切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9399阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来,  $Tfq9  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Cc0`Ylx~(  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? K7F uMB  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9U>ID{  
    p^&' C_?  
    hmtRs]7  
    k~>9,=::d  
    }Jk.c~P)  
    function z = zernfun(n,m,r,theta,nflag) u6'vzLmM  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ms<^_\iPN  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9bPQD{Qb  
    %   and angular frequency M, evaluated at positions (R,THETA) on the (ivV[  
    %   unit circle.  N is a vector of positive integers (including 0), and s{NEP/QQJ  
    %   M is a vector with the same number of elements as N.  Each element zid?yuP  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) #StD]d  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, GD}3 r:wDs  
    %   and THETA is a vector of angles.  R and THETA must have the same "6~pTHT  
    %   length.  The output Z is a matrix with one column for every (N,M) = PqQJE}  
    %   pair, and one row for every (R,THETA) pair. f62z9)`^  
    % 2xZg, \  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BcX}[?c  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b\7-u-   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral z tHGY  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, K8pfk*NZ_@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized -3/:Dk`3  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. { Y|h;@j$  
    % Z_iu^ Q  
    %   The Zernike functions are an orthogonal basis on the unit circle. Q`7!~qV0=  
    %   They are used in disciplines such as astronomy, optics, and [zm&}$nnN  
    %   optometry to describe functions on a circular domain. MnO,Cd6{%d  
    % ":"QsS#*"#  
    %   The following table lists the first 15 Zernike functions. H:`W\CP7_  
    % HyiuU`  
    %       n    m    Zernike function           Normalization Xf:CGR8_  
    %       -------------------------------------------------- fNFdZ[qOd  
    %       0    0    1                                 1 Sr)/ Mf  
    %       1    1    r * cos(theta)                    2 C0jmjZ%w@  
    %       1   -1    r * sin(theta)                    2 jm =E_86_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) V3$!`T}g4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 4(R O1VWsb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) )*G3q/l1u6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "}\2zub9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @I]uK[qd  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O*z x{a6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) %bt2^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _R1UEE3M  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;} gvBI2e  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 'P)xY-15  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  s+[_5n~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) teUCK(;23  
    %       -------------------------------------------------- zek\AQN  
    % #dqZdj@  
    %   Example 1: Bt Bo%t&  
    % )"m FlS<I  
    %       % Display the Zernike function Z(n=5,m=1) y`E2IE2o  
    %       x = -1:0.01:1; Z%`} `(  
    %       [X,Y] = meshgrid(x,x); Bo`fy/x#  
    %       [theta,r] = cart2pol(X,Y); Ufv{6"sH  
    %       idx = r<=1; ~r]ZD)  
    %       z = nan(size(X)); J,;; `sf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Fz?ON1\  
    %       figure Y">Q16(  
    %       pcolor(x,x,z), shading interp j~\\,fl=  
    %       axis square, colorbar ~"gOq"y 5p  
    %       title('Zernike function Z_5^1(r,\theta)') $B~a*zZ7  
    % U @|{RP  
    %   Example 2: 1;fs`k0p  
    % C0 .Xp  
    %       % Display the first 10 Zernike functions q .tVNKy%  
    %       x = -1:0.01:1; XC?H  
    %       [X,Y] = meshgrid(x,x); A{>]M@QC2  
    %       [theta,r] = cart2pol(X,Y); Fy`VQ\%7t  
    %       idx = r<=1; E-X-LR{CC  
    %       z = nan(size(X)); ^M,t`r{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; k|BY 7C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }C/}8<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3 V8SKBS  
    %       y = zernfun(n,m,r(idx),theta(idx)); \z:p"eua z  
    %       figure('Units','normalized') x)BG%{h  
    %       for k = 1:10 csRba;Z[  
    %           z(idx) = y(:,k); 7vNS@[8  
    %           subplot(4,7,Nplot(k)) y3 LWh}~E  
    %           pcolor(x,x,z), shading interp +O j28vR  
    %           set(gca,'XTick',[],'YTick',[]) pJ+>qy5  
    %           axis square VEpIAC4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h6)hZ'zV  
    %       end BR*" "/3`  
    % !h?N)9e  
    %   See also ZERNPOL, ZERNFUN2. #@2`^1  
    xW/J ItF  
    36J)O-Ti  
    %   Paul Fricker 11/13/2006 %- %/3  
    +ywWQ|V  
    6jCg7Su]  
    EIEwrC  
    A |NX"  
    % Check and prepare the inputs: |1J "r.K  
    % ----------------------------- D Sd 5?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g|)e3q{M  
        error('zernfun:NMvectors','N and M must be vectors.') {EW}Wd  
    end xqP0Z) ,Ow  
    Sl:\5]'yJ  
    m"86O:S#d  
    if length(n)~=length(m) r\_rnM)_xN  
        error('zernfun:NMlength','N and M must be the same length.') n0 !S;HH-  
    end +ZizT.$&  
    lCd^|E  
    =\CbX  
    n = n(:); wKk  
    m = m(:); h=`rZC  
    if any(mod(n-m,2)) [0/?(i|  
        error('zernfun:NMmultiplesof2', ... )I1LBvfQ  
              'All N and M must differ by multiples of 2 (including 0).') o|^0DYb  
    end 86R}G/>>e  
    pNVao{::5  
    {[r'+=}l\S  
    if any(m>n) "q#(}1Zd  
        error('zernfun:MlessthanN', ... iW* 0V3  
              'Each M must be less than or equal to its corresponding N.') =xG9a_^v  
    end `+"QhQ4 w  
    @3VL _g:  
    w\$b(HC  
    if any( r>1 | r<0 ) ^,U&v;   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;pAkdX&b  
    end g](m& O  
    dE ^(KBF  
    c^Wm~"r  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) >4h4t/G  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1$".7}M4$  
    end ffE%{B?  
