下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C,+
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $(D>v!dp
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? F62 uDyY
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fhN\AjB6Td
B{Vc-qJ
&7\}Sqp
o_Zs0/
2p, U ^h
function z = zernfun(n,m,r,theta,nflag) H-pf8
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "yQBHYP
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
n}a`|Nbk
% and angular frequency M, evaluated at positions (R,THETA) on the SN@>m pcJS
% unit circle. N is a vector of positive integers (including 0), and K[iAN;QCe%
% M is a vector with the same number of elements as N. Each element .;7V]B1o
% k of M must be a positive integer, with possible values M(k) = -N(k) q!Ek
EW\n
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7<WUjK|
% and THETA is a vector of angles. R and THETA must have the same 8:& !F`o
% length. The output Z is a matrix with one column for every (N,M) $CMye; yL
% pair, and one row for every (R,THETA) pair. i_N8)Z;r
% Kfb(wW
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (UkDww_!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eQuw uT
% with delta(m,0) the Kronecker delta, is chosen so that the integral T9$~tv,5F
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *l`yxz@U
% and theta=0 to theta=2*pi) is unity. For the non-normalized %"r9;^bj&<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c"tlNf?
% RI8*'~ix]
% The Zernike functions are an orthogonal basis on the unit circle. \r:*`Z*y
% They are used in disciplines such as astronomy, optics, and >;9g`d
% optometry to describe functions on a circular domain. 'sIne>
% 3T.V*&
% The following table lists the first 15 Zernike functions. `WH$rx!
% 9BZ B1oX
% n m Zernike function Normalization 1,=:an
% -------------------------------------------------- b/[X8w'VP
% 0 0 1 1 p+~Imf-Jk
% 1 1 r * cos(theta) 2 ^^}htg
% 1 -1 r * sin(theta) 2 1P"7.{
% 2 -2 r^2 * cos(2*theta) sqrt(6) AsE77AUA
% 2 0 (2*r^2 - 1) sqrt(3) /#T {0GBXe
% 2 2 r^2 * sin(2*theta) sqrt(6) qZ!kVrmg&
% 3 -3 r^3 * cos(3*theta) sqrt(8) ng+sK
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) >8{w0hh;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) xKE=$SV(
% 3 3 r^3 * sin(3*theta) sqrt(8) BC!) g+8
% 4 -4 r^4 * cos(4*theta) sqrt(10) VB90 5%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jo&j<3i
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) TY%c`Q5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s/@uGC0>
% 4 4 r^4 * sin(4*theta) sqrt(10) ~/A2:}Cp=
% -------------------------------------------------- %' WC7s
% mRAt5a#is
% Example 1: ?<.a>"!
% qnyacI
% % Display the Zernike function Z(n=5,m=1) +)yoQRekX
% x = -1:0.01:1; EXeV@kg
% [X,Y] = meshgrid(x,x); >dK0&+A
% [theta,r] = cart2pol(X,Y); xkFa
% idx = r<=1; O-7)"
% z = nan(size(X)); uq[5 om"
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ">=E p+ix
% figure c*\i%I#f2
% pcolor(x,x,z), shading interp 9j^rFG!n
% axis square, colorbar #m{(aa9;
% title('Zernike function Z_5^1(r,\theta)') ^`#7(S)a/
% &iu]M=Yb
% Example 2: '2Zs15)V
% .B xQF
% % Display the first 10 Zernike functions $hCS-9%&
