下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来,
nI[os
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 3t.l5m
Rg5
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ov|d^)'
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? f<-Jg
<3L5"77G6
'Oxy$U
B[qzUD*P_n
QER?i;-wb
function z = zernfun(n,m,r,theta,nflag) J f@H/luW
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. f<GhkDPm>?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NxfOF
% and angular frequency M, evaluated at positions (R,THETA) on the E!;SL|lj.
% unit circle. N is a vector of positive integers (including 0), and 2v :]tj
% M is a vector with the same number of elements as N. Each element G3C~x.(f
% k of M must be a positive integer, with possible values M(k) = -N(k) Z~GL5]S
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 8bxfj<O,
% and THETA is a vector of angles. R and THETA must have the same
#+JG(^%B
% length. The output Z is a matrix with one column for every (N,M) %Celc#v
% pair, and one row for every (R,THETA) pair. f}6s
Q5
% rr/B=O7
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ag;Q F
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), O3;u G.:1
% with delta(m,0) the Kronecker delta, is chosen so that the integral JR'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, XFg9P}"
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ltv]pH}YN
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [<7@{;r
% md=TjMaY
% The Zernike functions are an orthogonal basis on the unit circle. 1}S S+>`
% They are used in disciplines such as astronomy, optics, and ycc4W*]
% optometry to describe functions on a circular domain. o\BOL3H
% V4hiGO[
% The following table lists the first 15 Zernike functions. Q_1:tW
&
% B{/R: Hm
% n m Zernike function Normalization R$v[!A+:'
% -------------------------------------------------- 9FoHD
% 0 0 1 1 @>u}eB>Kn
% 1 1 r * cos(theta) 2 #r$cyV!k
% 1 -1 r * sin(theta) 2 I?]ohG K
% 2 -2 r^2 * cos(2*theta) sqrt(6) *lYVY)L
% 2 0 (2*r^2 - 1) sqrt(3) ZLc -RM
% 2 2 r^2 * sin(2*theta) sqrt(6) :D euX
% 3 -3 r^3 * cos(3*theta) sqrt(8) e%@'5k\SK
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $>G8_q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) oxC[F*mD
% 3 3 r^3 * sin(3*theta) sqrt(8) QFE:tBHe
% 4 -4 r^4 * cos(4*theta) sqrt(10) =FlDb
5t{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i% w3 /m
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) w+C7BPV&
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #[,IsEpDO1
% 4 4 r^4 * sin(4*theta) sqrt(10) rT M}})81
% -------------------------------------------------- cIUHa
% 5rwu!Y;7*
% Example 1: PZ2;v<
% G"klu
% % Display the Zernike function Z(n=5,m=1) aL*&r~`&e'
% x = -1:0.01:1; t;\kR4P
% [X,Y] = meshgrid(x,x); M*y)6H k~
% [theta,r] = cart2pol(X,Y); 2 X.r%&!1M
% idx = r<=1; {^
qcx 8
% z = nan(size(X)); +:8fC$vVfC
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |pm7 _[
% figure gGvz(R:y
% pcolor(x,x,z), shading interp SlgN&{Bk
% axis square, colorbar 9l|@v=gw.
% title('Zernike function Z_5^1(r,\theta)') J
cPtwa;q@
% +?F[/?s5qz
% Example 2:
S\LkL]qx
% u&1q [0y
% % Display the first 10 Zernike functions 4^:\0UF
% x = -1:0.01:1; qUh2hz:
% [X,Y] = meshgrid(x,x); 3%l*N&gsg:
% [theta,r] = cart2pol(X,Y); s&A}
h
% idx = r<=1; yaD~1"GA'O
% z = nan(size(X)); ?Fi=P#
% n = [0 1 1 2 2 2 3 3 3 3]; 5*E]ETo@R
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 4h~iPn'Wl
% Nplot = [4 10 12 16 18 20 22 24 26 28]; "*($cQ$v
% y = zernfun(n,m,r(idx),theta(idx)); ,">]`|?
