切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8764阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, lIg2iun[n  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, I?>T"nV +'  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }eM<A$J  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $0T"YC%  
    &F_rg,q&_  
    G:`Jrh  
    M%xL K7  
    8F`  
    function z = zernfun(n,m,r,theta,nflag) .5;LL,S-  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1i:g /H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +o]BjgG  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 'hO;sL  
    %   unit circle.  N is a vector of positive integers (including 0), and ?bAFYF0!I  
    %   M is a vector with the same number of elements as N.  Each element ~uadivli  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) acQN pT  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \_nmfTr!K  
    %   and THETA is a vector of angles.  R and THETA must have the same 8"mW!M  
    %   length.  The output Z is a matrix with one column for every (N,M) .A)Un/k7  
    %   pair, and one row for every (R,THETA) pair. dM{~Ubb  
    % ;bZ*6-\!-  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /v4S@SQ+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j#t8Krd] "  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral xY2_*#{.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?i2Wst  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized bs EpET  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g)qnjeSs]  
    % Wx$q:$h@q  
    %   The Zernike functions are an orthogonal basis on the unit circle. zI_GdQNfN  
    %   They are used in disciplines such as astronomy, optics, and 6L9[U^`@  
    %   optometry to describe functions on a circular domain. Lo5@zNt%W  
    %  F'FZ?*a  
    %   The following table lists the first 15 Zernike functions. 'h>5&=r  
    % ~49N  
    %       n    m    Zernike function           Normalization cvE.r330|  
    %       -------------------------------------------------- 5;8B!%b  
    %       0    0    1                                 1 <3=qLm  
    %       1    1    r * cos(theta)                    2 &v5.;8u+OV  
    %       1   -1    r * sin(theta)                    2 9<h]OXv  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <W59mweW#5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 68<Z\WP  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) rn:zKTyhw  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \UqS -j|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y%:0|utQC  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) kEhm'  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ITIj=!F*  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Yz-JI=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [~c'|E8Q  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) D&l ,SD  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lI_Yb:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Ldhk^/+  
    %       -------------------------------------------------- 30 [#%_* o  
    % 7X{bB  
    %   Example 1: *UBP]w  
    % 3 t88AN=4  
    %       % Display the Zernike function Z(n=5,m=1) &49$hF g6"  
    %       x = -1:0.01:1; ? x"HX|n  
    %       [X,Y] = meshgrid(x,x); [AZ aT  
    %       [theta,r] = cart2pol(X,Y); u}}9j&^Xa  
    %       idx = r<=1; guOSO@  
    %       z = nan(size(X)); (y~laW!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =v4r M0m,  
    %       figure a=*ALd_&0  
    %       pcolor(x,x,z), shading interp mPfUJ#rS  
    %       axis square, colorbar poQdI?ed,  
    %       title('Zernike function Z_5^1(r,\theta)') + sywgb)  
    % Z@,PZ   
    %   Example 2: ~z K@pFeH  
    % juMxl  
    %       % Display the first 10 Zernike functions QGr\I/Y  
    %       x = -1:0.01:1; w;c#drY7S  
    %       [X,Y] = meshgrid(x,x); l{6` k<J(  
    %       [theta,r] = cart2pol(X,Y); '9 e\.  
    %       idx = r<=1; [ .j]V-61  
    %       z = nan(size(X)); Seq]NkgY  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Lo9G4Cu  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; O~h94 B`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ~mK-8U4>K,  
    %       y = zernfun(n,m,r(idx),theta(idx)); <r<Dmn|\a  
    %       figure('Units','normalized') dv'E:R(a  
    %       for k = 1:10 &I RA=nJ  
    %           z(idx) = y(:,k); VX;zZ`BJ  
    %           subplot(4,7,Nplot(k)) cZe'!CQS  
    %           pcolor(x,x,z), shading interp n{64g+  
    %           set(gca,'XTick',[],'YTick',[]) au~]  
    %           axis square 9^PRX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B:?#l=FL  
    %       end ]l=O%Ev  
    % AhvvuN$n%  
    %   See also ZERNPOL, ZERNFUN2. BbrT f"`  
    fW.GNX8  
    `10X5V@hP  
    %   Paul Fricker 11/13/2006 &[5n0e[  
    ]yAEjn9cN  
