切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9355阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, O(f&0h !  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, "]{"4qV1=  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? o[CjRQY]P  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? mnWbV\VY  
    e.^Y4(  
    \%:]o-+"I  
     al:c2o  
    f@= lK?Pfh  
    function z = zernfun(n,m,r,theta,nflag) wPU<jAQyp  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @](\cT64i3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N  <E&"]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7Ke#sW.HN  
    %   unit circle.  N is a vector of positive integers (including 0), and T~'9p`IW  
    %   M is a vector with the same number of elements as N.  Each element B[Fuyy?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) K=C).5=U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Lg4I6 G  
    %   and THETA is a vector of angles.  R and THETA must have the same hV4B?##O  
    %   length.  The output Z is a matrix with one column for every (N,M) }8qsE  
    %   pair, and one row for every (R,THETA) pair. 8q& *tpE  
    % Z<0+<tt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5&*B2ZBzH  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A?sU[b6_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral #ZRplA~C7]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y:+s*x6Vg  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g$ oe00b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nob^ I5?  
    % `L=$ ,7`  
    %   The Zernike functions are an orthogonal basis on the unit circle. lhA<wV1-9G  
    %   They are used in disciplines such as astronomy, optics, and Q35/Sp[;x  
    %   optometry to describe functions on a circular domain. \aO.LwYm;:  
    % nu#_,x<LS  
    %   The following table lists the first 15 Zernike functions. XK5qE"  
    % s GP}>w-JZ  
    %       n    m    Zernike function           Normalization :{v:sK  
    %       -------------------------------------------------- #TX=%x6  
    %       0    0    1                                 1 /8` S}g+  
    %       1    1    r * cos(theta)                    2 W<D(M.61A  
    %       1   -1    r * sin(theta)                    2 NK@G0p~O  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 88ydAx#P  
    %       2    0    (2*r^2 - 1)                    sqrt(3) wB;'+d&  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Vhs:X~=qL  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) z<F.0~)jb  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :K6(`J3Y"^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) k&1~yW  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *?+maK{5+  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) emV@kN.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "kjjq~l  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) nJ4CXSdE  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N|ut^X+|\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]{[VTjC7rY  
    %       -------------------------------------------------- df7z& {R  
    % _;B N;].  
    %   Example 1: sQS2U6  
    % w^&TG3m1~  
    %       % Display the Zernike function Z(n=5,m=1) 2Ax HhD.  
    %       x = -1:0.01:1; 7n~BDqT  
    %       [X,Y] = meshgrid(x,x); RkJ\?  
    %       [theta,r] = cart2pol(X,Y); @:. 6'ji,`  
    %       idx = r<=1; uv2!][  
    %       z = nan(size(X)); |j i}LWcD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); X3:-+]6,d  
    %       figure 1lNg} !)[K  
    %       pcolor(x,x,z), shading interp s.rS06x  
    %       axis square, colorbar R?Q@)POW  
    %       title('Zernike function Z_5^1(r,\theta)') t _Q/v  
    % BV&}(9z  
    %   Example 2: <)]B$~(a  
    % By@<N [I@  
    %       % Display the first 10 Zernike functions F^=|NlU&%  
    %       x = -1:0.01:1; >29eu^~nh  
    %       [X,Y] = meshgrid(x,x); T!hU37g h?  
    %       [theta,r] = cart2pol(X,Y); h@z(yB j:0  
    %       idx = r<=1; |Js96>B:  
    %       z = nan(size(X)); 4.3Bz1p&#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; nFlj`k<]Y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; t?v0ylN  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; VYhZ0;' '  
    %       y = zernfun(n,m,r(idx),theta(idx)); w<awCp  
    %       figure('Units','normalized') ,7pO-:*g  
    %       for k = 1:10 I,AI$A  
    %           z(idx) = y(:,k); %t\`20-1<  
    %           subplot(4,7,Nplot(k)) mV;Egm{A\  
    %           pcolor(x,x,z), shading interp hSD)|  
    %           set(gca,'XTick',[],'YTick',[]) S&V5zB""n  
    %           axis square z1LATy  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) E<a~ `e  
    %       end CPGXwM=   
    % (G"b)"Qum  
    %   See also ZERNPOL, ZERNFUN2. Ckvm3r\i2  
    nrA}36E  
    Us YH#?|O  
    %   Paul Fricker 11/13/2006 9h$-:y3  
    9r7QE&.  
     ?S0VtHQ  
    b9OT~i=S|  
    JPiC/  
    % Check and prepare the inputs: mYb8   
    % ----------------------------- ;'pEzz?k"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tZ=BK:39\  
        error('zernfun:NMvectors','N and M must be vectors.') gW6lMyiLb  
    end d?&?$qf[  
    U;6~]0^K  
    Vk$zA<sw"  
    if length(n)~=length(m) /Yx 1S'5  
        error('zernfun:NMlength','N and M must be the same length.') cCU'~  
    end C|W_j&S65  
    .$4DK*  
    (XRj##G{  
    n = n(:); (1(3:)@S6  
    m = m(:); iAT&C`,(&  
    if any(mod(n-m,2)) S_6`.@B}  
        error('zernfun:NMmultiplesof2', ... pp#Kb 2*  
              'All N and M must differ by multiples of 2 (including 0).') f<WnPoV  
    end Z[AJat@H  
    Ajq;\- :  
    Y.i<7pBt  
    if any(m>n) ^=D77 jS  
        error('zernfun:MlessthanN', ... eJ%~6c`@!  
