下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, !;Hi9,<#7g
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4cZig\mE;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &G63ReW7 @
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? P(iZGOKUs=
"p]F q,
_<Hx1l~
X( Q*(_
K&1o!<|
function z = zernfun(n,m,r,theta,nflag) &qR1fbw"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. iV+'p->/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +Smt8O<N
% and angular frequency M, evaluated at positions (R,THETA) on the nT7{`aaQl
% unit circle. N is a vector of positive integers (including 0), and ?t;>]Wo;
% M is a vector with the same number of elements as N. Each element "F_o%!l
% k of M must be a positive integer, with possible values M(k) = -N(k) 4a'O#;ho
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, si`{>e~`6P
% and THETA is a vector of angles. R and THETA must have the same X`xI~&t_
% length. The output Z is a matrix with one column for every (N,M) 2 uuI_9 "^
% pair, and one row for every (R,THETA) pair. oL?[9aww
% [h"#Gwb=;
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike TTNgnP
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1-z*'Ghys
% with delta(m,0) the Kronecker delta, is chosen so that the integral lo }[o0X
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _W@SCV)yH
% and theta=0 to theta=2*pi) is unity. For the non-normalized *7L*:g
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 44s
K2
% ,p(4OZz5,
% The Zernike functions are an orthogonal basis on the unit circle. w8~J5XS
% They are used in disciplines such as astronomy, optics, and $`nKq4Y
% optometry to describe functions on a circular domain. y&y(<
% sy^k:y?
% The following table lists the first 15 Zernike functions. XTIRY4{
d
% W@S'mxk#*
% n m Zernike function Normalization 84PD`A
% -------------------------------------------------- 7Pt*V@DHS
% 0 0 1 1 kBPFk t2
% 1 1 r * cos(theta) 2 U3ygFW%
% 1 -1 r * sin(theta) 2 pB
@l+
n^
% 2 -2 r^2 * cos(2*theta) sqrt(6) %9_wDfw~
% 2 0 (2*r^2 - 1) sqrt(3) >.R6\>N%
% 2 2 r^2 * sin(2*theta) sqrt(6) 4SG22$7 W
% 3 -3 r^3 * cos(3*theta) sqrt(8) !U02>X
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) |pIA9/~Z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8)
":,HY)z
% 3 3 r^3 * sin(3*theta) sqrt(8) ^V^In-[!y:
% 4 -4 r^4 * cos(4*theta) sqrt(10) WY@x2bBi
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -25#Vh
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) >40B
Fxc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z_%}pe39B
% 4 4 r^4 * sin(4*theta) sqrt(10)
]
=Js 5
% -------------------------------------------------- qA- ya6
% Q*TxjE7K
% Example 1: #vO3*-hs
% Q9K+k*?{N
% % Display the Zernike function Z(n=5,m=1) Z2chv,SqCJ
% x = -1:0.01:1; )k&pp^q\
% [X,Y] = meshgrid(x,x); 1B3,lYBM
% [theta,r] = cart2pol(X,Y); Rl 4r 9
% idx = r<=1; `R@24 )
% z = nan(size(X)); Ow\9vf6H
% z(idx) = zernfun(5,1,r(idx),theta(idx)); F"a^`E&
% figure 0w >DU^+
% pcolor(x,x,z), shading interp (l22p
% axis square, colorbar <$liWAGX\
% title('Zernike function Z_5^1(r,\theta)') 6'C!Au
% S(A0),
% Example 2: zIbl[[M&
% ;{|a~e?Y
% % Display the first 10 Zernike functions Q6S[sTKR
% x = -1:0.01:1; X7kJWX
% [X,Y] = meshgrid(x,x); IidZ-Il
% [theta,r] = cart2pol(X,Y); \h^bOxh
% idx = r<=1; a@@!Eg
A
% z = nan(size(X)); y? [*qnPj
% n = [0 1 1 2 2 2 3 3 3 3]; }\u~He%
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; C!w@Naj
% Nplot = [4 10 12 16 18 20 22 24 26 28]; bcpH|}[F)
% y = zernfun(n,m,r(idx),theta(idx)); tYfhKJzGC
% figure('Units','normalized') NrvS/cI!t
% for k = 1:10 w8%yX$<
% z(idx) = y(:,k); m@JU).NKCS
% subplot(4,7,Nplot(k)) 1elx~5v1.=
% pcolor(x,x,z), shading interp _}]o~
% set(gca,'XTick',[],'YTick',[]) >ge-yK 1
% axis square Tu_dkif'
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'D(Hqdr;:
% end 7kn=j6I
% \Y9=dE}
% See also ZERNPOL, ZERNFUN2. 9[N'HpQ3
SU#
S'
@n(=#Q3
% Paul Fricker 11/13/2006 1jmhh!,
[v-?MS
IJ,,aCj4g
r"fu{4aX
:yT~.AK}>1
% Check and prepare the inputs: 9r1pdG_C@
% ----------------------------- BHj]w*Ov
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~Y)Au?d(a
error('zernfun:NMvectors','N and M must be vectors.') pq5)Ug
end ](_(1
j<deTK;.
