下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +'"NKZ.>TT
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, )~{8C:
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? rNl%I@G
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? S^:7V[=EgI
\B
Uno6
6[3>[ej:x
,c&%/"i:w
FwpTQix!
function z = zernfun(n,m,r,theta,nflag) m0,TH[HWGF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7Ml OBPh
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }Ryrd!3bY
% and angular frequency M, evaluated at positions (R,THETA) on the G<FB:?|
% unit circle. N is a vector of positive integers (including 0), and N+zR7`AG8
% M is a vector with the same number of elements as N. Each element G\B:iyKl
% k of M must be a positive integer, with possible values M(k) = -N(k) ehV}}1>O
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, G4,.kK
% and THETA is a vector of angles. R and THETA must have the same n%d7`?tm4
% length. The output Z is a matrix with one column for every (N,M) S^7u`-
% pair, and one row for every (R,THETA) pair. THcX.%ToT
% Kwo0%2Onkd
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Is(ZVI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4Jk[X>I~
% with delta(m,0) the Kronecker delta, is chosen so that the integral :OD-L)Or
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =kBWY9:$,
% and theta=0 to theta=2*pi) is unity. For the non-normalized jMP;$w
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,xg(F0q
% [u;>b?[{
% The Zernike functions are an orthogonal basis on the unit circle. DoFF<LXBt
% They are used in disciplines such as astronomy, optics, and ,D93A
% optometry to describe functions on a circular domain. S.*.nv
% xsRu~'f
% The following table lists the first 15 Zernike functions. 9)S,c=z83
% =PmIrvr'[5
% n m Zernike function Normalization ,F?O} ijk
% -------------------------------------------------- 3z!^UA>q
% 0 0 1 1 rds0EZ4 W
% 1 1 r * cos(theta) 2 4Ep6vm X
% 1 -1 r * sin(theta) 2 7xfN}iHG
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?Vc/mO2X
% 2 0 (2*r^2 - 1) sqrt(3) '&F
PkT:5
% 2 2 r^2 * sin(2*theta) sqrt(6) Eikt,
% 3 -3 r^3 * cos(3*theta) sqrt(8) <xwaFZ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) -f=4\3y3p
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $sb `BS
% 3 3 r^3 * sin(3*theta) sqrt(8) @WuG8G
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4=ZN4=(_[
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N3&n"w _d
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Z#flu Q%V
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uE&2M>2
% 4 4 r^4 * sin(4*theta) sqrt(10) _MzdbUb5,
% -------------------------------------------------- Vee;&
% `m\l#r2C
% Example 1: BF(Kaf;<t.
% ZWy,NN1
% % Display the Zernike function Z(n=5,m=1) 1zIrU6H2;_
% x = -1:0.01:1; ke5_lr(
% [X,Y] = meshgrid(x,x); l/6(V:
% [theta,r] = cart2pol(X,Y); {AO`[
% idx = r<=1; 2-DJ3OL]k
% z = nan(size(X)); Vv.q{fRvYB
% z(idx) = zernfun(5,1,r(idx),theta(idx)); sXR}#*8p
% figure -3Auo0
% pcolor(x,x,z), shading interp "kg?Or.
% axis square, colorbar b-)3MR:4
% title('Zernike function Z_5^1(r,\theta)') #W[C;f|,
% !kWx'tJ$
% Example 2: oU)HxV
% W%P0X5YQ
% % Display the first 10 Zernike functions 6a*OQ{8
% x = -1:0.01:1; Kz9h{Tu4
% [X,Y] = meshgrid(x,x); h2mU
% [theta,r] = cart2pol(X,Y); r]O8|#P,Z$
% idx = r<=1; ~n9-
% z = nan(size(X)); ~w}Zv0
% n = [0 1 1 2 2 2 3 3 3 3]; B{-+1f4
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; e(EXQP2P>
% Nplot = [4 10 12 16 18 20 22 24 26 28]; x#TWZ;
% y = zernfun(n,m,r(idx),theta(idx)); H^0`YQJ3
% figure('Units','normalized') "(^1Dm$(
% for k = 1:10 =f-.aq(G/
% z(idx) = y(:,k); mx")cGGQ
% subplot(4,7,Nplot(k)) nuLxOd *n
% pcolor(x,x,z), shading interp 6l?\iE
% set(gca,'XTick',[],'YTick',[]) mc}r15:<
% axis square 7Hp~:i30
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) he1OLk
% end e(;nhU3a*,
% 7|$
H}$
% See also ZERNPOL, ZERNFUN2. q
NE(@at
bx%P-r31
7Jvb6V<R
% Paul Fricker 11/13/2006 pk2}]jx"
+}@6V4BRn
,L,?xvWG
@Z%I g
h]#bPb
% Check and prepare the inputs: "\u_gk{g
% ----------------------------- o&vODs
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E/N*n!sV
error('zernfun:NMvectors','N and M must be vectors.') xDTDfhA
end !mtX*;b(e
H:&|q+K=#
$ h<l
if length(n)~=length(m) Y]!{
nW
error('zernfun:NMlength','N and M must be the same length.') V;t8v\
end %$.]g
@Zd/>'
ILq"/S.
n = n(:); ]@UJ 8hDy
m = m(:); tr$~INe
if any(mod(n-m,2)) 84$#!=v
error('zernfun:NMmultiplesof2', ... ;~5w`F)
'All N and M must differ by multiples of 2 (including 0).') ^qD@qJ
end )./'`Mx?
nkvkHh
X6lR?6u%|
if any(m>n) FtL{f=
error('zernfun:MlessthanN', ... %T:7I[f
'Each M must be less than or equal to its corresponding N.') |6}:n,KA.
end $Q!J.}P@
/\&Wk;u3
t/9,JG
if any( r>1 | r<0 ) V`MV_zA2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') I%<,JRAV
end 'WW['
Q~p[jQ,4wZ
|p7k2wzN
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \.7O0Q{
error('zernfun:RTHvector','R and THETA must be vectors.') E6NrBPm
end R^=)Ucj
"Lp"o
G~\ SI.
r = r(:); )FfJ%oT}
theta = theta(:); H _%yh,L
length_r = length(r); Ltt+BUJc
if length_r~=length(theta) /6%<