切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9019阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, uKaf{=*  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6~>^pkV  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (UbR%A|v;  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 'Y,+D`&i)  
    \emT:Frb  
    9RbGa Y&  
    rPrEEWS0)  
    l{B< "+8  
    function z = zernfun(n,m,r,theta,nflag) 6i*p +S?U"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !nZI? z;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,.1&Ff)S  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 38zR\@'j]4  
    %   unit circle.  N is a vector of positive integers (including 0), and 6x`\ J2x  
    %   M is a vector with the same number of elements as N.  Each element Q{(,/}kA-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) t*ri`}a{v  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =rs=8Ty?S  
    %   and THETA is a vector of angles.  R and THETA must have the same !>"INmz  
    %   length.  The output Z is a matrix with one column for every (N,M) x);?jxd  
    %   pair, and one row for every (R,THETA) pair. :7 s#5b  
    % PW~cqo B71  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n?7hp%}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KU 8Cl>5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral XACEt~y  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, J~nJpUyP*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized p~k`Z^ xY$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C {H'  
    % #I*ht0++  
    %   The Zernike functions are an orthogonal basis on the unit circle. s\n,Z?m  
    %   They are used in disciplines such as astronomy, optics, and Xs#?~~"aC  
    %   optometry to describe functions on a circular domain. tCF0Ah  
    % 4)c"@Zf  
    %   The following table lists the first 15 Zernike functions. SIyS.!k>  
    % }]Z,\lA  
    %       n    m    Zernike function           Normalization l[x`*+ON:2  
    %       -------------------------------------------------- ]h`E4B  
    %       0    0    1                                 1 &6~ncQWu  
    %       1    1    r * cos(theta)                    2 [1[[$ Dr  
    %       1   -1    r * sin(theta)                    2 XEe+&VQmY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) qjdahVY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) P(W\aLp  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `G:qtHn"Q<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Fg}5V,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Td=] tVM  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6:7:NIl:  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Vq;{+j(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3GuMiht5  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h<z/LL8|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) x]jdx#'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P^d . ,  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) t]YLt ,  
    %       -------------------------------------------------- /*xmv $  
    % cJp1 <R  
    %   Example 1: @'G ( k;  
    % 75BOiX  
    %       % Display the Zernike function Z(n=5,m=1) WZy6K(18"'  
    %       x = -1:0.01:1; 13NS*%~7[  
    %       [X,Y] = meshgrid(x,x); [.yx2@W  
    %       [theta,r] = cart2pol(X,Y); ";!1(xZr  
    %       idx = r<=1;  p% YvP  
    %       z = nan(size(X)); '~vSH9nx/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ct4)faM  
    %       figure 9FR1Bruf  
    %       pcolor(x,x,z), shading interp MCO$>QL  
    %       axis square, colorbar JKu6+V jO  
    %       title('Zernike function Z_5^1(r,\theta)') iLQt9Hyk  
    % sn T4X  
    %   Example 2: 2 ShlYW@~  
    % :."n@sA@  
    %       % Display the first 10 Zernike functions H9a3 rA>  
    %       x = -1:0.01:1; nm%4L  
    %       [X,Y] = meshgrid(x,x); uEi.nSp)S  
    %       [theta,r] = cart2pol(X,Y); 8 ~L.6c5U  
    %       idx = r<=1; '_yk_[/  
    %       z = nan(size(X)); +^% &8<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; gT\y&   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uu46'aT  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; T>:g ME  
    %       y = zernfun(n,m,r(idx),theta(idx)); y0y;1N'KK  
    %       figure('Units','normalized') 0 6v5/Xf  
    %       for k = 1:10 yl;$#aZB  
    %           z(idx) = y(:,k); )T~ +>+t  
    %           subplot(4,7,Nplot(k)) 22(]x}`  
    %           pcolor(x,x,z), shading interp 6W#F Ss~  
    %           set(gca,'XTick',[],'YTick',[]) !5 :1'$d]H  
    %           axis square TKs@?Q,J  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^eT>R,aB  
    %       end m_O=X8uj"D  
    % 5O;oo@A:[  
    %   See also ZERNPOL, ZERNFUN2. {]^%?]e  
    p 7E{es|J  
    5~rY=0t  
    %   Paul Fricker 11/13/2006 j*lWi0Z-  
    Spw=+z<<Ub  
    `uJ l<kHI  
    z&/ o  
    B qiq  
    % Check and prepare the inputs: KVe'2Q<  
    % ----------------------------- ra#)*fG,~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3<Y;mA=hw  
        error('zernfun:NMvectors','N and M must be vectors.') \\pyu]z  
    end {_gj>n(1  
    WiCM,wDi  
    ]R.Vq\A%S  
    if length(n)~=length(m) 2o7C2)YT$  
        error('zernfun:NMlength','N and M must be the same length.') ^*~u4app  
    end o2U J*4  
    ~w}[ ._'#M  
    _A0avMD}  
    n = n(:); -bX.4+U  
    m = m(:); ;;J98G|1  
    if any(mod(n-m,2)) ^RDXX+  
        error('zernfun:NMmultiplesof2', ... Kpbbe r  
              'All N and M must differ by multiples of 2 (including 0).') P\4o4MF@K  
    end /M c"K  
    5|={1Lp24g  
    &WV 9%fI  
    if any(m>n) i'LTKj  
        error('zernfun:MlessthanN', ... r*xw\  
              'Each M must be less than or equal to its corresponding N.') i(;u6Rk  
    end @Sd:]h:f-  
    `CUO!'U  
    !oRm.c O  
    if any( r>1 | r<0 ) PSw+E';  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 31\^9w__8  
    end t# {>y1[29  
    M|]1}8d?  
