切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9474阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, /7AHd ;  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hg)Xr5>  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? F5o8@ Ib]:  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 0]DOiA  
    %rW}x[M%w?  
    RM2Ik_IH[l  
    .a%6A#<X  
    ;2f=d_/x  
    function z = zernfun(n,m,r,theta,nflag) Ni_H1G  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xoe|]@U`  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]*2),H1 c  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~MG6evm &  
    %   unit circle.  N is a vector of positive integers (including 0), and _{*} )&!M  
    %   M is a vector with the same number of elements as N.  Each element Y)rK'OY'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) W{6QvQD8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "Lp.*o  
    %   and THETA is a vector of angles.  R and THETA must have the same 'n &p5%  
    %   length.  The output Z is a matrix with one column for every (N,M) t>bzo6cj  
    %   pair, and one row for every (R,THETA) pair. iQG!-.aX  
    % x93@[B*%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .n 9.y8C  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P3oYk_oW  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral PQHztS"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GkAd"<B  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c1H.v^Y5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o|xf2k  
    % k[Em~>m  
    %   The Zernike functions are an orthogonal basis on the unit circle. CmU@8-1  
    %   They are used in disciplines such as astronomy, optics, and NFT:$>83`  
    %   optometry to describe functions on a circular domain. oC&}lp)q  
    % JYdb^j2c  
    %   The following table lists the first 15 Zernike functions. _J,**AZ~z  
    % 49qa  
    %       n    m    Zernike function           Normalization l)u%`Hcn  
    %       -------------------------------------------------- mv9D{_,pD  
    %       0    0    1                                 1 }z]d]  
    %       1    1    r * cos(theta)                    2 mF6-f#t>H+  
    %       1   -1    r * sin(theta)                    2 /X}1%p  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HhbBt'fH  
    %       2    0    (2*r^2 - 1)                    sqrt(3) RoqkT|#$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) bmT%?it  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) # qd!_oN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u Kx:7"KD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,N$Q']Td  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0#|Jhmv-zL  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "aGmv9\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S>lP?2J  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z~H1f$}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w-).HPe  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) {z oGwB  
    %       -------------------------------------------------- 5gz^3R|`f  
    % M"z=114  
    %   Example 1: xF_u:}7`  
    % h,[L6-n  
    %       % Display the Zernike function Z(n=5,m=1) xU;SRB   
    %       x = -1:0.01:1; \`k=9{R.  
    %       [X,Y] = meshgrid(x,x); MWwqon|  
    %       [theta,r] = cart2pol(X,Y); MTYV~S4/  
    %       idx = r<=1; F}Zg3 #  
    %       z = nan(size(X)); U&3!=|j  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx));  (?Ku-k  
    %       figure H{cOkuy  
    %       pcolor(x,x,z), shading interp e1[ReZW  
    %       axis square, colorbar JuJW]E Q  
    %       title('Zernike function Z_5^1(r,\theta)') +Xg:*b9So  
    % l0&Fm:))k  
    %   Example 2: A rE~6X  
    % WsTIdr36x  
    %       % Display the first 10 Zernike functions q/?*|4I  
    %       x = -1:0.01:1; %DuPM6 6r  
    %       [X,Y] = meshgrid(x,x); T"\d,ug5[  
    %       [theta,r] = cart2pol(X,Y); $_JfM^w  
    %       idx = r<=1; +}jzge"  
    %       z = nan(size(X)); 0\i\G|5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; J{/hc} $  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; AMrYT+1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8wWp+Hk  
    %       y = zernfun(n,m,r(idx),theta(idx)); MJX ny4n  
    %       figure('Units','normalized') 'v'[_(pq  
    %       for k = 1:10 R&1>\t  
    %           z(idx) = y(:,k); .H|Z3d!Jj  
    %           subplot(4,7,Nplot(k)) 9DBX.|  
    %           pcolor(x,x,z), shading interp QFTiE1mGH  
    %           set(gca,'XTick',[],'YTick',[]) Q & /5B  
    %           axis square b GSj?t9/  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) aPJTH0u  
    %       end X au %v5r  
    % YusmMsN?  
    %   See also ZERNPOL, ZERNFUN2. |X{j^JP 5  
    U*nB= =  
    K^x{rn.Zf  
    %   Paul Fricker 11/13/2006 +;+G+Tn  
    &._"rhz  
    /yU#UZ4;  
    9#[,{2pJr  
    $`OyGeq"T  
    % Check and prepare the inputs: e# Y{YtE  
    % ----------------------------- 7 \xCNOKh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q'U!  
        error('zernfun:NMvectors','N and M must be vectors.') [( xPX  
    end cvw17j  
    pI f6RwH}%  
    i:Y5aZc/Ds  
    if length(n)~=length(m) >~d'i  
        error('zernfun:NMlength','N and M must be the same length.') !ak760*A  
    end 7 @\i5  
    / 8O=3  
    8XVRRk  
    n = n(:); NvzPZ9=@-  
    m = m(:); RH,x);J|  
    if any(mod(n-m,2)) Y4YZM  
        error('zernfun:NMmultiplesof2', ... K1YxF  
              'All N and M must differ by multiples of 2 (including 0).') &y0GdzfQd  
    end cZ%tJ(&\7X  
    ;Q3[} ]su  
    BZLIi O  
    if any(m>n) /nv*OKS|  
        error('zernfun:MlessthanN', ... Sv=e|!3f[k  
              'Each M must be less than or equal to its corresponding N.') it{Jd\/hR  
    end C D6N8n]  
    UZsvYy?  
