下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?VrZM
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #H{<nVvg^
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Fh9%5-t:J
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :@jhe8'w
j/4N
7F;"=DarOE
C7[ge&
4!p~Mr[E
function z = zernfun(n,m,r,theta,nflag) *vc=>AEc
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )A:2y +
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N W{O:j
% and angular frequency M, evaluated at positions (R,THETA) on the jIv%?8+%
% unit circle. N is a vector of positive integers (including 0), and [_hHZMTH
% M is a vector with the same number of elements as N. Each element .281;] =
% k of M must be a positive integer, with possible values M(k) = -N(k) >8_#L2@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, py`RH)
% and THETA is a vector of angles. R and THETA must have the same `*cT79
% length. The output Z is a matrix with one column for every (N,M) s\i=-`
% pair, and one row for every (R,THETA) pair. eZ5UR014
% !<H[h4g
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike A"x1MjuqLM
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Vo}3E]
% with delta(m,0) the Kronecker delta, is chosen so that the integral lE:X~RO"~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, nv1'iSEeOl
% and theta=0 to theta=2*pi) is unity. For the non-normalized &f'\9lO
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g
<^Y^~+E
% L@2%a'
% The Zernike functions are an orthogonal basis on the unit circle. u
+q}9
% They are used in disciplines such as astronomy, optics, and NsJt=~
% optometry to describe functions on a circular domain. &o{I9MD
% Yr@_X
% The following table lists the first 15 Zernike functions. =A={Dpv[>
% N]R<EBq
% n m Zernike function Normalization IG0$OtG
% -------------------------------------------------- drP2%u
% 0 0 1 1 ?z% @;&
% 1 1 r * cos(theta) 2 *T"JO|
% 1 -1 r * sin(theta) 2 ?Y+xuY/t
% 2 -2 r^2 * cos(2*theta) sqrt(6) s:lar4>kM
% 2 0 (2*r^2 - 1) sqrt(3) %^[45e
% 2 2 r^2 * sin(2*theta) sqrt(6) 0Ge*\Q
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5QB]2c^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *6^|i}
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9 +"D8J7
% 3 3 r^3 * sin(3*theta) sqrt(8) Os^ sOOSY
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]UKKy2r.
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qH!}oPeU'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `fh^[Q|4n0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *vv<@+gA
% 4 4 r^4 * sin(4*theta) sqrt(10) 6eE%x?#
% -------------------------------------------------- {k] 2h4 &h
% X).UvPZ/
% Example 1: i)f3\?,,
% mbxJS_P
% % Display the Zernike function Z(n=5,m=1) o0$R|/>i
% x = -1:0.01:1; #q`[(`Bx
% [X,Y] = meshgrid(x,x); E*ybf'
% [theta,r] = cart2pol(X,Y); *k==2figz
% idx = r<=1; jcHs!
% z = nan(size(X)); v1<gNb)`
% z(idx) = zernfun(5,1,r(idx),theta(idx)); fpf1^TZ
% figure )#k*K9[@
% pcolor(x,x,z), shading interp J"QXu M
% axis square, colorbar O%5cMz?eU
% title('Zernike function Z_5^1(r,\theta)') B 3|zR
% 'ah|cMRn
% Example 2: _ _cJ+%e
% N
?Jr8
% % Display the first 10 Zernike functions Yao>F--?
% x = -1:0.01:1; WsRG>w3"
% [X,Y] = meshgrid(x,x); D}'g4Ag
% [theta,r] = cart2pol(X,Y); )~xL_yW_X
% idx = r<=1; H|;6K`O_
% z = nan(size(X)); JbpKstc;
% n = [0 1 1 2 2 2 3 3 3 3]; =2uE\6Fl,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !O
F#4N
% Nplot = [4 10 12 16 18 20 22 24 26 28];
hh<5?1
% y = zernfun(n,m,r(idx),theta(idx)); !t "uNlN
% figure('Units','normalized') -B:Z(]3#\
% for k = 1:10 (1JZuR<?c
% z(idx) = y(:,k); j[NA3Vj1P
% subplot(4,7,Nplot(k)) xal,j*
% pcolor(x,x,z), shading interp ,OWdp<z
% set(gca,'XTick',[],'YTick',[]) Hn)K;?H4
% axis square d,[.=Jqv[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sj a;NL
% end *}R5=r0
% ;e;lPM{+
% See also ZERNPOL, ZERNFUN2. nR4L4tdS
XSt5s06TM
ya5a7
% Paul Fricker 11/13/2006 vb/*ILS
BF8n: }9U
IrQ8t!
