切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9391阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, bT{iei]?  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #Y9~ Xp^.  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }W k!):=y  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (lVHKg&U[  
    7{e*isV  
    QGQ> shIeZ  
    S&YC"  
    Do5)ilt  
    function z = zernfun(n,m,r,theta,nflag) Qtpw0t"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. \`M8Mu9~w  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ri k0F  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7B,a xkr  
    %   unit circle.  N is a vector of positive integers (including 0), and :vkTV~  
    %   M is a vector with the same number of elements as N.  Each element 6S# e?>"+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \P|PAU@,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &I$MV5)u  
    %   and THETA is a vector of angles.  R and THETA must have the same %^$7z,>;  
    %   length.  The output Z is a matrix with one column for every (N,M) 4R/cN' -  
    %   pair, and one row for every (R,THETA) pair. h+7THMI  
    % jRP9e  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N3J;_=<4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &{c.JDO  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral kq kj.#u  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .`3O4]N[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mew,S)dq!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TZk.?@s5  
    % ]l WEdf+  
    %   The Zernike functions are an orthogonal basis on the unit circle. sox0:9Oqnf  
    %   They are used in disciplines such as astronomy, optics, and 54%@q[-  
    %   optometry to describe functions on a circular domain. ;NHZD  
    % r2]KP(T8|  
    %   The following table lists the first 15 Zernike functions. E9IU,P6a  
    % Nf<mgOAT1  
    %       n    m    Zernike function           Normalization %cl=n!T  
    %       -------------------------------------------------- M_wj>NXZ  
    %       0    0    1                                 1 |99/?T-QW  
    %       1    1    r * cos(theta)                    2 N1 }#6YNw  
    %       1   -1    r * sin(theta)                    2 .A. VOf_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) OJGEX}3'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) F5|6*K  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ^"e|)4_5\  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) uoM;p'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5QjM,"`mp  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \Y0o~JD  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `H.~ # $  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) J7`fve  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .BR2pf|R  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Wz~=JvRHh  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \L"Vx9xT  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) x9s 7:F  
    %       -------------------------------------------------- .m&JRzzV  
    % /7 CF f&4  
    %   Example 1: V kA$T8  
    % 1gwnG&  
    %       % Display the Zernike function Z(n=5,m=1) I$Bu6x!  
    %       x = -1:0.01:1; [zO:[i 7  
    %       [X,Y] = meshgrid(x,x); Stkyz:,(  
    %       [theta,r] = cart2pol(X,Y); Z-fQ{&a{  
    %       idx = r<=1; [<+A?M=  
    %       z = nan(size(X)); S4m??B  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .>Gnb2  
    %       figure }Ss]/ _t  
    %       pcolor(x,x,z), shading interp *f[nge&.  
    %       axis square, colorbar sO,%Ok1  
    %       title('Zernike function Z_5^1(r,\theta)') 5,I|beM  
    % D`?=]Ysz(  
    %   Example 2: R aVOZ=^-  
    % vU:FDkx*nn  
    %       % Display the first 10 Zernike functions 4$);x/ a  
    %       x = -1:0.01:1; csceu+ IA  
    %       [X,Y] = meshgrid(x,x); []'gIF  
    %       [theta,r] = cart2pol(X,Y); -bN;nSgb  
    %       idx = r<=1; L9|55z  
    %       z = nan(size(X)); OlW|qj  
    %       n = [0  1  1  2  2  2  3  3  3  3]; CEwMPPYnD  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6`>WO_<z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; NtuO&{}i  
    %       y = zernfun(n,m,r(idx),theta(idx)); -|ho 8alF  
    %       figure('Units','normalized') :2'y=t#  
    %       for k = 1:10 F3-<F_4.w  
    %           z(idx) = y(:,k); r\OunGUP  
    %           subplot(4,7,Nplot(k)) =6XJr7Ay8u  
    %           pcolor(x,x,z), shading interp oNyVRH ZH  
    %           set(gca,'XTick',[],'YTick',[]) :!SVpCt3  
    %           axis square s$cr|p;7#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }e7os0;s  
    %       end X"4 :#s  
    % >UUcKq1M:  
    %   See also ZERNPOL, ZERNFUN2. \~sc6ho  
    DqfWu*  
    YP^=b}  
    %   Paul Fricker 11/13/2006 :bh#,]'  
    0rt@4"~~w  
    _JVFn=  
    n{d0}N =  
    aC\O'KcH  
    % Check and prepare the inputs: U9<AL.  
