切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8805阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +8ib928E  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, bCP2_h3*  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @ *Jbp  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .feB VRg  
    zU[o_[+7^  
    [&~x5l 8\C  
    Mm,\e6#*  
    a 7v^o`  
    function z = zernfun(n,m,r,theta,nflag) *# <%04f  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. KiG19R$  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \x$`/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?`OF n F,K  
    %   unit circle.  N is a vector of positive integers (including 0), and w!*ZS~v/r  
    %   M is a vector with the same number of elements as N.  Each element \<9aS Y'U  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) vg?(0Gasm*  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, aVHID{Gf Z  
    %   and THETA is a vector of angles.  R and THETA must have the same U}HSL5v  
    %   length.  The output Z is a matrix with one column for every (N,M) 7 `~0j6FY  
    %   pair, and one row for every (R,THETA) pair. u0) O Fz  
    %  ]LsT  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (8~mf$ zx,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?v,c)  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral A]Hz?i  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^W}| 1.uZ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized <9H3d7%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s8:epcL`A  
    % cl#XiyK>  
    %   The Zernike functions are an orthogonal basis on the unit circle. Lm!]m\LRZD  
    %   They are used in disciplines such as astronomy, optics, and _Cf:\Xs m  
    %   optometry to describe functions on a circular domain. z( ^?xv  
    % >~7XBb08  
    %   The following table lists the first 15 Zernike functions. [x?9< #T  
    % g#fn(A  
    %       n    m    Zernike function           Normalization 'H`:c+KDG`  
    %       -------------------------------------------------- )Dms9:  
    %       0    0    1                                 1 ]?}pJ28  
    %       1    1    r * cos(theta)                    2 G \a`F'Oo  
    %       1   -1    r * sin(theta)                    2 VxOWv8}|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^Rl?)_)1HE  
    %       2    0    (2*r^2 - 1)                    sqrt(3) GLub5GrxR  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) zGme}z;1@  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &B :L9^  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _nzTd\L88  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) l' Li!u  
    %       3    3    r^3 * sin(3*theta)             sqrt(8)  3bd`q $  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Mx0~^l  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l`6.(6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~f[;(?39xZ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3J8>r|u;1'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) b'FTy i  
    %       -------------------------------------------------- cJ?,\@uuP  
    % 82)=#ye_P  
    %   Example 1: (VkO[5j  
    % H #X*OJ  
    %       % Display the Zernike function Z(n=5,m=1) {]|<|vc;GI  
    %       x = -1:0.01:1; a` 9pHH:7Q  
    %       [X,Y] = meshgrid(x,x); ~c+=$SL-=  
    %       [theta,r] = cart2pol(X,Y); 2_bEo  
    %       idx = r<=1; @ZYJY  
    %       z = nan(size(X)); #CJ ET  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); S,|ZCl>+  
    %       figure G{|"WaKW  
    %       pcolor(x,x,z), shading interp %H_-`A`  
    %       axis square, colorbar 8)s0$64Ra  
    %       title('Zernike function Z_5^1(r,\theta)') zSMM?g^T  
    % }"RVUYU  
    %   Example 2: c|'$3dB*  
    % 37IHn6r\  
    %       % Display the first 10 Zernike functions t0xE&#4  
    %       x = -1:0.01:1; J pj[.Sq  
    %       [X,Y] = meshgrid(x,x); :%28*fl  
    %       [theta,r] = cart2pol(X,Y); Vnb@5W2\  
    %       idx = r<=1; ze LIOw  
    %       z = nan(size(X)); VqD_FS;E  
    %       n = [0  1  1  2  2  2  3  3  3  3]; lHliMBSc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7c%dSs6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Dbx zqd  
    %       y = zernfun(n,m,r(idx),theta(idx)); B4zuWCE@  
    %       figure('Units','normalized') \Lbwfd=  
    %       for k = 1:10 rHybP6C<  
    %           z(idx) = y(:,k); &eO.h%@  
    %           subplot(4,7,Nplot(k)) j)nE!GKD(  
    %           pcolor(x,x,z), shading interp KqBiF]Q  
    %           set(gca,'XTick',[],'YTick',[]) } nIYNeP?D  
    %           axis square aWvC-vZk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @^# 9N!Fj]  
    %       end Xmb##:  
    % >pol'=  
    %   See also ZERNPOL, ZERNFUN2. ?J+*i d  
    +?QHSIQo  
    xrlyph5mE  
    %   Paul Fricker 11/13/2006 qauvwAMuX  
    <Nloh+n=  
     SN}3  
    1n*"C!q  
    5,O:"3>c  
    % Check and prepare the inputs: c8_,S[W  
    % ----------------------------- ht+wi5b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) BHkicb?   
        error('zernfun:NMvectors','N and M must be vectors.') u#V;  
    end ;_ 1Rk&o!  
