切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8882阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, A0Hsd  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #PRkqg+|  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,NaNih1  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $'VFb=?XrK  
    ugt|'i  
    t7DT5SrR  
    0l ]K%5#  
    DbkKmv&  
    function z = zernfun(n,m,r,theta,nflag) Xn3Ph!\Z5e  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +lqX;*a=N  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [& &9F};  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 4h~o>(Sq  
    %   unit circle.  N is a vector of positive integers (including 0), and "o[j'  
    %   M is a vector with the same number of elements as N.  Each element Ik4U+'z6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) F&lvofy23  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +Te;LJP  
    %   and THETA is a vector of angles.  R and THETA must have the same tcf>9YsOr  
    %   length.  The output Z is a matrix with one column for every (N,M) ] T! >]  
    %   pair, and one row for every (R,THETA) pair. x, ^j=n  
    % ceR zHq=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B@Q Ate7   
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C_= WL(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral C2</.jeLa  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, W]rK*Dc  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5l"v:Px  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AA um1xl  
    % *1KrI9i  
    %   The Zernike functions are an orthogonal basis on the unit circle. y  ZsC>  
    %   They are used in disciplines such as astronomy, optics, and Q_F8u!qrZ  
    %   optometry to describe functions on a circular domain. 3R[5prE<  
    % $;dSM<r  
    %   The following table lists the first 15 Zernike functions. AVA hS}*t  
    % +idj,J|  
    %       n    m    Zernike function           Normalization qffXm `k  
    %       -------------------------------------------------- g3(fhfR'RN  
    %       0    0    1                                 1 zR+EJFf  
    %       1    1    r * cos(theta)                    2 O#E]a<N`  
    %       1   -1    r * sin(theta)                    2 gI qYIt  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) nDS mr  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )FkJ=P0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {`vF4@  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) TC4W7} }  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) SAt{At  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) pN"d~Z8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) MGd 7Ont  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #s)Wzv%OX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K_4}N%P/))  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wTGH5}QZ+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &oTUj'$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %W=S*"e-  
    %       -------------------------------------------------- !52]'yub  
    % >v9 ("  
    %   Example 1: 1O0o18'  
    % 5uu Zt0V\  
    %       % Display the Zernike function Z(n=5,m=1) `)FSJV1  
    %       x = -1:0.01:1; POQRq%w  
    %       [X,Y] = meshgrid(x,x); p*8LS7UT  
    %       [theta,r] = cart2pol(X,Y); Lmx95[#@a  
    %       idx = r<=1; F`;oe[wfk  
    %       z = nan(size(X)); T<"Hh.h  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #=@( m.k:s  
    %       figure @54D<Lj  
    %       pcolor(x,x,z), shading interp `g&<7~\=A  
    %       axis square, colorbar A=/|f$s+  
    %       title('Zernike function Z_5^1(r,\theta)') 'Jww}^h1  
    % QXnL(z  
    %   Example 2: V^WR(Q}  
    % B(x i  
    %       % Display the first 10 Zernike functions cTpAU9|(  
    %       x = -1:0.01:1; /AX1LYlr  
    %       [X,Y] = meshgrid(x,x); )pV5l|`  
    %       [theta,r] = cart2pol(X,Y); y|1,h}H^n  
    %       idx = r<=1; 5 iUT#  
    %       z = nan(size(X)); ,c#=qb8""  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w:P$ S  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @sRUl ,M;Z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; lV/-jkR  
    %       y = zernfun(n,m,r(idx),theta(idx)); K'EGm #I  
    %       figure('Units','normalized') s_A<bW566F  
    %       for k = 1:10 |'xVU8  
    %           z(idx) = y(:,k); z{w!yMp"  
    %           subplot(4,7,Nplot(k)) *P,dR]-m  
    %           pcolor(x,x,z), shading interp ]42bd  
    %           set(gca,'XTick',[],'YTick',[]) =^m,|j|d>4  
    %           axis square c0.i  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 01VEz 8[\  
    %       end fGDR<t3yiQ  
    % ^| L@f  
    %   See also ZERNPOL, ZERNFUN2. (5y+g?9d;  
    *6 oQW  
    3A'vq2beM  
    %   Paul Fricker 11/13/2006 ,*SoV~  
    _Gv[ D  
    bLyU;  
    i#o:V/Z .  
