切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9438阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Tk[`kmb  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *h=|KOS  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ok7i^-85  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? >Ux5UD  
    @ lo6?9oNo  
    +b<q4W  
    ghXh nxG  
    j7&57'  
    function z = zernfun(n,m,r,theta,nflag) o.qeF4\d6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &&Sl0(6x[T  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SDY!!.  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~-r*2bR  
    %   unit circle.  N is a vector of positive integers (including 0), and m2!y;)F0  
    %   M is a vector with the same number of elements as N.  Each element 5ZG-3qj  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) obUX7N  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, B^W0Ik`m  
    %   and THETA is a vector of angles.  R and THETA must have the same v!oXcHK/  
    %   length.  The output Z is a matrix with one column for every (N,M) 7x *]  
    %   pair, and one row for every (R,THETA) pair. &|t*9 D  
    % -p|@Enn  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike l56D?E8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9UD~$_<\  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral <"|BuK  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F-MN%WD~  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized XdKhT618G  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >P7|-bV  
    % *KF-q?PBb  
    %   The Zernike functions are an orthogonal basis on the unit circle. oM`[&m.,  
    %   They are used in disciplines such as astronomy, optics, and 3Lx]-0h  
    %   optometry to describe functions on a circular domain. xngK_n  
    % ]YF[W`2h  
    %   The following table lists the first 15 Zernike functions. VGLE5lP X  
    % ulM6R/ V:?  
    %       n    m    Zernike function           Normalization 9Ra_[1  
    %       -------------------------------------------------- Y {]RhRR  
    %       0    0    1                                 1 >3HLm3T  
    %       1    1    r * cos(theta)                    2 e<_p\LiOS  
    %       1   -1    r * sin(theta)                    2 QO;W}c:N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A;~u"g'z&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ,(0q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) L&td4`2y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) k(>hboR5n  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `@MY}/ o.  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j(Tt-a("z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ZU%7m_zO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ^+CTv  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PxENLQ3a=  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) a =LjFpv/]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W(N@`^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) PqMU&H_  
    %       -------------------------------------------------- cX$ Pq  
    % kFPZ$8e  
    %   Example 1: AhOvI {  
    % >mzK96  
    %       % Display the Zernike function Z(n=5,m=1) o g.LD7&/  
    %       x = -1:0.01:1; 3cK`RM `  
    %       [X,Y] = meshgrid(x,x); [([?+Ouy  
    %       [theta,r] = cart2pol(X,Y); Pyc/6~ ?  
    %       idx = r<=1; {5}UP@h  
    %       z = nan(size(X)); eup#.#J  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .@{W6 /I  
    %       figure N~H9|CX  
    %       pcolor(x,x,z), shading interp YKbR#DC\  
    %       axis square, colorbar {3Z&C$:s  
    %       title('Zernike function Z_5^1(r,\theta)') RH+3x7 l  
    % KL]@y!QU  
    %   Example 2: lxTW1kr  
    % |sWH!:]49  
    %       % Display the first 10 Zernike functions B6tp,Np5,  
    %       x = -1:0.01:1; Q>s>@hw  
    %       [X,Y] = meshgrid(x,x); <'H^}gQow  
    %       [theta,r] = cart2pol(X,Y); .%>UA|[~:  
    %       idx = r<=1; B42.;4"T  
    %       z = nan(size(X)); VIo %((  
    %       n = [0  1  1  2  2  2  3  3  3  3]; BwO^F^Pr?k  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~fLuys`*:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; OZdiM&Zss  
    %       y = zernfun(n,m,r(idx),theta(idx)); P@LYa_UFsN  
    %       figure('Units','normalized') j*"V! d  
    %       for k = 1:10 wkm;yCF+  
    %           z(idx) = y(:,k); yP\KIm!  
    %           subplot(4,7,Nplot(k)) 4}B9y3W:v  
    %           pcolor(x,x,z), shading interp OF^v;4u  
    %           set(gca,'XTick',[],'YTick',[]) E )D*~2o/  
    %           axis square VZNMom,Wr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _uL{@(  
    %       end wPTXRq%  
    % )&[S*g  
    %   See also ZERNPOL, ZERNFUN2. -~Kw~RX<(  
    ES72yh]  
    1MI/:vy-  
    %   Paul Fricker 11/13/2006 H3T4v1o6  
    ^]}UyrOn  
    "#x<>a )O\  
    @K`2y'#b  
    [h7nOUL!  
