切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8880阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, c yz3,3\e  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, xU`p|(SS-  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #QMz<P/Gl6  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? _.8S&  
    R8'RA%O9J  
    -nV9:opD  
    h~zT ydnH  
    j&qub_j"xX  
    function z = zernfun(n,m,r,theta,nflag) /9fR'EO{x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vx5Zl&6r  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [d ]9Oa4  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /mzlH  
    %   unit circle.  N is a vector of positive integers (including 0), and 0LJv'  
    %   M is a vector with the same number of elements as N.  Each element {I't]Qj_e  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e$rZ5X  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, IjnU?Bf  
    %   and THETA is a vector of angles.  R and THETA must have the same g[4WzDF*  
    %   length.  The output Z is a matrix with one column for every (N,M) }@d@3  
    %   pair, and one row for every (R,THETA) pair. 13x p_j  
    % >fQMXfoY  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h <<v^+m  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^^ixa1H<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "3Y0`&:D  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IJcsmNWm  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized x7 ,5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }Jj}%XxKs  
    % s!$a \k  
    %   The Zernike functions are an orthogonal basis on the unit circle. ; BHtCuY  
    %   They are used in disciplines such as astronomy, optics, and a9Zq{Ysj  
    %   optometry to describe functions on a circular domain.  rjnrju+  
    % ^} >w<'0  
    %   The following table lists the first 15 Zernike functions. 5\VWCI  
    % DZtsy!xA  
    %       n    m    Zernike function           Normalization  a0)QH  
    %       -------------------------------------------------- DkDmE  
    %       0    0    1                                 1 7WzxA=*#  
    %       1    1    r * cos(theta)                    2 5]:U9ts#  
    %       1   -1    r * sin(theta)                    2 Nu)NqFG,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) X|]A T9W  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (KZ{^X?a  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _7_Y={4=`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) PXNuL&   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5wU]!bxr  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) *.w 9c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #&e-|81H  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Dk51z@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yyTnL 2Y9  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) S)"Jf?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z},# ~L6$q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) g2Z`zQA7  
    %       -------------------------------------------------- XfIJ4ZM5  
    % ]JQULE)  
    %   Example 1: +^F Zq$NP  
    % 6[AL|d DK  
    %       % Display the Zernike function Z(n=5,m=1) 4 s9LB  
    %       x = -1:0.01:1; &m;*<}X  
    %       [X,Y] = meshgrid(x,x); :e+jU5;]3  
    %       [theta,r] = cart2pol(X,Y); ]7c=PC  
    %       idx = r<=1; aw&,S"A@  
    %       z = nan(size(X)); $M:*T.3  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); A?OQE9'  
    %       figure (A.C]hD  
    %       pcolor(x,x,z), shading interp -MBxl`JU  
    %       axis square, colorbar a(ZcmYzXU  
    %       title('Zernike function Z_5^1(r,\theta)') j3ls3H&  
    % ?:eV%`7  
    %   Example 2: HTTC TR  
    % gI|~|-'  
    %       % Display the first 10 Zernike functions _+3::j~;m  
    %       x = -1:0.01:1; Qn2&nD%zi  
    %       [X,Y] = meshgrid(x,x); &mM0AA'\?H  
    %       [theta,r] = cart2pol(X,Y); S$-7SEkO+  
    %       idx = r<=1; <9b &<K:  
    %       z = nan(size(X)); */S_Icf  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [{/jI\?v  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ChQx a  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )D%~` ,#pQ  
    %       y = zernfun(n,m,r(idx),theta(idx)); J] r^W)O  
    %       figure('Units','normalized') 5 SQ 8}Or3  
    %       for k = 1:10 j![\& z  
    %           z(idx) = y(:,k); z\4.Gm-  
    %           subplot(4,7,Nplot(k)) 7 _[L o4_  
    %           pcolor(x,x,z), shading interp F_P~x(X  
    %           set(gca,'XTick',[],'YTick',[]) }Ou}+^Bc  
    %           axis square dqcL]e  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  ZWm6eD  
    %       end GTxk%   
    % &BSn?  
    %   See also ZERNPOL, ZERNFUN2. RT8 ?7xFc  
    bcz:q/f}@  
    RPbZ(.  
    %   Paul Fricker 11/13/2006 AQ^u   
    #T"4RrR  
    tX~w{|k  
    EKN~H$.  
