下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, /~*_x=p:
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y!iZW
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _@S`5;4x
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kmzH'wktt
W>-Et7&2
"&Po,AWa
ctE\ q
^B8b%'\
function z = zernfun(n,m,r,theta,nflag) |5Xq0nvCe
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =UyLk-P
w
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lHgs;>U$
% and angular frequency M, evaluated at positions (R,THETA) on the ca+5=+X7
% unit circle. N is a vector of positive integers (including 0), and N F)~W#
% M is a vector with the same number of elements as N. Each element :
]C~gc
% k of M must be a positive integer, with possible values M(k) = -N(k) >EY3/Go>
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !K|5bK
% and THETA is a vector of angles. R and THETA must have the same 6{=\7AY
% length. The output Z is a matrix with one column for every (N,M) "DYJ21Ut4
% pair, and one row for every (R,THETA) pair. w@,zFV
% sQkhwMg
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5\z`-)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]+X@
7
% with delta(m,0) the Kronecker delta, is chosen so that the integral T=ev[ mS
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 21"1NJzP
% and theta=0 to theta=2*pi) is unity. For the non-normalized Bve.C
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. gEjdN.
% F6z%VWU
% The Zernike functions are an orthogonal basis on the unit circle. eio4k-
% They are used in disciplines such as astronomy, optics, and &Xf}8^T<V
% optometry to describe functions on a circular domain. .SWlp2!M5
% A}l3cP;
`#
% The following table lists the first 15 Zernike functions. q@{Bt{$x
% v/ _
% n m Zernike function Normalization u A<n
% -------------------------------------------------- kDsFR#w&`
% 0 0 1 1 Z.L c>7o
% 1 1 r * cos(theta) 2 ^~etm
% 1 -1 r * sin(theta) 2 ZP(f3X@
% 2 -2 r^2 * cos(2*theta) sqrt(6) u ,KD4{!
% 2 0 (2*r^2 - 1) sqrt(3) 5?x>9Ca
% 2 2 r^2 * sin(2*theta) sqrt(6) iUN Ib
% 3 -3 r^3 * cos(3*theta) sqrt(8) cz8T
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'd9INz.
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;>Ib^ov
% 3 3 r^3 * sin(3*theta) sqrt(8) 1ukTA@Rj&
% 4 -4 r^4 * cos(4*theta) sqrt(10) eceP0x
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JxM]9<a=4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 7fZDsj:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nWw":K<@Q_
% 4 4 r^4 * sin(4*theta) sqrt(10) &OH={Au
% -------------------------------------------------- K &N
% 3EPv"f^V
% Example 1: sYI-5D]
% X}Ai-D
% % Display the Zernike function Z(n=5,m=1) QTk}h_<u
% x = -1:0.01:1; wfLaRP
% [X,Y] = meshgrid(x,x); 0AL=S$B)
% [theta,r] = cart2pol(X,Y); *RJG!t*t
% idx = r<=1; -&zZtDd F
% z = nan(size(X)); s"r*YlSp"
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Ng2twfSl$
% figure 52Z2]T
c,
% pcolor(x,x,z), shading interp h-`? {k&e
% axis square, colorbar *k.G5>@
% title('Zernike function Z_5^1(r,\theta)') kTOzSiq
% KQ% GIz x
% Example 2: Z>k#n'm^z
% ?]_$Dcmx
% % Display the first 10 Zernike functions h+g_rvIG*
% x = -1:0.01:1; l<58A7
% [X,Y] = meshgrid(x,x); 6H.0vN&
% [theta,r] = cart2pol(X,Y); Rq'S>#e
% idx = r<=1; #wwH m3
% z = nan(size(X)); XpB_N{v9w
% n = [0 1 1 2 2 2 3 3 3 3]; a/4T>eC
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 'uSn}hm
% Nplot = [4 10 12 16 18 20 22 24 26 28]; +SR+gE\s0
% y = zernfun(n,m,r(idx),theta(idx)); _^Ubs>d=*
% figure('Units','normalized') ;#W2|'HD
% for k = 1:10 24 ' J
% z(idx) = y(:,k); )4 e.k$X^
% subplot(4,7,Nplot(k)) |.: q
% pcolor(x,x,z), shading interp cKca;SNql1
% set(gca,'XTick',[],'YTick',[]) i
&nSh ]KK
% axis square i+ ?^8#
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KxJ!,F{>H
% end 3wF;GG
% )hsgC'H{~]
% See also ZERNPOL, ZERNFUN2. ,f%S'(>w
.5_2zat0H
<44G]eb
% Paul Fricker 11/13/2006 N)X3XTY
Qz1E 2yJ
A:%`wX}
i>`%TW:g
q"lSZ;
'E
% Check and prepare the inputs: k(nW#*N_
% ----------------------------- /{g>nzP
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z43M]P<
error('zernfun:NMvectors','N and M must be vectors.') [q[Y~1o/&H
end j3V
-LnA
Ax7[;|2
%J?xRv!
