切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9290阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, b<8q 92F  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, @,GjeF]!  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !&\meS{  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :5G$d%O=2  
    dUZ$wbV%h  
    K^8@'#S  
    h2AGEg'g2[  
    :K: f^o]s  
    function z = zernfun(n,m,r,theta,nflag) -#daBx ?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. t+jIHo  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u9 %;{:]h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #Af)n(  
    %   unit circle.  N is a vector of positive integers (including 0), and T4vogoy  
    %   M is a vector with the same number of elements as N.  Each element > Z]P]e  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ` v>/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .$UTH@;7  
    %   and THETA is a vector of angles.  R and THETA must have the same C1n? ?Y[  
    %   length.  The output Z is a matrix with one column for every (N,M) e{:86C!d)  
    %   pair, and one row for every (R,THETA) pair. S'|lU@P Cl  
    % BU'Ki \  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q$3HvZP  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), sN;(/O  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;r%<2(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x Ridc^  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }Z^FEd"y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l'W3=,G[?  
    % @h!U  
    %   The Zernike functions are an orthogonal basis on the unit circle. |e~u!V\m  
    %   They are used in disciplines such as astronomy, optics, and 2V 4`s'  
    %   optometry to describe functions on a circular domain. 33O)k*g  
    % MPqY?KF  
    %   The following table lists the first 15 Zernike functions. JN-D/s  
    % ;g&7*1E  
    %       n    m    Zernike function           Normalization yY'gx|\  
    %       -------------------------------------------------- $#F;xys  
    %       0    0    1                                 1 N'I?fWN!;R  
    %       1    1    r * cos(theta)                    2 7 FEzak'  
    %       1   -1    r * sin(theta)                    2 U`:lAG  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) m2jwqx{G  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3D{82*&  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /DK*y S  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \a\^(`3a[  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Hf;RIl2F  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) "vv$%^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) e6Wl7&@6  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) D7 %^Ly  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e|S+G6 :O2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ": mCZUt  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5hlJbWJa  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) H't`Q&]a  
    %       -------------------------------------------------- Bk\*0B  
    % Sr4dY`V*:z  
    %   Example 1: rOs)B21/  
    % ?IL! X-xx  
    %       % Display the Zernike function Z(n=5,m=1) y.L|rRe@P  
    %       x = -1:0.01:1; cpP.7ZR  
    %       [X,Y] = meshgrid(x,x); a.5zdoH_  
    %       [theta,r] = cart2pol(X,Y); Uh<H*o6e 9  
    %       idx = r<=1; &f (sfM_n  
    %       z = nan(size(X)); N )b|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Fcu Eeca  
    %       figure ,e}mR>i=e  
    %       pcolor(x,x,z), shading interp J R 8 Z6  
    %       axis square, colorbar " 8~f  
    %       title('Zernike function Z_5^1(r,\theta)') 8 /:X& &  
    % 3Yn:fsy  
    %   Example 2: }dV9%0s!  
    % AJJ%gxqGq  
    %       % Display the first 10 Zernike functions 'XC&BWJ  
    %       x = -1:0.01:1; p{\qSPK  
    %       [X,Y] = meshgrid(x,x); sDz)_;;%  
    %       [theta,r] = cart2pol(X,Y); >[A6 5q'  
    %       idx = r<=1; U'f$YVc  
    %       z = nan(size(X)); d;@E~~o?B]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; e<ism?WG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  eLe,=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \i&vOH'  
    %       y = zernfun(n,m,r(idx),theta(idx)); 4]|9!=\  
    %       figure('Units','normalized') t-?KKU8  
    %       for k = 1:10 9-X{x95]  
    %           z(idx) = y(:,k); M ,.0[+  
    %           subplot(4,7,Nplot(k)) N,'[:{GOY  
    %           pcolor(x,x,z), shading interp  0jip::x  
    %           set(gca,'XTick',[],'YTick',[]) vTe$77n  
    %           axis square Mp DdJ,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) f4A4  
    %       end YUP%K!k  
    % { ="Su{i}}  
    %   See also ZERNPOL, ZERNFUN2. *Bb|N--jI  
    Y;~~?[6  
    khKv5K#)  
    %   Paul Fricker 11/13/2006 [qjAq@@N#q  
    K%aPl~e  
    7Y_fF1-wY  
    zx_O"0{5  
    #NVF\  
    % Check and prepare the inputs: qCxD{-9x{  
    % ----------------------------- =2vMw]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3<~2"@J  
        error('zernfun:NMvectors','N and M must be vectors.') 5;sQ@  
    end Cnc\sMDJ\B  
    ]IbPWBX  
    D=q;+,Pc  
    if length(n)~=length(m) Tvksf!ba  
        error('zernfun:NMlength','N and M must be the same length.') 1b %T_a  
    end |R &3/bEr  
    9FIe W[  
    %FR^[H]  
    n = n(:); #sm_.?P  
    m = m(:); I!soV0V U]  
    if any(mod(n-m,2)) 3_j C sX  
        error('zernfun:NMmultiplesof2', ... ,:dEEL+>c  
              'All N and M must differ by multiples of 2 (including 0).') cA (e "N  
    end [Q.4]K2  
    #?b^B~ #  
    w$U/;C  
    if any(m>n) W2W2WyPk  
        error('zernfun:MlessthanN', ... =|WV^0=S'%  
              'Each M must be less than or equal to its corresponding N.') )68fm\t(  
    end #ejw@bd  
    Kt!IyIa;Ht  
    +~i+k~{`H  
    if any( r>1 | r<0 ) hB GGs  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !>Qc2&ZV  
    end 5qtmb4R~  
    @7[.> I(  
    u8k{N  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ah!O&ECh  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5[j!\d}U  
    end 0Z) ;.l^  
    "<jEI /  
    ,;=( )-  
    r = r(:); 8HRPJSO~g  
    theta = theta(:); e ka@?`  
    length_r = length(r); $ DZQdhv  
    if length_r~=length(theta) 1J{z}yPHc  
        error('zernfun:RTHlength', ... F#}1{$)% /  
              'The number of R- and THETA-values must be equal.') t+4Y3*WeGF  
    end eDM0417O(  
    *_).UAP.  
