切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9380阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, lg (>n&  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, L<<v   
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6NFLk+kqN  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? OH+2)X  
    |@>Zc5MY$  
    c3Ig4n0Y>  
    ok&v+A  
    ,qgR+]?({  
    function z = zernfun(n,m,r,theta,nflag) Tc;BE  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. OJcI0(G  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N k|_ >I  
    %   and angular frequency M, evaluated at positions (R,THETA) on the cz>`$Zz  
    %   unit circle.  N is a vector of positive integers (including 0), and !G ~\9  
    %   M is a vector with the same number of elements as N.  Each element Me,AE^pgL'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) #0qMYe>Y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, oB}rd9  
    %   and THETA is a vector of angles.  R and THETA must have the same !.{{QwZ  
    %   length.  The output Z is a matrix with one column for every (N,M) fV/  
    %   pair, and one row for every (R,THETA) pair. s.}:!fBk  
    % ? v@q&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike '&xRb*  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f7]C1!]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;}4e+`fF|  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $J:~jY/J  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l>>, ~  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b WZ X  
    % U &W}c^#  
    %   The Zernike functions are an orthogonal basis on the unit circle. }5;3c%  
    %   They are used in disciplines such as astronomy, optics, and T^ah'WmNw  
    %   optometry to describe functions on a circular domain. p7)b@,  
    % 0 .t1p(x;  
    %   The following table lists the first 15 Zernike functions. }JWk?  
    % b{JxTT}03  
    %       n    m    Zernike function           Normalization ?K?v64[  
    %       -------------------------------------------------- w~9=6|_  
    %       0    0    1                                 1 &4l >_  
    %       1    1    r * cos(theta)                    2 ? #;zB  
    %       1   -1    r * sin(theta)                    2 |a Ht6F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !g-19at  
    %       2    0    (2*r^2 - 1)                    sqrt(3) {~d8_%:b  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) o[eIwGxZ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) B,dKpz;kFg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) O/Wc@Ln  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ut^^,w{o>  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =G2A Ufn   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "Q@ZS2;A  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) # OQ(oyT  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) HPR*:t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =i)k@w_(x  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) NCysYmt  
    %       -------------------------------------------------- ~v<,6BS<$Z  
    % \=/^H  
    %   Example 1: D Psf]  
    % _-I0f##.  
    %       % Display the Zernike function Z(n=5,m=1) @=[ SsS  
    %       x = -1:0.01:1; ]LhNP}c  
    %       [X,Y] = meshgrid(x,x); I806I@ix  
    %       [theta,r] = cart2pol(X,Y); $.@)4Nu!_  
    %       idx = r<=1; 0Sz iTM  
    %       z = nan(size(X)); N^. !l_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); xcYYo'U  
    %       figure =w!14@W  
    %       pcolor(x,x,z), shading interp i;>Hy|  
    %       axis square, colorbar "i1~YE  
    %       title('Zernike function Z_5^1(r,\theta)') ='cr@[~i  
    % #_bSWV4  
    %   Example 2: Z*|qbu)  
    % ^dR5fAS  
    %       % Display the first 10 Zernike functions o5FBqt  
    %       x = -1:0.01:1; WV"{oED  
    %       [X,Y] = meshgrid(x,x); LJMw-#61sj  
    %       [theta,r] = cart2pol(X,Y); xe6 2gaT  
    %       idx = r<=1; @GG Pw9a  
    %       z = nan(size(X)); Q pY:L  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >p 7e6%  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8Mq] V v  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; LPk85E  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3RP}lb  
    %       figure('Units','normalized') n'JwT! A  
    %       for k = 1:10 q<b;xx  
    %           z(idx) = y(:,k); pFg9-xd%  
    %           subplot(4,7,Nplot(k)) *qE[Y0Cd  
    %           pcolor(x,x,z), shading interp xla9:*pPn  
    %           set(gca,'XTick',[],'YTick',[]) )nS;]7pB@  
    %           axis square bd2"k;H<o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k]"Rg2>%  
    %       end v:<UbuJw  
    % zRJopcE<  
    %   See also ZERNPOL, ZERNFUN2. s Hu~;)  
    RCq_FY  
    @&]j[if (s  
    %   Paul Fricker 11/13/2006 Ss&R!w9p  
    $IQ  !g  
    -<i&`*zG  
    $N=A,S  
    ![iAALPNl  
    % Check and prepare the inputs: ;ePmN|rq;  
    % ----------------------------- C``%<)WC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) swnov[0  
        error('zernfun:NMvectors','N and M must be vectors.') CBTa9|57  
    end 2Fce| Tn  
    vpUS(ztvs  
    cv0}_<Tyx  
    if length(n)~=length(m) K{HRjNda#  
        error('zernfun:NMlength','N and M must be the same length.') vGC^1AM  
    end =1%3". "n@  
    1k\1U  
    M*E4:A9_M  
    n = n(:); ewk62 {  
    m = m(:); UtiS?w6  
    if any(mod(n-m,2)) pscCXk(|A`  
        error('zernfun:NMmultiplesof2', ... fdN-Zq@'  
              'All N and M must differ by multiples of 2 (including 0).') t.>vLzrU  
    end hsljJvs  
    ~/h P6*  
    \sF}NBNT@  
    if any(m>n) z1F[okLA  
        error('zernfun:MlessthanN', ... w'.ny<Pe  
              'Each M must be less than or equal to its corresponding N.') Y'Jb@l`$-  
    end d;(L@9HHD  
    oHbEHS61  
    !w98 [BE7  
    if any( r>1 | r<0 ) U,+kV?Z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') TjlKy  
    end )D@1V=9,  
    z8= Gc$w!  
