切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9185阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Ec]|p6a3  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, UQT'6* !  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7m1KR#j  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |L:Cn J  
    V#83!  
    ftZj}|R!  
    .mxTfP=9  
    @"|i"Hk^  
    function z = zernfun(n,m,r,theta,nflag) cH D%{xlb  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. u oVNK  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H+Z SPHs  
    %   and angular frequency M, evaluated at positions (R,THETA) on the |M5-5)  
    %   unit circle.  N is a vector of positive integers (including 0), and UAYd?r  
    %   M is a vector with the same number of elements as N.  Each element y,m2(V  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 9dKul,c  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !3}deY8;#  
    %   and THETA is a vector of angles.  R and THETA must have the same j9y3hQ+q  
    %   length.  The output Z is a matrix with one column for every (N,M) \4bWWy  
    %   pair, and one row for every (R,THETA) pair. :tGYs8UK  
    % 0 bSA_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >+9JD%]x]  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &%F@O<:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8cVzFFQP  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, U/w.M_S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]=&L_(34  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6yIvaY$KR  
    % 3$p#;a:=n  
    %   The Zernike functions are an orthogonal basis on the unit circle. Yx)o:#2  
    %   They are used in disciplines such as astronomy, optics, and /c-nE3+rn  
    %   optometry to describe functions on a circular domain. TEVI'%F  
    % >PalH24]  
    %   The following table lists the first 15 Zernike functions. *\XH+/]+  
    % %c/^_.  
    %       n    m    Zernike function           Normalization .BZVX=x  
    %       -------------------------------------------------- "{BqtU*.  
    %       0    0    1                                 1 8X7{vN_3K  
    %       1    1    r * cos(theta)                    2 pGWA\}'  
    %       1   -1    r * sin(theta)                    2 R p.W,)i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }ot"Sx\.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "Pc$\zJm;  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Q~,YbZ-7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) oXYMoi  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2(#Ks's?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =dH$2W)G  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UuJjO^t  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |X(2Zv^O  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >-cfZ9{!  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 4tc:.  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1~5trsB+5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) >SI<rR[~%  
    %       -------------------------------------------------- >1|g5  
    % \7 a4uc  
    %   Example 1: <+]f`c*Z  
    % !,&yyx.  
    %       % Display the Zernike function Z(n=5,m=1) JdNF-64ky  
    %       x = -1:0.01:1; FLr ;`3  
    %       [X,Y] = meshgrid(x,x); %5B%KCCN  
    %       [theta,r] = cart2pol(X,Y); hU {-a`  
    %       idx = r<=1; 8 %Sb+w07  
    %       z = nan(size(X)); >)4YP*qIPb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +1`t}hO  
    %       figure v%91k  
    %       pcolor(x,x,z), shading interp }vh Za p^  
    %       axis square, colorbar q~Jq/E"f  
    %       title('Zernike function Z_5^1(r,\theta)') Px;Cg 6  
    % l[Z)@bC1   
    %   Example 2: v 1.*IV5Y  
    % $RO$}!  
    %       % Display the first 10 Zernike functions H%i>L?J2/  
    %       x = -1:0.01:1; b-<HXn_Fd  
    %       [X,Y] = meshgrid(x,x); -T_\f?V88  
    %       [theta,r] = cart2pol(X,Y); P%>?[9!Nt  
    %       idx = r<=1; ]H[8Z|i""  
    %       z = nan(size(X)); *Xr$/N  
    %       n = [0  1  1  2  2  2  3  3  3  3]; E`D%PEps+  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; a39hP*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oyeG$mpg  
    %       y = zernfun(n,m,r(idx),theta(idx));  .5Z_E O  
    %       figure('Units','normalized') ?y%t}C\W  
    %       for k = 1:10 ;A#~` P  
    %           z(idx) = y(:,k); ujzW|HW^v  
    %           subplot(4,7,Nplot(k)) 1/iE`Si  
    %           pcolor(x,x,z), shading interp bXdY\&fE  
    %           set(gca,'XTick',[],'YTick',[]) m4/er539T  
    %           axis square Pv){sYUh  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _<Dt z  
    %       end ?d-70pm  
    % "yh Pm  
    %   See also ZERNPOL, ZERNFUN2. FC>d_=V  
    j6>tH"i  
    A WJWtUa  
    %   Paul Fricker 11/13/2006 @.$MzPQQI  
    x>3@R0A 1:  
    5K.+CO<  
    ;VzMU ;j  
    r0\f;q  
    % Check and prepare the inputs: C1B'#F9EO  
    % ----------------------------- n9oR)&:o  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y1\K;;X  
        error('zernfun:NMvectors','N and M must be vectors.') a6nlt? 1?D  
    end ycpE=fso'  
    Spj9H?m  
    y-+G wa3  
    if length(n)~=length(m) |B[eJq  
        error('zernfun:NMlength','N and M must be the same length.') xFb3O|TC  
    end [.cq{6-  
    &Ocu#Cb  
    >)c9|e=8  
    n = n(:); !#WqA9<  
    m = m(:); <r\I"z$  
    if any(mod(n-m,2)) \< 65??P  
        error('zernfun:NMmultiplesof2', ... !v>ew9  
              'All N and M must differ by multiples of 2 (including 0).') #A<"4#}  
    end JAP (|  
    J$[Q?8 ka  
    EXbTCT}`x  
    if any(m>n) "tR}j,=S:D  
        error('zernfun:MlessthanN', ... 9g@NcJ]  
              'Each M must be less than or equal to its corresponding N.') =AkX4k  
    end kk_zVrQ<  
    Q[_Ni15  
    Eo=HNe  
    if any( r>1 | r<0 ) ]|LgVXEpx  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') W~dE  
    end e'~ Q@_D  
    B,y3] g6u  
    YFvgz.>QE  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vLn> 4SK  
        error('zernfun:RTHvector','R and THETA must be vectors.') ScJu_A f  
    end v5 Y)al@  
    $u5.!{Wq?  
