切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9310阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, OI=LuWGQE1  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, cy R K&J  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? m5m'ByX(*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? < C{-ph  
    vXdz?  
    [gZz'q&[)  
    1-HL#y*7$  
    z0XH`H|~  
    function z = zernfun(n,m,r,theta,nflag) KK}?x6wV0,  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +Xb )bfN  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gnAM}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the i&|fGX?-I  
    %   unit circle.  N is a vector of positive integers (including 0), and 3 #fOrNU2  
    %   M is a vector with the same number of elements as N.  Each element 6##}zfl  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) I=N;F6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, jafIKSD]%  
    %   and THETA is a vector of angles.  R and THETA must have the same VxlK:*t`  
    %   length.  The output Z is a matrix with one column for every (N,M) %SWtE5HZQq  
    %   pair, and one row for every (R,THETA) pair. ;g-L2(T05;  
    % me-:A:si  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .d\<}\zZ7J  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), zjyj,jP  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral r*-e~  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [G(}`u8w"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Iyo ey  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1l@gZI12#/  
    % <NIg`B@'s  
    %   The Zernike functions are an orthogonal basis on the unit circle. *b{C`[ =V  
    %   They are used in disciplines such as astronomy, optics, and 5<%]6cx}  
    %   optometry to describe functions on a circular domain. iSm5k:7  
    % ) h*)_7  
    %   The following table lists the first 15 Zernike functions. .zm'E<  
    % qDOJ;> I  
    %       n    m    Zernike function           Normalization aJnZco6  
    %       -------------------------------------------------- &VY(W{\eY  
    %       0    0    1                                 1 .EOHkhn  
    %       1    1    r * cos(theta)                    2 =Mg/m'QI  
    %       1   -1    r * sin(theta)                    2 UV?.KVD~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) (-lu#hJ`&r  
    %       2    0    (2*r^2 - 1)                    sqrt(3) f8>S<:  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 9J"Y   
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D$sG1*@s-  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) |]qwD,eiH,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =:fFu,+{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) a59l"b  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) njz:7]>e  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +y+-~;5iv  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,n')3r   
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) In-W,   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) #3:;&@#  
    %       -------------------------------------------------- &hK5WP6whW  
    % Z;/"-.i  
    %   Example 1: S-FoyID\H  
    % W#p A W  
    %       % Display the Zernike function Z(n=5,m=1)  eRlJ  
    %       x = -1:0.01:1; 4o:  
    %       [X,Y] = meshgrid(x,x); o=!3=2@dh  
    %       [theta,r] = cart2pol(X,Y); @ 2mJh^cj  
    %       idx = r<=1; OG# 7Va  
    %       z = nan(size(X)); (7P{k<5  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _$OhV#LKG  
    %       figure Y(>]7  
    %       pcolor(x,x,z), shading interp \wmNeGC2  
    %       axis square, colorbar -j%!p^2j9  
    %       title('Zernike function Z_5^1(r,\theta)') (t.pM P4  
    % #y~`nyg%|  
    %   Example 2: "s']@Qv  
    % _8Si8+j  
    %       % Display the first 10 Zernike functions D`r^2(WW  
    %       x = -1:0.01:1; oR.KtS$uh  
    %       [X,Y] = meshgrid(x,x); AHws5#;$6*  
    %       [theta,r] = cart2pol(X,Y);  E%g_O_  
    %       idx = r<=1; ~jd:3ip+!  
    %       z = nan(size(X)); `jR= X  
    %       n = [0  1  1  2  2  2  3  3  3  3]; JwzA'[tM  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MC5M><5\  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; DzLm~ aF  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7y",%WYSD  
    %       figure('Units','normalized') 'bP-p gc  
    %       for k = 1:10 `sZ/'R6  
    %           z(idx) = y(:,k); >w:px$g4  
    %           subplot(4,7,Nplot(k)) (h0i2>K  
    %           pcolor(x,x,z), shading interp ojO<sT:by  
    %           set(gca,'XTick',[],'YTick',[]) u7!X#<  
    %           axis square y8U|A0@$`  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oB27Y&nO  
    %       end Im{I23.2  
    % ;9,<&fe  
    %   See also ZERNPOL, ZERNFUN2. ?YY'-\h?  
