切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9226阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, -&<Whhs.@  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -YsLd 9^4  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ATR!7i\|  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ij?  
    /PLn+-  
    F$[ U|%*  
    qG<$Ajiin  
     |jM4E$  
    function z = zernfun(n,m,r,theta,nflag) XP@1~$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4Z/f@ZD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F{UP;"8'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the F4K0) ;  
    %   unit circle.  N is a vector of positive integers (including 0), and # vry0i  
    %   M is a vector with the same number of elements as N.  Each element u;`U*@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) X,LD   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {#{DH?=^)u  
    %   and THETA is a vector of angles.  R and THETA must have the same -=(!g&0  
    %   length.  The output Z is a matrix with one column for every (N,M) _r2J7&  
    %   pair, and one row for every (R,THETA) pair. %*\es7m}  
    % tzs</2 G,  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike P LueVz  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d'Zqaaf k%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 'D @-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FXs*vg`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized SCz(5[MZJ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '{(UW.Awo  
    % D_x +:1(  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;s52{>&F]  
    %   They are used in disciplines such as astronomy, optics, and ~ {Mn{  
    %   optometry to describe functions on a circular domain. 3"P }n  
    % ?2oHZ%G  
    %   The following table lists the first 15 Zernike functions. .B\5OI,]  
    % K3=3~uY  
    %       n    m    Zernike function           Normalization e/^=U7:io  
    %       -------------------------------------------------- AhNq/?Q Q~  
    %       0    0    1                                 1 ak;*W  
    %       1    1    r * cos(theta)                    2 6qaulwV4t  
    %       1   -1    r * sin(theta)                    2 3JVK  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >ss/D^YS  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :duo#w"K  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) R%'^gFk 8  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) MX@_=Sp-  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $ mI0Bk  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) }oNhl^JC  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) yfm^?G|sW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) $5*WLG&AK  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a|?4 )  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) h}xeChw]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M{*Lp6h  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) TsGE cxIg  
    %       -------------------------------------------------- z-b*D}&  
    % nG;8:f`  
    %   Example 1: Q*b]_0Rb  
    % M6}3wM*4  
    %       % Display the Zernike function Z(n=5,m=1) 'CN|'W)g7  
    %       x = -1:0.01:1; WAS U0  
    %       [X,Y] = meshgrid(x,x); $bsG]  
    %       [theta,r] = cart2pol(X,Y);  ?!`=X>5  
    %       idx = r<=1; 7bV{Q355P  
    %       z = nan(size(X)); `3hSL R  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); uxzze~_+C  
    %       figure E~_]Lfs)  
    %       pcolor(x,x,z), shading interp iySRY^  
    %       axis square, colorbar ?G -e](]^<  
    %       title('Zernike function Z_5^1(r,\theta)') UNkCL4N  
    % 7=DjI ~  
    %   Example 2: 1SR+m>pL  
    % EMfdBY5  
    %       % Display the first 10 Zernike functions Yx>"bv  
    %       x = -1:0.01:1; t>[KVVg W  
    %       [X,Y] = meshgrid(x,x); %!PM&zV  
    %       [theta,r] = cart2pol(X,Y); (owrdPT!  
    %       idx = r<=1; P`e!Z:  
    %       z = nan(size(X)); &w1P\4?G  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $n^gmhp  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  $O dCL  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ()3O=!  
    %       y = zernfun(n,m,r(idx),theta(idx)); \ 5,MyB2/`  
    %       figure('Units','normalized') &T}''  
    %       for k = 1:10 sn?]n~z  
    %           z(idx) = y(:,k); WuZ/C_  
    %           subplot(4,7,Nplot(k)) ''Cay0h  
    %           pcolor(x,x,z), shading interp @!8ZPiW<  
    %           set(gca,'XTick',[],'YTick',[]) ](^(=%  
    %           axis square DmOyBtj  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6KOlY>m]  
    %       end _z1(y}u}  
    % Z%n(O(^L  
    %   See also ZERNPOL, ZERNFUN2. 2[ r^M'J  
    jWYV#ifs2  
    Z%x\~ )~  
    %   Paul Fricker 11/13/2006 E_bO9nRHV  
    }ga@/>Sl&  
    Y]3>7q%  
    m ]cHF.:5  
    4sP2g&  
    % Check and prepare the inputs: A4]s~Ur  
    % ----------------------------- w&x!,yd;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !eUDi(   
        error('zernfun:NMvectors','N and M must be vectors.') >~Qr  
    end RJ$7XCY%`*  
    fa<v0vb+  
    G2^et$<{uU  
    if length(n)~=length(m) ty DM'|p  
        error('zernfun:NMlength','N and M must be the same length.') A+UU~?3y  
    end jr`Ess  
    6HlePTf8  
    Usta0Ag  
    n = n(:); b?j< BvQ  
    m = m(:); ?Oc{bF7  
    if any(mod(n-m,2)) 3dDX8M?  
