下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?=@Q12R)X
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ofrlTw&o
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? szsZFyW)+
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fdH'z:Xao
5_tK3Q8?
r;6YCI=z
X)R]a]1A
PS<tS_.
function z = zernfun(n,m,r,theta,nflag) ]#7Y@Yo
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :c/=fWM%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N my\oC^/9
% and angular frequency M, evaluated at positions (R,THETA) on the [@FeRIu8
% unit circle. N is a vector of positive integers (including 0), and WO*WAP)n
% M is a vector with the same number of elements as N. Each element nTtt$I@hW
% k of M must be a positive integer, with possible values M(k) = -N(k) fN%5D z-e
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \ g[f4xAV
% and THETA is a vector of angles. R and THETA must have the same {j=hQL3
% length. The output Z is a matrix with one column for every (N,M) KZ
>"L
% pair, and one row for every (R,THETA) pair. jeuNTDjeL
% i$ZpoM
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H><mcah
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ZxeE6M^w
% with delta(m,0) the Kronecker delta, is chosen so that the integral yURh4@
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i.dAL)V
% and theta=0 to theta=2*pi) is unity. For the non-normalized +n~rM'^4/
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ps;o[gB@5
% AkQFb2|ir
% The Zernike functions are an orthogonal basis on the unit circle. -Aym+N9
% They are used in disciplines such as astronomy, optics, and J1ro\"
% optometry to describe functions on a circular domain. V^5k>`A
% <.B> LU
% The following table lists the first 15 Zernike functions. M,U=zNPnk
% cZ2,
u,4
% n m Zernike function Normalization "=TTsxyM6P
% -------------------------------------------------- #w?%&,Kp
% 0 0 1 1 A(sx5Ynp
% 1 1 r * cos(theta) 2 jJQfCOD$
% 1 -1 r * sin(theta) 2 {rJF)\2
% 2 -2 r^2 * cos(2*theta) sqrt(6) &$Ip$"H
% 2 0 (2*r^2 - 1) sqrt(3) nPX'E`ut-V
% 2 2 r^2 * sin(2*theta) sqrt(6) *8eh%3_$h
% 3 -3 r^3 * cos(3*theta) sqrt(8) _q4dgi z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) b020U>)v
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (S 3kP5:F
% 3 3 r^3 * sin(3*theta) sqrt(8) ' g!_Flk
% 4 -4 r^4 * cos(4*theta) sqrt(10) Jj!tRZT
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <