下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Q&;qFv5-l
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, (]dZ+"O{
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? f>PU# D@B
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,5WDYk-
r4zS, J;,
Kj5f:{Ur
?uv%E*TU
}_TdXY
#w\
function z = zernfun(n,m,r,theta,nflag) )QT+;P.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3E9j%sYk
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ShxX[k
% and angular frequency M, evaluated at positions (R,THETA) on the V&85<Y%Nl|
% unit circle. N is a vector of positive integers (including 0), and /y@iaptC
% M is a vector with the same number of elements as N. Each element 1j(,VW
% k of M must be a positive integer, with possible values M(k) = -N(k) Wn5]2D\vkT
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^5F/=TtE G
% and THETA is a vector of angles. R and THETA must have the same 548BM^^"r
% length. The output Z is a matrix with one column for every (N,M) @e/dQ:Fb
% pair, and one row for every (R,THETA) pair. $r_ gFv
% HB:i0m2fJW
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *4E,|IJ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f{oWd]eAhb
% with delta(m,0) the Kronecker delta, is chosen so that the integral qa6up|xUnn
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GC2<K
% and theta=0 to theta=2*pi) is unity. For the non-normalized X'<xw
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [5-5tipvWp
% }+1o D{
% The Zernike functions are an orthogonal basis on the unit circle. &kBs'P8>
% They are used in disciplines such as astronomy, optics, and SqQB>;/p
% optometry to describe functions on a circular domain. T~E83Jw
% ?;Qk!t2U
% The following table lists the first 15 Zernike functions. %{"STbO #>
% 6h%(0=^
% n m Zernike function Normalization h'+ swPh
% -------------------------------------------------- Y'9deX+
% 0 0 1 1 @ So"(^
% 1 1 r * cos(theta) 2 Tc:`TE=2
% 1 -1 r * sin(theta) 2 w8Yff[o
% 2 -2 r^2 * cos(2*theta) sqrt(6) 1<UQJw45
% 2 0 (2*r^2 - 1) sqrt(3) 5**xU+&
% 2 2 r^2 * sin(2*theta) sqrt(6) JZ
[&:
% 3 -3 r^3 * cos(3*theta) sqrt(8) +l\Dp
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Heu@{t.[!D
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !/SFEL@_B
% 3 3 r^3 * sin(3*theta) sqrt(8) HN+z7 Q8hH
% 4 -4 r^4 * cos(4*theta) sqrt(10) xC(PH?_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4(]k=c1<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (XQG"G%U6W
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3 a`-_<
% 4 4 r^4 * sin(4*theta) sqrt(10) YQOGxSi
% -------------------------------------------------- VTU-'q
% Wu(GC]lTG
% Example 1: vbp)/I-h
% AyDK-8a
% % Display the Zernike function Z(n=5,m=1) #XZ?,neY
% x = -1:0.01:1; U<x3=P
% [X,Y] = meshgrid(x,x); Y9N:%[ :>W
% [theta,r] = cart2pol(X,Y); "d'@IN
% idx = r<=1; pFh2@O
% z = nan(size(X)); I5mS!m/X
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =z+zg^wsT
% figure X%sc:V
% pcolor(x,x,z), shading interp ?(z3/"g]
% axis square, colorbar N*#SY$!y
% title('Zernike function Z_5^1(r,\theta)') i \~4W$4I
% 827N?pU$)
% Example 2: _F9
c.BH
% :
SNp"|
% % Display the first 10 Zernike functions z3,z&Ra
% x = -1:0.01:1; JG `QJ%
% [X,Y] = meshgrid(x,x); R=l/EK
% [theta,r] = cart2pol(X,Y); @({65 gJ*
% idx = r<=1; chy7hPxC;
% z = nan(size(X)); 3HD=)k
% n = [0 1 1 2 2 2 3 3 3 3]; >}iYZ[ V
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ZHT.+X:_
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Kf*+Ilq%L
% y = zernfun(n,m,r(idx),theta(idx)); No?pv"
% figure('Units','normalized') pVr,WTr6E
% for k = 1:10 <m!\Ma
% z(idx) = y(:,k); /CP1mn6H
% subplot(4,7,Nplot(k)) .3[YOM7h
% pcolor(x,x,z), shading interp `k+k&t
% set(gca,'XTick',[],'YTick',[]) u}$?r\H'(
% axis square B*{CcQ<5
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &\A$Rj)
% end ^U52
*6
% nxG vh4'i8
