切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8950阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, O\&-3#e  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, bji^b@ us_  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? PRQEk.C  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? S2,tv  
    |(77ao3  
    7wB*@a-  
    _KZ&/  
    HBp$   
    function z = zernfun(n,m,r,theta,nflag) |Ta-D++]'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. TcKt   
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !)-)*T  
    %   and angular frequency M, evaluated at positions (R,THETA) on the "f|xIK`c  
    %   unit circle.  N is a vector of positive integers (including 0), and (YC{BM}  
    %   M is a vector with the same number of elements as N.  Each element Y~"5HP|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Wv7hY"  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, wJMk%N~R:  
    %   and THETA is a vector of angles.  R and THETA must have the same &V77Wn OY  
    %   length.  The output Z is a matrix with one column for every (N,M) OLs<]0H  
    %   pair, and one row for every (R,THETA) pair. H&_drxUq;L  
    % /*kc|V  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,6AnuA  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @/f'i9?oM`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7Adg;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (T 8In  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized U"L 7G$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \h48]ZjC`  
    % 4];<` %  
    %   The Zernike functions are an orthogonal basis on the unit circle. 67D{^K"KT  
    %   They are used in disciplines such as astronomy, optics, and [ @ASAhV^+  
    %   optometry to describe functions on a circular domain. V7(-<})8  
    % Or3GrZ!H  
    %   The following table lists the first 15 Zernike functions. -50Qy[0."  
    % =;A >1g$  
    %       n    m    Zernike function           Normalization Bj*\)lG<  
    %       -------------------------------------------------- `)WC|=w2  
    %       0    0    1                                 1 6QM$aLLP?  
    %       1    1    r * cos(theta)                    2 'dvi@Jx  
    %       1   -1    r * sin(theta)                    2 ^{ {0ajI9C  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [x8_ax} w  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %Kzu&*9Hb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) s8V:;$ !  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) W87kE?,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) &qyXi[vw  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vTsMq>%,<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z0T9tN!(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;6}> Shs  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^d@ME<mb  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) U%r|hn3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FxdWJ|rN9D  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 9 .18E(-  
    %       -------------------------------------------------- *4OB 88$  
    % VOGx  
    %   Example 1: w\lc;4U   
    % f<y-{.VnN$  
    %       % Display the Zernike function Z(n=5,m=1) +F]=Z  
    %       x = -1:0.01:1; M REB  
    %       [X,Y] = meshgrid(x,x); /{>_'0  
    %       [theta,r] = cart2pol(X,Y); a3J' c  
    %       idx = r<=1; Z9q1z~qSQ  
    %       z = nan(size(X)); vI \8@97  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); MGLcM&oR  
    %       figure vlC$0P  
    %       pcolor(x,x,z), shading interp }fZ~HqS2w  
    %       axis square, colorbar Aaug0X  
    %       title('Zernike function Z_5^1(r,\theta)') M3!4,_!~  
    % ^GnR1.ux  
    %   Example 2: ? J/NYV  
    % Go)}%[@w  
    %       % Display the first 10 Zernike functions Vy7 )_D  
    %       x = -1:0.01:1; q+2v9K@  
    %       [X,Y] = meshgrid(x,x); I(uM`g  
    %       [theta,r] = cart2pol(X,Y); hdDL92JVg  
    %       idx = r<=1; Hq aay  
    %       z = nan(size(X)); xV"~?vD  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {RN-rF3w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #H;1)G(/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; i hcSSUm  
    %       y = zernfun(n,m,r(idx),theta(idx)); !>\g[C  
    %       figure('Units','normalized') %$'Z"njO&  
    %       for k = 1:10 a[jNT$8  
    %           z(idx) = y(:,k); /BwG\GhM  
    %           subplot(4,7,Nplot(k)) 2 $Umqt  
    %           pcolor(x,x,z), shading interp <9]J/w+  
    %           set(gca,'XTick',[],'YTick',[])  y7vA[us  
    %           axis square >Z>s R0s7  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :Q ?p^OC  
    %       end L KLLBrm:  
    % {~`{bnx^]7  
    %   See also ZERNPOL, ZERNFUN2. V3<#_:;  
    L cTTfb+<  
    0IyT(1hS  
    %   Paul Fricker 11/13/2006 r0s(MyI  
    DfX~}km  
    }b^x#HC  
    1L%$\0B4hm  
    "a-;?S&  
    % Check and prepare the inputs: 7LsVlT[  
    % ----------------------------- +z<GycIc?K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F_@?'#m  
        error('zernfun:NMvectors','N and M must be vectors.') P6A##z  
    end ujf7r`;u.  
