切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9493阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, n;eK2+}]  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, iYyJq;S   
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Wn9b</ tf  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? BpGK`0H  
    SRixT+E  
    {bSi3oI  
    6uU2+I  
    dz6i~&  
    function z = zernfun(n,m,r,theta,nflag) !H5r+%Oo|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. *W#_W]Tu  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N YXR%{GUP[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the %Tn0r|K  
    %   unit circle.  N is a vector of positive integers (including 0), and ~;f,Ad`Q  
    %   M is a vector with the same number of elements as N.  Each element !]W}I  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Ier0F7]I  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, d0`5zd@S  
    %   and THETA is a vector of angles.  R and THETA must have the same RSNukg  
    %   length.  The output Z is a matrix with one column for every (N,M) bOi`JJ^   
    %   pair, and one row for every (R,THETA) pair. `xO9xo#  
    % jH1!'1s|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N* C"+2  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gX}(6RP_!  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~olta\|  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, em87`Hj^lo  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Sc<%$ Gd  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O;N QJ$^bI  
    % 7yU<!p?(  
    %   The Zernike functions are an orthogonal basis on the unit circle. vsjl8L  
    %   They are used in disciplines such as astronomy, optics, and 6NO_S  
    %   optometry to describe functions on a circular domain. $_6DvJ0  
    % .H,wdzg)  
    %   The following table lists the first 15 Zernike functions. ]"3(UKx  
    % e7j3 0Iy  
    %       n    m    Zernike function           Normalization $6ZO V/0  
    %       -------------------------------------------------- p~T)Af<(  
    %       0    0    1                                 1 )$*T>.JA  
    %       1    1    r * cos(theta)                    2 .,C8ASfh  
    %       1   -1    r * sin(theta)                    2 fE\;Cbi  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) kp~@Ub @O3  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  $)5F3 a|  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {%S>!RA  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >g+ogwZ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'NM$<<0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) uZe|%xK$y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?(cbZ#( o  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) DQ{Yr>J  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M>CW(X  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Zhl}X!:c?\  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) , qj  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) pU4 B6KTW  
    %       -------------------------------------------------- .[v4'ww^  
    % D Hkmn  
    %   Example 1: hhTM-D1Ehs  
    % ZiBTe,;  
    %       % Display the Zernike function Z(n=5,m=1) Z|YiYQl[)  
    %       x = -1:0.01:1; >Lh+(M;+F  
    %       [X,Y] = meshgrid(x,x); : QK )Ym  
    %       [theta,r] = cart2pol(X,Y); SArSi6vF  
    %       idx = r<=1; SBnwlM"AN  
    %       z = nan(size(X)); /( /)nYAjk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]j.??'+rg  
    %       figure 2=3pV!)4}  
    %       pcolor(x,x,z), shading interp 4s?x 8oAy  
    %       axis square, colorbar "y_A xOH  
    %       title('Zernike function Z_5^1(r,\theta)') p{knQ],   
    % C:77~f-+rQ  
    %   Example 2: ~.;S>o[  
    % #x"dWi (  
    %       % Display the first 10 Zernike functions [p%@ pV  
    %       x = -1:0.01:1; *(PQaXx4  
    %       [X,Y] = meshgrid(x,x); 6vVx>hFJ47  
    %       [theta,r] = cart2pol(X,Y); }MKm>N  
    %       idx = r<=1; T{1Z(M+  
    %       z = nan(size(X)); 6{rH|Z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Sri,sZv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :NL.#!>/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6~Y-bn"%D5  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9kcp(  
    %       figure('Units','normalized') xm@vx}O:  
    %       for k = 1:10 t_@xzt10y  
    %           z(idx) = y(:,k); >gAq/'.Q  
    %           subplot(4,7,Nplot(k)) Sb=cWn P  
    %           pcolor(x,x,z), shading interp J1I"H<}-6  
    %           set(gca,'XTick',[],'YTick',[]) :eQ?gM!,  
    %           axis square P 0xInW F  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <(Ub(  
    %       end -1ke3  
    % zi~_[l-  
    %   See also ZERNPOL, ZERNFUN2. gn&jNuGg  
    #4. S2m4  
    Xp <RG p7E  
    %   Paul Fricker 11/13/2006 9/OB!<*V|  
    U[\aj;g)  
    [gZd$9a  
    ?MevPy`H  
    FL 5u68  
    % Check and prepare the inputs: H R$\jJ  
    % ----------------------------- "j5b$T0P>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vmI]N  
        error('zernfun:NMvectors','N and M must be vectors.') . W{\wk n  
    end @`<vd@  
    |r"1 &ow5  
    "R-1 G/  
    if length(n)~=length(m) lc/q0  
        error('zernfun:NMlength','N and M must be the same length.') Km2ppGLNn  
    end K8y/U(@|D  
    IS0RhtGy/  
    uX*H2"A  
    n = n(:); zR2'xE*  
    m = m(:); 5?),6o);  
    if any(mod(n-m,2)) )>q.!"B  
        error('zernfun:NMmultiplesof2', ... 6 flc  
              'All N and M must differ by multiples of 2 (including 0).') (KaP=t}  
    end * ";A~XNx  
    f/G YDat  
    *9}2Bmojv  
    if any(m>n) 7MreBs(M  
        error('zernfun:MlessthanN', ... iivuH2/~?[  
              'Each M must be less than or equal to its corresponding N.') T_CYSS|fX  
    end $FEG0&  
    PdG:aGQ>  
    p(UUH3%W  
    if any( r>1 | r<0 ) CW>f;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') BgLK}p^  
    end ^y"Rdv  
    YK#bzu ,!  
