切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9444阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C,T9xm  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, <;}jf*A  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7A'd55I4  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fZ!fwg$  
    v3SH+Ej4  
    !pY=\vK;  
    [!9 dA.tF  
    <>\s#Jf/  
    function z = zernfun(n,m,r,theta,nflag) ip6$Z3[)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `|@#~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DtkY;Yl  
    %   and angular frequency M, evaluated at positions (R,THETA) on the n46A  
    %   unit circle.  N is a vector of positive integers (including 0), and )QS4Z{)U  
    %   M is a vector with the same number of elements as N.  Each element k{_ Op/k}V  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) %%J)@k^vH  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *opf~B_e  
    %   and THETA is a vector of angles.  R and THETA must have the same t}r`~AEa!  
    %   length.  The output Z is a matrix with one column for every (N,M) h#a;(F4_7  
    %   pair, and one row for every (R,THETA) pair. *{/ ww9fT  
    % M =Pn8<h~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |Y#KMi ~  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j/"{tMqQp  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral b=[gK|fu  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F&?55@b  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized pE.f}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -WiOs;2~/  
    % +76{S_CZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. <s/n8#i=H  
    %   They are used in disciplines such as astronomy, optics, and P&PPX#%  
    %   optometry to describe functions on a circular domain. zs#s"e:jeR  
    % ie4keVlXc  
    %   The following table lists the first 15 Zernike functions. O 1T JJ8  
    % +oKp>-  
    %       n    m    Zernike function           Normalization 1n}q6oa=  
    %       -------------------------------------------------- aRFLh  
    %       0    0    1                                 1 UUb n7&  
    %       1    1    r * cos(theta)                    2 |X&.+RI  
    %       1   -1    r * sin(theta)                    2 VA4>!t)  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2uonT,W  
    %       2    0    (2*r^2 - 1)                    sqrt(3) =@%;6`AVcp  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /7WN,a  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s|iph~W!L  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) V=yRE  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) JNhHQvi\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6{h+(|.(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +Kc1a;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Wn;B~  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) c2M-/ x-:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {v&c5B~,\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @\-i3EhR  
    %       -------------------------------------------------- zh5'oE&[yC  
    % l5sBDiir%  
    %   Example 1: =gI;%M\'  
    % QmQsNcF~z  
    %       % Display the Zernike function Z(n=5,m=1) 3w&fN3 1  
    %       x = -1:0.01:1; IT,d(UV_  
    %       [X,Y] = meshgrid(x,x); I5RV:e5b  
    %       [theta,r] = cart2pol(X,Y); :1%z;  
    %       idx = r<=1; .Q'/e>0  
    %       z = nan(size(X)); ^X2U A{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); QuuR_Ao?c'  
    %       figure Uh.XL=wY  
    %       pcolor(x,x,z), shading interp cG|)z<Z  
    %       axis square, colorbar dc#Db~v}k  
    %       title('Zernike function Z_5^1(r,\theta)') f1R&Q  
    % u<8 f ;C_  
    %   Example 2: Jvi"K  
    % @NBWNgBv  
    %       % Display the first 10 Zernike functions $'$#Xn,hU  
    %       x = -1:0.01:1; M6n9>aW4  
    %       [X,Y] = meshgrid(x,x); Vp3 9`m-W  
    %       [theta,r] = cart2pol(X,Y); f"XFf@!  
    %       idx = r<=1; }7k!>+eQ  
    %       z = nan(size(X));  & t b  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _ED,DM  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -9BKa~ DVQ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; V>#iR>w_4,  
    %       y = zernfun(n,m,r(idx),theta(idx)); ZLA&<]Ad"$  
    %       figure('Units','normalized') ciKkazx.  
    %       for k = 1:10 EZvB#cuL-  
    %           z(idx) = y(:,k); u rGk_.f  
    %           subplot(4,7,Nplot(k)) CbK&.a  
    %           pcolor(x,x,z), shading interp $V"NB`T  
    %           set(gca,'XTick',[],'YTick',[]) StUiL>9T#  
    %           axis square gv=mz,z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _Q<wb8+/  
    %       end by*>w/@9)k  
    % 7?6?`no~JJ  
    %   See also ZERNPOL, ZERNFUN2. ]h (TZu  
    ^+Ez[S{8  
    /'|'3J]HP  
    %   Paul Fricker 11/13/2006 w, 0tY=h6  
    ]+\@_1<ZI  
    MFHPh8P  
    YxMOr\B  
    Peha{]U  
    % Check and prepare the inputs: jE)&`yZ5  
    % ----------------------------- D .3Q0a6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B`Q.<Lqu  
        error('zernfun:NMvectors','N and M must be vectors.') k*bfq?E a  
    end 4XL*e+UfJ  
    $)| l#'r  
    VQHJ O I  
    if length(n)~=length(m) DM6oMT  
        error('zernfun:NMlength','N and M must be the same length.') 5qco4@8  
    end NLDmZra  
    4!lbwqo  
    -&Fxg>FrYb  
    n = n(:); @+",f]  
    m = m(:); )>LQ{ X.  
    if any(mod(n-m,2)) ? WWnt^  
        error('zernfun:NMmultiplesof2', ... ?{#P.2  
              'All N and M must differ by multiples of 2 (including 0).') sg 12C  
    end i |>K  
    W38My j!  
