切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9514阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, $*fMR,~t&  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, o&$A]ph8X  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? r* Ca}Z  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? F7#JLE=  
    :"/d|i`T  
    T9   
    <7jW _R@  
    (<C3Vts))  
    function z = zernfun(n,m,r,theta,nflag) I b5rqU\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9djk[ttA)  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N brUF6rQ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 9x =Y^',5  
    %   unit circle.  N is a vector of positive integers (including 0), and TOQP'/   
    %   M is a vector with the same number of elements as N.  Each element {bY%# m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) i=2N;sAl  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, FU4L6n  
    %   and THETA is a vector of angles.  R and THETA must have the same nAdf=D'P  
    %   length.  The output Z is a matrix with one column for every (N,M) b d!Y\OD  
    %   pair, and one row for every (R,THETA) pair. 7-fb.V9  
    % 8KzkB;=n  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike * r7rZFS  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L ~N460  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1bwOm hkS  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #o#H?Vo9b  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "3Y0`&:D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5`p.#  
    % GnJt0{  
    %   The Zernike functions are an orthogonal basis on the unit circle. 4BpZJ~(p  
    %   They are used in disciplines such as astronomy, optics, and AFwdJte9e  
    %   optometry to describe functions on a circular domain. `'7R,  
    % AH~E)S  
    %   The following table lists the first 15 Zernike functions. O?#7N[7  
    % ] Zh%DQ  
    %       n    m    Zernike function           Normalization SXP]%{@ R/  
    %       -------------------------------------------------- :gFx{*xN/9  
    %       0    0    1                                 1 X 0+vXz{~g  
    %       1    1    r * cos(theta)                    2 dG?*y  
    %       1   -1    r * sin(theta)                    2 \:LW(&[!  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) KHvYUTY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8zW2zkv2|#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) FGBbO\< /  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) H3-hcx54T  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~})e?q;b  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5*u+q2\F  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @-`*m+$U6  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0?|<I{z2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `C'H.g\>2Q  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) U- k`s[dv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +X 88;-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &s>Jb?_5Mx  
    %       -------------------------------------------------- nKj7.,>;:<  
    % 2&J)dtqz  
    %   Example 1: YKK*ER0  
    % -X6PRE5a2  
    %       % Display the Zernike function Z(n=5,m=1) ]JQULE)  
    %       x = -1:0.01:1; b4Ekqas  
    %       [X,Y] = meshgrid(x,x); BDQsP$'6QT  
    %       [theta,r] = cart2pol(X,Y); 4 s9LB  
    %       idx = r<=1; nQ3A~ ()  
    %       z = nan(size(X)); n|yO9:Uw<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]7c=PC  
    %       figure aw&,S"A@  
    %       pcolor(x,x,z), shading interp $M:*T.3  
    %       axis square, colorbar A?OQE9'  
    %       title('Zernike function Z_5^1(r,\theta)') +R:(_:7  
    % {R{=+2K!|k  
    %   Example 2: a(ZcmYzXU  
    % P@~yx#G  
    %       % Display the first 10 Zernike functions 0jWVp- y  
    %       x = -1:0.01:1; as =fCuJ  
    %       [X,Y] = meshgrid(x,x); P16~Qj  
    %       [theta,r] = cart2pol(X,Y); SSzIih@u  
    %       idx = r<=1; b*lkBqs$  
    %       z = nan(size(X)); yEy6]f+>+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Q22 GIr  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; W[r>.7>?h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; t"I77aZ$A  
    %       y = zernfun(n,m,r(idx),theta(idx)); sV*H`N')S  
    %       figure('Units','normalized') t sRdvFFq  
    %       for k = 1:10 lH~[f  
    %           z(idx) = y(:,k); G=bCNn<  
    %           subplot(4,7,Nplot(k)) :.`2^  
    %           pcolor(x,x,z), shading interp uCB=u[]y4  
    %           set(gca,'XTick',[],'YTick',[]) 'dc#F3  
    %           axis square j_j]"ew)  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >y+B  
    %       end X2"/%!65{  
    % +LJ73 !  
    %   See also ZERNPOL, ZERNFUN2. ML p9y#  
    xN'I/@ kb  
    KqP#6^ _  
    %   Paul Fricker 11/13/2006 :b!s2n!u  
    l;E(I_ i)  
    9W);rL|5  
    Rf% a'b  
    2st3  
    % Check and prepare the inputs: b\,+f n  
    % ----------------------------- yaX iE_.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) EKN~H$.  
