下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, w,j;XPp
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *;l[|
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? rH'|$~a
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \}AJ)v*<
o wwWm1@
@k\,XV`T~t
>3}N;
)x35
function z = zernfun(n,m,r,theta,nflag) GcG$>&,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z*IW*f&0>1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u4'B
% and angular frequency M, evaluated at positions (R,THETA) on the j=c< Lo`
% unit circle. N is a vector of positive integers (including 0), and >*\yEH9"
% M is a vector with the same number of elements as N. Each element mC3:P5/c
% k of M must be a positive integer, with possible values M(k) = -N(k) D~M*]&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, FD[4?\W]#
% and THETA is a vector of angles. R and THETA must have the same cYBjsN(!A|
% length. The output Z is a matrix with one column for every (N,M) GiKhdy
% pair, and one row for every (R,THETA) pair. 4O:HT m
% DQ&\k'"\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !%B-y9\
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \Y`psSf+
% with delta(m,0) the Kronecker delta, is chosen so that the integral qTN30(x2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s#(7D3Pr#
% and theta=0 to theta=2*pi) is unity. For the non-normalized N,.awA{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^gkKk&~A5?
% Htfq?\ FD
% The Zernike functions are an orthogonal basis on the unit circle. Io tc>!
% They are used in disciplines such as astronomy, optics, and ,(]k)ym/
% optometry to describe functions on a circular domain. deJ/3\t
% ff=RKKnN
% The following table lists the first 15 Zernike functions. *?VB/yO=0
% $ab{GxmX'4
% n m Zernike function Normalization u$X =2u:P
% -------------------------------------------------- HZjuL.Tj
% 0 0 1 1 7PwH&rI
% 1 1 r * cos(theta) 2 k=G c#SD5_
% 1 -1 r * sin(theta) 2 _Fe=:q
% 2 -2 r^2 * cos(2*theta) sqrt(6) V;Q@'<w
% 2 0 (2*r^2 - 1) sqrt(3) m>?|*a,
% 2 2 r^2 * sin(2*theta) sqrt(6) {:KPEN
% 3 -3 r^3 * cos(3*theta) sqrt(8) foB&H;A4oC
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) gZ-:4G|J
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) na
0Zb
% 3 3 r^3 * sin(3*theta) sqrt(8) K92M9=>
% 4 -4 r^4 * cos(4*theta) sqrt(10) P@x@5uC2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,b?G]WQrHs
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) tK
`A_hC
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~#)9Kl7<X
% 4 4 r^4 * sin(4*theta) sqrt(10) 9$}>O]
% -------------------------------------------------- b@sq}8YD|z
% Do5{t'm3
% Example 1: .y0u"@iF
% @}uo:b:Q
% % Display the Zernike function Z(n=5,m=1) qk>M~,
% x = -1:0.01:1; !3o/c w9
% [X,Y] = meshgrid(x,x); M'oQ<,yW-
% [theta,r] = cart2pol(X,Y); ;yCtk ~T%
% idx = r<=1; 1_StgFu u
% z = nan(size(X)); l{VJaZ $M
% z(idx) = zernfun(5,1,r(idx),theta(idx)); )i\foSbB`V
% figure !!mGsgnW
% pcolor(x,x,z), shading interp J7~Kjl
% axis square, colorbar 1F+nWc2 b
% title('Zernike function Z_5^1(r,\theta)') #qJ6iA6{
% }uO2x@
% Example 2: pW>.3pj
% ;!OME*?m<
% % Display the first 10 Zernike functions I*mBU^<9V
% x = -1:0.01:1; ,4}s 1J#
% [X,Y] = meshgrid(x,x); +eop4 |Z
% [theta,r] = cart2pol(X,Y); \lyHQ-gWhc
% idx = r<=1; <l>L8{-3
% z = nan(size(X)); ?ZkVk =t?
% n = [0 1 1 2 2 2 3 3 3 3]; w;J#+ik
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 'C;KNc
% Nplot = [4 10 12 16 18 20 22 24 26 28]; u/wWD@,
% y = zernfun(n,m,r(idx),theta(idx)); k9c`[M
% figure('Units','normalized') e`)zR'As
% for k = 1:10 Tc|+:Usy
% z(idx) = y(:,k); G {a;s-OA3
% subplot(4,7,Nplot(k)) Rn{X+b.
% pcolor(x,x,z), shading interp W;U<,g
'
% set(gca,'XTick',[],'YTick',[]) qSaCl6[Do
% axis square /)rv Ndn
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) XHY,;4
% end s&DAO r!i
% jtqU`|FSQ
% See also ZERNPOL, ZERNFUN2. SK_N|X].
