下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, D#g-mqar:
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y6jyU1>
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? CsO!Y\'FY
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? wNf:_^|}
ewMVUq*:
m%HT)`>bg
='7m$,{(Q[
DzZF*ylQ5P
function z = zernfun(n,m,r,theta,nflag) RHF"$6EAFG
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. _jQ:9,;
A
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BlVHP8/b
% and angular frequency M, evaluated at positions (R,THETA) on the !dqC6a
% unit circle. N is a vector of positive integers (including 0), and Wg-mJu(
% M is a vector with the same number of elements as N. Each element }a]`"_i;[
% k of M must be a positive integer, with possible values M(k) = -N(k) VE\L&d2S
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %_!/4^smE
% and THETA is a vector of angles. R and THETA must have the same x@-K
% length. The output Z is a matrix with one column for every (N,M) `Y&`2WZ ~
% pair, and one row for every (R,THETA) pair. i fsh(^N
% D;,p?]mgO~
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >F$9&s&
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {*_Ln
% with delta(m,0) the Kronecker delta, is chosen so that the integral aHhLz>H'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y1V}c,
% and theta=0 to theta=2*pi) is unity. For the non-normalized TFSdb\g
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &h5Vhzq(<
% VUP|j/qD
% The Zernike functions are an orthogonal basis on the unit circle. A*h8 o9M
% They are used in disciplines such as astronomy, optics, and
b_x!m{
% optometry to describe functions on a circular domain. E?w#$HS
% 8FsQLeOE
% The following table lists the first 15 Zernike functions. R`j"iC2
% t^#1=nK
% n m Zernike function Normalization M\1CDU+*Ns
% -------------------------------------------------- xdSMYH{2A
% 0 0 1 1 Gs:g
% 1 1 r * cos(theta) 2 {v"f){
% 1 -1 r * sin(theta) 2 %['NPs%B
% 2 -2 r^2 * cos(2*theta) sqrt(6) a"( Ws]K
% 2 0 (2*r^2 - 1) sqrt(3) 1g;2e##)
% 2 2 r^2 * sin(2*theta) sqrt(6) F/v.hP_
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5_^d3LOT0x
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,EQ0""G!
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8lk/*/} =<
% 3 3 r^3 * sin(3*theta) sqrt(8) dDcQSshL
% 4 -4 r^4 * cos(4*theta) sqrt(10) d?oXz| ;H(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pSx5ume95"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `_J&*Kk5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gwaSgV$z
% 4 4 r^4 * sin(4*theta) sqrt(10) 1j2U,_-
% -------------------------------------------------- .][yH[F
% 49FP&NgK
% Example 1: $WYt`U;*lj
% g`y9UYeh
% % Display the Zernike function Z(n=5,m=1) tQ}GTqk
% x = -1:0.01:1; U6JD^G=qR,
% [X,Y] = meshgrid(x,x); 5OdsT-y
% [theta,r] = cart2pol(X,Y); o[;P@F
% idx = r<=1; |$
PA
% z = nan(size(X)); :(q4y-o6
% z(idx) = zernfun(5,1,r(idx),theta(idx)); -^NW:L$|
% figure 9/"&6,
% pcolor(x,x,z), shading interp g$Tsht(rHD
% axis square, colorbar ,ei9 ?9J1
% title('Zernike function Z_5^1(r,\theta)') b^R:q7ea
% SFg4}*"C /
% Example 2: ?>7\L'n=5I
% bK "I9T #
% % Display the first 10 Zernike functions 0+mR
y57
% x = -1:0.01:1; +v/y{8Fu
% [X,Y] = meshgrid(x,x);
Gs#9'3_U5
% [theta,r] = cart2pol(X,Y); |QS|\8g{0V
% idx = r<=1; $NCvF'
% z = nan(size(X)); f@sC~A. 9\
% n = [0 1 1 2 2 2 3 3 3 3]; q}i#XQU
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?g1eW q&
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \BBs;z[/
% y = zernfun(n,m,r(idx),theta(idx)); Y6wr}U
% figure('Units','normalized')
Y*xgY*K
% for k = 1:10 Pll%O@K
% z(idx) = y(:,k); X
-1r$.
% subplot(4,7,Nplot(k)) WD4"ft
% pcolor(x,x,z), shading interp zd_N' :6
% set(gca,'XTick',[],'YTick',[]) 1n8y4k)
% axis square PE{<'K\g
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C.4(8~Y=~
% end wQW`Er3w
% Bc!<!
