下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [9C{\t
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ="('
#o
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ROr|n]aJj
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? X/f?=U
O~OM.:al&
S*NeS#!v
xU F5
*5KDu$'(e
function z = zernfun(n,m,r,theta,nflag) "rnVPHnQR
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. | /X+2K}3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,Ma%"cWVC
% and angular frequency M, evaluated at positions (R,THETA) on the tiPZ.a~k
% unit circle. N is a vector of positive integers (including 0), and #G]g
% M is a vector with the same number of elements as N. Each element ?&JKq^9\I
% k of M must be a positive integer, with possible values M(k) = -N(k) cB6LJ}R
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >aAsUL5W
% and THETA is a vector of angles. R and THETA must have the same {%D4%X<
% length. The output Z is a matrix with one column for every (N,M) blKF78
% pair, and one row for every (R,THETA) pair. 2Ah B)8bG
% Ys>Z=Eky
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /^9=2~b
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >ra)4huZ
% with delta(m,0) the Kronecker delta, is chosen so that the integral fD*jzj7o,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y-uSpW
% and theta=0 to theta=2*pi) is unity. For the non-normalized he|.Ow
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2f5YkmGc";
% W.c>("gC
% The Zernike functions are an orthogonal basis on the unit circle. !}hG|Y6s
% They are used in disciplines such as astronomy, optics, and b"y4-KV
% optometry to describe functions on a circular domain. *&~(>gNF,
% wln"g,ct
% The following table lists the first 15 Zernike functions. eWr2UXv$
% 1nR\m+{
% n m Zernike function Normalization 6lm<>#_
% -------------------------------------------------- ap<r)<u
% 0 0 1 1 PU-L,]K
% 1 1 r * cos(theta) 2 s]pNT1,
% 1 -1 r * sin(theta) 2 [JEf P/n|.
% 2 -2 r^2 * cos(2*theta) sqrt(6) m>f8RBp]'
% 2 0 (2*r^2 - 1) sqrt(3) t]hfq~Ft
% 2 2 r^2 * sin(2*theta) sqrt(6) EGzlRSgO
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;+*/YTkC+P
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _ZE&W
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 1cS*T>`
% 3 3 r^3 * sin(3*theta) sqrt(8) 4t 0p!IxG
% 4 -4 r^4 * cos(4*theta) sqrt(10) GO3KKuQ=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $lg{J$
h8
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) qb$M.-\ne
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V6&6I
% 4 4 r^4 * sin(4*theta) sqrt(10) U
U3o (Yq
% -------------------------------------------------- '>GPk5Nq77
% JvF0s}#4
% Example 1: w&*oWI$i
% A&{eC
C
% % Display the Zernike function Z(n=5,m=1) M%OUkcWCk
% x = -1:0.01:1; 47)\\n_\z
% [X,Y] = meshgrid(x,x); 6$t+Q~2G!
% [theta,r] = cart2pol(X,Y); XrJLlH>R4
% idx = r<=1; C[CNJ66
% z = nan(size(X)); PY#_$ C
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 63VgQ
% figure ;P^}2i[q>[
% pcolor(x,x,z), shading interp z8j7K'vV1
% axis square, colorbar N7!(4|14
% title('Zernike function Z_5^1(r,\theta)') A#gy[.Bb
% 6('CB|ga
% Example 2: !O4)YM
% GQYB2{e>
% % Display the first 10 Zernike functions @xr}(.
% x = -1:0.01:1; @[#)zO
% [X,Y] = meshgrid(x,x); Qp-P[Tc
% [theta,r] = cart2pol(X,Y); K@?K4o
% idx = r<=1; ,L; y>::1
% z = nan(size(X)); 7 iQa)8,
% n = [0 1 1 2 2 2 3 3 3 3]; v7<r-<I[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; WH<\f|xR
% Nplot = [4 10 12 16 18 20 22 24 26 28]; bp'\nso/
% y = zernfun(n,m,r(idx),theta(idx)); nq\~`vH|Gd
% figure('Units','normalized') `We?j7O
% for k = 1:10 9O\yIL
% z(idx) = y(:,k); X.AE>fx*h
% subplot(4,7,Nplot(k)) 6%MM)Vj+u
% pcolor(x,x,z), shading interp |eksvO'~
% set(gca,'XTick',[],'YTick',[]) 0U!_ o2]
% axis square _pkmHj(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) } a!HbH
% end ,7;euV5X
% ,uZz?7mO
% See also ZERNPOL, ZERNFUN2. S~B{G T\M
<1<0 odB
|21*p#>
% Paul Fricker 11/13/2006 G1:"Gxja
:/6u*HwZh
vV>=Uvm
juMHc$d17
}x:}9iphF
% Check and prepare the inputs: ,qIut|C*
% ----------------------------- cK75Chsu
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $Zj3#l:rK
error('zernfun:NMvectors','N and M must be vectors.') ^ R3g7 DG
end G*g*+D[HM
1~S''[
'\P+Bu]6&
if length(n)~=length(m) o),@I#fM
error('zernfun:NMlength','N and M must be the same length.') UW&K\P
end )Mh5q&ow
!(sL
>iI_bcqF
n = n(:); [pSQ8zdF"
m = m(:); 7=HpEc
if any(mod(n-m,2)) S^r[%l<'n
error('zernfun:NMmultiplesof2', ... `m\ ?gsw7
'All N and M must differ by multiples of 2 (including 0).') dZAb':
end RggO|s+0;
Zig3WiD&
3u'@anre
if any(m>n) ~/!jKH7`j
error('zernfun:MlessthanN', ... `rpmh7*WV
'Each M must be less than or equal to its corresponding N.') ?$=Ml$
end F ZN}T{<
B~%SB/eu
$HAwd6NI
if any( r>1 | r<0 ) NYPjN9L
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,P X7}//X^
end l?KP/0`
vH@b
X`7O%HiX/`
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2lxA/.f
error('zernfun:RTHvector','R and THETA must be vectors.') &_3o 1<
end )SfM `W)Y
rrl{3
?
