切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9454阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来,  v%:deaF  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #NFB=o JI  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? jC'h54 ,Mr  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? un 5r9  
    fQ5v?(  
    _bCAZa&&  
    v*!N}1+J  
    o-@01_j  
    function z = zernfun(n,m,r,theta,nflag) IB;yL/T  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;O}%SCF7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -yf8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Q'n+K5&p  
    %   unit circle.  N is a vector of positive integers (including 0), and a<&K^M&  
    %   M is a vector with the same number of elements as N.  Each element A;L ]=J  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Tow=B  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Pdf-2 Tx  
    %   and THETA is a vector of angles.  R and THETA must have the same ui>jJ(  
    %   length.  The output Z is a matrix with one column for every (N,M) }? _KZ)  
    %   pair, and one row for every (R,THETA) pair. )7 Mss/2T  
    % !MKecRG_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  @*eY~  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8H4NNj Oy  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :Dt y([  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &za }TH m  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )7& -DI1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9I/l+IS"X  
    % *,z/q6  
    %   The Zernike functions are an orthogonal basis on the unit circle. 4z(~)#'^  
    %   They are used in disciplines such as astronomy, optics, and b WNa6x  
    %   optometry to describe functions on a circular domain. K[icVT2v~  
    % G*4I;'6  
    %   The following table lists the first 15 Zernike functions. Q2 !GWz$  
    % ;d}>8w&tfy  
    %       n    m    Zernike function           Normalization FygNWI'  
    %       -------------------------------------------------- +#eol~j9N  
    %       0    0    1                                 1 \1Y|$:T/  
    %       1    1    r * cos(theta)                    2 2OJlE) .  
    %       1   -1    r * sin(theta)                    2 s;I @En  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) svmb~n&x6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) R>0[w$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /ugWl99.W  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~-k , $J?7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5a/A?9?,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7K.75%}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) JH\:9B+:L  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) )xy>:2!#Y  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rci,&>L"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Ga 5s9wC  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @ ;!IPiU  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) c[ZrQJ  
    %       -------------------------------------------------- fx|d"VF[  
    % yz K<yvN  
    %   Example 1: }B'-*)^|e{  
    % W+a/>U  
    %       % Display the Zernike function Z(n=5,m=1) .6`r`|=  
    %       x = -1:0.01:1; )l`Ks  
    %       [X,Y] = meshgrid(x,x); =Q<VU/  
    %       [theta,r] = cart2pol(X,Y); x\Q}fk?{t  
    %       idx = r<=1; k( Sda>-  
    %       z = nan(size(X)); gbzBweWF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); LY0f`RX*&  
    %       figure *1EmK.-'u  
    %       pcolor(x,x,z), shading interp PV#h_X<l%  
    %       axis square, colorbar 7nT|yL?  
    %       title('Zernike function Z_5^1(r,\theta)') Jpduk&u  
    %  `vH|P  
    %   Example 2: / ]8e[t>!f  
    % ,mz;$z6i  
    %       % Display the first 10 Zernike functions -7&ywgxl  
    %       x = -1:0.01:1; Cdz?+hb  
    %       [X,Y] = meshgrid(x,x); n,FyK`x  
    %       [theta,r] = cart2pol(X,Y); k{mBG9[z  
    %       idx = r<=1; ML>M:Ik+  
    %       z = nan(size(X)); ;J|t-$Z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 48 wt  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h)Fc<,vwBE  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; tn$TyCzckW  
    %       y = zernfun(n,m,r(idx),theta(idx)); rY(7IX  
    %       figure('Units','normalized') `n>|rd  
    %       for k = 1:10 ^>an4UJ t  
    %           z(idx) = y(:,k); `F/R:!v  
    %           subplot(4,7,Nplot(k)) KS8@A/f  
    %           pcolor(x,x,z), shading interp kKlNhP(  
    %           set(gca,'XTick',[],'YTick',[]) ufk2zL8y  
    %           axis square nT> v  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) AM=,:k$  
    %       end P-B5-Nz  
    % L'Cd` .yVO  
    %   See also ZERNPOL, ZERNFUN2. F?'  