8P&z@E{y
gV'=uz v
% Paul Fricker 11/13/2006 9$%S<v
$us7fuKE
~$7YEs)
Cio(Ptt:
|voZ0U
% Check and prepare the inputs: 4hn'b[
% ----------------------------- '47E8PIJ|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yPH5/5;,
error('zernfun:NMvectors','N and M must be vectors.') )1O|+m k
end P+ 0-h
e C&!yY2g
Owh:(EJ"d
if length(n)~=length(m) lW]&a"1$
error('zernfun:NMlength','N and M must be the same length.') T3-/+4$0v
end K{ FBrh
|;YDRI
WTZuf9:
n = n(:); i^rHZmT
m = m(:); ,LL=b-Es
if any(mod(n-m,2)) \r&(l1R
error('zernfun:NMmultiplesof2', ... [Fr <tKtB
'All N and M must differ by multiples of 2 (including 0).') X\BdN Hr
end GEki34
n0
f^[m~
<In+V
if any(m>n) 0EC/l
OS
error('zernfun:MlessthanN', ... yeV|j\TJI.
'Each M must be less than or equal to its corresponding N.') /qd~|[Kx:
end &3P"l.j
jf&
oN]sZ
@EH@_EwYV
if any( r>1 | r<0 ) q)tNH/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +^%0/0e
end >W'"xK|:
8`q"] BQN
M+L0 X$}NZ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @DyMq3Gt?&
error('zernfun:RTHvector','R and THETA must be vectors.') E|=]k
end gq+#=!(2
YKa9]Q
+ )7h)uq
r = r(:); /tq e:*
theta = theta(:); ES[]A&tf
length_r = length(r); a,[NcdG
if length_r~=length(theta) szy2"~hm
error('zernfun:RTHlength', ... OC`Mzf%.
'The number of R- and THETA-values must be equal.') KocNJ
TB
end w#;y
GUsJF;;V
zHvW@A'F
% Check normalization: /ASpAl[J
% -------------------- 6,skF^
if nargin==5 && ischar(nflag) ,v(ikPzd
isnorm = strcmpi(nflag,'norm'); 49 1 1
if ~isnorm <;NxmO<%\
error('zernfun:normalization','Unrecognized normalization flag.') }M9I]\
end sH Hu<[psM
else Gk<6+.c~
isnorm = false; E}|IU Pm
end R"e53 3
R%;dt<Dh
]#J-itO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mB*;>
% Compute the Zernike Polynomials X1%_a.=VF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t` zPx#])
8' +I8J0l
qApf\o3[0
% Determine the required powers of r: us^J!
s7
% ----------------------------------- 4% 2MY\
m_abs = abs(m); :"Kr-Hm`
rpowers = []; ~"WN4
for j = 1:length(n) q]m$%>
rpowers = [rpowers m_abs(j):2:n(j)];
lmB+S
end x]|-2t
rpowers = unique(rpowers); h=ko_/<
B%KfB
VC
Us8nOr>5
% Pre-compute the values of r raised to the required powers, _U%2J4T2
% and compile them in a matrix: (Bu-o((N@0
% ----------------------------- AM4
:xz
if rpowers(1)==0 rNX]tp{j
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )dI `yf
rpowern = cat(2,rpowern{:}); XE :JL_
rpowern = [ones(length_r,1) rpowern]; hdxq@%Vs
else etH]-S
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GhY MO6Q4
rpowern = cat(2,rpowern{:}); =7<g;u
end YRJw,xl
wRj&k(?*
Lz}mz-N
% Compute the values of the polynomials: 7cZ(g dQ/
% -------------------------------------- &e1(| qax
y = zeros(length_r,length(n)); l\~F0Z/O
for j = 1:length(n) Wj31mV
s = 0:(n(j)-m_abs(j))/2; el^WBC3
pows = n(j):-2:m_abs(j); B}Sl1)E
for k = length(s):-1:1 A \~tr
p = (1-2*mod(s(k),2))* ... Y+_t50S
prod(2:(n(j)-s(k)))/ ... dO\irv)
prod(2:s(k))/ ... >^%TY^7n
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mEDi'!YE"
prod(2:((n(j)+m_abs(j))/2-s(k))); Y'2 |GJc2
idx = (pows(k)==rpowers); _9b;8%?Yf
y(:,j) = y(:,j) + p*rpowern(:,idx); hZLwg7X!
end SHP_
}`$Sr&n 1
if isnorm 2$gOe^ &
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8zk?:?8%{
end %v 1NDhaXz
end ,.&y-?
% END: Compute the Zernike Polynomials :sXn*k4v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3+2cD
R3gg{hQ
h;2n2.Q
% Compute the Zernike functions: KcNh3CR
% ------------------------------ 1<d|@9?9`
idx_pos = m>0; B]|"ePj-
idx_neg = m<0; @EzO
bE{
y(0";\V
zQ~8(E]Rf
z = y; 2';f8JLY
if any(idx_pos) [DO UIR9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W4o$J4IX{
end 8\@&~&(y:
if any(idx_neg) D "9Hv3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); l|p
\8=
end _qQB.Dzo:
JVeb$_0k
0x]WW|se*
% EOF zernfun !/Wp0E'A