下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Tk[`kmb
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *h=|KOS
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ok7i^-85
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? >Ux5UD
@lo6?9oNo
+b<q4W
ghXh nxG
j7&57'
function z = zernfun(n,m,r,theta,nflag) o.qeF4\d6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. &&Sl0(6x[T
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SDY!! .
% and angular frequency M, evaluated at positions (R,THETA) on the ~-r*2bR
% unit circle. N is a vector of positive integers (including 0), and m2!y;)F0
% M is a vector with the same number of elements as N. Each element 5ZG-3qj
% k of M must be a positive integer, with possible values M(k) = -N(k) obUX7N
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, B^W0Ik`m
% and THETA is a vector of angles. R and THETA must have the same v!oXcHK/
% length. The output Z is a matrix with one column for every (N,M) 7x
*]
% pair, and one row for every (R,THETA) pair. &|t*9D
% -p|@En n
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike l56D?E8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9UD~$_<\
% with delta(m,0) the Kronecker delta, is chosen so that the integral <"|BuK
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F-MN%WD~
% and theta=0 to theta=2*pi) is unity. For the non-normalized XdKhT61 8G
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >P7|-bV
% *KF-q?PBb
% The Zernike functions are an orthogonal basis on the unit circle. oM`[&m.,
% They are used in disciplines such as astronomy, optics, and 3Lx]-0h
% optometry to describe functions on a circular domain. xngK_n
% ]YF[W`2h
% The following table lists the first 15 Zernike functions. VGLE5lP X
% ulM6R/V:?
% n m Zernike function Normalization 9Ra_[1
% -------------------------------------------------- Y{]RhRR
% 0 0 1 1 >3HLm3 T
% 1 1 r * cos(theta) 2 e<_p\LiOS
% 1 -1 r * sin(theta) 2 QO;W}c:N
% 2 -2 r^2 * cos(2*theta) sqrt(6) A;~u"g 'z&
% 2 0 (2*r^2 - 1) sqrt(3) ,(0q
% 2 2 r^2 * sin(2*theta) sqrt(6) L&td4`2y
% 3 -3 r^3 * cos(3*theta) sqrt(8) k(>hboR5n
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `@MY}/
o.
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) j(Tt-a("z
% 3 3 r^3 * sin(3*theta) sqrt(8) ZU%7m_ zO
% 4 -4 r^4 * cos(4*theta) sqrt(10) ^+CTv
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PxENLQ3a=
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) a=LjFpv/]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W (N@`^
% 4 4 r^4 * sin(4*theta) sqrt(10) PqMU&H_
% -------------------------------------------------- cX$ Pq
% kFPZ$8e
% Example 1: AhOvI{
% >mzK96
% % Display the Zernike function Z(n=5,m=1) o
g.LD7&/
% x = -1:0.01:1; 3cK`RM `
% [X,Y] = meshgrid(x,x); [([?+Ouy
% [theta,r] = cart2pol(X,Y); Pyc/6~?
% idx = r<=1; {5}UP@h
% z = nan(size(X)); eup#.#J
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .@{W6
/I
% figure N~H9|CX
% pcolor(x,x,z), shading interp YKbR#DC\
% axis square, colorbar {3Z&C$:s
% title('Zernike function Z_5^1(r,\theta)') RH+3x7l
% KL]@y!QU
% Example 2: lxTW1kr
% |sWH!:]49
% % Display the first 10 Zernike functions B6tp,Np5,
% x = -1:0.01:1; Q>s> @hw
% [X,Y] = meshgrid(x,x); <'H^}gQow
% [theta,r] = cart2pol(X,Y); .%>UA|[~:
% idx = r<=1; B42.;4"T
% z = nan(size(X)); VIo %((
% n = [0 1 1 2 2 2 3 3 3 3]; BwO^F^Pr?k
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ~fLuys`*:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; OZdiM&Zss
% y = zernfun(n,m,r(idx),theta(idx)); P@LYa_UFsN
% figure('Units','normalized') j*"V!d
% for k = 1:10 wkm;yCF+
% z(idx) = y(:,k); yP\KIm!
% subplot(4,7,Nplot(k)) 4}B9y3W:v
% pcolor(x,x,z), shading interp OF^v;4u
% set(gca,'XTick',[],'YTick',[]) E )D*~2o/
% axis square VZNMom,Wr
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _uL{@(
% end wPTXRq%
% ) &[S*g
% See also ZERNPOL, ZERNFUN2. -~Kw~RX<(
ES72yh]
1MI/:vy-
% Paul Fricker 11/13/2006 H3T4v1o6
^]}UyrOn
"#x<>a)O\
@K`2y'#b
[ h7nOUL!
% Check and prepare the inputs: b`N0lH.V
% ----------------------------- HJT}v/FZ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +Ze HZjd
error('zernfun:NMvectors','N and M must be vectors.') H)S&sx#q]
end
:Rc>=)<7
8"R;axeD
_SM5x,Zd
if length(n)~=length(m) +VSJve |
error('zernfun:NMlength','N and M must be the same length.') R%iyNK,
end YX38*Ml+V
U-(2;F)
ur^)bp<