切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9258阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, \<LCp;- K  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -H-U8/WC  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -/Q5?0z  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? D#g -mqar:  
    6>vR5pn  
    U%q)T61  
    #dauXUKH  
    wNf:_^|}  
    function z = zernfun(n,m,r,theta,nflag) 8Y`Lq$u  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. F]$ Nu  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m%HT)`>bg  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 2f,8Jnia  
    %   unit circle.  N is a vector of positive integers (including 0), and dN{At-  
    %   M is a vector with the same number of elements as N.  Each element VE |:k:};  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) noZbsI4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, O=0p}{3l  
    %   and THETA is a vector of angles.  R and THETA must have the same b fxE}>  
    %   length.  The output Z is a matrix with one column for every (N,M) Y 6a`{'  
    %   pair, and one row for every (R,THETA) pair. Kr}RFJ"d  
    % r&u1-%%9[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |Xso}Y{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m eF7[>!U  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral W5|{A])N  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t~+M>Fjm?d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =M\yh,s!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. fv;Q*; oC&  
    % V6g*"e/8  
    %   The Zernike functions are an orthogonal basis on the unit circle. QQJGqM3a2  
    %   They are used in disciplines such as astronomy, optics, and AiqKf=  
    %   optometry to describe functions on a circular domain.  ?8>a;0  
    % XcJ5KTn  
    %   The following table lists the first 15 Zernike functions. N63?4'_W  
    % #VQZ"7nI@  
    %       n    m    Zernike function           Normalization *p{p.%Qs:  
    %       -------------------------------------------------- |~9rak,  
    %       0    0    1                                 1 vXJs.)D7  
    %       1    1    r * cos(theta)                    2 Jf^3nBZ  
    %       1   -1    r * sin(theta)                    2 zEQ]5>mG  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^twyy9VR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /X}1%p  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ql?w6qFs]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {v"f){   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ZU\$x<,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) z teu{0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) v^9eTeFO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Es=G' au  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  ][ $UN  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [v1$L p  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4 ]oe`yx  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `,O7S9]R+  
    %       -------------------------------------------------- 1jC85^1Taq  
    % )<x9t@$  
    %   Example 1: |~9jO/&r  
    % 2CC"Z  
    %       % Display the Zernike function Z(n=5,m=1) M+t)#O4  
    %       x = -1:0.01:1; z_c-1iXCW  
    %       [X,Y] = meshgrid(x,x); PMQTcQ^  
    %       [theta,r] = cart2pol(X,Y); '/GB8L  
    %       idx = r<=1; p{E(RsA  
    %       z = nan(size(X)); 8@3=SO  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `^#Rwn#  
    %       figure ;MfqI/B{  
    %       pcolor(x,x,z), shading interp }s2CND  
    %       axis square, colorbar ^B.Z3Y  
    %       title('Zernike function Z_5^1(r,\theta)') -Mo4`bN  
    % 4~ x>]  
    %   Example 2: eC/{c1C  
    % cqU6 Y*n  
    %       % Display the first 10 Zernike functions 4K cEJlK5  
    %       x = -1:0.01:1; Zbo4{.#  
    %       [X,Y] = meshgrid(x,x); a`Bp^(f}  
    %       [theta,r] = cart2pol(X,Y); 9Qyc!s`  
    %       idx = r<=1; bK "I9T #  
    %       z = nan(size(X)); B7Ket8<J  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +}jzge"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0\i\G|5  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <MEm+8e/s6  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3[#^$_96b  
    %       figure('Units','normalized') tM LiG4 |7  
    %       for k = 1:10 MJX ny4n  
    %           z(idx) = y(:,k); .#y#u={{l  
    %           subplot(4,7,Nplot(k)) x& _Y( bHA  
    %           pcolor(x,x,z), shading interp WrP+n  
    %           set(gca,'XTick',[],'YTick',[]) xWLZlUHEu  
    %           axis square :V(C+bm *  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /5 z+N(RFC  
    %       end U<Oc&S{]*  
    % WX Fm'5Vr  
    %   See also ZERNPOL, ZERNFUN2. /CALX wL  
    p;4FZ$  
    $2FU<w$5  
    %   Paul Fricker 11/13/2006 +1#;s!e  
    <xBL/e %  
    h.-L_!1B7  
    *6JA&zj0B  
    G;gsDn1t  
    % Check and prepare the inputs: )EMlGM'2q  
    % ----------------------------- {"jtR<{)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (6c/)MH  
        error('zernfun:NMvectors','N and M must be vectors.') q?frt3o  
    end gZHgL7@  
    p#c41_?'e  
    4UbqYl3 |a  
    if length(n)~=length(m) P^o@x,V!&  
        error('zernfun:NMlength','N and M must be the same length.') t7-r YY(  
    end 5[2kk5,  
    koB'Zp/FaY  
    "3_X$`v"!  
    n = n(:); bV:<%l]  
    m = m(:); e R[B0;c  
    if any(mod(n-m,2)) [<r.M<3  
        error('zernfun:NMmultiplesof2', ... 2KO`+  
              'All N and M must differ by multiples of 2 (including 0).') x7B;\D#`i/  
    end j hRr!  