    (^>J&[=  
    % Check and prepare the inputs: =-Ck4e *T  
    % ----------------------------- tO&^>&;5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X5w$4Kj&4l  
        error('zernfun:NMvectors','N and M must be vectors.') q1ma%eiN  
    end #lO Mm9  
    I( Mm?9F  
    \ B%+fw  
    if length(n)~=length(m) TkF[x%o  
        error('zernfun:NMlength','N and M must be the same length.') Pc]HP  
    end 1xx}~|F?|  
    5~S5F3  
    u$`a7Lp,n  
    n = n(:); BFt> 9x]T  
    m = m(:); NX&_p!_V  
    if any(mod(n-m,2)) wdoR%b{M  
        error('zernfun:NMmultiplesof2', ... EhBKj |y  
              'All N and M must differ by multiples of 2 (including 0).') gI`m.EH}}N  
    end *=xr-!MEk  
    $Y gue5{c  
    2>59q$ |  
    if any(m>n) og>uj>H&  
        error('zernfun:MlessthanN', ... x|29L7i  
              'Each M must be less than or equal to its corresponding N.') Gp\ kU:}&  
    end [PbOfxxgA  
    iJ|uvPCE  
    O.JN ENZf  
    if any( r>1 | r<0 ) 5E <kwi  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') J,6yYIq  
    end ;9'OOz|+1  
    Zgb!E]V[  
    =WJ NWt>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :2)/FPL6  
        error('zernfun:RTHvector','R and THETA must be vectors.') bQ5\ ]5M  
    end 4`=m u}Y2  
    G]aOHJ:.  
    a09<!0Rp  
    r = r(:); <\S:'g"(  
    theta = theta(:); R/a*LSe@&  
    length_r = length(r); \.}c9*)  
    if length_r~=length(theta) |gY^)9ei  
        error('zernfun:RTHlength', ... BD7N i^qI$  
              'The number of R- and THETA-values must be equal.') "J3x_~,[4m  
    end k==h|\|  
    ijU*|8n{>  
    h@wgd~X9  
    % Check normalization: 2b8L\$1q  
    % -------------------- /_ajaz%  
    if nargin==5 && ischar(nflag) rQ snhv  
        isnorm = strcmpi(nflag,'norm'); f|oh.z_R  
        if ~isnorm h zn6kbv  
            error('zernfun:normalization','Unrecognized normalization flag.') .5{ab\_af  
        end p{dj~ &v  
    else Qe(:|q _  
        isnorm = false; mB)bcuPv  
    end 1yY0dOoLG)  
    @9|hMo  
    _PR4`C*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *DhiN  
    % Compute the Zernike Polynomials | VDV<g5h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oe~b}:  
    B#1;r-^P<  
    ?|Zx!z ($  
    % Determine the required powers of r: sW8dPw O  
    % ----------------------------------- Rbv;?'O$L  
    m_abs = abs(m); eb$#A _m  
    rpowers = []; Eu04e N  
    for j = 1:length(n) eh#(eua0/  
        rpowers = [rpowers m_abs(j):2:n(j)]; IMONgFBS  
    end 0+b1vhQ  
    rpowers = unique(rpowers); b5n'=doR/I  
    A\5L 7  
    3"\lu?-E  
    % Pre-compute the values of r raised to the required powers, 8DaL,bi*.  
    % and compile them in a matrix: Od)C&N=y  
    % ----------------------------- Pg7Yp2)Oli  
    if rpowers(1)==0 d m%8K6|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <1M-Ro?5k  
        rpowern = cat(2,rpowern{:}); y4fdq7i~}9  
        rpowern = [ones(length_r,1) rpowern]; ufT`"i  
    else r" ,GC]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qJUK_6|3  
        rpowern = cat(2,rpowern{:}); ` sU/&  P  
    end Pk)1WK7E  
    ~61v5@  
    VVOd]2{  
    % Compute the values of the polynomials: K", N!koj  
    % -------------------------------------- M\Kx'N  
    y = zeros(length_r,length(n)); G,w(d@  
    for j = 1:length(n) JqiP>4Uwm^  
        s = 0:(n(j)-m_abs(j))/2; v|2T%y_ u  
        pows = n(j):-2:m_abs(j); R{T$[$6S  
        for k = length(s):-1:1 Mf``_=K  
            p = (1-2*mod(s(k),2))* ... bA->{OPkT  
                       prod(2:(n(j)-s(k)))/              ... x-3\Ls[I  
                       prod(2:s(k))/                     ... lnR{jtWP  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sD wqH.L  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); :9 ^* ^T  
            idx = (pows(k)==rpowers); Y:a]00&)#Y  
            y(:,j) = y(:,j) + p*rpowern(:,idx); pz>>)c`  
        end VW4r{&rS  
         HyWCMK6b  
        if isnorm "'\$ g[k  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y'*K|a TG  
        end !C: $?oU  
    end  0lR5<^B  
    % END: Compute the Zernike Polynomials ~qOa\#x_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XpJ7o=?W3  
    c0u^zH<  
    [ibu/ W$  
    % Compute the Zernike functions: | %Vh`HT  
    % ------------------------------ b SU~XGPB  
    idx_pos = m>0; 'b{]:Y  
    idx_neg = m<0; <UQbt N-B\  
    [hj6N*4y  
    @sC`!Rmy'-  
    z = y; n7-6- #  
    if any(idx_pos) E~oOKQ5W  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^DwYOo2B  
    end X}\:_/  
    if any(idx_neg) d-dEQKI?;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,\%c^,HLJ  
    end )P|),S,;Z  
    oM`0y@QCf  
    0KOgw*>_  
    % EOF zernfun }U"&8%PZr  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  h_,i&d@(  
    q\4Xs$APq  
    DDE还是手动输入的呢? 0)e\`Bv  
    Zaf:fsj>  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)