切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9463阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C,+  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $(D>v!dp  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? F62 uDyY  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fhN\AjB6Td  
    B{Vc-qJ  
    &7\}S qp  
    o_Zs0/  
    2p, U ^h  
    function z = zernfun(n,m,r,theta,nflag) H-pf8  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. "yQBHYP  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n}a`|Nbk  
    %   and angular frequency M, evaluated at positions (R,THETA) on the SN@>mpcJS  
    %   unit circle.  N is a vector of positive integers (including 0), and K[iAN;QCe%  
    %   M is a vector with the same number of elements as N.  Each element .;7V]B1o  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) q!Ek EW\n  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 7<WUj K|  
    %   and THETA is a vector of angles.  R and THETA must have the same 8:& ! F`o  
    %   length.  The output Z is a matrix with one column for every (N,M) $CMye; yL  
    %   pair, and one row for every (R,THETA) pair. i_N8)Z;r  
    % Kfb(wW  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (UkDww_!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eQuw uT  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral T9$~tv,5F  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *l`yxz@U  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized %"r9;^bj&<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c"tlNf?  
    % RI8*'~ix]  
    %   The Zernike functions are an orthogonal basis on the unit circle. \r:*`Z*y  
    %   They are used in disciplines such as astronomy, optics, and >;9g`d  
    %   optometry to describe functions on a circular domain. 'sI ne>  
    % 3T.V*&  
    %   The following table lists the first 15 Zernike functions. `WH$rx!  
    % 9BZ B1o X  
    %       n    m    Zernike function           Normalization 1,=:an  
    %       -------------------------------------------------- b/[X8w'VP  
    %       0    0    1                                 1 p+~Imf-Jk  
    %       1    1    r * cos(theta)                    2 ^^}htg  
    %       1   -1    r * sin(theta)                    2 1P"7.{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) AsE77AUA  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /#T{0GBXe  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) qZ!kVrmg&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ng+sK  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) >8{w0hh;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) xKE=$SV(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) BC!) g+8  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) VB905%  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jo&j<3i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) TY% c`Q5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s/@uGC0>  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~/A2 :}Cp=  
    %       -------------------------------------------------- %'WC7s  
    % mRAt5a#is  
    %   Example 1: ?<.a>"!  
    % qnyacI  
    %       % Display the Zernike function Z(n=5,m=1) +)yoQRekX  
    %       x = -1:0.01:1; EXeV @kg  
    %       [X,Y] = meshgrid(x,x); >dK0&+A  
    %       [theta,r] = cart2pol(X,Y); xkFa  
    %       idx = r<=1; O-7)"   
    %       z = nan(size(X)); uq[5 om"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ">=Ep+ix  
    %       figure c*\i%I#f2  
    %       pcolor(x,x,z), shading interp 9j^rFG!n  
    %       axis square, colorbar #m{(aa9;  
    %       title('Zernike function Z_5^1(r,\theta)') ^`#7(S)a/  
    % &iu]M=Y b  
    %   Example 2: '2Zs15)V  
    % .BxQF  
    %       % Display the first 10 Zernike functions $hCS-9%&  
    %       x = -1:0.01:1; tt-ci,X+  
    %       [X,Y] = meshgrid(x,x); Da)p%E>Q  
    %       [theta,r] = cart2pol(X,Y); 0.+Eo.AX4M  
    %       idx = r<=1; &;?+ ^L>  
    %       z = nan(size(X)); :4[>]&:u3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xKBi".wA  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Kn$t_7AF^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5q@s6_"{  
    %       y = zernfun(n,m,r(idx),theta(idx)); v(Kj6'  
    %       figure('Units','normalized') M^\`~{*T  
    %       for k = 1:10 Q1*_l  
    %           z(idx) = y(:,k); ~rI2 RJ  
    %           subplot(4,7,Nplot(k)) 8h)7K/!\  
    %           pcolor(x,x,z), shading interp cg^~P-i@*  
    %           set(gca,'XTick',[],'YTick',[]) 4xT /8>v2|  
    %           axis square <WWZb\"{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) TR*vZzoy  
    %       end @?J7=}bzz  
    % FT>>X P8  
    %   See also ZERNPOL, ZERNFUN2. 3%r/w7Fc  
    VWt=9D;  
    61QA<Wb  
    %   Paul Fricker 11/13/2006 =?4[:#Rh  
    LtwfL^#  
    oR`rs[Kj  
    #s(ob `0|  
    Ar~<l2,{r  
    % Check and prepare the inputs: \H>Psv{  
    % ----------------------------- QsPg4y3?D  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x(Uv>k~i}  
        error('zernfun:NMvectors','N and M must be vectors.') s+_8U}R  
    end 8 [,R4@  
    6qmV/DL  
    XySkm2y  
    if length(n)~=length(m) (bsywM  
        error('zernfun:NMlength','N and M must be the same length.') GMZ6 dK  
    end W\0u[IV.x  
    #a@jt  
    L Y4bn)Qf  
    n = n(:); cGo_qR/B(>  
    m = m(:); P()n=&XO6  
    if any(mod(n-m,2)) _I EbRVpb  
        error('zernfun:NMmultiplesof2', ... y+$vHnS/jC  
              'All N and M must differ by multiples of 2 (including 0).') @\gE{;a8  
    end pUmT?N!  
