切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9059阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, BK6oW3wD/  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, @#;~_?$?C  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0(HUy`]>  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &@nI(PXv  
    W!htCwnkF  
    kOeW,:&65  
    !$Nh:(>:  
    Wc#4%kT  
    function z = zernfun(n,m,r,theta,nflag) 1;S@XC>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7oK!!Qd^w  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "){"{~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the arRb q!mO  
    %   unit circle.  N is a vector of positive integers (including 0), and ?>DN7je  
    %   M is a vector with the same number of elements as N.  Each element E%2]c?N5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) qy/xJ>:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :[,-wZiT~6  
    %   and THETA is a vector of angles.  R and THETA must have the same 8FU8E2zo  
    %   length.  The output Z is a matrix with one column for every (N,M) `Z0FQ( r_  
    %   pair, and one row for every (R,THETA) pair. <U$x')W  
    % 1Sx2c  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bRfac/:}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), UM3}7|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?7*.S Lt  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /*i[MB  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _?CyKk\I  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (gQP_Oa(  
    % RG0kOw0  
    %   The Zernike functions are an orthogonal basis on the unit circle. 2.qEy6  
    %   They are used in disciplines such as astronomy, optics, and *3d+ !#;rG  
    %   optometry to describe functions on a circular domain. O,x[6P54P  
    % ?^n),mR  
    %   The following table lists the first 15 Zernike functions. Vo"Wr>F  
    % r roI  
    %       n    m    Zernike function           Normalization gE\&[;)DB  
    %       -------------------------------------------------- 9$$dSN\&  
    %       0    0    1                                 1 h'jc4mu0  
    %       1    1    r * cos(theta)                    2 )%dxfwd6  
    %       1   -1    r * sin(theta)                    2 @>cz$##`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _(l?gj  
    %       2    0    (2*r^2 - 1)                    sqrt(3) q HaH=g%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) nl5A{ s  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) XXPn)kmWR  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) <hvs{}TS  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) k<Qhw)M8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) . |%n"{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ' Dcj\=8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x{4{.s%+:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) SO4?3wg7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6I2` oag  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^F,sV*  
    %       -------------------------------------------------- G%iT L"6  
    % & 6'Rc#\P  
    %   Example 1: x<5ARK6\=  
    % }@x!r=O)I  
    %       % Display the Zernike function Z(n=5,m=1) u}3D'h  
    %       x = -1:0.01:1; *IX<&u#  
    %       [X,Y] = meshgrid(x,x); h?[|1.lJx(  
    %       [theta,r] = cart2pol(X,Y); 6S`0<Z;;/  
    %       idx = r<=1; ~jC+6v  
    %       z = nan(size(X)); =' uePM")  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); *:bexDH  
    %       figure bd]9 kRq1K  
    %       pcolor(x,x,z), shading interp 0vX4v)-^u  
    %       axis square, colorbar >3ax `8  
    %       title('Zernike function Z_5^1(r,\theta)') Xii>?sA5Z"  
    % "i#aII+T  
    %   Example 2: 0civXZgj  
    % [?%q,>F  
    %       % Display the first 10 Zernike functions Lq|>n Y  
    %       x = -1:0.01:1; Q2/65$ nW  
    %       [X,Y] = meshgrid(x,x); XeX\u3<D  
    %       [theta,r] = cart2pol(X,Y); m/z,MT74*J  
    %       idx = r<=1; mG"xo^1_H  
    %       z = nan(size(X)); H2H`7 +I,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; XNgcBSD  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +F-EgF+J  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !O,Sq/=.  
    %       y = zernfun(n,m,r(idx),theta(idx)); K!]a+M]>  
    %       figure('Units','normalized') _ f'v>"K  
    %       for k = 1:10 > vdmN]  
    %           z(idx) = y(:,k); gg >QXui  
    %           subplot(4,7,Nplot(k)) DQT'OZ :w  
    %           pcolor(x,x,z), shading interp 8Qo'[+4;  
    %           set(gca,'XTick',[],'YTick',[]) d]poUN~x  
    %           axis square h2 KI  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nl qn:[BU  
    %       end NMe{1RM  
    % w lH\w?  
