切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9178阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )uazB!X  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, uTvck6  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? zrE Dld9  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &pN/+,0E  
    Zd <8c^@  
    !~QmY,R  
    2>'/!/+R  
    A[Pz&\@  
    function z = zernfun(n,m,r,theta,nflag) TKrh3   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {Ax{N  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cwBf((~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the pa2cM%48  
    %   unit circle.  N is a vector of positive integers (including 0), and p^X \~Yibs  
    %   M is a vector with the same number of elements as N.  Each element |P`:NAf2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) B`/p[U5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, MB!$s_~o#L  
    %   and THETA is a vector of angles.  R and THETA must have the same woyeKOr  
    %   length.  The output Z is a matrix with one column for every (N,M) ZuVes?&j  
    %   pair, and one row for every (R,THETA) pair. Xw]L'+V=  
    % gQlL0jAV  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .!yw@kg  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yGX"1Fb?;x  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral FWl'='5L  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RJ~I?{yR0[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized kdp- |9  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +@jX|  
    % 'J(B{B7|  
    %   The Zernike functions are an orthogonal basis on the unit circle. 65AG# O5R  
    %   They are used in disciplines such as astronomy, optics, and D>m!R[!o  
    %   optometry to describe functions on a circular domain. {/K_NSg+h  
    % y)D7!s  
    %   The following table lists the first 15 Zernike functions. oa:30@HSb  
    % Qv/Kbw N{  
    %       n    m    Zernike function           Normalization \zv?r :1t  
    %       -------------------------------------------------- [RFF&uy  
    %       0    0    1                                 1 qb?9i-(  
    %       1    1    r * cos(theta)                    2 d,*#yzO  
    %       1   -1    r * sin(theta)                    2 " twq#Alx  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 1jkMje  
    %       2    0    (2*r^2 - 1)                    sqrt(3) WJF#+)P:Y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) D/Hob  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) L>{p>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WbH#@]+DN  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) mrId`<L5l{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) sEm064  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) I+g[ p  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E'wJ+X9 +  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _NkbB"+L  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QX >Pni  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \&. ]!!Q  
    %       -------------------------------------------------- #t?tt,nc}  
    % eZk4 $y  
    %   Example 1: GEQ3r'B|  
    % L0dj 76'M  
    %       % Display the Zernike function Z(n=5,m=1) I'>r  
    %       x = -1:0.01:1; \SQwIM   
    %       [X,Y] = meshgrid(x,x);  b@m\ca  
    %       [theta,r] = cart2pol(X,Y); t-3y`31i.  
    %       idx = r<=1; p 7eRAQ\'  
    %       z = nan(size(X)); U3 y-cgE  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &(t/4)IZox  
    %       figure 3gNVnmZG  
    %       pcolor(x,x,z), shading interp `D9AtN] R  
    %       axis square, colorbar RT$.r5l_@  
    %       title('Zernike function Z_5^1(r,\theta)') 'v:%} qMv  
    % Fg<rz&MR  
    %   Example 2: SxWK@)tP  
    % Ed+"F{!eQ  
    %       % Display the first 10 Zernike functions +*vg) F:  
    %       x = -1:0.01:1; E[E7GsmqV  
    %       [X,Y] = meshgrid(x,x); Cp[ NVmN  
    %       [theta,r] = cart2pol(X,Y); 5\\a49k.p  
    %       idx = r<=1; 568qdD`PS  
    %       z = nan(size(X)); RJO40&Z<Z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]v,>!~8r  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Vi o ~2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; E"[h20`\/  
    %       y = zernfun(n,m,r(idx),theta(idx)); Mpu8/i gX,  
    %       figure('Units','normalized') #CYDh8X<i  
    %       for k = 1:10 l1MVC@'pvP  
    %           z(idx) = y(:,k); Ln C5"  
    %           subplot(4,7,Nplot(k)) di5>aAJ)D  
    %           pcolor(x,x,z), shading interp $bd2TVNV:  
    %           set(gca,'XTick',[],'YTick',[]) %}0B7_6B+@  
    %           axis square 0}d^UGD  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) H(WRm1i"G  
    %       end Ccx1#^`  
    % 2qkZ B0[  
    %   See also ZERNPOL, ZERNFUN2. g7r_jj%ow  
    k}h\RCy%f  
    !.}ZlA  
    %   Paul Fricker 11/13/2006 GoTJm}[N P  
    "0edk"hk  
    MzudCMF  
    W{z{AxS  
    '|JBA.s|  
    % Check and prepare the inputs: %pk'YA{M)q  
    % ----------------------------- {ICW"R lcs  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~qP_1() ?  
        error('zernfun:NMvectors','N and M must be vectors.') h.ln%6:d  
    end j68_3zpl  
    isiehKkD  
    GZ@`}7b}  
    if length(n)~=length(m) 7Fd`M To  
        error('zernfun:NMlength','N and M must be the same length.') dW`!/OaQD  
    end n^P~]1i   
    |1[3RnG S  
    2V6kCy@V  
    n = n(:); 4`M7 3k0  
    m = m(:); wTw)GV4  
    if any(mod(n-m,2)) ~  WO  
        error('zernfun:NMmultiplesof2', ... AZgeu$:7p<  
              'All N and M must differ by multiples of 2 (including 0).') ccPTJ/%$  
    end CfMCc:8mL  
    ~aZy52H_#.  
