切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8762阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [q_Yf!(m-  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DhB: 8/J  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? |!&,etu  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2t[inzn=E  
    A0&~U0*(~  
    (VC_vz-  
    o5zth^p[  
    o F @{&  
    function z = zernfun(n,m,r,theta,nflag) dJCu`34Y'|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,=K!Y TeVl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SD TX0v  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }g(aZ  
    %   unit circle.  N is a vector of positive integers (including 0), and %OW[rbE.  
    %   M is a vector with the same number of elements as N.  Each element Tk+\Biq   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) n>!E ]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, b_][Jye&P  
    %   and THETA is a vector of angles.  R and THETA must have the same 9}3W0F;  
    %   length.  The output Z is a matrix with one column for every (N,M) zW+Y{^hf  
    %   pair, and one row for every (R,THETA) pair. MA"iM+Ar  
    % v "oO  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a}e7Q<cGj  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qf7.Sh  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "hQV\|!\  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {|> ~#a49h  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized tT'd]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %yptML9  
    % W%Um:C\I  
    %   The Zernike functions are an orthogonal basis on the unit circle. )5]z[sE  
    %   They are used in disciplines such as astronomy, optics, and HlV3rYh  
    %   optometry to describe functions on a circular domain. 36lIV,YnU  
    % gR1X@j$_  
    %   The following table lists the first 15 Zernike functions. BPi>SI0  
    % u4Vc:n  
    %       n    m    Zernike function           Normalization 8l)l9;4 6  
    %       -------------------------------------------------- J"[OH,/_  
    %       0    0    1                                 1 hRA.u'M  
    %       1    1    r * cos(theta)                    2 B&L{/.v_z\  
    %       1   -1    r * sin(theta)                    2 @#o$~'my  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @W^g(I(w  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ydlH6>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 4e*0kItC  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) uw]e$,x?  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u5idH),<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) SxQ|1:i%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #|$7. e  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0<i~XN0g  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iY( hGlV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Y*"%;e$tg  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +mxsjcq0  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -=g`7^qa>  
    %       -------------------------------------------------- Jl5<9x  
    % rJNf&x%6  
    %   Example 1: c#G(7.0MU  
    % H|,{^b@9  
    %       % Display the Zernike function Z(n=5,m=1) q F}5mUcZ4  
    %       x = -1:0.01:1; N ~ LR  
    %       [X,Y] = meshgrid(x,x); JWxPH5L  
    %       [theta,r] = cart2pol(X,Y); $p9XXZ"*  
    %       idx = r<=1; ` D4J9;|;]  
    %       z = nan(size(X)); <v{jJ7w  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); O|gb{  
    %       figure /CZOO)n  
    %       pcolor(x,x,z), shading interp WUqAPN  
    %       axis square, colorbar +)7NWR\  
    %       title('Zernike function Z_5^1(r,\theta)') bNL E=#ro  
    % !`aodz*PO  
    %   Example 2: 3a#!^ G!~  
    % />n0&~k[h  
    %       % Display the first 10 Zernike functions 1,pg:=N9  
    %       x = -1:0.01:1; oxad}Y  
    %       [X,Y] = meshgrid(x,x); Kfj*#) SZ  
    %       [theta,r] = cart2pol(X,Y); X^@d@xU4v  
    %       idx = r<=1; #b8/gRfS  
    %       z = nan(size(X)); o/&:w z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %/>_o{"hw  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  m+vwp\0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; +osY iP5  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5-&P4  
    %       figure('Units','normalized') :;|x'[JoE?  
    %       for k = 1:10 / Sp+MB9  
    %           z(idx) = y(:,k); Dxu )by  
    %           subplot(4,7,Nplot(k)) n09|Jzv9  
    %           pcolor(x,x,z), shading interp QeQbO  
    %           set(gca,'XTick',[],'YTick',[]) #Io#OG<7b  
    %           axis square N;D+]_;0|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]_-$  
    %       end A"P1 B]  
    % OPjscc5  
    %   See also ZERNPOL, ZERNFUN2. p]aIMF_  
    ''WX  
    q$HBPR4h  
    %   Paul Fricker 11/13/2006 kW(8i}bg  
    hA~}6Qn  
    DSnsi@Mi  
    ?px x,o6l  
    as\V, {<  
    % Check and prepare the inputs: m1`ln5(R  
    % ----------------------------- :!#-k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) XBeHyQp  
        error('zernfun:NMvectors','N and M must be vectors.') Uz62!)  
