下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .JOZ2QWm<
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, )Dp0swJ
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6>]w1
H
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u].7+{
k1.%ZZMM
nV`U{}x
? G`6}NP
K)9Rw2-AJ
function z = zernfun(n,m,r,theta,nflag) UM/!dt}DnF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2EOx],(|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @,j,GE%
% and angular frequency M, evaluated at positions (R,THETA) on the osl\j]U8
% unit circle. N is a vector of positive integers (including 0), and .1}1e;f-
% M is a vector with the same number of elements as N. Each element %!r.)Wx|2
% k of M must be a positive integer, with possible values M(k) = -N(k) F{4v[WP)
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :dqZM#$d
% and THETA is a vector of angles. R and THETA must have the same \wDL oR
% length. The output Z is a matrix with one column for every (N,M) t#xfso`4o
% pair, and one row for every (R,THETA) pair. ~yt 7L,OQ
% ,5x#o
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;80^ GDk~S
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \1SC:gN*#
% with delta(m,0) the Kronecker delta, is chosen so that the integral VEp cCK
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <D P8a<{{
% and theta=0 to theta=2*pi) is unity. For the non-normalized zn>+\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9a @rsyX
% 5rmU9L
% The Zernike functions are an orthogonal basis on the unit circle. :}yT?LIyP
% They are used in disciplines such as astronomy, optics, and Ta[\BWR2
% optometry to describe functions on a circular domain. Se_]=>WI
% J?dLI_{<
% The following table lists the first 15 Zernike functions. hbg$u$1`,
% l2kGFgc
% n m Zernike function Normalization ~8yh,U
% -------------------------------------------------- sQJGwZ7
% 0 0 1 1 |j-ng;
% 1 1 r * cos(theta) 2 T9I$6HAi
% 1 -1 r * sin(theta) 2 <:Mz2Rg
% 2 -2 r^2 * cos(2*theta) sqrt(6) q-+:1E
% 2 0 (2*r^2 - 1) sqrt(3) F}7sb#G
% 2 2 r^2 * sin(2*theta) sqrt(6) Lg~C:BNF
% 3 -3 r^3 * cos(3*theta) sqrt(8) -pIz-*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) W7Y@]QMX
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) S2e3d
% 3 3 r^3 * sin(3*theta) sqrt(8) =kfa1kD&{
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6UqAs<c9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 71y{Dwya
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <zL_6Y2
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ix6\5}.c 9
% 4 4 r^4 * sin(4*theta) sqrt(10) ^;'8yE/
% -------------------------------------------------- vc&v+5Y
% EG`6T
% Example 1: Q#G xo
% 8}m J)9<7
% % Display the Zernike function Z(n=5,m=1) A[8m3L#k
% x = -1:0.01:1; v2 E <~/|
% [X,Y] = meshgrid(x,x); SAdE9L =d
% [theta,r] = cart2pol(X,Y); bD0l^?Hu!
% idx = r<=1; -2; 6Pwmv
% z = nan(size(X)); jLVG=rOn
% z(idx) = zernfun(5,1,r(idx),theta(idx)); YR*gOTD
% figure y]0O"X-G
% pcolor(x,x,z), shading interp s*[
I"iE
% axis square, colorbar L/[VpD
% title('Zernike function Z_5^1(r,\theta)') IJ&Lk=2E]
% Uffwzd!
% Example 2: vMB61 |O
% A1INaL
% % Display the first 10 Zernike functions ^hiY6N &
% x = -1:0.01:1; RARA _tii
% [X,Y] = meshgrid(x,x); mmbe.$73
% [theta,r] = cart2pol(X,Y); l)vC=V6MG
% idx = r<=1; C@6:uiT$
% z = nan(size(X)); @b,H'WvhfS
% n = [0 1 1 2 2 2 3 3 3 3]; .@E5dw5
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; J?w_DQa
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }q`9U!v
% y = zernfun(n,m,r(idx),theta(idx)); U8Zb&6
% figure('Units','normalized') a1~|?PCbY
% for k = 1:10 rP3tFvOH
% z(idx) = y(:,k); 1oej<67PdJ
% subplot(4,7,Nplot(k)) 6qHD&bv\%C
% pcolor(x,x,z), shading interp a8JAJkFB
% set(gca,'XTick',[],'YTick',[]) 8Y.qP"s
% axis square Ik$$Tn&;
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eO <N/?t
% end m2\\!C]f
% 7h}gIm7e"
% See also ZERNPOL, ZERNFUN2. AQUAQZc
Yi%lWbr
Q?i_Nl/|
% Paul Fricker 11/13/2006 nsRCDUCi
.Qx5,)@9
=|]h-[P'
Qc3d<{7\~
UeO/<ml3>J
% Check and prepare the inputs: ZKXE7p
i
% ----------------------------- <#h,_WP*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;
R}>SS'
error('zernfun:NMvectors','N and M must be vectors.') +PjTT6
end bO\++zOF
94+^K=lAX
;[}OZt
if length(n)~=length(m) &T,|?0>~=J
error('zernfun:NMlength','N and M must be the same length.') 4{YA['
end ?Ts]zO%%Z
KVa{;zBwl
%=UD~5!G0
n = n(:); YCD|lL#
m = m(:); TRGpE9i
if any(mod(n-m,2)) HLW_Y|QaFo
error('zernfun:NMmultiplesof2', ... KSPa2>lz?
