下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, X62h7?'Pd
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, iCCY222:
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4A:@+n%3m
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ++-\^'&1
r*<)QP^B~
O:3pp8
;JMd(\+-
KFBo1^9N
function z = zernfun(n,m,r,theta,nflag) Af5O;v\
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. PA;RUe
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Esw#D90q
% and angular frequency M, evaluated at positions (R,THETA) on the #r;
'AG
% unit circle. N is a vector of positive integers (including 0), and Fxy-_%a
% M is a vector with the same number of elements as N. Each element Bo8+uRF|
% k of M must be a positive integer, with possible values M(k) = -N(k) A.m#wY8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, vRYQ4B4o
% and THETA is a vector of angles. R and THETA must have the same SlI0p&2,
% length. The output Z is a matrix with one column for every (N,M) Wq8Uq}~_g
% pair, and one row for every (R,THETA) pair. zr%lBHuW
% w1EYXe
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MCU{@\?Xf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Lz2 AWqR
% with delta(m,0) the Kronecker delta, is chosen so that the integral 9VdVom|e
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l@nkR&4[
% and theta=0 to theta=2*pi) is unity. For the non-normalized TLzg*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. KHKf+^u u
% Z3Os9X9p
% The Zernike functions are an orthogonal basis on the unit circle. 8SK}#44Xz
% They are used in disciplines such as astronomy, optics, and O`U&0lKi'
% optometry to describe functions on a circular domain. @47MJzC
% o0^'xVv
% The following table lists the first 15 Zernike functions. 'x
BBQP
% ;|e {J$
% n m Zernike function Normalization H[ocIw
% -------------------------------------------------- JzMPLmgG/
% 0 0 1 1 :<4:h.gO8
% 1 1 r * cos(theta) 2 Q^4j
% 1 -1 r * sin(theta) 2 Ks:~Z9r}
% 2 -2 r^2 * cos(2*theta) sqrt(6) g2.%x \d
% 2 0 (2*r^2 - 1) sqrt(3) 8P.UB{QNe
% 2 2 r^2 * sin(2*theta) sqrt(6) x; 89lHy@e
% 3 -3 r^3 * cos(3*theta) sqrt(8) DbFTNoVR
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Xjc{={@p3
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) c%w@-n`
% 3 3 r^3 * sin(3*theta) sqrt(8) O{rgx~lLJt
% 4 -4 r^4 * cos(4*theta) sqrt(10) _ In[Z?P}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '`$a l7D
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) B)J.(k`p
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) My0h9'K
% 4 4 r^4 * sin(4*theta) sqrt(10) SC)4u l%
% -------------------------------------------------- P|YBCH
% iX qB-4"
% Example 1: J
Sz'oA5
% f~-81ctu
% % Display the Zernike function Z(n=5,m=1) tJo,^fdfv
% x = -1:0.01:1; 8v"tOa4D7
% [X,Y] = meshgrid(x,x); |^Nz/PN
% [theta,r] = cart2pol(X,Y); w~@.&
% idx = r<=1; $>1 'pV
% z = nan(size(X)); p*)RP2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]YYjXg}%
% figure :D6"h[7
% pcolor(x,x,z), shading interp _,(]T&j #2
% axis square, colorbar ^l;nBD#nJ
% title('Zernike function Z_5^1(r,\theta)') U;o[>{L
% iD,iv
% Example 2: cMOvM0f
% 3>qUYxG8
% % Display the first 10 Zernike functions R?!xO-^t
% x = -1:0.01:1; FU/yJy
% [X,Y] = meshgrid(x,x); \)859x&(
% [theta,r] = cart2pol(X,Y);
9H:5XR
% idx = r<=1; Bi2be$nV
% z = nan(size(X)); =SPuOy8
% n = [0 1 1 2 2 2 3 3 3 3]; 8`}(N^=}
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Tyt:Abym=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 'jWd7w~(
% y = zernfun(n,m,r(idx),theta(idx)); jXq~ x"(
% figure('Units','normalized') }7YDe'5V
% for k = 1:10 e_s9E{(
% z(idx) = y(:,k); |E$Jt-'
% subplot(4,7,Nplot(k)) =0 W`tx
% pcolor(x,x,z), shading interp ,
"w`,c>!
% set(gca,'XTick',[],'YTick',[]) 5\1Z"?
% axis square g{wIdV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <r]7xsr
% end CL%?K<um
% MVHj?
