下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, fYBmW')
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, cxn3e,d`
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? EBc_RpC/Z
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (R5n ND
g1UP/hNJ\8
Gm~jC <
@z[,w`
@i U@JE`C
function z = zernfun(n,m,r,theta,nflag) d0vn/k2I
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /}t>o*
x
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ZCVwQ#Xe+
% and angular frequency M, evaluated at positions (R,THETA) on the LlKvi_z
% unit circle. N is a vector of positive integers (including 0), and 4>x]v!d
% M is a vector with the same number of elements as N. Each element Sc#B-4m
% k of M must be a positive integer, with possible values M(k) = -N(k) PT4Wox9U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 2:3-mWE
% and THETA is a vector of angles. R and THETA must have the same %&w 8E[
% length. The output Z is a matrix with one column for every (N,M) z><uYO$
% pair, and one row for every (R,THETA) pair. &3~lZa;D
% $R6iG\V5
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :Yeo*v9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mCah{~
% with delta(m,0) the Kronecker delta, is chosen so that the integral >U.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2^RWGCEv
% and theta=0 to theta=2*pi) is unity. For the non-normalized Vz_ac
vfk^
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4IfOvAN%
% `<_A#@
% The Zernike functions are an orthogonal basis on the unit circle. P5-1z&9O
% They are used in disciplines such as astronomy, optics, and $v5)d J
% optometry to describe functions on a circular domain. OI/m_xx@j
% zB/#[~
% The following table lists the first 15 Zernike functions. jT/}5\
% xgeDfpF'
% n m Zernike function Normalization Lxz!>JO>
% -------------------------------------------------- vz$-KT4e^
% 0 0 1 1 d+DdDr
% 1 1 r * cos(theta) 2 YNHQbsZUI,
% 1 -1 r * sin(theta) 2 Q5%$P\
% 2 -2 r^2 * cos(2*theta) sqrt(6) v_=xN^R
% 2 0 (2*r^2 - 1) sqrt(3) ~hiJOaCzM
% 2 2 r^2 * sin(2*theta) sqrt(6) wMc/Og
% 3 -3 r^3 * cos(3*theta) sqrt(8) b~$B0o)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $FR1^|P/G
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) X~+AaI:~K
% 3 3 r^3 * sin(3*theta) sqrt(8) ,zXP,(x
% 4 -4 r^4 * cos(4*theta) sqrt(10) cl2+,!:
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {p.D E
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) j<,Ho4v}_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e
*9c33
% 4 4 r^4 * sin(4*theta) sqrt(10) '?$N.lj$d
% -------------------------------------------------- !W\Zq+^^J3
% lSW6\jX
% Example 1: Jr2x`^aNO
% b{+7sl
% % Display the Zernike function Z(n=5,m=1) CB!5>k+mC
% x = -1:0.01:1; Q5K<ECoPk
% [X,Y] = meshgrid(x,x); skSs|slp
% [theta,r] = cart2pol(X,Y); .C HET]
% idx = r<=1; sWtT"7>x
% z = nan(size(X)); Ku'OM6D<
% z(idx) = zernfun(5,1,r(idx),theta(idx)); b\
P6,s'(
% figure '>"riEk
% pcolor(x,x,z), shading interp m%$GiNs}
% axis square, colorbar 0XgJCvMcB
% title('Zernike function Z_5^1(r,\theta)') 8,VX%CS#q
%
iwiHw
% Example 2: }8lvi
vR4
% 5Yxs_t4
% % Display the first 10 Zernike functions owR`Z`^h)
% x = -1:0.01:1; .
W7ZpV
% [X,Y] = meshgrid(x,x); \+9~\eeXb
% [theta,r] = cart2pol(X,Y); @Yzdq\FI
% idx = r<=1; dx.,
% z = nan(size(X)); 6_rgj{L
% n = [0 1 1 2 2 2 3 3 3 3]; *- S/{
.&
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6cQ)*,Q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $4Vp l
% y = zernfun(n,m,r(idx),theta(idx)); QXaE2}}P
% figure('Units','normalized') [\_#n5
% for k = 1:10 3AQu\4+A
% z(idx) = y(:,k); K-<kp!v
% subplot(4,7,Nplot(k)) B)L=)N
% pcolor(x,x,z), shading interp o)B`K."
% set(gca,'XTick',[],'YTick',[]) *m>XtBw.
