切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8696阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, fYBmW')  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, cxn3e,d`  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? EBc_RpC/Z  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (R5n ND  
    g1UP/hNJ\8  
    Gm~jC <  
    @z[,w`  
    @i U@JE`C  
    function z = zernfun(n,m,r,theta,nflag) d0vn/k2I  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /}t>o* x  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ZCVwQ#Xe+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LlKvi_z  
    %   unit circle.  N is a vector of positive integers (including 0), and 4>x]v!d  
    %   M is a vector with the same number of elements as N.  Each element Sc#B -4m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PT4Wox9U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2:3-mWE  
    %   and THETA is a vector of angles.  R and THETA must have the same %&w 8E[  
    %   length.  The output Z is a matrix with one column for every (N,M) z><u YO$  
    %   pair, and one row for every (R,THETA) pair. &3~lZa;D  
    % $R6iG\V5  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :Yeo*v9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mCah{~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >U .  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2^RWGCEv  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Vz_ac vfk^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4IfOvAN%  
    % `< _A#@  
    %   The Zernike functions are an orthogonal basis on the unit circle. P5-1z&9O  
    %   They are used in disciplines such as astronomy, optics, and $v5)d J  
    %   optometry to describe functions on a circular domain. OI/m_xx@j  
    % z B/#[~  
    %   The following table lists the first 15 Zernike functions. jT/}5\  
    % xgeDfpF'  
    %       n    m    Zernike function           Normalization Lxz!>JO>  
    %       -------------------------------------------------- vz$-KT4e^  
    %       0    0    1                                 1 d+DdDr  
    %       1    1    r * cos(theta)                    2 YNHQbsZUI,  
    %       1   -1    r * sin(theta)                    2 Q5%$P\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) v_=xN^R  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~hiJOaCzM  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) wMc/O g  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) b~$B 0o)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $FR1^|P/G  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X~+AaI :~K  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ,zXP,(x  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) cl2+,!:  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {p.D E  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) j<,Ho4v}_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e *9c33  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) '?$N.lj$d  
    %       -------------------------------------------------- !W\Zq+^^J3  
    % lSW6\jX  
    %   Example 1: Jr2x`^aNO  
    % b{+7sl  
    %       % Display the Zernike function Z(n=5,m=1) CB!5>k+mC  
    %       x = -1:0.01:1; Q5K<ECoPk  
    %       [X,Y] = meshgrid(x,x); skSs|slp  
    %       [theta,r] = cart2pol(X,Y); .C HET]  
    %       idx = r<=1; sWtT"7>x  
    %       z = nan(size(X)); Ku 'OM6D<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); b\ P6,s'(  
    %       figure '>"riEk  
    %       pcolor(x,x,z), shading interp m%$GiNs}  
    %       axis square, colorbar 0XgJCvMcB  
    %       title('Zernike function Z_5^1(r,\theta)') 8,VX%CS#q  
    %  iwiHw  
    %   Example 2: }8lvi vR4  
    % 5Yxs_t4  
    %       % Display the first 10 Zernike functions owR`Z`^h)  
    %       x = -1:0.01:1; . W7Z pV  
    %       [X,Y] = meshgrid(x,x); \+9~\eeXb  
    %       [theta,r] = cart2pol(X,Y); @Yzdq\FI  
    %       idx = r<=1; dx.,  
    %       z = nan(size(X)); 6_rgj{L  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *- S/{ .&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6cQ)*,Q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $4Vpl  
    %       y = zernfun(n,m,r(idx),theta(idx)); QXaE2}}P  
    %       figure('Units','normalized') [\_#n5  
    %       for k = 1:10 3AQu\4+A  
    %           z(idx) = y(:,k); K-<kp!v  
    %           subplot(4,7,Nplot(k)) B)L=)N  
    %           pcolor(x,x,z), shading interp o)B`K."  
    %           set(gca,'XTick',[],'YTick',[]) *m>XtBw.  
