下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C,T9xm
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, <;}jf*A
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7A'd55I4
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fZ!fwg$
v3SH+Ej4
!pY=\vK;
[!9dA.tF
<>\s#Jf/
function z = zernfun(n,m,r,theta,nflag) ip6$Z3[)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. `|@# ~
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DtkY;Yl
% and angular frequency M, evaluated at positions (R,THETA) on the n46A
% unit circle. N is a vector of positive integers (including 0), and )QS4Z{)U
% M is a vector with the same number of elements as N. Each element k{_ Op/k}V
% k of M must be a positive integer, with possible values M(k) = -N(k) %%J)@k^vH
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, *opf~B_e
% and THETA is a vector of angles. R and THETA must have the same t}r`~AEa!
% length. The output Z is a matrix with one column for every (N,M) h#a;(F4_7
% pair, and one row for every (R,THETA) pair. *{/
ww9fT
% M =Pn8<h~
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |Y#KMi ~
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j/"{tMqQp
% with delta(m,0) the Kronecker delta, is chosen so that the integral b=[gK|fu
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F&?55@b
% and theta=0 to theta=2*pi) is unity. For the non-normalized pE.f}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -WiOs;2~/
% +76{S_CZ
% The Zernike functions are an orthogonal basis on the unit circle. <s/n8#i=H
% They are used in disciplines such as astronomy, optics, and P&PPX#%
% optometry to describe functions on a circular domain. zs#s"e:jeR
% ie4keVlXc
% The following table lists the first 15 Zernike functions. O 1TJJ8
% +oKp>-
% n m Zernike function Normalization 1n}q6oa=
% -------------------------------------------------- aRFLh
% 0 0 1 1 UUb n7&
% 1 1 r * cos(theta) 2 |X&.+RI
% 1 -1 r * sin(theta) 2 VA4>!t)
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2uonT,W
% 2 0 (2*r^2 - 1) sqrt(3) =@%;6`AVcp
% 2 2 r^2 * sin(2*theta) sqrt(6) /7W N,a
% 3 -3 r^3 * cos(3*theta) sqrt(8) s|iph~W!L
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V=yRE
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) JNhHQvi\
% 3 3 r^3 * sin(3*theta) sqrt(8) 6{h+(|.(
% 4 -4 r^4 * cos(4*theta) sqrt(10) +Kc1a;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Wn;B ~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) c2M-/ x-:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {v&c5B~,\
% 4 4 r^4 * sin(4*theta) sqrt(10) @\-i3EhR
% -------------------------------------------------- zh5'oE&[yC
% l5sBDiir%
% Example 1: =gI;%M\'
% QmQsNcF~z
% % Display the Zernike function Z(n=5,m=1) 3w&fN3
1
% x = -1:0.01:1; IT,d(UV_
% [X,Y] = meshgrid(x,x); I5RV:e5b
% [theta,r] = cart2pol(X,Y); :1%z;
% idx = r<=1; .Q'/e>0
% z = nan(size(X)); ^X2U
A{
% z(idx) = zernfun(5,1,r(idx),theta(idx)); QuuR_Ao?c'
% figure Uh.XL=wY
% pcolor(x,x,z), shading interp cG|)z<Z
% axis square, colorbar dc#Db~v}k
% title('Zernike function Z_5^1(r,\theta)') f1R&Q
% u<8 f;C_
% Example 2: Jvi"K
% @NBWNgBv
% % Display the first 10 Zernike functions $'$#Xn,hU
% x = -1:0.01:1; M6n9>aW4
% [X,Y] = meshgrid(x,x); Vp3
9`m-W
% [theta,r] = cart2pol(X,Y); f"XFf@!
% idx = r<=1; }7k!>+eQ
% z = nan(size(X));
&tb
% n = [0 1 1 2 2 2 3 3 3 3]; _ED,DM
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; -9BKa~ DVQ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; V>#iR>w_4,
% y = zernfun(n,m,r(idx),theta(idx)); ZLA&<]Ad"$
% figure('Units','normalized') ciKkazx.
% for k = 1:10 EZvB#cuL-
% z(idx) = y(:,k); urGk_.f
% subplot(4,7,Nplot(k)) CbK&.a
% pcolor(x,x,z), shading interp $V"NB`T
% set(gca,'XTick',[],'YTick',[]) StUiL>9T#
% axis square gv=mz,z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _Q<wb8+/
% end by*>w/@9)k
% 7?6?`no~JJ
% See also ZERNPOL, ZERNFUN2. ]h (TZu
^+Ez[S{8
/'|'3J]HP
% Paul Fricker 11/13/2006 w, 0tY=h6
]+\@_1<ZI
MFHPh8P
YxMOr\B
Peha{]U
% Check and prepare the inputs: jE)&`yZ5
% ----------------------------- D
.3Q0a6
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B`Q.<Lqu
error('zernfun:NMvectors','N and M must be vectors.') k*bfq?E a
end 4XL*e+UfJ
$)|
l#'r
VQHJO I
if length(n)~=length(m) DM6oMT
error('zernfun:NMlength','N and M must be the same length.') 5qco4@8
end NLDmZra
4 !lbwqo
-&Fxg>FrYb
n = n(:); @+",f]
m = m(:); )>LQ{X.
if any(mod(n-m,2)) ?WWnt^
error('zernfun:NMmultiplesof2', ...
