切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8704阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ioz4kG!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8)/d8@  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }cEcoi<v!  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? MBp%TX!  
    h 5<46!P  
    Jf9a<[CcV  
    g-Vxl|hR  
    F7x]BeTM  
    function z = zernfun(n,m,r,theta,nflag) B[epI3 R  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _?CyKk\I  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :)p\a1I[*  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Z<@0~t_:?p  
    %   unit circle.  N is a vector of positive integers (including 0), and 2.qEy6  
    %   M is a vector with the same number of elements as N.  Each element *3d+ !#;rG  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) O,x[6P54P  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ?^n),mR  
    %   and THETA is a vector of angles.  R and THETA must have the same @j=:V!g2O  
    %   length.  The output Z is a matrix with one column for every (N,M) r roI  
    %   pair, and one row for every (R,THETA) pair. gE\&[;)DB  
    % 9$$dSN\&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike C6Lc   
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0*]n#+=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Y 3h`uLQ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u0zF::  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized nm Y_)s  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C3)*Mn3%P  
    % .o8Sy2PaV  
    %   The Zernike functions are an orthogonal basis on the unit circle. JuQwZ]3ed  
    %   They are used in disciplines such as astronomy, optics, and ]l>LU2 sx  
    %   optometry to describe functions on a circular domain. -M5vh~Tp  
    % /W9(}Id6  
    %   The following table lists the first 15 Zernike functions. {7'Wi$^F  
    % =h0vdi%{  
    %       n    m    Zernike function           Normalization G!dx)v  
    %       -------------------------------------------------- @ <(4J   
    %       0    0    1                                 1  |W_;L6)  
    %       1    1    r * cos(theta)                    2 *,& 2?E8  
    %       1   -1    r * sin(theta)                    2 z36wWdRa6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) j 5}'*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5.1z9[z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) v;soJlxF~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) jaw&[f 7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~=va<%{ U  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) }`cf3'rdk  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ja^_Lh9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5EU~T.4C<  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JTIt!E}P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;/:Sx/#s  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A]Bf&+V  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) C RBj>  
    %       -------------------------------------------------- \?SvO  
    % <qg4Rz\c]  
    %   Example 1: TZ *>MySiF  
    % vd?Bk_d9k,  
    %       % Display the Zernike function Z(n=5,m=1) pHT]2e#  
    %       x = -1:0.01:1; hw$!LTB2  
    %       [X,Y] = meshgrid(x,x); L!>nl4O>`  
    %       [theta,r] = cart2pol(X,Y); m g,1*B'  
    %       idx = r<=1; i.k7qclL`  
    %       z = nan(size(X)); &&nbdu  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &rGB58  
    %       figure F+"_]  
    %       pcolor(x,x,z), shading interp 85YUqVi9  
    %       axis square, colorbar >H^#!eaqw  
    %       title('Zernike function Z_5^1(r,\theta)') |lt]9>|  
    % q3AqU?f  
    %   Example 2: 6<EGH*GQ$  
    % h5SJVa  
    %       % Display the first 10 Zernike functions 7:,f|>  
    %       x = -1:0.01:1; x-"8V(  
    %       [X,Y] = meshgrid(x,x); %x N${4)6  
    %       [theta,r] = cart2pol(X,Y); T'9ZR,{F  
    %       idx = r<=1; ia7<AwV  
    %       z = nan(size(X)); D"rbQXR7$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ki?h7  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -8xf}v~u  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u<Y#J,p`e  
    %       y = zernfun(n,m,r(idx),theta(idx)); h Ta(^  
    %       figure('Units','normalized')  V\o7KF  
    %       for k = 1:10 zw[' hqW  
    %           z(idx) = y(:,k); `J1HQ!Z  
    %           subplot(4,7,Nplot(k)) .4p3~r?=S  
    %           pcolor(x,x,z), shading interp 'C/yQvJ  
    %           set(gca,'XTick',[],'YTick',[]) ;xZjt4M1  
    %           axis square '`3#FCg  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )rq |t9kix  
    %       end C,An\lsT  
    % yEq7ueJ'  
    %   See also ZERNPOL, ZERNFUN2. `PC9t)%.pV  
    < cvh1~>(  
    l-Z( ]  
    %   Paul Fricker 11/13/2006 7~ PL8  
    OvtE)u l@  
    sU"%,Q5  
    DcW?L^Mst  
    G 5;6q  
    % Check and prepare the inputs: >> zd  
    % ----------------------------- VG);om7`PD  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O\6U2b~  
        error('zernfun:NMvectors','N and M must be vectors.') !R=@Nr>  
    end 5~|{:29X  
    W6&vyOc  
    $VuXr=f}  
    if length(n)~=length(m) t:2v`uk  
        error('zernfun:NMlength','N and M must be the same length.') flsejj$  
    end lH}KFFbp  
    KwuucY  
    d9K8[Q5^3  
    n = n(:); {~3QBMx6  
    m = m(:); '+`[)w  
    if any(mod(n-m,2)) fSkDD>&  
        error('zernfun:NMmultiplesof2', ... -L1785pB85  
              'All N and M must differ by multiples of 2 (including 0).') k, HC"?K  
    end {FNkPX  
    ']r8q %  
    0NXH449I=  
    if any(m>n) J@s>Pe)  
        error('zernfun:MlessthanN', ... v1 .3gzR  
              'Each M must be less than or equal to its corresponding N.') ffZ~r%25{  
    end 8]ZzO(=@{  
    Yc:%2KZ"  
    SIe!=F[  
    if any( r>1 | r<0 ) #c^V %  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,o& C"sb  
    end CD$#}Id  
    ~HZdIPcC  
    d$zJLgkA  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y%pab/Y  
        error('zernfun:RTHvector','R and THETA must be vectors.') 2cR[~\_9.  
