下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Zy o[(`y
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, NMa}
<
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %kdEun
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? "f "6]y
"tB;^jhRs
Cq'KoN%nQ
qMLD)rL
DV _2P$tT|
function z = zernfun(n,m,r,theta,nflag) +xrr?g
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. #7MUJY+
9
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z/t+8;TMR,
% and angular frequency M, evaluated at positions (R,THETA) on the CaL\fZ
% unit circle. N is a vector of positive integers (including 0), and ~y/
nlb!
% M is a vector with the same number of elements as N. Each element gLy&esJl1
% k of M must be a positive integer, with possible values M(k) = -N(k) R:#k%}W
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, EJsM(iG]~M
% and THETA is a vector of angles. R and THETA must have the same |h;0H`
% length. The output Z is a matrix with one column for every (N,M) ~g5[$r-u-u
% pair, and one row for every (R,THETA) pair. ^~3SSLS4"
% I~ok4L?VB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J[4mLU
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P*I}yPeb
% with delta(m,0) the Kronecker delta, is chosen so that the integral bI:zp!-.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >[_f3;P
% and theta=0 to theta=2*pi) is unity. For the non-normalized ^-,xE>3o
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4<k9?)~(J
% wS%Q<uK
% The Zernike functions are an orthogonal basis on the unit circle. ;4.!H,d
% They are used in disciplines such as astronomy, optics, and X{\F;Cb*
% optometry to describe functions on a circular domain. b/C`Jp
% kic/*v\6@
% The following table lists the first 15 Zernike functions. J/[=p<I)
% YbTxn="_
% n m Zernike function Normalization no<
^f]33
% -------------------------------------------------- .=X}cJ]`[
% 0 0 1 1 >D(R YI
% 1 1 r * cos(theta) 2 DV<` K$ET
% 1 -1 r * sin(theta) 2 &(xH$htv1
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2oNk93D
% 2 0 (2*r^2 - 1) sqrt(3) I?ae\X@M
% 2 2 r^2 * sin(2*theta) sqrt(6) |j#C|V%kV
% 3 -3 r^3 * cos(3*theta) sqrt(8) f!!V${)X
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2vAQ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) FW/W%^
% 3 3 r^3 * sin(3*theta) sqrt(8) :'~Y
% 4 -4 r^4 * cos(4*theta) sqrt(10)
@I_8T$N=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aC%m- m
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @U3Vc|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^eR%N8Z
% 4 4 r^4 * sin(4*theta) sqrt(10) )6|yb65ZUX
% -------------------------------------------------- Qj.l:9%
% `kZ@Zmj#
% Example 1: Gu2P\I2zx
% }Rz3<eON
% % Display the Zernike function Z(n=5,m=1) u%$Zqee
% x = -1:0.01:1; ?34 e-
% [X,Y] = meshgrid(x,x); H\qC["
% [theta,r] = cart2pol(X,Y); V>A.iim
% idx = r<=1; Qzlo'e1
% z = nan(size(X)); ,'p2v)p^4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); pO ml8SQf
% figure L"{JRbh[
% pcolor(x,x,z), shading interp D"J!\_o
% axis square, colorbar rmE" rf
% title('Zernike function Z_5^1(r,\theta)') 1DvR[Lx%
% 2Fq<*pxAY
% Example 2: 4*e0 hWp
% D (h18
% % Display the first 10 Zernike functions Bc6|n :;u
% x = -1:0.01:1; V{^!BBQ
% [X,Y] = meshgrid(x,x); 7tcPwCc{
% [theta,r] = cart2pol(X,Y); Lz:(6`S
% idx = r<=1; ~Uxsn@nLr
% z = nan(size(X)); dVsE^jsL
% n = [0 1 1 2 2 2 3 3 3 3]; >|twyb
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; bZ|FnY}FB
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 2UFv9
% y = zernfun(n,m,r(idx),theta(idx)); yp66{o
% figure('Units','normalized') K9OYri^TQ
% for k = 1:10 KN7n@$8YM
% z(idx) = y(:,k); brdmz}
% subplot(4,7,Nplot(k)) "87ghj_}
% pcolor(x,x,z), shading interp ?ON-+u
% set(gca,'XTick',[],'YTick',[]) ,=|ZB4HA
% axis square -eN\ !
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z&{5;A}Q@
% end 8[J}CdS
% Dg}
Ka7H
% See also ZERNPOL, ZERNFUN2. p~9vP)74u
4Rvf
C@bm
% Paul Fricker 11/13/2006 IiZ&Pr
4( 1(e
Xt#4/>dlR
F$hYKT2|
yb/%?DNQT
% Check and prepare the inputs: t| 'N+-T3
% ----------------------------- yq NzdzX
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) U
)l,'y2
error('zernfun:NMvectors','N and M must be vectors.') R8T]2?Q1
end k31I ysh
A _XhuQB;d
kjtjw1\o
if length(n)~=length(m) ea~:}!-P
error('zernfun:NMlength','N and M must be the same length.') )I$q 5%q8
end 9$|Gfyv
FDv+*sZ
,I_^IitN
n = n(:); /Ne<V2AX
m = m(:); E
Kz'&