切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8695阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, vsqfvx  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, H`),PY2  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6;I&{9  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? +To{Tm-  
    1reJ7b0  
    f*1.Vg0`-  
    R7ZxS  
    t \DS}3pv  
    function z = zernfun(n,m,r,theta,nflag) 2Ev~[Hb.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 22}J.'Zb  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9"=:\PE  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d@7 ]=P:  
    %   unit circle.  N is a vector of positive integers (including 0), and tE3!;  
    %   M is a vector with the same number of elements as N.  Each element o`M7:8G  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) f/*Xw{s#  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >Ah [uM  
    %   and THETA is a vector of angles.  R and THETA must have the same C[&  \Xq  
    %   length.  The output Z is a matrix with one column for every (N,M) `cy_@Z5A  
    %   pair, and one row for every (R,THETA) pair. -?2ThvT  
    % #&1mc_`/  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y*vs}G'W  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), iKLN !QR  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral P3on4c  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eMPi ho  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $MfHA~^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jGb+bN5U7  
    % 2e/ JFhA  
    %   The Zernike functions are an orthogonal basis on the unit circle. c[3sg  
    %   They are used in disciplines such as astronomy, optics, and ,Tvk&<!0  
    %   optometry to describe functions on a circular domain. J6n@|L!yO  
    % dF5EIPl;J  
    %   The following table lists the first 15 Zernike functions. qg'RD]a>R  
    % jC@$D*"J  
    %       n    m    Zernike function           Normalization p#qQGJe  
    %       -------------------------------------------------- 9y>dDNM\<  
    %       0    0    1                                 1 DNLqipUw  
    %       1    1    r * cos(theta)                    2 |@sUN:G4k  
    %       1   -1    r * sin(theta)                    2 x`WP*a7Fk]  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }_@*,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) `rbTB3?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  J5*krH2i  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Eu l,1yR  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :JV= Kt  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) V~+Oil6sa  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) yS@c2I602  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }NMA($@A  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g"`BNI]Qp  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) W[AX?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aiF7\^aw$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) qTj7mUk  
    %       -------------------------------------------------- Xg^`fRg =T  
    % ; "ux{ .  
    %   Example 1: P5P:_hr  
    % K;k_MA310  
    %       % Display the Zernike function Z(n=5,m=1) \5_+6  
    %       x = -1:0.01:1; #@w8wCj  
    %       [X,Y] = meshgrid(x,x); 3yszf Wr  
    %       [theta,r] = cart2pol(X,Y); "4<RMYQ  
    %       idx = r<=1; g1@zk $  
    %       z = nan(size(X)); /a [i:Oa#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4`I2tr  
    %       figure s+#gH@c  
    %       pcolor(x,x,z), shading interp Xx~OZ^t&Vn  
    %       axis square, colorbar n!2"pRIi  
    %       title('Zernike function Z_5^1(r,\theta)') yS[:C 2v  
    % B: \\aOEj  
    %   Example 2: xdFm-_\-  
    % s )POtJ<  
    %       % Display the first 10 Zernike functions Ynl^Z  
    %       x = -1:0.01:1; B5GT^DaT  
    %       [X,Y] = meshgrid(x,x); <1YINkRz  
    %       [theta,r] = cart2pol(X,Y); [a:yKJ[  
    %       idx = r<=1; b|^g51v  
    %       z = nan(size(X)); DJVH}w}9_P  
    %       n = [0  1  1  2  2  2  3  3  3  3]; t3|If@T  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :.e`w#$7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; x_pS(O(C  
    %       y = zernfun(n,m,r(idx),theta(idx)); !8lG"l|,l  
    %       figure('Units','normalized') #k&"R v;,  
    %       for k = 1:10 [CL.Xil=  
    %           z(idx) = y(:,k); ]v(8i3P84  
    %           subplot(4,7,Nplot(k)) 48hu=,)81*  
    %           pcolor(x,x,z), shading interp pM],-7UM  
    %           set(gca,'XTick',[],'YTick',[]) 2BZYC5jy  
    %           axis square cXU8}>qY7  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QkS~~|0EI>  
    %       end GvSSi'q~B  
    % )h6hN"#V5  
    %   See also ZERNPOL, ZERNFUN2. 9 js!gJC  
    M<s16  
    Xb?:dlu3  
    %   Paul Fricker 11/13/2006 gqV66xmJ3  
    F0:|uC4  
    !m"LIa#/Cs  
    O=~8+sa  
    Ir&rTGFN  
    % Check and prepare the inputs: W; yNg  
    % ----------------------------- d` %8qLIW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +Z> Y//  
        error('zernfun:NMvectors','N and M must be vectors.') I,TJV)B  
    end #hG0{_d7  
    Uc%n{ a-a  
     ?QxI2J  
    if length(n)~=length(m) -AnQZy  
        error('zernfun:NMlength','N and M must be the same length.') 4wYD-MB  
    end 8=QOp[w   
    Ne<={u%  
    8XJg  
    n = n(:); \d"JYym  
    m = m(:); wJyrF  
    if any(mod(n-m,2)) B7 PkCS&X  
        error('zernfun:NMmultiplesof2', ... I><B6pIR  
              'All N and M must differ by multiples of 2 (including 0).') I|zak](HU  
    end PD #9Z=Hj  
    i7$4i|  
    W>f q 9  
    if any(m>n) !d nCrR  
        error('zernfun:MlessthanN', ... er@"4R0  
              'Each M must be less than or equal to its corresponding N.') tfB}U.  
