切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9286阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?1LRR ;-x  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, N>)Db  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? iG=Di)O  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ZhC ,nbM  
    ttBqp|.?S  
    U+[ "b-c  
    mO8/eVws[M  
    <29K! [  
    function z = zernfun(n,m,r,theta,nflag) 5x,/p  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. gr@Ril^  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 50T^V`6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the `9T5Dem|#  
    %   unit circle.  N is a vector of positive integers (including 0), and /wP2Wnq$  
    %   M is a vector with the same number of elements as N.  Each element & Yx12B\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `UqX`MFz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [1z.JfC :S  
    %   and THETA is a vector of angles.  R and THETA must have the same wAL}c(EHO  
    %   length.  The output Z is a matrix with one column for every (N,M) L gy^^.  
    %   pair, and one row for every (R,THETA) pair. zXbA$c  
    % AYp~;@  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike P>`|.@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uK ,W  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral LPca+o|f  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mwI7[I2q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Y; to9Kv$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ',rK\&lL6  
    % OF-VVIS  
    %   The Zernike functions are an orthogonal basis on the unit circle. MhB> bnWXR  
    %   They are used in disciplines such as astronomy, optics, and 3od16{YH  
    %   optometry to describe functions on a circular domain. 0y+i?y 9  
    % 1Lp; LY"_  
    %   The following table lists the first 15 Zernike functions. [ Q/kNK  
    % _8\B~;0  
    %       n    m    Zernike function           Normalization Ji6.-[:  
    %       -------------------------------------------------- :l?mNm5  
    %       0    0    1                                 1 hMV>5Y[s  
    %       1    1    r * cos(theta)                    2 dT (i*E\j  
    %       1   -1    r * sin(theta)                    2 }u{gQlV  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]I zD`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1083p9Uh  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) o)R<sT  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4G XS(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [8 H:5 Ho  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ( 5uSqw&U  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ooC9a>X  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) TNK1E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M* {5> !\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) cL~YQJYp  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BL"7_phM,  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @YG-LEh  
    %       -------------------------------------------------- J(w FJg\/  
    % Htln <N  
    %   Example 1: >Q?8tGfB  
    % KeXt"U  
    %       % Display the Zernike function Z(n=5,m=1) }6=)w@v  
    %       x = -1:0.01:1; KDH<T4#x  
    %       [X,Y] = meshgrid(x,x); kQQDaZ 8  
    %       [theta,r] = cart2pol(X,Y); 18Ju]U  
    %       idx = r<=1; "^;h'  
    %       z = nan(size(X)); ^Xu4N"@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); LhM$!o?W  
    %       figure ~P;A 9A(k  
    %       pcolor(x,x,z), shading interp ;K%/s IIke  
    %       axis square, colorbar Z&P\}mm   
    %       title('Zernike function Z_5^1(r,\theta)') y~VI,82*  
    % t V>qV\>  
    %   Example 2: KC9e{  
    % 9\/oL{  
    %       % Display the first 10 Zernike functions }&= =;7,O  
    %       x = -1:0.01:1; 4-Jwy  
    %       [X,Y] = meshgrid(x,x); *c&|2EsZ  
    %       [theta,r] = cart2pol(X,Y); &ODo7@v`1  
    %       idx = r<=1; 3wcF R0f  
    %       z = nan(size(X)); ?(z"U b]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; m]vV.pwv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;[(d=6{hc]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; E0 E K88  
    %       y = zernfun(n,m,r(idx),theta(idx)); R^ P>yk8  
    %       figure('Units','normalized') f fBd  
    %       for k = 1:10 n${k^e-=  
    %           z(idx) = y(:,k); g|7o1{   
    %           subplot(4,7,Nplot(k)) r\Kcg~D>  
    %           pcolor(x,x,z), shading interp sowwXrECg@  
    %           set(gca,'XTick',[],'YTick',[]) SW'eTG  
    %           axis square cC+2%q B  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5,g +OY=\  
    %       end %'Q2c'r  
    % 7')W+`o8eL  
    %   See also ZERNPOL, ZERNFUN2. <c:H u{D  
    !2Z"Lm  
    SgehOu  
    %   Paul Fricker 11/13/2006 |D%mWQng  
    ~1[n@{*:(  
    6N5(DD  
    P)J-'2{  
    Y0A(- "  
    % Check and prepare the inputs: \IImxkE  
    % ----------------------------- Y:t?W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y$SUYG'v  
        error('zernfun:NMvectors','N and M must be vectors.') 5g/,VMe  
    end pt,L  
    nPqpat`E  
    x\8|A  
    if length(n)~=length(m) 0<NS1y  
        error('zernfun:NMlength','N and M must be the same length.') a.}#nSYP  
    end L \E>5G;  
    # #2'QNN  
    QuPz'Ut#  
    n = n(:); F P|cA^$<  
    m = m(:); w K#*|  
    if any(mod(n-m,2)) V-n{=8s  
        error('zernfun:NMmultiplesof2', ... 3 ?I!  
