切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9318阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, D#g -mqar:  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y6jyU1>  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? CsO!Y\'FY  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? wNf:_^|}  
    ewMVUq*:  
    m%HT)`>bg  
    ='7m$,{(Q[  
    DzZF*ylQ5P  
    function z = zernfun(n,m,r,theta,nflag) RHF"$6EAFG  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _jQ:9,; A  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BlVHP8/b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !dqC6a  
    %   unit circle.  N is a vector of positive integers (including 0), and Wg-mJu(  
    %   M is a vector with the same number of elements as N.  Each element }a]`"_i;[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) VE\L&d2S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, %_!/4^smE  
    %   and THETA is a vector of angles.  R and THETA must have the same x@ -K  
    %   length.  The output Z is a matrix with one column for every (N,M) `Y&`2WZ ~  
    %   pair, and one row for every (R,THETA) pair. i fsh(^N  
    % D;,p?]mgO~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >F$9&s&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {*_Ln  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral aHhLz>H'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y1V}c ,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized TFSdb\g  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &h5Vhzq(<  
    % VUP|j/qD  
    %   The Zernike functions are an orthogonal basis on the unit circle. A*h8 o9M  
    %   They are used in disciplines such as astronomy, optics, and b_x!m{  
    %   optometry to describe functions on a circular domain. E?w#$HS  
    % 8F sQLeOE  
    %   The following table lists the first 15 Zernike functions. R`j"iC2  
    % t^#1=nK  
    %       n    m    Zernike function           Normalization M\1CDU+*Ns  
    %       -------------------------------------------------- xdSMYH{2A  
    %       0    0    1                                 1 Gs: g  
    %       1    1    r * cos(theta)                    2 {v"f){   
    %       1   -1    r * sin(theta)                    2 %['NPs%B  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) a"(Ws]K  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1g;2e##)  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F/v.hP_  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 5_^d3LOT0x  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,EQ0""G!  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8lk/*/} =<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) dDcQSshL  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d?oXz|;H(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pSx5ume95"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `_J&*Kk5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gwaSgV$z  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1j2U,_-  
    %       -------------------------------------------------- .][yH[ F  
    % 49 FP&NgK  
    %   Example 1: $WYt`U;*lj  
    % g`y9UYeh  
    %       % Display the Zernike function Z(n=5,m=1) tQ }GTqk  
    %       x = -1:0.01:1; U6JD^G=qR,  
    %       [X,Y] = meshgrid(x,x); 5OdsT-y  
    %       [theta,r] = cart2pol(X,Y); o[;P@F  
    %       idx = r<=1; |$ PA  
    %       z = nan(size(X)); :(q4y-o6  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); -^NW:L$|  
    %       figure 9/"&6,  
    %       pcolor(x,x,z), shading interp g$Tsht(rHD  
    %       axis square, colorbar ,ei9 ?9J1  
    %       title('Zernike function Z_5^1(r,\theta)') b^R:q7ea  
    % SFg4}*"C/  
    %   Example 2: ?>7\L'n=5I  
    % bK "I9T #  
    %       % Display the first 10 Zernike functions 0+mR y57  
    %       x = -1:0.01:1; +v/y{8Fu  
    %       [X,Y] = meshgrid(x,x); Gs#9'3_U5  
    %       [theta,r] = cart2pol(X,Y); |QS|\8g{0V  
    %       idx = r<=1; $NCvF'  
    %       z = nan(size(X)); f@sC~A. 9\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; q}i#XQU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?g1eW q&  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \BBs;z[/  
    %       y = zernfun(n,m,r(idx),theta(idx)); Y6wr}U  
    %       figure('Units','normalized') Y*xgY*K  
    %       for k = 1:10 Pll%O@K  
    %           z(idx) = y(:,k); X -1r$.  
    %           subplot(4,7,Nplot(k)) WD4"ft  
    %           pcolor(x,x,z), shading interp zd_N' :6  
    %           set(gca,'XTick',[],'YTick',[]) 1n8y4k)  
    %           axis square PE{<' K\g  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C.4(8~Y=~  
    %       end wQW` Er3w  
    % Bc!<!  
