切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9420阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Ks(+['*S  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, G^ZL,{  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /QZnN?k  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? T2P0(rEz  
    mVcpYyD|k  
    Xw(e@ :  
    mqrP0/sN  
    V7G?i\>  
    function z = zernfun(n,m,r,theta,nflag) >k,bHGj?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. nU-.a5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Py^F},?J  
    %   and angular frequency M, evaluated at positions (R,THETA) on the / V+&#N  
    %   unit circle.  N is a vector of positive integers (including 0), and  ?}e8g  
    %   M is a vector with the same number of elements as N.  Each element M`*B/Fh 2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) < N}UwB&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, AU)"L_ i}  
    %   and THETA is a vector of angles.  R and THETA must have the same ID & Iz  
    %   length.  The output Z is a matrix with one column for every (N,M) 2`Ub;Nn29  
    %   pair, and one row for every (R,THETA) pair.  oJ ~ZzW  
    % E{[c8l2B  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike s^TF+d?B  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), T;XEU%:LK  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bHH{bv~Z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, CkE@ Ll3Z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,%w_E[2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1&\_|2  
    % }QU9+<Z[r  
    %   The Zernike functions are an orthogonal basis on the unit circle. nyWA(%N1  
    %   They are used in disciplines such as astronomy, optics, and %6j|/|#]  
    %   optometry to describe functions on a circular domain. +Pd&YfU9  
    % ?7 e|gpQ|  
    %   The following table lists the first 15 Zernike functions. B q+RFo  
    % i[`nu#n/  
    %       n    m    Zernike function           Normalization Q.7Rv XNw8  
    %       -------------------------------------------------- [yM{A<\L  
    %       0    0    1                                 1 $v#Q'?jE  
    %       1    1    r * cos(theta)                    2 1_%jDMYH  
    %       1   -1    r * sin(theta)                    2 [X ]\^   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) "#z4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )tl=tH/$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) r483"k(7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) y:WRpCZoa  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 6^F"np{w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) JP)/ O!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #Z;ziM:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \j !JRD+j  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s\_-` [B0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $,otW2:)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gRIRc4p  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) IzF7W?k  
    %       -------------------------------------------------- ;X<#y2`  
    % Ck8`$x&t  
    %   Example 1: h@=H7oV7k  
    % zDeh#  
    %       % Display the Zernike function Z(n=5,m=1) eUPG){"  
    %       x = -1:0.01:1; 'uBXSP#  
    %       [X,Y] = meshgrid(x,x); I gcVl/d  
    %       [theta,r] = cart2pol(X,Y); yx"xbCc#  
    %       idx = r<=1; ks< gSCB  
    %       z = nan(size(X)); yS p]+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); {\ [u2{  
    %       figure wvvMesX<L  
    %       pcolor(x,x,z), shading interp m:5*:Ii.  
    %       axis square, colorbar FKY|xG9  
    %       title('Zernike function Z_5^1(r,\theta)') 3GUO   
    % ftq&<8  
    %   Example 2: 85Zy0l  
    % `An|a~G1  
    %       % Display the first 10 Zernike functions !31v@v:)  
    %       x = -1:0.01:1; ZfM(%rx  
    %       [X,Y] = meshgrid(x,x);  Q<B=m6~  
    %       [theta,r] = cart2pol(X,Y); fT [JU1  
    %       idx = r<=1; _;3xG0+  
    %       z = nan(size(X)); YqX/7b+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >i7zV`eK  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; U4qp?g+:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3ddH@Y|  
    %       y = zernfun(n,m,r(idx),theta(idx)); He}qgE>Us  
    %       figure('Units','normalized') Rd|};-  
    %       for k = 1:10 ~F~g$E2 }  
    %           z(idx) = y(:,k); sCU<1=   
    %           subplot(4,7,Nplot(k)) /*!K4)$-*2  
    %           pcolor(x,x,z), shading interp pE@Q (9`b{  
    %           set(gca,'XTick',[],'YTick',[]) %$ |=_K)Ks  
    %           axis square A+w51Q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q!(16  
    %       end )pLde_ k  
    % Ql&5fyW  
    %   See also ZERNPOL, ZERNFUN2. GqBZWmAB  
    Z12-Vps  
    &dp<i[ec^  
    %   Paul Fricker 11/13/2006 .vYU4g]  
    ?RJ ) u  
    L^uO.eI"m  
    PCDsj_e  
    LPX@oha  
    % Check and prepare the inputs: zC #[  
    % ----------------------------- E7@0,9A U  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /=&HunaxI  
        error('zernfun:NMvectors','N and M must be vectors.') W- 5Z"m1I  
    end  +LeZjA[  
    [t/7hx"2t  
    ts/ rV#s~  
    if length(n)~=length(m) 'bVDmm).  
        error('zernfun:NMlength','N and M must be the same length.')  "_t2R &A  
    end u^T)4~(  
    @T[}] e  
    BC0SSR@e  
    n = n(:); &Iv3_T<AF  
    m = m(:); tQE=c 7/M  
    if any(mod(n-m,2)) ua[ d  
        error('zernfun:NMmultiplesof2', ... p'z fo!  
