切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9418阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, }'c@E0"  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ];U}'&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =JDa[_lpN  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? XJ*W7HD  
    :/6gGU>pu  
    #- z(]Y,y  
    $g@-WNe  
    ^BN?iXQhN  
    function z = zernfun(n,m,r,theta,nflag) tLc~]G*\`s  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. r4wnfy  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N zKf.jpF^  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;sZHE &+  
    %   unit circle.  N is a vector of positive integers (including 0), and !<AY0fpY  
    %   M is a vector with the same number of elements as N.  Each element 15U[F0b  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Q%Y r m  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !vwx0  
    %   and THETA is a vector of angles.  R and THETA must have the same Z:kX9vw.  
    %   length.  The output Z is a matrix with one column for every (N,M) jPyhn8Vw  
    %   pair, and one row for every (R,THETA) pair. oP`yBX  
    % :978D0}{p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %>)&QZig/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1Zi(5S)  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @K}8zMmW#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }29Cm$p  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 99mo]1_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h8-'I= ~  
    % i#1~<U  
    %   The Zernike functions are an orthogonal basis on the unit circle. Jz Z9ua  
    %   They are used in disciplines such as astronomy, optics, and =F>nqklc  
    %   optometry to describe functions on a circular domain. $"`9QD~  
    % \[5mBuk  
    %   The following table lists the first 15 Zernike functions. -7\6j#;l  
    % uL[%R2  
    %       n    m    Zernike function           Normalization a8[Q1Fa4|  
    %       -------------------------------------------------- a"|\n_  
    %       0    0    1                                 1 _!'sj=n]q  
    %       1    1    r * cos(theta)                    2 Kj`sq":Je0  
    %       1   -1    r * sin(theta)                    2 *d/,Y-tl  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {I~[a#^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) AXOR<Ns`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j6.'7f5M<H  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) nbM7 >tnsk  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'RjMwJy{  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5q>u]n9]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) D|BP]j}6  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9'S~zG%{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eOI#T'5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) i@|.1dWh  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A_\ZY0Xt  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) xB&6f")  
    %       -------------------------------------------------- -ip fGb  
    % ;N/=)m  
    %   Example 1: B>TI dQ  
    % eODprFkt}  
    %       % Display the Zernike function Z(n=5,m=1) fX 41o#  
    %       x = -1:0.01:1; FeM,$&G:  
    %       [X,Y] = meshgrid(x,x);  GP/G v  
    %       [theta,r] = cart2pol(X,Y); 9X2 lH~C  
    %       idx = r<=1; c6NCy s  
    %       z = nan(size(X)); *;I F^u1  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); WP-'gC6K=  
    %       figure }:5>1FfX=  
    %       pcolor(x,x,z), shading interp >=Z@)PAe  
    %       axis square, colorbar gUq)M  
    %       title('Zernike function Z_5^1(r,\theta)') Q(e3-a  
    % ^"Nsb&  
    %   Example 2: V^^nJs tV  
    % L beMP  
    %       % Display the first 10 Zernike functions P=jbr"5Q:  
    %       x = -1:0.01:1; I;!zZ.\  
    %       [X,Y] = meshgrid(x,x); .+"SDt oX  
    %       [theta,r] = cart2pol(X,Y); s3LR6Z7;i  
    %       idx = r<=1; ]&D;'),   
    %       z = nan(size(X)); tt7l%olw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; aF'9&A;q  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; N>A*N,+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ;_^ "}  
    %       y = zernfun(n,m,r(idx),theta(idx)); B?xu!B,  
    %       figure('Units','normalized') t/baze;V  
    %       for k = 1:10 %Jr6pmc  
    %           z(idx) = y(:,k); ]GS@ub  
    %           subplot(4,7,Nplot(k)) X[cSmkp7  
    %           pcolor(x,x,z), shading interp vG<JOxP  
    %           set(gca,'XTick',[],'YTick',[]) Qs*6wF  
    %           axis square Dl#%tYL+3h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NNQro)Lpe  
    %       end >Tm|}\qEb  
    % FB0y  
    %   See also ZERNPOL, ZERNFUN2. ?=]*r>a3  
    Q.Kr;64G  
    :K3nJ1G&  
    %   Paul Fricker 11/13/2006 p5KM(N6f  
    3psCV=/z  
    <Dr*^GX>?  
    V+()`>44  
    Cz\(.MWNZ  
    % Check and prepare the inputs: QrP$5H{[E  
    % ----------------------------- @ P=eu3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T1y,L<7?  
        error('zernfun:NMvectors','N and M must be vectors.') s'V8PN+-  
    end ~[i,f0O,  
    <N%8"o  
    GLe(?\Ug=  
    if length(n)~=length(m) S!GjCog^J  
        error('zernfun:NMlength','N and M must be the same length.') H>-?/H  
    end s q_N!  
