切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8837阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 7#c4.9b?  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^KnK \  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =ZO lE|4  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~ivOSr7s}  
    CB X}_]9X  
    vt n T   
    o@7U4#E  
    0OQ*V~>f  
    function z = zernfun(n,m,r,theta,nflag) n @,.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cRuN;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3Fxr=  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ($>m]|  
    %   unit circle.  N is a vector of positive integers (including 0), and O;5lF  
    %   M is a vector with the same number of elements as N.  Each element Y%?*Lj|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =LODX29  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, c&x1aF "B  
    %   and THETA is a vector of angles.  R and THETA must have the same [ [w |  
    %   length.  The output Z is a matrix with one column for every (N,M) Nu OxEyC  
    %   pair, and one row for every (R,THETA) pair. 9e c},~(  
    % 4 R(m$!E!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gWoUE7.3`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), OScqf]H  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .ANR|G  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !%D';wQ,/  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7(oA(l1V  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. rmo\UCD  
    % 15q^&l[Q  
    %   The Zernike functions are an orthogonal basis on the unit circle. K[ [6A:  
    %   They are used in disciplines such as astronomy, optics, and }r!+wp   
    %   optometry to describe functions on a circular domain. Wy*+8~@A  
    % | oK9o6m4  
    %   The following table lists the first 15 Zernike functions. ,lStT+A  
    % N_S~&(I|  
    %       n    m    Zernike function           Normalization .)_2AoT7[  
    %       -------------------------------------------------- IVkB)9IW  
    %       0    0    1                                 1 vy7/  
    %       1    1    r * cos(theta)                    2 1DhC,)+D}q  
    %       1   -1    r * sin(theta)                    2 c{_JPy  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >Q!}tbg~9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Lt=32SvTn  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) eU@Mv5&6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ""XAUxo  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) C}pm>(F~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) V-@4s}zX  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) DU$#tg}{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) <n06(9BF  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fZ5 UFq_~s  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) d1/9 A-{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fn=A_ i  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) vdAd@Z~\  
    %       -------------------------------------------------- ruvfp_:  
    % ;nP(S`'  
    %   Example 1: +(92}~RK  
    % N`,\1hHMT  
    %       % Display the Zernike function Z(n=5,m=1) `G/g/>y  
    %       x = -1:0.01:1; )\EIXTZY=  
    %       [X,Y] = meshgrid(x,x); 0bM_EC  
    %       [theta,r] = cart2pol(X,Y); b<~-s sL7a  
    %       idx = r<=1; nEd "~  
    %       z = nan(size(X)); G^#>HE|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); HXSryjF?  
    %       figure v N\[2r%S  
    %       pcolor(x,x,z), shading interp l^nvwm`f#:  
    %       axis square, colorbar #gO[di0WhC  
    %       title('Zernike function Z_5^1(r,\theta)') k|?[EWIi^  
    % ?%UiW7}j';  
    %   Example 2: h!%y,4IBR  
    % XLCqB|8`V  
    %       % Display the first 10 Zernike functions 4S ~kNp$  
    %       x = -1:0.01:1; CvE^t#Bok  
    %       [X,Y] = meshgrid(x,x); ZxSFElDD]E  
    %       [theta,r] = cart2pol(X,Y); 7Tdx*1 U  
    %       idx = r<=1; y zp#  
    %       z = nan(size(X)); b7dsi|Yo  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0VtjVz*C7&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; T`fT[BaY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <_<zrXc]  
    %       y = zernfun(n,m,r(idx),theta(idx)); GHd1?$  
    %       figure('Units','normalized') IRx% L?  
