下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #BS]wj2#
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :EgdV
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? PL~k
`L
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? UShn)3F
R,Zuy(g
(m;P,*
]&/jvA=\l,
};o R x)
function z = zernfun(n,m,r,theta,nflag) 3\=8tg p
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. C*Ws6s>+z
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N IX7d[nm39
% and angular frequency M, evaluated at positions (R,THETA) on the mMN oR]
% unit circle. N is a vector of positive integers (including 0), and C,2IET
% M is a vector with the same number of elements as N. Each element ~$r^Ur!E\
% k of M must be a positive integer, with possible values M(k) = -N(k) ^e@c
Ozt
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, W}L=JJo},
% and THETA is a vector of angles. R and THETA must have the same lG#&Pv>-
% length. The output Z is a matrix with one column for every (N,M) sbK0OA
% pair, and one row for every (R,THETA) pair. q4Ye
% /oiAAB27
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %J.Rm0FD:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W\eB
% with delta(m,0) the Kronecker delta, is chosen so that the integral !c6lP'U
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3 tXtt@Yy
% and theta=0 to theta=2*pi) is unity. For the non-normalized z*yN*M6t
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ! FHNKh
% ](MXP,R
% The Zernike functions are an orthogonal basis on the unit circle. 5\|[)~b
% They are used in disciplines such as astronomy, optics, and }QJE9;<e
% optometry to describe functions on a circular domain. Y2<#%@%4
% *<9 D]
% The following table lists the first 15 Zernike functions. J=zZGd%
% nWXI*%m5
% n m Zernike function Normalization K:'pK1zy
% -------------------------------------------------- |lJXI:GG
% 0 0 1 1 ?'T>/<(
% 1 1 r * cos(theta) 2 00;=6q]TA
% 1 -1 r * sin(theta) 2 $6y1';A
% 2 -2 r^2 * cos(2*theta) sqrt(6) D<xP x
% 2 0 (2*r^2 - 1) sqrt(3) .\U+`>4av
% 2 2 r^2 * sin(2*theta) sqrt(6) ybS7uo
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~-M7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) bO2$0!=I
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) EiJSLL
% 3 3 r^3 * sin(3*theta) sqrt(8) T$}<So|
% 4 -4 r^4 * cos(4*theta) sqrt(10) f[|xp?ef
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d=>5%$:v
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :hMuxHr
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |qI_9#M\(
% 4 4 r^4 * sin(4*theta) sqrt(10) %J|EDf,M
% -------------------------------------------------- &q":o 'q
% #G*z{BRQ
% Example 1: gVG :z_6
% i}wu+<Mk
% % Display the Zernike function Z(n=5,m=1) <EBp X
% x = -1:0.01:1; H[>_LYZ8
% [X,Y] = meshgrid(x,x); }1_gemlf
% [theta,r] = cart2pol(X,Y); i( c2NPbX
% idx = r<=1; MH !CzV&
% z = nan(size(X)); 5lU`o
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 6eS#L2 1*
% figure B1LnuB%
% pcolor(x,x,z), shading interp r`S]`&#}(
% axis square, colorbar hlUF9}
% title('Zernike function Z_5^1(r,\theta)') bM-Y4[
% k*-+@U"+
% Example 2: ?<nz2 piP,
% }>Os@]*'^(
% % Display the first 10 Zernike functions KO5Q;H
% x = -1:0.01:1; DJ<c
% [X,Y] = meshgrid(x,x); 'm2,7]
% [theta,r] = cart2pol(X,Y); cA/2,i
% idx = r<=1; ^ g4)aaBZ
% z = nan(size(X)); s#d# *pgzh
% n = [0 1 1 2 2 2 3 3 3 3]; *g=*}2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Q]|+Y0y}X
% Nplot = [4 10 12 16 18 20 22 24 26 28]; VS}Vl
% y = zernfun(n,m,r(idx),theta(idx)); !4 hs9b
% figure('Units','normalized') Aga7X@fV(
% for k = 1:10 _aDx('
% z(idx) = y(:,k); ~Yr.0i.W
% subplot(4,7,Nplot(k)) N@A#e/8
% pcolor(x,x,z), shading interp Jhj]rsGk
% set(gca,'XTick',[],'YTick',[]) [{ zekF~)@
% axis square qlgh$9
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <v2R6cj5
% end {;-$;\D
% 2XXEg>CU
% See also ZERNPOL, ZERNFUN2. >K
&b,o,[
u5,IH2BU
O!j@8~='
% Paul Fricker 11/13/2006 $K,aLcu
:JN3@NsK
d@w
I:
7
Jz|(B_U
Lte\;Se.tu
% Check and prepare the inputs: F;_;lRAb
% ----------------------------- u#P7~9ZG-
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '8Gw{&&
error('zernfun:NMvectors','N and M must be vectors.') j2\G1@05
end t*<c+Ixu
XG[%oL
1/fvk
if length(n)~=length(m) nut7b
error('zernfun:NMlength','N and M must be the same length.') ,>g
6OU2~6
end *Z0}0<
D@Z
5$#<z1M.&
UbYKiLDF)
n = n(:); Ec[:6}
m = m(:); A%2!Hr
if any(mod(n-m,2)) xj~6,;83xR
error('zernfun:NMmultiplesof2', ... {Ise (>V
'All N and M must differ by multiples of 2 (including 0).') ^{Vm,nAQqs
end stDn{x.
