切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9498阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C4|H 5H  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ZJOO*S  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? O6b.oS '-  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4v#A#5+O E  
    PcEE@W9  
    " XlXu  
    >8EmfjUoc  
    o>y@1%aU  
    function z = zernfun(n,m,r,theta,nflag) "rcV?5?v~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. zC WN,K`  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0GcOI}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ) B[S4K2  
    %   unit circle.  N is a vector of positive integers (including 0), and MNH-SQB|  
    %   M is a vector with the same number of elements as N.  Each element _ {mG\*q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $sb `BS  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @WuG8G  
    %   and THETA is a vector of angles.  R and THETA must have the same 4=ZN4=(_[  
    %   length.  The output Z is a matrix with one column for every (N,M) ,Ad{k   
    %   pair, and one row for every (R,THETA) pair. %!V=noo  
    % F>"B7:P1:Q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wQrD(Dv(yA  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f=Kt[|%'e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 43/!pW  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, DX<xkS[P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized S !R:a>\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Rqun}v}  
    % ke5_lr(  
    %   The Zernike functions are an orthogonal basis on the unit circle. l/6(V:  
    %   They are used in disciplines such as astronomy, optics, and {AO`[  
    %   optometry to describe functions on a circular domain. 2-DJ3OL]k  
    % Vv.q{fRvYB  
    %   The following table lists the first 15 Zernike functions. j)lgF:  
    % Kc {~Q  
    %       n    m    Zernike function           Normalization 3.?B')  
    %       -------------------------------------------------- 1fcyGZq  
    %       0    0    1                                 1 |&\cr\T\r  
    %       1    1    r * cos(theta)                    2 xi!R[xr1  
    %       1   -1    r * sin(theta)                    2 Wfj*)j Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~.TKzh'eB  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5dEek7wnf  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TuMD+^x  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) j(`V& S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I.'sK9\Zp  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) V1\x.0Fs  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 1" #W1im  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) gpe-)hD@R  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }OLBEhGs  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Jk=d5B  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fhbp,CX4p  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?KXgG'!!  
    %       -------------------------------------------------- 4e9'yi  
    % =y1/V'2E  
    %   Example 1: M{M?#Q  
    % tCbn B  
    %       % Display the Zernike function Z(n=5,m=1) bcE%EQ  
    %       x = -1:0.01:1; z9P;HGuZ  
    %       [X,Y] = meshgrid(x,x); DX4"}w  
    %       [theta,r] = cart2pol(X,Y); XjV,wsZ=  
    %       idx = r<=1; w@\quy:  
    %       z = nan(size(X)); JnBg;D|)@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); O^I%Xk  
    %       figure * 57y.](w  
    %       pcolor(x,x,z), shading interp cT,5xp"a  
    %       axis square, colorbar pk2}]jx"  
    %       title('Zernike function Z_5^1(r,\theta)') +}@6V4BRn  
    % ,L,?xvWG  
    %   Example 2: @Z%I g  
    % h]#bPb  
    %       % Display the first 10 Zernike functions "\u_gk{g  
    %       x = -1:0.01:1; 8A3!XA  
    %       [X,Y] = meshgrid(x,x); nLv"ON~  
    %       [theta,r] = cart2pol(X,Y); WMXk-?v4  
    %       idx = r<=1; VS_xC $X!S  
    %       z = nan(size(X)); tx01*2]pX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; L?p,Sy<RI  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; a]u1_ $)  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; F3V_rE<  
    %       y = zernfun(n,m,r(idx),theta(idx)); =#ls<Zo:  
    %       figure('Units','normalized') 4'ymPPY  
    %       for k = 1:10 iPoDesp  
    %           z(idx) = y(:,k); jM  DG  
    %           subplot(4,7,Nplot(k)) ; \N${YIn  
    %           pcolor(x,x,z), shading interp 8I*WVa$l  
    %           set(gca,'XTick',[],'YTick',[]) ??.9`3CYo  
    %           axis square Ib665H7w  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `VxfAV?}  
    %       end y vz2eAXa  
    % , ,=7deR  
    %   See also ZERNPOL, ZERNFUN2. _LUTIqlvi  
    ;wkoQ8FD9  
    auP6\kpMe  
    %   Paul Fricker 11/13/2006 h% T$m_  
    t/9,JG  
    #`9D,+2iB%  
    rM?ox  
    ]rP'\a  
    % Check and prepare the inputs: ntT~_Ba8;u  
    % ----------------------------- ]C me)&hX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h"~GaI  
        error('zernfun:NMvectors','N and M must be vectors.') E5}wR(i,4  
    end ;\5^yDv[e  
    0aS&!"o!  
