切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9135阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Z_oBZs  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, XY]|OZ7(  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =IH z@CU  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? m"P"iK/Av(  
    8v7;{4^  
    V&x6ru#  
    }VlX!/42  
    J+3PUfg>@R  
    function z = zernfun(n,m,r,theta,nflag) ] Ma2*E !p  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {c|=L@/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Sq,ZzMw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Ij_Y+Mnl4:  
    %   unit circle.  N is a vector of positive integers (including 0), and s)dN.'5/  
    %   M is a vector with the same number of elements as N.  Each element \vVGfG?6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S&jZYq**  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, A ^YHtJ  
    %   and THETA is a vector of angles.  R and THETA must have the same <QGf9{m  
    %   length.  The output Z is a matrix with one column for every (N,M) v%(2l|M  
    %   pair, and one row for every (R,THETA) pair. +~Ni7Dp]  
    % F.)b`:g  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike aZGX`;3  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #M;Cw}pW  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral }R#YO$J7  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =k#SQ/@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +;7Rz_.6f  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [bd fp a  
    % w) o^?9T  
    %   The Zernike functions are an orthogonal basis on the unit circle. jX5lwP Q|F  
    %   They are used in disciplines such as astronomy, optics, and @G  0k+  
    %   optometry to describe functions on a circular domain. xy>~ 15  
    % sfSM7f  
    %   The following table lists the first 15 Zernike functions. x35(i  
    % |A".Mo_5  
    %       n    m    Zernike function           Normalization e;:~@cB,c  
    %       -------------------------------------------------- &K@2kq,  
    %       0    0    1                                 1 ek~bXy{O`  
    %       1    1    r * cos(theta)                    2 T&6W>VQ|[>  
    %       1   -1    r * sin(theta)                    2 W)I)QinOH  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) uc@f#(-  
    %       2    0    (2*r^2 - 1)                    sqrt(3) u(B0X=B  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) t0XM#9L  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 2 fp\s5%J}  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) y#HDJ=2  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) V3O<l}ak  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) sr!m   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _ F&BSu  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b_xn80O  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Vt-D8J\A 0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m\~{l=jIS  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^ sxcBG  
    %       -------------------------------------------------- au'Zjj/Ai5  
    % y=)Cid  
    %   Example 1: 6]#pPk8[Z  
    % >]?!c5=  
    %       % Display the Zernike function Z(n=5,m=1) T0xU}  
    %       x = -1:0.01:1; N:Yjz^Jt  
    %       [X,Y] = meshgrid(x,x); GaMiu! |,  
    %       [theta,r] = cart2pol(X,Y); ]9]cef=h#  
    %       idx = r<=1; '1]Iu@?  
    %       z = nan(size(X)); y21zaQ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); e1ru#'z  
    %       figure Wh4`Iv\.  
    %       pcolor(x,x,z), shading interp W%@L7xh  
    %       axis square, colorbar ZW\}4q;[A  
    %       title('Zernike function Z_5^1(r,\theta)') 4%/iu)nx  
    % /*DC`,q  
    %   Example 2: C FY3D|  
    % L=W8Q8hf  
    %       % Display the first 10 Zernike functions {R b|";  
    %       x = -1:0.01:1; A7!!kR":  
    %       [X,Y] = meshgrid(x,x); 4 %do.D*  
    %       [theta,r] = cart2pol(X,Y); NMYkEz(&R  
    %       idx = r<=1; FV|/o%XqK  
    %       z = nan(size(X)); Ht.0ug  
    %       n = [0  1  1  2  2  2  3  3  3  3]; cTf/B=yMi  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,Q~C F;qe  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .iFd  
    %       y = zernfun(n,m,r(idx),theta(idx)); yM(zc/?  
