切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9202阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [p +h b  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6c3+q+#J2  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "Iy @PR?>  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $h Is ab_  
    }@pe `AF^  
    G B+U>nf  
    XB &-k<C  
    r"a4 ;&mf  
    function z = zernfun(n,m,r,theta,nflag) 2 AZ[gr@c  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xf.w( -  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5@+8*Fdk  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 5Dy800.B2  
    %   unit circle.  N is a vector of positive integers (including 0), and /:a~;i  
    %   M is a vector with the same number of elements as N.  Each element sa~.qmqu  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :;u~M(R  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, R{r0dK"_  
    %   and THETA is a vector of angles.  R and THETA must have the same Zcg=a_  
    %   length.  The output Z is a matrix with one column for every (N,M) %$ ^yot  
    %   pair, and one row for every (R,THETA) pair. lA39$oJ  
    % 8KpG0DC  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |5}{4k~9J  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <R:KR(bT  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral V*U7-{ *a  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uOEFb  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {PHxm  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C!SB5G>OH  
    % %}G:R !4 d  
    %   The Zernike functions are an orthogonal basis on the unit circle. _4z>I/R>Z  
    %   They are used in disciplines such as astronomy, optics, and 2-| oN/FD  
    %   optometry to describe functions on a circular domain. )gNHD?4x  
    % '3wte9E/  
    %   The following table lists the first 15 Zernike functions. 3\FiQ/?  
    % ?-O(EY1E  
    %       n    m    Zernike function           Normalization bwo"s[w  
    %       -------------------------------------------------- t-SGG{  
    %       0    0    1                                 1 KM|[:v  
    %       1    1    r * cos(theta)                    2 17G7r\iNYq  
    %       1   -1    r * sin(theta)                    2 Mg95us  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) kTG}>I  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |pr~Ohz  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) nX>k}&^L  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) +MOUO$;fGt  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9dw02bY`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #]I:}Q51  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) GZ@!jF>!u  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) L[+65ce%*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8 k+Ctk  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) nF}]W14x  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tiwhG%?2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) >k^=+  
    %       -------------------------------------------------- udg;jR-^  
    % jHB,r^:'  
    %   Example 1: Yc#oGCt  
    % P G) dIec  
    %       % Display the Zernike function Z(n=5,m=1) 9F k wtF  
    %       x = -1:0.01:1; dOqwF iO  
    %       [X,Y] = meshgrid(x,x); q{c6DCc]\  
    %       [theta,r] = cart2pol(X,Y); h vGb9  
    %       idx = r<=1; 0_Etm83Wq6  
    %       z = nan(size(X)); f&^K>Jt1@#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); O>w $  
    %       figure @8 @cpm  
    %       pcolor(x,x,z), shading interp ~v9\4O  
    %       axis square, colorbar 9ZG.%+l  
    %       title('Zernike function Z_5^1(r,\theta)') bQ0m=BzF  
    % w0moC9#$?  
    %   Example 2: Z/hSH 0(~  
    % -CY?~W L&  
    %       % Display the first 10 Zernike functions " I`<s<  
    %       x = -1:0.01:1; vyqlP;K  
    %       [X,Y] = meshgrid(x,x); ImklM7A  
    %       [theta,r] = cart2pol(X,Y); V|xR`Q  
    %       idx = r<=1; IcPIOCmOc  
    %       z = nan(size(X)); ^#exs Xy  
    %       n = [0  1  1  2  2  2  3  3  3  3]; K*;=^PY  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3,tKqR7g  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28];  UX2`x9  
    %       y = zernfun(n,m,r(idx),theta(idx)); H*yX Iq:  
    %       figure('Units','normalized') j4H,*fc  
    %       for k = 1:10 8!me$k&  
    %           z(idx) = y(:,k); sP5PYNspA  
    %           subplot(4,7,Nplot(k)) Y.F:1<FAtf  
    %           pcolor(x,x,z), shading interp :(A]Bm3  
    %           set(gca,'XTick',[],'YTick',[]) lGjmw"/C  
    %           axis square athU  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bbiDY  
    %       end GIo&zPx  
    % vYmRW-1Zxq  
    %   See also ZERNPOL, ZERNFUN2. "z< =S  
    v2JC{XqrI  
    hRxR2  
    %   Paul Fricker 11/13/2006 3boINmX  
    OyZgg(iN  
    ![U|2x   
    N\HOo-X  
    gjvKrg  
    % Check and prepare the inputs: $0D]d.w=  
    % ----------------------------- <G\q/!@_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '(&.[Pk:"  
        error('zernfun:NMvectors','N and M must be vectors.') ph%/;?wY  
    end /S\P=lcb  
    [P)HVFy|l  
    h&[]B*BLr  
    if length(n)~=length(m) \ tF><  
        error('zernfun:NMlength','N and M must be the same length.') Z!~~6Sq  
    end yXR$MT+~  
    y&-j NOKLM  
    #s)6u?N  
    n = n(:); /u*((AJ?Qv  
    m = m(:); 5R/k -h^`  
    if any(mod(n-m,2)) 4[Hf[.  
