下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, OI=LuWGQE1
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, cyR K&J
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? m5m'ByX(*
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? < C{-ph
vXdz?
[gZz'q&[)
1-HL#y*7$
z0XH`H|~
function z = zernfun(n,m,r,theta,nflag) KK}?x6wV0,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +Xb )bfN
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gnAM}
% and angular frequency M, evaluated at positions (R,THETA) on the i&|fGX?-I
% unit circle. N is a vector of positive integers (including 0), and 3 #fOrNU2
% M is a vector with the same number of elements as N. Each element 6##}zfl
% k of M must be a positive integer, with possible values M(k) = -N(k) I=N;F6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, jafIKSD]%
% and THETA is a vector of angles. R and THETA must have the same VxlK:*t`
% length. The output Z is a matrix with one column for every (N,M) %SWtE5HZQq
% pair, and one row for every (R,THETA) pair. ;g-L2(T05;
% me-:A:si
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .d\<}\zZ7J
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), zjyj,jP
% with delta(m,0) the Kronecker delta, is chosen so that the integral r*-e~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [G(}`u8w"
% and theta=0 to theta=2*pi) is unity. For the non-normalized Iyo ey
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1l@gZI12#/
% <NIg`B@ 's
% The Zernike functions are an orthogonal basis on the unit circle. *b{C`[
=V
% They are used in disciplines such as astronomy, optics, and 5<%]6c x}
% optometry to describe functions on a circular domain. i Sm5k:7
% ) h*)_7
% The following table lists the first 15 Zernike functions. .zm'E<
% qDOJ;>I
% n m Zernike function Normalization aJnZco6
% -------------------------------------------------- &VY(W{\eY
% 0 0 1 1 .EOHkhn
% 1 1 r * cos(theta) 2 =Mg/m'QI
% 1 -1 r * sin(theta) 2 UV ?.KVD~
% 2 -2 r^2 * cos(2*theta) sqrt(6) (-lu#hJ`&r
% 2 0 (2*r^2 - 1) sqrt(3) f8>S<:
% 2 2 r^2 * sin(2*theta) sqrt(6) 9J"Y
% 3 -3 r^3 * cos(3*theta) sqrt(8) D$sG1*@s-
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) |]qwD,eiH,
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) =:fFu,+{
% 3 3 r^3 * sin(3*theta) sqrt(8) a59l"b
% 4 -4 r^4 * cos(4*theta) sqrt(10) njz:7]>e
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +y+-~;5iv
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,n')3r
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) In-W,
% 4 4 r^4 * sin(4*theta) sqrt(10) #3:;&@#
% -------------------------------------------------- &hK5WP6whW
% Z;/"-.i
% Example 1: S-FoyID\H
% W#pA W
% % Display the Zernike function Z(n=5,m=1) eRlJ
% x = -1:0.01:1; 4o:
% [X,Y] = meshgrid(x,x); o=!3=2@dh
% [theta,r] = cart2pol(X,Y); @ 2mJh^cj
% idx = r<=1; OG#7Va
% z = nan(size(X)); (7P{k<5
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _$OhV#LKG
% figure Y(>]7
% pcolor(x,x,z), shading interp \wmNeGC2
% axis square, colorbar -j%!p^2j9
% title('Zernike function Z_5^1(r,\theta)') (t.pM P4
% #y~`nyg%|
% Example 2: "s']@Qv
% _8Si8+j
% % Display the first 10 Zernike functions D`r^2(WW
% x = -1:0.01:1; oR.KtS$uh
% [X,Y] = meshgrid(x,x); AHws5#;$6*
% [theta,r] = cart2pol(X,Y); E%g_O_
% idx = r<=1; ~jd:3ip+!
% z = nan(size(X)); `jR = X
% n = [0 1 1 2 2 2 3 3 3 3]; JwzA'[tM
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MC5M><5\
% Nplot = [4 10 12 16 18 20 22 24 26 28]; DzLm~
aF
% y = zernfun(n,m,r(idx),theta(idx)); 7y",%WYSD
% figure('Units','normalized') 'bP-pgc
% for k = 1:10 `sZ/'R6
% z(idx) = y(:,k); >w:px$g4
% subplot(4,7,Nplot(k)) (h0i2>K
% pcolor(x,x,z), shading interp ojO<sT:by
% set(gca,'XTick',[],'YTick',[]) u7!X#<
% axis square y8U |A0@$`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oB27Y&nO
% end Im{I23.2
% ;9,<&fe
% See also ZERNPOL, ZERNFUN2. ?YY'-\h?
