切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8929阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Zy o[(`y  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, NMa} <  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %kdE un  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? " f "6]y  
    "tB;^jhRs  
    Cq'KoN%nQ  
    qMLD)rL  
    DV _2P$tT|  
    function z = zernfun(n,m,r,theta,nflag) +xrr? g  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. #7MUJY+ 9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z/t+8;TMR,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the CaL\fZ  
    %   unit circle.  N is a vector of positive integers (including 0), and ~y/ nlb!  
    %   M is a vector with the same number of elements as N.  Each element gLy&esJl1  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R:#k%}W  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, EJsM(iG]~M  
    %   and THETA is a vector of angles.  R and THETA must have the same | h;0H`  
    %   length.  The output Z is a matrix with one column for every (N,M) ~g5[$r-u-u  
    %   pair, and one row for every (R,THETA) pair. ^~3SSLS4"  
    % I~ok4L?VB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J[4mL U  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P*I}yPeb  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bI:zp!-.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >[_f3;P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ^-,xE>3o  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4<k9?)~(J  
    % wS%Q<uK  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;4.!H,d  
    %   They are used in disciplines such as astronomy, optics, and X{\F;Cb*  
    %   optometry to describe functions on a circular domain. b/C`J p  
    % kic/*v\6@  
    %   The following table lists the first 15 Zernike functions. J/[=p<I)  
    % YbTxn="_  
    %       n    m    Zernike function           Normalization no< ^f]33  
    %       -------------------------------------------------- .=X}cJ]`[  
    %       0    0    1                                 1 >D(RYI  
    %       1    1    r * cos(theta)                    2 DV<` K$ET  
    %       1   -1    r * sin(theta)                    2 &(xH$htv1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2oNk 93D  
    %       2    0    (2*r^2 - 1)                    sqrt(3) I?ae\X@M  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) |j#C|V%kV  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) f!!V${)X  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2vAQ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) F W/W%^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :'~ Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) @I_8T$N=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aC%m-m  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @U3Vc|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^eR%N8Z  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) )6|yb65ZUX  
    %       -------------------------------------------------- Qj.l:9%  
    % `kZ@Zmj#  
    %   Example 1: Gu2P\I2zx  
    % }Rz3<eON  
    %       % Display the Zernike function Z(n=5,m=1) u%$Zqee  
    %       x = -1:0.01:1; ?34 e-  
    %       [X,Y] = meshgrid(x,x); H\qC["  
    %       [theta,r] = cart2pol(X,Y); V>A .iim  
    %       idx = r<=1; Qzlo'e1  
    %       z = nan(size(X)); ,'p2v)p^4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); pO ml8SQf  
    %       figure L"{JRbh[  
    %       pcolor(x,x,z), shading interp D"J!\_o  
    %       axis square, colorbar rmE"rf  
    %       title('Zernike function Z_5^1(r,\theta)') 1Dv R[Lx%  
    % 2Fq<*pxAY  
    %   Example 2: 4*e0 hWp  
    % D (h18  
    %       % Display the first 10 Zernike functions Bc6|n :;u  
    %       x = -1:0.01:1; V{^!BBQ  
    %       [X,Y] = meshgrid(x,x); 7tcPwCc{  
    %       [theta,r] = cart2pol(X,Y); Lz:(6`S  
    %       idx = r<=1; ~Uxsn@nLr  
    %       z = nan(size(X)); dVsE^jsL  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >|twyb  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; bZ|FnY}FB  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2UFv9  
    %       y = zernfun(n,m,r(idx),theta(idx)); yp66{o  
    %       figure('Units','normalized') K9OYri^TQ  
    %       for k = 1:10 KN7n@$8YM  
    %           z(idx) = y(:,k); brdmz}  
    %           subplot(4,7,Nplot(k)) "87ghj_}  
    %           pcolor(x,x,z), shading interp ?ON-+u  
    %           set(gca,'XTick',[],'YTick',[]) ,=|ZB4HA  
    %           axis square -eN\ !  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z&{5;A}Q@  
    %       end 8[J}CdS  
    % Dg} Ka7H  
    %   See also ZERNPOL, ZERNFUN2. p~9vP)74u  
    4Rvf  
    C@bm  
    %   Paul Fricker 11/13/2006 IiZ&Pr  
    4( 1(e  
    Xt#4/>dlR  
    F$hY KT2|  
    yb/%?DNQT  
    % Check and prepare the inputs: t| 'N+-T3  
    % ----------------------------- yq NzdzX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) U )l,'y2  
        error('zernfun:NMvectors','N and M must be vectors.') R8T] 2?Q1  
    end k31I ysh  
    A _XhuQB;d  
    kjtjw1\o  
    if length(n)~=length(m) ea~:}!-P  
        error('zernfun:NMlength','N and M must be the same length.') )I$q5%q8  
    end 9$|Gfyv  
    FDv+*sZ  
    ,I_^IitN  
    n = n(:); /Ne<V2AX  
    m = m(:); E Kz'&Gu  
    if any(mod(n-m,2)) ]f_6 '|5 A  
        error('zernfun:NMmultiplesof2', ... `zE}1M%y  
              'All N and M must differ by multiples of 2 (including 0).') >$,y5 AJ&  
    end Vw&HVo  
    aN $}?  
    sSQs#+ &=[  
    if any(m>n) ea 00\  
        error('zernfun:MlessthanN', ... %0mMz.f  
              'Each M must be less than or equal to its corresponding N.') A^2Uzmzl?  
    end ZJ 77[  
    "eWYv3z~-  
    i6 (a@KRY  
    if any( r>1 | r<0 ) K%Rj8J7|u?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') GR"Eas.$  
    end Wf&W^Q  
    F`9ZH.  
