切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9415阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [{rne2sA  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Z+! 96LR  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]4&B*]j  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? OMN|ea.O  
    ZvW&%*k=  
    G)y'exk  
    aW$))J)0  
    ;5}y7#4C  
    function z = zernfun(n,m,r,theta,nflag) C= PV-Ul+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. hUMFfc ?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fZJO}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the e#{l  
    %   unit circle.  N is a vector of positive integers (including 0), and Y t0s  
    %   M is a vector with the same number of elements as N.  Each element %v1*D^))  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) *", BP]]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, fuA 8jx  
    %   and THETA is a vector of angles.  R and THETA must have the same t)*A#  
    %   length.  The output Z is a matrix with one column for every (N,M) ("j*!Dsd  
    %   pair, and one row for every (R,THETA) pair. Ty"=3AvRLV  
    % /pnQKy.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ph C{Gg  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 97SG;,6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 38(|a5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B?<Z(d7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized WevXQ-eKm  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?anKSGfj  
    % 2HJGp+H  
    %   The Zernike functions are an orthogonal basis on the unit circle. Q##L|*Qy  
    %   They are used in disciplines such as astronomy, optics, and 3` \)Qm  
    %   optometry to describe functions on a circular domain. .(8eWc YK  
    % v D4<G{  
    %   The following table lists the first 15 Zernike functions. v_ W03\  
    % }=^Al;W  
    %       n    m    Zernike function           Normalization ;Ajy54}7  
    %       -------------------------------------------------- ^Dhu8C(  
    %       0    0    1                                 1 ]%/a'[  
    %       1    1    r * cos(theta)                    2 h\$juIQa  
    %       1   -1    r * sin(theta)                    2 QCk(qlN'h9  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) b'~IFNt*^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }x}JzA+2  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) mdD9Q N01  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @IwVR  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ='|HUxFi  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) qfzT8-Y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) HFd>UdT%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) rSfvHO:R  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z@S39Xp==  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z;En Ay{9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0NWtu]9QC  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) yS:1F PA$_  
    %       -------------------------------------------------- r=ds'n"  
    % (Eoji7U  
    %   Example 1: tpi>$:e  
    % Z'sO9Sg8>  
    %       % Display the Zernike function Z(n=5,m=1) ePJtdKN:  
    %       x = -1:0.01:1; ~.wDb,*  
    %       [X,Y] = meshgrid(x,x); 4?^t=7N  
    %       [theta,r] = cart2pol(X,Y); tcxs%yWO1  
    %       idx = r<=1; ,o)U9 <  
    %       z = nan(size(X)); Q35/Sp[;x  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #GHLF  
    %       figure 8QGj:3  
    %       pcolor(x,x,z), shading interp 6|D,`dk3U  
    %       axis square, colorbar %Sdzr!I7*  
    %       title('Zernike function Z_5^1(r,\theta)') h}_1cev?  
    % h8!;RN[  
    %   Example 2: z3[0BWXs  
    % grhwPnKl  
    %       % Display the first 10 Zernike functions _(8HK  
    %       x = -1:0.01:1; 5CsJghTw  
    %       [X,Y] = meshgrid(x,x); IFY,j8~q  
    %       [theta,r] = cart2pol(X,Y); @pD']=d}t  
    %       idx = r<=1; 97um7n  
    %       z = nan(size(X)); JDzk v%E^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9GZKT{*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; q(yw,]h]{  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28];  ,JcQp=g  
    %       y = zernfun(n,m,r(idx),theta(idx)); '?~k`zK  
    %       figure('Units','normalized') &n:F])`2  
    %       for k = 1:10 7^J-5lY3S  
    %           z(idx) = y(:,k); 1+^L,-k!  
    %           subplot(4,7,Nplot(k)) WM}bM] oe  
    %           pcolor(x,x,z), shading interp tU%-tlU9?  
    %           set(gca,'XTick',[],'YTick',[]) w^&TG3m1~  
    %           axis square 2Ax HhD.  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7n~BDqT  
    %       end RkJ\?  
    % I/s?] v  
    %   See also ZERNPOL, ZERNFUN2. uv2!][  
    |j i}LWcD  
    X3:-+]6,d  
    %   Paul Fricker 11/13/2006 1lNg} !)[K  
    s.rS06x  
    R?Q@)POW  
    t _Q/v  
    y\Z-x  
    % Check and prepare the inputs: eb)S<%R/  
    % ----------------------------- ` m`Sl[6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AX%9k  
        error('zernfun:NMvectors','N and M must be vectors.') d+|8({X]D8  
    end $s hlNW\  
    NdQXQa?,  
    Kk~0jP_B9  
    if length(n)~=length(m) 56o?=|  
        error('zernfun:NMlength','N and M must be the same length.') 'Z7oPq6  
    end 6!i0ioZzi0  
    X./4at`  
    '7W?VipU  
    n = n(:); 9`)NFy?  
