切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9524阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 5rQu^6&  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, taO(\FOm  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 'jy e*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? WWOjck #  
    (>lH=&%zj  
    8;f5;7M n  
    'Ddzlip  
    >m%7dU  
    function z = zernfun(n,m,r,theta,nflag) m6gMVon  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5as5{"l  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N um( xZ6&m  
    %   and angular frequency M, evaluated at positions (R,THETA) on the <;1M!.)5  
    %   unit circle.  N is a vector of positive integers (including 0), and h1f 05  
    %   M is a vector with the same number of elements as N.  Each element ~JS@$#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }-9 c1&m  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, VAqZ`y  
    %   and THETA is a vector of angles.  R and THETA must have the same 4#ikdjB;  
    %   length.  The output Z is a matrix with one column for every (N,M) PZ?kv4  
    %   pair, and one row for every (R,THETA) pair. TWfk r  
    % ,,ML^ey  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9}a&:QTHR  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _E/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral RfT)dS+rAh  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,<s:* k  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized b+$wx~PLi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )FfS7 C\.  
    % T?tZ?!6  
    %   The Zernike functions are an orthogonal basis on the unit circle. {)Shc;Qh  
    %   They are used in disciplines such as astronomy, optics, and z 8#{=e  
    %   optometry to describe functions on a circular domain. gplrJaH@  
    % ]xbMMax  
    %   The following table lists the first 15 Zernike functions. j}fSz)`i  
    % &78lep  
    %       n    m    Zernike function           Normalization )Z\Zw~L  
    %       -------------------------------------------------- m5, &;~  
    %       0    0    1                                 1 =hI;5KF  
    %       1    1    r * cos(theta)                    2 >?ec"P%vS/  
    %       1   -1    r * sin(theta)                    2 ]AN%#1++U  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5Ux=5a  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ogJ';i/o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (''w$qq"D  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 152LdZevF  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S/YHT)0x[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /R>YDout}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) - "{hP  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) aO bp"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8~|v:qk  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]x%sX|Rj  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Id8e%)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) cu)B!#<!&  
    %       -------------------------------------------------- K;>9K'n  
    % OXB 5W#$  
    %   Example 1: iDltN]zS  
    % } na@gn  
    %       % Display the Zernike function Z(n=5,m=1) oqg +<m  
    %       x = -1:0.01:1; 7=&+0@R#/d  
    %       [X,Y] = meshgrid(x,x); 'Axe:8LA'  
    %       [theta,r] = cart2pol(X,Y); G 6xN R  
    %       idx = r<=1; +Z]}ce u"  
    %       z = nan(size(X)); 6:?mz;oP  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); xP27j_*m>  
    %       figure  2 av=W  
    %       pcolor(x,x,z), shading interp }U%T6~_wR  
    %       axis square, colorbar r-Y7wM`TZ  
    %       title('Zernike function Z_5^1(r,\theta)') @twi<U_  
    % u('`.dwkc  
    %   Example 2: 31QDN0o!~  
    % #<#-Bv  
    %       % Display the first 10 Zernike functions Q9;VSF)  
    %       x = -1:0.01:1; uh>"TeOi  
    %       [X,Y] = meshgrid(x,x); t%@u)bp  
    %       [theta,r] = cart2pol(X,Y); 6^2='y~e  
    %       idx = r<=1; |Nadk(}  
    %       z = nan(size(X)); F'JT7# eX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ['3E'q,4&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; $Yw~v36`t/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; VA %lJ!$  
    %       y = zernfun(n,m,r(idx),theta(idx)); ZoCk]hk  
    %       figure('Units','normalized') aN!,\D  
    %       for k = 1:10 NSq29#  
    %           z(idx) = y(:,k); lwjA07 i  
    %           subplot(4,7,Nplot(k)) 9hJ a K  
    %           pcolor(x,x,z), shading interp =F5zU5`i  
    %           set(gca,'XTick',[],'YTick',[]) /_yAd,^-+  
    %           axis square ,|j\x  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -<e_^  
    %       end 8m#y>`  
    % 90ov[|MkM  
    %   See also ZERNPOL, ZERNFUN2. }%^3  
    ^),;`YXZ  
    ~B7<Yg  
    %   Paul Fricker 11/13/2006 Gh<#wa['}  
    qca=a }  
    ZS`9r16@b  
    b'vIX< g  
    ;wZplVB7y  
    % Check and prepare the inputs: $bN_0s0:'  
    % ----------------------------- s{42_O?,c  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) by$mD_sr  
        error('zernfun:NMvectors','N and M must be vectors.') E?VOst&  
    end 9! yDZ<s  
    Cm0K-~ U  
    ^S)t;t@x  
    if length(n)~=length(m) [+!+Yn6:  
        error('zernfun:NMlength','N and M must be the same length.') + +Eu.W;&#  
    end Iv u'0vF  
    g!z &lQnZ  
    `7.$ A U  
    n = n(:); ]Y$jc  
    m = m(:); S%wd Xe  
    if any(mod(n-m,2)) E5Ls/ H K  
        error('zernfun:NMmultiplesof2', ... \FnR'ne  
              'All N and M must differ by multiples of 2 (including 0).') 1DN  
    end ?KE:KV[Y  
    zQ(`pld  
    Dv4 H^  
    if any(m>n) X+ /^s)  
        error('zernfun:MlessthanN', ... 7&(h_}Z  
              'Each M must be less than or equal to its corresponding N.') _T;Kn'Gz(&  
    end DU-dIq i  
    Q<yvpT(  
    :!FGvR6  
    if any( r>1 | r<0 ) (-@I'CFd  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]H<}6}Gd  
    end } V"A;5j`  
    jY ;Hdb''  
    |;"(C# B  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Jn9 {@??  