    uTl"4;&j  
    6%o@!|=I  
    if length(n)~=length(m) $j!:ET'V  
        error('zernfun:NMlength','N and M must be the same length.')   LR4W  
    end ,WoB)V.{(  
    l;h -`( 11  
    wXYT(R  
    n = n(:); R(}!gv}s  
    m = m(:); wk=s3^  
    if any(mod(n-m,2)) DU5rB\!.~  
        error('zernfun:NMmultiplesof2', ... ;?-{Uk  
              'All N and M must differ by multiples of 2 (including 0).') plzwk>b_  
    end t`Xx\  
    UpiZd/K  
    v9gaRqi8  
    if any(m>n) tPw7zFy6r  
        error('zernfun:MlessthanN', ... h-m0Ro?6  
              'Each M must be less than or equal to its corresponding N.') y#O/Xw  
    end M%!j\}2A  
    20A:,pMb  
    {=Py|N \\t  
    if any( r>1 | r<0 ) 2@&"*1(Xu  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') D [v225  
    end !l9 #a{#6l  
    I'<sJs*p  
    xKT;1(Mk  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) O=u.J8S2  
        error('zernfun:RTHvector','R and THETA must be vectors.') )%: W;H  
    end Z ]OX6G  
    #m'+1 s L  
    )1)&fN41i#  
    r = r(:); MGo`j:0  
    theta = theta(:); /pGx !  
    length_r = length(r); 7=A @P  
    if length_r~=length(theta) j{m{hVa  
        error('zernfun:RTHlength', ... LH~ t5  
              'The number of R- and THETA-values must be equal.') eW_EWVH  
    end e.|t12)L "  
    6fT^t!<i  
    Lf Y[Z4  
    % Check normalization: ,`$2  
    % -------------------- UwDoueXs  
    if nargin==5 && ischar(nflag) $BOIa  
        isnorm = strcmpi(nflag,'norm'); $K 1)2WG  
        if ~isnorm n8&x=Z}Xs  
            error('zernfun:normalization','Unrecognized normalization flag.') >k 2^A  
        end (Q|Y*yI  
    else s%N6^}N  
        isnorm = false; pTYV@5|  
    end ;s-fYS6(>{  
    A&Q!W)=  
    S.owVMQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r+MqjdXG  
    % Compute the Zernike Polynomials (j}edRUnB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d^|r#"o[  
    H|cxy?iJ  
    uF T5Z  
    % Determine the required powers of r: &([Gc+"5E.  
    % ----------------------------------- ( "J_< p  
    m_abs = abs(m); DEenvS`,P  
    rpowers = []; SsIN@  
    for j = 1:length(n) qh wl  
        rpowers = [rpowers m_abs(j):2:n(j)]; ^cojETOv  
    end 2-wgbC5  
    rpowers = unique(rpowers); &$pA,Gjin\  
    ;BEX|w xn  
    < 'r<MA<  
    % Pre-compute the values of r raised to the required powers, jTok1k  
    % and compile them in a matrix: I#CS;Yh95  
    % ----------------------------- 95-%>?4  
    if rpowers(1)==0 xT8!X5;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xb^M33-y  
        rpowern = cat(2,rpowern{:}); GF*E+/ ;  
        rpowern = [ones(length_r,1) rpowern]; OKNGV,{`  
    else X^. ~f+d~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); MAG /7T5  
        rpowern = cat(2,rpowern{:}); 2!Pwg0%2  
    end 7FP @ vng  
    qo}u(p Oj|  
    FHZQyO<|  
    % Compute the values of the polynomials: + hMF\@  
    % -------------------------------------- A:,V)  
    y = zeros(length_r,length(n)); k%({< ul  
    for j = 1:length(n) ;DI"9  
        s = 0:(n(j)-m_abs(j))/2; -k@Uo(MB  
        pows = n(j):-2:m_abs(j); h,2?+}Fn  
        for k = length(s):-1:1 >  ,P,{"  
            p = (1-2*mod(s(k),2))* ... x@<!#d+  
                       prod(2:(n(j)-s(k)))/              ... )$E'2|Gm/  
                       prod(2:s(k))/                     ... ?B:],aztf  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )0 i$Bo  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;UWp0d%  
            idx = (pows(k)==rpowers); ._}Dqg$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); IS }U2d,W  
        end \'Ca%j  
         lKy4Nry9  
        if isnorm m\J" P'=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'J#uD|9)  
        end \&%y4=y<sE  
    end A,GJ6qp3  
    % END: Compute the Zernike Polynomials >qynd'eToR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sy34doAZ  
    hHqsI`7c  
    SCD;(I~4  
    % Compute the Zernike functions: C= PV-Ul+  
    % ------------------------------ hUMFfc ?  
    idx_pos = m>0; fZJO}  
    idx_neg = m<0; (`K ~p Z  
    azp XE  
    SrSm%Dv  
    z = y; ; WsV.n  
    if any(idx_pos) o|c"W}W  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3x~AaC.j  
    end kpO+  
    if any(idx_neg) 7:h_U9Za?$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1 ,4V8gp  
    end C)qP9uW  
    ~dj4Q eu  
    tsqWnz=)  
    % EOF zernfun :vy./83W  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  &0 VM <  
    BV&}(9z  
    DDE还是手动输入的呢? Iy](?b  
    5U[;T]{)e  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)