下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, oQV3
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, islHtX
VE
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? I3r")}P
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 0<uLQVoR2n
w6h83m
3
\),f?f-m
$M0l
(htR
>@cBDS<6R
function z = zernfun(n,m,r,theta,nflag) @6+_0^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. N#RC;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N X[$|I9
% and angular frequency M, evaluated at positions (R,THETA) on the 0QPY+6
% unit circle. N is a vector of positive integers (including 0), and -bdWG]w"
% M is a vector with the same number of elements as N. Each element &nVekE:!
% k of M must be a positive integer, with possible values M(k) = -N(k) ntPj9#lf
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, /=AFle2(
% and THETA is a vector of angles. R and THETA must have the same -:'%YHxX
% length. The output Z is a matrix with one column for every (N,M) 6)Za K
% pair, and one row for every (R,THETA) pair.
: *[mvF
% ._A4:
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h@1/
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), fJ
_MuAv
% with delta(m,0) the Kronecker delta, is chosen so that the integral cmU0=js.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, T95FoA
% and theta=0 to theta=2*pi) is unity. For the non-normalized \h s7>5O^K
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *>zOWocxD
% :6)!#q'g
% The Zernike functions are an orthogonal basis on the unit circle. iR{@~JN=)
% They are used in disciplines such as astronomy, optics, and |T"j7
% optometry to describe functions on a circular domain. mC\<fo-u
% ;w]1H&mc*A
% The following table lists the first 15 Zernike functions. EXH,+3fQp
% 33eOM(`D[
% n m Zernike function Normalization JgP%4)]LV
% -------------------------------------------------- sm G?y~
% 0 0 1 1 {&D$U'ye
% 1 1 r * cos(theta) 2 gN(kRhp
% 1 -1 r * sin(theta) 2 N.]~%)K:{
% 2 -2 r^2 * cos(2*theta) sqrt(6) lWJYT<kt
% 2 0 (2*r^2 - 1) sqrt(3) jgXr2JQ<
% 2 2 r^2 * sin(2*theta) sqrt(6) "d~<{(:N^
% 3 -3 r^3 * cos(3*theta) sqrt(8) l& sEdEA
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \SwqBw
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @V1FBw9S!@
% 3 3 r^3 * sin(3*theta) sqrt(8) ouo IbA9X
% 4 -4 r^4 * cos(4*theta) sqrt(10) Yh"9,Z&wiR
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \}=W*xxB
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }z\ t}lven
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P@5-3]m=
% 4 4 r^4 * sin(4*theta) sqrt(10) a5pM ~.]
% -------------------------------------------------- ;"9Ks.
% ~=HPqe8
% Example 1: Zg4wd/y?
% J &=5h.G$
% % Display the Zernike function Z(n=5,m=1) /J!hKK^k
% x = -1:0.01:1; ^:f)XZ
% [X,Y] = meshgrid(x,x); Iw#[K
% [theta,r] = cart2pol(X,Y); PV=sqLM~
% idx = r<=1; !&@t
% z = nan(size(X)); gr.G']9lNq
% z(idx) = zernfun(5,1,r(idx),theta(idx)); UaQW<6+
% figure 3y:),;|5
% pcolor(x,x,z), shading interp Qch'C0u
% axis square, colorbar X
)
=-a
% title('Zernike function Z_5^1(r,\theta)') 4{6,Sx
% ?=kH}'igq
% Example 2: |Df`Aq(eYJ
% Y1qbu~!
% % Display the first 10 Zernike functions E J6|y'
% x = -1:0.01:1; k4:=y9`R}$
% [X,Y] = meshgrid(x,x); a~-k} G5
% [theta,r] = cart2pol(X,Y); }>YEtA
% idx = r<=1; OH
88d:
% z = nan(size(X)); wb]Z4/j#
% n = [0 1 1 2 2 2 3 3 3 3]; EF 8rh
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; C'sA0O@O
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ;1TQr3w
% y = zernfun(n,m,r(idx),theta(idx)); YsTF10
% figure('Units','normalized') ~"R;p}5"
% for k = 1:10 #.OCoc
% z(idx) = y(:,k); `<R^ZL,
% subplot(4,7,Nplot(k)) ?i~mt'O
% pcolor(x,x,z), shading interp =}SC .E\
% set(gca,'XTick',[],'YTick',[]) x.(Sv]+[
% axis square }~<9*M-P
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \9:IL9~F
% end D;DI8.4`N
% ;,B $lgF
% See also ZERNPOL, ZERNFUN2. f+QDjJ?z
eGbjk~,f'
DpL|aRdbK
% Paul Fricker 11/13/2006 :C#(yp
RUV:
+C=^,B!,
c 9zMI
rPJbbV",+^
% Check and prepare the inputs: =l}XKl->
% ----------------------------- )TkXdA?.
