下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, vsqfvx
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, H `),PY2
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6;I&{9
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? + To{Tm-
1reJ7b0
f*1.Vg0`-
R7ZxS
t \DS}3pv
function z = zernfun(n,m,r,theta,nflag) 2Ev~[Hb.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 22}J.'Zb
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9"=:\PE
% and angular frequency M, evaluated at positions (R,THETA) on the d@7
]=P:
% unit circle. N is a vector of positive integers (including 0), and tE3!;
% M is a vector with the same number of elements as N. Each element o`M7:8G
% k of M must be a positive integer, with possible values M(k) = -N(k) f/*Xw {s#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >Ah [uM
% and THETA is a vector of angles. R and THETA must have the same C[& \Xq
% length. The output Z is a matrix with one column for every (N,M) `cy_@Z5A
% pair, and one row for every (R,THETA) pair. -?2ThvT
% #&1mc_`/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y*vs}G'W
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), iKLN !QR
% with delta(m,0) the Kronecker delta, is chosen so that the integral P3on4c
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eMPi ho
% and theta=0 to theta=2*pi) is unity. For the non-normalized $MfHA~^
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jGb+bN5U7
% 2e/ JFhA
% The Zernike functions are an orthogonal basis on the unit circle. c[3sg
% They are used in disciplines such as astronomy, optics, and ,Tvk&<!0
% optometry to describe functions on a circular domain. J6n@|L!yO
% dF5EIPl;J
% The following table lists the first 15 Zernike functions. qg'RD]a> R
% jC@$D*"J
% n m Zernike function Normalization p#qQGJe
% -------------------------------------------------- 9y>dDNM\<
% 0 0 1 1 DNLqipUw
% 1 1 r * cos(theta) 2 |@sUN:G4k
% 1 -1 r * sin(theta) 2 x`WP*a7Fk]
% 2 -2 r^2 * cos(2*theta) sqrt(6) }_@*,
% 2 0 (2*r^2 - 1) sqrt(3) `rbTB3?
% 2 2 r^2 * sin(2*theta) sqrt(6)
J5*krH2i
% 3 -3 r^3 * cos(3*theta) sqrt(8) Eu l,1yR
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :JV=Kt
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) V~+Oil6sa
% 3 3 r^3 * sin(3*theta) sqrt(8) yS@c2I602
% 4 -4 r^4 * cos(4*theta) sqrt(10) }NMA($@A
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g"`BNI]Qp
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) W[AX?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aiF7\^aw$
% 4 4 r^4 * sin(4*theta) sqrt(10) qTj7mUk
% -------------------------------------------------- Xg^`fRg =T
% ;
"ux{ .
% Example 1: P5P:_hr
% K;k_MA310
% % Display the Zernike function Z(n=5,m=1) \5_+6
% x = -1:0.01:1; #@w8wCj
% [X,Y] = meshgrid(x,x); 3yszfWr
% [theta,r] = cart2pol(X,Y); "4<RMYQ
% idx = r<=1; g1@zk$
% z = nan(size(X)); /a[i:Oa#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4`I2tr
% figure s+#gH@c
% pcolor(x,x,z), shading interp Xx~OZ^t&Vn
% axis square, colorbar n!2"pRIi
% title('Zernike function Z_5^1(r,\theta)') yS[:C
2v
% B:\\aOEj
% Example 2: xdFm-_\-
% s )POtJ<
% % Display the first 10 Zernike functions Ynl^Z
% x = -1:0.01:1; B5GT^DaT
% [X,Y] = meshgrid(x,x); <1YINkRz
% [theta,r] = cart2pol(X,Y); [a:yKJ[
% idx = r<=1; b|^g51v
% z = nan(size(X)); DJVH}w}9_P
% n = [0 1 1 2 2 2 3 3 3 3]; t3|If@T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :.e`w#$7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; x_pS(O(C
% y = zernfun(n,m,r(idx),theta(idx)); !8 lG"l|,l
% figure('Units','normalized') #k&"Rv;,
% for k = 1:10 [CL.Xil=
% z(idx) = y(:,k); ]v(8i3P84
% subplot(4,7,Nplot(k)) 48hu=,)81*
% pcolor(x,x,z), shading interp pM],-7UM
% set(gca,'XTick',[],'YTick',[]) 2BZYC5jy
% axis square cXU8}>qY7
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QkS~~|0EI>
% end GvSSi'q~B
% )h6hN"#V5
% See also ZERNPOL, ZERNFUN2. 9 js!gJC
M<s16
Xb?:dlu3
% Paul Fricker 11/13/2006 gqV66xmJ3
F0:|uC4
!m"LIa#/Cs
O=~8+sa
Ir&rTGFN
% Check and prepare the inputs: W; yNg
% ----------------------------- d` %8qLIW
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +Z> Y//
error('zernfun:NMvectors','N and M must be vectors.') I,TJV)B
end #hG0{_d7
Uc%n{
a-a
?QxI2J
if length(n)~=length(m) -AnQZy
error('zernfun:NMlength','N and M must be the same length.') 4wYD-MB
end 8=QOp[w
Ne<={u%
8X Jg
n = n(:); \d"JYym
m = m(:); wJyrF
if any(mod(n-m,2)) B7PkCS&X
error('zernfun:NMmultiplesof2', ... I> <B6pIR
'All N and M must differ by multiples of 2 (including 0).') I|zak](HU
end PD #9Z=Hj
i7$4i|
W>f q 9
if any(m>n) !dnCrR
error('zernfun:MlessthanN', ... er@"4R0
'Each M must be less than or equal to its corresponding N.') tfB}U.
