切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8769阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?=@Q12R)X  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ofrlTw&o  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? szsZFyW )+  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? fdH'z:Xao  
    5_tK3Q8?  
    r;6YCI=z  
    X)R] a]1A  
    PS<tS_.  
    function z = zernfun(n,m,r,theta,nflag) ]#7Y @Yo  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :c/=fWM%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N my\oC^/9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the [@FeRIu8  
    %   unit circle.  N is a vector of positive integers (including 0), and WO*WAP)n  
    %   M is a vector with the same number of elements as N.  Each element nTtt$I@hW  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fN%5D z-e  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \g[f4xAV  
    %   and THETA is a vector of angles.  R and THETA must have the same {j=hQL3  
    %   length.  The output Z is a matrix with one column for every (N,M) KZ >"L  
    %   pair, and one row for every (R,THETA) pair. jeuNTDjeL  
    % i$ZpoM  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H><mcah  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ZxeE6&#M^w  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  yURh4@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i.dAL)V  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +n~rM'^4/  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ps;o[gB@5  
    % A kQFb2|ir  
    %   The Zernike functions are an orthogonal basis on the unit circle. -Aym+N9  
    %   They are used in disciplines such as astronomy, optics, and J1ro\"  
    %   optometry to describe functions on a circular domain. V^5k> `A  
    % <.B > LU  
    %   The following table lists the first 15 Zernike functions. M,U=zNPnk  
    % cZ2, u,4  
    %       n    m    Zernike function           Normalization "=TTsxyM6P  
    %       -------------------------------------------------- #w?%&,Kp  
    %       0    0    1                                 1 A(sx5Ynp  
    %       1    1    r * cos(theta)                    2 jJQfCOD$  
    %       1   -1    r * sin(theta)                    2 { rJF)\2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &$Ip$"H  
    %       2    0    (2*r^2 - 1)                    sqrt(3) nPX'E`ut-V  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *8eh%3_$h  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _q4dgi z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b020U>)v  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (S 3kP5:F  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ' g!_Flk  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Jj!tRZT  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <1%XN  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _Ws k3AP  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  X_S]8Aa  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) t"Rf67  
    %       -------------------------------------------------- |N.q[>^R  
    % -@?>nLQb  
    %   Example 1: a9JJuSRC  
    % DQXx}%Px  
    %       % Display the Zernike function Z(n=5,m=1) U1tPw`0h  
    %       x = -1:0.01:1; t7%Bv+Uo  
    %       [X,Y] = meshgrid(x,x); j|8{Vyqd  
    %       [theta,r] = cart2pol(X,Y); X"59`Yh  
    %       idx = r<=1; @!HMd{r  
    %       z = nan(size(X)); ptL}F~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); BnY|t2r  
    %       figure znpZ0O\!  
    %       pcolor(x,x,z), shading interp FOyfk$  
    %       axis square, colorbar yAkN2  
    %       title('Zernike function Z_5^1(r,\theta)') %Ne>'252y  
    % 2*E<G|-F  
    %   Example 2: K4L#%KUPW  
    % R.$Y1=U6  
    %       % Display the first 10 Zernike functions e%7P$.  
    %       x = -1:0.01:1; UsKn4Kh  
    %       [X,Y] = meshgrid(x,x); 5 : >  
    %       [theta,r] = cart2pol(X,Y); *3oQS"8  
    %       idx = r<=1; wpMQ 7:j  
    %       z = nan(size(X)); 8j +;Xlh  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +/8?+1E ^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; I4ct``Di  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !t{!.  
    %       y = zernfun(n,m,r(idx),theta(idx)); !.N=Y;@lY  
    %       figure('Units','normalized') oK[,xqyA  
    %       for k = 1:10 ^?`,f>`M  
    %           z(idx) = y(:,k); LM`#S/h  
    %           subplot(4,7,Nplot(k)) $ $+z^%'_  
    %           pcolor(x,x,z), shading interp 2Rt ZTn  
    %           set(gca,'XTick',[],'YTick',[]) o?8j *]  
    %           axis square g 0=t9J  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) CBHWMetJ*  
    %       end ~<R~Q:T  
    % 5< nK.i,  
    %   See also ZERNPOL, ZERNFUN2. SX8%F:<.  