              'Each M must be less than or equal to its corresponding N.') %o#D"  
    end rQ*'2Zf'<  
    v<tH 3I+   
    UY{ Uo@k9x  
    if any( r>1 | r<0 ) ?GD{}f33  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') v>)[NAY9  
    end }.2pR*W  
    ERGDo=j  
    =t&B8+6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $|6Le; K  
        error('zernfun:RTHvector','R and THETA must be vectors.') HC4ad0Gs+{  
    end cGsxfwD  
    xHykU;p@  
    O`t ]#  
    r = r(:); k'%c|kx8U  
    theta = theta(:); x;Dr40wD@y  
    length_r = length(r); yKOf]m>#  
    if length_r~=length(theta) U`:#+8h-}  
        error('zernfun:RTHlength', ... dm.?-u;C  
              'The number of R- and THETA-values must be equal.') *-_` xe  
    end V)Z*X88:Tv  
    j^iH[pN] \  
    N_q7ip%z  
    % Check normalization: >S5D-)VX  
    % -------------------- SP HeI@i  
    if nargin==5 && ischar(nflag) }%$9nq3  
        isnorm = strcmpi(nflag,'norm'); s.C-II?e  
        if ~isnorm !pw%l4]/t  
            error('zernfun:normalization','Unrecognized normalization flag.') _h@7>+vl~  
        end A+Y>1-=JO  
    else yn!LJT[~2  
        isnorm = false; 3Eiy/  
    end dWD9YIYf  
    >\} 2("bv  
    JYm@Llf)$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k@4]s_2  
    % Compute the Zernike Polynomials B{s[SZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NO`a2HR$  
    vh?({A#>.E  
    A{9Hm:)  
    % Determine the required powers of r: ?h K+h.{  
    % ----------------------------------- R\0]\JEc  
    m_abs = abs(m); wvT!NN K2  
    rpowers = []; ~O@V;y  
    for j = 1:length(n) UTi n0k  
        rpowers = [rpowers m_abs(j):2:n(j)]; 0~Yg={IKhK  
    end I7BfA,mZ7  
    rpowers = unique(rpowers); 4d0PW#97.  
    G:u[Lk#6K  
    A8c'CMEm  
    % Pre-compute the values of r raised to the required powers, QE< 63|  
    % and compile them in a matrix: f} } Bb8  
    % ----------------------------- H -.3r  
    if rpowers(1)==0 MfeW|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Lk#u^|Eq7=  
        rpowern = cat(2,rpowern{:}); "-v9V7KCM  
        rpowern = [ones(length_r,1) rpowern]; {l *ps-fi  
    else #0G9{./C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SGNi~o  
        rpowern = cat(2,rpowern{:}); a5Xr"-  
    end t4h05i  
    <Er|s^C  
    bhe|q`1,E  
    % Compute the values of the polynomials: Qkr'C n  
    % -------------------------------------- qZ_^#%zO  
    y = zeros(length_r,length(n)); 3eI:$1"Q  
    for j = 1:length(n) Y&'2/zI6~  
        s = 0:(n(j)-m_abs(j))/2; ]C)PZZI='  
        pows = n(j):-2:m_abs(j); m]7yc>uDy  
        for k = length(s):-1:1 xiA9X]FB  
            p = (1-2*mod(s(k),2))* ... ih ,8'D4  
                       prod(2:(n(j)-s(k)))/              ... wAkoX  
                       prod(2:s(k))/                     ... ^U~YG=!ww  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7F|T5[*l  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); C@]Z&H;  
            idx = (pows(k)==rpowers); X5>p~;[9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); OWOj|jM  
        end 8{Zgvqbb  
         f*oL8"?u&  
        if isnorm + ` Em&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G _42ckLq  
        end dVO|q9 /  
    end iCl,7$[*  
    % END: Compute the Zernike Polynomials 'ky'GzX,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V-7!)&q  
    #FuOTBNvB  
    E@ t~juF!  
    % Compute the Zernike functions: L2Gm0 v  
    % ------------------------------ ~73YOGiGJH  
    idx_pos = m>0; zpg*hlv  
    idx_neg = m<0; }p8a'3@Z  
    KS(s<ip|  
    lQ! 6n  
    z = y; Qs;bVlp!H  
    if any(idx_pos) YM1@B`yWE  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /7P4[~vw  
    end +sgishqn9  
    if any(idx_neg) ^P&y9dC.  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q'K=Ly+  
    end lv$tp,+  
    z4{|?0=C  
    f>p;Jh{2fn  
    % EOF zernfun #1V vK  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |W`1#sP>  
    li%=<?%T  
    DDE还是手动输入的呢? I_'vVbK+>  
    (9fqUbG  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究