切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9020阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, G\(cnqHk  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, "cz'|z`  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !2F X l;  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? -?p4"[  
    7q(A&  
    jSMxba]  
    #HTq \J!  
    }fJLY\  
    function z = zernfun(n,m,r,theta,nflag) 2rxz<ck(  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. T#.pi@PF>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q 6n!u;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 722:2 {  
    %   unit circle.  N is a vector of positive integers (including 0), and hn=tSlte  
    %   M is a vector with the same number of elements as N.  Each element /|m0)H.>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0k G\9  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gC+?5_=<  
    %   and THETA is a vector of angles.  R and THETA must have the same 4'5|YGQj  
    %   length.  The output Z is a matrix with one column for every (N,M) GK=b  
    %   pair, and one row for every (R,THETA) pair. U:0Ma 6<  
    % g.pR4Mf=Z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =Q*x=}NH  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3X%h?DC  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral SW}?y%~  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, rXR!jZ.hi  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?$#P =VK  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _tRRIW"Vx"  
    % ly#jl5wmT  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;;|.qgxc~  
    %   They are used in disciplines such as astronomy, optics, and Kay\;fXT  
    %   optometry to describe functions on a circular domain. a}Z+"D  
    % @{"?fqo  
    %   The following table lists the first 15 Zernike functions. "7Z-ACyF5  
    % 01~ nC@;  
    %       n    m    Zernike function           Normalization ^yX>^1  
    %       -------------------------------------------------- xp}M5|   
    %       0    0    1                                 1 (H8JV1J  
    %       1    1    r * cos(theta)                    2 _#qfe  
    %       1   -1    r * sin(theta)                    2 d ehK#8  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @b!W8c 6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) zpjE_|  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -3u ;U,}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 6qSsr]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Lg~ll$ U  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~dk97Z8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qOy0QZ#0  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /0o#V-E)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y,Lx6kU  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) L2=:Nac  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &?$mS'P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) K^ ALE  
    %       -------------------------------------------------- =*R6 O,  
    % p-r[M5;-^Q  
    %   Example 1: y,/i3^y#_  
    % CeeAw_*@  
    %       % Display the Zernike function Z(n=5,m=1) m VFo2^%v  
    %       x = -1:0.01:1; ]tzF Ob  
    %       [X,Y] = meshgrid(x,x); %>$Pu y\U  
    %       [theta,r] = cart2pol(X,Y); 74  &q2g{  
    %       idx = r<=1; q[GD K^-g  
    %       z = nan(size(X)); 7]9,J(:Ed  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s94 *uZ(C/  
    %       figure eC94rcb}i{  
    %       pcolor(x,x,z), shading interp kD0bdE|  
    %       axis square, colorbar "8"aYD_  
    %       title('Zernike function Z_5^1(r,\theta)') 3YJ"[$w='(  
    % SgYMPBh  
    %   Example 2: f!#+cM  
    % l))Q/8H  
    %       % Display the first 10 Zernike functions PQp =bX,  
    %       x = -1:0.01:1; [2Zl '+  
    %       [X,Y] = meshgrid(x,x); S+#|j  
    %       [theta,r] = cart2pol(X,Y); lF_"{dS_6(  
    %       idx = r<=1; ?(n v_O  
    %       z = nan(size(X)); R1*4  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 3)OQgeKU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <uxLG;R  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r?IBmatK/  
    %       y = zernfun(n,m,r(idx),theta(idx)); YRo,wsj  
    %       figure('Units','normalized') xK_oV+  
    %       for k = 1:10 $ nHD,h  
    %           z(idx) = y(:,k); v`{N0R  
    %           subplot(4,7,Nplot(k)) #wo *2 (  
    %           pcolor(x,x,z), shading interp J!2j]?D/e  
    %           set(gca,'XTick',[],'YTick',[]) %pxO<O  
    %           axis square Sg4{IU  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T@Y, 7ccpd  
    %       end  vP=68muD  
    % U`lK'..  
    %   See also ZERNPOL, ZERNFUN2. z:@:B:E  
    X^Z!!KTH  
    .r2*tB).  
    %   Paul Fricker 11/13/2006 *yaS^k\  
    1`YU9?  