% x = -1:0.01:1; tt-ci,X+
% [X,Y] = meshgrid(x,x); Da)p%E>Q
% [theta,r] = cart2pol(X,Y); 0.+Eo.AX4M
% idx = r<=1; &;?+ ^L>
% z = nan(size(X)); :4[>]&:u3
% n = [0 1 1 2 2 2 3 3 3 3]; xKBi".wA
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Kn$t_7AF^
% Nplot = [4 10 12 16 18 20 22 24 26 28];
5q@s6_"{
% y = zernfun(n,m,r(idx),theta(idx)); v(Kj6 '
% figure('Units','normalized') M^\`~{*T
% for k = 1:10 Q1*_l
% z(idx) = y(:,k); ~rI2 RJ
% subplot(4,7,Nplot(k)) 8h)7K/!\
% pcolor(x,x,z), shading interp cg^~P-i@*
% set(gca,'XTick',[],'YTick',[]) 4xT /8>v2|
% axis square <WWZb\"{
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
TR*vZzoy
% end @?J7=}bzz
% FT>>XP8
% See also ZERNPOL, ZERNFUN2. 3%r/w7Fc
VWt=9D;
61QA<Wb
% Paul Fricker 11/13/2006 =?4[:#Rh
LtwfL^ #
oR`rs[Kj
#s(ob `0|
Ar~<l2,{r
% Check and prepare the inputs: \H>Psv{
% ----------------------------- QsPg4y3?D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x(Uv>k~i}
error('zernfun:NMvectors','N and M must be vectors.') s+_8U}R
end 8[,R4@
6qmV/DL
XySkm2y
if length(n)~=length(m) (bsywM
error('zernfun:NMlength','N and M must be the same length.') GMZ6 dK
end W\0u[IV.x
#a@ jt
L Y4bn)Qf
n = n(:); cGo_qR/B(>
m = m(:); P()n=&XO6
if any(mod(n-m,2)) _IEbRVpb
error('zernfun:NMmultiplesof2', ... y+$vHnS/jC
'All N and M must differ by multiples of 2 (including 0).') @\gE{;a8
end pUmT?N!
E0HE@pqr
/Dc54Un
if any(m>n) n(LO`{
error('zernfun:MlessthanN', ... dtV*CX.D.7
'Each M must be less than or equal to its corresponding N.') G3!O@j!7w$
end }jce5E
[V8^}s}tF
Lwm /[
if any( r>1 | r<0 ) .L^j:2(L
error('zernfun:Rlessthan1','All R must be between 0 and 1.') N0$
uB"
end =^ Ws/k
7)O+s/.P)
9X1vL
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
Jk`l{N
error('zernfun:RTHvector','R and THETA must be vectors.') ('uUf!h?\
end $z)egh(z
3qu?qD
GU1cMe
r = r(:); <
fe.
theta = theta(:); dR>$vbjh1Z
length_r = length(r); 5>e<|@2
X
if length_r~=length(theta) 6
3PV R"
error('zernfun:RTHlength', ... J^DyhCs
'The number of R- and THETA-values must be equal.') n/BoK6g
end bx6=LK
e{4e<hd
pwSkw J]
% Check normalization: )eSQce7H
% -------------------- DH$Nz
if nargin==5 && ischar(nflag) Ln+ .$ C
isnorm = strcmpi(nflag,'norm'); I_?R(V[9
if ~isnorm #jxPh!%9
error('zernfun:normalization','Unrecognized normalization flag.') l.;^w
end Je^;[^
else Mw+
l>92
isnorm = false; Ps0<CUyI
end x}`)'a[
}43qpJe8U
)VG>6x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
BlT)hG(M>
% Compute the Zernike Polynomials 9&kPcFX B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XdlA)0S)
})PU`?f
hCX/k<}I
% Determine the required powers of r: 8OS^3JS3"
% ----------------------------------- 2}.~
6EU/
m_abs = abs(m); Jfv'M<I
rpowers = []; 6>&(OV
for j = 1:length(n) 6"[,
rpowers = [rpowers m_abs(j):2:n(j)]; ?%Q=l;W.
end u,=?|M\
rpowers = unique(rpowers); v$;URF%^
Y@Ry
oJ
&(o&Y
% Pre-compute the values of r raised to the required powers, |Zo36@s
% and compile them in a matrix: I&^hG\D
% ----------------------------- ]gA2.,)}D
if rpowers(1)==0 D~Q-:G$x
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EuVA"~PA
rpowern = cat(2,rpowern{:}); '['x'G50
rpowern = [ones(length_r,1) rpowern]; ]_!NmB_3
else w&hCt