@Z89cTO
r = r(:); :-j/Y'H_
theta = theta(:); sM9N Hwg
length_r = length(r); 2`V(w[zTr
if length_r~=length(theta) (n2=.9k!
error('zernfun:RTHlength', ... 1(/rg
'The number of R- and THETA-values must be equal.') `LJ.NY pP
end FwDEYG
,DCrhk
F "-GhjK
% Check normalization: MYUL y2)
% -------------------- Cil1wFBb
if nargin==5 && ischar(nflag) ZU5; w
isnorm = strcmpi(nflag,'norm'); FeJKXYbk<
if ~isnorm 6W)#FO`
error('zernfun:normalization','Unrecognized normalization flag.') "Wy!,RH
end 4iJ4g% ]
else vcSb:('
isnorm = false; xgWVxX^)
end K# h7{RE
r,ep{
p
_j]vR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =@.5J'!
% Compute the Zernike Polynomials "=UhTE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R'aA\k-
$3(E0\#O
0fx.n
% Determine the required powers of r: `W %R
% ----------------------------------- jk5C2dy
m_abs = abs(m); qhNYQ/uS
rpowers = []; nk+9J#Gs
for j = 1:length(n) ZV`o:Gd
rpowers = [rpowers m_abs(j):2:n(j)]; uD4$<rSHb
end =]0AZ
rpowers = unique(rpowers); 0V'XE1h
?YnB:z*eV
G V% @A
% Pre-compute the values of r raised to the required powers, i",oPz7
% and compile them in a matrix: 8o,"G}Hjk
% ----------------------------- Y^'mBM#j
if rpowers(1)==0 {Lvta4}7(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x-SYfvYY
rpowern = cat(2,rpowern{:}); I>@Qfc
bG
rpowern = [ones(length_r,1) rpowern]; ^%/d]Zwb
else g#[,4o;
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); - s0QEQ
rpowern = cat(2,rpowern{:}); @BqSu|'Du,
end U_5\FM
FMAt6HfU
8z*/J=n
% Compute the values of the polynomials: f/g-b]0
% -------------------------------------- t/a
y = zeros(length_r,length(n)); J\\o#-H
for j = 1:length(n) ^vo]bq7
s = 0:(n(j)-m_abs(j))/2; B@,#,-=
pows = n(j):-2:m_abs(j); 3NgyF[c
for k = length(s):-1:1 # |,c3$
p = (1-2*mod(s(k),2))* ... ),f d,
prod(2:(n(j)-s(k)))/ ... qr?RU .W
prod(2:s(k))/ ... r#WAS2.TP
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X=pPkgW
prod(2:((n(j)+m_abs(j))/2-s(k))); i}Cy q
idx = (pows(k)==rpowers); {_]<mw d
y(:,j) = y(:,j) + p*rpowern(:,idx); usI$
end u'aWvN y+
4 UnN~
if isnorm #l_hiD`;r
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u$mp%d8
end IJofbuzw:
end G1/
% END: Compute the Zernike Polynomials TXK82qTdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S$ 91L
_u8d`7$*%
S{c;n*xf
% Compute the Zernike functions: C9E@$4*
% ------------------------------ A@JZK+WB}
idx_pos = m>0; 6#1:2ZHKG
idx_neg = m<0; H?j!f$sw
pc/]t^]p
nWv6I&
z = y; zNJ-JIo%
if any(idx_pos) =idZvD
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [USE&_RN
end I07_o"3>qr
if any(idx_neg) Ixv/xI
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Bhw|!Y&%
end 5`[B:<E4
bGa"r
KVCj06}j
% EOF zernfun HDT-f9%}<4