切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9343阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, !L2R0Y:a  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?y>P  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? r0+lH:G*q  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? jdK~]eld=  
    K;k_MA310  
    plh.-"   
    ?k TVC  
    z4HIDb  
    function z = zernfun(n,m,r,theta,nflag) "|{ NRIE  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Zz!XH8sH  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WUvrC  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~4"adOv  
    %   unit circle.  N is a vector of positive integers (including 0), and ylUxK{  
    %   M is a vector with the same number of elements as N.  Each element P6u9Ngay  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fIN F;TK  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 07[A&B!  
    %   and THETA is a vector of angles.  R and THETA must have the same 4c_TrNwP  
    %   length.  The output Z is a matrix with one column for every (N,M) g j8rrd |  
    %   pair, and one row for every (R,THETA) pair. W-qec  
    % IlVz 5#R  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zflq|dW  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !g  #  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral aHNR0L3$}{  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j1Fy'os"!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized r{!]` '8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]JVs/  
    % )a AKO`  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8UJK]_99I,  
    %   They are used in disciplines such as astronomy, optics, and 12`q9Io"  
    %   optometry to describe functions on a circular domain. i,r O3J n  
    % .vE=527g)  
    %   The following table lists the first 15 Zernike functions. V7[6jW gH  
    % twv|,kM  
    %       n    m    Zernike function           Normalization ![h+ R@_(  
    %       -------------------------------------------------- [=7=zV;}4  
    %       0    0    1                                 1 cKJf0S:cx-  
    %       1    1    r * cos(theta)                    2 tJ>%Xop  
    %       1   -1    r * sin(theta)                    2 GvSSi'q~B  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #tg,%*.s  
    %       2    0    (2*r^2 - 1)                    sqrt(3) S96H`kedZo  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `% IzW2v6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) H .*:+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $&& mGD;?K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) t2skg  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i8iv{e2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) )hs"P%Zg  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K&Ner(/X`6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }(k#,&Fv`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d3-F?i 5d  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1/X@~  
    %       -------------------------------------------------- PP)iw@9j  
    % w^OV;gp  
    %   Example 1: 1N6.r:wg)%  
    % %IrR+f+H  
    %       % Display the Zernike function Z(n=5,m=1) QZ?#ixvJ  
    %       x = -1:0.01:1; wNo2$>*  
    %       [X,Y] = meshgrid(x,x); jr[(g:L   
    %       [theta,r] = cart2pol(X,Y); iO1ir+B\  
    %       idx = r<=1; kt`_n+G  
    %       z = nan(size(X)); '!eg9}<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); G&,1 NjSi  
    %       figure qTSyy=  
    %       pcolor(x,x,z), shading interp 1 aWzd[i  
    %       axis square, colorbar NwAvxN<R(f  
    %       title('Zernike function Z_5^1(r,\theta)') o>WB,i^G  
    % = og>& K  
    %   Example 2: TL&`Ywy  
    % KuBN_bd  
    %       % Display the first 10 Zernike functions ~o{GQ>  
    %       x = -1:0.01:1; F6 mc<n  
    %       [X,Y] = meshgrid(x,x); ?tzJ7PJ~B  
    %       [theta,r] = cart2pol(X,Y); kY>jp@w V  
    %       idx = r<=1; w>#{Nl7gz  
    %       z = nan(size(X)); h?_Cv*0q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #1Zqq([@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; w O H{L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; (LiS9|J!  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9mE6Cp.Wv  
    %       figure('Units','normalized') ba5,?FVI~  
    %       for k = 1:10 (=A61]yB  
    %           z(idx) = y(:,k); .8o?`  
    %           subplot(4,7,Nplot(k)) A]0A,A0  
    %           pcolor(x,x,z), shading interp l5h+:^#M5c  
    %           set(gca,'XTick',[],'YTick',[]) L`'#}#O l  
    %           axis square ,+w9_Gy2H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C@x\ZG5rA  
    %       end )6+Z99w  
    % f^JiaU4 [  
    %   See also ZERNPOL, ZERNFUN2. PP*6nW8  
    CzMCd ~*7R  
    @jL](Mq|]  
    %   Paul Fricker 11/13/2006 {6 #Qm7s-  
    bG0 |+k3O  
    sNa Lz  
