切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9171阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )TFaG[tj  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, YwQxN"  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? VmHok  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? +^Eruv+F  
    f{FW7T}O2  
    .slA }  
    )&+j#:  
    @D^y<7(  
    function z = zernfun(n,m,r,theta,nflag) {'E%SIRZ)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2aX|E4F  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cjHo?m'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the IkFrzw p  
    %   unit circle.  N is a vector of positive integers (including 0), and Bab`wfUve  
    %   M is a vector with the same number of elements as N.  Each element fAm^-uq[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) SGre[+m~m  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, G`9Ud  
    %   and THETA is a vector of angles.  R and THETA must have the same I!dA{INN  
    %   length.  The output Z is a matrix with one column for every (N,M) G)]'>m<y  
    %   pair, and one row for every (R,THETA) pair. b4ZZyw  
    % UX;?~X  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ij` %'/J  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), S3EY9:^ C  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8{#W F#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O $'# 8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !qS~YA  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z6]dF"N  
    % U BzX%:A  
    %   The Zernike functions are an orthogonal basis on the unit circle. J:Ea|tXK^  
    %   They are used in disciplines such as astronomy, optics, and ? [l[y$9  
    %   optometry to describe functions on a circular domain. N9tH0  
    % d&4 ve Lu  
    %   The following table lists the first 15 Zernike functions. LQ`s>q  
    % X0Y1I}gD  
    %       n    m    Zernike function           Normalization R8I%Cyc  
    %       -------------------------------------------------- &l"/G%W  
    %       0    0    1                                 1 nICc}U?k  
    %       1    1    r * cos(theta)                    2 Oq@+/UWX  
    %       1   -1    r * sin(theta)                    2 y<0zAsT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) U(P^-J<n1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "XfCLc1 T  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) NY 756B*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) aUa.!,_dh  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ug{@rt/"Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %V71W3>6WS  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qq.M]?Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1DgR V7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z`$jxSLm  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) CuC1s>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `-fWNHs  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) DXBc 7J  
    %       -------------------------------------------------- nF>41 K  
    % qmqWMLfC  
    %   Example 1: rV84?75( Y  
    % )12.W=p  
    %       % Display the Zernike function Z(n=5,m=1) q;Tdqv!Ju  
    %       x = -1:0.01:1; H xs'VK*  
    %       [X,Y] = meshgrid(x,x); ]xC#XYE:dy  
    %       [theta,r] = cart2pol(X,Y); WJWi'|C4  
    %       idx = r<=1; \~ m\pf?  
    %       z = nan(size(X)); s|F}Abx,^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); E@ J/_l;  
    %       figure R d'P\  
    %       pcolor(x,x,z), shading interp 2?P H||  
    %       axis square, colorbar h ` qlI1]  
    %       title('Zernike function Z_5^1(r,\theta)') */c4b:s  
    % >*s_)IH2  
    %   Example 2: k%uR!cL  
    % ]l4\Tdz  
    %       % Display the first 10 Zernike functions W[c[ulY&  
    %       x = -1:0.01:1; #lAC:>s3U  
    %       [X,Y] = meshgrid(x,x); [NE|ZL~  
    %       [theta,r] = cart2pol(X,Y); "Vh3hnS~  
    %       idx = r<=1; T5nBvSVv'  
    %       z = nan(size(X)); XSk*w'xO  
    %       n = [0  1  1  2  2  2  3  3  3  3]; z^lcc7  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; (xpt_]Q!H  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5~D(jHY;  
    %       y = zernfun(n,m,r(idx),theta(idx)); i(T[  
    %       figure('Units','normalized') C7*n<+e  
    %       for k = 1:10 =LXjq~p  
    %           z(idx) = y(:,k); wcH,!;3z+  
    %           subplot(4,7,Nplot(k)) ,w`g + 9v  
    %           pcolor(x,x,z), shading interp |w5m2Z  
    %           set(gca,'XTick',[],'YTick',[]) eH HY.^|  
    %           axis square OfG/7pw5%B  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "I)/|x\G*  
    %       end y0vJ@ %`  
    % 'Qdea$o  
    %   See also ZERNPOL, ZERNFUN2. b@QCdi,u  
    ) >;7"v  
    U!d|5W.{Q  
    %   Paul Fricker 11/13/2006 Zd5Jz+f  
    >?<S(  
    u mT *  
    Gj_7wP$  
    &F- \t5X=i  
    % Check and prepare the inputs: wE[gp+X~  
    % ----------------------------- {W+IUvn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g(_xo\  
        error('zernfun:NMvectors','N and M must be vectors.') J':X$>E|  
    end E1r-$gf_  
    vA3wn><  
    YMN=1Zuj?  
