下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [q_Yf!(m-
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DhB:8/J
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? |!&,etu
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2t[inzn=E
A0&~U0*(~
(VC_vz-
o5zth^p[
o F@{&
function z = zernfun(n,m,r,theta,nflag) dJCu`34Y'|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,=K!Y TeVl
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SDTX0v
% and angular frequency M, evaluated at positions (R,THETA) on the }g(aZ
% unit circle. N is a vector of positive integers (including 0), and %OW[rbE.
% M is a vector with the same number of elements as N. Each element Tk+\Biq
% k of M must be a positive integer, with possible values M(k) = -N(k) n>! E ]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b_][Jye&P
% and THETA is a vector of angles. R and THETA must have the same 9}3W0F;
% length. The output Z is a matrix with one column for every (N,M) zW+Y{^hf
% pair, and one row for every (R,THETA) pair. MA"iM+Ar
% v "oO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a}e7Q<cGj
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qf7.Sh
% with delta(m,0) the Kronecker delta, is chosen so that the integral "hQV\|!\
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {|>~#a49h
% and theta=0 to theta=2*pi) is unity. For the non-normalized tT'd]
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %yptML9
% W%Um:C\I
% The Zernike functions are an orthogonal basis on the unit circle.
)5]z[sE
% They are used in disciplines such as astronomy, optics, and HlV3rYh
% optometry to describe functions on a circular domain. 36lIV,YnU
% gR1X@j$_
% The following table lists the first 15 Zernike functions. BPi>SI0
% u4Vc:n
% n m Zernike function Normalization 8l)l9;4 6
% -------------------------------------------------- J"[OH,/_
% 0 0 1 1 hRA.u'M
% 1 1 r * cos(theta) 2 B&L{/.v_z\
% 1 -1 r * sin(theta) 2 @#o$~'my
% 2 -2 r^2 * cos(2*theta) sqrt(6) @W^g(I(w
% 2 0 (2*r^2 - 1) sqrt(3) ydlH6 >
% 2 2 r^2 * sin(2*theta) sqrt(6) 4e*0kItC
% 3 -3 r^3 * cos(3*theta) sqrt(8) uw]e$,x?
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) u5idH),<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) SxQ|1:i%
% 3 3 r^3 * sin(3*theta) sqrt(8) #|$7. e
% 4 -4 r^4 * cos(4*theta) sqrt(10) 0<i~XN0g
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iY(hGlV
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Y*"%;e$tg
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +mxs jcq0
% 4 4 r^4 * sin(4*theta) sqrt(10) -=g`7^qa>
% -------------------------------------------------- Jl5<9x
% rJNf&x%6
% Example 1: c#G(7. 0MU
% H|,{^b@9
% % Display the Zernike function Z(n=5,m=1) q
F}5mUcZ4
% x = -1:0.01:1; N ~LR
% [X,Y] = meshgrid(x,x); JWxPH5L
% [theta,r] = cart2pol(X,Y); $p9XXZ"*
% idx = r<=1; ` D4J9;|;]
% z = nan(size(X)); <v{jJ7w
% z(idx) = zernfun(5,1,r(idx),theta(idx)); O|gb{
% figure /CZOO)n
% pcolor(x,x,z), shading interp WUqAPN
% axis square, colorbar +)7NWR\
% title('Zernike function Z_5^1(r,\theta)') bNL E=#ro
% !`aodz*PO
% Example 2: 3a#!^G!~
% />n0&~k[h
% % Display the first 10 Zernike functions 1,pg:=N9
% x = -1:0.01:1; oxad}Y
% [X,Y] = meshgrid(x,x); Kfj*#)SZ
% [theta,r] = cart2pol(X,Y); X^@d@xU4v
% idx = r<=1; #b8/gRfS
% z = nan(size(X)); o/&:w z
% n = [0 1 1 2 2 2 3 3 3 3]; %/>_o{"hw
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; m+vwp\0
% Nplot = [4 10 12 16 18 20 22 24 26 28]; +osY
iP5
% y = zernfun(n,m,r(idx),theta(idx)); 5-&P4
% figure('Units','normalized') :;|x'[JoE?