    ~p~8T  
    if any(m>n) u(JC 4w'  
        error('zernfun:MlessthanN', ... qs6yEuh#  
              'Each M must be less than or equal to its corresponding N.') jIMaP T  
    end *BVkviqxz  
    x8p#WB  
    ssW+'GD  
    if any( r>1 | r<0 ) uF>I0J#z?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;VS;),h/  
    end R!xs;|]  
    b:7;zOtF  
    JJ56d)37.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8?W!U*0aS  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9\*xK%T+  
    end wgSA6mQZ  
    pTZPOv#?Q  
     ,[ +  
    r = r(:); VL"ZC:n)-  
    theta = theta(:); !m pRLBH  
    length_r = length(r); IoNZ'g?d  
    if length_r~=length(theta) P*/px4;6  
        error('zernfun:RTHlength', ... !-r@_tn|  
              'The number of R- and THETA-values must be equal.') >H@ dgb  
    end e =& abu  
    Z~g~,q  
    VS^%PM#:/  
    % Check normalization: uc%75TJ@  
    % -------------------- W<;i~W  
    if nargin==5 && ischar(nflag) EA75 D&>I  
        isnorm = strcmpi(nflag,'norm'); ;^:~xJFx|  
        if ~isnorm 'q1)W'  
            error('zernfun:normalization','Unrecognized normalization flag.') J),7ukLu^  
        end .CI]8O"3y  
    else uW4G!Kw28  
        isnorm = false; %-]j;'6}cX  
    end <(d ^2-0  
    2Iz@lrO6  
    t=S94 ^g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ".v9#|  
    % Compute the Zernike Polynomials iUA2/ A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X=(8t2  
    ^/R@bp#<  
    $ sEe0  
    % Determine the required powers of r: ZERUvk  
    % ----------------------------------- 9`.b   
    m_abs = abs(m); -O~WHi5}  
    rpowers = []; `(=)8>|e  
    for j = 1:length(n) Du$kDCU  
        rpowers = [rpowers m_abs(j):2:n(j)]; H` Q_gy5Z(  
    end ]G&?e9OA  
    rpowers = unique(rpowers); 4_PMl6qo  
    N&S :=x:$S  
    /lttJJDU  
    % Pre-compute the values of r raised to the required powers, D.qbzJz  
    % and compile them in a matrix: S~YrXQ{_>-  
    % ----------------------------- xQ1&j,R]  
    if rpowers(1)==0 RNoS7[&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -sO EL{  
        rpowern = cat(2,rpowern{:}); :@_CQc*yB  
        rpowern = [ones(length_r,1) rpowern]; H|F>BjXn5  
    else |\?-k  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S_c#{4n  
        rpowern = cat(2,rpowern{:}); +ls *04  
    end ReKnvF~  
    } 5OlX  
    S?hM  
    % Compute the values of the polynomials: }'kk}2ej`  
    % -------------------------------------- Z i7(lG  
    y = zeros(length_r,length(n)); Fxv~;o#  
    for j = 1:length(n) k6[t$|lMy  
        s = 0:(n(j)-m_abs(j))/2; :+]6SC0ql  
        pows = n(j):-2:m_abs(j); rVQ:7\=Z  
        for k = length(s):-1:1 {+ [rJ_  
            p = (1-2*mod(s(k),2))* ... `{F8#    
                       prod(2:(n(j)-s(k)))/              ... Gpe h#Q4x  
                       prod(2:s(k))/                     ... X@x: F|/P  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X /5tZ@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3zWY%(8t4?  
            idx = (pows(k)==rpowers); ?Dd2k%o  
            y(:,j) = y(:,j) + p*rpowern(:,idx); zCO5 `%14  
        end w'M0Rd]  
         c)@M7UK[  
        if isnorm jE2ziK  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b^Rg_,s  
        end }qV4]*+{  
    end .vQ2w  
    % END: Compute the Zernike Polynomials ]3 0 7 .  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L$@RSKYp  
    $Ae/NwIlc  
    6EX:qp^`  
    % Compute the Zernike functions: N@Slc 0  
    % ------------------------------ )4GfT  
    idx_pos = m>0; 1Lj\"+.  
    idx_neg = m<0; #J2856bzS  
    Ks7s2vK^  
    v%zI~g.L  
    z = y; ~&B_ Bswf  
    if any(idx_pos) uT;Qo{G^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); L>@0Nne7  
    end d UjdQ  
    if any(idx_neg) H7qda' %>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Mv4JF(,S  
    end J=4S\0Z*  
    +#&2*nY  
    d9Rj-e1x  
    % EOF zernfun HLk}E*.mC  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  k`TEA?RfQ  
    t0?BU~f  
    DDE还是手动输入的呢? ;J?!D x  
    0BVMLRB  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)