              'All N and M must differ by multiples of 2 (including 0).') Lpd q^X  
    end ee}&~%  
    ,pL%,>R5  
    sc dU  
    if any(m>n) },G6IuH%  
        error('zernfun:MlessthanN', ... Bc3(xI'>J  
              'Each M must be less than or equal to its corresponding N.') sT:$:=  
    end ``KimeA~  
    N9@@n:JT  
    dnt: U!TW@  
    if any( r>1 | r<0 ) $?RxmWsP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') v&6I\1  
    end 60p*$Vqy  
    E wDFUK  
    W(U:D?e  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) t@(S=i7}-  
        error('zernfun:RTHvector','R and THETA must be vectors.') |35"V3bs  
    end KY 085Fvs  
    =yo?]ZS  
    ~k>H4hV3  
    r = r(:); /NRdBN  
    theta = theta(:); zzOc # /  
    length_r = length(r); 8U}BSM_<2  
    if length_r~=length(theta) 1KwUp0% &  
        error('zernfun:RTHlength', ... A'Q=Do E  
              'The number of R- and THETA-values must be equal.') pJ)PVo\cV  
    end '4 T}$a"i  
    W$&{jr-p  
    2_i/ F)W  
    % Check normalization:  g=W1y  
    % -------------------- vzDoF0Ts*p  
    if nargin==5 && ischar(nflag) aVTTpMY  
        isnorm = strcmpi(nflag,'norm'); oAaUXkQE  
        if ~isnorm x?T.ItW:K  
            error('zernfun:normalization','Unrecognized normalization flag.') vX|i5P0)8  
        end K??(>0Qr}r  
    else w}2;f=  
        isnorm = false; fsd,q?{a:  
    end 'Pk1 4`/  
    5X"y46i,H  
    qz]b8rX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9?M>Y?4  
    % Compute the Zernike Polynomials P]V/<8o.53  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d@-s_gw  
    -jN:~.  
    PEA<H0  
    % Determine the required powers of r: /;P* ?  
    % ----------------------------------- EPO*{bN7O  
    m_abs = abs(m); }t.J;(ff:  
    rpowers = []; PeCU V6  
    for j = 1:length(n) bWp40&vx  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4-ijuqjN  
    end k)l*L1Y4:  
    rpowers = unique(rpowers); C|"BMam  
    uh,~Cv XU]  
    6k14xPj  
    % Pre-compute the values of r raised to the required powers, o0SQJ1.a$  
    % and compile them in a matrix: St9+/Md=jQ  
    % ----------------------------- 9hoTxWpmy  
    if rpowers(1)==0 *hugQh ]a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~r(/)w\  
        rpowern = cat(2,rpowern{:}); r7dvj#^  
        rpowern = [ones(length_r,1) rpowern]; y9<]F6TT  
    else ';T=kS<^_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vpTYfE  
        rpowern = cat(2,rpowern{:}); . Y@)3  
    end `8 Q3=^)3  
    |n9q 4*dN  
    s+mNr3  
    % Compute the values of the polynomials: #f *,mY|>  
    % -------------------------------------- \TchRSe  
    y = zeros(length_r,length(n)); F|Y}X|x8Q  
    for j = 1:length(n) u+ wKs`   
        s = 0:(n(j)-m_abs(j))/2; D)0pm?*5A  
        pows = n(j):-2:m_abs(j); funHznRR  
        for k = length(s):-1:1 mn5mdrv3WZ  
            p = (1-2*mod(s(k),2))* ... &RSUB;y mL  
                       prod(2:(n(j)-s(k)))/              ... q ERdQ~M,  
                       prod(2:s(k))/                     ... > J!J:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +Ndo$|XCy]  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  D I` M  
            idx = (pows(k)==rpowers); NhP&sQO  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ;|nC;D]  
        end pUTC~|j%:  
         X?3?R\/  
        if isnorm <4DSk9/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kqyV UfX$3  
        end l~cT]Ep  
    end |{)SLvlJl  
    % END: Compute the Zernike Polynomials &DUt`Dr w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .JkcCEe{G  
    PxqRb  
    6[iuCMOZ  
    % Compute the Zernike functions: r$=YhI/=  
    % ------------------------------ d-cK`pSB  
    idx_pos = m>0; /CXrxeo  
    idx_neg = m<0; fF~3"!1#\I  
    wF@mHv  
    /Dh[lgF0C  
    z = y; $ N7J:Q  
    if any(idx_pos) 'yrU_k,h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Dg:2*m_!j{  
    end ;p$KM-?2D  
    if any(idx_neg) !a(#G7zA  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); IV#kF}9$  
    end g%Yw Dr=0t  
    )isJ^ *6y  
    e3|@H'~k  
    % EOF zernfun ZO^Y9\L  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  R7/"ye:7J  
    Kr$ w"]  
    DDE还是手动输入的呢? 7=YjY)6r^  
    [")3c)OH|  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)