% See also ZERNPOL, ZERNFUN2. <B)lV'!Bd
i<l)To -
D_@^XS
% Paul Fricker 11/13/2006 a}yJ$6xi
Gc>\L3u
83@+X4ptp
9T\:ID=h
']V 2V)t
% Check and prepare the inputs: T"$"`A"
% ----------------------------- `O[M#y%*E
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7w9) ^
error('zernfun:NMvectors','N and M must be vectors.') ^'}Td~(
end :)+cI?\#
]5^u^
ZEB1()GB
if length(n)~=length(m) 7%X$6N-X
error('zernfun:NMlength','N and M must be the same length.') t{$t3>p-t
end T =:^k+
9 eP @} C6
18Ty)7r'
n = n(:); T^"d%au
m = m(:); kWWb<WRW:
if any(mod(n-m,2)) Ih.o;8PpK
error('zernfun:NMmultiplesof2', ... }hGbF"clqg
'All N and M must differ by multiples of 2 (including 0).') )%*uMuF
end -IPc;`<
KNV$9&Z
uvT]MgT
if any(m>n) 6 ,k}v:
error('zernfun:MlessthanN', ... >J4_/p>Qs
'Each M must be less than or equal to its corresponding N.') =!7yX;|
end Zcc6E2
`74A'(u_
K2&pTA~OR
if any( r>1 | r<0 ) ,#<"VU2 bC
error('zernfun:Rlessthan1','All R must be between 0 and 1.') yHCBf)N7\
end \i{=%[c
tvP"t{C6,
&0M^UvO
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @L`t/OD
error('zernfun:RTHvector','R and THETA must be vectors.') 2+0'vIw}
end =\tg$
QQqWJq~
"}EydG"=
r = r(:); c" yf>0
theta = theta(:); &}rh+z
length_r = length(r); ^G15]Pyw
if length_r~=length(theta) P\SE_*&
error('zernfun:RTHlength', ... ,rQznE1e
'The number of R- and THETA-values must be equal.') /+%1Kq.hP
end fY\QI
=
R7+k=DI
--y.q~d
% Check normalization: o <sX6a9e
% -------------------- UA}k"uM
if nargin==5 && ischar(nflag) $BCqz! 4K
isnorm = strcmpi(nflag,'norm'); Dg\fjuK9
if ~isnorm |Zz3X
error('zernfun:normalization','Unrecognized normalization flag.') QO0T<V
end }56"4/ Z
else H=EvT'g
isnorm = false; !DD|dVA{
end Ju+r@/y%
#AE'arT<
\#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r'-)@|
% Compute the Zernike Polynomials t[%9z6t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3.
fIp5g
Z3=t"
+Nyx2(g<m
% Determine the required powers of r: e%#9|/uP
% ----------------------------------- _<&IpT{w+
m_abs = abs(m); (V}DPA
rpowers = []; |>Kf_b Y#
for j = 1:length(n) BHqJ~2&FDW
rpowers = [rpowers m_abs(j):2:n(j)]; gQ h;4v
end 3%>"|Ye}A
rpowers = unique(rpowers); 76(&O
yin"+&<T
(yn!~El3
% Pre-compute the values of r raised to the required powers, ]Ocf %(
% and compile them in a matrix: CZt)Q4
% ----------------------------- =]E;wWC
if rpowers(1)==0 mbU[fHyV
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D O(FG-R
rpowern = cat(2,rpowern{:}); (WX,&`a<$
rpowern = [ones(length_r,1) rpowern]; USfOc
else E: L =>}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t
:sKvJ
rpowern = cat(2,rpowern{:}); Xb5n;=)
end >?'cZTNk]
UeX3cD
/&Khk #
% Compute the values of the polynomials: R@u6mMX{N,
% -------------------------------------- x4Y+?2
y = zeros(length_r,length(n)); y;3vr1?
for j = 1:length(n) gs7H9%j{U
s = 0:(n(j)-m_abs(j))/2; 6uOR0L
pows = n(j):-2:m_abs(j); JO1KkIV
for k = length(s):-1:1 Rq<T2}K
p = (1-2*mod(s(k),2))* ... T[*=7jnJQ
prod(2:(n(j)-s(k)))/ ... L00,{g6wqb
prod(2:s(k))/ ... JY~s-jxa
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *4dA(N\k"
prod(2:((n(j)+m_abs(j))/2-s(k))); T1LtO O
idx = (pows(k)==rpowers); ;a[56W
y(:,j) = y(:,j) + p*rpowern(:,idx); (Rve<n6{A
end Gmf.lHr$%
&Dgho
if isnorm "n=`{~F
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Da0E)
end ]+{Cy\*kR
end H_3S#.
% END: Compute the Zernike Polynomials 1BmevEa)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O
sbY}*S
.yd{7Te
YO|Kc
{j2e
% Compute the Zernike functions: Ot`jjZ&
% ------------------------------ VX2KE@
idx_pos = m>0; u yzc"di
idx_neg = m<0; 5M;fh)fT
ck){N?y
4t|ril``]
z = y; C7[_#1Oz
if any(idx_pos) K, WNM S
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); XTUxMdN
end *1$rg?yGf
if any(idx_neg) S`)KC-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); O$V
6QJ
end W7c(]
tg.
ICN>8|O`&
7%c9 nY
% EOF zernfun By]XD~gcP