        error('zernfun:NMmultiplesof2', ... 0]jA<vLR  
              'All N and M must differ by multiples of 2 (including 0).') >N.]|\V  
    end Y!T %cTK)a  
    &RTX6%'KY  
    =k oSUVO0  
    if any(m>n) DK oN}c  
        error('zernfun:MlessthanN', ... SC- $B  
              'Each M must be less than or equal to its corresponding N.') gy;+_'.j   
    end 5P'p2x#U  
    P06R JE  
    =2 *rA'im  
    if any( r>1 | r<0 ) =dx1/4bZl|  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %H+\>raLz  
    end - > J_ ~  
    Ii:>xuF&  
    D3x/OyG(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) UYz0PSV=.  
        error('zernfun:RTHvector','R and THETA must be vectors.') z-c}NdW  
    end E(i[o?  
    0V!l,pg  
    i:l<C  
    r = r(:); 8Y#\xzod  
    theta = theta(:); G!XIc>F*  
    length_r = length(r); "C*B,D*}:  
    if length_r~=length(theta) {$1J=JbE  
        error('zernfun:RTHlength', ... e*.b3 z  
              'The number of R- and THETA-values must be equal.') _H^^y$+1  
    end wm+})SOX9  
    G5FaYL.7  
    >[1W:KQA  
    % Check normalization: +GAf O0  
    % -------------------- 8L1ohj  
    if nargin==5 && ischar(nflag) NzW`B^p  
        isnorm = strcmpi(nflag,'norm'); Z,.G%"i3C  
        if ~isnorm 8+Td-\IMk  
            error('zernfun:normalization','Unrecognized normalization flag.') d O~O |Xsb  
        end \))=gu)I  
    else . ]8E7  
        isnorm = false; wlPx,UqZ  
    end 8#D:H/`'  
    %r iK+  
    PG]%Bv57  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W@2vjz  
    % Compute the Zernike Polynomials W#Qmv^StZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ou>vX[{  
    w ;e(Gb%9  
    #YSF&*  
    % Determine the required powers of r: ^bLRVp1  
    % ----------------------------------- p\ Lq}tk<  
    m_abs = abs(m); q-Qxbg[>e  
    rpowers = []; oW;6h.  
    for j = 1:length(n) _qWliw:0#  
        rpowers = [rpowers m_abs(j):2:n(j)]; v~/~ @jv  
    end 28OWNS M=  
    rpowers = unique(rpowers); D\H/   
    ph2$oO 6,  
    {ccIxL /~  
    % Pre-compute the values of r raised to the required powers, >5 b/or  
    % and compile them in a matrix: {>bW>RO)  
    % ----------------------------- =\{\g7  
    if rpowers(1)==0 pDh se2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _U{&@}3  
        rpowern = cat(2,rpowern{:}); qSx(X!YS  
        rpowern = [ones(length_r,1) rpowern]; pZZf[p^s|  
    else p*l$Wj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <*EZ@XoN>  
        rpowern = cat(2,rpowern{:}); 4m-I5!=O  
    end /1`cRyS  
    |7@O( $b  
    0ji q-3V)  
    % Compute the values of the polynomials: 5yVkb*8HS  
    % -------------------------------------- ,pBh`av  
    y = zeros(length_r,length(n)); A%\tiZe  
    for j = 1:length(n) Ay{t254/  
        s = 0:(n(j)-m_abs(j))/2; lHB) b}7E  
        pows = n(j):-2:m_abs(j); ~LQ[4h<J !  
        for k = length(s):-1:1 eb|i 3.  
            p = (1-2*mod(s(k),2))* ... w-$[>R[hw  
                       prod(2:(n(j)-s(k)))/              ... G9g6.8*&  
                       prod(2:s(k))/                     ... +([!A6:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (.3'=n|kE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .C]cK%OO N  
            idx = (pows(k)==rpowers); !Ss HAE|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); :"o o>  
        end l?*r5[O>n  
         FP"$tt(  
        if isnorm A4mSJ6K]  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NV r0M?`4  
        end 23DJV);g8  
    end 9tg)Mo%  
    % END: Compute the Zernike Polynomials V^il$'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6*@yE  
    EN !?:RV  
    %}>dqUyQ  
    % Compute the Zernike functions: o5aLU Wi-  
    % ------------------------------ W}'WA  
    idx_pos = m>0; v0l_w  
    idx_neg = m<0; )$x_!=@1  
    B ?%L  
    8X?>=tl  
    z = y; SJgY  
    if any(idx_pos) /OGA$eP  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); v$w++3H  
    end "zZI S6j  
    if any(idx_neg) KbxR Lx]w  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); R,@g7p  
    end 8Og3yFx[rt  
    Me:{{-V4  
    G6`J1Uk  
    % EOF zernfun "t(wG{RxY  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  X2P``YFV{  
    k5s?lWH  
    DDE还是手动输入的呢? ;fx1!:;.  
    f+^c@0que  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究