下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +8ib928E
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, bCP2_h3*
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @ *Jbp
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .feB
VRg
zU[o_[+7^
[&~x5l
8\C
Mm,\e6#*
a
7v^o`
function z = zernfun(n,m,r,theta,nflag) *# <%04f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. KiG19R$
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \x$`/
% and angular frequency M, evaluated at positions (R,THETA) on the ?`OFn F,K
% unit circle. N is a vector of positive integers (including 0), and w!*ZS~v/r
% M is a vector with the same number of elements as N. Each element \<9aS Y'U
% k of M must be a positive integer, with possible values M(k) = -N(k) vg?(0Gasm*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, aVHID{Gf Z
% and THETA is a vector of angles. R and THETA must have the same U}HSL5v
% length. The output Z is a matrix with one column for every (N,M) 7`~0j6FY
% pair, and one row for every (R,THETA) pair. u0)O Fz
% ]Ls T
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (8~mf$ zx,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?v,c)
% with delta(m,0) the Kronecker delta, is chosen so that the integral A]Hz?i
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^W}|1.uZ
% and theta=0 to theta=2*pi) is unity. For the non-normalized <9H3d7%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s8:epcL`A
% cl#XiyK>
% The Zernike functions are an orthogonal basis on the unit circle. Lm!]m\LRZD
% They are used in disciplines such as astronomy, optics, and _Cf:\Xs
m
% optometry to describe functions on a circular domain. z( ^?xv
% >~7XBb08
% The following table lists the first 15 Zernike functions. [x?9<#T
% g#fn( A
% n m Zernike function Normalization 'H`:c+KDG`
% -------------------------------------------------- )Dms9:
% 0 0 1 1 ]?}pJ28
% 1 1 r * cos(theta) 2 G \a`F'Oo
% 1 -1 r * sin(theta) 2 VxOWv8}|
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^Rl?)_)1HE
% 2 0 (2*r^2 - 1) sqrt(3) GLub5GrxR
% 2 2 r^2 * sin(2*theta) sqrt(6) zGme}z;1@
% 3 -3 r^3 * cos(3*theta) sqrt(8) &B:L9^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _nzTd\L88
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) l'Li!u
% 3 3 r^3 * sin(3*theta) sqrt(8) 3bd`q
$
% 4 -4 r^4 * cos(4*theta) sqrt(10) Mx0~^l
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l`6.(6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~f[;(?39xZ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3J8>r|u;1'
% 4 4 r^4 * sin(4*theta) sqrt(10) b'FTyi
% -------------------------------------------------- cJ?,\@uuP
% 82)=#ye_P
% Example 1: (VkO[5j
% H#X*OJ
% % Display the Zernike function Z(n=5,m=1) {]|<|vc;GI
% x = -1:0.01:1; a`9pHH:7Q
% [X,Y] = meshgrid(x,x); ~c+=$SL-=
% [theta,r] = cart2pol(X,Y); 2_bEo
% idx = r<=1; @ZYJY
% z = nan(size(X)); #CJET
% z(idx) = zernfun(5,1,r(idx),theta(idx)); S,|ZCl>+
% figure G{|"WaKW
% pcolor(x,x,z), shading interp %H_-`A`
% axis square, colorbar 8)s0$64Ra
% title('Zernike function Z_5^1(r,\theta)') zSMM?g^T
% }"RVUYU
% Example 2: c|'$3dB*
% 37IHn6r\
% % Display the first 10 Zernike functions t0xE
% x = -1:0.01:1; J pj[.Sq
% [X,Y] = meshgrid(x,x); :%28*fl
% [theta,r] = cart2pol(X,Y); Vnb@5W2\
% idx = r<=1; ze
LIOw
% z = nan(size(X)); VqD_FS;E
% n = [0 1 1 2 2 2 3 3 3 3]; lHliMBSc
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 7c%dSs6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Dbx zqd
% y = zernfun(n,m,r(idx),theta(idx)); B4zuWCE@
% figure('Units','normalized') \Lb wfd=
% for k = 1:10 rHybP6C<
% z(idx) = y(:,k); &eO.h%@
% subplot(4,7,Nplot(k)) j)nE!GKD(
% pcolor(x,x,z), shading interp KqBiF]Q
% set(gca,'XTick',[],'YTick',[]) } nIYNeP?D
% axis square aWvC-vZk
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @^#
9N!Fj]
% end Xmb##:
% >pol'=
% See also ZERNPOL, ZERNFUN2. ?J+*i
d
+?Q HSIQo
xrlyph5mE
% Paul Fricker 11/13/2006 qauvwAMuX
<Nloh+n=
SN}3
1n*"C!q
5,O:"3>c
% Check and prepare the inputs: c8_,S[W
% ----------------------------- ht+wi5b
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) BHkicb ?
