切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9481阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %Q080Ltet  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !{+a2wi  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9*2Q'z}_  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y6[ O s1  
    AX]cM)w  
    2PC:F9dh\  
    xE5VXYU  
    M{jJ>S{g  
    function z = zernfun(n,m,r,theta,nflag) pSl4^$2XR  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 20 Z/Y\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JKF/z@Vbe\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  X@Bg_9\i  
    %   unit circle.  N is a vector of positive integers (including 0), and C klIrD{  
    %   M is a vector with the same number of elements as N.  Each element |4j'KM;U  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |%g)H,6c  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ANRZQpnXQ  
    %   and THETA is a vector of angles.  R and THETA must have the same dAr=X4LE  
    %   length.  The output Z is a matrix with one column for every (N,M) +7 mUX  
    %   pair, and one row for every (R,THETA) pair. 6ltV}Wt-  
    % J(Fk@{!F.*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z^o7&\:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C*stj  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `$Y%c1;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mM2DZ^"j(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "!R*f $  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w&>*4=^a  
    % 8 +mW  
    %   The Zernike functions are an orthogonal basis on the unit circle. = G>Y9Sc  
    %   They are used in disciplines such as astronomy, optics, and +TC##}Zmb  
    %   optometry to describe functions on a circular domain. U.Fs9F4M#  
    % P#9Pq,I  
    %   The following table lists the first 15 Zernike functions. tI<6TE'!p#  
    % 4*9BAv  
    %       n    m    Zernike function           Normalization wWVB'MRXB,  
    %       -------------------------------------------------- nH}V:C  
    %       0    0    1                                 1 MP p    
    %       1    1    r * cos(theta)                    2 `4,]Mr1b  
    %       1   -1    r * sin(theta)                    2 ge]Z5E(1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _LFABG=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |*g\-2j{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u`"Y!*[ -  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) uBw[|,yn2*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^[VEr"X  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 0v|qP  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]Na;b  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N>w+YFM  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i(4.7{*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) XCT3:db  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r_MP[]f|0  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) I9h{fB  
    %       -------------------------------------------------- 3uL$+F  
    % y]g5S-G  
    %   Example 1: U45-R -  
    % LhSXz>AX  
    %       % Display the Zernike function Z(n=5,m=1) em2Tet  
    %       x = -1:0.01:1; *i"Mu00b  
    %       [X,Y] = meshgrid(x,x); t$PJ*F67M  
    %       [theta,r] = cart2pol(X,Y); ;?Q0mXr  
    %       idx = r<=1; `)NTJc$):  
    %       z = nan(size(X)); PHMp, z8  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3}B-n!|*  
    %       figure p2gu@!   
    %       pcolor(x,x,z), shading interp 9hgIQl  
    %       axis square, colorbar @h\i<sh!^  
    %       title('Zernike function Z_5^1(r,\theta)') }tJMnq/m($  
    % \==Mgy2J8  
    %   Example 2: ;\]DZV4?)r  
    % <9x|)2P  
    %       % Display the first 10 Zernike functions (L!u[e0[#  
    %       x = -1:0.01:1; N6v*X+4JH  
    %       [X,Y] = meshgrid(x,x); O]l-4X#8F  
    %       [theta,r] = cart2pol(X,Y); _zLEHEZ-  
    %       idx = r<=1; qv`:o `  
    %       z = nan(size(X)); w$`u_P|@E:  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *7qa]i^]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;1k_J~Qei  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; OA7=kH@3c  
    %       y = zernfun(n,m,r(idx),theta(idx)); wKJK!P  
    %       figure('Units','normalized') ]0pI6"  
    %       for k = 1:10 qz 29f  
    %           z(idx) = y(:,k); akQb%Wq  
    %           subplot(4,7,Nplot(k)) \\/ !I   
    %           pcolor(x,x,z), shading interp hP/uS%X   
    %           set(gca,'XTick',[],'YTick',[]) R=W$3Ue~,  
    %           axis square z.W1Za  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s%?<:9  
    %       end 3ep L'My$  
    % we?t/YB=  
    %   See also ZERNPOL, ZERNFUN2. M+4S>Sjw  
    >Lz2zlZI  
    HPK}Z|Vl  
    %   Paul Fricker 11/13/2006 '=IuwCB|;  
    efh1-3f  
    "?YpF2pD  
    "H{#ib_c_  
    _K~?{".  