    %   See also ZERNPOL, ZERNFUN2. (`S^6 -^  
    om`T/@_,  
    ')U~a  
    %   Paul Fricker 11/13/2006 XEQTTD<  
    #l ZK_N|1x  
    4;fuS_(X  
    2 /FQ;<L  
    jMgXIK\  
    % Check and prepare the inputs: Hs*["zFc  
    % ----------------------------- ,Cb3R|L8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #8|LPfA  
        error('zernfun:NMvectors','N and M must be vectors.') ?u|@,tQ[  
    end ]I[~0PCSX  
    z%OKv[/N  
    XEgJ7h_  
    if length(n)~=length(m) pZ& ,YX  
        error('zernfun:NMlength','N and M must be the same length.') "!~o  
    end ^Jp,&  
    CmZayV  
    &)Xc'RQ.C  
    n = n(:); =eDIvNps  
    m = m(:); .E<nQWz 8  
    if any(mod(n-m,2)) J0?kEr  
        error('zernfun:NMmultiplesof2', ... Ut;`6t  
              'All N and M must differ by multiples of 2 (including 0).') Zz0e4C  
    end BH">#&j[  
    |5bLV^mv]i  
    GC{M"q|_  
    if any(m>n) ZEAUoC1E1  
        error('zernfun:MlessthanN', ... M2O_kO eZ  
              'Each M must be less than or equal to its corresponding N.') u.gg N=Z  
    end xWxc1tT`  
    Mf1(4F  
    s_'&_>D  
    if any( r>1 | r<0 ) c2y,zq|H  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ax;=Zh<DAv  
    end :OG I|[  
    c-sjYJXKM*  
    U[@y 8yN6M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y()" 2CCV  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1^!SuAA@  
    end T$I_nxh[)L  
    0B}4$STOo[  
    /|IPBU 5  
    r = r(:); VPe0\?!d  
    theta = theta(:); FJ:^pROpm  
    length_r = length(r); *yu}e)(0  
    if length_r~=length(theta) l3>S{  
        error('zernfun:RTHlength', ... JZ:@iI5>+  
              'The number of R- and THETA-values must be equal.') >]\I:T  
    end ieFl4hh[G  
    ]:P7}Kpb  
    _)M,p@!?=h  
    % Check normalization: =dmr ,WE  
    % -------------------- c$O8Rhx  
    if nargin==5 && ischar(nflag) : ?>7Z6  
        isnorm = strcmpi(nflag,'norm'); '<R>cN"  
        if ~isnorm ^"WV E["  
            error('zernfun:normalization','Unrecognized normalization flag.') e-nA>v  
        end 3v/B*M VI  
    else \^x{NV@v42  
        isnorm = false; =p+y$  
    end &mwd0%4  
    /Mqhx_)>A  
    S<tw5!tJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?sf<cFF  
    % Compute the Zernike Polynomials KdkA@>L!;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9)Fx;GxL  
    CMa6':~  
    2 !s&|lI  
    % Determine the required powers of r: CXa[%{[n  
    % ----------------------------------- M/zO|-j&  
    m_abs = abs(m); Zf'*pp T&q  
    rpowers = []; IH]9%d)  
    for j = 1:length(n) *'%V}R[>  
        rpowers = [rpowers m_abs(j):2:n(j)]; %FO{:@CH  
    end (l{vlFWd  
    rpowers = unique(rpowers); i5'&u:  
    UUah5$Iy  
    YW7W6mWspS  
    % Pre-compute the values of r raised to the required powers, #z\ub5um  
    % and compile them in a matrix: dzf2`@8#  
    % ----------------------------- Ql*zl  
    if rpowers(1)==0 T(b9b,ov)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EBj^4=b[  
        rpowern = cat(2,rpowern{:}); sV\_DP/l  
        rpowern = [ones(length_r,1) rpowern]; oBzl=N3<  
    else !wAT`0<94F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jvzioFCt  
        rpowern = cat(2,rpowern{:}); $v^hzC  
    end !?2)a pM  
    8v4}h9*F"7  
    >4:d)  
    % Compute the values of the polynomials: }A#IBqf5  
    % -------------------------------------- _P>YG<*"kQ  
    y = zeros(length_r,length(n)); ;_<R +w3-  
    for j = 1:length(n) K7 e~%mY  
        s = 0:(n(j)-m_abs(j))/2; ).T&fa"  
        pows = n(j):-2:m_abs(j); 6TtB3;5  
        for k = length(s):-1:1 xoaO=7\io  
            p = (1-2*mod(s(k),2))* ... @<.@ X*#I  
                       prod(2:(n(j)-s(k)))/              ... ,g*!NK_:5t  
                       prod(2:s(k))/                     ... \br!77  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &V"oJ}M/a  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); _Nx /<isdL  
            idx = (pows(k)==rpowers); V%Uj\cv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); jr6_|(0 i6  
        end VYvfx  
         A1WUK=P  
        if isnorm c}(WniR-"  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t@q'm.:uw<  
        end &!!*xv-z  
    end Ndmt$(b  
    % END: Compute the Zernike Polynomials |)-kUu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nm'l}/Ug  
    +mQ5\14#  
    |P|B"I<?  
    % Compute the Zernike functions: ^^y eC|~N:  
    % ------------------------------ c_lHj#A(l  
    idx_pos = m>0; v^|U?  
    idx_neg = m<0; i\R0+ O{  
    5]xuU.w'  
    7|rH9Bc{U  
    z = y; 3h@]cWp  
    if any(idx_pos) RNg?o [S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Lvk}%,S8t  
    end nJD GNm,  
    if any(idx_neg) fi+}hGj(r  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j\>LJai"  
    end Xn7G2Yp  
    7& M-^Ev  
    <izQ]\kL  
    % EOF zernfun #&3,T1i`  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  UB~K/r`.|  
    .ARYCTyG  
    DDE还是手动输入的呢? dCx63rF`G  
    KQ~y;{h?b  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)