    JXM]tV  
    yIrJaS-  
    #f YB4.i~  
    % Check and prepare the inputs: t&:L?K)j  
    % ----------------------------- "VZXi_P  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \+l*ZNYM3  
        error('zernfun:NMvectors','N and M must be vectors.') ?3p7MjvZ  
    end 993f6  
    "4;nnq  
    ,zltNbu\.(  
    if length(n)~=length(m) I#&r5Q  
        error('zernfun:NMlength','N and M must be the same length.') h693TS_N  
    end |1RVm?~i  
    kQ lU.J>^  
    6,a H[ >W  
    n = n(:); _$ivN!k  
    m = m(:); @phVfP"M  
    if any(mod(n-m,2)) G[A3H> >  
        error('zernfun:NMmultiplesof2', ... e=WjFnK[x7  
              'All N and M must differ by multiples of 2 (including 0).') % /"n(?$ W  
    end  }:Gs ,  
    D%abBE1  
    u0c}[BAF  
    if any(m>n) Fq@o_bI  
        error('zernfun:MlessthanN', ... w y|^=#k  
              'Each M must be less than or equal to its corresponding N.') _ i}W1i  
    end tqZ+2c<W3  
    ) ](ls@*  
    1|(Q|  
    if any( r>1 | r<0 ) =c'4rJ$+  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z*i p=FYR  
    end {]< G=]'  
    EUi 70h +  
    [/CGV8+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,^1zG  
        error('zernfun:RTHvector','R and THETA must be vectors.') W&IG,7tr  
    end y %Q. (  
     ch8a  
    IHni1  
    r = r(:); MLu!8dgI  
    theta = theta(:); kFv*>>X`  
    length_r = length(r); Q$c6l[(g  
    if length_r~=length(theta) N2v/<  
        error('zernfun:RTHlength', ... S^eem_C  
              'The number of R- and THETA-values must be equal.') ( Jk& U8y  
    end AJbCC  
    sD:o 2(G*  
    x#J9GP.  
    % Check normalization: #wI}93E  
    % -------------------- wqb4w7%  
    if nargin==5 && ischar(nflag) .|Huz k+  
        isnorm = strcmpi(nflag,'norm'); N/bOl~!y  
        if ~isnorm *Jd"3Si/  
            error('zernfun:normalization','Unrecognized normalization flag.') OG/b5U  
        end +;?mg(:  
    else kAQ(8xV  
        isnorm = false; )*~A|[  
    end h Ma;\k  
    9 {&g.+  
    )l7XZ_gw'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H648[H[k  
    % Compute the Zernike Polynomials >>y`ap2%V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% An{>39{  
    D\acA?d`  
    wq$$. .E  
    % Determine the required powers of r: <RY =y?%z  
    % ----------------------------------- j_~KD}  
    m_abs = abs(m); hOY@vm&  
    rpowers = []; @C)s4{V  
    for j = 1:length(n) C/e.BXA  
        rpowers = [rpowers m_abs(j):2:n(j)]; UK ':%LeL  
    end )`DVPudiy  
    rpowers = unique(rpowers); IZ=Z=k{  
    BJj'91B[d  
    ~_\Ra%  
    % Pre-compute the values of r raised to the required powers, U.e!:f4{  
    % and compile them in a matrix: YThVG0I =  
    % ----------------------------- x>yqEdR=o  
    if rpowers(1)==0 (?jK|_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h>/teHy /  
        rpowern = cat(2,rpowern{:}); A2|Bbqd  
        rpowern = [ones(length_r,1) rpowern]; WH:dcU   
    else 0D(8-H  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x?Abk  
        rpowern = cat(2,rpowern{:}); GV0\+A"vD  
    end \@gV$+{9  
    v$y\X3)mB  
    p&(0e,`z/  
    % Compute the values of the polynomials: /Q1 b%C  
    % -------------------------------------- =Z\q``RBy  
    y = zeros(length_r,length(n)); &}"kF\  
    for j = 1:length(n) y%TqH\RKv  
        s = 0:(n(j)-m_abs(j))/2; C4mkt2Eb0a  
        pows = n(j):-2:m_abs(j); C-YYG   
        for k = length(s):-1:1 h/Mt<5  
            p = (1-2*mod(s(k),2))* ... JtFq/&{i  
                       prod(2:(n(j)-s(k)))/              ... suN6(p(.  
                       prod(2:s(k))/                     ... \.i7( J]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... b~gq8,Fatb  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); uw+nll*W%  
            idx = (pows(k)==rpowers); )s!A\a`vEd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ug9Ja)1|  
        end 7X$CJ%6b  
         3H#,qug$  
        if isnorm >ywl()4O  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 56pj(}eq  
        end !VD$uT  
    end C*YQ{Mz(f  
    % END: Compute the Zernike Polynomials ([8*Py|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6s@!Yn|?  
    D?KLV _Op  
    Otq3nBZ  
    % Compute the Zernike functions: YEv\!%B  
    % ------------------------------ RuHDAJ"&a  
    idx_pos = m>0; G#7*O`  
    idx_neg = m<0; awzlLI<2p  
    (%^C}`|EA  
    hC$e8t60  
    z = y; <aPZE6z  
    if any(idx_pos) D1RQkAZS  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3o rSk  
    end #VhdYDbW  
    if any(idx_neg) /Z2u0jNArP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {MtJP:8Jp  
    end c]*yo  
    o6u^hG6~'  
    }hn?4ny  
    % EOF zernfun Jq^[^  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  wQ/.3V[  
    Qe!3ae`Z  
    DDE还是手动输入的呢? t>a D;|Y  
    0)zJG |  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究