切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9074阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, gHc0n0ZV  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Yy]^_,r  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2@WF]*Z  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .z7%74p  
    R:HF~}  
    z;`o>Ja2  
    pcIJija:  
    )HWf`;VQ  
    function z = zernfun(n,m,r,theta,nflag) A9^t$Ii  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. sp*_;h3'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7N0V`&}T  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #x Z7%    
    %   unit circle.  N is a vector of positive integers (including 0), and |4NH}XVYJ>  
    %   M is a vector with the same number of elements as N.  Each element `PK1zSr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) w7}m T3p,)  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =w='qjh  
    %   and THETA is a vector of angles.  R and THETA must have the same cSy{*K{B  
    %   length.  The output Z is a matrix with one column for every (N,M) !U38aHG  
    %   pair, and one row for every (R,THETA) pair. |~vo  
    % P wL]v.:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >-fOkOWXy  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t~m >\(&  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral p<IMWe'tP  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /-BKdkBCpZ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Nb/W+& y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q$Y ]KV  
    % lrg3n[y-l  
    %   The Zernike functions are an orthogonal basis on the unit circle. CC,_I>t  
    %   They are used in disciplines such as astronomy, optics, and &`hx   
    %   optometry to describe functions on a circular domain. Lk{ES$  
    % ^6Y4=  
    %   The following table lists the first 15 Zernike functions. # T_m|LN 7  
    % 7u/_3x1  
    %       n    m    Zernike function           Normalization Kp[ F@A#  
    %       -------------------------------------------------- -Bymt[  
    %       0    0    1                                 1 mZLrU<)Y  
    %       1    1    r * cos(theta)                    2 --*Jv"/0  
    %       1   -1    r * sin(theta)                    2 8z\v|-%Z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]A)`I  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 9AQMB1D*v4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8nn%wps  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) c zTr_>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) U_!Wg|  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >D20f<w(H  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) [:Kl0m7  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) D90m..\w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LJ7Qwh_",  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }c/p+Wo  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LliOhr4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) oJ}!qrrH  
    %       -------------------------------------------------- 9 -7.4!]I  
    % 26n+v(re  
    %   Example 1: yhF{ cK =  
    % 4t3Y/X  
    %       % Display the Zernike function Z(n=5,m=1) -yKx"Q9F  
    %       x = -1:0.01:1; BK._cDR  
    %       [X,Y] = meshgrid(x,x); Ubtu?wRBW  
    %       [theta,r] = cart2pol(X,Y); D*!p8J8Ku  
    %       idx = r<=1; YCJcDab  
    %       z = nan(size(X)); x;d*?69f]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); EXt?xiha?  
    %       figure MVe:[=VOT|  
    %       pcolor(x,x,z), shading interp v5J% p4  
    %       axis square, colorbar \ZSZ(p#1  
    %       title('Zernike function Z_5^1(r,\theta)') :oRR1k  
    % |8,|>EyqK  
    %   Example 2: "[W${q+0x  
    % -"m4 A0  
    %       % Display the first 10 Zernike functions qfF/X"#0  
    %       x = -1:0.01:1; 70s.  
    %       [X,Y] = meshgrid(x,x); ;+pS-Zb 6  
    %       [theta,r] = cart2pol(X,Y); d4'*K1m   
    %       idx = r<=1; VRr_s:CWK  
    %       z = nan(size(X)); R+}x#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; x\/N09  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; t^N 92$|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *=+m;%]_  
    %       y = zernfun(n,m,r(idx),theta(idx)); RZwjc<T  
    %       figure('Units','normalized') i7@qfe$fR  
    %       for k = 1:10 `U-i{i  
    %           z(idx) = y(:,k); 8=XfwwWHy<  
    %           subplot(4,7,Nplot(k)) `$V7AqX(  
    %           pcolor(x,x,z), shading interp xc|pl!ns  
    %           set(gca,'XTick',[],'YTick',[]) T)QZ9a  
    %           axis square '3B\I#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wD(1Sr5n  
    %       end ARcPHV<(2  
    % bwH l}3  
    %   See also ZERNPOL, ZERNFUN2. ED9uKp<Wbv  
    #9HQW:On  
    h( lkC[a&  
    %   Paul Fricker 11/13/2006 6Xu^ cbD  
    :wlX`YW+e  
