下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y;ymyy&
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,.TwM;w=
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6bd{3@
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fk'DJf[M
.Dt.7 G
Cg&:+
[5wU0~>'
sV-UY!
function z = zernfun(n,m,r,theta,nflag) TykY> cl
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <~P([5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8
_|"+Ze
% and angular frequency M, evaluated at positions (R,THETA) on the R/ 3#(5
% unit circle. N is a vector of positive integers (including 0), and mExJ--}
% M is a vector with the same number of elements as N. Each element !DZ4C.
% k of M must be a positive integer, with possible values M(k) = -N(k) R7ExMJw
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, #(1R:z\:
% and THETA is a vector of angles. R and THETA must have the same .(X!*J]G
% length. The output Z is a matrix with one column for every (N,M) yCZ[z
A
% pair, and one row for every (R,THETA) pair. Gn>~CoFN
% 9}#9i^%}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike GpGq' 8|(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ldNWdz
% with delta(m,0) the Kronecker delta, is chosen so that the integral C)|#z/"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,Laz515
% and theta=0 to theta=2*pi) is unity. For the non-normalized ;-d2~1$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^=,N]
j
% LhQidvCNJ
% The Zernike functions are an orthogonal basis on the unit circle. != u
S
% They are used in disciplines such as astronomy, optics, and EQ2HQz]
% optometry to describe functions on a circular domain. Xf*}V+&WN
% T74."Lo#
% The following table lists the first 15 Zernike functions. cPg$*,]
% M<cm]
% n m Zernike function Normalization 0JX/@LNg0
% -------------------------------------------------- Ujfs!ikh&F
% 0 0 1 1 C:{&cIFrPe
% 1 1 r * cos(theta) 2 z[*Y%o8-r
% 1 -1 r * sin(theta) 2 aKk0kC
% 2 -2 r^2 * cos(2*theta) sqrt(6) WkSv@Y,
% 2 0 (2*r^2 - 1) sqrt(3) _[8sL^
% 2 2 r^2 * sin(2*theta) sqrt(6) U_1N*XK6$
% 3 -3 r^3 * cos(3*theta) sqrt(8) apd"p{
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) c%x.cbu>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) a 8.Xy])!
% 3 3 r^3 * sin(3*theta) sqrt(8) L0>w|LpRc
% 4 -4 r^4 * cos(4*theta) sqrt(10) S<nbNSu6+
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~)%DiGW&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ;%Rp=&J
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <hzuPi@
% 4 4 r^4 * sin(4*theta) sqrt(10) T8\%+3e.
% -------------------------------------------------- #u$ Z/,
% n%I9l]
% Example 1: uoe>T:
% (5&l<u"K~
% % Display the Zernike function Z(n=5,m=1) -`d(>ok
% x = -1:0.01:1; sZYTpZgW4L
% [X,Y] = meshgrid(x,x); LAPCL&Z
% [theta,r] = cart2pol(X,Y); <G#z;]N
% idx = r<=1; hsHtLH+@
% z = nan(size(X)); =*Y=u6?
% z(idx) = zernfun(5,1,r(idx),theta(idx)); XaR(~2
% figure {pM3f
% pcolor(x,x,z), shading interp 5 @61=Au
% axis square, colorbar IXt cHAgX
% title('Zernike function Z_5^1(r,\theta)') R4Si{J*O
% ^9xsbv
B0
% Example 2: $-;x8O]u
% iWMgU:T
% % Display the first 10 Zernike functions u}BN)%`B
% x = -1:0.01:1; [Se0+\,&
% [X,Y] = meshgrid(x,x); uc-Go
6W
% [theta,r] = cart2pol(X,Y); C;.+ kE
% idx = r<=1; <nE |Y@S
% z = nan(size(X)); C!J6"j
% n = [0 1 1 2 2 2 3 3 3 3]; Dd$CN&Ca
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9Qhk~^ngg
% Nplot = [4 10 12 16 18 20 22 24 26 28]; X^ZUm
% y = zernfun(n,m,r(idx),theta(idx)); qr[+^*Ha
% figure('Units','normalized') p:gM?2p1
% for k = 1:10 8@'Q=".J
% z(idx) = y(:,k); "f3KE=cUm
% subplot(4,7,Nplot(k)) ZeP3
Yjr3
% pcolor(x,x,z), shading interp DsH`I%w{
% set(gca,'XTick',[],'YTick',[]) 3+| {O
% axis square {;j@-=pV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +)7Yqh#$
% end o= N_0.
