下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C~T*Wlk
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, SZ~lCdWad
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? eQ<Vky^SJ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? nxe9^h7m
':]Hj8t_
t\f[->f
Av!xI
'u6n,yRm
function z = zernfun(n,m,r,theta,nflag) d2Ta&Md
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ywA7hm
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HJt
'@t=Ak
% and angular frequency M, evaluated at positions (R,THETA) on the AYfL}X<Ig
% unit circle. N is a vector of positive integers (including 0), and b"w@am>&
% M is a vector with the same number of elements as N. Each element |qpFR)l
% k of M must be a positive integer, with possible values M(k) = -N(k) D/+l$aBz
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, f(
<O~D
% and THETA is a vector of angles. R and THETA must have the same K?>sP%m)
% length. The output Z is a matrix with one column for every (N,M) co-1r/
-O
% pair, and one row for every (R,THETA) pair. Cng_*\=O
% 4<Kxo\\S
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FmgMd)#
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), WAJKP"
% with delta(m,0) the Kronecker delta, is chosen so that the integral jtgj h\Nt
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :"cKxd
% and theta=0 to theta=2*pi) is unity. For the non-normalized S2>$S^[U
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. MhIHfW]b
% dF*M"|[
% The Zernike functions are an orthogonal basis on the unit circle. B_>r|^Vh
% They are used in disciplines such as astronomy, optics, and eo^C[#
.
% optometry to describe functions on a circular domain. l[[^]__
% QwL*A `@
% The following table lists the first 15 Zernike functions. v>_83P`
% ~RV"_8`V9
% n m Zernike function Normalization z>)lp$
% -------------------------------------------------- oWEzzMRz
% 0 0 1 1 S3&n?\CO:
% 1 1 r * cos(theta) 2 yQf(/Uxk*x
% 1 -1 r * sin(theta) 2 .@$A~/ YU
% 2 -2 r^2 * cos(2*theta) sqrt(6) )>@%;\qV
% 2 0 (2*r^2 - 1) sqrt(3) #Y'ewu;qJ
% 2 2 r^2 * sin(2*theta) sqrt(6) i`=%X{9
% 3 -3 r^3 * cos(3*theta) sqrt(8) LIT`~D
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z/d {v:)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Y(gai?
% 3 3 r^3 * sin(3*theta) sqrt(8) @WiTh'w0
% 4 -4 r^4 * cos(4*theta) sqrt(10) TeFi[1
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) syCT)}T6z
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) WJMmt XO
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;te( {u+
% 4 4 r^4 * sin(4*theta) sqrt(10) Q:Ma3El\
% -------------------------------------------------- tlB-s;
% `26.+>Z7
% Example 1: v#e*RI2}
% uPE Ab2u="
% % Display the Zernike function Z(n=5,m=1) <C451+95
% x = -1:0.01:1; q*kLi~Oe
% [X,Y] = meshgrid(x,x); .o]9
HbIk5
% [theta,r] = cart2pol(X,Y); Y*IKPnPot2
% idx = r<=1; n3j_=(
% z = nan(size(X)); (LJ7xoJ^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ?Ezy0>j
% figure +O^} t
% pcolor(x,x,z), shading interp Gte\=0Wr
% axis square, colorbar Ihv@2{*(b
% title('Zernike function Z_5^1(r,\theta)') D
!{e
% CeM%?fr5
% Example 2: }pGjc_:']
% "=LeHY=9
% % Display the first 10 Zernike functions K(HrwH`a{
% x = -1:0.01:1; l
dp$jrNLr
% [X,Y] = meshgrid(x,x); =woP~+
% [theta,r] = cart2pol(X,Y); /F6"uZSt4
% idx = r<=1; q_9 8=fyE6
% z = nan(size(X)); Q<KF<K'0hg
% n = [0 1 1 2 2 2 3 3 3 3]; f4&;l|R0a
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?FwHqyFVlQ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; GVfRy@7n
% y = zernfun(n,m,r(idx),theta(idx)); w9n0p0xr<
% figure('Units','normalized') Ya(3Z_f+VZ
% for k = 1:10 &Pc.[k
% z(idx) = y(:,k); m/,80J8L+f
% subplot(4,7,Nplot(k)) +ej5C:El_}
% pcolor(x,x,z), shading interp h<8c{RuoZC
% set(gca,'XTick',[],'YTick',[]) C](djkA$
% axis square wQ[!~>A
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9+/D\|"{
% end \HG4i/V:h
% 1_l)$"
% See also ZERNPOL, ZERNFUN2. /a)^)
N(3Bzd)
'Gamb+[
% Paul Fricker 11/13/2006 PZO.$'L|7
Cl3L)
t=|}?lN<
Qvel#*-4
L\5:od[EP
% Check and prepare the inputs: TjI&8#AWBA
% ----------------------------- '-Oh$hqCx|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W39J)~D^@
error('zernfun:NMvectors','N and M must be vectors.') 2##mVEo.(
end G9GHBwT
f6nuh&!-
hpYv*WH:
if length(n)~=length(m) 4mtO"'|
error('zernfun:NMlength','N and M must be the same length.') TBky+]p@
end .mcohfR
-$_FKny
aof'shS8
n = n(:); N9s.nu
m = m(:); Z'l!/l!
if any(mod(n-m,2)) :RwURv+kT
error('zernfun:NMmultiplesof2', ... PgHmOs
'All N and M must differ by multiples of 2 (including 0).') !ZvVj\{
end
HKJ^6|'
3<N2ehi?