    >ukn<  
    if any(m>n) :psP|7%|  
        error('zernfun:MlessthanN', ... i3[%]_eP.  
              'Each M must be less than or equal to its corresponding N.') RL|d-A+;  
    end ^KRe(  
    6 J B"qd  
    c1x{$  
    if any( r>1 | r<0 ) yJRqX]MLA  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') <jwQ&fm)/R  
    end g,61'5\  
    jr`;H  
    uihU)]+@t/  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2f8\Osn>m  
        error('zernfun:RTHvector','R and THETA must be vectors.') DY(pU/q  
    end suF<VJ)&s  
     Z,Z4Sp  
    }8e_  
    r = r(:); R|u2ga ~  
    theta = theta(:); )d$FFTH  
    length_r = length(r); \a7caT{  
    if length_r~=length(theta) r\."=l  
        error('zernfun:RTHlength', ... _yN&+]c  
              'The number of R- and THETA-values must be equal.') M8{J  
    end z?I"[M  
    mQka?_if)  
    92 oUQ EK  
    % Check normalization: y`Nprwb  
    % -------------------- CAT{)*xc  
    if nargin==5 && ischar(nflag) W_bp~Wu  
        isnorm = strcmpi(nflag,'norm'); p-o8Ctc?V  
        if ~isnorm KKcajN  
            error('zernfun:normalization','Unrecognized normalization flag.') \0,8?S  
        end Hq;*T3E  
    else &)ED||r,  
        isnorm = false; 2K VX  
    end ~4V-{-=0a7  
    5>!I6[{  
    _X]\#^UiO2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /:.p{y  
    % Compute the Zernike Polynomials "969F(S$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N eC]MW  
    >*]dB|2  
    Tf{lH9ca$  
    % Determine the required powers of r: s/\<;g:u^  
    % ----------------------------------- k((kx:  
    m_abs = abs(m); f!K{f[aDa  
    rpowers = []; m8,jVR  
    for j = 1:length(n) "%rzL.</  
        rpowers = [rpowers m_abs(j):2:n(j)]; [R(dCq>  
    end nJ2910"<  
    rpowers = unique(rpowers); me YSW  
    K +l-A>Ic  
    "UUoT  
    % Pre-compute the values of r raised to the required powers, ,:6.Gi)|  
    % and compile them in a matrix: @ *&`1  
    % ----------------------------- #9rCF 3P  
    if rpowers(1)==0 AK//]   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "BA&  
        rpowern = cat(2,rpowern{:}); fi  
        rpowern = [ones(length_r,1) rpowern]; :/\KVz'fw}  
    else gHox>r6.A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )u=46EU_  
        rpowern = cat(2,rpowern{:}); '>:%n  
    end `1i\8s&O6@  
    5;CqGzgoP  
    ZfU &X{  
    % Compute the values of the polynomials: ?.g="{5X  
    % -------------------------------------- jP31K{G?  
    y = zeros(length_r,length(n)); 4&<zkAMR  
    for j = 1:length(n) MUi#3o\f  
        s = 0:(n(j)-m_abs(j))/2; Sd *7jW?  
        pows = n(j):-2:m_abs(j); 'NN3XyD  
        for k = length(s):-1:1 p>1Klh:8.'  
            p = (1-2*mod(s(k),2))* ... TUX:[1~Nf[  
                       prod(2:(n(j)-s(k)))/              ... i;<K)5Z  
                       prod(2:s(k))/                     ... 7e:7RAX  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... us )NgG  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); #&Fd16ov  
            idx = (pows(k)==rpowers); {k)H.zwe  
            y(:,j) = y(:,j) + p*rpowern(:,idx); I#- T/1N  
        end o@qI!?p&  
         asJt 6C  
        if isnorm (G 9Ku 8Y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); tN_~zP  
        end fiQ/ &]|5  
    end \79aG3MyK  
    % END: Compute the Zernike Polynomials 2#Y5*r's\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -ze@~Z@  
    X=[`+=  
    tg;AF<VI  
    % Compute the Zernike functions: rW[7 _4  
    % ------------------------------ _/5xtupxE  
    idx_pos = m>0; DG/<#SCF  
    idx_neg = m<0; Q32GI,M%B  
    eo<=Q|nI&  
    7!q.MOYm  
    z = y; mU;\,96#  
    if any(idx_pos) `r+`vJ$  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,%]x T>kH  
    end Z`yW2ON$'  
    if any(idx_neg) k-8$ 43  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); | (: PX  
    end #4{9l SbU  
    /S`d?AV  
    .] BJM?9  
    % EOF zernfun 2KQpmNN  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  p!xCNZ(m  
    V,qc[*_3  
    DDE还是手动输入的呢? zVU{jmS  
    P\R#!+FgW8  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)