下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, &Low/Y'.jJ
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8B\2Zfe
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (Iaf?J5{
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $ZugBh[b
mi,E-
e\!0<d
B?'#4J
inh=WUEW
function z = zernfun(n,m,r,theta,nflag) eHn7iuS8
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. SqEgn}m$
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +@p%
p
% and angular frequency M, evaluated at positions (R,THETA) on the _qw?@478
% unit circle. N is a vector of positive integers (including 0), and { g/0x,-Z
% M is a vector with the same number of elements as N. Each element -*
WXMzr
% k of M must be a positive integer, with possible values M(k) = -N(k) &jslyQ#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }BZ"S-hZ
% and THETA is a vector of angles. R and THETA must have the same ?o81E2TJO
% length. The output Z is a matrix with one column for every (N,M) nxWY7hU
% pair, and one row for every (R,THETA) pair. BD_Iz A<wK
% mlJ!:WG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3%E }JU?MM
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $\]&rZVi
% with delta(m,0) the Kronecker delta, is chosen so that the integral ;7?kl>5]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _AAaC_q
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8FKXSqhVM
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [RLN;(0n
% p i
%<Sy
% The Zernike functions are an orthogonal basis on the unit circle. kEOS{C%6R
% They are used in disciplines such as astronomy, optics, and mH%yGBp_
% optometry to describe functions on a circular domain. dQV;3^iUY
% b{L/4bu
% The following table lists the first 15 Zernike functions. :N4t49i
% x[h^[oF0
% n m Zernike function Normalization D~hg$XzK
% -------------------------------------------------- >7I15U
% 0 0 1 1 &7PG.Ff!r
% 1 1 r * cos(theta) 2 3RYpJAH
% 1 -1 r * sin(theta) 2 PsnWWj?c
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^p[rc@+
% 2 0 (2*r^2 - 1) sqrt(3) >O*IQ[r-
% 2 2 r^2 * sin(2*theta) sqrt(6) j27?w<
% 3 -3 r^3 * cos(3*theta) sqrt(8) N/%WsQp
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) /{+y2.{j
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) =e9>FWf>
% 3 3 r^3 * sin(3*theta) sqrt(8) }001K
% 4 -4 r^4 * cos(4*theta) sqrt(10) CG0
M
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g.BdlVB\
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Si8pzd
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =Xi07_8Ic<
% 4 4 r^4 * sin(4*theta) sqrt(10) 4]?<hH 9
% -------------------------------------------------- tnH2sHby
% "P7nNa
% Example 1: L^}_~PO N5
% ad*m%9Y1Q
% % Display the Zernike function Z(n=5,m=1) _I@9HC 4
% x = -1:0.01:1; SxOC1+Oy
% [X,Y] = meshgrid(x,x); ZCmgs4W!
% [theta,r] = cart2pol(X,Y); kW;+|qs^
% idx = r<=1; ,K9*%rW)
% z = nan(size(X)); 9oYgl1}d
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ZrPbl"`7
% figure '[AlhBX
% pcolor(x,x,z), shading interp "i y
% axis square, colorbar W>) M5t4i
% title('Zernike function Z_5^1(r,\theta)') 9s\A\$("l
% y0sR6TY)f
% Example 2: rp3V3]EE
% "I3@m%qv
% % Display the first 10 Zernike functions ?9e_gV{&;
% x = -1:0.01:1; gG0!C))8
% [X,Y] = meshgrid(x,x); \k .{-nh
% [theta,r] = cart2pol(X,Y); pMw*9sX
% idx = r<=1; dP3CG8w5
% z = nan(size(X)); );#JL0I
% n = [0 1 1 2 2 2 3 3 3 3]; '@o;-'b
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |2O]R s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; l4F%VR4KT
% y = zernfun(n,m,r(idx),theta(idx)); +"rDT1^V
% figure('Units','normalized') tr<Nm6!
