切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9123阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3v!~cC~cI  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Sb:T*N0gS  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )hj|{h7  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |k{-l!HI  
    (HN4g;{  
    s2v(=  
    *V;3~x!  
    Q:|w%L*E  
    function z = zernfun(n,m,r,theta,nflag) hD<f3_k  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. s-V SH  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mi2o1"Jd$`  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ".~{:=  
    %   unit circle.  N is a vector of positive integers (including 0), and ~L+]n0*  
    %   M is a vector with the same number of elements as N.  Each element e^$j5jV  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) lg1PE7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, zSjgx_#U  
    %   and THETA is a vector of angles.  R and THETA must have the same 1{2eY%+C  
    %   length.  The output Z is a matrix with one column for every (N,M) 396R$\q  
    %   pair, and one row for every (R,THETA) pair. '?Iif#Z1  
    % 1:= `Y@.S  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $X+u={]  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5`E))?*"Pe  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral YbMssd2Yg  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hQgN9S5P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3LlU]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )8{6+{5lu  
    % 0D)`2W  
    %   The Zernike functions are an orthogonal basis on the unit circle. oVB"f  
    %   They are used in disciplines such as astronomy, optics, and Eb.;^=x  
    %   optometry to describe functions on a circular domain. z4} %TT@^  
    % Y&'8VdW  
    %   The following table lists the first 15 Zernike functions. ?|t/mo|K?  
    % h#3m4<w(9  
    %       n    m    Zernike function           Normalization a]VGUW-  
    %       -------------------------------------------------- IvW@o1Q  
    %       0    0    1                                 1 CJq c\I~  
    %       1    1    r * cos(theta)                    2 KC&`x |  
    %       1   -1    r * sin(theta)                    2 ^@}#me@  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~r`Wr`]_z  
    %       2    0    (2*r^2 - 1)                    sqrt(3) BGjb`U#%3  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) cINHH !v  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) '.p? 6k!K  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WSI Xj5R  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =p\Xy*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) YlUpASW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Rk<%r k  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "]]q} O?  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) WaYO1*=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bx(w :]2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .u< U:*  
    %       -------------------------------------------------- 2;N@aZX  
    % xVR:; Jy[  
    %   Example 1: 0MpS4tW0=  
    % w6EI{  
    %       % Display the Zernike function Z(n=5,m=1) X7e/:._SAH  
    %       x = -1:0.01:1; hmGdjw t$  
    %       [X,Y] = meshgrid(x,x); v'nHFC+p  
    %       [theta,r] = cart2pol(X,Y); )bYez  
    %       idx = r<=1; `Ei"_W  
    %       z = nan(size(X)); PqhlXqX9  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); aii'}c  
    %       figure [$2qna2VP  
    %       pcolor(x,x,z), shading interp MCAXt1sL&E  
    %       axis square, colorbar 8!j=vCv  
    %       title('Zernike function Z_5^1(r,\theta)') &N{zkMf  
    % D_aR\  
    %   Example 2: #,P(isEZ"  
    % 9N}W(>  
    %       % Display the first 10 Zernike functions om7`w ]  
    %       x = -1:0.01:1; MYTS3(  
    %       [X,Y] = meshgrid(x,x); z^~U]S3  
    %       [theta,r] = cart2pol(X,Y); %UmbDGDWI  
    %       idx = r<=1; 2k3 z'RLG  
    %       z = nan(size(X)); WOH9%xv  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >q&L/N5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #KJZR{  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; J3\)Jy  
    %       y = zernfun(n,m,r(idx),theta(idx)); fMB4xbpD  
    %       figure('Units','normalized') kv%)K'fU4  
    %       for k = 1:10 <NL+9lR  
    %           z(idx) = y(:,k); L{K*~B-p  
    %           subplot(4,7,Nplot(k)) W]~ZkQ|P  
    %           pcolor(x,x,z), shading interp 3YRB I|XO  
    %           set(gca,'XTick',[],'YTick',[]) y<uE-4  
    %           axis square t>@yv#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sbjtL,  
    %       end ./)j5M  
    % TA9dkYlE/  
    %   See also ZERNPOL, ZERNFUN2. mdt ?:F4Q  
    r1hD %a  
    ,^!Zm^4,  
    %   Paul Fricker 11/13/2006 $Q,n+ /  
    'Ix5,^M}B  
    +cw{aI`a8  
    ;;6\q!7`  
    rUvwpP"k  
    % Check and prepare the inputs: KPg[-d  
    % ----------------------------- Qasr:p+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aZC*7AK   
        error('zernfun:NMvectors','N and M must be vectors.') Wb'*lT0=  
    end m^c%]5$  
    }*OD M6  
    j>V"hf  
    if length(n)~=length(m) AYYRxhv_,  
        error('zernfun:NMlength','N and M must be the same length.') 9`,,%vdj  
    end r"1A`89  
    ]t7ClT)n!  
