下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ioz4kG!
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8)/d8@
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }cEcoi<v!
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? MBp%TX!
h 5<46!P
Jf9a<[CcV
g-Vxl|hR
F7x]BeTM
function z = zernfun(n,m,r,theta,nflag) B[epI3R
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. _?CyKk\I
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :)p\a1I[*
% and angular frequency M, evaluated at positions (R,THETA) on the Z<@0~t_:?p
% unit circle. N is a vector of positive integers (including 0), and 2.qEy6
% M is a vector with the same number of elements as N. Each element *3d+ !#;rG
% k of M must be a positive integer, with possible values M(k) = -N(k) O,x[6P54P
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?^n),mR
% and THETA is a vector of angles. R and THETA must have the same @j=:V!g2O
% length. The output Z is a matrix with one column for every (N,M) r roI
% pair, and one row for every (R,THETA) pair. gE\&[;)DB
% 9$$dSN\&
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike C6Lc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0*]n#+=
% with delta(m,0) the Kronecker delta, is chosen so that the integral Y 3h`uLQ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u0zF::
% and theta=0 to theta=2*pi) is unity. For the non-normalized nm Y_ )s
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C3)*Mn3%P
% .o8Sy2PaV
% The Zernike functions are an orthogonal basis on the unit circle. JuQwZ]3ed
% They are used in disciplines such as astronomy, optics, and ]l>LU2 sx
% optometry to describe functions on a circular domain. -M5vh~Tp
% /W9(}Id6
% The following table lists the first 15 Zernike functions. {7'Wi$^F
% =h0vdi%{
% n m Zernike function Normalization G!dx)v
% -------------------------------------------------- @<(4J
% 0 0 1 1 |W_;L6)
% 1 1 r * cos(theta) 2 *,& 2?E8
% 1 -1 r * sin(theta) 2 z36wWdRa6
% 2 -2 r^2 * cos(2*theta) sqrt(6) j 5}'*
% 2 0 (2*r^2 - 1) sqrt(3) 5.1z9[z
% 2 2 r^2 * sin(2*theta) sqrt(6) v;soJlxF~
% 3 -3 r^3 * cos(3*theta) sqrt(8) jaw&[f
7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~=va<%{
U
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) }`cf3'rdk
% 3 3 r^3 * sin(3*theta) sqrt(8) ja^_Lh9
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5EU~T.4C<
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JTIt!E}P
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ;/:Sx/#s
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A]Bf&+V
% 4 4 r^4 * sin(4*theta) sqrt(10) CRBj>
% -------------------------------------------------- \?Sv O
% <qg4Rz\c]
% Example 1: TZ *>MySiF
% vd?Bk_d9k,
% % Display the Zernike function Z(n=5,m=1) pHT]2e#
% x = -1:0.01:1; hw$!LTB2
% [X,Y] = meshgrid(x,x); L!>nl4O>`
% [theta,r] = cart2pol(X,Y); m g,1*B'
% idx = r<=1; i.k7qclL`
% z = nan(size(X)); &&nbdu
% z(idx) = zernfun(5,1,r(idx),theta(idx)); &rG B58
% figure F+"_]
% pcolor(x,x,z), shading interp 85YUqVi9
% axis square, colorbar >H^#!eaqw
% title('Zernike function Z_5^1(r,\theta)') |lt]9>|
% q3AqU?f
% Example 2: 6<EGH*GQ$
% h5SJVa
% % Display the first 10 Zernike functions 7:,f|>
% x = -1:0.01:1; x-"8V(
% [X,Y] = meshgrid(x,x); %xN${4)6
% [theta,r] = cart2pol(X,Y); T'9ZR,{F
% idx = r<=1; ia7<AwV
% z = nan(size(X)); D"rbQXR7$
% n = [0 1 1 2 2 2 3 3 3 3]; ki?h7
