切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9118阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, o5(p&:1M  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, %E95R8SL  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? KKR@u(+"a  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? YEZd8Y  
    "JLKO${ Y  
    &R54?u^A  
    KWVEAHIn  
     q$$:<*Uy  
    function z = zernfun(n,m,r,theta,nflag) -uDB#?q:W  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &j\<UPn  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G:f\wK[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }t tiL  
    %   unit circle.  N is a vector of positive integers (including 0), and [b: $sR;  
    %   M is a vector with the same number of elements as N.  Each element x~Eg ax  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D}SYv})Ti  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, IR(6  
    %   and THETA is a vector of angles.  R and THETA must have the same +?[ ,y  
    %   length.  The output Z is a matrix with one column for every (N,M) PQ`p:=~>:i  
    %   pair, and one row for every (R,THETA) pair. Ex'6 WN~kD  
    % r7z8ICX'q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [E_eaez7#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mC P*v-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral H[ 6L!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, g">E it*[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )$#]h]ac  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ih*}1D)7  
    % gU7@}P  
    %   The Zernike functions are an orthogonal basis on the unit circle. (U"Ub;[7  
    %   They are used in disciplines such as astronomy, optics, and -c-#1_X5  
    %   optometry to describe functions on a circular domain. EG<YxNX,  
    % \atztC{-L>  
    %   The following table lists the first 15 Zernike functions. \ltA&}!  
    % s)#8>s-  
    %       n    m    Zernike function           Normalization GY@-}p~it  
    %       -------------------------------------------------- 4\)"Ih  
    %       0    0    1                                 1 adG=L9 "n  
    %       1    1    r * cos(theta)                    2 _jV(Gv'  
    %       1   -1    r * sin(theta)                    2 I#0WN  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) hlPZTr=a  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ].f28bY  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'J R2@W`]]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @1#QbNp#  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) -LF0%G  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) c+PT"/3  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) B3V:?#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) l MCoc'ae  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0MK|spc  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) R u^v!l`!7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [AzQP!gi  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) (fmcWHs  
    %       -------------------------------------------------- tETT\y|'  
    % 14TA( v]T  
    %   Example 1: N zY}-:{  
    % c}iVBN6~.<  
    %       % Display the Zernike function Z(n=5,m=1) 2Yd0:$a  
    %       x = -1:0.01:1; % AqUVt9}  
    %       [X,Y] = meshgrid(x,x); D9H(kk  
    %       [theta,r] = cart2pol(X,Y);  lv_|ws  
    %       idx = r<=1; Nz`4q %+  
    %       z = nan(size(X)); d,}fp)  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); B4^+&B#  
    %       figure 0be1aY;m&  
    %       pcolor(x,x,z), shading interp )clSW  
    %       axis square, colorbar l[=7<F  
    %       title('Zernike function Z_5^1(r,\theta)') iB[>uW  
    % p[BF4h{E  
    %   Example 2: %liu[6_  
    % xaO9?{O  
    %       % Display the first 10 Zernike functions 1JIL6w_  
    %       x = -1:0.01:1; %(a<(3r  
    %       [X,Y] = meshgrid(x,x); QUL^]6$  
    %       [theta,r] = cart2pol(X,Y); c"OBm#  
    %       idx = r<=1; +g_+JLQ  
    %       z = nan(size(X)); BZy&;P  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [%(}e1T(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; p<1z!`!P  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )X{x\ /N  
    %       y = zernfun(n,m,r(idx),theta(idx)); Qmxe*@{`  
    %       figure('Units','normalized') SVsLu2tVY  
    %       for k = 1:10 %,$Ms?,n`  
    %           z(idx) = y(:,k); fj X~"U  
    %           subplot(4,7,Nplot(k)) O)nLV~X  
    %           pcolor(x,x,z), shading interp !'>(r K$  
    %           set(gca,'XTick',[],'YTick',[]) =a>a A Z  
    %           axis square 5Hvg%g-c  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) f}q4~NPn-  
    %       end  |4uH  
    % (lbF/F>v  
    %   See also ZERNPOL, ZERNFUN2. `n%uvo}UT  
    u"IYAyzL  
    %2Q:+6)  
    %   Paul Fricker 11/13/2006 UpL1C~&  
    ;-p1z% u  
    6@pP aq6  
    O9OD[VZk  
    yM$@*od  
    % Check and prepare the inputs: D Q7+  
    % ----------------------------- O]{3aMs!Y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [+0rlmB  
        error('zernfun:NMvectors','N and M must be vectors.') N9LBji;nH  
    end f8`K8Y]4  
    ~l$u~:4Ob  
    bJc<FL<E  
    if length(n)~=length(m) cIqk=_]  
        error('zernfun:NMlength','N and M must be the same length.') <p"[jC2zF;  
    end n1OxT"tD  
    zbHNj(~  
    PW(4-H  
    n = n(:); )N[9r{3  
    m = m(:); dQ6:c7hp>D  
    if any(mod(n-m,2)) uq<kT[  
        error('zernfun:NMmultiplesof2', ... ([~9v@+  
              'All N and M must differ by multiples of 2 (including 0).') Il(p!l<Xz#  
    end r|$@Wsb?#  
    40TS=evG  
    _ndc^OG  
    if any(m>n) }*.S=M]y$  
        error('zernfun:MlessthanN', ... S a5+_TW  
              'Each M must be less than or equal to its corresponding N.') eELJDSd BV  
    end )eFXjnHN  
    4]L5%=atn  
    qEvHrsw},  
    if any( r>1 | r<0 ) 0zrgK;9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') '6l4MR$j&m  
    end VC%{qal;q  
    @Qw~z0PE<l  
    C9^[A4O@X!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7_Yxz$m  
        error('zernfun:RTHvector','R and THETA must be vectors.') t)|*-=  
    end E6"+\-e  
    "`P/j+-rt  
    hV5Aw;7C  
    r = r(:); #CKPNk c  
    theta = theta(:); U5X\RXy~  
    length_r = length(r); V +#Sb  
    if length_r~=length(theta) r!H'8O!  
