切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9005阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, }No#_{  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, `GBJa k  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,/GFD[SQ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \m}a%/  
    &=*1[j\  
    $xdo=4;|  
    Q]GS#n  
    llR5qq=t  
    function z = zernfun(n,m,r,theta,nflag) eY`9J4o'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. A^+kA)8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wBg?-ji3<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the N0}[&rE 8  
    %   unit circle.  N is a vector of positive integers (including 0), and h lc!}{$%8  
    %   M is a vector with the same number of elements as N.  Each element X_nbNql  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) iG"v  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !KJ X$?  
    %   and THETA is a vector of angles.  R and THETA must have the same xi.?@Lff  
    %   length.  The output Z is a matrix with one column for every (N,M) o6|- :u5_/  
    %   pair, and one row for every (R,THETA) pair. l l*g *zt3  
    % [h-NX  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jg'"?KSU~  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Qi dI  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 17c`c.yP  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E&z^E2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zVtTv-DU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. A{B$$7%  
    % v(JjvN21  
    %   The Zernike functions are an orthogonal basis on the unit circle. B* 3_m _a  
    %   They are used in disciplines such as astronomy, optics, and Ksh[I,+N\  
    %   optometry to describe functions on a circular domain. 2B6u) 95  
    % GHLnwym  
    %   The following table lists the first 15 Zernike functions. B/K=\qmm  
    % tC$+;_=+F  
    %       n    m    Zernike function           Normalization > 2/j  
    %       -------------------------------------------------- >YXb"g@.  
    %       0    0    1                                 1 ow 6\j:$?  
    %       1    1    r * cos(theta)                    2 :.l\lj0Yf  
    %       1   -1    r * sin(theta)                    2 `FNU- I4s  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) :N^B54o%6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )>b1%x} =  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) FMn|cO.vEP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]Hi1^Y<  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) kO^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) i@WO>+iB  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) y6sY?uu  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) W^ask[46R  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }3XjP55  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) rO#$SW$YW  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bzZdj6>kX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]5`A8-Q@  
    %       -------------------------------------------------- #z.\pd  
    % d3?gh[$  
    %   Example 1: }V.fY3J-  
    % 1yU!rEH  
    %       % Display the Zernike function Z(n=5,m=1) RiZ}cd  
    %       x = -1:0.01:1; X3gYe-2  
    %       [X,Y] = meshgrid(x,x); F{7 BY~d  
    %       [theta,r] = cart2pol(X,Y); hhylsm  
    %       idx = r<=1; d3T7$'l$  
    %       z = nan(size(X)); 1uA-!T*e>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); u|EJ)dT?  
    %       figure 6OPNP0@r  
    %       pcolor(x,x,z), shading interp Kb5}M/8  
    %       axis square, colorbar j `3IizN2  
    %       title('Zernike function Z_5^1(r,\theta)') O f-gG~  
    % 7|"G 3ck  
    %   Example 2: HQ4WunH2Y  
    % c[OQo~m$  
    %       % Display the first 10 Zernike functions +&_n[;   
    %       x = -1:0.01:1; ;tD?a7  
    %       [X,Y] = meshgrid(x,x); 3+U2oI:I  
    %       [theta,r] = cart2pol(X,Y); c- @EHv  
    %       idx = r<=1; 1_}k)(n  
    %       z = nan(size(X)); Z$YG'p{S  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,(c'h:@M  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7#*O|t/'  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; zn*i  
    %       y = zernfun(n,m,r(idx),theta(idx)); ;lTgihW-  
    %       figure('Units','normalized') u<j.XPK  
    %       for k = 1:10 T z+Y_  
    %           z(idx) = y(:,k); }_Sgor83n  
    %           subplot(4,7,Nplot(k)) L`^ v"W()  
    %           pcolor(x,x,z), shading interp )s 1 Ei9J  
    %           set(gca,'XTick',[],'YTick',[]) q>#P|  
    %           axis square ^'sOWIzeiY  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )MM(HS  
    %       end ZhoB/TgdL  
    % <lPHeO<^]  
    %   See also ZERNPOL, ZERNFUN2. e=u}J%|  
    FW<YN;  
    2b#> ~  
    %   Paul Fricker 11/13/2006 % =v<3  
    *;.:UR[i  
    /dVcNo3"  
    a9nXh6  
    d k|X&)xTJ  
    % Check and prepare the inputs: 5hiuBf<  
    % ----------------------------- h&{>4{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3_ =:^Z  
        error('zernfun:NMvectors','N and M must be vectors.') =OA7$z[  
    end iF+50d  
    yLt?XhRlp  
    Rmh,P>  
    if length(n)~=length(m) L w/ZKXDU2  
        error('zernfun:NMlength','N and M must be the same length.') !{oP'8Ax$  
    end >LR+dShG  
    WOGMt T%  
    n] n3/wpO  
    n = n(:); YH!` uU(Lh  
    m = m(:); l)1ySX&BU  
    if any(mod(n-m,2)) LGVGr  
        error('zernfun:NMmultiplesof2', ... jCt[I5"+z  
              'All N and M must differ by multiples of 2 (including 0).') *_yp]z"  
    end K~z9b4a>  
    ds QGj&  
    aw0xi,Jz  
    if any(m>n) NslaG  
        error('zernfun:MlessthanN', ... <QE/p0.  
