下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, o&$lik
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, A* Pz-z>z
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? b' ~WS4xlD
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? [8oX[oP
r>CBp$
soX^$l
%5@>
nC?`[
ltNY8xrdGN
function z = zernfun(n,m,r,theta,nflag) :()K2<E
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |)*!&\Ch
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kV!1k<f
% and angular frequency M, evaluated at positions (R,THETA) on the C#3&,G W
% unit circle. N is a vector of positive integers (including 0), and #MiO4zXgd
% M is a vector with the same number of elements as N. Each element [
<k&]Kv
% k of M must be a positive integer, with possible values M(k) = -N(k) d5R2J:dI
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Wvl'O'R
% and THETA is a vector of angles. R and THETA must have the same s;]"LD@
% length. The output Z is a matrix with one column for every (N,M) uX&h~qE/
% pair, and one row for every (R,THETA) pair. W2M[w_~QE
% $Q,]2/o6n
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wub7w#
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TB84}
% with delta(m,0) the Kronecker delta, is chosen so that the integral |8GLS4.]t
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +$/NTUOP
% and theta=0 to theta=2*pi) is unity. For the non-normalized wnQi5P+
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "1%k"+&
% Q7/Jyx|
% The Zernike functions are an orthogonal basis on the unit circle. /BhP`a%2Q
% They are used in disciplines such as astronomy, optics, and l\d[S]
% optometry to describe functions on a circular domain. .SOCWznb
% T|
R!Aw.
% The following table lists the first 15 Zernike functions. uigzf^6,
% n,_9Eh#WD
% n m Zernike function Normalization o? K>ji!
% -------------------------------------------------- .SSPJY(
% 0 0 1 1 .G"T;w6d
% 1 1 r * cos(theta) 2 oU*e=uehj
% 1 -1 r * sin(theta) 2 -Hy>
z
% 2 -2 r^2 * cos(2*theta) sqrt(6) -Y N(j\
% 2 0 (2*r^2 - 1) sqrt(3) G%h+KTw
% 2 2 r^2 * sin(2*theta) sqrt(6) uv{*f)j/d
% 3 -3 r^3 * cos(3*theta) sqrt(8) wOrj-Smx
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) u9]M3>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6{fo.M?
% 3 3 r^3 * sin(3*theta) sqrt(8) =eh!eZ9
% 4 -4 r^4 * cos(4*theta) sqrt(10) V|{~9^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qP=a:R-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Qk@BM
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TY` R_
% 4 4 r^4 * sin(4*theta) sqrt(10) [?g}<fa
% -------------------------------------------------- |O"Pb`V+
% !MmbwB'
% Example 1: fQ_tXY
% PMvm4<
% % Display the Zernike function Z(n=5,m=1) kY'C'9p
% x = -1:0.01:1; OGq=OW
% [X,Y] = meshgrid(x,x); zW. Ltz
% [theta,r] = cart2pol(X,Y); 7~QAprwVS
% idx = r<=1; k9VWyq__
% z = nan(size(X)); 2j1HN
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ww'B!Ml>F
% figure {`Mb ),G
% pcolor(x,x,z), shading interp VjZb\
d4
% axis square, colorbar L%pAEoSG
% title('Zernike function Z_5^1(r,\theta)') sp0_f;bC
% cwQ*P$n
% Example 2: S>"C}F$X
% 1WY$Vs
% % Display the first 10 Zernike functions X[?E{[@Z
% x = -1:0.01:1; \Z~
<jv
% [X,Y] = meshgrid(x,x); gs~u8"B
% [theta,r] = cart2pol(X,Y); ogya~/
% idx = r<=1; H3Zt3l1u+
% z = nan(size(X)); ,.Lo)[(
% n = [0 1 1 2 2 2 3 3 3 3]; 4(,X.GVY/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; q'X#F8v
% Nplot = [4 10 12 16 18 20 22 24 26 28]; v)*eLX$
% y = zernfun(n,m,r(idx),theta(idx)); .l,NmF9
% figure('Units','normalized') !wro7ilMB
% for k = 1:10 ER4#5gd
% z(idx) = y(:,k); y35e3
% subplot(4,7,Nplot(k)) OSC_-[b-
% pcolor(x,x,z), shading interp azTiY@/
% set(gca,'XTick',[],'YTick',[]) 5xH*&GpL7
% axis square [[ }ukG4
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) e)F_zX
% end Y`xAJ#=
,i
% li}>xDSQ4
% See also ZERNPOL, ZERNFUN2. V:AA{<
mxwG~a'_
oL9ELtb]s
% Paul Fricker 11/13/2006 JNu+e#.Y
}F3}"Ik'L
F-Ku0z]){?
