下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E~Up\f
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #Mem2cz
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? i2ml[;*,N
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |_xiG~
$hE'b9qx
ZV<y=F*~f
RoM*Qjw
85@6uBh
function z = zernfun(n,m,r,theta,nflag) f s"V'E2a
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?xTeio44
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $E~Lu$|
% and angular frequency M, evaluated at positions (R,THETA) on the bQN4ozSi
% unit circle. N is a vector of positive integers (including 0), and rgZrE;*;
% M is a vector with the same number of elements as N. Each element QsF<=b~
% k of M must be a positive integer, with possible values M(k) = -N(k) eNC5' Z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, BK\~I
% and THETA is a vector of angles. R and THETA must have the same O7CYpn4<7
% length. The output Z is a matrix with one column for every (N,M) fm:{&(
% pair, and one row for every (R,THETA) pair. k#r7&Y
% uy-Ncy
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i K[8At"Xo
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2u;fT{(
% with delta(m,0) the Kronecker delta, is chosen so that the integral I/-w65J]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wG[l9)lz
% and theta=0 to theta=2*pi) is unity. For the non-normalized Mc3h
R0
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,Y5 4(>>%
%
;Wh[q*A
% The Zernike functions are an orthogonal basis on the unit circle. +~k,4
% They are used in disciplines such as astronomy, optics, and n *0F
% optometry to describe functions on a circular domain. VM|)\?Q
% <0qY8
% The following table lists the first 15 Zernike functions. )3\rp$]1
% AX Jj"hN
% n m Zernike function Normalization
F%$Ws>l
% -------------------------------------------------- E
:gArQ
% 0 0 1 1 os ud
% 1 1 r * cos(theta) 2 A_
z:^9
% 1 -1 r * sin(theta) 2 Z$K%@q,10+
% 2 -2 r^2 * cos(2*theta) sqrt(6) 54_m{&hb
% 2 0 (2*r^2 - 1) sqrt(3) ^n5QKHD
% 2 2 r^2 * sin(2*theta) sqrt(6) sh3}0u+
% 3 -3 r^3 * cos(3*theta) sqrt(8) xW )8mv?4n
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [~JN n
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) =n?@My?;
% 3 3 r^3 * sin(3*theta) sqrt(8) .kDCcnm
% 4 -4 r^4 * cos(4*theta) sqrt(10) EqwA8?M
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sW`iXsbWM>
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Y{{,62D
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L7'n<$F
% 4 4 r^4 * sin(4*theta) sqrt(10) Ase 1 R=0
% -------------------------------------------------- @WUCv7U
% V:np cKpu
% Example 1: A[Xw |9
% :9>nY
% % Display the Zernike function Z(n=5,m=1) du TSU9
% x = -1:0.01:1; +o5rR|)M+
% [X,Y] = meshgrid(x,x); /;[')RO`
% [theta,r] = cart2pol(X,Y); <m\TZQBD
% idx = r<=1; e=C,`&sz
% z = nan(size(X)); R'_[RHFC
% z(idx) = zernfun(5,1,r(idx),theta(idx)); BW1O1zIh\
% figure 3?<vnpN=5d
% pcolor(x,x,z), shading interp WfI~l)
% axis square, colorbar .4-S|]/d,
% title('Zernike function Z_5^1(r,\theta)') 34:=A0z
% ~Y$1OA8
% Example 2: ^B>6!
% qyC"}y-
% % Display the first 10 Zernike functions nfR5W~%*:
% x = -1:0.01:1; +z_0 ?x
% [X,Y] = meshgrid(x,x); ?z.`rD$}(n
% [theta,r] = cart2pol(X,Y); ""=Vt]
% idx = r<=1; {w(N9Va,(
% z = nan(size(X)); :>u{BG;=79
% n = [0 1 1 2 2 2 3 3 3 3]; q
Sah _N
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; <XU]%}o
% Nplot = [4 10 12 16 18 20 22 24 26 28]; G"(!5+DLy
% y = zernfun(n,m,r(idx),theta(idx)); 6{ Eh={:b
% figure('Units','normalized') /6fs h7 \
% for k = 1:10 `3Y+:!q
% z(idx) = y(:,k); nDfDpP&
% subplot(4,7,Nplot(k)) ?uLqB@!2
% pcolor(x,x,z), shading interp XooAL0w
% set(gca,'XTick',[],'YTick',[]) 5Dd;?T>
% axis square {1mD(+pJ{
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >ZT3gp?E
% end b?l\QMvi
% ^B7Aam
% See also ZERNPOL, ZERNFUN2. +=QboUN
YZd4% zF
-ydT%x
% Paul Fricker 11/13/2006 tBt\&{=|D
te_D
,
-Cl0!}P4I
eL*Edl|#
&F)lvtt|
% Check and prepare the inputs: ( Qnn
% ----------------------------- 6Yu8ReuL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 59|Tmf(dS;
error('zernfun:NMvectors','N and M must be vectors.') 2gi`^%#k]
end :(Gg]Z9^8
2Ig.hnHj
q;U[f6JjE
if length(n)~=length(m) :%{8lanO
error('zernfun:NMlength','N and M must be the same length.') /PO5z7n0J
end 3;&N3:,X
<7qM;)g
r'j*f"uAm
n = n(:); : )&_
m = m(:); XWk^$ "
if any(mod(n-m,2)) 6+>q1,<
error('zernfun:NMmultiplesof2', ... h4]yIM`8d
'All N and M must differ by multiples of 2 (including 0).') &N,c:dNe
end |<OZa;c+
2$|WXYY
C{4[ 7
if any(m>n)
Y.ic=<0H
error('zernfun:MlessthanN', ... {'JoVJKv
'Each M must be less than or equal to its corresponding N.') ' y1=Z
end r@ ]{`qA
vU::dr
a
*>$6H;
if any( r>1 | r<0 ) ?EdF&^[3rD
error('zernfun:Rlessthan1','All R must be between 0 and 1.') x5s Yo\
end
EP*"=_
5G|(od3
N|wI=To
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?
3Td>x
error('zernfun:RTHvector','R and THETA must be vectors.') .z+[3Oj_E
end <a; <|Fm.
Q!WXFS
xwq {0jY
r = r(:); XI@;;>D1=U
theta = theta(:); M"W-|t)~
length_r = length(r); u.43b8!
if length_r~=length(theta) @uApm~}
error('zernfun:RTHlength', ... #fd;]
'The number of R- and THETA-values must be equal.') R^4JM,v9x`
end jt=%oa
k"7l\;N
+G)L8{FY(
% Check normalization: as6a)t.^
% -------------------- lcO;3CrJ!
if nargin==5 && ischar(nflag) WKek^TW4HE
isnorm = strcmpi(nflag,'norm'); =wEU+R_#o
if ~isnorm 9\y\{DHd
error('zernfun:normalization','Unrecognized normalization flag.') O1[`2kj^HB
end W!6&T [j>
else cHP~J%&L
isnorm = false; ^N#z&oh
end NpqK+GO
;XAj/6pm
`,~8(rIM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q.I
% Compute the Zernike Polynomials &