下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Et}%sdS
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,'l.u?SKyd
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 98_os2`
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? dr(e)eD(R>
W&Xi&[Ux
/^&$ma\
>Yv#t.!
,5K&f\
function z = zernfun(n,m,r,theta,nflag) =FFs8&PKys
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. V2tA!II-s
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ilQ\+xR{b
% and angular frequency M, evaluated at positions (R,THETA) on the ,pkzNe`F
% unit circle. N is a vector of positive integers (including 0), and @e7_&EGR?
% M is a vector with the same number of elements as N. Each element R\$6_
% k of M must be a positive integer, with possible values M(k) = -N(k) HJ!)&xT
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, I9U
8@e!X
% and THETA is a vector of angles. R and THETA must have the same dPgA~~
% length. The output Z is a matrix with one column for every (N,M) g K dNgU
% pair, and one row for every (R,THETA) pair. Gt !Hm(
% fKua om9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (ueH@A"9;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L9whgXD
% with delta(m,0) the Kronecker delta, is chosen so that the integral +yHzp
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, CyB1`&G>
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ag1nxV1M$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kaDn=
={YM
%
Ox'KC
% The Zernike functions are an orthogonal basis on the unit circle. 5pRVA
% They are used in disciplines such as astronomy, optics, and *\Hut'7 d
% optometry to describe functions on a circular domain. U2JxzHXZ
% _tO2PIL@Z
% The following table lists the first 15 Zernike functions. o9v9
bL+X
% sn@)L ~$V
% n m Zernike function Normalization :+ "JPF4X
% -------------------------------------------------- ~<osL
% 0 0 1 1 1;>RK
% 1 1 r * cos(theta) 2 P|aSbsk:I<
% 1 -1 r * sin(theta) 2 G0ENk|wbbj
% 2 -2 r^2 * cos(2*theta) sqrt(6) HI)U6.'
% 2 0 (2*r^2 - 1) sqrt(3) ];0:aSi#
% 2 2 r^2 * sin(2*theta) sqrt(6) Uf$IH!5;Z
% 3 -3 r^3 * cos(3*theta) sqrt(8) E
6!V0D
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) b1ZHfe:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _ `7[}M~
% 3 3 r^3 * sin(3*theta) sqrt(8) OQT i$2
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2L 1Azx
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <R#:K7>O
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
"M]`>eixL
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "xD5>(|^+Q
% 4 4 r^4 * sin(4*theta) sqrt(10) +6Vu]96=KC
% -------------------------------------------------- <5sfII
% x1:1Jj:
% Example 1: -ktYS(8&
% Zo,]Dx
% % Display the Zernike function Z(n=5,m=1) z&[[4[
% x = -1:0.01:1; )#Y:Bj7H@2
% [X,Y] = meshgrid(x,x); Mz6|#P}.s
% [theta,r] = cart2pol(X,Y); nON"+c*
% idx = r<=1; Q $>SYvW
% z = nan(size(X)); <^8OYnp
% z(idx) = zernfun(5,1,r(idx),theta(idx)); @;d7#!:cE
% figure Lismo#
% pcolor(x,x,z), shading interp sM%.=~AN
% axis square, colorbar z7lbb*Xe
% title('Zernike function Z_5^1(r,\theta)') aK9zw
% u\UI6/
% Example 2: .O.fD
% P99s
% % Display the first 10 Zernike functions 2{#=Ygb0
% x = -1:0.01:1; E`uK7 2j
% [X,Y] = meshgrid(x,x); R~BW=Dz,e
% [theta,r] = cart2pol(X,Y); oga0h'
% idx = r<=1; +;;pM[U
% z = nan(size(X)); GJuU?h#:/{
% n = [0 1 1 2 2 2 3 3 3 3]; PFeK;`[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _]=, U.a=/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; . J*2J(T,
% y = zernfun(n,m,r(idx),theta(idx)); ~9+\
% figure('Units','normalized') 'MIM_m)H
% for k = 1:10 !^A t{[U
% z(idx) = y(:,k); *yA.D?
