切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9446阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, deY<+!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Cjk AQ(9  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? '+zsj0!A  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? P`9A?aG.Z  
    mXaUWgO  
    B[X6A Qj}d  
    d`7] reh  
    3*JybMo"  
    function z = zernfun(n,m,r,theta,nflag) (Fd4Gw<sq  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. uhLm yK  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S c Kfr  
    %   and angular frequency M, evaluated at positions (R,THETA) on the p<19 Jw<  
    %   unit circle.  N is a vector of positive integers (including 0), and hI{Yg$H1  
    %   M is a vector with the same number of elements as N.  Each element L"/ato  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  m:Abq`C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (Z +C  
    %   and THETA is a vector of angles.  R and THETA must have the same k8V0-.UL}  
    %   length.  The output Z is a matrix with one column for every (N,M) gNQJ:!  
    %   pair, and one row for every (R,THETA) pair. h8Si,W 3o  
    % '=* 5C{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5xUPqW%3  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9 <m j@bI$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral H4Ek,m|c  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, iW~f  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @R{&>Q:.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0O4mA&&!oK  
    % ,_zt? o\  
    %   The Zernike functions are an orthogonal basis on the unit circle. fZgU@!z  
    %   They are used in disciplines such as astronomy, optics, and rRel\8  
    %   optometry to describe functions on a circular domain. &,7(Wab  
    % N *>; '  
    %   The following table lists the first 15 Zernike functions. #JucOWxjY  
    % rnE'gH(V'  
    %       n    m    Zernike function           Normalization V=~dgy ~@  
    %       -------------------------------------------------- %b6wo?%*  
    %       0    0    1                                 1 ^yTN (\9  
    %       1    1    r * cos(theta)                    2 Yg.u8{H  
    %       1   -1    r * sin(theta)                    2 RA/yvr  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) g\'84:*J\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) s. [${S6O  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (5&"Y?#o,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) LL+rd xJO^  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) kGP?Jx\PkH  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) DlI|~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8)  t m?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) IRa*}MJe  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) cgOoQP/#  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) E!M+37/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bmpB$@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;7>--_?=  
    %       -------------------------------------------------- +i =78  
    % U+ =q_ <  
    %   Example 1: 6I0MJpLW  
    % _A r ,]v  
    %       % Display the Zernike function Z(n=5,m=1) w2L)f,X  
    %       x = -1:0.01:1; WgB,,L,  
    %       [X,Y] = meshgrid(x,x); |0-L08DW  
    %       [theta,r] = cart2pol(X,Y); ]3'd/v@fT  
    %       idx = r<=1; \O~7X0 <W  
    %       z = nan(size(X)); 9qA_5x%"%u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); vcHDFi  
    %       figure 'P#I<?vB  
    %       pcolor(x,x,z), shading interp [f}1wZ*  
    %       axis square, colorbar JnDR(s4(E  
    %       title('Zernike function Z_5^1(r,\theta)') .O^|MhBJu  
    % D=Y HJ>-wB  
    %   Example 2: H<"j3qt  
    % a\MJbBXv  
    %       % Display the first 10 Zernike functions hlZjk0ez  
    %       x = -1:0.01:1; t {}1 f  
    %       [X,Y] = meshgrid(x,x); psVRdluS   
    %       [theta,r] = cart2pol(X,Y); ;21JM2JI8  
    %       idx = r<=1; }f}&|Vap  
    %       z = nan(size(X)); OH w6#N$\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; kn.z8%^(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; V*~5*OwB  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; we9AB_y  
    %       y = zernfun(n,m,r(idx),theta(idx)); zqkmsFH{  
    %       figure('Units','normalized') K]l) z* I  
    %       for k = 1:10 yS""*8/  
    %           z(idx) = y(:,k); j3>< J  
    %           subplot(4,7,Nplot(k)) y8@!2O4  
    %           pcolor(x,x,z), shading interp ;D:v@I$I  
    %           set(gca,'XTick',[],'YTick',[]) )UJMmw\  
    %           axis square 5{> cfN\q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Z"jo xZ  
    %       end )j]RFt  
    % uu>g(q?4II  
    %   See also ZERNPOL, ZERNFUN2. `*a,8M%  
    7vFqO;  
    8 _J:Yg  
    %   Paul Fricker 11/13/2006 21qhlkdc  
    ]nh)FMo  
