下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 7#c4.9b?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^KnK
\
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =ZO lE|4
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~ivOSr7s}
CB
X}_]9X
vt nT
o@7U4#E
0OQ*V~>f
function z = zernfun(n,m,r,theta,nflag) n @,.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cRuN;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3Fxr=
% and angular frequency M, evaluated at positions (R,THETA) on the ( $>m]|
% unit circle. N is a vector of positive integers (including 0), and O;5lF
% M is a vector with the same number of elements as N. Each element Y%?*Lj|
% k of M must be a positive integer, with possible values M(k) = -N(k) =LODX29
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, c&x1aF "B
% and THETA is a vector of angles. R and THETA must have the same [[w |
% length. The output Z is a matrix with one column for every (N,M) NuOxEyC
% pair, and one row for every (R,THETA) pair. 9e c},~(
% 4 R(m$!E!
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gWoUE7.3`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), OScqf]H
% with delta(m,0) the Kronecker delta, is chosen so that the integral .ANR|G
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !%D';wQ,/
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7(oA(l1V
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. rmo\UCD
% 15q^&l[Q
% The Zernike functions are an orthogonal basis on the unit circle. K[
[6A:
% They are used in disciplines such as astronomy, optics, and }r! +wp
% optometry to describe functions on a circular domain. Wy*+8~@A
% |
oK9o6m4
% The following table lists the first 15 Zernike functions. ,lStT+A
% N_S~&(I|
% n m Zernike function Normalization .)_2AoT7[
% -------------------------------------------------- IVkB)9IW
% 0 0 1 1 vy 7/
% 1 1 r * cos(theta) 2 1DhC,)+D}q
% 1 -1 r * sin(theta) 2 c{_JPy
% 2 -2 r^2 * cos(2*theta) sqrt(6) >Q!}tbg~9
% 2 0 (2*r^2 - 1) sqrt(3) Lt=32SvTn
% 2 2 r^2 * sin(2*theta) sqrt(6) eU@Mv5&6
% 3 -3 r^3 * cos(3*theta) sqrt(8) ""XAUxo
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) C}pm>(F~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) V-@4s}zX
% 3 3 r^3 * sin(3*theta) sqrt(8) DU$#tg}{
% 4 -4 r^4 * cos(4*theta) sqrt(10) <n 06(9BF
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fZ5 UFq_~s
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) d1/9
A-{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fn=A_
i
% 4 4 r^4 * sin(4*theta) sqrt(10) vdAd@Z~\
% -------------------------------------------------- ruvfp_:
% ;nP(S`'
% Example 1: +(92}~RK
% N`,\1hHMT
% % Display the Zernike function Z(n=5,m=1) `G/g/>y
% x = -1:0.01:1; )\EIXTZY=
% [X,Y] = meshgrid(x,x); 0bM_EC
% [theta,r] = cart2pol(X,Y); b<~-s sL7a
% idx = r<=1; nEd
"~
% z = nan(size(X)); G^#>HE|
% z(idx) = zernfun(5,1,r(idx),theta(idx)); HXSryjF?
% figure vN\[2r%S
% pcolor(x,x,z), shading interp l^nvwm`f#:
% axis square, colorbar #gO[di0WhC
% title('Zernike function Z_5^1(r,\theta)') k|?[EWIi^
% ?%UiW7}j';
% Example 2: h!%y,4IBR
% XLCqB|8`V
% % Display the first 10 Zernike functions 4S~kNp$
% x = -1:0.01:1; CvE^t#Bok
% [X,Y] = meshgrid(x,x); ZxSFElDD]E
% [theta,r] = cart2pol(X,Y); 7Tdx*1 U
% idx = r<=1; yzp#
% z = nan(size(X)); b7dsi|Yo
% n = [0 1 1 2 2 2 3 3 3 3]; 0VtjVz*C7&
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
T`fT[BaY
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <_<zrXc]
% y = zernfun(n,m,r(idx),theta(idx)); GHd1?$
% figure('Units','normalized') IRx%L?
