切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9166阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E\iK_'#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, d9{lj(2P  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? f&-`+V}U  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? #Xg;E3BM  
    b(K"CL\p  
    p6JTNx D  
    yi$CkG}  
    Bii'^^I;?  
    function z = zernfun(n,m,r,theta,nflag) [-(^>Y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. LnR>!0:c  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N & SXw=;B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the M=,pn+}y>  
    %   unit circle.  N is a vector of positive integers (including 0), and k*1Lr\1  
    %   M is a vector with the same number of elements as N.  Each element z5@XFaQ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) rWht},-|1  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9#DXA}  
    %   and THETA is a vector of angles.  R and THETA must have the same Sca"LaW1  
    %   length.  The output Z is a matrix with one column for every (N,M) Nd0tR3gi7  
    %   pair, and one row for every (R,THETA) pair. Tm" H9  
    %  ~,lt^@a  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q<sqlh!h  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V%-hP~nyBx  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral fe\lSGmf  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Us`=^\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized F5?S8=i  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 93*csO?Db  
    % J3yK^@&&  
    %   The Zernike functions are an orthogonal basis on the unit circle. Y"FV#<9@7E  
    %   They are used in disciplines such as astronomy, optics, and eo+<@83  
    %   optometry to describe functions on a circular domain. -XYvjW,|  
    % )+ <w>pc  
    %   The following table lists the first 15 Zernike functions. 7|}4UXr7y  
    % #*h\U]=VS  
    %       n    m    Zernike function           Normalization '!m6^*m|c  
    %       -------------------------------------------------- GDLw_usV  
    %       0    0    1                                 1 SVU>q:ab  
    %       1    1    r * cos(theta)                    2 <8WFaP3,  
    %       1   -1    r * sin(theta)                    2 UytMnJ88  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7I3_$uF  
    %       2    0    (2*r^2 - 1)                    sqrt(3) oc1BOW z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) dN2JOyS  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :^7w  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) sVyV|!K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) fRS;6Jc  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0? {ADQz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bZ* = fdh  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b 3x|Dq.  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +O/b[O'0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V 20h\(\\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) W )FxN,  
    %       -------------------------------------------------- sK2N3 B&6  
    % wR%Ta-  
    %   Example 1: um,f!ho-U  
    % cC~RW71  
    %       % Display the Zernike function Z(n=5,m=1) B4.: 9Od3  
    %       x = -1:0.01:1; J&8KIOz14Z  
    %       [X,Y] = meshgrid(x,x); wOAR NrPx2  
    %       [theta,r] = cart2pol(X,Y); m. pm,  
    %       idx = r<=1; a=2.Y?  
    %       z = nan(size(X)); Mj@2=c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =|oi0  
    %       figure C|ZPnm>f30  
    %       pcolor(x,x,z), shading interp $a_y-lY  
    %       axis square, colorbar !!C/($  
    %       title('Zernike function Z_5^1(r,\theta)') Z- feMM  
    % [=K lDfU=  
    %   Example 2: &M13F>!  
    % 6H|1IrG  
    %       % Display the first 10 Zernike functions cx[^D,usf~  
    %       x = -1:0.01:1; ^_]ZZin  
    %       [X,Y] = meshgrid(x,x); (d_z\U7l  
    %       [theta,r] = cart2pol(X,Y); 8?Zhh.  
    %       idx = r<=1; RHUZ:r  
    %       z = nan(size(X));  qb? <u  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .!3e$mhV  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6?a`'&  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; hl1IG !  
    %       y = zernfun(n,m,r(idx),theta(idx)); GRcPzneiz  
    %       figure('Units','normalized') a{`hAI${  
    %       for k = 1:10 ~nA k-toJ  
    %           z(idx) = y(:,k); |.k'?!  
    %           subplot(4,7,Nplot(k)) .\ Ijq!  
    %           pcolor(x,x,z), shading interp OjGI !  
    %           set(gca,'XTick',[],'YTick',[]) -Q20af-  
    %           axis square G^.N$wcv  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RqA>"[L  
    %       end $cSUB  
    % ,iV%{*p]  
    %   See also ZERNPOL, ZERNFUN2. ?~o`mg  
    yXU.PSG*  
    hhU_kI  
    %   Paul Fricker 11/13/2006 3-/|G-4k7  
    x*1wsA  
    L;3%8F\-.  
    fl-J:`zyyZ  
    JX&U?Z  
    % Check and prepare the inputs: 9L>?N:%5  
    % ----------------------------- WZ'Z"'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7DAP_C  
        error('zernfun:NMvectors','N and M must be vectors.') BA h'H&;V  
    end YYQvt  
    +(*HDa|  
    =+iY<~8  
    if length(n)~=length(m) t 'eaR-  
        error('zernfun:NMlength','N and M must be the same length.') cQEUHhRg!  
    end B<d=;V  
    AlQhKL}|s  
    %Y&48''"  
    n = n(:); 0x<ASfka  
    m = m(:); {T8;-H0H  
    if any(mod(n-m,2)) I# tlaz#  
        error('zernfun:NMmultiplesof2', ... z|>TkCW6  
              'All N and M must differ by multiples of 2 (including 0).') "W(D0oy  
    end h`6 (Oo|  
    ZVXPp -M  
    d27q,2f!  
    if any(m>n) <H^jbK  
        error('zernfun:MlessthanN', ... v6 5C j2ec  
              'Each M must be less than or equal to its corresponding N.') s,Gl{  
    end AMyg>n!  