w'q}aQS
%YhZ#>WT
% Paul Fricker 11/13/2006 A_: Bz:
?i*kwEj=
*Yk3y-
d+KLtvB%M
S#{e@ C
% Check and prepare the inputs: umXa
% ----------------------------- [((P,v*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /H+j6*}r
error('zernfun:NMvectors','N and M must be vectors.') zBWn*A[4
end D_,}lsrb
gIS<"smOo
ukV1_QeN[
if length(n)~=length(m) qw[)$icP
error('zernfun:NMlength','N and M must be the same length.') d$<HMs:o@
end y\Z7]LHCqw
^{8r(1,
T78`~-D4<
n = n(:); jGM~(;iw6i
m = m(:); e:IUO1#
if any(mod(n-m,2)) vMJv.O>HW
error('zernfun:NMmultiplesof2', ... )*N]Q
'All N and M must differ by multiples of 2 (including 0).') [3++Q-rR=
end #SQao;>
n~\"W
Y5fwmH,a-
if any(m>n) E1:{5F5/
error('zernfun:MlessthanN', ... 5haJPWG|'
'Each M must be less than or equal to its corresponding N.') ;5 cg<~t
end 79<{cexP
DPn]de:e
IbQ3*
if any( r>1 | r<0 ) %-?HCjT
error('zernfun:Rlessthan1','All R must be between 0 and 1.') P?*$Wf,~n
end gq`gitu0
+_uT1Ps BY
!+&"y K@J
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vINm2%*zJ
error('zernfun:RTHvector','R and THETA must be vectors.') %^xY7!{
end k}y1IW+3
_*B]yz6z
fkWuSGi
r = r(:); HF}%Ow
theta = theta(:); /02|b}{
length_r = length(r); zC6,m6Dv
if length_r~=length(theta) \?&P|7N
error('zernfun:RTHlength', ... xlF$PpRNM
'The number of R- and THETA-values must be equal.') j}Lt"r2F
end p= jD "lq
&;5QB
~p<o":k+Lv
% Check normalization: FQ>KbZh
% -------------------- )s1W)J?8
if nargin==5 && ischar(nflag) x2+%.$'
isnorm = strcmpi(nflag,'norm'); ext`%$ U7
if ~isnorm qsn6i%VH
error('zernfun:normalization','Unrecognized normalization flag.') }|MGYS )
end a5C% OI<
else fb[f >1|
isnorm = false; Z8+{ -
end D%kY
vK)^;T ;
.]g>.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U)a}XRS
% Compute the Zernike Polynomials F`-|@k
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '`=z52
|,L_d2lb
wQJY,|.
% Determine the required powers of r: #>C.61Fx
% ----------------------------------- 2 /O/h
m_abs = abs(m); =xScHy{$
rpowers = []; F)g.CDQ!c
for j = 1:length(n) k!Nl#.j
rpowers = [rpowers m_abs(j):2:n(j)]; Rok`}t
end 6"C$]kF?
rpowers = unique(rpowers); v??}d
XZhuV<
dQLR%i#P8
% Pre-compute the values of r raised to the required powers, B'>(kZYMs
% and compile them in a matrix: ,2S w6u
% ----------------------------- wND0KiwH
if rpowers(1)==0 W-zD1q~0?
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d-nqV5
rpowern = cat(2,rpowern{:}); ykc$B5*
rpowern = [ones(length_r,1) rpowern]; S83wAr9T
else @SeE,<
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,5Jq
ZD
rpowern = cat(2,rpowern{:}); `J \1t
K{
end y)o!F^
833KU_ N
6=a($s!
% Compute the values of the polynomials: ,\zp&P"p
% -------------------------------------- @1ZLr
y = zeros(length_r,length(n)); ORk8^0\
for j = 1:length(n) {^ 1s
s = 0:(n(j)-m_abs(j))/2; +[M5x[[$
pows = n(j):-2:m_abs(j); ujsJ;\c
for k = length(s):-1:1 E8#RG-ci
p = (1-2*mod(s(k),2))* ... AHX_I
prod(2:(n(j)-s(k)))/ ... ;i?Ao:]
prod(2:s(k))/ ... $ KQ7S>T
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >:%YAR`
prod(2:((n(j)+m_abs(j))/2-s(k))); Kg^L
4Q
idx = (pows(k)==rpowers); -I4-K%%B`
y(:,j) = y(:,j) + p*rpowern(:,idx); 1c_qNI;:p
end afOb-G$d=
_UKH1qUd4
if isnorm .n1]Yk;,1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1V(tt{
end ] )D\ws)a9
end pv1J6
% END: Compute the Zernike Polynomials nsk`nck
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3lYM(DT
e.9oB<Etp
Zo
% Compute the Zernike functions: e{@TR x
% ------------------------------ (wLzkV/6
idx_pos = m>0; (r,tU(
idx_neg = m<0; c-8Pc]+g
r#LoBfM;^A
mwLp~z%OX
z = y; >J>4g;Y
if any(idx_pos) \Ku6gEy
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); NMb`d0;(
end \NwL #bQ~
if any(idx_neg) v{9< ATi
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^50#R<Ny
end NidG|Yg~Z
Un\h[m
K|
#%u2C
% EOF zernfun Hp;Dp!PLa