切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9508阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ~@I@}n  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, <o:@dS  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4ax|Vb)D  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? FQeYx-7  
    F=@i6ERi  
    #P2;K dDO  
    UWG+#,1J.\  
    'bW5Fr>W  
    function z = zernfun(n,m,r,theta,nflag) j kn^Z":  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. MW Wu@SY  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >cOei K  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }4c/YP"a'E  
    %   unit circle.  N is a vector of positive integers (including 0), and P-z`c\Rt  
    %   M is a vector with the same number of elements as N.  Each element <"&'>?8j  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) LhJa)jFQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;q#]-^  
    %   and THETA is a vector of angles.  R and THETA must have the same  ;\b@)E}  
    %   length.  The output Z is a matrix with one column for every (N,M) *FgJ|y6gk  
    %   pair, and one row for every (R,THETA) pair. 6p<`h^  
    % /Ic[N&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mv Ov<x;l  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {E,SHh   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral BD;H   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E)YVfM  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized SX+RBVZU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #V 43=  
    % E'dX)J9e$/  
    %   The Zernike functions are an orthogonal basis on the unit circle. (6xDu.u?A  
    %   They are used in disciplines such as astronomy, optics, and :\}U9QfCw  
    %   optometry to describe functions on a circular domain. L`K;IV%;  
    % Ky9W/dCR  
    %   The following table lists the first 15 Zernike functions. CB}BQd  
    % T |"`8mG  
    %       n    m    Zernike function           Normalization 13f<0wg  
    %       -------------------------------------------------- 6}&^=^-  
    %       0    0    1                                 1 Z[IM<S9lz  
    %       1    1    r * cos(theta)                    2 .|]IwyD &  
    %       1   -1    r * sin(theta)                    2 zNtq"T[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +l\<?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) G%hO\EO  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) e@ oWwhpE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !EFBI+?&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) M9"Sgb`g  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -0|K,k  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) v}`1)BUeF  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) oX|?:MS:  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ePA;:8)_j  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) G=$}5; t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YOw?'+8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %x2b0L\g  
    %       -------------------------------------------------- \|q-+4]@,  
    % YN#XmX%  
    %   Example 1: xXOw:A'  
    % w~-X>~}  
    %       % Display the Zernike function Z(n=5,m=1) f-+.;`H)T  
    %       x = -1:0.01:1; /yK"t< p  
    %       [X,Y] = meshgrid(x,x); ~%P3Pp  
    %       [theta,r] = cart2pol(X,Y); zD_H yGf  
    %       idx = r<=1; iG-N  
    %       z = nan(size(X)); SfDQ;1?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); OOLe[P3J3  
    %       figure "L_-}BK  
    %       pcolor(x,x,z), shading interp S:Xs '0K_  
    %       axis square, colorbar iwo$\  
    %       title('Zernike function Z_5^1(r,\theta)') 'G Y/Q5  
    % YN^jm  
    %   Example 2: Wm>b3:  
    % ,>S+-L8  
    %       % Display the first 10 Zernike functions .eTk=i[N-  
    %       x = -1:0.01:1; b`]M|C [5  
    %       [X,Y] = meshgrid(x,x); uGCtLA+sL  
    %       [theta,r] = cart2pol(X,Y); FNJ!IkuR  
    %       idx = r<=1; )*HjRTF6G  
    %       z = nan(size(X)); t?.\|2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; b7v dk  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %BICt @E  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "WP% REE!  
    %       y = zernfun(n,m,r(idx),theta(idx)); y< ud('D  
    %       figure('Units','normalized') >)sqh ~P  
    %       for k = 1:10 u_Zm1*'?B  
    %           z(idx) = y(:,k); X 7&U3v  
    %           subplot(4,7,Nplot(k)) =LqL@5Xr  
    %           pcolor(x,x,z), shading interp v>:=w|.HC  
    %           set(gca,'XTick',[],'YTick',[]) Mk "vv k  
    %           axis square w`-$-4i  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }{=8&gA0  
    %       end \CwtX(6.  
    % NxB+?  
