切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8877阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, n90DS/Yx  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *I6W6y;E=  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? QSNPraT  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? w2(pgWed  
    Pl\r|gS;  
    ]=28s *@  
    '~\\:37+  
    S11ME  
    function z = zernfun(n,m,r,theta,nflag) %jErLg  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4c'F.0^  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q{:=z6&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Re<@ .d  
    %   unit circle.  N is a vector of positive integers (including 0), and Q ^{XM  
    %   M is a vector with the same number of elements as N.  Each element {y%cTuC=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &~K4I  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, MfU0*nVF~  
    %   and THETA is a vector of angles.  R and THETA must have the same r?$ V;Z  
    %   length.  The output Z is a matrix with one column for every (N,M) *mjPNp'3{m  
    %   pair, and one row for every (R,THETA) pair. q\n,/#'i~  
    % M->BV9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ) -^(Su(!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8svN*`[  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral s J{J@/5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]pq(Q:"P,5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w\zNn4B})A  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kQw%Wpuq[/  
    % %}}?Y`/W )  
    %   The Zernike functions are an orthogonal basis on the unit circle. I&wJK'GM`  
    %   They are used in disciplines such as astronomy, optics, and 3%(,f,  
    %   optometry to describe functions on a circular domain. &hcD/*_Z  
    % "8iIOeY-\  
    %   The following table lists the first 15 Zernike functions. Gq]/6igzX  
    % U62Z ?nge%  
    %       n    m    Zernike function           Normalization 0t(2^*I?>  
    %       -------------------------------------------------- y!VL`xV  
    %       0    0    1                                 1 h7kn >q;  
    %       1    1    r * cos(theta)                    2 ;Sl%I+?  
    %       1   -1    r * sin(theta)                    2 VVw5)O1'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) vyvb-oz;u  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +n>p"+c  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) p5aqlYb6r  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -)Hc^'.  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :X}fXgeL  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) D!V~g72j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UB,0c)   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) O>eg_K,c  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kD me>E=  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) yioX^`Fc(~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0[f[6mm%m  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %uz6iQaq]X  
    %       -------------------------------------------------- K]&i9`>N   
    % $/crb8-C  
    %   Example 1: > zfFvx_q  
    % W1JvLU5L*r  
    %       % Display the Zernike function Z(n=5,m=1) !n<SpW;  
    %       x = -1:0.01:1; B:VGa<lx5  
    %       [X,Y] = meshgrid(x,x); cI'su?  
    %       [theta,r] = cart2pol(X,Y); /5X_gjOL,  
    %       idx = r<=1; 0|6Y% a\U  
    %       z = nan(size(X)); E(_lm&,4+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |j4p  
    %       figure %6la@i  
    %       pcolor(x,x,z), shading interp OkMAqS  
    %       axis square, colorbar = \M6s  
    %       title('Zernike function Z_5^1(r,\theta)') 3X#Cep20a  
    % (6i4N2  
    %   Example 2: deEc;IAo  
    % hh[x(O)TC~  
    %       % Display the first 10 Zernike functions !p Q*m`Xo  
    %       x = -1:0.01:1; n}C0gt-  
    %       [X,Y] = meshgrid(x,x); !ScEA=  
    %       [theta,r] = cart2pol(X,Y); VAp 1{  
    %       idx = r<=1; uANpqT}!  
    %       z = nan(size(X)); T^ - -:1  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^iWJqpLe  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }L @~!=q*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6,!$S2(zT  
    %       y = zernfun(n,m,r(idx),theta(idx)); U, 8mYv2|  
    %       figure('Units','normalized') /m4Y87  
    %       for k = 1:10 Rm}G4Pq  
    %           z(idx) = y(:,k); y Z)-=H  
    %           subplot(4,7,Nplot(k)) @O|`r(le  
    %           pcolor(x,x,z), shading interp o(C;;C(*{  
    %           set(gca,'XTick',[],'YTick',[]) Z4g<Ys*  
    %           axis square <B'PB"R3y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o7^0Lo5Z?  
    %       end xyHv7u%*  
    % _p?s[r*  
    %   See also ZERNPOL, ZERNFUN2. B%5"B} nG  
    o*3\xg  
    B>[myx  
    %   Paul Fricker 11/13/2006 EHfB9%O7y  
    nUK;M[  
    qfRrX"  
    hxt;sQAo{  
    8tO.o\)h  
    % Check and prepare the inputs: !$#5E1:\  
    % ----------------------------- =}0$|@pl  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 39d$B'"<1  
        error('zernfun:NMvectors','N and M must be vectors.') xIH= gK  
    end A p 3B'  
    Zy|u5J  
    ND/oKM+?  
    if length(n)~=length(m) -j@IDd7  
        error('zernfun:NMlength','N and M must be the same length.') 3S1{r )[j  
    end ?X Rl\V  
    J ~KygQ3%  
    DcG=u24Xy!  
