切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9221阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, o& $lik  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, A* Pz-z>z  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? b' ~WS4xlD  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? [8oX[oP  
    r>CBp$  
    soX^$l  
    %5@> nC?`[  
    ltNY8xrdGN  
    function z = zernfun(n,m,r,theta,nflag) :()K2<E  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |)*!&\Ch  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kV!1k<f  
    %   and angular frequency M, evaluated at positions (R,THETA) on the C#3&,G W  
    %   unit circle.  N is a vector of positive integers (including 0), and #MiO4zXgd  
    %   M is a vector with the same number of elements as N.  Each element [ <k&]Kv  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) d5R2J:dI  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Wvl'O'R  
    %   and THETA is a vector of angles.  R and THETA must have the same s ;]"LD@  
    %   length.  The output Z is a matrix with one column for every (N,M) uX&h~qE/  
    %   pair, and one row for every (R,THETA) pair. W2M[w_~QE  
    % $Q,]2/o6n  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wu b7w#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TB84}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |8GLS4.]t  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +$/NTUOP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized wnQi5P+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "1%k"+&  
    % Q7/Jyx|  
    %   The Zernike functions are an orthogonal basis on the unit circle. /BhP`a%2Q  
    %   They are used in disciplines such as astronomy, optics, and l\d[S]  
    %   optometry to describe functions on a circular domain. .SOCWznb  
    % T| R!Aw.  
    %   The following table lists the first 15 Zernike functions. uigzf^6,  
    % n,_9Eh#WD  
    %       n    m    Zernike function           Normalization o? K>ji!  
    %       -------------------------------------------------- .SSPJY(  
    %       0    0    1                                 1 .G"T;w 6d  
    %       1    1    r * cos(theta)                    2 oU*e=uehj  
    %       1   -1    r * sin(theta)                    2 -Hy> z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) -Y N( j \  
    %       2    0    (2*r^2 - 1)                    sqrt(3) G%h+KTw  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) uv{*f)j/d  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) wOrj-Smx  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u9]M3>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6{fo.M?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =eh!eZ9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V|{~9^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qP=a:R-  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Qk@BM  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TY` R_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [?g}<fa  
    %       -------------------------------------------------- |O"Pb`V+  
    % !MmbwB'  
    %   Example 1: fQ_tXY  
    % PMvm4<  
    %       % Display the Zernike function Z(n=5,m=1) kY'C'9p  
    %       x = -1:0.01:1; OGq=OW  
    %       [X,Y] = meshgrid(x,x); zW.Ltz  
    %       [theta,r] = cart2pol(X,Y); 7~QAprwVS  
    %       idx = r<=1; k9VWyq__  
    %       z = nan(size(X)); 2j1HN  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ww'B!Ml>F  
    %       figure {`Mb),G  
    %       pcolor(x,x,z), shading interp VjZb\ d4  
    %       axis square, colorbar L%pAEoSG  
    %       title('Zernike function Z_5^1(r,\theta)') sp0_f;bC  
    % cwQ *P$n  
    %   Example 2: S>"C}F$X  
    % 1WY$Vs  
    %       % Display the first 10 Zernike functions X [?E{[@Z  
    %       x = -1:0.01:1; \Z~ <jv  
    %       [X,Y] = meshgrid(x,x); gs~u8"B  
    %       [theta,r] = cart2pol(X,Y); ogya~/  
    %       idx = r<=1; H3Zt 3l1u+  
    %       z = nan(size(X)); ,.L o)[(  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4(,X. GVY/  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; q'X#F8v  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v)*eLX$  
    %       y = zernfun(n,m,r(idx),theta(idx)); .l,NmF9  
    %       figure('Units','normalized') !wro7ilMB  
    %       for k = 1:10 ER4#5gd  
    %           z(idx) = y(:,k); y35e3  
    %           subplot(4,7,Nplot(k)) OSC_-[b-  
    %           pcolor(x,x,z), shading interp azTiY@/  
    %           set(gca,'XTick',[],'YTick',[]) 5xH*&GpL7  
    %           axis square [[}ukG4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) e)F_zX  
    %       end Y`xAJ#= ,i  
    % li} >xDSQ4  
    %   See also ZERNPOL, ZERNFUN2. V:AA{<  
    mxwG~a'_  
    oL9ELtb ]s  
    %   Paul Fricker 11/13/2006 JNu+e#.Y  
    }F3}"Ik'L  
    F-Ku0z]){?  