    {`~{%2ayq7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) dLal 15Pb  
        error('zernfun:RTHvector','R and THETA must be vectors.') >NW /0'/  
    end wI}5[m  
    ."PR Z,  
    :j vx-jQ  
    r = r(:); -";'l @D=  
    theta = theta(:); z(3mhMJY  
    length_r = length(r); EH]5ZZ[Z  
    if length_r~=length(theta) W==HV0n  
        error('zernfun:RTHlength', ... =6q?XOM  
              'The number of R- and THETA-values must be equal.') ,$sq]_t  
    end * "ER8\  
    FymA_Eq  
    =2)5_/9au  
    % Check normalization: OcMd'fwO  
    % -------------------- us4.-L  
    if nargin==5 && ischar(nflag) 5}~*,_J2Z  
        isnorm = strcmpi(nflag,'norm'); Y+V*$73`  
        if ~isnorm $ah, $B  
            error('zernfun:normalization','Unrecognized normalization flag.') 1U~AupHE  
        end Nj.(iBmr  
    else <{YP=WYW  
        isnorm = false; @|%t<{y^I  
    end djPr 4Nog  
    bu%@1:l  
    (OYR, [*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =q^o6{d0"  
    % Compute the Zernike Polynomials C 1|e1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3>0/WbA:7E  
    jY:(Tv3~  
    Fx0K.Q2Y0  
    % Determine the required powers of r: q!""pr<n  
    % ----------------------------------- %zd1\We  
    m_abs = abs(m); //e.p6"8h  
    rpowers = []; H<%7aOwO2  
    for j = 1:length(n) BYVp~!u  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7-w +/fv  
    end }o=R7n%  
    rpowers = unique(rpowers); zScV 9,H1  
    wv ,F>5P  
    *A GC[w}/  
    % Pre-compute the values of r raised to the required powers, T6Ue\Sp'  
    % and compile them in a matrix: QXq~e  
    % ----------------------------- "a5?cX;  
    if rpowers(1)==0 {.H}+@0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .-`7Av+7  
        rpowern = cat(2,rpowern{:}); b\][ x6zJp  
        rpowern = [ones(length_r,1) rpowern]; .+ai dWd  
    else (~}yt.7K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qp  
        rpowern = cat(2,rpowern{:}); d~S.PRg=  
    end &>@nW!n u  
    HG=!#-$9  
    %I(N  
    % Compute the values of the polynomials: uc=-+*D'I  
    % -------------------------------------- mV`Z]-$$i  
    y = zeros(length_r,length(n)); @XDU !<N  
    for j = 1:length(n) > g8;x#  
        s = 0:(n(j)-m_abs(j))/2; u~1[nH:  
        pows = n(j):-2:m_abs(j); }/(fe`7:  
        for k = length(s):-1:1 5U3="L  
            p = (1-2*mod(s(k),2))* ... Bu>srX9f  
                       prod(2:(n(j)-s(k)))/              ... K ^A\S  
                       prod(2:s(k))/                     ... Qgo0uu M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @ L%3}  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ub+>i  
            idx = (pows(k)==rpowers); k-Jj k3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); M`Y~IG}  
        end D>?%p"e  
         UG&/0{j5XV  
        if isnorm Z\(+awv  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ut& RKr3  
        end H:,rNaz7D^  
    end T"in   
    % END: Compute the Zernike Polynomials V2i*PK X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lY.FmF}k  
    G0CmY43  
    B\KvKT|\  
    % Compute the Zernike functions: 7AV!v`  
    % ------------------------------ -AD3Pd|Y[  
    idx_pos = m>0; Xy_+L_h^  
    idx_neg = m<0; NLoJmOi;L7  
    B6MMn.  
    ,hT t]w  
    z = y; r$=iM:kERC  
    if any(idx_pos) 8g(%6 ET  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); oSx]wZZ  
    end 5z5#_*)O  
    if any(idx_neg) |M)'@s:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :f 1*-y  
    end tP"C >#LO  
    rVt6tx  
    'F5&f9 A  
    % EOF zernfun B3c rms['  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  -^LUa]"E  
    gqV66xmJ3  
    DDE还是手动输入的呢? JL[$B1  
    0zQ"5e?qy  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究