% for k = 1:10 iW$_zgN
% z(idx) = y(:,k); J\+0[~~
% subplot(4,7,Nplot(k)) ((H^2KJn
% pcolor(x,x,z), shading interp zZL6z4g
% set(gca,'XTick',[],'YTick',[]) 3@kf@Vf
% axis square I(i}c~R
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a=J^
% end TrlZ9?3#D
% cz
>V8
% See also ZERNPOL, ZERNFUN2. ;rF\kX&Jh
/sx@$cvW
|cK*~
% Paul Fricker 11/13/2006 mk;&yh
|,S+@"0#
7?#J~.d5
?9!6%]2D
Nv#t:J9f
% Check and prepare the inputs: /5S30 |K
% ----------------------------- 9]k @Q_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v[
.cd*b
error('zernfun:NMvectors','N and M must be vectors.') h{%nC>m;
end 9+j0q%
<^VJy5>
1Ir21un
if length(n)~=length(m) U>YAdrx2a
error('zernfun:NMlength','N and M must be the same length.') :*I#n
end ,c;Kzp>e
ASKf'\,dV
S=MEG+Ad
n = n(:); Njxv4cc
m = m(:); /Gd=n
if any(mod(n-m,2)) QA<
Rhv,
error('zernfun:NMmultiplesof2', ... (7vF/7BZ|_
'All N and M must differ by multiples of 2 (including 0).') IbT=8l,Li
end 8L,5Q9
$
-)w@f~Q
hpHr\g
if any(m>n) X$HIVxyq2
error('zernfun:MlessthanN', ... ZGBd%RWjG_
'Each M must be less than or equal to its corresponding N.') O9G[j=U
end 3DzMB?I
T/b6f;t-s
B;M?,<%FRU
if any( r>1 | r<0 ) (jnQ
-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') I5`4Al
end lNz7u:U3
b+%f+zz*h
PY_u/<u
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) RmI]1S_=
error('zernfun:RTHvector','R and THETA must be vectors.') uW=k K0E
end Tl%`P_J)-S
ERUz3mjA/
UxbjA- U[
r = r(:); t#V!8EpBg
theta = theta(:); i5en*)O8
length_r = length(r); @D.}\(
if length_r~=length(theta) Sxnpq Vbk
error('zernfun:RTHlength', ... xR-%L
'The number of R- and THETA-values must be equal.') cA2V2S)
end n D0K).=Q
?8I?'\F;
fFMlDg[];
% Check normalization: r(6Y*<
% -------------------- KxI&G%z
if nargin==5 && ischar(nflag) PxTwPl
isnorm = strcmpi(nflag,'norm'); :nh_k4S@v
if ~isnorm :yL] ;J
error('zernfun:normalization','Unrecognized normalization flag.') }K7#Q
end 1Lc#m`Jln
else yg`j-9[8
isnorm = false; /@wg>&L]
end Z)e/!~""]
>NO[UX%yP
_ q(ko/T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "LHcB]^<
% Compute the Zernike Polynomials ?L5zC+c!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 18)'c?^.
#9B)Xx!g
&VhroHO
% Determine the required powers of r:
[/PR\'|
% ----------------------------------- Rvkedb
m_abs = abs(m); .sxcCrQE
rpowers = []; uX"H4lO~
for j = 1:length(n) g9m-TkNk
rpowers = [rpowers m_abs(j):2:n(j)]; H~oail{EQ
end rK@8/?y5
rpowers = unique(rpowers); P!$Zx)T
x5|I
O#n8=B4
% Pre-compute the values of r raised to the required powers, _A M*@|p,
% and compile them in a matrix: r [9x
% ----------------------------- .4_o>D
if rpowers(1)==0 z
F_M*8=
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5 z~1Dw
rpowern = cat(2,rpowern{:}); d)"3K6s|5
rpowern = [ones(length_r,1) rpowern]; -<c=US
else j>*S5y.{
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4qN{n#{+]
rpowern = cat(2,rpowern{:}); K#l:wH_
end @:;)~V
d4m=0G`
`Y+J-EQ
% Compute the values of the polynomials: )) Zf|86N
% -------------------------------------- z(o,m3@v
y = zeros(length_r,length(n)); IW)()*8;/
for j = 1:length(n) +y,T4^{
s = 0:(n(j)-m_abs(j))/2; E_gD:PPU5
pows = n(j):-2:m_abs(j); LZ\q37UV
for k = length(s):-1:1 HvUxsdT
p = (1-2*mod(s(k),2))* ... VGLaN%|
prod(2:(n(j)-s(k)))/ ... <z+t,<3D
prod(2:s(k))/ ... Okgv!Nt8)A
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cO-7ke
prod(2:((n(j)+m_abs(j))/2-s(k))); 68bQ;Dv
idx = (pows(k)==rpowers); Q0$8j-1I
y(:,j) = y(:,j) + p*rpowern(:,idx); +QB"8-
end :KH g&ZX7
?J'Y&
if isnorm DDvh4<Hk
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O7u(}$D
L
end +[Dj5~V
end |VKK#J/
% END: Compute the Zernike Polynomials oYHj~t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {Z{75}
z^KJ*E
-)s qc
P
% Compute the Zernike functions: Pnw]Tm}g
% ------------------------------ PEN\-*Pv
idx_pos = m>0; o-;E>N7t
idx_neg = m<0; 6L:x^bM
m 2-Sx
R= a|Blp
z = y; <DpevoF
if any(idx_pos) R|JC1f8P5
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kTKq/G,Ft
end sPd Gw~{
if any(idx_neg) kSC}aN'
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); vVj
end Kj V:|
VzBqjE_
A+HF@Uw}^
% EOF zernfun ^*S ,xP