下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, -&<Whhs.@
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -YsLd 9^4
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ATR!7i\|
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ij?
/PLn+-
F$[ U|%*
qG<$Ajiin
|jM4E$
function z = zernfun(n,m,r,theta,nflag) XP@1~$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4Z/f@ZD
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F{UP;"8'
% and angular frequency M, evaluated at positions (R,THETA) on the F4K0);
% unit circle. N is a vector of positive integers (including 0), and #vry0i
% M is a vector with the same number of elements as N. Each element u;`U*@
% k of M must be a positive integer, with possible values M(k) = -N(k) X,LD
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {#{DH?=^)u
% and THETA is a vector of angles. R and THETA must have the same -=(!g&0
% length. The output Z is a matrix with one column for every (N,M) _r2J7&
% pair, and one row for every (R,THETA) pair. %*\es7m}
% tz s</2
G,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike P LueVz
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d'Zqaaf k%
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'D@-
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FXs*vg`
% and theta=0 to theta=2*pi) is unity. For the non-normalized SCz(5[MZJ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '{(UW.Awo
% D_x+:1(
% The Zernike functions are an orthogonal basis on the unit circle. ;s52{>&F]
% They are used in disciplines such as astronomy, optics, and ~{Mn{
% optometry to describe functions on a circular domain. 3"P }n
% ?2oHZ%G
% The following table lists the first 15 Zernike functions. .B\ 5OI,]
% K3=3~uY
% n m Zernike function Normalization e/^=U7:io
% -------------------------------------------------- AhNq/?Q Q~
% 0 0 1 1 ak;*W
% 1 1 r * cos(theta) 2 6qaulwV4t
% 1 -1 r * sin(theta) 2 3JVK
% 2 -2 r^2 * cos(2*theta) sqrt(6) >ss/D^YS
% 2 0 (2*r^2 - 1) sqrt(3) :duo#w"K
% 2 2 r^2 * sin(2*theta) sqrt(6) R%'^ gFk8
% 3 -3 r^3 * cos(3*theta) sqrt(8) MX@_=Sp-
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $ mI0Bk
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) }oNhl^JC
% 3 3 r^3 * sin(3*theta) sqrt(8) yfm^?G|sW
% 4 -4 r^4 * cos(4*theta) sqrt(10) $5*WLG&AK
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a|?4)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) h}xeChw]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M{*Lp6h
% 4 4 r^4 * sin(4*theta) sqrt(10) TsGE cxIg
% -------------------------------------------------- z-b*D}&
% nG;8:f`
% Example 1: Q*b]_0Rb
% M6}3wM*4
% % Display the Zernike function Z(n=5,m=1) 'CN|'W)g7
% x = -1:0.01:1; WASU0
% [X,Y] = meshgrid(x,x); $bsG]
% [theta,r] = cart2pol(X,Y); ?! `=X>5
% idx = r<=1; 7bV{Q355P
% z = nan(size(X)); `3hSLR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); uxzze~_+C
% figure E~_]Lfs)
% pcolor(x,x,z), shading interp iySRY^
% axis square, colorbar ?G-e](]^<
% title('Zernike function Z_5^1(r,\theta)') UNkCL4N
% 7=DjI ~
% Example 2: 1SR+m>pL
%
EMfdBY5
% % Display the first 10 Zernike functions Yx>"bv
% x = -1:0.01:1; t>[KVVg
W
% [X,Y] = meshgrid(x,x); %!PM&zV
% [theta,r] = cart2pol(X,Y); (owrdPT!
% idx = r<=1; P`e!Z:
% z = nan(size(X)); &w1P\4?G
% n = [0 1 1 2 2 2 3 3 3 3]; $n^gmhp
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $O dCL
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ()3O=!
% y = zernfun(n,m,r(idx),theta(idx)); \
5,MyB2/`
% figure('Units','normalized') &