下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, kem(U{m
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, l_8ibLyo
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? OT$++cj^
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :."6 g)T
Gd'_X D
Dd,i^,4Gj
|
+uc;[`
UR S=1+
function z = zernfun(n,m,r,theta,nflag) Pp_? z0M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9]lyV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N aT+w6{%Z
% and angular frequency M, evaluated at positions (R,THETA) on the f! )yE`4-
% unit circle. N is a vector of positive integers (including 0), and ]m7x&N2
% M is a vector with the same number of elements as N. Each element ie>mOsz
% k of M must be a positive integer, with possible values M(k) = -N(k) f"NWv!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, hy@b/Y![M
% and THETA is a vector of angles. R and THETA must have the same .<xD'54
% length. The output Z is a matrix with one column for every (N,M) p:eaZ
% pair, and one row for every (R,THETA) pair. Y"^.6
% B52dZ b
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike L@_o*"&j
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 94]i|2qj*
% with delta(m,0) the Kronecker delta, is chosen so that the integral U.b|3E/^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *UXa.kT@
% and theta=0 to theta=2*pi) is unity. For the non-normalized %o0 H#7'
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ${}9/(x/^
% 1'iQlnMO@
% The Zernike functions are an orthogonal basis on the unit circle. 3+
2&9mm
% They are used in disciplines such as astronomy, optics, and k,; (`L
% optometry to describe functions on a circular domain. #JY>
% F1L[C4'
% The following table lists the first 15 Zernike functions. <b\8<mTr
% .7:ecFKk
% n m Zernike function Normalization q_L. Sy|)
% -------------------------------------------------- 1mR@Bh
% 0 0 1 1 -V[!qI
% 1 1 r * cos(theta) 2 p,uM)LD
% 1 -1 r * sin(theta) 2
U z[#ye
% 2 -2 r^2 * cos(2*theta) sqrt(6) 'A\0^EvVv
% 2 0 (2*r^2 - 1) sqrt(3) l<ZHS'-;8
% 2 2 r^2 * sin(2*theta) sqrt(6) (:%t
% 3 -3 r^3 * cos(3*theta) sqrt(8) x9 n(3Oa
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) rY1jC\
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) x{GFCy7
% 3 3 r^3 * sin(3*theta) sqrt(8) +_gA"I
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~?)y'?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0>e]i[P.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) $2blF)uYE
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yS[HYq
% 4 4 r^4 * sin(4*theta) sqrt(10) vq-;wdq?2
% -------------------------------------------------- qK~]au:C
% hx/A215L
% Example 1: L `=*Pwcj
% UlKg2p
% % Display the Zernike function Z(n=5,m=1) L'"c;FF02i
% x = -1:0.01:1; ">S1,rhgS
% [X,Y] = meshgrid(x,x); [a}Idi`
K
% [theta,r] = cart2pol(X,Y); E @Rb+8},"
% idx = r<=1; "gDk?w
% z = nan(size(X)); ;TwqZw[.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); TIaiJvo
% figure olXfR-2>1
% pcolor(x,x,z), shading interp oYJ<.Yxeb
% axis square, colorbar MBU4Awj
% title('Zernike function Z_5^1(r,\theta)') EU'rdG*t/R
% $?VYHkX
% Example 2: U2~|AkL
% [ :Sl~
% % Display the first 10 Zernike functions ]gF=I5jn]
% x = -1:0.01:1; -~H
"zu`
% [X,Y] = meshgrid(x,x); / T_v8{D
% [theta,r] = cart2pol(X,Y); 9#~jlq(
% idx = r<=1; BGOS(
% z = nan(size(X)); 1]A\@(
% n = [0 1 1 2 2 2 3 3 3 3]; Zw%:mZN
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; i~M-V=Zg
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %zDi|WZ
% y = zernfun(n,m,r(idx),theta(idx)); fjuPGg~
% figure('Units','normalized') vkM_a}%<
% for k = 1:10 \8vZZ t
% z(idx) = y(:,k); <;jg/
% subplot(4,7,Nplot(k)) U^DR'X=
% pcolor(x,x,z), shading interp A8AeM`
% set(gca,'XTick',[],'YTick',[]) KF!d?
