切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8697阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2mI=V.X[&  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, RTSg=    
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,1od]]>(O  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? RXh/[t+  
    4"0`J  
    IGVNX2  
    `_<K#AGAi  
    >0{{ loqq  
    function z = zernfun(n,m,r,theta,nflag) 5`0tG;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3:!+B=woR  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Uq7 y4zJ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the t(^c]*r~  
    %   unit circle.  N is a vector of positive integers (including 0), and MAhcwmZNy  
    %   M is a vector with the same number of elements as N.  Each element EI]NOG 0  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) HA>b'lqBM  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (eSa{C\  
    %   and THETA is a vector of angles.  R and THETA must have the same _"=Yj3?G%  
    %   length.  The output Z is a matrix with one column for every (N,M) ^b'|`R+~}  
    %   pair, and one row for every (R,THETA) pair. ]7Tjt A.\q  
    % ]V?\Qv/.=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rk{DrbRx  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YX,y7Uhn  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral rm<(6zY  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pGh2 4E  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /`3< @{D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <T{PuS1<o  
    % 3S ,D~L^  
    %   The Zernike functions are an orthogonal basis on the unit circle. g*TAaUs|n  
    %   They are used in disciplines such as astronomy, optics, and Av]<[ F/  
    %   optometry to describe functions on a circular domain. l}># p'$  
    % pl%3RVpoc  
    %   The following table lists the first 15 Zernike functions. 1W;q(#q  
    % # KK>D?.:  
    %       n    m    Zernike function           Normalization =.f]OWehu.  
    %       -------------------------------------------------- (pNA8i%=G  
    %       0    0    1                                 1 J[ du>1D  
    %       1    1    r * cos(theta)                    2 5Z,^4 6J  
    %       1   -1    r * sin(theta)                    2 Pl9/1YhD/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }>>lgW>n,;  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .|;`qU o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .-Ggvw  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) p=V (_  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ;"Q{dOvp  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |/5j0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _0<qS{RW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) FT!|YJz<K  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $_%yr ~2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) LSS3(l[,:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zqc+PO3lw  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .n'z\] -/Q  
    %       -------------------------------------------------- 8(&Jy RT  
    % J*IC&jH:  
    %   Example 1: !7]4sXL{  
    % !c(B c^  
    %       % Display the Zernike function Z(n=5,m=1) 7;ZSeQ yC  
    %       x = -1:0.01:1; u(S~V+<@Z  
    %       [X,Y] = meshgrid(x,x); ~m2tWi@  
    %       [theta,r] = cart2pol(X,Y); 0.Pd,L(  
    %       idx = r<=1; ?kMG!stgp}  
    %       z = nan(size(X)); QK)"-y}"g  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); epqX2`!V  
    %       figure O'a Srjl  
    %       pcolor(x,x,z), shading interp 6&5p3G{%0  
    %       axis square, colorbar TL lR"L5  
    %       title('Zernike function Z_5^1(r,\theta)') o|F RG{TJ  
    % \#Ez["mD  
    %   Example 2: sN.h>bd  
    % )o-rg  
    %       % Display the first 10 Zernike functions I'%vN^e^  
    %       x = -1:0.01:1;  Gqvj  
    %       [X,Y] = meshgrid(x,x); 481J=8H  
    %       [theta,r] = cart2pol(X,Y); f^\qDvPur  
    %       idx = r<=1; </(bwc~2  
    %       z = nan(size(X)); WB<_AIt+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; B/hL  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *J&XM[t  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %Aq+t&-BCX  
    %       y = zernfun(n,m,r(idx),theta(idx)); [x Xa3W  
    %       figure('Units','normalized') ?~s,O$o  
    %       for k = 1:10 #&a-m,Y$sx  
    %           z(idx) = y(:,k); i'aV=E5  
    %           subplot(4,7,Nplot(k)) ,R_ KLd  
    %           pcolor(x,x,z), shading interp x2/L`q"M?=  
    %           set(gca,'XTick',[],'YTick',[]) u?6L.^Op  
    %           axis square G41 gil6k  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5RD\XgyN]  
    %       end # Un>g4>Rh  
    % -F\xZ  
    %   See also ZERNPOL, ZERNFUN2. kW=g:m  
    f.SV-{O_  
    r^3/Ltd5/  
    %   Paul Fricker 11/13/2006 Vf<VKP[9K  
    1ga.%M*  
