切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9174阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, a4a/]q4T  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, o 8fB  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? CdB sd  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `vbd7i  
    I`e$U  
    A(Tqf.,G  
    zY11.!2  
    YgiLfz iT  
    function z = zernfun(n,m,r,theta,nflag) YJ6y]r K2,  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z}X oWT2f  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <[*%d~92z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the f&=WgITa  
    %   unit circle.  N is a vector of positive integers (including 0), and Kivr)cIG  
    %   M is a vector with the same number of elements as N.  Each element dWR-}>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `Zdeq.R]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, adCTo  
    %   and THETA is a vector of angles.  R and THETA must have the same *8I+D>x  
    %   length.  The output Z is a matrix with one column for every (N,M) B|fh 4FNy  
    %   pair, and one row for every (R,THETA) pair. $m hIX A.  
    % <R;t>~8x  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M53{e;.kN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N~=,RPjq  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral N<d0C  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N}|<P[LW  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized |qOoL*z  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  }q$6^y  
    % 7O.?I# 76  
    %   The Zernike functions are an orthogonal basis on the unit circle. bU3P; a(  
    %   They are used in disciplines such as astronomy, optics, and  L- '{   
    %   optometry to describe functions on a circular domain.  c6f=r  
    % \Fh#CI  
    %   The following table lists the first 15 Zernike functions. uGoySt&;(  
    % R>C^duos.  
    %       n    m    Zernike function           Normalization o[A y2"e?  
    %       -------------------------------------------------- z~m{'O`  
    %       0    0    1                                 1 KfPYH\ 0  
    %       1    1    r * cos(theta)                    2 $.5f-vQp  
    %       1   -1    r * sin(theta)                    2 8*bEsc|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) c>$PLO^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mJ #|~I*Z-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  S6d&w6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1H-d<G0)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) H^d2|E[D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) hvFXYq_[O  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @H83Ad  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7Rq|N$y.3  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 39yp1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Au\j6mB  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IG(1h+5 R(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }Sx+:N*  
    %       -------------------------------------------------- /0_^Z2  
    % id?B<OM  
    %   Example 1: G~+BO'U9'G  
    % v'e5j``=  
    %       % Display the Zernike function Z(n=5,m=1)  ob_*fP  
    %       x = -1:0.01:1; /19ZyQw9  
    %       [X,Y] = meshgrid(x,x); 2zPO3xL,  
    %       [theta,r] = cart2pol(X,Y); [6u8EP0xM  
    %       idx = r<=1; >^Z==1  
    %       z = nan(size(X)); j3Yz=bsQ{c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); w=Yc(Y:h  
    %       figure uD0<|At/  
    %       pcolor(x,x,z), shading interp dI%#cf1  
    %       axis square, colorbar w9aLTLv-  
    %       title('Zernike function Z_5^1(r,\theta)') |y%M";MI  
    % #,5v#| u|7  
    %   Example 2: RG8Ek"D@  
    % FhFP M)[  
    %       % Display the first 10 Zernike functions DGJt$o=&@  
    %       x = -1:0.01:1; hM NC]  
    %       [X,Y] = meshgrid(x,x); %+bw2;a6  
    %       [theta,r] = cart2pol(X,Y); 6>d0i S@R  
    %       idx = r<=1; 5*hA6Ex7  
    %       z = nan(size(X)); =U`9_]~1c@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; &_o.:SL|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;!9-I%e  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; z#u<]] 5  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9`FPV`/  
    %       figure('Units','normalized') j&|>Aa${  
    %       for k = 1:10 xV\mS+#  
    %           z(idx) = y(:,k); r^ Mu`*x*  
    %           subplot(4,7,Nplot(k)) ^fqco9^;  
    %           pcolor(x,x,z), shading interp 2'-!9!C  
    %           set(gca,'XTick',[],'YTick',[]) 5<77o|  
    %           axis square JBMJR  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }{SpV  
    %       end nsjrzO79L8  
    % Y7GHIzX  
    %   See also ZERNPOL, ZERNFUN2. n1Fp$9%  
    v2KK%Qy  
    ZD#{h J-  
    %   Paul Fricker 11/13/2006 I=c}6  
    RA3!k&8?#  
    wqE+hKs,  
    [eLU}4v{  
    \sc's7  
    % Check and prepare the inputs: *R_mvJlT  
    % ----------------------------- f}ES8 Hh[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l|" SM6  
        error('zernfun:NMvectors','N and M must be vectors.') 48g`i  
    end 4iC=+YUn  
    TO]7%aB  
    l}& &f8n  
    if length(n)~=length(m) *Hed^[sO  
        error('zernfun:NMlength','N and M must be the same length.') \Pt_5.bTs[  
    end VI(2/**  
    LQDU8[-  
    9 lH00n+'  
    n = n(:); }~+_|  
    m = m(:); `Qxdb1>mjY  
    if any(mod(n-m,2)) Nu4PY@m]C  
        error('zernfun:NMmultiplesof2', ... )9~-^V0A^>  
              'All N and M must differ by multiples of 2 (including 0).') t +h}hL  
    end T(q/$p&q  
    <F&53N&Zc  
    7 P/1'f3  
    if any(m>n) 3x3 =ke!  
        error('zernfun:MlessthanN', ... JL:\\JT.  
