切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9064阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, $3uKw!z  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, p4i]7o@  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _b.qkTWUB  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <_Q:'cx'  
    z;wELz1L{  
    pL%r,Y_^\x  
    eT8}  
    '@CR\5 @  
    function z = zernfun(n,m,r,theta,nflag) iVTGF<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?Wt$6{)  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `8>Py~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d[^~'V  
    %   unit circle.  N is a vector of positive integers (including 0), and >P $;79<  
    %   M is a vector with the same number of elements as N.  Each element w{90`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Cp]"1%M,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, H0R&2#YD  
    %   and THETA is a vector of angles.  R and THETA must have the same +_xOLiu  
    %   length.  The output Z is a matrix with one column for every (N,M) 0}xFD6{X  
    %   pair, and one row for every (R,THETA) pair. BQ2wnGc  
    % { TRsd  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ] 0m&(9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lF?tQB/a  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {$^DMANDx  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3^ ~KB'RZ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?9=9C"&s  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2'<[7!  
    % ,SiY;(b=\  
    %   The Zernike functions are an orthogonal basis on the unit circle. _fP&&}  
    %   They are used in disciplines such as astronomy, optics, and ]a3iEA2 (  
    %   optometry to describe functions on a circular domain. mA@Me7m}  
    % (q7 Ry4-  
    %   The following table lists the first 15 Zernike functions. ;/*6U  
    % I1>N4R-j  
    %       n    m    Zernike function           Normalization @*DyZB  
    %       -------------------------------------------------- =.`qixN  
    %       0    0    1                                 1 Uyr3dN%*r  
    %       1    1    r * cos(theta)                    2 k8uvNLA)a  
    %       1   -1    r * sin(theta)                    2 gOK\%&S]  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?cEskafb>  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ed_FiQd  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) eBO@7F$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :BGA.  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) RTu4@7XP  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >xn}N6Rj2~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Z0>DNmH*  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4~OQhiJ   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hw~a:kD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) lM[XS4/TRa  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HH>:g(bu  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *cg( ?yg  
    %       -------------------------------------------------- *I0-O*Xr  
    % `3'0I/d"z  
    %   Example 1: Iu35#j  
    % $eBX  
    %       % Display the Zernike function Z(n=5,m=1) s{4\xAS>  
    %       x = -1:0.01:1; b]JI@=s?  
    %       [X,Y] = meshgrid(x,x); W Qc>  
    %       [theta,r] = cart2pol(X,Y); LR,7,DH$9'  
    %       idx = r<=1; EIf ~dOgH  
    %       z = nan(size(X)); hwDbs[:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); N9rBW   
    %       figure Lh-`OmO0>F  
    %       pcolor(x,x,z), shading interp %,*G[#*&  
    %       axis square, colorbar `j9$T:`  
    %       title('Zernike function Z_5^1(r,\theta)') 5]1h8PW!Y  
    % `:G%   
    %   Example 2:  l"zUv  
    %  X}6#II  
    %       % Display the first 10 Zernike functions $8BE[u|H2  
    %       x = -1:0.01:1; 2 qO3XI  
    %       [X,Y] = meshgrid(x,x); 6R29$D|HFO  
    %       [theta,r] = cart2pol(X,Y); **[Z^$)u(  
    %       idx = r<=1; (:+>#V)pZ  
    %       z = nan(size(X)); )P>u9=?,=E  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;*[9Q'lI*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \M/6m^zS  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,s^<X85gp\  
    %       y = zernfun(n,m,r(idx),theta(idx)); "XLe3n  
    %       figure('Units','normalized') )2E%b+"  
    %       for k = 1:10 #9LzY  
    %           z(idx) = y(:,k); d'9:$!oz  
    %           subplot(4,7,Nplot(k)) 9(!]NNf!  
    %           pcolor(x,x,z), shading interp il:nXpM!  
    %           set(gca,'XTick',[],'YTick',[]) gX?n4Csy'  
    %           axis square d= ]U_+  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]> Y/r-!  
    %       end qYp$fmj  
    % vY*\R0/a  
    %   See also ZERNPOL, ZERNFUN2. EC?Efc+O  
    [W,-1.$!dM  
    "MiD8wX-  
    %   Paul Fricker 11/13/2006 XL}<1- }  
    fH8!YQG8$  
    Gr(|Ra .  
