切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9245阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :6LOb f\01  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;@K,>$ur-  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ><iEVrpN  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? X?$Eb  
    }|f\'S   
    xD#PM |I  
    ]!H*oP8a*  
    Jl3l\I'  
    function z = zernfun(n,m,r,theta,nflag) `xe[\Z2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. l ,)l"6OV  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jM J[6qj  
    %   and angular frequency M, evaluated at positions (R,THETA) on the {npKdX  
    %   unit circle.  N is a vector of positive integers (including 0), and P,AS`=z  
    %   M is a vector with the same number of elements as N.  Each element pfg"6P  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,G1|] ~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, aq"E@fb  
    %   and THETA is a vector of angles.  R and THETA must have the same :YjOv  
    %   length.  The output Z is a matrix with one column for every (N,M) 4,f[D9|:  
    %   pair, and one row for every (R,THETA) pair. )Y~q6D K  
    % 7d/wT+f  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 93fKv  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9<<$uf.B  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Ed #%F-1sX  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M4M 4*o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `{I,!to  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. H_;Dq*  
    % F']Vg31c  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8s8q`_.)(  
    %   They are used in disciplines such as astronomy, optics, and 3f's>+,#%  
    %   optometry to describe functions on a circular domain. 3leg,q d  
    % #f.@XIt'  
    %   The following table lists the first 15 Zernike functions. 05*_h0}  
    % .5L/<  
    %       n    m    Zernike function           Normalization  9 N=KU  
    %       -------------------------------------------------- m|~,#d@  
    %       0    0    1                                 1 R2Tvo?xI7  
    %       1    1    r * cos(theta)                    2 O~d!* A  
    %       1   -1    r * sin(theta)                    2 ~2@U85"o  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) T'XAcH  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $';'MoS  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) G+[>or}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R ;5w*e}?5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \+GXUnkj  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~\<ZWU<BE  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #2yOqUO\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) B>X+eK  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T<zonx1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tP!sOvQ:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g/z9bOgIX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1:YDN.*  
    %       -------------------------------------------------- U YUIpe  
    % Zpb3>0<R  
    %   Example 1: a^[io1}-  
    % >;xEzc!W3*  
    %       % Display the Zernike function Z(n=5,m=1) EUuMSDp  
    %       x = -1:0.01:1; 6El%T]^  
    %       [X,Y] = meshgrid(x,x); w#PaN83+  
    %       [theta,r] = cart2pol(X,Y); od^ha  
    %       idx = r<=1; =5Q;quKu^5  
    %       z = nan(size(X)); Rz=]KeZu  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); tY# F8a&  
    %       figure m$LZ3=v%8  
    %       pcolor(x,x,z), shading interp D4#,9?us  
    %       axis square, colorbar 5jNBt>.0  
    %       title('Zernike function Z_5^1(r,\theta)') w5n>hz_5  
    % "6KOql3  
    %   Example 2: ,7%(Jj$ ^  
    % ^"buF\3L  
    %       % Display the first 10 Zernike functions HwST^\Ao  
    %       x = -1:0.01:1; I}:>M!w  
    %       [X,Y] = meshgrid(x,x); '3hvR4P  
    %       [theta,r] = cart2pol(X,Y); 3'/wRKl  
    %       idx = r<=1; mz\ m^g3  
    %       z = nan(size(X)); GUN<ZOYb=  
    %       n = [0  1  1  2  2  2  3  3  3  3]; bjT0Fi0-  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8#Z$}?W  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; +'#d*r91@  
    %       y = zernfun(n,m,r(idx),theta(idx)); ZN4&:9M  
    %       figure('Units','normalized') cQ+, F2  
    %       for k = 1:10 Be]o2N;J  
    %           z(idx) = y(:,k);  W2^eE9  
    %           subplot(4,7,Nplot(k)) .{x5(bi0S  
    %           pcolor(x,x,z), shading interp 7H >dv'  
    %           set(gca,'XTick',[],'YTick',[]) pu>LC6m3a  
    %           axis square tQl=  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n,HWVo>([  
    %       end T >-F~?7Sv  
    % MPL2#YU/a  
    %   See also ZERNPOL, ZERNFUN2. _v $mGZpGY  
    *n[Fl  
    ]iNSa{G  
    %   Paul Fricker 11/13/2006 R>0ta  Q  
    54^hBejQ  
    H+ M ~|Ju7  
    M]_vb,=1  
    ]B7t9l  
    % Check and prepare the inputs: O-'T*M>  
    % ----------------------------- Ahwu'mgnC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Hd2_Cg FB  
        error('zernfun:NMvectors','N and M must be vectors.') XqwdJND  
    end r}5GJ|p0  
    e4`KnHsL  
    _9gn;F  
    if length(n)~=length(m) _|Dt6  
        error('zernfun:NMlength','N and M must be the same length.') jyT(LDsS  
    end :iWV:0)P  
    c`jTdVD  
    ,`Mlo  
    n = n(:); )eG&"3kFe!  
