下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y>8sZuH0
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, k>Is:P
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? NR$3%0 nC6
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <`8n^m*
H5/6TX72N
f=l rg KE
6%\J"AgXO
].avItg
function z = zernfun(n,m,r,theta,nflag) k&M;,e3v6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. h]5(].
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JMCKcZ%N
% and angular frequency M, evaluated at positions (R,THETA) on the |MTnH/|
% unit circle. N is a vector of positive integers (including 0), and g i3F`
m
% M is a vector with the same number of elements as N. Each element sU<Wnz\[
% k of M must be a positive integer, with possible values M(k) = -N(k) &Q/ W~)~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7(1|xYCx$
% and THETA is a vector of angles. R and THETA must have the same KWbI'}_z
% length. The output Z is a matrix with one column for every (N,M) B9 _X;c
% pair, and one row for every (R,THETA) pair. ,hDWPs2S
% >%_ \;svZG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike RT4x\&q
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B&M%I:i
% with delta(m,0) the Kronecker delta, is chosen so that the integral Qab>|eSm
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YsC>i`n9
% and theta=0 to theta=2*pi) is unity. For the non-normalized /aCc17>2V{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #Qw0&kM7I
% {S]}.7`l9(
% The Zernike functions are an orthogonal basis on the unit circle. etDk35!h~,
% They are used in disciplines such as astronomy, optics, and 1/B>XkCJ
% optometry to describe functions on a circular domain. 5+4IN5o]=
% EmWn%eMN
% The following table lists the first 15 Zernike functions. a@K%06A;'
% E:_ZA
% n m Zernike function Normalization ;J( 8
L
% -------------------------------------------------- .<0ye_S'y
% 0 0 1 1 88O8wJN
% 1 1 r * cos(theta) 2 )th<,Lo3#
% 1 -1 r * sin(theta) 2 _gR;=~S
% 2 -2 r^2 * cos(2*theta) sqrt(6) h%na>G
% 2 0 (2*r^2 - 1) sqrt(3) GRIti9GD
% 2 2 r^2 * sin(2*theta) sqrt(6) Ys9[5@7
% 3 -3 r^3 * cos(3*theta) sqrt(8) <Xhm`rH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) HQ_Ok`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ='r!g
% 3 3 r^3 * sin(3*theta) sqrt(8) _#E0g'3
% 4 -4 r^4 * cos(4*theta) sqrt(10) un"Gozmt5
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IVnHf_PzF
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
IZ-1c1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BQHVQs
% 4 4 r^4 * sin(4*theta) sqrt(10) sRR(`0Zp
% -------------------------------------------------- 8P\G}
% [ZwjOi:)
% Example 1: A/$QaB,x
% pZ{+c
% % Display the Zernike function Z(n=5,m=1) ha<[bu e
% x = -1:0.01:1; MTh<|$
% [X,Y] = meshgrid(x,x); yx8z4*]kH
% [theta,r] = cart2pol(X,Y); @Sn(lnlB
% idx = r<=1; %g$o/A$
% z = nan(size(X)); ] )\Pqn(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a 7V-C
% figure KhR8 1\
% pcolor(x,x,z), shading interp Oc0a77@
% axis square, colorbar ,.8KN<A2]'
% title('Zernike function Z_5^1(r,\theta)') dh iuI|?@
% ]L.O8
% Example 2: @CL{D:d
% DH!~ BB;
% % Display the first 10 Zernike functions ]IQ&>z}<
% x = -1:0.01:1; #$07:UJ
% [X,Y] = meshgrid(x,x); X=&ET)8-Y
% [theta,r] = cart2pol(X,Y); z (wc0I
% idx = r<=1; OU_gdp
% z = nan(size(X)); !sP{gi#=
% n = [0 1 1 2 2 2 3 3 3 3]; &-6Gc;f8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;?iW%:_,
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 20 h, ^
% y = zernfun(n,m,r(idx),theta(idx)); AM \'RHL
% figure('Units','normalized') N/2T[s_&
% for k = 1:10 ;7V%#-
% z(idx) = y(:,k); ,/I.t DH
% subplot(4,7,Nplot(k)) z'n:@E
% pcolor(x,x,z), shading interp I-*S&SiXjI
% set(gca,'XTick',[],'YTick',[]) 83\pZ1>)_
% axis square &)ChQZA
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 19)i*\+
% end D?_Zl;bQ'^
% &%DY \*
% See also ZERNPOL, ZERNFUN2. $k%2J9O
.@U@xRu7|
_7L-<
% Paul Fricker 11/13/2006 E6ElNgL
mR:uj2*
Hg izW
WX?IYQ+
f}f9@>.
