下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, q*{"6"4(
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, BqZLqGOKu
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? *B:{g>0
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~ezCE4^&
cIM5;"gLP
(-dJ0!
fY%Sw7ql<
WtRy~5A2
function z = zernfun(n,m,r,theta,nflag) \TMRS(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. R<UjhCvx.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [&3"kb
% and angular frequency M, evaluated at positions (R,THETA) on the w5|@vB/pj
% unit circle. N is a vector of positive integers (including 0), and L6 _Sc-sU
% M is a vector with the same number of elements as N. Each element ;;nmF#
% k of M must be a positive integer, with possible values M(k) = -N(k) m(OBk;S~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^ *
DKF
% and THETA is a vector of angles. R and THETA must have the same ui 2RTAb
% length. The output Z is a matrix with one column for every (N,M) UO:>^,(j
% pair, and one row for every (R,THETA) pair. `SW`d<+L
% yAi4v[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =?*V3e3{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q6_1`Ew
% with delta(m,0) the Kronecker delta, is chosen so that the integral J.?p?-"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :cynZab
% and theta=0 to theta=2*pi) is unity. For the non-normalized @XIwp2A{+
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yp*kMC,3
% m9e$ZZG$
% The Zernike functions are an orthogonal basis on the unit circle. V;:A&
% They are used in disciplines such as astronomy, optics, and HKxrBQr78
% optometry to describe functions on a circular domain. J7cqn j
% uwQ4RYz
% The following table lists the first 15 Zernike functions. fZ
%ZV
% IB;y8e,
% n m Zernike function Normalization \'p7,F{:>5
% -------------------------------------------------- 4P:vo $Cy
% 0 0 1 1 J|DWT+$#Z
% 1 1 r * cos(theta) 2 lJYv2EZ
% 1 -1 r * sin(theta) 2 +M.|D,wg2
% 2 -2 r^2 * cos(2*theta) sqrt(6) dO8Z {wfs
% 2 0 (2*r^2 - 1) sqrt(3) X*Q7Yu
% 2 2 r^2 * sin(2*theta) sqrt(6) 'Gt`3qG
% 3 -3 r^3 * cos(3*theta) sqrt(8) V&}Z# 9Dx
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9n%W-R.
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) }oU&J81
% 3 3 r^3 * sin(3*theta) sqrt(8) Sv>aZ
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1Gqtd^*;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QB@*/Le
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \Fe5<G'v
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B " B
% 4 4 r^4 * sin(4*theta) sqrt(10) bFJn-g n
% -------------------------------------------------- ^a}{u$<
% ?<}qx`+%Q
% Example 1: q{5Vq_s\
% }}xR?+4A
% % Display the Zernike function Z(n=5,m=1) hs*:!&E
% x = -1:0.01:1; eo,]b1C2n
% [X,Y] = meshgrid(x,x); ~g,QwaA[
% [theta,r] = cart2pol(X,Y); ){(cRB $
% idx = r<=1; pucHB<R@bL
% z = nan(size(X)); dW5z0VuB$/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); pKJ[e@E^
% figure #,9|Hr%
% pcolor(x,x,z), shading interp s`TBz8QO$
% axis square, colorbar ujSzm=_P
% title('Zernike function Z_5^1(r,\theta)') So 5{E4[
% x-QP+M`Pu
% Example 2: ZEMo`O
% j>:T)zhyY
% % Display the first 10 Zernike functions 97g-*K
% x = -1:0.01:1; @kK=|(OB'
% [X,Y] = meshgrid(x,x); @Uu\x~3y
% [theta,r] = cart2pol(X,Y); E:tUbWVp
% idx = r<=1; N1-LM9S
% z = nan(size(X)); hPH7(f|c{g
% n = [0 1 1 2 2 2 3 3 3 3]; Eg:p_F*lr
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 2#[Y/p
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Z`!pU"O9l
% y = zernfun(n,m,r(idx),theta(idx)); t2gjhn^p
% figure('Units','normalized') h=tY 5]8
% for k = 1:10 f_\-y&)+*
% z(idx) = y(:,k); )
jvkwC
% subplot(4,7,Nplot(k)) aD^MoB3
% pcolor(x,x,z), shading interp (l,o UBRr
% set(gca,'XTick',[],'YTick',[]) loB/w{r*x
% axis square O^:h _L
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r6)1Y`K=9
% end 9..k/cH
% ~_&.A* Jh
% See also ZERNPOL, ZERNFUN2. K|/a]I":
Rb0{t[IU
-a[{cu{
% Paul Fricker 11/13/2006 O
o:jP6r
*l^'v9
Y[DKj!v
Ss:,#|
? `KOW
% Check and prepare the inputs: N'1~ wxd
% ----------------------------- rifxr4c[X>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C"{on%
error('zernfun:NMvectors','N and M must be vectors.') g2]-Q.