              'Each M must be less than or equal to its corresponding N.') Yu e#  
    end R7NE= X4  
    ~Blsj9a2  
    Y8@TY?  
    if any( r>1 | r<0 ) CU_8 `}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 4) z*Vux  
    end /;V:<mekf  
    GSaU:A  
    !Jk|ha~r  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^#p+#_*V  
        error('zernfun:RTHvector','R and THETA must be vectors.') bc%N !d  
    end p)YI8nW  
    tXW7G@  
    5"^Z7+6  
    r = r(:); mY0FewwTy  
    theta = theta(:); NKRI|'Y,  
    length_r = length(r); 9 6j*F,{  
    if length_r~=length(theta) yl UkVr   
        error('zernfun:RTHlength', ... &A)u!l Ue  
              'The number of R- and THETA-values must be equal.') bTJ l  
    end =b/:rSd$NA  
    h$2lO^  
    7CV}QV}G  
    % Check normalization: QvvH/u  
    % -------------------- .e1Yd8  
    if nargin==5 && ischar(nflag) `HV~.C  
        isnorm = strcmpi(nflag,'norm'); 9Pjw< xt  
        if ~isnorm /4 %ycr6  
            error('zernfun:normalization','Unrecognized normalization flag.') 6< @F  
        end w+G+&ak<  
    else rlP?Uh  
        isnorm = false; Lf0Wc'9{  
    end m=Fk  
    DWmViuZmL  
    4#Id0['  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U%H6jVE  
    % Compute the Zernike Polynomials &N|`Q (QXS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !r %u@[(  
    >8=rD  
    3Sl2c  
    % Determine the required powers of r: .xV^%e?H  
    % ----------------------------------- Jt|W%`X>D  
    m_abs = abs(m); NjP7?nXSx  
    rpowers = []; )L/o|%r!  
    for j = 1:length(n) ql2O%B.6?  
        rpowers = [rpowers m_abs(j):2:n(j)]; 3JXKp k?   
    end KreF\M%Ke  
    rpowers = unique(rpowers); ["ML&2|o  
    8XhGo2zf  
    (hn;C>B  
    % Pre-compute the values of r raised to the required powers, -EIfuh  
    % and compile them in a matrix: 8}>s{u;W  
    % ----------------------------- &)GlLpaT  
    if rpowers(1)==0 EB2 5N~7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Fa-F`U@h(m  
        rpowern = cat(2,rpowern{:}); d[$YTw  
        rpowern = [ones(length_r,1) rpowern]; Xot2L{EIUE  
    else X\HP&;Wd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gSt'<v  
        rpowern = cat(2,rpowern{:}); z\r29IRh  
    end k.Q4oyei  
    Bl*.N9*  
    Rb l4aB+   
    % Compute the values of the polynomials: xn,I<dL39  
    % -------------------------------------- xY$@^(Q\  
    y = zeros(length_r,length(n)); 3Q~zli:  
    for j = 1:length(n) \Ws$@ J-M  
        s = 0:(n(j)-m_abs(j))/2; :,1 kSM%r  
        pows = n(j):-2:m_abs(j); _ a -At  
        for k = length(s):-1:1 &7Lg) PG  
            p = (1-2*mod(s(k),2))* ... 4)+L(KyB2  
                       prod(2:(n(j)-s(k)))/              ... -cs$E2 -  
                       prod(2:s(k))/                     ... "HrZv+{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  YW'l),Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); OoOr@5g  
            idx = (pows(k)==rpowers); Hwiftx  
            y(:,j) = y(:,j) + p*rpowern(:,idx); h7cE"m  
        end -cL wjI  
         Zil<*(kv{  
        if isnorm 8Q\ T,C  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vCsJnKqK  
        end }-2U,Xg[  
    end pu,|_N[xq8  
    % END: Compute the Zernike Polynomials +puF0]TR,i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RE.t<VasP  
    ]D&\|,,(  
    =v49[i  
    % Compute the Zernike functions: ;QqC c!b  
    % ------------------------------ p n(y4we  
    idx_pos = m>0; #bmbK{[  
    idx_neg = m<0; #Z1 <lAy  
    `i{p6-U3  
    &9Xn:<"`)  
    z = y; $[{YE[a  
    if any(idx_pos) V6 uh'2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @JU Xp  
    end ) $=!e%{  
    if any(idx_neg) E4qQ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N%fDgK  
    end Uo=_=.GQ  
    LQXMGgp  
    )bl^:C  
    % EOF zernfun CQ/ps,~M  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Ao$|`Lgj=z  
    (lt{$0   
    DDE还是手动输入的呢? 4rUOk"li  
    j.+ }Z |  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究