下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, deY<+!
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Cjk AQ(9
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? '+zsj0!A
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? P`9A?aG.Z
mXaUWgO
B[X6AQj}d
d`7] reh
3*JybMo"
function z = zernfun(n,m,r,theta,nflag) (Fd4Gw<sq
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. uhLmyK
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ScKfr
% and angular frequency M, evaluated at positions (R,THETA) on the p<19 Jw<
% unit circle. N is a vector of positive integers (including 0), and hI{Yg$H1
% M is a vector with the same number of elements as N. Each element L"/ato
% k of M must be a positive integer, with possible values M(k) = -N(k)
m:Abq`C
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (Z +C
% and THETA is a vector of angles. R and THETA must have the same k8V0-.UL}
% length. The output Z is a matrix with one column for every (N,M) gNQJ:!
% pair, and one row for every (R,THETA) pair. h8Si,W3o
% '=* 5C{
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5xUPqW%3
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9<mj@bI$
% with delta(m,0) the Kronecker delta, is chosen so that the integral H4Ek,m|c
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, iW~f
% and theta=0 to theta=2*pi) is unity. For the non-normalized @R{&>Q:.
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0O4mA&&!oK
% ,_zt?o\
% The Zernike functions are an orthogonal basis on the unit circle. fZgU@!z
% They are used in disciplines such as astronomy, optics, and rRel\8
% optometry to describe functions on a circular domain. &,7(Wab
% N*>; '
% The following table lists the first 15 Zernike functions. #JucOWxjY
% rnE'gH(V'
% n m Zernike function Normalization V=~dgy~@
% -------------------------------------------------- %b6wo?%*
% 0 0 1 1 ^yTN(\9
% 1 1 r * cos(theta) 2 Yg.u8{H
% 1 -1 r * sin(theta) 2 RA/yvr
% 2 -2 r^2 * cos(2*theta) sqrt(6) g\'84:*J\
% 2 0 (2*r^2 - 1) sqrt(3) s.
[${S6O
% 2 2 r^2 * sin(2*theta) sqrt(6) (5&"Y?#o,
% 3 -3 r^3 * cos(3*theta) sqrt(8) LL+rdxJO^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) kGP?Jx\PkH
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) DlI|~
% 3 3 r^3 * sin(3*theta) sqrt(8) tm?
% 4 -4 r^4 * cos(4*theta) sqrt(10) IRa*}MJe
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) cgOoQP/#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) E !M+37/
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bmpB$@
% 4 4 r^4 * sin(4*theta) sqrt(10) ;7>--_?=
% -------------------------------------------------- +i =78
% U+
=q_ <
% Example 1: 6I0MJpLW
% _Ar,]v
% % Display the Zernike function Z(n=5,m=1) w2L)f,X
% x = -1:0.01:1; WgB,,L,
% [X,Y] = meshgrid(x,x); |0-L08DW
% [theta,r] = cart2pol(X,Y); ]3'd/v@fT
% idx = r<=1; \O~7X0 <W
% z = nan(size(X)); 9qA_5x%"%u
% z(idx) = zernfun(5,1,r(idx),theta(idx)); vcHDFi
% figure 'P#I<?vB
% pcolor(x,x,z), shading interp [f}1wZ*
% axis square, colorbar JnDR(s4(E
% title('Zernike function Z_5^1(r,\theta)') .O^|MhBJu
% D=Y HJ>-wB
% Example 2: H<"j3qt
% a\MJbBXv
% % Display the first 10 Zernike functions hlZjk0ez
% x = -1:0.01:1; t {}1f
% [X,Y] = meshgrid(x,x); psVRdluS
% [theta,r] = cart2pol(X,Y); ;21JM2JI8
% idx = r<=1; }f}&|Vap
% z = nan(size(X)); OHw6#N$\
% n = [0 1 1 2 2 2 3 3 3 3]; kn.z8%^(
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; V*~5*OwB
% Nplot = [4 10 12 16 18 20 22 24 26 28]; we9AB_y
% y = zernfun(n,m,r(idx),theta(idx)); zqkmsFH{
% figure('Units','normalized') K]l)z* I
% for k = 1:10 yS""*8/
% z(idx) = y(:,k); j3><J
% subplot(4,7,Nplot(k)) y8@!2O4
% pcolor(x,x,z), shading interp ;D:v@I$I
