下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %Q080Ltet
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !{+a2wi
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9*2Q'z}_
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y6[O
s1
AX] cM)w
2PC:F9dh\
xE5VXYU
M{jJ>S{g
function z = zernfun(n,m,r,theta,nflag) pSl4^$2XR
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 20
Z/Y\
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JKF/z@Vbe\
% and angular frequency M, evaluated at positions (R,THETA) on the X@Bg_9\i
% unit circle. N is a vector of positive integers (including 0), and CklIrD{
% M is a vector with the same number of elements as N. Each element |4j'KM;U
% k of M must be a positive integer, with possible values M(k) = -N(k) |%g)H,6c
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ANRZQpnXQ
% and THETA is a vector of angles. R and THETA must have the same dAr=X4LE
% length. The output Z is a matrix with one column for every (N,M) +7mUX
% pair, and one row for every (R,THETA) pair. 6ltV}Wt-
% J(Fk@{!F.*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z^o7&\:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C*stj
% with delta(m,0) the Kronecker delta, is chosen so that the integral `$Y%c1;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mM2DZ^"j(
% and theta=0 to theta=2*pi) is unity. For the non-normalized "!R*f $
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w&>*4=^a
% 8
+mW
% The Zernike functions are an orthogonal basis on the unit circle. = G>Y9Sc
% They are used in disciplines such as astronomy, optics, and +TC##}Zmb
% optometry to describe functions on a circular domain. U.Fs9F4M #
% P#9Pq,I
% The following table lists the first 15 Zernike functions. tI<6TE'!p#
% 4*9BAv
% n m Zernike function Normalization wWVB'MRXB,
% -------------------------------------------------- nH}V:C
% 0 0 1 1 MP
p
% 1 1 r * cos(theta) 2 `4,]Mr1b
% 1 -1 r * sin(theta) 2 ge ]Z5E(1
% 2 -2 r^2 * cos(2*theta) sqrt(6) _LFABG=
% 2 0 (2*r^2 - 1) sqrt(3) |*g\-2j{
% 2 2 r^2 * sin(2*theta) sqrt(6) u`"Y!*[ -
% 3 -3 r^3 * cos(3*theta) sqrt(8) uBw[|,yn2*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^[VEr"X
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8)
0v|qP
% 3 3 r^3 * sin(3*theta) sqrt(8) ]Na; b
% 4 -4 r^4 * cos(4*theta) sqrt(10) N>w+YFM
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i(4.7{*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) XCT3:db
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r_MP[]f|0
% 4 4 r^4 * sin(4*theta) sqrt(10) I9h{fB
% -------------------------------------------------- 3uL$+F
% y]g5S-G
% Example 1: U45-R-
% LhSXz>AX
% % Display the Zernike function Z(n=5,m=1) em2Tet
% x = -1:0.01:1; *i"Mu00b
% [X,Y] = meshgrid(x,x); t$PJ*F67M
% [theta,r] = cart2pol(X,Y); ;?Q0mXr
% idx = r<=1; `)NTJc$):
% z = nan(size(X)); PHMp,z8
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 3}B-n!|*
% figure p2gu@!
% pcolor(x,x,z), shading interp 9hgIQl
% axis square, colorbar @h\i<sh!^
% title('Zernike function Z_5^1(r,\theta)') }tJMnq/m($
% \==Mgy2J8
% Example 2: ;\]DZV4?)r
% <9x|)2P
% % Display the first 10 Zernike functions (L!u[e0[#
% x = -1:0.01:1; N6v*X+4JH
% [X,Y] = meshgrid(x,x); O]l-4X#8F
% [theta,r] = cart2pol(X,Y); _zLEHEZ-
% idx = r<=1; qv`:o
`
% z = nan(size(X)); w$`u_P|@E:
% n = [0 1 1 2 2 2 3 3 3 3]; *7qa]i^]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;1k_J~Qei
% Nplot = [4 10 12 16 18 20 22 24 26 28]; OA7=kH@3c
% y = zernfun(n,m,r(idx),theta(idx)); wKJK!P
% figure('Units','normalized') ]0pI6"
% for k = 1:10 qz 29f
% z(idx) = y(:,k); akQb%Wq
% subplot(4,7,Nplot(k)) \\/
!I
% pcolor(x,x,z), shading interp hP/uS%X
% set(gca,'XTick',[],'YTick',[]) R=W$3Ue~,
% axis square z.W1Za
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s%?<:9
% end 3ep
L'My$
% we?t/YB=
% See also ZERNPOL, ZERNFUN2. M+4S >Sjw
>Lz2zlZI
HPK}Z|Vl
% Paul Fricker 11/13/2006 '=IuwCB|;
efh 1-3f
"?YpF2pD
"H{#ib_c_
_K~?{".
