切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9530阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, &Low/Y'.jJ  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8B\2Zfe  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (Iaf?J5{  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $Zug Bh[b  
    mi,E-  
    e\!0<d  
    B?'#4J  
    inh=WUEW  
    function z = zernfun(n,m,r,theta,nflag) eHn7iuS8  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. SqEgn}m$  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +@p% p  
    %   and angular frequency M, evaluated at positions (R,THETA) on the _qw?@478  
    %   unit circle.  N is a vector of positive integers (including 0), and { g/0x,-Z  
    %   M is a vector with the same number of elements as N.  Each element -* WXMzr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &jslyQ#  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }BZ"S-hZ  
    %   and THETA is a vector of angles.  R and THETA must have the same ?o81E2TJO  
    %   length.  The output Z is a matrix with one column for every (N,M) nxWY7hU  
    %   pair, and one row for every (R,THETA) pair. BD_Iz A<wK  
    % mlJ!:WG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3%E }JU?MM  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $\]&rZVi  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;7?kl>5]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _AAaC_q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8FKXSqhVM  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [RLN;(0n  
    % p i %< Sy  
    %   The Zernike functions are an orthogonal basis on the unit circle. kEOS{C%6R  
    %   They are used in disciplines such as astronomy, optics, and mH%yGBp_  
    %   optometry to describe functions on a circular domain. dQV;3^iUY  
    % b{L/4bu  
    %   The following table lists the first 15 Zernike functions. :N4t49i  
    % x[h^[oF0  
    %       n    m    Zernike function           Normalization D~hg$XzK  
    %       -------------------------------------------------- >7I15U  
    %       0    0    1                                 1 &7PG.Ff!r  
    %       1    1    r * cos(theta)                    2 3RYpJAH  
    %       1   -1    r * sin(theta)                    2 PsnWWj?c  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^p[rc@+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >O*IQ[r-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j27?w<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) N/ %WsQp  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /{+y2.{j  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =e9>FWf>  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }001K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) C G0 M  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g.BdlVB\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Si8pzd  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =Xi07_8Ic<  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4]?<hH9  
    %       -------------------------------------------------- tnH2sHby  
    % "P 7nNa  
    %   Example 1: L^}_~PO N5  
    % ad*m%9Y1Q  
    %       % Display the Zernike function Z(n=5,m=1) _I@9HC 4  
    %       x = -1:0.01:1; SxOC1+Oy  
    %       [X,Y] = meshgrid(x,x); ZCmgs4W!  
    %       [theta,r] = cart2pol(X,Y); kW;+|qs^  
    %       idx = r<=1; ,K9*%rW)  
    %       z = nan(size(X)); 9oYgl1}d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ZrPbl "`7  
    %       figure '[AlhBX  
    %       pcolor(x,x,z), shading interp "iy  
    %       axis square, colorbar W>) M5t4i  
    %       title('Zernike function Z_5^1(r,\theta)') 9s\A\$("l  
    % y0sR6TY)f  
    %   Example 2: rp3V3]EE  
    % "I3@m%qv  
    %       % Display the first 10 Zernike functions ?9e_gV{&;  
    %       x = -1:0.01:1; gG0!C))8  
    %       [X,Y] = meshgrid(x,x); \k.{-nh  
    %       [theta,r] = cart2pol(X,Y); pMw*9s X  
    %       idx = r<=1; dP3CG8w5  
    %       z = nan(size(X)); );#JL0I  
    %       n = [0  1  1  2  2  2  3  3  3  3]; '@o;-'b  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |2O]R s  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; l4F%VR4KT  
    %       y = zernfun(n,m,r(idx),theta(idx)); +"rDT1^V  
    %       figure('Units','normalized') tr<Nm6!  
