下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +@3+WD
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Nv36#^Z
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,jis@]:
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? jD9u(qAlH
lNg){3
~r8<|$;
#Iz)Mu
b}0h()v
function z = zernfun(n,m,r,theta,nflag) 4y7_P0}:B
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1a{3k#}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Fk 3(( n=
% and angular frequency M, evaluated at positions (R,THETA) on the MYy58N
% unit circle. N is a vector of positive integers (including 0), and Bgc]t
% M is a vector with the same number of elements as N. Each element mXyP;k
% k of M must be a positive integer, with possible values M(k) = -N(k) oHx:["F
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, H"AL@=
% and THETA is a vector of angles. R and THETA must have the same n
Ab~
% length. The output Z is a matrix with one column for every (N,M) %w65)BFQ
% pair, and one row for every (R,THETA) pair. g[pU5%|"[
% \vT~2Y(K
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }BlyEcw'aN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), K}@rte
% with delta(m,0) the Kronecker delta, is chosen so that the integral +X^GS^mz
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, C'$}{%Cc@$
% and theta=0 to theta=2*pi) is unity. For the non-normalized +8//mrL_/
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u)r/#fUZ
% 2\1+M)
% The Zernike functions are an orthogonal basis on the unit circle. J Ah!#S(
% They are used in disciplines such as astronomy, optics, and zT,@PIC(
% optometry to describe functions on a circular domain. cHF W"g78
% \]Ah=`
% The following table lists the first 15 Zernike functions. ekyCZ8iai
% {\1bWr8!U
% n m Zernike function Normalization Wds>'zzS
% -------------------------------------------------- t(*n[7e
% 0 0 1 1 > U?\WgE$
% 1 1 r * cos(theta) 2 St%x\[D
% 1 -1 r * sin(theta) 2 X|hYZR
% 2 -2 r^2 * cos(2*theta) sqrt(6) rueaP
% 2 0 (2*r^2 - 1) sqrt(3) 'xqyG XI
% 2 2 r^2 * sin(2*theta) sqrt(6) x7zc3%T's
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;`7~Q
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Y`ip.Nx
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) %@a;q?/?Nd
% 3 3 r^3 * sin(3*theta) sqrt(8) "t4z)j;
% 4 -4 r^4 * cos(4*theta) sqrt(10) m6e(Xk,)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X.4WVI
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) .2JZ7
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ljz)%y[s
% 4 4 r^4 * sin(4*theta) sqrt(10) :
Z<\R0
% -------------------------------------------------- pwfQqPC#_
% ,Lp"Ia
% Example 1: $mGzJ4&
% Z .gb'
% % Display the Zernike function Z(n=5,m=1) .2@T|WD!Ah
% x = -1:0.01:1; sX~E ~$_g
% [X,Y] = meshgrid(x,x); R|qrK
% [theta,r] = cart2pol(X,Y); t^":.}[Q
% idx = r<=1; \UK}B
% z = nan(size(X)); u/j\pDl.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); HU?1>}4L
% figure lot`6]
% pcolor(x,x,z), shading interp j_90iP^5:
% axis square, colorbar A2ye
^<-C.
% title('Zernike function Z_5^1(r,\theta)') }XBF#BN
% L%v@|COQ3
% Example 2: As)?~dV
% p+=zl`\=|
% % Display the first 10 Zernike functions =H;n$ -P
% x = -1:0.01:1; R5=J :o
% [X,Y] = meshgrid(x,x); ?pEPwc
% [theta,r] = cart2pol(X,Y); *$0*5d7
% idx = r<=1; s 7 nl
% z = nan(size(X)); vOlfyH>
% n = [0 1 1 2 2 2 3 3 3 3]; V"4L=[le
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; jq)Bj#'7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; y p{Dl
% y = zernfun(n,m,r(idx),theta(idx)); yy{YduI
% figure('Units','normalized') q#AEu
xI1
% for k = 1:10 j%'2^C8
% z(idx) = y(:,k); G;cC!x<
% subplot(4,7,Nplot(k)) PzKTEYJL
% pcolor(x,x,z), shading interp `e'wWV
% set(gca,'XTick',[],'YTick',[]) Gf.ywqE$Y$
% axis square Q|o$^D,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^O7sQ7V"f=
% end OlyW/hd
% aWTurnee^
% See also ZERNPOL, ZERNFUN2. 'm*W<
Gz{%Z$A~o
{ax]t-ZwJ5
% Paul Fricker 11/13/2006 f{VV U/$
lGYW[0dy
}w4OCN\1
?QffSSj[s
7#j.yf4
% Check and prepare the inputs: QD%xmP
% ----------------------------- ~vDa2D<9%
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =|AYT6z,
error('zernfun:NMvectors','N and M must be vectors.') k vZ w4Pk
end P.Bwfa
n32"cFPpT
&mtt,]6C_
if length(n)~=length(m) $#f_p-N
error('zernfun:NMlength','N and M must be the same length.') h'em?fN(
end }d;2[fR)
[r"Oi|
8I
tcoG;ir
n = n(:); |qe;+)0>K
m = m(:); c6i7f:'-0
if any(mod(n-m,2)) =M-=94
error('zernfun:NMmultiplesof2', ... &