% Check and prepare the inputs: #OD/$f_
% -----------------------------
?P`K7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %T%sGDCV
error('zernfun:NMvectors','N and M must be vectors.') E,U+o $
end AJ`h9%B
5x4yyb'
E
A1?)|}n
if length(n)~=length(m) v%z=ysA
error('zernfun:NMlength','N and M must be the same length.') ChPmX+.i_
end IY\5@PVZ
}rw8PZ9
WlC:l
n = n(:); ZDYJ\ }=
m = m(:); w``ST
if any(mod(n-m,2)) 6Y?|w 3f
error('zernfun:NMmultiplesof2', ... IK=a*}19L
'All N and M must differ by multiples of 2 (including 0).') ??vLUv
end | rtD.,m
~IBP|)WA-
k2tF}
if any(m>n)
:KP@RZm
error('zernfun:MlessthanN', ... FbFPJ !fb
'Each M must be less than or equal to its corresponding N.') bJ {'<J
end +.FEq*V
L48_96
D8?Vn"
if any( r>1 | r<0 ) !``,gExH
error('zernfun:Rlessthan1','All R must be between 0 and 1.') {Gk1vcq
end {]@= ijjf
'4Bm;&6M
eJX9_6m-
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uh>; 8
error('zernfun:RTHvector','R and THETA must be vectors.') /%1ON9o>
end Vv=. -&'
sBg.u
\?k'4rH
r = r(:); )}Kf=
theta = theta(:); Ka
V8[|Gn,
length_r = length(r); wE`]7mA
if length_r~=length(theta) p]+Pkxz]'
error('zernfun:RTHlength', ... "`e{/7I
'The number of R- and THETA-values must be equal.') *P=VFP
end rw JIx|(
v^*K:#<Q!
w;amZgD>
% Check normalization: MKi0jwJM
% -------------------- ^k">A:E2
if nargin==5 && ischar(nflag) 3;A)W18]
isnorm = strcmpi(nflag,'norm'); aeM+ d`f
if ~isnorm n 0L^e
error('zernfun:normalization','Unrecognized normalization flag.') \X D6 pr@
end ;h
else _A9AEi'.
isnorm = false; @K!T,U
end =-n}[Y}A
`1fY)d^ZS
n;Vs_u/Nx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fr6fj
% Compute the Zernike Polynomials yWo; a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cR<fJ[*
c`w}|d]mC
7;wd(8
% Determine the required powers of r: v PG},m~-
% ----------------------------------- UySZbmP48
m_abs = abs(m); :*9Wh
rpowers = []; y766;
X:J
for j = 1:length(n) ]Q)OL
rpowers = [rpowers m_abs(j):2:n(j)]; Hf2_0wA3
end je=a/Y=%U{
rpowers = unique(rpowers); c 3)jccWTc
1\2no{Vh
h
J)h\
% Pre-compute the values of r raised to the required powers, .p"
xVfi6
% and compile them in a matrix: `Eo.v#<
% ----------------------------- w%jII{@,
if rpowers(1)==0 00~mOK;1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p6!x=cW
rpowern = cat(2,rpowern{:}); Y&Z.2