    /'&v4C^y>  
    r = r(:); h48 bb.p2  
    theta = theta(:); ;=p;v .l  
    length_r = length(r); {B^pnLc  
    if length_r~=length(theta) n\>.T[$"  
        error('zernfun:RTHlength', ... }x0Z( `  
              'The number of R- and THETA-values must be equal.') `|,tCM&-  
    end 'j#a%j@{  
    78w4IICk  
    m+T2vi  
    % Check normalization: /v$]X4 S`  
    % -------------------- P^4'|#~2T  
    if nargin==5 && ischar(nflag) 9::YR;NY  
        isnorm = strcmpi(nflag,'norm'); .tp=T  
        if ~isnorm +Ag#B*   
            error('zernfun:normalization','Unrecognized normalization flag.') cYD1~JX.  
        end i tW~d  
    else 9|a)sb7/  
        isnorm = false; 8A_TIyh?  
    end uXNp!t Y  
    OR~GOv|  
    k4mTZ}6E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]+,nA R  
    % Compute the Zernike Polynomials ?>TbT fmR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P^;WB*V  
    k>-'AWH^v  
    u]#8 $M2  
    % Determine the required powers of r: ZjavD^ky  
    % ----------------------------------- p[gAZ9  
    m_abs = abs(m); Iq@IUFpc7~  
    rpowers = [];  p1?J  
    for j = 1:length(n) ,s8&#1rJ-  
        rpowers = [rpowers m_abs(j):2:n(j)]; .lG +a!)  
    end b)y<.pS\  
    rpowers = unique(rpowers); 0k7"H]J  
    v/(__xN`B  
    Nc:U4  
    % Pre-compute the values of r raised to the required powers, eo]a'J9(  
    % and compile them in a matrix: '%$-]~   
    % ----------------------------- 6d(b'S^  
    if rpowers(1)==0 98ayA$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); KZ @l/s  
        rpowern = cat(2,rpowern{:}); s9kTuhoK  
        rpowern = [ones(length_r,1) rpowern]; *fOIq88  
    else EyPy*_A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X)Ocn`|  
        rpowern = cat(2,rpowern{:}); Qvs(Rt3?y  
    end +E `063  
    YFAnlqC  
    Xe> ~H4I9  
    % Compute the values of the polynomials: B=^2g}mgK  
    % -------------------------------------- ,Zr  YJ<  
    y = zeros(length_r,length(n)); R+x%r&L5F  
    for j = 1:length(n) &a~L_`\'  
        s = 0:(n(j)-m_abs(j))/2; wfWS-pQ  
        pows = n(j):-2:m_abs(j); l.yJA>\24I  
        for k = length(s):-1:1 F ^[M  
            p = (1-2*mod(s(k),2))* ... P'gT6*an,"  
                       prod(2:(n(j)-s(k)))/              ... b^;N>zx  
                       prod(2:s(k))/                     ... s2 wwmtUCN  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >DkN+S  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8UlB~fVg  
            idx = (pows(k)==rpowers); 7Im}~3NJG  
            y(:,j) = y(:,j) + p*rpowern(:,idx); FC~|&  
        end WJBW:2=;  
         b^@`uDb6  
        if isnorm M_|M&lR>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); / *O u$  
        end m]  EDuW  
    end t>m8iS>  
    % END: Compute the Zernike Polynomials `W D*Q-&n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [%7IQ4`{  
    Z={UM/6w  
    $Cut  
    % Compute the Zernike functions: .[]{ Q  
    % ------------------------------ |~Htj4K/  
    idx_pos = m>0; X*43!\  
    idx_neg = m<0; R4[. n@  
    p]X!g  
    tP/GDC;  
    z = y; FA<Z37:  
    if any(idx_pos) Cj`pw2.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); I67k M{V  
    end WXRHG)nvL  
    if any(idx_neg) Z^jGT+ 2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Xd90n>4S  
    end hCSR sk3  
    4'd;'SvF  
    ?tW%"S^D  
    % EOF zernfun 1gf/#+$\  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  hdNZ":1s  
    \T#(rt\j  
    DDE还是手动输入的呢? c)P%O  
    }E\+e!'!2  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)