切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9096阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, CNRU"I+jU  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0.BUfuuh  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? |RAQ%VXm  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @+\S!o3m  
    E4v_2Q -w  
    |h=+&*(:  
    eFj6p<  
    01{r^ZT`RH  
    function z = zernfun(n,m,r,theta,nflag) X!#i@V  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .xLF}{u  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /@:up+$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nvs}r%1'5  
    %   unit circle.  N is a vector of positive integers (including 0), and yhtvr5z1  
    %   M is a vector with the same number of elements as N.  Each element VM]GYz|#]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `l gjw=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Q+!0)pG5#  
    %   and THETA is a vector of angles.  R and THETA must have the same <jRFN&"h}  
    %   length.  The output Z is a matrix with one column for every (N,M) e:GgA  
    %   pair, and one row for every (R,THETA) pair. 3b?OW7H  
    % Mi/ &$" =  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $nfBv f  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), J%\~<_2ny  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |:(23O  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, NHFEr  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4QjWZ Wl  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JwI`"$ > w  
    % yA?ENAM  
    %   The Zernike functions are an orthogonal basis on the unit circle. V@f6Lj  
    %   They are used in disciplines such as astronomy, optics, and 2i7i\?<.  
    %   optometry to describe functions on a circular domain. orB8Q\p'  
    % r{q}f)  
    %   The following table lists the first 15 Zernike functions. ;X$q#qzN#  
    % hSkc9jBF  
    %       n    m    Zernike function           Normalization 1A?\BJ"  
    %       -------------------------------------------------- `dgM|.w5=  
    %       0    0    1                                 1 &'huS?g A9  
    %       1    1    r * cos(theta)                    2 9b"9m*gC  
    %       1   -1    r * sin(theta)                    2 UKKSc>D1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) YH'$_,8peM  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mZbWRqP[|_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @3 -,=x  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 43J\8WBn@  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @ kJ0K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r)6uX  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) %qS]NC  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Q$|^~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ':!3jZP"m  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) d`9W  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J7'f@X~nM  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) })o~E  
    %       -------------------------------------------------- kfqpI  
    % S]e j=6SP  
    %   Example 1: t_I\P.aMA  
    % m/YH^N0  
    %       % Display the Zernike function Z(n=5,m=1) 4?>18%7&  
    %       x = -1:0.01:1; 2gd<8a''  
    %       [X,Y] = meshgrid(x,x); Ka]J^w;a  
    %       [theta,r] = cart2pol(X,Y); p{ @CoOn  
    %       idx = r<=1;  Y8)E]D  
    %       z = nan(size(X)); =y< ">-  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <#+oQ>5s  
    %       figure JkSdLj  
    %       pcolor(x,x,z), shading interp .7 (DxN  
    %       axis square, colorbar On{~St'V  
    %       title('Zernike function Z_5^1(r,\theta)') May&@x/oMS  
    % 7$!`p,@we/  
    %   Example 2: Ni2]6U  
    % g d337jw  
    %       % Display the first 10 Zernike functions a'@-"qk  
    %       x = -1:0.01:1; lpl8h4d  
    %       [X,Y] = meshgrid(x,x);  }Vvsh3  
    %       [theta,r] = cart2pol(X,Y); ^ckj3Y#;  
    %       idx = r<=1; e#>tM  
    %       z = nan(size(X)); jW-;4e*H=V  
    %       n = [0  1  1  2  2  2  3  3  3  3]; T)WZ_bR  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; S5i+vUI8C  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h [nH<m  
    %       y = zernfun(n,m,r(idx),theta(idx)); 33Ssylno  
    %       figure('Units','normalized') ![^EsgEB*  
    %       for k = 1:10 <Ctyht0c.  
    %           z(idx) = y(:,k); %mY|  
    %           subplot(4,7,Nplot(k)) z^4KU\/JK  
    %           pcolor(x,x,z), shading interp Eo%UuSi  
    %           set(gca,'XTick',[],'YTick',[]) %x&F4U  
    %           axis square BJ~ ivT<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cyW;,uT)D  
    %       end M'yO+bu  
    % c{1V.  
    %   See also ZERNPOL, ZERNFUN2. [^<SLTev  
    (# JMB)  
    '@'B>7C#  
    %   Paul Fricker 11/13/2006 l iw,O 6  
    Vy]A,Rn7  
    ]#F q>E  
    "Dyym<J  
    S8\+XJ  
    % Check and prepare the inputs: |<sf:#YzY&  
    % ----------------------------- m"n.Dz/S  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [}z?1Gj;W(  
        error('zernfun:NMvectors','N and M must be vectors.') egfi;8]E  
    end h ~ $&  
    }04Dg '  
    #C4|@7w%  
    if length(n)~=length(m) )AOPiC$jL  
        error('zernfun:NMlength','N and M must be the same length.') ;t}'X[U  
    end Q/p(#/y#b  
    yL.^ =  
    gWkjUz )  
    n = n(:); ji }#MBac  
    m = m(:);  L#n}e7Y9  
    if any(mod(n-m,2)) \I;cZ>{u"}  
        error('zernfun:NMmultiplesof2', ... lqF>=15  
              'All N and M must differ by multiples of 2 (including 0).') 8$ic~eJ  
    end [6H}/_nD  
    s3seK6x'  
    d>&\V)E  
    if any(m>n) V{!lk]p}a  
        error('zernfun:MlessthanN', ...  ozU2  
              'Each M must be less than or equal to its corresponding N.') h6g:(3t6m  
    end yr5NRs  
    *%X.ym'  
    i-b1d'?Rb  
    if any( r>1 | r<0 ) )!A 2>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0pD[7~^o  
    end EY~7oNfc`R  
    g92dw<$>  
    ABcBEv3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L?HF'5o  
        error('zernfun:RTHvector','R and THETA must be vectors.') `NQ{)N0!  
