切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9196阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, SP2";,%/9  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, aF"PB h=  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? DPnrzV )  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? O>rz+8T  
    %:l\Vhhz  
    r H9}VA:h  
    U .^%7.  
    tJ d/u QJ  
    function z = zernfun(n,m,r,theta,nflag) +BI%. A`2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. CD?b.Cxai  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yP@#1KLa+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the p0Ij 4   
    %   unit circle.  N is a vector of positive integers (including 0), and t2.]v><  
    %   M is a vector with the same number of elements as N.  Each element :8)3t! A  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ='eQh\T)  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }236{)DuN  
    %   and THETA is a vector of angles.  R and THETA must have the same %7TG>tc  
    %   length.  The output Z is a matrix with one column for every (N,M) fEK%)Z:0  
    %   pair, and one row for every (R,THETA) pair. xWQQX  
    % gY-}!9kW]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "NSY=)fV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =%FhY^-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral fk5pPm|MiL  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bb/A}< zD  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized MGKSaP;x  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QA!'p1{#  
    % ![%:X)?  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1@]gBv<  
    %   They are used in disciplines such as astronomy, optics, and 1G,'  
    %   optometry to describe functions on a circular domain. jA%R8hdr_  
    % <e8Ux#x/  
    %   The following table lists the first 15 Zernike functions. |2X+( F Ed  
    % `@ Ont+  
    %       n    m    Zernike function           Normalization l=&Va+K  
    %       -------------------------------------------------- QbAEW m  
    %       0    0    1                                 1 -S $Y0FDV  
    %       1    1    r * cos(theta)                    2 zv\T;_  
    %       1   -1    r * sin(theta)                    2 g7LS  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Z oKXao  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [*=UH* :'N  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) l) )Cvre+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) i'Q 4touy  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /(A rA=#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6x_D0j%^]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) CM%;r5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) .TRp74  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FVH R  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0_map z  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <m?/yRE K2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~c GH+M@  
    %       -------------------------------------------------- *3Ci4\Ew  
    % .sPa${  
    %   Example 1: Xu5^ly8p9q  
    % 2`/p V0  
    %       % Display the Zernike function Z(n=5,m=1) M}F) P&Y  
    %       x = -1:0.01:1; PHn3f;I  
    %       [X,Y] = meshgrid(x,x); c f1GA  
    %       [theta,r] = cart2pol(X,Y); Q(YQ$ i"S  
    %       idx = r<=1; _"";SqVB  
    %       z = nan(size(X)); }%eXGdC  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >_?Waz %  
    %       figure ji|tc9#6  
    %       pcolor(x,x,z), shading interp '^6x-aeq[D  
    %       axis square, colorbar k<NEauQ  
    %       title('Zernike function Z_5^1(r,\theta)') `zRm "G  
    % M)CE%/P  
    %   Example 2: j%s:d(H`  
    % };;6706a  
    %       % Display the first 10 Zernike functions A@lY{e  
    %       x = -1:0.01:1; ?qjlWCV|e  
    %       [X,Y] = meshgrid(x,x); !tofO|E5  
    %       [theta,r] = cart2pol(X,Y); ghqq%g  
    %       idx = r<=1; $5/lU }To  
    %       z = nan(size(X)); lAPvphO  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "@)9$-g  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; u~^d5["T  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6>B_ojj:  
    %       y = zernfun(n,m,r(idx),theta(idx)); |d8x55dk  
    %       figure('Units','normalized') 8L*P!j9`EY  
    %       for k = 1:10 U*6)/.J  
    %           z(idx) = y(:,k); <O?UC/$)7  
    %           subplot(4,7,Nplot(k)) )`.' QW  
    %           pcolor(x,x,z), shading interp S+(-k0  
    %           set(gca,'XTick',[],'YTick',[]) 7$* O+bkn:  
    %           axis square v= I 'rx  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n$T'gX#5  
    %       end =m?x|Zc_v  
    % ^h@1tFF  
    %   See also ZERNPOL, ZERNFUN2. PKM8MYvo  
    2aUy1*aM  
    RK`C31Ws  
    %   Paul Fricker 11/13/2006 S2 0L@e"U  
    k9<P]%  
    Xy(o0/7F9  
    zLiFk<G@Xi  
    4U;6 2 jq  
    % Check and prepare the inputs: \{ui{8+G  
    % ----------------------------- gjVKk  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8E| Nf  
        error('zernfun:NMvectors','N and M must be vectors.') l4sFT)}-J  
    end +5+?)8Ls  
    4>&%N\$*  
    ' 4nR^,  
    if length(n)~=length(m) f6h!wx  
        error('zernfun:NMlength','N and M must be the same length.') sSMcF[]@2I  
    end RMx$]wn_  
    `'{>2d%\g  
    ,:QzF"MV  
    n = n(:); SGREpOlJ+  
    m = m(:); p=65L  
    if any(mod(n-m,2)) *3A[C-1~.  
        error('zernfun:NMmultiplesof2', ... 67/&.d!  
