下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Z_oBZs
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, XY]|OZ7(
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =IH z@CU
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? m"P"iK/Av(
8v7;{4^
V&x6ru#
}VlX!/42
J+3PUfg>@R
function z = zernfun(n,m,r,theta,nflag) ]Ma2*E!p
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {c|=L@/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Sq,ZzMw
% and angular frequency M, evaluated at positions (R,THETA) on the Ij_Y+Mnl4:
% unit circle. N is a vector of positive integers (including 0), and s)dN.'5/
% M is a vector with the same number of elements as N. Each element \vVGfG?6
% k of M must be a positive integer, with possible values M(k) = -N(k) S&jZYq**
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, A ^YHtJ
% and THETA is a vector of angles. R and THETA must have the same <QGf9{m
% length. The output Z is a matrix with one column for every (N,M) v%(2l|M
% pair, and one row for every (R,THETA) pair. +~Ni7Dp]
% F.)b`:g
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike aZGX`;3
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #M;Cw}pW
% with delta(m,0) the Kronecker delta, is chosen so that the integral }R#YO$J7
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =k#SQ/@
% and theta=0 to theta=2*pi) is unity. For the non-normalized +;7Rz_.6f
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [bd fp
a
% w)o^?9T
% The Zernike functions are an orthogonal basis on the unit circle. jX5lwP
Q|F
% They are used in disciplines such as astronomy, optics, and @G0k+
% optometry to describe functions on a circular domain. xy>~1 5
% sfSM7f
% The following table lists the first 15 Zernike functions. x35(i
% |A".Mo_5
% n m Zernike function Normalization e;:~@cB,c
% -------------------------------------------------- &K@2kq,
% 0 0 1 1 ek~bXy{O`
% 1 1 r * cos(theta) 2 T&6W>VQ|[>
% 1 -1 r * sin(theta) 2 W)I)QinOH
% 2 -2 r^2 * cos(2*theta) sqrt(6) uc@f# (-
% 2 0 (2*r^2 - 1) sqrt(3) u(B0X=B
% 2 2 r^2 * sin(2*theta) sqrt(6) t0XM#9L
% 3 -3 r^3 * cos(3*theta) sqrt(8) 2fp\s5%J}
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) y#HDJ=2
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) V3O<l}ak
% 3 3 r^3 * sin(3*theta) sqrt(8) sr!m
% 4 -4 r^4 * cos(4*theta) sqrt(10) _
F&BSu
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b_xn80O
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Vt-D8J\A
0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m\~{l=jIS
% 4 4 r^4 * sin(4*theta) sqrt(10) ^sxcBG
% -------------------------------------------------- au'Zjj/Ai5
% y=) Cid
% Example 1: 6]#pPk8[Z
% >]?!c5=
% % Display the Zernike function Z(n=5,m=1) T0xU}
% x = -1:0.01:1; N:Yjz^Jt
% [X,Y] = meshgrid(x,x); GaMiu!|,
% [theta,r] = cart2pol(X,Y); ]9]cef=h#
% idx = r<=1; '1]Iu@?
% z = nan(size(X));
y21zaQ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); e1ru#'z
% figure Wh4`Iv\.
% pcolor(x,x,z), shading interp W%@L7 xh
% axis square, colorbar ZW\}4q;[A
% title('Zernike function Z_5^1(r,\theta)') 4%/iu)nx
% /*DC`,q
% Example 2: C
FY 3D|
% L=W8Q8hf
% % Display the first 10 Zernike functions {Rb|";
% x = -1:0.01:1; A7!!kR":
% [X,Y] = meshgrid(x,x); 4%do.D*
% [theta,r] = cart2pol(X,Y); NMYkEz(&R
% idx = r<=1; FV|/o%XqK
% z = nan(size(X)); Ht.0ug
% n = [0 1 1 2 2 2 3 3 3 3]; cTf/B=yMi
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ,Q~C
F;qe
% Nplot = [4 10 12 16 18 20 22 24 26 28]; .iFd
% y = zernfun(n,m,r(idx),theta(idx)); yM(zc/?