    OTs vox|(  
    % Check and prepare the inputs: #%t&f"j2  
    % ----------------------------- dGU io?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pJ Iq`)p5  
        error('zernfun:NMvectors','N and M must be vectors.') <<}t&qE%2%  
    end QZ!;` ?(  
    !iBe/yb  
    n4Od4&r  
    if length(n)~=length(m) Fdsaf[3[v  
        error('zernfun:NMlength','N and M must be the same length.') BFP (2j  
    end t .*z)N  
    @C]]VE  
    5 Z+2  
    n = n(:); cn1UFmT  
    m = m(:); x _&=IyU0j  
    if any(mod(n-m,2)) B]Vnu7  
        error('zernfun:NMmultiplesof2', ... by z2u  
              'All N and M must differ by multiples of 2 (including 0).') UX3 ]cr  
    end k*)O]M<,  
    tW4|\-E"s4  
    "L yMw){  
    if any(m>n) }TjiYA.  
        error('zernfun:MlessthanN', ... 7#K%Bo2pG  
              'Each M must be less than or equal to its corresponding N.') <T?H H$es)  
    end "J|_1!9  
    WqX#T  
    aChyl;#E  
    if any( r>1 | r<0 ) am >X7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8YNii-pl  
    end CG!/Lbd  
    i[obQx S94  
    gd~# uR\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) VJ1(|v{D4[  
        error('zernfun:RTHvector','R and THETA must be vectors.') KLqn`m`O;  
    end 1<Fh aK  
    >iefEv\  
    .kO!8Q-;%  
    r = r(:); kkfwICBI  
    theta = theta(:); ^+Ho#]  
    length_r = length(r); 29P vPR6  
    if length_r~=length(theta) T8|aFoHCK  
        error('zernfun:RTHlength', ... TG ,T>'   
              'The number of R- and THETA-values must be equal.') V\k?$}  
    end ?@W=bJ8{  
    x|B$n } B  
    pAwmQS\W  
    % Check normalization: Y@WCp  
    % -------------------- 4 j9  
    if nargin==5 && ischar(nflag) %si5cc?  
        isnorm = strcmpi(nflag,'norm'); *Jd,8B/hC  
        if ~isnorm 4Y>v+N^  
            error('zernfun:normalization','Unrecognized normalization flag.') 9y/gWE  
        end P $4h_dw  
    else pyPS5vWG  
        isnorm = false; qkX}pQkG)h  
    end iO^z7Y7  
    a|B^%  
    ('1k%`R%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /0|niiI  
    % Compute the Zernike Polynomials Qg]8~^ Q<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )3O0:]<H  
    { bjK(|  
    NXhQdf  
    % Determine the required powers of r: C^Jf&a  
    % ----------------------------------- "52nT  
    m_abs = abs(m); v` 9^?Xw)  
    rpowers = []; 7ky$9+~  
    for j = 1:length(n) DwTqj=l  
        rpowers = [rpowers m_abs(j):2:n(j)]; lNV%R(  
    end 6 isz  
    rpowers = unique(rpowers); =}@m$g  
    Z  Mp  
    _E({!t"`  
    % Pre-compute the values of r raised to the required powers, :Uu Py|>  
    % and compile them in a matrix: gR `:)>  
    % ----------------------------- G$\2@RT9[  
    if rpowers(1)==0 Ve<3XRq|8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %\=oy=f  
        rpowern = cat(2,rpowern{:}); p_hljgOV  
        rpowern = [ones(length_r,1) rpowern]; s }P-4Sg  
    else %y zFWDg  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1c=Roiq  
        rpowern = cat(2,rpowern{:}); ZB-+ bY  
    end %SV"iXxY  
    =m@5$  
    X8T7(w<0%f  
    % Compute the values of the polynomials: ,WF)GS|7V  
    % -------------------------------------- "P:kZ= M Q  
    y = zeros(length_r,length(n)); /f!_dJ^  
    for j = 1:length(n) H!dUQ  
        s = 0:(n(j)-m_abs(j))/2; Ed/@&52z0  
        pows = n(j):-2:m_abs(j); zdA:K25"  
        for k = length(s):-1:1 0 `X%&  
            p = (1-2*mod(s(k),2))* ... Zp|LCE"  
                       prod(2:(n(j)-s(k)))/              ... v2<roG6.V  
                       prod(2:s(k))/                     ... g%w@v$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (]BZ8GOx  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); "4FL<6  
            idx = (pows(k)==rpowers); >/Z#{;kOz  
            y(:,j) = y(:,j) + p*rpowern(:,idx); tK&.0)*=  
        end LX<c(i  
         0D1yG(ck  
        if isnorm 0y4z`rzTn  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YBgHX [q  
        end 4+mawyM  
    end lj"L Q(^  
    % END: Compute the Zernike Polynomials Fi{~UOZg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xh> /bU!>  
    LX.1]T*m`  
    sY,!Ir`/`  
    % Compute the Zernike functions: (^g?/i1@d  
    % ------------------------------ +j5u[X  
    idx_pos = m>0; #)%N+Odnr  
    idx_neg = m<0; |7Z,z0 ?V  
    9/w'4bd  
    5Ah-aDBj  
    z = y; 3nBbPP_  
    if any(idx_pos) ' U(v  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5|1&s3/f  
    end z) 5n&w S  
    if any(idx_neg) {Ny\9r  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1W;3pN  
    end jG{} b6  
    bxP>  
    kP%W:4l0  
    % EOF zernfun Pi6C1uY6  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  *<Ddn&_  
    DGd&x^C  
    DDE还是手动输入的呢? rM?D7a{q  
    WN?T*bz2  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究