下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, }'c@E0"
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ];U}'&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =JDa[_lpN
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? XJ*W7HD
:/6gGU>pu
#- z(]Y,y
$g @-WNe
^BN?iXQhN
function z = zernfun(n,m,r,theta,nflag) tLc~]G*\`s
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. r4wnfy
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N zKf.jpF^
% and angular frequency M, evaluated at positions (R,THETA) on the ;sZHE&+
% unit circle. N is a vector of positive integers (including 0), and !<AY0fpY
% M is a vector with the same number of elements as N. Each element 15U[F0b
% k of M must be a positive integer, with possible values M(k) = -N(k) Q%Y rm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !vwx0
% and THETA is a vector of angles. R and THETA must have the same Z:kX9vw.
% length. The output Z is a matrix with one column for every (N,M) jPyhn8Vw
% pair, and one row for every (R,THETA) pair. oP`yBX
% :978D0}{p
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %>)&QZig/
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1Zi(5S)
% with delta(m,0) the Kronecker delta, is chosen so that the integral @K}8zMmW#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
}29Cm$p
% and theta=0 to theta=2*pi) is unity. For the non-normalized 99mo]1_
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h8-'I=~
% i#1~<U
% The Zernike functions are an orthogonal basis on the unit circle. JzZ9ua
% They are used in disciplines such as astronomy, optics, and =F>nqklc
% optometry to describe functions on a circular domain. $" `9QD~
% \[ 5mBuk
% The following table lists the first 15 Zernike functions. -7\6j#;l
% uL[%R2
% n m Zernike function Normalization a8[Q1Fa4|
% -------------------------------------------------- a"|\n_
% 0 0 1 1 _!'sj=n]q
% 1 1 r * cos(theta) 2 Kj`sq":Je0
% 1 -1 r * sin(theta) 2 *d/,Y-tl
% 2 -2 r^2 * cos(2*theta) sqrt(6) {I~[a#^
% 2 0 (2*r^2 - 1) sqrt(3) AXOR<Ns`
% 2 2 r^2 * sin(2*theta) sqrt(6) j6.'7f5M<H
% 3 -3 r^3 * cos(3*theta) sqrt(8) nbM7 >tnsk
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'RjMwJy{
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 5q>u]n9]
% 3 3 r^3 * sin(3*theta) sqrt(8) D |BP]j}6
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9'S~zG%{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eOI#T'5
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) i@|.1dWh
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A_\ZY0Xt
% 4 4 r^4 * sin(4*theta) sqrt(10) xB&6f")
% -------------------------------------------------- -ipfGb
% ;N/=)m
% Example 1: B>TI dQ
% eODprFkt}
% % Display the Zernike function Z(n=5,m=1) fX 41o#
% x = -1:0.01:1; FeM,$&G:
% [X,Y] = meshgrid(x,x); GP/Gv
% [theta,r] = cart2pol(X,Y); 9X2l H~C
% idx = r<=1; c6NCy s
% z = nan(size(X)); *;I F^u1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); WP-'gC6K=
% figure }:5>1FfX=
% pcolor(x,x,z), shading interp > =Z@)PAe
% axis square, colorbar gUq)M
% title('Zernike function Z_5^1(r,\theta)') Q(e 3-a
% ^"N sb &
% Example 2: V^^nJs
tV
%
LbeMP
% % Display the first 10 Zernike functions P=jbr"5Q:
% x = -1:0.01:1; I;!zZ.\
% [X,Y] = meshgrid(x,x); .+"SDtoX
% [theta,r] = cart2pol(X,Y); s3LR6Z7;i
% idx = r<=1; ]&D;'),
% z = nan(size(X)); tt7l%olw
% n = [0 1 1 2 2 2 3 3 3 3]; aF'9&A;q
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; N>A*N,+
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ;_ ^"}
% y = zernfun(n,m,r(idx),theta(idx)); B?xu!B,
% figure('Units','normalized') t/baze;V
% for k = 1:10 %Jr6pmc
% z(idx) = y(:,k); ]GS@ ub
% subplot(4,7,Nplot(k)) X[cSmkp7
% pcolor(x,x,z), shading interp vG<JOxP
% set(gca,'XTick',[],'YTick',[]) Qs*6wF
% axis square Dl#%tYL+3h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NNQro)Lpe
% end >Tm|}\qEb
% FB0y
% See also ZERNPOL, ZERNFUN2. ?=]*r>a3
Q.Kr;64G
:K3nJ1G&
% Paul Fricker 11/13/2006 p5KM(N6f
3psCV=/z
<Dr*^GX>?
