切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8960阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, yKc-:IBb{u  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, {X!OK3e  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? n Nt28n@  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <Riz!(G  
    my?Ly(#  
    6_j |@  
    VfoWPyWD#  
    bv+u7B6,  
    function z = zernfun(n,m,r,theta,nflag) R_!.vGhkN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4{P+p!4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w*qj0:i5as  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6mM9p)"$  
    %   unit circle.  N is a vector of positive integers (including 0), and Rf:.'/<^  
    %   M is a vector with the same number of elements as N.  Each element aFnel8  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) t3;Zx+Br  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, I1Q!3P  
    %   and THETA is a vector of angles.  R and THETA must have the same 4>KF`?%4  
    %   length.  The output Z is a matrix with one column for every (N,M) Zy}tZRG  
    %   pair, and one row for every (R,THETA) pair. GK@OdurAR  
    % ,Bk5( e  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7L!JP:v   
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), idI w7hi4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +9_Y0<C  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gEh/m.L7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zHJCXTM  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +?_!8N8  
    % oZ'a}kF  
    %   The Zernike functions are an orthogonal basis on the unit circle. y* +y&  
    %   They are used in disciplines such as astronomy, optics, and /R# zu_i  
    %   optometry to describe functions on a circular domain. /"{d2  
    % 5 UEZpxnv  
    %   The following table lists the first 15 Zernike functions. }9fa]D-a?  
    %  .U1wVIM  
    %       n    m    Zernike function           Normalization :Jd7q.  
    %       -------------------------------------------------- 98[uRywI  
    %       0    0    1                                 1 1dH|/9  
    %       1    1    r * cos(theta)                    2 &.)=>2  
    %       1   -1    r * sin(theta)                    2 RTOA'|[0M  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Rlq7.2cP  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $RD~,<oEm  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }icCp)b>v  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Blpk n1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2dn^K3  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) WTSh#L  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) S$mv(C  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 78& |^sq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z0 "DbZ;d  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tLE8+[ SU  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0m@+ &X>w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) VvhfD2*T  
    %       -------------------------------------------------- ,-UF5U  
    % vW+6_41ZM  
    %   Example 1: Z\!,f.>g  
    % g3^s_*A  
    %       % Display the Zernike function Z(n=5,m=1) }[p{%:tP  
    %       x = -1:0.01:1; cx\"r  
    %       [X,Y] = meshgrid(x,x); il0K ^i  
    %       [theta,r] = cart2pol(X,Y); DX_ mrG  
    %       idx = r<=1; e" v%m 'G  
    %       z = nan(size(X)); bZu'5+(@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); YI0 wr1N  
    %       figure X=)V<2WO  
    %       pcolor(x,x,z), shading interp R5HT EB  
    %       axis square, colorbar sx,$W3zI'G  
    %       title('Zernike function Z_5^1(r,\theta)') %>|FJ  
    % (J:+'u  
    %   Example 2: T4eJ:u*;  
    % 'xW=qboOp  
    %       % Display the first 10 Zernike functions E_,/)U8  
    %       x = -1:0.01:1; kg/B<w'  
    %       [X,Y] = meshgrid(x,x); te@m#` p9  
    %       [theta,r] = cart2pol(X,Y); ]N>ZOV,>  
    %       idx = r<=1; Y=S0|!u  
    %       z = nan(size(X)); IwyA4Ak Ru  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]*0zir/  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; QkrQM&Im  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !=9x=  
    %       y = zernfun(n,m,r(idx),theta(idx)); TvU z^  
    %       figure('Units','normalized') K~(RV4oF8B  
    %       for k = 1:10 ghQ B  
    %           z(idx) = y(:,k); Jh"[ug  
    %           subplot(4,7,Nplot(k)) 15:9JVH3D  
    %           pcolor(x,x,z), shading interp {lI}a8DP  
    %           set(gca,'XTick',[],'YTick',[]) ZrN(M p  
    %           axis square >"W^|2R  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) f:;-ZkIU ?  
