下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, on=I*?+R
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, w`?Rd
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &D[pX|!
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ]XAJ|[]sj*
yXdJ5Me(T
49("$!
,%a7sk<5k
xn)eb#r
function z = zernfun(n,m,r,theta,nflag) O^AF+c\n
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. qXQ/M]
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1p[Z`m*9
% and angular frequency M, evaluated at positions (R,THETA) on the V>2mzc
% unit circle. N is a vector of positive integers (including 0), and U=G^wL
% M is a vector with the same number of elements as N. Each element .PhH|jrCW^
% k of M must be a positive integer, with possible values M(k) = -N(k) Lk-%I?
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, eyiGe1^C
% and THETA is a vector of angles. R and THETA must have the same /W,K% s]
% length. The output Z is a matrix with one column for every (N,M) >nnjLrI
% pair, and one row for every (R,THETA) pair. P(Fd|).j$
% u?>]C6$
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?5oeyBA@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5"]t{-PD
% with delta(m,0) the Kronecker delta, is chosen so that the integral g+-=/Ge
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vGT#BS%
% and theta=0 to theta=2*pi) is unity. For the non-normalized UW%.G
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )38M~/ ^l
% -p:X]Ov
% The Zernike functions are an orthogonal basis on the unit circle. #''q :^EQ
% They are used in disciplines such as astronomy, optics, and L,XWX8
% optometry to describe functions on a circular domain. j9=QOq
%
<$\En[u0
% The following table lists the first 15 Zernike functions. +cw;a]o^>
% JBsHr%!i
% n m Zernike function Normalization mu(EmAoenQ
% -------------------------------------------------- o~*5FN}%+l
% 0 0 1 1 {[&_)AW6m%
% 1 1 r * cos(theta) 2 Z{|U!tn
% 1 -1 r * sin(theta) 2 BK_x5mGu3
% 2 -2 r^2 * cos(2*theta) sqrt(6) cN{-&\
6L
% 2 0 (2*r^2 - 1) sqrt(3) *1Lkde@|{
% 2 2 r^2 * sin(2*theta) sqrt(6) ]/p)XHKo
% 3 -3 r^3 * cos(3*theta) sqrt(8) G(puC4 "&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ?Q< o-o;B
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3']yjj(gHr
% 3 3 r^3 * sin(3*theta) sqrt(8) !U@?Va~Zn
% 4 -4 r^4 * cos(4*theta) sqrt(10) r# }`{C;+5
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T|h/n\fx)a
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) S'I{'jP5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {ER%r'(4Z
% 4 4 r^4 * sin(4*theta) sqrt(10) 8qEK6-
% -------------------------------------------------- jZm57{C#*?
% j]#-DIL
% Example 1: kW#{[,7r
% #l(cBM9sz
% % Display the Zernike function Z(n=5,m=1) rSYzrVc
% x = -1:0.01:1; u= |hRTD=
% [X,Y] = meshgrid(x,x); 4DL;/Z:
% [theta,r] = cart2pol(X,Y); S=^a''bg
% idx = r<=1; LN8V&'>
% z = nan(size(X)); b ;Vy=f
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4No!`O-!&
% figure '~^3 =[Z
% pcolor(x,x,z), shading interp w/KCuW<
% axis square, colorbar 8q6b3q:c
% title('Zernike function Z_5^1(r,\theta)') fR>(b?C
% [8k7-}[
% Example 2: TB]Bl.
% kpM5/=f/@
% % Display the first 10 Zernike functions m,e@bJ-
% x = -1:0.01:1; GRanR'xG
% [X,Y] = meshgrid(x,x); %5=XszS
% [theta,r] = cart2pol(X,Y); \(lt [=
% idx = r<=1; $lj1924?^
% z = nan(size(X)); 2EubMG
% n = [0 1 1 2 2 2 3 3 3 3]; 4s<*rKm~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; vG'JMzAm
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ndkV(#wQS
% y = zernfun(n,m,r(idx),theta(idx)); t(4%l4i;X
% figure('Units','normalized') U!"+~d)
% for k = 1:10 silTL_$
% z(idx) = y(:,k); P5+FZzQ
% subplot(4,7,Nplot(k)) Q?GmSeUi
% pcolor(x,x,z), shading interp 9w
-t9X>X
% set(gca,'XTick',[],'YTick',[]) cS98%@DR
% axis square 6#+&_#9
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Rx$5#K!%M
% end 7Q<xC
% E%M~:JuKd?