% figure('Units','normalized') U}& 2k
% for k = 1:10 /rMI"khB
% z(idx) = y(:,k); %Da8{%{`Pc
% subplot(4,7,Nplot(k)) Z('Z
% pcolor(x,x,z), shading interp {,3>"
% set(gca,'XTick',[],'YTick',[]) Ci?Ss+|
% axis square FR$:"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Cf TfL3(J
% end !5.8]v
% 8?J&`e/
% See also ZERNPOL, ZERNFUN2. 9G9fDG#F\I
ahuGq'
SFO({w(
% Paul Fricker 11/13/2006 H#NCi~M>3
3wOZ4<B
./,/y"x
B{|8#jqY
u&`XB|~
% Check and prepare the inputs: d_CKP"TA
% ----------------------------- |*:'TKzNS
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p qfUW+>
error('zernfun:NMvectors','N and M must be vectors.') EwuO&q
end MJOz.=CbhR
IT(lF
/~}}"zx&
if length(n)~=length(m) '3_]Gu-D
error('zernfun:NMlength','N and M must be the same length.') U[SaY0Z
end p=;=w_^y
e^d0zl{
q
]M+/sl
n = n(:); Y'yH;Mz
m = m(:); )#P;
x"
if any(mod(n-m,2)) :ZTc7}
error('zernfun:NMmultiplesof2', ... gGr^@=;YC
'All N and M must differ by multiples of 2 (including 0).') wLmhy,
end Nd`%5%'::
)T';qm0w
WfWN(:dF
if any(m>n) pNOwDJtK
error('zernfun:MlessthanN', ... k,'L}SK
'Each M must be less than or equal to its corresponding N.') 'h/C oTk@,
end HGXt
BbW^Wxd3
X*M#FT-
if any( r>1 | r<0 ) &0='r;*i
error('zernfun:Rlessthan1','All R must be between 0 and 1.') d`P7}*;`
end d\p,2
[pl'| B
PUF/#ck
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y]NSN-t
error('zernfun:RTHvector','R and THETA must be vectors.') N"8_S0=pw
end KAC6Snu1
sArhZ[H
c\iA89msp
r = r(:); 9^,Lc1"M>
theta = theta(:); j/>$,
length_r = length(r); V=zi
>o`
if length_r~=length(theta) ,8:(OB|a
error('zernfun:RTHlength', ... %<E$,w>
'The number of R- and THETA-values must be equal.') N
F2/B#q
end /<HRwG\w
v5By :z
K <pV
% Check normalization: I|>^1kr8w
% -------------------- IIg^FZ*]_
if nargin==5 && ischar(nflag) O$IEn/%+
isnorm = strcmpi(nflag,'norm'); l%?T2Fm3>
if ~isnorm OlAs'TE^
error('zernfun:normalization','Unrecognized normalization flag.') ,=tD8@a<
end ?**+e%$$
else ?*E'^~,H)
isnorm = false; dE:+k/
end y$@ZN~8
)#.<]&P }
5!l0zLQPo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F_;vO%}
% Compute the Zernike Polynomials nyBJb(5"B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &Rx{.9
'f[T&o&L/
q0$
!y!~
% Determine the required powers of r: an|x$e7|?
% ----------------------------------- T'4z=Z]w
m_abs = abs(m); Hj:r[/
rpowers = []; 1jy9lP=
for j = 1:length(n) nx8a$vI-TY
rpowers = [rpowers m_abs(j):2:n(j)]; I3,= 0z
end .Jt[(;
rpowers = unique(rpowers); g{8,Wx,,
"Jt.lL ]5
O>^C4c!
% Pre-compute the values of r raised to the required powers, sB^<6W!`(
% and compile them in a matrix: e
' 2F#
% -----------------------------
0BH_'ZW
if rpowers(1)==0 Z$0uH* h
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #bl6sa{E
rpowern = cat(2,rpowern{:}); ?RK]FP"A
rpowern = [ones(length_r,1) rpowern]; Au4yBm
u
else J]&y$?C
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G`\f
rpowern = cat(2,rpowern{:}); EX?MA6U
end }z\_;\7
QAvir%Y9Q
VJdIHsI
% Compute the values of the polynomials: A-4h
% -------------------------------------- bzX\IrJpOZ
y = zeros(length_r,length(n)); t?9v^vFR
for j = 1:length(n) O
[i#9)
s = 0:(n(j)-m_abs(j))/2; SzUpWy&
pows = n(j):-2:m_abs(j); 6`]$qSTS
for k = length(s):-1:1 +m8!U=Zi
p = (1-2*mod(s(k),2))* ... G8r``{C!
prod(2:(n(j)-s(k)))/ ... zipS
]YD
prod(2:s(k))/ ... (N&lHLy
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 'Y56+P\u
prod(2:((n(j)+m_abs(j))/2-s(k))); <^zHE=h"
idx = (pows(k)==rpowers); 9G+V;0Q
y(:,j) = y(:,j) + p*rpowern(:,idx); qIY~dQ|
end ?Rj ~f{%g
w9,iq@
if isnorm kAu+zX>S+
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d4nH_?
end ;PjQt=4K
end Yc,7tUz#
% END: Compute the Zernike Polynomials 6(G?MW.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %*&UJpbA
:{oZ ~<
i { \%e
% Compute the Zernike functions: #m[|2R
% ------------------------------ ,t`Kv1
idx_pos = m>0; -u?S=h}
idx_neg = m<0; /\H>y
!zPa_`P
zxf"87se
z = y; ;$a@J&
if any(idx_pos) DqX{'jj
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mExVYp h
end IdXZoY
if any(idx_neg) 4H|(c[K;
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !OT-b>*w
end |i ZfYi&^
aBNZdX]vzO
* 1Od-3
% EOF zernfun 7DIIx}A