下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, G\(cnqHk
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, "cz'|z`
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !2F X l;
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? -?p4"[
7q(A&
jSMxb a]
#HTq\J!
} fJLY\
function z = zernfun(n,m,r,theta,nflag) 2rxz<ck(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. T# .pi@PF>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q 6n!u;
% and angular frequency M, evaluated at positions (R,THETA) on the 722:2 {
% unit circle. N is a vector of positive integers (including 0), and hn=tSlte
% M is a vector with the same number of elements as N. Each element /|m0)H.>
% k of M must be a positive integer, with possible values M(k) = -N(k) 0k G\9
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, gC+?5_=<
% and THETA is a vector of angles. R and THETA must have the same 4 '5|YGQj
% length. The output Z is a matrix with one column for every (N,M) GK=b
% pair, and one row for every (R,THETA) pair. U:0Ma6<
% g.pR4Mf=Z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =Q*x=}NH
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3X%h?DC
% with delta(m,0) the Kronecker delta, is chosen so that the integral SW}?y%~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, rXR!jZ.hi
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?$#P
=VK
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _tRRIW"Vx"
% ly#jl5wmT
% The Zernike functions are an orthogonal basis on the unit circle. ;;|.qgxc~
% They are used in disciplines such as astronomy, optics, and Ka y\;fXT
% optometry to describe functions on a circular domain. a}Z+"D
% @{"?fqo
% The following table lists the first 15 Zernike functions. "7Z-ACyF5
% 01~
nC@;
% n m Zernike function Normalization ^yX >^1
% -------------------------------------------------- xp}M5|
% 0 0 1 1 (H8JV1J
% 1 1 r * cos(theta) 2 _#qfe
% 1 -1 r * sin(theta) 2 d ehK#8
% 2 -2 r^2 * cos(2*theta) sqrt(6) @b!W8c 6
% 2 0 (2*r^2 - 1) sqrt(3) zpjE_|
% 2 2 r^2 * sin(2*theta) sqrt(6) -3u ;U,}
% 3 -3 r^3 * cos(3*theta) sqrt(8) 6qSsr]
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Lg~ll$
U
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~ dk9 7Z8
% 3 3 r^3 * sin(3*theta) sqrt(8) qOy0QZ#0
% 4 -4 r^4 * cos(4*theta) sqrt(10) /0o#V-E)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y,Lx6kU
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) L2=:Nac
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &?$mS'P
% 4 4 r^4 * sin(4*theta) sqrt(10) K^
ALE
% -------------------------------------------------- =*R6O,
% p-r[M5;-^Q
% Example 1: y,/i3^y#_
% CeeAw_*@
% % Display the Zernike function Z(n=5,m=1) mVFo2^%v
% x = -1:0.01:1; ]tzF
Ob
% [X,Y] = meshgrid(x,x); %>$Puy\U
% [theta,r] = cart2pol(X,Y); 74 &q2g{
% idx = r<=1; q[GDK^-g
% z = nan(size(X)); 7]9,J(:Ed
% z(idx) = zernfun(5,1,r(idx),theta(idx)); s94*uZ(C/
% figure eC94rcb}i{
% pcolor(x,x,z), shading interp
kD0bdE|
% axis square, colorbar "8"aYD_
% title('Zernike function Z_5^1(r,\theta)') 3YJ"[$w='(
% SgYMPBh
% Example 2: f!#+cM
% l))Q/8H
% % Display the first 10 Zernike functions PQp =bX,
% x = -1:0.01:1; [2Zl
'+
% [X,Y] = meshgrid(x,x); S+#|j
% [theta,r] = cart2pol(X,Y); lF_"{dS_6(
% idx = r<=1; ?(n v_O
% z = nan(size(X)); R1*4
% n = [0 1 1 2 2 2 3 3 3 3]; 3)OQgeKU
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; <uxLG;R
% Nplot = [4 10 12 16 18 20 22 24 26 28]; r?IBmatK/
% y = zernfun(n,m,r(idx),theta(idx)); YRo,wsj
% figure('Units','normalized') xK_oV+
% for k = 1:10 $
nHD,h
% z(idx) = y(:,k); v`{N0 R
% subplot(4,7,Nplot(k)) #wo
*2(
% pcolor(x,x,z), shading interp J!2j]?D/e
% set(gca,'XTick',[],'YTick',[]) %pxO<O
% axis square Sg4{IU
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T@Y, 7ccpd
% end vP=68muD
% U`lK'..
% See also ZERNPOL, ZERNFUN2. z:@:B:E
X^Z!!KTH
.r2*tB).
% Paul Fricker 11/13/2006 *yaS^k\
1`YU9?
