切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9213阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, W?X3 :1c9:  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, aDZ]{;  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? qUKSo9  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? l" +q&3Zx  
    y{Vh?Z<E  
    L=wpZ`@ y  
    ,WtJ&S7?  
    +~f=L- >  
    function z = zernfun(n,m,r,theta,nflag) SkyX\&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. G- eSHv  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ciGJtD&P  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,v_NrX=f?  
    %   unit circle.  N is a vector of positive integers (including 0), and Aqo90(jffx  
    %   M is a vector with the same number of elements as N.  Each element e"&QQ-q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3o BR  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1"UHe*2  
    %   and THETA is a vector of angles.  R and THETA must have the same ;bRyk#  
    %   length.  The output Z is a matrix with one column for every (N,M) :s>x~t8g#n  
    %   pair, and one row for every (R,THETA) pair. oMHTB!A=2  
    % =Hx]K8N)  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HMmB90P`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a6!|#rt  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral RZP7h>y6@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e-*-91D  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized hO; XJyv  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -mw`f)?Ev  
    % R'Uf#.  
    %   The Zernike functions are an orthogonal basis on the unit circle. aKz:hG  
    %   They are used in disciplines such as astronomy, optics, and OxqkpK&  
    %   optometry to describe functions on a circular domain. k8z1AP  
    % Bu"5NB  
    %   The following table lists the first 15 Zernike functions. 58P[EMhL  
    % n}/4em?  
    %       n    m    Zernike function           Normalization IR|#]en  
    %       -------------------------------------------------- o>\o=%D.a  
    %       0    0    1                                 1 B}0!b7!  
    %       1    1    r * cos(theta)                    2 OJ r~iUr  
    %       1   -1    r * sin(theta)                    2 SM\qd4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) n+S&[Y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z]R%'LGu  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) '9!J' [W  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z):Nd9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9qUkw&}H  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ZlP+t>  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) EYA=fU  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) <.&84c]/&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `T{'ufI4B  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0ZJj5<U  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nx{MUN7  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) PU8dr|!  
    %       -------------------------------------------------- 9e Fj+  
    % ~z)JO'Z$  
    %   Example 1: yxAy1P;dX  
    % nF$HWp&gt  
    %       % Display the Zernike function Z(n=5,m=1) J";4+wA7  
    %       x = -1:0.01:1; q _Z+H4  
    %       [X,Y] = meshgrid(x,x); fZrh_^yH  
    %       [theta,r] = cart2pol(X,Y); +QNsI2t;r  
    %       idx = r<=1; glLoYRTi  
    %       z = nan(size(X)); 9g]%}+D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ")<5 VtV  
    %       figure mM:%-I\$   
    %       pcolor(x,x,z), shading interp -iL:D<!Cb_  
    %       axis square, colorbar GSW%~9WBa  
    %       title('Zernike function Z_5^1(r,\theta)') >wb Uxl%{5  
    % N'i)s{'  
    %   Example 2: Bj<s!}i{[  
    % EjMVlZC>  
    %       % Display the first 10 Zernike functions :C2 @!W z  
    %       x = -1:0.01:1; iBI->xU[U  
    %       [X,Y] = meshgrid(x,x); UE/JV_/S;  
    %       [theta,r] = cart2pol(X,Y); G"w [>m  
    %       idx = r<=1; O_]hbXV0  
    %       z = nan(size(X)); sUU[QP-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [+Fajo;0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; d0-4KN2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }x+6<Rp'E_  
    %       y = zernfun(n,m,r(idx),theta(idx)); +P8CC fPu  
    %       figure('Units','normalized') huW,kk<]y  
    %       for k = 1:10 bi^P k,'  
    %           z(idx) = y(:,k); u`D _  
    %           subplot(4,7,Nplot(k)) %z=:P{0UQ  
    %           pcolor(x,x,z), shading interp U p6OCF  
    %           set(gca,'XTick',[],'YTick',[]) [!4xInS  
    %           axis square t+_\^Oa)  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) p]ujip  
    %       end i I`vu  
    % U!NuiKaQ26  
    %   See also ZERNPOL, ZERNFUN2. AUu<@4R7  
    3!$+N\ #w  
    bv VkN  
    %   Paul Fricker 11/13/2006 {* P[dyu  
    b.v +5=)B  
    * V7mM?  
    2gh=0%|\gx  
    xy b=7  
    % Check and prepare the inputs: 0N~kq-6.\  
    % ----------------------------- FSm.o?>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3n)$\aBE  
        error('zernfun:NMvectors','N and M must be vectors.') P;o  {t  
    end ^RO<r}B u  
    6<T:B[a-  
    @HPr;m!  
    if length(n)~=length(m) Cf9{lhE8  
        error('zernfun:NMlength','N and M must be the same length.') 0KTO )K  
    end zyhM*eM.7  
    q ajZ~oB{  
    v bn=ywz  
    n = n(:); o$eCd{HuX  
    m = m(:); 2Z%n "z68  
    if any(mod(n-m,2)) ^lt2,x   
        error('zernfun:NMmultiplesof2', ... ^ghYi|kQq  
              'All N and M must differ by multiples of 2 (including 0).') yo/;@}g}  
    end =yz"xWH  
    }Nd1'BVf  
    G%FZTA6a  
    if any(m>n) w%s];EE  
        error('zernfun:MlessthanN', ... ' tY(&&  
              'Each M must be less than or equal to its corresponding N.') DH%PkGn  
    end r{^43g?  
