切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9021阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Nz ,8NM]  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, l1|z; $_z  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +N9(o+UrU  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? }- Jw"|^W  
    `z=I}6){  
    #NAlje(7  
    `dYM+ jpa  
    "))G|+tz  
    function z = zernfun(n,m,r,theta,nflag) r2EIhaGF;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?\QEK  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }<EA)se"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0.^9)v*i  
    %   unit circle.  N is a vector of positive integers (including 0), and n%Vt r  
    %   M is a vector with the same number of elements as N.  Each element 2EeWcTBU}.  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S >PTD@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ?s<'3I{F`  
    %   and THETA is a vector of angles.  R and THETA must have the same CL^MIcq?  
    %   length.  The output Z is a matrix with one column for every (N,M) WH.5vrY Z  
    %   pair, and one row for every (R,THETA) pair. .Q pqbp 8  
    % 0YsC@r47wL  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G?Y2 b  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), HS|X//]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral uLw$`ihw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, yK +&1U2`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4MVa[ 0Y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. y7 I')}SC  
    % #-9;Hn4x  
    %   The Zernike functions are an orthogonal basis on the unit circle. wn'_;0fg  
    %   They are used in disciplines such as astronomy, optics, and fz`+j -u  
    %   optometry to describe functions on a circular domain. C(:tFuacpw  
    % Vo%MG.IPB  
    %   The following table lists the first 15 Zernike functions. oEHUb?(p  
    % (ia(y(=C  
    %       n    m    Zernike function           Normalization FDB^JH9d  
    %       -------------------------------------------------- xGQ958@  
    %       0    0    1                                 1 0Ts[IHpg&E  
    %       1    1    r * cos(theta)                    2 !s;+6Sy  
    %       1   -1    r * sin(theta)                    2 )fz)Rrr  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Bv^{|w  
    %       2    0    (2*r^2 - 1)                    sqrt(3) =OIx G}*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Oj# nF@U  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =kq!e  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ':71;^zXf  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Q"UQv<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) a G^kL  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) M"OX NPkc  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m8F-#?~  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) mbBd3y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #c5 NFU}9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A f@IsCOJ  
    %       -------------------------------------------------- S~+}_$  
    % tVUoUl  
    %   Example 1: Mg.xGST  
    % S1pikwB  
    %       % Display the Zernike function Z(n=5,m=1) f1;Pzr  
    %       x = -1:0.01:1; Oo<^~d2=  
    %       [X,Y] = meshgrid(x,x); uE~? 2G  
    %       [theta,r] = cart2pol(X,Y); xp%,@] p  
    %       idx = r<=1; r%hnl9  
    %       z = nan(size(X)); C,R_` %b%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #/  1  
    %       figure M0<gea\ =  
    %       pcolor(x,x,z), shading interp {~a=aOS  
    %       axis square, colorbar Akf?BB3bC  
    %       title('Zernike function Z_5^1(r,\theta)') " 1YARGu  
    % Zqke8q  
    %   Example 2: s@C@q(i6  
    % y; Up@.IG  
    %       % Display the first 10 Zernike functions #$xiqL  
    %       x = -1:0.01:1; _dY6Ip%  
    %       [X,Y] = meshgrid(x,x); ]<mXf~zg  
    %       [theta,r] = cart2pol(X,Y); 2{zFO3i<3  
    %       idx = r<=1; =$UDa`}D  
    %       z = nan(size(X)); AD4KoT&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; jE.U~D)2YF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \$ L2xd  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -A>1L@N  
    %       y = zernfun(n,m,r(idx),theta(idx)); [k(oQykq  
    %       figure('Units','normalized') p%_#"dkC7  
    %       for k = 1:10 8Letpygm  
    %           z(idx) = y(:,k); h >w4{u0  
    %           subplot(4,7,Nplot(k)) dOArXp`s  
    %           pcolor(x,x,z), shading interp R=~+-^O!  
    %           set(gca,'XTick',[],'YTick',[]) "gXz{$q  
    %           axis square `#hdb=3  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6;U]l.  
    %       end oJw~g [  
    % F.mS,W]  
    %   See also ZERNPOL, ZERNFUN2. eLcP.;Z  
    RQ# gn  
    .,[zI@9  
    %   Paul Fricker 11/13/2006 |:n4t6  
    4flyV -  
    zJS,f5L6)  
    }wrZP}zM>  
    RuDn1h#u{  
    % Check and prepare the inputs: S+A'\{f  
    % ----------------------------- ig^9lM'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) mmm025.   
