下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [p+h b
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6c3+q+#J2
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "Iy @PR?>
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $h Isab_
}@pe`AF^
GB+U>nf
XB &-k<C
r"a4;&mf
function z = zernfun(n,m,r,theta,nflag) 2
AZ[gr@c
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xf.w(-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5@+8*Fdk
% and angular frequency M, evaluated at positions (R,THETA) on the 5Dy800.B2
% unit circle. N is a vector of positive integers (including 0), and /:a~;i
% M is a vector with the same number of elements as N. Each element sa~.qmqu
% k of M must be a positive integer, with possible values M(k) = -N(k) :;u~M(R
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, R {r0dK"_
% and THETA is a vector of angles. R and THETA must have the same Zcg=a_
% length. The output Z is a matrix with one column for every (N,M) %$
^yot
% pair, and one row for every (R,THETA) pair. lA39$oJ
% 8KpG0DC
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |5}{4k~9J
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <R:KR(bT
% with delta(m,0) the Kronecker delta, is chosen so that the integral V*U7-{ *a
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u OEFb
% and theta=0 to theta=2*pi) is unity. For the non-normalized {PHxm
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C!SB5G>OH
% %}G:R!4 d
% The Zernike functions are an orthogonal basis on the unit circle. _4z>I/R>Z
% They are used in disciplines such as astronomy, optics, and 2-| oN/FD
% optometry to describe functions on a circular domain. )gNHD?4x
% '3wte9E/
% The following table lists the first 15 Zernike functions.
3\FiQ/?
% ?-O(EY1E
% n m Zernike function Normalization bwo" s[w
% -------------------------------------------------- t-SGG{
% 0 0 1 1 KM|[:v
% 1 1 r * cos(theta) 2 17G7r\iNYq
% 1 -1 r * sin(theta) 2 Mg95us
% 2 -2 r^2 * cos(2*theta) sqrt(6) kTG}>I
% 2 0 (2*r^2 - 1) sqrt(3) |pr~Ohz
% 2 2 r^2 * sin(2*theta) sqrt(6) nX>k}&^L
% 3 -3 r^3 * cos(3*theta) sqrt(8) +MOUO$;fGt
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9dw02bY`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) #]I:}Q51
% 3 3 r^3 * sin(3*theta) sqrt(8) GZ@!jF>!u
% 4 -4 r^4 * cos(4*theta) sqrt(10) L[+65ce%*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8k+Ctk
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) nF}]W14x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tiwhG%?2
% 4 4 r^4 * sin(4*theta) sqrt(10) >k^=+
% -------------------------------------------------- udg;jR-^
% jHB,r^:'
% Example 1: Yc#o GCt
% PG)dIec
% % Display the Zernike function Z(n=5,m=1) 9F kwtF
% x = -1:0.01:1; d OqwF
iO
% [X,Y] = meshgrid(x,x); q{c6DCc ]\
% [theta,r] = cart2pol(X,Y); hvGb9
% idx = r<=1; 0_Etm83Wq6
% z = nan(size(X)); f&^K>Jt1@#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); O>w$
% figure @8@cpm
% pcolor(x,x,z), shading interp ~v9\4O
% axis square, colorbar 9ZG.%+l
% title('Zernike function Z_5^1(r,\theta)') bQ0m=BzF
% w0moC9#$?
% Example 2: Z/hSH
0 (~
% -CY?~WL&
% % Display the first 10 Zernike functions " I`<s <
% x = -1:0.01:1; vyqlP;K
% [X,Y] = meshgrid(x,x); ImklM7A
% [theta,r] = cart2pol(X,Y); V|xR`Q
% idx = r<=1; IcPIOCmOc
% z = nan(size(X)); ^#exsXy
% n = [0 1 1 2 2 2 3 3 3 3]; K*;=^PY
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3,tKqR7g
% Nplot = [4 10 12 16 18 20 22 24 26 28]; UX2`x9
% y = zernfun(n,m,r(idx),theta(idx)); H*yX
Iq:
% figure('Units','normalized') j4H,*fc
% for k = 1:10 8!me$k&
% z(idx) = y(:,k); sP5PYNspA
% subplot(4,7,Nplot(k)) Y.F:1<FAtf
% pcolor(x,x,z), shading interp :(A]Bm3
% set(gca,'XTick',[],'YTick',[]) lGjmw"/C
% axis square athU
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bbiDY
% end GIo&zPx
% vYmRW-1Zxq
% See also ZERNPOL, ZERNFUN2. "z< =S
v2JC{XqrI
hRxR2
% Paul Fricker 11/13/2006 3boINmX
OyZgg(iN
![U|2x
N\HOo-X
gjvKrg
% Check and prepare the inputs: $0D]d.w=
% ----------------------------- <G\q/!@_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '(&.[Pk:"
error('zernfun:NMvectors','N and M must be vectors.') ph%/;?wY
end /S\P=lcb
[P)HVFy|l
h&[]B*BLr
if length(n)~=length(m) \ tF><
error('zernfun:NMlength','N and M must be the same length.') Z!~~6Sq
end yXR$MT+ ~
y&-j NOKLM
#s)6u?N
n = n(:); /u*((AJ?Qv
m = m(:); 5R/k -h^`
if any(mod(n-m,2)) 4[Hf[.
