切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9142阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Et}%sdS  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,'l.u?SKyd  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 98_os2`  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? dr(e)eD(R>  
    W&Xi &[Ux  
    /^&$ma\  
    >Yv#t.!  
    ,5K&f\  
    function z = zernfun(n,m,r,theta,nflag) =FFs8&PKys  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. V2tA!II-s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ilQ\+xR{b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,pkzNe`F  
    %   unit circle.  N is a vector of positive integers (including 0), and @ e7_&EGR?  
    %   M is a vector with the same number of elements as N.  Each element R\$6_  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) HJ!)&xT  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, I9U 8@e!X  
    %   and THETA is a vector of angles.  R and THETA must have the same dPgA~~  
    %   length.  The output Z is a matrix with one column for every (N,M) gK dNgU  
    %   pair, and one row for every (R,THETA) pair. Gt!Hm(  
    % fKuaom9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (ueH@A"9;  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L9whgXD  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +yHzp   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, CyB1`&G>  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ag1nxV1M$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kaDn= ={YM  
    % Ox'K C  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5pRVA  
    %   They are used in disciplines such as astronomy, optics, and *\Hut'7 d  
    %   optometry to describe functions on a circular domain. U2JxzHXZ  
    % _tO2PI L@Z  
    %   The following table lists the first 15 Zernike functions. o9v9 bL+X  
    % sn@)L~$V  
    %       n    m    Zernike function           Normalization :+ "JPF4X  
    %       -------------------------------------------------- ~<osL  
    %       0    0    1                                 1 1;>RK  
    %       1    1    r * cos(theta)                    2 P|aSbsk:I<  
    %       1   -1    r * sin(theta)                    2 G0ENk|wbbj  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HI)U6.'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ];0:aSi#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Uf$IH!5;Z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E 6!V0D  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b1ZHfe:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _ `7[}M~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) OQT i$2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2L1Azx  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <R#:K7> O  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "M]`>eixL  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "xD5>(|^+Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) +6Vu]96=KC  
    %       -------------------------------------------------- <5sfII  
    % x1:1Jj:  
    %   Example 1: -ktYS(8&  
    % Zo,]Dx  
    %       % Display the Zernike function Z(n=5,m=1) z &[[4[  
    %       x = -1:0.01:1; )#Y:Bj7H@2  
    %       [X,Y] = meshgrid(x,x); Mz6|#P}.s  
    %       [theta,r] = cart2pol(X,Y); nON "+c*  
    %       idx = r<=1; Q $>SYvW  
    %       z = nan(size(X)); <^8OYnp  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); @;d7#!:cE  
    %       figure Lismo#  
    %       pcolor(x,x,z), shading interp sM%.=~AN  
    %       axis square, colorbar z7lbb*Xe  
    %       title('Zernike function Z_5^1(r,\theta)')  aK9zw  
    % u\UI6/  
    %   Example 2: .O.fD  
    % P99s   
    %       % Display the first 10 Zernike functions 2{#=Ygb0  
    %       x = -1:0.01:1; E`uK7 2j  
    %       [X,Y] = meshgrid(x,x); R~BW=Dz,e  
    %       [theta,r] = cart2pol(X,Y); oga0h'  
    %       idx = r<=1; +;;pM[U  
    %       z = nan(size(X)); GJuU?h#:/{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; PFeK;`[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _]=, U.a=/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; . J*2J(T,  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~9+\  
    %       figure('Units','normalized') 'MIM_m)H  
    %       for k = 1:10 !^A t{[U  
    %           z(idx) = y(:,k); *yA. D?  
    %           subplot(4,7,Nplot(k)) .'N#qs_  
    %           pcolor(x,x,z), shading interp v_@&#!u`  
    %           set(gca,'XTick',[],'YTick',[]) y|Zj M  
    %           axis square cY*lsBo  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Yy0m &3[  
    %       end hn u/  
    % 4'# _b  
    %   See also ZERNPOL, ZERNFUN2. @BXV>U2B{  
    ::kpAE]  
    ~# |p=Y  
    %   Paul Fricker 11/13/2006 "mkTCR^]e  
    :J+GodW  
    S>p>$m, Q  
    YY<e]CriU  
    P(Hh%9'(  
    % Check and prepare the inputs: tt>=Vt '  
    % ----------------------------- 'GcZxF0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /-ky'S9  
        error('zernfun:NMvectors','N and M must be vectors.') bwh.ekf8  
    end tMy@'nj  
    .{W)E  
    K&noA  
    if length(n)~=length(m) W1J7$   
        error('zernfun:NMlength','N and M must be the same length.') [t`QV2um  
    end 2]*2b{gF,  
    {%b-~& F9  
    hY Nb9^  
    n = n(:); g@lAk%V4  
    m = m(:); ];go?.*C  
    if any(mod(n-m,2)) Ws`P(WHm  
        error('zernfun:NMmultiplesof2', ... z<mU$<  
              'All N and M must differ by multiples of 2 (including 0).') bdCpGG9  
    end w~g)Dz2G  
     `#lNur\x  
    R#Bdfmld q  
    if any(m>n) @YTZnGG*  
        error('zernfun:MlessthanN', ... &6 L{1  
              'Each M must be less than or equal to its corresponding N.') jM3{A;U2  
    end AHhck?M^  
    ,9p 4(jjX  
    IPnbR)[%  
    if any( r>1 | r<0 ) `D%bZ%25c  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,#r>#fi0  
    end qyuU  
    HIi 5kv]}|  
    7>J8\=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6l>$N?a  
        error('zernfun:RTHvector','R and THETA must be vectors.') $9\!CPZ2  
    end ^1S(6'a#  
    JQ8wL _C>  
    v7/qJ9l  
    r = r(:); `:A`%Fg8<  
    theta = theta(:); Bn/ {J  
    length_r = length(r); D[)g-_3f6<  
    if length_r~=length(theta) X] &Q^  
        error('zernfun:RTHlength', ... rr# &0`]  
              'The number of R- and THETA-values must be equal.') [x 5T7=  
    end 1G+42>?<1  
    ,m:YZ;J(Xd  
    D EL#MD!  
