下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Nz,8NM]
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, l1|z;
$_z
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +N9(o+UrU
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? }- Jw"|^W
`z=I}6){
#NAlje( 7
`dYM+ jpa
"))G|+tz
function z = zernfun(n,m,r,theta,nflag) r2EIhaGF;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?\QEK
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }<EA)se"
% and angular frequency M, evaluated at positions (R,THETA) on the 0.^9)v*i
% unit circle. N is a vector of positive integers (including 0), and n%Vt r
% M is a vector with the same number of elements as N. Each element 2EeWcTBU}.
% k of M must be a positive integer, with possible values M(k) = -N(k) S >P TD@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?s<'3I{F`
% and THETA is a vector of angles. R and THETA must have the same CL^MIcq?
% length. The output Z is a matrix with one column for every (N,M) WH.5vrY Z
% pair, and one row for every (R,THETA) pair. .Qpqbp 8
% 0YsC@r47wL
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G?Y2 b
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), HS|X//]
% with delta(m,0) the Kronecker delta, is chosen so that the integral uLw$`ihw
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, yK +&1U2`
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4MVa[0Y
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. y7I')}SC
% #-9;Hn4x
% The Zernike functions are an orthogonal basis on the unit circle. wn'_;0fg
% They are used in disciplines such as astronomy, optics, and fz`+j
-u
% optometry to describe functions on a circular domain. C(:tFuacpw
% Vo%MG.IPB
% The following table lists the first 15 Zernike functions. oEHUb?(p
% (ia(y(=C
% n m Zernike function Normalization FDB^JH9d
% -------------------------------------------------- xGQ958@
% 0 0 1 1 0Ts[IHpg&E
% 1 1 r * cos(theta) 2 !s;+6Sy
% 1 -1 r * sin(theta) 2 )fz)Rrr
% 2 -2 r^2 * cos(2*theta) sqrt(6) Bv^{|w
% 2 0 (2*r^2 - 1) sqrt(3) =OIxG}*
% 2 2 r^2 * sin(2*theta) sqrt(6) Oj#nF@U
% 3 -3 r^3 * cos(3*theta) sqrt(8) =kq!e
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ':71;^zXf
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Q"UQv<
% 3 3 r^3 * sin(3*theta) sqrt(8) a G^kL
% 4 -4 r^4 * cos(4*theta) sqrt(10) M"OXNPkc
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m8F-#?~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) mbBd3y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #c5 NFU}9
% 4 4 r^4 * sin(4*theta) sqrt(10) A f@IsCOJ
% -------------------------------------------------- S~+}_$
% tVUoUl
% Example 1: Mg.xGST
% S1pikwB
% % Display the Zernike function Z(n=5,m=1) f1;Pzr
% x = -1:0.01:1; Oo<^~d2=
% [X,Y] = meshgrid(x,x); uE~? 2G
% [theta,r] = cart2pol(X,Y); xp%,@]p
% idx = r<=1; r%hnl9
% z = nan(size(X)); C,R_`%b%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #/ 1
% figure M0<gea\ =
% pcolor(x,x,z), shading interp {~a=aOS
% axis square, colorbar Akf?BB3bC
% title('Zernike function Z_5^1(r,\theta)') "
1YARGu
% Zqke8q
% Example 2: s@C@q(i6
% y; Up@.IG
% % Display the first 10 Zernike functions #$xiqL
% x = -1:0.01:1; _dY6Ip%
% [X,Y] = meshgrid(x,x); ]<mXf~zg
% [theta,r] = cart2pol(X,Y); 2{zFO3i<3
% idx = r<=1; =$UDa`}D
% z = nan(size(X)); AD4KoT&
% n = [0 1 1 2 2 2 3 3 3 3]; jE.U~D)2YF
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \$ L2xd
% Nplot = [4 10 12 16 18 20 22 24 26 28]; -A>1L@N
% y = zernfun(n,m,r(idx),theta(idx)); [k(oQykq
% figure('Units','normalized') p%_#"dkC7
% for k = 1:10 8Letpygm
% z(idx) = y(:,k); h>w4{ u0
% subplot(4,7,Nplot(k)) dOArXp`s
% pcolor(x,x,z), shading interp R=~+- ^O!
% set(gca,'XTick',[],'YTick',[]) "gXz{$q
% axis square `#hdb=3
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6;U]l.
