下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, W?X3 :1c9:
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, aDZ] {;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? qUKSo9
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? l" +q&3Zx
y{Vh?Z<E
L=wpZ`@
y
,WtJ&S7?
+~f=L- >
function z = zernfun(n,m,r,theta,nflag) SkyX\&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. G-eSHv
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ciGJtD&P
% and angular frequency M, evaluated at positions (R,THETA) on the ,v_NrX=f?
% unit circle. N is a vector of positive integers (including 0), and Aqo90(jffx
% M is a vector with the same number of elements as N. Each element
e"&QQ-q
% k of M must be a positive integer, with possible values M(k) = -N(k) 3oBR
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1"UHe*2
% and THETA is a vector of angles. R and THETA must have the same ;bRyk#
% length. The output Z is a matrix with one column for every (N,M) :s>x~t8g#n
% pair, and one row for every (R,THETA) pair. oMHTB!A=2
% =Hx]K8N )
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HMmB90P`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a6!|#rt
% with delta(m,0) the Kronecker delta, is chosen so that the integral RZP7h>y6@
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e-*-91D
% and theta=0 to theta=2*pi) is unity. For the non-normalized hO; XJyv
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -mw`f)?Ev
% R'Uf#.
% The Zernike functions are an orthogonal basis on the unit circle. aKz:hG
% They are used in disciplines such as astronomy, optics, and OxqkpK&
% optometry to describe functions on a circular domain. k8 z1AP
% Bu"5NB
% The following table lists the first 15 Zernike functions. 58P[EMhL
% n}/4em?
% n m Zernike function Normalization IR|#]en
% -------------------------------------------------- o>\o=%D.a
% 0 0 1 1 B}0!b7!
% 1 1 r * cos(theta) 2 OJ r~iUr
% 1 -1 r * sin(theta) 2 SM\qd4
% 2 -2 r^2 * cos(2*theta) sqrt(6) n+ S&[Y
% 2 0 (2*r^2 - 1) sqrt(3) z]R%'LGu
% 2 2 r^2 * sin(2*theta) sqrt(6) '9!J' [W
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z): Nd9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9qUkw&}H
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ZlP+t>
% 3 3 r^3 * sin(3*theta) sqrt(8) EYA=fU
% 4 -4 r^4 * cos(4*theta) sqrt(10) <.&84c]/&
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `T{'ufI4B
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0ZJj5<U
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n x{MUN7
% 4 4 r^4 * sin(4*theta) sqrt(10) PU8dr| !
% -------------------------------------------------- 9e Fj+
% ~z)JO'Z$
% Example 1: yxAy1P;dX
% nF$HWp>
% % Display the Zernike function Z(n=5,m=1) J";4+wA7
% x = -1:0.01:1; q _Z+H4
% [X,Y] = meshgrid(x,x); fZrh_^yH
% [theta,r] = cart2pol(X,Y); +QNsI2t;r
% idx = r<=1; glLoYRTi
% z = nan(size(X)); 9g]%}+D
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ")<5VtV
% figure mM:%-I\$
% pcolor(x,x,z), shading interp -iL:D<!Cb_
% axis square, colorbar GSW%~9WBa
% title('Zernike function Z_5^1(r,\theta)') >wb Uxl%{5
%
N'i)s{'
% Example 2: Bj<s!}i{[
% EjMVlZC>
% % Display the first 10 Zernike functions :C2
@!W
z
% x = -1:0.01:1; iBI->xU[U
% [X,Y] = meshgrid(x,x); UE/JV_/S;
% [theta,r] = cart2pol(X,Y); G"w
[>m
% idx = r<=1; O_]hbXV0
% z = nan(size(X)); sUU[QP-
% n = [0 1 1 2 2 2 3 3 3 3]; [+Fajo;0
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; d0-4KN2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }x+6<Rp'E_
% y = zernfun(n,m,r(idx),theta(idx)); +P8CC fPu
% figure('Units','normalized') huW,kk<]y
% for k = 1:10 bi^Pk,'
% z(idx) = y(:,k); u`D _
% subplot(4,7,Nplot(k)) %z=:P{0UQ
% pcolor(x,x,z), shading interp Up6OCF
% set(gca,'XTick',[],'YTick',[]) [!4xInS
% axis square t+_\^Oa)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) p]ujip
% end iI`vu
% U!NuiKaQ26
% See also ZERNPOL, ZERNFUN2. AUu<@4R7
3!$+N\ #w
bv VkN
% Paul Fricker 11/13/2006 {*P[dyu
b.v +5=)B
*V7mM?