    uC]Z8&+obb  
    )-/gLZsx  
    % Check and prepare the inputs: |@o6NZ<9N  
    % ----------------------------- n`;R pr&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i3 )xX@3  
        error('zernfun:NMvectors','N and M must be vectors.') -&[z\"T  
    end !|m9|  
    5GAy "Xd  
    $rG<uO  
    if length(n)~=length(m) YJ2ro-X  
        error('zernfun:NMlength','N and M must be the same length.') pyW u9  
    end xUYow  
    lz~J"$b  
    cQFR]i  
    n = n(:); ZcryAm:I  
    m = m(:); M} .b" ljZ  
    if any(mod(n-m,2)) rvwy~hO"  
        error('zernfun:NMmultiplesof2', ... s!6=|SS7  
              'All N and M must differ by multiples of 2 (including 0).') uiBTnG"  
    end 8kW/DcLE  
    CM~MoV[k7e  
    "6I[4U"@  
    if any(m>n) s=EiH  
        error('zernfun:MlessthanN', ... hE!7RM+Y  
              'Each M must be less than or equal to its corresponding N.') GF--riyfB  
    end +CTmcbyOi  
    <uF [,  
    >v0:qN7|  
    if any( r>1 | r<0 ) (buw^ ,NwZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;WI]vn  
    end mPmB6q%)]  
    )45_]tk >  
    Qm);6X   
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IM-`<~(I#  
        error('zernfun:RTHvector','R and THETA must be vectors.') vg5NY =O  
    end mpef]9  
    9)yG.9d1  
    }#b %"I0  
    r = r(:); %N~;{!![p  
    theta = theta(:); c d%hW  
    length_r = length(r); KP~-$NR  
    if length_r~=length(theta) vO$ra5Z  
        error('zernfun:RTHlength', ... 9p> /?H|  
              'The number of R- and THETA-values must be equal.') t]TyXAr~  
    end @ u1Q-:  
    xYR#%!M  
    ,ZK]i CGk  
    % Check normalization: cjg=nTsBA  
    % -------------------- jpO38H0)  
    if nargin==5 && ischar(nflag) OKQLv+q5K)  
        isnorm = strcmpi(nflag,'norm'); !s-/0ugZ  
        if ~isnorm I>((o`  
            error('zernfun:normalization','Unrecognized normalization flag.') _ +KmNfR  
        end >}F?<JB  
    else yH(V&Tv  
        isnorm = false; 3Hm7 uBZ  
    end Bz]J=g7  
    >0T3'/k<H  
    W#45a.v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {mYx  
    % Compute the Zernike Polynomials KF$%q((  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3LrsWAz'  
    2k3 z'RLG  
    a paIJ+^[  
    % Determine the required powers of r: x<Se>+  
    % ----------------------------------- fNEz  
    m_abs = abs(m); fm6]CU1^  
    rpowers = []; :bw6k  
    for j = 1:length(n) M,L@k  
        rpowers = [rpowers m_abs(j):2:n(j)]; HWR& C  
    end 8D T@h8tA  
    rpowers = unique(rpowers); kGj]i@(PA4  
    2B'^`>+8S  
    Vw?P.4  
    % Pre-compute the values of r raised to the required powers, 2;R/.xI6v  
    % and compile them in a matrix: ;@'0T4Z&l  
    % ----------------------------- x9\J1\  
    if rpowers(1)==0 htg'tA^CtS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '5cZzC 2  
        rpowern = cat(2,rpowern{:}); g)N54WV  
        rpowern = [ones(length_r,1) rpowern]; YUS?]~XC7x  
    else 2?H@$-x>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZE ^u.>5  
        rpowern = cat(2,rpowern{:}); />!!ch  
    end n% U9iwJ.  
    g$gVm:=  
    U;>B7X;`E4  
    % Compute the values of the polynomials: 5 {fwlA  
    % -------------------------------------- 2q|_Dma  
    y = zeros(length_r,length(n)); \ >(zunL  
    for j = 1:length(n) intvlki]be  
        s = 0:(n(j)-m_abs(j))/2; T/5nu?v  
        pows = n(j):-2:m_abs(j); >2t cEz%  
        for k = length(s):-1:1 p1uN ]T7>  
            p = (1-2*mod(s(k),2))* ... Z c<]^QR  
                       prod(2:(n(j)-s(k)))/              ... =*[, *A  
                       prod(2:s(k))/                     ... .^GFy   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... C*]AL/  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %y3:SUOdx  
            idx = (pows(k)==rpowers); hF9B?@n?B  
            y(:,j) = y(:,j) + p*rpowern(:,idx); o8mo=V4j  
        end |H<|{{E  
         Rgs3A)[`d/  
        if isnorm \c FAxL(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &F86SrsI  
        end qY# m*R  
    end j@_nI~7f}  
    % END: Compute the Zernike Polynomials lW&[mnR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O<Jwaap  
    B_b8r7Vn`  
    i:R!T,  
    % Compute the Zernike functions: *;Ak5.du  
    % ------------------------------ cyDiA(ot&  
    idx_pos = m>0; Za34/ro/T  
    idx_neg = m<0; ^]KIgGv\  
    M'b:B*>6  
    JPHUmv6  
    z = y; _y|[Z;  
    if any(idx_pos) M2a}x+5'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -.^@9 a>  
    end d!w1t=2H  
    if any(idx_neg) ;;D% l^m+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,7QBJ_-;QJ  
    end fHW-Je7mG  
    >_n:_  
    m]E o(P4+  
    % EOF zernfun nz}]C04:-  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  {/,+_E/  
    noD7G2o  
    DDE还是手动输入的呢? xq#]n^  
    _YD<Q@  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)