切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8952阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, JXU ?'@QY  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y#68_%[  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ={P`Tve  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 0!dNW,NfJ  
    L@(. i  
    ~KS@Ulrox  
    8Zsaq1S  
    sS}:Od  
    function z = zernfun(n,m,r,theta,nflag) r]p3DQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. a#r{FoU{M8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +8//mrL_/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the u)r/#fUZ  
    %   unit circle.  N is a vector of positive integers (including 0), and FJ~d&L\l  
    %   M is a vector with the same number of elements as N.  Each element )x/#sW%)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R~oJ-} iYX  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;(`bP  
    %   and THETA is a vector of angles.  R and THETA must have the same *GE6zGdN  
    %   length.  The output Z is a matrix with one column for every (N,M) tf6m .  
    %   pair, and one row for every (R,THETA) pair. hp'oiR;~w  
    % '1b 1N5~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xc}[q`vK  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N { oVz],  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral a`w=0]1&*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "crR{OjE"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized KZ7B2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <7J3tn B  
    % S#C-j D  
    %   The Zernike functions are an orthogonal basis on the unit circle. Zio! j%G  
    %   They are used in disciplines such as astronomy, optics, and ~3:hed7:  
    %   optometry to describe functions on a circular domain. NzQvciJ@"  
    % 9S]pC?N]E  
    %   The following table lists the first 15 Zernike functions. qK%N{ro[{?  
    % O pu*i  
    %       n    m    Zernike function           Normalization }=bzUA`C  
    %       -------------------------------------------------- ~q566k!Ll!  
    %       0    0    1                                 1 Pt5wm\  
    %       1    1    r * cos(theta)                    2 a^J(TW/  
    %       1   -1    r * sin(theta)                    2 $GRwk>N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) -1Li&K7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) hTLf$_|P  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8m iJQIq  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) j? BL8E'   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ZNw|5u^N  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^\gb|LEnK  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _ $>);qIP4  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /(s |'"6  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PM84Z@Y  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) *bFWNJ}`q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c.]QIIdK  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) O6y:e #0z  
    %       -------------------------------------------------- (}X5*BB&  
    % aYa`ex  
    %   Example 1: #(614-r/  
    % GqCBD-@4v.  
    %       % Display the Zernike function Z(n=5,m=1) AQjv? 4)T  
    %       x = -1:0.01:1; q$" u<  
    %       [X,Y] = meshgrid(x,x); G>vK$W$f N  
    %       [theta,r] = cart2pol(X,Y); 6NV592  
    %       idx = r<=1; 3:jxr  
    %       z = nan(size(X)); &{8:XJe*,%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); k)>H=?mI  
    %       figure ++,I`x+p  
    %       pcolor(x,x,z), shading interp 9)t b=  
    %       axis square, colorbar NHyUHFY  
    %       title('Zernike function Z_5^1(r,\theta)') X:Z3R0  
    % :} =lE"2  
    %   Example 2: QO;Dyef7b  
    % /a32QuS  
    %       % Display the first 10 Zernike functions M%ecWr!tj  
    %       x = -1:0.01:1; `"CA$Se8  
    %       [X,Y] = meshgrid(x,x); o$L%t@   
    %       [theta,r] = cart2pol(X,Y); ZskX!{  
    %       idx = r<=1; x @43ZH_  
    %       z = nan(size(X)); Nut&g"u2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; B`eK_'7t  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,4"N7_!7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2EM6k|l5  
    %       y = zernfun(n,m,r(idx),theta(idx)); }'wZ)N@  
    %       figure('Units','normalized') Fvk=6$d2  
    %       for k = 1:10 A!!!7tj  
    %           z(idx) = y(:,k); eoww N>-2C  
    %           subplot(4,7,Nplot(k)) u=nd7:bv  
    %           pcolor(x,x,z), shading interp E}9wzPs  
    %           set(gca,'XTick',[],'YTick',[]) k ?KJ8  
    %           axis square 5 OWyxO3{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z# &1>  
    %       end %N&.B  
    % 0 ^>,  
    %   See also ZERNPOL, ZERNFUN2. Ld.9.d]  
    ZbT$f^o}M]  
    Vc5>I_   
    %   Paul Fricker 11/13/2006 !o`7$`%Wz\  
    .:&`PaMt  
    J(}PvkA  
    rGNa[1{kRs  
    V. i{IW  
    % Check and prepare the inputs: LGuZp?"  
    % ----------------------------- ,(q] $eOZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fD[O tc  
        error('zernfun:NMvectors','N and M must be vectors.') FW8Zpr!u  
    end tx d0S!  