% See also ZERNPOL, ZERNFUN2. D*UxPm"pw
Ee5YW/9]
Z +/3rd
% Paul Fricker 11/13/2006 2-m@-
d/GSG%zB
(6c/)MH
q?frt3o
gZHgL7@
% Check and prepare the inputs: p#c41_?'e
% ----------------------------- 4UbqYl3|a
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P^o@x,V!&
error('zernfun:NMvectors','N and M must be vectors.') jR\pYRK
end b!t[PShw^
e!Z}aOeE
")ys!V9
if length(n)~=length(m) R?{_Q<17
error('zernfun:NMlength','N and M must be the same length.') 6b*xhu\
end &fRz6Hd
z81dm
i&(1<S>P
n = n(:); wv3*o10_w8
m = m(:); JCxQENsVqB
if any(mod(n-m,2)) _G)A$6weU
error('zernfun:NMmultiplesof2', ... !0pK8k&MG
'All N and M must differ by multiples of 2 (including 0).') 7cV
G?Wr
end %,$xmoj9O]
V+D <626o
o(}%b8 K
if any(m>n) t=eI*M+>h
error('zernfun:MlessthanN', ... Lapeh>1T
'Each M must be less than or equal to its corresponding N.') XX-(>B0L
end `JV(ae0
|t"CH'KJZ
w\[l4|g`
if any( r>1 | r<0 ) Sg%s\p]N_#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') r4cz?e|
end :}36;n<['
;Ows8
{oOUIP
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1tO96t^d%
error('zernfun:RTHvector','R and THETA must be vectors.') 0NSw^dO\
end C@;e<
].Bx"L!B
zT}vaU6
r = r(:); hrJ(] [8
theta = theta(:); m|B)A"Sm
length_r = length(r); J e|
if length_r~=length(theta) RFsUb:%V7-
error('zernfun:RTHlength', ... 4cy,'B
'The number of R- and THETA-values must be equal.') | )
cJ
end QiA}0q3]0
AJ}m2EH
~u!V_su]GY
% Check normalization: IlO,Ql
% -------------------- 0N)DHD?U
if nargin==5 && ischar(nflag) vaQsG6q[
isnorm = strcmpi(nflag,'norm'); xC5Pv">
if ~isnorm Mb"y{Fox
error('zernfun:normalization','Unrecognized normalization flag.') '>"blfix8
end % u VTf
else Y6Y"fb%K
isnorm = false; bLWY Tj
end "{+2Q
atd;)o0*0
X'\h^\yOo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sk07|9nU
% Compute the Zernike Polynomials &=S:I!9;;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OpazWcMoo
ab9ec Z
`z q+Xl
% Determine the required powers of r: ^B%ki
% ----------------------------------- gREk,4DAv
m_abs = abs(m); YH+(N
rpowers = []; H}_R `S
for j = 1:length(n) cGm?F,/`
rpowers = [rpowers m_abs(j):2:n(j)]; xR$T/] /
end 569p/?
rpowers = unique(rpowers); sMVk]Mb
x'?p?u~[
B R
% Pre-compute the values of r raised to the required powers, UpD4'!<buV
% and compile them in a matrix: S8kzAT
% ----------------------------- H)S!%(x4
if rpowers(1)==0 N)D+FV29y
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %2b^t*CQ
rpowern = cat(2,rpowern{:}); DC/Czkv9
rpowern = [ones(length_r,1) rpowern]; /zXOtaG
else V'RbTFb9Z
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (x\VGo
rpowern = cat(2,rpowern{:}); i?b9zn
end qs\Cwn!
yEjiMtQll]
21Dc.t{
% Compute the values of the polynomials: ?[.8A/:5
% --------------------------------------
mT -[I<
y = zeros(length_r,length(n)); ;!VxmZ:j[
for j = 1:length(n) K/Pw;{}
s = 0:(n(j)-m_abs(j))/2; F7j/Zuj
pows = n(j):-2:m_abs(j); -
7T`/6
for k = length(s):-1:1 k18v{)i~
p = (1-2*mod(s(k),2))* ... A15Kj#Oy
prod(2:(n(j)-s(k)))/ ... 8!.V`|@lt
prod(2:s(k))/ ... <[
2?~s
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... MCEHv}W
prod(2:((n(j)+m_abs(j))/2-s(k))); 5oCg&aT
idx = (pows(k)==rpowers); }wp/,\_
>
y(:,j) = y(:,j) + p*rpowern(:,idx); aaKf4}
end jDQ ?b\^
KIv_
AMr
if isnorm ZCZ@ZN
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0fvOA*UP
end :2M&C+f[
end K^@9\cl^
% END: Compute the Zernike Polynomials VJTO:}Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7$g$p&,VX
|kvH`&s
iSoQ1#MP)2
% Compute the Zernike functions: vOz1& |;D
% ------------------------------ ,m]5j_< }
idx_pos = m>0; 1,)
yEeHjU
idx_neg = m<0; JttDRNZAU
Q 318a0
M!i|,S
z = y; (57!{[J
if any(idx_pos) b FajK;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RzL(Gnb
end MIr+4L
if any(idx_neg) U'9z.2"}9
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i@5Fne
end ]OdZlZBsJ
&qdhxc4
m }HaJ
% EOF zernfun %>=6v}f,+