切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9077阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, -|V#U`mwF  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, o(tJc}Mh+(  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,1I-%6L  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? wqG#jC!5  
    T={!/y+  
    vd%AV(]<LJ  
    ozY$}|sjDT  
    X@kgc&`0  
    function z = zernfun(n,m,r,theta,nflag) Z` kVyuQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +(!/(2>~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u0W6u} 4;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Z(q]rX5"  
    %   unit circle.  N is a vector of positive integers (including 0), and y{M7kYWtHV  
    %   M is a vector with the same number of elements as N.  Each element Kb ]}p  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;gL{*gR]S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;=joQWNDm  
    %   and THETA is a vector of angles.  R and THETA must have the same u.A}&'H  
    %   length.  The output Z is a matrix with one column for every (N,M) 6"_pCkn;c<  
    %   pair, and one row for every (R,THETA) pair. ;8<HB1 &,  
    % k9eyl)  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f%PLR9Nh5@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =R:O`qdC4e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @:im/SE  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +o@:8!IM1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `Ij EwKra  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d%I7OBBx@  
    % |[~ S&  
    %   The Zernike functions are an orthogonal basis on the unit circle. fTpG>*{p  
    %   They are used in disciplines such as astronomy, optics, and )&E]   
    %   optometry to describe functions on a circular domain. F;_c x  
    % ^zTe9:hz/\  
    %   The following table lists the first 15 Zernike functions. r\QV%09R  
    % iuj%.}  
    %       n    m    Zernike function           Normalization |fyzb=Lg  
    %       -------------------------------------------------- @|cHDltH  
    %       0    0    1                                 1 2c]751  
    %       1    1    r * cos(theta)                    2 8Dl(zYK;  
    %       1   -1    r * sin(theta)                    2 ekY)?$v3  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _# Hd2h  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (Q*x"G#4>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) r?u4[ Oe#  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) +8xT}mX  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) n;Mk\*Cg  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5=*i!c _m  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) eV%{XR?y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) onmpMU7w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CF3x\6.q}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) r<kgYU`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j|8!gW  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) _N:$|O#  
    %       -------------------------------------------------- v6G1y[Wl  
    % sCJ|U6Q-  
    %   Example 1: X9PbU1o;  
    % 1?w=v|b:P)  
    %       % Display the Zernike function Z(n=5,m=1)  #*rJI3  
    %       x = -1:0.01:1; %7 -(c  
    %       [X,Y] = meshgrid(x,x); dLGHbeZ[(  
    %       [theta,r] = cart2pol(X,Y); ogSDV   
    %       idx = r<=1; .h4NG4FIF  
    %       z = nan(size(X)); t{B@k[|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #qk=R7" Q  
    %       figure MA_YMxP.'  
    %       pcolor(x,x,z), shading interp ?f9M59(l  
    %       axis square, colorbar Q_p&~PNy5  
    %       title('Zernike function Z_5^1(r,\theta)') v6DjNyg<x  
    % F3vywN1$,  
    %   Example 2: O*/%z r  
    % $aEv*{$y  
    %       % Display the first 10 Zernike functions G11KAq(  
    %       x = -1:0.01:1; U:99w  
    %       [X,Y] = meshgrid(x,x); x]`F#5j  
    %       [theta,r] = cart2pol(X,Y); Ohgu*5!o  
    %       idx = r<=1; cQxUEY('+  
    %       z = nan(size(X)); 66-\}8f8a  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "*/IP9?]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Wm"q8-<<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vN v'%;L  
    %       y = zernfun(n,m,r(idx),theta(idx)); FO(QsR=\s  
    %       figure('Units','normalized') "5dke^yk0  
    %       for k = 1:10 4Th?q{X  
    %           z(idx) = y(:,k); _'Jjt9@S  
    %           subplot(4,7,Nplot(k)) MCTJ^g"D  
    %           pcolor(x,x,z), shading interp s>G]U)d<'  
    %           set(gca,'XTick',[],'YTick',[]) ";`jS&"=  
    %           axis square 1!V[fPJ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ah<p_qe9|  
    %       end |5`ecjb.  
    % r [^.\&-  
    %   See also ZERNPOL, ZERNFUN2. \z6UWZ  
    9i 9 ,X^=  
    @D*PO-s9  
    %   Paul Fricker 11/13/2006 2gklGDJD  
    F{QOu0$cA4  
    I74Rw*fB  
    <sm"3qs"_  
    !_3b#Caf  
    % Check and prepare the inputs: 49>b]f,Vc  
    % ----------------------------- Z5oDj|&l}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C7R3W,  
        error('zernfun:NMvectors','N and M must be vectors.') {[:C_Up)f  
    end t90M]EAV  
    >`&2]Wc)  
    rZ+4kf6S   
    if length(n)~=length(m) Nz3+yxv1  
        error('zernfun:NMlength','N and M must be the same length.') #>KiX84  
    end Fhllqh)  
    i"n_oO  
    |xZu?)M4  
    n = n(:); YCStX)r  
    m = m(:); Kyk{:UnI  
    if any(mod(n-m,2)) ^/}4M'[w  
        error('zernfun:NMmultiplesof2', ... Qp[ Jw?a  
              'All N and M must differ by multiples of 2 (including 0).') [O^/"Qk  
    end Q5dqn"?  
