下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ^GrkIh0nL
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, JM-ce8U
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @ZkAul0@
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? -iDEh_pts
n*i'v tQ8
T$^>Fiz{Se
X'#$e{
-j`!(IJ
function z = zernfun(n,m,r,theta,nflag) Ls>u`hG
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. blfE9Oy
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QPe9s[Y
% and angular frequency M, evaluated at positions (R,THETA) on the mo#0q&ZQ
% unit circle. N is a vector of positive integers (including 0), and 8gbm "!
% M is a vector with the same number of elements as N. Each element \l]pe|0EW
% k of M must be a positive integer, with possible values M(k) = -N(k) +dgo-)kP(_
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, /iTUex7T
% and THETA is a vector of angles. R and THETA must have the same @nx}6?p\,
% length. The output Z is a matrix with one column for every (N,M) 8PoHBOxpc
% pair, and one row for every (R,THETA) pair. KZ!N{.Jk
% ;o)=XEh8P
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U +*oI *
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H ZDaV&)@
% with delta(m,0) the Kronecker delta, is chosen so that the integral }(+=/$C"#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =(.mf
% and theta=0 to theta=2*pi) is unity. For the non-normalized ;c X^8;F0
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d{2y/
% YBtq0c
% The Zernike functions are an orthogonal basis on the unit circle. J+@MzkpK
% They are used in disciplines such as astronomy, optics, and {\svV
0)~
% optometry to describe functions on a circular domain. c}IX"
% D/S>w(=
% The following table lists the first 15 Zernike functions. =XMD+
% [+%d3+27
% n m Zernike function Normalization UH 47e
% -------------------------------------------------- AB2mt:^
% 0 0 1 1 KUp
% 1 1 r * cos(theta) 2 pkXfsi-Nu
% 1 -1 r * sin(theta) 2 *(d6Z#
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8tLT'2+H#
% 2 0 (2*r^2 - 1) sqrt(3) \!UF|mD^tG
% 2 2 r^2 * sin(2*theta) sqrt(6) rnn2u+OG
% 3 -3 r^3 * cos(3*theta) sqrt(8) <.r ]dCf
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ASKAgU"h
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $u; >hk
% 3 3 r^3 * sin(3*theta) sqrt(8) [y|^P\D
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]pOYVf *$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S,*{q(
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) !2zo]v4?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {PODisl>\D
% 4 4 r^4 * sin(4*theta) sqrt(10) [$( sUc(%
% -------------------------------------------------- ( zn_8s
% I&TTr7
% Example 1: Wl&
>6./{
% (s}Rj)V[^
% % Display the Zernike function Z(n=5,m=1) DKy>]Hca
% x = -1:0.01:1; :DtZ8$I`]C
% [X,Y] = meshgrid(x,x); Io$w|~x
% [theta,r] = cart2pol(X,Y); .cg=
% idx = r<=1; MzEm*`<
% z = nan(size(X)); [x;(cISK1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); jlu`lG*e&
% figure f >mhFy
% pcolor(x,x,z), shading interp rc;7W:
% axis square, colorbar K1?Z5X(b
% title('Zernike function Z_5^1(r,\theta)') S}oG.r
9
% %`xV'2H
% Example 2: Qg'c?[~W@
% ZYE' C
% % Display the first 10 Zernike functions oLgg
% x = -1:0.01:1; L;/9L[s,
% [X,Y] = meshgrid(x,x); J[e}
% [theta,r] = cart2pol(X,Y);
xS=_yO9-
% idx = r<=1; O&`U5w
% z = nan(size(X)); k2EHco0BG
% n = [0 1 1 2 2 2 3 3 3 3];
b8rp8'M)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]Nnxnp
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Err4
%-
% y = zernfun(n,m,r(idx),theta(idx)); UZzNVIXA%
% figure('Units','normalized') N]B)Fb
% for k = 1:10 EzR%w*F>Q
% z(idx) = y(:,k); =yl4zQmg$
% subplot(4,7,Nplot(k)) \Dn&"YG7
% pcolor(x,x,z), shading interp WMW1B}Z3
% set(gca,'XTick',[],'YTick',[]) fuq(
2&^
% axis square FoE|Js
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %tT"`%(+
% end CPVzX%=
% sW
}<zGYd
% See also ZERNPOL, ZERNFUN2. 3(1]FKZtt
Z}|TW~J=
8]S,u:E:N
% Paul Fricker 11/13/2006 x>}B#
d)N^PJ/
AT"!{Y "H
}7K@e;YUg
&|)hCJu
% Check and prepare the inputs: >xT^RYS
% ----------------------------- 8EOh0gk7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >9ob *6q,
error('zernfun:NMvectors','N and M must be vectors.') TI}}1ScA'
end lK0s=4c{
Vzpt(_><
<"<Mbbp
if length(n)~=length(m) UcgG
error('zernfun:NMlength','N and M must be the same length.') 5?Bc
Y;
end )D;*DUtMVm
VM7 !0
)CJES!!
