下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, CNRU"I+jU
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0.BUfuuh
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? |RAQ% VXm
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @+\S!o3m
E4v_2Q
-w
|h=+&*(:
eFj6p<
01{r^ZT`RH
function z = zernfun(n,m,r,theta,nflag) X!#i@V
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .xLF}{u
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /@:up+$
% and angular frequency M, evaluated at positions (R,THETA) on the nvs}r%1'5
% unit circle. N is a vector of positive integers (including 0), and yhtvr5z1
% M is a vector with the same number of elements as N. Each element VM]GYz|#]
% k of M must be a positive integer, with possible values M(k) = -N(k) `l gjw=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Q+!0)pG5#
% and THETA is a vector of angles. R and THETA must have the same <jRFN&"h}
% length. The output Z is a matrix with one column for every (N,M) e:GgA
% pair, and one row for every (R,THETA) pair. 3b?OW7H
% Mi/ &$"=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $nfBvf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), J%\~<_2ny
% with delta(m,0) the Kronecker delta, is chosen so that the integral |:(23O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, NHFEr
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4QjWZ Wl
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JwI`"$>w
% yA?ENAM
% The Zernike functions are an orthogonal basis on the unit circle. V@f6Lj
% They are used in disciplines such as astronomy, optics, and 2i7i\?<.
% optometry to describe functions on a circular domain. orB8Q\p'
% r{q}f)
% The following table lists the first 15 Zernike functions. ;X$q#qzN#
% hSkc9jBF
% n m Zernike function Normalization 1A?\BJ"
% -------------------------------------------------- `dgM|.w5=
% 0 0 1 1 &'huS?gA9
% 1 1 r * cos(theta) 2 9b" 9m*gC
% 1 -1 r * sin(theta) 2 UKKSc>D1
% 2 -2 r^2 * cos(2*theta) sqrt(6) YH'$_,8peM
% 2 0 (2*r^2 - 1) sqrt(3) mZbWRqP[|_
% 2 2 r^2 * sin(2*theta) sqrt(6) @3-,=x
% 3 -3 r^3 * cos(3*theta) sqrt(8) 43J\8WBn@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @ kJ0K
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r)6uX
% 3 3 r^3 * sin(3*theta) sqrt(8) %qS]NC
% 4 -4 r^4 * cos(4*theta) sqrt(10) Q$|^~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ':!3jZP"m
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) d`9W
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J7'f@X~nM
% 4 4 r^4 * sin(4*theta) sqrt(10) })o~E
% -------------------------------------------------- kfqpI
% S]e j=6SP
% Example 1: t_I\P.aMA
% m/YH^N0
% % Display the Zernike function Z(n=5,m=1) 4?>18%7&
% x = -1:0.01:1; 2gd<8a' '
% [X,Y] = meshgrid(x,x); Ka]J^w;a
% [theta,r] = cart2pol(X,Y); p{ @CoOn
% idx = r<=1; Y8)E]D
% z = nan(size(X)); =y<">-
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <#+oQ>5s
% figure JkSdLj
% pcolor(x,x,z), shading interp .7
(DxN
% axis square, colorbar On{~St'V
% title('Zernike function Z_5^1(r,\theta)') May&@x/oMS
% 7$!`p,@we/
% Example 2: Ni2]6U
%
gd337jw
% % Display the first 10 Zernike functions a'@-"qk
% x = -1:0.01:1; lpl8h4d
% [X,Y] = meshgrid(x,x); }Vvsh3
% [theta,r] = cart2pol(X,Y); ^ckj3Y#;
% idx = r<=1; e#>tM
% z = nan(size(X)); jW-;4e*H=V
% n = [0 1 1 2 2 2 3 3 3 3]; T)WZ_bR
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; S5i+vUI8C
% Nplot = [4 10 12 16 18 20 22 24 26 28]; h [nH<m
% y = zernfun(n,m,r(idx),theta(idx)); 33Ssylno
% figure('Units','normalized') ![^EsgEB*
% for k = 1:10 <Ctyht0c.
% z(idx) = y(:,k); %mY|
% subplot(4,7,Nplot(k)) z^4KU\/JK
% pcolor(x,x,z), shading interp Eo%UuSi
% set(gca,'XTick',[],'YTick',[]) %x&F4U
% axis square BJ~ivT<
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cyW;,uT)D
% end M'yO+bu
% c {1V.
% See also ZERNPOL, ZERNFUN2. [^<SLTev
(# JMB)
'@'B>7C#
% Paul Fricker 11/13/2006 l iw,O 6
Vy]A,Rn7
]#F q>E
"Dyym<J
S8\+XJ
% Check and prepare the inputs: |<sf:#YzY&
% ----------------------------- m"n.Dz/S
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [}z?1Gj;W(
error('zernfun:NMvectors','N and M must be vectors.') egfi;8]E
end h~ $&
}04Dg'
#C4|@7w%
if length(n)~=length(m) )AOPiC$jL
error('zernfun:NMlength','N and M must be the same length.') ;t}'X[U
end Q/p(#/y#b
yL.^ =
gW kjUz)
n = n(:); ji}#MBac
m = m(:); L#n}e7Y9
if any(mod(n-m,2)) \I;cZ>{u"}
error('zernfun:NMmultiplesof2', ... lqF>=15
'All N and M must differ by multiples of 2 (including 0).') 8$ic~eJ
end [6H}/_nD
s3seK6x'
d>&\V)E
if any(m>n) V{!lk]p}a
error('zernfun:MlessthanN', ... ozU2
'Each M must be less than or equal to its corresponding N.') h6g:(3t6m
end yr5NRs
*%X.ym'
i-b1d'?Rb
if any( r>1 | r<0 ) )!A 2>
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0pD[7~ ^o
end EY~7oNfc`R
g92dw<$>
ABcBEv3
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L?HF'5o
error('zernfun:RTHvector','R and THETA must be vectors.') `NQ{)N0!
end bo1I&I