    ee?ZkU#@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S; <?nz3  
        error('zernfun:RTHvector','R and THETA must be vectors.') e-av@a3  
    end L#N.pd  
    &_^<B7aC'k  
    _NW OSt  
    r = r(:); f__WnW5h  
    theta = theta(:); 6?x{-Zj ^?  
    length_r = length(r); *N+aZV}`Z  
    if length_r~=length(theta) S.4YC>E  
        error('zernfun:RTHlength', ... uk/+ i`=  
              'The number of R- and THETA-values must be equal.') >mltE$|  
    end <plR<iI.  
    2= mD  
    oh)l\  
    % Check normalization: -$ft `Ih  
    % -------------------- nx]b\A  
    if nargin==5 && ischar(nflag) F<WX\q  
        isnorm = strcmpi(nflag,'norm'); 9\0 K%LL  
        if ~isnorm &fj?hYAj  
            error('zernfun:normalization','Unrecognized normalization flag.') *0zH5c  
        end  e) (|  
    else rq?x]`u   
        isnorm = false; Qeog$g.HI  
    end (}8 ;3pp  
    3]'z8i({7Y  
    Ol0|)0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z9^$jw]  
    % Compute the Zernike Polynomials [SvwJIJJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !r <|F  
    @S92D6  
    Oei2,3l,?  
    % Determine the required powers of r: N^N?!I  
    % ----------------------------------- O+J;Hp;\_  
    m_abs = abs(m); s~w+bwr  
    rpowers = []; O waXG/z~  
    for j = 1:length(n) dVfDS-v!  
        rpowers = [rpowers m_abs(j):2:n(j)]; l d9#4D[#  
    end \LXC269  
    rpowers = unique(rpowers); *p!dd?8  
    \ChcJth@o<  
    ge8zh/`  
    % Pre-compute the values of r raised to the required powers, NR@Tj]`k  
    % and compile them in a matrix: [40 YoVlfM  
    % ----------------------------- TI  
    if rpowers(1)==0 b1o(CG(}*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k 'b|#c9c  
        rpowern = cat(2,rpowern{:}); h`j gF  
        rpowern = [ones(length_r,1) rpowern]; Dw3! ibg  
    else M(jH"u&f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1hG O*cq!  
        rpowern = cat(2,rpowern{:}); W'$~mK\  
    end L]}|{< 3\  
    S8,06/#  
    -9"Ls?Cu  
    % Compute the values of the polynomials: =1qkoc~  
    % -------------------------------------- 7 '/&mX>  
    y = zeros(length_r,length(n)); <|iU+.j\  
    for j = 1:length(n) O=/Tx2i;  
        s = 0:(n(j)-m_abs(j))/2; _C\b,D}p  
        pows = n(j):-2:m_abs(j); }tPl?P'`  
        for k = length(s):-1:1 ](D [T  
            p = (1-2*mod(s(k),2))* ... Yw<:I&  
                       prod(2:(n(j)-s(k)))/              ... b1 cd5  
                       prod(2:s(k))/                     ... )^+$5OR\c  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Fu/CX4R_|  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <-pbLL9  
            idx = (pows(k)==rpowers); ffVYlNQ7L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Dn?L   
        end 5P!17.W'u  
         :u0433z:  
        if isnorm 6dUP's_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ='j  
        end W| p?KJk)  
    end FzIA>njt  
    % END: Compute the Zernike Polynomials {cA )jW\'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x{}m)2[Y  
    ?`>yl4  
    C*!_. <b  
    % Compute the Zernike functions: Yt^+31/%  
    % ------------------------------ E \RU[  
    idx_pos = m>0; KI{u:Lbi  
    idx_neg = m<0; Jd;1dYkH:  
    LzfLCGA^  
    &.,OvVAo  
    z = y; /a_|oCeC}  
    if any(idx_pos) dEiX! k$#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8] *{ i  
    end AVjtK  
    if any(idx_neg) N_0O"" d  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  2~)]E#9  
    end I}=}S"v  
    =DgD&_  
    UPC& O  
    % EOF zernfun :<W 8uDAs  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  YmwVa s  
    H(AYtnvB  
    DDE还是手动输入的呢? Zy#r<j]T  
    n33SWE(  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)