error('zernfun:NMmultiplesof2', ... hqD]^P>l1
'All N and M must differ by multiples of 2 (including 0).') ISa2|v;M
end &JtK<g
_rY,=h{+
b,]h X
if any(m>n) "S_t%m&R
error('zernfun:MlessthanN', ... ;6U=fBp7<
'Each M must be less than or equal to its corresponding N.') +/-#yfn!TR
end O9dIobu4
M@E*_U!U
m/Q@ -
if any( r>1 | r<0 ) >j|.pi
error('zernfun:Rlessthan1','All R must be between 0 and 1.') bQrH8)
end b Zn:q[7
,L6d~>=41
4!XB?-.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7Xw;TA
error('zernfun:RTHvector','R and THETA must be vectors.') B'lWs;
end 506B=
k*w]a
,<d[5;7x
r = r(:); K;sH0*
theta = theta(:); cX>
a>U
length_r = length(r); V ;
Yl:*
if length_r~=length(theta) 9.!6wd4mw
error('zernfun:RTHlength', ... _b&Mrd
'The number of R- and THETA-values must be equal.') 9H_2Y%_
end nws '%MK)
| -e*^|
&<_*yl p
% Check normalization: e_kP=|u)g
% -------------------- |ITp$_S
if nargin==5 && ischar(nflag) p&>*bF,
isnorm = strcmpi(nflag,'norm'); hJ (Q^Z
if ~isnorm N&]v\MjI62
error('zernfun:normalization','Unrecognized normalization flag.') kn^RS1m
end rh5R kiF~
else E5~HH($b
isnorm = false; JN .\{ Y
end 'nz;|6uC
0~iC#lHO
}/nbv;)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &na#ES$X,
% Compute the Zernike Polynomials %g5TU 6WP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j&6,%s-M`a
D^baXp8
Kyt.[" p
% Determine the required powers of r: 5bYU(]
% ----------------------------------- $3[IlQ?
m_abs = abs(m); y<W?hE[
rpowers = []; CC0@RU
for j = 1:length(n) `MAee8u'
rpowers = [rpowers m_abs(j):2:n(j)]; w},' 1
end g{.>nE^Sc5
rpowers = unique(rpowers); !
@{rkp
6}='/d-[
[^EU'lewnW
% Pre-compute the values of r raised to the required powers, )@09Y_9r
% and compile them in a matrix: -wH#B<'
% ----------------------------- L(\sO=t
if rpowers(1)==0 an_qE}P
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L$=@j_V2
rpowern = cat(2,rpowern{:}); Q&]
}`Rp=
rpowern = [ones(length_r,1) rpowern]; 7F5t&
else !C
*%,Ak
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jJkM:iR
rpowern = cat(2,rpowern{:}); l TY%,s
end dIQ7u
"nP mQ
O#
.^}
% Compute the values of the polynomials: @kvgq 0ab
% -------------------------------------- dB+x,+%u+
y = zeros(length_r,length(n)); kMWu%,s4
for j = 1:length(n) 8
!Pk1P
s = 0:(n(j)-m_abs(j))/2; q>/#
P5V
pows = n(j):-2:m_abs(j); 2.ud P
for k = length(s):-1:1 (Z"QHfO'
p = (1-2*mod(s(k),2))* ... (f#QETiV
prod(2:(n(j)-s(k)))/ ... /=w9bUj5v
prod(2:s(k))/ ... fu?5gzT+b
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,Xs%Cg_Ig
prod(2:((n(j)+m_abs(j))/2-s(k))); )X@Obg
idx = (pows(k)==rpowers); MH[Zw$
y(:,j) = y(:,j) + p*rpowern(:,idx); sDT(3{)L7
end 8ar2N)59
/ZqBO*]
if isnorm e48`cX\E
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %;yDiQ !+
end 9r-]@6;
end #t:]a<3Y2
% END: Compute the Zernike Polynomials Pk9s~}X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ePdM9%
ZKzXSI4
sfNXIEr^
% Compute the Zernike functions: xx0s`5
% ------------------------------ 4 d4le
idx_pos = m>0; Rn~FCj,-
idx_neg = m<0; Qmle0ae
|7n&I`#
i/9QOw~
z = y; M[ $(Pu
if any(idx_pos) $C0NvJf
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); , C2qP3yg
end mt3j- Mw
if any(idx_neg) b/Y9fQn
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?P@fV'Jo
end K&0op 4&
:_JZn`Cab
<9 lZ%j;
% EOF zernfun WJ=DTON