切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8803阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, jD,Baz<  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ri~<~oB 2:  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kQdt}o])  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u9-nt}hGYM  
    z;u> Yz+3  
    tYW>t9  
    o(A|)c4k  
    ?^Hf Np9  
    function z = zernfun(n,m,r,theta,nflag) nCg66-3A  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }7<5hn E  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :q3+AtF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the u8b2$D  
    %   unit circle.  N is a vector of positive integers (including 0), and 9W*+SlH@ !  
    %   M is a vector with the same number of elements as N.  Each element zQy"m-Q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) beY=g7|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \@a$'   
    %   and THETA is a vector of angles.  R and THETA must have the same nHFrG =o,  
    %   length.  The output Z is a matrix with one column for every (N,M) RH)EB<PV  
    %   pair, and one row for every (R,THETA) pair. Zzua17  
    % ytEC   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yQS+P8x&|]  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6" T['6:j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 2 mjV~  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^:, l\Y  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ajhEL?%D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >r5P3G1  
    % mbl]>JsQD  
    %   The Zernike functions are an orthogonal basis on the unit circle. F#|O@.tDG  
    %   They are used in disciplines such as astronomy, optics, and z1OFcqm  
    %   optometry to describe functions on a circular domain. W3W'oo  
    % fr6^nDY  
    %   The following table lists the first 15 Zernike functions. ;d.K_P  
    % !X >=l  
    %       n    m    Zernike function           Normalization 4\t1mocCSN  
    %       -------------------------------------------------- *TW=/+j  
    %       0    0    1                                 1 YO)$M-]>%J  
    %       1    1    r * cos(theta)                    2 ".*x!l0y7  
    %       1   -1    r * sin(theta)                    2 V5}nOGV9  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^^` Jcd/  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :S@1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Id'RL2Kq*&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !4"sX+z9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) UUo;`rkT  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]-o"}"3Ef  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) I<b?vR 'F  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N<|$h5isq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _&3<6$}i"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +eX)48  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]Hj<IvG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ` >!n  
    %       -------------------------------------------------- Gm`}(;(A  
    % 8{U-m0v  
    %   Example 1: B DY}*cX  
    % gCd`pi 8  
    %       % Display the Zernike function Z(n=5,m=1) UAF<m1  
    %       x = -1:0.01:1; yj6@7@l>A  
    %       [X,Y] = meshgrid(x,x); u]^N&2UW  
    %       [theta,r] = cart2pol(X,Y); Nb2Qp K  
    %       idx = r<=1; UnDgu4#R`A  
    %       z = nan(size(X)); (oK^c- x  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5M]z5}n/  
    %       figure \b'x t  
    %       pcolor(x,x,z), shading interp u D 5%E7  
    %       axis square, colorbar )Ag/Qep  
    %       title('Zernike function Z_5^1(r,\theta)') 0XwHP{XaO  
    % fyz nuUl  
    %   Example 2: `;,Pb&W~  
    % 3b'tx!tFN  
    %       % Display the first 10 Zernike functions I:(m aMc  
    %       x = -1:0.01:1;  c9''  
    %       [X,Y] = meshgrid(x,x); wCs3:@UH  
    %       [theta,r] = cart2pol(X,Y); k@>\LR/v  
    %       idx = r<=1; / il@`w;G  
    %       z = nan(size(X)); a^qNJ?R !  
    %       n = [0  1  1  2  2  2  3  3  3  3]; - N>MBn  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MJ<Jb,D1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u/b7Z`yX}  
    %       y = zernfun(n,m,r(idx),theta(idx)); j83? m  
    %       figure('Units','normalized') +1C3`0(  
    %       for k = 1:10 6Q4X 6U:WB  
    %           z(idx) = y(:,k); V{-AP=C7  
    %           subplot(4,7,Nplot(k)) `"yxdlXA  
    %           pcolor(x,x,z), shading interp %x; x_  
    %           set(gca,'XTick',[],'YTick',[]) \2[<XG(^  
    %           axis square pi(-A  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 87!C@XlK_  
    %       end js^ ,(CS  
    % A % Q!^d  
    %   See also ZERNPOL, ZERNFUN2. [@ <sFP;g  
    Op.8a`XLt&  
    D\~zS`}  
    %   Paul Fricker 11/13/2006 ivO/;)=t  
    VO3pm6r5  