    end xN1P#  
    7>FXsUt_  
    p+VU:%.t  
    r = r(:); 9iA rBL"  
    theta = theta(:); :D D<0  
    length_r = length(r); 1E+12{~m"i  
    if length_r~=length(theta) '5e,@t%y  
        error('zernfun:RTHlength', ... tt"<1 z@  
              'The number of R- and THETA-values must be equal.') g7\ =  
    end H@Dpht>[  
    eb62(:=N6  
    ,_2-Op  
    % Check normalization: RkF#NCnL;  
    % -------------------- o ).deP s-  
    if nargin==5 && ischar(nflag) 3JCo!n0   
        isnorm = strcmpi(nflag,'norm'); Q7 BbST+  
        if ~isnorm g'8Y5x[  
            error('zernfun:normalization','Unrecognized normalization flag.') 1Kg0y71"  
        end BVQy@:K/  
    else !+l'<*8V  
        isnorm = false; =!q% 1mP  
    end w!.@64-  
    al2t\Iq90  
    bSB%hFp=Cp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KZm&sk=QM-  
    % Compute the Zernike Polynomials d#k(>+%=Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |=?#Xbxz  
    +iVEA(0&$  
    p3Sh%=HE'  
    % Determine the required powers of r: :E:e ^$p  
    % ----------------------------------- I6>J.6luF9  
    m_abs = abs(m); p_FM 2K7!  
    rpowers = []; JJ?{V:  
    for j = 1:length(n) uqMw-f/  
        rpowers = [rpowers m_abs(j):2:n(j)]; .E4* >@M5  
    end @:lM|2:  
    rpowers = unique(rpowers); $ghZ<Y2}9  
    ^Q6J$"Tj  
    !"<[&  
    % Pre-compute the values of r raised to the required powers, ?t#wK}d.  
    % and compile them in a matrix: nxLuzf4U5  
    % ----------------------------- _Nx /<isdL  
    if rpowers(1)==0 VYvfx  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S,Y|;p<+^  
        rpowern = cat(2,rpowern{:}); jc^QWK*q  
        rpowern = [ones(length_r,1) rpowern]; 1b,a3w(:1  
    else 3DU1c?M:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .Y)[c. ,j  
        rpowern = cat(2,rpowern{:}); baxZ>KNi  
    end f5jl$H.  
    91-bz^=xO  
    /d`"WK,  
    % Compute the values of the polynomials: rzjVUPdnh  
    % -------------------------------------- 'ofj1%c  
    y = zeros(length_r,length(n)); zWsr|= [  
    for j = 1:length(n) DaQ"Df_X  
        s = 0:(n(j)-m_abs(j))/2; g=*jKSZ  
        pows = n(j):-2:m_abs(j); &quY^j  
        for k = length(s):-1:1 'B@`gA  
            p = (1-2*mod(s(k),2))* ... .3!Wr*o  
                       prod(2:(n(j)-s(k)))/              ... 60D36b(  
                       prod(2:s(k))/                     ... rfXxg^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Fq9YhR  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h Yu6PWK  
            idx = (pows(k)==rpowers); 8tY>%A~^z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0;Z|:\P\=  
        end |Uh8b %  
         |s8N  
        if isnorm &|v)   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4{VO:(geZ  
        end >{#JIG.  
    end .RD<]BxJ  
    % END: Compute the Zernike Polynomials N&9o  1_}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tbrU>KCBD  
    ) SV.|  
    bO~y=Pa \  
    % Compute the Zernike functions: c`6c)11K  
    % ------------------------------ [Nyt0l "z  
    idx_pos = m>0; aSR-.r  
    idx_neg = m<0; Na\ZV|;*tu  
    i FI74COam  
    XLh)$rZ  
    z = y; 9A .RD`fg  
    if any(idx_pos) SV7;B?e%Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); n<?U6~F&~  
    end <-lM9}vd  
    if any(idx_neg) )^(*B6;z5  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); FO{=^I5YA  
    end |vI*S5kn6A  
    ]a3$hAcj6"  
    3m1g"  
    % EOF zernfun =8FvkNr  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  zJXK:/  
    }u#3hYa  
    DDE还是手动输入的呢? ,ye}p 1M  
    c b-IRGF  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究