Th8Q~*v
[cH/Y2[
if any(m>n) mb/3
#)
error('zernfun:MlessthanN', ... .DX#:?@4@Y
'Each M must be less than or equal to its corresponding N.') ~kHir]jc
end %EpK=;51U
3gM{lS}h#
E?zp?t:a
if any( r>1 | r<0 ) H}$#aXEAn
error('zernfun:Rlessthan1','All R must be between 0 and 1.') lu{}j4
end P*LcWrK
'0=U+Egp
l-Xxv
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NMDNls&)k
error('zernfun:RTHvector','R and THETA must be vectors.') 7]^Cg;EtM:
end eGE%c1H9a
|'J3"am'
hh?'tb{
r = r(:); =?2y
<B
theta = theta(:); lfKknp#B/O
length_r = length(r); *H$nydQ:
if length_r~=length(theta) /qCYNwWH9
error('zernfun:RTHlength', ... H{V-C_
'The number of R- and THETA-values must be equal.') G]S E
A
end PU>;4l
m=K XMX
:vr,@1c
% Check normalization: 2ReulL8j
% -------------------- kj8zWG4KH
if nargin==5 && ischar(nflag) \uYUX~}i"
isnorm = strcmpi(nflag,'norm'); =MXF`k^}
if ~isnorm <V,?!}V
error('zernfun:normalization','Unrecognized normalization flag.') !Q#b4 f
end 3xe8DD
else eS"gHldz
isnorm = false; OBZ |W**N"
end a~%ej.)l
A/QVotcU
<|8l ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m^=,
RfUUd
% Compute the Zernike Polynomials X1-s,[j'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oY]VP+b!
{)[i\=,`{
-3V~YhG
% Determine the required powers of r: <,GHy/u\
% ----------------------------------- q5A+%#
m_abs = abs(m); -r2cK{Hhp&
rpowers = []; wx!*fy4hL
for j = 1:length(n) d#*5U9\z
rpowers = [rpowers m_abs(j):2:n(j)]; zm:=d>D..
end e!8_3BE
rpowers = unique(rpowers); 6?lg
6a/eO
Yyo|W;a]
{aL$vgYT1
% Pre-compute the values of r raised to the required powers, 98]t"ny [
% and compile them in a matrix: <Z;7=k
% ----------------------------- G225Nz;Y*
if rpowers(1)==0 `SW
" RLS3
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GKS y|z
rpowern = cat(2,rpowern{:}); RmQt%a7\{
rpowern = [ones(length_r,1) rpowern]; VB#31T#q?
else vP4Ij
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cg.e(@(
rpowern = cat(2,rpowern{:}); ^ZlV1G;/W@
end g#:XN
v;Dcq
16y$;kf8
% Compute the values of the polynomials: kziBHis!
% -------------------------------------- #R8l"]fxr?
y = zeros(length_r,length(n)); ]Yu+M3Fq
for j = 1:length(n) -FR ;:
s = 0:(n(j)-m_abs(j))/2; vw]nqS~N
pows = n(j):-2:m_abs(j); D5>~'N3b
for k = length(s):-1:1 <f6PULm
p = (1-2*mod(s(k),2))* ... tb{{oxa,k
prod(2:(n(j)-s(k)))/ ... _pGviGR
prod(2:s(k))/ ... FNM"!z
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >l1Yhxd_0*
prod(2:((n(j)+m_abs(j))/2-s(k))); h %s
idx = (pows(k)==rpowers); T/;hIX:R
y(:,j) = y(:,j) + p*rpowern(:,idx); \.a .'l
end nc~d*K\!
[J`G`s!
if isnorm Zsogx}i-
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B|=maz:_
end N]}+F w\5
end +I n"OR%
% END: Compute the Zernike Polynomials 2S6EDXc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ug,|'<G+
RG3G},Q
t"p#iia
% Compute the Zernike functions: wKlCx
% ------------------------------ yTt (fn:;
idx_pos = m>0; } XU:DE
idx_neg = m<0; --YUiNhh
S1`0d9ds#
&U*J{OP|
z = y; BDRVT Y(s
if any(idx_pos) ()#tR^T
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &i^NStqu
end ?1:/
6
if any(idx_neg) @!/fvP
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); DB%AO:8
end pf@}4PN}
(I
ds<n"
VQ<i$ I
% EOF zernfun zlztF$Bo