下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来,
KA<
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, un/R7"
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Z*Y?"1ar
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? jIW:O
XNl!(2x'pb
Kfr?sX
kP6r=HH@
V]8fn MH
function z = zernfun(n,m,r,theta,nflag) 4 I~,B[|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ULJI`I|m
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yA_d${n
% and angular frequency M, evaluated at positions (R,THETA) on the p
2i5/Ly
% unit circle. N is a vector of positive integers (including 0), and 8[Qw8z5-
% M is a vector with the same number of elements as N. Each element ox*Ka]
% k of M must be a positive integer, with possible values M(k) = -N(k) mPu5%%
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, urN&."c
% and THETA is a vector of angles. R and THETA must have the same k^L (q\D
% length. The output Z is a matrix with one column for every (N,M) k~gQn:.Cx
% pair, and one row for every (R,THETA) pair. y>o#Hq&qM
% RHBEC@d[}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M-Js"cB[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V?gQ`( ,
% with delta(m,0) the Kronecker delta, is chosen so that the integral 8sIGJ|ku
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vS0P]AUo
% and theta=0 to theta=2*pi) is unity. For the non-normalized 9}\T?6?8pX
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l5MxJ>?4%B
% JDs<1@ \
% The Zernike functions are an orthogonal basis on the unit circle. W,<Vr2J[
% They are used in disciplines such as astronomy, optics, and x O)nS _I
% optometry to describe functions on a circular domain. t (1z+
% 5M(?_qj
% The following table lists the first 15 Zernike functions. eMF%!qUr
% 99eS@}RC
% n m Zernike function Normalization n-\B z.
% -------------------------------------------------- IFE C_F>
% 0 0 1 1 g&za/F
% 1 1 r * cos(theta) 2 E*ic9Za8`h
% 1 -1 r * sin(theta) 2 tQ/w\6{
% 2 -2 r^2 * cos(2*theta) sqrt(6) Uarb
[4OZ
% 2 0 (2*r^2 - 1) sqrt(3) CeZ5Ti?F
% 2 2 r^2 * sin(2*theta) sqrt(6) JE j+>
% 3 -3 r^3 * cos(3*theta) sqrt(8) _3E7|drIX
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) >Kr,(8rA
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) %d>Ktf
% 3 3 r^3 * sin(3*theta) sqrt(8) *<UQ/)\
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6>"0H/y,
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZNUV Bi
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 5P! ZJ3C
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +F/ '+
% 4 4 r^4 * sin(4*theta) sqrt(10) -0kwS4Hx2
% -------------------------------------------------- V^0*S=N
% YgDgd\
% Example 1: S:5Nh^K
% dv,8iOL
% % Display the Zernike function Z(n=5,m=1) Gzs x0%`)
% x = -1:0.01:1; eL(T
% [X,Y] = meshgrid(x,x); [qy@g5`
% [theta,r] = cart2pol(X,Y); %0]&o,
w{
% idx = r<=1; *s!8BwiE
% z = nan(size(X)); &
=frt3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1jV^\x0
% figure 8Yj(/S3y
% pcolor(x,x,z), shading interp 2M;{|U
% axis square, colorbar j{HxX
% title('Zernike function Z_5^1(r,\theta)') `$i`i 'S
% fer'2(G?W
% Example 2: 9LFg":
% J#D!J8KP7
% % Display the first 10 Zernike functions L*5&hPU
% x = -1:0.01:1; tf/ f-S
% [X,Y] = meshgrid(x,x); Q!"Li
% [theta,r] = cart2pol(X,Y); L7KHs'c*
% idx = r<=1; bc&:v$EGy
% z = nan(size(X)); kL&^/([9
% n = [0 1 1 2 2 2 3 3 3 3]; $;@s
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :hevBBP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MTF:mLJ
% y = zernfun(n,m,r(idx),theta(idx)); }&!rIU
% figure('Units','normalized') 6 o+zhi;E
% for k = 1:10 eF2<L [9
% z(idx) = y(:,k); p<![JeV
% subplot(4,7,Nplot(k)) }FFW,x
% pcolor(x,x,z), shading interp f2d"b+H#
% set(gca,'XTick',[],'YTick',[]) X&McNO6"
% axis square `R; ct4-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [pOU!9v4
% end eLt6Hg)s`9
% MVTU$
65
% See also ZERNPOL, ZERNFUN2. *mBEF"
<:ZN
VE GUhI/d
% Paul Fricker 11/13/2006 r67 3+
;%%=G;b9
5%W3&F6%
ucMl>G'!gX
ikY=}
% Check and prepare the inputs: 5-+Y2tp}
% ----------------------------- LN7;Yr
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nVYh1@yLy
error('zernfun:NMvectors','N and M must be vectors.') T? =jKLPC
end CUYp(GU
.AV--oA~
u] oS91
if length(n)~=length(m) CjO/q)vV
error('zernfun:NMlength','N and M must be the same length.') !867DX3*
end Ak1f*HGl|
#S1)n[
a
@TAUJ,
n = n(:); }b0qrr
m = m(:); Oo#wPT;1^(
if any(mod(n-m,2)) eR3!P8t
error('zernfun:NMmultiplesof2', ... Ds-%\@p
'All N and M must differ by multiples of 2 (including 0).') ah}aL7dgO
end 5v?6J#]2
*rqih_j0
[y:6vC
if any(m>n) 1W-!f%
error('zernfun:MlessthanN', ... CwT52+Jb
'Each M must be less than or equal to its corresponding N.') 20K<}:5t1
end "7gHn0e>
gsAcn
LxG :?=O.
