切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9492阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y;ymyy&  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,.TwM;w=  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6bd{3@   
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fk'DJf[M  
    .Dt.7G  
    Cg&:+  
    [5wU0~>'  
    sV-UY!   
    function z = zernfun(n,m,r,theta,nflag) TykY>cl   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. <~P([5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8 _|"+Ze  
    %   and angular frequency M, evaluated at positions (R,THETA) on the R/ 3#(5  
    %   unit circle.  N is a vector of positive integers (including 0), and mExJ--}  
    %   M is a vector with the same number of elements as N.  Each element !DZ4C.  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  R7ExMJw  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, #(1R:z\:  
    %   and THETA is a vector of angles.  R and THETA must have the same .( X!*J]G  
    %   length.  The output Z is a matrix with one column for every (N,M) yCZ[z A  
    %   pair, and one row for every (R,THETA) pair. Gn>~CoFN  
    % 9}#9i^%}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike GpGq' 8|(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ldNWdz  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral C)|#z/"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,Laz515  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;-d2~1$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^=,N] j  
    % LhQidvCNJ  
    %   The Zernike functions are an orthogonal basis on the unit circle. != u S  
    %   They are used in disciplines such as astronomy, optics, and EQ2HQz ]  
    %   optometry to describe functions on a circular domain. Xf*}V+&WN  
    % T74."Lo#  
    %   The following table lists the first 15 Zernike functions. cPg$*,]  
    % M<cm]  
    %       n    m    Zernike function           Normalization 0JX/@LNg0  
    %       -------------------------------------------------- Ujfs!ikh&F  
    %       0    0    1                                 1 C:{&cIFrPe  
    %       1    1    r * cos(theta)                    2 z[*Y%o8-r  
    %       1   -1    r * sin(theta)                    2 aKk0kC   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) W kSv@Y,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _[8sL^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) U_1N*XK6$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) apd"p{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) c%x.cbu>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) a 8.Xy])!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) L0>w|LpRc  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) S<nbNSu6+  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~)%DiGW&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;%Rp=&J  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <hzuPi@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) T8\%+3e.  
    %       -------------------------------------------------- #u$ Z/,  
    % n%I9l]  
    %   Example 1: uoe>T:  
    % (5&l<u"K~  
    %       % Display the Zernike function Z(n=5,m=1) -`d(>ok  
    %       x = -1:0.01:1; sZYTpZgW4L  
    %       [X,Y] = meshgrid(x,x); LAPC L&Z  
    %       [theta,r] = cart2pol(X,Y); <G#z;]N  
    %       idx = r<=1; hsHtLH+@  
    %       z = nan(size(X)); =*Y=u6?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); XaR(~2  
    %       figure {p M3f  
    %       pcolor(x,x,z), shading interp 5 @61=Au  
    %       axis square, colorbar IXt cHAgX  
    %       title('Zernike function Z_5^1(r,\theta)') R4Si{J*O  
    % ^9xsbv B0  
    %   Example 2: $-;x8O]u  
    % iWMgU:T  
    %       % Display the first 10 Zernike functions u}BN)%`B  
    %       x = -1:0.01:1; [Se0+\,&  
    %       [X,Y] = meshgrid(x,x); uc-Go 6W  
    %       [theta,r] = cart2pol(X,Y); C;.+ kE  
    %       idx = r<=1; <nE|Y@S  
    %       z = nan(size(X)); C! J6"j  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Dd$CN&Ca  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 9Qhk~^ngg  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X^ZUm  
    %       y = zernfun(n,m,r(idx),theta(idx)); qr[+^*Ha  
    %       figure('Units','normalized') p:gM?2p1  
    %       for k = 1:10 8@'Q=".J  
    %           z(idx) = y(:,k); "f3KE=cUm  
    %           subplot(4,7,Nplot(k)) ZeP3 Yjr3  
    %           pcolor(x,x,z), shading interp DsH`I %w{  
    %           set(gca,'XTick',[],'YTick',[]) 3+| {O  
    %           axis square {;j@-=pV  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +)7Yqh#$  
    %       end o= N_0.  
    % I6,sN9` K  
    %   See also ZERNPOL, ZERNFUN2. V;SXa|,  
    d*TpHLm  
    RXU#.=xvy  
    %   Paul Fricker 11/13/2006 20p/p~<  
    ?{M!syD<  
    k7ODQ(*v  
    JdW:%,sv  
    F Wzf8*^  
    % Check and prepare the inputs: l\Or.I7n  
    % ----------------------------- Al(u|LbQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9XPQ1LSx  
        error('zernfun:NMvectors','N and M must be vectors.') %*wOJx  
    end KV$J*B Y  
    IfGQeynj  
    W9ewj:4\0  
    if length(n)~=length(m) niIjatT  
        error('zernfun:NMlength','N and M must be the same length.') Z/@%MEU[zl  
    end 4$<-3IP,  
    CF k^(V"  
    wc5OK0|  
    n = n(:); )wwQv2E  
    m = m(:); * 5Y.9g3)Q  
    if any(mod(n-m,2)) =w&<LJPJ  
        error('zernfun:NMmultiplesof2', ... 1@Zjv>jy[  
              'All N and M must differ by multiples of 2 (including 0).') 'of5v6:8  
    end &]2z)&a  
    32*FISH^  
    [ZP8l'?  