    ;XDz)`c  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Zt&6Ua[Y}  
        error('zernfun:RTHvector','R and THETA must be vectors.') !DI{:I_h(  
    end  HC a  
    l $jxLZ  
    FA }_(Hf.[  
    r = r(:); ?x0pe4^If  
    theta = theta(:); "n=vN<8(o  
    length_r = length(r); "/nNM{^  
    if length_r~=length(theta) 7zv1 wb  
        error('zernfun:RTHlength', ... W":PG68  
              'The number of R- and THETA-values must be equal.') a<A+4uXyD  
    end  ^_%kE%I  
    D^-7JbE]  
    Eb=#9f%y>&  
    % Check normalization: 4L73]3&  
    % -------------------- 60)iw4<wf  
    if nargin==5 && ischar(nflag) D Kw*~0  
        isnorm = strcmpi(nflag,'norm'); 0^8)jpL$<9  
        if ~isnorm /De^  
            error('zernfun:normalization','Unrecognized normalization flag.') ]l(wg]  
        end 6Vbzd0dk  
    else >Z;jY*  
        isnorm = false; ?*oKX  
    end KPpHwcYxT  
    fI7j):h;  
    XJ0oS32_wK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \xUe/=  
    % Compute the Zernike Polynomials <uc1D/~^:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ej O}t:}P  
    n?:=  
    [*Z`Kc  
    % Determine the required powers of r: {h KjD"?  
    % ----------------------------------- I Nc^L  
    m_abs = abs(m); _6Eu2|vM&  
    rpowers = []; fbkd"7u  
    for j = 1:length(n) wM _ 6{  
        rpowers = [rpowers m_abs(j):2:n(j)]; tL+OCLF;  
    end %,iIpYx  
    rpowers = unique(rpowers); 5c;h &  
    (?*BB3b`  
    0iZGPe~  
    % Pre-compute the values of r raised to the required powers, n6(.{M;  
    % and compile them in a matrix: > QFHm5Jw  
    % ----------------------------- 6ITLGA  
    if rpowers(1)==0 /n4pXT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >z`,ch6~  
        rpowern = cat(2,rpowern{:}); cFagz* !  
        rpowern = [ones(length_r,1) rpowern]; BvU"4d;x  
    else lI/0:|l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z.wA@ ~e  
        rpowern = cat(2,rpowern{:}); &|<xqt  
    end \Yoa:|%*y  
    ]}UgS+g>$  
    f):~8_0b  
    % Compute the values of the polynomials: XIWm>IQ[)  
    % -------------------------------------- pU!o7>p  
    y = zeros(length_r,length(n)); h)v^q: ='  
    for j = 1:length(n) EHlytG}@  
        s = 0:(n(j)-m_abs(j))/2; 4{qB X?  
        pows = n(j):-2:m_abs(j); K{l5m{:%  
        for k = length(s):-1:1 Se!)n;?7Sw  
            p = (1-2*mod(s(k),2))* ... =_[Z W  
                       prod(2:(n(j)-s(k)))/              ... s(_+!d6  
                       prod(2:s(k))/                     ... %k0EpJE%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... R1-k3;v^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $iM=4 3W  
            idx = (pows(k)==rpowers); L;QY<b  
            y(:,j) = y(:,j) + p*rpowern(:,idx); T#O??3/%$1  
        end SLhEc  
         g8'DoHJ*  
        if isnorm |8)Xc=Hz  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F8+e,x  
        end p[WX'M0f  
    end > 4oY3wk8  
    % END: Compute the Zernike Polynomials gZT)pP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s~},y]YV  
    'xFYUU]#T^  
    Bfd-:`Jk  
    % Compute the Zernike functions: %TrF0{NR90  
    % ------------------------------ !CjqL~  
    idx_pos = m>0; wE).>  
    idx_neg = m<0; 89cVJ4]g~!  
    a)2yE,":  
    +dkS/b  
    z = y; yZJ*dadAr  
    if any(idx_pos) ~k'V*ERNSj  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); PG,U6c #  
    end {Ts:ZI+ 8d  
    if any(idx_neg) ODf4+& u  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); W>spz~w%j  
    end `dJDucD  
    gUB{Bh($Y  
    8 3.E0@$  
    % EOF zernfun P ,K\  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  [Ye5Y?  
    8Xk Ik7  
    DDE还是手动输入的呢? o@@w^##  
    ;7 "Y?*{  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究