% for k = 1:10 'QG`^@Z
% z(idx) = y(:,k); 6,q_M(;c
% subplot(4,7,Nplot(k))
_$c o Y
% pcolor(x,x,z), shading interp 3kC|y[.&
% set(gca,'XTick',[],'YTick',[]) )5~T%_
% axis square `x/i1^/_@
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \DS*G7.A+&
% end Od~uYOL/B
% V<S6a
% See also ZERNPOL, ZERNFUN2. 4~h0/H"
~SBb2*ID
qzbW0AM[M
% Paul Fricker 11/13/2006 ZAn @NA=
S,6/X.QBv
TG$#aX\'
re[5lFQ~Z
By8SRWs
% Check and prepare the inputs: ZBpcC0
z
% ----------------------------- E#:!&{O
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sED"}F)
error('zernfun:NMvectors','N and M must be vectors.') zY:3*DiM
end AF"7 _
!' ^l}K>
5aW#zgxXg
if length(n)~=length(m) l 1k&@1"
error('zernfun:NMlength','N and M must be the same length.') xH:L6K/c
end VqW5VLa
%AA&n*m
A/I\MN|
n = n(:); ^.8~}TT-U
m = m(:); fm-m?=
if any(mod(n-m,2)) A/2$~4,
error('zernfun:NMmultiplesof2', ... }6-olVg
'All N and M must differ by multiples of 2 (including 0).') NT5=%X]
end X;W0r5T
:FI D,
E,.PT^au
if any(m>n) ljZRz$y
error('zernfun:MlessthanN', ... V /2NIh
'Each M must be less than or equal to its corresponding N.') ,Kj>F2{
end JH]S'5X8K
GxD`M2
KF+r25uy[+
if any( r>1 | r<0 ) WyatHC
error('zernfun:Rlessthan1','All R must be between 0 and 1.') GD.Ss9_h1
end AE~a=e\x
XyN
" Jr
<A Hzs
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?V!5VHa
error('zernfun:RTHvector','R and THETA must be vectors.') "JSIn"/
end v[ML=pL
tNr'@ls
lM4 Z7mT /
r = r(:); PF/K&&9}
theta = theta(:); v2rO>NY4
length_r = length(r); ^PNDxtd|v
if length_r~=length(theta) a`xAk^w+
error('zernfun:RTHlength', ... \h=*pAf
'The number of R- and THETA-values must be equal.') oMg-.!6
end */IiL%g4u
C3W4:kbau
@!dIa1Q"
% Check normalization: S=)
c7t?a
% -------------------- Up?RN %gq
if nargin==5 && ischar(nflag)
"LB
MYZ
isnorm = strcmpi(nflag,'norm'); q}L`8(a
if ~isnorm 37kFbR@x
error('zernfun:normalization','Unrecognized normalization flag.') Jg=!GU/::
end g?"QahHG
else o 7kg.w|
isnorm = false; W=^.s>7G
end K\9CW%W
0ex.~S_Oj4
f#:3TJV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y}R$RDRL
% Compute the Zernike Polynomials R&Nl!QTJj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [5L?#Y
g=nb-A{#
lj}3TbM
% Determine the required powers of r: 7OmT^jV2
% ----------------------------------- i!}k5k*Z
m_abs = abs(m); nk tGO
rpowers = []; cX
C [O
for j = 1:length(n) *KDTBd
rpowers = [rpowers m_abs(j):2:n(j)]; @;OsHudd
end !0?o3,of-
rpowers = unique(rpowers); {Cm!5Q Yy
'k\j[fk/K
ZcjLv
% Pre-compute the values of r raised to the required powers, YRVh[Bqg`
% and compile them in a matrix: $Ah
p4oiE
% ----------------------------- :lo5,B;k
if rpowers(1)==0 P
_fCb
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s9sl*1n1m`
rpowern = cat(2,rpowern{:}); bT 42G[x
rpowern = [ones(length_r,1) rpowern]; xS_;p9{E
else &zy%_U2%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); af |mk@
rpowern = cat(2,rpowern{:}); F_:zR,P%#
end <$-^^b(y
~{lb`M^]h
*:TwO=)
% Compute the values of the polynomials: btEyvqs~X
% -------------------------------------- M}[Q2v\
y = zeros(length_r,length(n)); }nPt[77U_7
for j = 1:length(n) Rw0|q
s = 0:(n(j)-m_abs(j))/2; =5Db^
pows = n(j):-2:m_abs(j); 18NnXqe-m
for k = length(s):-1:1 |x1OWm1:<
p = (1-2*mod(s(k),2))* ... 0>CG2 SRn
prod(2:(n(j)-s(k)))/ ... J8S$YRZ_
prod(2:s(k))/ ... $7AsMlq[(
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... KDEyVYO:
prod(2:((n(j)+m_abs(j))/2-s(k))); dj(&"P
idx = (pows(k)==rpowers); u~uz=Yse
y(:,j) = y(:,j) + p*rpowern(:,idx); 4dFr~ {
end .Xp,|T
TfZ M0Wz
if isnorm L^t%p1R
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3G4WKg.^
end x`7Le&4f
end uxL+oP0
% END: Compute the Zernike Polynomials Uzvd*>mv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j%`
C
_Kaqx"D
d)uuA;n
% Compute the Zernike functions: Vn5%%?]J
% ------------------------------ %TN$
idx_pos = m>0; _-RqkRI
idx_neg = m<0; 0o$RvxJ
?@@$)2_*u
&M@ .d$<C
z = y; ,X_3#!y
if any(idx_pos) i695P}J2
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bTeuOpp
end geK;r0(f
if any(idx_neg) .?NfV%vv
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); b&`~%f-
end )XonFI
'Y2$9qy-L
KtAEM;g
% EOF zernfun 2&S^\kf