切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9047阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2OpA1$n6  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, j_d}?jh  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? a& 0g0n6  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Sed 8Q-m  
    /RJ]MQ\*O  
    U\Y0v.11  
    c$,1j%[)  
    e|:\Ps`8  
    function z = zernfun(n,m,r,theta,nflag) QDW,e]A  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8H-yT1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |J4sQ!%K  
    %   and angular frequency M, evaluated at positions (R,THETA) on the QuEX|h,F  
    %   unit circle.  N is a vector of positive integers (including 0), and OD7^*j(p`  
    %   M is a vector with the same number of elements as N.  Each element Y=|p}>.}  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;`^_9 K  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, /ojx$Um  
    %   and THETA is a vector of angles.  R and THETA must have the same Q>Klkd5(  
    %   length.  The output Z is a matrix with one column for every (N,M) ;6 W[%{  
    %   pair, and one row for every (R,THETA) pair. XYR q"{Id  
    % 9QX!HQ|5y8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike m-$}'mEO  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %\-E R !b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m8PS84."]M  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FRR05%K  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5.ab/uk;M  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f.$[?Fi  
    % 7b08Lo7b  
    %   The Zernike functions are an orthogonal basis on the unit circle. m5 sW68  
    %   They are used in disciplines such as astronomy, optics, and R~iv%+  
    %   optometry to describe functions on a circular domain. cH*")oD  
    % %\,9S`0  
    %   The following table lists the first 15 Zernike functions. Z[w}PN,xV  
    % Q*I8RAfd  
    %       n    m    Zernike function           Normalization 9#7W+9  
    %       -------------------------------------------------- i$%Bo/Y   
    %       0    0    1                                 1 u; KM[FmK  
    %       1    1    r * cos(theta)                    2 WPsfl8@D  
    %       1   -1    r * sin(theta)                    2 .xwskzJ3  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) T0dD:sN  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L,.~VNy-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) n_; s2,2r  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D|Q7dIZm  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) q=->) &D%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Y!oLNGY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) vE^tdzAG  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) LA_{[VWYp>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E"VF BKB  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) \8$~ i  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *GoTN  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $m#^0%  
    %       -------------------------------------------------- XX /s@C  
    % :,JjN&  
    %   Example 1: pD({"A.x9z  
    % NW5OLa")J<  
    %       % Display the Zernike function Z(n=5,m=1) o$</At  
    %       x = -1:0.01:1; ? -:2f#bC  
    %       [X,Y] = meshgrid(x,x); 2Q%7J3I  
    %       [theta,r] = cart2pol(X,Y); 4 j=K3m  
    %       idx = r<=1; V:L%GWU  
    %       z = nan(size(X)); .,z6a  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %gO/mj3*  
    %       figure S=-$:65  
    %       pcolor(x,x,z), shading interp 5z 0VMt  
    %       axis square, colorbar PlH~um[J  
    %       title('Zernike function Z_5^1(r,\theta)') h-1?c\Qq:  
    % T4wk$R L  
    %   Example 2: Z[IM\# "  
    % 1Zn8CmE V  
    %       % Display the first 10 Zernike functions \Aro Sy9  
    %       x = -1:0.01:1; bD,X.  
    %       [X,Y] = meshgrid(x,x); u*Xp%vNe  
    %       [theta,r] = cart2pol(X,Y); 2H4vK]]Nl  
    %       idx = r<=1; sq`Xz 8u  
    %       z = nan(size(X)); \t=0rFV)t  
    %       n = [0  1  1  2  2  2  3  3  3  3]; v5'`iO0o  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; seEo)m`d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )%Fwfb  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7xeqs q  
    %       figure('Units','normalized') r~)fAb?  
    %       for k = 1:10 .+u b\  
    %           z(idx) = y(:,k); V2}\]x'1  
    %           subplot(4,7,Nplot(k)) 9r]|P}yuS  
    %           pcolor(x,x,z), shading interp 8-x-?7  
    %           set(gca,'XTick',[],'YTick',[]) \wA:58 -j  
    %           axis square Kb(11$U  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b*?u+tWP_  
    %       end =D$ED^W  
    % t([}a ~1}  
    %   See also ZERNPOL, ZERNFUN2. 1`7zYW&L  
    4Wiy2  
    [y@*vQw  
    %   Paul Fricker 11/13/2006 klJ21j0Bb2  
    XJe=+_K9  
    @/<UhnI  
     viAAb  
    (|^m9v0:  
    % Check and prepare the inputs: 7m-%  
    % ----------------------------- O<cP1TF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  .fl r  
        error('zernfun:NMvectors','N and M must be vectors.') @M"gEeI9  
    end t 6nRg  
    *[]E 5U  
    ) 6)bI.BY  
    if length(n)~=length(m) D8Fi{?A#FV  
        error('zernfun:NMlength','N and M must be the same length.') y+ze`pL?  