        error('zernfun:NMvectors','N and M must be vectors.') E_]L8UC;m  
    end 't \:@-tQ  
    wxpE5v+f|  
    2/f:VB?<T  
    if length(n)~=length(m) ,JyE7h2%i  
        error('zernfun:NMlength','N and M must be the same length.') ?y!0QAIXK  
    end j8?z@iG  
    %B` MO-  
    Y[9x\6 _E  
    n = n(:); YbF}(iM  
    m = m(:); W'6~`t  
    if any(mod(n-m,2)) v bzeabm  
        error('zernfun:NMmultiplesof2', ... g<O*4 ]=  
              'All N and M must differ by multiples of 2 (including 0).') A@#9X'C$^  
    end @ 'rk[S}A  
    sY!PXD0Q  
    g,U~3#   
    if any(m>n) R| t"(6  
        error('zernfun:MlessthanN', ... +Ck F#H ~  
              'Each M must be less than or equal to its corresponding N.') g PogV(V  
    end utKtxLX"  
    7. 9n  
    :-7`Lfi@%  
    if any( r>1 | r<0 ) iPX6 r4-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') l~Je ]Qt  
    end RekTWIspT/  
    QN:gSS{30  
    s2L|J[Y"s  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) C,+6g/{  
        error('zernfun:RTHvector','R and THETA must be vectors.') )h&s.k  
    end t<sg8U.  
    v;AMx-_WH  
    W+V#z8K  
    r = r(:); pzmm cjEC  
    theta = theta(:); Q3,`'[ F  
    length_r = length(r); aN{C86wx  
    if length_r~=length(theta) h.FC:ym"  
        error('zernfun:RTHlength', ... *`[dC,+`.  
              'The number of R- and THETA-values must be equal.') .j:[R.  
    end +J3 0OT8  
    @kC>+4s!  
    Lc(D2=%  
    % Check normalization: Lzu;"#pw  
    % -------------------- H[?~u+  
    if nargin==5 && ischar(nflag) 1C(6.7l  
        isnorm = strcmpi(nflag,'norm'); 5*~Mv<#  
        if ~isnorm G^]T  
            error('zernfun:normalization','Unrecognized normalization flag.') T1m'+^?"  
        end 4thLK8/c5g  
    else o-2FGM`*VB  
        isnorm = false; gBz$RfyF  
    end bs$x%CR  
    @@K@;Jox  
    #$7 z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^l;nBD#nJ  
    % Compute the Zernike Polynomials K[Bq,nPo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yf >SV #  
    cMOvM0f  
    3>qUYxG8  
    % Determine the required powers of r: R?!xO-^t  
    % ----------------------------------- FU/yJy  
    m_abs = abs(m); \)859x&(  
    rpowers = []; L+2!Sc,>  
    for j = 1:length(n) 0o2o]{rM{2  
        rpowers = [rpowers m_abs(j):2:n(j)]; GCCmUR9d  
    end tyFhp:ZB  
    rpowers = unique(rpowers); |4//%Ll/  
    {^gb S  
    itb0dF1G  
    % Pre-compute the values of r raised to the required powers, Z)Y--`*  
    % and compile them in a matrix: ]^MOFzSz~  
    % ----------------------------- {?m;DY v  
    if rpowers(1)==0 Dv?'(.z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z#YkAQHv5  
        rpowern = cat(2,rpowern{:}); ?F'gh4  
        rpowern = [ones(length_r,1) rpowern]; #=/eu=  
    else flp<QT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &\8.y2=9p  
        rpowern = cat(2,rpowern{:}); l4u@0;6P  
    end &RP!9{F<  
    Q>f^*FyOw<  
    Q >[*Y/`I  
    % Compute the values of the polynomials: }Zu2GU$6  
    % -------------------------------------- S@]7   
    y = zeros(length_r,length(n)); -IhFPjQ  
    for j = 1:length(n) .QOQqU*2I  
        s = 0:(n(j)-m_abs(j))/2; d&'z0]mOe  
        pows = n(j):-2:m_abs(j); $,"{g<*k;  
        for k = length(s):-1:1 U*F|Z4{W  
            p = (1-2*mod(s(k),2))* ... 9frP`4<)  
                       prod(2:(n(j)-s(k)))/              ... 49n.Gc  
                       prod(2:s(k))/                     ... opTDW)  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... iA*Z4FKkT  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wJ-G7V,)  
            idx = (pows(k)==rpowers); 1L1_x'tT%  
            y(:,j) = y(:,j) + p*rpowern(:,idx); lQQXV5NV  
        end )\_xB_K\  
         }T%;G /W  
        if isnorm -e7|DXj  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7 y}b (q=  
        end rm2"pfs  
    end O @fX +W?U  
    % END: Compute the Zernike Polynomials _l]`Og@Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YAnt}]u!"  
    L(Q v78F  
    ]4SnOSV?S  
    % Compute the Zernike functions: p'1n'|$e  
    % ------------------------------ p#~' xq  
    idx_pos = m>0; `HU`=a&d  
    idx_neg = m<0; 8[5%l7's  
    }CZ,WJz=  
    EB jiSQw  
    z = y; 2uS&A \   
    if any(idx_pos) cg7NtY  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G9z Q{E  
    end wke$  
    if any(idx_neg) ~6!=_"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y%p"RB[  
    end 9+@_ZI-  
    5'\/gvxIC  
    Gw!jYnU  
    % EOF zernfun ?YXl.yj  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  A]WU*GL2H  
    38 tRb"3zP  
    DDE还是手动输入的呢? ,l_"%xYx  
    Vge9AH:op  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究