end X$*MxMNs
&
-r^Q
gJa48 pi
if any( r>1 | r<0 ) %+ln_lgD:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') w`BY>Xft0
end SeuC7!q{
xgDd5`W
+85#`{ D
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jfmHc(fX4
error('zernfun:RTHvector','R and THETA must be vectors.') p7{2/mj
end yS#)F.
6/-]
G47(LE"2b
r = r(:); $Lj~ge3#
theta = theta(:); 7Qdf#DG
length_r = length(r); 8;PS>9<
if length_r~=length(theta) 6U .A/8z
error('zernfun:RTHlength', ... L
hp
'The number of R- and THETA-values must be equal.') uu7 ?,WT
end 8^IV`P~2M
0gRj3al(
l7h6R$7; 0
% Check normalization: rX7GVg@H
% -------------------- *y+N-uq
if nargin==5 && ischar(nflag) TxJoN]Z.
isnorm = strcmpi(nflag,'norm'); oW}nr<G{<
if ~isnorm vHJOpQmt~
error('zernfun:normalization','Unrecognized normalization flag.') _+!@c6k)ra
end ./]xn
else 6ZO6O=KD
isnorm = false; [T
|P|\M
end mpr_AL!ZO~
[}Q_T.4)E
D\:dn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R$XHjb)
% Compute the Zernike Polynomials V0)bPcS/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,(u-q]8
"D\>oFu
jgvzp
% Determine the required powers of r: !hs33@*u~
% -----------------------------------
HNJR&U t
m_abs = abs(m); ~<N9ckK
rpowers = []; ,?>{M
for j = 1:length(n) sYEh>%mo^C
rpowers = [rpowers m_abs(j):2:n(j)]; i)iK0g"2
end |,bP`Z
rpowers = unique(rpowers); pV8_i7\
! k[JP+;
s.X
.SJ
% Pre-compute the values of r raised to the required powers, &k@\k<2Ia
% and compile them in a matrix: (himx8Uml2
% ----------------------------- M zFFWk
if rpowers(1)==0 >D
jJ*vM
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h;+{0a
rpowern = cat(2,rpowern{:}); p4F%FS:`
rpowern = [ones(length_r,1) rpowern]; z''ejq
else (*M*muk
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `q9n`h1
rpowern = cat(2,rpowern{:}); &6^ --cc
end $`A{-0=x\U
;AG&QdTMh
2tb+3K1
% Compute the values of the polynomials: T@Bu Fr`]<
% -------------------------------------- )3 I~6ar
y = zeros(length_r,length(n)); 1> v(&;K
for j = 1:length(n) Gx7bV}&PN
s = 0:(n(j)-m_abs(j))/2; /Rf,Rjs
pows = n(j):-2:m_abs(j); KE4#vKV0yC
for k = length(s):-1:1 2 \<u;9
p = (1-2*mod(s(k),2))* ... s
TVX/Q
prod(2:(n(j)-s(k)))/ ... bUsX~R-
prod(2:s(k))/ ... ECyG$j0
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Pn,>eD*g
prod(2:((n(j)+m_abs(j))/2-s(k))); )Q 5 x%
idx = (pows(k)==rpowers); g~ii^[W
y(:,j) = y(:,j) + p*rpowern(:,idx); k:&vW21E
end 3(Ns1/;?,
y|0!sNg
if isnorm z~-(nyaBS
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \@Gcx}Y8h
end e-Oz`qW~
end NEUr w/
% END: Compute the Zernike Polynomials ]v/pMg#-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gg/ts]$
m-6&-G#
nQOzKw<j%
% Compute the Zernike functions: v, CWE
% ------------------------------ c1q;
idx_pos = m>0; d
A'0'M
idx_neg = m<0; 27+~!R~Yw
f|=u{6
oiIl\#C
z = y; A/"<o5(T(P
if any(idx_pos) aNn4j_V(
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =:Yrb2gP_\
end
0~z`>#W,
if any(idx_neg) K^6d_b&
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~F53{qxV
end +!GJ
jJaMkF;f
l1#.rg
% EOF zernfun ]61Si~Z