切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9090阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8'[7 )I=  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, f}ji?p  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #G|RnV%t$~  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /Iy]DU8  
    X7 MM2V  
    U$.@]F4&  
    d L 1tl  
    HZB>{O  
    function z = zernfun(n,m,r,theta,nflag) R?|.pq/Ln  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. TER=*"!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ? (Oy\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7>0o&  
    %   unit circle.  N is a vector of positive integers (including 0), and %lhEM}Sm  
    %   M is a vector with the same number of elements as N.  Each element ^zmG0EH,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Qj.#)R  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @V sG'  
    %   and THETA is a vector of angles.  R and THETA must have the same J?1 uKR  
    %   length.  The output Z is a matrix with one column for every (N,M) ZY55|eE  
    %   pair, and one row for every (R,THETA) pair. 33x{CY15  
    % jXx<`I+]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rQs)O<jl  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), dr}`H,X"3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mHTXni<!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZohCP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized TDKki(o=~  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l`{\"#4  
    % }5[qo`M  
    %   The Zernike functions are an orthogonal basis on the unit circle. BwGfTua  
    %   They are used in disciplines such as astronomy, optics, and qvsd5PeCO  
    %   optometry to describe functions on a circular domain. sN*N&XG  
    % X1|njJGO1  
    %   The following table lists the first 15 Zernike functions. drP=A~?&:  
    % &K.d'$q  
    %       n    m    Zernike function           Normalization ,j{,h_Op  
    %       -------------------------------------------------- hGe/ ;@%  
    %       0    0    1                                 1 J.b9F:&}  
    %       1    1    r * cos(theta)                    2 AaOu L,l  
    %       1   -1    r * sin(theta)                    2 )gIKH{JYL  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q7\w+ANf0  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *8Xh(` Mj7  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _\G"9,)u '  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  hoUD;3  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *[Tz![|  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Y@vTaE^w3  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Y|f[bw  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0/MtYIYk  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1\ ~ "VF*{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) VcO0sa f`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) - q1?? u  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |(E FY\  
    %       -------------------------------------------------- oXh#a8  
    % \BTODZ:h  
    %   Example 1: uAJx.>$b  
    % D6Ui!  
    %       % Display the Zernike function Z(n=5,m=1) 9igiZmM  
    %       x = -1:0.01:1; m)t;9J5  
    %       [X,Y] = meshgrid(x,x); Y-_`23x`  
    %       [theta,r] = cart2pol(X,Y); jh%Eq+#S  
    %       idx = r<=1; z6=Z\P+  
    %       z = nan(size(X)); RuA*YV  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); @ $ ;q ;  
    %       figure { ]{/t-=  
    %       pcolor(x,x,z), shading interp #ym'AN  
    %       axis square, colorbar /wEhVR`=  
    %       title('Zernike function Z_5^1(r,\theta)') v5#j Z$<F  
    % %COX7gV  
    %   Example 2: JN-y)L/>  
    % qZtzO2Mt  
    %       % Display the first 10 Zernike functions v6bGjVK[  
    %       x = -1:0.01:1; C=L>zOZ  
    %       [X,Y] = meshgrid(x,x); DS(}<HK{  
    %       [theta,r] = cart2pol(X,Y); {j?FNOJn  
    %       idx = r<=1; P|tO<t6/9*  
    %       z = nan(size(X)); %~H-)_d20  
    %       n = [0  1  1  2  2  2  3  3  3  3]; yy^q2P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qpP=K $  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p Z|V 3  
    %       y = zernfun(n,m,r(idx),theta(idx)); M#4p E_G  
    %       figure('Units','normalized') i(%W_d!  
    %       for k = 1:10 #uG%j  
    %           z(idx) = y(:,k); XH4  
    %           subplot(4,7,Nplot(k)) J s@hLP `  
    %           pcolor(x,x,z), shading interp UT~4x|b:O  
    %           set(gca,'XTick',[],'YTick',[]) ;;OAQ`  
    %           axis square s 8jV(P(O  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A Ru2W1g  
    %       end TCwFPlF|  
    % GX!G>  
    %   See also ZERNPOL, ZERNFUN2. a od-3"7[  
    zII|9y  
    u"cV%(#  
    %   Paul Fricker 11/13/2006 +K:Dx!9  
    }_M~2L?i  
    y*jp79G  
    /!yU !`bY  
    ,GbR!j@6  
    % Check and prepare the inputs: ,F8Yn5h  
    % ----------------------------- )1J R#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8sWJcmVo  
        error('zernfun:NMvectors','N and M must be vectors.') r"3=44St  
    end *MhRW,=  
    by1<[$8r  
    shy-Gu&  
    if length(n)~=length(m) qdJ=lhHM}  
        error('zernfun:NMlength','N and M must be the same length.') .LnGL]/  
    end F3[T.sf  
    In"ZIKaC  
    i4Q@K,$  
    n = n(:); KEo ,m  
    m = m(:); ` xEx^P^7  
    if any(mod(n-m,2)) O_ muD\  
        error('zernfun:NMmultiplesof2', ... 1Kw+,.@d  
              'All N and M must differ by multiples of 2 (including 0).') E!)xj.aS$  
    end  c(f  
    ~]|6T~+]83  
    JQ_sUYh~3  
    if any(m>n) t:x\kp  
        error('zernfun:MlessthanN', ... Hh3X \  
              'Each M must be less than or equal to its corresponding N.') YlJ@XpKM  
    end \$~|ZwV{  
    #1A.?p  
    2G & a{  
    if any( r>1 | r<0 ) }<0BX\@I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') j;+b0(53  
    end 7FP*oN?  
