下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2mI=V.X[&
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, RTSg=
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,1od]]>(O
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? RXh/[t+
4"0`J
IGVNX2
`_<K#AG Ai
>0{{loqq
function z = zernfun(n,m,r,theta,nflag) 5`0tG;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3:!+B=woR
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Uq7 y4zJ
% and angular frequency M, evaluated at positions (R,THETA) on the t(^c]*r~
% unit circle. N is a vector of positive integers (including 0), and MAhcwmZNy
% M is a vector with the same number of elements as N. Each element EI]NOG 0
% k of M must be a positive integer, with possible values M(k) = -N(k) HA>b'lqBM
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (eSa{C\
% and THETA is a vector of angles. R and THETA must have the same _"=Y j3?G%
% length. The output Z is a matrix with one column for every (N,M) ^b'|`R+~}
% pair, and one row for every (R,THETA) pair. ]7Tjt A.\q
% ]V?\Qv/.=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rk{DrbRx
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YX,y7Uhn
% with delta(m,0) the Kronecker delta, is chosen so that the integral rm<(6zY
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pGh2 4E
% and theta=0 to theta=2*pi) is unity. For the non-normalized /`3<@{D
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <T{PuS1<o
% 3S ,D~L^
% The Zernike functions are an orthogonal basis on the unit circle. g*TAaUs|n
% They are used in disciplines such as astronomy, optics, and Av]<[ F/
% optometry to describe functions on a circular domain. l}># p'$
% pl%3RVpoc
% The following table lists the first 15 Zernike functions. 1W;q(#q
% # KK>D?.:
% n m Zernike function Normalization =.f]OWehu.
% -------------------------------------------------- (pNA8i%=G
% 0 0 1 1 J[du>1D
% 1 1 r * cos(theta) 2 5Z,^46J
% 1 -1 r * sin(theta) 2 Pl9/1YhD/
% 2 -2 r^2 * cos(2*theta) sqrt(6) }>>lgW>n,;
% 2 0 (2*r^2 - 1) sqrt(3) .|;`qUo
% 2 2 r^2 * sin(2*theta) sqrt(6) .-Ggvw
% 3 -3 r^3 * cos(3*theta) sqrt(8) p=V (_
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ;"Q{dOvp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |/5j0
% 3 3 r^3 * sin(3*theta) sqrt(8) _0<qS{RW
% 4 -4 r^4 * cos(4*theta) sqrt(10) FT!|YJz<K
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $_%yr
~2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) LSS3(l[,:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zqc+PO3lw
% 4 4 r^4 * sin(4*theta) sqrt(10) .n'z\]-/Q
% -------------------------------------------------- 8(&Jy RT
% J*IC&jH:
% Example 1: !7]4sXL{
% !c(B c^
% % Display the Zernike function Z(n=5,m=1) 7;ZSeQyC
% x = -1:0.01:1; u(S~V+<@Z
% [X,Y] = meshgrid(x,x); ~m2tWi@
% [theta,r] = cart2pol(X,Y); 0.Pd,L(
% idx = r<=1; ?kMG!stgp}
% z = nan(size(X));
QK)"-y}"g
% z(idx) = zernfun(5,1,r(idx),theta(idx)); epqX2`!V
% figure O'a
Srjl
% pcolor(x,x,z), shading interp 6&5p3G{%0
% axis square, colorbar TL lR"L5
% title('Zernike function Z_5^1(r,\theta)') o|FRG{TJ
% \#Ez["mD
% Example 2: sN.h>bd
% )o-rg
% % Display the first 10 Zernike functions I'%vN^e^
% x = -1:0.01:1;
Gqvj
% [X,Y] = meshgrid(x,x); 481J=8H
% [theta,r] = cart2pol(X,Y); f^\qDvPur
% idx = r<=1; </(bwc~2
% z = nan(size(X)); WB<_AIt+
% n = [0 1 1 2 2 2 3 3 3 3]; B/hL
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *J&XM[t
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %Aq+t&-BCX
% y = zernfun(n,m,r(idx),theta(idx)); [xXa3W
% figure('Units','normalized') ?~s,O$o
% for k = 1:10 #&a-m,Y$sx
% z(idx) = y(:,k); i'aV=E5
% subplot(4,7,Nplot(k)) ,R_ KLd
% pcolor(x,x,z), shading interp x2/L`q"M?=
% set(gca,'XTick',[],'YTick',[]) u?6L.^Op
% axis square G41 gil6k
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5RD\XgyN]
% end #
Un>g4>Rh
% -F\xZ
