下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, n90DS/Yx
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *I6W6y;E=
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? QSNPraT
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? w2(pgWed
Pl\r|gS;
]=28s
*@
'~\\:37+
S11ME
function z = zernfun(n,m,r,theta,nflag) %jErLg
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4c'F.0^
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q{:=z6&
% and angular frequency M, evaluated at positions (R,THETA) on the Re<@.d
% unit circle. N is a vector of positive integers (including 0), and Q^{XM
% M is a vector with the same number of elements as N. Each element {y%cTuC=
% k of M must be a positive integer, with possible values M(k) = -N(k) &~K4I
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, MfU0*nVF~
% and THETA is a vector of angles. R and THETA must have the same r?$V;Z
% length. The output Z is a matrix with one column for every (N,M) *mjPNp'3{m
% pair, and one row for every (R,THETA) pair. q\n,/#'i~
% M->BV9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ) -^(Su(!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8svN*`[
% with delta(m,0) the Kronecker delta, is chosen so that the integral sJ{J@/5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]pq(Q:"P,5
% and theta=0 to theta=2*pi) is unity. For the non-normalized w\zNn4B})A
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kQw%Wpuq[/
% %}}?Y`/W)
% The Zernike functions are an orthogonal basis on the unit circle. I&wJK'GM`
% They are used in disciplines such as astronomy, optics, and 3%(,f,
% optometry to describe functions on a circular domain. &hcD/*_Z
% "8iIOeY-\
% The following table lists the first 15 Zernike functions. Gq]/6igzX
% U62Z ?nge%
% n m Zernike function Normalization 0t(2^*I?>
% -------------------------------------------------- y!VL`xV
% 0 0 1 1 h7kn
>q;
% 1 1 r * cos(theta) 2 ;Sl%I+?
% 1 -1 r * sin(theta) 2 VVw5)O1'
% 2 -2 r^2 * cos(2*theta) sqrt(6) vyvb-oz;u
% 2 0 (2*r^2 - 1) sqrt(3) +n>p"+c
% 2 2 r^2 * sin(2*theta) sqrt(6) p5aqlYb6r
% 3 -3 r^3 * cos(3*theta) sqrt(8) -)Hc^'.
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :X}fXgeL
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) D!V~g72j
% 3 3 r^3 * sin(3*theta) sqrt(8) UB,0c)
% 4 -4 r^4 * cos(4*theta) sqrt(10) O>eg_K,c
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kD
me>E=
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) yioX^`Fc(~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0[f[6mm%m
% 4 4 r^4 * sin(4*theta) sqrt(10) %uz6iQaq]X
% -------------------------------------------------- K]&i9`>N
% $/crb8-C
% Example 1: >zfFvx_q
% W1JvLU5L*r
% % Display the Zernike function Z(n=5,m=1) ! n<SpW;
% x = -1:0.01:1; B:VGa<lx5
% [X,Y] = meshgrid(x,x); cI'su?
% [theta,r] = cart2pol(X,Y); /5X_gjOL,
% idx = r<=1; 0|6Y%a\U
% z = nan(size(X)); E(_lm&,4+
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |j4p
% figure %6la@i
% pcolor(x,x,z), shading interp OkMAqS
% axis square, colorbar =\M6s
% title('Zernike function Z_5^1(r,\theta)') 3X#Cep20a
% (6i4N2
% Example 2: deEc;IAo
% hh[x(O)TC~
% % Display the first 10 Zernike functions !p Q*m`Xo
% x = -1:0.01:1; n}C0gt-
% [X,Y] = meshgrid(x,x); !ScEA=
% [theta,r] = cart2pol(X,Y); VAp 1{
% idx = r<=1; uANpqT}!
% z = nan(size(X)); T^ - - :1
% n = [0 1 1 2 2 2 3 3 3 3]; ^iWJqpLe
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }L
@~!=q*
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 6,!$S2(zT
% y = zernfun(n,m,r(idx),theta(idx)); U,8mYv2|
% figure('Units','normalized') /m4Y87
% for k = 1:10 Rm}G4Pq
% z(idx) = y(:,k); yZ)-=H
% subplot(4,7,Nplot(k)) @O|`r(le
% pcolor(x,x,z), shading interp o(C;;C(*{
% set(gca,'XTick',[],'YTick',[]) Z4g<Ys*
% axis square <B'PB"R3y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o7^0Lo5Z?