if any( r>1 | r<0 ) b9:E0/6
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ebQYk$@
end v[~ U*#i
I]} MK?
D@0eYX4s
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .&L#%C
error('zernfun:RTHvector','R and THETA must be vectors.') AA@J~qd
u
end PAqziq.
=b;v:HC
`
a@NYi6
r = r(:); ZM5[
o
m
theta = theta(:); T$'Ja'9Kj
length_r = length(r); VGe/;&1h
if length_r~=length(theta) b@,w/Uw[*
error('zernfun:RTHlength', ... z[7U>q[E
'The number of R- and THETA-values must be equal.') (I\aGGW
end 'av
OQj]`K
E]+W^VG
IoA"e@~t
% Check normalization: =n$,Vv4A
% -------------------- G*n5`N@>7
if nargin==5 && ischar(nflag) Z|3l2ucl
isnorm = strcmpi(nflag,'norm'); /TpM#hkq/2
if ~isnorm IU3OI:uq
error('zernfun:normalization','Unrecognized normalization flag.') r{Xh]U&>k
end (z"Cwa@e
else D3MuP
p-v
isnorm = false; <}B]f1zX
end CjIkRa@!x
Kw'A%7^e
WT!%FQ9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /(vT49(]
% Compute the Zernike Polynomials r$*k-c9Bf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ydBoZ3 }
2< ^B]N
<m9IZIY<
% Determine the required powers of r: D<nTo&m_
% ----------------------------------- U4Qc$&j>
m_abs = abs(m); Vrz<DB^-e
rpowers = []; l=kgRh
for j = 1:length(n) 3``$yWWg
rpowers = [rpowers m_abs(j):2:n(j)]; "j~=YW+l
end cITQ,ah
rpowers = unique(rpowers); LkJ3 :3O
!a?o9<V
As78yfK
% Pre-compute the values of r raised to the required powers, -6Cxz./#yS
% and compile them in a matrix: 2,dGRf
% ----------------------------- -O -_F6p'D
if rpowers(1)==0 {T=I~#LjMI
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l HZf'P_Wx
rpowern = cat(2,rpowern{:}); V18w
rpowern = [ones(length_r,1) rpowern]; t t#M4n@
else T w/CJg
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [f^~Z'TIN/
rpowern = cat(2,rpowern{:}); t?{E_70W
end ~/
"aD
G+}|gG8
A2F+$N
% Compute the values of the polynomials: Z+Z`J;
,
% -------------------------------------- ,7tN&R_
y = zeros(length_r,length(n)); \@gs8K#
for j = 1:length(n) 3"&6rdF\jB
s = 0:(n(j)-m_abs(j))/2; UB?a-jGZK
pows = n(j):-2:m_abs(j); i7*4hYY
for k = length(s):-1:1 m<r.sq&;
p = (1-2*mod(s(k),2))* ... Z'!jZF~4p
prod(2:(n(j)-s(k)))/ ... <A+Yo3|7
prod(2:s(k))/ ... -s4qm)\
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }1epn#O_4
prod(2:((n(j)+m_abs(j))/2-s(k))); H@'Y>^z?
idx = (pows(k)==rpowers); { 5h6nYu
y(:,j) = y(:,j) + p*rpowern(:,idx); 5(TI2,4
end KJJ8P`Kx
mtmtOG_/=
if isnorm fE7[Sk
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Pxy(YMv
end g9p#v$V
end NCX!ss
% END: Compute the Zernike Polynomials tUL(1:-C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l$MX\
SyX>zN!
oP_'0h0X
% Compute the Zernike functions: Uu8Z2M
% ------------------------------ ;k!bv|>n
idx_pos = m>0; ejD;lvf
idx_neg = m<0; :^! wQ""
rVFAwbR
qDNqd
z = y; t~Ds)
if any(idx_pos) sR'rY[^/|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2"JIlS;J}7
end b8Y1 .y"#
if any(idx_neg) 3v5]L3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); prhFA3
rW.
end |L<oKMZY
3mpEF<z
Pgs4/
% EOF zernfun t9W_ [_a9