切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9043阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, aK@ Y) Ju'  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?{^_z_,  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9*ZlNZ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /[\g8U{5B}  
    'g,h  
    ;<m`mb4x[  
    /3~L#jS  
    ~i>DF`w$  
    function z = zernfun(n,m,r,theta,nflag) prz COw  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. x"NQatdq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U{M3QOF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?{B5gaU9F  
    %   unit circle.  N is a vector of positive integers (including 0), and %gAT\R_f  
    %   M is a vector with the same number of elements as N.  Each element A?!RF7v  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {>msE }L  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, fPUr O  
    %   and THETA is a vector of angles.  R and THETA must have the same j7kX"nz  
    %   length.  The output Z is a matrix with one column for every (N,M) i l@>b  
    %   pair, and one row for every (R,THETA) pair. 6` TwP\!$/  
    % =zK4jiM1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [B)!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wb?k  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral YxJQ^D`  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;6[6~L%K}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized NF6xKwRU]_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lsOv#X-b E  
    % /ta}12Z  
    %   The Zernike functions are an orthogonal basis on the unit circle. '%[ Y  
    %   They are used in disciplines such as astronomy, optics, and jo<xrn\  
    %   optometry to describe functions on a circular domain. bAZoi0LR  
    % ;98b SR/  
    %   The following table lists the first 15 Zernike functions. EpMxq7*  
    % 9Sxr9FLW~  
    %       n    m    Zernike function           Normalization :)lG}c  
    %       -------------------------------------------------- xBTx`+%WS  
    %       0    0    1                                 1 aX;>XL4  
    %       1    1    r * cos(theta)                    2 .k]`z>uv  
    %       1   -1    r * sin(theta)                    2 )0exGx+:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) nZ(]WPIN"  
    %       2    0    (2*r^2 - 1)                    sqrt(3) v7 *L3Ol  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) qs ep9z.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) '@.6Rd 8  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #:gl+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) & mOn]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ,X^3.ILz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) OlRXgJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `5?0yXK  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ITw *m3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zpkd8@g@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) lK=Is v+  
    %       -------------------------------------------------- iF^qbh%%E  
    % 8c)GUx  
    %   Example 1: H%vfRl3rB  
    % l[$GOLeS  
    %       % Display the Zernike function Z(n=5,m=1) ]i.N'O<p  
    %       x = -1:0.01:1;  O>]i?  
    %       [X,Y] = meshgrid(x,x); FAdTm#tgW]  
    %       [theta,r] = cart2pol(X,Y); l2St)`K8  
    %       idx = r<=1; -a)1L'R  
    %       z = nan(size(X)); )Ri!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]{6/6jl  
    %       figure f%o[eW#  
    %       pcolor(x,x,z), shading interp 6U*CR=4  
    %       axis square, colorbar 'cpm 4mT  
    %       title('Zernike function Z_5^1(r,\theta)') Q`9c/vPU  
    % MRt"#CO  
    %   Example 2: =m2_:&@0x  
    % (`dz3 7@*  
    %       % Display the first 10 Zernike functions (NLw#)?  
    %       x = -1:0.01:1;  \nEMj,)  
    %       [X,Y] = meshgrid(x,x); x!_5 /  
    %       [theta,r] = cart2pol(X,Y); E,6|-V;?  
    %       idx = r<=1; kFp^?+WI%H  
    %       z = nan(size(X)); >SDQ@63E?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w/*G!o- <  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @\?ub F  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B8Fb$  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,6{z  
    %       figure('Units','normalized') :1*E5pX0n  
    %       for k = 1:10 #4bT8kq  
    %           z(idx) = y(:,k); ev;&n@k_I  
    %           subplot(4,7,Nplot(k)) F9j@KC(yg  
    %           pcolor(x,x,z), shading interp xA Ez1  
    %           set(gca,'XTick',[],'YTick',[]) ~x,_A>a  
    %           axis square bs"J]">(N  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^5E9p@d"J  
    %       end 3LETzsJ  
    % v ^h:E  
    %   See also ZERNPOL, ZERNFUN2. g9" wX?*  
    [ *Dj:A)V^  
    \lQ3j8 U  
    %   Paul Fricker 11/13/2006 !ddyJJ^a  
    3UUdJh<~  
    VG 5*17nf5  
