下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, aK@
Y) Ju'
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?{^_z_,
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9*ZlNZ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /[\g8U{5B}
'g,h
;<m`mb4x[
/3~L#jS
~i>DF`w$
function z = zernfun(n,m,r,theta,nflag) prz COw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. x"NQatdq
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U{M3QOF
% and angular frequency M, evaluated at positions (R,THETA) on the ?{B5gaU9F
% unit circle. N is a vector of positive integers (including 0), and %gAT\R_f
% M is a vector with the same number of elements as N. Each element A?!RF7v
% k of M must be a positive integer, with possible values M(k) = -N(k) {> msE }L
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, fPUr O
% and THETA is a vector of angles. R and THETA must have the same j7kX"nz
% length. The output Z is a matrix with one column for every (N,M) il@>b
% pair, and one row for every (R,THETA) pair. 6` TwP\!$/
% =zK4jiM1
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [B)!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wb?k
% with delta(m,0) the Kronecker delta, is chosen so that the integral YxJQ^D`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;6[6~L%K}
% and theta=0 to theta=2*pi) is unity. For the non-normalized NF6xKwRU]_
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lsOv#X-bE
% /ta}12Z
% The Zernike functions are an orthogonal basis on the unit circle. '%[ Y
% They are used in disciplines such as astronomy, optics, and jo<xrn\
% optometry to describe functions on a circular domain. bAZoi0LR
% ;98b SR/
% The following table lists the first 15 Zernike functions. EpMxq7*
% 9Sxr9FLW~
% n m Zernike function Normalization :) lG}c
% -------------------------------------------------- xBTx`+%WS
% 0 0 1 1 aX;>XL4
% 1 1 r * cos(theta) 2 .k]`z>uv
% 1 -1 r * sin(theta) 2 )0exGx+:
% 2 -2 r^2 * cos(2*theta) sqrt(6) nZ(]WPIN"
% 2 0 (2*r^2 - 1) sqrt(3) v7
*L3Ol
% 2 2 r^2 * sin(2*theta) sqrt(6) qsep9z.
% 3 -3 r^3 * cos(3*theta) sqrt(8) '@.6Rd 8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #:gl+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) & mO n]
% 3 3 r^3 * sin(3*theta) sqrt(8) ,X^3.ILz
% 4 -4 r^4 * cos(4*theta) sqrt(10) Ol RXgJ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `5?0yXK
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ITw *m3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zpkd8@g@
% 4 4 r^4 * sin(4*theta) sqrt(10) lK=Is
v+
% -------------------------------------------------- iF^qbh%%E
% 8c)GUx
% Example 1: H%vfRl3rB
% l[$GOLeS
% % Display the Zernike function Z(n=5,m=1) ]i.N'O<p
% x = -1:0.01:1; O>]i?
% [X,Y] = meshgrid(x,x); FAdTm#tgW]
% [theta,r] = cart2pol(X,Y); l2St)`K8
% idx = r<=1; -a)1L'R
% z = nan(size(X));
)Ri!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]{6/6jl
% figure f%o[eW#
% pcolor(x,x,z), shading interp 6U*CR=4
% axis square, colorbar 'cpm 4mT
% title('Zernike function Z_5^1(r,\theta)') Q`9c/vPU
% MRt"#CO
% Example 2: =m2_:&@0x
% (`dz37@*
% % Display the first 10 Zernike functions (NLw#)?
% x = -1:0.01:1; \nEMj,)
% [X,Y] = meshgrid(x,x); x!_5/
% [theta,r] = cart2pol(X,Y); E,6|-V;?
% idx = r<=1; kFp^?+WI%H
% z = nan(size(X)); >SDQ@63E?
% n = [0 1 1 2 2 2 3 3 3 3]; w/*G!o-<
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; @\?ubF
% Nplot = [4 10 12 16 18 20 22 24 26 28]; B8Fb$
% y = zernfun(n,m,r(idx),theta(idx)); ,6{z
% figure('Units','normalized') :1*E5pX0n
% for k = 1:10 #4bT8kq
% z(idx) = y(:,k); ev;&n@k_I
% subplot(4,7,Nplot(k)) F9j@KC(yg
% pcolor(x,x,z), shading interp xA
Ez1
% set(gca,'XTick',[],'YTick',[]) ~x,_A>a
% axis square bs"J]">(N
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^5E9p@d"J
% end 3LET zsJ
% v
^h:E
% See also ZERNPOL, ZERNFUN2. g9" wX?*
[ *Dj:A)V^
\lQ3j8U
% Paul Fricker 11/13/2006 !ddyJJ^a
3UUdJh<~
VG
5*17nf5
?2&= +QaT
wmGcXBHt$
% Check and prepare the inputs: */M`KPW
% ----------------------------- nnj<k5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S9l,P-X`
error('zernfun:NMvectors','N and M must be vectors.') s<{ Hu0K$
end $$m0mK
_A C N
.3C::~:
if length(n)~=length(m) \+V"JIStUj
error('zernfun:NMlength','N and M must be the same length.') !vf:mMo
end CK n2ZL
"HJ^>%ia
0fewMS*
n = n(:); Bn]=T
m = m(:); i=#`7pt%'a
if any(mod(n-m,2)) ~".@mubt1$
error('zernfun:NMmultiplesof2', ... vT EqT
'All N and M must differ by multiples of 2 (including 0).') D:Q#%wJ
end 32 i6j
@[J6JT*E
U/enq,-F^
if any(m>n) ;<garDf
error('zernfun:MlessthanN', ... h}@wPP{
'Each M must be less than or equal to its corresponding N.') ? #rXc%F
end >Y08/OAI.2
G~1;_'
X\Bl?