    %       for k = 1:10 ' QG`^@Z  
    %           z(idx) = y(:,k); 6,q_ M(;c  
    %           subplot(4,7,Nplot(k)) _$c o Y  
    %           pcolor(x,x,z), shading interp 3kC|y[.&  
    %           set(gca,'XTick',[],'YTick',[]) )5~T%_  
    %           axis square `x/i1^/_@  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \DS*G7.A+&  
    %       end Od~uYOL/B  
    % V<S6 a  
    %   See also ZERNPOL, ZERNFUN2. 4~h 0/H"  
    ~S Bb2*ID  
    qzbW0AM[M  
    %   Paul Fricker 11/13/2006 ZAn @NA=  
    S,6/X.QBv  
    TG$ #aX\'  
    re[5lFQ~Z  
    By8SRWs  
    % Check and prepare the inputs: ZBpcC0 z  
    % ----------------------------- E#:!&{O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sED"}F)  
        error('zernfun:NMvectors','N and M must be vectors.') zY:3*DiM  
    end AF"7 _  
    !'^l}K>  
    5aW#zgxXg  
    if length(n)~=length(m) l1k&@1"  
        error('zernfun:NMlength','N and M must be the same length.') xH:L6K/c  
    end VqW5VL a  
    %AA&n*m  
    A/I\MN|  
    n = n(:); ^.8~}TT-U  
    m = m(:); fm-m?=  
    if any(mod(n-m,2)) A/2$~4,  
        error('zernfun:NMmultiplesof2', ... }6-olVg  
              'All N and M must differ by multiples of 2 (including 0).') NT 5=%X]  
    end X;W0r5T  
    :FI D ,  
    E,.PT^au  
    if any(m>n) ljZRz$y  
        error('zernfun:MlessthanN', ... V/2NIh  
              'Each M must be less than or equal to its corresponding N.') ,Kj>F2{  
    end JH]S'5X8K  
    GxD`M2  
    KF+r25uy[+  
    if any( r>1 | r<0 ) WyatHC   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') GD.Ss9_h1  
    end AE~a=e\x  
    XyN " Jr  
    <A Hzs  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?V!5VHa  
        error('zernfun:RTHvector','R and THETA must be vectors.') "JSIn"/  
    end v[ML=pL  
    tNr'@ls  
    lM4Z7mT /  
    r = r(:); PF/K&&9}  
    theta = theta(:); v2rO>NY4  
    length_r = length(r); ^PNDxtd|v  
    if length_r~=length(theta) a`xAk ^w+  
        error('zernfun:RTHlength', ... \h=*pAf  
              'The number of R- and THETA-values must be equal.') oMg-.!6  
    end */IiL%g4u  
    C3W4:kbau  
    @!dIa1Q"  
    % Check normalization: S=) c7t?a  
    % -------------------- Up?RN%gq  
    if nargin==5 && ischar(nflag)  "LB MYZ  
        isnorm = strcmpi(nflag,'norm'); q}L`8(a  
        if ~isnorm 37kFbR@x  
            error('zernfun:normalization','Unrecognized normalization flag.') Jg=!GU/::  
        end g?"QahH G  
    else o 7kg.w|  
        isnorm = false; W=^.s>7G  
    end K\9CW%W  
    0ex.~S_Oj4  
    f#:3 TJV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y}R$RDRL  
    % Compute the Zernike Polynomials R&Nl!QTJj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [5L?#Y  
    g=nb-A{#  
    lj}3TbM  
    % Determine the required powers of r: 7OmT^jV2  
    % ----------------------------------- i!}k5k*Z  
    m_abs = abs(m); nktGO  
    rpowers = [];  cX C[O  
    for j = 1:length(n) *KDTBd  
        rpowers = [rpowers m_abs(j):2:n(j)]; @;OsHudd  
    end !0?o3,of-  
    rpowers = unique(rpowers); {Cm!5QYy  
    'k\j[fk/K  
    ZcjLv  
    % Pre-compute the values of r raised to the required powers, YRV h[Bqg`  
    % and compile them in a matrix: $Ah p4oiE  
    % ----------------------------- :lo5,B;k  
    if rpowers(1)==0 P _fCb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s9sl*1n1m`  
        rpowern = cat(2,rpowern{:}); bT 42G [x  
        rpowern = [ones(length_r,1) rpowern]; xS_;p9{E  
    else &zy%_U2%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); af | mk@  
        rpowern = cat(2,rpowern{:}); F_:zR,P%#  
    end <$-^^b(y  
    ~{lb`M^]h  
    *:TwO=)  
    % Compute the values of the polynomials: btEyvqs~X  
    % -------------------------------------- M}[Q2v\  
    y = zeros(length_r,length(n)); }nPt[77U_7  
    for j = 1:length(n)  Rw0|q  
        s = 0:(n(j)-m_abs(j))/2; =5Db^  
        pows = n(j):-2:m_abs(j); 18NnXqe-m  
        for k = length(s):-1:1 |x1OWm1:<  
            p = (1-2*mod(s(k),2))* ... 0>CG2SRn  
                       prod(2:(n(j)-s(k)))/              ... J8S$YRZ_  
                       prod(2:s(k))/                     ... $7AsMlq[(  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... KDEyVYO:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); dj (&"P  
            idx = (pows(k)==rpowers); u~uz=Yse  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4dFr~ {  
        end .Xp,|T  
         TfZM0Wz  
        if isnorm L^t%p1R  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3G4WKg.^  
        end x`7Le&4f  
    end uxL+oP0  
    % END: Compute the Zernike Polynomials Uzvd*>mv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j%` C  
    _Kaqx"D  
    d)uuA;n  
    % Compute the Zernike functions: Vn5%%?]J  
    % ------------------------------ %TN$   
    idx_pos = m>0; _ -RqkRI  
    idx_neg = m<0; 0o$RvxJ  
    ?@@$)2_*u  
    &M@ .d$<C  
    z = y; ,X_3#!y  
    if any(idx_pos) i695P}J2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bTeuOpp  
    end geK;r0(f  
    if any(idx_neg) .?NfV%vv  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); b&`~%f-  
    end  )XonFI  
    'Y2$9qy-L  
    KtAEM;g  
    % EOF zernfun 2&S^\kf  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1063
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  A&KY7[<AC{  
    |tY6+T}  
    DDE还是手动输入的呢? _Co v>6_i  
     ^LSD_R^N  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究