    >*`>0Q4y  
    $5lW)q A  
    ?7yQ&p  
    % Check and prepare the inputs: q%-&[%l  
    % ----------------------------- R:w %2Y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jCTy:q]  
        error('zernfun:NMvectors','N and M must be vectors.') G la@l<  
    end Z|ZBKcmg  
    <i}q=%W!1  
    "xvtqi,R  
    if length(n)~=length(m) ;TL(w7vK  
        error('zernfun:NMlength','N and M must be the same length.') $ViojW>  
    end T?X^0UdJj  
    k42b:W5%  
    xLx"*jyL  
    n = n(:); H\^VqNK"  
    m = m(:); 5v|H<wPp  
    if any(mod(n-m,2)) Fweh =v  
        error('zernfun:NMmultiplesof2', ... Hp\Ddx >Jd  
              'All N and M must differ by multiples of 2 (including 0).') T3PX gL)o  
    end 9&jQ 35  
    IQ3n@  
    ku{XW8  
    if any(m>n) ?}vzLgp  
        error('zernfun:MlessthanN', ... v9%nau4  
              'Each M must be less than or equal to its corresponding N.') QXdaMc+Ck  
    end Dd| "iA  
    dh&W;zs  
    TdQ ]G2  
    if any( r>1 | r<0 ) Rl_.;?v"!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %_R$K#T^,  
    end aXe{U}eow  
    X[V?T>jsM  
    f hQy36i@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) q@w{c=  
        error('zernfun:RTHvector','R and THETA must be vectors.') (%[Tk[  
    end NMXnrvS&  
    i90}Xyt  
    aH%ZetLNJ  
    r = r(:); #2\8?UPd  
    theta = theta(:); Sv7 i! j  
    length_r = length(r); "YJ[$TG  
    if length_r~=length(theta) s=MT,  
        error('zernfun:RTHlength', ... %yiD~&  
              'The number of R- and THETA-values must be equal.') 8;TAb.r  
    end  ]nUR;8  
    ##H;Yb  
    k({2yc#RD&  
    % Check normalization: eUt=n)*`  
    % -------------------- +UzXN$73  
    if nargin==5 && ischar(nflag) 4E2yH6l  
        isnorm = strcmpi(nflag,'norm'); YMT8p\ #rp  
        if ~isnorm t9.,/o,  
            error('zernfun:normalization','Unrecognized normalization flag.') #+9rjq:v#]  
        end %JQ~!3  
    else X~lZOVmS  
        isnorm = false; R :"+ #Sq  
    end mj@31YW  
    9 ~~qAoD  
    eJ)1K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .`,F  
    % Compute the Zernike Polynomials GM](=|F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :r&iM b:Ra  
    L\YKdUL  
    )GVBE%!WEd  
    % Determine the required powers of r: h3kaD  
    % ----------------------------------- r} Lb3`'  
    m_abs = abs(m); #$FrFU;ZR  
    rpowers = []; PL@~Ys0  
    for j = 1:length(n) bpW!iY/q3  
        rpowers = [rpowers m_abs(j):2:n(j)]; &|b4\uj9  
    end I5qM.@%zB  
    rpowers = unique(rpowers); bhD ~ 4Rz  
    ;WD,x:>blO  
    ?6f7ld5  
    % Pre-compute the values of r raised to the required powers, :Hk_8J  
    % and compile them in a matrix: DzC Df@TB"  
    % ----------------------------- C/G]v*MBQ  
    if rpowers(1)==0 :&qhJtGo  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o)&"Rf  
        rpowern = cat(2,rpowern{:}); llq*T"7  
        rpowern = [ones(length_r,1) rpowern]; @4drjT  
    else H<`\bej,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H\E7o" m  
        rpowern = cat(2,rpowern{:}); t0Zk-/s  
    end 537?9  
    ,[isib3  
    ~U$":~H[  
    % Compute the values of the polynomials: l4vTU=  
    % -------------------------------------- *%\mZ,s"  
    y = zeros(length_r,length(n)); 2no$+4+z  
    for j = 1:length(n) XWUP=D~  
        s = 0:(n(j)-m_abs(j))/2; byGn,m  
        pows = n(j):-2:m_abs(j); i%;"[M  
        for k = length(s):-1:1 K]/Od  
            p = (1-2*mod(s(k),2))* ... R>2IRvY(  
                       prod(2:(n(j)-s(k)))/              ... 0(y:$  
                       prod(2:s(k))/                     ... GqLq  gns  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Zw{MgoJ0Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); =gjDCx$|  
            idx = (pows(k)==rpowers); :et#0!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8#X_#  
        end _?`&JF?*  
         khx.yRx  
        if isnorm O9s?h3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ?Go!j?#a  
        end c2 Aps  
    end ObG=>WPJa  
    % END: Compute the Zernike Polynomials T\9~<"P^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5\ hd4  
    y$b]7O  
    8{0k0 &x  
    % Compute the Zernike functions: 8 #}D : (  
    % ------------------------------ iWA|8$u4gm  
    idx_pos = m>0; vXv;1T  
    idx_neg = m<0; =\};it{u  
    ?9mkRd}c  
    kn"q:aD  
    z = y; ^/@jwZ  
    if any(idx_pos) ]< XR]FHx)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,LhCFw{8?~  
    end sOBu7!G%  
    if any(idx_neg) 5Bjgr  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,.tfWN%t\  
    end CnISe^h  
    i47j lyH  
    SA;#aj}rV  
    % EOF zernfun z6*<V5<7  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  At-U2a#J{  
    {r@Ty*W} L  
    DDE还是手动输入的呢? E_vq  
    O3I8k\`  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究