切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9207阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, yDE0qUO  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, eTeZ^G  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6SJryf~w  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛?  1?oX"  
    7gk}f%,3P  
    KE~l#=S  
    P[G.LO  
    #[uDVCM  
    function z = zernfun(n,m,r,theta,nflag) E .'v,GYe  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1iiQW  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BidTrO  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @MoBR.  
    %   unit circle.  N is a vector of positive integers (including 0), and 'o!{YLJ fM  
    %   M is a vector with the same number of elements as N.  Each element +sW;p?K7eO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) AgBXB%).  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9tMaOm  
    %   and THETA is a vector of angles.  R and THETA must have the same `<"@&N^d  
    %   length.  The output Z is a matrix with one column for every (N,M) 0E<xzYo  
    %   pair, and one row for every (R,THETA) pair. +=V[7^K;  
    % MyJ\/`8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xsO "H8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &c|3v!  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral xnR;#Yc  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >, 9R :X(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _<8~CWo:  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Qvx[F:#Tk  
    % -5 Q gJ  
    %   The Zernike functions are an orthogonal basis on the unit circle. fHLt{!O  
    %   They are used in disciplines such as astronomy, optics, and AW R   
    %   optometry to describe functions on a circular domain. C3]"y7  
    % ;h-W&i7  
    %   The following table lists the first 15 Zernike functions. UyUz_6J  
    % \Zgc [F  
    %       n    m    Zernike function           Normalization 0p31C7!  
    %       -------------------------------------------------- MmbS ["A  
    %       0    0    1                                 1 }#<mK3MBe  
    %       1    1    r * cos(theta)                    2 *B3 4  
    %       1   -1    r * sin(theta)                    2 auai@)v6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) jY+u OH  
    %       2    0    (2*r^2 - 1)                    sqrt(3) PsMp &~^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) <b,oF]+;z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) QF74'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) O u-/dE%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )ZQ>h{}D  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ] oMtqkiR  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "G[yV>pxv  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JS^QfT,zE  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) mWP1mc:M(  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i[#XYX'\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;S5J"1)O~  
    %       -------------------------------------------------- XZ&cTjNB&  
    % "8#EA<lsS  
    %   Example 1: Ifu[L&U  
    % DmA~Vj!a^y  
    %       % Display the Zernike function Z(n=5,m=1)  T1\@4x  
    %       x = -1:0.01:1; ~85>.o2RDW  
    %       [X,Y] = meshgrid(x,x); w~%Rxdh?8W  
    %       [theta,r] = cart2pol(X,Y); Ds<~JfVl  
    %       idx = r<=1; 2N}UB=J  
    %       z = nan(size(X)); E|K|AdL  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Pl\r|gS;  
    %       figure ]=28s *@  
    %       pcolor(x,x,z), shading interp '~\\:37+  
    %       axis square, colorbar S11ME  
    %       title('Zernike function Z_5^1(r,\theta)') %jErLg  
    % i!i=6m.q7  
    %   Example 2: U(rY,4'  
    % |6O7_U#q  
    %       % Display the first 10 Zernike functions z4iTf8  
    %       x = -1:0.01:1; @d1YN]ede  
    %       [X,Y] = meshgrid(x,x); #7r13$>!  
    %       [theta,r] = cart2pol(X,Y); oO4hBM([  
    %       idx = r<=1; /7fD;H^*  
    %       z = nan(size(X)); N!~5S`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; kc7,F2=F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; L']"I^( N  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; xh:A*ZI=7  
    %       y = zernfun(n,m,r(idx),theta(idx)); [lz#+~rOS  
    %       figure('Units','normalized') Wi+}qO  
    %       for k = 1:10 uefrE53  
    %           z(idx) = y(:,k); 35KRJY#  
    %           subplot(4,7,Nplot(k)) V]5MIiNl  
    %           pcolor(x,x,z), shading interp $}8@?>-w  
    %           set(gca,'XTick',[],'YTick',[]) yBl9a-2A  
    %           axis square %5 ovW<E:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) rX}FhBl5  
    %       end ^:u-wr8?{  
    % 7SJbrOL4Q-  
    %   See also ZERNPOL, ZERNFUN2. I&wJK'GM`  
     &Sdf0"  
    H#/Hs#  
    %   Paul Fricker 11/13/2006 W QqOXF  
    qORL 7?{  
    WYm<_1  
    \OW.?1d  
    H{4_,2h =m  
    % Check and prepare the inputs: Gq]/6igzX  
    % ----------------------------- \k9]c3V  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n/ZX$?tKAK  
        error('zernfun:NMvectors','N and M must be vectors.') jR2^n`D  
    end 3jx/1VV  
    TZ#^AV=ae  
    & d_2WQ}  
    if length(n)~=length(m) ?3y>K!D(A  
        error('zernfun:NMlength','N and M must be the same length.') p5aqlYb6r  
    end -)Hc^'.  
