下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, =55V<VI
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, G6p R?K+
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? iz3Hoj
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? : eFyd`Syw
%J+k.UrM
BFZ\\rN`
E&>;a!0b]
emI F{oP
function z = zernfun(n,m,r,theta,nflag) {Zo*FZcaX
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %lGT|XrY
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L'O=;C"f
% and angular frequency M, evaluated at positions (R,THETA) on the MUUhg
% unit circle. N is a vector of positive integers (including 0), and A`1-c
% M is a vector with the same number of elements as N. Each element ;i!$rL
% k of M must be a positive integer, with possible values M(k) = -N(k) R0e!b+MZ.
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, )}@Z*.HZL
% and THETA is a vector of angles. R and THETA must have the same )i[K1$x2
% length. The output Z is a matrix with one column for every (N,M) X0 ]Se(
% pair, and one row for every (R,THETA) pair. Ls'8
% )3^#CD
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &/?OP)N,}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )kIjZ
% with delta(m,0) the Kronecker delta, is chosen so that the integral MbeK{8~E%l
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `KUL4) g~
% and theta=0 to theta=2*pi) is unity. For the non-normalized HpS1(%d"
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j43i:c;F
% Awe'MG p%
% The Zernike functions are an orthogonal basis on the unit circle. -qG7, t
% They are used in disciplines such as astronomy, optics, and WnhH]WY
% optometry to describe functions on a circular domain. |nY+Nen7
% 5hfx2O)
% The following table lists the first 15 Zernike functions. (zw.?ADPCT
% H[N~)3x
% n m Zernike function Normalization m5l&
% -------------------------------------------------- q#`;G,rs
% 0 0 1 1 = Q"(9[Az
% 1 1 r * cos(theta) 2 at(gem
% 1 -1 r * sin(theta) 2 J]|S0JC`
% 2 -2 r^2 * cos(2*theta) sqrt(6) kfq<M7y
% 2 0 (2*r^2 - 1) sqrt(3) o<rbC <
U
% 2 2 r^2 * sin(2*theta) sqrt(6) =z'533C
% 3 -3 r^3 * cos(3*theta) sqrt(8) orhzeOi\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1-Q>[Uz,
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) RQ,X0pS
% 3 3 r^3 * sin(3*theta) sqrt(8) JC9OL.Ob
% 4 -4 r^4 * cos(4*theta) sqrt(10) $YK~7!!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j#${L6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) aZ}z/.b]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1~vv<`-
% 4 4 r^4 * sin(4*theta) sqrt(10) =cxG4R1x
% -------------------------------------------------- xLw[
aYy4
% -l{ wB"
% Example 1: ZK8DziO
% 9g7Ok9dF
% % Display the Zernike function Z(n=5,m=1) 5D>cbzP@
% x = -1:0.01:1; 0$|wj^?U
% [X,Y] = meshgrid(x,x); i8.OM*[f
% [theta,r] = cart2pol(X,Y); M] W5%3do
% idx = r<=1; xI8v'[3
% z = nan(size(X)); d4o_/[
% z(idx) = zernfun(5,1,r(idx),theta(idx)); sNJ?Z"5k1h
% figure JB HnJm
% pcolor(x,x,z), shading interp [yVcH3GcjI
% axis square, colorbar E#n:d9WA:
% title('Zernike function Z_5^1(r,\theta)') u HXb=U
% Co`:D
% Example 2: kv`5"pa7M
% vr$z6m ^
% % Display the first 10 Zernike functions uR82},r$m
% x = -1:0.01:1; dq3"L!0u
% [X,Y] = meshgrid(x,x); z_a7HCG2
% [theta,r] = cart2pol(X,Y); >2tosxH M
% idx = r<=1; y|YhDO
% z = nan(size(X)); rm,h\
% n = [0 1 1 2 2 2 3 3 3 3]; = %wBC;
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6H:EBj54?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; /!-ypIY
% y = zernfun(n,m,r(idx),theta(idx)); 7/BA!V(na
% figure('Units','normalized') I#|ib
% for k = 1:10 {>l`P{{y
% z(idx) = y(:,k); Ls NJ3oy
% subplot(4,7,Nplot(k)) i(kr#XsU
% pcolor(x,x,z), shading interp DkBVk+
% set(gca,'XTick',[],'YTick',[]) l%7^'nDn
% axis square Wl3fR[@3Q
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #4!6pMW(&7
% end kYkck]|
% UbSD?Ew@35
% See also ZERNPOL, ZERNFUN2. G_?qY#"(
*JVJKqed
6d YUMqQ
% Paul Fricker 11/13/2006 <(Ktf0'__
I)4NCjcCw
Zy >W2(<
]BBjFs4#
x[2eA!NC
% Check and prepare the inputs:
&r
V
% ----------------------------- C-ipxL"r
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2LH.I f
error('zernfun:NMvectors','N and M must be vectors.') YR$d\,#R
end 5VW*h
) 2Hl\"F
xiQ;lE
if length(n)~=length(m) |HK/*B
error('zernfun:NMlength','N and M must be the same length.') LzkwgcR
end 3(La)|k
oOK&+r7
vm "dE4W=
n = n(:); 1 *$-.
m = m(:); 0G/_"}@
if any(mod(n-m,2))
q=cH ^`<.
error('zernfun:NMmultiplesof2', ... JU0|pstf
'All N and M must differ by multiples of 2 (including 0).') !u|s|6{\
end TzK[:o
4gK_'b6"
<4P"1#nHQ+
if any(m>n) ;923^*\:F{
error('zernfun:MlessthanN', ... =%oKYQ
'Each M must be less than or equal to its corresponding N.') 9$P*fx&m
end X.!|#FWb+
XxE>KeP
OPVcT
if any( r>1 | r<0 ) /h73'"SpDy
error('zernfun:Rlessthan1','All R must be between 0 and 1.') @60/IE{-v
end a]_eSU@
8&9'1X5)8_
FBJ Lkg0
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) BA|*V[HBE
error('zernfun:RTHvector','R and THETA must be vectors.') j4.deQ,
end !RwOUCk
pwO
U6A!
{F+iL&e)
r = r(:); ' fP`ET5
theta = theta(:); :i:M7 }r
length_r = length(r); j
/=4f
if length_r~=length(theta) ^{Y9!R*9U*
error('zernfun:RTHlength', ... QAh6!<.;@
'The number of R- and THETA-values must be equal.') 2s:$4]K D
end 5A=FEg
Qape DU;
Acib<Mi2!-
% Check normalization: )s4a<Sc]
% -------------------- I<ta2<h
if nargin==5 && ischar(nflag) iSxuor^;
isnorm = strcmpi(nflag,'norm'); Rck k
if ~isnorm ThSB\
error('zernfun:normalization','Unrecognized normalization flag.') _-/<