    S^iT &;,  
    )JhB!P(  
    if length(n)~=length(m) xy]oj  
        error('zernfun:NMlength','N and M must be the same length.') ko"xR%Q  
    end U6#9W}CE  
    ;Kh?iq n^  
    C(vQR~_  
    n = n(:); fo~>y  
    m = m(:); <8^ws90Y  
    if any(mod(n-m,2)) \46*4?pP  
        error('zernfun:NMmultiplesof2', ... K^I B1U$  
              'All N and M must differ by multiples of 2 (including 0).') Bh7hF?c Sj  
    end Q]<6voyy  
    tB VtIOm9  
    [#%@,C  
    if any(m>n) vlFq-W!  
        error('zernfun:MlessthanN', ... i,rX. K}X  
              'Each M must be less than or equal to its corresponding N.') R&Ss ET.  
    end uSv]1m_-]  
    c4.2o<(Xt  
    O*%5P5'p"{  
    if any( r>1 | r<0 ) Ii!{\p!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5> !N)pA  
    end lUdk^7:M  
    n. vrq-  
    u/V&1In  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *y', eB  
        error('zernfun:RTHvector','R and THETA must be vectors.') |Xt6`~iC  
    end ;]k\F  
    \Nk578+AA  
    <o/lK\>  
    r = r(:); -/Zy{2 <u  
    theta = theta(:); X^rFRk  
    length_r = length(r); \jb62Jp  
    if length_r~=length(theta) 7~);,#[ky  
        error('zernfun:RTHlength', ... y;_F[m  
              'The number of R- and THETA-values must be equal.') u> =\.d <  
    end @>&b&uj7T  
    D=K{(0{"/,  
    VQ8Fs/Zt!  
    % Check normalization: ^Jw=5 ImG  
    % -------------------- IC1nR u2I  
    if nargin==5 && ischar(nflag) 6}~k4;'}A  
        isnorm = strcmpi(nflag,'norm'); )G-u;1rd  
        if ~isnorm Sj o-Xf}  
            error('zernfun:normalization','Unrecognized normalization flag.') dKhS;!K9p  
        end S(/ ^_Y  
    else |T]&8Q)S  
        isnorm = false; }2S)CL=  
    end O8Z+g{  
    (?ULp{VPFl  
    .hUlI3z9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,/kZt!  
    % Compute the Zernike Polynomials ]wfY<Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,5j3(Lk  
    U.h2 (-p  
    gyegdky3  
    % Determine the required powers of r: <[w5M?n8  
    % ----------------------------------- (xKypc+j  
    m_abs = abs(m); AMASh*  
    rpowers = []; KK{_s=t%<  
    for j = 1:length(n) iP@ FXJJ  
        rpowers = [rpowers m_abs(j):2:n(j)]; &%g$Bi,G  
    end f>e0 l'\  
    rpowers = unique(rpowers); p'6XF{  
    =yoR>llbBC  
    )l/ .<`|  
    % Pre-compute the values of r raised to the required powers, d[  _@l  
    % and compile them in a matrix: :*^aSPlV  
    % ----------------------------- ";7/8(LBZ  
    if rpowers(1)==0 r4<As`&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FA := )  
        rpowern = cat(2,rpowern{:}); \En"=)A  
        rpowern = [ones(length_r,1) rpowern]; 1Oq VV?oz  
    else G/#m. =t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); An^)K  
        rpowern = cat(2,rpowern{:}); W*Ow%$%2  
    end  <4< y  
    i7cUp3  
    78 ]Kv^l^_  
    % Compute the values of the polynomials: ,In%r`{i  
    % -------------------------------------- FnI}N;"  
    y = zeros(length_r,length(n)); 2-jXj9kp`  
    for j = 1:length(n) o7WAH@g  
        s = 0:(n(j)-m_abs(j))/2; $M/1pZ  
        pows = n(j):-2:m_abs(j); +-9-%O.(;  
        for k = length(s):-1:1 |=KzQY|u  
            p = (1-2*mod(s(k),2))* ... _l1"X^Aa  
                       prod(2:(n(j)-s(k)))/              ... =f [/Pv  
                       prod(2:s(k))/                     ... w%..*+P  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !m%'aQHH(  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [h !i{QD  
            idx = (pows(k)==rpowers); q'4P/2)va  
            y(:,j) = y(:,j) + p*rpowern(:,idx); *j,bI Y&se  
        end {qU;;`P]|  
         U@CAQ?  
        if isnorm m{$}u@a  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %d *0"<v  
        end ~j(vGO3JB  
    end #I*{_|}=  
    % END: Compute the Zernike Polynomials vLBuE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KUK.;gG*Z  
    4:^MSgra  
    t;/uRN*.  
    % Compute the Zernike functions: 0 f$96sl  
    % ------------------------------ )?7/fF)@|  
    idx_pos = m>0; ~WORC\kCW  
    idx_neg = m<0; >)G[ww[  
    !M`.(sO]  
    +rA#]#hN  
    z = y; 'o4`GkNh)  
    if any(idx_pos) w!v^6[!  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kFY2VPP~  
    end *W`7JL,  
    if any(idx_neg) Kf}*Ij  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !#WQ8s!?o  
    end .'Q*_};W  
    b/Ma,}  
    w 4CcdpR  
    % EOF zernfun  7U1 M;@y  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ik/ X!YTu*  
    o3|4PAA/  
    DDE还是手动输入的呢? +^esL9RG:  
    U_izKvEh  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)