下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, JXU?'@QY  
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y#68_%[  
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ={P`Tve  
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 0!dNW,NfJ  
 L@(.	i  
 ~KS@Ulrox  
 8Zsaq1S  
 sS}:O d  
function z = zernfun(n,m,r,theta,nflag) r]p3DQ  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. a#r{FoU{M8  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +8//mrL_/	  
%   and angular frequency M, evaluated at positions (R,THETA) on the u)r/#fUZ  
%   unit circle.  N is a vector of positive integers (including 0), and 
FJ~d&L\l  
%   M is a vector with the same number of elements as N.  Each element )x/#sW%)  
%   k of M must be a positive integer, with possible values M(k) = -N(k) R~oJ-}iYX  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;(`bP  
%   and THETA is a vector of angles.  R and THETA must have the same *GE6zGdN  
%   length.  The output Z is a matrix with one column for every (N,M) tf6m.  
%   pair, and one row for every (R,THETA) pair. hp'oiR;~w  
% '1b	1N5~  
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xc}[q`vK  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N
{
oVz],  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral a`w=0]1&*  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "crR{OjE"  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized KZ7B2  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <7J3tn	B  
% S#C-j	D  
%   The Zernike functions are an orthogonal basis on the unit circle. Zio!j%G  
%   They are used in disciplines such as astronomy, optics, and ~3:hed7:  
%   optometry to describe functions on a circular domain. NzQvciJ@"  
% 9S]pC?N]E  
%   The following table lists the first 15 Zernike functions. qK%N{ro[{?  
% Opu*i  
%       n    m    Zernike function           Normalization }=bzUA`C  
%       -------------------------------------------------- ~q566k!Ll!  
%       0    0    1                                 1 Pt5 wm\  
%       1    1    r * cos(theta)                    2 a^J(TW/  
%       1   -1    r * sin(theta)                    2 $GRw k>N  
%       2   -2    r^2 * cos(2*theta)             sqrt(6) -1Li&K7  
%       2    0    (2*r^2 - 1)                    sqrt(3) hTLf$_|P  
%       2    2    r^2 * sin(2*theta)             sqrt(6) 8m
iJQIq  
%       3   -3    r^3 * cos(3*theta)             sqrt(8) j?	BL8E'	  
%       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ZNw|5u^N  
%       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^\gb|LEnK  
%       3    3    r^3 * sin(3*theta)             sqrt(8) _$>);qIP4  
%       4   -4    r^4 * cos(4*theta)             sqrt(10) /(s |'"6  
%       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PM84Z@Y  
%       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) *bFWNJ}`q  
%       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c.]QIIdK  
%       4    4    r^4 * sin(4*theta)             sqrt(10) O6y:e#0z  
%       -------------------------------------------------- (}X5*BB&  
% aYa`ex  
%   Example 1: #(614-r/  
% GqCBD-@4v.  
%       % Display the Zernike function Z(n=5,m=1) A Qjv?
4)T  
%       x = -1:0.01:1; q$"u<  
%       [X,Y] = meshgrid(x,x); G>vK$W$f	N  
%       [theta,r] = cart2pol(X,Y); 
6NV592  
%       idx = r<=1; 3:jxr  
%       z = nan(size(X)); &{8:XJe*,%  
%       z(idx) = zernfun(5,1,r(idx),theta(idx)); k)>H=?mI  
%       figure ++,I`x+p  
%       pcolor(x,x,z), shading interp 9)tb=  
%       axis square, colorbar 	NHyUHFY  
%       title('Zernike function Z_5^1(r,\theta)') X:Z3R0  
% :}	=lE"2  
%   Example 2: QO;Dyef7b  
% /a32QuS  
%       % Display the first 10 Zernike functions M%ecWr!tj  
%       x = -1:0.01:1; `"CA$Se8  
%       [X,Y] = meshgrid(x,x); o$L%t@  
%       [theta,r] = cart2pol(X,Y); ZskX!{  
%       idx = r<=1; x@43ZH_  
%       z = nan(size(X)); Nut&g"u2  
%       n = [0  1  1  2  2  2  3  3  3  3]; B`eK_'7t  
%       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,4"N7_!7  
%       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2EM6k|l5  
%       y = zernfun(n,m,r(idx),theta(idx)); }'wZ)N@  
%       figure('Units','normalized') Fvk=6$d2  
%       for k = 1:10 A!!!7tj  
%           z(idx) = y(:,k); eowwN>-2C  
%           subplot(4,7,Nplot(k)) u=nd7:bv  
%           pcolor(x,x,z), shading interp E}9wzPs  
%           set(gca,'XTick',[],'YTick',[]) k
?KJ8  
%           axis square 5OWyxO3{  
%           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z#&1>  
%       end %N&.B  
% 0^>,
  
%   See also ZERNPOL, ZERNFUN2. Ld.9.d]  
 ZbT$f^o}M]  
 Vc5>I_	  
%   Paul Fricker 11/13/2006 !o`7$`%Wz\  
 .:&`PaMt  
 J(}PvkA  
 rGNa[1{kRs  
 V.
i{IW  
% Check and prepare the inputs: LGuZp?"  
% ----------------------------- ,(q]
$eOZ  
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fD[O
tc  
    error('zernfun:NMvectors','N and M must be vectors.') FW8Zpr!u  
end  tx
d0S!  