              'All N and M must differ by multiples of 2 (including 0).') #;32(II  
    end ;r_YEPlZ  
    B9RB/vHH  
    *c+Kqz-  
    if any(m>n) yqm^4)Dp  
        error('zernfun:MlessthanN', ... Tc DkKa  
              'Each M must be less than or equal to its corresponding N.') ;oQ*gd  
    end E  K)7g~  
    p<2A4="&  
    =~i~SG/f  
    if any( r>1 | r<0 ) D,rF?t>=S  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9oK#n'hjb  
    end e.<$G'  
    >+w(%;i;  
    PyD'lsV  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :1eJc2o  
        error('zernfun:RTHvector','R and THETA must be vectors.') s\6kXR  
    end 4{h?!Z*  
    Jbud_.h9  
    ?X1vU0 c  
    r = r(:); @"9^U_Qf1z  
    theta = theta(:); 9nFPGIz+  
    length_r = length(r); tTT./-*0  
    if length_r~=length(theta) MjAF&bD^  
        error('zernfun:RTHlength', ... {jX h/`  
              'The number of R- and THETA-values must be equal.') o!`.LL%  
    end .`OyC'  
    <m"yPi3TY  
    q^ {Xn-G  
    % Check normalization: dsKEWZ =  
    % -------------------- #HD$=ECcw  
    if nargin==5 && ischar(nflag) sglYT!O  
        isnorm = strcmpi(nflag,'norm'); 6OJ`R.DM`  
        if ~isnorm f-N:  
            error('zernfun:normalization','Unrecognized normalization flag.') QfuKpcT &  
        end -0 [^w  
    else 7-"ml\z  
        isnorm = false; P#/k5]g  
    end K<O1PrC  
    T-)Ur/qp  
    FqOV/B /z2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 85rXm*Df  
    % Compute the Zernike Polynomials ;?>xuC$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [-X=lJ:+h  
     A7*<,]qT  
    _cqB p7  
    % Determine the required powers of r: #{)=%5=c  
    % ----------------------------------- j$h.V#1z  
    m_abs = abs(m); *Z! #6(G  
    rpowers = []; [HJ^'/bB'  
    for j = 1:length(n) z116i?7EnV  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7]t$t3I`  
    end seh1(q?Va4  
    rpowers = unique(rpowers); eeX^zaKl]  
    DGl_SMJb  
    ozZW7dveU  
    % Pre-compute the values of r raised to the required powers, !Pf_he  
    % and compile them in a matrix: Om%{fq&  
    % ----------------------------- G992{B  
    if rpowers(1)==0 CQf!<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m}\G.$h4  
        rpowern = cat(2,rpowern{:}); 3 8>?Z ]V  
        rpowern = [ones(length_r,1) rpowern]; =W(mZ#*vdY  
    else f>k<I[C<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]sBSLEie '  
        rpowern = cat(2,rpowern{:}); ,E{z+:Es  
    end '!*,JG5_  
    =B9Ama   
    0?} ),8v>  
    % Compute the values of the polynomials: V @A+d[  
    % -------------------------------------- T/DKT1P-  
    y = zeros(length_r,length(n)); rPoPs@CBD  
    for j = 1:length(n) l+BJh1^  
        s = 0:(n(j)-m_abs(j))/2; iUl5yq  
        pows = n(j):-2:m_abs(j); Ca]+*Eb9z{  
        for k = length(s):-1:1 Tbl~6P  
            p = (1-2*mod(s(k),2))* ... vT)(#0>z  
                       prod(2:(n(j)-s(k)))/              ... OOy]:t4 /  
                       prod(2:s(k))/                     ... 1|)l6#hOL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Y4cIYUSc  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); HS3] 8nJW  
            idx = (pows(k)==rpowers); " N)dle,  
            y(:,j) = y(:,j) + p*rpowern(:,idx); { -*+G]  
        end km1{Oh  
         \}SA{)  
        if isnorm hsIC5@s3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \ .+.VK  
        end xc[Lb aBG  
    end <[O8 {9j  
    % END: Compute the Zernike Polynomials ZS0=xS5q)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?N2/;u>  
    ~kUdHne (  
    =h,6/cs  
    % Compute the Zernike functions: fHTqLYd-  
    % ------------------------------ tZlz0BY!  
    idx_pos = m>0; f/t1@d!  
    idx_neg = m<0; <11pk  
    va \ 5  
    c,a+u  
    z = y; %N 8/g]`7  
    if any(idx_pos) Fm(~Vt;%u  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BX :77?9,+  
    end 0PIiG-o9  
    if any(idx_neg) /fCj;8T3o  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &{${Fq  
    end __HPwOCG7  
    _:ypPR J  
    xQV5-VoFC  
    % EOF zernfun  DJ?kQ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  W&E?#=*X  
    9 <qAf`  
    DDE还是手动输入的呢? 8T ?=_|  
    Ph@hk0dgr/  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究