切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8980阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .JOZ2QWm<  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, )Dp0swJ  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6>]w1 H  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u].7+{  
    k1.%ZZMM  
    nV`U{}x  
    ? G`6}NP  
    K)9Rw2-AJ  
    function z = zernfun(n,m,r,theta,nflag) UM/!dt}DnF  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2EO x],(|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @,j,GE%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the osl\j]U8  
    %   unit circle.  N is a vector of positive integers (including 0), and .1}1e;f-  
    %   M is a vector with the same number of elements as N.  Each element %!r.) Wx|2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) F{4v[WP)  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :dqZM#$d  
    %   and THETA is a vector of angles.  R and THETA must have the same \wD L oR  
    %   length.  The output Z is a matrix with one column for every (N,M) t#xfso`4o  
    %   pair, and one row for every (R,THETA) pair. ~yt7L,OQ  
    % ,5x#o  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;80^ GDk~S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \1SC:gN*#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VEpcCK  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <DP8a<{{  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zn>+ \  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9a @rsyX  
    % 5rmU9L  
    %   The Zernike functions are an orthogonal basis on the unit circle. :}yT?LIyP  
    %   They are used in disciplines such as astronomy, optics, and Ta[\BWR2  
    %   optometry to describe functions on a circular domain. Se_]=>WI  
    % J?dLI_{ <  
    %   The following table lists the first 15 Zernike functions. hbg$u$1`,  
    % l2kGFgc  
    %       n    m    Zernike function           Normalization ~8yh,U  
    %       -------------------------------------------------- sQJGwZ 7  
    %       0    0    1                                 1 |j-ng;  
    %       1    1    r * cos(theta)                    2 T9I$6HAi  
    %       1   -1    r * sin(theta)                    2 <:Mz2Rg  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) q-+:1E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) F}7sb#G  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Lg~C:BN F  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -pIz-*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) W7Y@]QMX  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) S2e3d  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =kfa1kD&{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6UqAs<c9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 71y{Dwya  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <zL_6Y2  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ix6\5}.c9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^;'8yE/  
    %       -------------------------------------------------- vc&v+5Y  
    % EG`6T  
    %   Example 1: Q#G xo  
    % 8}m J )9<7  
    %       % Display the Zernike function Z(n=5,m=1) A[8m3L#k  
    %       x = -1:0.01:1; v2E<~/|  
    %       [X,Y] = meshgrid(x,x); SAdE9L =d  
    %       [theta,r] = cart2pol(X,Y); bD0l^?Hu!  
    %       idx = r<=1; -2; 6Pwmv  
    %       z = nan(size(X)); jLVG=rOn  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); YR*gO TD  
    %       figure y]0O"X-G  
    %       pcolor(x,x,z), shading interp s*[ I"iE  
    %       axis square, colorbar L/[VpD  
    %       title('Zernike function Z_5^1(r,\theta)') IJ&Lk=2E]  
    % Uffwzd!  
    %   Example 2: vMB61 |O  
    % A1INaL  
    %       % Display the first 10 Zernike functions ^hiY6N &  
    %       x = -1:0.01:1; RARA_tii  
    %       [X,Y] = meshgrid(x,x); mmbe.$73  
    %       [theta,r] = cart2pol(X,Y); l)vC=V6MG  
    %       idx = r<=1; C@6:uiT$  
    %       z = nan(size(X)); @b,H'WvhfS  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .@E5dw5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; J?w_DQa  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }q`9U!v  
    %       y = zernfun(n,m,r(idx),theta(idx)); U8 Zb&6  
    %       figure('Units','normalized') a1~|?PCbY  
    %       for k = 1:10 rP3tFvOH  
    %           z(idx) = y(:,k); 1oej<67PdJ  
    %           subplot(4,7,Nplot(k)) 6qHD&bv\%C  
    %           pcolor(x,x,z), shading interp a8J AJkFB  
    %           set(gca,'XTick',[],'YTick',[]) 8Y.q P"s  
    %           axis square Ik$$Tn&;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eO <N/?t  
    %       end m2\\!C]f  
    % 7h}gIm7e"  
    %   See also ZERNPOL, ZERNFUN2. AQUAQZc  
    Yi%lWbr  
    Q?i_Nl/|  
    %   Paul Fricker 11/13/2006 nsR CDUCi  
    .Qx5,)@9  
    =|]h-[P'  
    Qc3d<{7\~  
    UeO/<ml3>J  
    % Check and prepare the inputs: ZKXE7p i  
    % ----------------------------- <#h,_WP*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ; R}>SS'  
        error('zernfun:NMvectors','N and M must be vectors.') +PjTT6  
    end bO\++zOF  
    94+^K=lAX  
    ;[}OZt  
    if length(n)~=length(m) &T,|?0>~=J  
        error('zernfun:NMlength','N and M must be the same length.') 4{YA['  
    end ?Ts]zO%%Z  
    KVa{;zBwl  
    %=UD~5!G0  
    n = n(:); YCD |lL#  
    m = m(:); TRGpE9i  
    if any(mod(n-m,2)) HLW_Y|QaFo  
        error('zernfun:NMmultiplesof2', ... KSPa2>lz?  