% set(gca,'XTick',[],'YTick',[]) )UJMmw\
% axis square 5{> cfN\q
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Z"jo
xZ
% end )j]RFt
% uu>g(q?4II
% See also ZERNPOL, ZERNFUN2. `*a,8M%
7vFqO;
8
_J:Yg
% Paul Fricker 11/13/2006 21qhlkdc
]nh)FMo
;z68`P-
]2jnY&a5
79v&6Io
% Check and prepare the inputs: [g? NU]
% ----------------------------- w#XJ!f6*_9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VWi-)
error('zernfun:NMvectors','N and M must be vectors.') `
T!O
)5
end X {$gdz8S9
~EBZlTN
`6/7},"9t
if length(n)~=length(m) k8TMdWW
error('zernfun:NMlength','N and M must be the same length.') IYWD_}_
$
end ?S_S.Bd
v:chr$>j5
- M]C-$
n = n(:); ;3!TOY"j;e
m = m(:); -[ =`bHo
if any(mod(n-m,2)) &Ru6Yt0W
error('zernfun:NMmultiplesof2', ... a'Z"Yz^Eo
'All N and M must differ by multiples of 2 (including 0).') ]q j%6tz
end MAXdgL[]
<
5ow81
!q X7
if any(m>n) ]O[f#lG
error('zernfun:MlessthanN', ... &e(de$}xt
'Each M must be less than or equal to its corresponding N.') S%4K-I
end y!#1A?|k
Oj:`r*z43
E-x(5^b"
if any( r>1 | r<0 ) (8I0%n}.Zo
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >QyMeH
end eg3{sDv,
Abl=Ev
5XhV+t
g.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +m1edPA[
error('zernfun:RTHvector','R and THETA must be vectors.') R1nctA:
end &~j"3G;e
`27? f$,
?$
3=m)s
r = r(:); yS?1JWUC>
theta = theta(:); u^ T2
length_r = length(r); . "R
2^`
if length_r~=length(theta) rg`"m
error('zernfun:RTHlength', ... |peZ`O^~
'The number of R- and THETA-values must be equal.') =$m|M
m[a
end \^+sgg{
=q._Qsj?fu
8Hhe&B
% Check normalization: !v^D
j']
% -------------------- wtY#8'^$&
if nargin==5 && ischar(nflag) ?D.]c;PR
isnorm = strcmpi(nflag,'norm'); W4N$]D=
if ~isnorm wj/r)rv
E
error('zernfun:normalization','Unrecognized normalization flag.') OvFZ&S[
end Hi?],5,/
else 03MB,
isnorm = false; <'/+E4m
end 0c]Lm?&
w}'E]y2.
c<e$6:|xM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mFvw s
% Compute the Zernike Polynomials _-EHG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lVqvS/_k$
6Up,B=sX0
!D1F4v[c=
% Determine the required powers of r: hX;xbl
% ----------------------------------- 4b 4nFRnH
m_abs = abs(m); ZJ!/49c*>
rpowers = []; GE"#.J4z
for j = 1:length(n) d/;oNC+
rpowers = [rpowers m_abs(j):2:n(j)]; zRB1V99k
end Gs-'
rpowers = unique(rpowers); gP<l
vXyaOZ
t.]oLG22r
% Pre-compute the values of r raised to the required powers, NxNz(R
$~
% and compile them in a matrix: M'*
Y
% ----------------------------- JL]6o8x
if rpowers(1)==0 &359tG0@P
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C[~b6UP
rpowern = cat(2,rpowern{:}); W$,c]/u|
rpowern = [ones(length_r,1) rpowern];
pO"V9[p]
else 5^tL#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )'nGuL-w!i
rpowern = cat(2,rpowern{:}); Ua(!:5q?
end xGz$M@f
bGDV9su
NK d8XQ=%
% Compute the values of the polynomials: +f|u5c
% -------------------------------------- Y,?rykRj
y = zeros(length_r,length(n)); iX~V(~v
for j = 1:length(n) 7:;P>sF@
s = 0:(n(j)-m_abs(j))/2; Cgt{5
pows = n(j):-2:m_abs(j); T#T!a0
for k = length(s):-1:1 xAsbP$J:
p = (1-2*mod(s(k),2))* ... l^fz
prod(2:(n(j)-s(k)))/ ... JgEpqA12
prod(2:s(k))/ ... L7 qim.J
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _t3n<
prod(2:((n(j)+m_abs(j))/2-s(k))); >?I[dYzut
idx = (pows(k)==rpowers); =`g+3
O;<
y(:,j) = y(:,j) + p*rpowern(:,idx); y\ Zx{A[
end \U,.!'+
YwEXTy>0
if isnorm <1V!-D4xu
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :tNH Cx
end 4K:p
end entO"~*EX
% END: Compute the Zernike Polynomials NfKi,^O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _v<EFal
oT.g@kf=H
&rk/ya[
% Compute the Zernike functions:
4mUQVzV
% ------------------------------ k.?b2]@$
idx_pos = m>0; )9J&M