切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8806阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, w,j;XPp  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *;l[|  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? rH'|$~a  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \}AJ)v*<  
    owwWm1@  
    @k\,XV`T~t  
    >3}N;  
    )x35  
    function z = zernfun(n,m,r,theta,nflag) GcG$>&,  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z*IW*f&0>1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u4'B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j=c< Lo`  
    %   unit circle.  N is a vector of positive integers (including 0), and >*\yEH9"  
    %   M is a vector with the same number of elements as N.  Each element mC3:P5/c  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D~M*]&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, FD[4?\W]#  
    %   and THETA is a vector of angles.  R and THETA must have the same cYBjsN(!A|  
    %   length.  The output Z is a matrix with one column for every (N,M) GiKhdy  
    %   pair, and one row for every (R,THETA) pair. 4O:HT m  
    % DQ&\k'"\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ! %B-y 9\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \Y`psSf+  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral qTN30(x2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s#(7D3Pr#  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized N,.awA{  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^gkKk&~A5?  
    % Htfq?\ FD  
    %   The Zernike functions are an orthogonal basis on the unit circle. Io t c>!  
    %   They are used in disciplines such as astronomy, optics, and ,(]k)ym/  
    %   optometry to describe functions on a circular domain. deJ/3\t  
    % ff=RKKnN  
    %   The following table lists the first 15 Zernike functions. *?VB/yO=0  
    % $ab{GxmX'4  
    %       n    m    Zernike function           Normalization u$X =2u:P  
    %       -------------------------------------------------- HZjuL.Tj  
    %       0    0    1                                 1 7PwH&rI  
    %       1    1    r * cos(theta)                    2 k=G c#SD5_  
    %       1   -1    r * sin(theta)                    2 _Fe=:q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) V;Q@' <w  
    %       2    0    (2*r^2 - 1)                    sqrt(3) m>?|*a,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {:KPEN  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) foB&H;A4oC  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) gZ-:4G|J  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) na 0Zb  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) K92M9=>  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) P@x@5uC2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,b?G]WQrHs  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tK `A_hC  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~#)9Kl7<X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 9$}> O]  
    %       -------------------------------------------------- b@sq}8YD|z  
    % Do5{t'm3  
    %   Example 1: .y0u"@iF  
    % @}uo:b:Q  
    %       % Display the Zernike function Z(n=5,m=1) qk>M~,  
    %       x = -1:0.01:1; !3o/c w9  
    %       [X,Y] = meshgrid(x,x); M'oQ<,yW-  
    %       [theta,r] = cart2pol(X,Y); ;yCtk ~T%  
    %       idx = r<=1; 1_StgFu u  
    %       z = nan(size(X)); l{VJaZ $M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )i\foSbB`V  
    %       figure !!m GsgnW  
    %       pcolor(x,x,z), shading interp J7~Kjl  
    %       axis square, colorbar 1F+nWc2b  
    %       title('Zernike function Z_5^1(r,\theta)') #qJ6iA6{  
    % }uO2 x@  
    %   Example 2: pW>.3pj  
    % ;!OME*?m<  
    %       % Display the first 10 Zernike functions I*mBU^<9V  
    %       x = -1:0.01:1; ,4}s 1J#  
    %       [X,Y] = meshgrid(x,x); +eop4 |Z  
    %       [theta,r] = cart2pol(X,Y); \lyHQ-gWhc  
    %       idx = r<=1; <l>L8{-3  
    %       z = nan(size(X)); ?ZkVk=t?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w;J#+ik  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 'C;KNc  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u/wWD@,  
    %       y = zernfun(n,m,r(idx),theta(idx)); k9c`[M  
    %       figure('Units','normalized') e`)zR'As  
    %       for k = 1:10 Tc|+:Usy  
    %           z(idx) = y(:,k); G {a;s-OA3  
    %           subplot(4,7,Nplot(k)) Rn{X+b.  
    %           pcolor(x,x,z), shading interp W;U<,g '  
    %           set(gca,'XTick',[],'YTick',[]) qSaCl6[Do  
    %           axis square /)rv Ndn  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) XHY,;4  
    %       end s&DAO r!i  
    % j tqU`|FSQ  
    %   See also ZERNPOL, ZERNFUN2. SK_N|X].  
    8P&z@E{y  
    gV'=u z v  
    %   Paul Fricker 11/13/2006 9$%S<v  
    $us7fuKE  
    ~$7YEs)  
    Cio (Ptt:  
    |voZ0U  
    % Check and prepare the inputs: 4hn' b[  
    % ----------------------------- '47E8PIJ|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yPH5/5;,  
        error('zernfun:NMvectors','N and M must be vectors.') )1O|+m k  
    end P+0 -h  
    e C&!yY2g  
    Owh:(EJ"d  
    if length(n)~=length(m) lW]&a"1$  
        error('zernfun:NMlength','N and M must be the same length.') T3-/+4$0v  
    end K{FBrh  
    |;YDRI  
    WTZuf9:  
    n = n(:); i^rHZmT  
    m = m(:); ,LL=b-Es  
    if any(mod(n-m,2)) \r &(l1R  
        error('zernfun:NMmultiplesof2', ... [Fr <tKtB  
              'All N and M must differ by multiples of 2 (including 0).') X\BdN Hr  
    end GEki34 n0  
     f^[m~  
    <In+V  
    if any(m>n) 0EC/l OS  
        error('zernfun:MlessthanN', ... yeV|j\TJI.  