    ~JY<DW7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;wCp j9hir  
        error('zernfun:RTHvector','R and THETA must be vectors.') /X)fWO S6  
    end \k;)m-0bj{  
    WZaOw w  
    s }q6@I  
    r = r(:); b@@`2O3"  
    theta = theta(:); (NUwkAO M}  
    length_r = length(r); v/6QE;BY&Q  
    if length_r~=length(theta) /)?]vKMiI  
        error('zernfun:RTHlength', ... 4`uI)N(}*  
              'The number of R- and THETA-values must be equal.') 5!,`LM9  
    end :|xV}  
    HErTFY+vC  
    Gc}d#oo*k  
    % Check normalization: -G2'c)DR  
    % -------------------- {zhN>n_  
    if nargin==5 && ischar(nflag) CZg$I&x  
        isnorm = strcmpi(nflag,'norm'); Qy |*[  
        if ~isnorm tv,iCV  
            error('zernfun:normalization','Unrecognized normalization flag.') nb0V~W  
        end v0`E lkaN  
    else wYZFW'5p  
        isnorm = false; :~BY[")  
    end L2Uk/E  
    Y( n# =  
    XEM i~L+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NK'awv),pM  
    % Compute the Zernike Polynomials y)?Sn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K:/%7A_{  
    G^J|_!.a  
    !Y/$I?13Z  
    % Determine the required powers of r: 1t/#ZT!X/  
    % ----------------------------------- mjG-A8y  
    m_abs = abs(m); >lxhXYp  
    rpowers = []; \gy39xoW(  
    for j = 1:length(n) k8w }2Vw  
        rpowers = [rpowers m_abs(j):2:n(j)]; h{I)^8,M  
    end ~7T]l1]W%  
    rpowers = unique(rpowers); W\gu"g`u  
    0m_c43+^  
    h\afO  
    % Pre-compute the values of r raised to the required powers, 37Vs9w  
    % and compile them in a matrix: d4F3!*@(  
    % ----------------------------- :Zl@4}  
    if rpowers(1)==0 _M= \s>;G  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w$4fS  
        rpowern = cat(2,rpowern{:}); @D&VOJV  
        rpowern = [ones(length_r,1) rpowern]; '+^HeM^;  
    else %{g<{\@4(;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,Hn{nVU1R=  
        rpowern = cat(2,rpowern{:}); N=lFf+  
    end C]K|;VQ  
    gq4le=,v  
    smW 7zGE  
    % Compute the values of the polynomials: Fu:VRul=5$  
    % -------------------------------------- eS9uKb5n(  
    y = zeros(length_r,length(n)); Q1?  !,a  
    for j = 1:length(n) PJLSDIeN  
        s = 0:(n(j)-m_abs(j))/2; TyVn5XHl^  
        pows = n(j):-2:m_abs(j); pq$`T|6^  
        for k = length(s):-1:1 pTPWToKh  
            p = (1-2*mod(s(k),2))* ... p me5frM|  
                       prod(2:(n(j)-s(k)))/              ... +G*2f V>  
                       prod(2:s(k))/                     ... {(#Dou  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... E c[-@5x  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); -v#0.3zm  
            idx = (pows(k)==rpowers); ^c" wgRHc<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); M \rW  
        end p5&:>>  
         |GJSAs"L@  
        if isnorm HTuv_kE  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); jh \L)a*  
        end Xc -'&"  
    end =n|n%N4Y  
    % END: Compute the Zernike Polynomials S,,,D+4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V(n7hpS  
    CL oc  
    WrBiAh,  
    % Compute the Zernike functions: "pGSz%i-  
    % ------------------------------ 3(l^{YC+[7  
    idx_pos = m>0; y6tzmyg  
    idx_neg = m<0; J P'|v"  
    F @ lJk|*_  
    [h20y  
    z = y; 1 i # .h$  
    if any(idx_pos) H7!j5^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~Qjf-|  
    end x TEDC,B  
    if any(idx_neg) k_$:?$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?v?b%hK!;  
    end S?n,O+q  
    FY  U)sQ  
    eCHT) 35u  
    % EOF zernfun g9~>mJR  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ,q[aV 6kO  
    c4\Nuy  
    DDE还是手动输入的呢? aHhr_.>X  
    WD`z\{hcom  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究