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <\\,L@
error('zernfun:NMvectors','N and M must be vectors.') 1jj.oa]
end p+{*&Hm5
XSo$;q\
3Et t9fBd
if length(n)~=length(m) zCpXF<_C
error('zernfun:NMlength','N and M must be the same length.') zT _[pa)O`
end 2?9gf,U
]}N&I_mU
ADlLodG
n = n(:); P&8QKX3
j^
m = m(:); 83gp'W{|
if any(mod(n-m,2)) 3*[YM7y
error('zernfun:NMmultiplesof2', ... 9]*hP](
'All N and M must differ by multiples of 2 (including 0).') 4.i< `'
end A>Oi9%OY:
c *]6>50
3h>56{P
if any(m>n) dfA4OZ&
error('zernfun:MlessthanN', ... VA@t8H,
'Each M must be less than or equal to its corresponding N.') -JB~yO?0
end ;kiL`K
jMB&(r
D= LLm$y
if any( r>1 | r<0 ) y6 _,U/9
error('zernfun:Rlessthan1','All R must be between 0 and 1.') j?cE0
hz
end bpWEF b'f
fp2.2 @[
x5)YZ~5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2 K&5Kt/
error('zernfun:RTHvector','R and THETA must be vectors.') n{v[mqm^
end $bT<8:g
6P6Pl&
lZ` CFZR0
r = r(:); W|aFEY
theta = theta(:); ?3{:[*
length_r = length(r); BK16~Wl
if length_r~=length(theta) Qt+;b
error('zernfun:RTHlength', ... yw9)^JU8"
'The number of R- and THETA-values must be equal.') uzpW0(_i3a
end F7~T=X)1
@z!|HLD+
|Q)c{9sD
% Check normalization: "TboIABp:H
% -------------------- UX& ?^]
if nargin==5 && ischar(nflag) >SR!*3$5
isnorm = strcmpi(nflag,'norm'); OLS. 0UEc
if ~isnorm O0VbKW0h3
error('zernfun:normalization','Unrecognized normalization flag.') =6N%;2`84
end N-O"y3W}
else /T_@rm
isnorm = false; +jPs0?}s
end A/zZ%h
yRt>7'@X
;$Q&2}L[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a*4l!-7
% Compute the Zernike Polynomials *Fe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @{|vW
Z+*t=?L,,G
+hJ@w-u,G
% Determine the required powers of r:
Pq@%MF]5
% ----------------------------------- )ZcwG(o0
m_abs = abs(m); 3{wmKo|_X
rpowers = []; cR0OJ'w
for j = 1:length(n) LR5X=&k
rpowers = [rpowers m_abs(j):2:n(j)]; >8*J ;(:W
end v7ShXX:
rpowers = unique(rpowers); ?IWLH-fkP
CSC
sJE#4
0"*!0s~
% Pre-compute the values of r raised to the required powers, VX!UT=;
% and compile them in a matrix: |NsrO8H
% ----------------------------- EO<{Bj=2
if rpowers(1)==0 0pYCh$TL1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &ZmHR^Flz
rpowern = cat(2,rpowern{:}); Q>,EYb>wI
rpowern = [ones(length_r,1) rpowern]; @w H+,]xE
else COF_a%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m3cO{
1I
rpowern = cat(2,rpowern{:}); ?-y!FD}m&
end LZ97nvK
eq|G\XJ
Q9UBxpDV:
% Compute the values of the polynomials: mr`Lxy9e
% -------------------------------------- f^tCD'Vmi
y = zeros(length_r,length(n)); w4S0aR:yL
for j = 1:length(n) 'g4t !__
s = 0:(n(j)-m_abs(j))/2; !zd]6YL$
pows = n(j):-2:m_abs(j); KNkVI K
for k = length(s):-1:1 4z_ >CiA
p = (1-2*mod(s(k),2))* ... cZ!%#Az
prod(2:(n(j)-s(k)))/ ... yEaim~
prod(2:s(k))/ ... t3~ZGOn
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *bl*R';
prod(2:((n(j)+m_abs(j))/2-s(k))); S690Y]:h$v
idx = (pows(k)==rpowers); hU:M]O0uw
y(:,j) = y(:,j) + p*rpowern(:,idx); n^svRM]eQ
end
[a\U8
w
y%y F34
if isnorm bJ[{[|yEd
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J?yNZK$WqN
end 4`x.d
end _1s\ztDpw
% END: Compute the Zernike Polynomials kl0!*j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q'07
x1gf o!BN
?r~|B/]
% Compute the Zernike functions: }b//oe7
% ------------------------------ FC' v= *
idx_pos = m>0; W[5a'}OV
idx_neg = m<0; /M:R|91:_
uxGY/Zf
X+'z@xpj
z = y; !>~W5c^
if any(idx_pos) 2wHvHH!
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VtNY~
end bN Ub
if any(idx_neg) *rY@(|
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g4NxNjM;
end P/BWFN1
QB<9Be@e
X[Lwx.Ly8
% EOF zernfun _\HMF