切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9570阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +@3+WD  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Nv36#^Z  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,jis@]:  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? jD9u(qAlH  
    lN g){3  
    ~r8<|$;  
    #Iz)Mu  
    b}0h ()v  
    function z = zernfun(n,m,r,theta,nflag) 4y7_P0}:B  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1a{3k#}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Fk3(( n=  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  MYy58N  
    %   unit circle.  N is a vector of positive integers (including 0), and Bgc]t  
    %   M is a vector with the same number of elements as N.  Each element mXyP;k  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) oHx :["F  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, H"AL@=  
    %   and THETA is a vector of angles.  R and THETA must have the same n Ab~  
    %   length.  The output Z is a matrix with one column for every (N,M) %w65)BFQ  
    %   pair, and one row for every (R,THETA) pair. g[pU5%|"[  
    % \vT~2Y(K  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }BlyEcw'aN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), K}@rte  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +X^GS^mz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, C'$}{%Cc@$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +8//mrL_/  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u)r/#fUZ  
    % 2\1+M)  
    %   The Zernike functions are an orthogonal basis on the unit circle. J Ah!#S(  
    %   They are used in disciplines such as astronomy, optics, and zT,@PIC(  
    %   optometry to describe functions on a circular domain. cHFW"g78  
    % \]Ah=`  
    %   The following table lists the first 15 Zernike functions. ekyCZ8iai  
    % {\1bWr8!U  
    %       n    m    Zernike function           Normalization Wds>'zzS  
    %       -------------------------------------------------- t(*n[7e  
    %       0    0    1                                 1 > U?\WgE$  
    %       1    1    r * cos(theta)                    2 St%x\[D  
    %       1   -1    r * sin(theta)                    2 X|hYZR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ru eaP  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 'xqyG XI  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) x7zc3%T's  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;`7~Q  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y`ip. Nx  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %@a;q?/?Nd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "t4z)j;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) m6e(Xk,)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X.4WVI  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .2JZ7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ljz)%y[s  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  : Z<\R0  
    %       -------------------------------------------------- pwfQqPC#_  
    % ,Lp"Ia  
    %   Example 1: $mGzJ4&  
    % Z. gb'  
    %       % Display the Zernike function Z(n=5,m=1) .2@T|WD!Ah  
    %       x = -1:0.01:1; sX~E ~$_g  
    %       [X,Y] = meshgrid(x,x); R|qrK  
    %       [theta,r] = cart2pol(X,Y); t^":.}[Q  
    %       idx = r<=1; \UK}B  
    %       z = nan(size(X)); u/j\pDl.  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); HU?1>}4L  
    %       figure lot`6]  
    %       pcolor(x,x,z), shading interp j_90iP^5:  
    %       axis square, colorbar A2ye ^<-C.  
    %       title('Zernike function Z_5^1(r,\theta)') }XBF#BN  
    % L%v@|COQ3  
    %   Example 2: As)?~dV  
    % p+=zl`\=|  
    %       % Display the first 10 Zernike functions =H;n$ -P  
    %       x = -1:0.01:1; R5=J:o  
    %       [X,Y] = meshgrid(x,x);  ?pEPwc  
    %       [theta,r] = cart2pol(X,Y); *$0*5d7  
    %       idx = r<=1; s 7 nl  
    %       z = nan(size(X)); vOlfyH>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; V"4L=[le  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; jq)Bj#'7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; y p{Dl  
    %       y = zernfun(n,m,r(idx),theta(idx)); yy{YduI  
    %       figure('Units','normalized') q#AEu xI1  
    %       for k = 1:10 j%'2^C8  
    %           z(idx) = y(:,k); G;cC!x<  
    %           subplot(4,7,Nplot(k)) PzKTEYJL  
    %           pcolor(x,x,z), shading interp `e'wW V  
    %           set(gca,'XTick',[],'YTick',[]) Gf.ywqE$Y$  
    %           axis square Q |o$^D,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^O7sQ7V"f=  
    %       end OlyW/hd  
    % aWTurnee^  
    %   See also ZERNPOL, ZERNFUN2. 'm*W<  
    Gz{%Z$A~o  
    {ax]t-ZwJ5  
    %   Paul Fricker 11/13/2006 f{VV U/$  
    l GYW[0dy  
    }w4OCN\1  
    ?QffSSj[s  
    7#j.y f4  
    % Check and prepare the inputs: QD%xmP  
    % ----------------------------- ~vDa2D<9%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =|AYT6z,  
        error('zernfun:NMvectors','N and M must be vectors.') k vZw4Pk  
    end P.Bwfa  
    n32"cFPpT  
    &mtt,]6C_  
    if length(n)~=length(m) $#f_p-N  
        error('zernfun:NMlength','N and M must be the same length.') h'em?fN(  
    end }d; 2[fR)  
    [r"Oi| 8I  
    tco G;ir  
    n = n(:); |qe;+)0>K  
    m = m(:); c6i7f:'-0  
    if any(mod(n-m,2)) =M-=94  
        error('zernfun:NMmultiplesof2', ... &u&WP  
              'All N and M must differ by multiples of 2 (including 0).') 0#TL$?=|  
    end eef&ZL6g  
    u_NLgM7*  
    lv/im/]v  
    if any(m>n) %bTuE' `b  
        error('zernfun:MlessthanN', ... C)j/!+nh  
              'Each M must be less than or equal to its corresponding N.') !{+CzUo@  
    end 6HBDs:   
    0^S$_L  
    ;8PO}{rD  
    if any( r>1 | r<0 ) GFLat  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0'6ai=W  
    end 4F.,Y3  
    A'`F Rx(  
    LQk^l`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jC[_uG  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0fX` >-X  
    end {E%c%zzQ  
    5FJLDT2Lg  
    M rgj*|  
    r = r(:); (/$-2.@  
    theta = theta(:); E0RqY3  
    length_r = length(r); kiJ=C2'&  
    if length_r~=length(theta) S|| W  
        error('zernfun:RTHlength', ... vrb@::sy0T  
              'The number of R- and THETA-values must be equal.') rzHBop-8  
    end @4UX~=:686  
    \{ | GK  
    #pPOQv:~  
    % Check normalization: "{vWdY|"  
    % -------------------- I1m[M?  