% See also ZERNPOL, ZERNFUN2. |g]TWKc*
+RS>#zd/=
un0tzz
% Paul Fricker 11/13/2006 Dgh|,LqUB
Q#P=t83
%\PnsnJ9Q
rhY>aj
Gb+cT
% Check and prepare the inputs: GczGW4\P'
% ----------------------------- Ai\"w 0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2Cn^<(F^4I
error('zernfun:NMvectors','N and M must be vectors.') 33x3zEUt6
end %||}WT-wv
B% !z7AT
Z0T{1YEJ
if length(n)~=length(m) |,M&ks
error('zernfun:NMlength','N and M must be the same length.') RbX!^v<0f6
end h+F@apUS
;;'b;,/
w#[Ul9=?6
n = n(:); Knsb`1"E^6
m = m(:); k+S+: 5
if any(mod(n-m,2)) +4^XFPq~
error('zernfun:NMmultiplesof2', ... `EVTlq@<
'All N and M must differ by multiples of 2 (including 0).') <K!5N&vh
end M iIH&z
r4caIV
P{mV
if any(m>n) E 5}T_~-{
error('zernfun:MlessthanN', ... eCdx(4(\a
'Each M must be less than or equal to its corresponding N.') 0z{S@
end *9e T#dH
UN_f2
=BJ/ZM
if any( r>1 | r<0 ) Ls#pe
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8}h ^Frh
end ;SkC[;`J
)%%RI_JT
;`g\T u
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,
RfU1R
error('zernfun:RTHvector','R and THETA must be vectors.') KTxdZt
end vai.",b=n6
#EtS9D'd+
;>[).fX>/
r = r(:); M`\c'|i/
theta = theta(:); XPXC7_fV
length_r = length(r); 8,2l >S
if length_r~=length(theta) \lHi=}0
error('zernfun:RTHlength', ... ^T"9ZBkb
'The number of R- and THETA-values must be equal.') V[,/Hw~d%
end T:x5 ,vpM
%Bmi3
=Rr
AC3K*)`E
% Check normalization: R[
S*ON
% -------------------- _v4TyJ
if nargin==5 && ischar(nflag) A$ %5l
isnorm = strcmpi(nflag,'norm'); a*&P>Lwe7&
if ~isnorm XG<J'3
error('zernfun:normalization','Unrecognized normalization flag.') d+~c$(M)
end udB:ys
else $1oU^VY
isnorm = false; Y{Kpopst
end o*97Nbjn
eJ)Bs20Q
Vi`+2%4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !JUXq
% Compute the Zernike Polynomials &w:"e'FG`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^ef:cS$;
mn\e(WoX
n|NI]Qi*
% Determine the required powers of r: z;1tJ
% ----------------------------------- k#`.!yI,
m_abs = abs(m); W-=~Afy
rpowers = []; liFNJd`|o+
for j = 1:length(n) aW %ulZ
rpowers = [rpowers m_abs(j):2:n(j)]; ~ $#DB@b
end 8<3J!X+
rpowers = unique(rpowers); K]zBPfx
y%
uUA]c*m
lE08UEk1i
% Pre-compute the values of r raised to the required powers, J/w?Fa<
% and compile them in a matrix: )z3mS2
% ----------------------------- ~CldqXeI
if rpowers(1)==0 ~b5aT;ObR
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wQb")3dw
rpowern = cat(2,rpowern{:}); eJE?H]
rpowern = [ones(length_r,1) rpowern]; !l~tBJr*sB
else GB\.msls
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?nrd$,
rpowern = cat(2,rpowern{:}); /YHBhoat
end n?&G>`u*
8^p/?R^bu
zF<*h~
% Compute the values of the polynomials: dTyTj|"x{
% -------------------------------------- e{O mW
y = zeros(length_r,length(n)); cg7NtY
for j = 1:length(n) W5$jIQ}Bw
s = 0:(n(j)-m_abs(j))/2; \% &QIe;:k
pows = n(j):-2:m_abs(j); $ePAsJ
for k = length(s):-1:1 Mp?Ev.
p = (1-2*mod(s(k),2))* ... /-E>5 w U
prod(2:(n(j)-s(k)))/ ... RoM'+1nP:#
prod(2:s(k))/ ... 5'\/gvxIC
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ho#]?Z#
prod(2:((n(j)+m_abs(j))/2-s(k))); R[wy{4<y
idx = (pows(k)==rpowers); Qz{:m
y(:,j) = y(:,j) + p*rpowern(:,idx); Y1{6lhxgE
end f|?i6.N>f
zdyS"H}
if isnorm xex/L%!Rj
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^O#,%>1J
end J\_tigd
end VyCBJK
% END: Compute the Zernike Polynomials >~TLgq*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |GL#E"[&'
h\C
4xT(Uj
% Compute the Zernike functions: p}R)qz-=5U
% ------------------------------ e.\d7_T+
idx_pos = m>0; 4&K~EX"^T
idx_neg = m<0; .pu]21m=
{qx}f^WV
93)&
z = y; !s\-i6S>
if any(idx_pos) vwZ2kk!|i
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;.!AX|v
end qQ/j+
if any(idx_neg) $4 >K2
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +?*,J=/
end zjM+F{P8
5Tb93Q@c
`P)atQ
% EOF zernfun 8NPt[*