    % ----------------------------- /6=IL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B3+9G,or  
        error('zernfun:NMvectors','N and M must be vectors.') ;Av=/hU  
    end #ujry. m  
    z%)~s/2Rs  
    kPhdfF*Q  
    if length(n)~=length(m) p<eu0B_V  
        error('zernfun:NMlength','N and M must be the same length.') U$*AV<{%   
    end !2.(iuE  
    F9ys.Bc  
    y*F !k{P  
    n = n(:); fH-fEMyW  
    m = m(:); prHM}n{0  
    if any(mod(n-m,2)) s6q6)RD"  
        error('zernfun:NMmultiplesof2', ... 4YuJ-  
              'All N and M must differ by multiples of 2 (including 0).') wMW."gM|  
    end ^(j}'p,  
    Xkqq$A4  
    &kR*J<)V  
    if any(m>n) ',WnT:  
        error('zernfun:MlessthanN', ... sf([8YUd  
              'Each M must be less than or equal to its corresponding N.') &z;bX-"E  
    end 2 c 2lK  
    *1H8 &  
    IP LKOT~  
    if any( r>1 | r<0 ) WE{fu{x  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') - w{`/  
    end 0N|l1Sn  
    b<\2j5  
    Udi  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4. =jKj9j  
        error('zernfun:RTHvector','R and THETA must be vectors.') -JEiwi,  
    end :17Pc\:DS  
    _%@dlT?  
    @%'1Jd7-Wp  
    r = r(:); ?XlPK Y  
    theta = theta(:); tx*L8'jlN  
    length_r = length(r); fT2F$U  
    if length_r~=length(theta) `hl8j\HV<}  
        error('zernfun:RTHlength', ... *;&[q{hz  
              'The number of R- and THETA-values must be equal.') AMw#_8Y  
    end qj7 }]T_  
    S-f .NC}:i  
    e=cb%  
    % Check normalization: u|mTF>L  
    % -------------------- qkM)zOZ^  
    if nargin==5 && ischar(nflag) C09rgEB\B  
        isnorm = strcmpi(nflag,'norm'); y+aKk6(_W  
        if ~isnorm UkTq0-N;2  
            error('zernfun:normalization','Unrecognized normalization flag.') ^Q\Hy\  
        end ` pYyr/  
    else }Q?a6(4  
        isnorm = false; \{a!Z&df  
    end /szwVA  
    ELN1F0TneH  
    ;e"dxAUe!^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {>3J96  
    % Compute the Zernike Polynomials AI^!?nJ%'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _UA|0a!-  
    y;if+  
    ]#\De73K   
    % Determine the required powers of r: Ei7Oi!1  
    % ----------------------------------- q'Nafa&a)  
    m_abs = abs(m); kz*6%Cg*~  
    rpowers = []; 5SMV3~*P  
    for j = 1:length(n) 2<T/N  
        rpowers = [rpowers m_abs(j):2:n(j)]; i'QR-B&Z  
    end B1V+CP3t  
    rpowers = unique(rpowers); l*$~Y0  
    3xz|d`A  
    ~>#?.f  
    % Pre-compute the values of r raised to the required powers, <}p]0iA  
    % and compile them in a matrix: 1I awi?73  
    % ----------------------------- I&6M{,rnM  
    if rpowers(1)==0 !,^y!+,Qy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &qzy?/i8  
        rpowern = cat(2,rpowern{:}); %a?\y_a=b  
        rpowern = [ones(length_r,1) rpowern]; uznYLS  
    else K))P 2ss  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `6P2+wf1j~  
        rpowern = cat(2,rpowern{:}); R.\]JvqO  
    end 'T|EwrS j  
    js9^~:Tw  
    :Xs4C%H;  
    % Compute the values of the polynomials: :}R,a=N  
    % -------------------------------------- #N$\d4q9  
    y = zeros(length_r,length(n)); kWacc&*|  
    for j = 1:length(n) @uz(h'~  
        s = 0:(n(j)-m_abs(j))/2; UcKVL zKs  
        pows = n(j):-2:m_abs(j); lWn}afI  
        for k = length(s):-1:1 O#k eoC4  
            p = (1-2*mod(s(k),2))* ... gBO,  
                       prod(2:(n(j)-s(k)))/              ... sPMICIv|  
                       prod(2:s(k))/                     ... o`Af6C;Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qg/FI#r  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ify48]  
            idx = (pows(k)==rpowers); 44s 9\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); '1rGsfp6In  
        end 2acT w#  
         C+t0Zen  
        if isnorm JeN]sK)8x  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |@~_&g  
        end P+Gz'  
    end C23p1%#1  
    % END: Compute the Zernike Polynomials '"+Gn52#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A.mFa1lH  
    &8pGq./lr=  
    6oq5CDoq  
    % Compute the Zernike functions: l=t/"M=  
    % ------------------------------ cs7^#/3<  
    idx_pos = m>0; C=(Q0-+L|  
    idx_neg = m<0; xkRS?Q g  
    B9Mp3[   
    +_kA&Q(t  
    z = y; +!W:gA  
    if any(idx_pos) y@,PTF  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S?6 -I,]h  
    end j{'_sI{{  
    if any(idx_neg) Rc3!u^?u  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?PS?_+E\L  
    end a0+q^*\d\R  
    YR? E z<p  
    eEfGH  
    % EOF zernfun Sa%%3_&  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ?R#$ c]  
    r9&m^,U  
    DDE还是手动输入的呢?  {Ba&  
    PIa!N Py  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)