下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, tbG^9d
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, us%dw&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lR3`4bHA
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? XRARgWj
)(V|d$n
P_6JweN
Wwo'pke
}22h)){n#Y
function z = zernfun(n,m,r,theta,nflag) hA 1_zKZ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 82d~>i%T
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h\dq]yOl
% and angular frequency M, evaluated at positions (R,THETA) on the Y<0}z>^
% unit circle. N is a vector of positive integers (including 0), and QfPsF@+-`7
% M is a vector with the same number of elements as N. Each element Esx"nex
% k of M must be a positive integer, with possible values M(k) = -N(k) Y=0D[o8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [[
{L#
% and THETA is a vector of angles. R and THETA must have the same OynQlQD/Eu
% length. The output Z is a matrix with one column for every (N,M) ul@G{N{L
% pair, and one row for every (R,THETA) pair. sKDsps^$
% /<zBjvr%%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &}}UdJ`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +8p4\l$<`
% with delta(m,0) the Kronecker delta, is chosen so that the integral m^?a /
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, T'C^,,if
% and theta=0 to theta=2*pi) is unity. For the non-normalized tE=;V) %we
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e"g=A=S
% 5 1&||.
% The Zernike functions are an orthogonal basis on the unit circle. Uphme8SX
% They are used in disciplines such as astronomy, optics, and aUZh_<@
% optometry to describe functions on a circular domain. =emcs%
% #POVu|Y;h
% The following table lists the first 15 Zernike functions.
^W8kt
% KAkD" (!
% n m Zernike function Normalization ZRCm'p3
% -------------------------------------------------- o,(]w kF
% 0 0 1 1 OQ*BPmS-
% 1 1 r * cos(theta) 2 #M/^n0E
% 1 -1 r * sin(theta) 2 R V@'$`Q
% 2 -2 r^2 * cos(2*theta) sqrt(6) D_s0)|j$cy
% 2 0 (2*r^2 - 1) sqrt(3) "|k 4<"]
% 2 2 r^2 * sin(2*theta) sqrt(6) +wPXDN#R
% 3 -3 r^3 * cos(3*theta) sqrt(8) 'aV/\a:*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2?c##Izn
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r3OR7f[
% 3 3 r^3 * sin(3*theta) sqrt(8) c2E*A+V#u
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~9ZW~z'
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rm}%C(C{J
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 3aX/)v.:4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *Rx&