下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, }No #_{
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, `GBJa k
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,/GFD[SQ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \m}a%/
&=*1[ j\
$xdo=4;|
Q]GS#n
llR5qq=t
function z = zernfun(n,m,r,theta,nflag) eY`9J4o '
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. A^+k A)8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wBg?-ji3<
% and angular frequency M, evaluated at positions (R,THETA) on the N0}[&rE 8
% unit circle. N is a vector of positive integers (including 0), and h lc!}{$%8
% M is a vector with the same number of elements as N. Each element X_nbNql
% k of M must be a positive integer, with possible values M(k) = -N(k) iG"v
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !KJ X$?
% and THETA is a vector of angles. R and THETA must have the same xi.?@Lff
% length. The output Z is a matrix with one column for every (N,M) o6|-
:u5_/
% pair, and one row for every (R,THETA) pair. l l*g *zt3
% [h-NX
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jg'"?KSU~
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Qi dI
% with delta(m,0) the Kronecker delta, is chosen so that the integral 17c`c.yP
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E&z^E2
% and theta=0 to theta=2*pi) is unity. For the non-normalized zVtTv-DU
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. A{B$$7%
% v(JjvN21
% The Zernike functions are an orthogonal basis on the unit circle. B*3_m
_a
% They are used in disciplines such as astronomy, optics, and Ksh[I,+N\
% optometry to describe functions on a circular domain. 2B6u)
95
% GHLnwym
% The following table lists the first 15 Zernike functions. B/K=\qmm
% tC$+;_=+F
% n m Zernike function Normalization >
2/j
% -------------------------------------------------- >YXb"g@.
% 0 0 1 1 ow
6\j:$?
% 1 1 r * cos(theta) 2 :.l\lj0Yf
% 1 -1 r * sin(theta) 2 `FNU-
I4s
% 2 -2 r^2 * cos(2*theta) sqrt(6) :N^B54o%6
% 2 0 (2*r^2 - 1) sqrt(3) )>b1%x} =
% 2 2 r^2 * sin(2*theta) sqrt(6) FMn|cO.vEP
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]Hi1^Y<
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) kO^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) i@WO>+iB
% 3 3 r^3 * sin(3*theta) sqrt(8) y6sY?uu
% 4 -4 r^4 * cos(4*theta) sqrt(10) W^ask[46R
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }3XjP55
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) rO#$SW$YW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bzZdj6>kX
% 4 4 r^4 * sin(4*theta) sqrt(10) ]5`A8-Q@
% --------------------------------------------------
#z.\pd
% d3?gh[$
% Example 1: }V.fY3J-
% 1y U!rEH
% % Display the Zernike function Z(n=5,m=1) RiZ}cd
% x = -1:0.01:1; X3gYe-2
% [X,Y] = meshgrid(x,x); F{7
BY~d
% [theta,r] = cart2pol(X,Y); hhylsm
% idx = r<=1; d3T7$'l$
% z = nan(size(X)); 1uA-!T*e>
% z(idx) = zernfun(5,1,r(idx),theta(idx)); u|EJ)dT?
% figure 6OPNP0@r
% pcolor(x,x,z), shading interp Kb5}M/8
% axis square, colorbar j`3IizN2
% title('Zernike function Z_5^1(r,\theta)') Of-gG~
% 7|"G
3ck
% Example 2: HQ4WunH2Y
% c[OQo~m$
% % Display the first 10 Zernike functions +&_n[;
% x = -1:0.01:1; ;tD?a7
% [X,Y] = meshgrid(x,x); 3+U2oI:I
% [theta,r] = cart2pol(X,Y); c-@EHv
% idx = r<=1; 1_}k)(n
% z = nan(size(X)); Z$YG'p{S
% n = [0 1 1 2 2 2 3 3 3 3]; ,(c'h:@M
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 7#*O|t/'
% Nplot = [4 10 12 16 18 20 22 24 26 28];
zn*i
% y = zernfun(n,m,r(idx),theta(idx)); ;lTgihW-
% figure('Units','normalized') u<j.XPK
% for k = 1:10 T z+Y_
% z(idx) = y(:,k); }_Sgor83n
% subplot(4,7,Nplot(k)) L`^v"W()
% pcolor(x,x,z), shading interp )s 1
Ei9J
% set(gca,'XTick',[],'YTick',[]) q> #P|
% axis square ^'sOWIzeiY
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )MM(HS
% end ZhoB/TgdL
% <lPHeO<^]
% See also ZERNPOL, ZERNFUN2. e=u}J%|
FW<YN;
2b#>~
% Paul Fricker 11/13/2006 %=v<3
*;.:UR[i
/dVcNo3"
a9nXh6
d
k|X&)xTJ
% Check and prepare the inputs: 5hiuBf<
% ----------------------------- h&{>4{
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3_ =:^Z
error('zernfun:NMvectors','N and M must be vectors.') =OA7$z[
end iF+50d
yLt?XhRlp
Rmh,P >
if length(n)~=length(m) L w/ZKXDU2
error('zernfun:NMlength','N and M must be the same length.') !{oP'8Ax$
end >LR+dShG
WOGMtT%
n] n3/wpO
n = n(:); YH!` uU(Lh
m = m(:); l)1ySX&BU
if any(mod(n-m,2)) LGVGr
error('zernfun:NMmultiplesof2', ... jCt[I5"+z
'All N and M must differ by multiples of 2 (including 0).') *_yp]z"
end K~z9b4a>
ds
QGj&
aw0xi,Jz
if any(m>n) NslaG
error('zernfun:MlessthanN', ... <