    %       end PGTEIptX7  
    % g~U( w  
    %   See also ZERNPOL, ZERNFUN2. [gW eD  
    fNN l1Vls  
    N[{rsUBd  
    %   Paul Fricker 11/13/2006 iI GK "}  
    \0\O/^W0  
    ~Ztn(1N  
    UP]( 1lAf  
    I9?\Jbqg  
    % Check and prepare the inputs: @Q1!xA^S  
    % ----------------------------- 2?,Jn&i5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t3L>@NWG  
        error('zernfun:NMvectors','N and M must be vectors.') /@Lk H$  
    end ,np=m17  
    AR| 4^  
    Ah2@sp,z  
    if length(n)~=length(m) %\'=Y/yP  
        error('zernfun:NMlength','N and M must be the same length.') fUw:jE xz  
    end `d <`>  
    U9 iI2$  
    |MNSIb&,W  
    n = n(:); w2B)$u  
    m = m(:); gawY{Jr8I  
    if any(mod(n-m,2)) {;$oC4  
        error('zernfun:NMmultiplesof2', ... [RF,0>^b  
              'All N and M must differ by multiples of 2 (including 0).') dL42)HP5  
    end teok*'b:  
    }*x1e_m}H  
    n_kwtWX(  
    if any(m>n) C HnclT  
        error('zernfun:MlessthanN', ... E '6>3n  
              'Each M must be less than or equal to its corresponding N.') '54\!yQ<{  
    end Vgm*5a6t  
    OVLVsNg  
    4"&-a1N  
    if any( r>1 | r<0 ) 'm<Lx _i  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7?dWAUF  
    end k*1Lr\1  
    #|9W9\f,  
    BJ UG<k  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lZk  z\  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3kxo1eb  
    end yZlT#^$\  
    LOUP  
    l7QxngWw  
    r = r(:); juEPUsE  
    theta = theta(:); 4 \z@Evm  
    length_r = length(r); ':.Hz]]/A  
    if length_r~=length(theta) a_N7X  
        error('zernfun:RTHlength', ... t<rIg1  
              'The number of R- and THETA-values must be equal.') u^MKqI  
    end VMah3T!  
    N[Z`tk?-  
    s^u  Y   
    % Check normalization: 66val"^W  
    % -------------------- ~[CFs'`(2  
    if nargin==5 && ischar(nflag) z:Am1B  
        isnorm = strcmpi(nflag,'norm'); \%7*@&  
        if ~isnorm e!VtDJDS  
            error('zernfun:normalization','Unrecognized normalization flag.') [CQR  
        end 1T|f<ChIF<  
    else P<pv@ l9)  
        isnorm = false; .SC *!,  
    end )n&hO_c/  
    ,z&S;f.f  
    '5h` ="  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |4\1V=(  
    % Compute the Zernike Polynomials |=;hQ2HyF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^s)`UZ<C=  
    KZKE&bTx  
    DI\=udN  
    % Determine the required powers of r: xsa`R^5/c  
    % ----------------------------------- 53t_#Yte  
    m_abs = abs(m);  7)2K6<q  
    rpowers = []; )Do 0  
    for j = 1:length(n) bq/Aopfr  
        rpowers = [rpowers m_abs(j):2:n(j)]; K P]ar.  
    end 1Q@]b_"Xh  
    rpowers = unique(rpowers); YTTyMn  
    G9:XEEN  
    .`Rt   
    % Pre-compute the values of r raised to the required powers, i{^T;uAE  
    % and compile them in a matrix: d:)#-x*h7  
    % ----------------------------- aHN"I  
    if rpowers(1)==0 868X/lL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @!`__>K  
        rpowern = cat(2,rpowern{:}); 5Zq hyv=  
        rpowern = [ones(length_r,1) rpowern]; 3U<m\A1  
    else 4!dc/K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J?O0ixU  
        rpowern = cat(2,rpowern{:}); 4l 67B]o  
    end P%2v(  
    TIGtX]`  
    ` -_!%m/  
    % Compute the values of the polynomials: 'rB% a<  
    % -------------------------------------- (=j;rfvP  
    y = zeros(length_r,length(n)); U WT%0t_T  
    for j = 1:length(n) GD4S/fn3  
        s = 0:(n(j)-m_abs(j))/2; yd;e;Bb7*  
        pows = n(j):-2:m_abs(j); ovKM;cRs/  
        for k = length(s):-1:1 <Y yE1 |  
            p = (1-2*mod(s(k),2))* ... v0DDim?cc  
                       prod(2:(n(j)-s(k)))/              ... -#ZvjEaey  
                       prod(2:s(k))/                     ... Qu|CXUk  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1_+ h"LE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ?tLApy^`?  
            idx = (pows(k)==rpowers); p@jw)xI  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D?n6h\h\$%  
        end `*s:[k5k  
         :+\0.\K0!  
        if isnorm AR [m+E  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _,drOF|e  
        end \V-N~_-H  
    end WE\TUENac(  
    % END: Compute the Zernike Polynomials `;85Mo:qJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3"x_Y  
    CXq[VYM&X  
    oxxuw Dcl  
    % Compute the Zernike functions: ep6+YK:cn  
    % ------------------------------ L$5,RUy  
    idx_pos = m>0; fl-J:`zyyZ  
    idx_neg = m<0; JX&U?Z  
    9L>?N:%5  
    WZ'Z"'  
    z = y; 7DAP_C  
    if any(idx_pos) ^`cv6;)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ${T/b(NM  
    end +(*HDa|  
    if any(idx_neg) =+iY<~8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); t 'eaR-  
    end cQEUHhRg!  
    B<d=;V  
    AlQhKL}|s  
    % EOF zernfun %Y&48''"  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  4P#jMox  
    M.Q HE2  
    DDE还是手动输入的呢? /}1|'?P  
    -o~zb-E  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究