aic6,>\!'
if length(n)~=length(m) O8u"Y0$*w
error('zernfun:NMlength','N and M must be the same length.') Tf@t.4\
end @YwaOc_%
|r-<t
8gC(N3/E"
n = n(:); XQ(`8Jl&^
m = m(:); Rl5}W\&
if any(mod(n-m,2)) uy\YJ.WMQ
error('zernfun:NMmultiplesof2', ... n]Dq
'All N and M must differ by multiples of 2 (including 0).') *7*g!
km
end LO"HwN43h
iI&SI#;
_
>4EcV1y
if any(m>n) [RpFC4W
error('zernfun:MlessthanN', ... U}A+jJ
'Each M must be less than or equal to its corresponding N.') cjN4U [
end N[pk@M\vX
OD1ns
6l_8Q w*5I
if any( r>1 | r<0 ) BC$In!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') q=nMZVVlF(
end L0&!Qct
!Rb7q{@>
Kv#daAU
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j|aT`UH03
error('zernfun:RTHvector','R and THETA must be vectors.') Mx r#
end jilO% "
r kD4}jV
t*}<v@,
r = r(:); [2\`Wh:%P
theta = theta(:); T@Q<oNU
length_r = length(r); G,"$Erx
if length_r~=length(theta) a|s= d
error('zernfun:RTHlength', ... |u}sX5/q
'The number of R- and THETA-values must be equal.') *<0g/AL
end Z#J{tXZc
b&_p"8)_
I(7gmCV
% Check normalization: mmjB1L
% -------------------- U_8I$v-~
if nargin==5 && ischar(nflag) 3p4bOT5
isnorm = strcmpi(nflag,'norm'); j_H
T
if ~isnorm }E1Eq
error('zernfun:normalization','Unrecognized normalization flag.') v'@LuF'e8
end 9Akwr}
else =:0(&NCRq
isnorm = false; [c W
end ^X;>?_Bk
h=U 4
*xjIl<`pK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JWdG?[$
% Compute the Zernike Polynomials 5g5pzww
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AN1bfF:C
h n]6he
U&/S
% Determine the required powers of r: $?GO|.59
% ----------------------------------- }N|/b"j9
m_abs = abs(m); )I$Mh@F
rpowers = []; X'F$K!o*,:
for j = 1:length(n) {vH8X(m
rpowers = [rpowers m_abs(j):2:n(j)]; "nefRz%j+
end )/pPY
rpowers = unique(rpowers); }wb;ulN)
DtN6.9H2`
E<4}mSn)
% Pre-compute the values of r raised to the required powers, X5yh S
% and compile them in a matrix: |S}*M<0
% ----------------------------- OlJj|?z$
if rpowers(1)==0 S\rfR N
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 24Tw1'mW
rpowern = cat(2,rpowern{:}); E,$uNw ']
rpowern = [ones(length_r,1) rpowern]; fh3
6
else W!^=)Qs
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l`]!)j|+
rpowern = cat(2,rpowern{:}); qs b4@jt+
end &ivIv[LV
n 3]y$wK
.KSGma6]
% Compute the values of the polynomials: [P,nW/H
% -------------------------------------- cA\W|A)
y = zeros(length_r,length(n)); Dw[Q,SE
for j = 1:length(n) 1mV0AE538
s = 0:(n(j)-m_abs(j))/2; `ouzeu9}
pows = n(j):-2:m_abs(j); &40]sxm
for k = length(s):-1:1 Ne EV!V8
p = (1-2*mod(s(k),2))* ... Ye6O!,R
prod(2:(n(j)-s(k)))/ ... "F}Ip&]hAG
prod(2:s(k))/ ... FHC7\#p/9Z
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... q Q'@yTVN
prod(2:((n(j)+m_abs(j))/2-s(k))); <i6M bCB
idx = (pows(k)==rpowers); eH8.O
y(:,j) = y(:,j) + p*rpowern(:,idx); k}.nH"AQ
end u2Obb`p S
q}i87a;m
if isnorm 4\3t5n
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7KIQ)E'kG|
end Uy:.m
end FM)*>ax{
% END: Compute the Zernike Polynomials 2cl~Va=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g-}sVvM
9R[','x
;p ('cwU%
% Compute the Zernike functions: AlxS?f2w
% ------------------------------ v],DBw9
idx_pos = m>0; 4Ccb!?
idx_neg = m<0; ?OyW|jL
TbVL71c
eV0S:mit
z = y; +GS=zNw#
if any(idx_pos) xn8B|axB
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); R2`g?5v
end S/;Y4o
if any(idx_neg) 1n"X?K5;A
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Se8y-AL6x>
end 6%#'X
B_2>Yt"
L#Y;a
5b
% EOF zernfun 9(WC#-,