切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9164阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #Xi9O.  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, TO/SiOd  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Jg6@)<n  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? -_>E8PhM  
    ztC,[   
    Z3dI B`@  
    Et&PzDvU  
    NU 3s^ 8\(  
    function z = zernfun(n,m,r,theta,nflag) jGDuKb@:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. J2!)%mF$  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N A aM~B`B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the oe=W}y_k  
    %   unit circle.  N is a vector of positive integers (including 0), and WG&WPV/p  
    %   M is a vector with the same number of elements as N.  Each element FMl_I26]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) C]krJse@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, yk2XfY  
    %   and THETA is a vector of angles.  R and THETA must have the same 75c\.=G9q<  
    %   length.  The output Z is a matrix with one column for every (N,M) }x"8v&3CM_  
    %   pair, and one row for every (R,THETA) pair. V B=jK Mi  
    % e#ne5   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U;Yw\&R,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F^!_!V B  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral b Kr73S9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pH396GFIW  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]!WD">d:  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w#>CYP`0k6  
    % 6KX/Yj~B  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8 HD I]  
    %   They are used in disciplines such as astronomy, optics, and i(S}gH4*o  
    %   optometry to describe functions on a circular domain. zoau5t  
    % (usPAslr  
    %   The following table lists the first 15 Zernike functions. 9y;zk$O8  
    % ,'@t .XP  
    %       n    m    Zernike function           Normalization KY9@2JG  
    %       -------------------------------------------------- &C6*"JZ4  
    %       0    0    1                                 1 a=*JyZ.2  
    %       1    1    r * cos(theta)                    2 if+97^Oy  
    %       1   -1    r * sin(theta)                    2 Ots]y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) W"5VqN6v  
    %       2    0    (2*r^2 - 1)                    sqrt(3) FivqyT7i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %}Z1KiRiX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Y-]Ne"+vf  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Gyy?cn6_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) <1kK@m -E  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) YvFt*t  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kp,$ NfD  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i5czm?x  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) lR5k1J1n  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +wm%`N;v<  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Gi,4PD-ro  
    %       -------------------------------------------------- 1j!{?t ?  
    % 8/W2;>?wKc  
    %   Example 1: k1HCPj  
    % N?c!uO|h|  
    %       % Display the Zernike function Z(n=5,m=1) y2>AbrJ  
    %       x = -1:0.01:1;  $kY ]HI  
    %       [X,Y] = meshgrid(x,x); 6f;20dn 6  
    %       [theta,r] = cart2pol(X,Y); ]U.*KkQ  
    %       idx = r<=1; DP!~WkU~  
    %       z = nan(size(X)); -~^sSLrbP  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "Pzh#rYY~W  
    %       figure qyR}|<F8*  
    %       pcolor(x,x,z), shading interp 1W{t?1[s  
    %       axis square, colorbar j2=|,AmC  
    %       title('Zernike function Z_5^1(r,\theta)') nRheByYm  
    % 'E4}++\  
    %   Example 2: @ "/:Omh  
    % '~AR|8q?  
    %       % Display the first 10 Zernike functions Z4D[nPm$  
    %       x = -1:0.01:1; ]Tn""3#1g  
    %       [X,Y] = meshgrid(x,x); IkgRZ{Y  
    %       [theta,r] = cart2pol(X,Y); }k_'a^;C1  
    %       idx = r<=1; 9+I /bl4  
    %       z = nan(size(X)); Ypx"<CKP}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .c\iKc#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]eo%eaA   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )^j62uv  
    %       y = zernfun(n,m,r(idx),theta(idx)); r|Q/:UV?w  
    %       figure('Units','normalized') }KR"0G[f  
    %       for k = 1:10 oGz5ZDa#  
    %           z(idx) = y(:,k); Qv1cf  
    %           subplot(4,7,Nplot(k)) I"HA( +G  
    %           pcolor(x,x,z), shading interp #?7g_  
    %           set(gca,'XTick',[],'YTick',[]) X1^Q1?0  
    %           axis square  OF O,5  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y`8jz,&.  
    %       end c2fw;)j&X  
    % !Mj28  
    %   See also ZERNPOL, ZERNFUN2. 8Bx58$xRq  
    =!DpWVsQ  
    =s,}@iqNO4  
    %   Paul Fricker 11/13/2006 -mG ,_}F  
    P5&8^YV`N  
    PyM59v  
    Y {|is2M9'  
    n {..Q,z  
    % Check and prepare the inputs: [rReBgV  
    % ----------------------------- ?$ M:4mX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?vmoRX  
        error('zernfun:NMvectors','N and M must be vectors.') =!IoL7x  
    end (9v%66y  
    Xx ou1l!  
