切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8770阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, tbG^9d  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, us%dw&   
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lR3`4bHA  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? XRA RgWj  
    )(V|d$n  
    P_6JweN  
    Wwo'pke  
    }22h)){n#Y  
    function z = zernfun(n,m,r,theta,nflag) hA 1_zKZ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 82d~>i%T  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h \dq]yOl  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y<0}z>^  
    %   unit circle.  N is a vector of positive integers (including 0), and QfPsF@+-`7  
    %   M is a vector with the same number of elements as N.  Each element Esx"nex  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Y=0D[o8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [[ {L#  
    %   and THETA is a vector of angles.  R and THETA must have the same OynQlQD/Eu  
    %   length.  The output Z is a matrix with one column for every (N,M) ul@G{N{L   
    %   pair, and one row for every (R,THETA) pair. sKD sps^$  
    % /<zBjvr%%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &}}UdJ`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +8p4\l$<`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m ^?a/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, T'C^,,if  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized tE=;V) %we  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e"g=A=S  
    % 5 1&||.  
    %   The Zernike functions are an orthogonal basis on the unit circle. Uphme8SX  
    %   They are used in disciplines such as astronomy, optics, and aUZh_<@  
    %   optometry to describe functions on a circular domain. =emcs%  
    % #POVu|Y;h  
    %   The following table lists the first 15 Zernike functions. ^W8kt  
    % KAkD" (!  
    %       n    m    Zernike function           Normalization ZRCm'p3  
    %       -------------------------------------------------- o,(]w kF  
    %       0    0    1                                 1 OQ*BPmS-   
    %       1    1    r * cos(theta)                    2 #M/^n0E  
    %       1   -1    r * sin(theta)                    2 RV@'$`Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D_s0)|j$cy  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "|k 4<"]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +wPXDN#R  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 'aV/\a:*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2?c##Izn  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r3OR7f[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) c2E*A+V#u  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ~9ZW~z'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rm}%C(C{J  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3aX/)v.:4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *Rx&#9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2oBT _o%/J  
    %       -------------------------------------------------- ]0dj##5tJ  
    % Nv[MU@Tv  
    %   Example 1: ,;D$d#\"  
    % =%=lq0GF0  
    %       % Display the Zernike function Z(n=5,m=1) 1U?,}w   
    %       x = -1:0.01:1; a*kvU"]  
    %       [X,Y] = meshgrid(x,x); NoAgZ{))  
    %       [theta,r] = cart2pol(X,Y); w ag^Sk  
    %       idx = r<=1; v}`{OE:-J  
    %       z = nan(size(X)); _-+xzdGvX  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ovXU +8  
    %       figure d}:eLC  
    %       pcolor(x,x,z), shading interp w! kWG,{C  
    %       axis square, colorbar mxPzB#t4  
    %       title('Zernike function Z_5^1(r,\theta)') ]Y.GU7`  
    % z?3t^UPW  
    %   Example 2: L ^E#"f  
    % rWMG6+Scb  
    %       % Display the first 10 Zernike functions 5Q$.q &,  
    %       x = -1:0.01:1; ATG;*nIP  
    %       [X,Y] = meshgrid(x,x); zBjtPtiiI8  
    %       [theta,r] = cart2pol(X,Y); >.=v*\P  
    %       idx = r<=1; :5W8S6[o  
    %       z = nan(size(X)); t@vVE{`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; my]t[%Q{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; T1*%]6&V|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; eJ ;a}{ 4%  
    %       y = zernfun(n,m,r(idx),theta(idx)); })F.Tjf*  
    %       figure('Units','normalized') ? h |&kRq  
    %       for k = 1:10 ud grZ/w]  
    %           z(idx) = y(:,k); a\l?7Jr  
    %           subplot(4,7,Nplot(k)) 8 \BGL  
    %           pcolor(x,x,z), shading interp N|5fkx<d^  
    %           set(gca,'XTick',[],'YTick',[]) _c$F?9:  
    %           axis square x@LNjlP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cp_<y)__  
    %       end p}e1!q;N  
    % xg;I::hE7X  
    %   See also ZERNPOL, ZERNFUN2. T0e- X  
    ^B?brH}  
    ;O~k{5.iS  
    %   Paul Fricker 11/13/2006 4.e0k<]N`  
    MXa(Oi2Gg  