    w'q}aQS  
    %YhZ#>WT  
    %   Paul Fricker 11/13/2006  A_: Bz:  
    ?i*kwEj=  
    *Yk3y-   
    d+KLtvB%M  
    S#{e@ C  
    % Check and prepare the inputs: umXa   
    % ----------------------------- [((P ,v*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /H+j6*}r  
        error('zernfun:NMvectors','N and M must be vectors.') zBWn*A[4  
    end D_,}lsrb  
    gIS<"smOo  
    ukV1_QeN [  
    if length(n)~=length(m) qw[)$icP  
        error('zernfun:NMlength','N and M must be the same length.') d$<HMs:o@  
    end y\Z7]LHCqw  
    ^{8r(1,  
    T78`~-D4<  
    n = n(:); jGM~(;iw6i  
    m = m(:); e:IUO1#  
    if any(mod(n-m,2)) vMJv.O>HW  
        error('zernfun:NMmultiplesof2', ... )*N]Q  
              'All N and M must differ by multiples of 2 (including 0).') [3++Q-rR=  
    end #SQao;>  
    n~ \"W  
    Y5fwmH,a-  
    if any(m>n) E1:{5F5/  
        error('zernfun:MlessthanN', ... 5haJPWG|'  
              'Each M must be less than or equal to its corresponding N.') ;5 cg<~t  
    end 79<{cexP  
    DPn]de:e  
    IbQ3*  
    if any( r>1 | r<0 ) %-?HC jT  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') P?*$Wf,~n  
    end gq`gitu0  
    +_uT1PsBY  
    !+& "y K@J  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vINm2%*zJ  
        error('zernfun:RTHvector','R and THETA must be vectors.') %^xY7!{  
    end k}y1IW+3  
    _*B]yz6z  
    fkWuSGi  
    r = r(:); HF}%Ow  
    theta = theta(:); /02|b}{  
    length_r = length(r); zC6,m6Dv  
    if length_r~=length(theta) \?&P|7N  
        error('zernfun:RTHlength', ... xlF$PpRNM  
              'The number of R- and THETA-values must be equal.') j}Lt"r2F  
    end p=jD "lq  
    &; 5QB  
    ~p<o":k+Lv  
    % Check normalization: FQ>KbZh  
    % -------------------- )s1W)J?8  
    if nargin==5 && ischar(nflag) x2+%.$'  
        isnorm = strcmpi(nflag,'norm'); ext`%$ U7  
        if ~isnorm qsn6i%VH  
            error('zernfun:normalization','Unrecognized normalization flag.') }|MGYS)  
        end a5C%OI<  
    else fb[f >1|  
        isnorm = false; Z8+{ -  
    end D%kY  
    vK)^;T ;  
    .]g>.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U)a}XRS  
    % Compute the Zernike Polynomials F`-|@k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '`=z52  
    |,L_d2lb  
    wQJY,|.  
    % Determine the required powers of r: #>C.61Fx  
    % ----------------------------------- 2/O/h  
    m_abs = abs(m); =xScHy{$  
    rpowers = []; F)g.CDQ!c  
    for j = 1:length(n) k !Nl#.j  
        rpowers = [rpowers m_abs(j):2:n(j)]; Rok` }t  
    end 6"C$]kF?  
    rpowers = unique(rpowers); v??}d   
    XZhuV<  
    dQLR%i#P8  
    % Pre-compute the values of r raised to the required powers, B'>(kZYMs  
    % and compile them in a matrix: ,2S w6u  
    % ----------------------------- wND0KiwH  
    if rpowers(1)==0 W-zD1q~0?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d-nqV5  
        rpowern = cat(2,rpowern{:}); ykc$B5*  
        rpowern = [ones(length_r,1) rpowern]; S83wAr9T  
    else @SeE,<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,5Jq ZD  
        rpowern = cat(2,rpowern{:}); `J \1t K{  
    end y)o!F^  
    833KU_ N  
    6=a($s!   
    % Compute the values of the polynomials: ,\ zp&P"p  
    % -------------------------------------- @1ZLr  
    y = zeros(length_r,length(n)); ORk8^0\  
    for j = 1:length(n) {^ 1s  
        s = 0:(n(j)-m_abs(j))/2; +[M5x[[$  
        pows = n(j):-2:m_abs(j); ujsJ;\c  
        for k = length(s):-1:1 E8#RG-ci  
            p = (1-2*mod(s(k),2))* ... AHX_I  
                       prod(2:(n(j)-s(k)))/              ... ;i?Ao:]  
                       prod(2:s(k))/                     ... $ KQ7S>T  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >:%YAR`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Kg^L 4Q  
            idx = (pows(k)==rpowers); -I4-K%%B`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1c_qNI;:p  
        end afOb-G$d=  
         _UKH1qUd4  
        if isnorm .n1]Yk;,1  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1V(tt{  
        end ] )D\ws)a9  
    end  pv1J6  
    % END: Compute the Zernike Polynomials nsk`nck  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3lYM(DT  
    e.9oB<Etp  
    Zo  
    % Compute the Zernike functions: e{@TR x  
    % ------------------------------ (wLzkV/6  
    idx_pos = m>0; (r,tU(  
    idx_neg = m<0; c-8Pc ]+g  
    r#LoBfM;^A  
    mwLp~z%OX  
    z = y; >J>4g;Y  
    if any(idx_pos) \Ku6 gEy  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); NMb`d0;(  
    end \NwL#bQ~  
    if any(idx_neg) v{9< ATi  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^50#R< Ny  
    end NidG|Yg~Z  
    Un\h[m  
    K| #%u2C  
    % EOF zernfun Hp;Dp!PLa  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ge*(w{|x  
    \[</|]'[  
    DDE还是手动输入的呢? ZZ/F}9!=  
    }c/p+Wo  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究