^Ga=: ?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) w_{tS\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +q&Hj|;8r  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) I|rb"bG  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?t YZ/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |Gic79b  
    %       -------------------------------------------------- yzN[%/  
    % NQ`D"n  
    %   Example 1: ;<Q%d~$xy}  
    % hDxq9EF  
    %       % Display the Zernike function Z(n=5,m=1) (;#c[eKy  
    %       x = -1:0.01:1; ZV gfrvZP  
    %       [X,Y] = meshgrid(x,x); W6<oy  
    %       [theta,r] = cart2pol(X,Y); zT>!xGTu7~  
    %       idx = r<=1; }JFTe g  
    %       z = nan(size(X));  +vkmS  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); l 5-[a  
    %       figure s|p I`  
    %       pcolor(x,x,z), shading interp b`X''6  
    %       axis square, colorbar oPi>]#X  
    %       title('Zernike function Z_5^1(r,\theta)') BwT[SI<Sg  
    % >._d2.Q'  
    %   Example 2: n^nE&'[?0g  
    % krfXvQJwJ  
    %       % Display the first 10 Zernike functions oz&`3`  
    %       x = -1:0.01:1; 9JFN8Gf*)  
    %       [X,Y] = meshgrid(x,x); BpIyw  
    %       [theta,r] = cart2pol(X,Y); 'dwW~4|B  
    %       idx = r<=1; ~ *&\5rPb  
    %       z = nan(size(X)); _)45G"M  
    %       n = [0  1  1  2  2  2  3  3  3  3]; sqKx?r72  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; JY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Et3]n$  
    %       y = zernfun(n,m,r(idx),theta(idx)); [rx9gOOa&  
    %       figure('Units','normalized') _V$'nz#>e  
    %       for k = 1:10 7Bj,{9^aJ  
    %           z(idx) = y(:,k); Z8E<^<|  
    %           subplot(4,7,Nplot(k)) vK!`#W`X  
    %           pcolor(x,x,z), shading interp E !!,JnU  
    %           set(gca,'XTick',[],'YTick',[]) x^K4&'</  
    %           axis square ~ YH?wdT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P3"R2-  
    %       end Um+_ S@h  
    % ]c>@RXY'  
    %   See also ZERNPOL, ZERNFUN2. }StzhV{GS  
    :{a< ~n`  
    pX%:XpC!h  
    %   Paul Fricker 11/13/2006 gBqDx|G  
    h:fiUCw  
    ZN8j})lE  
    jZ.yt+9  
    dgP e H8_  
    % Check and prepare the inputs: 'OnfU{Ai  
    % ----------------------------- ?("O.<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n=!T (Hk  
        error('zernfun:NMvectors','N and M must be vectors.') 1h@qcom9K_  
    end {]>c3=~FQb  
    m4m-JD|v  
    ZO/e!yju  
    if length(n)~=length(m) {N~mDUoJ|  
        error('zernfun:NMlength','N and M must be the same length.') hi,=" /9  
    end ]({ -vG\m  
     u 8o!  
    m]?Z_*1  
    n = n(:); IRbyW?/Xv  
    m = m(:); o^epXIrIPi  
    if any(mod(n-m,2)) ^t'mW;C$4  
        error('zernfun:NMmultiplesof2', ... CFFb>d  
              'All N and M must differ by multiples of 2 (including 0).') n~629&  
    end KZ2[.[(Ph  
    F>\,`wP  
    CmB_g?K  
    if any(m>n) Q# hRnM  
        error('zernfun:MlessthanN', ... _&l8^MD  
              'Each M must be less than or equal to its corresponding N.') /[TOy2/;%b  
    end i\CA6I  
    2_pF#M9  
    xCZ_x$bk  
    if any( r>1 | r<0 ) 44e]sT.B  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,g?ny<#o  
    end =G}a%)?As\  
    1NP  
    })O S2F  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yepRJ%mp  
        error('zernfun:RTHvector','R and THETA must be vectors.') mW{;$@PLF"  
    end Fizrsr 6%  
    *z[vp2 TN  
    bkJ bnW=  
    r = r(:); |it*w\+M  
    theta = theta(:); !EIH"`>!  