    =*BIB5  
    rsn.4P=  
    + Y.1)i}  
    % Check and prepare the inputs: C F!Sa6  
    % ----------------------------- [./6At&|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3:/'t{ ^B  
        error('zernfun:NMvectors','N and M must be vectors.') l@j.hTO<  
    end D(W,yq~7uY  
    ,y`CRlr:  
    M`,~ mU  
    if length(n)~=length(m) m .IU ;cR  
        error('zernfun:NMlength','N and M must be the same length.') Y&H}xn  
    end a`9L,8Ve  
    BC>=B@H0  
    h+.{2^x  
    n = n(:); Zd^6ulx  
    m = m(:); s1Ok|31|  
    if any(mod(n-m,2)) `cz2DR-"  
        error('zernfun:NMmultiplesof2', ... Xm2\0=v5;  
              'All N and M must differ by multiples of 2 (including 0).') ha@L94Lq  
    end ^{$FI`P  
    M6 9 w-  
    l} ^3fQXI  
    if any(m>n) =.<@`1  
        error('zernfun:MlessthanN', ... zIC;7 5#  
              'Each M must be less than or equal to its corresponding N.') UEs7''6RM  
    end 'mCe=Y  
    p;)"  
    `=+^|Y}  
    if any( r>1 | r<0 ) TlL^7f}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _!;Me )C  
    end kNqS8R|  
    qs\2Z@;  
    [P zv4+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .M,RFC  
        error('zernfun:RTHvector','R and THETA must be vectors.') I4;A8I  
    end 3<=,1 cU  
    r?m+.fJB  
    @J{m@ji{  
    r = r(:); "xcX' F^  
    theta = theta(:); ,y4I[[  
    length_r = length(r); /-zXM;h  
    if length_r~=length(theta) rrg96WD  
        error('zernfun:RTHlength', ... U<"WK"SM  
              'The number of R- and THETA-values must be equal.') &uP~rEJl+  
    end YzosZ! L!<  
    )}Q(Tl\$  
    {l_{T4xToB  
    % Check normalization: QY/hI `  
    % -------------------- tMj;s^P1  
    if nargin==5 && ischar(nflag) i| \6JpNA:  
        isnorm = strcmpi(nflag,'norm'); kP#e((f,  
        if ~isnorm kdz=ltw  
            error('zernfun:normalization','Unrecognized normalization flag.') NC&DFJo  
        end f~E*Zz`;  
    else R [H+qr  
        isnorm = false; `&0Wv0D0  
    end !$2Z-!  
    Nu8Sr]p  
    w6`9fX6{h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JvYPC  
    % Compute the Zernike Polynomials >+. ( r]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gOgps:  
    8x`.26p  
    Iff9'TE  
    % Determine the required powers of r: y(R? ,wa=]  
    % ----------------------------------- Va Z!.#(P  
    m_abs = abs(m); f}guv~K  
    rpowers = []; =to=8H-  
    for j = 1:length(n) "5cM54Z0  
        rpowers = [rpowers m_abs(j):2:n(j)]; wf, 7==  
    end |AZg*T3:W  
    rpowers = unique(rpowers); Cg*H.f%Mr  
    3+ >G#W~  
    1[_mEtM:]B  
    % Pre-compute the values of r raised to the required powers, Qf@I)4'  
    % and compile them in a matrix: q&C""!h^  
    % ----------------------------- **69rN  
    if rpowers(1)==0 NvM*h%ChM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -}K<ni6  
        rpowern = cat(2,rpowern{:}); !lo/xQ<  
        rpowern = [ones(length_r,1) rpowern]; }68i[v9Njk  
    else ?UM*Xah  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^ 9!!;)  
        rpowern = cat(2,rpowern{:}); }kg ye2[  
    end t 6v/sZ{F  
    QMv@:Eo  
    Ym;*Y !~[  
    % Compute the values of the polynomials: 8H[:>;S I  
    % -------------------------------------- x8GJY~:SW  
    y = zeros(length_r,length(n)); ZiLj=bh  
    for j = 1:length(n) J>d.dq>r  
        s = 0:(n(j)-m_abs(j))/2; (a9d/3M  
        pows = n(j):-2:m_abs(j); j,]Y$B  
        for k = length(s):-1:1 1CLL%\V  
            p = (1-2*mod(s(k),2))* ... fM^[7;]7e  
                       prod(2:(n(j)-s(k)))/              ... /VG2.:  
                       prod(2:s(k))/                     ... \h8 <cTQ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \"hJCP?,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); VK@!lJ u!  
            idx = (pows(k)==rpowers); C]Q8:6b  
            y(:,j) = y(:,j) + p*rpowern(:,idx); k4 F"'N   
        end !?Wp+e6  
         DBP9{ x$  
        if isnorm "Ks,kSEzu  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Sna4wkbS  
        end \W1/p`  
    end Jmx Ko+-  
    % END: Compute the Zernike Polynomials },|M9 I0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V59(Z  
    hlt[\LP=$  
    s(W|f|R  
    % Compute the Zernike functions: (5\N B0  
    % ------------------------------ [z 7bixN  
    idx_pos = m>0; ID/ F  
    idx_neg = m<0; O*#*%RL|  
    6Aocm R0D'  
    aMTu-hA  
    z = y; ^j7azn  
    if any(idx_pos) )=Jk@yj8x  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B7imV@<  
    end Ewg:HX7<(  
    if any(idx_neg) (W}bG>!#Q8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); gCyW Vp  
    end ,a#EW+" Z  
    jlxpt)0i  
    G8Du~h!!U  
    % EOF zernfun $8BPlqBIZ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Kp,M"Y  
    _Wa. JUbv  
    DDE还是手动输入的呢? ` 5C~  
    Ck|8qUz-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究