下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, bT{iei]?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #Y9~ Xp^.
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }W k!):=y
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (lVHKg&U[
7{e*isV
QGQ>shIeZ
S&YC"
Do5)ilt
function z = zernfun(n,m,r,theta,nflag) Qtpw0t"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. \`M8Mu9~w
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rik0F
% and angular frequency M, evaluated at positions (R,THETA) on the 7B,axkr
% unit circle. N is a vector of positive integers (including 0), and :vk TV~
% M is a vector with the same number of elements as N. Each element 6S#e?>"+
% k of M must be a positive integer, with possible values M(k) = -N(k) \P|PAU@,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &I$MV5)u
% and THETA is a vector of angles. R and THETA must have the same %^$7z,>;
% length. The output Z is a matrix with one column for every (N,M) 4R/cN'-
% pair, and one row for every (R,THETA) pair. h+7THMI
% jRP9e
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N3J;_=<4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &{c.JDO
% with delta(m,0) the Kronecker delta, is chosen so that the integral kq kj.#u
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .`3O4]N[
% and theta=0 to theta=2*pi) is unity. For the non-normalized mew,S)dq!
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TZk.?@s5
% ]l
WEdf+
% The Zernike functions are an orthogonal basis on the unit circle. sox0:9Oqnf
% They are used in disciplines such as astronomy, optics, and 54%@q[-
% optometry to describe functions on a circular domain. ;NHZD
% r2]KP(T8|
% The following table lists the first 15 Zernike functions. E9IU,P6a
% Nf<mgOAT1
% n m Zernike function Normalization %cl=n!T
% -------------------------------------------------- M_wj>NXZ
% 0 0 1 1 |99/?T-QW
% 1 1 r * cos(theta) 2 N1 }#6YNw
% 1 -1 r * sin(theta) 2 .A. VOf_
% 2 -2 r^2 * cos(2*theta) sqrt(6) OJGEX}3'
% 2 0 (2*r^2 - 1) sqrt(3) F5|6* K
% 2 2 r^2 * sin(2*theta) sqrt(6) ^"e|)4_5\
% 3 -3 r^3 * cos(3*theta) sqrt(8) uoM;p'
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 5QjM,"`mp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \Y0o~JD
% 3 3 r^3 * sin(3*theta) sqrt(8) `H.~#$
% 4 -4 r^4 * cos(4*theta) sqrt(10) J7`fve
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .BR2pf|R
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Wz~=JvRHh
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \L"Vx9xT
% 4 4 r^4 * sin(4*theta) sqrt(10) x9s7:F
% -------------------------------------------------- .m&JRzzV
% /7
CF f&4
% Example 1: V kA$T8
% 1gwnG&
% % Display the Zernike function Z(n=5,m=1) I$Bu6x!
% x = -1:0.01:1; [zO:[i 7
% [X,Y] = meshgrid(x,x); Stkyz:,(
% [theta,r] = cart2pol(X,Y); Z-fQ{&a{
% idx = r<=1; [<+A?M=
% z = nan(size(X)); S4m??B
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .>Gnb2
% figure }Ss]/_t
% pcolor(x,x,z), shading interp *f[nge&.
% axis square, colorbar sO,%Ok1
% title('Zernike function Z_5^1(r,\theta)') 5,I|beM
% D`?=]Ysz(
% Example 2: R aVOZ=^-
% vU:FDkx*nn
% % Display the first 10 Zernike functions 4$);x/
a
% x = -1:0.01:1; csceu+IA
% [X,Y] = meshgrid(x,x); []'gIF
% [theta,r] = cart2pol(X,Y); -bN;nSgb
% idx = r<=1; L9| 55z
% z = nan(size(X)); OlW|qj
% n = [0 1 1 2 2 2 3 3 3 3]; CEwMPPYnD
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6`>WO_<z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; NtuO&{}i
% y = zernfun(n,m,r(idx),theta(idx)); -|ho
8alF
% figure('Units','normalized') :2'y=t #
% for k = 1:10 F3-<F_4.w
% z(idx) = y(:,k); r\OunGUP
% subplot(4,7,Nplot(k)) =6XJr7Ay8u
% pcolor(x,x,z), shading interp oNyVRH ZH
% set(gca,'XTick',[],'YTick',[])
:!SVpCt3
% axis square s$cr|p;7#
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }e7os0;s
% end X"4 :#s
% >UUcKq1M:
% See also ZERNPOL, ZERNFUN2. \~sc6ho
DqfWu*
YP^=b}
% Paul Fricker 11/13/2006 :bh#,]'
0rt@4"~~w
_JVFn=
n{d0}N=
aC\O'KcH
% Check and prepare the inputs: U9<AL.