        error('zernfun:NMvectors','N and M must be vectors.') |k9 C/  
    end r: :b  
    tO&^>&;5  
    pTuS*MYz  
    if length(n)~=length(m) q1ma%eiN  
        error('zernfun:NMlength','N and M must be the same length.') #lO Mm9  
    end y|jq?M<A  
    y>ktcuML  
    bW:!5"_{H  
    n = n(:); MpOc  
    m = m(:); ]I6  J7A[  
    if any(mod(n-m,2)) l Nv|M)I  
        error('zernfun:NMmultiplesof2', ... 3__-nV  
              'All N and M must differ by multiples of 2 (including 0).') 8xMX  
    end dQG=G%W  
    ,/U6[P_C5  
    #p{4^  
    if any(m>n) HE\K@3-  
        error('zernfun:MlessthanN', ...  WfRXP^a  
              'Each M must be less than or equal to its corresponding N.') {\\T gs  
    end - ! S_ryL  
    ^kSqsT"  
    !TcJ)0   
    if any( r>1 | r<0 ) 23jwAsSo  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7x8  yxE  
    end o;R I*I  
    ,tRj4mx  
    DIUjn;>k8  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TJ*T:?>e  
        error('zernfun:RTHvector','R and THETA must be vectors.') q0 \6F^;M  
    end @KUWxFak  
    M'l ;:  
    >C~6\L`c  
    r = r(:); 8JUwf  
    theta = theta(:); (Awm9|.{+  
    length_r = length(r); wS3'?PRX  
    if length_r~=length(theta) D3K8F@d  
        error('zernfun:RTHlength', ... 3=;<$+I6  
              'The number of R- and THETA-values must be equal.') `wU!`\  
    end )WFr</z5bA  
    NyuQMU  
    xe$_aBU  
    % Check normalization: a-J.B.A$Z/  
    % -------------------- k==h|\|  
    if nargin==5 && ischar(nflag) ?Ss!e$jf  
        isnorm = strcmpi(nflag,'norm'); \lNN Msd&  
        if ~isnorm lk80#( :Z  
            error('zernfun:normalization','Unrecognized normalization flag.') Jfl!#UAD|n  
        end K"@M,8hb  
    else '}#9)}x!  
        isnorm = false; 3irl (;v  
    end 9(<@O%YU  
    /2VJX@h  
    2I{"XB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <QGXy=  
    % Compute the Zernike Polynomials 0Wp|1)ljA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z<{QaY$"  
    _PR4`C*  
    8Xs8A.  
    % Determine the required powers of r: | VDV<g5h  
    % ----------------------------------- oe~b}:  
    m_abs = abs(m); #A8sLkY  
    rpowers = []; (&x['IR  
    for j = 1:length(n) 6;5Ss?ep  
        rpowers = [rpowers m_abs(j):2:n(j)]; "5$B>S(Q  
    end Ny)X+2Ae  
    rpowers = unique(rpowers); ?!/kZM_ts  
    B4 }bVjs  
    IV)j1  
    % Pre-compute the values of r raised to the required powers, {H'Y `+  
    % and compile them in a matrix: lU8Hd|@-  
    % ----------------------------- 7"D.L-H  
    if rpowers(1)==0 cj5+N M"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;i+#fQO7Q  
        rpowern = cat(2,rpowern{:}); x'R`. !g3  
        rpowern = [ones(length_r,1) rpowern]; 'H<\x  
    else 8, >P  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u\nh[1)a)  
        rpowern = cat(2,rpowern{:}); "" ZQ/t\  
    end , ++ `=o  
    Kx JqbLUC  
    r" ,GC]  
    % Compute the values of the polynomials: S ByW[JE  
    % -------------------------------------- ` sU/&  P  
    y = zeros(length_r,length(n)); S>1Iky|  
    for j = 1:length(n) K@hw.Xq"  
        s = 0:(n(j)-m_abs(j))/2; [j'X;tVX{  
        pows = n(j):-2:m_abs(j); K", N!koj  
        for k = length(s):-1:1 M\Kx'N  
            p = (1-2*mod(s(k),2))* ... G,w(d@  
                       prod(2:(n(j)-s(k)))/              ... JqiP>4Uwm^  
                       prod(2:s(k))/                     ... v|2T%y_ u  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... R{T$[$6S  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); V3j= Kf  
            idx = (pows(k)==rpowers); bA->{OPkT  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5/Uy{Xt  
        end !%0 * z  
         ,zY$8y]  
        if isnorm i K? w6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kMd.h[X~  
        end H7:] ]j1  
    end N87B8rDl  
    % END: Compute the Zernike Polynomials B^9j@3Ux  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?6Y?a2 |  
    3m)y|$R  
    -3Vx76Y  
    % Compute the Zernike functions: |$b}L7_  
    % ------------------------------ s->^=dy  
    idx_pos = m>0; ^gnZ+`3  
    idx_neg = m<0; V~5jfcd  
    Q'0d~6n&{  
    H_Q+&9^/  
    z = y; wAW5 Z0D  
    if any(idx_pos) kZ3ThIk%  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7Jho}5J  
    end D}X\Ca"h  
    if any(idx_neg) 3$9W%3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n6a`;0f[R  
    end W6/yn  
    B`J~^+`[*  
    )+2hl  
    % EOF zernfun LSr]S79N1  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  l L@XM2"  
    sLT3Y}IO  
    DDE还是手动输入的呢? o~y;j75{.*  
    =wV<hg)C  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)