切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9262阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _r>kR7A\{  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, @km4qJZ  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &4ndi=.#rg  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? q1v7(`O  
    F)4I70vG  
    ?TJ4L/"(k6  
    GL~ Wnt  
    NF7  
    function z = zernfun(n,m,r,theta,nflag) BS(jC  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cg_ " }]Y1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `@ny!S|1/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the oW^>J-  
    %   unit circle.  N is a vector of positive integers (including 0), and X ]W)D S  
    %   M is a vector with the same number of elements as N.  Each element g#`}HuPoE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) AN3oh1xe:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +*,!q7Gt  
    %   and THETA is a vector of angles.  R and THETA must have the same bg|dV  
    %   length.  The output Z is a matrix with one column for every (N,M) 41P0)o  
    %   pair, and one row for every (R,THETA) pair. >'4$g7o,  
    % 6l T< lzT  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Jg)( F|>o  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $0vWC#.A]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral %!eRR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, g/}d> 6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized v|KIVBkbT  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mG$N%`aG  
    % .)=*Yr M  
    %   The Zernike functions are an orthogonal basis on the unit circle. \GQRpJ#h1  
    %   They are used in disciplines such as astronomy, optics, and p3Ozfk  
    %   optometry to describe functions on a circular domain. QUaV;6 4  
    % EV-sEl8ki  
    %   The following table lists the first 15 Zernike functions. D+BiclJ  
    % w]nt_xj  
    %       n    m    Zernike function           Normalization }a#T\6rY  
    %       -------------------------------------------------- 8:)[.  
    %       0    0    1                                 1 9HEqB0|ZRu  
    %       1    1    r * cos(theta)                    2 _`gkYu3R+  
    %       1   -1    r * sin(theta)                    2 bRrS d:e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ({@" {  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  JZ+6)R  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) w>8kBQ?b  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) v9FR  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1zCu1'Wv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 'n>44_7L  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4f~sRubK  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) EZ:? (|h  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pJs`/   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8EMBqhl  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IZm6.F  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $_;rqTk]g  
    %       -------------------------------------------------- U;IGV~oT  
    % l1|*(%p?X  
    %   Example 1: * xmC`oP  
    % rk4KAX_[  
    %       % Display the Zernike function Z(n=5,m=1) SvQ|SKE':  
    %       x = -1:0.01:1; +H?g9v40  
    %       [X,Y] = meshgrid(x,x); Z,SV9 ~M  
    %       [theta,r] = cart2pol(X,Y); !.^x^OK%y  
    %       idx = r<=1; j`q>YPp  
    %       z = nan(size(X)); 2wnk~URj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #d3_7rI0V  
    %       figure QH4m7M@ni  
    %       pcolor(x,x,z), shading interp *0Z6H-Do,  
    %       axis square, colorbar SXYwhID=  
    %       title('Zernike function Z_5^1(r,\theta)') 1LSJy*yY  
    % jnbR}a=fJ  
    %   Example 2:  B9y5NX  
    % XR9kxTuk  
    %       % Display the first 10 Zernike functions `?.6}*4@_A  
    %       x = -1:0.01:1; X Db%-  
    %       [X,Y] = meshgrid(x,x); -,YI>!  
    %       [theta,r] = cart2pol(X,Y); 0TA8#c  
    %       idx = r<=1; 1Az&BZU[  
    %       z = nan(size(X)); & wtE"w  
    %       n = [0  1  1  2  2  2  3  3  3  3]; m1j Eky(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :RukW.MR  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2;*G!rE&*`  
    %       y = zernfun(n,m,r(idx),theta(idx)); re/u3\S  
    %       figure('Units','normalized') A'7Y{oPHX  
    %       for k = 1:10 p>\[[Md  
    %           z(idx) = y(:,k); <*z'sUh+}  
    %           subplot(4,7,Nplot(k)) -zMvpe-am&  
    %           pcolor(x,x,z), shading interp u/wX7s   
    %           set(gca,'XTick',[],'YTick',[]) a@&qdp  
    %           axis square }Hg\ tj}i  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h$$JXf  
    %       end x 9\{a  
    % xi.?@Lff  
    %   See also ZERNPOL, ZERNFUN2. U&:-Vf~&  
    COm^ ti-p  
    ^Ss <<  
    %   Paul Fricker 11/13/2006 j DEym&-  
    RA!m,"RM  
    bv(+$YR  
    "N_@q2zF  
    UtJfO`m9P  
    % Check and prepare the inputs: BR?DW~7J j  
    % ----------------------------- )'g4Ty  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +h/OQ]`/m  
        error('zernfun:NMvectors','N and M must be vectors.') p=eSJ*  
    end RrrlfFms  
    SeS ZMv  
    % q!i  
    if length(n)~=length(m) )BI%cD  
        error('zernfun:NMlength','N and M must be the same length.') IcQpb F0  
    end *P7n YjG  
    n} !')r  
    Y>FLc* h  
    n = n(:); !,Gavt7f  
    m = m(:); 2Hx*kh2  
    if any(mod(n-m,2)) QD^=;!  
