下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [{rne2sA
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Z+! 96LR
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]4&B*]j
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? OMN|ea.O
ZvW&%*k=
G)y'ex k
aW$))J)0
;5}y7#4C
function z = zernfun(n,m,r,theta,nflag) C=PV-Ul+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. hUMFfc?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fZJ O}
% and angular frequency M, evaluated at positions (R,THETA) on the e#{l
% unit circle. N is a vector of positive integers (including 0), and Y t0s
% M is a vector with the same number of elements as N. Each element %v1*D^))
% k of M must be a positive integer, with possible values M(k) = -N(k) *",
BP]]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, fuA8jx
% and THETA is a vector of angles. R and THETA must have the same t)*A#
% length. The output Z is a matrix with one column for every (N,M) ("j*!Dsd
% pair, and one row for every (R,THETA) pair. Ty"=3AvRLV
% /pnQKy.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PhC{Gg
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 97SG;,6
% with delta(m,0) the Kronecker delta, is chosen so that the integral 38(|a5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B?<Z(d7
% and theta=0 to theta=2*pi) is unity. For the non-normalized WevXQ-eKm
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?anKSGfj
% 2HJGp+H
% The Zernike functions are an orthogonal basis on the unit circle. Q##L|*Qy
% They are used in disciplines such as astronomy, optics, and 3`\)Qm
% optometry to describe functions on a circular domain. .(8eWc YK
% vD4<G{
% The following table lists the first 15 Zernike functions. v_ W03\
% } =^Al;W
% n m Zernike function Normalization ;Ajy54}7
% -------------------------------------------------- ^Dhu8C(
% 0 0 1 1 ]%/a'[
% 1 1 r * cos(theta) 2 h\$juIQa
% 1 -1 r * sin(theta) 2 QCk(qlN'h9
% 2 -2 r^2 * cos(2*theta) sqrt(6) b'~IFNt*^
% 2 0 (2*r^2 - 1) sqrt(3) }x}JzA+2
% 2 2 r^2 * sin(2*theta) sqrt(6) mdD9Q
N01
% 3 -3 r^3 * cos(3*theta) sqrt(8) @IwVR
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ='|HUxFi
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) qfzT8-Y
% 3 3 r^3 * sin(3*theta) sqrt(8) HFd>UdT%
% 4 -4 r^4 * cos(4*theta) sqrt(10) rSfvHO:R
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z@S39Xp==
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) z;EnAy {9
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0NWtu]9QC
% 4 4 r^4 * sin(4*theta) sqrt(10) yS:1F
PA$_
% -------------------------------------------------- r=ds'n"
% (Eoji7U
% Example 1: tpi>$:e
% Z'sO9Sg8>
% % Display the Zernike function Z(n=5,m=1) ePJtdKN:
% x = -1:0.01:1; ~.w Db,*
% [X,Y] = meshgrid(x,x); 4?^t=7N
% [theta,r] = cart2pol(X,Y); tcxs%yWO1
% idx = r<=1; ,o)U9<
% z = nan(size(X)); Q35/Sp[;x
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #GHLF
% figure 8QGj:3
% pcolor(x,x,z), shading interp 6|D,`dk3U
% axis square, colorbar %Sdzr!I7*
% title('Zernike function Z_5^1(r,\theta)') h}_1cev?
%
h8!;RN[
% Example 2: z3[0BWXs
% grhwPnKl
% % Display the first 10 Zernike functions _(8HK
% x = -1:0.01:1; 5CsJghTw
% [X,Y] = meshgrid(x,x); IFY,j8~q
% [theta,r] = cart2pol(X,Y); @pD']=d}t
% idx = r<=1; 97um7n
% z = nan(size(X)); JDzkv%E^
% n = [0 1 1 2 2 2 3 3 3 3]; 9GZKT{*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; q(yw,]h]{
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,JcQp=g
% y = zernfun(n,m,r(idx),theta(idx)); '?~k`zK
% figure('Units','normalized') &n:F])`2
% for k = 1:10 7^J-5lY3S
% z(idx) = y(:,k); 1+^L,-k!
% subplot(4,7,Nplot(k)) WM}bM]oe
% pcolor(x,x,z), shading interp tU%-tlU9?
% set(gca,'XTick',[],'YTick',[]) w^&TG3m1~
% axis square 2Ax HhD.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7n~BDqT
% end RkJ\?