    end bo1I&I  
    6GzzG P^  
    -,^WaB7u\  
    r = r(:); yw'ezpO"  
    theta = theta(:); -bA!PeI  
    length_r = length(r); ;|!MI'Af  
    if length_r~=length(theta) AF GwT%ZD  
        error('zernfun:RTHlength', ... zka?cOmYF[  
              'The number of R- and THETA-values must be equal.') 1aq2aLx  
    end ZOuR"9]  
    2 5Q+1  
    /ERNS/w  
    % Check normalization: "R23Pi  
    % -------------------- @bT3'K-4  
    if nargin==5 && ischar(nflag)  i S  
        isnorm = strcmpi(nflag,'norm'); KaW~ERx5  
        if ~isnorm T`?n,'!(  
            error('zernfun:normalization','Unrecognized normalization flag.') "Hht g:  
        end N<liS3>  
    else vL$|9|W(  
        isnorm = false; f>niFPW"  
    end Y 9i][  
    MtUY?O.P2  
    A*F9\mj I5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?L\z}0#  
    % Compute the Zernike Polynomials Vv7PCaq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vTd- x>n  
    .E$q&7@/j  
     2:'lZQ  
    % Determine the required powers of r: /lJjQ]c;>  
    % ----------------------------------- JpK[&/Ct  
    m_abs = abs(m); G#0,CLGN^  
    rpowers = []; =Z`0>R`  
    for j = 1:length(n) )b92yP{  
        rpowers = [rpowers m_abs(j):2:n(j)]; 6e# wR/  
    end ;&kn"b}G;  
    rpowers = unique(rpowers); Pbe7SRdr^  
    SA+d&H}Fc  
    "0-y*1/m  
    % Pre-compute the values of r raised to the required powers, R hio7C  
    % and compile them in a matrix: O>AFF@=  
    % ----------------------------- H)5QqZ8  
    if rpowers(1)==0 ltSh'w0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y]'CXCml)  
        rpowern = cat(2,rpowern{:}); .S_QQM}Q  
        rpowern = [ones(length_r,1) rpowern]; L/x(RCD  
    else Dtt-|_EMS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (6R4 \8z2  
        rpowern = cat(2,rpowern{:}); ([KN*OF  
    end X NE+(Bt  
    S+ebO/$>  
    t$ZkdF  
    % Compute the values of the polynomials: )GJP_*Ab  
    % -------------------------------------- /^2CGcT(  
    y = zeros(length_r,length(n)); )gXTRkmw  
    for j = 1:length(n) J8;Okzb!L  
        s = 0:(n(j)-m_abs(j))/2; tU:FX[&?R  
        pows = n(j):-2:m_abs(j); ^ ulps**e  
        for k = length(s):-1:1 85z;Zt0{  
            p = (1-2*mod(s(k),2))* ... jBpVxv  
                       prod(2:(n(j)-s(k)))/              ... 5v9uHxy  
                       prod(2:s(k))/                     ... D|Si)_ Iz  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zfjw;sUX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); f#P_xn&et  
            idx = (pows(k)==rpowers); _7@z_i_c  
            y(:,j) = y(:,j) + p*rpowern(:,idx); u D(t`W"  
        end L~eAQR  
         |zpx)8Q  
        if isnorm m r4b  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~/|zlu*jpc  
        end V;93).-$  
    end % {Q-8w!  
    % END: Compute the Zernike Polynomials ~NNv>5 t5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J^ ={}  
    frqJN  
    @^? XaU  
    % Compute the Zernike functions: <AUWby,"  
    % ------------------------------ C3S`}o.  
    idx_pos = m>0; gX,9Gh  
    idx_neg = m<0; 5AOfp2O  
    :3? |VE F  
    K"l0w**Og#  
    z = y; !kXeO6X@m  
    if any(idx_pos) Y&~M7TYb  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M<[ ?g5=#  
    end U)[ty@zyF  
    if any(idx_neg) )( bxpW  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~>%DKJe  
    end <v$QM;Ff  
    Wsm`YLYkt!  
    5f{|"LG&  
    % EOF zernfun G$5m$\K  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  h7?.2Q&S  
    3;y_mg  
    DDE还是手动输入的呢? 8]C1K Zs  
    F5IZ"Itu(  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究