下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, n;eK2+}]
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, iYyJq;S
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Wn9b</tf
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? BpGK`0H
SRixT+E
{bSi3 oI
6uU2+I
dz6i~&
function z = zernfun(n,m,r,theta,nflag) !H5r+%Oo|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. *W#_W]Tu
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N YXR%{GUP[
% and angular frequency M, evaluated at positions (R,THETA) on the %Tn0r|K
% unit circle. N is a vector of positive integers (including 0), and ~;f,Ad`Q
% M is a vector with the same number of elements as N. Each element !]W}I
% k of M must be a positive integer, with possible values M(k) = -N(k) Ier0F7]I
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, d0`5zd@S
% and THETA is a vector of angles. R and THETA must have the same RSNukg
% length. The output Z is a matrix with one column for every (N,M) bOi`JJ^
% pair, and one row for every (R,THETA) pair. `xO9xo#
% jH1!'1s|
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N*C"+2
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gX}(6RP_!
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~olta\|
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, em87`Hj^lo
% and theta=0 to theta=2*pi) is unity. For the non-normalized Sc<%$ Gd
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O;NQJ$^bI
% 7yU<!p?(
% The Zernike functions are an orthogonal basis on the unit circle. vsjl8L
% They are used in disciplines such as astronomy, optics, and 6NO_S
% optometry to describe functions on a circular domain. $_6DvJ0
% .H,wdzg)
% The following table lists the first 15 Zernike functions. ]"3(UKx
% e7j30Iy
% n m Zernike function Normalization $6ZO
V/0
% -------------------------------------------------- p~T)Af<(
% 0 0 1 1 )$* T>.JA
% 1 1 r * cos(theta) 2 .,C8ASfh
% 1 -1 r * sin(theta) 2 fE\;C bi
% 2 -2 r^2 * cos(2*theta) sqrt(6) kp~@Ub
@O3
% 2 0 (2*r^2 - 1) sqrt(3) $)5F3a|
% 2 2 r^2 * sin(2*theta) sqrt(6) {%S>!RA
% 3 -3 r^3 * cos(3*theta) sqrt(8) >g+ogwZ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'NM$<<0
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uZe|%xK$y
% 3 3 r^3 * sin(3*theta) sqrt(8) ?(cbZ#( o
% 4 -4 r^4 * cos(4*theta) sqrt(10) DQ{Yr>J
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M>CW(X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Zhl}X!:c?\
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,qj
% 4 4 r^4 * sin(4*theta) sqrt(10) pU4B6KTW
% -------------------------------------------------- .[v4'ww^
% D Hkmn
% Example 1: hhTM-D1Ehs
% ZiBTe,;
% % Display the Zernike function Z(n=5,m=1) Z|YiYQl[)
% x = -1:0.01:1; >Lh+(M;+F
% [X,Y] = meshgrid(x,x); : QK )Ym
% [theta,r] = cart2pol(X,Y); SArSi6vF
% idx = r<=1; SBnwlM"AN
% z = nan(size(X)); /( /)nYAjk
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]j.??'+rg
% figure 2=3pV!)4}
% pcolor(x,x,z), shading interp 4s?x 8oAy
% axis square, colorbar "y_A xOH
% title('Zernike function Z_5^1(r,\theta)') p{knQ],
% C:77~f-+rQ
% Example 2: ~.;S>o[
% #x"dWi(
% % Display the first 10 Zernike functions [p%@ pV
% x = -1:0.01:1; *(PQaXx4
% [X,Y] = meshgrid(x,x); 6vVx>hFJ47
% [theta,r] = cart2pol(X,Y); }MKm>N
% idx = r<=1; T{1Z(M+
% z = nan(size(X)); 6{rH|Z
% n = [0 1 1 2 2 2 3 3 3 3]; Sri,sZv
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :NL.#!>/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 6~Y-bn"%D5
% y = zernfun(n,m,r(idx),theta(idx)); 9kcp(
% figure('Units','normalized') xm@vx}O:
% for k = 1:10 t_@xzt10y
% z(idx) = y(:,k); >gAq/'.Q
% subplot(4,7,Nplot(k)) Sb=cWn P
% pcolor(x,x,z), shading interp J1I"H<}-6
% set(gca,'XTick',[],'YTick',[]) :eQ?gM!,
% axis square P
0xInW F
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <(Ub(
% end -1ke3
% zi~_[l-
% See also ZERNPOL, ZERNFUN2. gn&jNuGg
#4. S2m4
Xp<RGp7E
% Paul Fricker 11/13/2006 9/OB!<*V|
U[\aj;g)
[gZd$9a
?MevPy`H
FL5u68
% Check and prepare the inputs: H
R$\jJ
% ----------------------------- "j5b$T0P>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vmI]N
error('zernfun:NMvectors','N and M must be vectors.') .W{\wkn
end @`<v d@
|r"1
&ow5
"R-1G/
if length(n)~=length(m) lc/q0
error('zernfun:NMlength','N and M must be the same length.') Km2ppGLNn
end K8y/U(@|D
IS0RhtGy/
uX*H2"A
n = n(:); zR2'xE*
m = m(:); 5?),6o);
if any(mod(n-m,2)) )>q.!"B
error('zernfun:NMmultiplesof2', ... 6 flc
'All N and M must differ by multiples of 2 (including 0).') (KaP=t}
end *
";A~XNx
f/G
YDat
*9}2Bmojv
if any(m>n) 7MreBs(M
error('zernfun:MlessthanN', ... iivuH2/~?[
'Each M must be less than or equal to its corresponding N.') T_CYSS|fX
end $FEG0&
PdG:aGQ>
p(UUH3%W
if any( r>1 | r<0 ) CW>f;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') BgLK}p^
end ^y"Rdv
YK#bzu ,!
~JY<DW7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;wCp j9hir
error('zernfun:RTHvector','R and THETA must be vectors.') /X)fWO S6
end \k;)m-0bj{
WZaOw w
s
}q6@I
r = r(:); b@@`2O3"
theta = theta(:); (NUwkAOM}
length_r = length(r); v/6QE;BY&Q
if length_r~=length(theta) /)?]vKMiI
error('zernfun:RTHlength', ... 4`uI)N(}*
'The number of R- and THETA-values must be equal.') 5!,`LM9
end :|xV}
HErTFY+vC
Gc}d#oo*k
% Check normalization: -G2'c)DR
% -------------------- {zhN>n_
if nargin==5 && ischar(nflag) CZg$I&x
isnorm = strcmpi(nflag,'norm'); Qy |*[
if ~isnorm tv,iCV
error('zernfun:normalization','Unrecognized normalization flag.') nb0V~W
end v0`E
lkaN
else wYZFW'5p
isnorm = false; :~BY[")
end L2Uk/E
Y(
n# =
XEMi~L+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NK'awv),pM
% Compute the Zernike Polynomials y)?Sn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K:/%7A_{
G^J|_!.a
!Y/$I?13Z
% Determine the required powers of r: 1t/#ZT!X/
% ----------------------------------- mjG-A8y
m_abs = abs(m); >lxhXYp
rpowers = []; \gy39xoW(
for j = 1:length(n) k8w }2Vw
rpowers = [rpowers m_abs(j):2:n(j)]; h{I)^8,M
end ~7T]l1]W%
rpowers = unique(rpowers); W\gu"g`u
0m_c43+^
h\afO
% Pre-compute the values of r raised to the required powers, 37Vs9w
% and compile them in a matrix: d4F3!*@(
% ----------------------------- :Zl@4}
if rpowers(1)==0 _M=
\s>;G
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w$4fS
rpowern = cat(2,rpowern{:}); @D&V