    ?2&= +QaT  
    wmGcXBHt$  
    % Check and prepare the inputs: */M`KPW  
    % ----------------------------- nnj<k5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S9l,P-X`  
        error('zernfun:NMvectors','N and M must be vectors.') s<{ Hu0K$  
    end $$m0mK  
    _ACN  
    .3C::~:  
    if length(n)~=length(m) \+V"JIStUj  
        error('zernfun:NMlength','N and M must be the same length.')  !vf:mMo  
    end CKn2ZL  
    "HJ^>%ia  
    0fewMS*  
    n = n(:); Bn]=T  
    m = m(:); i=#`7pt%'a  
    if any(mod(n-m,2)) ~".@mubt1$  
        error('zernfun:NMmultiplesof2', ... vT Eq T  
              'All N and M must differ by multiples of 2 (including 0).') D:Q#%wJ  
    end 32 i6j  
    @[J6JT*E  
    U/enq,-F^  
    if any(m>n) ;<garDf  
        error('zernfun:MlessthanN', ... h}@wPP{  
              'Each M must be less than or equal to its corresponding N.') ? #rXc%F  
    end >Y08/OAI.2  
    G~1;_'  
    X\Bl? F   
    if any( r>1 | r<0 ) .JLJ(WM  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \eKXsO"d  
    end +4%~.,<_to  
    5Qq/nUR  
    Nb$0pc1J<  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  ,RR{Y-  
        error('zernfun:RTHvector','R and THETA must be vectors.') /iO"4%v  
    end "BSY1?k{  
    Y|LL]@Lv  
    yDqwz[v b  
    r = r(:); <5E'`T  
    theta = theta(:); ^!S4?<v  
    length_r = length(r); {*O%A  
    if length_r~=length(theta) w317]-n  
        error('zernfun:RTHlength', ... !tTv$L>  
              'The number of R- and THETA-values must be equal.') &tZIWV1&  
    end }3: mn  
    ltuV2.$  
     9Do75S{(  
    % Check normalization: qkhre3  
    % -------------------- Em&3g  
    if nargin==5 && ischar(nflag) f DXK<v)  
        isnorm = strcmpi(nflag,'norm'); :o^ioX.J  
        if ~isnorm [nxYfER7  
            error('zernfun:normalization','Unrecognized normalization flag.') @HbRfD/!  
        end GPHb-  
    else >`03EsU  
        isnorm = false; *}89.kCBF  
    end z|3v~,  
    @LI;q  
    @FIL4sb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~}b0zL  
    % Compute the Zernike Polynomials ,Sgo_bC/|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }BM`4/  
    \L(jNN0_R  
    neu+h6#H  
    % Determine the required powers of r: b~&cYk'  
    % -----------------------------------  d\ #yWY  
    m_abs = abs(m); ouCh2Y/_  
    rpowers = []; ` 1+*-g^r  
    for j = 1:length(n) W\Pd:t  
        rpowers = [rpowers m_abs(j):2:n(j)]; N-2#-poDe  
    end /rZk^/'  
    rpowers = unique(rpowers); u;9iuc` *  
    PJZ;wqTD_  
    0 8L;u7u  
    % Pre-compute the values of r raised to the required powers, "}_ J"%  
    % and compile them in a matrix: 5 b rM..  
    % ----------------------------- liYsUmjZ=  
    if rpowers(1)==0 3Y#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H&ek"nP_  
        rpowern = cat(2,rpowern{:}); 'G65zz  
        rpowern = [ones(length_r,1) rpowern]; !X7z y9  
    else =* 'yGB[x)  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4Vi*Qa_,y  
        rpowern = cat(2,rpowern{:}); \{<ml n  
    end )*}\fmOv{  
    ]7<$1ta  
    ?H8w;Csq-  
    % Compute the values of the polynomials: ?x ",VA  
    % -------------------------------------- fZf>>mu@r'  
    y = zeros(length_r,length(n)); #8t=vb3  
    for j = 1:length(n) gtH^'vFZ  
        s = 0:(n(j)-m_abs(j))/2; e/Z{{FP%6  
        pows = n(j):-2:m_abs(j); BD]J/o  
        for k = length(s):-1:1 !KXcg9e  
            p = (1-2*mod(s(k),2))* ... ;sA 5&a>!  
                       prod(2:(n(j)-s(k)))/              ... L$c 1<7LU  
                       prod(2:s(k))/                     ... N_:!uR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w;@v#<q6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Fb<'L5}i  
            idx = (pows(k)==rpowers); =?Ry,^=b  
            y(:,j) = y(:,j) + p*rpowern(:,idx); pWzYC@_W  
        end Mm8_EjMp  
         ?W ^`Fa)]o  
        if isnorm %62|dhl6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); LT{g^g  
        end RQ|K?^k v  
    end R{brf6,  
    % END: Compute the Zernike Polynomials &O+S [~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t@lTA>;U@  
    t_I-6`8o]  
    dj084q7  
    % Compute the Zernike functions: sifjmNP  
    % ------------------------------ (~\HizSl  
    idx_pos = m>0; =Cf@!wZ^  
    idx_neg = m<0; w`boQ_Ir  
    6@0? ~  
    |C./gdq  
    z = y; w@P86'< v  
    if any(idx_pos) l{rHXST|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); nUq@`G  
    end g[b;1$  
    if any(idx_neg) G@rh/b<$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D_F1<q  
    end X..M!3W  
    ( q*/=u  
    ?jO<<@*2S  
    % EOF zernfun Q.4+"JoG  
     
    分享到
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  @k2nID^>  
    ]2B=@V t,  
    DDE还是手动输入的呢? uYwJ[1 C  
    xyTjK.N  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)