    *q6XK_  
    -m^- p  
    if any( r>1 | r<0 ) <1*kXTN(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') E^)FnXe5  
    end vbmt0df  
    `Abd=1nH  
    ,SIS3A>s  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "}3sL#|z  
        error('zernfun:RTHvector','R and THETA must be vectors.') k7U.]#5V  
    end IP`lx  
    <N)!s&D  
    Z=&|__ +d  
    r = r(:); ^os_j39N9  
    theta = theta(:); as@8L|i*  
    length_r = length(r); 1WtE] D  
    if length_r~=length(theta) @V 'HX  
        error('zernfun:RTHlength', ... %2:UsI  
              'The number of R- and THETA-values must be equal.') +QN4hJK  
    end 0BXr[%{`  
    cq[9#@ 4=  
    ! t!4CY  
    % Check normalization: Ovx *  
    % -------------------- JL,Y9G*]s  
    if nargin==5 && ischar(nflag) S})f`X9_}  
        isnorm = strcmpi(nflag,'norm'); 6)1PDlB  
        if ~isnorm }F]Z1('  
            error('zernfun:normalization','Unrecognized normalization flag.') U$5x#{AFp  
        end fnX[R2KZ  
    else IT NFmD  
        isnorm = false; x{;{fMN1  
    end 7I ~O| Mw  
    eQi^d/yi  
    }-tJ.3Zw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ku,{NY f^Y  
    % Compute the Zernike Polynomials V< F &\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /%cDX:7X  
    5ih>x3S1/  
    K#k/t"r  
    % Determine the required powers of r: f:M^q ;  
    % ----------------------------------- JLm3qIC  
    m_abs = abs(m); \HB fM&  
    rpowers = []; :Fhk$?/r  
    for j = 1:length(n) ^1){ @(  
        rpowers = [rpowers m_abs(j):2:n(j)]; +Kgl/Wg%  
    end Y%/RGYKh  
    rpowers = unique(rpowers); Un8' P8C  
    r]Hrz'C`  
    Tbm ~@k(C  
    % Pre-compute the values of r raised to the required powers, [C EV&B  
    % and compile them in a matrix: .QP`Qn6(P  
    % ----------------------------- =+_nVO*  
    if rpowers(1)==0 /}1|'?P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B!mHO*g  
        rpowern = cat(2,rpowern{:}); j)/Vtf  
        rpowern = [ones(length_r,1) rpowern]; pmP~1=3  
    else V(Pw|u" e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !%$[p'  
        rpowern = cat(2,rpowern{:}); Y*@7/2,  
    end sq=EL+=j  
     B=*0  
    CE M4E  
    % Compute the values of the polynomials: A o* IshVh  
    % -------------------------------------- [NE!  
    y = zeros(length_r,length(n)); S$SCW<LuN  
    for j = 1:length(n) rL\}>VC)  
        s = 0:(n(j)-m_abs(j))/2; @Nb/n  
        pows = n(j):-2:m_abs(j); hRXnig{;3  
        for k = length(s):-1:1 J t.<Z&  
            p = (1-2*mod(s(k),2))* ... 7[=G;2<  
                       prod(2:(n(j)-s(k)))/              ... ZN H-0mk  
                       prod(2:s(k))/                     ... ^;/~$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !Fs$W  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5@l5exuG*m  
            idx = (pows(k)==rpowers); *i*\ dl  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~hq\XQX  
        end >&HW6 c  
         F~=kMQO  
        if isnorm W'9{2h6u(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }o]}R#|  
        end &wU"6E  
    end  #NyO'  
    % END: Compute the Zernike Polynomials "3jTU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kj2qX9 Ms  
    KRGj6g+  
    rbOJ;CK  
    % Compute the Zernike functions: 4w|t|?  
    % ------------------------------ W2h*t"5W  
    idx_pos = m>0; fahQ^#&d`  
    idx_neg = m<0; zATOFV  
    |}^u<S8X  
    YCP D+  
    z = y; F ]X<q uuL  
    if any(idx_pos) [3=Y 9P:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i<m) s$u  
    end q;R&valn  
    if any(idx_neg) b`%u}^B {  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RCa1S^.  
    end 6{d?3Jk  
    +uF}mZ S^  
    5f_x.~ymA  
    % EOF zernfun _ LgP  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  f;+.j/ +  
    @az<D7j2  
    DDE还是手动输入的呢? SY.koW  
    ^K8XY@{&  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)