下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, c[dzO.~
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !LI<%P)
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? *Y m?gCig
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =^nb+}Nz(
$RPW/Lyiq
F1t( P 8
BPba3G9H
)\fY1WD
function z = zernfun(n,m,r,theta,nflag) &r5q,l&@n
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. h4?x_"V"
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DmiBM6t3N
% and angular frequency M, evaluated at positions (R,THETA) on the w
)R5P[b
% unit circle. N is a vector of positive integers (including 0), and &7aWVKon
% M is a vector with the same number of elements as N. Each element wSTulo: 9
% k of M must be a positive integer, with possible values M(k) = -N(k) @p+;iS1}
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~7P)$[
% and THETA is a vector of angles. R and THETA must have the same ?['!0PF
% length. The output Z is a matrix with one column for every (N,M) K9lgDk"i
% pair, and one row for every (R,THETA) pair. 4>hHUz[_
% i--t
?@#
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cj/`m$
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \c=I!<9
% with delta(m,0) the Kronecker delta, is chosen so that the integral Lx^ eaP5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gb ga"WO
% and theta=0 to theta=2*pi) is unity. For the non-normalized T #\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X*8y"~X|vq
% qLN^9PdEE
% The Zernike functions are an orthogonal basis on the unit circle. %@/^UE:
% They are used in disciplines such as astronomy, optics, and m~ tvuz I
% optometry to describe functions on a circular domain. "F<CGSo
% ~Iu! B
Y
% The following table lists the first 15 Zernike functions. z$32rt8{`v
% ~C.*Vc?|
% n m Zernike function Normalization @;Ttdwg#J
% -------------------------------------------------- 'rD6MY
% 0 0 1 1 CLb6XnkcA\
% 1 1 r * cos(theta) 2 '|C3t!H`
% 1 -1 r * sin(theta) 2 kI{DxuTad
% 2 -2 r^2 * cos(2*theta) sqrt(6) tZrc4$D-
% 2 0 (2*r^2 - 1) sqrt(3) 3FEJ
9ZyG
% 2 2 r^2 * sin(2*theta) sqrt(6) Zp_(vOc
% 3 -3 r^3 * cos(3*theta) sqrt(8) nV;'UpQw
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) &|>+LP@8
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) U2oCSo5:3N
% 3 3 r^3 * sin(3*theta) sqrt(8) *sho/[~_
% 4 -4 r^4 * cos(4*theta) sqrt(10) _"DS?`z6
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I5$P9UE+^9
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Nk`UQ~g$
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DX>a0-Xj
% 4 4 r^4 * sin(4*theta) sqrt(10)
`zwz
% -------------------------------------------------- KhCP9(A=Qo
% OG,P"sv
% Example 1: Lpchla$
% S2~cAhR|M
% % Display the Zernike function Z(n=5,m=1) c8qr-x1HG
% x = -1:0.01:1; ^rkKE
dd
% [X,Y] = meshgrid(x,x); j]a$RC#
% [theta,r] = cart2pol(X,Y); TOYK'|lwM
% idx = r<=1; ]Z JoC!u
% z = nan(size(X)); P:qmg"i@3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); qfkHGW?1/j
% figure S)rZE*~2
% pcolor(x,x,z), shading interp =BsV`p7rU
% axis square, colorbar cPGlT"
% title('Zernike function Z_5^1(r,\theta)') +8=$-E=
% p|4qkJK8
% Example 2: Y4T")
% ,w
}Po
% % Display the first 10 Zernike functions g|=_@
pL
% x = -1:0.01:1; _B4&Fb.
% [X,Y] = meshgrid(x,x); T:|/ux3
% [theta,r] = cart2pol(X,Y); .b:!qUE^
% idx = r<=1; 7\u+%i;YZ
% z = nan(size(X)); SGd]o"VF
% n = [0 1 1 2 2 2 3 3 3 3]; 0bNvmZ$
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6 Z/`p~e
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ]`E+HLEQ'
% y = zernfun(n,m,r(idx),theta(idx)); Nz{dnV{&x;
% figure('Units','normalized') )n/%P4l
% for k = 1:10 ;?6vKpj;
% z(idx) = y(:,k); WKf<%
E$
% subplot(4,7,Nplot(k)) od;-D~
% pcolor(x,x,z), shading interp K,f:X g!:
% set(gca,'XTick',[],'YTick',[]) mgxIxusR
% axis square JFq
wC=-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `h}eP[jA
% end ?@V R%z
% $o6/dEKQ
% See also ZERNPOL, ZERNFUN2. Iw1Y?Qia
@WJ;T= L
I8F+Z
% Paul Fricker 11/13/2006 NGra/s,9|
TyxIlI4"
yr]ja-Y
}ze+ tf
U%{GLO
% Check and prepare the inputs: \?bV\/GBR
% ----------------------------- (Guzj*1 2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2FcL-?
error('zernfun:NMvectors','N and M must be vectors.') p<R:[rz
end Hg+<GML
mDD.D3RS
~ KK9aV{
if length(n)~=length(m) V>$( N/1
error('zernfun:NMlength','N and M must be the same length.') [f6uwp
end <+8'H:wz
,'NasL8?We
>DL
n = n(:); 2:+8]b 3i
m = m(:); |@ mz@
if any(mod(n-m,2)) npP C;KD
error('zernfun:NMmultiplesof2', ... *0WVrM06?
