切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9582阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (G> su  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, dh`s^D6Q>  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,WWd%DF)  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AVQcD`V3B  
    a%Q`R;W  
    S.`y%t.GP  
    "'[M~Js  
    6"G(Iq'2t3  
    function z = zernfun(n,m,r,theta,nflag) "qq$i35x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3R< r[3WP  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N CmBP C jh  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @`KbzN_h/  
    %   unit circle.  N is a vector of positive integers (including 0), and o4p5`jOG@  
    %   M is a vector with the same number of elements as N.  Each element [Ix6ArY  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) HD KF>S_S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Jn{)CZ  
    %   and THETA is a vector of angles.  R and THETA must have the same 9ia&/BT7"z  
    %   length.  The output Z is a matrix with one column for every (N,M) -Ct+W;2  
    %   pair, and one row for every (R,THETA) pair. 4ct-K)Ris  
    % .\oW@2,RA9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <~uzHg%Y  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?MFC(Wsh  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \m|5Aqs  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pP.`+vPi  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]~]TZb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mh"PAp  
    % #9TL5-1y  
    %   The Zernike functions are an orthogonal basis on the unit circle. (nLzWvN  
    %   They are used in disciplines such as astronomy, optics, and Fxa{ 9'99  
    %   optometry to describe functions on a circular domain. RjVU m+<  
    % }Y7P2W+4?  
    %   The following table lists the first 15 Zernike functions. E'{:HX  
    % {D8opepO)  
    %       n    m    Zernike function           Normalization ~s&r.6 DW  
    %       -------------------------------------------------- \"ogQnmz  
    %       0    0    1                                 1 %R4 \[e  
    %       1    1    r * cos(theta)                    2 !QVhP+l'H  
    %       1   -1    r * sin(theta)                    2 VE]TT><  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !q$VnqFk  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Caj H;K\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2gK]w$H7!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) SN"Y@y)=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) W>!:K^8]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) !)oQ9,N  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) rEp\ld  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) VOj7Tz9UD  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Yz2N(g[  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) a:*N0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wq.'8Y~BE  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^(  
    %       -------------------------------------------------- ? ;Sg,.J  
    % On O_7'4 t  
    %   Example 1: +vJ}'uR3P  
    % &zgliT!If  
    %       % Display the Zernike function Z(n=5,m=1) L %acsb}  
    %       x = -1:0.01:1; 91R7Rrne  
    %       [X,Y] = meshgrid(x,x); , SUx!o  
    %       [theta,r] = cart2pol(X,Y); S@pdCH, n  
    %       idx = r<=1; #@YKNS[  
    %       z = nan(size(X)); KJ/Gv#Kj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &^&0,g?To  
    %       figure e%:vLE 9  
    %       pcolor(x,x,z), shading interp dCn9]cj/  
    %       axis square, colorbar U&(gNuR>J  
    %       title('Zernike function Z_5^1(r,\theta)') vO?sHh  
    % hy#nK:B  
    %   Example 2: IIMf\JdM  
    % @P0rNO %y  
    %       % Display the first 10 Zernike functions SD~4CtlfI  
    %       x = -1:0.01:1; i,~(_|-r  
    %       [X,Y] = meshgrid(x,x); b"o\-iUioe  
    %       [theta,r] = cart2pol(X,Y); uUp>N^mmVH  
    %       idx = r<=1; VXk[p  
    %       z = nan(size(X)); 3bGU;2~}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]4c*Nh%8  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H;a) `R3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; jp_)NC/~g  
    %       y = zernfun(n,m,r(idx),theta(idx)); B:i$  
    %       figure('Units','normalized') |4BD  
    %       for k = 1:10 ShtV2}s|  
    %           z(idx) = y(:,k); FDF DB  
    %           subplot(4,7,Nplot(k)) \COoU("  
    %           pcolor(x,x,z), shading interp f[NxqNn  
    %           set(gca,'XTick',[],'YTick',[]) "<egm^Yq  
    %           axis square 4j+M<g  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Qg1kF^=  
    %       end V`/c#y||  
    % ,,j >2Ts  
    %   See also ZERNPOL, ZERNFUN2. $5ea[n c  
    V?T&>s  
    3`3my=   
    %   Paul Fricker 11/13/2006 Su@V5yz  
    fi'zk  
    to_dNJbv  
    lGT[6S\as  
    U7zd7 O  
    % Check and prepare the inputs: JC$_Pg!  
