切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8983阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, JDT`C2-Q  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, r mg}N  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? *(DV\.l`  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? c9h6C  
    6(ol1 (U  
    Ta\tYZj$  
    [ v*ju!  
    l!u_"I8j5  
    function z = zernfun(n,m,r,theta,nflag) XZd,&YiaG  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. B^^#D0<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [.wYdv35  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?gGHj-HYJ  
    %   unit circle.  N is a vector of positive integers (including 0), and 5$C-9  
    %   M is a vector with the same number of elements as N.  Each element \bw2u!  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R8'RA%O9J  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, -nV9:opD  
    %   and THETA is a vector of angles.  R and THETA must have the same h~zT ydnH  
    %   length.  The output Z is a matrix with one column for every (N,M) YUk\Q%  
    %   pair, and one row for every (R,THETA) pair. ZPYS$Ydy  
    % vx5Zl&6r  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [d ]9Oa4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /mzlH  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Z4ImV~m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {I't]Qj_e  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized e$rZ5X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Mb*?5R6;  
    % g[4WzDF*  
    %   The Zernike functions are an orthogonal basis on the unit circle. }@d@3  
    %   They are used in disciplines such as astronomy, optics, and lrIe"H@  
    %   optometry to describe functions on a circular domain. --BW9]FW  
    % h <<v^+m  
    %   The following table lists the first 15 Zernike functions. ^^ixa1H<  
    % 8YSAf+{FtK  
    %       n    m    Zernike function           Normalization pTLCWbF?  
    %       -------------------------------------------------- uoh7Sz5!^  
    %       0    0    1                                 1 4BpZJ~(p  
    %       1    1    r * cos(theta)                    2 - 1gVeT&  
    %       1   -1    r * sin(theta)                    2 uQKT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) AH~E)S  
    %       2    0    (2*r^2 - 1)                    sqrt(3) S3Jo>jXS "  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) b@hqz!)l`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) SXP]%{@ R/  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :gFx{*xN/9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X 0+vXz{~g  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) S{T >}'y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ,r_Gf5c  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,Ma^&ypH  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +9sQZB# (  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dioGAai'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) e~"U @8xk~  
    %       -------------------------------------------------- 1 [Bk%G@D&  
    % xr^LFn)  
    %   Example 1:  _;\_l  
    % ysnx3(+|  
    %       % Display the Zernike function Z(n=5,m=1) !0<,@v"  
    %       x = -1:0.01:1; +] {G@pn  
    %       [X,Y] = meshgrid(x,x); >Y@H4LF;1x  
    %       [theta,r] = cart2pol(X,Y); h^P#{W!e\  
    %       idx = r<=1; {(Es(Sb}c  
    %       z = nan(size(X)); ^E>3|du]O  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); aV0"~5  
    %       figure B/Ws_Kv  
    %       pcolor(x,x,z), shading interp  uHRsFlw  
    %       axis square, colorbar +k R4E23:  
    %       title('Zernike function Z_5^1(r,\theta)') N?`' /e  
    % >9Vn.S  
    %   Example 2: l,aay-E  
    % *wjrR1#81x  
    %       % Display the first 10 Zernike functions -jm Y)(\  
    %       x = -1:0.01:1; +R75v)  
    %       [X,Y] = meshgrid(x,x); TIg3` Fon  
    %       [theta,r] = cart2pol(X,Y); sU^1wB Rj  
    %       idx = r<=1; M&M 6;Ph  
    %       z = nan(size(X)); ]A_`0"m.U  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =:U`k0rn!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; goWuw}?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -m#)B~)  
    %       y = zernfun(n,m,r(idx),theta(idx)); DzRFMYBR  
    %       figure('Units','normalized') VuZr:-K/  
    %       for k = 1:10 E2+`4g@{8<  
    %           z(idx) = y(:,k); 9%obq/Lb  
    %           subplot(4,7,Nplot(k)) \o3gKoL%  
    %           pcolor(x,x,z), shading interp 7F~X,Dk_  
    %           set(gca,'XTick',[],'YTick',[]) E' uZA  
    %           axis square 8zq=N#x  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wVtwx0|1  
    %       end E _|<jy$`  
    % *lJxH8\  
    %   See also ZERNPOL, ZERNFUN2. [()koU#w.  
    u9p$YJ  
    ;722\y(Y  
    %   Paul Fricker 11/13/2006 1Ai^cf:S  
    j B{8u&kz)  
    f* wx<  
    >/6 _ ^  
    dqcL]e  
    % Check and prepare the inputs: |JsZJ9W+J  
    % ----------------------------- GTxk%   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &BSn?  
        error('zernfun:NMvectors','N and M must be vectors.') RT8 ?7xFc  
    end bcz:q/f}@  
    RPbZ(.  