% axis square NT1"?Thx|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U07G&?/
% end $E >)
% _x'?igy
% See also ZERNPOL, ZERNFUN2. 03)R_A
hRc.^"q9
<w1#3Mu'
% Paul Fricker 11/13/2006 p?Rq
7^hwRZJ{
C@P4}X0,=
s7
K](T4
<T^:`p/]4
% Check and prepare the inputs: )ZHo7X
% ----------------------------- [(81-j1v
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E0lro+'lS
error('zernfun:NMvectors','N and M must be vectors.') bMCy=5
end <H]1 6
}#bX{?f
\9Yc2$dY
if length(n)~=length(m) $qp,7RW
error('zernfun:NMlength','N and M must be the same length.') Qzh`x-S
end jmkVolz
9) ~Ha iVB
O_~vl m<#
n = n(:); Jx-dWfe
m = m(:); f8AgTw,K8
if any(mod(n-m,2)) BIK^<_?+ZU
error('zernfun:NMmultiplesof2', ... 9$iDK$%
'All N and M must differ by multiples of 2 (including 0).') .I1k+
end s9 \HjK*+
Fx]}<IudA^
m|8ljXX
if any(m>n) $Y3mO~
error('zernfun:MlessthanN', ... %=G*{mK
'Each M must be less than or equal to its corresponding N.') s0/[mAY
end nyRQ/.3
==^9_a^
kCVO!@yZz
if any( r>1 | r<0 ) s.{nxk.
error('zernfun:Rlessthan1','All R must be between 0 and 1.') H%&e[PU
end F?jFFwim
m.':5
caC-JcDXy
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) EZw<)Q
error('zernfun:RTHvector','R and THETA must be vectors.') o
00(\ -eb
end xkPH_+4i8
R{0nk
C\RJ){dk
r = r(:); g/_j"Nn
theta = theta(:); Z<A BK`rEO
length_r = length(r); {g@?\
if length_r~=length(theta) &40# _>W7
error('zernfun:RTHlength', ... r,FPTf
'The number of R- and THETA-values must be equal.') ='U>P(
R-
end n72+X
1{0 L~
by0@G"AE+
% Check normalization: ?ZS/`P0}[
% -------------------- M7x*LiKc2
if nargin==5 && ischar(nflag) jVxX! V
isnorm = strcmpi(nflag,'norm'); BnwYyh
if ~isnorm ) Z^b)KAk
error('zernfun:normalization','Unrecognized normalization flag.') \YN(rD-
end =IC
cN|
else -,Y[`(q
isnorm = false; O% }EpIP_
end U1,f$McZs
u.~`/O
E{B8+T:3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KO''B or
% Compute the Zernike Polynomials t7; ^rk*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *F)+- BB
:rcohzfa
6{8dv9tK
% Determine the required powers of r: )i$:iI
>k
% ----------------------------------- 7JL*y\'
m_abs = abs(m); QH]G>+LI5
rpowers = []; _O w]kP='
for j = 1:length(n) "u=U@1 ^
rpowers = [rpowers m_abs(j):2:n(j)]; ?VCM@{9
end 7LZA!3
rpowers = unique(rpowers); 3{"M N=
Ku3/xcu:My
Ak=|wY{
% Pre-compute the values of r raised to the required powers, +`_Km5=
% and compile them in a matrix: nbf w7u
% ----------------------------- 6:$+"@ps
if rpowers(1)==0 Q(0eq_X|6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zh60b{
rpowern = cat(2,rpowern{:}); [e.@Yx_}
rpowern = [ones(length_r,1) rpowern]; tg|7\Z7i
else J\fu6Ti
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hxX-iQya
rpowern = cat(2,rpowern{:}); @Y| %
end Duh[(r_
wB0Ke
o+F]80CH
% Compute the values of the polynomials: 7!r)[2l
% -------------------------------------- ~P@6fK/M
y = zeros(length_r,length(n)); JA(M'&q4
for j = 1:length(n) jDKL}x
s = 0:(n(j)-m_abs(j))/2; CgxGvM4
pows = n(j):-2:m_abs(j); iLR^ V!
for k = length(s):-1:1 /GUbc
p = (1-2*mod(s(k),2))* ... ckCb)r_
prod(2:(n(j)-s(k)))/ ... hO H
DXc"
prod(2:s(k))/ ... R.rxpJ+kU
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... j 5{"j
prod(2:((n(j)+m_abs(j))/2-s(k))); 8*\PWl
idx = (pows(k)==rpowers); o%1dbbh
y(:,j) = y(:,j) + p*rpowern(:,idx); T>e4Og"?
end }p$@.+
n)6mfoe
if isnorm '"~ 2xiin
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @Q#<-/
end ,{rm<M.)
end !y 7SCz
g
% END: Compute the Zernike Polynomials )cUFb:D*"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y-vLEIX=
=bDy :yY}
`fm^#Nw
% Compute the Zernike functions: :^92B?q
% ------------------------------ Dqh
rg;
idx_pos = m>0; 8O='Q-&8
idx_neg = m<0; uU;]/
8/oO}SLF
XZ1oV?Z4
z = y; ),53(=/hl
if any(idx_pos) +D&aE$<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ImZ!8#
end Qe,aIh
if any(idx_neg) W2 p&LP
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yWkg4
end lf?dTPrD
0Xx&Z8E
^;[|,:8f7L
% EOF zernfun F9\T<