切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9406阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 4 tt=u]:  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ZI!;~q  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? TU2MG VYy  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |L)qH"Eo  
    !uKuO  
    HM\}C.u  
    5e'**tbKH  
    U<yKC8  
    function z = zernfun(n,m,r,theta,nflag) !6+V  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %)r1?H} #%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [!#;QQ&M  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;4vx+>-  
    %   unit circle.  N is a vector of positive integers (including 0), and _ =(v? 2:?  
    %   M is a vector with the same number of elements as N.  Each element 6A} 45  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0te[i*G  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *^%ohCU i  
    %   and THETA is a vector of angles.  R and THETA must have the same !`dn# j  
    %   length.  The output Z is a matrix with one column for every (N,M) Eo{js?1G_  
    %   pair, and one row for every (R,THETA) pair. WZ@$bf}f0  
    % )5U7w  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {'zs4)vw  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `$VnB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ]!N|3"Ls  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lHgmljn5u  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized wIQt f|ZI>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .ffb*gZ4  
    % YR~)07  
    %   The Zernike functions are an orthogonal basis on the unit circle. R M`iOV,Y  
    %   They are used in disciplines such as astronomy, optics, and OxVe}Fym  
    %   optometry to describe functions on a circular domain. yLvU@V@~  
    % Qb1hk*$=  
    %   The following table lists the first 15 Zernike functions. !2g*=oY  
    % DIc -"5~  
    %       n    m    Zernike function           Normalization safI`b w1  
    %       -------------------------------------------------- T C._kAm  
    %       0    0    1                                 1 <~.1>CI9D3  
    %       1    1    r * cos(theta)                    2 v1s0kdR,>  
    %       1   -1    r * sin(theta)                    2 &;%LTF@I,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .u9,w  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ncij)7c)u  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) )L7h:%h#  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~@VyJT%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $)M 5@KT  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \w@ "`!%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @avG*Mr^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) IaR D"oCH  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #; >v,Jo  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) p+1kU1F0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .|3&lb6  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) HY7#z2L  
    %       -------------------------------------------------- ^/$bd4,z  
    % |`ZW(} ~  
    %   Example 1: XXPpj< c  
    % [-JU(:Rh  
    %       % Display the Zernike function Z(n=5,m=1) f5&K=4khn  
    %       x = -1:0.01:1; b*"%E, ?  
    %       [X,Y] = meshgrid(x,x); _{YUWV50}  
    %       [theta,r] = cart2pol(X,Y); : ]~G9]R`  
    %       idx = r<=1; m3 W  
    %       z = nan(size(X)); Q)\4  .d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); E(Y}*.\]#s  
    %       figure c\(CbC  
    %       pcolor(x,x,z), shading interp Meo. V|1  
    %       axis square, colorbar /X97dF)zt  
    %       title('Zernike function Z_5^1(r,\theta)') 4oRDvn7f&  
    % <Is~DjIav  
    %   Example 2: 5Ls ][l7  
    % _ "H&  
    %       % Display the first 10 Zernike functions ~k'SP(6#C  
    %       x = -1:0.01:1; jZ>x5 W  
    %       [X,Y] = meshgrid(x,x); 1gDsL  
    %       [theta,r] = cart2pol(X,Y); h7F5-~SpD  
    %       idx = r<=1; |#`qP^E  
    %       z = nan(size(X)); FWDAG$K@0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9._owKj  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; vAjvW&'g  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8(""ui 8  
    %       y = zernfun(n,m,r(idx),theta(idx)); [,/~*L;7  
    %       figure('Units','normalized') bGe@yXId5  
    %       for k = 1:10 xv>]e <":  
    %           z(idx) = y(:,k); N)^` 15w  
    %           subplot(4,7,Nplot(k)) 'yR)z\)  
    %           pcolor(x,x,z), shading interp Ud'/ 9:P  
    %           set(gca,'XTick',[],'YTick',[]) )lrmP(C*.a  
    %           axis square  &'<e9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) LF\HmKM,  
    %       end 6$A>%Jtwe  
    % x /E<@?*:  
    %   See also ZERNPOL, ZERNFUN2. .*Ylj2nM  
    8zzY;3^h;  
    {>n\B~*,"C  
    %   Paul Fricker 11/13/2006 IcP\#zhEv  
    aV`_@F-8  
    bn6WvC 3?  
    EN;s 8sC!  