    .4P5tIn\  
    0]%0wbY1  
    @y?<Kv}s  
    % Check and prepare the inputs: }+";W)R  
    % ----------------------------- p(dJf&D  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) KKpO<TO  
        error('zernfun:NMvectors','N and M must be vectors.') [ aC7  
    end ) in hPd  
    G&8)5d[  
    +iKs)s_~  
    if length(n)~=length(m) <,/k"Y=  
        error('zernfun:NMlength','N and M must be the same length.') jzCSxuZ7O  
    end I{#&!h>]U  
    P6q`i<  
    GPP{"6q5'  
    n = n(:); mqxgrb7  
    m = m(:); ZuF"GNUC  
    if any(mod(n-m,2)) HRP4"#9R  
        error('zernfun:NMmultiplesof2', ... )9LlM2+y  
              'All N and M must differ by multiples of 2 (including 0).') P>q"P1&{  
    end ?z,^QjQ}  
    @ n<y[WA  
    Z +%Uwj  
    if any(m>n) c *<"&  
        error('zernfun:MlessthanN', ... qIEe7;DO  
              'Each M must be less than or equal to its corresponding N.') : V16bRpjL  
    end m2&"}bI{  
    5cLq6[uO  
    Y JzKE7%CO  
    if any( r>1 | r<0 ) [>+}2-#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') m?LnO5Vs  
    end $v|/*1S  
    L%4[,Rsw  
    N$#518  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %tx~CD  
        error('zernfun:RTHvector','R and THETA must be vectors.')  -)  
    end * ]uo/g  
    K5X,J/n  
    NR3]MGBKv  
    r = r(:); S<), ,(  
    theta = theta(:); $gKMVgD"  
    length_r = length(r); 8I=n9Uyz  
    if length_r~=length(theta) Ph[P$: 9  
        error('zernfun:RTHlength', ... iaShxoIV  
              'The number of R- and THETA-values must be equal.') +)8,$1[p|  
    end F!v`._]  
    /JaCbT?*T  
    QEd>T"@g  
    % Check normalization: r8PXdNg  
    % -------------------- m$glRs @  
    if nargin==5 && ischar(nflag) GS),rNBur  
        isnorm = strcmpi(nflag,'norm'); `LD#fg*  
        if ~isnorm C'~K amS  
            error('zernfun:normalization','Unrecognized normalization flag.') ( `V  
        end l!Bc0  
    else ?,Z[)5 ZN  
        isnorm = false; ;qM I3wF  
    end B^4D`0G[4  
    kz4d"bTb  
    ]7H ?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L`"PaIMz  
    % Compute the Zernike Polynomials u$T`Bn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bcgh}D  
    CH |A^!Zm  
    z}XmRc_Ko  
    % Determine the required powers of r: X6_m&~}15  
    % ----------------------------------- %<^B\|d'?  
    m_abs = abs(m); <sXmk{  
    rpowers = []; 8J60+2Wa  
    for j = 1:length(n) -w8c;5X  
        rpowers = [rpowers m_abs(j):2:n(j)]; @8[3 ]<  
    end Obl']Hr{y9  
    rpowers = unique(rpowers); lZyxJDZ A  
    e;LJdd  
    'G3;!xk$  
    % Pre-compute the values of r raised to the required powers, UzLe#3MU  
    % and compile them in a matrix: <@;Y.76~  
    % ----------------------------- " oWiQ{\IP  
    if rpowers(1)==0 O0`k6$=6r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RI,Z&kXj2o  
        rpowern = cat(2,rpowern{:}); P38D-fLq  
        rpowern = [ones(length_r,1) rpowern]; d'1 L#`?  
    else `Qzga}`"]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [" '0vQ  
        rpowern = cat(2,rpowern{:}); hY5G=nbO*  
    end XS!mtd<q  
    WU}?8\?U%  
    OG\TrW-ug  
    % Compute the values of the polynomials: L,I5/K6  
    % -------------------------------------- _)4YxmK%  
    y = zeros(length_r,length(n)); P%Fkd3e+  
    for j = 1:length(n) {? -@`FR-  
        s = 0:(n(j)-m_abs(j))/2; ] i;xeo,  
        pows = n(j):-2:m_abs(j); J{98x zb  
        for k = length(s):-1:1 E1,Sr?'  
            p = (1-2*mod(s(k),2))* ... &p\fdR4e  
                       prod(2:(n(j)-s(k)))/              ... +-=o16*{ !  
                       prod(2:s(k))/                     ... r[P5 ufy2]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [K2\e N~g  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ]6wo]nV[P  
            idx = (pows(k)==rpowers); }m6zu'CV  
            y(:,j) = y(:,j) + p*rpowern(:,idx); aL63=y  
        end 5w:   
         oH/6  
        if isnorm +8+@Az[e0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &@E{0ZD  
        end sP1wO4M?{  
    end [<~1.L^I  
    % END: Compute the Zernike Polynomials d ]LF5*i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #&+0hS  
    w6F'rsko]  
    *&VH!K#@{  
    % Compute the Zernike functions: u!in>]^  
    % ------------------------------ oObm5e*Z  
    idx_pos = m>0; y#\jc4F_a  
    idx_neg = m<0; ]<z4p'F1%  
    /I2RU2|B  
    Vmj7`w&  
    z = y; OoKzPePWji  
    if any(idx_pos) V=";vRS8  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B~HA 32  
    end #NZ\UmA  
    if any(idx_neg) \79KU   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2#z6=M~A  
    end t#s?:  
    }wmn v  
    _= RA-qZ"  
    % EOF zernfun ]d#Lfgo  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  b Jt397  
    RWmQP%A}aw  
    DDE还是手动输入的呢? 4s/4z@3a  
    v'*  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究