    E0HE@pqr  
    /Dc54U n  
    if any(m>n) n(LO`{  
        error('zernfun:MlessthanN', ... dtV*CX.D.7  
              'Each M must be less than or equal to its corresponding N.') G3!O@j!7w$  
    end }jce5E  
    [V8^}s}tF  
    Lwm /[  
    if any( r>1 | r<0 ) .L^j:2(L  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') N0$ uB"  
    end =^Ws/k  
    7)O+s/.P)  
    9X1vL  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Jk`l{N  
        error('zernfun:RTHvector','R and THETA must be vectors.') ('uUf!h?\  
    end $z)egh(z  
    3qu?qD  
    GU1cMe  
    r = r(:); < fe.  
    theta = theta(:); dR>$vbjh1Z  
    length_r = length(r); 5>e<|@2 X  
    if length_r~=length(theta) 6 3PV R"  
        error('zernfun:RTHlength', ... J^DyhCs  
              'The number of R- and THETA-values must be equal.') n/BoK6g  
    end bx6=LK  
    e{4e<hd  
    pwSkwJ]  
    % Check normalization: )eSQce7H  
    % -------------------- DH$Nz  
    if nargin==5 && ischar(nflag) Ln+.$ C  
        isnorm = strcmpi(nflag,'norm'); I_?R(V[9  
        if ~isnorm #jxPh!%9  
            error('zernfun:normalization','Unrecognized normalization flag.') l.;^w  
        end Je^ ;[^  
    else Mw+ l>92  
        isnorm = false; Ps 0<CUyI  
    end x}` )'a[  
    }43qpJe8U  
    )VG>6x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BlT)hG(M>  
    % Compute the Zernike Polynomials 9&kPcFX B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XdlA)0S)  
    })PU`?f  
    hCX/k<}I  
    % Determine the required powers of r: 8OS^3JS3"  
    % ----------------------------------- 2}.~ 6EU/  
    m_abs = abs(m); Jfv'M<I  
    rpowers = []; 6>&(OV   
    for j = 1:length(n) 6"[,  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?%Q=l;W.  
    end u,=?|M\  
    rpowers = unique(rpowers); v$;URF%^  
    Y@Ry oJ  
    &(o&Y  
    % Pre-compute the values of r raised to the required powers, |Z o36@s  
    % and compile them in a matrix: I&^hG\D  
    % ----------------------------- ]gA2.,)}D  
    if rpowers(1)==0 D~Q -:G$x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EuVA"~PA  
        rpowern = cat(2,rpowern{:}); '['x'G50  
        rpowern = [ones(length_r,1) rpowern]; ]_!NmB_3  
    else w&hCt c  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d?/g5[  
        rpowern = cat(2,rpowern{:}); x A*6Z)Y  
    end )T slI  
    x>J(3I5_b  
    9RK.+ 2  
    % Compute the values of the polynomials: MQ'=qR  
    % -------------------------------------- 7#N= GN  
    y = zeros(length_r,length(n)); ~xJr|_,gp  
    for j = 1:length(n) ;D(6Gy9~  
        s = 0:(n(j)-m_abs(j))/2; cxPOO#  
        pows = n(j):-2:m_abs(j); @6;ZP1  
        for k = length(s):-1:1 #z*,-EV|  
            p = (1-2*mod(s(k),2))* ... k $# ,^)T  
                       prod(2:(n(j)-s(k)))/              ... 02:`Joy2D  
                       prod(2:s(k))/                     ... 4 4WyfpTJ*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !b$~Sm)  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); t`eIkq|NxI  
            idx = (pows(k)==rpowers); OzTR#`oey  
            y(:,j) = y(:,j) + p*rpowern(:,idx); F+D e"^As  
        end L?Ih;  
         >V%.=})K  
        if isnorm r. rzU  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Wrm3U/>e  
        end  z' 5  
    end zCS }i_ p  
    % END: Compute the Zernike Polynomials <)L[V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5RF*c,cNq  
    GJF ,w{J  
    S[l z>I  
    % Compute the Zernike functions: p~-)6)We?  
    % ------------------------------ szOa yAS  
    idx_pos = m>0; :o:/RRp[  
    idx_neg = m<0; }n,LvA@[0  
    m&MZn2u[4i  
    UnZc9 6  
    z = y; 3CSwcD  
    if any(idx_pos) ,s,AkH  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Pn ?gB}l  
    end +.u HY`A  
    if any(idx_neg) 530Kk<%^}8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sr<\fW  
    end \M Av's4b@  
    4Le{|B  
    9S5C{~P4  
    % EOF zernfun sei%QE]!/  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  S"R(6:hkgu  
    (_Rl f$D  
    DDE还是手动输入的呢? H  `_{n<  
    @[O|n)7  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)