    0 mWfR8h0  
    m<BL/ 7  
    n = n(:); #lax0IYY=  
    m = m(:); >8 V;:(nt  
    if any(mod(n-m,2)) 3986;>v  
        error('zernfun:NMmultiplesof2', ... X,/@#pSOz  
              'All N and M must differ by multiples of 2 (including 0).') n ?%3=~9  
    end DlR&Lnv  
    lHpo/ R :  
    Q~4o{"3.'  
    if any(m>n) [H#I:d-+\  
        error('zernfun:MlessthanN', ... NA`3   
              'Each M must be less than or equal to its corresponding N.') T[=XGAJ  
    end DU7kZ  
    J ,fXXi)J  
    FeS6>/  
    if any( r>1 | r<0 ) N1Y*IkW"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') '[p~| mX  
    end AAsl )  
    =VlO53Hy{  
    nm*!#hx  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YtNoYOB  
        error('zernfun:RTHvector','R and THETA must be vectors.') gU/\'~HG  
    end E~zLhJTUL'  
    (J): >\a]  
    Zg7~&vs$  
    r = r(:); q<}5KY  
    theta = theta(:); F'Fc)9qFa<  
    length_r = length(r); {"e/3  
    if length_r~=length(theta) _c%]RE  
        error('zernfun:RTHlength', ... |rf\]3 F  
              'The number of R- and THETA-values must be equal.') =L<OTfVE  
    end {R[lsdH(X  
    B[-%A!3 F  
    dH!k {3bL  
    % Check normalization: b]mRn{r?  
    % -------------------- =[`wyQe`_  
    if nargin==5 && ischar(nflag) E8>npDFv.  
        isnorm = strcmpi(nflag,'norm'); /U)w:B+p/g  
        if ~isnorm bE^Z;q19  
            error('zernfun:normalization','Unrecognized normalization flag.') E]_lYYkA  
        end lw? f2_fi  
    else ]k{cPK  
        isnorm = false; 3OFv_<6  
    end p7!q#o  
    l~&efAJ-$  
    `S<uh9/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lq LciD  
    % Compute the Zernike Polynomials -MHu BgYJ-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I~"-  
    6%ID*  
    e?L$RY,7  
    % Determine the required powers of r: h=4m2m  
    % ----------------------------------- 3Du&KZ  
    m_abs = abs(m); X!,Ngmw.  
    rpowers = []; D2>EG~xWq  
    for j = 1:length(n) g@nk0lQewj  
        rpowers = [rpowers m_abs(j):2:n(j)]; [fR<#1Z  
    end LjXtOF  
    rpowers = unique(rpowers); <g,k[  
    8.jd'yp*J  
    ~AK!_EOs`  
    % Pre-compute the values of r raised to the required powers, MH"c=mL:  
    % and compile them in a matrix: x`%;Q@G  
    % ----------------------------- 3Luv$6  
    if rpowers(1)==0 Um15@p;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ffm19B=  
        rpowern = cat(2,rpowern{:}); &J"a`l2  
        rpowern = [ones(length_r,1) rpowern]; X/i8$yqv  
    else o|alL-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?b8NEVjw  
        rpowern = cat(2,rpowern{:}); X^9_'T9  
    end .1|'9@]lj4  
    $j{ynh)^  
    [rPW@|^5  
    % Compute the values of the polynomials: o,Ha-z]f  
    % -------------------------------------- EN J]  
    y = zeros(length_r,length(n)); a%(1#2^`q!  
    for j = 1:length(n) )zUV6U7v  
        s = 0:(n(j)-m_abs(j))/2; p$[*GXR4  
        pows = n(j):-2:m_abs(j); qg.[M*  
        for k = length(s):-1:1 r7ywK9UL  
            p = (1-2*mod(s(k),2))* ... *i%!j/QDAP  
                       prod(2:(n(j)-s(k)))/              ... .#j)YG  
                       prod(2:s(k))/                     ... -zc9=n<5  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s o~p+]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rM bb%d:  
            idx = (pows(k)==rpowers); "[GIW+ui  
            y(:,j) = y(:,j) + p*rpowern(:,idx); *A,=Y/  
        end 0U`Ic_.  
         KD Qux  
        if isnorm %Si3t2W/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); tinN$o Xy  
        end A%+~   
    end #llc5i;  
    % END: Compute the Zernike Polynomials &,$A7:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i7fpl  
    U}Xc@- \ ?  
    z+-k4  
    % Compute the Zernike functions: g4Hq<W"  
    % ------------------------------ 8`u#tl(  
    idx_pos = m>0; 2N)Ywqvj  
    idx_neg = m<0; X:62 )^~'  
    qKO\;e*  
    #v(+3Hp  
    z = y; 9sE>K)  
    if any(idx_pos) 'R=o,=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qM1$?U  
    end &|{K*pNa  
    if any(idx_neg) &# @1n  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); P'Y8 t  
    end PCaa _ 2  
    B r pin  
    l0Pg`wH,  
    % EOF zernfun P"i qP|  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  [+%*s3`c#  
    dGfWRqS]  
    DDE还是手动输入的呢? ~KNxAxyVi  
    D0-e,)G}V,  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究