切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9584阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来,  K A<  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, un/R7 "  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Z*Y?"1ar  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? j IW:O  
    XNl!(2x'pb  
    Kfr?sX  
    kP6r=HH@  
    V]8fn MH  
    function z = zernfun(n,m,r,theta,nflag) 4 I~,B[|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ULJI` I|m  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yA_d${n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the p 2i5/Ly  
    %   unit circle.  N is a vector of positive integers (including 0), and 8[Qw8z5-  
    %   M is a vector with the same number of elements as N.  Each element ox*Ka]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) mPu5%%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, urN&."c  
    %   and THETA is a vector of angles.  R and THETA must have the same k^L (q\D  
    %   length.  The output Z is a matrix with one column for every (N,M) k~gQn:.Cx  
    %   pair, and one row for every (R,THETA) pair. y>o#Hq&qM  
    % RHBEC@d[}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M-Js"cB[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V?gQ`( ,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8sIGJ|ku   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vS0P] AUo  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9}\T?6?8pX  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l5MxJ>?4%B  
    % JDs<1@\  
    %   The Zernike functions are an orthogonal basis on the unit circle. W,<Vr2J[  
    %   They are used in disciplines such as astronomy, optics, and x O)nS _I  
    %   optometry to describe functions on a circular domain. t (1z+  
    % 5M(?_qj  
    %   The following table lists the first 15 Zernike functions. eMF%!qUr  
    % 99eS@}RC  
    %       n    m    Zernike function           Normalization n-\B z.  
    %       -------------------------------------------------- IFE C_F>  
    %       0    0    1                                 1 g &za/F  
    %       1    1    r * cos(theta)                    2 E*ic9Za8`h  
    %       1   -1    r * sin(theta)                    2 tQ/w\6{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Uarb [4OZ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) CeZ5Ti?F  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JE j+>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _3E7|drIX  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) >Kr,(8rA  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %d>Ktf  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *<UQ/)\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6>"0H/y,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZNUV Bi  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5P! ZJ3C  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +F/'+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -0kwS4Hx2  
    %       -------------------------------------------------- V^0*S=N  
    % YgDgd\  
    %   Example 1: S:5Nh^K  
    % dv,8iOL  
    %       % Display the Zernike function Z(n=5,m=1) Gzs x0%`)  
    %       x = -1:0.01:1; e L(T  
    %       [X,Y] = meshgrid(x,x); [qy@g5`  
    %       [theta,r] = cart2pol(X,Y); %0]&o, w{  
    %       idx = r<=1; *s!8BwiE  
    %       z = nan(size(X)); & =frt3  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1jV^\ x0  
    %       figure 8Yj(/S3y  
    %       pcolor(x,x,z), shading interp 2M;{|U  
    %       axis square, colorbar j{HxX  
    %       title('Zernike function Z_5^1(r,\theta)') `$i`i'S  
    % fer'2(G?W  
    %   Example 2: 9LFg":  
    % J#D!J8KP7  
    %       % Display the first 10 Zernike functions L*5&hPU  
    %       x = -1:0.01:1; tf/ f-S  
    %       [X,Y] = meshgrid(x,x); Q!"Li  
    %       [theta,r] = cart2pol(X,Y); L7KHs'c*  
    %       idx = r<=1; bc&:v$EGy  
    %       z = nan(size(X)); kL&^/([9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $;@s  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :hevBBP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; MTF:mLJ  
    %       y = zernfun(n,m,r(idx),theta(idx)); }&!rIU  
    %       figure('Units','normalized') 6 o+zhi;E  
    %       for k = 1:10 eF2<L[9  
    %           z(idx) = y(:,k); p<![JeV  
    %           subplot(4,7,Nplot(k)) } FFW,x  
    %           pcolor(x,x,z), shading interp f2d"b+H#  
    %           set(gca,'XTick',[],'YTick',[]) X&Mc NO6"  
    %           axis square `R; ct4-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [pOU!9v4  
    %       end eLt6Hg)s`9  
    % MVTU$ 65  
    %   See also ZERNPOL, ZERNFUN2. *mBEF"  
    <:ZN  
    VE GUhI/d  
    %   Paul Fricker 11/13/2006 r67 3+  
    ;%%=G;b9  
    5%W3&F6 %  
    ucMl>G'!gX  
    ikY=}  
    % Check and prepare the inputs: 5-+Y2tp}  
    % ----------------------------- LN7;Yr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nVYh1@yLy  
        error('zernfun:NMvectors','N and M must be vectors.') T? =jKLPC  
    end CUYp(GU  
    .AV--oA~  
    u]oS91  
    if length(n)~=length(m) CjO/q)vV  
        error('zernfun:NMlength','N and M must be the same length.') !867DX3*  
    end Ak1f*HGl|  
    #S1)n[  
    a @TAUJ,  
    n = n(:); }b0qrr  
    m = m(:); Oo#wPT;1^(  
    if any(mod(n-m,2)) eR3!P8t  
        error('zernfun:NMmultiplesof2', ... Ds-%\@p  
              'All N and M must differ by multiples of 2 (including 0).') ah}aL7dgO  
    end 5v?6J#]2  
    *rqih_j0  
    [y:6vC   
    if any(m>n) 1W-!f%  
        error('zernfun:MlessthanN', ... CwT52+Jb  
              'Each M must be less than or equal to its corresponding N.') 20K<}:5t1  
    end "7gHn0e>  
    gsAcn  
    LxG :?=O.  
    if any( r>1 | r<0 ) b9:E0/6   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ebQYk$@  
    end v[~ U*#i  
    I]} MK?  
