下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, \}j MC
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, h$cm:uks
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %@$UIO,(
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 3h:j.8Z
FpoHm%+
%!aU{E|@_
.sMs_ 5D
Z\&f"z?L
function z = zernfun(n,m,r,theta,nflag) >)><u4}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. h2l;xt
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N X{9^$/XsJ
% and angular frequency M, evaluated at positions (R,THETA) on the {#,<)wFV\
% unit circle. N is a vector of positive integers (including 0), and /{M<FVXK+|
% M is a vector with the same number of elements as N. Each element ! 'zd(kv<
% k of M must be a positive integer, with possible values M(k) = -N(k) c-Lz luWi
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?gH[la
% and THETA is a vector of angles. R and THETA must have the same hor7~u+
% length. The output Z is a matrix with one column for every (N,M) fFQ|dE;cF
% pair, and one row for every (R,THETA) pair. pYr"3BwG
% qJey&_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &L o TO+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `lf_wB+I
% with delta(m,0) the Kronecker delta, is chosen so that the integral kA:Y^2X'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, SzULy
>e
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1.hWgW DP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #-{<d%qk
% xtV+Le%
% The Zernike functions are an orthogonal basis on the unit circle. FX:`7c]:9
% They are used in disciplines such as astronomy, optics, and UwN Vvo
% optometry to describe functions on a circular domain. W4^L_p>Tm^
% i'tMpS3
% The following table lists the first 15 Zernike functions. k"wQ9=HP7
% [W[{
4 Xu
% n m Zernike function Normalization KK|w30\f
% -------------------------------------------------- sp K8^sh
% 0 0 1 1 Sp`l>BL
% 1 1 r * cos(theta) 2 {X{R]
% 1 -1 r * sin(theta) 2 s t'T._
% 2 -2 r^2 * cos(2*theta) sqrt(6) hmy%X`%j
% 2 0 (2*r^2 - 1) sqrt(3) $8EEtr,!
% 2 2 r^2 * sin(2*theta) sqrt(6) P.~UUS
% 3 -3 r^3 * cos(3*theta) sqrt(8)
-D^I;[j_
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) sXLW';Fz
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) '
jciX]g
% 3 3 r^3 * sin(3*theta) sqrt(8) _nGx[1G( 5
% 4 -4 r^4 * cos(4*theta) sqrt(10) F72#vS
j
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /:|vJ|dJ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Im]@#X
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8R~<$xz
% 4 4 r^4 * sin(4*theta) sqrt(10) XF`2*:7
% -------------------------------------------------- ,p2UshOmd
%
\;;M")$
% Example 1: 2+]5}'M
% !R{IEray
% % Display the Zernike function Z(n=5,m=1) DE13x*2
% x = -1:0.01:1; B|`?hw@g+
% [X,Y] = meshgrid(x,x); ns[/M~_r
% [theta,r] = cart2pol(X,Y); B-I4(w($
% idx = r<=1; n Ja!&G&
% z = nan(size(X)); 7?lz$.*Avp
% z(idx) = zernfun(5,1,r(idx),theta(idx)); S"bN9?;#u
% figure vu0Ql1
% pcolor(x,x,z), shading interp i4D(8;
% axis square, colorbar *CN *G"
% title('Zernike function Z_5^1(r,\theta)') 1(' wg!
% c[@_t.%)
% Example 2: "M%R{pGA7
% #*A'<Zm
% % Display the first 10 Zernike functions 79DNNj~
% x = -1:0.01:1; VZ]iep
% [X,Y] = meshgrid(x,x); Z[O
hZ 9
% [theta,r] = cart2pol(X,Y); HZrA}|:h
% idx = r<=1; F`=p/IAJK
% z = nan(size(X)); uYW4$6S3
% n = [0 1 1 2 2 2 3 3 3 3];
Omd;
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3Tr,waV
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ]2zM~
% y = zernfun(n,m,r(idx),theta(idx)); A;cA|`b
% figure('Units','normalized') }G4I9Py
% for k = 1:10 KGt:
% z(idx) = y(:,k); }i9:k kfq2
% subplot(4,7,Nplot(k)) N2:Hdu:
% pcolor(x,x,z), shading interp y_PA9#v7
% set(gca,'XTick',[],'YTick',[]) cXXZ'y>FP
% axis square G1|1Z5r
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?XKX&ws
% end ^[hAj>7_8$
% ^^q&VL
% See also ZERNPOL, ZERNFUN2. @ZEBtM%.O
'Oa3
6@
@&T' h}|:
% Paul Fricker 11/13/2006 wd:Yy
nDi^s{
zC50 @S3|
, ['}9:f9
hcVu`B n
% Check and prepare the inputs: 2V~E
<K-
% ----------------------------- fY]"_P
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) # epP~J_f
error('zernfun:NMvectors','N and M must be vectors.') fW= N
end he|Q(?
