下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (UT*T
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, \^LR5S&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !`=?<Fl
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? !I/kz }N@
BVp.A]
rO%+)M$A
E8<i PTJs
=V
7w CW
function z = zernfun(n,m,r,theta,nflag) k ,(:[3J
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. B[X6AQj}d
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K!gFD
% and angular frequency M, evaluated at positions (R,THETA) on the &L~rq)r/&
% unit circle. N is a vector of positive integers (including 0), and BniVZCct
% M is a vector with the same number of elements as N. Each element |YFlJ2w
% k of M must be a positive integer, with possible values M(k) = -N(k) 0^Cx`xdX:
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }rZ=j6Z
% and THETA is a vector of angles. R and THETA must have the same Z+4Oaf!
% length. The output Z is a matrix with one column for every (N,M) S]g)^f'a65
% pair, and one row for every (R,THETA) pair. L-$g& -
% Nq6CvDXi
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike dtl<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m/nn}+*C
% with delta(m,0) the Kronecker delta, is chosen so that the integral RR=l&uT
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )yZE>>3-
% and theta=0 to theta=2*pi) is unity. For the non-normalized ^
s4|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x&Rp
m<4
% K$]B"
s
% The Zernike functions are an orthogonal basis on the unit circle. H4Ek,m|c
% They are used in disciplines such as astronomy, optics, and iW~f
% optometry to describe functions on a circular domain. @R{&>Q:.
% 0O4mA&&!oK
% The following table lists the first 15 Zernike functions. ~A4WuA
% X5[sw;rk
% n m Zernike function Normalization z\
pT+9&
% -------------------------------------------------- 0u\@-np
% 0 0 1 1 Bx>@HU
% 1 1 r * cos(theta) 2 a$8?0`(
% 1 -1 r * sin(theta) 2 =^v Ub
% 2 -2 r^2 * cos(2*theta) sqrt(6) ;A!i V|
% 2 0 (2*r^2 - 1) sqrt(3) ek!N eu>
% 2 2 r^2 * sin(2*theta) sqrt(6) nQ~L.V
% 3 -3 r^3 * cos(3*theta) sqrt(8) U$bM:d
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Q.\ovk~,a
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <~w#sIh
% 3 3 r^3 * sin(3*theta) sqrt(8) blv6
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]:fHvx_?`7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DI[Ee?
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9t1_"{'N1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JH#+E04#
% 4 4 r^4 * sin(4*theta) sqrt(10) 9k&$bC+Q
% -------------------------------------------------- Y;>'~V#R
% 8<!9mgh
% Example 1: FG\?_G
% C:{'0m*jKs
% % Display the Zernike function Z(n=5,m=1) ,#loVLy
% x = -1:0.01:1; iI0 'z=J
% [X,Y] = meshgrid(x,x); [4yQ-L)]e
% [theta,r] = cart2pol(X,Y); _Hk`e}}
% idx = r<=1; (eP)>G]
% z = nan(size(X)); Nl _Jp:8s
% z(idx) = zernfun(5,1,r(idx),theta(idx)); e>.xXg6Zn
% figure ta(x4fP_
% pcolor(x,x,z), shading interp +
aFjtb
% axis square, colorbar 'C<=b UM
% title('Zernike function Z_5^1(r,\theta)') eSU8/9B
% >2/zL.O
% Example 2: {r)M@@[
% *TkABUL
% % Display the first 10 Zernike functions v( B4Bz2
% x = -1:0.01:1; ZxWV,s&p
% [X,Y] = meshgrid(x,x); }I]q$3.
% [theta,r] = cart2pol(X,Y); =@>&kU%$&
% idx = r<=1; i1C'
% z = nan(size(X)); 3Y8
V?* 1|
% n = [0 1 1 2 2 2 3 3 3 3]; <T]kpP<lC
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ZlzFmNe60
% Nplot = [4 10 12 16 18 20 22 24 26 28]; cS"6%:hQ
% y = zernfun(n,m,r(idx),theta(idx)); [tN/}_]
% figure('Units','normalized') FCPbp!q6
% for k = 1:10 9'M_t Mm5
% z(idx) = y(:,k); M> <
% subplot(4,7,Nplot(k)) -=w.tJD
% pcolor(x,x,z), shading interp ->(B:Cz
% set(gca,'XTick',[],'YTick',[]) S0 `*
% axis square rIb{=';
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \!3='~2:=o
% end =Sq7U^(>
% a=R-F!P)
% See also ZERNPOL, ZERNFUN2. M*N8p]3Cq
#z.x3D@^r6
RZZB?vx
% Paul Fricker 11/13/2006 q'q{M-U<
Fwr,e;Z
53QP~[F8R]
W=*\4B]
X)~-MY*p
% Check and prepare the inputs: 7^F?key?
% ----------------------------- jX%Q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) OsXQWSkj~
error('zernfun:NMvectors','N and M must be vectors.') tdm /U
end R)=<q]Ms
+j,;g#d
Sa0\93oa
if length(n)~=length(m) -_3.]o/J
error('zernfun:NMlength','N and M must be the same length.') 3A5" %
end jv ";?*I6.
qA30G~S
>7|37a
n = n(:); 62"ND+D4
m = m(:); OX"`VE
if any(mod(n-m,2)) e#wn;wo?
error('zernfun:NMmultiplesof2', ... xM:dFS
'All N and M must differ by multiples of 2 (including 0).') KR*/ye G!E
end ,<BTv;4p
P1kd6]s
w%ForDB>P
if any(m>n) ~BC5no
error('zernfun:MlessthanN', ... OQq7|dZu
'Each M must be less than or equal to its corresponding N.') L2$%h1
end 1\McsX4
6T-(GHzfHJ
Wg[`H=)Q
if any( r>1 | r<0 ) MI/1uw
error('zernfun:Rlessthan1','All R must be between 0 and 1.') i<
ih :
end XxIU B(.QI
&z