切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9143阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, v5\5:b {/  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, '3 b'moy  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 61w ({F  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? N8iLI`  
    ` {qt4zd0  
    jU-aa+  
    6>]w1 H  
    B!  P/?  
    function z = zernfun(n,m,r,theta,nflag) Ci4; e  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .8->n aj|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N g4u 6#.m(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the y 2)W"PuG  
    %   unit circle.  N is a vector of positive integers (including 0), and Z9.0#Jnu  
    %   M is a vector with the same number of elements as N.  Each element /xSFW7d1  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &1Cs'  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gyb99c,)  
    %   and THETA is a vector of angles.  R and THETA must have the same { V) `6  
    %   length.  The output Z is a matrix with one column for every (N,M) U\u07^h[  
    %   pair, and one row for every (R,THETA) pair. \Si p  
    % zW\s{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !6l*Jc3  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `^] D;RfE  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral S@'%dN6e  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /Kh,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]}kw'&  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =Oq *9=v|  
    % 16>D?;2o(  
    %   The Zernike functions are an orthogonal basis on the unit circle. d@p#{ -  
    %   They are used in disciplines such as astronomy, optics, and vz~Oi  
    %   optometry to describe functions on a circular domain. yVp,)T9  
    % rvlvk"  
    %   The following table lists the first 15 Zernike functions. 1Au+X3   
    % R+U$;r8l  
    %       n    m    Zernike function           Normalization +TyN;e   
    %       -------------------------------------------------- x5CMP%}d  
    %       0    0    1                                 1 u>]3?ty`  
    %       1    1    r * cos(theta)                    2 tS>^x  
    %       1   -1    r * sin(theta)                    2 M\/hK2J# #  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ="5D}%  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <:Mz2Rg  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y%X! l(gQ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) O5aXa_A_u  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ] j8bv3  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) yx|{:Li!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) j!w{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) haY]gmC  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /y$Fw9R;  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ``P9fd  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 33EF/k3vW  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) x(cv}#}S8  
    %       -------------------------------------------------- !:m.-TE  
    % K"x_=^,Yu*  
    %   Example 1: NhCucSU<K  
    % I/XSW#  
    %       % Display the Zernike function Z(n=5,m=1) 9=~ZA{0J  
    %       x = -1:0.01:1; 1f<R,>  
    %       [X,Y] = meshgrid(x,x); n| {#5#  
    %       [theta,r] = cart2pol(X,Y); @,n)1*{P  
    %       idx = r<=1; oX8EY l  
    %       z = nan(size(X)); TIxOMYy  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \yu7,v  
    %       figure D*Zj oU  
    %       pcolor(x,x,z), shading interp l'/`2Y1  
    %       axis square, colorbar vUVFW'-  
    %       title('Zernike function Z_5^1(r,\theta)') FGx)?  
    % }L)[>  
    %   Example 2: u\Ylo.)b  
    % L7Hv)  
    %       % Display the first 10 Zernike functions ",.f   
    %       x = -1:0.01:1; kqm(D#  
    %       [X,Y] = meshgrid(x,x); DH yv^  
    %       [theta,r] = cart2pol(X,Y); Q(]m1\a  
    %       idx = r<=1; k9f|R*LM  
    %       z = nan(size(X)); h@Ea5x  
    %       n = [0  1  1  2  2  2  3  3  3  3]; CYLab5A  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; [9${4=Kq  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; b9RHsr]V  
    %       y = zernfun(n,m,r(idx),theta(idx)); vI I{i  
    %       figure('Units','normalized') XQ]vJQYIR  
    %       for k = 1:10 +7}^Y}(  
    %           z(idx) = y(:,k); $j.;$~F  
    %           subplot(4,7,Nplot(k)) hNM8H  
    %           pcolor(x,x,z), shading interp n82tZpn  
    %           set(gca,'XTick',[],'YTick',[]) [M[<'+^*  
    %           axis square ()IZ7#kL?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -0d9,,c  
    %       end v?OVhV  
    % pE&G]ZC  
    %   See also ZERNPOL, ZERNFUN2. \Q|-Npw  
    3e&+[j  
    `P;r[j"  
    %   Paul Fricker 11/13/2006 RJ'[m~yl5X  
    "-$}GUK?Z  
    @  W>@6E  
    c$ !?4z_.  
    q4[}b-fF  
    % Check and prepare the inputs: P|<V0 Vs.  