    %       for k = 1:10 iW$_zgN  
    %           z(idx) = y(:,k); J\+0[~~  
    %           subplot(4,7,Nplot(k)) ((H^2KJn  
    %           pcolor(x,x,z), shading interp zZL6z4g  
    %           set(gca,'XTick',[],'YTick',[]) 3@kf@ Vf  
    %           axis square I(i}c~ R  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a =J^  
    %       end TrlZ9?3#D  
    % cz >V8  
    %   See also ZERNPOL, ZERNFUN2. ;rF\kX&Jh  
    /s x@$cvW  
    |cK*~  
    %   Paul Fricker 11/13/2006 mk;&yh  
    |,S+@"0#  
    7?#J~.d5  
    ?9!6%]2D  
    Nv#t:J9f  
    % Check and prepare the inputs: /5S30 |K  
    % ----------------------------- 9]k @Q_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v[ . cd*b  
        error('zernfun:NMvectors','N and M must be vectors.') h{%nC>m;  
    end 9+j0q%  
    <^VJy5>  
    1Ir21un  
    if length(n)~=length(m) U>YAdrx2a  
        error('zernfun:NMlength','N and M must be the same length.') :*I# n  
    end ,c;Kzp>e  
    ASKf '\,dV  
    S=MEG+Ad  
    n = n(:); Njxv4cc  
    m = m(:); /Gd=n  
    if any(mod(n-m,2)) Q A< Rhv,  
        error('zernfun:NMmultiplesof2', ... (7vF/7BZ|_  
              'All N and M must differ by multiples of 2 (including 0).') IbT=8l,Li  
    end 8L, 5Q9 $  
    -)w@f~Q  
    hpHr\g  
    if any(m>n) X$HIVxyq2  
        error('zernfun:MlessthanN', ... ZGBd%RWjG_  
              'Each M must be less than or equal to its corresponding N.') O9G[j=U  
    end 3DzMB?I  
    T/b6f;t-s  
    B;M?,<%FRU  
    if any( r>1 | r<0 ) (jnQ -  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') I5`4Al  
    end lNz7u:U3  
    b+%f+zz*h  
    P Y_u/<u  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) RmI]1S_=  
        error('zernfun:RTHvector','R and THETA must be vectors.') uW=k K0E  
    end Tl%`P_J)-S  
    ERUz3mjA/  
    UxbjA- U[  
    r = r(:); t#V!8EpBg  
    theta = theta(:); i5en*)O8  
    length_r = length(r); @D.}\(  
    if length_r~=length(theta) Sxnpq Vbk  
        error('zernfun:RTHlength', ... xR-%L  
              'The number of R- and THETA-values must be equal.') cA2V2S)  
    end n D0K).=Q  
    ?8I?'\F;  
    fFMlDg[];  
    % Check normalization: r(6Y*<  
    % -------------------- KxI&G%z  
    if nargin==5 && ischar(nflag) PxTwPl  
        isnorm = strcmpi(nflag,'norm'); :nh_k4S@v  
        if ~isnorm :yL] ;J  
            error('zernfun:normalization','Unrecognized normalization flag.') } K7#Q  
        end 1Lc#m`Jln  
    else yg `j-9[8  
        isnorm = false; /@wg>&L]  
    end Z)e/ !~""]  
    >NO[UX%yP  
    _ q(ko/T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "LHcB]^<  
    % Compute the Zernike Polynomials ?L5zC+c!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 18)'c?^.  
    #9B)Xx!g  
    &VhroHO  
    % Determine the required powers of r: [/PR\'|  
    % ----------------------------------- Rvkedb  
    m_abs = abs(m); .sxcCrQE  
    rpowers = []; uX"H4l O~  
    for j = 1:length(n) g9m-TkNk  
        rpowers = [rpowers m_abs(j):2:n(j)]; H~oail{EQ  
    end rK@8/?y5  
    rpowers = unique(rpowers); P!$Zx)T  
    x5|I  
    O#n8=B4  
    % Pre-compute the values of r raised to the required powers, _A M*@|p,  
    % and compile them in a matrix: r  [9x  
    % ----------------------------- .4_o>D  
    if rpowers(1)==0 z F_M*8=  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5 z~1Dw  
        rpowern = cat(2,rpowern{:}); d)"3K6s|5  
        rpowern = [ones(length_r,1) rpowern]; -<c=US  
    else j>*S5y.{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4qN{n#{+]  
        rpowern = cat(2,rpowern{:}); K#l:wH _  
    end @:;)~V  
    d4m=0G`  
    `Y+J-EQ  
    % Compute the values of the polynomials: )) Zf|86N  
    % -------------------------------------- z(o,m3@v  
    y = zeros(length_r,length(n)); IW)()*8;/  
    for j = 1:length(n) +y,T4^{  
        s = 0:(n(j)-m_abs(j))/2; E_gD:PPU5  
        pows = n(j):-2:m_abs(j); LZ\q3 7UV  
        for k = length(s):-1:1 HvUxsdT  
            p = (1-2*mod(s(k),2))* ... V GL aN%|  
                       prod(2:(n(j)-s(k)))/              ... < z+t,<3D  
                       prod(2:s(k))/                     ... Okgv!Nt8)A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cO-7ke  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 68bQ;Dv  
            idx = (pows(k)==rpowers); Q0$8j-1I  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +QB"8-  
        end :KH g&ZX7  
         ?J' Y&  
        if isnorm DDvh4<Hk  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O7u(}$D L  
        end +[Dj5~V  
    end |VKK#J/  
    % END: Compute the Zernike Polynomials oYHj~t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {Z{75}  
    z^KJ*E  
    -)s qc P  
    % Compute the Zernike functions: Pnw]Tm}g  
    % ------------------------------ PEN \-*Pv  
    idx_pos = m>0; o-;E>N7t  
    idx_neg = m<0; 6L:x^bM  
    m2 -Sx  
    R= a|Blp  
    z = y; <DpevoF  
    if any(idx_pos) R|JC1f8P5  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kTKq/G,Ft  
    end sPd Gw~{  
    if any(idx_neg) kSC}aN'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); vVj  
    end KjV:|  
    V zBqjE_  
    A+HF@Uw}^  
    % EOF zernfun ^*S ,xP  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  a\IP12F?  
    u)3 $~m~  
    DDE还是手动输入的呢? ^Y u6w\QM  
    NM]s8cK_  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究