    uf3 gVS_h=  
    0+h?Bk  
    %   Paul Fricker 11/13/2006 Pk2 "\y@q/  
     .l'QCW9  
    J(L$pIM  
    P1jkoJ  
    >rGlj  
    % Check and prepare the inputs: pp_ddk  
    % ----------------------------- %%u4( '=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >?x Vr  
        error('zernfun:NMvectors','N and M must be vectors.') pYQs|5d  
    end _"TG:RP  
    1yf&ck1R  
    r73Xh"SL  
    if length(n)~=length(m) \hX^Cn=6  
        error('zernfun:NMlength','N and M must be the same length.') fTcRqov  
    end ]t<%>Z$  
    h@8  
    ,+{ 43;a  
    n = n(:); Ha\hQ'99  
    m = m(:); nV1, ):kh  
    if any(mod(n-m,2)) BJTljg( {o  
        error('zernfun:NMmultiplesof2', ... I}{eYXh  
              'All N and M must differ by multiples of 2 (including 0).') -z94>}Z=  
    end z""(M4  
    y3GIR f;>  
     7dIDKx  
    if any(m>n) MDt4KD+bZ  
        error('zernfun:MlessthanN', ... Po[zzj>m  
              'Each M must be less than or equal to its corresponding N.') =n&83MYX  
    end 1owoh,V6  
    &v88x s  
    \zU R9h  
    if any( r>1 | r<0 ) FUqiP(A  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') vF 1$$7k  
    end uNDkK o<M  
    T9 1Iz+j  
    Q=E6ZxH5;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |,crQ'N'  
        error('zernfun:RTHvector','R and THETA must be vectors.') vJs /ett  
    end G})mw  
    =>U~ligu  
    [;bLlS,  
    r = r(:); OduTg^R  
    theta = theta(:); WJWrLu92\U  
    length_r = length(r); }I0^nv1  
    if length_r~=length(theta) LGkKR{ep(  
        error('zernfun:RTHlength', ... }#1{GhsS  
              'The number of R- and THETA-values must be equal.') >Ww F0W9?  
    end qYs6PLC  
    TfOZ>uR"g  
    *9PQJeyR  
    % Check normalization: {z7{ta  
    % -------------------- 8,Z0J  
    if nargin==5 && ischar(nflag) m[XN,IE#u  
        isnorm = strcmpi(nflag,'norm'); 0ni5:tYy  
        if ~isnorm g o@}r<B$  
            error('zernfun:normalization','Unrecognized normalization flag.') {_JLmyaerZ  
        end &DV'%h>i=  
    else 4KKNw9L)  
        isnorm = false; cW2:D$Pe  
    end ),_bDI L+  
    HD>{UU?  
    c}lgWu~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &nss[w$%C  
    % Compute the Zernike Polynomials A@4Cfb@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "#()4.9  
    Jq->DzSmj/  
    )8_0d)  
    % Determine the required powers of r: ,DjZDw  
    % ----------------------------------- 0WFZx Ad"  
    m_abs = abs(m); n.)-aRu[  
    rpowers = []; E_z@\z MB  
    for j = 1:length(n) A, os rv  
        rpowers = [rpowers m_abs(j):2:n(j)]; N=kACEo  
    end t%%I.zIV7  
    rpowers = unique(rpowers);  Y+N87C<  
    8CL05:&  
    !dGgLU_  
    % Pre-compute the values of r raised to the required powers, ` mi!"pmw  
    % and compile them in a matrix: la-+ `  
    % ----------------------------- x8H)m+AW  
    if rpowers(1)==0 >&TktQO_T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }5gQZ'ys'  
        rpowern = cat(2,rpowern{:}); -%A6eRShk  
        rpowern = [ones(length_r,1) rpowern]; ,/KHKLY7  
    else z<ek?0?yS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9:Y\D.M  
        rpowern = cat(2,rpowern{:}); REJ}T:  
    end 3+Q6<MS q  
    ~ M"[FYw[  
    ;RrfE8mGj  
    % Compute the values of the polynomials: 5H79) n>  
    % -------------------------------------- Zqao4  
    y = zeros(length_r,length(n)); E,;nx^`!l  
    for j = 1:length(n) *6h.#$\  
        s = 0:(n(j)-m_abs(j))/2; mb#)w`<  
        pows = n(j):-2:m_abs(j); D -jew&B  
        for k = length(s):-1:1 ]KfHuYjM  
            p = (1-2*mod(s(k),2))* ... ?;$g,2n  
                       prod(2:(n(j)-s(k)))/              ... b`2~  
                       prod(2:s(k))/                     ... (GeJBw,Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &^}w|J?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); eRf 8'-"#-  
            idx = (pows(k)==rpowers);  j>6{PDaT  
            y(:,j) = y(:,j) + p*rpowern(:,idx); U;^{uQJ+,  
        end TiOvrp7B  
         zIL.R#|D=  
        if isnorm l6O2B/2j  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :{sX8U%  
        end WN0^hDc-  
    end ZK;HW  
    % END: Compute the Zernike Polynomials k~?@~xm,R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >Nov9<p  
    (YR1ML3N  
    xGA%/dy,;  
    % Compute the Zernike functions: 2@ad! h  
    % ------------------------------ i^n&K:6  
    idx_pos = m>0; ]t,ppFC#  
    idx_neg = m<0; | o?@Eh  
    ;%U`P8b!  
    $ }&6p6|  
    z = y; _K9jj  
    if any(idx_pos) /g_}5s-Z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); n>@(gDq  
    end ThHK1{87X}  
    if any(idx_neg) uv@4/M`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]-O:|q>]  
    end 7==Uoy*O  
    (BJs6":BFe  
    # wG}T .*  
    % EOF zernfun rUj]6j=e  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  s aY;[bz}  
    t`%Xxxu  
    DDE还是手动输入的呢? oA+/F]XJ  
    CvkZ<i){  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究