 R4	eu,,J  
 39O	rY  
if length(n)~=length(m) 4Lg
,J9  
    error('zernfun:NMlength','N and M must be the same length.')  I\_2=mL  
end 'MW%\W;  
 1A'eH:$  
 DcBAncsK  
n = n(:); giu{,gS0?M  
m = m(:); a6vej  
if any(mod(n-m,2)) G?@W;o)  
    error('zernfun:NMmultiplesof2', ... AR(	gI]1  
          'All N and M must differ by multiples of 2 (including 0).') C[%Qg=<  
end d@	8M_
O	|  
 QBXEM=  
 D*2*FDGI  
if any(m>n) M>5OC)E  
    error('zernfun:MlessthanN', ... XcT!4xG0  
          'Each M must be less than or equal to its corresponding N.') 
t[+bZUS$~  
end plPPf+\  
 ZMlBd}H  
 Ojz'p5d`>  
if any( r>1 | r<0 ) <o|fH~?X  
    error('zernfun:Rlessthan1','All R must be between 0 and 1.') '6vo#D9M  
end nZnqXclzxn  
 .?s jr4   
 BA1H)%  
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fx+_;y  
    error('zernfun:RTHvector','R and THETA must be vectors.') &c!6e<o[p  
end 94&t0j_  
 y}oA!<#3  
 /7"V~c6  
r = r(:); b?OA |JqX  
theta = theta(:); az![u)  
length_r = length(r); <eMqg u  
if length_r~=length(theta) }*rS g .  
    error('zernfun:RTHlength', ... A^M]vk%dg  
          'The number of R- and THETA-values must be equal.') |dEPy-Xe  
end 67&IaDts  
 x&DqTX?b,  
 }0\SNpVN  
% Check normalization: 	Kkovp^G  
% -------------------- 'z,kxra|n  
if nargin==5 && ischar(nflag) 3.#L  
    isnorm = strcmpi(nflag,'norm'); 4+>yL+sC%v  
    if ~isnorm xP~GpVhLF  
        error('zernfun:normalization','Unrecognized normalization flag.') ;/kd.Q	  
    end _!zc	<&~I  
else @&m]:GR  
    isnorm = false; @`
Pn<_L  
end Uf+y$n-   
 ,w6?Ap  
 `AE6s.p?  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 	E8Kk)7  
% Compute the Zernike Polynomials ;6R9k]5P%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #2i$:c~  
 %[KnpJ{\  
 d+)L K~  
% Determine the required powers of r: Y>aVnixx<  
% ----------------------------------- r4[=pfe25  
m_abs = abs(m); aNKw.S>  
rpowers = []; USEmD5 q  
for j = 1:length(n) wN'S+4  
    rpowers = [rpowers m_abs(j):2:n(j)]; NLpKh1g  
end H0inU+Ih  
rpowers = unique(rpowers); pD[&,gV$  
 6R^F^<<  
 
Txo{6nd/  
% Pre-compute the values of r raised to the required powers, i_m&qy<v  
% and compile them in a matrix: XM!oN^  
% ----------------------------- < w}i  
if rpowers(1)==0 xib}E[-l#  
    rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6!0NFP~b  
    rpowern = cat(2,rpowern{:}); V^FM-bg%9  
    rpowern = [ones(length_r,1) rpowern]; 	U%r{{Q1  
else ='D%c^;O8'  
    rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 037\LPO  
    rpowern = cat(2,rpowern{:}); fhZwYx&t  
end L|APX y]>  
 W	(TTsnnx  
 Ay6T*Nu`  
% Compute the values of the polynomials: z^gz	kXx7  
% -------------------------------------- z5({A2q  
y = zeros(length_r,length(n)); b/*QV0(  
for j = 1:length(n) An(gHi;1$  
    s = 0:(n(j)-m_abs(j))/2; FEhBhv|m  
    pows = n(j):-2:m_abs(j); o7+<sL  
    for k = length(s):-1:1 1f^oW[w&  
        p = (1-2*mod(s(k),2))* ... zx"EAF{  
                   prod(2:(n(j)-s(k)))/              ... hU(  
                   prod(2:s(k))/                     ... 0e"KdsA:<U  
                   prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =3hJti9[  
                   prod(2:((n(j)+m_abs(j))/2-s(k))); ?~.9:93  
        idx = (pows(k)==rpowers); 1c"s+k]9  
        y(:,j) = y(:,j) + p*rpowern(:,idx); Bz,D4E$  
    end J%ws-A?6rN  
     Ap\]v2G  
    if isnorm 6C.!+km  
        y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); IA1O]i
S  
    end xF) .S@  
end |af<2(d  
% END: Compute the Zernike Polynomials ZHA&gdK@  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NY?iuWa*g  
 YVRE9  
 :/?
Op  
% Compute the Zernike functions: myXGMN$i  
% ------------------------------ 4ybOK~z  
idx_pos = m>0; 056yhB  
idx_neg = m<0; uJ=&++[  
 _kOuD}_|  
 (1{OQ0N+x  
z = y; "OUY^	cM  
if any(idx_pos) tMf5TiWu@  
    z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bU}!bol  
end =fBr2%qK  
if any(idx_neg) ,trh)ZZYW|  
    z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /mE:2K]C  
end %E,-dw  
 3s:)CXO  
 `,GFiTPd  
% EOF zernfun 
v/KTEM