    ;z68`P-  
    ]2jnY&a5  
    79v&6Io  
    % Check and prepare the inputs: [g? NU]  
    % ----------------------------- w#XJ!f6*_9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VWi-)  
        error('zernfun:NMvectors','N and M must be vectors.') ` T!O )5  
    end X {$gdz8S9  
    ~EBZlTN  
    `6/7},"9t  
    if length(n)~=length(m) k8TMdWW  
        error('zernfun:NMlength','N and M must be the same length.') IYWD_}_ $  
    end ?S_S.Bd  
    v:chr$>j5  
    - M]C-$  
    n = n(:); ;3!TOY"j;e  
    m = m(:); -[=`bHo  
    if any(mod(n-m,2)) &Ru6Yt0W  
        error('zernfun:NMmultiplesof2', ... a'Z"Yz^Eo  
              'All N and M must differ by multiples of 2 (including 0).') ]q j%6tz  
    end MAXdgL[]  
    <  5ow81  
    !q X 7   
    if any(m>n) ]O[f#lG  
        error('zernfun:MlessthanN', ... &e(de$}xt  
              'Each M must be less than or equal to its corresponding N.') S%4 K-I  
    end y!#1A?|k  
    Oj:`r*z43  
    E-x(5^b"  
    if any( r>1 | r<0 ) (8I0%n}.Zo  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >QyMeH  
    end eg3{sDv,  
    Abl=Ev  
    5XhV+t g.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +m1edPA[  
        error('zernfun:RTHvector','R and THETA must be vectors.') R1nctA:  
    end &~j"3G;e  
    `27? f$,  
    ?$ 3=m)s  
    r = r(:); yS?1JWUC>  
    theta = theta(:); u^ T2  
    length_r = length(r); ."R 2^`  
    if length_r~=length(theta) rg`"m  
        error('zernfun:RTHlength', ... |peZ`O^ ~  
              'The number of R- and THETA-values must be equal.') =$m|M m[a  
    end \^+sgg{  
    =q._Qsj?fu  
    8Hhe&B  
    % Check normalization: !v^D j']  
    % -------------------- wtY#8 '^$&  
    if nargin==5 && ischar(nflag) ?D.] c;PR  
        isnorm = strcmpi(nflag,'norm'); W4N$]D=  
        if ~isnorm wj/r)rv E  
            error('zernfun:normalization','Unrecognized normalization flag.') OvFZ&S[  
        end Hi ?],5,/  
    else 03MB,  
        isnorm = false; <'/+E4m  
    end 0c]Lm?&  
    w}'E]y2.  
    c<e$6:|xM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mFvw s  
    % Compute the Zernike Polynomials _-EHG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lVqvS/_k$  
    6Up,B=sX0  
    !D1F4v[c=  
    % Determine the required powers of r: hX;xbl  
    % ----------------------------------- 4b4nFRnH  
    m_abs = abs(m); ZJ!/49c*>  
    rpowers = []; GE"#.J4z  
    for j = 1:length(n) d/;oNC+  
        rpowers = [rpowers m_abs(j):2:n(j)]; zRB1V99k  
    end Gs-'  
    rpowers = unique(rpowers); gP<l  
    vXyaOZ  
    t.]oLG22r  
    % Pre-compute the values of r raised to the required powers, NxNz(R $~  
    % and compile them in a matrix: M'*  Y  
    % ----------------------------- J L]6o8x  
    if rpowers(1)==0 &359tG0@P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C[~b6 UP  
        rpowern = cat(2,rpowern{:}); W$,c]/u|  
        rpowern = [ones(length_r,1) rpowern]; pO"V9[p]  
    else 5^tL#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )'nGuL-w!i  
        rpowern = cat(2,rpowern{:}); Ua( !:5q?  
    end xGz$M@f  
    bGDV9su  
    NK d8XQ=%  
    % Compute the values of the polynomials: +f|u5c  
    % -------------------------------------- Y,?rykRj  
    y = zeros(length_r,length(n)); iX~V(~v  
    for j = 1:length(n) 7:;P>sF@  
        s = 0:(n(j)-m_abs(j))/2; Cgt{5  
        pows = n(j):-2:m_abs(j); T#T!a0  
        for k = length(s):-1:1 xAsbP$J:  
            p = (1-2*mod(s(k),2))* ... l^&#fz  
                       prod(2:(n(j)-s(k)))/              ... JgEpqA12  
                       prod(2:s(k))/                     ... L7 qim.J  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _t3n<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >?I[dYzut  
            idx = (pows(k)==rpowers); =`g+3 O;<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); y\Zx {A[  
        end \U,.!'+  
         YwEXTy>0  
        if isnorm <1V!-D4xu  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :tNH Cx  
        end 4K:p  
    end entO"~*EX  
    % END: Compute the Zernike Polynomials NfKi,^O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _v<EFal  
    oT.g@kf=H  
    &rk /ya[  
    % Compute the Zernike functions: 4mUQVzV  
    % ------------------------------ k.?b2]@$  
    idx_pos = m>0; )9J&M6LX  
    idx_neg = m<0; +.5 /4?  
    :jgwp~l  
    f0}+8JW5h  
    z = y; uQ. m[y  
    if any(idx_pos) 7>v1w:cC]  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); PWx2<t<;9  
    end L<*wzl2Go  
    if any(idx_neg)  !3}vl Y1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); EnZrnoGM  
    end }JoCk{<31  
    &.;tdT7  
    /N]?>[<NW  
    % EOF zernfun }`M[%]MNc  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  # Y/ .%ch.  
    fmC)]O%q  
    DDE还是手动输入的呢? 6m"_=.k%  
    =X6WK7^0  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究