    -[N9"Z,  
    if any( r>1 | r<0 ) (k+*0.T&?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |t"CH'KJZ  
    end x+~!M:fAc9  
    '<,Dz=  
    :}36;n<['  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ; Ows8  
        error('zernfun:RTHvector','R and THETA must be vectors.') {oOUIP  
    end 1tO96t^d%  
    0 NSw^dO\  
    nGX3_-U4  
    r = r(:); ;k0Jl0[}  
    theta = theta(:); m*1  
    length_r = length(r); D]>Z5nr |  
    if length_r~=length(theta) ;d>n2  
        error('zernfun:RTHlength', ... ,^n&Q'p3  
              'The number of R- and THETA-values must be equal.') Dl~(NLM  
    end k|>yFc  
    *Dq ++  
    \{Q_\s&)  
    % Check normalization: Y8%l)g  
    % -------------------- `uLr^G=;  
    if nargin==5 && ischar(nflag) c ?<)!9:  
        isnorm = strcmpi(nflag,'norm'); ;t9!< L  
        if ~isnorm L[:A Ue  
            error('zernfun:normalization','Unrecognized normalization flag.') Q%~BD@Io  
        end L9^ M?.a  
    else #c' B2Jn  
        isnorm = false; A *:| d~  
    end "] 2^O  
    |<3x`l-`  
    NKEmY-f;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GL>YJ%  
    % Compute the Zernike Polynomials ,%A|:T]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FS)# v  
    o=!_.lDF:  
    E;`^`T40  
    % Determine the required powers of r: 6d5J*y2  
    % ----------------------------------- 1D)0\#><  
    m_abs = abs(m); ]iW:YNvXA  
    rpowers = []; }oiNgs/N  
    for j = 1:length(n) K2Ro0  
        rpowers = [rpowers m_abs(j):2:n(j)]; y:Gn58\o  
    end }^Sk.:;n3  
    rpowers = unique(rpowers); &Qv HjjQ?u  
    teb(gUy}L6  
    V=fh;p  
    % Pre-compute the values of r raised to the required powers, [f { qb\  
    % and compile them in a matrix: ~}{_/8'5  
    % ----------------------------- Vp1ct06^  
    if rpowers(1)==0 "~.4z,ha  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }8YY8|]LI  
        rpowern = cat(2,rpowern{:}); "doiD=b  
        rpowern = [ones(length_r,1) rpowern]; 0=U|7%dOL  
    else &RbP N^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KkTE -$-  
        rpowern = cat(2,rpowern{:}); u^MRKLn  
    end V'RbTFb9Z  
    P RUl-v  
    \}4*}Lr  
    % Compute the values of the polynomials: XUVj<U  
    % -------------------------------------- $nW9VMa  
    y = zeros(length_r,length(n)); f|_\GVW  
    for j = 1:length(n) fwA8=o SZd  
        s = 0:(n(j)-m_abs(j))/2; 8oI|Z=  
        pows = n(j):-2:m_abs(j); x'\C'zeF  
        for k = length(s):-1:1 du ~V=%9  
            p = (1-2*mod(s(k),2))* ... S[7^#O.)  
                       prod(2:(n(j)-s(k)))/              ... dG0zA D  
                       prod(2:s(k))/                     ... A15Kj#Oy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =NY55t.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); X=1o$:7  
            idx = (pows(k)==rpowers); $mAC8a_Zu  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 'ZI8nMY  
        end $v#`2S(7  
         mj9sX^$ dE  
        if isnorm W,H8B%e  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^$% Sg//  
        end t_!p({  
    end / yBrlf  
    % END: Compute the Zernike Polynomials >W >Ei(f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'Nt)7U>oC9  
    @.i#uMWF`  
    [[^95:  
    % Compute the Zernike functions: Wq+GlB*  
    % ------------------------------ g=t7YQq_~  
    idx_pos = m>0; XKws_  
    idx_neg = m<0; U+>M@!=  
    O<V 4j,  
    >"=DN5w ,S  
    z = y; 8TAJ#Lm  
    if any(idx_pos) [PUu9rz#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #O;JV}y  
    end \5!7zPc  
    if any(idx_neg) o<3$|`S&  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6YNL4HE?  
    end a,S;JF)v  
    M.s'~S7y  
    q!'p   
    % EOF zernfun ihwJBN>(  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  2jFuF71  
    }xk(aM_  
    DDE还是手动输入的呢? n:%4 SZn  
    5G f@n/M"  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究