    % Check normalization: xS`>[8?3<T  
    % -------------------- :d-+Z%Y  
    if nargin==5 && ischar(nflag) s7<x~v+^  
        isnorm = strcmpi(nflag,'norm'); oToUpkAI  
        if ~isnorm oxb#{o9G  
            error('zernfun:normalization','Unrecognized normalization flag.') Jn. WbS  
        end R;f!s/^)  
    else @twClk.s  
        isnorm = false; Z!m0nx  
    end )sVz;rF<  
    nJ4i[j8  
    /4]M*ls  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hof:+aW  
    % Compute the Zernike Polynomials 'tp1|n/1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]w(i,iJ  
    2hl'mRW  
    Uax- z  
    % Determine the required powers of r: 41WnKz9c  
    % ----------------------------------- x(7K=K']  
    m_abs = abs(m); $z]gy]F  
    rpowers = []; 1_!*R]aq  
    for j = 1:length(n) mh!;W=|/"  
        rpowers = [rpowers m_abs(j):2:n(j)]; Q9Wa@gi|  
    end z)r)w?A  
    rpowers = unique(rpowers); % ^g BDlR^  
    }N1Z7G  
    "EQ-`b=I4  
    % Pre-compute the values of r raised to the required powers, b}p0&%I  
    % and compile them in a matrix: hp!UW  
    % ----------------------------- [: X  
    if rpowers(1)==0 PWOV~ `^;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |Z<NM#1  
        rpowern = cat(2,rpowern{:}); 6yKr5tH4  
        rpowern = [ones(length_r,1) rpowern]; ;Id%{1  
    else 2Tt@2h_L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T&I*8 R~  
        rpowern = cat(2,rpowern{:}); c.Pyt  
    end JGp~A#H&  
    !q! =VC  
    |<P]yn  
    % Compute the values of the polynomials: Hm4:m$=p4  
    % -------------------------------------- #vYdP#nWb  
    y = zeros(length_r,length(n)); q-3%.<LL  
    for j = 1:length(n) K.n #;|  
        s = 0:(n(j)-m_abs(j))/2; Iu^# +n  
        pows = n(j):-2:m_abs(j); W~ XJ']e  
        for k = length(s):-1:1 [XjJsk,  
            p = (1-2*mod(s(k),2))* ... nk]jIR y^T  
                       prod(2:(n(j)-s(k)))/              ... eP$0TDZ  
                       prod(2:s(k))/                     ... dy;Ue5  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Z}TuVE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); _=XzQZT!L  
            idx = (pows(k)==rpowers); a0Cf.[L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); SJ;u,XyWn  
        end a-,!K  
         2GA6@-u\  
        if isnorm ^wCjMi(sj  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wX" 6 S:  
        end 9 W> <m[O  
    end r}MXXn,f  
    % END: Compute the Zernike Polynomials ?h"+q8&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0~Ot  
    2c@R!*  
    abUvU26t  
    % Compute the Zernike functions: @dV'v{:,  
    % ------------------------------ 0: R}  
    idx_pos = m>0; z _~f/  
    idx_neg = m<0; 8MGtJ'.  
    ?N<* ATC L  
    oJbD|m  
    z = y; C 2Fklp6  
    if any(idx_pos) #.UooFk+Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Xy:'f".M~\  
    end  8Br*  
    if any(idx_neg) 9%j_"+<c  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); A!No:?S  
    end sH(4.36+  
    ttuQ ,SD  
    "]Wrir?l  
    % EOF zernfun :XEP:8  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  I#lvaoeN  
    R-odc,P=  
    DDE还是手动输入的呢? Ip c2Qsa  
    +LBDn"5  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究