下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3v!~ cC~cI
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Sb:T*N0gS
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )hj|{h7
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |k{-l!HI
(HN4g;{
s2v(=
*V;3~x!
Q:|w%L*E
function z = zernfun(n,m,r,theta,nflag) hD<f3_k
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. s-VSH
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mi2o1"Jd$`
% and angular frequency M, evaluated at positions (R,THETA) on the ".~{:=
% unit circle. N is a vector of positive integers (including 0), and ~L+]n0*
% M is a vector with the same number of elements as N. Each element e^$j5jV
% k of M must be a positive integer, with possible values M(k) = -N(k) lg1PE7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, zSjgx_#U
% and THETA is a vector of angles. R and THETA must have the same 1{2eY%+C
% length. The output Z is a matrix with one column for every (N,M) 396R$\q
% pair, and one row for every (R,THETA) pair. '?Iif#Z1
% 1:= `Y@.S
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $X+u={]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5`E))?*"Pe
% with delta(m,0) the Kronecker delta, is chosen so that the integral YbMssd2Yg
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hQgN9S5P
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3LlU]
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )8{6+{5lu
% 0D)`2W
% The Zernike functions are an orthogonal basis on the unit circle. o VB"f
% They are used in disciplines such as astronomy, optics, and Eb.;^=x
% optometry to describe functions on a circular domain. z4}
%TT@^
% Y&'8VdW
% The following table lists the first 15 Zernike functions. ?|t/mo|K?
% h#3m4<w(9
% n m Zernike function Normalization a]VGUW-
% -------------------------------------------------- IvW@o1Q
% 0 0 1 1 CJqc\I~
% 1 1 r * cos(theta) 2 KC&`x|
% 1 -1 r * sin(theta) 2 ^@}#me@
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~r`Wr`]_ z
% 2 0 (2*r^2 - 1) sqrt(3) BGjb`U#%3
% 2 2 r^2 * sin(2*theta) sqrt(6) cINHH !v
% 3 -3 r^3 * cos(3*theta) sqrt(8) '.p? 6k!K
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) WSI
Xj5R
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) =p\Xy*
% 3 3 r^3 * sin(3*theta) sqrt(8) YlUpASW
% 4 -4 r^4 * cos(4*theta) sqrt(10) Rk<%r k
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "]]q} O?
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) WaYO1*=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bx(w:]2
% 4 4 r^4 * sin(4*theta) sqrt(10) .u< U:*
% -------------------------------------------------- 2;N@aZX
% xVR:;
Jy[
% Example 1: 0MpS4tW0=
% w6EI{
% % Display the Zernike function Z(n=5,m=1) X7e/:._SAH
% x = -1:0.01:1; hmGdjw t$
% [X,Y] = meshgrid(x,x); v'nHFC+p
% [theta,r] = cart2pol(X,Y); )bYez
% idx = r<=1; `Ei"_W
% z = nan(size(X)); PqhlXqX9
% z(idx) = zernfun(5,1,r(idx),theta(idx)); aii'}c
% figure [$2qna2VP
% pcolor(x,x,z), shading interp MCAXt1sL&E
% axis square, colorbar 8!j=vCv
% title('Zernike function Z_5^1(r,\theta)') &N{zkMf
% D_aR\
% Example 2: # ,P(isEZ"
% 9N}W(>
% % Display the first 10 Zernike functions om7`w
]
% x = -1:0.01:1; MYTS3(
% [X,Y] = meshgrid(x,x);
z^~U]S3
% [theta,r] = cart2pol(X,Y); %UmbDGDWI
% idx = r<=1; 2k3 z'RLG
% z = nan(size(X)); WOH9%xv
% n = [0 1 1 2 2 2 3 3 3 3]; >q &L/N5
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; #KJZR{
% Nplot = [4 10 12 16 18 20 22 24 26 28]; J3\)Jy
% y = zernfun(n,m,r(idx),theta(idx)); fMB4xbpD
% figure('Units','normalized') kv%)K'fU4
% for k = 1:10 <NL+9l R
% z(idx) = y(:,k); L{K*~B -p
% subplot(4,7,Nplot(k)) W]~ZkQ|P
% pcolor(x,x,z), shading interp 3YRBI|XO
% set(gca,'XTick',[],'YTick',[]) y<uE-4
% axis square t>@yv#
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sbjtL,
% end ./)j5M
% TA9dkYlE/
% See also ZERNPOL, ZERNFUN2. mdt
?:F4Q
r1hD
%a
,^!Zm^4,
% Paul Fricker 11/13/2006 $Q,n+ /
'Ix5,^M}B
+cw{aI`a8
;;6\q!7`
rUvwpP"k
% Check and prepare the inputs: KPg[-d
% ----------------------------- Qasr:p+
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aZC*7AK
error('zernfun:NMvectors','N and M must be vectors.') Wb'*lT0=
end m^c%]5$
}*ODM6
j>V"hf
if length(n)~=length(m) AYYRxhv_,
error('zernfun:NMlength','N and M must be the same length.') 9`,,%vdj
end r"1A`89
]t7ClT)n!
