下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 4[
*G
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y_FQB K U
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _oE 7<
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? }a"koL
_)Ad%LPsd7
`$Y%c1;
mM2DZ^"j(
"!R*f $
function z = zernfun(n,m,r,theta,nflag) 8wLGmv^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8
+mW
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N = G>Y9Sc
% and angular frequency M, evaluated at positions (R,THETA) on the f%/6kz
% unit circle. N is a vector of positive integers (including 0), and 7?ILmYBw
% M is a vector with the same number of elements as N. Each element qV)hCc/ ~
% k of M must be a positive integer, with possible values M(k) = -N(k) )
S-Fuq4i4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, L>n^Q:M
% and THETA is a vector of angles. R and THETA must have the same zmhAeblA
% length. The output Z is a matrix with one column for every (N,M) ;qs^+
% pair, and one row for every (R,THETA) pair. ~IFafAO&
% 4xF}rm
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [M2xF<r6t
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), OyQ[}w3o|
% with delta(m,0) the Kronecker delta, is chosen so that the integral }\QXPU{UVd
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6Z5$cR_vC7
% and theta=0 to theta=2*pi) is unity. For the non-normalized `0`#Uf_/$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. v)aV(Oa
% ' L-h2
% The Zernike functions are an orthogonal basis on the unit circle. r2\}_pIj
% They are used in disciplines such as astronomy, optics, and xD9ZL
% optometry to describe functions on a circular domain. y/>Nx7C0=2
% J4Ca0Ag
% The following table lists the first 15 Zernike functions. +4F; m_G6
% 5R6QZVc
% n m Zernike function Normalization 5&_R+g
% -------------------------------------------------- `('NH]^
% 0 0 1 1 L>pSE'}
% 1 1 r * cos(theta) 2 TVVu_ib
% 1 -1 r * sin(theta) 2 ,xutI
% 2 -2 r^2 * cos(2*theta) sqrt(6) #n+sbx5~7
% 2 0 (2*r^2 - 1) sqrt(3) a1x].{
% 2 2 r^2 * sin(2*theta) sqrt(6) {<zE}7/2-
% 3 -3 r^3 * cos(3*theta) sqrt(8) _6->D[dB
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) g&\;62lV%
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) | Pqs)Mb]
% 3 3 r^3 * sin(3*theta) sqrt(8) r-Oz k$
% 4 -4 r^4 * cos(4*theta) sqrt(10) Ky*xAx:
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .uB[zJc
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ]dT]25V
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y!x-R!3
% 4 4 r^4 * sin(4*theta) sqrt(10) Hp@cBj_@P2
% -------------------------------------------------- Ch]q:o4
% Uv(}x7e)
% Example 1: PiLLUyQx
% G+WCE*
% % Display the Zernike function Z(n=5,m=1) t&-c?&FO\;
% x = -1:0.01:1; tPDB'S:&3
% [X,Y] = meshgrid(x,x); '.e5Ku
% [theta,r] = cart2pol(X,Y); PPh1y;D
% idx = r<=1; Xy9'JVV6
% z = nan(size(X)); (kx>\FIK*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !v*#E{r"g=
% figure ~]BR(n
% pcolor(x,x,z), shading interp KF7d`bRe
% axis square, colorbar Cyud)BZvm
% title('Zernike function Z_5^1(r,\theta)') xzRC %
% eTt{wn;6
% Example 2: =|d5V% mK
% <JZa
% % Display the first 10 Zernike functions w$749jGx
% x = -1:0.01:1; Y3xEFqMU
% [X,Y] = meshgrid(x,x); V{{UsEVO
% [theta,r] = cart2pol(X,Y); z]sQ3"cmX
% idx = r<=1; k,y#|bf,Y
% z = nan(size(X)); .>'J ^^
% n = [0 1 1 2 2 2 3 3 3 3]; hG3RZN#ejq
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R~bLEo
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (; Zl
% y = zernfun(n,m,r(idx),theta(idx)); 2Mu(GUe;
% figure('Units','normalized') U27ja|W^
% for k = 1:10 _K~?{".
