切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9482阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [9C{\t  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ="('  #o  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ROr|n]aJj  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? X/f?=U  
    O~OM.:al&  
    S*NeS#!v  
    xUF5  
    *5KDu$'(e  
    function z = zernfun(n,m,r,theta,nflag) "rnVPHnQR  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |/X+2K}3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,Ma%"cWVC  
    %   and angular frequency M, evaluated at positions (R,THETA) on the tiPZ.a~k  
    %   unit circle.  N is a vector of positive integers (including 0), and #G]g  
    %   M is a vector with the same number of elements as N.  Each element ?&JK q^9\I  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) cB6LJ}R  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >aAsUL5W  
    %   and THETA is a vector of angles.  R and THETA must have the same {%D4%X<  
    %   length.  The output Z is a matrix with one column for every (N,M) blKF78  
    %   pair, and one row for every (R,THETA) pair. 2Ah B)8bG  
    % Ys>Z=Eky  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /^9=2~b  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >ra)4huZ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral fD*jzj7o ,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y-uSpW  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized he|.Ow  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2f5YkmGc";  
    % W.c>("gC  
    %   The Zernike functions are an orthogonal basis on the unit circle. !}hG|Y6s  
    %   They are used in disciplines such as astronomy, optics, and b"y4-KV  
    %   optometry to describe functions on a circular domain. *&~(>gNF,  
    % wln"g,ct  
    %   The following table lists the first 15 Zernike functions. eWr2UXv$  
    % 1nR\ m+{  
    %       n    m    Zernike function           Normalization 6lm<>#_  
    %       -------------------------------------------------- ap<r )<u  
    %       0    0    1                                 1 PU-L,]K  
    %       1    1    r * cos(theta)                    2 s]pNT1,  
    %       1   -1    r * sin(theta)                    2 [JEf P/n|.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) m>f8RBp]'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) t]hfq~Ft  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) EGzlRSgO  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;+*/YTkC+P  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _ZE&W  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1cS*T>`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4t 0p!IxG  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) GO3KKuQ=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $lg{J$ h8  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qb$M.-\ne  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V6&6I  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) U U3o (Yq  
    %       -------------------------------------------------- '>GPk5Nq77  
    % JvF0s}#4  
    %   Example 1: w&*oWI$i  
    % A&{eC C  
    %       % Display the Zernike function Z(n=5,m=1) M%OUkcWCk  
    %       x = -1:0.01:1; 47)\\n_\z  
    %       [X,Y] = meshgrid(x,x); 6$t+Q~2G!  
    %       [theta,r] = cart2pol(X,Y); XrJLlH>R4  
    %       idx = r<=1; C[CNJ66  
    %       z = nan(size(X)); PY#_$ C  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx));  63VgQ  
    %       figure ;P^}2i[q>[  
    %       pcolor(x,x,z), shading interp z8j7K'vV1  
    %       axis square, colorbar N7!(4|14  
    %       title('Zernike function Z_5^1(r,\theta)') A#gy[.Bb  
    % 6('CB|ga  
    %   Example 2: !O4)Y M  
    % GQYB2{e>  
    %       % Display the first 10 Zernike functions @xr}(.  
    %       x = -1:0.01:1; @[#)zO  
    %       [X,Y] = meshgrid(x,x); Qp-P[Tc  
    %       [theta,r] = cart2pol(X,Y); K@?K4o   
    %       idx = r<=1; ,L; y>::1  
    %       z = nan(size(X)); 7 iQa)8,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; v7<r- <I[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; WH<\f |xR  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; bp'\nso/  
    %       y = zernfun(n,m,r(idx),theta(idx)); nq\~`vH|Gd  
    %       figure('Units','normalized') `We?j7O  
    %       for k = 1:10 9O\yIL  
    %           z(idx) = y(:,k); X.AE>fx*h  
    %           subplot(4,7,Nplot(k)) 6%MM)Vj+u  
    %           pcolor(x,x,z), shading interp |eksvO'~  
    %           set(gca,'XTick',[],'YTick',[]) 0U! _o2]  
    %           axis square _pkmHj(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) } a!HbH  
    %       end ,7;euV5X  
    % ,uZz?7mO  
    %   See also ZERNPOL, ZERNFUN2. S~B{G T\M  
    <1<0odB  
    |21*p#>  
    %   Paul Fricker 11/13/2006 G1:"Gxja  
    :/6u*HwZh  
    v V>=Uvm  
    juMHc$d17  
    }x:}9iphF  
    % Check and prepare the inputs: ,qIut|C*  
    % ----------------------------- cK75Chsu  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $ Zj3#l:rK  
        error('zernfun:NMvectors','N and M must be vectors.') ^ R3g7 DG  
    end G*g*+D[HM  
    1~S'' [  
    '\P+Bu]6&  
    if length(n)~=length(m) o),@I#fM  
        error('zernfun:NMlength','N and M must be the same length.') UW&K\P  
    end )Mh5q&ow  
    !(sL  
    >iI_bcqF  
    n = n(:); [pSQ8zdF"  
    m = m(:); 7=HpEc  
    if any(mod(n-m,2)) S^r[%l<'n  
        error('zernfun:NMmultiplesof2', ... `m\ ?gsw7  
              'All N and M must differ by multiples of 2 (including 0).') dZ Ab' :  
    end RggO|s+0;  
    Zig3WiD&  
    3u'@anre  
    if any(m>n) ~/!jKH7`j  
        error('zernfun:MlessthanN', ... `rpmh7*WV  
              'Each M must be less than or equal to its corresponding N.') ?$=Ml$  
    end F ZN}T{<  
    B~%SB/eu  
    $HAwd6NI  
    if any( r>1 | r<0 ) NYPjN9L  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,PX7}//X^  
    end l?KP /0`  
    vH@b  
    X`7O%HiX/`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2lxA/.f  
        error('zernfun:RTHvector','R and THETA must be vectors.') &_3o1<  
    end )SfM`W)Y  
    rrl{3 ?  
