下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 7'[C+/:
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :x*8*@kC
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (D'Z4Y
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? L3Leb%,!
n6gYZd
c<V.\y0x
k'N `5M)
?VMj;+'tr
function z = zernfun(n,m,r,theta,nflag) /j]r?KAzw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "y>\
mC
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]P TTI\n
% and angular frequency M, evaluated at positions (R,THETA) on the ,L+tm>I
% unit circle. N is a vector of positive integers (including 0), and #@,39!;,:O
% M is a vector with the same number of elements as N. Each element v>3)^l:=Y*
% k of M must be a positive integer, with possible values M(k) = -N(k) Sti)YCXH
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Q6y883>9
% and THETA is a vector of angles. R and THETA must have the same PXGS5,
% length. The output Z is a matrix with one column for every (N,M) S;$@?vF
% pair, and one row for every (R,THETA) pair. 4z-sR/ d
% P'#m1ntxQ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @GGzah#
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \?[#>L4
% with delta(m,0) the Kronecker delta, is chosen so that the integral t"`LJE._P
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 40pGu
% and theta=0 to theta=2*pi) is unity. For the non-normalized b 2n.v.$G
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. n4%|F'ma
% f\"Qgn
% The Zernike functions are an orthogonal basis on the unit circle. J/j1Yf'9
% They are used in disciplines such as astronomy, optics, and %t0Fx
% optometry to describe functions on a circular domain. 'kc_OvVA
% ~R.8r-kD`
% The following table lists the first 15 Zernike functions. *b?C%a9
% :Ia3yi#
% n m Zernike function Normalization A~Eu_m
% -------------------------------------------------- @v9PI/c
% 0 0 1 1 L0SeG:
% 1 1 r * cos(theta) 2 ]RmQ*F-
% 1 -1 r * sin(theta) 2 ^RG6h
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0SV#M6`GX
% 2 0 (2*r^2 - 1) sqrt(3) :g3n
[7wR
% 2 2 r^2 * sin(2*theta) sqrt(6) 4NL TtK
% 3 -3 r^3 * cos(3*theta) sqrt(8) SMaC{RPQ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \)VV6'zih
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) CG IcuHp
% 3 3 r^3 * sin(3*theta) sqrt(8) QBa1c-Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) XOO!jnQu
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vV1F|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ]]$s"F<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QthHQA
% 4 4 r^4 * sin(4*theta) sqrt(10) ;Jt*s
% -------------------------------------------------- 38!$9)
% {*H&NI
% Example 1: T#^
% s)"C~w^
% % Display the Zernike function Z(n=5,m=1) _3h(R`VdWO
% x = -1:0.01:1; o)'T#uK
% [X,Y] = meshgrid(x,x); K1Nhz'^=D
% [theta,r] = cart2pol(X,Y); i]*Wt8~!
% idx = r<=1; >z6(fM`i
% z = nan(size(X)); !o 2"th
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Lm\N`
% figure 7X.rGJZq
% pcolor(x,x,z), shading interp z
%` \p
% axis square, colorbar pt;E~_
% title('Zernike function Z_5^1(r,\theta)') Mjq1qEi"B
% =,KRZqz
% Example 2: |c,":R
% Q,Vv
% % Display the first 10 Zernike functions +T=Z!2L
% x = -1:0.01:1; CfQOG7e@
% [X,Y] = meshgrid(x,x); ]y@8mb&
% [theta,r] = cart2pol(X,Y); Ol:&cX3G
% idx = r<=1; A D=@
% z = nan(size(X)); i;c0X+[
% n = [0 1 1 2 2 2 3 3 3 3]; -WwFUm
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; OwV>`BIwns
% Nplot = [4 10 12 16 18 20 22 24 26 28]; [=9-AG~}
% y = zernfun(n,m,r(idx),theta(idx)); vmL%%7
% figure('Units','normalized') >|!F.W
% for k = 1:10 KgX~PP>
% z(idx) = y(:,k); M~w
=ZJ@
% subplot(4,7,Nplot(k)) ji<b#YO4
% pcolor(x,x,z), shading interp z`((l#(
% set(gca,'XTick',[],'YTick',[]) t>f<4~%MJ
% axis square <Bb$d@c
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G!k&'{2
% end k_#ra7zP
% cjsQm6
% See also ZERNPOL, ZERNFUN2. MPA<?
