切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9516阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, RQaB _bg7  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Vjv~RNGF  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4r'QP .h  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? f9+J}  
    i=m5M]Ef  
    H C %tJ:G  
    A`|Z2  
     18(hrj  
    function z = zernfun(n,m,r,theta,nflag) Z*AT &7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +[LG>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &E{CQ#k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uL\b*rI  
    %   unit circle.  N is a vector of positive integers (including 0), and Xv1 SRP#  
    %   M is a vector with the same number of elements as N.  Each element [r[IWy(}  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) & XS2q0-x  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }rWEa^  
    %   and THETA is a vector of angles.  R and THETA must have the same <)hA? 3J  
    %   length.  The output Z is a matrix with one column for every (N,M) 3K8#,TK3  
    %   pair, and one row for every (R,THETA) pair. +"sjkdum1  
    % 4trP*u,4  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HDmjt+3&n  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3YKJN4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral pUGFQ."\  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \&{a/e2:S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized RA%=_wPD +  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (-<s[VnXP  
    % [`F}<L."  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?L%BD7  
    %   They are used in disciplines such as astronomy, optics, and \wJ2>Q  
    %   optometry to describe functions on a circular domain. 9.:]eL  
    % Yk;-]qi7  
    %   The following table lists the first 15 Zernike functions. =:w]EpH"  
    % R6(sWN-  
    %       n    m    Zernike function           Normalization 1*x;jO>Hk  
    %       -------------------------------------------------- t zTnFV  
    %       0    0    1                                 1 @r.w+E=  
    %       1    1    r * cos(theta)                    2 Rm&^[mv  
    %       1   -1    r * sin(theta)                    2 uwL^Tq}Yh  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q)/V >QW  
    %       2    0    (2*r^2 - 1)                    sqrt(3) m1 tYDZ"i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {^5LolCCH  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Io(*_3V)B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 6UAn# d9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) gwA+%]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) EZ"n3#/  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +jEtu[ ;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "jUM}@q5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) {Vw\#/,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bpr  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1*aO2dOq  
    %       -------------------------------------------------- a-cLy*W,~  
    % Daw;6f:  
    %   Example 1: r_x|2 A oO  
    % s|`ZV^R  
    %       % Display the Zernike function Z(n=5,m=1) $_ BoG  
    %       x = -1:0.01:1; xg;o<y KF  
    %       [X,Y] = meshgrid(x,x); PM?F;mj  
    %       [theta,r] = cart2pol(X,Y); <Jf[N=  
    %       idx = r<=1; QX`T-)T e  
    %       z = nan(size(X)); %W(/W9B$/F  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); X([8TR  
    %       figure ^t$xR_  
    %       pcolor(x,x,z), shading interp j;MQ_?"iN  
    %       axis square, colorbar ~pC\"LU`  
    %       title('Zernike function Z_5^1(r,\theta)') sTS Nu+  
    % 1_jd1 UT  
    %   Example 2: vG{lxPIj  
    % x 8/I"!gI  
    %       % Display the first 10 Zernike functions XkEJ_;:  
    %       x = -1:0.01:1; $(r/N"6)O2  
    %       [X,Y] = meshgrid(x,x); ^. p d'  
    %       [theta,r] = cart2pol(X,Y); ^[6S]Ft(  
    %       idx = r<=1; S;8gX1Uf  
    %       z = nan(size(X)); O a%ZlEUF  
    %       n = [0  1  1  2  2  2  3  3  3  3]; jU9\BYUg  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4Zn"K}q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; mm:g9j  
    %       y = zernfun(n,m,r(idx),theta(idx)); E*Z# fa  
    %       figure('Units','normalized') _C%:AFPP>  
    %       for k = 1:10 3FgTM(  
    %           z(idx) = y(:,k); `3e>JIl"0  
    %           subplot(4,7,Nplot(k)) PB(q9gf"1}  
    %           pcolor(x,x,z), shading interp %B~@wcI)W  
    %           set(gca,'XTick',[],'YTick',[]) Bnfp_SM  
    %           axis square RYyM;<9F  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a/{M2  
    %       end >]}c,4D(  
    % ^2a63_  
    %   See also ZERNPOL, ZERNFUN2. UOa n  
    JC.nfxG@:  
    3JFX~"rV9I  
    %   Paul Fricker 11/13/2006 {g]Mx|5Q  
    U~GQ JR  
    O>3f*Cc  
    ;i,3KJ[L  
    (Zoopkxw  
    % Check and prepare the inputs: V^%P}RFMc  
    % ----------------------------- od-yVE&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g2%fla7r  
        error('zernfun:NMvectors','N and M must be vectors.') V%Ww;Ca]I  
    end "j/jhe6  
    a{@gzB  
    [:(hqi!  
