切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9106阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Q;u pau  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Vc2`b3"Br  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? nK,w]{<wG!  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 3u;oQ5<(v  
    >/|*DI-HJ  
    6 r"<jh#  
    rKn~qVls  
    0mnw{fE8_  
    function z = zernfun(n,m,r,theta,nflag) G?ZXWu.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  J *yg&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (?c-iKGc  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]3gSQ7  
    %   unit circle.  N is a vector of positive integers (including 0), and }}[2SH'nH  
    %   M is a vector with the same number of elements as N.  Each element Zh,71Umz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) P%6~&woF  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]A"h&`Cvt  
    %   and THETA is a vector of angles.  R and THETA must have the same TO_e^A#  
    %   length.  The output Z is a matrix with one column for every (N,M) yZRzIb_  
    %   pair, and one row for every (R,THETA) pair. q@&6#B  
    % xmX 4qtAL  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /mMV{[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '7/)Ot(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *fdTpXa  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n ;Ei\\p!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Gq6*SaTk  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \8 ":]EU  
    % ?CZd Ol  
    %   The Zernike functions are an orthogonal basis on the unit circle. JLYi]nZ  
    %   They are used in disciplines such as astronomy, optics, and U(Zq= M  
    %   optometry to describe functions on a circular domain. ]yu:i-SfP  
    % j [a(#V{  
    %   The following table lists the first 15 Zernike functions. VQs5"K"  
    % ;*N5Y}?j'  
    %       n    m    Zernike function           Normalization XuTD\g3)  
    %       -------------------------------------------------- 5bIw?%dk(  
    %       0    0    1                                 1 u y+pP!<  
    %       1    1    r * cos(theta)                    2 =vPj%oLp'a  
    %       1   -1    r * sin(theta)                    2 So;<6~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) XG?8s &  
    %       2    0    (2*r^2 - 1)                    sqrt(3) GVz6-T~\>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) B[}6-2<>?C  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [m -bV$-d  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *I+Q~4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) LscGTs,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4 :v=pZ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) fOHxtHM  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jylD6IT  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) KXrjqqXs  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5^cCY'I  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) K@2),(z  
    %       -------------------------------------------------- Q/?$x*\>  
    % t7pFW^&  
    %   Example 1: Fu~j8K  
    % df=f62  
    %       % Display the Zernike function Z(n=5,m=1) TzZq(? V  
    %       x = -1:0.01:1; ni<(K 0~  
    %       [X,Y] = meshgrid(x,x); <%^&2UMg  
    %       [theta,r] = cart2pol(X,Y); 7^285)UQA  
    %       idx = r<=1; 6b,V;#Anj  
    %       z = nan(size(X)); 7^Uv7< pw  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y} '@R$  
    %       figure d5b%  W3  
    %       pcolor(x,x,z), shading interp 2eogY#  
    %       axis square, colorbar e.%nRhSs3  
    %       title('Zernike function Z_5^1(r,\theta)') rOYx b }1  
    % xo)P?-  
    %   Example 2: ]|@^1we  
    % /QQ*8o8  
    %       % Display the first 10 Zernike functions ^ 9sjj  
    %       x = -1:0.01:1; h;Kx!5)y  
    %       [X,Y] = meshgrid(x,x); @WhHUd4s  
    %       [theta,r] = cart2pol(X,Y); `V1]k_h  
    %       idx = r<=1; Ef\ -VKh  
    %       z = nan(size(X)); LeQjvW9y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; x;S @bY  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #_1`)VS  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ~u{uZ(~  
    %       y = zernfun(n,m,r(idx),theta(idx)); OI*H,Z "  
    %       figure('Units','normalized') hp2t"t  
    %       for k = 1:10 3$tdwe$S  
    %           z(idx) = y(:,k); v19-./H^ j  
    %           subplot(4,7,Nplot(k)) W^Yxny  
    %           pcolor(x,x,z), shading interp 7$b1<.WX  
    %           set(gca,'XTick',[],'YTick',[]) +vH4MwG$.&  
    %           axis square H}!r|nG  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h8P)%p  
    %       end `uFdwO'DD  
    % pmM9,6P4@  
    %   See also ZERNPOL, ZERNFUN2. >z03{=sAN  
    \bF{-"7.  
    w xH7?tsf  
    %   Paul Fricker 11/13/2006 Q8NX)R  
    RN1_S  
    dG{A~Z z  
    :h$$J lP  
    a[C@  
    % Check and prepare the inputs: ;jXgAAz7  
    % ----------------------------- ixFi{_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @F eTz[  
        error('zernfun:NMvectors','N and M must be vectors.') eDMO]5}Ht  
    end 6<]lW  
    x Ar\gu  
     g(052]  
    if length(n)~=length(m) S!UaH>Rh  
        error('zernfun:NMlength','N and M must be the same length.') ^c<Ve'-  
    end R5D1w+  
    )UR7i8]!0  
    %;_MGae  
    n = n(:); WY/}1X9.%  
    m = m(:);  &HW9Jn  
    if any(mod(n-m,2)) fl(wV.Je|  
        error('zernfun:NMmultiplesof2', ... f?Lw)hMrA  
              'All N and M must differ by multiples of 2 (including 0).') *VcJ= b 2Y  
    end w}KkvP^  
    JI}'dU>*U:  
    }j%5t ~Qa  
    if any(m>n) Y|n"dMrL  
        error('zernfun:MlessthanN', ... UVP vOtZj  
              'Each M must be less than or equal to its corresponding N.') N['  .BN  
    end yAt ^;  
    [~HN<>L@C  
    siI;"?  