    Xk7zXah  
    HL88  
    r = r(:); v]!|\]  
    theta = theta(:); Z>CFH9  
    length_r = length(r); I,  
    if length_r~=length(theta) egr@:5QwZ{  
        error('zernfun:RTHlength', ... Ir0er~f+z  
              'The number of R- and THETA-values must be equal.') _`D760q}  
    end _fMooI)U1  
    jj.]R+.G  
    ^.-P]I]  
    % Check normalization: Dt r'X@U  
    % -------------------- .3ic%u;|D  
    if nargin==5 && ischar(nflag) @B&hR} 4  
        isnorm = strcmpi(nflag,'norm'); F},JP'\X  
        if ~isnorm #jDO?Y Sa  
            error('zernfun:normalization','Unrecognized normalization flag.') 4SG[_:+!  
        end 9wtl|s%A %  
    else <D&75C#  
        isnorm = false; v- {kPc=:#  
    end gO$!_!@LM  
    !w C4ei`  
    Y61E|:fV!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uQ8]j.0  
    % Compute the Zernike Polynomials 8,['q~z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BA-n+WCWJ  
    &VQwuO  
    -n Hc52,  
    % Determine the required powers of r: qa%g'sB-b  
    % ----------------------------------- 8eLNKgc  
    m_abs = abs(m); sZB$+~.:}  
    rpowers = []; 34P? nW(  
    for j = 1:length(n) }* BY!5  
        rpowers = [rpowers m_abs(j):2:n(j)]; nk-?$'i9q  
    end :!r_dmJ  
    rpowers = unique(rpowers); A#8/:t1AW  
    =)y=M!T2  
    >+$1 p_  
    % Pre-compute the values of r raised to the required powers, 9I pjY~or  
    % and compile them in a matrix: kB  :")$  
    % ----------------------------- -><?q t  
    if rpowers(1)==0 DrB=   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z~]17{x0  
        rpowern = cat(2,rpowern{:}); RS$:]hxd>_  
        rpowern = [ones(length_r,1) rpowern]; ,:;_j<g`e  
    else gbSZ- ej  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x$A5Ved  
        rpowern = cat(2,rpowern{:}); HPt"  
    end Xw![}L >  
    *_^AK=i  
    0}w>8L7i{  
    % Compute the values of the polynomials: .|o7YTcR:  
    % -------------------------------------- dc:|)bK M  
    y = zeros(length_r,length(n)); o3uv"# C  
    for j = 1:length(n) wddF5EcK0  
        s = 0:(n(j)-m_abs(j))/2; ' ;$2j~  
        pows = n(j):-2:m_abs(j); m >'o&Hj  
        for k = length(s):-1:1 fx=aT  
            p = (1-2*mod(s(k),2))* ... &&>OhH`  
                       prod(2:(n(j)-s(k)))/              ... GMiWS:`;v`  
                       prod(2:s(k))/                     ... FC)aR[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cG ^'Qm  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Zcf?4{Kd?  
            idx = (pows(k)==rpowers); H!s &]b  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H!vvdp?Z  
        end B8C"i%8V)  
         #V~r@,  
        if isnorm  |\,e9U>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \:O5,wf2  
        end U?@UIhtM|  
    end l tQ:c  
    % END: Compute the Zernike Polynomials rK"$@ tc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O5e9vQH  
    Jzfz y0$  
    LQR9S/?Ld  
    % Compute the Zernike functions: XhTp'2,]  
    % ------------------------------ K uFDkT!  
    idx_pos = m>0; 8)M . W  
    idx_neg = m<0; +:oHI[1HG  
    /FB'  
    N/^r9Nu  
    z = y; [}+ MZ  
    if any(idx_pos) y"P$:l  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \N7 E!82  
    end 5 {'%trDEy  
    if any(idx_neg) Cee?%NaTS  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); gLu#M:4N  
    end m&o&XVC  
    _DH,$evS%  
    \@tt$ m%  
    % EOF zernfun lE%0ifu  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  `BdZqXKG  
    218ZUg -a  
    DDE还是手动输入的呢? >-c;  
    )g(2xUk-y  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究