2oOos%0
if any(m>n) X.FoX
error('zernfun:MlessthanN', ... c5:0`~5Fn
'Each M must be less than or equal to its corresponding N.') l!W!Gz0to
end _MuzD&^qE
UEt78eN
H8B2{]HAt
if any( r>1 | r<0 ) `T{CB) ?9
error('zernfun:Rlessthan1','All R must be between 0 and 1.') N}<!k#d
E
end Iza;~8dH5
s&Al4>}.f
@ &rf?:
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j]`hy"
error('zernfun:RTHvector','R and THETA must be vectors.') Gpcordt/
end qn{4AWmJ
Ciz,1IV
13)6p|6x
r = r(:); 6@3v+Vf'
theta = theta(:); b$_qG6)IJO
length_r = length(r); j9GKz1
if length_r~=length(theta) .*xO/pn
error('zernfun:RTHlength', ... 7GG`9!l]D
'The number of R- and THETA-values must be equal.') 8 nqF i
end #3eI4KJ4+l
mG\9Qkom|
;]=@;? 9
% Check normalization: W$&*i1<a+
% -------------------- R>1oF]w
if nargin==5 && ischar(nflag) #7]>ozKm
isnorm = strcmpi(nflag,'norm'); ="f-I9y
if ~isnorm vpOGyvI
error('zernfun:normalization','Unrecognized normalization flag.') Pth4_]US
end +ZGH
else mA_EvzXk\
isnorm = false; <<Y]P+uU
end ;=E}PbZt2
RBg2iG$8|
~m0=YAlk?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S4_ZG>\VT
% Compute the Zernike Polynomials *f{4_ts
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yB=R7E7
zf5%|7o
O U9{Y9e
% Determine the required powers of r: yd'cLZd<}
% ----------------------------------- 5p:2gsk
m_abs = abs(m); YcR: _ac
rpowers = []; rM6S%rS
for j = 1:length(n) ;05lwP*r]
rpowers = [rpowers m_abs(j):2:n(j)]; Z![#Uz.z
end yp@cn(:~
rpowers = unique(rpowers); 9$VdYw7D
-em3 #V
b
j<T`M!
% Pre-compute the values of r raised to the required powers, 7~ZG"^k
% and compile them in a matrix: kkj@!1q(wO
% ----------------------------- R$MR|
if rpowers(1)==0 UYQ@ub
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HM"(cB(n`
rpowern = cat(2,rpowern{:}); rq1~%S
rpowern = [ones(length_r,1) rpowern]; 6& hiW]Adm
else 8{{^pW?x
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); */TO$ ^s
rpowern = cat(2,rpowern{:}); b}u#MU
end -xJ\/"A
kI5LG6
<Nc9F['
% Compute the values of the polynomials: `ZP[-: `
% -------------------------------------- ]^{5`
y = zeros(length_r,length(n)); KVViTpZ
for j = 1:length(n) 4"{g{8
s = 0:(n(j)-m_abs(j))/2; 2"P1I
pows = n(j):-2:m_abs(j); ?V_v=X%w
for k = length(s):-1:1 >SYOtzg%
p = (1-2*mod(s(k),2))* ... I<xcVY9L
prod(2:(n(j)-s(k)))/ ... !VrBoU4<d
prod(2:s(k))/ ... c\tw#;\9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?6I`$ &OA
prod(2:((n(j)+m_abs(j))/2-s(k))); rfZg
idx = (pows(k)==rpowers); *]k E3
y(:,j) = y(:,j) + p*rpowern(:,idx); Yx ;j
end 0&r}'f?
`fVzY"Qv k
if isnorm
TLVfu4
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *0'{n*>
end Esg:
end q zo)\,
% END: Compute the Zernike Polynomials -ucR@P]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #}Ays#wA>?
a{?>F&vnU
6jl{^dI
% Compute the Zernike functions: (m.jC}J
% ------------------------------ 8@T0]vH&
idx_pos = m>0; F1`mq2^@
idx_neg = m<0; =aehhs>
PM {L}tEQ
~ r$I&8
z = y; MUN:}S
if any(idx_pos) >4#\ U!
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); otP2qAI
end )*o) iN 7l
if any(idx_neg) 5=4-IO6W[]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ja@?.gW
end ZQ[s:
Ww{-(Ktx
2Paw*"U
% EOF zernfun 1fF\k#BE-%