    AQ^u   
    if length(n)~=length(m)  05^h"  
        error('zernfun:NMlength','N and M must be the same length.') Vi|#@tC'  
    end 3PF_H$`oJ  
    qmP].sA  
    b7ZSPXV  
    n = n(:); %@Jsal'  
    m = m(:); 1{.9uw"2S  
    if any(mod(n-m,2)) DVeE1Q  
        error('zernfun:NMmultiplesof2', ... |5]X| v  
              'All N and M must differ by multiples of 2 (including 0).') ,`sv1xwd  
    end ?\n > AC  
    V28M lP  
    bW:!5"_{H  
    if any(m>n) ^=*;X;7  
        error('zernfun:MlessthanN', ... !p/goqT~dY  
              'Each M must be less than or equal to its corresponding N.') -tU'yKhn  
    end lk=<A"^S  
    *yGGBqd  
    lmhLM. 2  
    if any( r>1 | r<0 ) dgP3@`YS  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') J9 I:Q<;  
    end (w zQ2Dk  
    H%{+QwzZ[j  
    DW3G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -ze J#B)C  
        error('zernfun:RTHvector','R and THETA must be vectors.') %]7d`/  
    end BL4-7  
    A/?7w   
    Fs^Mw g o  
    r = r(:); O.JN ENZf  
    theta = theta(:); 5E <kwi  
    length_r = length(r); .ccp  
    if length_r~=length(theta) ;9'OOz|+1  
        error('zernfun:RTHlength', ... Zgb!E]V[  
              'The number of R- and THETA-values must be equal.') IUct  
    end *n"{J(Jt`  
    yF/jFn  
    B|X!>Q<g  
    % Check normalization: |+"(L#wk  
    % -------------------- .tr!(O],h  
    if nargin==5 && ischar(nflag) 9Gz=lc[!7  
        isnorm = strcmpi(nflag,'norm'); W!(LF7_!  
        if ~isnorm 7o}J%z  
            error('zernfun:normalization','Unrecognized normalization flag.') Yoll?_k+  
        end uvS)8-o&F  
    else ] }X  
        isnorm = false; 6d~'$<5on  
    end Q=dy<kg']  
    J|rq*XD}q  
    8Cv?Z.x5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {(?4!rh  
    % Compute the Zernike Polynomials -H-~;EzU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7cMv/g^ h@  
    3T0"" !Q  
    28u_!f[  
    % Determine the required powers of r: UR5`ue ;  
    % ----------------------------------- {+b7sA3  
    m_abs = abs(m); r:TH]hs12+  
    rpowers = []; Qe(:|q _  
    for j = 1:length(n) l}M!8:UzU  
        rpowers = [rpowers m_abs(j):2:n(j)]; S$X Sei_q  
    end G  .4X'  
    rpowers = unique(rpowers); 5Jnlz@P9  
    *DhiN  
    | VDV<g5h  
    % Pre-compute the values of r raised to the required powers, oe~b}:  
    % and compile them in a matrix: #A8sLkY  
    % ----------------------------- (&x['IR  
    if rpowers(1)==0 6;5Ss?ep  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "5$B>S(Q  
        rpowern = cat(2,rpowern{:}); Ny)X+2Ae  
        rpowern = [ones(length_r,1) rpowern]; Z;)%%V%o  
    else 1[-tD 0{H  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); IV)j1  
        rpowern = cat(2,rpowern{:}); LBP`hK:>W~  
    end sdmT  
    7"D.L-H  
    cj5+N M"  
    % Compute the values of the polynomials: ;i+#fQO7Q  
    % -------------------------------------- x'R`. !g3  
    y = zeros(length_r,length(n)); 'H<\x  
    for j = 1:length(n) 63B?.  
        s = 0:(n(j)-m_abs(j))/2; X)3!_  
        pows = n(j):-2:m_abs(j); Aq7osU1B  
        for k = length(s):-1:1 >b4eL59  
            p = (1-2*mod(s(k),2))* ... %H"47ZFxAs  
                       prod(2:(n(j)-s(k)))/              ... sCHJ&>m5-  
                       prod(2:s(k))/                     ... @U}1EC{A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -z(+//K:#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); DM>eVS3}  
            idx = (pows(k)==rpowers); g eCM<]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); FaJ&GOM,  
        end .#pU=v#/[  
         v/=}B(TDF  
        if isnorm jRV/A!4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); SasJic2M  
        end q> C'BIr  
    end >[*qf9$  
    % END: Compute the Zernike Polynomials _:27]K:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @f_+=}|dc  
    /&94 eC  
    6)Lk-D  
    % Compute the Zernike functions:  ; 4~hB  
    % ------------------------------ Y:a]00&)#Y  
    idx_pos = m>0; 6!FQzFCZq  
    idx_neg = m<0; ~&bq0 (  
    HyWCMK6b  
    *;*r 8[U}q  
    z = y; y'*K|a TG  
    if any(idx_pos) !C: $?oU  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');  0lR5<^B  
    end ~qOa\#x_  
    if any(idx_neg) [cp+i^f  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); L;I]OC^J  
    end CeC6hGR5  
    }`~+]9 <   
    0"bcdG<}  
    % EOF zernfun @<&m|qtMsz  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  r1{@Ucw2  
    LG|fq/;  
    DDE还是手动输入的呢? Gk&)08  
    a P@N)"  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究