切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9303阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E~Up\f  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #Mem2cz  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? i2ml[;*,N  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |_xiG~  
    $hE'b9qx  
    ZV<y=F*~f  
     RoM*Qjw  
    85@6uBh  
    function z = zernfun(n,m,r,theta,nflag) f s"V'E2a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?xTeio44  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $ E~Lu$|  
    %   and angular frequency M, evaluated at positions (R,THETA) on the bQN4ozSi  
    %   unit circle.  N is a vector of positive integers (including 0), and rgZ rE;*;  
    %   M is a vector with the same number of elements as N.  Each element QsF<=b~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) eNC5' Z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, BK\~I  
    %   and THETA is a vector of angles.  R and THETA must have the same O7CYpn4<7  
    %   length.  The output Z is a matrix with one column for every (N,M) fm:{&(  
    %   pair, and one row for every (R,THETA) pair. k#r7&Y  
    % uy-Ncy  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i K[8At"Xo  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2u;fT{(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral I/-w65J]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wG[l9)lz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Mc3h  R0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,Y5 4(>>%  
    % ;Wh[q*A  
    %   The Zernike functions are an orthogonal basis on the unit circle. +~k,4  
    %   They are used in disciplines such as astronomy, optics, and n *0F  
    %   optometry to describe functions on a circular domain. VM|)\?Q  
    % <0qY8  
    %   The following table lists the first 15 Zernike functions. )3\rp$]1  
    % AX Jj"hN  
    %       n    m    Zernike function           Normalization  F%$Ws>l  
    %       -------------------------------------------------- E :g ArQ  
    %       0    0    1                                 1 os ud  
    %       1    1    r * cos(theta)                    2 A_ z:^9  
    %       1   -1    r * sin(theta)                    2 Z$K%@q,10+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 54_m{&hb  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ^n5QK HD  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) sh3}0u+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) xW )8mv?4n  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [~JN n  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =n?@My?;  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) . k DCcnm  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) EqwA8? M  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sW`iXsbWM>  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Y{{,62D  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L7'n<$F  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Ase1R=0  
    %       -------------------------------------------------- @WUCv7U  
    % V:npcKpu  
    %   Example 1: A[Xw|9  
    % :9>nY  
    %       % Display the Zernike function Z(n=5,m=1) duTSU9  
    %       x = -1:0.01:1; +o5rR|)M+  
    %       [X,Y] = meshgrid(x,x); /;[')RO`  
    %       [theta,r] = cart2pol(X,Y); <m\TZQBD  
    %       idx = r<=1; e=C,`&s z  
    %       z = nan(size(X)); R'_[RHFC  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); B W1O1zIh\  
    %       figure 3?<vnpN=5d  
    %       pcolor(x,x,z), shading interp WfI~l)  
    %       axis square, colorbar .4-S|]/d,  
    %       title('Zernike function Z_5^1(r,\theta)') 34:=A0z  
    % ~Y$1OA8  
    %   Example 2: ^B>6 !  
    % qyC"}y-  
    %       % Display the first 10 Zernike functions nfR5W~%*:  
    %       x = -1:0.01:1; +z_0?x  
    %       [X,Y] = meshgrid(x,x); ?z.`rD$}(n  
    %       [theta,r] = cart2pol(X,Y); ""=Vt]  
    %       idx = r<=1; {w(N9Va,(  
    %       z = nan(size(X)); :>u{BG;=79  
    %       n = [0  1  1  2  2  2  3  3  3  3]; q Sah_N  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; < XU]%}o  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; G"(!5+DLy  
    %       y = zernfun(n,m,r(idx),theta(idx)); 6{ Eh={:b  
    %       figure('Units','normalized') /6fsh7 \  
    %       for k = 1:10 `3Y+:!q  
    %           z(idx) = y(:,k); nDfDpP&  
    %           subplot(4,7,Nplot(k)) ?uLqB@!2  
    %           pcolor(x,x,z), shading interp XooAL0w  
    %           set(gca,'XTick',[],'YTick',[]) 5Dd;?T>  
    %           axis square {1 mD(+pJ{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >ZT3gp?E  
    %       end b?l\Q Mvi  
    % ^B7Aam  
    %   See also ZERNPOL, ZERNFUN2. += QboUN  
    YZd4% zF  
    -ydT%x  
    %   Paul Fricker 11/13/2006 tBt\&{=|D  
    te_D  ,  
    -Cl0!}P4I  
    eL*Edl|#  
    &F)lvtt|  
    % Check and prepare the inputs: (Qnn  
    % ----------------------------- 6Yu8ReuL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 59|Tmf(dS;  
        error('zernfun:NMvectors','N and M must be vectors.') 2gi`^%#k]  
    end :(Gg]Z9^8  
    2Ig.hnHj  
    q;U[f6JjE  
    if length(n)~=length(m) :%{8lanO  
        error('zernfun:NMlength','N and M must be the same length.') /PO5z7n0J  
    end 3 ;&N3:,X  
    <7qM;) g  
    r'j*f"uAm  
    n = n(:); :)&_  
    m = m(:); XWk^$"  
    if any(mod(n-m,2)) 6+>q1,<  
        error('zernfun:NMmultiplesof2', ... h4]yIM `8d  
              'All N and M must differ by multiples of 2 (including 0).') &N,c:dNe  
    end |<OZa;c+  
    2$|WXYY  
    C{4[7  
    if any(m>n) Y.ic=<0H  
        error('zernfun:MlessthanN', ... {'JoVJKv  
              'Each M must be less than or equal to its corresponding N.')  'y1=Z  
    end r@ ]{`qA  
    vU::dr  
    a *>$6H;  
    if any( r>1 | r<0 ) ?EdF&^[3rD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') x5s Yo\  
    end EP*"=_  
    5G|(od3  
    N|wI=To  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ? 3Td>x  
        error('zernfun:RTHvector','R and THETA must be vectors.') .z+ [3Oj_E  
    end <a; <|Fm.  