    %       figure('Units','normalized') !e*BQ3  
    %       for k = 1:10 6A$ \I44  
    %           z(idx) = y(:,k); :_F$e  
    %           subplot(4,7,Nplot(k)) |,k,X}gP  
    %           pcolor(x,x,z), shading interp NsYeg&>`  
    %           set(gca,'XTick',[],'YTick',[]) jFYv4!\ju  
    %           axis square -z%| Jk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NWCJ|  
    %       end vr#_pu)f4  
    % 9 z_9yT  
    %   See also ZERNPOL, ZERNFUN2. i}mvKV?!|1  
    ghq#-N/t  
    7U_~_yb  
    %   Paul Fricker 11/13/2006 ~$7fU  
    ptXCM[Z+  
    F6 ?4E"d  
    >% a^;gk(  
    lqPzDdC^>  
    % Check and prepare the inputs: mup<%@7m  
    % ----------------------------- -DgJkyt+<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cY1d6P0  
        error('zernfun:NMvectors','N and M must be vectors.') ?`%7Y~  
    end X.V6v4  
    Aa^%_5  
    @ %LrpD  
    if length(n)~=length(m) u Ey>7I  
        error('zernfun:NMlength','N and M must be the same length.') z& !n'N<C  
    end Ar@" K!TS  
    fg1_D  
    *,Bo $:(n  
    n = n(:); jcNY W_G  
    m = m(:); Z>GqLq\`ed  
    if any(mod(n-m,2)) pUV3n 1{2  
        error('zernfun:NMmultiplesof2', ... &HdzbKO=  
              'All N and M must differ by multiples of 2 (including 0).') 0zR4Kj7EE  
    end I@x^`^+l  
    cTW3\S=  
    6J3:[7k=&  
    if any(m>n) V> K sbPqR  
        error('zernfun:MlessthanN', ... We]mm3M3  
              'Each M must be less than or equal to its corresponding N.') MH;5gC@ `  
    end \%fl`+`  
    ,[6N64fy  
    7VWq8FH`  
    if any( r>1 | r<0 ) |y+<|fb,a  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') nZ>8r  
    end biZwxP3  
    A1{ 7g<k6  
    'xO5Le(=M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8 /3`rEW  
        error('zernfun:RTHvector','R and THETA must be vectors.') e RiPC  
    end Qs(WyP#  
    y8/ 7@qw  
    saMv.;s 1^  
    r = r(:); $ f`\TKlN  
    theta = theta(:); =b+W*vUAw  
    length_r = length(r); 1&_9 3  
    if length_r~=length(theta) Z]H`s{3  
        error('zernfun:RTHlength', ... @k_xA-a  
              'The number of R- and THETA-values must be equal.') *$uj)*5,  
    end Er; @nOyD  
    tBSHMz  
    y_bb//IAG  
    % Check normalization: i|zs Li/  
    % -------------------- |TCHPKN  
    if nargin==5 && ischar(nflag) QH:PClW![  
        isnorm = strcmpi(nflag,'norm'); .<Y7,9;YEF  
        if ~isnorm rdK=f<I]  
            error('zernfun:normalization','Unrecognized normalization flag.') Gt9(@USK  
        end ~y@,d  
    else  WW5AD$P*  
        isnorm = false; SyHS9>  
    end &_mOw.  
    3<:(Eda}  
    5r#0/1ym!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3f;W+^NY  
    % Compute the Zernike Polynomials -[\+~aDH,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \^7D% a=;C  
    Gn}G$uk61  
    ^HpUbZpat)  
    % Determine the required powers of r: {9(#X]'  
    % ----------------------------------- pwq a/Yi  
    m_abs = abs(m); G&P[n8Z$  
    rpowers = []; n)]]g3y2  
    for j = 1:length(n) !L..I2'  
        rpowers = [rpowers m_abs(j):2:n(j)]; RzPqtN  
    end &j4 1<A  
    rpowers = unique(rpowers); >fCz,.L  
    N_AAhD  
    AcF6p)@_  
    % Pre-compute the values of r raised to the required powers, 1A>>#M=A  
    % and compile them in a matrix: udCum4  
    % ----------------------------- yXg #<H6V  
    if rpowers(1)==0 -oSfp23u  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2"Oj* ;  
        rpowern = cat(2,rpowern{:}); LQy`,-&  
        rpowern = [ones(length_r,1) rpowern]; lFHj]%Y  
    else oA_T9uh[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZHQa}C+  
        rpowern = cat(2,rpowern{:}); 2<18j  
    end ,MH9e!  
    6pyLb3[e  
    !3]}3jZ.  
    % Compute the values of the polynomials: |7 .WP;1  
    % -------------------------------------- ~0S_S+e  
    y = zeros(length_r,length(n)); GwHp@_>  
    for j = 1:length(n) XJ\ j0  
        s = 0:(n(j)-m_abs(j))/2; \EP<r  
        pows = n(j):-2:m_abs(j); lO?dI=}]  
        for k = length(s):-1:1 r!DUsE  
            p = (1-2*mod(s(k),2))* ... 2(5HPRQ  
                       prod(2:(n(j)-s(k)))/              ... ;xp^F KP  
                       prod(2:s(k))/                     ... J<[Hw g  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Tnw0S8M  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Iu<RwB[#Q  
            idx = (pows(k)==rpowers); %<4ZU!2L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); )vO?d~x|  
        end _*(n2'2B  
         >5,nB<  
        if isnorm :i;iSrKy  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); q-3,p.  
        end ^Q)&lxlxpx  
    end ^ +e5 M1U=  
    % END: Compute the Zernike Polynomials $j ZU(<4,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f$\gm+&hXE  
    l!6^xMhYk  
    #x) lN  
    % Compute the Zernike functions: ;>#YOxPl  
    % ------------------------------ GqYE=Q  
    idx_pos = m>0; I-=H;6w7  
    idx_neg = m<0; "YUh4uZ~P  
    ,U-aZ  
    P5vxQR_*lc  
    z = y; jHP6d =  
    if any(idx_pos) zOV.cI6fZz  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !N, Oe<  
    end #M9rt ~4  
    if any(idx_neg) ?8{x/y:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }]i re2j8  
    end  4[\[Ho  
     BKiyog  
    !R{C  
    % EOF zernfun D7| =ev  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  wFgL\[$^|  
    3Zr'Mn  
    DDE还是手动输入的呢? ?r`UBR+[  
    ^m3[mY [a  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)