切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9192阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, lSy_cItF  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4j(*%da  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? vcZ"4%w  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? "$3~):o  
    ~lbm^S}-  
    xiVbVr#[  
    %6x3 G  
    F5H]$AjW  
    function z = zernfun(n,m,r,theta,nflag) %r@:7/  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4 g8t  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +E+I.}sOB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the U^Iq]L  
    %   unit circle.  N is a vector of positive integers (including 0), and vvLzUxV  
    %   M is a vector with the same number of elements as N.  Each element [;#^h/5E  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) pS8`OBenA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (e32oP"  
    %   and THETA is a vector of angles.  R and THETA must have the same 'X~CrgQl  
    %   length.  The output Z is a matrix with one column for every (N,M) N_p^DP   
    %   pair, and one row for every (R,THETA) pair. xv7nChB  
    % g@m__   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +D?Re%HI  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =j@8/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral SJlL!<i$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y(j vl|z[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized u"(2Xer  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :eBp`dmn  
    % LbnF8tj}h  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~g *`E!2  
    %   They are used in disciplines such as astronomy, optics, and 3 =_to7]  
    %   optometry to describe functions on a circular domain. .p'\@@o5  
    % R4XcWx*pQ  
    %   The following table lists the first 15 Zernike functions. 7H. HiyppW  
    % E6xWo)`%5s  
    %       n    m    Zernike function           Normalization N8Un42  
    %       -------------------------------------------------- h[]3#  
    %       0    0    1                                 1 ! 6_tdZ  
    %       1    1    r * cos(theta)                    2 a61?G!]  
    %       1   -1    r * sin(theta)                    2 OKCX>'j:S  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) /?C6 oj1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _2eL3xXha.  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) )J&!>GP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _p| KaT``  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7T?7KS  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) BgwZZ<B  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^Y^5 @ x=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #Y>d@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S4%MnT6Uy  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) BtP*R,>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tHo/Vly6Z  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }J:WbIr0!  
    %       -------------------------------------------------- 5O"wPsl  
    % `=#ry*E^:  
    %   Example 1: jqy?Od )  
    % l5_%Q+E_  
    %       % Display the Zernike function Z(n=5,m=1) LiD-su D  
    %       x = -1:0.01:1; 7h.:XlUm|  
    %       [X,Y] = meshgrid(x,x); yGPi9j{QXq  
    %       [theta,r] = cart2pol(X,Y); XXZ$^W&  
    %       idx = r<=1; +isaqfy/  
    %       z = nan(size(X)); i{ 2rQy+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7033#@_  
    %       figure o #F03  
    %       pcolor(x,x,z), shading interp [>f4&yY  
    %       axis square, colorbar .g6(07TyV  
    %       title('Zernike function Z_5^1(r,\theta)') fpvzx{2  
    % Q"H1(kG|  
    %   Example 2: kx3]A"]>'  
    % ,_yf5 a  
    %       % Display the first 10 Zernike functions N%`Eq@5  
    %       x = -1:0.01:1; 2BIOA#@t  
    %       [X,Y] = meshgrid(x,x); V~qlg1h  
    %       [theta,r] = cart2pol(X,Y); \JEI+A PY*  
    %       idx = r<=1; pi?U|&.1z  
    %       z = nan(size(X)); <S M%M?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5>[ j^g+@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; eVy\)dCsU  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; W= \gPCo  
    %       y = zernfun(n,m,r(idx),theta(idx)); !P b39[f  
    %       figure('Units','normalized') B\Y !5$  
    %       for k = 1:10 }[I|oV5*+&  
    %           z(idx) = y(:,k); ;/-#oW@gQ  
    %           subplot(4,7,Nplot(k)) ~0@+8%^>;  
    %           pcolor(x,x,z), shading interp w`OHNwXh#I  
    %           set(gca,'XTick',[],'YTick',[]) Xa32p_|5~  
    %           axis square kT6EHuB  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k`Ifd:V.y  
    %       end YNi3oG]h  
    % !U !}*clYL  
    %   See also ZERNPOL, ZERNFUN2. c{t(),nAA  
    !ZlNPPrq}  
    u.sn"G-c  
    %   Paul Fricker 11/13/2006 G#A& Y$  
    ocT.2/~d  
    v><uHjP  