% ----------------------------- /6=IL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B3+9G,or
error('zernfun:NMvectors','N and M must be vectors.') ;Av=/hU
end #ujry.m
z%)~s/2Rs
kPhdfF*Q
if length(n)~=length(m) p<eu0B_V
error('zernfun:NMlength','N and M must be the same length.') U$*AV<{%
end !2.(iuE
F9ys.Bc
y*F !k{P
n = n(:); fH-fEMyW
m = m(:); prHM}n{0
if any(mod(n-m,2)) s6q6)RD"
error('zernfun:NMmultiplesof2', ... 4YuJ -
'All N and M must differ by multiples of 2 (including 0).') wMW."gM|
end ^(j}'p,
Xkqq$A4
&kR*J<)V
if any(m>n) ', WnT:
error('zernfun:MlessthanN', ... sf([8YUd
'Each M must be less than or equal to its corresponding N.') &z;bX-"E
end 2
c
2lK
*1H8
&
IP LKOT~
if any( r>1 | r<0 ) WE{fu{x
error('zernfun:Rlessthan1','All R must be between 0 and 1.') - w{`/
end 0N|l1Sn
b<\2j5
Udi
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4.=jKj9j
error('zernfun:RTHvector','R and THETA must be vectors.') -JEiwi ,
end :17Pc\:DS
_%@dlT?
@%'1Jd7-Wp
r = r(:); ?XlPKY
theta = theta(:); tx*L8'jlN
length_r = length(r); fT2F$U
if length_r~=length(theta) `hl8j\HV<}
error('zernfun:RTHlength', ... *;&[q{hz
'The number of R- and THETA-values must be equal.') AMw#_8Y
end qj7}]T_
S-f
.NC}:i
e=cb%
% Check normalization: u |mTF>L
% -------------------- qkM)zOZ^
if nargin==5 && ischar(nflag) C09rgEB\B
isnorm = strcmpi(nflag,'norm'); y+aKk6(_W
if ~isnorm UkTq0-N;2
error('zernfun:normalization','Unrecognized normalization flag.') ^Q\Hy\
end `pYyr/
else }Q?a6(4
isnorm = false; \{a!Z&df
end /szwVA
ELN1F0TneH
;e"dxAUe!^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {>3J 96
% Compute the Zernike Polynomials AI^!?nJ%'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _UA|0a!-
y;if+
]#\De73K
% Determine the required powers of r: Ei7Oi!1
% ----------------------------------- q'Nafa&a)
m_abs = abs(m); kz*6%Cg*~
rpowers = []; 5SMV3~*P
for j = 1:length(n) 2<T/N
rpowers = [rpowers m_abs(j):2:n(j)]; i'QR-B&Z
end B1V+CP3t
rpowers = unique(rpowers); l*$~Y0
3xz|d`A
~>#?.f
% Pre-compute the values of r raised to the required powers, <}p]0iA
% and compile them in a matrix: 1I awi?73
% ----------------------------- I&6M{,rnM
if rpowers(1)==0 !,^y!+,Qy
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &qzy?/i8
rpowern = cat(2,rpowern{:}); %a?\y_a=b
rpowern = [ones(length_r,1) rpowern]; uznYLS
else K))P
2ss
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `6P2+wf1j~
rpowern = cat(2,rpowern{:}); R.\]JvqO
end 'T|EwrS j
js9^~:Tw
:Xs4 C%H;
% Compute the values of the polynomials: :}R,a=N
% -------------------------------------- #N$\d4q9
y = zeros(length_r,length(n)); kWacc&*|
for j = 1:length(n) @uz(h'~
s = 0:(n(j)-m_abs(j))/2; UcKVLzKs
pows = n(j):-2:m_abs(j); lWn}afI
for k = length(s):-1:1 O#k eoC4
p = (1-2*mod(s(k),2))* ... gBO,
prod(2:(n(j)-s(k)))/ ... sPMICIv|
prod(2:s(k))/ ... o`Af6C;Q
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qg/FI#r
prod(2:((n(j)+m_abs(j))/2-s(k))); ify48]
idx = (pows(k)==rpowers); 44s 9\
y(:,j) = y(:,j) + p*rpowern(:,idx); '1rGsfp6In
end 2acTw#
C+t0Zen
if isnorm JeN]sK)8x
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |@~_&g
end P+Gz'
end C23p1%#1
% END: Compute the Zernike Polynomials '"+Gn52#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A.mFa1lH
&8pGq./lr=
6oq5CD oq
% Compute the Zernike functions: l =t/"M=
% ------------------------------ cs7^#/3<
idx_pos = m>0; C=(Q0-+L|
idx_neg = m<0; xkRS?Q g
B9Mp3[
+_k A&Q(t
z = y; +!W:gA
if any(idx_pos) y@,PTF
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S?6-I,]h
end j{'_sI{{
if any(idx_neg) Rc3!u^?u
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?PS?_+E\L
end a0+q^*\d\R
YR? E
z<p
eEfGH
% EOF zernfun Sa%%3_&