end ?Sqm`)\>4
cn0Fz"d
@FV;5M:I
if length(n)~=length(m) m0"\3@kB
error('zernfun:NMlength','N and M must be the same length.') {;E/l(HNI
end -(.7/G'Vk>
12a #]E
[
lW
" M
n = n(:); >N
J$ac
m = m(:); {+:XVT_+
if any(mod(n-m,2)) g@k9w{_
error('zernfun:NMmultiplesof2', ... w!RH*S
'All N and M must differ by multiples of 2 (including 0).') \gkajY-?
end hl:eF:'hm
aAM UJk
q@9i3*q;
if any(m>n) `[CJtd2\
error('zernfun:MlessthanN', ... }hYE6~pr
'Each M must be less than or equal to its corresponding N.') <T[N.mB
end +a-@
!J~:
HH?*"cKF~
to 6Q90(
if any( r>1 | r<0 ) DeA'D|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') [R>
end ntV>m*^
CE,Om^
oDUMoX%4s
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %Z yPK,("
error('zernfun:RTHvector','R and THETA must be vectors.') hH}/v0_ jb
end S$52KOo
GuWBl$|+b
XB-|gPk
r = r(:); E{s|#
theta = theta(:); QtQ^"d65
length_r = length(r); =bWq 3aP)P
if length_r~=length(theta) QJWES%m`
error('zernfun:RTHlength', ... Rk%M~ D*-
'The number of R- and THETA-values must be equal.') dY<#a,eS
end ~iZF~PQ1_
%k
#Nu
;/ KF3
%
% Check normalization: X.l"f'`l
% -------------------- TSSt@xQ+
if nargin==5 && ischar(nflag) vw]
D{OBv*
isnorm = strcmpi(nflag,'norm'); ,jsx]U/^
if ~isnorm JK"uj%
error('zernfun:normalization','Unrecognized normalization flag.') (B,t
1+%
end T1HiHvJ
else o%PoSZZ
isnorm = false; L"7`
\4
end %@93^q[\2
j :Jdwf
P=[x!}.I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jjT2k
% Compute the Zernike Polynomials dG>Wu o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OCO,-(
[e@OHQM
+1jqCW
% Determine the required powers of r: h$ iyclX
% ----------------------------------- _8pkejg
m_abs = abs(m); TL{pc=eBo
rpowers = []; 1=5'R/k
for j = 1:length(n) sk6|_
rpowers = [rpowers m_abs(j):2:n(j)]; R
4QwWSBJ
end a 8hv .43
rpowers = unique(rpowers); rI66frbj
lEbR) B,
OGi4m |
% Pre-compute the values of r raised to the required powers, .Xz"NyW
% and compile them in a matrix: I u~aTgHX%
% ----------------------------- %802H%+
if rpowers(1)==0 zHc 4e
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rn[}{1I33Q
rpowern = cat(2,rpowern{:}); ?Gv!d
rpowern = [ones(length_r,1) rpowern]; IcA\3j
else \]#;!6ge
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j X!ftm2
rpowern = cat(2,rpowern{:}); %3#I:>si
end +fCyR
2td|8vDA
="w8U'
% Compute the values of the polynomials: VmH_0IM^6
% -------------------------------------- CE7pg&dJ)i
y = zeros(length_r,length(n)); ^@LhUs>3
for j = 1:length(n) }Oh'YX#[
s = 0:(n(j)-m_abs(j))/2; 9 c5G6n0
pows = n(j):-2:m_abs(j); =']};
for k = length(s):-1:1 ><
_Z
p = (1-2*mod(s(k),2))* ... 19w,'}CGk
prod(2:(n(j)-s(k)))/ ... @uM3iO7&
prod(2:s(k))/ ... 7- 3N
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >;&V~q:di
prod(2:((n(j)+m_abs(j))/2-s(k))); S}p&\w H
idx = (pows(k)==rpowers); -f;j1bQ
y(:,j) = y(:,j) + p*rpowern(:,idx); [FV=@NI
end )>X|o$2
# pjyhH@
if isnorm xBE
RCO^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %f>
|fs
end Up/u|A$0V
end cwWSNm|
% END: Compute the Zernike Polynomials 73s3-DS,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N7HbOLpM
Zc\h15+P
CMxjX
% Compute the Zernike functions: {cyo0-9nv
% ------------------------------ $L&9x3+?Kg
idx_pos = m>0; xX&>5 "
idx_neg = m<0; ^I0GZG
EO9kE.g
<j1d~XU}
z = y; lfpt:5a9&
if any(idx_pos) _Dcc<-.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); z Jo#3
end At[n<8_|
if any(idx_neg) %L \{kUam
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); B:A1W{l
end (|a$N.e&K
R!V5-0%
peTO-x^a-
% EOF zernfun U3|&Jee