    % Check and prepare the inputs: b`N0lH.V  
    % ----------------------------- HJT}v/FZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +ZeHZjd  
        error('zernfun:NMvectors','N and M must be vectors.') H)S&sx#q]  
    end :Rc>=)<7  
    8"R; axeD  
    _SM5x,Zd  
    if length(n)~=length(m) +VSJve |  
        error('zernfun:NMlength','N and M must be the same length.') R%iyNK,  
    end YX38*Ml+V  
    U-(2;F)  
    ur^)bp<n  
    n = n(:); cA_77#<8  
    m = m(:); 5I9~OJ>  
    if any(mod(n-m,2)) fMRBGcg7Dc  
        error('zernfun:NMmultiplesof2', ... co<-gy/mCR  
              'All N and M must differ by multiples of 2 (including 0).') n@[&SgZq  
    end ,w%cX{  
    4;@|tC|u  
    86!"b  
    if any(m>n) CHp`4  
        error('zernfun:MlessthanN', ... G v(bD6Rz  
              'Each M must be less than or equal to its corresponding N.') -.= q6N4  
    end Z3E957}  
    !\wdX7%  
    Dpp 3]en.  
    if any( r>1 | r<0 ) 4G;FpWQm  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |UvM [A|+  
    end ,@"Z!?e  
    pfS?:f<+6"  
    ,Oojh;P_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %''z~LzJ8  
        error('zernfun:RTHvector','R and THETA must be vectors.') BH _y0[y  
    end 8%OS ,Z  
    K 2PV^Y  
    yNVuSj  
    r = r(:); @cNBY7=  
    theta = theta(:); :Z|lGH =  
    length_r = length(r); 7Yp;B:5@  
    if length_r~=length(theta) 't".~H_V  
        error('zernfun:RTHlength', ... 9 ! [oJ3  
              'The number of R- and THETA-values must be equal.') w5,p9f}.  
    end .),%S}  
    \,jrug<C$^  
    #|'&%n|Z  
    % Check normalization: [wB-e~   
    % -------------------- WK5~"aw  
    if nargin==5 && ischar(nflag) PGZ.\i  
        isnorm = strcmpi(nflag,'norm'); !{5jP|vo  
        if ~isnorm 7e$\|~<  
            error('zernfun:normalization','Unrecognized normalization flag.') fRKO> /OT  
        end z[:UPPbW  
    else sIQd }  
        isnorm = false; ~I<yN`5(a  
    end lN94 b3_W  
    q H&7Q{  
    IxC/X5Mp^q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pk444_"=  
    % Compute the Zernike Polynomials ^/`:o}7K7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <4s$$Uw}6%  
    m[&]#K6  
    A-gNfXP,D  
    % Determine the required powers of r: 9hG)9X4  
    % ----------------------------------- W tF  
    m_abs = abs(m); envu}4wU=e  
    rpowers = []; yP2[!vYw  
    for j = 1:length(n) Rfh#JO@%[  
        rpowers = [rpowers m_abs(j):2:n(j)]; \zA$|) x  
    end N\b%+vR  
    rpowers = unique(rpowers); rq'Cj<=Zj  
    pQr `$:ga  
    \.p{~ Hv  
    % Pre-compute the values of r raised to the required powers, "orZje9AC  
    % and compile them in a matrix: F[/Bp>P7  
    % ----------------------------- l{wHu(1  
    if rpowers(1)==0 v{4K$o  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9Mo(3M  
        rpowern = cat(2,rpowern{:}); oj*5m+:>a  
        rpowern = [ones(length_r,1) rpowern];  TA;  
    else =mV1jGqX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |__\Vn  
        rpowern = cat(2,rpowern{:}); 1c);![O  
    end g+8{{o=  
    m#Rgelhk.  
    Wj2]1A  
    % Compute the values of the polynomials: p~1,[]k  
    % -------------------------------------- zt{?Nt b  
    y = zeros(length_r,length(n)); F-Mf~+=Dn  
    for j = 1:length(n) %.,-dV'  
        s = 0:(n(j)-m_abs(j))/2; clK3kBh~&  
        pows = n(j):-2:m_abs(j); j48cI3C  
        for k = length(s):-1:1 Bv,u kQ\CH  
            p = (1-2*mod(s(k),2))* ... un|+YqLf  
                       prod(2:(n(j)-s(k)))/              ... >-rDBk ;K  
                       prod(2:s(k))/                     ... j3|Ek  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WP&P#ju&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); {M: Fsay>p  
            idx = (pows(k)==rpowers); aW hhq@  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?2hoY  
        end HU ]Yv+3   
         tWL3F?wd  
        if isnorm Q" BIk =  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); N@J "~9T  
        end nTO,d$!Kp  
    end 9`4mvK/@  
    % END: Compute the Zernike Polynomials b['Jr% "O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B0I(/ 7  
    Lf_`8Ux  
    t4)~A5s  
    % Compute the Zernike functions: qPsf`nI7  
    % ------------------------------ @czNiWU"4;  
    idx_pos = m>0; HNN,1MN  
    idx_neg = m<0; ^n#6CW*n  
    {8D`A;KD  
    >?s[g)np  
    z = y; `.Z MwA  
    if any(idx_pos) 5 {cbcuG  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >#).3  
    end )G6{JL-I  
    if any(idx_neg) Dp|y&x!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5]yQMY\2)  
    end 5Mm><"0  
    z zL@3/<j  
    fsqK(io28  
    % EOF zernfun AcV 2l  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  +qN}oyL  
    T22 4L.?  
    DDE还是手动输入的呢? Bi}uL)~rD  
    L!:8yJK  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究