V+()`>44
Cz\(.MWNZ
% Check and prepare the inputs: QrP$5H{[E
% ----------------------------- @
P=eu3
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T1y,L<7?
error('zernfun:NMvectors','N and M must be vectors.') s'V8PN+-
end ~[i,f0O,
<N %8"o
GLe(?\Ug=
if length(n)~=length(m) S!GjCog^J
error('zernfun:NMlength','N and M must be the same length.') H>-?/H
end sq_N!
0 mWfR8h0
m<BL/7
n = n(:); #lax0IYY=
m = m(:); >8V;:(nt
if any(mod(n-m,2)) 3986;>v
error('zernfun:NMmultiplesof2', ... X,/@#pSOz
'All N and M must differ by multiples of 2 (including 0).') n
?%3=~9
end DlR&Lnv
lHpo/R:
Q~4o{"3.'
if any(m>n) [H#I:d-+\
error('zernfun:MlessthanN', ... NA`3
'Each M must be less than or equal to its corresponding N.') T[=XGAJ
end DU7kZ
J,fXXi)J
FeS6>/
if any( r>1 | r<0 ) N1Y*IkW"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') '[p~|
mX
end AAsl)
=VlO53Hy{
nm*!#hx
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YtNoYOB
error('zernfun:RTHvector','R and THETA must be vectors.') gU/\'~HG
end E~zLhJTUL'
(J):
>\a]
Zg7~&vs$
r = r(:); q<}5KY
theta = theta(:); F'Fc)9qFa<
length_r = length(r); {"e/3
if length_r~=length(theta) _c%]RE
error('zernfun:RTHlength', ... |rf\]3 F
'The number of R- and THETA-values must be equal.') =L<OTfVE
end {R[lsdH(X
B[-%A!3
F
dH!k{3bL
% Check normalization: b]mRn{r?
% -------------------- =[`wyQe`_
if nargin==5 && ischar(nflag) E8>npDFv.
isnorm = strcmpi(nflag,'norm'); /U)w:B+p/g
if ~isnorm bE^Z;q19
error('zernfun:normalization','Unrecognized normalization flag.') E]_lYYkA
end lw? f2_fi
else ]k{cPK
isnorm = false; 3OFv_<6
end p7 !q#o
l~&efAJ-$
`S<uh9/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lq
LciD
% Compute the Zernike Polynomials -MHu BgYJ-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I~"-
6%ID*
e?L$RY,7
% Determine the required powers of r: h=4m2m
% ----------------------------------- 3Du&KZ
m_abs = abs(m); X!,Ngmw.
rpowers = []; D2>EG~xWq
for j = 1:length(n) g@nk0lQewj
rpowers = [rpowers m_abs(j):2:n(j)]; [fR<#1Z
end LjXtOF
rpowers = unique(rpowers); <g,k[
8.jd'yp*J
~AK!_EOs`
% Pre-compute the values of r raised to the required powers, MH"c=mL:
% and compile them in a matrix: x`%;Q@G
% ----------------------------- 3Luv$6
if rpowers(1)==0 Um15@p;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ffm19 B=
rpowern = cat(2,rpowern{:}); &J"a` l2
rpowern = [ones(length_r,1) rpowern]; X/i8$yqv
else o|alL-
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?b8NEVjw
rpowern = cat(2,rpowern{:}); X^9_'T9
end .1|'9@]lj4
$j{ynh)^
[rPW@|^5
% Compute the values of the polynomials: o,Ha-z]f
% -------------------------------------- ENJ]
y = zeros(length_r,length(n)); a%(1#2^`q!
for j = 1:length(n) )zUV6U7v
s = 0:(n(j)-m_abs(j))/2; p$ [*GXR4
pows = n(j):-2:m_abs(j); qg.[M*
for k = length(s):-1:1 r7ywK9UL
p = (1-2*mod(s(k),2))* ... *i%!j/QDAP
prod(2:(n(j)-s(k)))/ ... .# j)YG
prod(2:s(k))/ ... -zc9=n<5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s o~p+]
prod(2:((n(j)+m_abs(j))/2-s(k))); rM bb%d:
idx = (pows(k)==rpowers); "[GIW+ui
y(:,j) = y(:,j) + p*rpowern(:,idx); *A,=Y/
end 0U`Ic_.
KDQux
if isnorm %Si3t2W/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); tinN$o
Xy
end A%+~
end #llc5i;
% END: Compute the Zernike Polynomials &,$A7:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i7fpl
U}Xc@- \ ?
z+-k4
% Compute the Zernike functions: g4Hq<W"
% ------------------------------ 8`u#tl(
idx_pos = m>0; 2N)Ywqvj
idx_neg = m<0; X:62)^~'
qKO\;e*
#v(+3Hp
z = y; 9sE>K)
if any(idx_pos) ' R=o,=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qM1$?U
end &|{ K*pNa
if any(idx_neg) @1n
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); P'Y8
t
end PCaa_
2
Brpin
l0Pg`wH,
% EOF zernfun P"iqP|