    %           axis square NT1"?Thx|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U07 G&? /  
    %       end $E >)  
    % _x'?igy  
    %   See also ZERNPOL, ZERNFUN2. 03)R_A  
    hRc.^"q9  
    <w1# 3Mu'  
    %   Paul Fricker 11/13/2006 p?Rq  
    7^hwRZJ{  
    C@P4}X0,=  
    s7 K](T4  
    <T^:`p/]4  
    % Check and prepare the inputs: )ZHo7X  
    % ----------------------------- [(81-j1v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E0lro+'lS  
        error('zernfun:NMvectors','N and M must be vectors.') bMCy=5  
    end <H]1 6  
    }#bX{?f  
    \9Yc2$dY  
    if length(n)~=length(m) $qp,7RW  
        error('zernfun:NMlength','N and M must be the same length.') Qzh`x-S  
    end jmkVolz  
    9)~Ha iVB  
    O_~vl m<#  
    n = n(:); Jx-dWfe  
    m = m(:); f 8AgTw,K8  
    if any(mod(n-m,2)) BIK^<_?+ZU  
        error('zernfun:NMmultiplesof2', ... 9$iDK$%  
              'All N and M must differ by multiples of 2 (including 0).') .I1k+   
    end s9\HjK*+  
    Fx]}<IudA^  
    m|8ljXX  
    if any(m>n) $Y3mO ~  
        error('zernfun:MlessthanN', ... %=G*{mK  
              'Each M must be less than or equal to its corresponding N.') s0/[mAY  
    end nyRQ/.3  
    ==^9_a^  
    kCVO!@yZz  
    if any( r>1 | r<0 ) s.{nxk.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') H%&e[PU  
    end F?jFFw im  
    m .':5  
    caC-JcDXy  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) EZw<)Q   
        error('zernfun:RTHvector','R and THETA must be vectors.') o 00(\ -eb  
    end xkPH_+4i8  
    R{0nk   
    C\RJ){dk  
    r = r(:); g/_j"Nn  
    theta = theta(:); Z<ABK`rEO  
    length_r = length(r); {g@?\  
    if length_r~=length(theta) &40# _>W7  
        error('zernfun:RTHlength', ... r,FPTf  
              'The number of R- and THETA-values must be equal.') ='U>P( R-  
    end n72+X  
    1{0 L~  
    by0@G"AE+  
    % Check normalization: ?ZS/`P0}[  
    % -------------------- M7x*LiKc2  
    if nargin==5 && ischar(nflag) jVxX! V  
        isnorm = strcmpi(nflag,'norm'); BnwYyh  
        if ~isnorm ) Z^b)KAk  
            error('zernfun:normalization','Unrecognized normalization flag.') \YN(rD-  
        end =IC cN|  
    else -,Y[`(q  
        isnorm = false; O% }EpIP_  
    end U1,f$McZs  
    u.~`/O  
    E{B8+T:3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KO''B or  
    % Compute the Zernike Polynomials t7; ^rk*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *F)+- BB  
    :rcohzfa  
    6{8dv9tK  
    % Determine the required powers of r: )i$:iI >k  
    % ----------------------------------- 7JL*y\'  
    m_abs = abs(m); QH]G>+LI5  
    rpowers = []; _O w]kP='  
    for j = 1:length(n) "u=U@1 ^  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?VCM@{9  
    end 7LZ A!3  
    rpowers = unique(rpowers); 3{"MN=  
    Ku3/xcu:My  
    Ak=|wY{  
    % Pre-compute the values of r raised to the required powers, +`_Km5=  
    % and compile them in a matrix: nbf w7u  
    % ----------------------------- 6:$+"@ps  
    if rpowers(1)==0 Q(0eq_X|6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zh6 0b{  
        rpowern = cat(2,rpowern{:}); [e.@Yx_}  
        rpowern = [ones(length_r,1) rpowern]; tg|7\Z7i  
    else J\fu6Ti  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hxX-iQya  
        rpowern = cat(2,rpowern{:}); @Y| %  
    end Duh[(r_  
    wB0K e  
    o+F]80CH  
    % Compute the values of the polynomials: 7!r)[2l  
    % -------------------------------------- ~P@6f K/M  
    y = zeros(length_r,length(n)); JA(M'&q4  
    for j = 1:length(n) jDKL}x  
        s = 0:(n(j)-m_abs(j))/2; CgxGvM4  
        pows = n(j):-2:m_abs(j); iLR^V!  
        for k = length(s):-1:1 /GUbc   
            p = (1-2*mod(s(k),2))* ... ckCb)r_  
                       prod(2:(n(j)-s(k)))/              ... hOH DXc"  
                       prod(2:s(k))/                     ... R.rxpJ+kU  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... j 5{ "j  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8*\PWl  
            idx = (pows(k)==rpowers); o%1dbbh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); T>e4Og"?  
        end }p$@.+  
         n)6mfoe  
        if isnorm '"~ 2xiin  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @Q#<-/  
        end ,{rm<M.)  
    end !y 7SCz g  
    % END: Compute the Zernike Polynomials )cUFb:D*"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y-vLEIX=  
    =bDy :yY}  
    ` fm^#Nw  
    % Compute the Zernike functions: :^92B?q  
    % ------------------------------ D qh rg;  
    idx_pos = m>0; 8O='Q-& 8  
    idx_neg = m<0; u U;]/  
    8/oO}SLF  
    XZ1oV?Z4  
    z = y; ),53(=/hl  
    if any(idx_pos) +D&aE$<  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ImZ!8#  
    end Qe,aIh  
    if any(idx_neg) W2 p&LP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yWkg4  
    end lf?dTPrD  
    0Xx&Z8E  
    ^;[|,:8f7L  
    % EOF zernfun F9\T <  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  K@DK4{  
    0 jszZ_  
    DDE还是手动输入的呢? )C0dN>Gb  
    CG -^}xE:  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)