    if any(m>n) &JpFt^IHi  
        error('zernfun:MlessthanN', ... t"@: a Y"  
              'Each M must be less than or equal to its corresponding N.') ~CB6+t>  
    end ToHCS/J59  
    ,~_)Cf#CB  
    t $+46**  
    if any( r>1 | r<0 ) K$..#]\TM  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') buhn~ c  
    end ~4~-^ t  
    w*Gv#B9G  
    7gV"pa  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NgnHo\)  
        error('zernfun:RTHvector','R and THETA must be vectors.') r4~Bn7j2  
    end [[PUK{P0  
    wxg`[c$:  
    *eO@<j?  
    r = r(:); kxg]sr"  
    theta = theta(:); g& *pk5V>  
    length_r = length(r); L/w9dk*uv  
    if length_r~=length(theta) Upr:sB  
        error('zernfun:RTHlength', ... cmIAWFj-)e  
              'The number of R- and THETA-values must be equal.') I,r 3.2u  
    end {q1&4U~'>O  
    n NI V(  
    OKp(A  
    % Check normalization: b-{\manH  
    % -------------------- 'wAO Y  
    if nargin==5 && ischar(nflag)  S< <xlW  
        isnorm = strcmpi(nflag,'norm'); gnoV>ON0  
        if ~isnorm %3i/PIN  
            error('zernfun:normalization','Unrecognized normalization flag.') _gY so]S^B  
        end &DFe+y~PR  
    else ?'K}bmdt}.  
        isnorm = false; k})Ag7c  
    end QY2!.a^q  
    0:**uion  
    ?r QMOJR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^)b*"o  
    % Compute the Zernike Polynomials p1HU2APFP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ? kew[oZ  
    }}?L'Vby  
    -uiZp !  
    % Determine the required powers of r: aI|<t^X  
    % ----------------------------------- }(-R`.e;  
    m_abs = abs(m); xyx.1o e!  
    rpowers = []; MjG=6.J|`  
    for j = 1:length(n) J[ UL f7:  
        rpowers = [rpowers m_abs(j):2:n(j)]; ,{7wvXP  
    end :x97^.eW~  
    rpowers = unique(rpowers); 8^zI  
    i6r%;ueLb  
    |Gjd  
    % Pre-compute the values of r raised to the required powers, A0M)*9 f  
    % and compile them in a matrix: 3skq%;%Wsk  
    % ----------------------------- ;tI=xNre`1  
    if rpowers(1)==0 {t[j>_MYw  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O!sZMGF$p  
        rpowern = cat(2,rpowern{:}); _{,e-_hYM  
        rpowern = [ones(length_r,1) rpowern]; Tn/ 3`j {  
    else 4D[W;4/p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); r,i^-jv;  
        rpowern = cat(2,rpowern{:}); E'$r#k:o  
    end -<}_K,Ky`  
    Iq_cs '  
    p[&'*"o!/  
    % Compute the values of the polynomials: #:z.Br`  
    % -------------------------------------- E/LR(d_  
    y = zeros(length_r,length(n)); Gw3|"14  
    for j = 1:length(n) @6ZQkX/  
        s = 0:(n(j)-m_abs(j))/2; %\[LM$f{z  
        pows = n(j):-2:m_abs(j); npz*4\4  
        for k = length(s):-1:1 DI**fywu[3  
            p = (1-2*mod(s(k),2))* ... Yv9(8  
                       prod(2:(n(j)-s(k)))/              ... bR49(K$~  
                       prod(2:s(k))/                     ... R#Id"O  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 'HkV_d[li  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); T\b e(@r  
            idx = (pows(k)==rpowers); ]gkI:scPA  
            y(:,j) = y(:,j) + p*rpowern(:,idx); fT/;TK>z>  
        end O~-#>a  
         >va#PFHA  
        if isnorm WU{G_Fqaz  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Gs.id^Sf  
        end >&e|ins^N  
    end J^ryUO o}b  
    % END: Compute the Zernike Polynomials d~O\zLQ;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z|uUE   
    {?l#*XH;  
    ,#UaWq@7  
    % Compute the Zernike functions: 28LjQ!  
    % ------------------------------ ~DhYiOSo  
    idx_pos = m>0;  MI!C%  
    idx_neg = m<0; [$]vi`c2  
    br>"96A1l  
    tH2y:o 72  
    z = y; 6N:fq  
    if any(idx_pos) 3F[z]B  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Bh"o{-$p8`  
    end %gJf&A  
    if any(idx_neg) zy8W8h(?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -2w\8]u  
    end STL_#|[RM  
    b(I-0<  
    c@~\ FUr  
    % EOF zernfun I/<aY*R4  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ;rXkU9  
    E w#UlA:"v  
    DDE还是手动输入的呢? ySAkj-< /P  
    > Dy<@e  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)