    `]xot8  
    if length(n)~=length(m) 8+7=yN(  
        error('zernfun:NMlength','N and M must be the same length.') &J~%Nt  
    end :jp4 !0w  
    M!ra3Y  
    iqj ZC80  
    n = n(:); D9|?1+Kc  
    m = m(:); + ^9;<>P  
    if any(mod(n-m,2)) =_/,C  
        error('zernfun:NMmultiplesof2', ... 4&c7^ 4w~  
              'All N and M must differ by multiples of 2 (including 0).') FOU^Wcop%  
    end =5-|H;da  
     FGP~^Dr/  
    V\V:uo(C  
    if any(m>n) jGtoc,\X  
        error('zernfun:MlessthanN', ... Q*+_%n1 /  
              'Each M must be less than or equal to its corresponding N.') )@]Y1r4U  
    end  p|D-ez8  
    A S#D9o  
    @fH?y Z=>  
    if any( r>1 | r<0 ) ){.J`X5r  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Y C uuj$  
    end {|jG_  
    ktr l|  
    n./onv  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9x~qcH%  
        error('zernfun:RTHvector','R and THETA must be vectors.') W~1MeAI  
    end W*xz 0  
    /Nh:O  
    ?V}AwLX}  
    r = r(:); btC.EmX  
    theta = theta(:); 2_x~y|<9  
    length_r = length(r); hkO)q|1  
    if length_r~=length(theta) U-$ B"w&  
        error('zernfun:RTHlength', ... % DQ.f*%  
              'The number of R- and THETA-values must be equal.') GMZj@q  
    end h%Nbx:vKk  
    K_J o^BZ  
    S|8O$9{x9q  
    % Check normalization: GA{Q6]B  
    % -------------------- A|BvRZd  
    if nargin==5 && ischar(nflag) J!QzF)$4J  
        isnorm = strcmpi(nflag,'norm'); $h Is ab_  
        if ~isnorm }@pe `AF^  
            error('zernfun:normalization','Unrecognized normalization flag.') G B+U>nf  
        end XB &-k<C  
    else RoXU>a:nS  
        isnorm = false; xi6Fs, 2S  
    end Xf.w( -  
    (YjY=F  
    z/7H/~d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iaR^]|7_  
    % Compute the Zernike Polynomials  _"ysJ&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LDL#*g  
    Zcg=a_  
    %$ ^yot  
    % Determine the required powers of r: lA39$oJ  
    % ----------------------------------- 8KpG0DC  
    m_abs = abs(m); |5}{4k~9J  
    rpowers = []; 2#nn}HEOC  
    for j = 1:length(n) /Xi:k  
        rpowers = [rpowers m_abs(j):2:n(j)]; jZ< *XX  
    end ^P-!pK*  
    rpowers = unique(rpowers); =>6Z"LD(  
    ]?L?q2>&  
    xA nAW  
    % Pre-compute the values of r raised to the required powers, K \}xb2s  
    % and compile them in a matrix: Rww"Z=F  
    % ----------------------------- 5:f}bW*  
    if rpowers(1)==0 l\5}\9yS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d]h[]Su/?  
        rpowern = cat(2,rpowern{:}); -t % .I=|  
        rpowern = [ones(length_r,1) rpowern]; WK#lE&V3  
    else H7)(<6b,z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `3r*Ae  
        rpowern = cat(2,rpowern{:}); io:?JnQSA  
    end ?x]T &S{  
    Z{RgpVt  
    ;W#G<M&n'  
    % Compute the values of the polynomials: +bd/*^  
    % -------------------------------------- J6Mm=bO5  
    y = zeros(length_r,length(n)); SZc6=^$  
    for j = 1:length(n) ltHC+8 aZ  
        s = 0:(n(j)-m_abs(j))/2; a2iaP  
        pows = n(j):-2:m_abs(j); -4b9(  
        for k = length(s):-1:1 W.o W =<  
            p = (1-2*mod(s(k),2))* ... NS=puo  
                       prod(2:(n(j)-s(k)))/              ... =#1iio&  
                       prod(2:s(k))/                     ... ms3Ec`i9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... LL-MZ~ZB  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8Md*9E#J("  
            idx = (pows(k)==rpowers); hdN3r{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \C*?a0!:Z}  
        end e&F,z=XJ}  
         $|z8WCJ  
        if isnorm pz?.(AmU\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); QsI>_<r  
        end +S|y)W8  
    end 2NsI3M4$8  
    % END: Compute the Zernike Polynomials b#k$/A@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n?aogdK$V  
    LtH;#Q  
    34]f[jJ|  
    % Compute the Zernike functions: ImklM7A  
    % ------------------------------ Lc*i[J<s  
    idx_pos = m>0; 4jis\W}%L3  
    idx_neg = m<0; y"!+Fus9  
    suPQlU>2sj  
    tTF/$`Q#*  
    z = y; tb&{[|O^  
    if any(idx_pos) kY xn5+~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >F,~QHcz  
    end .knRH^  
    if any(idx_neg) ]Rnr>_>x;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5H==m~  
    end Tp[ub(/;7  
    $CHr i|  
    Uh?SDay  
    % EOF zernfun !K(0)~u  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  .{1G"(z  
    yM}}mypS  
    DDE还是手动输入的呢? <Bn^+u\  
    z\Rs?v"  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究