?{#P.2
'All N and M must differ by multiples of 2 (including 0).') sg12C
end i|>K
W38My j!
~p~8T
if any(m>n) u(JC 4w'
error('zernfun:MlessthanN', ... qs6yEuh#
'Each M must be less than or equal to its corresponding N.') jIMaPT
end *BVkviqxz
x8p#WB
ssW+'GD
if any( r>1 | r<0 ) uF>I0J#z?
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;VS;),h/
end R!xs;|]
b:7;zOtF
JJ56d)37.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8?W!U*0aS
error('zernfun:RTHvector','R and THETA must be vectors.') 9\*xK%T+
end wgSA6mQZ
pTZPOv#?Q
,[+
r = r(:); VL"ZC:n)-
theta = theta(:); !mpRLBH
length_r = length(r); IoNZ'g?d
if length_r~=length(theta) P*/p x4;6
error('zernfun:RTHlength', ... !-r@_tn|
'The number of R- and THETA-values must be equal.') >H@
dgb
end e =&
abu
Z~g~,q
VS^%PM#:/
% Check normalization: uc%75TJ@
% -------------------- W<;i~W
if nargin==5 && ischar(nflag) EA75
D&>I
isnorm = strcmpi(nflag,'norm'); ;^:~xJFx|
if ~isnorm 'q1)W'
error('zernfun:normalization','Unrecognized normalization flag.') J),7ukLu^
end .CI]8O"3y
else uW4G!Kw28
isnorm = false; %-]j;'6}cX
end <(d^2-0
2Iz@lrO6
t=S94^g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ".v9#|
% Compute the Zernike Polynomials iUA2/ A
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X=(8t2
^/R@bp#<
$ sEe0
% Determine the required powers of r: ZERUvk
% ----------------------------------- 9`.b
m_abs = abs(m); -O~WHi5}
rpowers = []; `(=)8>|e
for j = 1:length(n) Du$kDCU
rpowers = [rpowers m_abs(j):2:n(j)]; H` Q_gy5Z(
end ]G&?e9OA
rpowers = unique(rpowers); 4_PMl6qo
N&S:=x:$S
/lttJJDU
% Pre-compute the values of r raised to the required powers, D.qbzJz
% and compile them in a matrix: S~YrXQ{_>-
% ----------------------------- xQ1&j,R]
if rpowers(1)==0 RNoS7[&
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -sO EL{
rpowern = cat(2,rpowern{:}); :@_CQc*yB
rpowern = [ones(length_r,1) rpowern]; H|F>BjXn5
else |\?-k
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S_c#{4n
rpowern = cat(2,rpowern{:}); +ls *04
end ReKnvF~
}5OlX
S?hM
% Compute the values of the polynomials: }'kk}2ej`
% -------------------------------------- Zi7(lG
y = zeros(length_r,length(n)); Fxv~;o#
for j = 1:length(n) k6[t$|lMy
s = 0:(n(j)-m_abs(j))/2; :+]6SC0ql
pows = n(j):-2:m_abs(j); rVQ:7\=Z
for k = length(s):-1:1 { +
[rJ_
p = (1-2*mod(s(k),2))* ... `{F8#
prod(2:(n(j)-s(k)))/ ... Gpe h#Q4x
prod(2:s(k))/ ... X@x:
F|/P
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X/5tZ@
prod(2:((n(j)+m_abs(j))/2-s(k))); 3zWY%(8t4?
idx = (pows(k)==rpowers); ?Dd2k%o
y(:,j) = y(:,j) + p*rpowern(:,idx); zCO5`%14
end w'M0Rd]
c)@M7UK[
if isnorm jE2ziK
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b^Rg_,s
end }qV4]*+{
end .vQ2w
% END: Compute the Zernike Polynomials ]3
0
7.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L$@RSKYp
$Ae/NwIlc
6EX:qp^`
% Compute the Zernike functions: N@Slc
0
% ------------------------------ )4GfT
idx_pos = m>0; 1Lj\"+.
idx_neg = m<0; #J2856bzS
Ks7s2 vK^
v%zI~g.L
z = y; ~&B_ Bswf
if any(idx_pos) uT;Qo{G^
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); L>@0Nne7
end dUjdQ
if any(idx_neg) H7qda'%>
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Mv4JF(,S
end J=4S\0Z*
+#&2*nY
d9Rj-e1x
% EOF zernfun HLk}E*.mC