% I6,sN9`
K
% See also ZERNPOL, ZERNFUN2. V;SXa|,
d*TpHLm
RXU#.=xvy
% Paul Fricker 11/13/2006
20p/p~<
?{M!syD<
k7ODQ(*v
JdW:%,sv
FWzf8*^
% Check and prepare the inputs: l\Or.I7n
% ----------------------------- Al(u|LbQ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9X PQ1LSx
error('zernfun:NMvectors','N and M must be vectors.') %*wOJx
end KV$J*B Y
IfGQeynj
W9ewj:4\0
if length(n)~=length(m) niIjatT
error('zernfun:NMlength','N and M must be the same length.') Z/@%MEU[zl
end 4$<-3IP,
CF k^(V"
wc5OK0|
n = n(:); )wwQv2E
m = m(:); * 5Y.9g3)Q
if any(mod(n-m,2)) =w&<LJPJ
error('zernfun:NMmultiplesof2', ... 1@Zjv>jy[
'All N and M must differ by multiples of 2 (including 0).') 'of5v6:8
end &]2z)&a
32*FI SH^
[ZP8[Zl'?
if any(m>n)
&JpFt^IHi
error('zernfun:MlessthanN', ... t"@:a
Y"
'Each M must be less than or equal to its corresponding N.') ~CB6+t>
end
ToHCS/J59
,~_)Cf#CB
t $+46**
if any( r>1 | r<0 ) K$..#]\TM
error('zernfun:Rlessthan1','All R must be between 0 and 1.') buhn~ c
end ~4~-^
t
w*Gv#B9G
7gV"pa
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NgnHo\)
error('zernfun:RTHvector','R and THETA must be vectors.') r4~Bn7j2
end [[P UK{P0
wxg`[c$:
*eO@<j?
r = r(:); kxg]sr"
theta = theta(:); g&*pk5V>
length_r = length(r); L/w9dk*uv
if length_r~=length(theta) Upr:sB
error('zernfun:RTHlength', ... cmIAWFj-)e
'The number of R- and THETA-values must be equal.') I,r 3.2u
end {q1&4U~'>O
nNIV(
OKp(A
% Check normalization: b-{\manH
% -------------------- 'wAOY
if nargin==5 && ischar(nflag) S< <xlW
isnorm = strcmpi(nflag,'norm'); gno V>ON0
if ~isnorm %3i/PIN
error('zernfun:normalization','Unrecognized normalization flag.') _gY
so]S^B
end &DFe+y~PR
else ?'K}bmdt}.
isnorm = false; k})Ag7c
end QY2!.a^q
0:**uion
?rQMOJR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^)b*"o
% Compute the Zernike Polynomials p1HU2APFP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?kew[oZ
}}?L'Vby
-uiZp !
% Determine the required powers of r: aI|<t^X
% ----------------------------------- }(-R`.e;
m_abs = abs(m); xyx.1o
e!
rpowers = []; MjG=6.J|`
for j = 1:length(n) J[UL
f7:
rpowers = [rpowers m_abs(j):2:n(j)]; , {7wvXP
end :x97^.eW~
rpowers = unique(rpowers); 8^zI
i6r%;ueLb
|Gjd
% Pre-compute the values of r raised to the required powers, A0M)*9 f
% and compile them in a matrix: 3skq%;%Wsk
% ----------------------------- ;tI=xNre`1
if rpowers(1)==0 {t[j>_MYw
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O!sZMGF$p
rpowern = cat(2,rpowern{:}); _{,e-_hYM
rpowern = [ones(length_r,1) rpowern]; Tn/
3`j
{
else 4D[W;4/p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); r,i^-jv;
rpowern = cat(2,rpowern{:}); E'$r#k:o
end -<}_K,Ky`
Iq_cs
'
p[&'*"o!/
% Compute the values of the polynomials: #:z.Br`
% -------------------------------------- E/LR(d_
y = zeros(length_r,length(n)); Gw3|"14
for j = 1:length(n) @6ZQkX/
s = 0:(n(j)-m_abs(j))/2; %\[LM$f{z
pows = n(j):-2:m_abs(j); npz*4\4
for k = length(s):-1:1 DI**fywu[3
p = (1-2*mod(s(k),2))* ... Yv9(8
prod(2:(n(j)-s(k)))/ ... bR49(K$~
prod(2:s(k))/ ... R#Id"O
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 'HkV_d[li
prod(2:((n(j)+m_abs(j))/2-s(k))); T\b
e(@r
idx = (pows(k)==rpowers); ]gkI:scPA
y(:,j) = y(:,j) + p*rpowern(:,idx); fT/;TK>z>
end O~-#>a
>va#PFHA
if isnorm WU{G_Fqaz
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Gs.id^Sf
end >&e|ins^N
end J^ryUOo}b
% END: Compute the Zernike Polynomials d~O\zLQ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z|uUE
{?l#*XH;
,#UaWq@7
% Compute the Zernike functions: 28LjQ!
% ------------------------------ ~DhYiOSo
idx_pos = m>0; MI!C%
idx_neg = m<0; [$]vi`c2
br>"96A1l
tH2y:o72
z = y; 6N :fq
if any(idx_pos) 3F[z]B
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Bh"o{-$p8`
end %gJf&A
if any(idx_neg) zy8W8h(?
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -2w\8]u
end STL_#|[RM
b(I-0<
c@~\ FUr
% EOF zernfun I/<aY*R4