    D@0eYX4s  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .&L#%C  
        error('zernfun:RTHvector','R and THETA must be vectors.') AA@J~qd u  
    end PAqziq.  
    =b; v:HC  
    ` a@NYi6  
    r = r(:); ZM5[ o m  
    theta = theta(:); T$'Ja'9Kj  
    length_r = length(r); VGe/;&1h  
    if length_r~=length(theta) b@,w/Uw[*  
        error('zernfun:RTHlength', ... z[7U>q[E  
              'The number of R- and THETA-values must be equal.') (I\aGGW  
    end 'av OQj]`K  
    E]+W^ VG  
    IoA"e@~t  
    % Check normalization: =n$,Vv4A  
    % -------------------- G*n5`N@>7  
    if nargin==5 && ischar(nflag) Z|3l2ucl  
        isnorm = strcmpi(nflag,'norm'); /TpM#hkq/2  
        if ~isnorm IU3OI:uq  
            error('zernfun:normalization','Unrecognized normalization flag.') r{Xh]U&>k  
        end (z"Cwa@e  
    else D3MuP p-v  
        isnorm = false; <}B]f1zX  
    end CjIkRa@!x  
    Kw'A%7^e  
    WT!%FQ9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /(vT49(]  
    % Compute the Zernike Polynomials r$*k-c9Bf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ydBoZ3}  
    2< ^B]N  
    <m9IZI Y<  
    % Determine the required powers of r: D<nTo&m_  
    % ----------------------------------- U4Qc$&j>  
    m_abs = abs(m); Vrz<DB^-e  
    rpowers = []; l=kgRh  
    for j = 1:length(n) 3``$yWWg  
        rpowers = [rpowers m_abs(j):2:n(j)]; "j~=YW+l  
    end cITQ,ah  
    rpowers = unique(rpowers); LkJ3 :3O  
    !a?o9<V  
    As78yfK  
    % Pre-compute the values of r raised to the required powers, -6Cxz./#yS  
    % and compile them in a matrix: 2,dG Rf  
    % ----------------------------- -O-_F6p'D  
    if rpowers(1)==0 {T=I~#LjMI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lHZf'P_Wx  
        rpowern = cat(2,rpowern{:});  V18w  
        rpowern = [ones(length_r,1) rpowern]; tt#M4n@  
    else T w/CJg  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [f^~Z'TIN/  
        rpowern = cat(2,rpowern{:}); t?{E_70W  
    end ~ / "aD  
    G+}|gG8  
    A2F+$N  
    % Compute the values of the polynomials: Z+Z`J; ,  
    % -------------------------------------- ,7tN&R_  
    y = zeros(length_r,length(n)); \@gs8K#  
    for j = 1:length(n) 3"&6rdF\jB  
        s = 0:(n(j)-m_abs(j))/2; UB?a-jGZ K  
        pows = n(j):-2:m_abs(j); i7*4hYY  
        for k = length(s):-1:1 m<r.sq&;  
            p = (1-2*mod(s(k),2))* ... Z'!jZF~4p  
                       prod(2:(n(j)-s(k)))/              ... <A+Yo3|7  
                       prod(2:s(k))/                     ... -s4qm)\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }1epn#O_4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); H@'Y>^z?  
            idx = (pows(k)==rpowers); { 5h6nYu  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5(TI2,4  
        end KJJ8P`Kx  
         mtmtOG_/=  
        if isnorm fE7[Sk  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Pxy(YMv  
        end g9p#v$V  
    end N CX!ss  
    % END: Compute the Zernike Polynomials tUL(1:-C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l $MX \  
    S yX>zN!  
    oP_'0h0 X  
    % Compute the Zernike functions: Uu8Z2M  
    % ------------------------------ ;k!bv|>n  
    idx_pos = m>0; ejD;lvf  
    idx_neg = m<0; :^! wQ""  
    rVFAwbR  
    qD Nqd  
    z = y; t~Ds)  
    if any(idx_pos) sR'rY[^/|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2"JIlS;J}7  
    end b8Y1.y"#  
    if any(idx_neg) 3v5]L3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); prhFA3 rW.  
    end |L<oKMZY  
    3mpEF<z  
    Pgs4/  
    % EOF zernfun t9W_ [_a9  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  7f~.Qus  
    h9 [ov)  
    DDE还是手动输入的呢? ,d&~#W]  
    `?2S4lN/  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究