% See also ZERNPOL, ZERNFUN2. kW=g:m
f.SV-{O_
r^3/Ltd5/
% Paul Fricker 11/13/2006 Vf<VKP[9K
1ga.%M*
.4P5tIn\
0]%0wbY1
@y?<Kv}s
% Check and prepare the inputs: }+ ";W) R
% ----------------------------- p(dJf&D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )
KKpO<TO
error('zernfun:NMvectors','N and M must be vectors.') [ aC7
end ) inhPd
G&8)5d[
+iKs)s_~
if length(n)~=length(m) <,/k"Y=
error('zernfun:NMlength','N and M must be the same length.') jzCSxuZ7O
end I{#&!h>]U
P6q`i<
GPP{"6q5'
n = n(:); mqxgrb7
m = m(:); ZuF"GNUC
if any(mod(n-m,2)) HRP4"#9R
error('zernfun:NMmultiplesof2', ... )9LlM2+y
'All N and M must differ by multiples of 2 (including 0).') P>q"P1&{
end ?z,^QjQ}
@n<y[WA
Z+%Uwj
if any(m>n)
c
*<"&
error('zernfun:MlessthanN', ... qIE e7;DO
'Each M must be less than or equal to its corresponding N.') : V16bRpjL
end m2&"}bI{
5cLq6[uO
Y JzKE7%CO
if any( r>1 | r<0 ) [>+}2-#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') m?LnO5Vs
end $v|/*1S
L%4[,Rsw
N$#518
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %tx~CD
error('zernfun:RTHvector','R and THETA must be vectors.') -)
end *]uo/g
K5X,J/n
NR3]MGBKv
r = r(:); S<),
,(
theta = theta(:); $gKMVgD"
length_r = length(r); 8I=n9Uyz
if length_r~=length(theta) Ph[P$: 9
error('zernfun:RTHlength', ... iaShxoIV
'The number of R- and THETA-values must be equal.') +)8,$1[p|
end F!v`._]
/JaCbT?*T
QEd>T"@g
% Check normalization: r8PXdNg
% -------------------- m$glRs
@
if nargin==5 && ischar(nflag) GS),rNBur
isnorm = strcmpi(nflag,'norm'); `LD#fg*
if ~isnorm C'~K am S
error('zernfun:normalization','Unrecognized normalization flag.') ( `V
end l!Bc0
else ?,Z[)5 ZN
isnorm = false; ;qM
I3 wF
end B^4D`0G[4
kz4d"bTb
]7H ?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L`"PaIMz
% Compute the Zernike Polynomials u$T`Bn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bcgh}D
CH
|A^!Zm
z}XmRc_Ko
% Determine the required powers of r: X6_m&~}15
% ----------------------------------- %<^B\|d'?
m_abs = abs(m); <sXmk{
rpowers = []; 8J60+2Wa
for j = 1:length(n) -w8c;5X
rpowers = [rpowers m_abs(j):2:n(j)]; @8[3]<
end Obl']Hr{y9
rpowers = unique(rpowers); lZyxJDZ A
e;LJdd
'G3;!xk$
% Pre-compute the values of r raised to the required powers, UzLe#3MU
% and compile them in a matrix: <@;Y.76~
% ----------------------------- " oWiQ{\IP
if rpowers(1)==0 O0`k6$=6r
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RI,Z&kXj2o
rpowern = cat(2,rpowern{:}); P38D-fLq
rpowern = [ones(length_r,1) rpowern]; d'1L#`?
else `Qzga}`"]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ["'0vQ
rpowern = cat(2,rpowern{:}); hY5G=nbO*
end XS!mtd<q
WU}?8\?U%
OG\TrW-ug
% Compute the values of the polynomials: L,I5/K6
% -------------------------------------- _)4YxmK%
y = zeros(length_r,length(n)); P%Fkd3e+
for j = 1:length(n) {?-@`FR-
s = 0:(n(j)-m_abs(j))/2; ]
i;xeo,
pows = n(j):-2:m_abs(j); J{98x zb
for k = length(s):-1:1 E1,Sr?'
p = (1-2*mod(s(k),2))* ... &p\fdR4e
prod(2:(n(j)-s(k)))/ ... +-=o16*{ !
prod(2:s(k))/ ... r[P5
ufy2]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [K2\e N~g
prod(2:((n(j)+m_abs(j))/2-s(k))); ]6wo]nV[P
idx = (pows(k)==rpowers); }m6zu'CV
y(:,j) = y(:,j) + p*rpowern(:,idx); aL63=y
end 5w:
oH/6
if isnorm +8+@Az[e0
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &@E{0ZD
end sP1wO4M?{
end [<~1.L^I
% END: Compute the Zernike Polynomials d
]LF5*i
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #&+0hS
w6F'rsko]
*&VH!K#@{
% Compute the Zernike functions: u!in>]^
% ------------------------------ oObm5e*Z
idx_pos = m>0; y#\jc4F_a
idx_neg = m<0; ]<z4p'F1%
/I2RU2|B
Vmj7`w&
z = y; OoKzPePWji
if any(idx_pos) V=";vRS8
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B~HA 32
end #NZ\UmA
if any(idx_neg) \79KU
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2#z 6= M~A
end
t#s?:
}wmn v
_=RA-qZ"
% EOF zernfun ]d#Lfgo