    %   See also ZERNPOL, ZERNFUN2. "uS7PplyO  
    5% 'S  
    gPp(e j7  
    %   Paul Fricker 11/13/2006 ?&\h;11T  
    *k [kV  
    ,5kvn   
    PC0HH  
    N*':U^/t4J  
    % Check and prepare the inputs: Un\Ubqi0  
    % ----------------------------- D{W SKn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?"u'#f_  
        error('zernfun:NMvectors','N and M must be vectors.') T NIst  
    end sSy$(%  
    uDI}R]8~  
    OsB?1;:  
    if length(n)~=length(m) F`3^wHw^  
        error('zernfun:NMlength','N and M must be the same length.') )1K! [ W}t  
    end -O /T?H  
    bkkSIl+Q  
    A{1 \f*  
    n = n(:); <H-tZDh5  
    m = m(:); -B,cB  
    if any(mod(n-m,2)) i.F8  
        error('zernfun:NMmultiplesof2', ... i<Q& D\Pv  
              'All N and M must differ by multiples of 2 (including 0).') iA&oLu[y3  
    end *F|i&2  
    /t$*W\PL@  
    q$|0)}  
    if any(m>n) >^ ;(c4C  
        error('zernfun:MlessthanN', ... (< :mM  
              'Each M must be less than or equal to its corresponding N.') %B0w~[!4}  
    end yW{mK  
    NQg'|Pt(%  
    &b!vWX1N  
    if any( r>1 | r<0 ) U-1VnX9m  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') a" ^#!G<+  
    end dA|Lufy#  
    =>e?l8`%  
    L%k67>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8V,"Id][  
        error('zernfun:RTHvector','R and THETA must be vectors.') "2%y~jrDN  
    end r)c+".0d^  
    {[my"n 2  
    F68},N>vr@  
    r = r(:); F:M/z#:~  
    theta = theta(:); Z 4\tY^NI  
    length_r = length(r); 4bPqmEE  
    if length_r~=length(theta) prqyoCfq  
        error('zernfun:RTHlength', ... 7KeXWW/d  
              'The number of R- and THETA-values must be equal.') 4v0dd p  
    end +jv }\Jt  
    L,E-z_<p  
    `S5>0r5[  
    % Check normalization: %Fs*#S  
    % -------------------- f 5mY;z"  
    if nargin==5 && ischar(nflag) o@Scz!"g  
        isnorm = strcmpi(nflag,'norm'); sN"p5p  
        if ~isnorm cO8`J&EK  
            error('zernfun:normalization','Unrecognized normalization flag.') q|R+x7x  
        end sWp{Y.  
    else 4u@yJ?U  
        isnorm = false; ?OdV1xB  
    end _'H2>V_  
    Dp%5$wF)8  
    K3a>^g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LQ~LB'L  
    % Compute the Zernike Polynomials A1mYkG)l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9)ACgz&(  
    [t {vYo  
    ])+Sc"g4k  
    % Determine the required powers of r: jQY >9+t  
    % ----------------------------------- "1_{c *ck  
    m_abs = abs(m); /;zZnF\ e  
    rpowers = []; :yd=No@  
    for j = 1:length(n) Ngn\nkf  
        rpowers = [rpowers m_abs(j):2:n(j)]; C<zx'lw!  
    end 9"m, p  
    rpowers = unique(rpowers); >&*6Fqd  
    nrxjN(9V%+  
    V;M3z9xd  
    % Pre-compute the values of r raised to the required powers, '~ jy  
    % and compile them in a matrix: ]R97n|s_  
    % ----------------------------- pI'8>_o  
    if rpowers(1)==0 #k"1wSx16  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _JfJ%YXy  
        rpowern = cat(2,rpowern{:}); 71K\.[ =-  
        rpowern = [ones(length_r,1) rpowern]; jXc5fXO N  
    else _Cu[s?,kS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }T?i%l  
        rpowern = cat(2,rpowern{:}); XMjI}SPG  
    end (2\li{$e  
    0L3Bo3:k  
    .d<~a1k  
    % Compute the values of the polynomials: Y9z:xE  
    % -------------------------------------- ^G ]KE8  
    y = zeros(length_r,length(n)); qkIA,Kgy  
    for j = 1:length(n) sV9{4T~#|  
        s = 0:(n(j)-m_abs(j))/2; ^4n2 -DvG  
        pows = n(j):-2:m_abs(j); $#6 Fnhh}  
        for k = length(s):-1:1 e_fg s>o`(  
            p = (1-2*mod(s(k),2))* ... 'DaNR`9  
                       prod(2:(n(j)-s(k)))/              ... ?7rmwy\  
                       prod(2:s(k))/                     ... &6|6J1c8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... T{5M1r  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |[lxV&SD .  
            idx = (pows(k)==rpowers); yb@X*PW/z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); mafAC73  
        end BDv|~NHs  
         bAA'=z<  
        if isnorm n?TO!5RZK  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }w|=c >'_}  
        end `R4W4h'I  
    end xEd#~`Jmr  
    % END: Compute the Zernike Polynomials v.~Nv@+kR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *@b~f&Lx6  
    @j)f(Zlu#  
    LH?gJ8`  
    % Compute the Zernike functions: ex;Y n{4  
    % ------------------------------ Mt7X<?GZm  
    idx_pos = m>0; FvtM~[Q  
    idx_neg = m<0; f_z2#,g  
    ]ly)z[is"]  
    s5_1}KKCs  
    z = y; BMtYM{S6  
    if any(idx_pos) ThT.iD[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q@3ld6y  
    end ;I0yQlx|U  
    if any(idx_neg) 3!ajvSOI9j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Px^<2Q%Fs  
    end o$qFa9|Ec?  
    A ydy=sj  
    (<5'ceF )X  
    % EOF zernfun x r+E  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  D"><S<C\C  
    >5Rw~  
    DDE还是手动输入的呢? ;Z0cD*Jb  
    G7#~=W 2M  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究