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; -8xf}v~u
% Nplot = [4 10 12 16 18 20 22 24 26 28]; u<Y#J,p`e
% y = zernfun(n,m,r(idx),theta(idx)); hTa(^
% figure('Units','normalized') V\o7KF
% for k = 1:10 zw['hqW
% z(idx) = y(:,k); `J1HQ!Z
% subplot(4,7,Nplot(k)) .4p3~r?=S
% pcolor(x,x,z), shading interp 'C/yQvJ
% set(gca,'XTick',[],'YTick',[]) ;xZjt4M1
% axis square '`3#FCg
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )rq |t9kix
% end C,An\lsT
% yEq7ueJ'
% See also ZERNPOL, ZERNFUN2. `PC9t)%.pV
< cvh1~>(
l-Z( ]
% Paul Fricker 11/13/2006 7~ PL8
OvtE)ul@
sU"%,Q5
DcW?L^Mst
G
5;6q
% Check and prepare the inputs: >>
zd
% ----------------------------- VG);om7`PD
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O\6U2b~
error('zernfun:NMvectors','N and M must be vectors.') !R=@Nr>
end 5~|{:29X
W6&vyOc
$VuXr=f}
if length(n)~=length(m) t:2v`uk
error('zernfun:NMlength','N and M must be the same length.') flsejj$
end lH}KFFbp
KwuucY
d9K8[Q5^3
n = n(:); {~3QBMx6
m = m(:); '+`[)w
if any(mod(n-m,2)) fSkDD>&
error('zernfun:NMmultiplesof2', ... -L1785pB85
'All N and M must differ by multiples of 2 (including 0).') k, HC"?K
end {FNkPX
']r8q %
0NXH449I=
if any(m>n) J@s>Pe)
error('zernfun:MlessthanN', ... v1.3gzR
'Each M must be less than or equal to its corresponding N.') ffZ~r%25{
end 8]ZzO(=@{
Yc:%2KZ"
SIe!=F[
if any( r>1 | r<0 ) #c^V%
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,o&C"sb
end CD$#}Id
~HZdIPcC
d$zJLgkA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y%pab/Y
error('zernfun:RTHvector','R and THETA must be vectors.') 2cR[~\_9.
end xN 1P#
7>FXsUt_
p+VU:%.t
r = r(:); 9iA rBL"
theta = theta(:); :DD<0
length_r = length(r); 1E+12{~m"i
if length_r~=length(theta) '5e,@t%y
error('zernfun:RTHlength', ... tt"<1
z@
'The number of R- and THETA-values must be equal.') g7 \=
end H@Dpht>[
eb62(:=N6
,_2-Op
% Check normalization: RkF#NCnL;
% -------------------- o).deP
s-
if nargin==5 && ischar(nflag) 3JCo!n0
isnorm = strcmpi(nflag,'norm'); Q7BbST+
if ~isnorm g'8Y5x[
error('zernfun:normalization','Unrecognized normalization flag.') 1Kg0y71"
end BVQy@:K/
else !+l'<*8V
isnorm = false; =!q%
1 mP
end w!.@64-
al2t\Iq90
bSB%hFp=Cp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KZm&sk=QM-
% Compute the Zernike Polynomials d#k(>+%=Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |=?#Xbxz
+iVEA(0&$
p3Sh%=HE'
% Determine the required powers of r: :E:e ^$p
% ----------------------------------- I6>J.6luF9
m_abs = abs(m); p_FM 2K7!
rpowers = []; JJ?{V:
for j = 1:length(n) uqMw-f/
rpowers = [rpowers m_abs(j):2:n(j)]; .E4*>@M5
end @:lM|2:
rpowers = unique(rpowers); $ghZ<Y2}9
^Q6J$"Tj
!"<[&
% Pre-compute the values of r raised to the required powers, ?t#wK}d.
% and compile them in a matrix: nxLuzf4U5
% ----------------------------- _Nx
/<isdL
if rpowers(1)==0 VYvfx
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S,Y|;p<+^
rpowern = cat(2,rpowern{:}); jc^QWK*q
rpowern = [ones(length_r,1) rpowern]; 1b,a3w(:1
else 3DU1c?M:
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .Y)[c.,j
rpowern = cat(2,rpowern{:}); baxZ>KNi
end f5jl$H.
91-bz^=xO
/d`"WK,
% Compute the values of the polynomials: rzjVUPdnh
% -------------------------------------- 'ofj1%c
y = zeros(length_r,length(n)); zWsr|= [
for j = 1:length(n) DaQ"Df_X
s = 0:(n(j)-m_abs(j))/2; g=*jKSZ
pows = n(j):-2:m_abs(j); &q