$'dJ+@
Rtw^
lo
% Paul Fricker 11/13/2006 eX7Ev'(H
ii0AhQ
<",4O
Q+)fI
6ND,4'6
% Check and prepare the inputs: s/UIo^m
% ----------------------------- /8@JWK^I{
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) L=3^A'|
error('zernfun:NMvectors','N and M must be vectors.') sXOGIv
end q.FgX
2]C`S,)
X{\>TOk
if length(n)~=length(m) G!T)V2y
error('zernfun:NMlength','N and M must be the same length.') 0[TZ$<v"
end S9}P5;u
P!:Y<p{=>
buX$O{43I
n = n(:); "2(lgxhj
m = m(:); #K'3`dpL
if any(mod(n-m,2)) G^!20`p:
error('zernfun:NMmultiplesof2', ... Bx0^?>
'All N and M must differ by multiples of 2 (including 0).') ~Y@(
end 5c($3Pno=
~ z*
N_Cu%HP
if any(m>n) .cN\x@3-j
error('zernfun:MlessthanN', ... (o)nN8
'Each M must be less than or equal to its corresponding N.') /Z HuT=j1
end n
c:^)G
sh[Yu
_C~e(/=z
if any( r>1 | r<0 ) U0t/(Jyg
error('zernfun:Rlessthan1','All R must be between 0 and 1.') EMzJJe{Cv
end Ke,UwYG2~G
Y>geP+ -
_$PZID
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) JVf8KHDj
error('zernfun:RTHvector','R and THETA must be vectors.') P;bl+a'gu
end aAiSP+#
'x{g P?.
-q|K\>tgU
r = r(:); +'Pl?QyH
theta = theta(:); f!a[+^RB:
length_r = length(r); :,%~rR
if length_r~=length(theta) FFb`4.
error('zernfun:RTHlength', ... YpoO:
'The number of R- and THETA-values must be equal.') 6 /gh_'&
end eWS[|'dl
gN1b?_g
)a.Y$![
% Check normalization: DvHcT]l>5
% -------------------- F7gipCc1We
if nargin==5 && ischar(nflag) 7SLJLn3d
isnorm = strcmpi(nflag,'norm'); =($RT
if ~isnorm wv<D%nF2|
error('zernfun:normalization','Unrecognized normalization flag.') PN[
`p1F
end A\iDK10Q$
else ]#P9.c_}
isnorm = false; (xpj?zlmM
end =Ig'Aw$ x
Ke '?
oGx OJyD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `G&W%CHB
% Compute the Zernike Polynomials eyf\j,xP&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L22GOa0
0'*whhH
Y,?s-AB
% Determine the required powers of r: @y3w_;P
% ----------------------------------- G[n^SEY!
m_abs = abs(m); X>:@`}bq
rpowers = []; /uS(Z-@
for j = 1:length(n) \.y|=Ql_u
rpowers = [rpowers m_abs(j):2:n(j)]; 2%U)y;$m2
end )QEvV:\
rpowers = unique(rpowers); F%@(
$f
u[9i>7}9
Q1 ?O~ao
% Pre-compute the values of r raised to the required powers, dOh'9kk3
% and compile them in a matrix: l4?o0;:)
% ----------------------------- ?9xaBWf
if rpowers(1)==0 X5 UcemO
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4zs1BiMG
rpowern = cat(2,rpowern{:}); Q1J./C}
rpowern = [ones(length_r,1) rpowern]; ["|AD,$%
else *c4uCI:0t
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yG|^-O}L
rpowern = cat(2,rpowern{:}); S%gb1's
end *t J+!1
{$z )7s
<
.&t'W
% Compute the values of the polynomials: YYU Di@K
% -------------------------------------- 6wC|/J^
y = zeros(length_r,length(n)); O9*cV3}H
for j = 1:length(n) s''?:
+
s = 0:(n(j)-m_abs(j))/2; (e sTb,
pows = n(j):-2:m_abs(j); ^_ <jg0V
for k = length(s):-1:1 .WM 0x{t/
p = (1-2*mod(s(k),2))* ... z1[2.&9D-
prod(2:(n(j)-s(k)))/ ... s2A3.SN
prod(2:s(k))/ ... B5h-JON]-
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s$`g%H>
prod(2:((n(j)+m_abs(j))/2-s(k))); D|m6gP;P
idx = (pows(k)==rpowers); S6CM/
y(:,j) = y(:,j) + p*rpowern(:,idx); YY-{&+,
end >yFEUD:
d2lOx|jt
if isnorm meunAEe
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); H?98^y7
end n B4)%
end
S!Ue+jW
% END: Compute the Zernike Polynomials G0Zq:kJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @/h_v#W
i0DYdUj
IPmSkK
% Compute the Zernike functions: EeGP E
% ------------------------------ TY~8`+bJ
idx_pos = m>0; ]jiM
idx_neg = m<0; y;A<R[|Ve
Uf)?sz
{N1Ss|6
z = y; Y: &?xR
if any(idx_pos) 0STtwfTr:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); iTsmUq<b]l
end RG/M-
if any(idx_neg) bOjvrg;Sz\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H&jK|]UXoO
end )&:4//}a
T|^rFaA
^$qr6+
% EOF zernfun :e> y=
s>