切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9130阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来,  C~T*Wlk  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, SZ~lCdWad  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? eQ<Vky^SJ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? nxe9^h7m  
    ':]Hj8t_  
    t\f[->f  
    Av!xI  
    'u6n,yRm  
    function z = zernfun(n,m,r,theta,nflag) d2Ta&Md  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ywA7hm  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HJt '@t=Ak  
    %   and angular frequency M, evaluated at positions (R,THETA) on the AYfL}X<Ig  
    %   unit circle.  N is a vector of positive integers (including 0), and b"w@am>&  
    %   M is a vector with the same number of elements as N.  Each element |qpFR)l  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D/+l$aBz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, f( <O~D  
    %   and THETA is a vector of angles.  R and THETA must have the same K?>sP%m)  
    %   length.  The output Z is a matrix with one column for every (N,M) co-1r/ -O  
    %   pair, and one row for every (R,THETA) pair. Cng_*\=O  
    % 4<Kxo\\S  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FmgMd)#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), WAJ KP"  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral jtgj h\Nt  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :"cKxd  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized S2>$S^[U  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. MhIHfW]b  
    % dF*M"|[  
    %   The Zernike functions are an orthogonal basis on the unit circle. B_>r|^Vh  
    %   They are used in disciplines such as astronomy, optics, and eo^C[# .  
    %   optometry to describe functions on a circular domain. l[[^]__  
    % QwL*A `@  
    %   The following table lists the first 15 Zernike functions. v>_83P`  
    % ~RV"_8`V9  
    %       n    m    Zernike function           Normalization z>)lp$  
    %       -------------------------------------------------- oWEzzMRz  
    %       0    0    1                                 1 S3&n?\CO:  
    %       1    1    r * cos(theta)                    2 yQf(/Uxk*x  
    %       1   -1    r * sin(theta)                    2 .@$ A~/ YU  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )>@%;\qV  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #Y'ewu;qJ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) i`=%X{9  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) LIT`~D  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z/d {v:)  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Y(gai?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @WiTh'w0  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) TeFi[1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) syCT)}T6z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) WJMmt XO  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;te( {u+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q:Ma3El\  
    %       -------------------------------------------------- tlB -s;  
    % `26.+>Z7  
    %   Example 1: v# e*RI2}  
    % uPE Ab2u="  
    %       % Display the Zernike function Z(n=5,m=1) <C451+95  
    %       x = -1:0.01:1; q *kLi~ Oe  
    %       [X,Y] = meshgrid(x,x); .o]9 HbIk5  
    %       [theta,r] = cart2pol(X,Y); Y*IKPnPot2  
    %       idx = r<=1; n3j_=(  
    %       z = nan(size(X)); (LJ7xoJ^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?Ezy0>j  
    %       figure +O^}  t  
    %       pcolor(x,x,z), shading interp Gte\=0Wr  
    %       axis square, colorbar I hv@2{*(b  
    %       title('Zernike function Z_5^1(r,\theta)') D !{e  
    % CeM%?fr5  
    %   Example 2: }pGjc_:']  
    % "=LeHY=9  
    %       % Display the first 10 Zernike functions K(HrwH`a{  
    %       x = -1:0.01:1; l dp$jrNLr  
    %       [X,Y] = meshgrid(x,x); =woP~+  
    %       [theta,r] = cart2pol(X,Y); /F6"uZSt4  
    %       idx = r<=1; q_98=fyE6  
    %       z = nan(size(X)); Q<KF<K'0hg  
    %       n = [0  1  1  2  2  2  3  3  3  3]; f4&;l|R0a  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?FwHqyFVlQ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GVfRy@7n  
    %       y = zernfun(n,m,r(idx),theta(idx)); w9n0p0xr<  
    %       figure('Units','normalized') Ya(3Z_f+VZ  
    %       for k = 1:10 &Pc.[k  
    %           z(idx) = y(:,k); m/,80J8L+f  
    %           subplot(4,7,Nplot(k)) +ej5C:El_}  
    %           pcolor(x,x,z), shading interp h<8c{RuoZC  
    %           set(gca,'XTick',[],'YTick',[]) C ](djkA$  
    %           axis square wQ[!~>A  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9+/D\|"{  
    %       end \HG4i/V:h  
    % 1_l)$"  
    %   See also ZERNPOL, ZERNFUN2. /a)^)  
    N(3Bzd)   
    'Gamb+[  
    %   Paul Fricker 11/13/2006 PZO.$'L|7  
    Cl3L)  
    t=|}?lN<  
    Qvel#*-4  
    L\5:od[EP  
    % Check and prepare the inputs: TjI&8#AWBA  
    % ----------------------------- '-Oh$hqCx|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W39J)~D^@  
        error('zernfun:NMvectors','N and M must be vectors.') 2##mVEo.(  
    end G9GHBwT  
    f6nuh&!-  
    hpYv*WH:  
    if length(n)~=length(m) 4mtO"'|  
        error('zernfun:NMlength','N and M must be the same length.') TBky+]p@  
    end .mcohfR  
    -$_FKny  
    aof'shS8  
    n = n(:); N9s.nu  
    m = m(:);  Z'l!/l!  
    if any(mod(n-m,2)) :RwURv+kT  
        error('zernfun:NMmultiplesof2', ... PgHmOs  
              'All N and M must differ by multiples of 2 (including 0).') !ZvVj\{  
    end H K J^6|'  
    3<N2ehi?  