    end X$*MxMNs  
    & -r^Q  
    gJa48 pi  
    if any( r>1 | r<0 ) %+ln_lgD:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') w`BY>Xft0  
    end SeuC7!q{  
    xgDd5`W  
    +85#`{ D  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jfmHc(fX4  
        error('zernfun:RTHvector','R and THETA must be vectors.') p7{2/m j  
    end yS#)F.  
    6/-]  
    G47(LE"2b  
    r = r(:); $Lj~ge3#  
    theta = theta(:); 7Qdf#DG  
    length_r = length(r); 8;PS>9<  
    if length_r~=length(theta) 6U.A/8z  
        error('zernfun:RTHlength', ... L hp  
              'The number of R- and THETA-values must be equal.') uu7 ?,WT  
    end 8^IV`P~2M  
    0gRj3al(  
    l7h6R$7; 0  
    % Check normalization: rX7GVg@H  
    % -------------------- *y+N-uq  
    if nargin==5 && ischar(nflag) TxJoN]Z.  
        isnorm = strcmpi(nflag,'norm'); oW}nr<G{<  
        if ~isnorm vHJOpQmt~  
            error('zernfun:normalization','Unrecognized normalization flag.') _+!@c6k)ra  
        end ./ ]xn  
    else 6ZO6 O=KD  
        isnorm = false; [T |P|\M  
    end mpr_AL!ZO~  
    [}Q_T.4)E  
    D\:dn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R$XHjb)  
    % Compute the Zernike Polynomials V0)bPcS/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,(u-q]8   
    "D\>oFu  
    jgvzp  
    % Determine the required powers of r: !hs33@*u~  
    % ----------------------------------- HNJR&U t  
    m_abs = abs(m); ~<N9ckK  
    rpowers = []; ,? >{M  
    for j = 1:length(n) sYEh>%mo^C  
        rpowers = [rpowers m_abs(j):2:n(j)]; i)iK0g"2  
    end |,bP` Z  
    rpowers = unique(rpowers); pV8_i7\  
    ! k[JP+;  
    s.X .SJ  
    % Pre-compute the values of r raised to the required powers, &k@\k<2Ia  
    % and compile them in a matrix: (himx8Uml2  
    % ----------------------------- MzFFWk  
    if rpowers(1)==0 >D jJ*vM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h;+{0a  
        rpowern = cat(2,rpowern{:}); p4F%FS:`  
        rpowern = [ones(length_r,1) rpowern]; z''ejq  
    else (*M*muk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `q9n`h1  
        rpowern = cat(2,rpowern{:}); &6^ --cc  
    end $`A{-0=x\U  
    ;A G&QdTMh  
    2tb+3K1  
    % Compute the values of the polynomials: T@Bu Fr`]<  
    % -------------------------------------- )3 I~6ar  
    y = zeros(length_r,length(n)); 1> v(&;K  
    for j = 1:length(n) Gx7bV}&PN  
        s = 0:(n(j)-m_abs(j))/2; /Rf,Rjs  
        pows = n(j):-2:m_abs(j); KE4#vKV0yC  
        for k = length(s):-1:1 2 \<u;9  
            p = (1-2*mod(s(k),2))* ... s TVX/Q  
                       prod(2:(n(j)-s(k)))/              ...  bUsX~R-  
                       prod(2:s(k))/                     ... ECyG$j0  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Pn,>eD*g  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); )Q 5 x%  
            idx = (pows(k)==rpowers); g~ii^[W  
            y(:,j) = y(:,j) + p*rpowern(:,idx); k:&vW21E  
        end 3(Ns1/;?,  
         y| 0!sNg  
        if isnorm z~-(nyaBS  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \@Gcx}Y8h  
        end e-Oz`qW~  
    end NEUr w/  
    % END: Compute the Zernike Polynomials ]v/pMg#-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gg/ts]$  
    m-6&-G#  
    nQOzKw<j%  
    % Compute the Zernike functions: v, CWE  
    % ------------------------------ c1q;  
    idx_pos = m>0; d A'0'M  
    idx_neg = m<0; 27+~!R~Yw  
    f|=u{6  
    oiIl\#C  
    z = y; A/"<o5(T(P  
    if any(idx_pos) aNn4j_V(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =:Yrb2gP_\  
    end 0~z`>#W,  
    if any(idx_neg) K^6d_b&  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~F53{qxV  
    end +!GJ  
    jJaMkF;f  
    l1#.r g  
    % EOF zernfun ]61Si~Z  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Eyjsbj8  
    qbeUc5`1  
    DDE还是手动输入的呢? }mK,Bi?bj  
    "O0xh_Nr  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究