切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9445阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C6'*/wq  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, <`xRqe:&9  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? + %#MrNM'  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? nn)`eR&  
    ^s@*ISY  
    9U<)_E<y  
    lDJd#U'V  
    *[xNp[4EU  
    function z = zernfun(n,m,r,theta,nflag) d0A\#H_&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `,-hG  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N sMfFm@\N  
    %   and angular frequency M, evaluated at positions (R,THETA) on the L.0} UXd  
    %   unit circle.  N is a vector of positive integers (including 0), and *%N7QyO`I  
    %   M is a vector with the same number of elements as N.  Each element OHP3T(Q5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) KBr5bcm4u  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, cUZ!;*  
    %   and THETA is a vector of angles.  R and THETA must have the same 7c29Ua~[  
    %   length.  The output Z is a matrix with one column for every (N,M) f1Yv hvWL  
    %   pair, and one row for every (R,THETA) pair. XW~ BEa  
    % g2aT`=&Z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gl9pgY1ni  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8XYD L] I'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral XY!{g(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *H%0Gsk  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $ o5V$N D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =MJ-s;raq  
    % v#:+n+y\z  
    %   The Zernike functions are an orthogonal basis on the unit circle. Krp <bK6  
    %   They are used in disciplines such as astronomy, optics, and vNC$f(cQ  
    %   optometry to describe functions on a circular domain. yp[<9%Fi  
    % ez^*M:K  
    %   The following table lists the first 15 Zernike functions. BP[CR1Gs  
    % @Z9>3'2]A  
    %       n    m    Zernike function           Normalization &?/N}g@K  
    %       -------------------------------------------------- ;z.6'EYMG  
    %       0    0    1                                 1 3@PUg(M  
    %       1    1    r * cos(theta)                    2 A*\o c  
    %       1   -1    r * sin(theta)                    2 `W"a! ,s2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Gg=aK~q6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) R<n8M"B  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) xta}4:d-Y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;g: UE  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,zAK3d&hj  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .)i O Du  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) RNv{n mf  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) U6c)"^\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &Pu+(~'Q  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5nMkd/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1.Haf  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4*0:bhhhf_  
    %       -------------------------------------------------- x r-;,W  
    % z $9@j2  
    %   Example 1: `Mg8]H~  
    % e1^fUOS  
    %       % Display the Zernike function Z(n=5,m=1) Z{Vxr*9oO  
    %       x = -1:0.01:1; Dh hG$  
    %       [X,Y] = meshgrid(x,x); :d;[DYFLxb  
    %       [theta,r] = cart2pol(X,Y); I*^5'N'  
    %       idx = r<=1; ;M}itM  
    %       z = nan(size(X)); n 11LxGwk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Qo'yS"g<9)  
    %       figure ;$vLq&(}  
    %       pcolor(x,x,z), shading interp rlR !&  
    %       axis square, colorbar mbF(tSy  
    %       title('Zernike function Z_5^1(r,\theta)') By2s']bw  
    % D,c!#(v cK  
    %   Example 2: 3Bejp+xX  
    % cb +l"FI7  
    %       % Display the first 10 Zernike functions *3;UAfHv  
    %       x = -1:0.01:1; 24/ /21m  
    %       [X,Y] = meshgrid(x,x); y|^EGnaE  
    %       [theta,r] = cart2pol(X,Y); @zo7.'7P   
    %       idx = r<=1; Ffnk1/ Zy  
    %       z = nan(size(X)); E_~x==cb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; tE[H8  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; a>U6Ag<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; fb23J|"  
    %       y = zernfun(n,m,r(idx),theta(idx)); GMz8B-vk  
    %       figure('Units','normalized') 'qjX$]H  
    %       for k = 1:10 [q1Unm  
    %           z(idx) = y(:,k); {-HDkG' 8  
    %           subplot(4,7,Nplot(k)) flP>@i:e6  
    %           pcolor(x,x,z), shading interp \]I  
    %           set(gca,'XTick',[],'YTick',[]) 6a*83G,k  
    %           axis square GzdRG^vN  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C,"=}z1P  
    %       end HMV)U{  
    % )|pU.K9qZ  
    %   See also ZERNPOL, ZERNFUN2. *hF^fxLbl  
    r!kLV)_  
    `a >?UUT4  
    %   Paul Fricker 11/13/2006 ]boE{R!I  
    9/@ &*  
    #-{N Ws\  
    o\4CoeG  
    P$ucL~r  
    % Check and prepare the inputs: &tj0M.-  
    % ----------------------------- j0x5@1`6G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9 Kbw GmSU  
        error('zernfun:NMvectors','N and M must be vectors.') =u=Kw R  
    end |@RpWp>2  
    >3PMnI  
    ,?(ciO)  
    if length(n)~=length(m) E!! alc{  
        error('zernfun:NMlength','N and M must be the same length.') #!})3_Qc(y  
    end ubbnFE&PD  
    =K(JqSw+M  
    xS8,W  
    n = n(:); I]R9HGJNlJ  
    m = m(:); %dW%o{  
    if any(mod(n-m,2)) q]FBl}nwl%  
        error('zernfun:NMmultiplesof2', ... >zngJ$  
              'All N and M must differ by multiples of 2 (including 0).') dJD(\a>r.u  
    end <a|@t@R  
    1e}8LH7  
    z9DcnAs  
    if any(m>n) F!yV8XQ  
        error('zernfun:MlessthanN', ... % frfSGf.#  
              'Each M must be less than or equal to its corresponding N.') ->gZ)?Fqy  
    end ss iokLE  
    _<*Hv*Zm  
    |"]PCb)!  