    - '5OX/Szq  
    Bx32pY  
    % Check and prepare the inputs: 5zH?1Z~*  
    % ----------------------------- x?|   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7|Tu@0XXA  
        error('zernfun:NMvectors','N and M must be vectors.') $?u ^hMU=  
    end W:16qbK  
    u)fmXoQ  
    e RjpR?!\  
    if length(n)~=length(m) W=EvEx^?%  
        error('zernfun:NMlength','N and M must be the same length.') ul$YV9 [\  
    end ]n:)W.|`R  
    DOm5azO!>  
    V OViOD  
    n = n(:); ~IKPi==@,  
    m = m(:); hOSkxdi*^  
    if any(mod(n-m,2)) K}U}h>N  
        error('zernfun:NMmultiplesof2', ... O2Mo ~}  
              'All N and M must differ by multiples of 2 (including 0).') N5=; PZub  
    end nEM>*;iE   
    8PV`4=,OI  
    +cVnF&@$  
    if any(m>n) AhARBgf<  
        error('zernfun:MlessthanN', ... 217KJ~)'  
              'Each M must be less than or equal to its corresponding N.') Whq@>pX8  
    end dviL5Eaj  
    /*bS~7f1  
    [$Ld>`3  
    if any( r>1 | r<0 ) Hs+VA$$*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') l*]*.?m/5  
    end e/m ,PE  
     mq?5|`  
    yjVPaEu]aU  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) D/Y.'P:j  
        error('zernfun:RTHvector','R and THETA must be vectors.') p_jDnb#  
    end %jY /jp=R  
    <;.Zms${@  
    o~F @1  
    r = r(:); 'Z+~G  
    theta = theta(:); 1TKOvy_  
    length_r = length(r); 4cql?W(D  
    if length_r~=length(theta) Q- %Q7n'c  
        error('zernfun:RTHlength', ... "}]1OL SV  
              'The number of R- and THETA-values must be equal.') lV-7bZ  
    end #s1O(rLRl  
    ;jTP|q?|{  
    9psX"*s  
    % Check normalization: Dm6}$v'0  
    % -------------------- Cd#>,,\z  
    if nargin==5 && ischar(nflag) ]}cai1  
        isnorm = strcmpi(nflag,'norm'); OCF\*Sx  
        if ~isnorm  )>Oip  
            error('zernfun:normalization','Unrecognized normalization flag.') H'$g!Pg  
        end vS:%(Y"!<  
    else 9/MUzt  
        isnorm = false; 7{ :| )  
    end $L.0$-je4  
    ](vsh gp2  
    a $g4 )0eS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dx@#6Fhy  
    % Compute the Zernike Polynomials rO/mK$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <$n%h/2%  
    |$":7)e H!  
    I-i)D  
    % Determine the required powers of r: SG8H~]CO)  
    % ----------------------------------- 50(/LV1  
    m_abs = abs(m); qu8i Jq  
    rpowers = []; b1jh2pG(V  
    for j = 1:length(n) viAvD6e  
        rpowers = [rpowers m_abs(j):2:n(j)]; FK{ YRt  
    end W?G4\ubM3<  
    rpowers = unique(rpowers); rB|D^@mG  
    "TKf" zc  
    V{fYMgv  
    % Pre-compute the values of r raised to the required powers, |^Z1 D TAw  
    % and compile them in a matrix: %lV&QQa  
    % ----------------------------- _h7+.U=  
    if rpowers(1)==0 N<:5 r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {SW104nb&#  
        rpowern = cat(2,rpowern{:}); J /'woc  
        rpowern = [ones(length_r,1) rpowern]; S)z jfJR  
    else fSl+;|K n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !'B.ad  
        rpowern = cat(2,rpowern{:}); : KZI+  
    end t/_w}  
    \CB{Ut+s  
    tsU.c"^n  
    % Compute the values of the polynomials: qI<6% ^i  
    % -------------------------------------- , Z#t-?  
    y = zeros(length_r,length(n)); Vy{=Y(cpF2  
    for j = 1:length(n) LDW":k|  
        s = 0:(n(j)-m_abs(j))/2; X_|8CD-@6  
        pows = n(j):-2:m_abs(j); AShJt xxa  
        for k = length(s):-1:1 0[xum  
            p = (1-2*mod(s(k),2))* ... &7T0nB/)  
                       prod(2:(n(j)-s(k)))/              ... PX[taDN  
                       prod(2:s(k))/                     ... {LY$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ? 8S0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); N6$pOQ  
            idx = (pows(k)==rpowers); z}s0D]$+x  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8=T;R&U^M  
        end vAq`*]W+  
         6t TLyI$+  
        if isnorm +XJj:%yt  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Mvrc[s+o  
        end s9~W( Wi  
    end 4 Yc9Ij  
    % END: Compute the Zernike Polynomials DL|,:2`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f$iv+7<B^  
    De4UGX  
    ?BQZ\SXU  
    % Compute the Zernike functions: q>%KIBh(  
    % ------------------------------ $/5Jc[Ow  
    idx_pos = m>0; HW"|Hm$Y(  
    idx_neg = m<0; /Bid:@R  
    - P1OD)B  
    "Q A#  
    z = y; bec n$R  
    if any(idx_pos) gf2l19aP  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B1JdkL 3h  
    end ,4jkTQ*@2  
    if any(idx_neg) O!lZ%j@%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `&4L'1eF{  
    end mgL~ $  
    vO%n~l=  
    Y;p _ff  
    % EOF zernfun j=r`[B m  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  74Xk^  8  
    NAjY,)>'K  
    DDE还是手动输入的呢? ma9q?H#X  
    gNF8&T  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究