切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9513阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y>8sZuH0  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, k>Is:P  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? NR$3%0 nC6  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <`8n^m*  
    H5/6TX72N  
    f=l rg KE  
    6%\J"AgXO  
    ].avItg  
    function z = zernfun(n,m,r,theta,nflag) k&M;,e3v6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. h ]5(].  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JMCKcZ%N  
    %   and angular frequency M, evaluated at positions (R,THETA) on the |MTnH/|  
    %   unit circle.  N is a vector of positive integers (including 0), and gi3F` m  
    %   M is a vector with the same number of elements as N.  Each element sU<Wnz\[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &Q/W~)~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 7(1|xYCx$  
    %   and THETA is a vector of angles.  R and THETA must have the same KWbI'}_z  
    %   length.  The output Z is a matrix with one column for every (N,M) B9_ X;c  
    %   pair, and one row for every (R,THETA) pair. ,hDW Ps2S  
    % >%_\;svZG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike RT4x\&q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B&M%I:i  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Qab>|eSm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y sC>i`n9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /aCc17>2V{  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #Qw0&kM7I  
    % {S]}.7`l9(  
    %   The Zernike functions are an orthogonal basis on the unit circle. etDk35!h~,  
    %   They are used in disciplines such as astronomy, optics, and 1/B>XkCJ  
    %   optometry to describe functions on a circular domain. 5+4IN5o]=  
    % EmWn%eMN  
    %   The following table lists the first 15 Zernike functions. a@K%06A;'  
    % E:_ZA  
    %       n    m    Zernike function           Normalization ;J( 8 L  
    %       -------------------------------------------------- .<0ye_S'y  
    %       0    0    1                                 1 88O8wJN  
    %       1    1    r * cos(theta)                    2 )th<,Lo3#  
    %       1   -1    r * sin(theta)                    2 _ gR;=~S  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) h%na>G  
    %       2    0    (2*r^2 - 1)                    sqrt(3) GRIti9GD  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ys9[5@7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <Xhm`rH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) HQ_Ok `  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ='r!g  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _#E0g'3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) un"Gozmt5  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IVnHf_PzF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) IZ-1c1   
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BQHVQs   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) sRR( `0Zp  
    %       -------------------------------------------------- 8P\G }  
    % [ZwjOi:)  
    %   Example 1: A/$QaB,x  
    % pZ{+c  
    %       % Display the Zernike function Z(n=5,m=1) ha<[b ue  
    %       x = -1:0.01:1; MTh<|$   
    %       [X,Y] = meshgrid(x,x); yx8z4*]kH  
    %       [theta,r] = cart2pol(X,Y); @Sn(lnlB  
    %       idx = r<=1; %g$o/A$  
    %       z = nan(size(X)); ] )\Pqn(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); a 7 V-C  
    %       figure K hR81\  
    %       pcolor(x,x,z), shading interp Oc0a77@  
    %       axis square, colorbar ,.8KN<A2]'  
    %       title('Zernike function Z_5^1(r,\theta)') dh iuI|?@  
    % ]L.O8  
    %   Example 2: @ CL{D:d  
    % DH!~ BB;  
    %       % Display the first 10 Zernike functions ] IQ&>z}<  
    %       x = -1:0.01:1; #$07:UJ  
    %       [X,Y] = meshgrid(x,x); X=&ET)8-Y  
    %       [theta,r] = cart2pol(X,Y); z (wc0I  
    %       idx = r<=1; OU_gdp  
    %       z = nan(size(X)); !sP {gi#=  
    %       n = [0  1  1  2  2  2  3  3  3  3]; &-6Gc;f8  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;?i W%:_,  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 20h, ^  
    %       y = zernfun(n,m,r(idx),theta(idx)); AM\'RHL  
    %       figure('Units','normalized') N/2 T[s_&  
    %       for k = 1:10 ;7V%#-  
    %           z(idx) = y(:,k); ,/I.t DH  
    %           subplot(4,7,Nplot(k)) z'n:@E  
    %           pcolor(x,x,z), shading interp I-*S&SiXjI  
    %           set(gca,'XTick',[],'YTick',[]) 83\pZ1>)_  
    %           axis square &)ChQZA  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 19)i*\+  
    %       end D?_Zl;bQ'^  
    % &%DY\*  
    %   See also ZERNPOL, ZERNFUN2. $k%2J9O  
    .@U@xRu7|  
    _7 L-<  
    %   Paul Fricker 11/13/2006 E6ElNgL  
    mR:uj2*  
    Hg izW  
    WX?IYQ+  
    f}f9@>.  