    hn7# L  
    2. NN8PPD"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1Z/(G1  
        error('zernfun:RTHvector','R and THETA must be vectors.') e9Wa<i 8  
    end e }?db  
    gS!:+G%  
    Fj8z  
    r = r(:); oz\!V*CtK  
    theta = theta(:); HYD'.uj  
    length_r = length(r); fZGX}T<)p-  
    if length_r~=length(theta) xjUT{iwS  
        error('zernfun:RTHlength', ... g{]0sn#  
              'The number of R- and THETA-values must be equal.') Y #ap*  
    end 3V+] 9;  
    ]!W=^!  
    kf\PioD8  
    % Check normalization: ('4_ xOb  
    % -------------------- ;0]aq0_#(  
    if nargin==5 && ischar(nflag) T8?Ghbn  
        isnorm = strcmpi(nflag,'norm'); imhwY#D  
        if ~isnorm j1Y~_  
            error('zernfun:normalization','Unrecognized normalization flag.') P8OaoPj  
        end wQ:)KjhHH  
    else {Y(zd[  
        isnorm = false; "=HA Y  
    end <VMGTBVQ  
    ,i ^9 |Oeq  
    =g7x' kN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W]$w@.oW[  
    % Compute the Zernike Polynomials k>Is:P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]\-A;}\e  
    ~TF:.8  
    Co9^OF-k  
    % Determine the required powers of r: ]#i igPZ7  
    % ----------------------------------- nmee 'oEw  
    m_abs = abs(m); \Gef \   
    rpowers = []; Ko| d+  
    for j = 1:length(n) np|Sy;:  
        rpowers = [rpowers m_abs(j):2:n(j)]; yt+L0wzzB  
    end r5S[-`s;  
    rpowers = unique(rpowers); WMDl=6  
    >>4qJ%bL  
    0Uz"^xO["  
    % Pre-compute the values of r raised to the required powers, d(ZO6Nr Q  
    % and compile them in a matrix: ~gJwW+  
    % ----------------------------- R+hU8 pu  
    if rpowers(1)==0 udK%>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #H&|*lr  
        rpowern = cat(2,rpowern{:}); 4Co6(  
        rpowern = [ones(length_r,1) rpowern]; pHGYQ;:L  
    else RT4x\&q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Uk[b|<U-`d  
        rpowern = cat(2,rpowern{:}); SBu"3ym  
    end Ve$o}h-  
    # " 6Qj'/h  
    (!u~CZ;  
    % Compute the values of the polynomials: l ~"^7H?4e  
    % -------------------------------------- 5;Czu(iH$  
    y = zeros(length_r,length(n)); .|KyNBn  
    for j = 1:length(n) U7,e/?a  
        s = 0:(n(j)-m_abs(j))/2; Df-DRi  
        pows = n(j):-2:m_abs(j); b}$+H/V  
        for k = length(s):-1:1 vQG5*pR*w  
            p = (1-2*mod(s(k),2))* ... 4d4ZT?V[  
                       prod(2:(n(j)-s(k)))/              ... d UE,U=  
                       prod(2:s(k))/                     ... [C 7^r3w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 94`7a<&ZNL  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^]Y> [[  
            idx = (pows(k)==rpowers); R{`(c/%8  
            y(:,j) = y(:,j) + p*rpowern(:,idx); h%na>G  
        end W\$`w  
         FW;?s+Uyx  
        if isnorm caR<Kb:;*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ];$L &5^  
        end Wx%H%FeK  
    end ,Q$ q=E;X  
    % END: Compute the Zernike Polynomials ;vR4XHl|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `6(S^P  
    "m$##X\  
    ?T8}K>a  
    % Compute the Zernike functions: |)DGkOtd  
    % ------------------------------  R Z?jJm$  
    idx_pos = m>0; Xh"n]TK  
    idx_neg = m<0; 7vKK%H_P  
    6dr%;Wp  
    fCn^=8KOZ  
    z = y; ;W )Y OT  
    if any(idx_pos) <]t%8GB2V  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e;q!6%  
    end 2eS~/Pq5=i  
    if any(idx_neg) `:fZ)$sY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Lz Kj=5'Y  
    end ./Zk`-OBT  
    LKB$,pR~1l  
    CJx|?yK2  
    % EOF zernfun (UD@q>c  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  bJ {'<J  
    '$(^W@M#6  
    DDE还是手动输入的呢? ,i`,Oy(BI  
    rcG"o\g@+  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)