切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9204阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, R>DaOH2K*  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, +iRq8aS_  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4h5g'!9-g  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? M02uO`Y9  
    gu#-O?B  
    .s#;s'>g  
    >fH=DOz$&  
    a+hd(JX0~  
    function z = zernfun(n,m,r,theta,nflag) -.g|l\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |mdi]TL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?$f)&O  
    %   and angular frequency M, evaluated at positions (R,THETA) on the iXyO(w4D  
    %   unit circle.  N is a vector of positive integers (including 0), and 0sI1GhVR  
    %   M is a vector with the same number of elements as N.  Each element u0P)7~%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) z0|&W&&D  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, GN KF&M  
    %   and THETA is a vector of angles.  R and THETA must have the same "ZTTg>r  
    %   length.  The output Z is a matrix with one column for every (N,M) N`)$[&NG]  
    %   pair, and one row for every (R,THETA) pair. y5Tlpi`g  
    % +?p.?I  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f|y:vpd%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'J,T{s1J  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {]"]uT#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;7N Z<k  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized |_omr&[_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \~LQ%OM  
    % ix#epuN  
    %   The Zernike functions are an orthogonal basis on the unit circle. Vi4~`;|&b+  
    %   They are used in disciplines such as astronomy, optics, and ]f]<4HD=i  
    %   optometry to describe functions on a circular domain. e/->_T(I  
    % `%09xMPu  
    %   The following table lists the first 15 Zernike functions. )DYI .  
    % W8lx~:v  
    %       n    m    Zernike function           Normalization DGevE~  
    %       -------------------------------------------------- J9K3s_SN  
    %       0    0    1                                 1 AfG/JWSo}  
    %       1    1    r * cos(theta)                    2 jy]JiQ B  
    %       1   -1    r * sin(theta)                    2 p{PE@KO:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) + >cBVx6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Rb(SBa  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 9;?UvOI;  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) /r12h|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) e" ]2=5g  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) a>mm+L 8y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) S(\9T1DVe  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ='TE,et@d  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z>w`ZD}XY  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wH~kTU2br  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %*#n d  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) w '3#&k+  
    %       -------------------------------------------------- xoOJauSX1  
    % V138d?Mm  
    %   Example 1: ~EK'&Y"1  
    % WD'#5]#Y  
    %       % Display the Zernike function Z(n=5,m=1) Isx#9C  
    %       x = -1:0.01:1; ~tOAT;g}q  
    %       [X,Y] = meshgrid(x,x); "zIFxDR#  
    %       [theta,r] = cart2pol(X,Y); -{`@=U  
    %       idx = r<=1; w`l{LHrR  
    %       z = nan(size(X)); 1^i Pji/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Fq9Q+RNMZL  
    %       figure 8u!"#S#>a  
    %       pcolor(x,x,z), shading interp o[E_Ge}g8  
    %       axis square, colorbar D1nq2GwS  
    %       title('Zernike function Z_5^1(r,\theta)') U35AX9/  
    % `GXkF:f=  
    %   Example 2: !Ci~!)$z6  
    % N41R  
    %       % Display the first 10 Zernike functions pIbdN/z  
    %       x = -1:0.01:1; nI0[;'Hn,  
    %       [X,Y] = meshgrid(x,x); Py`N4y ~  
    %       [theta,r] = cart2pol(X,Y); pHoEa7:  
    %       idx = r<=1; w,Ee>cV]a  
    %       z = nan(size(X)); QM?#{%31  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $<ld3[l i  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; t'm;:J1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^[15&T5  
    %       y = zernfun(n,m,r(idx),theta(idx)); nNXgW  
    %       figure('Units','normalized') mqq;H}  
    %       for k = 1:10 h5yzwj:C?  
    %           z(idx) = y(:,k); %7O?JI [  
    %           subplot(4,7,Nplot(k)) ." $  
    %           pcolor(x,x,z), shading interp ':R,53tjl  
    %           set(gca,'XTick',[],'YTick',[]) v`1,4,;,qs  
    %           axis square cWajrLw  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) x1 1U@jd+1  
    %       end t\$U`V)  
    % "`asF g  
    %   See also ZERNPOL, ZERNFUN2. K!,<7[MBg  
    /t-fjB{=G  
    I5h[%T  
    %   Paul Fricker 11/13/2006 0EJ(.8hwm  
    w\}?(uO  
    _j_x1.l  
    CkswJ:z)sc  
    LSQz"Ll l  
    % Check and prepare the inputs: -X+H2G  
    % ----------------------------- gl&5l1&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "`[!Lz  
        error('zernfun:NMvectors','N and M must be vectors.') >hH0Q5aL  
    end Y?534l)j  
    e *j.  