    =`Lci1#pu}  
    % Check and prepare the inputs: 6g&Ev'  
    % ----------------------------- + Un(VTD  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3  G_0DS  
        error('zernfun:NMvectors','N and M must be vectors.') aGq1 YOD[$  
    end r6gfxW5  
    /Xk-xg+U  
    ZfP$6%;_  
    if length(n)~=length(m) 6tF_u D  
        error('zernfun:NMlength','N and M must be the same length.') X_aC$_b  
    end U;#9^<^  
    S^T ><C  
    sFV&e->AN\  
    n = n(:); Zi= /w  
    m = m(:); lgQ"K(zY  
    if any(mod(n-m,2)) dpSNh1  
        error('zernfun:NMmultiplesof2', ... !\5w<*p8  
              'All N and M must differ by multiples of 2 (including 0).') ^Fpc8D,  
    end B"?ivxM:U  
    y,s`[=CT  
    U'k 0;  
    if any(m>n) zv0bE?W9   
        error('zernfun:MlessthanN', ... E.eUd4XG  
              'Each M must be less than or equal to its corresponding N.') 1Y'NG<d _  
    end wl7 (|\-  
    |wINb~trz  
    D0^h;wJ=4+  
    if any( r>1 | r<0 ) #ADm^UT^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {;vLM* '  
    end gE: ?C2  
    n#^ii/H  
    Hg5 :>?Lw@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `3:Q.A_?  
        error('zernfun:RTHvector','R and THETA must be vectors.') dVe,;?+A  
    end $Da?)Hz'F  
    ( 4(,"  
    5Ky(C6E$s  
    r = r(:); .F},Z[a&  
    theta = theta(:); qWM+!f  
    length_r = length(r); f0&%  
    if length_r~=length(theta) @ Fkhida  
        error('zernfun:RTHlength', ... pZz\o  
              'The number of R- and THETA-values must be equal.') 4-m6e$p;  
    end {B-*w%}HU  
    i&YWutG  
    U0Uy C  
    % Check normalization: LwYWgT\e  
    % -------------------- ! k 1 Ge+  
    if nargin==5 && ischar(nflag) YS:p(jtd  
        isnorm = strcmpi(nflag,'norm'); y9b%P]i  
        if ~isnorm nF B]#LLv  
            error('zernfun:normalization','Unrecognized normalization flag.') f@[qS7ok  
        end wJj:hA}  
    else |j~l%d*<w  
        isnorm = false; T@A Qe[U'v  
    end H*e+ 2  
    aW-6$=W  
    m!5Edo-;<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1mD)G55Ep  
    % Compute the Zernike Polynomials 'o~gT ;T#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1YK(oRSDn  
    M|NQoQ8q  
    1yVhO2`7]  
    % Determine the required powers of r: 2VzYP~Jg  
    % ----------------------------------- 5|5p -B  
    m_abs = abs(m); 1ktxG1"1  
    rpowers = []; 2RQ- L  
    for j = 1:length(n) /,`OF/%  
        rpowers = [rpowers m_abs(j):2:n(j)]; H@1}_d  
    end C;j& Vbf  
    rpowers = unique(rpowers); &r\8VEZq"  
    l0C`teO  
    4(p`xdr}K  
    % Pre-compute the values of r raised to the required powers, 2vWn(6`  
    % and compile them in a matrix: c]zFZJ6M  
    % ----------------------------- 3~VV2O  
    if rpowers(1)==0 C~R ?iZ.&U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J#t-." f6^  
        rpowern = cat(2,rpowern{:}); w@<II-9L)<  
        rpowern = [ones(length_r,1) rpowern];  +IO>%  
    else m7DKC,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tj$[szo  
        rpowern = cat(2,rpowern{:}); @$~IPg[J  
    end ?w+ V:D  
    Q;J( 5;  
    M~N/er  
    % Compute the values of the polynomials: 5'c#pm\Q  
    % -------------------------------------- 2;u i'B  
    y = zeros(length_r,length(n)); $ dF3@(p  
    for j = 1:length(n) :eSsqt9]9  
        s = 0:(n(j)-m_abs(j))/2; 2j}DI"|h  
        pows = n(j):-2:m_abs(j); R3;%eyu  
        for k = length(s):-1:1 3H`{ A/r  
            p = (1-2*mod(s(k),2))* ... a6-.|tt#t  
                       prod(2:(n(j)-s(k)))/              ... /0 4US5En  
                       prod(2:s(k))/                     ... QW$p{ zo  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Zskj?+1  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |-G2pu;  
            idx = (pows(k)==rpowers); !nCq8~#  
            y(:,j) = y(:,j) + p*rpowern(:,idx); HC/z3b;  
        end |/vJ+aKq  
         E^zfI9R  
        if isnorm naW!b&:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y?3.W  
        end //_H _ue$  
    end 31@Lr[!  
    % END: Compute the Zernike Polynomials tKeTHj;jO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s<)lC;#e  
    q+y\pdhdO  
    9&5<ZC-D  
    % Compute the Zernike functions: f+Sb> $  
    % ------------------------------ }&t>j[  
    idx_pos = m>0; UhpJGO  
    idx_neg = m<0; ?UZt30|1  
    \1Xk[%  
    !~Uj 'w  
    z = y; BUJ\[/  
    if any(idx_pos) 8v4 o+w P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); yB2h/~+  
    end acR|X@ \3  
    if any(idx_neg) b1Kt SRLV  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CMaph  
    end {PcJuRTHB  
    {^ b2nOMv  
    Ch_rV+  
    % EOF zernfun 0{|HRiQH9+  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^X=Q{nB  
    p4' .1.@  
    DDE还是手动输入的呢? V]=22Cxi'~  
    P6:9o}K6  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究