    % Check and prepare the inputs: 'YEiT#+/  
    % ----------------------------- P2)g%$ME  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %;`3I$  
        error('zernfun:NMvectors','N and M must be vectors.') 5JZZvc$au  
    end 94XRf"^  
    }Z`@Z'  
    C,u;l~zz  
    if length(n)~=length(m)  uMBb=   
        error('zernfun:NMlength','N and M must be the same length.') U7G|4(  
    end Q1 vse  
    m>b i$Y  
     ^9kdd[  
    n = n(:); <zu)=W'R]  
    m = m(:); BimM)4g  
    if any(mod(n-m,2)) ||?wRMV  
        error('zernfun:NMmultiplesof2', ... td+[Na0d  
              'All N and M must differ by multiples of 2 (including 0).') hpticW|  
    end 2K'}Vm+  
    T0}P 'q  
    =`%%*  
    if any(m>n) ,@2d4eg 4  
        error('zernfun:MlessthanN', ... 5xG/>f n  
              'Each M must be less than or equal to its corresponding N.') }Z\+Qc<<  
    end 5TdI  
    o-t!z'\lO  
    ?/s=E+  
    if any( r>1 | r<0 ) # /pZ#ny  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.')  Ia)^  
    end Y'%_--  
    SHPZXJ{  
    9a_(_g>S  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fI0L\^b%  
        error('zernfun:RTHvector','R and THETA must be vectors.') #kGxX@0  
    end on1mu't_;  
    RrqZ5Gonj  
    5(OF~mX#  
    r = r(:); ~LzTqMHM  
    theta = theta(:); ';7|H|,F  
    length_r = length(r); ({x<!5XL  
    if length_r~=length(theta) ^SRa!8z$W  
        error('zernfun:RTHlength', ... z'X_ s.9F  
              'The number of R- and THETA-values must be equal.') ? 5 V-D8k  
    end l@YpgyqaL  
    r^6v o6^  
    Sq==)$G  
    % Check normalization: JXnPKAN  
    % -------------------- gf2w@CVF>=  
    if nargin==5 && ischar(nflag) $RSVN?  
        isnorm = strcmpi(nflag,'norm'); Onoi6^G  
        if ~isnorm o [ %Q&u  
            error('zernfun:normalization','Unrecognized normalization flag.') O"9f^y*  
        end ,K6]Q|U@r  
    else L=}UApK  
        isnorm = false; L7%'Y}1e.  
    end ;h3*MR  
    4/ U]7Y  
    Q<``}:y|>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |,&!Q$<un  
    % Compute the Zernike Polynomials 7"JU)@ U]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fk(0q/b  
    (^Do#3  
    Lou4M  
    % Determine the required powers of r: qkUr5^1  
    % ----------------------------------- aLXA9?  
    m_abs = abs(m); cuk2\> Xl  
    rpowers = []; j)IK  
    for j = 1:length(n) 7RD` *s  
        rpowers = [rpowers m_abs(j):2:n(j)]; Q84KU8?d  
    end A1ebXXD )  
    rpowers = unique(rpowers); $'FPst8Q<  
    =3SL& :8  
    0XYO2 k  
    % Pre-compute the values of r raised to the required powers, r rwsj`  
    % and compile them in a matrix: 3Ob"r`  
    % ----------------------------- \ bT]?.si  
    if rpowers(1)==0 Z ''P5B;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g&E_|}u4  
        rpowern = cat(2,rpowern{:}); AYZds >#Q  
        rpowern = [ones(length_r,1) rpowern]; 56_KB.Ww~  
    else 4!}fCP ty  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b);}x1L.T  
        rpowern = cat(2,rpowern{:}); i)(Q Npv  
    end VD#^Xy4% r  
    0~1P&Qs<  
    S8)awTA9  
    % Compute the values of the polynomials: VD3[ko  
    % -------------------------------------- %<muVRkB\  
    y = zeros(length_r,length(n)); iRVLo~  
    for j = 1:length(n) 1aT$07G0  
        s = 0:(n(j)-m_abs(j))/2; TQ2Tt "  
        pows = n(j):-2:m_abs(j); 99:L#0!.W  
        for k = length(s):-1:1 QF>[cdl?8  
            p = (1-2*mod(s(k),2))* ... t@HE.h  
                       prod(2:(n(j)-s(k)))/              ... ::`j@ ]  
                       prod(2:s(k))/                     ... 3z#;0n}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1a!h&!$9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7=AKQ7BB>b  
            idx = (pows(k)==rpowers); HYH!;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~3Y NHm6V  
        end d?P aZz{4  
         j&mL]'Zy  
        if isnorm =% JDo  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E>1USKxn  
        end ]1[;A$7  
    end W[m_IY  
    % END: Compute the Zernike Polynomials E{ ,O}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Tef;8d  
    7A|jnm  
     ~EM];i  
    % Compute the Zernike functions: -ur]k]R  
    % ------------------------------ ,'673PR  
    idx_pos = m>0; h5gXYmk  
    idx_neg = m<0; W*m[t&;  
    /YbL{G )j}  
    ] 6gu  
    z = y; R)C+wTG;  
    if any(idx_pos) <<1oc{i  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;hvXFU  
    end 31C]TdJ  
    if any(idx_neg) ZkJM?Fzq  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :qp"Ao{M  
    end `IoX'|C[h  
    lBdF9F<  
    z&0V21"l  
    % EOF zernfun j5O*H_D  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |1+(Ny.%k  
    dH2]ZE0V  
    DDE还是手动输入的呢? fb"J Bc}X  
    ::OFW@dS  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)