    2oOos%0  
    if any(m>n) X.FoX  
        error('zernfun:MlessthanN', ... c5:0`~5Fn  
              'Each M must be less than or equal to its corresponding N.') l!W!Gz0to  
    end _MuzD&^qE  
    UEt78eN  
    H8B2{]HAt  
    if any( r>1 | r<0 ) `T{CB) ?9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') N}<!k#d E  
    end Iza;~8dH5  
    s&Al4>}.f  
    @ &rf?:  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j]` hy"  
        error('zernfun:RTHvector','R and THETA must be vectors.') Gpcordt/  
    end qn{4AWmJ  
    Ciz,1IV  
    1 3)6p|6x  
    r = r(:); 6@3v+Vf'  
    theta = theta(:); b$_qG6)IJO  
    length_r = length(r); j 9GKz1  
    if length_r~=length(theta) .*xO/pn  
        error('zernfun:RTHlength', ... 7GG`9!l]D  
              'The number of R- and THETA-values must be equal.') 8 nqF i  
    end #3eI4KJ4+l  
    mG\9Qkom|  
    ;]=@;? 9  
    % Check normalization: W$&*i1<a+  
    % -------------------- R>1oF]w  
    if nargin==5 && ischar(nflag) #7]>ozKm  
        isnorm = strcmpi(nflag,'norm'); ="f-I9y  
        if ~isnorm vpOGyvI  
            error('zernfun:normalization','Unrecognized normalization flag.') Pth4_]US  
        end +ZGH  
    else mA_EvzXk\  
        isnorm = false; < <Y]P+uU  
    end ;=E}PbZt2  
    RBg2iG$ 8|  
    ~m0=YAlk?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S4_ZG>\VT  
    % Compute the Zernike Polynomials *f{4 _ts  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yB=R7E7  
    zf5%|7o  
    O U9{Y9e  
    % Determine the required powers of r: yd'cLZd<}  
    % ----------------------------------- 5p:2gsk  
    m_abs = abs(m); YcR: _ac  
    rpowers = []; rM6S%rS  
    for j = 1:length(n) ;05lwP* r]  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z![#Uz.z  
    end yp@cn(:~  
    rpowers = unique(rpowers); 9$ VdYw7D  
    -em3 #V  
    b j<T`M!  
    % Pre-compute the values of r raised to the required powers, 7~ZG"^k  
    % and compile them in a matrix: kkj@!1q(wO  
    % ----------------------------- R$MR|  
    if rpowers(1)==0 UYQ@ub  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HM"(cB(n`  
        rpowern = cat(2,rpowern{:}); rq1~%S  
        rpowern = [ones(length_r,1) rpowern]; 6& hiW]Adm  
    else 8{{^pW?x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); */TO $ ^s  
        rpowern = cat(2,rpowern{:}); b}u#MU  
    end -x J\/"A  
    kI5LG6  
    <Nc9F['&#  
    % Compute the values of the polynomials: `ZP[-:`  
    % -------------------------------------- ]^{5`  
    y = zeros(length_r,length(n)); KVViTpZ  
    for j = 1:length(n) 4"{g{8  
        s = 0:(n(j)-m_abs(j))/2; 2"P1I  
        pows = n(j):-2:m_abs(j); ?V_v=X%w  
        for k = length(s):-1:1 >SYOtzg%  
            p = (1-2*mod(s(k),2))* ... I<xcVY9L  
                       prod(2:(n(j)-s(k)))/              ... !VrBoU4<d  
                       prod(2:s(k))/                     ... c\tw#;\9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?6I`$ &OA  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rfZg  
            idx = (pows(k)==rpowers); *]kE3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Yx ;j  
        end 0&r}'f ?  
         `fVzY"Qv k  
        if isnorm  TLVfu4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *0'{ n*>  
        end Esg:  
    end qzo)\,  
    % END: Compute the Zernike Polynomials -ucR@P]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #}Ays#wA>?  
    a{?>F&vnU  
    6jl{^dI  
    % Compute the Zernike functions: (m.jC}J  
    % ------------------------------ 8@T0]vH&  
    idx_pos = m>0; F1`mq2^@  
    idx_neg = m<0; =aehhs>  
    PM {L}tEQ  
    ~ r$I&8  
    z = y; MU N:}S  
    if any(idx_pos) >4#\ U!  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); otP2qAI  
    end )*o) iN 7l  
    if any(idx_neg) 5=4-IO6W[]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ja@ ?.gW  
    end ZQ[s:  
    Ww{-(Ktx  
    2Paw*"U  
    % EOF zernfun 1fF\k#BE-%  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ]7{-HuQ8>}  
    uw@|Y{(K r  
    DDE还是手动输入的呢? O8ZHIs  
    !b+Kasss9  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)