    n = n(:); E,fbIyX  
    m = m(:); WXG0Z  
    if any(mod(n-m,2)) 9Q1w$t~Y  
        error('zernfun:NMmultiplesof2', ... ?O"zp65d(  
              'All N and M must differ by multiples of 2 (including 0).') 221}xhn5  
    end 2wa'WEx  
    umt`0m. :  
    [Fv_~F491  
    if any(m>n) CAmIwAx6;  
        error('zernfun:MlessthanN', ... Hz=s)6$ey  
              'Each M must be less than or equal to its corresponding N.') qE8Di\?  
    end 9< S  
    #V$sb1u  
    JSx[V<7m  
    if any( r>1 | r<0 ) h)aLq  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') y|NY,{:]  
    end ",' Zr<T  
    7K+eI!m.s  
    DiZ;FHnaG?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z-yoJZi  
        error('zernfun:RTHvector','R and THETA must be vectors.') c` N_MP  
    end 0_,un^  
    4G hg~0  
    w2jB6NQX  
    r = r(:); C =B a|Z  
    theta = theta(:); M:L-j{?y_  
    length_r = length(r); ,b?G]WQrHs  
    if length_r~=length(theta) KuEM~Q=  
        error('zernfun:RTHlength', ... ~#)9Kl7<X  
              'The number of R- and THETA-values must be equal.') 9$}> O]  
    end b@sq}8YD|z  
    +UX} "m~W  
    ~}SQLYy7Z  
    % Check normalization: = )4bf"~8  
    % -------------------- wUfPnAD.'  
    if nargin==5 && ischar(nflag) r"p"UW9og  
        isnorm = strcmpi(nflag,'norm'); JvaHH!>d/  
        if ~isnorm RWoVN$i>  
            error('zernfun:normalization','Unrecognized normalization flag.') BqdGU-Q  
        end QUg<~q)Oq  
    else L`fT;2  
        isnorm = false; n A%8 bZ+  
    end Y&y<WN}Q  
    vV*/"'>  
    `6LV XDR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ldc`Y/:{  
    % Compute the Zernike Polynomials wo$ F_!3u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AgB$ w4  
    ~ H"-km"@  
    Q5IN1 ^=HF  
    % Determine the required powers of r: ?%/*F<UVQ  
    % ----------------------------------- Zm(}~C29  
    m_abs = abs(m); dEor+5}  
    rpowers = []; ZmI#-[/  
    for j = 1:length(n) ,4}s 1J#  
        rpowers = [rpowers m_abs(j):2:n(j)]; +eop4 |Z  
    end A2Iqn5  
    rpowers = unique(rpowers); .TNJuuO  
    3wfJ!z-E8  
    o[S Mt  
    % Pre-compute the values of r raised to the required powers, n@S|^cH  
    % and compile them in a matrix: &yqk96z  
    % ----------------------------- Ie8SPNY-H  
    if rpowers(1)==0 |>-0q~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  q ^Gj IP  
        rpowern = cat(2,rpowern{:}); N ]GF>kf:  
        rpowern = [ones(length_r,1) rpowern]; G B>T3l"  
    else $c LZ,N24  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZJ[p7XP  
        rpowern = cat(2,rpowern{:}); k\ZU%"^J  
    end -cUw}  
    "\M3||.!  
    6U]r3 Rr  
    % Compute the values of the polynomials: P%<MQg|k`  
    % -------------------------------------- t3!~=U  
    y = zeros(length_r,length(n)); ("=24R=a  
    for j = 1:length(n) 18y'#<X!  
        s = 0:(n(j)-m_abs(j))/2; ^a#W|-:  
        pows = n(j):-2:m_abs(j); -or)NE  
        for k = length(s):-1:1 2,.8 oa(  
            p = (1-2*mod(s(k),2))* ... /EL3Tt  
                       prod(2:(n(j)-s(k)))/              ... Ihl]"76q/  
                       prod(2:s(k))/                     ... >-(,BfZ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5)gC<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |]?7r?=J9v  
            idx = (pows(k)==rpowers); V<d`.9*}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); nNRc@9Lt  
        end kQrby\F(<  
         "b`3   
        if isnorm vnX~OVz2  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5g2:o^  
        end _ n4C~  
    end mf2Qu  
    % END: Compute the Zernike Polynomials h6D1uM"o   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @rr\Jf""z  
    zZ8:>2Ps(  
    Ul:M=8nE%  
    % Compute the Zernike functions: YO;@Tj2)x  
    % ------------------------------ D5!I{hp"  
    idx_pos = m>0; i\{fM}~W$  
    idx_neg = m<0; \K:?#07Wj4  
    `QT9W-0e^  
    )N&95\ u  
    z = y; m .^WSy  
    if any(idx_pos) .?r} 3Ch  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ` )~CT  
    end ?C_Y2JY  
    if any(idx_neg) :A,7D(H|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); XZ|\|(6Cc  
    end 1*B'o<?P1  
     L$[1+*  
    ~8[`(/hj  
    % EOF zernfun oCB#i~|>a  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ma(E}s  
    OO`-{HKt  
    DDE还是手动输入的呢? W\JwEb9Y  
    e2$k %c~  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究