下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Vm"{m/K0
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, H\PY\O&cP
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? U65a_dakk
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? o8ERU($/
n N_Ylw
W,D$=Bg
c %f'rj
l&2pUv=
function z = zernfun(n,m,r,theta,nflag) myvn@OsEw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~%D=\iE
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GV"X) tGo
% and angular frequency M, evaluated at positions (R,THETA) on the te*|>NRS
% unit circle. N is a vector of positive integers (including 0), and +lNAog
% M is a vector with the same number of elements as N. Each element ExW3LM9(
% k of M must be a positive integer, with possible values M(k) = -N(k) -*nd5(lY&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, FSNzBN
% and THETA is a vector of angles. R and THETA must have the same o-ee3j.
% length. The output Z is a matrix with one column for every (N,M) dBeZx1Dy
% pair, and one row for every (R,THETA) pair. %"gV>E_u
% &2Q0ii#Aa
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike kw$*o
k
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \Um &
% with delta(m,0) the Kronecker delta, is chosen so that the integral wRCv?D`vV
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,UA-Pq3}
% and theta=0 to theta=2*pi) is unity. For the non-normalized uJ:SN;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (oG-h"^/
% 0{k*SCN#
% The Zernike functions are an orthogonal basis on the unit circle. 713)D4y}
% They are used in disciplines such as astronomy, optics, and `*ml/% \
% optometry to describe functions on a circular domain. >>I~v)a>w
% m`lxQik
% The following table lists the first 15 Zernike functions. wc~k4B9"
% lDf:~
% n m Zernike function Normalization -udKGrT+
% -------------------------------------------------- |WUm;o4E`U
% 0 0 1 1 ?E|be
)
% 1 1 r * cos(theta) 2 Z]\IQDC
% 1 -1 r * sin(theta) 2 Z{p62|+Ck@
% 2 -2 r^2 * cos(2*theta) sqrt(6) &`}8Jz=S
% 2 0 (2*r^2 - 1) sqrt(3) a'prlXr\4
% 2 2 r^2 * sin(2*theta) sqrt(6) J12hjzk6@
% 3 -3 r^3 * cos(3*theta) sqrt(8) H vezi>M
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) |\#6?y[o
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,>vI|p,/G*
% 3 3 r^3 * sin(3*theta) sqrt(8) k4!z;Yq
% 4 -4 r^4 * cos(4*theta) sqrt(10) +=JJ=F)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eI:;l];G9
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) zjlo3=FQX[
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7jtDhsVz
% 4 4 r^4 * sin(4*theta) sqrt(10) ><