    ;Z,l};b  
    B{V(g"dM  
    % Check and prepare the inputs: Jf@Xz7{z  
    % ----------------------------- BbzIQg:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LM!@LQAMY  
        error('zernfun:NMvectors','N and M must be vectors.') j?! /#'  
    end RF\h69]:I  
    MLmv+  
    2nSz0 .  
    if length(n)~=length(m) @\=4 Rin/q  
        error('zernfun:NMlength','N and M must be the same length.') tZr_{F@  
    end U8zs=tA  
    P;ZVv{mT  
    8%b-.O:_$  
    n = n(:); JS&;7Z$KX  
    m = m(:); G4uOY?0N  
    if any(mod(n-m,2)) (IAR-957pN  
        error('zernfun:NMmultiplesof2', ... h>/L4j*Z  
              'All N and M must differ by multiples of 2 (including 0).') ED A6b]  
    end :,'.b|Tl.b  
    u>2opI~m  
    }&EdA;/o_  
    if any(m>n) 2]tW&y_i  
        error('zernfun:MlessthanN', ... S Fqq(K2u  
              'Each M must be less than or equal to its corresponding N.') :IozWPs*  
    end *+J`Yk7}  
    Lcs?2c:%  
    {ka={7  
    if any( r>1 | r<0 ) 4}<[4]f?|  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,u.A[{@py  
    end + a'nP=e&  
    z+nq<%"'  
    4uv*F:eo  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p4Xhs@.k  
        error('zernfun:RTHvector','R and THETA must be vectors.') "s\himoa  
    end XeAH.i<  
    ZgxpHo  
    ESkhCDU  
    r = r(:); B)&z% +  
    theta = theta(:); tLGNYW!K  
    length_r = length(r); wUzMB ]w  
    if length_r~=length(theta) HU-#xK  
        error('zernfun:RTHlength', ... j|y"Lcq  
              'The number of R- and THETA-values must be equal.') 5>h# hcL  
    end OUm,;WNLf  
    WAb@d=H{+>  
    AD"L>7  
    % Check normalization: I$I',x5Z  
    % -------------------- stOD5yi  
    if nargin==5 && ischar(nflag) d-#yN:}0  
        isnorm = strcmpi(nflag,'norm'); hDTM\>.c;s  
        if ~isnorm lZD"7om  
            error('zernfun:normalization','Unrecognized normalization flag.') (KphAA8  
        end XC[bEp$  
    else {Ytqs(`   
        isnorm = false; %r:Uff@  
    end WL<f!   
    Kd3EZo.  
    >]?!9@#IH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OJ)XJL  
    % Compute the Zernike Polynomials S6c>D&Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WNiM&iU  
    X@@7Qk  
    t~ z;G%a  
    % Determine the required powers of r: |`@7G`x  
    % ----------------------------------- c.;<+dYsm*  
    m_abs = abs(m); ++d[YhO  
    rpowers = []; 5Fa/Q>N  
    for j = 1:length(n) X"v)9 p  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7iH%1f  
    end I<$m%  
    rpowers = unique(rpowers); w;V+)r?w  
    UAtdRVi]M  
    }j|YX&`p  
    % Pre-compute the values of r raised to the required powers, SHe547X1  
    % and compile them in a matrix: :74G5U8%  
    % ----------------------------- >2LlBLQ  
    if rpowers(1)==0 biAa&   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8,?*eYNjb  
        rpowern = cat(2,rpowern{:}); gqACIXR  
        rpowern = [ones(length_r,1) rpowern]; !FbW3p f  
    else 3qrjb]E%}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rA1;DSw6E[  
        rpowern = cat(2,rpowern{:}); ~{npG  
    end 604^~6  
    J"yq)0  
    p`oHF  5  
    % Compute the values of the polynomials: 9lSs;zm{Q  
    % -------------------------------------- _t\)W(E&  
    y = zeros(length_r,length(n)); 5@{~8 30  
    for j = 1:length(n) (Z at|R.F  
        s = 0:(n(j)-m_abs(j))/2; *vIC9./  
        pows = n(j):-2:m_abs(j); O}q(2[*i  
        for k = length(s):-1:1 >twog}%  
            p = (1-2*mod(s(k),2))* ... "o$)z'q  
                       prod(2:(n(j)-s(k)))/              ... B3V+/o6  
                       prod(2:s(k))/                     ... bODyJ7=[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~DUOL ~E  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); {$)pkhJ  
            idx = (pows(k)==rpowers); ,M$ J yda  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ]YwvwmZ  
        end )r:gDd#/X  
         'Rw*WK  
        if isnorm <+e&E9;>6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1Et{lrgh f  
        end u#v];6N  
    end , @dhJ8/  
    % END: Compute the Zernike Polynomials # l-/!j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 17B`  
    ;2iDa  
    'V(9ein^Q  
    % Compute the Zernike functions: @7OE:& #V  
    % ------------------------------  -bQi4  
    idx_pos = m>0; Y EhPAQNj  
    idx_neg = m<0; 5:X^Q.f;  
    n_46;lD  
    c"^g*i2&0  
    z = y; 84M*)cKR~  
    if any(idx_pos) U&SgB[QHO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WEk3 4crk  
    end \xexl1_;  
    if any(idx_neg) }i@%$Ixsn  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); rJ fO/WK  
    end +{"w5o<CO  
    CeW}z kcT  
    o9AwW  
    % EOF zernfun :N ]H"u9X  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  N/i {j.=  
    z< ,rE  
    DDE还是手动输入的呢?  D/]  
    :zLeS-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究