切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9275阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, `!rH0]vy  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, b0|q@!z>  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]y= ff6Q  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? PYX]ld.E  
    c |OIUc  
    O*^=  
    bI/d(Q%#<  
    %y ;E1pva  
    function z = zernfun(n,m,r,theta,nflag) HQlhT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. lL_M=td8W  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N% /if  
    %   and angular frequency M, evaluated at positions (R,THETA) on the %upnXRzw  
    %   unit circle.  N is a vector of positive integers (including 0), and 0O+[z9  
    %   M is a vector with the same number of elements as N.  Each element p_T>"v  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 22lC^)`TE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, mVFz[xI  
    %   and THETA is a vector of angles.  R and THETA must have the same $ K1 /^  
    %   length.  The output Z is a matrix with one column for every (N,M) 2gLa4B-  
    %   pair, and one row for every (R,THETA) pair. R r7r5  
    % oxT..=-  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 72@lDY4cE  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), e]R`B}vO  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral CMn&1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /Ud<4j-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized v).V&":  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ns`|G;1vv  
    % Ln/6]CMl  
    %   The Zernike functions are an orthogonal basis on the unit circle. o;bK 7D  
    %   They are used in disciplines such as astronomy, optics, and E=!=4"rZF  
    %   optometry to describe functions on a circular domain. Zo`Ku+RL2'  
    % Du@?j7&l=$  
    %   The following table lists the first 15 Zernike functions. j. UQLi&`  
    % O9y4.`a"  
    %       n    m    Zernike function           Normalization \7M+0Ul1  
    %       -------------------------------------------------- -=_bXco}  
    %       0    0    1                                 1 &<8Q/m]5  
    %       1    1    r * cos(theta)                    2 0\3mS{s  
    %       1   -1    r * sin(theta)                    2 2D|2/ >[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *h6Lh]7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) eHr|U$Rpo  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) t<S]YA~N'  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) u%n6!Zx  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 6b1f ?0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) LB*qL  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) .Y B}w  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) g3[Zh=+]E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ).aQ}G wx^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Q|40 8EM  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qFEGV+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) zO#{qF+~;  
    %       -------------------------------------------------- q;co53.+P)  
    % =2&/Cn4  
    %   Example 1: yU* upQ  
    % |GPR3%9  
    %       % Display the Zernike function Z(n=5,m=1) QP/6N9/  
    %       x = -1:0.01:1; ="E^9!  
    %       [X,Y] = meshgrid(x,x); I,4t;4;Zk  
    %       [theta,r] = cart2pol(X,Y); u 6&<Bv  
    %       idx = r<=1; 8\,|T2w,X  
    %       z = nan(size(X)); !<9sOvka{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1 o<l;:  
    %       figure ,#=ykg*~/  
    %       pcolor(x,x,z), shading interp ,Qvclu8r  
    %       axis square, colorbar -dX{ R_*  
    %       title('Zernike function Z_5^1(r,\theta)') scmn-4j'{  
    % mmk]Doy?#  
    %   Example 2: d D6I @N)X  
    % a& >(*PQ  
    %       % Display the first 10 Zernike functions (_&W@:"z  
    %       x = -1:0.01:1; zJ;K4)"j  
    %       [X,Y] = meshgrid(x,x); v(ABZNIn  
    %       [theta,r] = cart2pol(X,Y); R#j -Z#/"  
    %       idx = r<=1; gucd]VH  
    %       z = nan(size(X)); _?UW,5=O  
    %       n = [0  1  1  2  2  2  3  3  3  3];  _@es9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 'qD5  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; w k1O*_76  
    %       y = zernfun(n,m,r(idx),theta(idx)); Wtl0qug  
    %       figure('Units','normalized') gH87e  
    %       for k = 1:10 X4<!E#  
    %           z(idx) = y(:,k); 4%l @   
    %           subplot(4,7,Nplot(k)) O6rrv,+_L  
    %           pcolor(x,x,z), shading interp |Ad1/>8i  
    %           set(gca,'XTick',[],'YTick',[]) /4 zO  
    %           axis square B35zmFX|}N  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `c 3IS5  
    %       end .ZSGnbJ  
    % .<`W2*1  
    %   See also ZERNPOL, ZERNFUN2. -$pS {q;  
    &cj/8A5-  
    oicett=5  
    %   Paul Fricker 11/13/2006 {0(:7IY,  
    a }6Fj&hj  