    end 2HFn\kjj.s  
    =Hd yra  
    Y}c/wF7o  
    n = n(:); 7_i8'(``  
    m = m(:); mtv8Bm=<  
    if any(mod(n-m,2)) Lg7A[\c ~  
        error('zernfun:NMmultiplesof2', ... GjhTF|  
              'All N and M must differ by multiples of 2 (including 0).') d5m -f/  
    end 3^y(@XFt  
    T-%=tY+-  
    }9S}?R  
    if any(m>n) f(5(V %  
        error('zernfun:MlessthanN', ... 6^Wep- $  
              'Each M must be less than or equal to its corresponding N.') O{X~,Em=q  
    end Tzex\]fw  
    BNK]Os  
    &j 4pC$Dj  
    if any( r>1 | r<0 ) O{LCHtN  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ki;SONSV~|  
    end E]`7_dG+T  
    }S/i3$F0~  
    dDPQDIx  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G>V6{g2Q  
        error('zernfun:RTHvector','R and THETA must be vectors.') {.:$F3T  
    end p u(mHB  
    vamZKm~p  
    @z@%vr=vX  
    r = r(:); x z _sejKB  
    theta = theta(:); xR1G  
    length_r = length(r); A;TP~xq\  
    if length_r~=length(theta) /\8I l+0  
        error('zernfun:RTHlength', ... "313eeIt%i  
              'The number of R- and THETA-values must be equal.') FO2e7p^Q  
    end o <q*3L5  
    WUYI1Ij;  
    $O%{l.-O  
    % Check normalization: j!u)V1,  
    % -------------------- kTvM,<  
    if nargin==5 && ischar(nflag) ~Bzzu % S  
        isnorm = strcmpi(nflag,'norm'); IP62|~Ap  
        if ~isnorm ShB]U5b:k  
            error('zernfun:normalization','Unrecognized normalization flag.') EA& 3rI>U)  
        end C%XO|sP  
    else s*izhjjX  
        isnorm = false; ~K;QdV=YX  
    end n<ZPWlJ  
    LIZB!S@V\  
    C ^Y\?2h1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =c[tHf  
    % Compute the Zernike Polynomials =hPXLCeC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "%-Vrb=:Y  
    6CY&pbR  
    "7B}hZ^)W  
    % Determine the required powers of r: 8`q7Yss6F  
    % ----------------------------------- 5'lPXKn+L  
    m_abs = abs(m); EbC!tR  
    rpowers = []; xVm-4gB  
    for j = 1:length(n) X,QsE{  
        rpowers = [rpowers m_abs(j):2:n(j)]; &R94xh%@(  
    end -pu5O 9 @  
    rpowers = unique(rpowers); cr1x CPJj  
    ]b4WfIu  
    [xMa^A>p  
    % Pre-compute the values of r raised to the required powers, $]2)r[eA)  
    % and compile them in a matrix: f`9Mcli !  
    % ----------------------------- wcGK *sWG-  
    if rpowers(1)==0 *pKTJP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ++0)KSvw  
        rpowern = cat(2,rpowern{:}); F-yY(b]$  
        rpowern = [ones(length_r,1) rpowern]; D|;O9iks#  
    else r"7n2   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #.Rn6|V/4  
        rpowern = cat(2,rpowern{:}); sXIYl% d  
    end </h^%mnd  
    isQ(O  
    .JhQxXj  
    % Compute the values of the polynomials: ht3.e[%'b  
    % -------------------------------------- ~4~`bT9  
    y = zeros(length_r,length(n)); ]?Ef0?44  
    for j = 1:length(n) }Z!D?(  
        s = 0:(n(j)-m_abs(j))/2; tq3Wga!5  
        pows = n(j):-2:m_abs(j); *r7v Dc  
        for k = length(s):-1:1 7},A. q  
            p = (1-2*mod(s(k),2))* ... kx"1 0Vw  
                       prod(2:(n(j)-s(k)))/              ... YDt+1Kw}D  
                       prod(2:s(k))/                     ... )#=J<OpG  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?e7]U*jEU  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^t;z;.g  
            idx = (pows(k)==rpowers); r~4uIUE{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); J$dwy$n  
        end P15 H[<:Fz  
         [M?2axOC  
        if isnorm p9(y b  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4fEDg{T  
        end %,$n^{v  
    end KpLmpK1  
    % END: Compute the Zernike Polynomials +X}i%F'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {zdMmpQF  
    rqdwQ  
    ]MbPivM  
    % Compute the Zernike functions: mgs(n5V5  
    % ------------------------------ V~J5x >O  
    idx_pos = m>0; &d#R'Z  
    idx_neg = m<0; :+rGBkw1m  
    #(8|9  
    bDI%}k9#  
    z = y; ]Bw0Qq F#  
    if any(idx_pos) 1>!LK_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G0cG%sIl  
    end J=4>zQLW  
    if any(idx_neg) EY}:aur  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); eI #Gx_mg  
    end =YO ]m<  
    mkl{Tp*  
    |{jT+  
    % EOF zernfun *GP2>oEM  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  r924!zdbR  
    4;`z6\u9-  
    DDE还是手动输入的呢? ldv@C6+J  
    Y$'j9bUJ  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究