    length_r = length(r); 04U|Frc  
    if length_r~=length(theta) <pk*z9   
        error('zernfun:RTHlength', ... /D"T\KNWr  
              'The number of R- and THETA-values must be equal.') bbjba36RO  
    end <qR$ `mLN  
    hp)>Nzdx  
    )#AYb   
    % Check normalization: oVw4M2!"K  
    % -------------------- 8 o}5QOW  
    if nargin==5 && ischar(nflag) O ?T~>|  
        isnorm = strcmpi(nflag,'norm'); }!^h2)'7  
        if ~isnorm b_Y+XXb<  
            error('zernfun:normalization','Unrecognized normalization flag.') Kvg=7o  
        end .Vt|;P}  
    else gp9O%g3'  
        isnorm = false; MNs<yQ9I'  
    end |Kd6.Mx  
    ai?uJ}  
    Q3>qT84  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "dCIg{j   
    % Compute the Zernike Polynomials E{6ku=2F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v Z10Rb8  
    J.rS@Z`~7  
    |!K&h(J|  
    % Determine the required powers of r: No\#N/1@P  
    % ----------------------------------- #4|RaI|.  
    m_abs = abs(m); !$HuH6_[  
    rpowers = []; q[/g3D\G  
    for j = 1:length(n) pXNhU88  
        rpowers = [rpowers m_abs(j):2:n(j)]; Oi?Q^ISxP  
    end <@`K^g;W  
    rpowers = unique(rpowers); m@nGXl'!  
    @d Qr^'h  
    9>+>s ?IgK  
    % Pre-compute the values of r raised to the required powers, (NUXK  
    % and compile them in a matrix: 7h9oY<W  
    % ----------------------------- [vtDtwL  
    if rpowers(1)==0 #~j$J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >]}VD "\  
        rpowern = cat(2,rpowern{:}); 36'J9h\  
        rpowern = [ones(length_r,1) rpowern]; b5g^{bzwu  
    else ip'v<%,Q3"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _`Kh8G {e  
        rpowern = cat(2,rpowern{:}); R&s/s`pLW  
    end yYOV:3!"  
    fx 08>r   
    h%:wIkZ/  
    % Compute the values of the polynomials: N+SA$wG  
    % -------------------------------------- P9\y~W  
    y = zeros(length_r,length(n)); y~_x  
    for j = 1:length(n) ~=wBF  
        s = 0:(n(j)-m_abs(j))/2; XF{2'x_R  
        pows = n(j):-2:m_abs(j); $_ $%L0)5  
        for k = length(s):-1:1 j,,#B4b  
            p = (1-2*mod(s(k),2))* ... j+< !4 0#  
                       prod(2:(n(j)-s(k)))/              ... >VjtKSN  
                       prod(2:s(k))/                     ... lItr*,A]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /XRgsF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); D622:Y886  
            idx = (pows(k)==rpowers); e /XOmv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ICoZ<;p  
        end tSDp>0yZ3  
         X pXhg*}K  
        if isnorm 2b {Y1*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7.5\LTM>9e  
        end xT9+l1_  
    end hy"p8j7_  
    % END: Compute the Zernike Polynomials GmGq69]J*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <.7W:s,f=  
    a(o[ bH.|;  
    /7*qa G  
    % Compute the Zernike functions: lSId<v?C>  
    % ------------------------------ AM gvk`<f  
    idx_pos = m>0; nDC5/xB  
    idx_neg = m<0; BcGQpv&x  
    ]*S_fme  
    ,@gDY9Q3r/  
    z = y; /=OSGIJzm  
    if any(idx_pos) of<>M4/g4y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Pb D|7IM  
    end r52,f%nlm  
    if any(idx_neg) $PbN=@  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); QQjMC'  
    end OaxE3bDT  
    NOmSLIgt7  
    =TI|uD6T  
    % EOF zernfun r3{o _w  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  JAz;_wS(k  
    ">9CN$]J  
    DDE还是手动输入的呢? w1_Ux<RF  
    qi2dTB  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究