    m = m(:); }b YiyG\  
    if any(mod(n-m,2)) cmu5KeH  
        error('zernfun:NMmultiplesof2', ... O;:8mm%(  
              'All N and M must differ by multiples of 2 (including 0).') 7;n'4LIa9  
    end ;1cX|N=  
    "$#x+|PyC  
    #4''Cs  
    if any(m>n) _SC>EP8:Z  
        error('zernfun:MlessthanN', ... j~"X`:=  
              'Each M must be less than or equal to its corresponding N.') $Tq-<FbM)  
    end "0g1'az}  
    nrA}36E  
    Us YH#?|O  
    if any( r>1 | r<0 ) 9h$-:y3  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9r7QE&.  
    end  ?S0VtHQ  
    _qmB PUx  
    Xig+[2zS  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,KIa+&vJW@  
        error('zernfun:RTHvector','R and THETA must be vectors.') )j@k[}R#g  
    end wLU w'Ai  
    [(`T*c.#.X  
    E+"INX7  
    r = r(:); tGd9Cs9D<  
    theta = theta(:); N:clwmo  
    length_r = length(r); mxQS9y  
    if length_r~=length(theta) OR( )D~:n  
        error('zernfun:RTHlength', ... X?Omk, '  
              'The number of R- and THETA-values must be equal.') 4%p5X8|\ih  
    end _hMVv&$  
    NeHR% a2~  
    6yTL7@V|B  
    % Check normalization: =X>3C"]  
    % -------------------- "~7| !9<  
    if nargin==5 && ischar(nflag) _e8@y{/~Fd  
        isnorm = strcmpi(nflag,'norm'); : O t\l  
        if ~isnorm X&M4 c5Li  
            error('zernfun:normalization','Unrecognized normalization flag.') T[<llh'+  
        end c1CP1 2  
    else 60teD>Eh,  
        isnorm = false; ;myu8B7&  
    end BaiC;&(   
    jL%-G  
    Fm,A<+l@u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `-s+  zG  
    % Compute the Zernike Polynomials 8o4<F%ot  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aiw~4ix  
    o|l)oc6{  
    DD|%F  
    % Determine the required powers of r: KzeA+PI  
    % -----------------------------------  O\]CfzR  
    m_abs = abs(m); V>A@Sw  
    rpowers = []; =[t([DG  
    for j = 1:length(n) p`Omcl~Q  
        rpowers = [rpowers m_abs(j):2:n(j)]; c 2?(.UV  
    end J%f5NSSU{6  
    rpowers = unique(rpowers); 1(hgSf1WH  
    x}N+vK   
    >|@ /GpD  
    % Pre-compute the values of r raised to the required powers, `z5j  
    % and compile them in a matrix: ( rZq0*  
    % ----------------------------- Cl<` uW3  
    if rpowers(1)==0 ^bL.|vB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )J~Q x-jG  
        rpowern = cat(2,rpowern{:}); -hp,O?PM  
        rpowern = [ones(length_r,1) rpowern]; wm*`  
    else 9Wx q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _h@7>+vl~  
        rpowern = cat(2,rpowern{:}); }[D~#Z!k  
    end [:g6gAuh,  
    Mk|h ><Q"  
    %>xW_5;Z  
    % Compute the values of the polynomials: m++VW0Y>  
    % -------------------------------------- i]hFiX  
    y = zeros(length_r,length(n)); lJKhP  
    for j = 1:length(n) X-oou'4<  
        s = 0:(n(j)-m_abs(j))/2; LL9Mty,  
        pows = n(j):-2:m_abs(j); 09|d<  
        for k = length(s):-1:1 R*Pfc91}  
            p = (1-2*mod(s(k),2))* ... VC>KW{&J0  
                       prod(2:(n(j)-s(k)))/              ... {U^mL6=&v  
                       prod(2:s(k))/                     ... /kx:BoV  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /o8`I m   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); q$b/T+-ec  
            idx = (pows(k)==rpowers); QE< 63|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Eto0>YyZ  
        end 8"8sI  
         Xb$)}n\9  
        if isnorm  `9S<E  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _k5KJKvr  
        end qUpMq:Uw  
    end ms;Lu- UR  
    % END: Compute the Zernike Polynomials qx0J}6+NlU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z ; :E~;  
    \vFkhm  
    qG=`'%,m  
    % Compute the Zernike functions: /=m=i%& #  
    % ------------------------------ 8.Y6r  
    idx_pos = m>0; Pb]s+1  
    idx_neg = m<0; zq{L:.#ha  
    8{Zgvqbb  
    P-^Z7^o-bX  
    z = y; wG^{Jf&@$  
    if any(idx_pos) {T:2+iS9:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lpSM p  
    end 0_"J>rMp  
    if any(idx_neg) <bGSr23*  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K +w3YA  
    end Fm [,u  
    lQ! 6n  
    d['BtVJ  
    % EOF zernfun /7P4[~vw  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  :-Ho5DHg  
    _+wv3? c"  
    DDE还是手动输入的呢? f(|qE(  
    Rr|VGtg  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究