% axis square Q7UQwAN'
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) AP4s_X+=
% end W3^^aD-
% <KStlfX
% See also ZERNPOL, ZERNFUN2. 8vfC
U9Q[K `
5>=4$!`
% Paul Fricker 11/13/2006 04}c_XFFE
RmOkb~
[[ Nn~7
_6]CT0
{W%XSE
% Check and prepare the inputs: ^?A>)?Sq
% ----------------------------- [p(0g;bx
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W* n|T{n
error('zernfun:NMvectors','N and M must be vectors.') vAOThj)
end 3#\C!T0y
Z]5xy_La
&0d5".|s
if length(n)~=length(m) )]\-Uy$x
error('zernfun:NMlength','N and M must be the same length.') Y
7?q`
end }We-sZ/w7r
Q#&6J =}
w7\
\m9
n = n(:); R[m+s=+
m = m(:); Kv#Q$$)r
if any(mod(n-m,2)) F+W{R+6
error('zernfun:NMmultiplesof2', ... >rYMOC~
'All N and M must differ by multiples of 2 (including 0).') 6\y?+H1
end xsvJjs;=
A-M6MW
@f,/ K1k
if any(m>n) :01B)~^
error('zernfun:MlessthanN', ... 3b`#)y^y?%
'Each M must be less than or equal to its corresponding N.') IL?"g{w
end bcAk$tA2
,WAJ&
'^
(ti E%nF+
if any( r>1 | r<0 ) 3 [O+wVv
error('zernfun:Rlessthan1','All R must be between 0 and 1.') R#rfnP >
end %"|W
qxv
\(zUI
PMQlJ&
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H5CL0#I
error('zernfun:RTHvector','R and THETA must be vectors.') iWkC:fQz
end oTTE<Ct[
Ac}5,
BJp~/H`vd
r = r(:); dkQP.Tj$i
theta = theta(:); `@So6%3Y|
length_r = length(r); ]v+yeGIK S
if length_r~=length(theta) /38XaKc{6
error('zernfun:RTHlength', ... QQ %W3D@
'The number of R- and THETA-values must be equal.') .B!
Z0
end -"x@ V7X
AyOy&]g
8}Q2!,9Q
% Check normalization: meGLT/
% -------------------- :8]y*j
if nargin==5 && ischar(nflag) R\x3'([A5
isnorm = strcmpi(nflag,'norm'); 7IrH(~Fo
if ~isnorm I`x[1%y2 F
error('zernfun:normalization','Unrecognized normalization flag.') IUD@Kf]S
end `1lGAKv
else sdN1BV2
isnorm = false; n-OQCz9Xl
end ,Z8)DC=
ROO@EQ#`Z
TrQUhmS/!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %kP=VUXj
% Compute the Zernike Polynomials [7,q@>:CS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NFqGbA|
L08lkq,
7s Gf_`Z
% Determine the required powers of r: N_l_^yD
% ----------------------------------- F4IU2_CnPD
m_abs = abs(m); C>QWV[F
rpowers = []; k=O
for j = 1:length(n) vz&88jt
rpowers = [rpowers m_abs(j):2:n(j)]; 4v9d&
m!<
end Y<_;8%S
rpowers = unique(rpowers); :4r*Jju<V
)G*xI`(@
q
w@g7
% Pre-compute the values of r raised to the required powers, fT
YlIT9
% and compile them in a matrix: bKEiS8x
% ----------------------------- gSe3S-Lt
if rpowers(1)==0 WYIv&h<h"
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !1Ht{cA0
rpowern = cat(2,rpowern{:}); \p^'[B(O77
rpowern = [ones(length_r,1) rpowern]; ZzxWKIE'c
else FbXur- et^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s(r4m/
rpowern = cat(2,rpowern{:}); {HFx+<JG
end 'LR|DS[Ne
>Sb3]$$
pm[+xM9PB
% Compute the values of the polynomials: \m=k~Cf:f
% -------------------------------------- vhDtjf/*
y = zeros(length_r,length(n)); }]=@Y/p
for j = 1:length(n) N*)O_Ki
s = 0:(n(j)-m_abs(j))/2; OP\L
pows = n(j):-2:m_abs(j); wVX2.D'n<
for k = length(s):-1:1 b.RFvq5Z
p = (1-2*mod(s(k),2))* ... 2rb@Md]dx
prod(2:(n(j)-s(k)))/ ... g8@F/$HY
prod(2:s(k))/ ... FrE#l.)?!
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Mh{>#Gs
prod(2:((n(j)+m_abs(j))/2-s(k))); l(\F2_,2W
idx = (pows(k)==rpowers); ` $q0fTz
y(:,j) = y(:,j) + p*rpowern(:,idx); tq51;L
end I+31:#d
T1'\!6_5
if isnorm ncTMcu
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Y~?Z'uR
end '%YE#1*gH
end )JJF}m=
% END: Compute the Zernike Polynomials <(H<*Xf9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^F&j;8U
~YByyJG
-FJLM
% Compute the Zernike functions: n~ 0MhE0H
% ------------------------------ 7k00lKA\w
idx_pos = m>0; 3[8p,wx
idx_neg = m<0; B:Awy/XMi
lQy-&d|=#^
M27H{}v
z = y; 2\;/mQI2A
if any(idx_pos) /y6I I$AvM
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Sh?eb
end T|0d2aa
if any(idx_neg) Ijk hV
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H!>>|6OPF
end ~Yc!~Rz
[ako8
c _!!DEe7
% EOF zernfun c2?VjuB0