    % ----------------------------- H_8PK$c;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b~ig$!N]  
        error('zernfun:NMvectors','N and M must be vectors.') wE9z@\z]  
    end RK&RMN8@  
    V@G|2ZI  
    ;)f,A)(Z  
    if length(n)~=length(m) B;iJ$gt]  
        error('zernfun:NMlength','N and M must be the same length.') P"Q6wdm  
    end F6DVq8f9  
    @GweNo`p7  
    ze8MFz'm  
    n = n(:); |P9MhfN  
    m = m(:); tG"EbWi  
    if any(mod(n-m,2)) ER!s  
        error('zernfun:NMmultiplesof2', ... ?` ebi|6  
              'All N and M must differ by multiples of 2 (including 0).') [ p0_I7  
    end E_D@ 7a  
    xOxyz6B\  
    m=iKu(2xRq  
    if any(m>n) *g'%5i1ed  
        error('zernfun:MlessthanN', ... ki `ur%h  
              'Each M must be less than or equal to its corresponding N.') Sng3B  
    end S}/ZHo  
    N#Nc{WU 'B  
    5@bmm]  
    if any( r>1 | r<0 ) 0LHge7482  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') SrdCLT8  
    end `ST;";7!  
    9-=kVmT&g  
    ]xV2= !J  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zU|'IW&  
        error('zernfun:RTHvector','R and THETA must be vectors.') vHymSU/J  
    end rUB67ok*  
     GXTjK!  
    caTKi8  
    r = r(:); `9f7H  
    theta = theta(:); Hs.5@l  
    length_r = length(r); <HW2W"Go\  
    if length_r~=length(theta) L_zB/(h  
        error('zernfun:RTHlength', ... We"\nOP  
              'The number of R- and THETA-values must be equal.') VRv.H8^{  
    end *ES"^N/88  
    i~DLo3  
    ,{RWs^W2  
    % Check normalization: TPKm>5g  
    % -------------------- t .XuH#  
    if nargin==5 && ischar(nflag) ,UT :wpc^i  
        isnorm = strcmpi(nflag,'norm'); >hotkMX `3  
        if ~isnorm cbx( L8  
            error('zernfun:normalization','Unrecognized normalization flag.') b:*( f#"q  
        end b~rlh=(o#_  
    else Zr!CT5C5  
        isnorm = false; > lK:~~1  
    end d^aLue>g;+  
    LtDGu})1  
    .uo:fxbd2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Eds{-x|10  
    % Compute the Zernike Polynomials kqS_2[=]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2EX`@_2  
    GmN~e*x>p  
    wcDb| H&  
    % Determine the required powers of r: w}(Ht_6q{  
    % ----------------------------------- G"p rq&  
    m_abs = abs(m); 3q(]Dg;v  
    rpowers = []; qzE -y-9@  
    for j = 1:length(n) yuB\Z/  
        rpowers = [rpowers m_abs(j):2:n(j)]; YksJ$yH^  
    end 0yKPYA*j  
    rpowers = unique(rpowers); E K^["_*A  
    9D& 22hL4  
    c6F8z75U  
    % Pre-compute the values of r raised to the required powers, v<S?"# ]F=  
    % and compile them in a matrix: MB(l*ju0  
    % -----------------------------  gm@%[  
    if rpowers(1)==0 F='rGQK!1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JsQmn<Yt  
        rpowern = cat(2,rpowern{:}); |Z{ DU(?[b  
        rpowern = [ones(length_r,1) rpowern]; @arMg2"o  
    else n@| &jh  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v>p~y u+G  
        rpowern = cat(2,rpowern{:}); k/#321Z  
    end pS<j>y  
    ]`n6H[6O  
    'uV;)~  
    % Compute the values of the polynomials: VTJ,;p_UH  
    % -------------------------------------- f5|Ew&1EP  
    y = zeros(length_r,length(n)); zE4TdT1y|  
    for j = 1:length(n) pr"~W8  
        s = 0:(n(j)-m_abs(j))/2; @D&}ZV=J  
        pows = n(j):-2:m_abs(j); iN@+,]Yjl  
        for k = length(s):-1:1 w}QU;rl8q  
            p = (1-2*mod(s(k),2))* ... f{u3RCfX~2  
                       prod(2:(n(j)-s(k)))/              ... C XiSin  
                       prod(2:s(k))/                     ... /M8&`  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yBwCFn.uP-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }Dc?Emb  
            idx = (pows(k)==rpowers); XnI)s^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); g6T /k7a  
        end n42XqR  
         hNJubTSE+)  
        if isnorm _0]{kB.$_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Sg}]5Mn`  
        end B<uUf)t  
    end xp"5L8:C  
    % END: Compute the Zernike Polynomials k'$UA$2d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9-?[%8  
    ZAcW@xfb  
    )\r;|DN  
    % Compute the Zernike functions: v %fRq!~  
    % ------------------------------ 7|eD}=jy  
    idx_pos = m>0; vT>ki0P_;  
    idx_neg = m<0; 6H_7M(f  
    P~"`Og+  
    *~%# =o  
    z = y; u|a+ :r)*4  
    if any(idx_pos) G_UxR9Qo  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); h q& 2o  
    end w- .=u3  
    if any(idx_neg) rG|*74Q]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); nXuoRZ  
    end ]ZOzqh_0C  
    w %sHA  
    >B9|;,a  
    % EOF zernfun - &/n[EE  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  A d0dg2Gw  
    / ;U  
    DDE还是手动输入的呢? cC.=,n  
    mr+J#  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)