    if length(n)~=length(m) HZ[.,DuW  
        error('zernfun:NMlength','N and M must be the same length.') gZ>) S@  
    end xl ]1TB@  
    ^oMdx2Ow#  
    -R-yr.$j*  
    n = n(:); e|d~&Bk0  
    m = m(:); phi9/tO\u  
    if any(mod(n-m,2)) a797'{j#PI  
        error('zernfun:NMmultiplesof2', ... Ih<.2  
              'All N and M must differ by multiples of 2 (including 0).') 6 hiWgbE  
    end *6aIDFNl  
    se@ ?:n1)  
    ?Q~o<%U7  
    if any(m>n) 'Bwv-J  
        error('zernfun:MlessthanN', ... e0ULr!p  
              'Each M must be less than or equal to its corresponding N.') ~0Z.,p_  
    end ugzrG0=lx  
    hjq@ .5  
    dwqR,|  
    if any( r>1 | r<0 ) l.xKv$uOGR  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') O?t49=uB}  
    end +-:o+S`q~  
    7d^ ~.F  
    C@3UsD\s(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Kz"&:&R"  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8l*h\p:Q  
    end X?.tj Z,  
    k] A(nr  
    d*_rJE}B  
    r = r(:); Ip |=NQL>  
    theta = theta(:); abw5Gz@Ag  
    length_r = length(r); vP%}XEF  
    if length_r~=length(theta) j@R"AP}  
        error('zernfun:RTHlength', ... DN;|?oNZ  
              'The number of R- and THETA-values must be equal.') :3[;9xCHj  
    end 5KTPlqm0qF  
    PsM8J  
    6x;!E&<  
    % Check normalization: g?N^9B,$2  
    % -------------------- p"0Dl9  
    if nargin==5 && ischar(nflag) P~;1adi3  
        isnorm = strcmpi(nflag,'norm'); E:y^= Y  
        if ~isnorm H 3so&_  
            error('zernfun:normalization','Unrecognized normalization flag.') I2WWhsNC  
        end q[(1zG%NbA  
    else <k 'zz:[c!  
        isnorm = false; z @?WhD  
    end j&[u$P*K  
    7c!#e=W@B  
    XEBj=5sG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #nq_R  
    % Compute the Zernike Polynomials ZgfhNI\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YjiMUi\V  
    &$ fyY:<\  
    sB5@6[VDI  
    % Determine the required powers of r: Sd/7#  
    % ----------------------------------- 1\J9QZX0  
    m_abs = abs(m); K >Q 6  
    rpowers = []; qJE_4/<^!  
    for j = 1:length(n) /!%?I#K{Wq  
        rpowers = [rpowers m_abs(j):2:n(j)]; Wm4C(y@  
    end J:@yG1VIp  
    rpowers = unique(rpowers); ZiPz~G0[^  
    V -_MwII-  
    ^kke  
    % Pre-compute the values of r raised to the required powers, \Hw*q|  
    % and compile them in a matrix: p6&<eMwFA  
    % ----------------------------- ,/&|:PkS  
    if rpowers(1)==0 `FwE^_9d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j`#H%2W\;  
        rpowern = cat(2,rpowern{:}); ] Upr<!  
        rpowern = [ones(length_r,1) rpowern]; 5uV_Pkb?8  
    else w3#0kl  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -qBdcbi|x)  
        rpowern = cat(2,rpowern{:}); EQQ@nW{;  
    end Zs8]A0$  
    2f1Q&S  
    6z]y =J  
    % Compute the values of the polynomials: $)$_}^.k  
    % -------------------------------------- 4 !m'9  
    y = zeros(length_r,length(n)); 0oZZLi  
    for j = 1:length(n) T[<554  
        s = 0:(n(j)-m_abs(j))/2; S$gLL kD1  
        pows = n(j):-2:m_abs(j); "gFw:t"VV  
        for k = length(s):-1:1 8n["/5,  
            p = (1-2*mod(s(k),2))* ... 3Kc9*]D  
                       prod(2:(n(j)-s(k)))/              ... putRc??o;  
                       prod(2:s(k))/                     ... _2{2Xb  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \58bz<u"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wp83E,  
            idx = (pows(k)==rpowers); ]$#9B-uB  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bk&kZI.D  
        end lI~8[[$xd  
         ^j@+!A_.Q  
        if isnorm abv*X 1  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Z>l|R C  
        end LG:d  
    end j#u{(W'r  
    % END: Compute the Zernike Polynomials N3zZ>#{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gW<4E=fl  
    !p76I=H%  
    maa$kg8U*!  
    % Compute the Zernike functions: u8t|!pMF8  
    % ------------------------------ zeq")A  
    idx_pos = m>0; `PUxR8y  
    idx_neg = m<0; p2< 927z  
    yo(MJ^=d  
    SurreD<x  
    z = y; JH u>\{8V  
    if any(idx_pos) 0FLCN!i1  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @eDs)mY  
    end f96`n+>x i  
    if any(idx_neg) 9_4(}|"N|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6Q J.=.>b  
    end =qbN?a/?2  
    L8H:, } 2  
    FS=LpvOG)  
    % EOF zernfun n).*=YLN  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  BNA1"@9q  
    ~% t'}JDZ  
    DDE还是手动输入的呢? O"kb*//  
    1zG6^U  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究