    ;_w MWl0F  
    n = n(:); YN`UTi\s  
    m = m(:); |/2LWc?  
    if any(mod(n-m,2)) ]uJM6QuQ  
        error('zernfun:NMmultiplesof2', ... 0vcET(  
              'All N and M must differ by multiples of 2 (including 0).') +%x^RV}  
    end 4=UI3 2v3  
    @#1cx  
    zAu}hVcW  
    if any(m>n) F1/6&u9I  
        error('zernfun:MlessthanN', ... (J/>Gy)d  
              'Each M must be less than or equal to its corresponding N.') 8QPT\~  
    end oNrEIgaA(+  
    [6tR&D #K  
    M$gvq:}kt  
    if any( r>1 | r<0 ) Y<de9Z@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0U9+  
    end [3GKPX:OA/  
    2}GKHC  
    :Q8g?TZ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~igRg~k:/  
        error('zernfun:RTHvector','R and THETA must be vectors.') W6h NJb  
    end {kT#o3,>w6  
    [p2g_bI8yK  
    d|R HG  
    r = r(:); s }Xi2^x  
    theta = theta(:);  9F/|`  
    length_r = length(r); }#YIl@E  
    if length_r~=length(theta) 5X0_+DdeL  
        error('zernfun:RTHlength', ... u;$I{b@M]  
              'The number of R- and THETA-values must be equal.') I4A ;  
    end \-DM-NrZ1U  
    yIM.j;5:~5  
    YAX #O\,  
    % Check normalization: ngtuYASc  
    % -------------------- lF)0aDk'h  
    if nargin==5 && ischar(nflag) |Tj`qJGVw  
        isnorm = strcmpi(nflag,'norm'); #tCIuQ,  
        if ~isnorm x|&[hFXD  
            error('zernfun:normalization','Unrecognized normalization flag.') =mDy@%yx!  
        end i%#th'C!P  
    else (*LTq C  
        isnorm = false; \CP*i_:"  
    end j*zB { s K  
    k?!TjBKm  
    ")fOup@ ^a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IEKMa   
    % Compute the Zernike Polynomials s{b0#[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Kp?bwh"u  
    $Vd?K@W[h  
    clij|?O  
    % Determine the required powers of r: wY."Lw> 6  
    % ----------------------------------- d#x8O4S%i2  
    m_abs = abs(m); (or =f`  
    rpowers = []; :7zI3Ml@7  
    for j = 1:length(n) W66}\&5  
        rpowers = [rpowers m_abs(j):2:n(j)]; n=lggBRx  
    end B3ohHxHu  
    rpowers = unique(rpowers); *fOS"-C L  
    $`cy'ZaF  
    |DdW<IT`0  
    % Pre-compute the values of r raised to the required powers, Lh8# I&x  
    % and compile them in a matrix: e7)>U!9c9  
    % ----------------------------- Y- z~#;  
    if rpowers(1)==0 U"jUMOMZ;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 853]CK<  
        rpowern = cat(2,rpowern{:}); n^g-`  
        rpowern = [ones(length_r,1) rpowern]; <v1_F;{n  
    else J tn&o"C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [346w <  
        rpowern = cat(2,rpowern{:}); zIX}[l4EW~  
    end ?j},O=JFn  
    Y9lbf_51  
    6|>"0[4S  
    % Compute the values of the polynomials: K6 PC&+x  
    % -------------------------------------- d#M?lS>  
    y = zeros(length_r,length(n)); 7z0;FW3>9  
    for j = 1:length(n) x3:ZB  
        s = 0:(n(j)-m_abs(j))/2; 2/a04qA#  
        pows = n(j):-2:m_abs(j); URj% J/jD  
        for k = length(s):-1:1 #UP,;W  
            p = (1-2*mod(s(k),2))* ... &**.naSo  
                       prod(2:(n(j)-s(k)))/              ... $n_sGr  
                       prod(2:s(k))/                     ... am)J'i,  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... DVeF(Y3&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); btkMY<o7  
            idx = (pows(k)==rpowers); }J4BxBuV8  
            y(:,j) = y(:,j) + p*rpowern(:,idx); AmrJ_YP/t~  
        end t 's5~  
         {#d`&]  
        if isnorm [{Klv&>_/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ]2u7?l  
        end 0Zp<=\!;  
    end +eH=;8  
    % END: Compute the Zernike Polynomials )Uoe ~\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E!oJ0*@  
    h;mQ%9 Yd  
    _ 3-,3ia  
    % Compute the Zernike functions: r.W"@vc>  
    % ------------------------------ ^{:[^$f:l  
    idx_pos = m>0; @b(gjOE  
    idx_neg = m<0; LqH?3):  
    \)s 3]/"7  
    L2Qp6A6S  
    z = y; aO;Q%]VL'  
    if any(idx_pos) vzgudxG'z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y7IlqC`i  
    end N'q/7jOy  
    if any(idx_neg) itvy[b-*  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T<_1|eH  
    end Zzzi\5&gU  
    {pi67"mYp  
    FnU{C=P  
    % EOF zernfun u9[w~U#  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Sk%|-T(d$  
    ^IZ0M1&W;  
    DDE还是手动输入的呢? <qiap2  
    h^X.e[  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究