% figure('Units','normalized') !e*BQ3
% for k = 1:10 6A$
\I44
% z(idx) = y(:,k); :_F$e
% subplot(4,7,Nplot(k)) |,k,X}gP
% pcolor(x,x,z), shading interp NsYeg&>`
% set(gca,'XTick',[],'YTick',[]) jFYv4!\ju
% axis square -z%|
Jk
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NWCJ|
% end vr#_pu)f4
% 9
z_9yT
% See also ZERNPOL, ZERNFUN2. i}mvKV?!|1
ghq#-N/t
7U_~_yb
% Paul Fricker 11/13/2006 ~$7fU
ptXCM[Z+
F6 ?4E"d
>% a^;gk(
lqPzDdC^>
% Check and prepare the inputs: mup<%@7m
% ----------------------------- -DgJkyt+<
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cY1d6P0
error('zernfun:NMvectors','N and M must be vectors.') ?`%7Y~
end X.V6v4
Aa^%_5
@ %LrpD
if length(n)~=length(m) u
Ey>7I
error('zernfun:NMlength','N and M must be the same length.') z&!n'N<C
end Ar@"
K!TS
fg1_D
*,Bo $:(n
n = n(:); jcNYW_G
m = m(:); Z>GqLq\`ed
if any(mod(n-m,2)) pUV3n
1{2
error('zernfun:NMmultiplesof2', ... &HdzbKO=
'All N and M must differ by multiples of 2 (including 0).') 0zR4Kj7EE
end I@x^`^+l
cTW3\S=
6J3:[7k=&
if any(m>n) V>
K
sbPqR
error('zernfun:MlessthanN', ... We]mm3M3
'Each M must be less than or equal to its corresponding N.') MH;5gC@
`
end \%fl`+`
,[6N64fy
7VWq8FH`
if any( r>1 | r<0 ) |y+<|fb,a
error('zernfun:Rlessthan1','All R must be between 0 and 1.') nZ>8r
end biZwxP3
A1{ 7g<k6
'xO5Le(=M
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8 /3`rEW
error('zernfun:RTHvector','R and THETA must be vectors.') e RiP C
end Qs(WyP#
y8/
7@qw
saMv.;s
1^
r = r(:); $f`\TKlN
theta = theta(:); =b+W*vUAw
length_r = length(r); 1&_93
if length_r~=length(theta) Z]H`s{3
error('zernfun:RTHlength', ... @k_xA-a
'The number of R- and THETA-values must be equal.') *$uj)*5,
end Er; @nOyD
tBSHMz
y_bb//IAG
% Check normalization: i|zs
Li/
% -------------------- |TCHPKN
if nargin==5 && ischar(nflag) QH:PClW![
isnorm = strcmpi(nflag,'norm'); .<Y7,9;YEF
if ~isnorm rdK=f<I]
error('zernfun:normalization','Unrecognized normalization flag.') Gt9(@USK
end ~y@,d
else
WW5AD$P*
isnorm = false; SyHS 9>
end &_mOw.
3<:(Eda}
5r#0/1ym!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3f;W+^NY
% Compute the Zernike Polynomials -[\+~aDH,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \^7D%a=;C
Gn}G$uk61
^HpUbZpat)
% Determine the required powers of r: {9(#X]'
% ----------------------------------- pwq a/Yi
m_abs = abs(m); G&P[n8Z$
rpowers = []; n)]]g3y2
for j = 1:length(n) !L..I2'
rpowers = [rpowers m_abs(j):2:n(j)]; RzPqtN
end &j4 1<A
rpowers = unique(rpowers); >fCz,.L
N_AAh D
AcF6p)@_
% Pre-compute the values of r raised to the required powers, 1A>>#M=A
% and compile them in a matrix: udCum4
% ----------------------------- yXg #<H6V
if rpowers(1)==0 -oSfp23u
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2"Oj*
;
rpowern = cat(2,rpowern{:}); LQy`,-&
rpowern = [ones(length_r,1) rpowern]; lFHj]%Y
else oA_T9uh[
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZHQa}C+
rpowern = cat(2,rpowern{:}); 2<18j
end ,MH9e!
6pyLb3[e
!3]}3jZ.
% Compute the values of the polynomials: |7
.WP; 1
% -------------------------------------- ~0S_S +e
y = zeros(length_r,length(n)); GwHp@_>
for j = 1:length(n) XJ\j0
s = 0:(n(j)-m_abs(j))/2; \EP<r
pows = n(j):-2:m_abs(j); lO?dI=}]
for k = length(s):-1:1 r!DUsE
p = (1-2*mod(s(k),2))* ... 2(5HPRQ
prod(2:(n(j)-s(k)))/ ... ;xp^FKP
prod(2:s(k))/ ... J<[Hw g
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Tnw0S8M
prod(2:((n(j)+m_abs(j))/2-s(k)));
Iu<RwB[#Q
idx = (pows(k)==rpowers); %<4ZU!2L
y(:,j) = y(:,j) + p*rpowern(:,idx); )vO?d~x|
end _*(n2'2B
>5,nB<
if isnorm :i;iSrKy
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); q-3,p.
end ^Q)&lxlxpx
end ^
+e5 M1U=
% END: Compute the Zernike Polynomials $j ZU(<4,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f$\gm+&hXE
l!6^xMhYk
#x)lN
% Compute the Zernike functions: ;>#YOxPl
% ------------------------------ GqYE=Q
idx_pos = m>0; I-=H;6w7
idx_neg = m<0; "YUh4uZ~P
,U-aZ
P5vxQR_*lc
z = y; jHP6d =
if any(idx_pos) zOV.cI6fZz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !N, Oe<
end #M9rt~4
if any(idx_neg) ?8{x/y:
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }]i re2j8
end 4[\[Ho
BKiyog
!R{C
% EOF zernfun D7|=ev