% Check and prepare the inputs: 'YEiT#+/
% ----------------------------- P2)g%$ME
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %;` 3I$
error('zernfun:NMvectors','N and M must be vectors.') 5JZZvc$au
end 94XRf"^
}Z`@Z'
C,u;l~zz
if length(n)~=length(m) uMBb=
error('zernfun:NMlength','N and M must be the same length.') U7G|4(
end Q1
vse
m>b
i$Y
^9kdd[
n = n(:); <zu)=W'R]
m = m(:); BimM)4g
if any(mod(n-m,2)) ||?wRMV
error('zernfun:NMmultiplesof2', ... td+[Na0d
'All N and M must differ by multiples of 2 (including 0).') hpticW|
end 2K'}Vm+
T0}P 'q
=`%%*
if any(m>n) ,@2d4eg4
error('zernfun:MlessthanN', ... 5xG/>fn
'Each M must be less than or equal to its corresponding N.') }Z\+Qc<<
end 5TdI
o-t!z'\lO
?/ s=E+
if any( r>1 | r<0 ) #/pZ#ny
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ia)^
end Y'%_--
SHPZXJ{
9a_(_g>S
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fI0L\^b%
error('zernfun:RTHvector','R and THETA must be vectors.') #kGxX@0
end on1mu't_;
RrqZ5Gonj
5(OF~mX#
r = r(:); ~LzTqMHM
theta = theta(:); ';7|H|,F
length_r = length(r); ({x<!5XL
if length_r~=length(theta) ^SRa!8z$W
error('zernfun:RTHlength', ... z'X_s.9F
'The number of R- and THETA-values must be equal.') ? 5
V-D8k
end l@YpgyqaL
r^6vo6^
Sq==)$G
% Check normalization: J XnPKAN
% -------------------- gf2w@CVF>=
if nargin==5 && ischar(nflag) $RSVN?
isnorm = strcmpi(nflag,'norm'); Onoi6^G
if ~isnorm o[ %Q&u
error('zernfun:normalization','Unrecognized normalization flag.') O"9f^y*
end ,K6]Q|U@r
else L=}UApK
isnorm = false; L7%'Y}1e.
end ;h3*MR
4/U]7Y
Q<``}:y|>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |,&!Q$<un
% Compute the Zernike Polynomials 7"JU)@ U]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fk(0q/b
(^Do#3
L ou4M
% Determine the required powers of r: qkUr5^1
% ----------------------------------- aLXA9?
m_abs = abs(m); cuk2\> Xl
rpowers = []; j)IK
for j = 1:length(n) 7RD` *s
rpowers = [rpowers m_abs(j):2:n(j)]; Q84KU8?d
end A1ebXXD)
rpowers = unique(rpowers); $'FPst8Q<
=3SL&
:8
0XYO2k
% Pre-compute the values of r raised to the required powers, rrwsj`
% and compile them in a matrix: 3Ob"r`
% ----------------------------- \
bT]?.si
if rpowers(1)==0 Z ''P5B;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g&E_|}u4
rpowern = cat(2,rpowern{:}); AYZds >#Q
rpowern = [ones(length_r,1) rpowern]; 56_KB.Ww~
else 4!}fCP ty
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b);}x1L.T
rpowern = cat(2,rpowern{:}); i)(QNpv
end VD#^Xy4% r
0~1P&Qs<
S8)awTA9
% Compute the values of the polynomials: VD3[ko
% -------------------------------------- %<muVRkB\
y = zeros(length_r,length(n)); iRVLo~
for j = 1:length(n) 1aT$07G0
s = 0:(n(j)-m_abs(j))/2; TQ2Tt"
pows = n(j):-2:m_abs(j); 99:L#0!.W
for k = length(s):-1:1 QF>[cdl?8
p = (1-2*mod(s(k),2))* ... t@HE.h
prod(2:(n(j)-s(k)))/ ... ::`j@ ]
prod(2:s(k))/ ... 3 z#;0n}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1a!h&!$9
prod(2:((n(j)+m_abs(j))/2-s(k))); 7=AKQ7BB>b
idx = (pows(k)==rpowers); HYH!;
y(:,j) = y(:,j) + p*rpowern(:,idx); ~3YNHm6V
end d?P
aZz{4
j&mL]'Zy
if isnorm =%
JDo
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E>1USKxn
end ]1[;A$7
end W[m_IY
% END: Compute the Zernike Polynomials E{ ,O}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Tef;8d
7A|jnm
~EM];i
% Compute the Zernike functions: -ur]k]R
% ------------------------------ ,'673PR
idx_pos = m>0; h5gXYmk
idx_neg = m<0; W*m[t&;
/YbL{G
)j}
]
6gu
z = y; R)C+wTG;
if any(idx_pos) <<1oc{i
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;hvXFU
end 31C]TdJ
if any(idx_neg) ZkJM?Fzq
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :qp"Ao{M
end `IoX'|C[h
lBdF9F<
z&0V21"l
% EOF zernfun j5O*H_D