下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #mkr]K8A4
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵,
6{7O
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &g& &-=7)
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? cC}s5`
]NFDE-Jz]
LG<lZ9+y
YSa:"A
*?K`T^LS
function z = zernfun(n,m,r,theta,nflag) W^=89I4]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. $}KYpSV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4uftx1o
% and angular frequency M, evaluated at positions (R,THETA) on the t91CxZQ^s
% unit circle. N is a vector of positive integers (including 0), and `=KrV#/758
% M is a vector with the same number of elements as N. Each element v$tS2N2
% k of M must be a positive integer, with possible values M(k) = -N(k) HqF8:z?v
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, A+F-r_]}db
% and THETA is a vector of angles. R and THETA must have the same ~ml\|
% length. The output Z is a matrix with one column for every (N,M)
gA[M
% pair, and one row for every (R,THETA) pair. ]#:xl}'LS
% _-!6@^+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike
E,6E-9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), l&|{uk
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2~`dV_
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <=7)t.
% and theta=0 to theta=2*pi) is unity. For the non-normalized @H_LPn
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;XtDz
% rSJ}qRXwU
% The Zernike functions are an orthogonal basis on the unit circle. P)\f\yb
% They are used in disciplines such as astronomy, optics, and Xj@Kt|&`k
% optometry to describe functions on a circular domain. F
Qk;
% H~~(v52wD
% The following table lists the first 15 Zernike functions. [KE4wz+s{
% jU#%@d6!#
% n m Zernike function Normalization
;<][upn
% -------------------------------------------------- .N'UnKz
% 0 0 1 1 fZ376Z:S$
% 1 1 r * cos(theta) 2 <QkfvK]Q
% 1 -1 r * sin(theta) 2 [`b{eLCFX]
% 2 -2 r^2 * cos(2*theta) sqrt(6) C=b5[, UCB
% 2 0 (2*r^2 - 1) sqrt(3) Qdn:4yk
% 2 2 r^2 * sin(2*theta) sqrt(6) ?#[K&$}
% 3 -3 r^3 * cos(3*theta) sqrt(8) f7W=x6Z4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *7v PU:Q[
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Y$Ke{6 4
% 3 3 r^3 * sin(3*theta) sqrt(8) 0=5i\*5 p
% 4 -4 r^4 * cos(4*theta) sqrt(10) 'q-h
kN
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FD-)nv2:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) wS^-o
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nSC>x:jY5/
% 4 4 r^4 * sin(4*theta) sqrt(10) .iYg RW=T
% -------------------------------------------------- vJ'ho
% }rQ*!2Y?
% Example 1: 37[C^R!1c
% 0IdD
% % Display the Zernike function Z(n=5,m=1) WE"'3u^k
% x = -1:0.01:1; y5ExEXa
% [X,Y] = meshgrid(x,x); <f*0 XJ#
% [theta,r] = cart2pol(X,Y); jl@8pO$
% idx = r<=1; z? aDOh
% z = nan(size(X)); }* t~&l0
% z(idx) = zernfun(5,1,r(idx),theta(idx)); zKutx6=aj
% figure Ii8jY_
% pcolor(x,x,z), shading interp o MAK[$k;
% axis square, colorbar fI|1@e1
% title('Zernike function Z_5^1(r,\theta)') k$2Y)
% \[&]kPcDl
% Example 2: Ygl!fC
4b
% F)IP~BE-k
% % Display the first 10 Zernike functions 9e5UTJ
% x = -1:0.01:1; 3/e !7
% [X,Y] = meshgrid(x,x); YH>n{o;-
?
% [theta,r] = cart2pol(X,Y); <f6Oj`{f4
% idx = r<=1; cjW]Nw
% z = nan(size(X)); Pm_=
% n = [0 1 1 2 2 2 3 3 3 3]; WDZi
@9X_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; HHYcFoJwYN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Pla EI p
% y = zernfun(n,m,r(idx),theta(idx)); GND[f}
% figure('Units','normalized') @RP|?Xc{?
% for k = 1:10 dB5DJ:$W$
% z(idx) = y(:,k); T,fz/5w
% subplot(4,7,Nplot(k)) 'nno)kQ"
% pcolor(x,x,z), shading interp ^:j$p,0e*S
% set(gca,'XTick',[],'YTick',[]) GM/1ufZH
% axis square [ZbK)L+_
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) I}WJ0}R
% end +=_Pl7?