    % ----------------------------- 1`K-f m)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `!vqT 3p,  
        error('zernfun:NMvectors','N and M must be vectors.') qU !dg  
    end &T,|?0>~=J  
    Pp-N2t86#2  
    Xe %J{  
    if length(n)~=length(m) bgi_QB#k\  
        error('zernfun:NMlength','N and M must be the same length.') ?Fl}@EA#M  
    end &))d],tJX  
    N.JR($N$  
    {Nl?  
    n = n(:); ]ZcivnN#  
    m = m(:); 'z. GAR  
    if any(mod(n-m,2)) gB'ajX=OA/  
        error('zernfun:NMmultiplesof2', ... -`PziG l@<  
              'All N and M must differ by multiples of 2 (including 0).') ] zol?  
    end ed,A'S= d  
    B?z2@,  
    e"t0 rScA  
    if any(m>n) EfEgY|V0  
        error('zernfun:MlessthanN', ... Z< i }XCE  
              'Each M must be less than or equal to its corresponding N.') .7.lr[$g  
    end YGo?%.X  
    qS vV |G  
    |#2WN-  
    if any( r>1 | r<0 ) IE`3I#v  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =y][j+WH  
    end (SyD)G\rj  
    hik.qK  
    +-j-)WU?,  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Fa%1] R  
        error('zernfun:RTHvector','R and THETA must be vectors.') -Q n-w3~&  
    end sG`x |%t  
    =x8[%+  
    ]bY|>q  
    r = r(:); #hxYB  
    theta = theta(:);  g{Hgs  
    length_r = length(r); iwK.*07+  
    if length_r~=length(theta) dEJqgp}\p  
        error('zernfun:RTHlength', ... <N vw*yA  
              'The number of R- and THETA-values must be equal.') E{orezP  
    end M@cFcykK  
    .^wpfS  
    |{N{VK  
    % Check normalization: e34>q:#5l  
    % -------------------- qq5X3K2&  
    if nargin==5 && ischar(nflag) Pf[E..HF*d  
        isnorm = strcmpi(nflag,'norm'); XDY]LAV  
        if ~isnorm g$K\rA  
            error('zernfun:normalization','Unrecognized normalization flag.') KoERg&fY  
        end {XOl &  
    else v$]B;;[A  
        isnorm = false; O-(V`BZe  
    end =LaEEL  
    pa!BJ]~  
    Gm|-[iUTG]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B->AY.&j  
    % Compute the Zernike Polynomials _9h$8(wjn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8FuxN2  
    wo@ T@Ve~  
    Pu3oQDldV  
    % Determine the required powers of r: %hVR|K|J  
    % ----------------------------------- 8qyEHUN2q  
    m_abs = abs(m); sM-,95H  
    rpowers = []; Wlc&QOfF  
    for j = 1:length(n) |oPRP1F-;e  
        rpowers = [rpowers m_abs(j):2:n(j)]; E#J})cPzw  
    end fu5L)P^T  
    rpowers = unique(rpowers); a:cci?cb  
    bT ,_=7F  
    p [Po*c.b  
    % Pre-compute the values of r raised to the required powers, @su<h\)  
    % and compile them in a matrix: iXMJ1\!q\|  
    % ----------------------------- i\sBey ND"  
    if rpowers(1)==0 8c9HJ9vk  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8<L{\$3HP|  
        rpowern = cat(2,rpowern{:}); joe)b  
        rpowern = [ones(length_r,1) rpowern]; b > D  
    else fmW{c mr|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Jy(G A  
        rpowern = cat(2,rpowern{:}); yx]9rD1cz  
    end YlrN^rO  
    ZwUBeyxS=c  
    ;5tOQ&p%v  
    % Compute the values of the polynomials: `\UY5n72  
    % -------------------------------------- Bv<gVt  
    y = zeros(length_r,length(n));  L8`v  
    for j = 1:length(n) 0ID9=:J  
        s = 0:(n(j)-m_abs(j))/2; =~;~hZj  
        pows = n(j):-2:m_abs(j); 0/GBs~P  
        for k = length(s):-1:1 ng%[yY  
            p = (1-2*mod(s(k),2))* ... ^%7(  
                       prod(2:(n(j)-s(k)))/              ... e0`z~z]6&  
                       prod(2:s(k))/                     ... 'n'>+W:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aKj|gwo!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); mh3S?Uc  
            idx = (pows(k)==rpowers); /yI4;:/  
            y(:,j) = y(:,j) + p*rpowern(:,idx); O*~,L6# }  
        end Pxr/*X  
         CTNL->  
        if isnorm &s".hP6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NH/A`Wm  
        end nm5DNpHk  
    end 9S%5 Z>  
    % END: Compute the Zernike Polynomials ve d]X!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <st<oR'  
    z8X7Y >+SA  
    KL_ /f   
    % Compute the Zernike functions: ^C'S-2nGH  
    % ------------------------------ v5M4Rs&t  
    idx_pos = m>0; E;a,].  
    idx_neg = m<0; =o 9s?vOJ  
    I-R7+o  
    !8G)` '  
    z = y; uyYV_Q0~;  
    if any(idx_pos) H7+"BWc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q5ASN"_  
    end L3%frIUd  
    if any(idx_neg) ogFo/TKM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4t[7lL`Z  
    end `]5qIKopL  
    *p(_="J,  
    :H&Q!\a  
    % EOF zernfun vFk@  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  g Nz  
    12i`82>;  
    DDE还是手动输入的呢? QH><! sa  
    P [aE3Felk  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究