    ?'Hd0)yZ  
    yvj/u c  
    if any( r>1 | r<0 ) ]J'TebP=L5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') IdN3Ea]  
    end rJkJ/9s  
    u*): D~A  
    zWhj >Za  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qFwt^w  
        error('zernfun:RTHvector','R and THETA must be vectors.') tT>LOI_z  
    end KILX?Pt[7  
    f)j*P<V  
    %~PcJhz  
    r = r(:); >5#}/G&  
    theta = theta(:); ~abyjM  
    length_r = length(r); `_)H aF>/  
    if length_r~=length(theta) Vy I\Jmr  
        error('zernfun:RTHlength', ... Te L&6F$  
              'The number of R- and THETA-values must be equal.') ;b*qunJ3L  
    end n"T ^  
    Bh' fkW3  
    'E9{qPLk(  
    % Check normalization: EW(bM^dk}  
    % -------------------- lYCvYe  
    if nargin==5 && ischar(nflag) ! #_2 ![  
        isnorm = strcmpi(nflag,'norm'); +T@BOYhgq  
        if ~isnorm ]sqLGmUL  
            error('zernfun:normalization','Unrecognized normalization flag.') p|.5;)%|  
        end R%RxF=@  
    else F`m}RL]g  
        isnorm = false; >fzyD(>  
    end c>K]$;}  
    l;0([_>*j  
    $uDgBZA\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TDDMx |{  
    % Compute the Zernike Polynomials  e|!'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lQ`=PFh  
    }n4 T!N  
    +4_,, I  
    % Determine the required powers of r: m..ajYSQ  
    % ----------------------------------- sdZ$3oE.  
    m_abs = abs(m); K~vJ/9"|R  
    rpowers = []; DOJydYds  
    for j = 1:length(n) zplv.cf#q  
        rpowers = [rpowers m_abs(j):2:n(j)]; FHQ`T\fC$@  
    end olv?$]  
    rpowers = unique(rpowers); nK :YbLdK,  
    vvv'!\'#  
    '~&W'='b;  
    % Pre-compute the values of r raised to the required powers, &L$9Ii  
    % and compile them in a matrix: P.XT1)qo*  
    % ----------------------------- 4F|79U #  
    if rpowers(1)==0 4T(d9y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $ ubU"  
        rpowern = cat(2,rpowern{:}); F1stRZ1ZI  
        rpowern = [ones(length_r,1) rpowern]; GNMOHqg4  
    else O|,9EOrP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); i`2SebDj'w  
        rpowern = cat(2,rpowern{:}); ;7z6B|8  
    end ]nUrE6  
     C7ivA h  
    {IJ;)<>&VE  
    % Compute the values of the polynomials: E+O{^C=  
    % -------------------------------------- 'c7nh{F  
    y = zeros(length_r,length(n)); aYaEy(m  
    for j = 1:length(n) [[IMf-]  
        s = 0:(n(j)-m_abs(j))/2; "a)6g0gw  
        pows = n(j):-2:m_abs(j); uL/wV~g  
        for k = length(s):-1:1 71R,R,  
            p = (1-2*mod(s(k),2))* ... ce\d35x!  
                       prod(2:(n(j)-s(k)))/              ... qX-ptsQ  
                       prod(2:s(k))/                     ... X?'cl]1?  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d=xjLbsZ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 1z8"Gk6  
            idx = (pows(k)==rpowers); 4tZ*%!I'  
            y(:,j) = y(:,j) + p*rpowern(:,idx); adP  :{j  
        end >NBc-DX^  
         Njg$~30  
        if isnorm -{cmi,oy  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "TJu<O"2  
        end R7Y_ 7@p  
    end v;<gCzqQh  
    % END: Compute the Zernike Polynomials {oqbV#/&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SUUNC06V  
    +-@n}xb@  
    RhE~Rwbx  
    % Compute the Zernike functions: |X8?B =  
    % ------------------------------ nv:Qd\UM  
    idx_pos = m>0; 1 jidBzu<  
    idx_neg = m<0; ~JXz  
    H:c5 q0O^x  
    N@c G jpQ  
    z = y; _cs(f<>oCO  
    if any(idx_pos) o0R?vnA=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %1Q:{m  
    end Gw<D'b)!  
    if any(idx_neg) A7X a  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Zt!#KSF7%  
    end A O:F*%Q u  
    TRm#H $  
    4{uQ}ea  
    % EOF zernfun d&Nnp jH}c  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  :i<*~0r<  
    vaB ql(?'2  
    DDE还是手动输入的呢? (xb2H~WrN  
    1d< b\P0  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)