% I/s?]v
% See also ZERNPOL, ZERNFUN2. uv2!][
|j
i}LWcD
X3:-+]6,d
% Paul Fricker 11/13/2006 1lNg} !)[K
s.rS06x
R?Q@)POW
t
_Q/v
y\Z-x
% Check and prepare the inputs: eb)S<%R/
% ----------------------------- `
m`Sl[6
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AX%9k
error('zernfun:NMvectors','N and M must be vectors.') d+|8({X]D8
end $s hlNW\
NdQXQa?,
Kk~0jP_ B9
if length(n)~=length(m) 56o?=|
error('zernfun:NMlength','N and M must be the same length.') 'Z7oPq6
end 6!i0ioZzi0
X./4at`
'7W?VipU
n = n(:); 9`)NFy?
m = m(:); }b
YiyG\
if any(mod(n-m,2)) cmu5KeH
error('zernfun:NMmultiplesof2', ... O;:8mm%(
'All N and M must differ by multiples of 2 (including 0).') 7;n'4LIa9
end ;1cX|N=
"$#x+|PyC
#4''Cs
if any(m>n) _SC>EP8:Z
error('zernfun:MlessthanN', ... j~"X`: =
'Each M must be less than or equal to its corresponding N.') $Tq-<FbM)
end "0g1'az}
nrA}36 E
UsYH#?|O
if any( r>1 | r<0 ) 9h$-:y3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9r7QE&.
end ?S0VtHQ
_qmBPUx
Xig+[2zS
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,KIa+&vJW@
error('zernfun:RTHvector','R and THETA must be vectors.') )j@k[}R#g
end wLU w'Ai
[(`T*c.#.X
E+"INX7
r = r(:); tGd9Cs9D<
theta = theta(:); N:clwmo
length_r = length(r); mxQS9y
if length_r~=length(theta) OR( )D~:n
error('zernfun:RTHlength', ... X?Omk, '
'The number of R- and THETA-values must be equal.') 4%p5X8|\ih
end _hMVv&$
NeHR%a2~
6yTL7@V|B
% Check normalization: =X>3C"]
% -------------------- "~7| !9<
if nargin==5 && ischar(nflag) _e8@y{/~Fd
isnorm = strcmpi(nflag,'norm'); :
Ot\l
if ~isnorm X&M4c5Li
error('zernfun:normalization','Unrecognized normalization flag.') T[<llh'+
end c1CP12
else 60teD>Eh,
isnorm = false; ;myu8B7&
end BaiC;&(
jL%-G
Fm,A<+l@u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `-s+ zG
% Compute the Zernike Polynomials 8o4<F%ot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aiw~4ix
o|l)oc6{
DD|%F
% Determine the required powers of r: KzeA+PI
% -----------------------------------
O\]CfzR
m_abs = abs(m); V>A@Sw
rpowers = []; =[t( [DG
for j = 1:length(n) p`Omcl~Q
rpowers = [rpowers m_abs(j):2:n(j)]; c2?(.UV
end J%f5NSSU{6
rpowers = unique(rpowers); 1(hgSf1WH
x}N+vK
>|@ /GpD
% Pre-compute the values of r raised to the required powers, `z5j
% and compile them in a matrix: (rZq0*
% ----------------------------- Cl<`uW3
if rpowers(1)==0 ^bL.|vB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )J~Qx-jG
rpowern = cat(2,rpowern{:}); -hp,O?PM
rpowern = [ones(length_r,1) rpowern]; wm*`
else 9Wx q
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _h@7>+vl~
rpowern = cat(2,rpowern{:}); }[D~#Z!k
end [:g6gAuh,
Mk|h ><Q"
%>xW_5;Z
% Compute the values of the polynomials: m++VW0Y>
% -------------------------------------- i]hFiX
y = zeros(length_r,length(n)); lJKhP
for j = 1:length(n) X-oou'4<
s = 0:(n(j)-m_abs(j))/2; LL9Mty,
pows = n(j):-2:m_abs(j); 09|d<
for k = length(s):-1:1 R*Pfc91}
p = (1-2*mod(s(k),2))* ... VC>KW{&J0
prod(2:(n(j)-s(k)))/ ... {U^mL6=&v
prod(2:s(k))/ ... /kx:BoV
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /o8`I
m
prod(2:((n(j)+m_abs(j))/2-s(k))); q$b/T+-ec
idx = (pows(k)==rpowers); QE<63|
y(:,j) = y(:,j) + p*rpowern(:,idx); Eto0>YyZ
end 8"8sI
Xb$)}n\9
if isnorm `9S<E
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _k5KJKvr
end qUpMq:Uw
end ms;Lu-UR
% END: Compute the Zernike Polynomials qx0J}6+NlU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z ;
:E~;
\vFkhm
q G=`'%,m
% Compute the Zernike functions: /=m=i%& #
% ------------------------------ 8.Y6r
idx_pos = m>0; Pb]s+1
idx_neg = m<0; zq{L:.#ha
8{Zgvqbb
P-^Z7^o-bX
z = y; wG^{Jf&@$
if any(idx_pos) {T:2+iS9:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lpSM p
end 0_"J>rMp
if any(idx_neg) <bGSr23*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K +w3YA
end Fm [,u
lQ!6n
d['BtVJ
% EOF zernfun /7P4[~vw