    @Z89cTO  
    r = r(:); :-j/Y'H_  
    theta = theta(:);  sM9NHwg  
    length_r = length(r); 2`V(w[zTr  
    if length_r~=length(theta) (n2=.9k!  
        error('zernfun:RTHlength', ... 1(/rg  
              'The number of R- and THETA-values must be equal.') `LJ.NY pP  
    end FwDEYG  
    ,DCrhk  
    F "-GhjK  
    % Check normalization: MYUL y2)  
    % -------------------- Cil1wFBb  
    if nargin==5 && ischar(nflag) ZU5;w  
        isnorm = strcmpi(nflag,'norm'); FeJKXYbk<  
        if ~isnorm 6W)#F O`  
            error('zernfun:normalization','Unrecognized normalization flag.') "Wy!,RH  
        end 4iJ4g%]  
    else vcSb:('  
        isnorm = false; xgWVxX^)  
    end K# h7{RE  
    r,ep{ p  
    _j]vR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =@.5J'!  
    % Compute the Zernike Polynomials "=UhTE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  R'aA\k-  
    $3(E0\#O  
    0fx.n  
    % Determine the required powers of r: `W%R  
    % ----------------------------------- jk5C2dy  
    m_abs = abs(m); qhNYQ/uS  
    rpowers = []; nk+9 J#Gs  
    for j = 1:length(n) ZV`o: Gd  
        rpowers = [rpowers m_abs(j):2:n(j)]; uD4$<rSHb  
    end =]0AZ  
    rpowers = unique(rpowers); 0V'XE1h  
    ?YnB:z*eV  
    G V%@A  
    % Pre-compute the values of r raised to the required powers, i",oPz7  
    % and compile them in a matrix: 8o,"G}Hjk  
    % ----------------------------- Y^'mBM#j  
    if rpowers(1)==0 {Lvta4}7(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x-SYfvYY  
        rpowern = cat(2,rpowern{:}); I>@Qfc bG  
        rpowern = [ones(length_r,1) rpowern]; ^%/d]Zwb  
    else g #[,4o;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); - s0QEQ  
        rpowern = cat(2,rpowern{:}); @BqSu|'Du,  
    end U_5\ FM  
    FMAt6HfU  
    8z* /J=n  
    % Compute the values of the polynomials: f/g-b]0  
    % --------------------------------------  t/a  
    y = zeros(length_r,length(n)); J\\o# -H  
    for j = 1:length(n) ^vo]bq7  
        s = 0:(n(j)-m_abs(j))/2; B@,#,-=  
        pows = n(j):-2:m_abs(j); 3NgyF[c  
        for k = length(s):-1:1 # |,c3$  
            p = (1-2*mod(s(k),2))* ...  ),f d,  
                       prod(2:(n(j)-s(k)))/              ... qr?RU .W  
                       prod(2:s(k))/                     ... r#WAS2.TP  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X=pPkgW  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i}Cy q  
            idx = (pows(k)==rpowers); {_]<mwd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); usI$  
        end u'aWvN y+  
         4 UnN~  
        if isnorm #l_hiD`;r  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u$mp%d8  
        end IJofbuzw:  
    end G1/  
    % END: Compute the Zernike Polynomials TXK82qTdf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S$ 91L  
    _u8d`7$*%  
    S{c;n*xf  
    % Compute the Zernike functions: C9E@$4*  
    % ------------------------------ A@JZK+WB}  
    idx_pos = m>0; 6#1:2ZHKG  
    idx_neg = m<0; H?j!f$sw  
    pc/]t^]p  
    nWv6I&  
    z = y; zNJ-JIo%  
    if any(idx_pos) =idZvD  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [USE&_RN  
    end I07_o"3>qr  
    if any(idx_neg) Ixv/xI  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Bhw|!Y&%  
    end 5`[B:<E4  
    bGa "r  
    KVCj06}j  
    % EOF zernfun HDT-f9%}<4  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  }475c{  
    x6c#[:R&  
    DDE还是手动输入的呢? 9?_ybO~Oq  
    >&3ATH;&(  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究