    end v'iQLUgI  
    _e-a>y  
    o= 8yp2vG  
    if length(n)~=length(m) 4 A  
        error('zernfun:NMlength','N and M must be the same length.') ?dTz?C.w  
    end Lh. L~M1X  
    Dljq  
    ?s_q|d_  
    n = n(:);   () SG  
    m = m(:);  T  
    if any(mod(n-m,2)) g xLA1]>{  
        error('zernfun:NMmultiplesof2', ... O=+C Kx@  
              'All N and M must differ by multiples of 2 (including 0).') _R8-Hj E  
    end r2hm`]\8M  
    "o TwMU  
    b0&dpMgh:  
    if any(m>n) D)!k  
        error('zernfun:MlessthanN', ... '~a!~F~>  
              'Each M must be less than or equal to its corresponding N.') xAoozDj  
    end ] #J ]f  
    *.K}`89T  
    c(eu[vj:  
    if any( r>1 | r<0 ) 5\a5^FK~  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2[:`w),.  
    end _mn4z+  
    LAvAjvRc  
    QP qa\87  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7aU*7!U  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3*'!,gK~[  
    end I)sCWC:Mq~  
    6DExsB~@  
    9> (8r+  
    r = r(:); EGa}ml/G  
    theta = theta(:); Uh7kB`2  
    length_r = length(r); t[DXG2&  
    if length_r~=length(theta) H- S28%.  
        error('zernfun:RTHlength', ... K1$Z=]a+  
              'The number of R- and THETA-values must be equal.')  a1j 6-p  
    end &-{4JSII  
    +^%F8GB  
    {X<tUco  
    % Check normalization: aFbA=6  
    % -------------------- d:j$!@o  
    if nargin==5 && ischar(nflag) 'DKP-R"  
        isnorm = strcmpi(nflag,'norm'); q_I''L  
        if ~isnorm 9x:c"S*  
            error('zernfun:normalization','Unrecognized normalization flag.') `5gcc7b  
        end MbJV)*Q  
    else muY4:F.C(  
        isnorm = false; b0 5h,  
    end J M`uIVnNA  
    XCk \#(VSE  
    uEk$Y=p7!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kj}}O2  
    % Compute the Zernike Polynomials i|2Q}$3t2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /FQumqbnt  
    "V^(i%E;  
    6T)D6;@L  
    % Determine the required powers of r: jF'S"_/?  
    % ----------------------------------- jd$lu^>I  
    m_abs = abs(m); Yr0%ZYfN  
    rpowers = []; z43H]  
    for j = 1:length(n) x2 tx{Z  
        rpowers = [rpowers m_abs(j):2:n(j)]; WJhI6lu  
    end 4sG^ bZ,  
    rpowers = unique(rpowers); qf'uXH  
    6@ nEcr  
     /y1,w JI  
    % Pre-compute the values of r raised to the required powers, ,(]hykbXp  
    % and compile them in a matrix: zfv l<"Rv  
    % ----------------------------- yA6"8fr  
    if rpowers(1)==0 F|Ou5WD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f v}h;?C  
        rpowern = cat(2,rpowern{:}); (B[0BjU  
        rpowern = [ones(length_r,1) rpowern]; p6>3 p  
    else ?-Oy/Y K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Dd :Qotu  
        rpowern = cat(2,rpowern{:}); #N7@p }P  
    end $n>.;CV  
    9.>v ;:vL  
    XN??^1{J}]  
    % Compute the values of the polynomials: M$|^?U>cm  
    % -------------------------------------- S_1R]n1/  
    y = zeros(length_r,length(n)); ^e)KEkh  
    for j = 1:length(n) m~%IHWO'  
        s = 0:(n(j)-m_abs(j))/2; z0doL b^!  
        pows = n(j):-2:m_abs(j); F4KXx^~o  
        for k = length(s):-1:1 bluhiiATd  
            p = (1-2*mod(s(k),2))* ... ECQ>VeP  
                       prod(2:(n(j)-s(k)))/              ... Z^s&]  
                       prod(2:s(k))/                     ... sJMT _yt;  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Fvl_5l  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); > u~ l_?  
            idx = (pows(k)==rpowers); tP7l ;EX4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0~)cAKus  
        end L%I@HB9-Q0  
         n:'Mpux  
        if isnorm ..;}EFw5  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \M<C6m5  
        end F0])g  
    end ?%#3p[  
    % END: Compute the Zernike Polynomials xyBWV]Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .kyp5CD}4  
    %^kBcId  
    0LN"azhz  
    % Compute the Zernike functions: SfEgmp-m  
    % ------------------------------ 48W$ ,  
    idx_pos = m>0; X\V1c$13CK  
    idx_neg = m<0; ~#pQWa5  
    bw&8"k>D?  
    Y{6y.F*Q#  
    z = y; Gdb6 U{  
    if any(idx_pos) lN -vFna  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {p=`"H>  
    end OXT 5 y)   
    if any(idx_neg) NirG99kyo  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2mRm.e9?  
    end criOJ-  
    W0R<^5_  
    au1uFu-  
    % EOF zernfun \u9l4  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  =|LB,REN  
    ~e<^jhpJ  
    DDE还是手动输入的呢? A1Es>NK[qW  
    7TtDI=f  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5477
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)