JXM]tV
yIrJaS-
#fYB4.i~
% Check and prepare the inputs: t&:L?K)j
% ----------------------------- "VZXi_P
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \+l*ZNYM3
error('zernfun:NMvectors','N and M must be vectors.') ?3p7MjvZ
end 993f6
"4;nnq
,zltNbu\.(
if length(n)~=length(m) I# &r5Q
error('zernfun:NMlength','N and M must be the same length.') h693TS_N
end |1RVm?~i
kQ lU.J>^
6,aH[>W
n = n(:); _$ivN!k
m = m(:); @phVfP"M
if any(mod(n-m,2)) G[A3H>
>
error('zernfun:NMmultiplesof2', ... e=WjFnK[x7
'All N and M must differ by multiples of 2 (including 0).') %/"n(?$W
end }:Gs ,
D%abBE1
u0c}[BAF
if any(m>n) Fq@o_bI
error('zernfun:MlessthanN', ... w y|^=#k
'Each M must be less than or equal to its corresponding N.') _ i}W1i
end tqZ+2c<W3
)](ls@*
1|(Q|
if any( r>1 | r<0 ) =c'4rJ$+
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z*ip=FYR
end {]< G=]'
EUi 70h+
[/CGV8+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,^1zG
error('zernfun:RTHvector','R and THETA must be vectors.') W&IG,7tr
end y
%Q. (
ch8a
IHni1
r = r(:); MLu!8dgI
theta = theta(:); kFv*>>X`
length_r = length(r); Q$c6l[(g
if length_r~=length(theta) N2v/<
error('zernfun:RTHlength', ... S^eem_C
'The number of R- and THETA-values must be equal.') (Jk&U8y
end AJ bCC
sD:o
2(G*
x#J9GP.
% Check normalization: #wI}93E
% -------------------- wqb4w7%
if nargin==5 && ischar(nflag) .|Huzk+
isnorm = strcmpi(nflag,'norm'); N/bOl~!y
if ~isnorm *Jd"3Si/
error('zernfun:normalization','Unrecognized normalization flag.') OG/b5U
end +;?mg(:
else kAQ(8xV
isnorm = false; ) *~A|[
end hMa; \ k
9 {&g.+
)l7XZ_gw'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H648 [H[k
% Compute the Zernike Polynomials >>y`ap2%V
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% An{>39{
D\acA?d`
wq$$.
.E
% Determine the required powers of r: <RY =y?%z
% ----------------------------------- j_~KD}
m_abs = abs(m); hOY@vm&
rpowers = []; @C)s4{V
for j = 1:length(n) C/e.BXA
rpowers = [rpowers m_abs(j):2:n(j)]; UK
':%LeL
end )`DVPudiy
rpowers = unique(rpowers); IZ=Z=k{
BJj'91B[d
~_\Ra%
% Pre-compute the values of r raised to the required powers, U.e!:f4{
% and compile them in a matrix: YThVG0I =
% ----------------------------- x>yqEdR=o
if rpowers(1)==0 (?jK|_
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h>/teHy /
rpowern = cat(2,rpowern{:}); A2|Bbqd
rpowern = [ones(length_r,1) rpowern]; WH:dcU
else 0D(8-H
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x?Abk
rpowern = cat(2,rpowern{:}); GV0\+A"vD
end \@gV$+{9
v$y\X3)mB
p&(0e,`z/
% Compute the values of the polynomials: /Q1 b%C
% -------------------------------------- =Z\q``RBy
y = zeros(length_r,length(n)); &}"kF\
for j = 1:length(n) y%TqH\RKv
s = 0:(n(j)-m_abs(j))/2; C4mkt2Eb0a
pows = n(j):-2:m_abs(j); C- YYG
for k = length(s):-1:1 h/Mt<5
p = (1-2*mod(s(k),2))* ... JtFq/&{i
prod(2:(n(j)-s(k)))/ ... suN6(p(.
prod(2:s(k))/ ... \.i7(J]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... b~gq8,Fatb
prod(2:((n(j)+m_abs(j))/2-s(k))); uw+nll*W%
idx = (pows(k)==rpowers); )s!A\a`vEd
y(:,j) = y(:,j) + p*rpowern(:,idx); ug9Ja)1|
end 7X$CJ%6b
3H#,qug$
if isnorm >ywl()4O
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 56pj(}eq
end !VD$uT
end C*YQ{Mz(f
% END: Compute the Zernike Polynomials ([8*Py|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6s@!Yn|?
D?KLV_Op
Otq3nBZ
% Compute the Zernike functions: YEv\!%B
% ------------------------------ RuHDAJ"&a
idx_pos = m>0; G#7*O`
idx_neg = m<0; awzlLI<2p
(%^C}`|EA
hC$e8t60
z = y; <aPZE6z
if any(idx_pos) D1RQkAZS
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3o rSk
end #VhdYDbW
if any(idx_neg) /Z2u0jNArP
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {MtJP:8Jp
end c]*yo
o6u^hG6~'
}hn?4ny
% EOF zernfun Jq^[^