切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8812阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来,  nI[os  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 3t.l5m Rg5  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ov|d^)'  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? f<-Jg  
    <3L5"77G 6  
    'Oxy$U   
    B[qzUD*P_n  
    QER?i;-wb  
    function z = zernfun(n,m,r,theta,nflag) Jf@H/luW  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. f<GhkDPm>?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NxfOF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E!;SL|lj.  
    %   unit circle.  N is a vector of positive integers (including 0), and 2v:]tj  
    %   M is a vector with the same number of elements as N.  Each element G3C~x.(f  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Z~GL5]S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 8bxfj<O,  
    %   and THETA is a vector of angles.  R and THETA must have the same #+JG(^%B  
    %   length.  The output Z is a matrix with one column for every (N,M) %Celc#v  
    %   pair, and one row for every (R,THETA) pair. f}6s Q5  
    % rr/B= O7  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ag;Q F  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), O3;u G.:1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  JR'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, XFg 9P}"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ltv]pH}YN  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [<7@{;r  
    % md=TjMaY  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1}S S+>`  
    %   They are used in disciplines such as astronomy, optics, and ycc4W*]  
    %   optometry to describe functions on a circular domain. o\BOL3H  
    % V4hiGO[  
    %   The following table lists the first 15 Zernike functions. Q_1:tW &  
    % B{/R: Hm  
    %       n    m    Zernike function           Normalization R$v[!A+:'  
    %       -------------------------------------------------- 9FoHD  
    %       0    0    1                                 1 @>u}eB>Kn  
    %       1    1    r * cos(theta)                    2 #r$cyV!k  
    %       1   -1    r * sin(theta)                    2 I?]ohG K  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *lYVY) L  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ZLc -RM  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :D euX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) e%@'5k\SK  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $>G8_q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) oxC[F*mD  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) QFE:tBHe  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) =FlDb 5t{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i% w3/m  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) w+C7BPV&  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #[,IsEpDO1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) rTM}})81  
    %       -------------------------------------------------- cIUHa  
    % 5rwu!Y;7*  
    %   Example 1: PZ2;v<  
    % G"klu  
    %       % Display the Zernike function Z(n=5,m=1) aL*&r~`&e'  
    %       x = -1:0.01:1; t;\kR4P  
    %       [X,Y] = meshgrid(x,x); M*y)6H k~  
    %       [theta,r] = cart2pol(X,Y); 2X.r%&!1M  
    %       idx = r<=1; {^ qcx8  
    %       z = nan(size(X)); +:8fC$vVfC  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |pm7_[  
    %       figure gGvz(R: y  
    %       pcolor(x,x,z), shading interp SlgN&{ Bk  
    %       axis square, colorbar 9l|@v=gw.  
    %       title('Zernike function Z_5^1(r,\theta)') J cPtwa;q@  
    % +?F[/?s5qz  
    %   Example 2: S\LkL]qx  
    % u&1q [0y  
    %       % Display the first 10 Zernike functions 4^:\0U F  
    %       x = -1:0.01:1; qUh2hz:  
    %       [X,Y] = meshgrid(x,x); 3%l*N&gsg:  
    %       [theta,r] = cart2pol(X,Y); s&A} h  
    %       idx = r<=1; yaD~1"GA'O  
    %       z = nan(size(X)); ? Fi=P#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5*E]ETo@R  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4h~iPn'Wl  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "*($cQ$v  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,">]`|?  
    %       figure('Units','normalized') U}&2k  
    %       for k = 1:10 /rM I"khB  
    %           z(idx) = y(:,k); %Da8{%{`Pc  
    %           subplot(4,7,Nplot(k)) Z&#('Z  
    %           pcolor(x,x,z), shading interp {,3>"  
    %           set(gca,'XTick',[],'YTick',[]) Ci?Ss+|  
    %           axis square FR$:"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Cf TfL3(J  
    %       end !5.8]v  
    % 8?J&`e/  
    %   See also ZERNPOL, ZERNFUN2. 9G9fDG#F\I  
    ahuGq'  
    SFO({w(  
    %   Paul Fricker 11/13/2006 H#NCi~M>3  
    3wOZ4<B  
    ./,/y"x  