    Qn)AS1pL+  
    if length(n)~=length(m) N,4hh?  
        error('zernfun:NMlength','N and M must be the same length.') =kBN&v_(!  
    end d^d+8R  
    ,n &Lp  
    +IG=|X  
    n = n(:); =LKf.@]#  
    m = m(:); O6Y1*XTmH6  
    if any(mod(n-m,2)) L#\5)mO.v  
        error('zernfun:NMmultiplesof2', ... =-/sB>-C  
              'All N and M must differ by multiples of 2 (including 0).') OuyO_DSI  
    end Hd_,`W@  
    DSK?7F$_oE  
    mEyIbMci  
    if any(m>n) )oy+-1dE  
        error('zernfun:MlessthanN', ... >{>X.I~  
              'Each M must be less than or equal to its corresponding N.') 5. +_'bF|  
    end 6_>(9&g`zV  
    Op:$7hv  
    %]N|?9L"=  
    if any( r>1 | r<0 ) wxy@XN"/i+  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0U?(EJ  
    end vK$wc~  
    2Q;rSe._`  
    1,+swFSN  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jOm7:+H  
        error('zernfun:RTHvector','R and THETA must be vectors.') |qpFR)l  
    end ubM  N  
    WG +]  
    -#,4rN#  
    r = r(:); s01=C3  
    theta = theta(:); <7`U1DR=  
    length_r = length(r); Hp[i8PJ  
    if length_r~=length(theta) b(t8TR#-  
        error('zernfun:RTHlength', ... ;9' ] na  
              'The number of R- and THETA-values must be equal.') FT!Xr  
    end IUz`\BO4  
    dnkHx  
    mSGpxZ,IE  
    % Check normalization: X2'XbG 3  
    % -------------------- M"6J"s  
    if nargin==5 && ischar(nflag) g!^mewtd  
        isnorm = strcmpi(nflag,'norm'); ~cV";cD5  
        if ~isnorm yatZ Al(B  
            error('zernfun:normalization','Unrecognized normalization flag.') }:(;mW8 D  
        end J+}z*/)|#  
    else ~zVe?(W  
        isnorm = false; {u4AOM=)  
    end @U9`V&])F[  
    =,8nfJ+x  
    wLNk XC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jwSPLq%  
    % Compute the Zernike Polynomials r 5t{I2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h.kjJF  
    \UZ7_\  
    @mb'!r  
    % Determine the required powers of r: |Qn>K   
    % ----------------------------------- G!o6Y:1!  
    m_abs = abs(m); ~i!I6d~  
    rpowers = []; .yD5>iBh  
    for j = 1:length(n) 4'Y a-x x  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8Wgzca Q*  
    end PsOq-  
    rpowers = unique(rpowers); a'r1or4  
    i*@ZIw  
    @FF80U4'  
    % Pre-compute the values of r raised to the required powers, <C451+95  
    % and compile them in a matrix: 8,(--A  
    % ----------------------------- M{SJ8+G  
    if rpowers(1)==0 3#y`6e=5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E<7$!P=z`  
        rpowern = cat(2,rpowern{:}); =`UFg >-  
        rpowern = [ones(length_r,1) rpowern]; *X^ C+F  
    else +O^}  t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Gte\=0Wr  
        rpowern = cat(2,rpowern{:}); ./^8L(  
    end Wr-I~>D%_  
    G ]uz$V6!  
    W }v ,6Oe  
    % Compute the values of the polynomials: )0g!lCfb  
    % -------------------------------------- <p-@XzyE  
    y = zeros(length_r,length(n)); 5K-,k^T}  
    for j = 1:length(n) xxwbX6^d  
        s = 0:(n(j)-m_abs(j))/2; GMB3`&qh  
        pows = n(j):-2:m_abs(j); |*M07Hc x  
        for k = length(s):-1:1 F{rC{5@fj  
            p = (1-2*mod(s(k),2))* ... h B_p  
                       prod(2:(n(j)-s(k)))/              ... Z4E6J'B8  
                       prod(2:s(k))/                     ... hT`&Xb  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... fxmY,{{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); DiGHo~f  
            idx = (pows(k)==rpowers); xM@s`s|n  
            y(:,j) = y(:,j) + p*rpowern(:,idx); OR37  
        end c *<m.  
         KZa6*,, s  
        if isnorm kUfbB#.5L  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); sB$ "mJ  
        end [j0jAl  
    end 53d`+an2  
    % END: Compute the Zernike Polynomials IiJ$Ng  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sx]{N  
    1$`|$V1  
    pred{HEye  
    % Compute the Zernike functions: )rlkQ'DN  
    % ------------------------------ g"kET]KP"  
    idx_pos = m>0; ?M6)O?[  
    idx_neg = m<0; AEDBr<  
    ?P4y$P  
    .J8 gW  
    z = y; 9U4[o<G]=  
    if any(idx_pos) )>U"WZ'<  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q7{{r&|t&  
    end C'{B  
    if any(idx_neg) ynZEJKo  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c;!| =  
    end U<>@)0~7g!  
    hwQ|'^(@O  
    "5'eiYm s  
    % EOF zernfun %d40us8E  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  //Xz  
    dr(e)eD(R>  
    DDE还是手动输入的呢? S_VzmCi  
    7ruWmy;j  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究