              'All N and M must differ by multiples of 2 (including 0).') qqf*g=f  
    end | |awNSt  
    n$r`s`}  
    #?jsC)  
    if any(m>n) z+{qQ!  
        error('zernfun:MlessthanN', ... ,_Bn{T=U  
              'Each M must be less than or equal to its corresponding N.') L\:m)g,F.  
    end Ui`{U  
    J&,hC%]  
    ZL\^J8PRK  
    if any( r>1 | r<0 ) Kw" y#Ys]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') X )tH23  
    end M K)}zjw  
    \&;y:4&l8  
    j2UQQFh  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) UGy3 B)  
        error('zernfun:RTHvector','R and THETA must be vectors.') i\ X3t5  
    end "g&f:[a/  
    Y6VJr+Ap(  
    Td'(RV  
    r = r(:); nH6SA1$kW  
    theta = theta(:); `cXLa=B)9  
    length_r = length(r); UNa "\  
    if length_r~=length(theta) 6{=U= *  
        error('zernfun:RTHlength', ... tJrGRlB>  
              'The number of R- and THETA-values must be equal.') TZt;-t`  
    end T :X*  
    ;'8P/a$  
    phjM(lmCo  
    % Check normalization: PR:B6 F8  
    % -------------------- |<,qnf | -  
    if nargin==5 && ischar(nflag) vjx'yh|  
        isnorm = strcmpi(nflag,'norm'); $Z#~wsw  
        if ~isnorm M?" 4 {  
            error('zernfun:normalization','Unrecognized normalization flag.') @tm2Y%Y!  
        end N'WTIM3W  
    else 9U6$-]J  
        isnorm = false; S*h^7?Bu  
    end *af\U3kx  
    )__sw  
    r*vh3.Agl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c-XO}\?  
    % Compute the Zernike Polynomials *pa hZiO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Uq#2~0n>  
    ~&D =;M/  
    M*gvYo  
    % Determine the required powers of r: {]]%0!n\  
    % ----------------------------------- zMbFh_dcq  
    m_abs = abs(m); J4::.r  
    rpowers = []; MLHCBRi  
    for j = 1:length(n) +?U[362>  
        rpowers = [rpowers m_abs(j):2:n(j)]; %QEBY>|lI  
    end  g]?pY  
    rpowers = unique(rpowers); m 1; Htw  
    KqntOo} y)  
    yC\UT ~j/  
    % Pre-compute the values of r raised to the required powers, n!/0yR2S  
    % and compile them in a matrix: xn2nh@;  
    % ----------------------------- pS+w4gW  
    if rpowers(1)==0 O~V^]   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K-TsSW$}  
        rpowern = cat(2,rpowern{:}); !\R5/-_UU  
        rpowern = [ones(length_r,1) rpowern]; Dnw^H.  
    else ?g+3 URpK  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zU&Iy_Ke.  
        rpowern = cat(2,rpowern{:}); VtLRl0/  
    end #ay/VlD@  
    O^8ZnN_+  
    ^t4^gcoZ4Z  
    % Compute the values of the polynomials: g@>llve{  
    % -------------------------------------- lu"0\}7X  
    y = zeros(length_r,length(n)); :VlA2Ih&q  
    for j = 1:length(n) u>lt}0  
        s = 0:(n(j)-m_abs(j))/2; Eu(Qe ST\  
        pows = n(j):-2:m_abs(j); .J O3#  
        for k = length(s):-1:1 )mm0PJF~q  
            p = (1-2*mod(s(k),2))* ... Lf5zHUH  
                       prod(2:(n(j)-s(k)))/              ... A)]&L`s  
                       prod(2:s(k))/                     ... ]Wkgpfd56  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zBy} >Jx  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >va_,Y}  
            idx = (pows(k)==rpowers); 62R";# K  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &wK:R,~x6  
        end BC.3U.  
         ~@c<5 -`{  
        if isnorm hE(R[hc  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u:pOP  
        end <WIIurp  
    end &!/>B .  
    % END: Compute the Zernike Polynomials %oa@2qJ^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tI{]&dev  
    eWAD;x?.  
    -z`%x@F<&L  
    % Compute the Zernike functions: $f3IO#N  
    % ------------------------------ h<%$?h+}  
    idx_pos = m>0; PSq?8.  
    idx_neg = m<0; LhLAQ2~  
    gvT}UNqL  
    ]`$yY5&W0  
    z = y; s;TB(M~i[  
    if any(idx_pos) T)I)r239h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); L&kCI`Tb  
    end >S:(BJMo  
    if any(idx_neg) }2;P`s  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0R)x"4Ww  
    end \o[][R#D  
    nvrh7l9nX  
    ZXb|3|D  
    % EOF zernfun BZW03e8|  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  *e [*  
    424iFc[  
    DDE还是手动输入的呢? ng+sK  
    R5e[cC8o.  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究