    Q! WXFS  
    xwq {0jY  
    r = r(:); XI@;;>D1=U  
    theta = theta(:); M"W-|t)~  
    length_r = length(r); u.43b8!  
    if length_r~=length(theta) @uApm~}  
        error('zernfun:RTHlength', ... #f d ;]  
              'The number of R- and THETA-values must be equal.') R^4JM,v9x`  
    end jt=%oa  
    k "7l\;N  
    +G)L8{FY(  
    % Check normalization: as6a)t.^  
    % -------------------- lcO;3CrJ!  
    if nargin==5 && ischar(nflag) WKek^TW4HE  
        isnorm = strcmpi(nflag,'norm'); = wEU+R_#o  
        if ~isnorm 9\y\{DHd  
            error('zernfun:normalization','Unrecognized normalization flag.') O1[`2kj^HB  
        end W!6&T [j>  
    else cHP~J%&L  
        isnorm = false; ^N# z&oh  
    end NpqK+GO  
    ;XAj/6pm  
    `,~8(rIM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q.I  
    % Compute the Zernike Polynomials &-.NkW@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n3x< L:)  
    dK.k,7R  
    df9 jT?l  
    % Determine the required powers of r: q#pD}Xe$  
    % ----------------------------------- zw ,( kv  
    m_abs = abs(m); :^bjn3b  
    rpowers = []; `!- w^~c  
    for j = 1:length(n) O> .gcLA  
        rpowers = [rpowers m_abs(j):2:n(j)]; S~GL_#a  
    end KdN+$fe*g  
    rpowers = unique(rpowers); 5-[bdI  
    mssCnr;  
    SobOUly5{  
    % Pre-compute the values of r raised to the required powers, @ vHj>N  
    % and compile them in a matrix: 9=o;I;I  
    % ----------------------------- i (qPD_  
    if rpowers(1)==0 ;nx? 4f+6h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FV~ENpncP  
        rpowern = cat(2,rpowern{:}); 3OZu v};k  
        rpowern = [ones(length_r,1) rpowern]; ^E]Xq]vd"  
    else A,fPl R  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); CT2L }5L&  
        rpowern = cat(2,rpowern{:}); + $Yld{i  
    end [Z -S0  
    8n2MZ9p]  
    I%?ia5]H  
    % Compute the values of the polynomials: .ey=gI!x0  
    % -------------------------------------- q'9}Hz  
    y = zeros(length_r,length(n)); IN!,|)8s  
    for j = 1:length(n) kZU v/]Y.  
        s = 0:(n(j)-m_abs(j))/2; HAca'!p  
        pows = n(j):-2:m_abs(j); N3U.62  
        for k = length(s):-1:1 ?7k%4~H t  
            p = (1-2*mod(s(k),2))* ... *f ;">(`o*  
                       prod(2:(n(j)-s(k)))/              ... aMq|xHZ  
                       prod(2:s(k))/                     ... _*1{fvv0{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... vw5f|Q92  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); qGK -f4  
            idx = (pows(k)==rpowers); /&jh10}H  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @o/126(k  
        end G[4$@{  
         NpLO_-  
        if isnorm d) i64"  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kuI%0) iZn  
        end ]hHL[hoFC  
    end XI/LVP,.  
    % END: Compute the Zernike Polynomials ]Te,m}E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% knb 9s`wR  
    z7$,m#tw  
    ^Ee"w7XjD  
    % Compute the Zernike functions: ?y`we6~\1  
    % ------------------------------ Yb? L:,a(I  
    idx_pos = m>0; |9*8u>|RC  
    idx_neg = m<0; 6-6ha7]s  
    +5xVgIk#  
    N:% }KAc  
    z = y; E#A%aLp0E  
    if any(idx_pos) ?VRf5 Cr-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 57~/QEdy  
    end s"-gnW  
    if any(idx_neg) FA7q pc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7^<{aE:  
    end lFT` WO  
    nd3n'b  
    8%Eemk>G{  
    % EOF zernfun Uw5AHq).  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ;xjw'%n,  
    uEdeA'*^  
    DDE还是手动输入的呢? &u0on) E  
    kXW$[R  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究