切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9273阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #BS]wj2#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :EgdV  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? PL~k `L  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? UShn)3F  
    R,Zuy( g  
    (m;P,*  
    ]&/jvA=\l,  
    };oRx)  
    function z = zernfun(n,m,r,theta,nflag) 3\=8tg p  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. C*Ws6s>+z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N IX7d[nm39  
    %   and angular frequency M, evaluated at positions (R,THETA) on the mMN oR]  
    %   unit circle.  N is a vector of positive integers (including 0), and C,2IET  
    %   M is a vector with the same number of elements as N.  Each element ~ $r^Ur!E\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^e@c Ozt  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, W}L =JJo},  
    %   and THETA is a vector of angles.  R and THETA must have the same lG# &Pv>-  
    %   length.  The output Z is a matrix with one column for every (N,M) sbK 0OA  
    %   pair, and one row for every (R,THETA) pair. q 4 Ye  
    % /oiAAB27  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %J.Rm0FD:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W\eB   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral !c6 lP'U  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3tXtt@Yy  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized z*yN*M6t  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ! FHNKh  
    % ] (MXP,R  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5\|[)~b  
    %   They are used in disciplines such as astronomy, optics, and }QJE9;<e  
    %   optometry to describe functions on a circular domain. Y2<#%@%4  
    % *<9D]  
    %   The following table lists the first 15 Zernike functions. J=zZGd%  
    % nWXI*%m5  
    %       n    m    Zernike function           Normalization K:'pK1zy  
    %       -------------------------------------------------- |lJXI:G G  
    %       0    0    1                                 1 ?'T>/<(  
    %       1    1    r * cos(theta)                    2 00;=6q]TA  
    %       1   -1    r * sin(theta)                    2 $6y1';A  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D<xPx  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .\U+`>4av  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ybS7uo  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  ~-M7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) bO2$0!=I  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) EiJSLL  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T$}<So|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) f[|xp?ef  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d=>5%$:v  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :hMuxHr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |qI_9#M\(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %J|EDf ,M  
    %       -------------------------------------------------- &q":o 'q  
    % #G*z{BRQ  
    %   Example 1: gVG :z_6  
    % i}wu+<Mk  
    %       % Display the Zernike function Z(n=5,m=1) <EBp X   
    %       x = -1:0.01:1; H[>_LYZ8  
    %       [X,Y] = meshgrid(x,x); }1 _gemlf  
    %       [theta,r] = cart2pol(X,Y); i(c2NPbX  
    %       idx = r<=1; MH !CzV&  
    %       z = nan(size(X)); 5lU`o  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 6eS#L21*  
    %       figure B1LnuB%  
    %       pcolor(x,x,z), shading interp r`S]`&#}(  
    %       axis square, colorbar hlUF9}  
    %       title('Zernike function Z_5^1(r,\theta)')  bM-Y4[  
    % k*-+@U"+  
    %   Example 2: ?<nz2 piP,  
    % }>Os@]*'^(  
    %       % Display the first 10 Zernike functions KO5Q;H  
    %       x = -1:0.01:1; D J<c  
    %       [X,Y] = meshgrid(x,x); 'm2,7]  
    %       [theta,r] = cart2pol(X,Y); cA/2,i  
    %       idx = r<=1; ^ g4)aaBZ  
    %       z = nan(size(X)); s#d# *pgzh  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *g=*}2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Q]|+Y0y}X  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; VS}Vl  
    %       y = zernfun(n,m,r(idx),theta(idx)); !4 hs9b  
    %       figure('Units','normalized') Aga7X@fV(  
    %       for k = 1:10 _aD x('  
    %           z(idx) = y(:,k); ~Yr.0i.W  
    %           subplot(4,7,Nplot(k)) N@A#e/8  
    %           pcolor(x,x,z), shading interp Jhj]rsGk  
    %           set(gca,'XTick',[],'YTick',[]) [{zekF~)@  
    %           axis square qlgh$9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <v2R6cj5  
    %       end {;-$;\D  
    % 2XXEg> CU  
    %   See also ZERNPOL, ZERNFUN2. >K &b,o,[  
    u5,IH2BU  
    O! j@8~='  
    %   Paul Fricker 11/13/2006 $K,aLcu  
    :JN3@NsK  
    d@w I: 7  
    Jz|(B_U  
    Lte\;Se.tu  
    % Check and prepare the inputs: F;_;lRAb  
    % ----------------------------- u#P7~9ZG-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '8Gw{&&  
        error('zernfun:NMvectors','N and M must be vectors.') j2\G1@05  
    end t*<c+Ixu  
    XG [%oL  
    1/fvk  
    if length(n)~=length(m) nut7b  
        error('zernfun:NMlength','N and M must be the same length.') ,>g 6OU2~6  
    end *Z0}0< D@Z  
    5$#<z1M.&  
    UbYKiLDF)  
    n = n(:); Ec[:6}  
    m = m(:); A%2!Hr  
    if any(mod(n-m,2)) xj~6,;83xR  
        error('zernfun:NMmultiplesof2', ... {Ise (>V  
              'All N and M must differ by multiples of 2 (including 0).') ^{Vm,nAQqs  
    end stDn{x .  