%/dOV[/
3ynkf77cn
if length(n)~=length(m) K6{wM
error('zernfun:NMlength','N and M must be the same length.') ?NBae\6r
end 6R :hs C$
%9YY \a {
XPhP1 ^>\
n = n(:); Jm!,=}oP'
m = m(:); Kebr>t8^
if any(mod(n-m,2)) Q{~g<G
error('zernfun:NMmultiplesof2', ... 9]Jv
>_W*
'All N and M must differ by multiples of 2 (including 0).') ?}`-?JB1
end ^%!{qAp}Z
8K4^05*S
l8~(bq1
if any(m>n) >/ _#+,
error('zernfun:MlessthanN', ... (iKJ~bJ
'Each M must be less than or equal to its corresponding N.') xLed];2G
end S(@kdL
|GMo"[
iM!Ya!
if any( r>1 | r<0 ) ")KqPD6k
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _DxHJl
end -k + jMH
hh4R
?22U0UF
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cr;:5D%_
error('zernfun:RTHvector','R and THETA must be vectors.') aEdA'>
end K/9Jx(I,qL
:]:)c8!6
x[mz`0
r = r(:); ;PaU"z+Je~
theta = theta(:); qu^g~"s
length_r = length(r); `h'+4
if length_r~=length(theta) RB4n>&Y
error('zernfun:RTHlength', ... ;6 @sC[
'The number of R- and THETA-values must be equal.') brp3xgQ`]
end he(K
S ,F[74K
z5gVP8*z5
% Check normalization: Uha.8
% -------------------- 7:B/?E
if nargin==5 && ischar(nflag) ~!ooIwNNz
isnorm = strcmpi(nflag,'norm'); YE@yts
if ~isnorm \k5"&]I3
error('zernfun:normalization','Unrecognized normalization flag.') A6[FH\f
end n*"r!&Dg
else dC,C[7\
isnorm = false; NCh-BinK@
end N!ihj:,
eL~xS: VT
W,EIBgR(R5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~AjPa}@ f
% Compute the Zernike Polynomials umns*U%T;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GXxI=,L8F
x^@oY5}cr
QM8Ic,QFvo
% Determine the required powers of r: c2NB@T9'v
% ----------------------------------- {C&Uq#V
m_abs = abs(m); lrZ]c:%k
rpowers = []; XB7*S*"!
for j = 1:length(n) hZfj$|<
rpowers = [rpowers m_abs(j):2:n(j)]; g"748LY>=p
end \dCGu~bT
rpowers = unique(rpowers); vyDxX
keC'/\e
{@CQ
(
% Pre-compute the values of r raised to the required powers, MrzD
ah9UG
% and compile them in a matrix: |kK5:\H
% ----------------------------- sJKr%2nVV
if rpowers(1)==0 "a].v 8l!
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tx7 zG.,
rpowern = cat(2,rpowern{:}); M?YNK]
rpowern = [ones(length_r,1) rpowern]; >%;i@"
else W:8MqVm34
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]=t}8H
rpowern = cat(2,rpowern{:}); ,r*Kxy
end 27 XM&ZrZ
lIS`_H}
3F]Dh^IR9
% Compute the values of the polynomials: 8!|vp7/
% -------------------------------------- IQU1 JVkZ
y = zeros(length_r,length(n)); .O"a: ^i
for j = 1:length(n) CIMI?
s = 0:(n(j)-m_abs(j))/2; ;&<N1
pows = n(j):-2:m_abs(j); W6T4Zsg
for k = length(s):-1:1 Jy/<
{7j
p = (1-2*mod(s(k),2))* ... x?o#}:S
prod(2:(n(j)-s(k)))/ ... iO?AY
prod(2:s(k))/ ... 7YD+zd:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o)XrC
prod(2:((n(j)+m_abs(j))/2-s(k))); nEu:& 4
idx = (pows(k)==rpowers); qK7:[\T|?T
y(:,j) = y(:,j) + p*rpowern(:,idx); %d];h
end - (WH+
('J@GTe@xj
if isnorm -_n Qn
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f$QkzWvr
end <&Xl b0
end _!1LV[x!s
% END: Compute the Zernike Polynomials 0F-{YQr>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,V,mz?d^9
?Fx~_GT
lXTE#,XVf
% Compute the Zernike functions: %B\x
%e;P
% ------------------------------ Qu[QcB{ro-
idx_pos = m>0; .F8[;+
idx_neg = m<0;
^Zz^h@+
B?i#m^S
KGM__Z O.
z = y; 0zNbux_
if any(idx_pos) 2|^@=.4\
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :.ZWYze
end ,B'=$PO%
if any(idx_neg) iH4LZ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H2BRId
end #dae^UjM
#?w07/~L
[TOo 9W
% EOF zernfun NH|I>vyN