% ;D1IhDC
% See also ZERNPOL, ZERNFUN2. 8{YxUD
-{h[W bf
9PAp*`J@kr
% Paul Fricker 11/13/2006 UQ)}i7v
OOCeZ3yF(
\abl|;fj
A
M2M87{t
4=Ey\Px
% Check and prepare the inputs: >`:+d'Jv0
% ----------------------------- ||V:',#,W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7yp*I[1Qf>
error('zernfun:NMvectors','N and M must be vectors.') ^XM;D/Gp~
end TRZ^$<AG
IoA;q)
lu_Gr=#O
if length(n)~=length(m) U6Ak"
error('zernfun:NMlength','N and M must be the same length.') y#+o*(=fRE
end g8Z14'Ke
(=j!P*
3_$eQ`AAA
n = n(:); lI 1lP 1
m = m(:); P `"7m-
if any(mod(n-m,2)) 8; 8}Oq
error('zernfun:NMmultiplesof2', ... |BW,pT
'All N and M must differ by multiples of 2 (including 0).') 9K|lU:,
end *-_Npu6
&}O!l'
.KN]a"]
if any(m>n) )^TQedF
error('zernfun:MlessthanN', ... s/M~RB!w
'Each M must be less than or equal to its corresponding N.') ^v-'=1ub?
end TXcKuo=
YW<2:1A|
__j8jEV
if any( r>1 | r<0 ) ~-d.3A$u
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ao T 7sy7
end aB^G
_GqE'VX
M>@R=f
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U[l%oLra
error('zernfun:RTHvector','R and THETA must be vectors.') (, "E9.
end Oq6n.:8g"
&J$5+"/;X
"ux]kfoT
r = r(:); |@.<}/
theta = theta(:); $0T"YC%
length_r = length(r); &F_rg,q&_
if length_r~=length(theta) 7-I>53@
error('zernfun:RTHlength', ... I})t
'The number of R- and THETA-values must be equal.') ,rQ)TT
end z :v, Vu
v v/,Rgv
f)Q]{ cb6
% Check normalization: +E|ouFI
% -------------------- &Fjilx'k
if nargin==5 && ischar(nflag) /T)n5X
isnorm = strcmpi(nflag,'norm');
'*u;:[73
if ~isnorm ~+C?][T
error('zernfun:normalization','Unrecognized normalization flag.') V(LFH9.Mp
end MdZgS#`
else o'/C$E4W
isnorm = false; $3[\:+
end PMs_K"-K
uz3pc;0LPY
'-33iG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8Ql'(5|T
% Compute the Zernike Polynomials 4UjE*Aq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R2THL
_`i%9Ad.4
Fx5d@WNa>
% Determine the required powers of r: Cfo 8gX*
% ----------------------------------- %aBJ+V F
m_abs = abs(m); ggc?J<Dv
rpowers = [];
x9"4vp
for j = 1:length(n) ;+34g6
rpowers = [rpowers m_abs(j):2:n(j)]; _/~ ,a
end 9,f<Nb(\
rpowers = unique(rpowers); 'QojSq
Y{vwOs
Q4Fq=kTE
% Pre-compute the values of r raised to the required powers, 1] Q2qs
% and compile them in a matrix: Du:p!nO
% ----------------------------- 5}bZs` C
if rpowers(1)==0 ?%/u/*9rj
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ywynx<Wg
rpowern = cat(2,rpowern{:}); ~vSAnjeR
rpowern = [ones(length_r,1) rpowern]; V!77YFen %
else F] ?@X
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aq+IC@O
rpowern = cat(2,rpowern{:}); yISQYvSN
end E? eWv)//
D`:d'ow~KQ
h^+C)6(58n
% Compute the values of the polynomials: "lz[zFnO
% -------------------------------------- ``|RO[+2
y = zeros(length_r,length(n)); o.3YM.B#
for j = 1:length(n) S=H_9io
s = 0:(n(j)-m_abs(j))/2; 15KV}){
pows = n(j):-2:m_abs(j);
'nWs0iH.
for k = length(s):-1:1 'K`Rbhy
p = (1-2*mod(s(k),2))* ... *Ht*)l?
prod(2:(n(j)-s(k)))/ ... J4v0O="
prod(2:s(k))/ ... Th^(f@.w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... KU|BT.o8
prod(2:((n(j)+m_abs(j))/2-s(k))); Zfy~mv$
idx = (pows(k)==rpowers); MziZN^(
y(:,j) = y(:,j) + p*rpowern(:,idx); G/z\^Q
end y(nsyA
MuoctW
if isnorm 1%spzkE 3P
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F|?+>c1}
end &^7uv0M<y
end WVWS7N\
% END: Compute the Zernike Polynomials ihiuSF<NaQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xshArJ&A
}#OqU#
q|
'ZC}9=_g
% Compute the Zernike functions: b-BM"~N'
% ------------------------------ |ck
ZyDA
idx_pos = m>0; ,9Z2cgXwJ
idx_neg = m<0; q11QAx4p
yS)-&t!;
f `y"
a@
z = y; j!x<QNNX
if any(idx_pos) =@JS88+
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3WCqKXJ7
end R+{^@M&
if any(idx_neg) Zj1ZU[BEcL
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V~T`&
end -VWCD,c
22GnbA7O
df4sOqU
% EOF zernfun eu}Fd@GO