    ['>ZC3?"h  
    ^coCsV^CW"  
    if any(m>n) NJJ=ch  
        error('zernfun:MlessthanN', ... zw'%n+5m  
              'Each M must be less than or equal to its corresponding N.') [ 1G wcXr  
    end 4SUzR\  
    BN&)5M?Xt6  
    &qY]W=9uK  
    if any( r>1 | r<0 ) 7r:&%?2:g  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') RKzO$T  
    end z}}P+P/  
    {KDN|o+%  
    I[rR-4.F]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /7#MJH5b6  
        error('zernfun:RTHvector','R and THETA must be vectors.') _KloX{a  
    end Qu<6X@+5  
    AP z"k?D0  
    #Fo#f<b p  
    r = r(:); %J'/cmR&  
    theta = theta(:); qu#xc0?  
    length_r = length(r); >r X$E<B\  
    if length_r~=length(theta) h#Rza-?"\  
        error('zernfun:RTHlength', ... W3ms8=z  
              'The number of R- and THETA-values must be equal.') Q(A$ >A  
    end IkmEctAU  
    E"[p_ALdC  
    h+Lpj^<2a  
    % Check normalization: 8wO4;  
    % -------------------- q%M~gp1  
    if nargin==5 && ischar(nflag) P )oNNY6}  
        isnorm = strcmpi(nflag,'norm'); ic}TiTK  
        if ~isnorm &tbAXU5$  
            error('zernfun:normalization','Unrecognized normalization flag.') tf54EIy5Y  
        end S;t`C~l\  
    else M^OYQf  
        isnorm = false; xC5Pv">  
    end )^P54_2  
    gT=pO`a  
    5"G-r._  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J:'_S `J  
    % Compute the Zernike Polynomials bLWY Tj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #: [F=2@,A  
    7MZH'nO  
    9BlpqS:P&  
    % Determine the required powers of r: \7h>9}wGf  
    % ----------------------------------- E,ilJl\  
    m_abs = abs(m); $;(@0UDE  
    rpowers = []; H;<>uE Lie  
    for j = 1:length(n) :B=Gb8?  
        rpowers = [rpowers m_abs(j):2:n(j)]; e*`ht+  
    end PPy~dp  
    rpowers = unique(rpowers); -B/'ArOo]  
    [%yj' )R/  
    [;yH.wn#5  
    % Pre-compute the values of r raised to the required powers, _U LzA  
    % and compile them in a matrix: `<~=6H  
    % ----------------------------- 9fs-|E[5  
    if rpowers(1)==0 SAitufS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4 7mT  
        rpowern = cat(2,rpowern{:}); Ri AMW|M"C  
        rpowern = [ones(length_r,1) rpowern]; s8's(*]  
    else cR!M{U.q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /zXOta G  
        rpowern = cat(2,rpowern{:}); 7f k)a  
    end P RUl-v  
    \}4*}Lr  
    XUVj<U  
    % Compute the values of the polynomials: $nW9VMa  
    % -------------------------------------- f|_\GVW  
    y = zeros(length_r,length(n)); fwA8=o SZd  
    for j = 1:length(n) 8oI|Z=  
        s = 0:(n(j)-m_abs(j))/2; x'\C'zeF  
        pows = n(j):-2:m_abs(j); du ~V=%9  
        for k = length(s):-1:1 S[7^#O.)  
            p = (1-2*mod(s(k),2))* ... ig YYkt  
                       prod(2:(n(j)-s(k)))/              ... NZZy^p&O  
                       prod(2:s(k))/                     ... |,=^P` #%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... : qK-Rku  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); hi$AZ+  
            idx = (pows(k)==rpowers); N2HD=[*cr  
            y(:,j) = y(:,j) + p*rpowern(:,idx); iFI+W<QR  
        end _x""-X~OL  
         l(87s^_  
        if isnorm XC;Icr)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }.'rhR+  
        end ^ Lc\{,m  
    end KiI+ V;o  
    % END: Compute the Zernike Polynomials ]&P\|b1*g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + a nsN~3  
    H#V&5|K%  
    uY>M3h#qx  
    % Compute the Zernike functions: w1-P6cf  
    % ------------------------------ N>*+Wg$Ne  
    idx_pos = m>0; XKws_  
    idx_neg = m<0; Pf,@U'f|  
    b+:J?MR;}  
    /RqWrpzx@  
    z = y; H I_uR$m  
    if any(idx_pos) = &pLlG  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -L]-u6kC[  
    end Mh~}RA"H  
    if any(idx_neg) &V~l(1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j-R*!i  
    end |BZrV3;H  
    2'-"&d+ O  
    *IWW,@0  
    % EOF zernfun %aw.o*@:  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  DpT9"?g7  
    sCFxn  
    DDE还是手动输入的呢? pUXoSnIq:  
    U-I,Q+[C[^  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)