切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9183阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 'e6 W$?z  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Rl4r 9  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ixJUq o  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? +n(H"I7cU  
    $XS0:C0  
    mRCgKW<  
    PN:8H>  
    ?o0#h  
    function z = zernfun(n,m,r,theta,nflag) ` w Sg/  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {d$S~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N da@y*TO#i  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1A23G$D  
    %   unit circle.  N is a vector of positive integers (including 0), and (.,E6H|zI  
    %   M is a vector with the same number of elements as N.  Each element ^_<>o[qE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v)JQb-<  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, a@@!Eg A  
    %   and THETA is a vector of angles.  R and THETA must have the same y? [*qnPj  
    %   length.  The output Z is a matrix with one column for every (N,M) }\u~He%  
    %   pair, and one row for every (R,THETA) pair. C!w@Naj  
    % gb:Cc,F,%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike , IUMH]D  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3w )S=4lB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral cFLu+4.jsG  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hE:P'O1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized o*n""m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. whNRUOK:  
    % ;J\{r$q  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8O{]ML  
    %   They are used in disciplines such as astronomy, optics, and 'D(Hqdr;:  
    %   optometry to describe functions on a circular domain. 7kn=j6I  
    % \Y9=d E}  
    %   The following table lists the first 15 Zernike functions. 9[N' HpQ3  
    % SU# S'  
    %       n    m    Zernike function           Normalization p)ZlQ.d#Y  
    %       -------------------------------------------------- G%YD2<V  
    %       0    0    1                                 1 | 7>1)  
    %       1    1    r * cos(theta)                    2 af{;4Cr  
    %       1   -1    r * sin(theta)                    2 xSb/9 8;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) uMsKF%m  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?vRz}hiy  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %8o(x 0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) NtTLvO6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) q1dYiG.-Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |ry;'[*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Cw{#(xX  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) jo<sN  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s*k"-5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Q\=u2}/z0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D~f.)kkC4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =X&h5;x'  
    %       -------------------------------------------------- MPzqw)_-v  
    % rvE!Q=y~  
    %   Example 1: N#.IpY'7Ze  
    % P >N\q  
    %       % Display the Zernike function Z(n=5,m=1) `*oLEXYN  
    %       x = -1:0.01:1; <i`EP/x  
    %       [X,Y] = meshgrid(x,x); y6*i/3  
    %       [theta,r] = cart2pol(X,Y); 62(WZX%b  
    %       idx = r<=1; 56<LMY|d  
    %       z = nan(size(X)); M~662]Ekk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?7&VT1  
    %       figure '&<-,1^L  
    %       pcolor(x,x,z), shading interp ZQBo|8*  
    %       axis square, colorbar 0jq&i#yNB  
    %       title('Zernike function Z_5^1(r,\theta)') * n!0  
    % G|O"Kv6  
    %   Example 2: ]}v`#-Px(  
    % 2:DpnLU5  
    %       % Display the first 10 Zernike functions La9@h"  
    %       x = -1:0.01:1; }Xc|Z.6  
    %       [X,Y] = meshgrid(x,x); b1*6)  
    %       [theta,r] = cart2pol(X,Y); W)4xO>ck*3  
    %       idx = r<=1; LnJ7i"Q  
    %       z = nan(size(X)); 3F.O0Vz  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xBw"RCBz^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +^69>L2V  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9q8 rf\&  
    %       y = zernfun(n,m,r(idx),theta(idx)); 19# )# n^  
    %       figure('Units','normalized') w@:o:yLS  
    %       for k = 1:10 PPq*_Cf  
    %           z(idx) = y(:,k); 2PeI+!7s  
    %           subplot(4,7,Nplot(k)) +$ -#V   
    %           pcolor(x,x,z), shading interp b&_p"8)_  
    %           set(gca,'XTick',[],'YTick',[]) I(7gmCV  
    %           axis square F 1zc4l6  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wUV%NZB  
    %       end X r)d;@yi  
    % `GDYL7pM(  
    %   See also ZERNPOL, ZERNFUN2. rRt<kTk!U  
    !CMN/=  
    kXjpCtCu  
    %   Paul Fricker 11/13/2006 $\K(EBi#G  
    ^y6CV4T+  
    mE7Jv)@  
    T]zjJwa  
    87>Qw,r  
    % Check and prepare the inputs: RI*%\~6t?  
    % ----------------------------- mn4;$1~e>H  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '#Fh J%x  
        error('zernfun:NMvectors','N and M must be vectors.') kt:%]ZZL  
    end JR>B<{xB  
    @"EX%v.  