              'Each M must be less than or equal to its corresponding N.') /qd~|[Kx:  
    end &3P"l.j  
    jf& oN]sZ  
    @EH@_EwYV  
    if any( r>1 | r<0 ) q)tNH/  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +^%0/0e  
    end >W'"xK|:  
    8`q"] BQN  
    M+L0 X$}NZ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @DyMq3Gt?&  
        error('zernfun:RTHvector','R and THETA must be vectors.') E |=]k  
    end gq+#=!(2  
    YKa9]Q  
    +)7h)uq  
    r = r(:); /tqe:*  
    theta = theta(:); ES[]A&tf  
    length_r = length(r); a,[NcdG  
    if length_r~=length(theta) szy2"~hm  
        error('zernfun:RTHlength', ... OC`Mzf%.  
              'The number of R- and THETA-values must be equal.') KocNJ TB  
    end w#;y  
    GUsJF;;V  
    z HvW@A'F  
    % Check normalization: /ASpAl[J  
    % -------------------- 6,skF^   
    if nargin==5 && ischar(nflag) ,v(ikPzd  
        isnorm = strcmpi(nflag,'norm'); 49 1 1  
        if ~isnorm <;NxmO<%\  
            error('zernfun:normalization','Unrecognized normalization flag.') }M9I]\  
        end sHHu<[psM  
    else Gk<6+.c~  
        isnorm = false; E}|IU Pm  
    end R"e533  
    R%;dt<Dh  
    ]#J-itO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mB*;>   
    % Compute the Zernike Polynomials X1%_a.=VF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t` zPx#])  
    8' +I8J0l  
    qApf\o3[0  
    % Determine the required powers of r: us^J! s7  
    % ----------------------------------- 4% 2MY\  
    m_abs = abs(m); :"Kr-Hm`  
    rpowers = []; ~ "WN4  
    for j = 1:length(n) q]m$%>  
        rpowers = [rpowers m_abs(j):2:n(j)];  lmB+S  
    end x]|-2t  
    rpowers = unique(rpowers); h=ko_/<  
    B%KfB VC  
    Us8nOr>5  
    % Pre-compute the values of r raised to the required powers, _U%2J4T2  
    % and compile them in a matrix: (Bu-o((N@0  
    % ----------------------------- AM4 :xz  
    if rpowers(1)==0 rNX]tp{j  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )dI  `yf  
        rpowern = cat(2,rpowern{:}); XE : JL_  
        rpowern = [ones(length_r,1) rpowern]; hdxq@%Vs  
    else etH]-S  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GhY MO6Q4  
        rpowern = cat(2,rpowern{:}); =7<g;u   
    end YRJw,xl  
    wRj&k(?*  
    Lz}mz-N  
    % Compute the values of the polynomials: 7cZ(gdQ/  
    % -------------------------------------- &e1(|qax  
    y = zeros(length_r,length(n)); l\~F0Z/O  
    for j = 1:length(n) Wj31mV  
        s = 0:(n(j)-m_abs(j))/2; el^WBC3  
        pows = n(j):-2:m_abs(j); B}Sl1)E  
        for k = length(s):-1:1 A\~tr   
            p = (1-2*mod(s(k),2))* ... Y+_t50 S  
                       prod(2:(n(j)-s(k)))/              ... dO\irv)  
                       prod(2:s(k))/                     ... >^%TY^7n  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mEDi'!YE"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Y'2 |GJc2  
            idx = (pows(k)==rpowers); _9b;8%? Yf  
            y(:,j) = y(:,j) + p*rpowern(:,idx); hZLwg7X!   
        end SHP_  
         }`$Sr&n 1  
        if isnorm 2$gOe^ &  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8zk?:?8%{  
        end %v 1NDhaXz  
    end ,.&y-?  
    % END: Compute the Zernike Polynomials :sXn*k4v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3+2cD  
    R3gg{hQ  
    h;2n2.Q  
    % Compute the Zernike functions: KcNh3CR  
    % ------------------------------ 1<d|@9?9`  
    idx_pos = m>0; B]|"ePj-  
    idx_neg = m<0; @EzO bE{  
    y(0";\V  
    zQ~8(E]Rf  
    z = y; 2';f8JLY  
    if any(idx_pos) [DO UIR9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W4o$J4IX{  
    end 8\@&~&(y:  
    if any(idx_neg) D "9Hv3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); l|p \8=  
    end _qQB.Dzo:  
    JVeb$_0k  
    0x]W W|se*  
    % EOF zernfun !/Wp0E'A  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |,&5.|E 7  
    L@"1d.k_  
    DDE还是手动输入的呢? 3=reN6Q  
    {g:I5 A#  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究