        error('zernfun:NMmultiplesof2', ... 5>CeFy  
              'All N and M must differ by multiples of 2 (including 0).') RT'5i$q[  
    end v,N!cp1  
    kO^  
    i@WO>+iB  
    if any(m>n) ! @Vj&>mH$  
        error('zernfun:MlessthanN', ... ak3WER|f#  
              'Each M must be less than or equal to its corresponding N.') qkc,93B3  
    end S\sy^Kt~4:  
    &1=,?s]&  
    Bqa_l|  
    if any( r>1 | r<0 ) K)`R?CZ:s  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') .3Smqwm=Y  
    end Gv8Z  
    \!uf*=d  
    n]5Pfg|a  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I 6<LKI/  
        error('zernfun:RTHvector','R and THETA must be vectors.') #3?"#),q  
    end L:lnm9<  
    s:,fXg25J  
    =yqg,w&Q  
    r = r(:); 9S'\&mRl  
    theta = theta(:); Ly, ];  
    length_r = length(r); 4U)%JK.ta  
    if length_r~=length(theta) }c4F}Cy  
        error('zernfun:RTHlength', ... C5Fq%y{$.  
              'The number of R- and THETA-values must be equal.') 93w$ck},?G  
    end 4T&Jlu?:  
    2e ~RM2PQ  
    p"cY/2w:j  
    % Check normalization: sZqi)lo-s  
    % -------------------- \[+':o`LH  
    if nargin==5 && ischar(nflag) G8^b9xoA+.  
        isnorm = strcmpi(nflag,'norm'); :t+Lu H g  
        if ~isnorm )0;O<G] d  
            error('zernfun:normalization','Unrecognized normalization flag.') flBJO.2  
        end lu1T+@t  
    else Ja\B%f  
        isnorm = false; {=R vFA  
    end X/Fip 0i  
    \4*i;a.kU  
    *;t_V laZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !a5e{QG0  
    % Compute the Zernike Polynomials #]}G{ P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =`gFwH<   
    [vdC$9z,  
    2@ZuH^qhk  
    % Determine the required powers of r: _1$+S0G;  
    % ----------------------------------- Qej<(:J5  
    m_abs = abs(m); OW> >6zM  
    rpowers = []; {`L,F  
    for j = 1:length(n) jJ_6_8#  
        rpowers = [rpowers m_abs(j):2:n(j)]; \nVoBW(  
    end .8|5;!`WB  
    rpowers = unique(rpowers); <("P5@cExU  
    ,?GAFg K:  
    .M\0+,%/  
    % Pre-compute the values of r raised to the required powers, ,}Ic($ To  
    % and compile them in a matrix: IifH=%2Y  
    % ----------------------------- R*O6Z"h  
    if rpowers(1)==0 <jVk}gi)Jp  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o`ODz[04  
        rpowern = cat(2,rpowern{:}); JlH5 <:#PN  
        rpowern = [ones(length_r,1) rpowern]; -f(< 2i  
    else jin?;v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `jDmbD +=  
        rpowern = cat(2,rpowern{:}); -32.g \]  
    end :4238J8  
    T=cb:PD{%  
    ><;.vP  
    % Compute the values of the polynomials: gi\UNT9x  
    % -------------------------------------- EmcwX4|  
    y = zeros(length_r,length(n)); zhwajc  
    for j = 1:length(n) X@B,w_b  
        s = 0:(n(j)-m_abs(j))/2; MWc{7,  
        pows = n(j):-2:m_abs(j); FEg&EYI  
        for k = length(s):-1:1 U C9w T  
            p = (1-2*mod(s(k),2))* ... 0`e- ;  
                       prod(2:(n(j)-s(k)))/              ... ';x5 $5k'  
                       prod(2:s(k))/                     ... g\,HiKBXd  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... W3i X;-Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \RTXfe-`  
            idx = (pows(k)==rpowers); N &vQis  
            y(:,j) = y(:,j) + p*rpowern(:,idx); y `w5u.'  
        end  qZP>h4  
         <H!; /p/S  
        if isnorm gLv";"4S  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3sGe#s%  
        end 4,R1}.?BzJ  
    end ^S`c-N  
    % END: Compute the Zernike Polynomials C[(Exe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %OsV(7  
    [k6 5i  
    ,t>/_pI+=  
    % Compute the Zernike functions: E|^~R}z)  
    % ------------------------------ I#hzU8Cc  
    idx_pos = m>0; ~4~>; e  
    idx_neg = m<0; mh`VZQ@  
    -n$fh::^  
    0IjQqI  
    z = y; =u`^QE  
    if any(idx_pos) Y3I+TI>x  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -T-h~5   
    end ;zvg]  %  
    if any(idx_neg) WAcQRa~C  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M3dNG]3E  
    end G@QZmuj&KH  
    Tp/+{|~  
    $ V"7UA22  
    % EOF zernfun R|AG N*.  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  izow=}  
    =x9zy]  
    DDE还是手动输入的呢? N%:QaCZKw  
    PygaW&9Z|d  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)