        error('zernfun:RTHvector','R and THETA must be vectors.') &gI*[5v  
    end 4.>y[_vu  
    i 1GQ=@  
    #E#@6ZomT  
    r = r(:); f9O_M1=|lo  
    theta = theta(:); ^,J>=>,1\  
    length_r = length(r); vOl3utu7  
    if length_r~=length(theta) a|k*A&5u2  
        error('zernfun:RTHlength', ... QoMa+QTuc  
              'The number of R- and THETA-values must be equal.') b27t-p8  
    end " ^!=e72  
    cs4IO O$  
    8k_hX^  
    % Check normalization: /74)c~.W  
    % -------------------- dki3(  
    if nargin==5 && ischar(nflag) OD?y  
        isnorm = strcmpi(nflag,'norm'); V5 Gy|X  
        if ~isnorm 4Vd[cRh2  
            error('zernfun:normalization','Unrecognized normalization flag.') TeyFq0j@'  
        end >A}ra^gU  
    else KXBTJ&  
        isnorm = false; 2<d'!cm  
    end l(}l([rdQ  
    6H0aHCM  
    Ix0#eoj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M" $g*j  
    % Compute the Zernike Polynomials iaQFVROu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2/x~w~3U  
    Wxi;Tq9C@_  
    HaF&ooI5+  
    % Determine the required powers of r: w*u.z(:a`  
    % ----------------------------------- { 3 "jn  
    m_abs = abs(m); BU|m{YZ$  
    rpowers = []; i6O'UzD@T  
    for j = 1:length(n) hK3Twzte  
        rpowers = [rpowers m_abs(j):2:n(j)]; BLm}mb#/{  
    end oq (W|  
    rpowers = unique(rpowers); |{rhks~  
    %Kh}6   
    q } (f9  
    % Pre-compute the values of r raised to the required powers, Hdjp^O!  
    % and compile them in a matrix: .fK~IKA  
    % ----------------------------- 8rNf4]5@X(  
    if rpowers(1)==0 %PPkT]~\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r/QI-Cf&  
        rpowern = cat(2,rpowern{:}); )[=C@U  
        rpowern = [ones(length_r,1) rpowern]; eUD 5 V  
    else qr~zTBT] E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vJ;0%;eu[!  
        rpowern = cat(2,rpowern{:}); J@rBrKC  
    end Xod/GY G  
    TnuA uui*  
    V0_^==Vs  
    % Compute the values of the polynomials: Ctk1\quz  
    % -------------------------------------- Q{~;4+ZD  
    y = zeros(length_r,length(n)); xSq+>,b  
    for j = 1:length(n) MI`<U:-lP  
        s = 0:(n(j)-m_abs(j))/2; $4]4G=o  
        pows = n(j):-2:m_abs(j); i\* b<V  
        for k = length(s):-1:1 FQ/z,it_i  
            p = (1-2*mod(s(k),2))* ... rgEN~e'  
                       prod(2:(n(j)-s(k)))/              ... )?( _vrc<  
                       prod(2:s(k))/                     ... +}BKDEb  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a24(9(yh  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^ JU#_  
            idx = (pows(k)==rpowers); z\K-KD{Ad  
            y(:,j) = y(:,j) + p*rpowern(:,idx); BNixp[Hc  
        end qI[AsM+  
         ( ;KTV*1  
        if isnorm LVy (O9g  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5K =>x<  
        end @2+'s;mUV  
    end (62Sc]  
    % END: Compute the Zernike Polynomials w(Q{;RNM;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O81'i2M J9  
    <JW %h :\t  
    G(1_P1  
    % Compute the Zernike functions: u\f Qa QV  
    % ------------------------------ $7p0<<Nck  
    idx_pos = m>0; 6s$h _$[X  
    idx_neg = m<0; `a@YbuLd  
    ^>z+e"PQA  
    "_\77cqpTh  
    z = y; GvL\%0Ibx  
    if any(idx_pos) LE g#W  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %~N| RSec  
    end i,l$1g-i  
    if any(idx_neg) `L3{y/U'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Z|d+1i  
    end Qn@[{%),4  
    L; <Pod  
    eqyUI|e  
    % EOF zernfun &#'.I0n  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |wyua@2  
    Gyc _B  
    DDE还是手动输入的呢? 5.lg*vh  
    u|(Iu}sE=  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究