        error('zernfun:NMmultiplesof2', ... hqD]^P>l1  
              'All N and M must differ by multiples of 2 (including 0).') ISa2|v;M  
    end &JtK<g  
    _rY,=h{+  
    b,]h X  
    if any(m>n) "S_t%m&R  
        error('zernfun:MlessthanN', ... ;6U=fBp7<  
              'Each M must be less than or equal to its corresponding N.') +/-#yfn!TR  
    end O9dIobu4  
    M@E*_U!U  
    m/Q@-  
    if any( r>1 | r<0 ) >j|.pi  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') bQr H8)  
    end b Zn:q[7  
    ,L6d~>=41  
    4! XB?-.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7Xw;TA  
        error('zernfun:RTHvector','R and THETA must be vectors.') B'lWs;  
    end 506B =  
    k*w]a  
    ,<d[5;7x  
    r = r(:); K;sH0*  
    theta = theta(:); cX> a>U  
    length_r = length(r); V; Yl:*  
    if length_r~=length(theta) 9.!6wd4mw  
        error('zernfun:RTHlength', ... _b&Mrd  
              'The number of R- and THETA-values must be equal.') 9H_2Y%_  
    end nws '%MK)  
    |-e*^|  
    &<_*yl p  
    % Check normalization: e_kP=|u)g  
    % -------------------- |ITp$  _S  
    if nargin==5 && ischar(nflag) p&>*bF,  
        isnorm = strcmpi(nflag,'norm'); hJ (Q^Z  
        if ~isnorm N&]v\MjI62  
            error('zernfun:normalization','Unrecognized normalization flag.') kn^RS1m  
        end rh5R kiF~  
    else E5~HH($b  
        isnorm = false; JN .\{ Y  
    end 'nz;|6uC  
    0~iC#lHO  
    }/nbv;)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &na#ES $X,  
    % Compute the Zernike Polynomials %g5TU 6WP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j&6,%s-M`a  
    D^baXp8  
    Kyt.[" p  
    % Determine the required powers of r: 5bYU(]  
    % ----------------------------------- $3[IlQ?  
    m_abs = abs(m); y< W?hE[  
    rpowers = []; CC0@RU  
    for j = 1:length(n) `MA ee8u'  
        rpowers = [rpowers m_abs(j):2:n(j)]; w},' 1  
    end g{.>nE^Sc5  
    rpowers = unique(rpowers); ! @{rk p  
    6}='/d-[  
    [^EU'lewnW  
    % Pre-compute the values of r raised to the required powers, )@09Y_9r  
    % and compile them in a matrix: -wH#B<'  
    % ----------------------------- L(\sO=t  
    if rpowers(1)==0 an_qE}P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L$=@j_V2  
        rpowern = cat(2,rpowern{:}); Q&] }`Rp=  
        rpowern = [ones(length_r,1) rpowern]; 7F5 t&  
    else !C * %,Ak  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jJk M:iR  
        rpowern = cat(2,rpowern{:}); lTY%,s  
    end dIQ7u  
    "nPmQ  
    O#  .^}  
    % Compute the values of the polynomials: @kvgq 0ab  
    % -------------------------------------- dB+x,+%u+  
    y = zeros(length_r,length(n)); kMWu%,s4  
    for j = 1:length(n) 8 !Pk1P  
        s = 0:(n(j)-m_abs(j))/2; q>/# P5V  
        pows = n(j):-2:m_abs(j); 2.u d P  
        for k = length(s):-1:1 (Z"QHfO'  
            p = (1-2*mod(s(k),2))* ... (f#QETiV  
                       prod(2:(n(j)-s(k)))/              ... /=w9bUj5v  
                       prod(2:s(k))/                     ... fu?5gzT+b  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,Xs%Cg_Ig  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); )X@Obg  
            idx = (pows(k)==rpowers); MH[Zw$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); sDT(3{)L7  
        end 8ar2N)59  
         /ZqBO*]  
        if isnorm e48`cX\E  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %;yDiQ!+  
        end 9r-]@6;  
    end #t:]a<3Y2  
    % END: Compute the Zernike Polynomials Pk9s~}X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ePdM9%  
    ZKzXSI4  
    sfNXIEr^  
    % Compute the Zernike functions: xx0s`5  
    % ------------------------------ 4d4le  
    idx_pos = m>0; Rn~FCj,-  
    idx_neg = m<0; Qmle0ae  
    |7n&I`#  
    i/9QOw~  
    z = y; M[$(Pu  
    if any(idx_pos) $C0Nv Jf  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,C2qP3yg  
    end mt3j- Mw  
    if any(idx_neg) b/Y9fQ n  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?P@fV'Jo  
    end K&0op 4&  
    :_JZn`Cab  
    <9 lZ%j;  
    % EOF zernfun WJ=DTON  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  heoOOP(#  
    vM~/|)^0sW  
    DDE还是手动输入的呢? @3wI(l[  
    fOiLb.BW  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究