    %   See also ZERNPOL, ZERNFUN2. D*UxPm"pw  
    Ee5YW/9]  
    Z +/3rd  
    %   Paul Fricker 11/13/2006 2-m@-  
    d/GSG%zB  
    (6c/)MH  
    q?frt3o  
    gZHgL7@  
    % Check and prepare the inputs: p#c41_?'e  
    % ----------------------------- 4UbqYl3 |a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P^o@x,V!&  
        error('zernfun:NMvectors','N and M must be vectors.') jR\pYRK  
    end b!t[PShw^  
    e!Z}aOeE  
    ")ys!V9  
    if length(n)~=length(m) R?{_Q<17  
        error('zernfun:NMlength','N and M must be the same length.') 6b*xhu\  
    end &fRz6Hd  
    z81dm  
    i&(1 <S>P  
    n = n(:); wv3*o10_w8  
    m = m(:); JCxQENsVqB  
    if any(mod(n-m,2)) _G)A$6weU  
        error('zernfun:NMmultiplesof2', ... !0p K8k&MG  
              'All N and M must differ by multiples of 2 (including 0).') 7 cV G?Wr  
    end %,$xmoj9O]  
    V+D<626o  
    o(}%b8 K  
    if any(m>n) t=eI*M+>h  
        error('zernfun:MlessthanN', ... Lapeh>1T  
              'Each M must be less than or equal to its corresponding N.') XX-(>B0L  
    end `JV(ae0  
    |t"CH'KJZ  
    w\[l4|g `  
    if any( r>1 | r<0 ) Sg%s\p]N_#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') r4cz?e |  
    end :}36;n<['  
    ; Ows8  
    {oOUIP  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1tO96t^d%  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0 NSw^dO\  
    end C@;e<  
    ].Bx"L!B  
    zT}vaU 6  
    r = r(:); hrJ(][8  
    theta = theta(:); m|B)A"Sm  
    length_r = length(r); J e|   
    if length_r~=length(theta) RFsUb:%V7-  
        error('zernfun:RTHlength', ... 4cy,'B  
              'The number of R- and THETA-values must be equal.') |) cJ  
    end QiA}0q3]0  
    AJ}m2EH  
    ~u!V_su]GY  
    % Check normalization: I lO,Ql  
    % -------------------- 0N)DHD?U  
    if nargin==5 && ischar(nflag) va QsG6q[  
        isnorm = strcmpi(nflag,'norm'); xC5Pv">  
        if ~isnorm Mb"y{Fox  
            error('zernfun:normalization','Unrecognized normalization flag.') '>"blfix8  
        end % u VTf  
    else Y6Y"fb%K  
        isnorm = false; bLWY Tj  
    end "{+2Q  
    atd;)o0*0  
    X'\h^\yOo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sk07|9nU  
    % Compute the Zernike Polynomials &=S:I!9;;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OpazWcMoo  
    ab9ecZ  
    `z q+Xl  
    % Determine the required powers of r: ^B%ki  
    % ----------------------------------- gREk,4DAv  
    m_abs = abs(m); YH+(N  
    rpowers = []; H}_R`S  
    for j = 1:length(n) cGm?F,/`  
        rpowers = [rpowers m_abs(j):2:n(j)]; x R$T/]/  
    end 569p/?  
    rpowers = unique(rpowers); sMVk]Mb  
    x'?p?u~[  
    B R  
    % Pre-compute the values of r raised to the required powers, UpD4'!<buV  
    % and compile them in a matrix: S8kzAT  
    % ----------------------------- H)S!%(x4  
    if rpowers(1)==0 N)D+FV29y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %2b^t*CQ  
        rpowern = cat(2,rpowern{:}); DC/Czkv9  
        rpowern = [ones(length_r,1) rpowern]; /zXOta G  
    else V'RbTFb9Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (x\VGo  
        rpowern = cat(2,rpowern{:}); i?b9zn  
    end qs\Cwn!  
    yEjiMtQll]  
    21Dc.t{  
    % Compute the values of the polynomials: ?[.8A/:5  
    % -------------------------------------- mT-[I<  
    y = zeros(length_r,length(n)); ;!VxmZ:j[  
    for j = 1:length(n) K/Pw;{}  
        s = 0:(n(j)-m_abs(j))/2; F7j/Zuj  
        pows = n(j):-2:m_abs(j); - 7T`/6  
        for k = length(s):-1:1 k18v{)i~  
            p = (1-2*mod(s(k),2))* ... A15Kj#Oy  
                       prod(2:(n(j)-s(k)))/              ... 8!.V`|@lt  
                       prod(2:s(k))/                     ... <[ 2?~s  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... MCEHv}W  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5oCg&aT  
            idx = (pows(k)==rpowers); }wp/,\_ >  
            y(:,j) = y(:,j) + p*rpowern(:,idx); aaKf4}  
        end jDQ?b\^  
         KIv_ AMr  
        if isnorm ZCZ@ZN  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0fvOA*UP  
        end :2M&C+f[  
    end K^@9\cl^  
    % END: Compute the Zernike Polynomials VJTO:}Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7$g$p&,VX  
    |kvH`&s  
    iSoQ1#MP)2  
    % Compute the Zernike functions: vOz1& |;D  
    % ------------------------------ ,m]5j_< }  
    idx_pos = m>0; 1,) yEeHjU  
    idx_neg = m<0; JttDRNZAU  
    Q 318a0  
    M!i|,S  
    z = y; (57!{[J  
    if any(idx_pos) bFajK;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RzL(Gnb  
    end MIr+4L  
    if any(idx_neg) U'9z.2"}9  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i@5Fne  
    end ]OdZlZBsJ  
     &qdhxc4  
    m }HaJ  
    % EOF zernfun %>=6v} f,+  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  _p-e)J$7  
    N*o{BboK;  
    DDE还是手动输入的呢? <&3P\aM>  
    $a M5jH<  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究