    if any( r>1 | r<0 ) A&VG~r$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $mILoy B,  
    end QV!up^Zso  
    v+XJ*N[W  
    3S{ />1Y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $Yq9P0Ya  
        error('zernfun:RTHvector','R and THETA must be vectors.') ueudRb  
    end ;TYBx24vD'  
    l **X^+=$  
    _XBd3JN@  
    r = r(:); /x hKd]Q  
    theta = theta(:); CTb%(<r  
    length_r = length(r); 5O% {{J  
    if length_r~=length(theta) q m}@!z^  
        error('zernfun:RTHlength', ... A"]YM'.  
              'The number of R- and THETA-values must be equal.') &Jj<h: *  
    end >6T8^Nt  
    >7|VR:U?B  
    *w&e\i|7  
    % Check normalization: ax`o>_)  
    % -------------------- jd: 6:Fm  
    if nargin==5 && ischar(nflag) zPO9!?7|  
        isnorm = strcmpi(nflag,'norm'); (=0.inZ  
        if ~isnorm &~CI<\o P  
            error('zernfun:normalization','Unrecognized normalization flag.') ]kSGR  
        end .Mbz3;i0  
    else tw;}jh  
        isnorm = false; >Tgv11[  
    end =bOW~0Z1  
    dd;~K&_Q/i  
    fC`&g~yK'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0kh6@y3  
    % Compute the Zernike Polynomials 4s- !7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% la!~\wpa  
    9*g Z-#  
    P pb\6|*  
    % Determine the required powers of r: FrS]|=LJhX  
    % ----------------------------------- ?,mmYW6TjB  
    m_abs = abs(m); o-5TC  
    rpowers = []; [,Gg^*umS  
    for j = 1:length(n) ,+k\p5P  
        rpowers = [rpowers m_abs(j):2:n(j)]; Y2AJ+ |  
    end [0!(xp^  
    rpowers = unique(rpowers); %b$>qW\*&  
    >:-$+I  
    B#A6v0Ta  
    % Pre-compute the values of r raised to the required powers, |Cv!,]9:r  
    % and compile them in a matrix: @d'j zs  
    % ----------------------------- pK*TE5]  
    if rpowers(1)==0 >MZ/|`[M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  B,@i  
        rpowern = cat(2,rpowern{:}); ?uu*L6  
        rpowern = [ones(length_r,1) rpowern]; j2k"cmsKh  
    else ch]IzdD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kiEa<-]  
        rpowern = cat(2,rpowern{:}); HMXE$d=[  
    end -7ep{p-  
    5pX6t  
    _BufO7 `.  
    % Compute the values of the polynomials: )~>YH*g  
    % -------------------------------------- rq{$,/6.  
    y = zeros(length_r,length(n)); [Xkx_B  
    for j = 1:length(n) 6ujW Nf  
        s = 0:(n(j)-m_abs(j))/2; vM={V$D&  
        pows = n(j):-2:m_abs(j); UQsN'r\tS  
        for k = length(s):-1:1 hrk r'3lv  
            p = (1-2*mod(s(k),2))* ... E .h*g8bXe  
                       prod(2:(n(j)-s(k)))/              ... F,kZU$  
                       prod(2:s(k))/                     ... a?1Wq  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ! nx{ X  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); w0. u\  
            idx = (pows(k)==rpowers); tQVVhXQ7  
            y(:,j) = y(:,j) + p*rpowern(:,idx); P55fL-vo|}  
        end PCA4k.,T  
         *~`(RV  
        if isnorm :jf3HG  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ?6!LL5a.  
        end e-;}366}  
    end `[A];]  
    % END: Compute the Zernike Polynomials lE;!TQj:X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;uW FHc5@B  
    TeQV?ZQ#}  
    \U0Q<ot/7  
    % Compute the Zernike functions: ~*7]r`6\@  
    % ------------------------------ , gHDx  
    idx_pos = m>0; Om&Dw |xG8  
    idx_neg = m<0; \8tsDG(1 '  
    +ZYn? #IQ  
    ]e3Ax(i)  
    z = y; =4!mAo}  
    if any(idx_pos) KvS G;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); gw(z1L5 n  
    end 'w/hw'F6  
    if any(idx_neg) x-c"%Z|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M|-)GvR$J  
    end ,4 rPg]r@  
    -Za/p@gM  
    pAEx#ck  
    % EOF zernfun ?2a$*(  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  }i2V.tVB-  
    B;WCTMy}  
    DDE还是手动输入的呢? ;wVwX6:ZKr  
    lLD12d  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)