    ly WwGR  
    if length(n)~=length(m) fqu}Le  
        error('zernfun:NMlength','N and M must be the same length.') [=%TnT+^9  
    end -7!&@wuQ  
    `>o?CIdp  
    ,YhdY 6  
    n = n(:); ttXjn  
    m = m(:); s}j1"@  
    if any(mod(n-m,2)) .@-$5Jw  
        error('zernfun:NMmultiplesof2', ... KsrjdJx, '  
              'All N and M must differ by multiples of 2 (including 0).') jgS%1/&  
    end 0P>OJYFr'  
    $Ci0I+5w  
    N8`?t5  
    if any(m>n) w-@6|o,S  
        error('zernfun:MlessthanN', ... g/CxXSv@0  
              'Each M must be less than or equal to its corresponding N.') 8>/Q1(q0  
    end M/Pme&%  
    7w;O}axI  
    "7>>I D  
    if any( r>1 | r<0 ) h d~$WV0#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') m5G\}8|  
    end kF7V.m/~o  
    *Ei|fe$sa  
    NA,C Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _tr<}PnZ  
        error('zernfun:RTHvector','R and THETA must be vectors.') A8A ~!2V  
    end y0~Ia:y  
    #"fJa:IYG7  
    A[WV'!A,  
    r = r(:); (Toq^+`c  
    theta = theta(:); *)]"27^  
    length_r = length(r); )6~1 ^tD  
    if length_r~=length(theta) ;@h0qRXW:h  
        error('zernfun:RTHlength', ... 7m#[!%D  
              'The number of R- and THETA-values must be equal.') }bU8G '  
    end b%f[p/no  
    /WPv\L  
    R_sC! -  
    % Check normalization: qz4^{  
    % -------------------- YC]L)eafo`  
    if nargin==5 && ischar(nflag) w<9>Q1(  
        isnorm = strcmpi(nflag,'norm'); yk2!8  
        if ~isnorm @5) 8L/[l  
            error('zernfun:normalization','Unrecognized normalization flag.') midsnG+jnf  
        end  g/UaYCjM  
    else hC_Vts[v/  
        isnorm = false; fQ+VT|jzx  
    end V Cy5JH  
    NvjJ b-u  
    PN+G:Qv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VE2tq k%  
    % Compute the Zernike Polynomials avp; *G }  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6I_Hd>4  
    >Q,zNs  
    Ut]+k+ 4  
    % Determine the required powers of r: ,D6v4<jh  
    % ----------------------------------- {J/I-=CmML  
    m_abs = abs(m); Wl^R8w#Z$  
    rpowers = []; yz+, gLY  
    for j = 1:length(n) b{DiM098  
        rpowers = [rpowers m_abs(j):2:n(j)]; sM1RU  
    end h?\2 _s  
    rpowers = unique(rpowers); `nR%Cav,U  
    ?j7vZ}iRi  
    cD1o"bq  
    % Pre-compute the values of r raised to the required powers, &@"]+33  
    % and compile them in a matrix: O$`UCq  
    % ----------------------------- %[<Y9g,:Q  
    if rpowers(1)==0 5sde  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IGX:H)&*  
        rpowern = cat(2,rpowern{:}); bt+,0\Vg5  
        rpowern = [ones(length_r,1) rpowern]; 0h$GI"dR  
    else tNs~M4TVVH  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1-I Swd'u  
        rpowern = cat(2,rpowern{:}); 7=4A;Ybq  
    end O\;=V`z-  
    5=?i;P  
    :<#`_K~'  
    % Compute the values of the polynomials: ]Pn !nSg  
    % -------------------------------------- cd;NpN  
    y = zeros(length_r,length(n)); o7&4G$FX~  
    for j = 1:length(n) RK9>dkW  
        s = 0:(n(j)-m_abs(j))/2; J3S&3+2G  
        pows = n(j):-2:m_abs(j); /7$mxtB5%L  
        for k = length(s):-1:1 z}}]jR \y?  
            p = (1-2*mod(s(k),2))* ... LU!1s@  
                       prod(2:(n(j)-s(k)))/              ... ZeasYSo4P  
                       prod(2:s(k))/                     ... X_; *`,<T  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |c-LSs'\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); kR.wOJ7'  
            idx = (pows(k)==rpowers); ]0c Pml  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #:3r4J%+~  
        end QL"gWr`R  
         oL/o*^  
        if isnorm zW{ 6Eg  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); P#GD?FUc  
        end )&W|QH=AI  
    end dGH_ z8  
    % END: Compute the Zernike Polynomials t\j!K2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a ib}`l  
    h"QbA"  
    EiV=RdL  
    % Compute the Zernike functions: w`yx=i#  
    % ------------------------------ "2n;3ByR  
    idx_pos = m>0; j~ym<-[{a  
    idx_neg = m<0; &B-[oqC?  
    G=M] 8+h  
    m>Ux`Gp+  
    z = y; PN F4>)  
    if any(idx_pos) AfWl6a?T8:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [J\DB)V/  
    end <4F7@q, V  
    if any(idx_neg) 7{BnXN[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H$!-f>Rxa  
    end !Cj(A"uqY  
    GXb47_b^  
    5ouQQ)vA  
    % EOF zernfun 5]"BRn1*  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ]0YDb~UB  
    hOn  
    DDE还是手动输入的呢? r"[L0Cbb  
    "MTq{f2?  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)