下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, uKaf{=*
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6~>^pkV
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (UbR%A|v;
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 'Y,+D`&i)
\emT:Frb
9RbGa
Y&
rPrEEWS0)
l{B<"+8
function z = zernfun(n,m,r,theta,nflag) 6i*p
+S?U"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !nZI? z ;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,.1&Ff)S
% and angular frequency M, evaluated at positions (R,THETA) on the 38zR\@'j]4
% unit circle. N is a vector of positive integers (including 0), and 6x`\
J2x
% M is a vector with the same number of elements as N. Each element Q{(,/}kA-
% k of M must be a positive integer, with possible values M(k) = -N(k) t*ri`}a{v
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, =rs=8Ty?S
% and THETA is a vector of angles. R and THETA must have the same !>"INmz
% length. The output Z is a matrix with one column for every (N,M) x);?jxd
% pair, and one row for every (R,THETA) pair. :7 s#5b
% PW~cqo B71
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n?7hp%}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KU8Cl>5
% with delta(m,0) the Kronecker delta, is chosen so that the integral XACEt~y
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, J~nJpUyP*
% and theta=0 to theta=2*pi) is unity. For the non-normalized p~k`Z^xY$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C {H'
% #I*ht0++
% The Zernike functions are an orthogonal basis on the unit circle. s\n,Z?m
% They are used in disciplines such as astronomy, optics, and Xs#?~~"aC
% optometry to describe functions on a circular domain. tCF0Ah
% 4)c"@Zf
% The following table lists the first 15 Zernike functions. SIyS.!k>
% }]Z,\lA
% n m Zernike function Normalization l[x`*+ON:2
% -------------------------------------------------- ]h`E4B
% 0 0 1 1 &6~ncQWu
% 1 1 r * cos(theta) 2 [1[[$ Dr
% 1 -1 r * sin(theta) 2 XEe+&VQmY
% 2 -2 r^2 * cos(2*theta) sqrt(6) qjdahVY
% 2 0 (2*r^2 - 1) sqrt(3) P(W\aLp
% 2 2 r^2 * sin(2*theta) sqrt(6) `G:qtHn"Q<
% 3 -3 r^3 * cos(3*theta) sqrt(8) Fg}5V,
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Td=]tVM
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6:7:NI l:
% 3 3 r^3 * sin(3*theta) sqrt(8) Vq;{+j(
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3GuMiht5
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h<z/LL8|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) x]jdx#'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P^d.,
% 4 4 r^4 * sin(4*theta) sqrt(10) t]YLt ,
% -------------------------------------------------- /*xmv
$
% cJp1 <R
% Example 1: @'G ( k;
% 75BOiX
% % Display the Zernike function Z(n=5,m=1) WZy6K(18"'
% x = -1:0.01:1; 13NS*%~7[
% [X,Y] = meshgrid(x,x); [.yx2@W
% [theta,r] = cart2pol(X,Y); ";!1(xZr
% idx = r<=1; p%YvP
% z = nan(size(X)); '~vSH9nx/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ct4)faM
% figure 9FR1Bruf
% pcolor(x,x,z), shading interp MCO$>QL
% axis square, colorbar JKu6+V jO
% title('Zernike function Z_5^1(r,\theta)') iLQt9Hyk
% sn T4X
% Example 2: 2ShlYW@~
% :."n@sA@
% % Display the first 10 Zernike functions H9a3rA>
% x = -1:0.01:1; nm%4L
% [X,Y] = meshgrid(x,x); uEi.nSp)S
% [theta,r] = cart2pol(X,Y); 8~L.6c5U
% idx = r<=1; '_yk_[/
% z = nan(size(X)); +^% &8<
% n = [0 1 1 2 2 2 3 3 3 3]; gT\y&
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; uu46'aT
% Nplot = [4 10 12 16 18 20 22 24 26 28]; T>:g
ME
% y = zernfun(n,m,r(idx),theta(idx)); y0y;1N'KK
% figure('Units','normalized') 0 6v5/Xf
% for k = 1:10 yl;$#aZB
% z(idx) = y(:,k); )T~ +>+t
% subplot(4,7,Nplot(k)) 22(]x}`
% pcolor(x,x,z), shading interp 6W#F Ss~
% set(gca,'XTick',[],'YTick',[]) !5
:1'$d]H
% axis square TKs@?Q,J
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^eT>R,aB
% end m_O=X8uj"D
% 5O;oo@A:[
% See also ZERNPOL, ZERNFUN2. {]^%?]e
p 7E{es|J
5~rY=0t
% Paul Fricker 11/13/2006 j*lWi0Z-
Spw=+z<<Ub
`uJ l<kHI
z&/
o
B
qiq
% Check and prepare the inputs: KVe'2Q<
% ----------------------------- ra#)*fG,~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3<Y;mA=hw
error('zernfun:NMvectors','N and M must be vectors.') \\pyu]z
end {_gj>n (1
WiCM,wDi
]R.Vq\A%S
if length(n)~=length(m) 2o7C2)YT$
error('zernfun:NMlength','N and M must be the same length.') ^*~u4app
end o2UJ*4
~w}[
._'#M
_A0avMD}
n = n(:); -bX.4+U
m = m(:); ;;J98G|1
if any(mod(n-m,2)) ^RDXX+
error('zernfun:NMmultiplesof2', ... Kpbber
'All N and M must differ by multiples of 2 (including 0).') P\4o4MF@K
end /M
c"K
5|={1Lp24g
&WV 9%fI
if any(m>n) i'LTKj
error('zernfun:MlessthanN', ... r*xw\
'Each M must be less than or equal to its corresponding N.') i(;u6Rk
end @Sd:]h:f-
`CUO! 'U
!oRm.cO
if any( r>1 | r<0 ) PSw+E';
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 31\^9w__8
end t#{>y1[29
M|]1}8d?
