下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Sa.nUj{M=
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, nDckT+eJ
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? D?*du#6
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? P$AHw;n[R
+@8, uL
(o{x*';i4
K~^o06 Y
<bhJ >
function z = zernfun(n,m,r,theta,nflag) 7hMh%d0d(_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. lY,9bSF$
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,1<6=vL
% and angular frequency M, evaluated at positions (R,THETA) on the 4-'0# a
% unit circle. N is a vector of positive integers (including 0), and sMJa4P>O@
% M is a vector with the same number of elements as N. Each element "av/a
% k of M must be a positive integer, with possible values M(k) = -N(k) ,5t_}d|3C=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, o2]Np~`g,
% and THETA is a vector of angles. R and THETA must have the same -H_#et3&i