    <L'6CBbP  
    r "uQ|  
    /UG]hJ-wn  
    % Check and prepare the inputs: YAP,#a  
    % ----------------------------- dRL*TT0NW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +(U;+6 b  
        error('zernfun:NMvectors','N and M must be vectors.') (Go1@;5I  
    end UC@Jsj~f  
    *8Kx y@  
    7R7e3p,K  
    if length(n)~=length(m) y2M]z:Y U  
        error('zernfun:NMlength','N and M must be the same length.') &WKAg:^k)  
    end A4{p(MS5  
    OPuty/^!Gw  
    wx*03(|j;  
    n = n(:); 34F;mr"yp  
    m = m(:); SVn $!t  
    if any(mod(n-m,2)) JUCp#[q  
        error('zernfun:NMmultiplesof2', ... V\nj7Gr:sF  
              'All N and M must differ by multiples of 2 (including 0).') Am@:<J  
    end tjg?zlj  
    T f40lv+{  
    !~Ptnr`;  
    if any(m>n) (91 YHhk{  
        error('zernfun:MlessthanN', ... 0dW*].Gi:  
              'Each M must be less than or equal to its corresponding N.') G S&I6  
    end {|B 2$1':  
    A~X| vW  
    eb>jT:  
    if any( r>1 | r<0 ) xnOd$]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7 MS-Gs|  
    end e<$s~ UXv  
    RxE.t[  
    kx,3[qe'S  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %n^ugm0B  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0uu)0:  
    end WBWIHv{j  
    @TJ2 |_s6]  
    \SN>Yy  
    r = r(:); Z+Cjg #+  
    theta = theta(:); WH_ W:  
    length_r = length(r); muMd9\p  
    if length_r~=length(theta) ` >loleI  
        error('zernfun:RTHlength', ... FQ>y2n=<d  
              'The number of R- and THETA-values must be equal.') n s#v?D9NF  
    end Y|6gg  
    M#k$[w}=  
    ws<p BC,m  
    % Check normalization: 9aBz%* xo  
    % -------------------- `=lo.c  
    if nargin==5 && ischar(nflag) q"i]&dMr  
        isnorm = strcmpi(nflag,'norm'); /@64xrvIl=  
        if ~isnorm c_T+T/O  
            error('zernfun:normalization','Unrecognized normalization flag.') mu2|%$C;$  
        end 26}fB  
    else ; +1ooeU  
        isnorm = false; 7+;.Q  
    end E/<n"'0ek  
    udS&$/&GH  
    'p[*2J"K4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D?FmlDTr[  
    % Compute the Zernike Polynomials 5+2qx)FZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XAN.Plk  
    N/eus"O;  
    "E@A~<RKP  
    % Determine the required powers of r: Lvrflx*Q  
    % ----------------------------------- hka%!W5  
    m_abs = abs(m); vVZ+u4y  
    rpowers = []; ?{P$|:ha  
    for j = 1:length(n) :31?Z(fQ  
        rpowers = [rpowers m_abs(j):2:n(j)]; {e5-  
    end ?<rZ9$  
    rpowers = unique(rpowers); M/,lP  
    "xNP"S  
    W$<Y**y9m  
    % Pre-compute the values of r raised to the required powers, NiMsAI@j  
    % and compile them in a matrix: wq|7sk{  
    % ----------------------------- 2UIZ<#|D>s  
    if rpowers(1)==0 m/q`k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  U02  
        rpowern = cat(2,rpowern{:}); p,tkVedR  
        rpowern = [ones(length_r,1) rpowern]; yg4#,4---b  
    else 8|nc( $}~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }:Y)DH% u  
        rpowern = cat(2,rpowern{:}); %f?Zg44  
    end IBUFXzl  
    Dw>)\\n{Kl  
    :2V|(:^ '  
    % Compute the values of the polynomials: #.vp \W  
    % -------------------------------------- )%<,JD  
    y = zeros(length_r,length(n)); MdFFt:y:  
    for j = 1:length(n) CfVL'  
        s = 0:(n(j)-m_abs(j))/2; !K+hXQE1  
        pows = n(j):-2:m_abs(j); mi1^hl'2  
        for k = length(s):-1:1 qDqy9u:g  
            p = (1-2*mod(s(k),2))* ... eFotV.T!#  
                       prod(2:(n(j)-s(k)))/              ... noLr185  
                       prod(2:s(k))/                     ... |)br-?2  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M& )yr^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); j\NCoos  
            idx = (pows(k)==rpowers); "3'a.b akw  
            y(:,j) = y(:,j) + p*rpowern(:,idx); hgbf"J6V8  
        end v2a(yH  
         ^y%8_r&  
        if isnorm EPA 2_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -0TI7 @  
        end hi4-Z=pl  
    end )L7[;(gQ  
    % END: Compute the Zernike Polynomials O.Y|},F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !E|R3e X_  
    -d thY(8  
    hL&7D @  
    % Compute the Zernike functions: H/k]u)Gtv  
    % ------------------------------ N<<O(r  
    idx_pos = m>0; C,%Dp0  
    idx_neg = m<0; -8vGvI>  
    ] _W'-B  
    @4KKm@(p85  
    z = y; Dm$SW<!l|  
    if any(idx_pos) 0!RP7Sx  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $5\!ws<cZ  
    end xAO\'#m  
    if any(idx_neg) yE.st9m  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [P0c,97_ H  
    end i[MBO`FF  
    ,1cpV|mAr  
    -0BxZ AW=  
    % EOF zernfun  !VXy67  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  $RHw6*COG  
    VG$%Vs  
    DDE还是手动输入的呢? y]!mN  
    hh.`Yu L  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究