    / esdtH$=  
    m:}PVJ-"  
    % Check and prepare the inputs: FOPfo b[  
    % ----------------------------- 8F>u6Y[P  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VSx9aVPkC  
        error('zernfun:NMvectors','N and M must be vectors.') is~"yE7  
    end [T |P|\M  
    @h&:xA56  
    G]]"J c  
    if length(n)~=length(m) ^VC /tJ  
        error('zernfun:NMlength','N and M must be the same length.') QhhL_vP  
    end C/$bgK[ev  
    18^#:=Z  
    - -fRhN>  
    n = n(:); SND@#?hiO  
    m = m(:); +3yG8  
    if any(mod(n-m,2)) nxWm  
        error('zernfun:NMmultiplesof2', ... ?^whK<"]  
              'All N and M must differ by multiples of 2 (including 0).') Ux,?\Vd  
    end eOoqH$ i  
    U[0x\~[$K  
    ^4b;rLfk@  
    if any(m>n) 6i+<0b}!/  
        error('zernfun:MlessthanN', ... a(J@]X>'  
              'Each M must be less than or equal to its corresponding N.') z @g%9 |U  
    end (ZPl~ZO  
    <ni_78  
    0OXl`V`w  
    if any( r>1 | r<0 ) {|d28!8w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5cvvdO*C0  
    end y Nc@K|  
    (*M*muk  
    q+znb'i-x  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |.4>#<$__  
        error('zernfun:RTHvector','R and THETA must be vectors.') mtg=v@~  
    end uTdx`>M,O  
    `fuQ t4  
    YQ$LU \:  
    r = r(:); Y{Ff I+  
    theta = theta(:); hgj ]Jr  
    length_r = length(r); >\!G43Q=  
    if length_r~=length(theta) ZEp>~dn;  
        error('zernfun:RTHlength', ... y7t'I.E[+  
              'The number of R- and THETA-values must be equal.') \#h{bnx  
    end %[4u #G`  
    ?8do4gT+1  
    ]xkh"j+W  
    % Check normalization: vM@8&,;  
    % -------------------- 4]HW!J  
    if nargin==5 && ischar(nflag) %aI,K0\  
        isnorm = strcmpi(nflag,'norm'); ddS3;Rk2  
        if ~isnorm '3w%K+eJY  
            error('zernfun:normalization','Unrecognized normalization flag.') <vE|QxpR  
        end 4(91T  
    else ~,_@|,)  
        isnorm = false; xHCdtloi?I  
    end =9Vo[  
    'yosDT2{#  
    C2aA])7 D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v, CWE  
    % Compute the Zernike Polynomials S n<X   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3-=AmRxW't  
    o!ZG@k?#  
     &1f3e  
    % Determine the required powers of r: aX~Jk >a0  
    % ----------------------------------- 52 *ii  
    m_abs = abs(m); 33 S CHQ  
    rpowers = []; ^D1gcI  
    for j = 1:length(n) KYZ#.f@  
        rpowers = [rpowers m_abs(j):2:n(j)]; r7sA;Y\  
    end Sgr. V)  
    rpowers = unique(rpowers); s3T7M:DM4  
    s q;!5qK  
    eIEL';N6  
    % Pre-compute the values of r raised to the required powers, p>O/H1US;  
    % and compile them in a matrix: o*artMkG  
    % ----------------------------- ) "?eug}D  
    if rpowers(1)==0 @`#x:p:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); : h(Z\D_  
        rpowern = cat(2,rpowern{:}); Yg?BcY\  
        rpowern = [ones(length_r,1) rpowern]; Yo1]HG(kXB  
    else {/(.Bpld  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C0K: ffv;<  
        rpowern = cat(2,rpowern{:}); @}19:A<'  
    end *Ojl@N  
    &S`g&  
    j74hWz+p4  
    % Compute the values of the polynomials: m?; ?I]`  
    % -------------------------------------- >&Oql9_  
    y = zeros(length_r,length(n)); a'`?kBK7`U  
    for j = 1:length(n) {=\Fc`74  
        s = 0:(n(j)-m_abs(j))/2; Fw*O ciC  
        pows = n(j):-2:m_abs(j); [Y$ TVwFwX  
        for k = length(s):-1:1 .P`QCH;Ih  
            p = (1-2*mod(s(k),2))* ... hkyO_ns  
                       prod(2:(n(j)-s(k)))/              ... ~#4FL<W  
                       prod(2:s(k))/                     ... BVj(Q}f8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9pPLOXr ,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); g~b$WV%  
            idx = (pows(k)==rpowers); u}%6=V  
            y(:,j) = y(:,j) + p*rpowern(:,idx); O@ H.k<zn  
        end ?G,gPb  
         \EU^`o+  
        if isnorm x@QNMK.7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); FF#+d~$z  
        end w3"L5;oH  
    end \ {]y(GT  
    % END: Compute the Zernike Polynomials \K~wsu/?`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <YtjE!2  
    5 2 Qr  
    "/RMIS K[;  
    % Compute the Zernike functions: 4Ngp  -  
    % ------------------------------ c|`$ h  
    idx_pos = m>0; Zhv%mUj~  
    idx_neg = m<0; kxd*B P  
    tk*-Cx?_  
    g`Cv[Pq?at  
    z = y; $i6z)]rjg  
    if any(idx_pos) },#7  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^e <E/j{~  
    end ;@Fb>l BhX  
    if any(idx_neg) x~R,rb   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :b(W&iBWhI  
    end AoOA.t6RVo  
    !H)-  
    ^r.CUhx)  
    % EOF zernfun oSmETk\  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Ia#!T"]@W6  
    /o;L,mcx*  
    DDE还是手动输入的呢? w!20  
    kx;X:I(5&P  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究