    Th8Q ~*v  
    [cH/Y2[  
    if any(m>n) mb/3 #)  
        error('zernfun:MlessthanN', ... .DX#:?@4@Y  
              'Each M must be less than or equal to its corresponding N.') ~kHir]jc  
    end %EpK=;51U  
    3gM{lS}h#  
    E?zp?t:a  
    if any( r>1 | r<0 ) H}$#aXEAn  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') lu{}j4  
    end P*LcWrK  
    '0=U+Egp  
    l-Xxv  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NMDNls&)k  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7]^Cg;EtM:  
    end eGE%c1H9a  
    |'J3"am'  
    hh?'tb{  
    r = r(:); =?2y <B  
    theta = theta(:); lfKknp#B/O  
    length_r = length(r); *H$nydQ:  
    if length_r~=length(theta) /qCYNwWH9  
        error('zernfun:RTHlength', ... H{V-C_  
              'The number of R- and THETA-values must be equal.') G]SE A  
    end PU>;4l  
    m=K XMX  
    :vr,@1c  
    % Check normalization: 2ReulL8j  
    % -------------------- kj8zWG4KH  
    if nargin==5 && ischar(nflag) \uYUX~}i"  
        isnorm = strcmpi(nflag,'norm'); = MXF`k^}  
        if ~isnorm <V, ?!}V  
            error('zernfun:normalization','Unrecognized normalization flag.') ! Q#b4f  
        end 3xe8DD  
    else eS"gHldz  
        isnorm = false; OBZ|W**N"  
    end a~%ej.)l  
    A/QVotcU  
    <|8 l;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m^=, RfUUd  
    % Compute the Zernike Polynomials X1-s,[j'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oY] VP+b!  
    {)[i\=,`{  
    -3V~YhG  
    % Determine the required powers of r: <,GHy/u\  
    % ----------------------------------- q5 A+%#  
    m_abs = abs(m); -r2cK{Hhp&  
    rpowers = []; wx!*fy4hL  
    for j = 1:length(n) d#*5U9\z  
        rpowers = [rpowers m_abs(j):2:n(j)]; zm:=d>D..  
    end e!8_3BE  
    rpowers = unique(rpowers); 6?lg 6a/eO  
    Yyo|W;a]  
    {aL$vgYT1  
    % Pre-compute the values of r raised to the required powers, 98]t"ny [  
    % and compile them in a matrix: <Z;7=k  
    % ----------------------------- G225Nz;Y*  
    if rpowers(1)==0 `SW " RLS3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GKSy|z  
        rpowern = cat(2,rpowern{:}); RmQt%a7\{  
        rpowern = [ones(length_r,1) rpowern]; VB#31T#q?  
    else vP4Ij  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cg.e(@(  
        rpowern = cat(2,rpowern{:}); ^ZlV1G;/W@  
    end g#:XN  
    v;Dcq  
    16y$;kf8  
    % Compute the values of the polynomials: kziBHis!  
    % -------------------------------------- #R8l"]fxr?  
    y = zeros(length_r,length(n)); ]Yu+M3Fq  
    for j = 1:length(n) -FR;:  
        s = 0:(n(j)-m_abs(j))/2; vw]nqS~N  
        pows = n(j):-2:m_abs(j); D5>~'N3b  
        for k = length(s):-1:1 <f6PULm  
            p = (1-2*mod(s(k),2))* ... tb{{oxa,k  
                       prod(2:(n(j)-s(k)))/              ... _pGviGR  
                       prod(2:s(k))/                     ... FNM"!z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >l1Yhxd_0*  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h%s  
            idx = (pows(k)==rpowers); T/;hIX:R  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \.a .'l  
        end nc~d*K\!  
         [J`G`s!  
        if isnorm Zsogx}i-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B|=maz:_  
        end N]}+F w\5  
    end +I n"OR%  
    % END: Compute the Zernike Polynomials 2S6EDXc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ug,|'<G+  
    RG3G},Q   
    t"p#ii a  
    % Compute the Zernike functions: wKlCx  
    % ------------------------------ yTt (fn:;  
    idx_pos = m>0; } XU:DE  
    idx_neg = m<0; --YUiNhh  
    S1`0d9ds#  
    &U*J{OP|  
    z = y; BDRVT Y(s  
    if any(idx_pos) ()#tR^T  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &i^NStqu  
    end ?1:/ 6  
    if any(idx_neg) @!/fvP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); DB%AO:8  
    end pf@}4PN}  
    (I ds<n"  
    VQ<i$ I  
    % EOF zernfun zlztF$Bo  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Ld\LKwo  
    /lr1hW~Dbk  
    DDE还是手动输入的呢? yE.495  
    sb}K%-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)