    ~ dk1fh  
    if length(n)~=length(m) {r}}X@|5  
        error('zernfun:NMlength','N and M must be the same length.') {vH8X(m  
    end "nefRz%j+  
    d!X?R}  
    }wb;ulN)  
    n = n(:); DtN6.9H2`  
    m = m(:); mT9\%5d3  
    if any(mod(n-m,2)) 0z xeA +U  
        error('zernfun:NMmultiplesof2', ... [*<&]^  
              'All N and M must differ by multiples of 2 (including 0).') $G}Q}f  
    end >k#aB.6  
    c,fedH;  
    ujh4cp  
    if any(m>n) 6qDD_:F  
        error('zernfun:MlessthanN', ... %jf gncW  
              'Each M must be less than or equal to its corresponding N.') 'ng/A4  
    end od fu7P_  
    _L72Ae(_  
    igL^k`&5^"  
    if any( r>1 | r<0 ) CUG<v3\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )5v .9N 6v  
    end Qw-qcG  
    s#fmGe"8  
    f$'D2o, O  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K7Vr$,p  
        error('zernfun:RTHvector','R and THETA must be vectors.') :F\f}G3  
    end OY#_0p)i  
    m>!#}EJ|  
    Q!{Dw :7  
    r = r(:); t*#&y:RG  
    theta = theta(:); h:NXO'  
    length_r = length(r); u5_fM*Ka  
    if length_r~=length(theta) 5S? yj  
        error('zernfun:RTHlength', ... c%!wKoD  
              'The number of R- and THETA-values must be equal.') iT"Itz-^#  
    end u\wd<<I']  
    3"n8B6  
    jg8P4s  
    % Check normalization: M2S|$6t:  
    % -------------------- }+J@;:  
    if nargin==5 && ischar(nflag) C=cTj7Ub  
        isnorm = strcmpi(nflag,'norm'); wp*1HnWj8Y  
        if ~isnorm YLo$n  
            error('zernfun:normalization','Unrecognized normalization flag.') : eFc.>KoD  
        end +bn w,B><  
    else ]l'ki8  
        isnorm = false; uSJP"Lw  
    end ~4<3`l=A  
    F! e`i-xt  
    '7R'fhiO/3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kDh(~nfj  
    % Compute the Zernike Polynomials HWBom8u0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LH;G :  
    -c@ 5qe>  
    Qg!*=<b  
    % Determine the required powers of r: aO%FQ)BT  
    % ----------------------------------- }C1wfZ~F~  
    m_abs = abs(m); O;BPd:<  
    rpowers = []; Zto E= 7K  
    for j = 1:length(n) Z(M)2  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~S!kn1&O  
    end )}!'VIe^!  
    rpowers = unique(rpowers); Uzn|)OfWP  
    !.$P`wKr  
    +GU16+w~E  
    % Pre-compute the values of r raised to the required powers, |plo65  
    % and compile them in a matrix: I+t38 un%  
    % ----------------------------- M3 u8NRd5|  
    if rpowers(1)==0 9m4rNvb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Dt.Wb&V_w  
        rpowern = cat(2,rpowern{:}); q?4uH;h:^G  
        rpowern = [ones(length_r,1) rpowern]; mU$7_7V~  
    else qEr[fC@x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x^2/jUc#B  
        rpowern = cat(2,rpowern{:}); v6\2m c.  
    end dRa<,@1"  
    q:EQ,  
    )`7+o9&  
    % Compute the values of the polynomials: q"<-  
    % -------------------------------------- %iC63)(M  
    y = zeros(length_r,length(n)); _ n4ma  
    for j = 1:length(n) ;_5 =g  
        s = 0:(n(j)-m_abs(j))/2; wR4u}gb#q  
        pows = n(j):-2:m_abs(j); 'LLx$y.Ei[  
        for k = length(s):-1:1 KB*=a   
            p = (1-2*mod(s(k),2))* ... ZMg9Qt  
                       prod(2:(n(j)-s(k)))/              ... r.^X>?  
                       prod(2:s(k))/                     ... [#'_@zZz  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )#~fS28j  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); d}cJ5 !d  
            idx = (pows(k)==rpowers); no6]{qn=6  
            y(:,j) = y(:,j) + p*rpowern(:,idx); M~F2cX W  
        end rxp9B>~  
         'TsZuZW]  
        if isnorm WCTW#<izm  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wg_CI,Kq  
        end < DZ76  
    end nvVsO>2{ o  
    % END: Compute the Zernike Polynomials TcmZ0L^O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p!QneeA`&X  
     .OS?^\  
    6_K#,_oZ  
    % Compute the Zernike functions: PVc|y.  
    % ------------------------------ gD+t'qg$  
    idx_pos = m>0; w!w _`7[  
    idx_neg = m<0; T8TsKjqOZ  
    <?Izfl6  
    .x?zky^  
    z = y; g4SYG)'R+  
    if any(idx_pos) Y6? mY!  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [HiTR!o*  
    end ixHZX<6zYT  
    if any(idx_neg) vP)~j1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *Q120R  
    end 4?M3#],'h  
    :fKz^@mY4  
    h]DE Cd{  
    % EOF zernfun #]a51Vss  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  B+Y5b5+wOQ  
    C1T=O  
    DDE还是手动输入的呢? &whX*IZ{  
    HUJ|-)"dw  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究