*V#v6r7<Y/
Fn$/ K
% Check and prepare the inputs: NHA
2 i
% ----------------------------- /{ YUM~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zk5sAHQ
error('zernfun:NMvectors','N and M must be vectors.') cd{3JGgB
end 5~k-c Ua
Pc{D,/EpR
.vNfbYH(
if length(n)~=length(m) {YZ)IaqZ
error('zernfun:NMlength','N and M must be the same length.') SFoF]U09
end hKtOh
b0X*+q
:Q2\3
n = n(:); Z)'jn8?P
m = m(:); Tj*o [2mD
if any(mod(n-m,2)) ,'5P[-
error('zernfun:NMmultiplesof2', ... KIn^,d0H
'All N and M must differ by multiples of 2 (including 0).') 5FqUFzVqsl
end RI w6i?/I
)<G>]IP<
toPA@V
if any(m>n) XOa<R
error('zernfun:MlessthanN', ... 8F($RnP3
'Each M must be less than or equal to its corresponding N.') Iu|G*~\
end gJi11^PK
-`wGF#}y(=
*7oPM5J|v
if any( r>1 | r<0 ) i_g="^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9F0B-aZ
end 9bgKu6-X
[UNfft=K3P
~c
;7me.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) efMv1>{
error('zernfun:RTHvector','R and THETA must be vectors.') %r6LU<;1@
end %#Wg>6
vq$%Ug/B
,iCd6M{
r = r(:); TCU|k ,
theta = theta(:);
&k\7fvF
length_r = length(r); V5KAiG<d
if length_r~=length(theta) _jH1Mcq
error('zernfun:RTHlength', ... \|R`wFn^P
'The number of R- and THETA-values must be equal.') ]=9%fA
end @SPmb o
W#e:r z8=
6`NsX
% Check normalization: BdUhFN*
% -------------------- ig; ~
T
if nargin==5 && ischar(nflag) [rTV)JsTb
isnorm = strcmpi(nflag,'norm'); 8v1asFxs.
if ~isnorm cgYMo{R3
error('zernfun:normalization','Unrecognized normalization flag.') 0VoC|,$U
end ~FZLA}
else PNT.9 *d
isnorm = false; `]5XY8^kI
end 8(KsU,%d
~/3cQN^
g%j z,|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% po=*%Zs*T
% Compute the Zernike Polynomials dyWWgC%A
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -2> L*"^
p: sn>Y
b_V)]>v+
% Determine the required powers of r: FD|R4 V*3
% ----------------------------------- LU?#{dZ
m_abs = abs(m); rorzxp{
rpowers = []; d q:M!F
for j = 1:length(n) ~l6e&J
rpowers = [rpowers m_abs(j):2:n(j)]; }E>2U/wpXY
end U{>!`RN
rpowers = unique(rpowers); )yJe h
2: pq|eiF
>z^T~@m7l
% Pre-compute the values of r raised to the required powers, ys+?+dY2
% and compile them in a matrix: l*'8B)vN2
% ----------------------------- pKEMp&geo
if rpowers(1)==0 q6j]j~JxB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2d.I3z:[
rpowern = cat(2,rpowern{:}); BC@"WlD
rpowern = [ones(length_r,1) rpowern]; d/t'N-m
else 3J'a
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s
]QzNc
rpowern = cat(2,rpowern{:}); _rs#h)
end 0QC*Z (
Pv1psKu
-vjjcyTt
% Compute the values of the polynomials: ~PlwPvWo
% -------------------------------------- lq.0?(
y = zeros(length_r,length(n)); "g=ux^+X\
for j = 1:length(n) N`iK1n4X
s = 0:(n(j)-m_abs(j))/2; \re.KB#R
pows = n(j):-2:m_abs(j); t9K.Jc0
for k = length(s):-1:1 1>1|>%
p = (1-2*mod(s(k),2))* ... Ccc6 ko_
prod(2:(n(j)-s(k)))/ ... N_gjOE`x5
prod(2:s(k))/ ... ~MhPzu&B
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3ZZJYf=
prod(2:((n(j)+m_abs(j))/2-s(k))); 3\(s=-vh
idx = (pows(k)==rpowers); [MiD%FfcNH
y(:,j) = y(:,j) + p*rpowern(:,idx); TfZO0GL$
end B=Zo0p^
!)\`U/.W
if isnorm >_F&oA#
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |23 }~c,
end (nE$};c<b2
end uO^{+=;A=
% END: Compute the Zernike Polynomials jG.*tuf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sl$dXB@
?QuFRl,ZJ
1:>RQPXcWv
% Compute the Zernike functions: *Lh0E/5
% ------------------------------ [j!0R'T
idx_pos = m>0; 9*2hBNp+
idx_neg = m<0; vfy-;R(
V_
]4UE
"M:arP5f
z = y; Me`"@{r|#
if any(idx_pos) 9J|YP}%
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gg;#U`
end 9J%>2AA
if any(idx_neg) be764do
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); uY;/3?k&
end C8t+-p
4\$Ze0tv
5#fLGXP
% EOF zernfun [p7le8=