% z(idx) = y(:,k); 'YEiT#+/
% subplot(4,7,Nplot(k)) ;e~K<vMm;y
% pcolor(x,x,z), shading interp %;` 3I$
% set(gca,'XTick',[],'YTick',[]) 5JZZvc$au
% axis square 94XRf"^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Kw>gg
% end t;[Q&Jl
% p-/}@r3Z+
% See also ZERNPOL, ZERNFUN2. 7p18;Z+6>X
^N~Jm&I
*c@]c~hY,
% Paul Fricker 11/13/2006 _[
`"E'
.sUL5`
NO#^_N`#\
wJF$<f7P
<7X+-%yb;
% Check and prepare the inputs: D7$xY\0r
% ----------------------------- yNQ 9~P2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8\Eq(o}7
error('zernfun:NMvectors','N and M must be vectors.') L^nS%lm
end m$$98N
CY9`HQ1
J~G"D-l<9/
if length(n)~=length(m) p|w;StLy
error('zernfun:NMlength','N and M must be the same length.') dk2o>jI4;
end o6
[i0S
yM34G S=,J
/XW,H0pR
n = n(:); ;D<rGkry
m = m(:); vGPaW YV
if any(mod(n-m,2)) z~a]dMs"(P
error('zernfun:NMmultiplesof2', ... ]%%cc
'All N and M must differ by multiples of 2 (including 0).') 9$'Edi=6
end g:c
@
kC[nY
m;I;{+"u
if any(m>n) 'w7{8^Z2
error('zernfun:MlessthanN', ... ~
.Eln+N
'Each M must be less than or equal to its corresponding N.') >:P3j<xTv
end gM3gc;
}~5xlg$B<<
DSHpM/7
if any( r>1 | r<0 ) ("BFI
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Yui:=GgUrr
end Wkv**X}
]j:Ikb}
yQ8H-a.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IA;KEGJ
error('zernfun:RTHvector','R and THETA must be vectors.') *)d|:q3
end z*>CP
^q$vyY
ss3fq}
r = r(:); Z_Ma|V?6
theta = theta(:); {1YT a:evl
length_r = length(r); D 2Go,1
if length_r~=length(theta) z:R2Wksg
error('zernfun:RTHlength', ... &f qmO>M
'The number of R- and THETA-values must be equal.') _.06^5o
end _?_Svx2
RN:#+S(8
U>x2'B v
% Check normalization: z_l3=7R
% -------------------- 0QIocha
if nargin==5 && ischar(nflag) .^.UJo;4G
isnorm = strcmpi(nflag,'norm'); T[q-$8U
if ~isnorm @4B2O"z`
error('zernfun:normalization','Unrecognized normalization flag.') {Q(6
.0R
end a\m10Ih:
else gkk <-j'
isnorm = false; /9w}[y*E
end 1I^Sv
6l
vx
p
go\(K0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q%:Jmi>
% Compute the Zernike Polynomials |PJW2PN
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )Y&De)=
sqZHk+<%
*u{.K:.I
% Determine the required powers of r: JN KZ'9
% ----------------------------------- kyo ,yD
m_abs = abs(m); Z%OS W
rpowers = []; C aJD*
for j = 1:length(n) 2aje$w-
rpowers = [rpowers m_abs(j):2:n(j)]; xf]4!zE
end !d0@^JbM"
rpowers = unique(rpowers); "^D6%I#T
cT0g, ^&
T&23Pf 1
% Pre-compute the values of r raised to the required powers, (
L6`_)
% and compile them in a matrix: %-'U9e KN
% ----------------------------- d|NNIf
if rpowers(1)==0 N8{>M,
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P*T)/A%4
rpowern = cat(2,rpowern{:}); BVNh>^W5B
rpowern = [ones(length_r,1) rpowern]; anwn!Eqk"
else |B`tRq
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %ej"ZeM
rpowern = cat(2,rpowern{:}); |}|;OG
end 5#F+-9r
Q8~pIv
NR[mzJv
% Compute the values of the polynomials: LGMFv
% -------------------------------------- mDmWTq\
y = zeros(length_r,length(n)); 7f$Lb,\y
for j = 1:length(n) l&A`
s = 0:(n(j)-m_abs(j))/2; mHMej@
pows = n(j):-2:m_abs(j); 09?<K)_G
for k = length(s):-1:1 f\^QV
p = (1-2*mod(s(k),2))* ... rh
l5r"%
prod(2:(n(j)-s(k)))/ ... IyuT=A~Ki
prod(2:s(k))/ ... Q}T9NzOH%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *j*
WE\
prod(2:((n(j)+m_abs(j))/2-s(k))); ~GeYB6F
idx = (pows(k)==rpowers); ]x G4T>S
y(:,j) = y(:,j) + p*rpowern(:,idx); T7Ac4LA
end \nyFN
({9!P30:
if isnorm Y"jDZG?
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;~bn@T-
end S_CtEM
end W<L6,
% END: Compute the Zernike Polynomials M Sj0D2H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PS22$_}
!T~d5^l!
y{]%,
% Compute the Zernike functions: A!kyga6F5
% ------------------------------ |Q;o538
idx_pos = m>0; ]>L]?Rm
idx_neg = m<0; jb2:O,+!
[s2V-'2
{ybuHC
z = y; !q/lgpEi
if any(idx_pos) YeLOd
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); KIFx&A
end [VW;L l
if any(idx_neg) 0)]1)z(P
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2~DPq p[
end (r4VIlap
kU/=Du
J":9
% EOF zernfun H=#Jg;_w