% end oJw~g[
% F.mS,W]
% See also ZERNPOL, ZERNFUN2. eLcP.;Z
RQ#gn
.,[zI@9
% Paul Fricker 11/13/2006 |:n4t6
4flyV -
zJS,f5L6)
}wrZP}zM>
RuDn1h#u{
% Check and prepare the inputs: S+A'\{f
% ----------------------------- ig^9lM'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) mmm025.
error('zernfun:NMvectors','N and M must be vectors.') E_]L8UC;m
end 't
\:@-tQ
wxpE5v+f|
2/f:VB?<T
if length(n)~=length(m) ,JyE7h2%i
error('zernfun:NMlength','N and M must be the same length.') ?y!0QAIXK
end j8?z@iG
%B`MO-
Y[9x\6
_E
n = n(:); YbF}(iM
m = m(:); W'6~`t
if any(mod(n-m,2)) vbzeabm
error('zernfun:NMmultiplesof2', ... g<O*4
]=
'All N and M must differ by multiples of 2 (including 0).') A@#9X'C$^
end @ 'rk[S}A
sY!PXD0Q
g,U~3#
if any(m>n) R| t"(6
error('zernfun:MlessthanN', ... +Ck F#H ~
'Each M must be less than or equal to its corresponding N.') g
PogV(V
end utKtxLX"
7. 9n
:-7`Lfi@%
if any( r>1 | r<0 ) iPX6r4-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') l~Je]Qt
end RekTWIspT/
QN:gSS{30
s2L|J[Y"s
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) C,+6g/{
error('zernfun:RTHvector','R and THETA must be vectors.') )h&s.k
end t<sg8U.
v;AMx-_WH
W+V#z8K
r = r(:); pzmm cjEC
theta = theta(:); Q3,`'[ F
length_r = length(r); aN{C86wx
if length_r~=length(theta) h.FC:ym"
error('zernfun:RTHlength', ... *`[dC,+`.
'The number of R- and THETA-values must be equal.') .j:[R.
end +J30OT8
@kC>+4s!
Lc(D2=%
% Check normalization: Lzu;"#pw
% -------------------- H[?~u+
if nargin==5 && ischar(nflag) 1C(6.7l
isnorm = strcmpi(nflag,'norm'); 5*~Mv<#
if ~isnorm G^]T
error('zernfun:normalization','Unrecognized normalization flag.') T1m'+^?"
end 4thLK8/c5g
else o-2FGM`*VB
isnorm = false; gBz$RfyF
end bs$x%CR
@@K@;Jox
#$7 z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^l;nBD#nJ
% Compute the Zernike Polynomials K[Bq,nPo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yf
>SV #
cMOvM0f
3>qUYxG8
% Determine the required powers of r: R?!xO-^t
% ----------------------------------- FU/yJy
m_abs = abs(m); \)859x&(
rpowers = []; L+2!Sc,>
for j = 1:length(n) 0o2o]{rM{2
rpowers = [rpowers m_abs(j):2:n(j)]; GCCmUR9d
end tyFhp:ZB
rpowers = unique(rpowers); |4//%Ll/
{^gbS
itb0dF1G
% Pre-compute the values of r raised to the required powers, Z)Y--`*
% and compile them in a matrix: ]^MOFzSz~
% ----------------------------- {?m;DYv
if rpowers(1)==0 Dv?'(.z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z#YkAQHv5
rpowern = cat(2,rpowern{:}); ?F' gh4
rpowern = [ones(length_r,1) rpowern]; #=/eu=
else flp<QT
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &\8.y2=9p
rpowern = cat(2,rpowern{:}); l4u@0;6P
end &RP!9{F<
Q>f^*FyOw<
Q>[*Y/`I
% Compute the values of the polynomials: } Zu2GU$6
% -------------------------------------- S@]7
y = zeros(length_r,length(n)); -IhFPjQ
for j = 1:length(n) .QOQqU*2I
s = 0:(n(j)-m_abs(j))/2; d&'z0]mOe
pows = n(j):-2:m_abs(j); $,"{g<*k;
for k = length(s):-1:1 U*F|Z4{W
p = (1-2*mod(s(k),2))* ... 9frP`4<)
prod(2:(n(j)-s(k)))/ ... 49n.Gc
prod(2:s(k))/ ... opTDW)
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... iA*Z4FKkT
prod(2:((n(j)+m_abs(j))/2-s(k))); wJ-G7V,)
idx = (pows(k)==rpowers); 1L1_x'tT%
y(:,j) = y(:,j) + p*rpowern(:,idx); lQQXV5NV
end )\_xB_K\
}T%;G /W
if isnorm -e7|DXj
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7 y}b (q=
end rm2"pfs
end O @fX
+W?U
% END: Compute the Zernike Polynomials _l]`Og@Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YAnt}]u!"
L(Q v78F
]4SnOSV?S
% Compute the Zernike functions: p'1n'|$e
% ------------------------------ p#~'xq
idx_pos = m>0; `HU`=a&d
idx_neg = m<0; 8[5%l7's
}CZ,WJz=
EB jiSQw
z = y; 2uS&A
\
if any(idx_pos) cg7NtY
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G9 z Q{E
end wke$
if any(idx_neg) ~6!=_"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y%p"RB[
end 9+@_ZI-
5'\/gvxIC
Gw!jYnU
% EOF zernfun ?YXl.yj