'All N and M must differ by multiples of 2 (including 0).') ._G,uP$
end !FL"L
9
|Gf<Ql_.4
<{kPa_`'
if any(m>n) <?KPyg2
error('zernfun:MlessthanN', ... }ssV"5M
'Each M must be less than or equal to its corresponding N.') m[}k]PB>
end -i`jS_-Cv-
_ p\L,No
]eKuR"ob0
if any( r>1 | r<0 ) uCDe>Q4@/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') tn5%zJ#+
end Kz"3ba}KH
'5BD%#[
TmG);B}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y|6n:<o
error('zernfun:RTHvector','R and THETA must be vectors.') XGB\rfvS
end a<<4gXx
NfvPE ]S
kkq1:\pZ]a
r = r(:); `j>5W<5q\
theta = theta(:); c*)T4n[e
length_r = length(r); MT-Tt
if length_r~=length(theta) 9-;-jnDy
error('zernfun:RTHlength', ... s(=wG|
'The number of R- and THETA-values must be equal.') (bb!VVA
end vha9,5_
|(.\J`_e
/}m)FaAi
% Check normalization: Te-p0x?G.
% -------------------- Z A(u"T~
if nargin==5 && ischar(nflag) PR@6=[|d
isnorm = strcmpi(nflag,'norm'); 62sl6WWS3
if ~isnorm (03/4*g_s
error('zernfun:normalization','Unrecognized normalization flag.') [./FzlA s
end ,&_H
else Hh%!4_AMw
isnorm = false; 1p}Wj*mc
end gHe:o`
gK rUv0&F
R(wUu#n$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oPKLr31zt
% Compute the Zernike Polynomials ?8-Am[xH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "
@D
Y*NzY*V\
''nOXl
% Determine the required powers of r: }^&S^N7
% ----------------------------------- $:~;U xh=
m_abs = abs(m); MNu0t\`p4
rpowers = []; )pHtsd. eP
for j = 1:length(n) g6,D Bkv2
rpowers = [rpowers m_abs(j):2:n(j)]; O&l4/RtQ\)
end oai=1vt@
rpowers = unique(rpowers); 17s~mqy
{srP3ll
P
`;UWq{"
% Pre-compute the values of r raised to the required powers, CYaN;HV@_
% and compile them in a matrix: ;xwcK-A
% ----------------------------- "/'3I/}
if rpowers(1)==0 ?4b0\ -
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XO
<0;9|
rpowern = cat(2,rpowern{:}); ME)Tx3d
rpowern = [ones(length_r,1) rpowern]; 1wR[nBg*|
else yNvAT>H
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KwL_ae6fV
rpowern = cat(2,rpowern{:}); 1&MCS%UTL
end t /+;#-
0i*V?
{+J{t\`
% Compute the values of the polynomials: uBlPwb,V
% -------------------------------------- q94;x|63
y = zeros(length_r,length(n)); Q4u.v,sE
for j = 1:length(n) {+67<&g
s = 0:(n(j)-m_abs(j))/2; B\Nbt!Ps
pows = n(j):-2:m_abs(j); r07u6OA
for k = length(s):-1:1 QEr<(wM-y
p = (1-2*mod(s(k),2))* ... k'o[iKlu
prod(2:(n(j)-s(k)))/ ... PeJ#9hI~rQ
prod(2:s(k))/ ... #gC[L=01
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... J
p?XV<3Z
prod(2:((n(j)+m_abs(j))/2-s(k))); !6(3Y
idx = (pows(k)==rpowers); hY&Yp^"}]^
y(:,j) = y(:,j) + p*rpowern(:,idx);
r!Eh}0bL
end "9caoPI0~
]RT
if isnorm jrQ0-D%M d
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); GAj%o]}u
end P73GH
end z=>fBb>w7
% END: Compute the Zernike Polynomials 91]|4k93
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16L YVvmW
D{+@ ,C7B
pCE
GZV,d@
% Compute the Zernike functions: l 2Sar1~1
% ------------------------------ '-v:"%s|
idx_pos = m>0; (h0@;@@7hW
idx_neg = m<0; R/~!km
^2kjO/
gy.UTAs
N
z = y; GB$`b'x@S
if any(idx_pos) [D~]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]d1'5F][H
end 7p1Y g
if any(idx_neg) <e UsMo<
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5&