;_wMWl0F
n = n(:); YN`UTi\s
m = m(:); |/2LWc?
if any(mod(n-m,2)) ]uJM6QuQ
error('zernfun:NMmultiplesof2', ... 0vcET(
'All N and M must differ by multiples of 2 (including 0).') +%x^ RV}
end 4=UI3 2v3
@#1cx
zAu}hVcW
if any(m>n) F1/6&u9I
error('zernfun:MlessthanN', ... (J/>Gy)d
'Each M must be less than or equal to its corresponding N.') 8QPT\~
end oNrEIgaA(+
[6tR&D#K
M$gvq:}kt
if any( r>1 | r<0 ) Y<de9Z@
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0U9+
end [3GKPX:OA/
2}GKHC
:Q8g?TZ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~igRg~k:/
error('zernfun:RTHvector','R and THETA must be vectors.') W6hNJb
end {kT#o3,>w6
[p2g_bI8yK
d|R
HG
r = r(:); s}Xi2^x
theta = theta(:); 9F/|`
length_r = length(r); }#YIl@E
if length_r~=length(theta) 5X0_+DdeL
error('zernfun:RTHlength', ... u;$I{b@M]
'The number of R- and THETA-values must be equal.') I4A;
end \-DM-NrZ1U
yIM.j;5:~5
YAX #O\,
% Check normalization: ngtuYASc
% -------------------- lF)0aDk'h
if nargin==5 && ischar(nflag) |Tj`qJGVw
isnorm = strcmpi(nflag,'norm'); #tCIuQ,
if ~isnorm x|&[hFXD
error('zernfun:normalization','Unrecognized normalization flag.') =mDy@%yx!
end i%#th'C!P
else (*LTqC
isnorm = false; \CP*i_:"
end j*zB
{ s
K
k?!TjBKm
")fOup@ ^a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IEKMa
% Compute the Zernike Polynomials s{b0#[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Kp?bwh"u
$Vd?K@W[h
clij|?O
% Determine the required powers of r: wY."Lw> 6
% ----------------------------------- d#x8O4S%i2
m_abs = abs(m); (or =f`
rpowers = []; :7zI3Ml@7
for j = 1:length(n) W66}\&5
rpowers = [rpowers m_abs(j):2:n(j)]; n=lggBRx
end B3ohHxHu
rpowers = unique(rpowers); * fOS"-CL
$`cy'ZaF
|DdW<IT`0
% Pre-compute the values of r raised to the required powers, Lh8#I&x
% and compile them in a matrix: e7)> U!9c9
% -----------------------------
Y-
z~#;
if rpowers(1)==0 U"jUMOMZ;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 853]CK<
rpowern = cat(2,rpowern{:}); n^g-`
rpowern = [ones(length_r,1) rpowern]; <v1_F;{n
else J
tn&o"C
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [346w
<
rpowern = cat(2,rpowern{:}); zIX}[l4EW~
end ?j},O=JFn
Y9lbf_51
6|>"0[4S
% Compute the values of the polynomials: K6PC&+x
% -------------------------------------- d#M?lS>
y = zeros(length_r,length(n)); 7z0;FW3>9
for j = 1:length(n) x3:ZB
s = 0:(n(j)-m_abs(j))/2; 2/a04qA#
pows = n(j):-2:m_abs(j); URj%
J/jD
for k = length(s):-1:1 # UP,;W
p = (1-2*mod(s(k),2))* ... &**.naSo
prod(2:(n(j)-s(k)))/ ... $n_sGr
prod(2:s(k))/ ... am)J'i,
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... DVeF(Y3&
prod(2:((n(j)+m_abs(j))/2-s(k))); btkMY<o7
idx = (pows(k)==rpowers); }J4BxBuV8
y(:,j) = y(:,j) + p*rpowern(:,idx); AmrJ_YP/t~
end t 's5~
{#d`&]
if isnorm [{Klv&>_/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ]2u7?l
end 0Zp<=\!;
end +eH=;8
% END: Compute the Zernike Polynomials )Uoe~\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E!oJ0*@
h;mQ%9 Yd
_3-,3ia
% Compute the Zernike functions: r.W"@vc>
% ------------------------------ ^{:[^$f:l
idx_pos = m>0; @b(gjOE
idx_neg = m<0; LqH?3):
\)s 3]/"7
L2Q p6A6S
z = y; aO;Q%]VL'
if any(idx_pos) vzgudxG'z
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y7IlqC`i
end N'q/7jOy
if any(idx_neg) itvy[b-*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T<_1|eH
end Zzzi\5&gU
{pi67"mYp
FnU{C= P
% EOF zernfun u9[w~U#