下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, yKc-:IBb{u
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, {X!OK3e
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? n Nt28n@
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <Riz!(G
my?Ly(#
6_j |@
VfoWPyWD#
bv+u7B6,
function z = zernfun(n,m,r,theta,nflag) R_!.vGhkN
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4{P+p!4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w*qj0:i5as
% and angular frequency M, evaluated at positions (R,THETA) on the 6mM9p)"$
% unit circle. N is a vector of positive integers (including 0), and Rf:.'/<^
% M is a vector with the same number of elements as N. Each element aFnel8
% k of M must be a positive integer, with possible values M(k) = -N(k) t3;Zx+Br
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
I1Q!3P
% and THETA is a vector of angles. R and THETA must have the same 4>KF`?%4
% length. The output Z is a matrix with one column for every (N,M) Zy}tZ RG
% pair, and one row for every (R,THETA) pair. GK@OdurAR
% ,Bk5(e
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7L!JP:v
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), idI w7hi4
% with delta(m,0) the Kronecker delta, is chosen so that the integral +9_Y0<C
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gEh/m.L7
% and theta=0 to theta=2*pi) is unity. For the non-normalized zHJCXTM
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +?_!8N8
% oZ'a}kF
% The Zernike functions are an orthogonal basis on the unit circle. y*
+y&
% They are used in disciplines such as astronomy, optics, and /R#zu_i
% optometry to describe functions on a circular domain. /"{d2
% 5UEZpxnv
% The following table lists the first 15 Zernike functions. }9fa]D-a?
% .U1wVIM
% n m Zernike function Normalization :Jd7q.
% -------------------------------------------------- 98[uRywI
% 0 0 1 1 1dH|/9
% 1 1 r * cos(theta) 2 &.)=>2
% 1 -1 r * sin(theta) 2 RTOA'|[0M
% 2 -2 r^2 * cos(2*theta) sqrt(6) Rlq7.2cP
% 2 0 (2*r^2 - 1) sqrt(3) $RD~,<oEm
% 2 2 r^2 * sin(2*theta) sqrt(6) }icCp)b>v
% 3 -3 r^3 * cos(3*theta) sqrt(8) Blpk
n1
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2dn^K3
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8)
WTSh#L
% 3 3 r^3 * sin(3*theta) sqrt(8) S$mv(C
% 4 -4 r^4 * cos(4*theta) sqrt(10) 78&|^sq
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z0 "DbZ;d
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) tLE8+[
SU
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0m@+ &X>w
% 4 4 r^4 * sin(4*theta) sqrt(10) VvhfD2*T
% -------------------------------------------------- ,-UF5U
% vW+6_41ZM
% Example 1: Z\!,f.>g
% g3^s_*A
% % Display the Zernike function Z(n=5,m=1) }[p{%:tP
% x = -1:0.01:1; cx\"r
% [X,Y] = meshgrid(x,x); il0K ^i
% [theta,r] = cart2pol(X,Y); DX_mrG
% idx = r<=1; e"
v%m'G
% z = nan(size(X)); bZu'5+(@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); YI0
wr1N
% figure X=)V<2WO
% pcolor(x,x,z), shading interp R5HT
EB
% axis square, colorbar sx,$W3zI'G
% title('Zernike function Z_5^1(r,\theta)') %>|FJ
% (J:+'u
% Example 2: T4eJ:u* ;
% 'xW=qboOp
% % Display the first 10 Zernike functions E_,/)U8
% x = -1:0.01:1; kg/ B<w'
% [X,Y] = meshgrid(x,x); te@m#`p9
% [theta,r] = cart2pol(X,Y); ]N>ZOV,>
% idx = r<=1; Y=S0|!u
% z = nan(size(X)); IwyA4Ak Ru
% n = [0 1 1 2 2 2 3 3 3 3]; ]*0zir/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; QkrQM&Im
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !=9x=
% y = zernfun(n,m,r(idx),theta(idx)); TvU
z^
% figure('Units','normalized') K~(RV4oF8B
% for k = 1:10 ghQ B
% z(idx) = y(:,k); Jh"[ug
% subplot(4,7,Nplot(k)) 15:9JVH3D
% pcolor(x,x,z), shading interp {lI}a8DP
% set(gca,'XTick',[],'YTick',[]) ZrN(Mp
% axis square >"W^|2R
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) f:;-ZkIU ?
% end PGTEIptX7
% g~U(w
% See also ZERNPOL, ZERNFUN2.