;Z,l};b
B{V(g"dM
% Check and prepare the inputs: Jf@Xz7{z
% ----------------------------- BbzIQg:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LM!@LQAMY
error('zernfun:NMvectors','N and M must be vectors.') j?!/#'
end RF\h69]:I
MLmv+
2nSz0 .
if length(n)~=length(m) @\=4 Rin/q
error('zernfun:NMlength','N and M must be the same length.') tZr_{F@
end U8zs=tA
P;ZVv{mT
8%b-.O:_$
n = n(:); JS&;7Z$KX
m = m(:); G4uOY?0N
if any(mod(n-m,2)) (IAR-957pN
error('zernfun:NMmultiplesof2', ... h>/L4j*Z
'All N and M must differ by multiples of 2 (including 0).') EDA6b]
end :,'.b|Tl.b
u>2opI~m
}&EdA;/o_
if any(m>n) 2]tW&y_i
error('zernfun:MlessthanN', ... SFqq(K2u
'Each M must be less than or equal to its corresponding N.') :IozWPs*
end *+J`Yk7}
Lcs?2c:%
{ka={7
if any( r>1 | r<0 ) 4}<[4]f?|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,u.A[{@py
end +a'nP=e&
z+nq<%"'
4uv*F:eo
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p4Xhs@.k
error('zernfun:RTHvector','R and THETA must be vectors.') "s\himoa
end XeAH.i<
ZgxpHo
ESkhCDU
r = r(:); B)&z% +
theta = theta(:); tLGNYW!K
length_r = length(r); wUzMB]w
if length_r~=length(theta) HU-#xK
error('zernfun:RTHlength', ... j|y"Lcq
'The number of R- and THETA-values must be equal.') 5>h#
hcL
end OUm,;WNLf
WAb@d=H{+>
AD"L>7
% Check normalization: I$I',x5Z
% -------------------- stOD5yi
if nargin==5 && ischar(nflag) d-#yN:}0
isnorm = strcmpi(nflag,'norm'); hDTM\>.c;s
if ~isnorm lZD"7om
error('zernfun:normalization','Unrecognized normalization flag.') (KphAA8
end XC[bEp$
else {Ytqs(`
isnorm = false; %r:Uff@
end WL<f!
Kd3EZo.
>]?!9@#IH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OJ)XJL
% Compute the Zernike Polynomials S6c>D&Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WNiM&iU
X@@7Qk
t~
z;G%a
% Determine the required powers of r: |`@7G`x
% ----------------------------------- c.;<+dYsm*
m_abs = abs(m); ++d[YhO
rpowers = []; 5Fa/Q>N
for j = 1:length(n) X"v)9p
rpowers = [rpowers m_abs(j):2:n(j)]; 7iH%1f
end I<$m%
rpowers = unique(rpowers); w;V+)r?w
UAtdRVi]M
}j|YX&`p
% Pre-compute the values of r raised to the required powers, SHe547X1
% and compile them in a matrix: :74G5U8%
% ----------------------------- >2LlBLQ
if rpowers(1)==0 biAa&
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8,?*eYNjb
rpowern = cat(2,rpowern{:}); gqACIXR
rpowern = [ones(length_r,1) rpowern]; !FbW3p f
else 3qrjb]E%}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rA1;DSw6E[
rpowern = cat(2,rpowern{:}); ~{np G
end 604^~6
J"yq)0
p`oHF 5
% Compute the values of the polynomials: 9lSs;zm{Q
% -------------------------------------- _t\)W(E&
y = zeros(length_r,length(n)); 5@{~830
for j = 1:length(n) (Z at|R.F
s = 0:(n(j)-m_abs(j))/2; *vIC9./
pows = n(j):-2:m_abs(j); O}q(2[*i
for k = length(s):-1:1 >twog}%
p = (1-2*mod(s(k),2))* ... "o$)z'q
prod(2:(n(j)-s(k)))/ ... B3V+/o6
prod(2:s(k))/ ... bODyJ7=[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~DUOL~E
prod(2:((n(j)+m_abs(j))/2-s(k))); {$)pkhJ
idx = (pows(k)==rpowers); ,M$J
yda
y(:,j) = y(:,j) + p*rpowern(:,idx); ]YwvwmZ
end )r:gDd#/X
'Rw*WK
if isnorm <+e&E9;>6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1Et{lrgh
f
end u#v];6N
end , @dhJ8/
% END: Compute the Zernike Polynomials #l-/!j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 17B`
;2iDa
'V(9ein^Q
% Compute the Zernike functions: @7OE:& #V
% ------------------------------ -bQi4
idx_pos = m>0; YEhPAQNj
idx_neg = m<0; 5:X^Q.f;
n_46;lD
c"^g*i2&0
z = y; 84M*)cKR~
if any(idx_pos) U&SgB[QHO
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WEk3
4crk
end \xexl1_;
if any(idx_neg) }i@%$Ixsn
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); rJ fO/WK
end +{"w5o<CO
CeW}zkcT
o9AwW
% EOF zernfun :N
]H"u9X