W
n = n(:); T'E]
i!$
m = m(:); Bp
:~bHf
if any(mod(n-m,2)) Z .quh;
error('zernfun:NMmultiplesof2', ... T=WNBqKo]
'All N and M must differ by multiples of 2 (including 0).') HN{z T&
end j.DHqHx
qP7G[%=v
c7\VTYT
if any(m>n) z5'ZN+
error('zernfun:MlessthanN', ... `ruNA>M
'Each M must be less than or equal to its corresponding N.') mb&lCd^-
end +IrZ
;&oy
w!\3ICB
Av o|v>
if any( r>1 | r<0 ) Wbe0ZnM]
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9RH"d[%yc}
end $xT1 1 ^
joqWh!kv7U
K1OkZ6kl
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) n#4Gv|{XMD
error('zernfun:RTHvector','R and THETA must be vectors.')
[>f]@>
end #Q}_e7t
#;]2=@
&R,9+c
r = r(:); yYY Nu`
theta = theta(:); ;\qXbL7
length_r = length(r); YGp)Oy}:
if length_r~=length(theta) zzJja/mp
error('zernfun:RTHlength', ... Fi4UaJ3K
'The number of R- and THETA-values must be equal.') \:Za[6
end 7NJFWz!
_1aGtX|W
dQD$K|aUp
% Check normalization: 'Dath>Y=
% -------------------- ='}#`',
if nargin==5 && ischar(nflag) $
KB
isnorm = strcmpi(nflag,'norm'); %?9Ok
if ~isnorm *)'V vu<
error('zernfun:normalization','Unrecognized normalization flag.') &$=! dA
end "UG
K8x
else e"k/d<
isnorm = false; _okWQvdH
end "$| Zr
?qmp_2:WU
+Rwx%=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E"qFXA>
% Compute the Zernike Polynomials X:EEPGE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% };b1aha G
Qs9OC9X1
\S ."?!U
% Determine the required powers of r: MzkkcQLK
% ----------------------------------- .WX,Nd3@
m_abs = abs(m); [/|zH'j:
rpowers = []; G-u]L7t&1
for j = 1:length(n) F}Srn;V
rpowers = [rpowers m_abs(j):2:n(j)]; [=uIb._Wv
end *jITOR!uF`
rpowers = unique(rpowers); I4t*?
=-#G8L%Q
z-r2!^q27
% Pre-compute the values of r raised to the required powers, p?# pT}1
% and compile them in a matrix: hH>``gK
% ----------------------------- D-&an@
if rpowers(1)==0 94/BG0
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )d`mvZBn1
rpowern = cat(2,rpowern{:}); !<<AzLVL
rpowern = [ones(length_r,1) rpowern]; #_JYh?
else UzG[:ic%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eE(b4RCM
rpowern = cat(2,rpowern{:}); F #`=oM$5
end <RXw M6G2
=qu(~]2(
HrM$NRhu
% Compute the values of the polynomials: FX}Gt=
% -------------------------------------- 8b(!k FxD
y = zeros(length_r,length(n)); >IfV\w32
for j = 1:length(n) *O~e
T
s = 0:(n(j)-m_abs(j))/2; G~,:2
o3
pows = n(j):-2:m_abs(j); vXE0%QE'Q
for k = length(s):-1:1 iE].&>w
p = (1-2*mod(s(k),2))* ... F3Maqr y
prod(2:(n(j)-s(k)))/ ... j;0vAf
prod(2:s(k))/ ... EGVM)ur
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A8r^)QJP{
prod(2:((n(j)+m_abs(j))/2-s(k))); H t(n%;<
idx = (pows(k)==rpowers); qv*7K@
y(:,j) = y(:,j) + p*rpowern(:,idx); JRaq!/[(
end 1q7tiMvV-
0#_'o ,
if isnorm fmX!6Kv
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O`[aU%4b
end EgjR^A1W2
end a_~=#]a
% END: Compute the Zernike Polynomials pCi#9=?N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~`ny@WD9
p>w]rE:}
<AH1i@4
% Compute the Zernike functions: i1lBto[
% ------------------------------ AIYmS#V1W2
idx_pos = m>0; R%Y`=pK>}
idx_neg = m<0; ]6r;}1c
]`g@UtD9`
CusF/>
z = y; 6w8">~)Z
if any(idx_pos) MGS-4>Q#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); w
obgu
end B;>{0
s
if any(idx_neg) ED>prE0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8,P-
7^
end l7H
qo)
b?X.U}62_
\JEXX4%
% EOF zernfun }@ Z56