下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, X u"R^
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |CgnCUv+
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }14{2=!Q
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? eLwTaW !C
N-lGa@ j
?6Cz[5\
~/_9P Fk
-B#yy]8
function z = zernfun(n,m,r,theta,nflag) %zC[KE*~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ogM%N
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]!:oYAm
% and angular frequency M, evaluated at positions (R,THETA) on the #5sD{:f`
% unit circle. N is a vector of positive integers (including 0), and E< 4l#Z<
% M is a vector with the same number of elements as N. Each element f0+2t.tj
% k of M must be a positive integer, with possible values M(k) = -N(k) >idBS
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ;vhyhP.oM
% and THETA is a vector of angles. R and THETA must have the same wI M{pK
% length. The output Z is a matrix with one column for every (N,M) [#" =yzR<3
% pair, and one row for every (R,THETA) pair. O^LTD#}$a)
% DPe]daF
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d
"BW/%m|g
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^\ ?O4,L
% with delta(m,0) the Kronecker delta, is chosen so that the integral g}&hl"j
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y9SGRV(
% and theta=0 to theta=2*pi) is unity. For the non-normalized PYB+FcR6?n
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @J[6,$UVu
% `Yc_5&"
% The Zernike functions are an orthogonal basis on the unit circle. %v5R#14[n
% They are used in disciplines such as astronomy, optics, and #LcrI
% optometry to describe functions on a circular domain. JGiKBm;
% y<W8Q<9
% The following table lists the first 15 Zernike functions. nGZX7Fx5
% F}Mhs17!|
% n m Zernike function Normalization hovGQHg
% -------------------------------------------------- wYeB)1.
% 0 0 1 1 `|1MlRM9
% 1 1 r * cos(theta) 2 KH KS$D
% 1 -1 r * sin(theta) 2 t^=U*~
% 2 -2 r^2 * cos(2*theta) sqrt(6) 7>o.0
% 2 0 (2*r^2 - 1) sqrt(3) 0X..e$ '
% 2 2 r^2 * sin(2*theta) sqrt(6) ;N+$2w
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0m[dP
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) C>^D*C(
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) fbrp#G71y
% 3 3 r^3 * sin(3*theta) sqrt(8) ?{o/I\\
% 4 -4 r^4 * cos(4*theta) sqrt(10) >QQ(m\a$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (J$\-a7<f
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /rB{[zk
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Mro4`GL
% 4 4 r^4 * sin(4*theta) sqrt(10) \`'KlF2
% -------------------------------------------------- NQTnhiM7$
% |wxGpBau
% Example 1: tury<*
% lYf+V8{
% % Display the Zernike function Z(n=5,m=1) ~ <0Z>qr
% x = -1:0.01:1; oR+-+-??$
% [X,Y] = meshgrid(x,x); 1.@vS&Y7OE
% [theta,r] = cart2pol(X,Y);
R)Q4
% idx = r<=1; PsjbR
% z = nan(size(X)); Df07y<>7Q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); S{F-ttS"
% figure [um&X=1V8
% pcolor(x,x,z), shading interp \jW)Xy
% axis square, colorbar jX=lAs~6
% title('Zernike function Z_5^1(r,\theta)') *ck}|RhR
% t
*6loS0+
% Example 2: S^RUw
% _68BP)nz>.
% % Display the first 10 Zernike functions -=$2p0"R
% x = -1:0.01:1; )yee2(S
% [X,Y] = meshgrid(x,x); 'aJgLws*w
% [theta,r] = cart2pol(X,Y); PY\PUMF>
% idx = r<=1; -Q
e~)7
% z = nan(size(X)); tgFJZA
% n = [0 1 1 2 2 2 3 3 3 3]; e&Y0}oY
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; jdRq6U^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,#u\l>&$
% y = zernfun(n,m,r(idx),theta(idx)); O>r-]0DI[
% figure('Units','normalized') a^nAZ
% for k = 1:10 JXQPT
% z(idx) = y(:,k); )-P!Ae_.v
% subplot(4,7,Nplot(k)) Bl.u=I:Y4
% pcolor(x,x,z), shading interp U)jUq_LX
% set(gca,'XTick',[],'YTick',[]) vL_zvXA
% axis square }F1s
tDx
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u4'z$>B
% end kN9yO5h7
% 1IH[g*f
% See also ZERNPOL, ZERNFUN2. :{g7lTM
=WZ%H_oxi
I@7/jUO
% Paul Fricker 11/13/2006 HQVh+ (
Y)HbxFF`/
x/TGp?\g
w8M2N]&:
I=dGq;Jaz
% Check and prepare the inputs: ))#'4
% ----------------------------- QEJGnl676
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9Ld9N;rWm#
error('zernfun:NMvectors','N and M must be vectors.') M=!i>(yG
end Z[#IfbYt
O&?.&h
z_SagU,\
if length(n)~=length(m) XF,<i1ZlM
error('zernfun:NMlength','N and M must be the same length.') P;91~``b-
end (i`(>I.(/
@ RR\lZ
b](o]O{v
n = n(:); hY;_/!_
m = m(:); jz:gr=*z
if any(mod(n-m,2)) Y(i?M~3\t
error('zernfun:NMmultiplesof2', ... |qUrEGjiSS
'All N and M must differ by multiples of 2 (including 0).') B4W\
t{
end (Pi-uL<[a
av' *u
2_pz3<,\
if any(m>n) L7q | ^`
error('zernfun:MlessthanN', ... #s"B-sWE
'Each M must be less than or equal to its corresponding N.') V/y=6wUiSl
end D1"7s,Hmu
4,}GyVJFb`
"E PD2,%S
if any( r>1 | r<0 ) 0-xCp ~vE
error('zernfun:Rlessthan1','All R must be between 0 and 1.') d'zT:g
end m6n hC
U</+ .$b
960qvz!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !wh=dQgMe
error('zernfun:RTHvector','R and THETA must be vectors.')