    if nargin==5 && ischar(nflag) W7 A!QS  
        isnorm = strcmpi(nflag,'norm'); U9T}iI  
        if ~isnorm k%gj  
            error('zernfun:normalization','Unrecognized normalization flag.') h[qZM  
        end ?=4oxPe  
    else F% a&|X  
        isnorm = false; GdUsv  
    end |dEPy- Xe  
    67&IaDts  
    zZPWE "u}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8y6dT  
    % Compute the Zernike Polynomials D$4GNeB+#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% & 'i_A%V  
    MzUKp"  
    ;b 65s9n^b  
    % Determine the required powers of r: Nb:j]U  
    % ----------------------------------- 75p9_)>96  
    m_abs = abs(m); a]fFR~ OY  
    rpowers = []; @yb'h`f]  
    for j = 1:length(n) k0=!%f_G!  
        rpowers = [rpowers m_abs(j):2:n(j)]; kOo  Vqu  
    end Xj+_"0 #  
    rpowers = unique(rpowers); ]Xa]a}[uE  
    KRlJKd{  
    !yj1X Ar  
    % Pre-compute the values of r raised to the required powers, $+J39%Y!^  
    % and compile them in a matrix: {sB-"NR`K  
    % ----------------------------- Bj4c_YBte  
    if rpowers(1)==0 ]tu OWR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w^8Q~ 3|7  
        rpowern = cat(2,rpowern{:}); e@V J-s  
        rpowern = [ones(length_r,1) rpowern]; RQWUO^&e^  
    else yLLA:5Q1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <%3fJt-Ie  
        rpowern = cat(2,rpowern{:}); 6_" n  
    end %8I^&~E1  
    H +I,c1sF  
    $:5h5Y#z  
    % Compute the values of the polynomials: Ht+roY  
    % -------------------------------------- <-N eusx%  
    y = zeros(length_r,length(n)); :tO?+1  
    for j = 1:length(n) -"ZNkC =  
        s = 0:(n(j)-m_abs(j))/2; =%I[o=6  
        pows = n(j):-2:m_abs(j); yx`@f8Kr  
        for k = length(s):-1:1 !-T#dU  
            p = (1-2*mod(s(k),2))* ... 32+N?[9 *  
                       prod(2:(n(j)-s(k)))/              ... >CKa?N;  
                       prod(2:s(k))/                     ... XelFGTE  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ynra%"sd  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *-]k([wV  
            idx = (pows(k)==rpowers); 5YPIv-  
            y(:,j) = y(:,j) + p*rpowern(:,idx); P\WHM(  
        end 4N= , 9  
         4J,6cOuW4  
        if isnorm `2U,#nZ 4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wH@< 0lw`<  
        end b?0WA.[{  
    end _Q^jk0K8ga  
    % END: Compute the Zernike Polynomials i: -IZL\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m8L %!6o  
    ;(,GS@sP  
    o"RE4s\G~r  
    % Compute the Zernike functions: oIOeX1$V  
    % ------------------------------ 6flO;d/v  
    idx_pos = m>0; O<!^^7/h0  
    idx_neg = m<0; C`Vuw|Xl  
    Kg2@]J9m  
    nUONI+6Z/  
    z = y; rA<J^dX=C  
    if any(idx_pos) oU3gy[wF;b  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6k,@+ @]t.  
    end H"pYj  
    if any(idx_neg) )N{PWSPs  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jyg>'"W  
    end #F .8x@  
    hHw1<! M  
    )I<VH +6  
    % EOF zernfun .Z QXY%g  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  aA yFu_  
    Ip 1QmP  
    DDE还是手动输入的呢? Pr/&p0@aV  
    *'t`;m~  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究