[gW eD
fNNl1Vls
N[{rsUBd
% Paul Fricker 11/13/2006 iI GK"}
\0\ O/^W0
~Ztn(1N
UP](1lAf
I9?\Jbqg
% Check and prepare the inputs: @Q1!xA^S
% ----------------------------- 2?,Jn&i5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t3L>@NWG
error('zernfun:NMvectors','N and M must be vectors.') /@LkH$
end ,np=m17
AR |4^
Ah2@sp,z
if length(n)~=length(m) %\'=Y/yP
error('zernfun:NMlength','N and M must be the same length.') fUw:jExz
end `d <`>
U9
iI2$
|MNSIb&,W
n = n(:); w2B)$u
m = m(:); gawY{Jr8I
if any(mod(n-m,2)) {;$oC4
error('zernfun:NMmultiplesof2', ... [RF,0>^b
'All N and M must differ by multiples of 2 (including 0).') dL42)HP5
end teok *'b:
}*x1e_m}H
n_kwtWX(
if any(m>n) CHnclT
error('zernfun:MlessthanN', ... E'6>3n
'Each M must be less than or equal to its corresponding N.') '54\!yQ<{
end Vgm*5a6t
OVLVsNg
4"&-a1N
if any( r>1 | r<0 ) 'm<Lx _i
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7?dWAUF
end k*1Lr\1
#|9W9\f,
BJ
UG<k
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lZk
z\
error('zernfun:RTHvector','R and THETA must be vectors.') 3kxo1eb
end yZlT#^$\
LOU P
l7QxngWw
r = r(:); juEPUsE
theta = theta(:); 4\z@Evm
length_r = length(r); ':.Hz]]/A
if length_r~=length(theta) a_N7X
error('zernfun:RTHlength', ... t<rIg1
'The number of R- and THETA-values must be equal.') u^MKqI
end VMah3T!
N[Z`tk?-
s^u Y
% Check normalization: 66val"^W
% -------------------- ~[CFs'`(2
if nargin==5 && ischar(nflag) z:Am1B
isnorm = strcmpi(nflag,'norm'); \%7*@&
if ~isnorm e!VtDJDS
error('zernfun:normalization','Unrecognized normalization flag.') [CQR
end 1T|f<ChIF<
else P<pv@l9)
isnorm = false; .SC*! ,
end )n&hO_c/
,z&S;f.f
'5h`="
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |4\1V=(
% Compute the Zernike Polynomials |=;hQ2HyF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^s)`UZ<C=
KZKE&bTx
DI\=udN
% Determine the required powers of r: xsa`R^5/c
% ----------------------------------- 53t_#Yte
m_abs = abs(m);
7)2K6<q
rpowers = []; )Do 0
for j = 1:length(n) bq/Aopfr
rpowers = [rpowers m_abs(j):2:n(j)]; K P]ar.
end 1Q@]b_"Xh
rpowers = unique(rpowers); YTTyMn
G9:XEEN
.`Rt
% Pre-compute the values of r raised to the required powers, i{^T;uAE
% and compile them in a matrix: d:)#-x*h7
% ----------------------------- aHN"I
if rpowers(1)==0 868X/lL
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @!`__>K
rpowern = cat(2,rpowern{:}); 5Zq
hyv=
rpowern = [ones(length_r,1) rpowern]; 3U<m\A1
else 4!dc/K
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J?O0ixU
rpowern = cat(2,rpowern{:}); 4l 67B]o
end P%2v(
TIGtX]`
`
-_! %m/
% Compute the values of the polynomials: 'rB%a<
% -------------------------------------- (=j;rfvP
y = zeros(length_r,length(n)); UWT%0t_T
for j = 1:length(n) GD4S/fn3
s = 0:(n(j)-m_abs(j))/2; yd;e;Bb7*
pows = n(j):-2:m_abs(j); ovKM;cRs/
for k = length(s):-1:1 <YyE1|
p = (1-2*mod(s(k),2))* ... v0DDim?cc
prod(2:(n(j)-s(k)))/ ... -#ZvjEaey
prod(2:s(k))/ ... Qu|CXUk
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1_+ h"LE
prod(2:((n(j)+m_abs(j))/2-s(k))); ?tLApy^`?
idx = (pows(k)==rpowers); p@jw)xI
y(:,j) = y(:,j) + p*rpowern(:,idx); D?n6h\h\$%
end `*s:[k5k
:+\0.\K0!
if isnorm AR[m+E
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _,drOF|e
end \V-N~_-H
end WE\TUENac(
% END: Compute the Zernike Polynomials `;85Mo:qJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3"x_Y
CXq[VYM&X
oxxuw
Dcl
% Compute the Zernike functions: ep6+YK:cn
% ------------------------------ L$5,RUy
idx_pos = m>0; fl-J:`zyyZ
idx_neg = m<0; JX&U?Z
9L>?N:%5
WZ' Z"'
z = y; 7DAP_C
if any(idx_pos) ^`cv6;)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ${T/b(NM
end +(*HDa|
if any(idx_neg) =+iY<~8
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); t'eaR-
end cQEUHhRg!
B<d=;V
AlQhKL}|s
% EOF zernfun %Y&48''"