    :X}fXgeL  
    D!V~g72j  
    n = n(:); ^6QzaC3  
    m = m(:); `O]$FpO  
    if any(mod(n-m,2)) RqKkB8g  
        error('zernfun:NMmultiplesof2', ... yioX^`Fc(~  
              'All N and M must differ by multiples of 2 (including 0).') 0[f[6mm%m  
    end %uz6iQaq]X  
    pnTz.)'46  
    M=54xTh0Y  
    if any(m>n) NpH9}, 1i  
        error('zernfun:MlessthanN', ... &N*l?7(  
              'Each M must be less than or equal to its corresponding N.') meYGIP:n  
    end H5(: 1  
    [ D"5@  
    -_M':  
    if any( r>1 | r<0 ) fRjp(m  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >mj WC) U  
    end #sE: xIR  
    y9U~4  
    `$MO;Fv,G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K+ |0~/0  
        error('zernfun:RTHvector','R and THETA must be vectors.') |j4p  
    end XZ<8M}Lg  
    |$C fm}  
    u{cb[M  
    r = r(:); p2 !w86 F  
    theta = theta(:); .I]EP-  
    length_r = length(r); b!qlucA eE  
    if length_r~=length(theta) _ BoA&Ism  
        error('zernfun:RTHlength', ... 9&zQ 5L>  
              'The number of R- and THETA-values must be equal.') LK<ZF=z]Z  
    end p }e| E!  
    j_.tg7X  
    TQykXZ2Yb)  
    % Check normalization: ,<$rSvMfg  
    % -------------------- h!`KX2~  
    if nargin==5 && ischar(nflag) P('bnDU  
        isnorm = strcmpi(nflag,'norm'); nG$+9}\UlP  
        if ~isnorm c`/kx  
            error('zernfun:normalization','Unrecognized normalization flag.') *xN?5u%  
        end |Y v,zEY)  
    else 1.5R`vKn]  
        isnorm = false; 4n*`%V  
    end T%A"E,#  
    G[=;519  
    dM-~Qo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hcz!f  
    % Compute the Zernike Polynomials Rq`5ff3,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,BR W=  
    )2 b-3lz  
    E)|Bl>  
    % Determine the required powers of r: e-nwR  
    % ----------------------------------- nUK;M[  
    m_abs = abs(m); %~M#3Ywa  
    rpowers = []; 'wWuR@e#&  
    for j = 1:length(n) ^a$L9p(  
        rpowers = [rpowers m_abs(j):2:n(j)]; :m36{#  
    end PAH#yM2Ic  
    rpowers = unique(rpowers); O)"Z%B  
    )$K\:w>  
    tBETNt7  
    % Pre-compute the values of r raised to the required powers, nW`] =  
    % and compile them in a matrix: "bz.nE*  
    % ----------------------------- "N)InPR-  
    if rpowers(1)==0 >Bu _NoM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Lt i2KY}/%  
        rpowern = cat(2,rpowern{:}); $~\Tl:!#?  
        rpowern = [ones(length_r,1) rpowern]; ZG? e%  
    else ],{M``]q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cC]]H&'Hg+  
        rpowern = cat(2,rpowern{:}); NErvX/qK  
    end P.jy7:dB,  
    Wz#ZkNO  
    ,!X:wY}dW  
    % Compute the values of the polynomials: o6:@j#b  
    % -------------------------------------- i^8w0H<-@v  
    y = zeros(length_r,length(n)); "rVM23@ tq  
    for j = 1:length(n) &*oljGt8  
        s = 0:(n(j)-m_abs(j))/2; xe9\5Gb}  
        pows = n(j):-2:m_abs(j); MHGaf`7ro  
        for k = length(s):-1:1 SwaMpNXL  
            p = (1-2*mod(s(k),2))* ... m_FTg)_=  
                       prod(2:(n(j)-s(k)))/              ... BqM[{Kv  
                       prod(2:s(k))/                     ... @Fzw_qr M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... N`qGwNT%G  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); mo,"3YW  
            idx = (pows(k)==rpowers); [&l+Ve(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); :Zo^Uc:*w  
        end @, AB 2D  
         %d<UMbS^  
        if isnorm bJkFCI/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (`u+(M!^  
        end B9 ,  
    end {hm-0Q  
    % END: Compute the Zernike Polynomials o{ccO29H/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]mjKF\  
    M'oQ<,yW-  
    P ?96;  
    % Compute the Zernike functions: 2wgcVQ Awa  
    % ------------------------------ ,dF Y]  
    idx_pos = m>0; v[ R_6  
    idx_neg = m<0; \jS^+Xf?^  
    CK_\K,xVT  
    : qV|rih_Q  
    z = y; 4VkJtu5  
    if any(idx_pos) z6h/C {  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); NxB/U_j  
    end =#wE*6T9  
    if any(idx_neg) v+dT7* ^@  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 23opaX5V=  
    end 5bsv05=e  
    T b*Q4:r"  
    2uMSeSx$  
    % EOF zernfun A2Iqn5  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  eak+8URo  
    l D]?9K29  
    DDE还是手动输入的呢? `(@{t:L  
    <;dFiI-GO#  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究