下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, jD,Baz<
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ri~<~oB2:
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kQdt}o])
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u9-nt}hGYM
z;u>
Yz+3
tY W>t9
o(A|)c4k
?^HfNp9
function z = zernfun(n,m,r,theta,nflag) nCg66-3A
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }7<5hn E
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :q3+AtF
% and angular frequency M, evaluated at positions (R,THETA) on the u8b2$D
% unit circle. N is a vector of positive integers (including 0), and 9W*+SlH@!
% M is a vector with the same number of elements as N. Each element zQy"m-Q
% k of M must be a positive integer, with possible values M(k) = -N(k) beY=g7|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \@a$'
% and THETA is a vector of angles. R and THETA must have the same nHFrG
=o,
% length. The output Z is a matrix with one column for every (N,M) RH)EB<PV
% pair, and one row for every (R,THETA) pair. Zzua17
% ytEC
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yQS+P8x&|]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6"T['6:j
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2 mjV~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^:, l\Y
% and theta=0 to theta=2*pi) is unity. For the non-normalized ajhEL?%D
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >r5P3G1
% mbl]>JsQD
% The Zernike functions are an orthogonal basis on the unit circle. F#|O@.tDG
% They are used in disciplines such as astronomy, optics, and z1OFcqm
% optometry to describe functions on a circular domain. W3W'oo
% fr6^nDY
% The following table lists the first 15 Zernike functions. ;d.K_P
% !X>=l
% n m Zernike function Normalization 4\t1mocCSN
% -------------------------------------------------- *TW=/+j
% 0 0 1 1 YO)$M-]>%J
% 1 1 r * cos(theta) 2 ".*x!l0y7
% 1 -1 r * sin(theta) 2 V5}nOGV9
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^^` Jcd/
% 2 0 (2*r^2 - 1) sqrt(3) :S@1
% 2 2 r^2 * sin(2*theta) sqrt(6) Id'RL2Kq*&
% 3 -3 r^3 * cos(3*theta) sqrt(8) !4"sX+z9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) UUo;`rkT
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ]-o"}"3Ef
% 3 3 r^3 * sin(3*theta) sqrt(8) I<b?vR 'F
% 4 -4 r^4 * cos(4*theta) sqrt(10) N<|$h5isq
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _&3<6$}i"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) +eX)48
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]Hj<IvG
% 4 4 r^4 * sin(4*theta) sqrt(10) ` >!n
% -------------------------------------------------- Gm`}(;(A
% 8{U-m0v
% Example 1: BDY}*cX
% gCd`pi
8
% % Display the Zernike function Z(n=5,m=1) UAF<m1
% x = -1:0.01:1; yj6@7@l>A
% [X,Y] = meshgrid(x,x); u]^N&2UW
% [theta,r] = cart2pol(X,Y); Nb2Qp
K
% idx = r<=1; UnDgu4#R`A
% z = nan(size(X)); (oK^c-x
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5M]z5}n/
% figure \b'xt
% pcolor(x,x,z), shading interp u
D 5%E7
% axis square, colorbar )Ag/Qep
% title('Zernike function Z_5^1(r,\theta)') 0XwHP{XaO
% fyz
nuUl
% Example 2: `;,Pb&W~
% 3b'tx!tFN
% % Display the first 10 Zernike functions I:(m aMc
% x = -1:0.01:1; c9' '
% [X,Y] = meshgrid(x,x); wCs3:@UH
% [theta,r] = cart2pol(X,Y); k@>\LR/v
% idx = r<=1; /il@`w;G
% z = nan(size(X)); a^qNJ?R!
% n = [0 1 1 2 2 2 3 3 3 3]; -
N>MBn
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MJ<Jb ,D1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; u/b7Z`yX}
% y = zernfun(n,m,r(idx),theta(idx)); j83? m
% figure('Units','normalized')
+1C3`0(
% for k = 1:10 6Q4X6U:WB
% z(idx) = y(:,k); V{-AP=C7
% subplot(4,7,Nplot(k)) `"yxdlXA
% pcolor(x,x,z), shading interp %x;x_
% set(gca,'XTick',[],'YTick',[]) \2[<XG(^
% axis square pi( -A
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 87!C@XlK_
% end js^ ,(CS
% A% Q!^d
% See also ZERNPOL, ZERNFUN2. [@<sFP;g
Op.8a`XLt&
D\~zS`}
% Paul Fricker 11/13/2006 ivO/;)=t
VO3pm6r5
=*BIB5
rsn.4P=
+ Y.1)i}
% Check and prepare the inputs: CF!Sa 6
% ----------------------------- [./6At&|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3:/'t{ ^B
error('zernfun:NMvectors','N and M must be vectors.') l@j.hTO<
end D(W,yq~7uY
,y`CRlr:
M`,~ mU
if length(n)~=length(m) m .IU ;cR
error('zernfun:NMlength','N and M must be the same length.') Y&H}xn
end a`9L,8Ve
BC>=B@H0
h+.{2^x
n = n(:); Zd^6ulx
m = m(:); s1Ok|31|
if any(mod(n-m,2)) `cz2DR-"
error('zernfun:NMmultiplesof2', ... Xm2\0=v5;
'All N and M must differ by multiples of 2 (including 0).') ha@L94Lq
end ^{$FI`P
M69
w-
l}^3fQXI
if any(m>n) =.<@`1
error('zernfun:MlessthanN', ... zIC;7 5#
'Each M must be less than or equal to its corresponding N.') UEs7''6RM
end 'mCe=Y
p;)"
`=+^|Y}
if any( r>1 | r<0 ) TlL^7f}
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _!;Me
)C
end k NqS8R|
qs\2Z@;
[P zv4+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .M,RFC
error('zernfun:RTHvector','R and THETA must be vectors.') I4;A8I
end 3<=,1 cU
r?m+.fJB
@J{m@ji{
r = r(:); "xcX'F^
theta = theta(:); ,y4I[[
length_r = length(r); /-zXM;h
if length_r~=length(theta) rrg96WD
error('zernfun:RTHlength', ... U<"WK"SM
'The number of R- and THETA-values must be equal.') &uP~rEJl+
end YzosZ! L!<
)}Q(Tl\$
{l_{T4xToB
% Check normalization: QY/hI`
% -------------------- tMj;s^P1
if nargin==5 && ischar(nflag) i|
\6JpNA:
isnorm = strcmpi(nflag,'norm'); kP#e((f,
if ~isnorm kdz=ltw
error('zernfun:normalization','Unrecognized normalization flag.') NC&DF