              'All N and M must differ by multiples of 2 (including 0).') ._G ,uP$  
    end !FL"L 9   
    |Gf<Ql_.4  
    <{kPa_`'  
    if any(m>n) <?KPyg2  
        error('zernfun:MlessthanN', ... }ssV"5M  
              'Each M must be less than or equal to its corresponding N.') m[}k]PB>  
    end -i`jS_-Cv-  
    _ p\L,No  
    ]eKuR"ob0  
    if any( r>1 | r<0 ) uCDe>Q4@/  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') tn5%zJ#+  
    end Kz"3ba}KH  
    '5BD%#[  
    TmG);B}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y|6n:<o  
        error('zernfun:RTHvector','R and THETA must be vectors.') XGB\rf vS  
    end a<<4gXx  
    NfvPE]S  
    kkq1:\pZ]a  
    r = r(:); `j>5W<5q\  
    theta = theta(:); c*)T4n[e  
    length_r = length(r); MT-Tt  
    if length_r~=length(theta) 9-;-jnDy  
        error('zernfun:RTHlength', ... s(=wG|   
              'The number of R- and THETA-values must be equal.') (bb!VVA  
    end vh a9,5_  
    |(.\J`_e  
    /}m)FaAi  
    % Check normalization: Te-p0x?G.  
    % -------------------- ZA(u"T~  
    if nargin==5 && ischar(nflag) PR@6=[|d  
        isnorm = strcmpi(nflag,'norm'); 62sl6WWS3  
        if ~isnorm (03/4*g_s  
            error('zernfun:normalization','Unrecognized normalization flag.') [./FzlAs  
        end ,&_H  
    else Hh% !4_AMw  
        isnorm = false; 1p}Wj*mc  
    end  gHe:o`  
    gK rUv0&F  
    R(wUu#n$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oPKLr31zt  
    % Compute the Zernike Polynomials ?8-Am[xH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% " @D  
    Y*NzY*V\  
    ''nOXl  
    % Determine the required powers of r: }^&S^N 7  
    % ----------------------------------- $:~;U xh=  
    m_abs = abs(m); MNu0t\`p4  
    rpowers = []; )pHtsd.eP  
    for j = 1:length(n) g6,DBkv2  
        rpowers = [rpowers m_abs(j):2:n(j)]; O&l4/RtQ\)  
    end oai=1vt@  
    rpowers = unique(rpowers); 17s~mqy  
    {srP3ll P  
    `;UWq{"  
    % Pre-compute the values of r raised to the required powers, CYaN;HV@_  
    % and compile them in a matrix: ;xwcK-A  
    % ----------------------------- "/'3I/}  
    if rpowers(1)==0 ?4b0\ -  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XO <0;9|  
        rpowern = cat(2,rpowern{:}); ME)Tx3d  
        rpowern = [ones(length_r,1) rpowern]; 1wR[nBg*|  
    else yNvAT>H  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KwL_ae6fV  
        rpowern = cat(2,rpowern{:}); 1&MCS%UTL  
    end t /+;#-  
    0i*V?  
    {+J{t\`  
    % Compute the values of the polynomials: uBlPwb,V  
    % -------------------------------------- q94;x|63  
    y = zeros(length_r,length(n)); Q4u.v,sE  
    for j = 1:length(n) {+67<&g  
        s = 0:(n(j)-m_abs(j))/2; B\Nbt!Ps  
        pows = n(j):-2:m_abs(j); r07u6OA  
        for k = length(s):-1:1 QEr<(wM-y  
            p = (1-2*mod(s(k),2))* ... k'o[iKlu  
                       prod(2:(n(j)-s(k)))/              ... PeJ#9hI~rQ  
                       prod(2:s(k))/                     ... #gC [L=01  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... J p?XV<3Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ! 6(3Y  
            idx = (pows(k)==rpowers); hY&Yp^"}]^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); r!Eh}0bL  
        end "9caoPI0~  
         ]RT  
        if isnorm jrQ0-D%M d  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G Aj%o]}u  
        end P73GH  
    end z=>fBb>w7  
    % END: Compute the Zernike Polynomials 91]|4k93  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16L YVvmW  
    D{+@ ,C7B  
    pCE GZV,d@  
    % Compute the Zernike functions: l2Sar1~1  
    % ------------------------------ '-v:"%s|  
    idx_pos = m>0; (h0@;@@7hW  
    idx_neg = m<0; R/~!km  
    ^2k jO/  
    gy.UTAs N  
    z = y; GB$`b'x@S  
    if any(idx_pos) [D~]  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]d1'5F][H  
    end 7p1Y g  
    if any(idx_neg) <e UsMo<  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5&n:i,  
    end t(3f} ?  
    /WnCAdDgZ  
    (l99a&] t  
    % EOF zernfun B/ 4M;G~  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  )Cdw_Yx  
    Pjh;;k|V  
    DDE还是手动输入的呢? le^Fik   
    ~;oXLCL0})  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)