    % Check and prepare the inputs: #OD/$f_  
    % ----------------------------- ?P`K7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %T%sGDCV  
        error('zernfun:NMvectors','N and M must be vectors.') E,U+o $  
    end AJ`h9 %B  
    5x4yyb'  
    E A1?)|}n  
    if length(n)~=length(m) v%z=ysA  
        error('zernfun:NMlength','N and M must be the same length.') ChPmX+.i_  
    end IY\5@PVZ  
    }rw8PZ9  
    WlC:l  
    n = n(:); ZDYJ\}=  
    m = m(:);  w``ST  
    if any(mod(n-m,2)) 6Y?|w3f   
        error('zernfun:NMmultiplesof2', ... IK=a*}19L  
              'All N and M must differ by multiples of 2 (including 0).') ??vLUv  
    end | rtD.,m   
    ~IBP|)WA-  
    k2tF}  
    if any(m>n) :KP @RZm  
        error('zernfun:MlessthanN', ... FbFPJ !fb  
              'Each M must be less than or equal to its corresponding N.') bJ {'<J  
    end +.FEq*V  
    L48_96  
    D8?Vn"  
    if any( r>1 | r<0 ) !``,gExH  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.')  {Gk1vcq  
    end {]@= ijjf  
    '4Bm;&6M  
    eJX9_6m-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uh  > ; 8  
        error('zernfun:RTHvector','R and THETA must be vectors.') /%1ON9o>  
    end Vv=. -&'  
    sBg.u  
    \?k'4rH  
    r = r(:); )}Kf=  
    theta = theta(:); Ka V8[|Gn,  
    length_r = length(r); wE`]7mA  
    if length_r~=length(theta) p]+Pkxz]'  
        error('zernfun:RTHlength', ... "`e{/7I  
              'The number of R- and THETA-values must be equal.') *P=VFP  
    end rw JIx|(  
    v^*K:#<Q!  
    w;amZgD>  
    % Check normalization: MKi0jwJM  
    % -------------------- ^k">A:E2  
    if nargin==5 && ischar(nflag) 3;A)W18]  
        isnorm = strcmpi(nflag,'norm'); aeM+ d`f  
        if ~isnorm n 0L^e  
            error('zernfun:normalization','Unrecognized normalization flag.') \X D6 pr@  
        end ;h  
    else _A9AEi'.  
        isnorm = false; @K !T,U  
    end =-n}[Y}A  
    `1fY)d^ZS  
    n;Vs_u/Nx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f r6 fj  
    % Compute the Zernike Polynomials yWo; a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cR<fJ[*  
    c`w}|d]mC  
    7;wd(8  
    % Determine the required powers of r: v PG},m~-  
    % ----------------------------------- UySZbmP48  
    m_abs = abs(m); :*9Wh  
    rpowers = []; y766; X:J  
    for j = 1:length(n) ]Q)OL  
        rpowers = [rpowers m_abs(j):2:n(j)]; Hf2_0wA3  
    end je=a/Y=%U{  
    rpowers = unique(rpowers); c 3)jccWTc  
    1\2no{Vh  
    h J)h\  
    % Pre-compute the values of r raised to the required powers, .p" xVfi6  
    % and compile them in a matrix: `Eo.v#<  
    % ----------------------------- w%jII{@,  
    if rpowers(1)==0 00~mOK;1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p6!x=cW  
        rpowern = cat(2,rpowern{:}); Y&Z.2>b  
        rpowern = [ones(length_r,1) rpowern]; M-Y_ Wb3  
    else [5Mr@f4I  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'e'cb>GnA  
        rpowern = cat(2,rpowern{:}); P{ lB50  
    end ar+9\  
    z5*'{t)  
    K`fuf=  
    % Compute the values of the polynomials: M&9+6e'-F  
    % -------------------------------------- $}<e|3_  
    y = zeros(length_r,length(n)); d S V8q ,D  
    for j = 1:length(n) +Q"4Migbe@  
        s = 0:(n(j)-m_abs(j))/2; H9Q&tl9  
        pows = n(j):-2:m_abs(j); <$Yd0hxjU  
        for k = length(s):-1:1 3 {sVVq5Y  
            p = (1-2*mod(s(k),2))* ... 59;KQ  
                       prod(2:(n(j)-s(k)))/              ... V/9!K%y  
                       prod(2:s(k))/                     ... d)Y}>@:W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... vy:Z/1q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |[b{)s?x  
            idx = (pows(k)==rpowers); |z^^.d~a0  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4zFW-yy  
        end )|# sfHv7  
         5">Z'+8  
        if isnorm 8$Y9ORs4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {V CWn95Z  
        end \ta?b!Y),?  
    end iSs:oH3l  
    % END: Compute the Zernike Polynomials 3eQ&F~S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -=\c_\O  
    Jij*x>K>y  
    hv>\gBe i  
    % Compute the Zernike functions: %:* YO;dw'  
    % ------------------------------ )MTOU47U  
    idx_pos = m>0; %| Lfuz*  
    idx_neg = m<0; g}(L;fy>7  
    j*r{2f4Rt  
    IF:;`r@%  
    z = y; t'k$&l}+  
    if any(idx_pos) T{[=oH+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U z>+2m(  
    end bY~pc\V:`w  
    if any(idx_neg) u;2[AQ.  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #!+:!_45  
    end {;6`_-As%  
    a<bwzX|.  
    gp.^~p]x  
    % EOF zernfun \(2sW^fY  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  1 [Bk%G@D&  
    ?(_08O  
    DDE还是手动输入的呢? SQ+Gvq%Q]  
    wi{3/  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究