    if any( r>1 | r<0 ) *Y6xvib9*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.')  {mTytT  
    end |+}G|hx@9  
    73F5d/n  
    pqR\>d 0  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q(Gl{#b  
        error('zernfun:RTHvector','R and THETA must be vectors.') *%gF2@=r8F  
    end ,[!LCXp  
    rwf^,r"r  
    eu#'SXSC F  
    r = r(:); Um.qRZ?  
    theta = theta(:); $}o b,i^W  
    length_r = length(r); 1AD]v<M  
    if length_r~=length(theta) q(IQa@$SR  
        error('zernfun:RTHlength', ... ]! *[Q\  
              'The number of R- and THETA-values must be equal.') =^;P#kX  
    end fV\]L4%  
    ~AB*]Us  
    kHK0(bYK  
    % Check normalization: t18$x "\4k  
    % -------------------- jp2Q 9Z  
    if nargin==5 && ischar(nflag) &[[K"aM1  
        isnorm = strcmpi(nflag,'norm'); (5Nv8H8|  
        if ~isnorm sW@krBxMv  
            error('zernfun:normalization','Unrecognized normalization flag.') *m+BuGt|  
        end {w6/[ -^  
    else e^1uVN  
        isnorm = false; Nf41ZT~  
    end dt\jGD  
     ;q>9W,jy  
    <@v ]H@ E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KvFMs\o6p  
    % Compute the Zernike Polynomials , E )|y4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yR5XJ;Tct  
    f9$xk|2g  
    I0'WOV70  
    % Determine the required powers of r: _l`e#XbG  
    % ----------------------------------- B=f,QU  
    m_abs = abs(m); W!Gdf^Yy<  
    rpowers = []; WiL2  
    for j = 1:length(n) Io`P,l:  
        rpowers = [rpowers m_abs(j):2:n(j)]; +0wT!DZW\=  
    end Elj_,z  
    rpowers = unique(rpowers); J5Z%ImiT^O  
    Ga>uFb}W~  
    PQmq5N6  
    % Pre-compute the values of r raised to the required powers, p/Sbt/R  
    % and compile them in a matrix: y;cUl, :v  
    % ----------------------------- IA zZ1#/3  
    if rpowers(1)==0 .0 )Y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J@pb[OL,  
        rpowern = cat(2,rpowern{:}); /'2O.d0}.  
        rpowern = [ones(length_r,1) rpowern]; RrZM&lXY  
    else +yob)%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @:0ddb71  
        rpowern = cat(2,rpowern{:}); 3f Xv4R;!:  
    end 'n QVj  
    B5V_e!*5F*  
    gbeghLP[?  
    % Compute the values of the polynomials: s&kQlQ=  
    % -------------------------------------- )5j;KI%t  
    y = zeros(length_r,length(n)); `O?TUQGR  
    for j = 1:length(n) qSqI7ptA\  
        s = 0:(n(j)-m_abs(j))/2; L TV{{Z+  
        pows = n(j):-2:m_abs(j); LH 3}d<{  
        for k = length(s):-1:1 )0vU k  
            p = (1-2*mod(s(k),2))* ... Qp"y?S  
                       prod(2:(n(j)-s(k)))/              ... 87%*+n:?*  
                       prod(2:s(k))/                     ... (6CN/A{qe  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <^~FLjsfg  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); (bOpV>\Q7  
            idx = (pows(k)==rpowers); 'bGX-C  
            y(:,j) = y(:,j) + p*rpowern(:,idx); w;}@'GgL  
        end 9`jcC-;iv  
         !UOCJj.cA  
        if isnorm v%k9M{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G2LK]  
        end scuHmY0  
    end F62V 3 Xy  
    % END: Compute the Zernike Polynomials ri`R<l8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ; Sd\VR  
    mNf8kwr  
    e__@GBG  
    % Compute the Zernike functions: <PPNhf8  
    % ------------------------------ 2oa#0`{  
    idx_pos = m>0; {7!UQrm<  
    idx_neg = m<0; I$Qs;- (  
    (>mI'!4d  
    GV)<Q^9  
    z = y; xD&^j$Em  
    if any(idx_pos) 2j(h+?N7k  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mcz+ P |  
    end 22kpl)vbU  
    if any(idx_neg) LG~S8u  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^8 ' sib  
    end h8\  T  
    ?u4INZ0W  
    _#$ *y  
    % EOF zernfun T!wo2EzE  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  .R 44$F  
    e xR^/|BR  
    DDE还是手动输入的呢? "i'bTVs  
    A,i()R'I  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究