if length(n)~=length(m) +~$ ]}%
error('zernfun:NMlength','N and M must be the same length.') YK'<NE3 4
end *i%.;Z"
T.BW H2gRP
f}P3O3Yv&
n = n(:); R
'zWYQ
m = m(:); ^\=`edN 0
if any(mod(n-m,2)) "ze|W\Bv!
error('zernfun:NMmultiplesof2', ... ?+@?Up0wGO
'All N and M must differ by multiples of 2 (including 0).') .M%}X7
end 7R\<inCQ
;?p>e'
sDlO#
if any(m>n) 3F2w-+L
error('zernfun:MlessthanN', ... VpDbHAg
'Each M must be less than or equal to its corresponding N.') 5U$0F$BBp
end m;QMQeGz
!Wnb|=j
8<Av@9 *}
if any( r>1 | r<0 ) 2FJ*f/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') '~=SzO
end b8 likP"T
vl:KF7:#m
%Q|Atgp
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?6WY:Zec@
error('zernfun:RTHvector','R and THETA must be vectors.') SO!8Di
end pW3^X=6
0 kW,I
X'iWJ8
r = r(:); vEJbA
theta = theta(:); 9\7en%( M
length_r = length(r); i9x+A/o[
if length_r~=length(theta) Q^")jPd
error('zernfun:RTHlength', ... G4"F+%.
'The number of R- and THETA-values must be equal.') I; rGD^
end = dN@Sa/
utV_W&
EADqC>
% Check normalization: 0o&5]lEe
% -------------------- l*G[!u
if nargin==5 && ischar(nflag) 7@W>E;go
isnorm = strcmpi(nflag,'norm'); (#c:b
if ~isnorm vnuN6M{
error('zernfun:normalization','Unrecognized normalization flag.') JB<t6+"rD
end CU!Dhm/U
else
El8,,E
isnorm = false; y?3;06y|
end )vlhN2iv
wUJcmM;
k+*u/neh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J#83 0r(-
% Compute the Zernike Polynomials
[dz _R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2&cT~ZX&'
v`T
c}c '
<1TAw.
% Determine the required powers of r: #KvlYZ+1
% ----------------------------------- 'V>-QD%1
m_abs = abs(m); uPvEwq*
C
rpowers = []; CTmT@A{
for j = 1:length(n) Dw"\/p:-3
rpowers = [rpowers m_abs(j):2:n(j)]; Q/Rqa5LI:
end %BQ`MZ
rpowers = unique(rpowers); uXiN~j &Be
|I=T@1_D
gRzxLf`K
% Pre-compute the values of r raised to the required powers, ! 8b^,
% and compile them in a matrix: 3OB"#Ap8<
% ----------------------------- yf,z$CR
if rpowers(1)==0 ~}Pfu
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Vjpy~iP4B
rpowern = cat(2,rpowern{:}); %z$#6?OK^
rpowern = [ones(length_r,1) rpowern]; !VzC&>'v^9
else "J1
4C9u
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1\.pMHv/
rpowern = cat(2,rpowern{:}); h2QmQ>y"
end CvdN"k
glw+l'@
/mZE/>&~,
% Compute the values of the polynomials: ),!qTjD
% -------------------------------------- =EsavN
y = zeros(length_r,length(n)); xyxy`qR A
for j = 1:length(n) _"{Xi2@H
s = 0:(n(j)-m_abs(j))/2; }-`4DHgq
pows = n(j):-2:m_abs(j); E" vS $
for k = length(s):-1:1 !n%j)`0M
p = (1-2*mod(s(k),2))* ... E*lxVua
prod(2:(n(j)-s(k)))/ ... [N'h%1]\
prod(2:s(k))/ ... QsW/X0YBv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jb)ZLA;L_c
prod(2:((n(j)+m_abs(j))/2-s(k))); y)<q/
idx = (pows(k)==rpowers); R|Q?KCI&
y(:,j) = y(:,j) + p*rpowern(:,idx); phz&zlD
end `H+lPM66
&nK<:^n
if isnorm P2nu;I_&
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2Z%O7V~u
end J~- 4C)
end <oeIcN7d
% END: Compute the Zernike Polynomials *z2s$EZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LH6vLuf
~QVH<`sn
F:ELPs4"
% Compute the Zernike functions: wKHBAW[i]
% ------------------------------ Ir]\|t
idx_pos = m>0; :gC#hmm^
idx_neg = m<0; :v 4]D4\o
4GM6)"#d
V43H/hl
z = y; :Tq~8!s
if any(idx_pos) !!y a
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =R\]=cRbg
end DTs;{c
if any(idx_neg) eDB ;cN
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i6N',&jFU
end {>;R?TG]$
QS j]ZA
C7?/%7{
% EOF zernfun azU"G(6y?+