下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (G>su
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, dh`s^D6Q>
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,WWd%DF)
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AVQcD`V3B
a%Q`R;W
S. `y%t.GP
"'[M~Js
6"G(Iq'2t3
function z = zernfun(n,m,r,theta,nflag) "qq$i35x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3R<r[3WP
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N CmBPCjh
% and angular frequency M, evaluated at positions (R,THETA) on the @`KbzN_h/
% unit circle. N is a vector of positive integers (including 0), and o4p5`jOG@
% M is a vector with the same number of elements as N. Each element [Ix6ArY
% k of M must be a positive integer, with possible values M(k) = -N(k) HDKF>S_S
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Jn{)CZ
% and THETA is a vector of angles. R and THETA must have the same 9ia&/BT7"z
% length. The output Z is a matrix with one column for every (N,M) -Ct+W;2
% pair, and one row for every (R,THETA) pair. 4ct-K)Ris
% .\oW@2,RA9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <~uzHg%Y
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?MFC(Wsh
% with delta(m,0) the Kronecker delta, is chosen so that the integral \m|5Aqs
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pP.`+vPi
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]~]TZb
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mh"PA p
% #9TL5-1y
% The Zernike functions are an orthogonal basis on the unit circle. (nLzWvN
% They are used in disciplines such as astronomy, optics, and Fxa{
9'99
% optometry to describe functions on a circular domain. RjVUm+<
% }Y7P2W+4?
% The following table lists the first 15 Zernike functions. E'{:HX
% {D8opepO)
% n m Zernike function Normalization ~s&r.6DW
% -------------------------------------------------- \"ogQnmz
% 0 0 1 1 %R4 \[e
% 1 1 r * cos(theta) 2 !QVhP+l'H
% 1 -1 r * sin(theta) 2 VE]TT><
% 2 -2 r^2 * cos(2*theta) sqrt(6) !q$VnqFk
% 2 0 (2*r^2 - 1) sqrt(3) Caj H;K\
% 2 2 r^2 * sin(2*theta) sqrt(6) 2gK]w$H7!
% 3 -3 r^3 * cos(3*theta) sqrt(8) SN"Y@y)=
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) W>!:K^8]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !)oQ9,N
% 3 3 r^3 * sin(3*theta) sqrt(8) rEp\ld
% 4 -4 r^4 * cos(4*theta) sqrt(10) VOj7Tz9UD
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Yz2N(g[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) a :*N0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wq.'8Y~BE
% 4 4 r^4 * sin(4*theta) sqrt(10) ^(
% -------------------------------------------------- ?;Sg,.J
% On
O_7'4 t
% Example 1: +vJ}'uR3P
% &zgliT!If
% % Display the Zernike function Z(n=5,m=1) L %ac sb}
% x = -1:0.01:1; 91R7Rrne
% [X,Y] = meshgrid(x,x); , SUx!o
% [theta,r] = cart2pol(X,Y); S@pdCH, n
% idx = r<=1; #@YKNS[
% z = nan(size(X)); KJ/Gv#Kj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); &^&0,g?To
% figure e%:vLE
9
% pcolor(x,x,z), shading interp dCn9]cj/
% axis square, colorbar U&(gNuR>J
% title('Zernike function Z_5^1(r,\theta)') vO?sHh
% hy#nK:B
% Example 2: IIMf\JdM
% @P0rNO%y
% % Display the first 10 Zernike functions SD~4CtlfI
% x = -1:0.01:1; i,~(_|-r
% [X,Y] = meshgrid(x,x); b"o\-iUioe
% [theta,r] = cart2pol(X,Y); uUp>N^mmVH
% idx = r<=1; VXk[p
% z = nan(size(X)); 3bGU;2~}
% n = [0 1 1 2 2 2 3 3 3 3]; ]4c*Nh%8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; H;a) `R3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; jp_)NC/~g
% y = zernfun(n,m,r(idx),theta(idx)); B:i$
% figure('Units','normalized') |4BD
% for k = 1:10 ShtV2}s|
% z(idx) = y(:,k); FDF DB
% subplot(4,7,Nplot(k)) \COoU("
% pcolor(x,x,z), shading interp f[NxqNn
% set(gca,'XTick',[],'YTick',[]) "<egm^Yq
% axis square 4j+M<g
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Qg1kF^=
% end V`/c#y||
% ,,j> 2Ts
% See also ZERNPOL, ZERNFUN2. $5ea[nc
V?T&>s
3`3my=
% Paul Fricker 11/13/2006 Su@V5yz
fi'zk
to_dNJbv
lGT[6S\as
U7zd7O
% Check and prepare the inputs: JC$_Pg!
