下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, lIg2iun[n
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, I?>T"nV +'
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }eM<A$J
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $0T"YC%
&F_rg,q&_
G:`Jrh
M%xL K7
8F`
function z = zernfun(n,m,r,theta,nflag) .5;LL,S-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1i:g
/H
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +o]BjgG
% and angular frequency M, evaluated at positions (R,THETA) on the 'hO;sL
% unit circle. N is a vector of positive integers (including 0), and ?bAFYF0!I
% M is a vector with the same number of elements as N. Each element ~uadivli
% k of M must be a positive integer, with possible values M(k) = -N(k) acQNpT
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \_nmfTr!K
% and THETA is a vector of angles. R and THETA must have the same 8"mW!M
% length. The output Z is a matrix with one column for every (N,M) .A)Un/k7
% pair, and one row for every (R,THETA) pair. dM{~Ubb
% ;bZ*6-\!-
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /v4S@SQ+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j#t8Krd] "
% with delta(m,0) the Kronecker delta, is chosen so that the integral xY2_*#{.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?i2Wst
% and theta=0 to theta=2*pi) is unity. For the non-normalized bs EpET
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g)qnjeSs]
% Wx$q:$h@q
% The Zernike functions are an orthogonal basis on the unit circle. zI_GdQNfN
% They are used in disciplines such as astronomy, optics, and 6L9[U^`@
% optometry to describe functions on a circular domain. Lo5@zNt%W
%
F'FZ?*a
% The following table lists the first 15 Zernike functions. 'h>5&=r
% ~49N
% n m Zernike function Normalization cvE.r330|
% -------------------------------------------------- 5;8B!%b
% 0 0 1 1 <3=qLm
% 1 1 r * cos(theta) 2 &v5.;8u+OV
% 1 -1 r * sin(theta) 2 9<h]OXv
% 2 -2 r^2 * cos(2*theta) sqrt(6) <W59mweW#5
% 2 0 (2*r^2 - 1) sqrt(3) 68<Z\WP
% 2 2 r^2 * sin(2*theta) sqrt(6) rn:zKTyhw
% 3 -3 r^3 * cos(3*theta) sqrt(8) \UqS -j|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Y%:0|utQC
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) kEhm'
% 3 3 r^3 * sin(3*theta) sqrt(8) ITIj=!F*
% 4 -4 r^4 * cos(4*theta) sqrt(10) Yz-JI=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [~c'|E8Q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) D&l,SD
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lI_Yb:
% 4 4 r^4 * sin(4*theta) sqrt(10) Ldhk^/+
% -------------------------------------------------- 30 [#%_* o
% 7X{bB
% Example 1: *UBP]w
% 3
t8 8AN=4
% % Display the Zernike function Z(n=5,m=1) &49$hF
g6"
% x = -1:0.01:1; ? x"HX|n
% [X,Y] = meshgrid(x,x);
[AZaT
% [theta,r] = cart2pol(X,Y); u}}9j&^Xa
% idx = r<=1; guOSO@
% z = nan(size(X)); (y~laW!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =v4r M0m,
% figure a=*ALd_&0
% pcolor(x,x,z), shading interp mPfUJ#rS
% axis square, colorbar poQdI?ed,
% title('Zernike function Z_5^1(r,\theta)') + sywgb)
% Z@,PZ
% Example 2: ~z
K@pFeH
% juMxl
% % Display the first 10 Zernike functions QGr\I/Y
% x = -1:0.01:1; w;c#drY7S
% [X,Y] = meshgrid(x,x); l{6` k<J(
% [theta,r] = cart2pol(X,Y); '9
e\.
% idx = r<=1; [.j]V-61
% z = nan(size(X)); Seq]NkgY
% n = [0 1 1 2 2 2 3 3 3 3]; Lo9G4Cu
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; O~h94 B`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ~mK-8U4>K,
% y = zernfun(n,m,r(idx),theta(idx)); <r<Dmn|\a
% figure('Units','normalized') dv'E:R(a
% for k = 1:10 &IRA=nJ
% z(idx) = y(:,k); VX;zZ`BJ
% subplot(4,7,Nplot(k)) cZe'!CQS
% pcolor(x,x,z), shading interp n{64g+
% set(gca,'XTick',[],'YTick',[]) au~]
% axis square 9^PRX
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B:?#l=FL
% end ]l=O%Ev
% AhvvuN$n%
% See also ZERNPOL, ZERNFUN2. BbrT f"`
fW.GNX8
`10X5V@hP
% Paul Fricker 11/13/2006 &[5n0e[
]yAEjn9cN
>*`>0Q4y
$5lW)q A
?7yQ&