    FXY>o>K%h  
    + \%]<YO  
    if any(m>n) NTX0vQG  
        error('zernfun:MlessthanN', ... %U}6(~  
              'Each M must be less than or equal to its corresponding N.') H;_Ce'oU(  
    end t\QLj&h}E  
    "3]}V=L<5  
    4qE4 i:b  
    if any( r>1 | r<0 ) \reVA$M [  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') zOMxg00  
    end _IOUhMo  
    G Wa6FX:/  
    uUx7>algF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1}c /l<d  
        error('zernfun:RTHvector','R and THETA must be vectors.') _2`b$/)-  
    end Op9 ^Eu%n  
    C4PT(cezR  
    s&o9LdL  
    r = r(:); k kD#Bb  
    theta = theta(:); hTO 2+F*  
    length_r = length(r); ECM#J28D  
    if length_r~=length(theta) q$yg^:]2  
        error('zernfun:RTHlength', ... nG5\vj,zB  
              'The number of R- and THETA-values must be equal.') Y ~I>mc]  
    end |[5;dt_U/  
    >oyf i:  
    S}h d,"I  
    % Check normalization: OW=3t#"7Kp  
    % -------------------- XW8@c2jN\7  
    if nargin==5 && ischar(nflag) ,KM%/;1Dm  
        isnorm = strcmpi(nflag,'norm'); b@4UR<  
        if ~isnorm .eVX/6,  
            error('zernfun:normalization','Unrecognized normalization flag.') eJ<P  
        end W\Scak>  
    else ,vvfk=-  
        isnorm = false; '^WR5P<8c  
    end G8w@C  
    _8K8Ai-~.>  
    Ca?w"m~h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZGX"Vn|YL  
    % Compute the Zernike Polynomials _nzq(m1@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [#\OCdb*3  
    D?S|]]Y!q  
    &,PA+#  
    % Determine the required powers of r: dn])6Xl;i  
    % ----------------------------------- TBJ?8W(  
    m_abs = abs(m); 7=X6_AD  
    rpowers = []; x4g6Qze  
    for j = 1:length(n) OA9 P"*  
        rpowers = [rpowers m_abs(j):2:n(j)]; YZOwr72VL  
    end FVP,$  
    rpowers = unique(rpowers); &Q"vXs6Gt  
    3I}AA.h'00  
    !~F oy F  
    % Pre-compute the values of r raised to the required powers, RaTNA W)v>  
    % and compile them in a matrix: \pK&gdw  
    % ----------------------------- 4%qmwt*p  
    if rpowers(1)==0 7|dm"%@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4mp)v*z  
        rpowern = cat(2,rpowern{:}); (ESFR0  
        rpowern = [ones(length_r,1) rpowern]; _'Vo3b  
    else t'W6Fmwkx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )q4nyT>M  
        rpowern = cat(2,rpowern{:}); AriV4 +  
    end ]P7gEBi  
    `aX+Gz?  
    %j17QD8  
    % Compute the values of the polynomials: a}VR>!b  
    % -------------------------------------- 8,+T[S  
    y = zeros(length_r,length(n)); hF^JSCDz l  
    for j = 1:length(n) x2I|iA=  
        s = 0:(n(j)-m_abs(j))/2; r/ATZAgHP  
        pows = n(j):-2:m_abs(j); 9dszn^]T  
        for k = length(s):-1:1 V?^qW#AG  
            p = (1-2*mod(s(k),2))* ... og+Vrd  
                       prod(2:(n(j)-s(k)))/              ... ?Y\WSI?i  
                       prod(2:s(k))/                     ... Jr2>D=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 6z~ [Ay  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); (kK8 OxfF  
            idx = (pows(k)==rpowers); ';v2ld 9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Mx93D   
        end oliVaavj  
         ;2fzA<RkK  
        if isnorm ~/SLGyu  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PeEaF@#k  
        end c??m9=OX1  
    end ;VCFDE{K=  
    % END: Compute the Zernike Polynomials *Y53b Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (1er?4  
    Eqny'44  
    at*DYZBjDB  
    % Compute the Zernike functions: v/]xdP^Z  
    % ------------------------------ n.5M6i/~a  
    idx_pos = m>0; Avljrds+7  
    idx_neg = m<0; 5f@&XwD9  
    )Rk(gd  
    Bgsi$2hI  
    z = y; /N/jwLr  
    if any(idx_pos) v) K|{x  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #z_.!E  
    end 7I(QTc)*  
    if any(idx_neg) 8h}1t4k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T|YMU?4  
    end MbTmdRf  
    B=_5gZ4Y  
    ?5pZp~  
    % EOF zernfun 1Nv qtVC  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  U0dhr;l  
    [F^j(qTR  
    DDE还是手动输入的呢? &jF[f4:7  
    ~qb-uT\(99  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)