    5c}9  
    % Check normalization: h@m n GE  
    % -------------------- PVkN3J  
    if nargin==5 && ischar(nflag) -C'X4C+  
        isnorm = strcmpi(nflag,'norm'); 64 \5v?C  
        if ~isnorm #G , *j  
            error('zernfun:normalization','Unrecognized normalization flag.') Vg,>7?]6h  
        end )D@n?qbG  
    else 6 XOu~+7  
        isnorm = false; %d[xr h  
    end zyp"*0zUr  
    548 [! p4  
    ]20 "la5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =u3@ Dhw  
    % Compute the Zernike Polynomials L5k>;|SA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "k1Tsd-  
    yDkDtO`K  
    F)5B[.ce  
    % Determine the required powers of r: 4@mXtA  
    % ----------------------------------- $@qs(Xwr  
    m_abs = abs(m); k-ex<el)#  
    rpowers = []; On.x~ t  
    for j = 1:length(n) =Wy`X0h  
        rpowers = [rpowers m_abs(j):2:n(j)]; o(>-:l i0  
    end jme5'FR  
    rpowers = unique(rpowers); PD T\Q\J^X  
    b;{"lJ:+Z  
    q}F%o0  
    % Pre-compute the values of r raised to the required powers, Gx a.<E^k  
    % and compile them in a matrix: C.B}Py+   
    % ----------------------------- BSu)O~s  
    if rpowers(1)==0 6u, 0y$3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pOI`,i}.  
        rpowern = cat(2,rpowern{:}); M7<#=pX&  
        rpowern = [ones(length_r,1) rpowern]; ?! _pP|  
    else ;1g-z]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0G\myv  
        rpowern = cat(2,rpowern{:}); w$;*~Qc  
    end aLk2#1$g  
    (DMnwqr  
    k q.h\[  
    % Compute the values of the polynomials: ^\kHEM|5v  
    % -------------------------------------- -%V-'X5  
    y = zeros(length_r,length(n)); [O+^eE6h  
    for j = 1:length(n) |Sv#f2`  
        s = 0:(n(j)-m_abs(j))/2; {ZM2WFpE  
        pows = n(j):-2:m_abs(j); No&[ \;  
        for k = length(s):-1:1 iN4'jD^oP  
            p = (1-2*mod(s(k),2))* ... p>tdJjnt  
                       prod(2:(n(j)-s(k)))/              ... Ww tQ>'R"  
                       prod(2:s(k))/                     ... hG;=ci3EE  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s1\BjSzk  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ZUJOBjb` K  
            idx = (pows(k)==rpowers); UG'U D"  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H'\EA(v+  
        end LP-Q'vb<=  
         <.(/#=2  
        if isnorm J$/BH\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); JIKxY$GS  
        end Bt7v[Ot   
    end 5"~^;O  
    % END: Compute the Zernike Polynomials )$4DH:WN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (4f9wrK  
    b-zX3R;  
    jh&vq=P H  
    % Compute the Zernike functions: pvUoed\  
    % ------------------------------ NP'DuzC  
    idx_pos = m>0; `h3}"js  
    idx_neg = m<0; Jo$Dxa z  
    []3}(8yxGb  
    rPpAg  
    z = y; +mOtYf W  
    if any(idx_pos) <slq1  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); JsEEAM:w  
    end \\Tp40m+  
    if any(idx_neg) 6jo&i  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6MNA.{Jdd  
    end *9(1:N;#  
    PM>XT  
    ,4W((OQ^  
    % EOF zernfun @5G7bY7Nz  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  6~>k]G  
    C<>.*wlp=  
    DDE还是手动输入的呢? Q@n kT1o  
    dZmq  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)