(K
#A
end ~mH+DV3
J+2R&3;_O
`SOhG?Zo
r = r(:); ^
}#f()
theta = theta(:); hx!`F
length_r = length(r); vjTwv+B"
if length_r~=length(theta) 6E+=Xi
error('zernfun:RTHlength', ... .hN3`>*V
'The number of R- and THETA-values must be equal.') 1%eLs=u?
end JSjYC0e
lgT?{,>RkW
=lrN'$z?%
% Check normalization: OV|Z=EwJ
% -------------------- 79tJV
if nargin==5 && ischar(nflag) E~He~wHWe
isnorm = strcmpi(nflag,'norm'); M {x ie
if ~isnorm t<lyg0f
error('zernfun:normalization','Unrecognized normalization flag.') ,OB&nN t>
end G%OpO.Wf
else /=M.-MU2
isnorm = false; 4A~)b"j5
end 6y@<?08Q
Y'_ D<Mp
cEi<}9r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OK\]*r
% Compute the Zernike Polynomials |Ow$n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lIl9ypikg
r5)f82pQ
,4Y sZ
% Determine the required powers of r: ayH>XwY6
% ----------------------------------- 4~WlP,,M
m_abs = abs(m); M9g1d7%
rpowers = []; IMR$x(g=
F
for j = 1:length(n) '%O\E{h
rpowers = [rpowers m_abs(j):2:n(j)]; X,53c$
end s}!"a8hU`
rpowers = unique(rpowers); M=Is9)y
\[E-:
o}R|tOe
% Pre-compute the values of r raised to the required powers, Kz^ hQd
% and compile them in a matrix: ^z?=?%{
% ----------------------------- -9Xw]I#QR
if rpowers(1)==0 Bcm=G""
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hGKdGu`0
rpowern = cat(2,rpowern{:}); 9oD#t~+F4
rpowern = [ones(length_r,1) rpowern]; bgXc_>T6_y
else _Fvsi3d/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Sl~C0eO
rpowern = cat(2,rpowern{:}); [r~~=b7*[
end /
GZV_H%v
c$.T<r)Z
&@Yoj %%
% Compute the values of the polynomials: [M2Dy{dh
% -------------------------------------- +{bh
y = zeros(length_r,length(n)); 6KBHRt
for j = 1:length(n) "lb\c
s = 0:(n(j)-m_abs(j))/2; #|D:f~"d3
pows = n(j):-2:m_abs(j); g&8 .A(
for k = length(s):-1:1 {Bv`i8e
p = (1-2*mod(s(k),2))* ... o}W7.7^2
prod(2:(n(j)-s(k)))/ ... m&{rBz0
prod(2:s(k))/ ... 33S`aJ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 4t(QvIydA
prod(2:((n(j)+m_abs(j))/2-s(k))); )%1&/uN)
idx = (pows(k)==rpowers); B)(w%\M4^
y(:,j) = y(:,j) + p*rpowern(:,idx); akY6D]M
end j[BgP\&,
D`5:
JR-{
if isnorm C(ZcR_+r$,
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); yl|R:/2V
end ,7/\&X<`B
end 0c{Gr 0[>
% END: Compute the Zernike Polynomials T&e%/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |Yg}WHm
KN|'|2/|
U@MOvW)
% Compute the Zernike functions: 7YSuB9{M
% ------------------------------ M |aQ)ivh3
idx_pos = m>0; lp3(&p<:
idx_neg = m<0; eq7C]i
rH
*GB$sXF
ook' u}h
z = y; qRWJ-T:!F
if any(idx_pos) ],WwqD=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); il<gjlyR]L
end d
u_O} x
if any(idx_neg) agGgJ@
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); </~1p~=hAt
end %,h!: Ec^c
an #jZ[
+X{cN5Y K
% EOF zernfun oTZo[T@zRx