    j Wa%vA  
    &hciv\YT2W  
    y,I?3 p|S  
    % Check and prepare the inputs: HH_w!_f  
    % ----------------------------- 3$c Im+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5f.G^A: _X  
        error('zernfun:NMvectors','N and M must be vectors.') o;.6Y `-fJ  
    end >G4EiJS  
    'g3!SdaLF  
    :g1C,M~  
    if length(n)~=length(m) q(tdBd'o6  
        error('zernfun:NMlength','N and M must be the same length.') Vfm (K  
    end ql Z()  
    a' sa{>  
    n veHLHvC7  
    n = n(:); a(!_ 3i@  
    m = m(:); kpxWi=y  
    if any(mod(n-m,2)) !8cS1(a  
        error('zernfun:NMmultiplesof2', ... D{b*,F:&@)  
              'All N and M must differ by multiples of 2 (including 0).') aSu6SU  
    end BQ&G7V  
    `5VEGSP]  
    wi{qN___  
    if any(m>n) B@R3j  
        error('zernfun:MlessthanN', ... "O`{QVg:  
              'Each M must be less than or equal to its corresponding N.') J;?#Zt]`L  
    end KY1(yni&8[  
    nEtG(^N  
    1M%'Xe7  
    if any( r>1 | r<0 ) SONv] ));  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') T]&% KQ  
    end )3W`>7>  
    Fpz)@0K;  
    *pu ,|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NGA8JV/U  
        error('zernfun:RTHvector','R and THETA must be vectors.') -\Y"MwIED  
    end Z/y&;N4  
    =Gka;,n  
    _?9|0>]xG  
    r = r(:); 2`D1cX  
    theta = theta(:); dNQR<v\IL  
    length_r = length(r); D..dGh.MY  
    if length_r~=length(theta) fjc8@S5x9j  
        error('zernfun:RTHlength', ... .X D.'S  
              'The number of R- and THETA-values must be equal.') ck=x_HB1  
    end QkEIV<T&)l  
    'N-nFc^  
    5>E]C=maD  
    % Check normalization: 8T:?C~"  
    % -------------------- Z0Tpz2m  
    if nargin==5 && ischar(nflag) MfX1&/Z+  
        isnorm = strcmpi(nflag,'norm'); +<\)b(  
        if ~isnorm 4|?y [j6  
            error('zernfun:normalization','Unrecognized normalization flag.') Ec44JD  
        end n^HKf^]  
    else P;A9t#\  
        isnorm = false; QD<GXPu?N  
    end *]L(,_:"  
    ;WF3w  
    NU>'$s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j. @CB`  
    % Compute the Zernike Polynomials Ya%-/u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% byT@O:fL  
    W@X/Z8.(  
    Y|*a,H"_  
    % Determine the required powers of r: aan)yP  
    % ----------------------------------- ?3f-" K_r  
    m_abs = abs(m); f!|$!r*q  
    rpowers = []; 7W)*IJ  
    for j = 1:length(n) Ia> 07av  
        rpowers = [rpowers m_abs(j):2:n(j)]; kOu C@~,  
    end %OI4}!z@l  
    rpowers = unique(rpowers); *,hg+?lZ  
    S< TUZ /;  
    *wSz2o),  
    % Pre-compute the values of r raised to the required powers, %K9 9_Cl3  
    % and compile them in a matrix: <)D)j[  
    % ----------------------------- X9|={ng)g#  
    if rpowers(1)==0 Q1cM{$}M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }^ g6Y3\  
        rpowern = cat(2,rpowern{:}); bgi B*`z  
        rpowern = [ones(length_r,1) rpowern]; nfL-E:n=  
    else 5<Lal^c D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RM5$O+"  
        rpowern = cat(2,rpowern{:}); J )*7JX  
    end 4#dS.UfI  
    O]| T !  
    W%6Y?pf)z  
    % Compute the values of the polynomials: #i t)  
    % -------------------------------------- .B9i`)0  
    y = zeros(length_r,length(n)); T5:p^;?g  
    for j = 1:length(n) q6A"+w,N  
        s = 0:(n(j)-m_abs(j))/2; C0 RnBu  
        pows = n(j):-2:m_abs(j); <-Hw@g  
        for k = length(s):-1:1 <WWn1k_  
            p = (1-2*mod(s(k),2))* ... V2v}F=  
                       prod(2:(n(j)-s(k)))/              ... \dB)G<_  
                       prod(2:s(k))/                     ... >[$j(k^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {.,-lFb\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Hzn6H4Rc  
            idx = (pows(k)==rpowers); Cyn_UE  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ['`Vg=O.{  
        end ,MmX(O0  
         UWf@(8  
        if isnorm <w9<G  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T@{ }!  
        end xE0'eC5n^  
    end @xq jAcfg  
    % END: Compute the Zernike Polynomials r_p4pxs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (^U 8wit/  
    ,; 81FK  
    W%&[gDp  
    % Compute the Zernike functions: Omkpjr(1  
    % ------------------------------ `S&.gPE2  
    idx_pos = m>0; n _H]*~4F  
    idx_neg = m<0; Klv~#9Si  
    UHaY|I${U  
    mO?yrM *  
    z = y; ]b&"](A  
    if any(idx_pos) IXz)xdP  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ah8xiABa  
    end JKJ+RkXf3  
    if any(idx_neg) JvI6+[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9 M<3m  
    end J+]W*?m  
    $+%eLx*  
    i*3*)ly  
    % EOF zernfun +~Lt;xNFk  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  p\&Lbuzv  
    q%H#04Yh  
    DDE还是手动输入的呢? JXa5snh{h  
    )?zlhsu}1;  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)