error('zernfun:NMvectors','N and M must be vectors.') u#V;
end ;_ 1Rk&o!
uTl"4;&j
6%o@!|=I
if length(n)~=length(m) $j!:ET'V
error('zernfun:NMlength','N and M must be the same length.') LR4W
end ,WoB)V.{(
l;h -`( 11
wXYT(R
n = n(:); R(}!gv}s
m = m(:); wk=s3^
if any(mod(n-m,2)) DU5rB\!.~
error('zernfun:NMmultiplesof2', ... ;?-{Uk
'All N and M must differ by multiples of 2 (including 0).') p lzwk>b_
end t`Xx\
UpiZd/K
v9gaRqi8
if any(m>n) tPw7zFy6r
error('zernfun:MlessthanN', ... h-m0Ro?6
'Each M must be less than or equal to its corresponding N.') y#O/Xw
end M%!j\}2A
2 0A:,pMb
{=Py|N\\t
if any( r>1 | r<0 ) 2@&"*1(Xu
error('zernfun:Rlessthan1','All R must be between 0 and 1.') D [v22 5
end !l9#a{#6l
I'<sJs*p
xKT;1(Mk
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) O=u.J8S2
error('zernfun:RTHvector','R and THETA must be vectors.') )%:
W;H
end Z]OX6G
#m'+1 s L
)1)&fN41i#
r = r(:); MGo`j:0
theta = theta(:); / pGx!
length_r = length(r); 7=A @P
if length_r~=length(theta) j{m{hVa
error('zernfun:RTHlength', ... LH~
t5
'The number of R- and THETA-values must be equal.') eW_EWVH
end e.|t12)L "
6fT^t!<i
Lf Y[Z4
% Check normalization: ,` $2
% -------------------- UwDoueXs
if nargin==5 && ischar(nflag) $BOIa
isnorm = strcmpi(nflag,'norm'); $K1)2WG
if ~isnorm n8&x=Z}Xs
error('zernfun:normalization','Unrecognized normalization flag.') >k2^A
end (Q|Y*yI
else s%N6^}N
isnorm = false; pTYV@5|
end ;s-fYS6(>{
A&Q!W)=
S.owVMQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r+MqjdXG
% Compute the Zernike Polynomials (j}edRUnB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d^|r#"o[
H|cxy?iJ
uF T5Z
% Determine the required powers of r: &([Gc+"5E.
% ----------------------------------- ("J_< p
m_abs = abs(m); DEenvS`,P
rpowers = []; SsIN@
for j = 1:length(n) qh wl
rpowers = [rpowers m_abs(j):2:n(j)]; ^coj ETOv
end 2-wgbC5
rpowers = unique(rpowers); &$pA,Gjin\
;BEX|wxn
< 'r<MA<
% Pre-compute the values of r raised to the required powers, jTok1k
% and compile them in a matrix: I#CS;Yh95
% ----------------------------- 95-%>?4
if rpowers(1)==0 xT8!X5;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xb^M33-y
rpowern = cat(2,rpowern{:}); GF*E+/
;
rpowern = [ones(length_r,1) rpowern]; OKNGV,{`
else X^.~f+d~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); MAG/7T5
rpowern = cat(2,rpowern{:}); 2!Pwg0%2
end 7FP
@ v ng
qo}u(pOj|
FHZQyO<|
% Compute the values of the polynomials: +hMF\@
% -------------------------------------- A:,V)
y = zeros(length_r,length(n)); k%({<