2gh=0%|\gx
xy
b=7
% Check and prepare the inputs: 0N~kq-6.\
% ----------------------------- FSm.o?>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3n)$\aBE
error('zernfun:NMvectors','N and M must be vectors.') P;o{t
end ^RO<r}Bu
6<T:B[a-
@HPr;m!
if length(n)~=length(m) Cf9{lhE8
error('zernfun:NMlength','N and M must be the same length.') 0KTO)K
end zyhM*eM.7
qajZ~oB{
vbn=ywz
n = n(:); o$eCd{HuX
m = m(:); 2Z%n
"z68
if any(mod(n-m,2)) ^lt2,x
error('zernfun:NMmultiplesof2', ... ^ghYi|kQq
'All N and M must differ by multiples of 2 (including 0).') yo/;@}g}
end =yz"xWH
}Nd1'BVf
G%FZTA6a
if any(m>n) w%s];EE
error('zernfun:MlessthanN', ... 'tY(&&
'Each M must be less than or equal to its corresponding N.') DH%PkGn
end r{^43g?
?'Hd0)yZ
yvj /u
c
if any( r>1 | r<0 ) ]J'TebP=L5
error('zernfun:Rlessthan1','All R must be between 0 and 1.') IdN3Ea]
end rJkJ/9s
u*):
D~A
zWhj>Za
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qFwt^w
error('zernfun:RTHvector','R and THETA must be vectors.') tT>LOI_z
end KILX?Pt[7
f)j*P<V
%~PcJhz
r = r(:); >5#}/G&
theta = theta(:); ~abyjM
length_r = length(r); `_)H aF>/
if length_r~=length(theta) Vy
I\Jmr
error('zernfun:RTHlength', ... Te
L&6F$
'The number of R- and THETA-values must be equal.') ;b*qunJ3L
end n"T ^
Bh'fkW3
'E9{qPLk(
% Check normalization: EW(bM^dk}
% -------------------- lYCvYe
if nargin==5 && ischar(nflag) !#_2 ![
isnorm = strcmpi(nflag,'norm'); +T@BOYhgq
if ~isnorm ]sqLGmUL
error('zernfun:normalization','Unrecognized normalization flag.') p|.5;)%|
end
R%RxF=@
else F`m}RL]g
isnorm = false; >fzyD(>
end c>K]$;}
l;0([_>*j
$uDgBZA\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TDDMx |{
% Compute the Zernike Polynomials e|!'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lQ`=PFh
}n4 T!N
+4_, , I
% Determine the required powers of r: m..ajYSQ
% ----------------------------------- sdZ$3oE.
m_abs = abs(m); K~vJ/9"|R
rpowers = []; DOJydYds
for j = 1:length(n) zplv.cf#q
rpowers = [rpowers m_abs(j):2:n(j)]; FHQ`T\fC$@
end olv?$]
rpowers = unique(rpowers); nK :YbLdK,
vvv'!\'#
'~&W'='b;
% Pre-compute the values of r raised to the required powers, &L$9Ii
% and compile them in a matrix: P.XT1)qo*
% ----------------------------- 4F|79U #
if rpowers(1)==0 4T(d9y
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $ ubU"
rpowern = cat(2,rpowern{:}); F1stRZ1ZI
rpowern = [ones(length_r,1) rpowern]; GNMOHqg4
else O|,9EOrP
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); i`2SebDj'w
rpowern = cat(2,rpowern{:}); ;7z6B|8
end ]nUr E6
C7ivAh
{IJ;)<>&VE
% Compute the values of the polynomials: E+O{^C=
% -------------------------------------- 'c7nh{F
y = zeros(length_r,length(n)); aYaEy(m
for j = 1:length(n) [[IMf-]
s = 0:(n(j)-m_abs(j))/2; "a)6g0gw
pows = n(j):-2:m_abs(j); uL/wV~g
for k = length(s):-1:1 71R,R,
p = (1-2*mod(s(k),2))* ... ce\d35x!
prod(2:(n(j)-s(k)))/ ... qX-ptsQ
prod(2:s(k))/ ... X?'cl]1?
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d=xjLbsZ
prod(2:((n(j)+m_abs(j))/2-s(k))); 1z8"Gk6
idx = (pows(k)==rpowers); 4tZ *%!I'
y(:,j) = y(:,j) + p*rpowern(:,idx); adP :{j
end >N Bc-DX^
Njg$~30
if isnorm -{cmi,oy
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "TJu<O"2
end R7Y_ 7@p
end v;<gCzqQh
% END: Compute the Zernike Polynomials {oqbV#/&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SUUNC06V
+-@n}xb@
RhE~Rwbx
% Compute the Zernike functions: |X8?B=
% ------------------------------ nv:Qd\UM
idx_pos = m>0; 1 jidBzu<
idx_neg = m<0; ~JXz
H:c5
q0O^x
N@c GjpQ
z = y; _cs(f<>oCO
if any(idx_pos) o0R?vnA=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %1Q:{m
end Gw<D'b)!
if any(idx_neg) A7X
a
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Zt!# KSF7%
end A O:F*%Q u
TRm#H$
4{uQ}ea
% EOF zernfun d&NnpjH}c