ee?ZkU#@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S;<?nz3
error('zernfun:RTHvector','R and THETA must be vectors.') e-av@a3
end L#N.pd
&_^<B7aC'k
_NW OSt
r = r(:); f__WnW5h
theta = theta(:); 6?x{-Zj^?
length_r = length(r); *N+aZV}`Z
if length_r~=length(theta) S.4YC>E
error('zernfun:RTHlength', ... uk/+
i`=
'The number of R- and THETA-values must be equal.') >mltE$|
end <plR<iI.
2=
mD
oh)l\
% Check normalization: -$ft `Ih
% -------------------- nx]b\A
if nargin==5 && ischar(nflag) F<WX\q
isnorm = strcmpi(nflag,'norm'); 9\0 K%LL
if ~isnorm &fj?hYAj
error('zernfun:normalization','Unrecognized normalization flag.') *0zH5c
end e)(|
else rq?x]`u
isnorm = false; Qeog$g.HI
end (}8 ;3pp
3]'z8i({7Y
Ol0|)0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z9^$jw]
% Compute the Zernike Polynomials [SvwJIJJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !r
<|F
@S92D6
Oei2,3l,?
% Determine the required powers of r: N^N?!I
% ----------------------------------- O+J;Hp;\_
m_abs = abs(m); s~w+bwr
rpowers = []; OwaXG/z~
for j = 1:length(n) dVfDS-v!
rpowers = [rpowers m_abs(j):2:n(j)]; l
d9#4D[#
end \LXC269
rpowers = unique(rpowers); *p!dd?8
\ChcJth@o<
ge8zh/`
% Pre-compute the values of r raised to the required powers, NR@Tj]`k
% and compile them in a matrix: [40 YoVlfM
% ----------------------------- TI
if rpowers(1)==0 b1o(CG(}*
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k 'b|#c9c
rpowern = cat(2,rpowern{:}); h`j gF
rpowern = [ones(length_r,1) rpowern]; Dw3!
ibg
else M(jH"u&f
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1hG O*cq!
rpowern = cat(2,rpowern{:}); W'$~mK\
end L]}|{<3\
S8,06/#
-9"Ls?Cu
% Compute the values of the polynomials: =1qkoc~
% -------------------------------------- 7 '/&mX>
y = zeros(length_r,length(n)); <|iU+.j\
for j = 1:length(n) O=/Tx2i;
s = 0:(n(j)-m_abs(j))/2; _C\b,D}p
pows = n(j):-2:m_abs(j); }tPl?P'`
for k = length(s):-1:1 ](D [T
p = (1-2*mod(s(k),2))* ... Yw<:I&
prod(2:(n(j)-s(k)))/ ... b1cd5
prod(2:s(k))/ ... )^+$5OR\c
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Fu/CX4R_|
prod(2:((n(j)+m_abs(j))/2-s(k))); <-pbLL 9
idx = (pows(k)==rpowers); ffVYlNQ7L
y(:,j) = y(:,j) + p*rpowern(:,idx); Dn?L
end 5P!17.W'u
:u0433z:
if isnorm 6dUP's_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ='j
end W|
p?KJk)
end FzIA>njt
% END: Compute the Zernike Polynomials {cA )jW\'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x{}m)2[ Y
?`>yl4
C*!_. <b
% Compute the Zernike functions: Yt^+31/%
% ------------------------------ E
\RU[
idx_pos = m>0; KI{u:Lbi
idx_neg = m<0; Jd;1dYkH:
LzfLCGA^
&.,OvVAo
z = y; /a_|oCeC}
if any(idx_pos) dEiX!k$#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8] *{i
end A VjtK
if any(idx_neg) N_0O"" d
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2~)]E#9
end I}=}S"v
= DgD&_
U PC& O
% EOF zernfun :<W8uDAs