% for k = 1:10 /
Sp+MB9
% z(idx) = y(:,k); Dxu)by
% subplot(4,7,Nplot(k)) n09|Jzv9
% pcolor(x,x,z), shading interp QeQbO
% set(gca,'XTick',[],'YTick',[]) #Io#OG<7b
% axis square N;D+]_;0|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]_-$
% end A"P1B]
% OPjscc5
% See also ZERNPOL, ZERNFUN2. p]a IMF_
''WX
q$HBPR4h
% Paul Fricker 11/13/2006 kW(8i}bg
hA~}6Qn
DSnsi@Mi
?pxx,o6l
as\V,
{<
% Check and prepare the inputs: m1`ln5(R
% ----------------------------- :!#-k
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) XBeHyQp
error('zernfun:NMvectors','N and M must be vectors.') Uz62!)
end v'iQLUgI
_e-a>y
o= 8yp2vG
if length(n)~=length(m) 4
A
error('zernfun:NMlength','N and M must be the same length.') ?dTz?C.w
end Lh. L~M1X
Dljq
?s_q|d_
n = n(:); ()SG
m = m(:); T
if any(mod(n-m,2)) g xLA1]>{
error('zernfun:NMmultiplesof2', ... O=+C Kx@
'All N and M must differ by multiples of 2 (including 0).') _R8-Hj E
end r2hm`]\8M
"oTwMU
b0&dpMgh:
if any(m>n) D)!k
error('zernfun:MlessthanN', ... '~a!~F~>
'Each M must be less than or equal to its corresponding N.') xAoozDj
end ]#J]f
*.K}`89T
c(eu[vj:
if any( r>1 | r<0 ) 5\a5^FK~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2[:`w),.
end _mn4z+
LAvAjvRc
QP qa\87
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7aU*7!U
error('zernfun:RTHvector','R and THETA must be vectors.') 3*'!,gK~[
end I)sCWC:Mq~
6DExsB~@
9> (8r+
r = r(:); EGa}ml/G
theta = theta(:); Uh7kB`2
length_r = length(r); t[DXG2&
if length_r~=length(theta) H-S28%.
error('zernfun:RTHlength', ... K1 $Z=]a+
'The number of R- and THETA-values must be equal.') a1j6-p
end &-{4JSII
+^%F8GB
{X<tUco
% Check normalization: aFbA=6
% -------------------- d:j$!@o
if nargin==5 && ischar(nflag) 'DKP-R"
isnorm = strcmpi(nflag,'norm'); q_I ''L
if ~isnorm 9x:c"S*
error('zernfun:normalization','Unrecognized normalization flag.') `5gcc7b
end MbJV)*Q
else muY4:F.C(
isnorm = false; b0
5h,
end J M`uIVnNA
XCk \#(VSE
uEk$Y=p7!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kj}}O2
% Compute the Zernike Polynomials i|2Q}$3t2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /FQumqbnt
"V^(i%E;
6T)D6;@L
% Determine the required powers of r: jF'S"_/?
% ----------------------------------- jd$lu^>I
m_abs = abs(m); Yr0%ZYfN
rpowers = []; z43 H]
for j = 1:length(n) x2tx{Z
rpowers = [rpowers m_abs(j):2:n(j)]; WJhI6lu
end 4sG^bZ,
rpowers = unique(rpowers); qf'uXH
6@nE cr
/y1,w JI
% Pre-compute the values of r raised to the required powers, ,(]hykbXp
% and compile them in a matrix: zfvl<"Rv
% ----------------------------- yA6"8fr
if rpowers(1)==0 F|Ou5WD
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fv}h;?C
rpowern = cat(2,rpowern{:}); (B[0BjU
rpowern = [ones(length_r,1) rpowern]; p6>3
p
else ?-Oy/Y K
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Dd:Qotu
rpowern = cat(2,rpowern{:}); #N7@p}P
end $n>.;CV
9.>v
;:vL
XN??^1{J}]
% Compute the values of the polynomials: M$|^?U>cm
% -------------------------------------- S _1R]n1/
y = zeros(length_r,length(n)); ^e)KEkh
for j = 1:length(n) m~%IHWO'
s = 0:(n(j)-m_abs(j))/2; z0doLb^!
pows = n(j):-2:m_abs(j); F4KXx^~o
for k = length(s):-1:1 bluhiiATd
p = (1-2*mod(s(k),2))* ... ECQ>VeP
prod(2:(n(j)-s(k)))/ ... Z^s&]
prod(2:s(k))/ ... sJMT _yt;
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Fvl_5 l
prod(2:((n(j)+m_abs(j))/2-s(k))); >u~
l_?
idx = (pows(k)==rpowers); tP7l
;EX4
y(:,j) = y(:,j) + p*rpowern(:,idx); 0~)cAKus
end L%I@HB9-Q0
n:' Mpux
if isnorm ..;}EFw5
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \M<C6m5
end F0])g
end ?%#3p[
% END: Compute the Zernike Polynomials xyBWV]Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .kyp5CD}4
%^kBcId
0LN"azhz
% Compute the Zernike functions: SfEgmp-m
% ------------------------------ 48W$,
idx_pos = m>0; X\V1c$13CK
idx_neg = m<0; ~#pQWa5
bw&8"k>D?
Y{6y.F*Q#
z = y; Gdb6 U{
if any(idx_pos) lN-vFna
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {p=`"H>
end OXT 5
y)
if any(idx_neg) NirG99kyo
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2mRm.e9?
end criOJ-
W0R<^5_
au1uFu-
% EOF zernfun \u9l4