F
if any( r>1 | r<0 ) .JLJ(WM
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \eKXsO"d
end +4%~.,<_to
5Qq/nUR
Nb$0pc1J<
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,RR{Y-
error('zernfun:RTHvector','R and THETA must be vectors.') /iO"4%v
end "BSY1?k{
Y|LL]@Lv
yDqwz[v b
r = r(:); <5E'`T
theta = theta(:); ^!S4?<v
length_r = length(r); {*O%A
if length_r~=length(theta) w317]-n
error('zernfun:RTHlength', ...
!tTv$L>
'The number of R- and THETA-values must be equal.') &tZIWV1&
end }3: mn
ltuV2.$
9Do75S{(
% Check normalization: qkhre3
% -------------------- Em&3g
if nargin==5 && ischar(nflag) f DXK<v)
isnorm = strcmpi(nflag,'norm'); :o^ioX.J
if ~isnorm [nxYfER7
error('zernfun:normalization','Unrecognized normalization flag.') @HbRfD/!
end GPHb-
else >`03EsU
isnorm = false; *}89.kCBF
end z|3v~,
@LI;q
@FIL4sb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~}b0zL
% Compute the Zernike Polynomials ,Sgo_bC/|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }BM`4/
\L(jNN0_R
neu+h6#H
% Determine the required powers of r: b~&cYk'
% ----------------------------------- d\#yWY
m_abs = abs(m); ouCh2Y/_
rpowers = []; `
1+*-g^r
for j = 1:length(n) W\Pd:t
rpowers = [rpowers m_abs(j):2:n(j)]; N-2#-poDe
end /rZk^/'
rpowers = unique(rpowers); u;9iuc`*
PJZ;wqTD_
0 8L;u7u
% Pre-compute the values of r raised to the required powers, "}_J"%
% and compile them in a matrix: 5b rM..
% ----------------------------- liYsUmjZ=
if rpowers(1)==0 3Y#
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H&ek"nP_
rpowern = cat(2,rpowern{:}); 'G65zz
rpowern = [ones(length_r,1) rpowern]; !X7z y9
else =*'yGB[x)
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4Vi*Qa_,y
rpowern = cat(2,rpowern{:}); \{<ml n
end )*}\fmOv{
]7<$1ta
?H8w;Csq-
% Compute the values of the polynomials: ?x",VA
% -------------------------------------- fZf>>mu@r'
y = zeros(length_r,length(n)); #8t=vb3
for j = 1:length(n) gtH^'vFZ
s = 0:(n(j)-m_abs(j))/2; e/Z{{FP%6
pows = n(j):-2:m_abs(j); BD]J/o
for k = length(s):-1:1 !KXcg9e
p = (1-2*mod(s(k),2))* ... ;sA
5&a>!
prod(2:(n(j)-s(k)))/ ... L$c 1<7LU
prod(2:s(k))/ ... N_:!uR
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w;@v#<q6
prod(2:((n(j)+m_abs(j))/2-s(k))); Fb<'L5}i
idx = (pows(k)==rpowers); =?Ry,^=b
y(:,j) = y(:,j) + p*rpowern(:,idx); pWzYC@_W
end Mm8_EjMp
?W ^`Fa)]o
if isnorm %62|dhl6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
LT{g^g
end RQ|K?^k
v
end R{brf6,
% END: Compute the Zernike Polynomials &O+S[~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t@lTA>;U@
t_I-6`8o]
dj084q7
% Compute the Zernike functions: sifjmNP
% ------------------------------ (~\HizSl
idx_pos = m>0; =Cf@!wZ^
idx_neg = m<0; w`boQ_Ir
6@0?~
|C./gdq
z = y; w@P86'< v
if any(idx_pos) l{r HXST|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); nUq@`G
end g[b;1$
if any(idx_neg) G@rh/b<$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D_F1<q
end X..M!3W
( q*/=u
?jO<<@*2S
% EOF zernfun Q.4+"JoG