'All N and M must differ by multiples of 2 (including 0).') Z:b?^u4.
end OhF55,[
3CUQQ_
Z[vx0[av&
if any(m>n) M,Gy.ivz
error('zernfun:MlessthanN', ... gv!8' DKn
'Each M must be less than or equal to its corresponding N.') S :HOlJze
end Ht`fC|E
5zuwqOD*
2Gyq40
if any( r>1 | r<0 ) NW|B|kc
error('zernfun:Rlessthan1','All R must be between 0 and 1.') l,ny=Q$[1'
end
l\U
Q2i
1-RY5R}VR
j*=!M# D
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) dQX-s=XJ
error('zernfun:RTHvector','R and THETA must be vectors.') ^[ae
)}
end ktu?-?#0,
u#05`i:Z
(qcFGM22U
r = r(:); zI88IM7/
theta = theta(:); J_s`G
length_r = length(r); E4#{&sRT
if length_r~=length(theta) aRd~T6I
error('zernfun:RTHlength', ... bC&A@.g{
'The number of R- and THETA-values must be equal.') glAS$<
end [i.@q}c~E
Po>6I0y
S)CsH1Q
% Check normalization: "+DA)K
% -------------------- B=Hd:P|
if nargin==5 && ischar(nflag) O[X*F2LC4
isnorm = strcmpi(nflag,'norm'); dT`nR"
if ~isnorm ZbRRDXk!
error('zernfun:normalization','Unrecognized normalization flag.') F`}'^>
end YSjc=
else &9jJ\+:7
isnorm = false; wGHft`Z
end o)Q4+njT@
2"0VXtv6
2OG/0cP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0 '&C5v'
% Compute the Zernike Polynomials ^&3vGu9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *0U#Z]t
gx\V)8Zr
}OkzP)(
% Determine the required powers of r: YznL+TD
% ----------------------------------- 32GI+NN
m_abs = abs(m); %p7
?\>
rpowers = []; mR}8} K]L
for j = 1:length(n) ,>|tQ'
rpowers = [rpowers m_abs(j):2:n(j)]; 1q}32^>+o
end a[ULSYEi
rpowers = unique(rpowers); R P{pEd
QPy h.9:N
E2hsSqsu=
% Pre-compute the values of r raised to the required powers, vbJ<|#|r-
% and compile them in a matrix: a-5UG#o
% ----------------------------- eI-fH
if rpowers(1)==0 zJ`u>:*$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Uo3
rpowern = cat(2,rpowern{:}); LcKc#)'EE
rpowern = [ones(length_r,1) rpowern]; s'O%@/;J
else 5{H)r
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V .Kjcy
rpowern = cat(2,rpowern{:}); y)r`<B
end <XL%*
F"Dr(V
Ust +g4
% Compute the values of the polynomials: AB=%yM7V*
% -------------------------------------- COi15( G2
y = zeros(length_r,length(n)); h]zok}$
for j = 1:length(n) l6zAMyau5
s = 0:(n(j)-m_abs(j))/2; 3P_.SF
pows = n(j):-2:m_abs(j); s:<y\1Ay
for k = length(s):-1:1 ?M90K)&g{
p = (1-2*mod(s(k),2))* ... 4Q+ ,_iP
prod(2:(n(j)-s(k)))/ ... eKP>}`
prod(2:s(k))/ ... za>%hZf\
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Y]
1U108
prod(2:((n(j)+m_abs(j))/2-s(k))); 1dD%a91
idx = (pows(k)==rpowers); +5fB?0D;
y(:,j) = y(:,j) + p*rpowern(:,idx); 1D%P;eUDp
end /G5KNSi
Z%#e* O0
if isnorm FC 8<D
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); fwppqIM
end tFcQ.1
end W{Qb*{9
% END: Compute the Zernike Polynomials X&Oo[Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 03?ADjO
:M6|V_Yp
h`Jc%6o
% Compute the Zernike functions: '
!huU
% ------------------------------ "'BDVxp'w
idx_pos = m>0; R14&V1 tZ
idx_neg = m<0; j1Ys8k%$l
3 EAr=E]
LBio$67F
z = y; $%U}k=-
if any(idx_pos) 7]@M
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3SM'vV0[
end %n]jsdE^|
if any(idx_neg) ]:ca=&>
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9f['TG,"
end u!xgLf'`
,T;sWl
dLQp"vs $
% EOF zernfun r
E1ouz!D