% ----------------------------- H_8PK$c;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b~ig$!N]
error('zernfun:NMvectors','N and M must be vectors.') wE9z@\z]
end RK&RMN8@
V@G|2ZI
;)f,A)(Z
if length(n)~=length(m) B;iJ$gt]
error('zernfun:NMlength','N and M must be the same length.') P"Q6 wdm
end F6DVq8f9
@GweNo`p7
ze8 MFz'm
n = n(:); |P9Mhf N
m = m(:); tG"EbWi
if any(mod(n-m,2)) ER!s
error('zernfun:NMmultiplesof2', ... ?`
ebi|6
'All N and M must differ by multiples of 2 (including 0).') [p0_I7
end E_D@7a
xOxyz6B\
m=iKu(2xRq
if any(m>n) *g'%5i1ed
error('zernfun:MlessthanN', ... ki`ur%h
'Each M must be less than or equal to its corresponding N.') Sng3 B
end S}/ZHo
N#Nc{WU'B
5@bmm]
if any( r>1 | r<0 ) 0LHge7482
error('zernfun:Rlessthan1','All R must be between 0 and 1.') SrdCLT8
end `ST;";7!
9-=kVmT&g
]xV2=!J
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zU|'IW&
error('zernfun:RTHvector','R and THETA must be vectors.') vHymSU/J
end rUB67ok*
GXTjK!
caTKi8
r = r(:); `9f7H
theta = theta(:); Hs.5@ l
length_r = length(r); <HW2W"Go\
if length_r~=length(theta) L_zB/(h
error('zernfun:RTHlength', ... We"\nOP
'The number of R- and THETA-values must be equal.') VRv.H8^{
end *ES"^N/88
i~DLo3
,{RWs^W2
% Check normalization: TPKm>5g
% -------------------- t.XuH#
if nargin==5 && ischar(nflag) ,UT :wpc^i
isnorm = strcmpi(nflag,'norm'); >hotkMX `3
if ~isnorm cbx(
L8
error('zernfun:normalization','Unrecognized normalization flag.') b:*(
f#"q
end b~rlh=(o#_
else Zr!CT5C5
isnorm = false; >lK:~~1
end d^aLue>g;+
LtDGu})1
.uo:fxbd2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Eds{-x|10
% Compute the Zernike Polynomials kqS_2[=]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2EX`@_2
GmN~e*x>p
wcDb| H&
% Determine the required powers of r: w}(Ht_6q{
% ----------------------------------- G"prq&
m_abs = abs(m); 3q (]Dg;v
rpowers = []; qzE
-y-9@
for j = 1:length(n) yuB\Z/
rpowers = [rpowers m_abs(j):2:n(j)]; YksJ$yH^
end 0yKPYA*j
rpowers = unique(rpowers); EK^["_*A
9D& 22hL4
c6F8z75U
% Pre-compute the values of r raised to the required powers, v<S?"#
]F=
% and compile them in a matrix: MB(l*ju0
% -----------------------------
gm@%[
if rpowers(1)==0 F='rGQK!1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JsQmn<Yt
rpowern = cat(2,rpowern{:}); |Z{
DU(?[b
rpowern = [ones(length_r,1) rpowern]; @arMg2"o
else n@| &jh
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v>p~y u+G
rpowern = cat(2,rpowern{:}); k/#321Z
end pS<j>y
]`n6H[6O
'uV;)~
% Compute the values of the polynomials: VTJ,;p_UH
% -------------------------------------- f5|Ew&1EP
y = zeros(length_r,length(n)); zE4TdT1y|
for j = 1:length(n) pr"~W8
s = 0:(n(j)-m_abs(j))/2; @D&}ZV=J
pows = n(j):-2:m_abs(j); iN@+,]Yjl
for k = length(s):-1:1 w}QU;rl8q
p = (1-2*mod(s(k),2))* ... f{u3RCfX~2
prod(2:(n(j)-s(k)))/ ... CXiSin
prod(2:s(k))/ ... /M8&`
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yBwCFn.uP-
prod(2:((n(j)+m_abs(j))/2-s(k))); }Dc?Emb
idx = (pows(k)==rpowers); XnI)s^
y(:,j) = y(:,j) + p*rpowern(:,idx); g6 T /k7a
end n42XqR
hNJubTSE+)
if isnorm _0]{kB.$_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Sg}]5Mn`
end B<uUf)t
end xp"5L8:C
% END: Compute the Zernike Polynomials k'$UA$2d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9-?[%8
ZAcW@xfb
)\r;|DN
% Compute the Zernike functions: v %fRq!~
% ------------------------------ 7|eD}=jy
idx_pos = m>0; vT>ki0P_;
idx_neg = m<0; 6H_7M(f
P~"`Og+
*~%#
=o
z = y; u|a+:r)*4
if any(idx_pos) G_UxR9Qo
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); h q&2o
end w-.=u3
if any(idx_neg) rG|*74Q]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); nXuoRZ
end ]ZOzqh_0C
w %sHA
>B9|;,a
% EOF zernfun - &/n[EE