    L||_Jsu  
    (nP 6Xq  
    ucm 3'j  
    % Check and prepare the inputs: tPO\e]  
    % ----------------------------- ?3 :OPP`s  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2u9^ )6/  
        error('zernfun:NMvectors','N and M must be vectors.') <:#O*Y{  
    end p/V  
    X|.M9zIx  
    S@suPkQ<>  
    if length(n)~=length(m) s>sIji  
        error('zernfun:NMlength','N and M must be the same length.') `?{Hs+4P5  
    end r4Ygy/%  
    i4T U}.h8  
    w, 0tY=h6  
    n = n(:); ]+\@_1<ZI  
    m = m(:); JL~QE-pvD  
    if any(mod(n-m,2)) \ iL&Aq}BO  
        error('zernfun:NMmultiplesof2', ... mT57NP  
              'All N and M must differ by multiples of 2 (including 0).') jE)&`yZ5  
    end D .3Q0a6  
    B`Q.<Lqu  
    k*bfq?E a  
    if any(m>n) 4XL*e+UfJ  
        error('zernfun:MlessthanN', ... $)| l#'r  
              'Each M must be less than or equal to its corresponding N.') VQHJ O I  
    end DM6oMT  
    5qco4@8  
    NLDmZra  
    if any( r>1 | r<0 ) 4!lbwqo  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') RVN"lDGA  
    end fFXG;Q8&  
    IY|;}mIF  
    &J|3uY,'j  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Kb0OauW  
        error('zernfun:RTHvector','R and THETA must be vectors.') <i'4EnO  
    end "Kk3#  
    %8H*}@n  
    ?uUK9*N  
    r = r(:); :oF\?e  
    theta = theta(:); Gy[;yLnX  
    length_r = length(r); 5YIi O7@4  
    if length_r~=length(theta) zypZ3g{vz  
        error('zernfun:RTHlength', ... <[xxCW(2  
              'The number of R- and THETA-values must be equal.') uR"srn;^  
    end `>RJ*_aKEI  
    .<v0y"amJ  
    ^DHFP-G?e  
    % Check normalization: F#_7mC   
    % -------------------- lj.z>  
    if nargin==5 && ischar(nflag) DLE|ctzj[7  
        isnorm = strcmpi(nflag,'norm'); aKaqi}IT  
        if ~isnorm ~BCSm]j  
            error('zernfun:normalization','Unrecognized normalization flag.') 7\^b+*  
        end c=H(*#  
    else zW%-Z6%D  
        isnorm = false; aPB %6c=  
    end 9>psQ0IRvr  
    ?n/:1LN,  
    r&"}zyL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `Oys&]vb  
    % Compute the Zernike Polynomials D_O%[u}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EF0{o_  
    kgK7 T  
    hC}A%_S  
    % Determine the required powers of r: j._9;HifZ  
    % ----------------------------------- cl2@p@av  
    m_abs = abs(m); :<%K6?'@^  
    rpowers = []; %Ua*}C   
    for j = 1:length(n) 3P/T`)V  
        rpowers = [rpowers m_abs(j):2:n(j)]; }.gDaxj  
    end uW4G!Kw28  
    rpowers = unique(rpowers); %-]j;'6}cX  
    <(d ^2-0  
    2Iz@lrO6  
    % Pre-compute the values of r raised to the required powers, a#!Vi93  
    % and compile them in a matrix: 6fPuTQ}fY>  
    % ----------------------------- x{~-YzWho  
    if rpowers(1)==0 qYIBP?`g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  AO;+XP=  
        rpowern = cat(2,rpowern{:}); BmUEo$w  
        rpowern = [ones(length_r,1) rpowern]; Gyy:.]>&  
    else PK3)M'[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6luCi$bL  
        rpowern = cat(2,rpowern{:}); 0"u*Kn  
    end dz5bW>  
    :<ujk  
    -N5r[*>  
    % Compute the values of the polynomials: s\o </ZDo  
    % -------------------------------------- F.?:Gd1  
    y = zeros(length_r,length(n)); 5#d"]7  
    for j = 1:length(n) {_3ZKD(\  
        s = 0:(n(j)-m_abs(j))/2; |Uy hH^  
        pows = n(j):-2:m_abs(j); ;#/b=j\pi  
        for k = length(s):-1:1 ,k{{ZP P  
            p = (1-2*mod(s(k),2))* ... ]9zc[_ !  
                       prod(2:(n(j)-s(k)))/              ... n5S$Dl  
                       prod(2:s(k))/                     ... \R&`bAdk  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g_>)Q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Ca+d ?IS  
            idx = (pows(k)==rpowers); ZH_ J+  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $+JaEF`8  
        end 3KB)\nF#%  
         kp<9o!?)  
        if isnorm ICq;jfML  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); sPkT>q  
        end Yl8tjq}iC  
    end wi*Ke2YKP  
    % END: Compute the Zernike Polynomials `Up<;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g IX"W;  
    k>VP<Zm13  
    W@"M/<r@/  
    % Compute the Zernike functions: X@x: F|/P  
    % ------------------------------ X /5tZ@  
    idx_pos = m>0; 3zWY%(8t4?  
    idx_neg = m<0; ?Dd2k%o  
    zCO5 `%14  
    w'M0Rd]  
    z = y; c)@M7UK[  
    if any(idx_pos) _3A$z A  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); s.zH.q,  
    end s}|IRDpp  
    if any(idx_neg) p4{?Rhb6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qcQ`WU{  
    end XZp(Po:H  
    $Ae/NwIlc  
    K<Yh'RvTD  
    % EOF zernfun BAoqO Xv  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  J@yy2AZnO  
    [#2= w  
    DDE还是手动输入的呢? M%B]f2C  
    <ygkK5#q  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究