% See also ZERNPOL, ZERNFUN2. I$4GM
*/Oq$3QGsV
y ?FKou'
% Paul Fricker 11/13/2006 3A_7R-sQ
R qS2Qo]
s4 o-*1R*`
8>TDrpT}
=GpO}t">
% Check and prepare the inputs: }bG|(Wp9
% ----------------------------- @Z.s:FV[
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (m[]A&u
error('zernfun:NMvectors','N and M must be vectors.') Ed3 *fY
end +Io[o6*
hlxZq
7FMg6z8~
if length(n)~=length(m) 3F ;+D
error('zernfun:NMlength','N and M must be the same length.') -r_/b
end sgDlT=c'
?d1H]f<M
Oslbt8)U6
n = n(:); xBhfC!AK}
m = m(:); 2G8f4vsC[
if any(mod(n-m,2)) *<2+tI
error('zernfun:NMmultiplesof2', ... ^$aj,*Aj~
'All N and M must differ by multiples of 2 (including 0).') DCv~^
end =<I 90j~)
9g#L"T=
p]uwGWDI
if any(m>n) 2H8,&lY.p
error('zernfun:MlessthanN', ... ]3<k>?
'Each M must be less than or equal to its corresponding N.') tWYKW 3~]
end o'@VDGS`
Mg]q^T.a
ZYo Wz(
if any( r>1 | r<0 ) i{w<4E3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') yz!j9pJ
end Hq h
bZk7)b;1o
Y!9'Wf/^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Hd6g0
error('zernfun:RTHvector','R and THETA must be vectors.') NaC^q*>9
end vW`{BWd
wn[q?|1
XCO{}wU)>
r = r(:); pC0l}hnUg
theta = theta(:); dI<s)!
length_r = length(r); 7vR JQe)
if length_r~=length(theta) :e:jILQ[
error('zernfun:RTHlength', ... MV5'&" ,oB
'The number of R- and THETA-values must be equal.') PZ~uHX_d>
end !']=7It{
M@S6V7
*4Cq,o`o>
% Check normalization: O:3pp8
% -------------------- ;JMd(\+-
if nargin==5 && ischar(nflag) KFBo1^9N
isnorm = strcmpi(nflag,'norm'); Af5O;v\
if ~isnorm QIVpO /@
error('zernfun:normalization','Unrecognized normalization flag.') ,x}p1EZ
end L)JpMf0
else TOV531
isnorm = false; k.>*!l0
end P]-d(N}/H
1 ry:Z2
^HumyDD6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dIe-z7x
% Compute the Zernike Polynomials RG|]Kt8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l2KR=&SX/
]Qe;+p9vU
/|Za[
% Determine the required powers of r: &yv%"BPV
% ----------------------------------- u^SXg
dj
m_abs = abs(m); sY!PXD0Q
rpowers = []; g,U~3#
for j = 1:length(n) I&qT3/SVI
rpowers = [rpowers m_abs(j):2:n(j)]; JX(J Z/8B^
end q05_5
rpowers = unique(rpowers); fD#|C~:=
&mDKpYrB
7. 9n
% Pre-compute the values of r raised to the required powers, :-7`Lfi@%
% and compile them in a matrix: iPX6r4-
% ----------------------------- :\x53-&hO4
if rpowers(1)==0 &=5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Gd1%6}<~
rpowern = cat(2,rpowern{:}); qlmz@kTb
rpowern = [ones(length_r,1) rpowern]; Fyoy)y*
else 6T0E'kv
S
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vULlAQG
rpowern = cat(2,rpowern{:}); "knSc0,u
end gP1~N^hke]
8=OK8UaU
E6|!G
% Compute the values of the polynomials: %m1k^
% -------------------------------------- kVE%
"
y = zeros(length_r,length(n)); C#[YDcp4
for j = 1:length(n) {C Qo}@.7
s = 0:(n(j)-m_abs(j))/2; cZT;VmC
pows = n(j):-2:m_abs(j); #z 3tSnmp
for k = length(s):-1:1 |rkj$s,
p = (1-2*mod(s(k),2))* ... x&7%U
prod(2:(n(j)-s(k)))/ ... gsd9QW
prod(2:s(k))/ ... j7=I!<w V
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... VQV7W
prod(2:((n(j)+m_abs(j))/2-s(k))); F;Ms6 "K
idx = (pows(k)==rpowers); -~ytk=
y(:,j) = y(:,j) + p*rpowern(:,idx); -q\5)nY
end QPjmIO
?#idmb}(
if isnorm N r5
aU6]
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :D6"h[7
end _,(]T&j #2
end ^l;nBD#nJ
% END: Compute the Zernike Polynomials K[Bq,nPo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iD,iv
cMOvM0f
3>qUYxG8
% Compute the Zernike functions: R?!xO-^t
% ------------------------------ FU/yJy
idx_pos = m>0; \)859x&(
idx_neg = m<0; L+2!Sc,>
0o2o]{rM{2
GCCmUR9d
z = y; tyFhp:ZB
if any(idx_pos) |4//%Ll/
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {^gbS
end itb0dF1G
if any(idx_neg) Z)Y--`*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]^MOFzSz~
end {?m;DYv
Dv?'(.z
Z#YkAQHv5
% EOF zernfun ?F' gh4