    {xg=Ym)  
    X`_tm3HC  
    %   Paul Fricker 11/13/2006 /4(HVua  
    bhpaC8|  
    /x@aAJ|  
    f#&z m} t  
    SLEOc OAmD  
    % Check and prepare the inputs: ,iYhD-"'  
    % ----------------------------- *eHa4I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [q%`q`EG  
        error('zernfun:NMvectors','N and M must be vectors.') Y\WQ0'y  
    end %P~;>4i,  
    v_Vw!u  
    '1DY5`i{  
    if length(n)~=length(m) =7e!'cF[  
        error('zernfun:NMlength','N and M must be the same length.') ?ja%*0 R  
    end }IWt\a<d  
    +JYb)rn$^  
    0?ab'vYcp  
    n = n(:); q`PA~C];  
    m = m(:); - c>Vw&1  
    if any(mod(n-m,2)) +pgHCzwJE  
        error('zernfun:NMmultiplesof2', ...  \xp0n  
              'All N and M must differ by multiples of 2 (including 0).') 3PvxU|*F  
    end .f0qgmIyL  
    Ws5N|g  
    MJX4;nbl  
    if any(m>n) A-1K TD  
        error('zernfun:MlessthanN', ... ;76+J)  
              'Each M must be less than or equal to its corresponding N.') Pqx?0 f)  
    end w tGS"L  
    KWDH 35  
    P !f{U;B  
    if any( r>1 | r<0 ) %r.OV_04  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') S-mpob)  
    end  Ps.xY;Y  
    syLdm3d|  
    ##''d||u  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) P9m  
        error('zernfun:RTHvector','R and THETA must be vectors.') D(Rr<-(  
    end <w}^Z}fpk&  
    s@&3;{F6D  
    u~*A-X [  
    r = r(:); 4tUoK[p  
    theta = theta(:); p>pN?53S  
    length_r = length(r); 1o/(fy  
    if length_r~=length(theta) [xY-=-T*4  
        error('zernfun:RTHlength', ... |WS@q'  
              'The number of R- and THETA-values must be equal.') Q?T+^J   
    end [Y!HQ9^LEp  
    u9Adu`  
    VF11eZ"  
    % Check normalization: ;]xc}4@=mg  
    % -------------------- ]:@{tX 7c  
    if nargin==5 && ischar(nflag) HaL'/V~  
        isnorm = strcmpi(nflag,'norm'); SVwxK/Fci  
        if ~isnorm ZzBaYoNy[0  
            error('zernfun:normalization','Unrecognized normalization flag.') 6bs-&Vf  
        end Z] r9lC  
    else $X;OK  
        isnorm = false; ^!exH(g  
    end k(tB+k!vH\  
    hd9~Zw]V  
    3/usgw1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6d8)]  
    % Compute the Zernike Polynomials y`$qcEw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KM )MUPr  
    j<)$ [v6  
    #t Uhul/O  
    % Determine the required powers of r: :RIqA/  
    % ----------------------------------- [u*7( 4e  
    m_abs = abs(m); .<%q9Jy#  
    rpowers = []; $X:,Q,?  
    for j = 1:length(n) |O)ZjLx  
        rpowers = [rpowers m_abs(j):2:n(j)]; <,p$eQ)T%  
    end  *`qI<]!  
    rpowers = unique(rpowers); K)x6F 15r  
    -">Tvi4  
    ?>ZrdfTwz,  
    % Pre-compute the values of r raised to the required powers, + AjV0#n  
    % and compile them in a matrix: E$8-8[  
    % ----------------------------- .e5@9G.jb  
    if rpowers(1)==0 _}j>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .$d:c61X  
        rpowern = cat(2,rpowern{:}); jxW/"Q   
        rpowern = [ones(length_r,1) rpowern]; SF:{PgGMi  
    else %r6_['T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q2|z \  
        rpowern = cat(2,rpowern{:}); OY|9V  
    end jX'pUO  
    ()8=U_BFz  
    wp8-(E^  
    % Compute the values of the polynomials: X`v6gv5qj  
    % -------------------------------------- :-+][ [  
    y = zeros(length_r,length(n)); gjK: a@{  
    for j = 1:length(n) HW_2!t_R  
        s = 0:(n(j)-m_abs(j))/2; -$%~EY}  
        pows = n(j):-2:m_abs(j); yTbtS-  
        for k = length(s):-1:1 [Z'4YXS  
            p = (1-2*mod(s(k),2))* ... aB G*  
                       prod(2:(n(j)-s(k)))/              ... 4E!Pxjl3a  
                       prod(2:s(k))/                     ... 4 }_}3.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S=< ]u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nWYfe-zQxg  
            idx = (pows(k)==rpowers); >>R)?24,<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V#1v5mWVx  
        end ?JRfhJ:j  
         WH $*\IGJL  
        if isnorm KVoi>?a   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); FDFVhcr  
        end #/`MYh=!W  
    end |M<R{Tt}nf  
    % END: Compute the Zernike Polynomials Z^A(Q>{e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?|2m0~%V=  
    c&RiUU7  
    -jTK3&5  
    % Compute the Zernike functions: -xH3}K%  
    % ------------------------------ 3e;K5qSeo/  
    idx_pos = m>0; LWM& k#i  
    idx_neg = m<0; rY6bc\?`x  
    bw#\"uJ  
    ^CDh! )  
    z = y; zS?}3#g0u  
    if any(idx_pos) 8fWnKWbbjw  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^=cX L  
    end L(`q3>iC4.  
    if any(idx_neg) 8p~[8}  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |])Ko08*tE  
    end %HZ!s `w_  
    b$Bq#vdg:  
    +(q r{G?  
    % EOF zernfun /KJWo0zo  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Y<S,Xr;J:  
    ?9801Da#/  
    DDE还是手动输入的呢? ukSi9| 1-,  
    WVf>>E^1  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究