    B{|8#jqY  
    u&`XB|~  
    % Check and prepare the inputs: d_CKP"TA  
    % ----------------------------- |*:'TKzNS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p qfUW+>  
        error('zernfun:NMvectors','N and M must be vectors.') Ewu O&q  
    end MJOz.=CbhR  
    IT(lF  
    /~}}"zx&  
    if length(n)~=length(m) '3_]Gu-D  
        error('zernfun:NMlength','N and M must be the same length.') U[SaY0Z  
    end p=;=w_^y  
    e^d0zl{  
    q ]M+/sl  
    n = n(:); Y'yH;M z  
    m = m(:); )#P; x "  
    if any(mod(n-m,2)) :ZTc7 }  
        error('zernfun:NMmultiplesof2', ... gGr^@=;YC  
              'All N and M must differ by multiples of 2 (including 0).') wLmhy,  
    end Nd`%5%'::  
    )T';qm0w  
    WfWN(:dF  
    if any(m>n) pNOwDJtK  
        error('zernfun:MlessthanN', ... k,'L}SK  
              'Each M must be less than or equal to its corresponding N.') 'h/CoTk@,  
    end H GXt  
    BbW^Wxd3  
    X*M#FT-  
    if any( r>1 | r<0 ) &0='r;*i  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') d`P7}*; `  
    end d\p,2  
    [pl'|B  
    PUF/#ck  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y]NSN-t  
        error('zernfun:RTHvector','R and THETA must be vectors.') N"8_S0=pw  
    end KAC6Snu1  
    sArhZ[H  
    c\iA89msp  
    r = r(:); 9^,Lc1"M>  
    theta = theta(:); j/>$,   
    length_r = length(r); V=zi >o`   
    if length_r~=length(theta) ,8:(OB|a  
        error('zernfun:RTHlength', ... %<E$,w>  
              'The number of R- and THETA-values must be equal.') N F2/B#q  
    end  /<HRwG\w  
    v5By:z  
    K<pV  
    % Check normalization: I|>^1kr8w  
    % -------------------- IIg^FZ*]_  
    if nargin==5 && ischar(nflag) O$IEn/%+  
        isnorm = strcmpi(nflag,'norm'); l% ?T2Fm3>  
        if ~isnorm OlAs'TE^  
            error('zernfun:normalization','Unrecognized normalization flag.') ,=tD8@a<  
        end ?**+e%$$  
    else ?*E'^~,H)  
        isnorm = false; dE:+k/  
    end y$@ZN~8  
    )#.<]&P}  
    5!l0zLQP o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F_;vO%}  
    % Compute the Zernike Polynomials nyBJb(5"B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &Rx{.9  
    'f[T&o&L/  
    q0$ !y!~  
    % Determine the required powers of r: an|x$e7|?  
    % ----------------------------------- T'4z=Z]w  
    m_abs = abs(m); Hj:r[/  
    rpowers = []; 1jy9lP=  
    for j = 1:length(n) nx8a$vI-TY  
        rpowers = [rpowers m_abs(j):2:n(j)]; I3,= 0z  
    end .Jt[(;  
    rpowers = unique(rpowers); g{8,Wx,,  
    "Jt.lL ]5  
    O>^C4c!  
    % Pre-compute the values of r raised to the required powers, sB^<6W!`(  
    % and compile them in a matrix: e '2F#  
    % ----------------------------- 0BH_'ZW  
    if rpowers(1)==0 Z$0 uH*h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #bl6sa{E  
        rpowern = cat(2,rpowern{:}); ?RK]FP"A  
        rpowern = [ones(length_r,1) rpowern]; Au4yBm u  
    else J]&y$?C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G`\f  
        rpowern = cat(2,rpowern{:}); EX?MA6U  
    end }z\_;\7  
    QAvir%Y9Q  
    VJdIHsI  
    % Compute the values of the polynomials:  A-4h  
    % -------------------------------------- bzX\IrJpOZ  
    y = zeros(length_r,length(n)); t?9v^vFR  
    for j = 1:length(n) O [i#9)  
        s = 0:(n(j)-m_abs(j))/2; S zUpWy&  
        pows = n(j):-2:m_abs(j); 6`]$qSTS  
        for k = length(s):-1:1 +m8!U=Zi  
            p = (1-2*mod(s(k),2))* ... G8r``{C!  
                       prod(2:(n(j)-s(k)))/              ... zipS ]YD  
                       prod(2:s(k))/                     ... (N&lHLy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 'Y56+P\u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <^zHE=h"  
            idx = (pows(k)==rpowers); 9G+V;0Q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); qIY~dQ|  
        end ?Rj~f{%g  
         w9, iq@  
        if isnorm kAu+zX>S+  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d4nH_?  
        end ;PjQt=4K  
    end Yc,7tUz#  
    % END: Compute the Zernike Polynomials 6(G?MW.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %*&UJpbA  
    :{oZ~<  
    i{ \%e  
    % Compute the Zernike functions: # m[|2R  
    % ------------------------------ ,t`Kv1  
    idx_pos = m>0; -u? S=h}  
    idx_neg = m<0; /\H>y  
    !zPa_`P  
    zxf"87se  
    z = y; ;$a@J&  
    if any(idx_pos) DqX{'jj  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mExVYp h  
    end IdXZoY  
    if any(idx_neg) 4H|(c[K;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !OT-b>*w  
    end |i ZfYi&^  
    aBNZdX]vzO  
    * 1Od-3  
    % EOF zernfun 7DIIx}A  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  JxjI]SF02  
    `]v[5E  
    DDE还是手动输入的呢? CAT.4GM  
    5/QRL\  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究