        error('zernfun:RTHlength', ... Dqss/vwV  
              'The number of R- and THETA-values must be equal.') 0vN<0  
    end 7!%/vO0m  
    A-5xgp,  
    <9zzjgzG{c  
    % Check normalization: H CKD0xx  
    % -------------------- AY]dwKw  
    if nargin==5 && ischar(nflag) p;;4b@  
        isnorm = strcmpi(nflag,'norm'); ,;3#}OGg  
        if ~isnorm L$R"?O7  
            error('zernfun:normalization','Unrecognized normalization flag.') l=EnK"aU  
        end aYTVYg  
    else 3khsGD@  
        isnorm = false; KGsS2  
    end w>-@h>Ln  
    L=`QF'Im  
    &72 ( <  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O~3<P3W  
    % Compute the Zernike Polynomials !O;su~7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gn*cphb  
    m |K"I3W$  
    xBba&A]=  
    % Determine the required powers of r: ,1xX`:  
    % ----------------------------------- .3xpDVW^e  
    m_abs = abs(m); x`7Ch3`4}  
    rpowers = []; 3y&N}'R(F  
    for j = 1:length(n) 6"3-8orj   
        rpowers = [rpowers m_abs(j):2:n(j)]; R]dN-'U  
    end Ck`-<)uN  
    rpowers = unique(rpowers); 2o8:[3C5  
    9;W 2zcN  
    54[#&T$S  
    % Pre-compute the values of r raised to the required powers, a1^CpeG~  
    % and compile them in a matrix: }~W:3A{7;  
    % ----------------------------- n6AN  
    if rpowers(1)==0 eBlWwUy*6f  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); dO?zLc0f  
        rpowern = cat(2,rpowern{:}); /l.:GH36f  
        rpowern = [ones(length_r,1) rpowern]; rV{:'"=y-  
    else DIsK+1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); { XI0KiE  
        rpowern = cat(2,rpowern{:}); }j+Af["W?  
    end `'W/uCpl  
    aPU.fER  
    #%Hk-a=>)#  
    % Compute the values of the polynomials: -|z ]Ir  
    % -------------------------------------- ;$a+ >  
    y = zeros(length_r,length(n)); KjWF;VN*[3  
    for j = 1:length(n) fyt ODsb>  
        s = 0:(n(j)-m_abs(j))/2; C8{bqmlm@  
        pows = n(j):-2:m_abs(j); <x!q! ;  
        for k = length(s):-1:1 RB\ Hl  
            p = (1-2*mod(s(k),2))* ... V/.Na(C~  
                       prod(2:(n(j)-s(k)))/              ... CdEQiu  
                       prod(2:s(k))/                     ... G3.*fSY$.<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }na0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h.Y&_=Gc  
            idx = (pows(k)==rpowers); M&QzsVH  
            y(:,j) = y(:,j) + p*rpowern(:,idx); xL&evG#  
        end k kZ2Jxvx  
         Sb4^* $uz  
        if isnorm N_:H kI6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); MZ2/ks  
        end r5RUgt  
    end -1_WE/Ps  
    % END: Compute the Zernike Polynomials [ Xa,|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ie<H4G5Vh  
    uI9eUO  
    R\a6 #u3  
    % Compute the Zernike functions: | 2Vhj<6  
    % ------------------------------ cp:U@Nh(  
    idx_pos = m>0; 'iM#iA8  
    idx_neg = m<0; vw'xmzgA  
    *5QN:  
    [S~/lm  
    z = y; +Rj8 "p$K  
    if any(idx_pos) B_uhNLd  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \?D~&d,a=  
    end c$.Zg=  
    if any(idx_neg) A_!N,< -  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !+k);;.+  
    end sSLV R^  
    !V'~<&  
    K/YXLR +  
    % EOF zernfun q90 ~)n?  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  j XYr&F  
    mRy0zN>?  
    DDE还是手动输入的呢? m8 6ztP)  
    dwouw*8  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)