    m = m(:); #M>E{w9  
    if any(mod(n-m,2)) =VSieh  
        error('zernfun:NMmultiplesof2', ... eo,]b1C2n  
              'All N and M must differ by multiples of 2 (including 0).')  9q5[W=|  
    end 1%:A9%O)t  
    y\)w#  
    dW5z0VuB$/  
    if any(m>n) pKJ[e@E^  
        error('zernfun:MlessthanN', ... #,9|Hr%  
              'Each M must be less than or equal to its corresponding N.') s`TBz8QO$  
    end ujSzm=_P  
    So 5{E 4[  
    x-QP+M`Pu  
    if any( r>1 | r<0 ) * K7L5.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') FG(`&S+,  
    end l00D|W_ 9  
    G?g7G,|d  
    S:j0&*  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~iSW^mi  
        error('zernfun:RTHvector','R and THETA must be vectors.') Af%?WZlOq  
    end eyG.XAP  
    $k?L?R1  
    t.TQ@c+,J  
    r = r(:); S`^W#,rj  
    theta = theta(:); iUKj:q:  
    length_r = length(r); WT)")0)[  
    if length_r~=length(theta) *~"`&rM(  
        error('zernfun:RTHlength', ... CNz[@6-cYU  
              'The number of R- and THETA-values must be equal.') zhe5i;M  
    end ]aR4U`  
    D0P% .r"v  
    q8lK6p\:W  
    % Check normalization: z~_\onC  
    % -------------------- b(VU{cf2d  
    if nargin==5 && ischar(nflag) GwycSb1  
        isnorm = strcmpi(nflag,'norm'); -$q/7,os  
        if ~isnorm uj@<_|7  
            error('zernfun:normalization','Unrecognized normalization flag.')  {MtB!x  
        end aVb]H0  
    else E6gEP0b  
        isnorm = false; [ b W=>M  
    end KWUz]>Z  
    aFym&n\  
    {Vm36/a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >KPJ74R  
    % Compute the Zernike Polynomials i=D,T[|>a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z^l!y5s/H  
    5HN<*u%z  
    lN'/Z&62  
    % Determine the required powers of r: jJvNN -^  
    % ----------------------------------- f0s &9H  
    m_abs = abs(m); X A|`wAGP  
    rpowers = []; yDC97#%3u  
    for j = 1:length(n) 1sjn_fPz  
        rpowers = [rpowers m_abs(j):2:n(j)]; #V 6 -*  
    end #77UKYj2L-  
    rpowers = unique(rpowers); |DD?3#G01  
    o0L#39`' g  
    (ZK >WoV  
    % Pre-compute the values of r raised to the required powers, .7FI%  
    % and compile them in a matrix: dWy1=UQfP  
    % ----------------------------- { 1%ZyY  
    if rpowers(1)==0 uH[0kh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3Y-v1.^j  
        rpowern = cat(2,rpowern{:}); E2|iAT+=.  
        rpowern = [ones(length_r,1) rpowern]; 5m42Bqy"  
    else -#6*T,f0P(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l,FoK76G  
        rpowern = cat(2,rpowern{:}); Jf$wBPg  
    end DcA'{21  
    g-FZel   
    >G2-kL_  
    % Compute the values of the polynomials: P{eRDQ=  
    % -------------------------------------- J"rwWIxO*  
    y = zeros(length_r,length(n)); #:|?t&On  
    for j = 1:length(n) l`&6W?C  
        s = 0:(n(j)-m_abs(j))/2; J36@Pf]h  
        pows = n(j):-2:m_abs(j); &|'6-wD.  
        for k = length(s):-1:1 ?8@*q6~8  
            p = (1-2*mod(s(k),2))* ... h\d($Ki  
                       prod(2:(n(j)-s(k)))/              ... U_'q-*W  
                       prod(2:s(k))/                     ... =7fh1XnW  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v s|6w w  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); g{hA,-3  
            idx = (pows(k)==rpowers); !^fR8Tp9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ; ZV^e  
        end HDyZzjgG  
         *hs<Ez.cC  
        if isnorm gc3 U/ jM  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f+Medc~  
        end {K4t8T]  
    end 2bnIT>(  
    % END: Compute the Zernike Polynomials ~@b}=+n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YBIe'(p  
    NB5B$q_'#  
    Wmxw!   
    % Compute the Zernike functions: )]> '7] i  
    % ------------------------------ So%1RY{ )  
    idx_pos = m>0; h<ctW>6v  
    idx_neg = m<0; x[W]?`W3r~  
    hX| UE  
    ( L\G!pP.  
    z = y; BON""yIC   
    if any(idx_pos) 3dDQz#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); EJaaW&>[  
    end \w[ZY$/  
    if any(idx_neg) H0 n@kKr  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8sF0]J[g{  
    end p]|ME  
    '3UIriY6  
    gc7:Rb^E5t  
    % EOF zernfun GnrW {o  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Puth8$  
    K@j^gF/0B  
    DDE还是手动输入的呢? ox\B3U%`p}  
    & L.PU@  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)