    R4 eu,,J  
    39O rY  
    if length(n)~=length(m) 4Lg ,J9  
        error('zernfun:NMlength','N and M must be the same length.')  I\_2=mL  
    end 'MW%\W;  
    1A'eH:$  
    DcBAncsK  
    n = n(:); giu{,gS0?M  
    m = m(:); a6 vej  
    if any(mod(n-m,2)) G?@W;o)  
        error('zernfun:NMmultiplesof2', ... AR( gI]1  
              'All N and M must differ by multiples of 2 (including 0).') C[%Qg=<  
    end d@ 8M_ O |  
    QB X EM=  
    D*2*FDGI  
    if any(m>n) M>5OC)E  
        error('zernfun:MlessthanN', ... XcT!4xG0  
              'Each M must be less than or equal to its corresponding N.') t[+bZUS$~  
    end plPPf+\  
    ZMlBd}H  
    Ojz'p5d`>  
    if any( r>1 | r<0 ) <o|fH~?X  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') '6vo#D9M  
    end nZnqXclzxn  
    .?s jr4   
    BA1H)%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fx+_;y  
        error('zernfun:RTHvector','R and THETA must be vectors.') &c!6e<o[p  
    end 94&t0j_  
    y}oA!<#3  
    /7"V~c6  
    r = r(:); b?OA|JqX  
    theta = theta(:); az![u)  
    length_r = length(r); <eMqg u  
    if length_r~=length(theta) }*rSg .  
        error('zernfun:RTHlength', ... A^M]vk%dg  
              'The number of R- and THETA-values must be equal.') |dEPy- Xe  
    end 67&IaDts  
    x&DqTX?b,  
    }0\SNpVN  
    % Check normalization: Kkovp^G  
    % -------------------- 'z,kxra|n  
    if nargin==5 && ischar(nflag) 3 .#L  
        isnorm = strcmpi(nflag,'norm'); 4+>yL+sC%v  
        if ~isnorm xP~GpVhLF  
            error('zernfun:normalization','Unrecognized normalization flag.') ;/kd.Q  
        end _!zc <&~I  
    else @&m]:GR  
        isnorm = false; @` Pn<_L  
    end Uf+y$n-  
    ,w6?Ap  
    `AE6s.p?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E8Kk )7  
    % Compute the Zernike Polynomials ;6R9k]5P%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #2i$:c~  
    %[KnpJ{\  
    d+)LK~  
    % Determine the required powers of r: Y>aVnixx<  
    % ----------------------------------- r4[=pfe25  
    m_abs = abs(m); aNKw.S>  
    rpowers = []; USEmD5q  
    for j = 1:length(n) wN'S+4  
        rpowers = [rpowers m_abs(j):2:n(j)]; N LpKh1g  
    end H0inU+Ih  
    rpowers = unique(rpowers); pD[&,gV$  
    6R^F^<<  
    Txo{6nd/  
    % Pre-compute the values of r raised to the required powers, i_m& qy<v  
    % and compile them in a matrix: XM!oN^  
    % ----------------------------- <w}i  
    if rpowers(1)==0 xib}E[-l#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6!0NFP~b  
        rpowern = cat(2,rpowern{:}); V^FM-bg%9  
        rpowern = [ones(length_r,1) rpowern];  U%r{{Q1  
    else ='D%c^;O8'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 037\LPO  
        rpowern = cat(2,rpowern{:}); fhZwYx&t  
    end L|APXy]>  
    W (TTsnnx  
    Ay6T*Nu`  
    % Compute the values of the polynomials: z^gz kXx7  
    % -------------------------------------- z5({A2q  
    y = zeros(length_r,length(n)); b/*QV0(  
    for j = 1:length(n) An(gHi;1$  
        s = 0:(n(j)-m_abs(j))/2; FEhBhv|m  
        pows = n(j):-2:m_abs(j); o7+<sL  
        for k = length(s):-1:1 1f^oW[w&  
            p = (1-2*mod(s(k),2))* ... zx "EAF{  
                       prod(2:(n(j)-s(k)))/              ... hU(  
                       prod(2:s(k))/                     ... 0e"KdsA:<U  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =3hJti9[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ?~.9: 93  
            idx = (pows(k)==rpowers); 1 c"s+k]9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Bz ,D4 E$  
        end J%ws-A?6rN  
         Ap\]v2G  
        if isnorm 6C.!+km  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); IA1O]i S  
        end xF) .S@  
    end |af<2(d  
    % END: Compute the Zernike Polynomials ZHA&gdK@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NY?iuWa*g  
    YVRE 9  
    :/? Op  
    % Compute the Zernike functions: myXGMN$i  
    % ------------------------------ 4ybOK~z  
    idx_pos = m>0; 05 6yhB  
    idx_neg = m<0; uJ=&++[  
    _kOuD}_|  
    (1{OQ0N+x  
    z = y; "OUY^ cM  
    if any(idx_pos) tMf5TiWu@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bU}!bol  
    end =fBr2%qK  
    if any(idx_neg) ,trh)ZZYW|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /mE:2K]C  
    end %E, -dw  
    3s:)CXO  
    `,GFiTPd  
    % EOF zernfun v/KTEM  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  "Ii!)n,  
    6<~y!\4;F  
    DDE还是手动输入的呢? {DO9{96w4  
    9_/1TjrDN  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究