% end xyHv7u%*
% _p?s[r*
% See also ZERNPOL, ZERNFUN2. B%5"B} nG
o*3\xg
B>[myx
% Paul Fricker 11/13/2006 EHfB9%O7y
nUK;M[
qfRrX"
hxt;sQAo{
8tO.o\)h
% Check and prepare the inputs: !$#5E1:\
% ----------------------------- =}0$|@pl
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 39d$B'"<1
error('zernfun:NMvectors','N and M must be vectors.') xIH= gK
end Ap 3B'
Zy|u5J
ND/oKM+?
if length(n)~=length(m) -j@IDd7
error('zernfun:NMlength','N and M must be the same length.') 3S1{r
)[j
end ?X Rl\V
J ~KygQ3%
DcG=u24Xy!
n = n(:); E,fbIyX
m = m(:); WXG0Z
if any(mod(n-m,2)) 9Q1w$t~Y
error('zernfun:NMmultiplesof2', ... ?O"zp65d(
'All N and M must differ by multiples of 2 (including 0).') 221}xhn5
end 2wa'WEx
umt`0m. :
[Fv_~F491
if any(m>n) CAmIwAx6;
error('zernfun:MlessthanN', ... Hz=s)6$ey
'Each M must be less than or equal to its corresponding N.') qE8Di\?
end 9<
S
#V$sb1u
JSx[V<7m
if any( r>1 | r<0 ) h)aLq
error('zernfun:Rlessthan1','All R must be between 0 and 1.')
y|NY,{:]
end ",' Zr<T
7K+eI!m.s
DiZ;FHnaG?
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z-yoJZi
error('zernfun:RTHvector','R and THETA must be vectors.') c`N_MP
end 0_,un^
4G hg~0
w2jB6NQX
r = r(:); C
=B a|Z
theta = theta(:); M:L-j{?y_
length_r = length(r); ,b?G]WQrHs
if length_r~=length(theta) KuEM~Q=
error('zernfun:RTHlength', ... ~#)9Kl7<X
'The number of R- and THETA-values must be equal.') 9$}>O]
end b@sq}8YD|z
+UX}
"m~W
~}SQLYy7Z
% Check normalization: = )4bf"~8
% -------------------- wUfPnAD.'
if nargin==5 && ischar(nflag) r"p"UW9og
isnorm = strcmpi(nflag,'norm'); JvaHH!>d/
if ~isnorm RWoVN$i>
error('zernfun:normalization','Unrecognized normalization flag.') BqdGU-Q
end QUg<~q)Oq
else L`fT;2
isnorm = false; nA%8
bZ+
end Y&y<WN}Q
vV*/"'>
`6LVXDR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ldc`Y/:{
% Compute the Zernike Polynomials wo$ F_!3u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AgB$
w4
~H"-km"@
Q5IN1
^=HF
% Determine the required powers of r: ?%/*F<UVQ
% ----------------------------------- Zm(}~C29
m_abs = abs(m); dEo r+5}
rpowers = []; ZmI#-[/
for j = 1:length(n) ,4}s 1J#
rpowers = [rpowers m_abs(j):2:n(j)]; +eop4 |Z
end A2Iqn5
rpowers = unique(rpowers); . TNJuuO
3wfJ!z-E8
o[S
Mt
% Pre-compute the values of r raised to the required powers, n@S|^cH
% and compile them in a matrix: &yqk96z
% ----------------------------- Ie8SPNY-H
if rpowers(1)==0 |>-0q~
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);
q ^Gj
IP
rpowern = cat(2,rpowern{:}); N]GF>kf:
rpowern = [ones(length_r,1) rpowern]; GB>T3l"
else $cLZ,N24
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZJ[p7XP
rpowern = cat(2,rpowern{:}); k\ZU%"^J
end -cUw}
"\M3||.!
6U]r 3
Rr
% Compute the values of the polynomials: P%<MQg|k`
% -------------------------------------- t3!~=U
y = zeros(length_r,length(n)); ("=24R=a
for j = 1:length(n) 18y'#<X!
s = 0:(n(j)-m_abs(j))/2; ^a#W|-:
pows = n(j):-2:m_abs(j); -or)NE
for k = length(s):-1:1 2 ,.8oa(
p = (1-2*mod(s(k),2))* ... /EL3Tt
prod(2:(n(j)-s(k)))/ ... Ihl]"76q/
prod(2:s(k))/ ... >-(,BfZ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5)gC<
prod(2:((n(j)+m_abs(j))/2-s(k))); |]?7r?=J9v
idx = (pows(k)==rpowers); V<d`.9*}
y(:,j) = y(:,j) + p*rpowern(:,idx); nNRc@9Lt
end kQrby\F(<
"b`3
if isnorm vnX~OVz2
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5g 2:o^
end _ n4C~
end mf2Qu
% END: Compute the Zernike Polynomials h6D1uM"o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @rr\Jf""z
zZ8:>2Ps(
Ul:M=8nE%
% Compute the Zernike functions: YO;@Tj2)x
% ------------------------------ D5!I{hp"
idx_pos = m>0; i\{fM}~W$
idx_neg = m<0; \K:?#07Wj4
`QT9W-0e^
)N&95\u
z = y; m .^WSy
if any(idx_pos) .?r}3Ch
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ` )~CT
end ?C_Y2JY
if any(idx_neg) :A,7D(H|
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); XZ|\|(6Cc
end 1*B'o<?P1
L$ [1+*
~8[`(/hj
% EOF zernfun oCB#i~|>a