              'Each M must be less than or equal to its corresponding N.') 4\8k~ #  
    end Yr+ghl/ V  
    3^AS8%qG  
    Le c%kC  
    if any( r>1 | r<0 ) >E(IkpZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )'?@raB!  
    end rwdj  
    hLLg  
    YPav5<{a  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ucok&)7-  
        error('zernfun:RTHvector','R and THETA must be vectors.') )8Sm}aC  
    end j6)@kW9x  
    ?x &"EhA>  
    FY]z*=  
    r = r(:); %(wa~:m+S-  
    theta = theta(:); {mV,bg,}~  
    length_r = length(r); y#;@~S1W  
    if length_r~=length(theta) #9Dixsl*Q  
        error('zernfun:RTHlength', ... xo_Es?  
              'The number of R- and THETA-values must be equal.') /!0{9F<  
    end Ib8xvzR6I&  
    niN$!k+Jr  
    o %tvwv  
    % Check normalization: u7<s_M3%N  
    % -------------------- [&FWR  
    if nargin==5 && ischar(nflag) "%Eyb\V!  
        isnorm = strcmpi(nflag,'norm'); enT.9|vm/  
        if ~isnorm T|[ o  
            error('zernfun:normalization','Unrecognized normalization flag.') O ijG@bI8  
        end 7uRXu>h  
    else -xf=dzm)  
        isnorm = false; ~3z10IG  
    end 7nHlDPps)  
    C '}8  
    R:v`\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8V3SZ17  
    % Compute the Zernike Polynomials e]{X62]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # 1,(I  
     p68) 0  
    PRCr7f  
    % Determine the required powers of r: ghiFI<)VY  
    % ----------------------------------- Ip4SdbU  
    m_abs = abs(m); 0Q5ua `U  
    rpowers = []; CxtH?9# |  
    for j = 1:length(n) N|h}'p  
        rpowers = [rpowers m_abs(j):2:n(j)]; E$rn^keM  
    end 2,<!l(X  
    rpowers = unique(rpowers); w]\O3'0Js  
    #.%;U' #O  
    Tl Z|E '_C  
    % Pre-compute the values of r raised to the required powers, .)mw~3]  
    % and compile them in a matrix: T;}pMRd%  
    % ----------------------------- ?ei7jM",  
    if rpowers(1)==0 q$s0zqV5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *, o)`  
        rpowern = cat(2,rpowern{:}); #x&1kHu<  
        rpowern = [ones(length_r,1) rpowern]; =2{^qvP  
    else OY6l t.t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); TP oP%Yj"  
        rpowern = cat(2,rpowern{:}); 7{X I^I:n  
    end i3>7R'q>  
    @K]D :MSS  
    uV*&a~  
    % Compute the values of the polynomials: O&irgc!  
    % -------------------------------------- w.Ft-RXA W  
    y = zeros(length_r,length(n)); H5=-b@(  
    for j = 1:length(n) (3"V5r`*;  
        s = 0:(n(j)-m_abs(j))/2; \ey3i((L  
        pows = n(j):-2:m_abs(j); U w][U  
        for k = length(s):-1:1 #Gs] u  
            p = (1-2*mod(s(k),2))* ... ^'C1VQ%  
                       prod(2:(n(j)-s(k)))/              ... aBT|Q@Y.  
                       prod(2:s(k))/                     ... i%0Ml:Y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... h4S,(*V$!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); QE$sXP7 &u  
            idx = (pows(k)==rpowers); pNI=HHx  
            y(:,j) = y(:,j) + p*rpowern(:,idx); h{kAsd8 G  
        end m> ?OjA!  
         Bi)1*  
        if isnorm do%6P^ qA  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "wTA9\  
        end B9n$8QS  
    end `(EY/EsY  
    % END: Compute the Zernike Polynomials >ZuWsA0q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N%:QaCZKw  
    PygaW&9Z|d  
    ](@Tbm8  
    % Compute the Zernike functions: c:4M|t=  
    % ------------------------------ c63DuHA*C  
    idx_pos = m>0; }^^X-_XT  
    idx_neg = m<0; f 6Bx>lh  
    /A4zR  
    HkD6aJ:kA!  
    z = y; TP[<u-@G  
    if any(idx_pos) mHUQtGAVQ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )&<BQIv9/  
    end JV Fn=Mw  
    if any(idx_neg) Qq(/TA0$-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xf?*fm?m  
    end sME3s-  
    nWfOiw-t  
    I8)x 0)Lx  
    % EOF zernfun >Q#_<IcI  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  z)%Ke~)<\@  
    ,~Y[XazT  
    DDE还是手动输入的呢? :m]KVcF.  
    {L'uuG\9U  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究