% subplot(4,7,Nplot(k)) .'N#qs_
% pcolor(x,x,z), shading interp v_@!u`
% set(gca,'XTick',[],'YTick',[]) y|Zj
M
% axis square cY*lsBo
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Yy0m &3[
% end hn u/
% 4'#
_b
% See also ZERNPOL, ZERNFUN2. @BXV>U2B{
::kpAE]
~#
|p=Y
% Paul Fricker 11/13/2006 "mkTCR^]e
:J+GodW
S>p>$m,
Q
YY<e]CriU
P(Hh%9'(
% Check and prepare the inputs: tt>=Vt'
% ----------------------------- 'GcZxF0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /-ky'S9
error('zernfun:NMvectors','N and M must be vectors.') bwh.ekf8
end tMy@'nj
.{W)E
K&noA
if length(n)~=length(m) W1J7$
error('zernfun:NMlength','N and M must be the same length.') [t`QV2um
end 2]*2b{gF,
{%b-~& F9
hYN b9^
n = n(:); g @lAk%V4
m = m(:); ];go?.*C
if any(mod(n-m,2)) Ws`P(WHm
error('zernfun:NMmultiplesof2', ... z<mU$<
'All N and M must differ by multiples of 2 (including 0).') bdCpGG9
end w~g)Dz2G
`#lNur\x
R#Bdfmldq
if any(m>n) @YTZnGG*
error('zernfun:MlessthanN', ... &6L{1
'Each M must be less than or equal to its corresponding N.') jM3{A;U2
end AHhck?M^
,9p
4(jjX
IPnbR)[%
if any( r>1 | r<0 ) `D%bZ%25c
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,#r>#fi0
end qyuU
HIi5kv]}|
7>J8\=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6l>$N?a
error('zernfun:RTHvector','R and THETA must be vectors.') $9\!CPZ2
end ^1S(6'a#
JQ8wL _C>
v7/qJ9l
r = r(:); `:A`%Fg8<
theta = theta(:); Bn/{J
length_r = length(r); D[)g-_3f6<
if length_r~=length(theta) X] &Q^
error('zernfun:RTHlength', ... rr#&0`]
'The number of R- and THETA-values must be equal.') [x5T7=
end 1G+42>?<1
,m:YZ;J(Xd
DEL#MD!
% Check normalization: xS`>[8?3<T
% -------------------- :d-+Z%Y
if nargin==5 && ischar(nflag) s7<x~v+^
isnorm = strcmpi(nflag,'norm'); oToUpkAI
if ~isnorm oxb#{o9G
error('zernfun:normalization','Unrecognized normalization flag.') Jn.WbS
end R;f!s/^)
else @twClk.s
isnorm = false; Z!m0nx
end )sVz;rF<
nJ4i[j8
/4]M*ls
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hof:+aW
% Compute the Zernike Polynomials 'tp1|n/1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]w(i,iJ
2hl'mRW
Uax- z
% Determine the required powers of r: 41WnKz9c
% ----------------------------------- x(7K=K']
m_abs = abs(m); $z]gy]F
rpowers = []; 1_!*R]a q
for j = 1:length(n) mh!;W=|/"
rpowers = [rpowers m_abs(j):2:n(j)]; Q9Wa@gi|
end z)r)w?A
rpowers = unique(rpowers); %^g BDlR^
}N1Z7G
"EQ-`b=I4
% Pre-compute the values of r raised to the required powers, b}p 0&%I
% and compile them in a matrix: hp!UW
% ----------------------------- [:
X
if rpowers(1)==0 PWOV~`^;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |Z<NM#1
rpowern = cat(2,rpowern{:}); 6yKr5t H4
rpowern = [ones(length_r,1) rpowern]; ;Id%{1
else 2Tt@2h_L
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T&I*8 R~
rpowern = cat(2,rpowern{:}); c.Pyt
end JGp~A#H&
! q!
=VC
|<P]yn
% Compute the values of the polynomials: Hm4:m$=p4
% -------------------------------------- #vYdP#nWb
y = zeros(length_r,length(n)); q-3%.<LL
for j = 1:length(n) K.n #;|
s = 0:(n(j)-m_abs(j))/2; Iu^#+n
pows = n(j):-2:m_abs(j); W~
XJ ']e
for k = length(s):-1:1 [ XjJsk,
p = (1-2*mod(s(k),2))* ... nk]jIRy^T
prod(2:(n(j)-s(k)))/ ...
eP$0TDZ
prod(2:s(k))/ ... dy;Ue5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Z}TuVE
prod(2:((n(j)+m_abs(j))/2-s(k))); _=XzQZT!L
idx = (pows(k)==rpowers); a0Cf.[L
y(:,j) = y(:,j) + p*rpowern(:,idx); SJ;u,XyWn
end a -,!K
2GA6@-u\
if isnorm ^wCjMi(sj
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wX" 6 S:
end 9 W><m[O
end r}MXXn,f
% END: Compute the Zernike Polynomials ?h"+q8&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0~Ot
2c@R!*
abUvU26t
% Compute the Zernike functions: @dV'v{:,
% ------------------------------ 0:R}
idx_pos = m>0; z_~f/
idx_neg = m<0; 8MGtJ'.
?N<* ATCL
oJbD|m
z = y; C2Fklp6
if any(idx_pos) #.UooFk+Y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Xy:'f".M~\
end 8Br*
if any(idx_neg) 9%j_"+<c
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); A!No:?S
end sH(4.36+
ttuQ,SD
"]Wrir?l
% EOF zernfun :XEP:8