    if length(n)~=length(m) |kY}G3/  
        error('zernfun:NMlength','N and M must be the same length.') Vv54;Js9  
    end OZc4 -5  
    F f{,zfN+3  
    l1bkhA b  
    n = n(:); :KmnwYm  
    m = m(:); 44NM of8N  
    if any(mod(n-m,2)) ho-#Xbq#g  
        error('zernfun:NMmultiplesof2', ... SR$ 'JGfp  
              'All N and M must differ by multiples of 2 (including 0).') 7}:+Yx  
    end 3CzF@t;5  
    li hIPMU  
    NnH]c+  
    if any(m>n) w73?E#8  
        error('zernfun:MlessthanN', ... _tUh*"e&  
              'Each M must be less than or equal to its corresponding N.') _ amP:h  
    end 6r|=^3{  
    Y-UXr8  
    {E; bT|3z  
    if any( r>1 | r<0 ) @Jx1n Q^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') b wM?DY  
    end [ *Dj7z t:  
    Fw\g\  
    A XhP3B]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ph}%Ay$  
        error('zernfun:RTHvector','R and THETA must be vectors.') 78 w  
    end dz?On\66  
    ~-<MoCm!  
    ,<N{Y[n]e  
    r = r(:); VKkvf"X  
    theta = theta(:); "OwK-  
    length_r = length(r); j7U&a}(  
    if length_r~=length(theta) &wAVO_s  
        error('zernfun:RTHlength', ... O\CnKNk,  
              'The number of R- and THETA-values must be equal.') 2eHVl.C5  
    end "~=-Q#xO  
    GE`1j'^-  
    3.@LAF  
    % Check normalization: y XKddD  
    % -------------------- EK= y!>  
    if nargin==5 && ischar(nflag) RC}m]!Uz  
        isnorm = strcmpi(nflag,'norm'); > 23$_'2  
        if ~isnorm *Y?oAVkz  
            error('zernfun:normalization','Unrecognized normalization flag.') &r.M~k >  
        end -#v1/L/=  
    else 99.F'Gz  
        isnorm = false; ~o#mX?'7  
    end -%5#0Ogh M  
    /o%VjP"<  
    81"` B2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jQxhR  
    % Compute the Zernike Polynomials |_ +#&x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =\_gT=tZ  
    Q-<Qm?  
    F~i ~%f,  
    % Determine the required powers of r: iGSA$U P|  
    % ----------------------------------- e pp04~  
    m_abs = abs(m); 1 _Oc1RM   
    rpowers = []; B2oKvgw  
    for j = 1:length(n) 6_<~]W&  
        rpowers = [rpowers m_abs(j):2:n(j)]; S.4+tf 7+  
    end R)BXN~dQ  
    rpowers = unique(rpowers); xu_,0 ZT]{  
    H0#=oJr$)W  
    T\n6^@.>  
    % Pre-compute the values of r raised to the required powers, r88De=*  
    % and compile them in a matrix: 1cv~_jFh  
    % ----------------------------- nj0sh"~+  
    if rpowers(1)==0 5wmd[YL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y] c1x=x  
        rpowern = cat(2,rpowern{:}); Yb-{+H8{J  
        rpowern = [ones(length_r,1) rpowern]; oz>2P.7  
    else u -P !2vT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9sT5l"?g  
        rpowern = cat(2,rpowern{:}); (5 @H  
    end Y*$>d/E  
    ka!v(j{E  
    `:Gzjngc  
    % Compute the values of the polynomials: PBnH#zm  
    % -------------------------------------- DrKB;6  
    y = zeros(length_r,length(n)); Jn^b}bk t  
    for j = 1:length(n) QOo'Iv+EL  
        s = 0:(n(j)-m_abs(j))/2; Vn4wk>b}$2  
        pows = n(j):-2:m_abs(j); &:g:7l]g  
        for k = length(s):-1:1  k`Ifl)  
            p = (1-2*mod(s(k),2))* ... ')!X1A{  
                       prod(2:(n(j)-s(k)))/              ... B Z|A&;  
                       prod(2:s(k))/                     ... g&c ~grD  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w^ut,`yW R  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Jr( =Y@Z '  
            idx = (pows(k)==rpowers); gT_KOO0n  
            y(:,j) = y(:,j) + p*rpowern(:,idx); dgF%&*Il]O  
        end _ Lb"yug  
         #'q7 x  
        if isnorm VJqk0w+  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oDV6[e  
        end _yv#v_Z  
    end -1,0hmn=+  
    % END: Compute the Zernike Polynomials 1f}(=Hv{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4_kN';a4Q  
    #M16qOEw  
    `,-mXxTNT  
    % Compute the Zernike functions: A vq+s.h  
    % ------------------------------ !Fp %2gt|  
    idx_pos = m>0; <;S$4tux  
    idx_neg = m<0; #dj?^n g  
    az6 &  
    7bzm5w@v  
    z = y; +ODua@ULFB  
    if any(idx_pos) nf/?7~3?[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); SOhM6/ID2/  
    end +Cw_qS"=  
    if any(idx_neg) = 'NV3by  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); L"|Bm{Run  
    end Q !;syJBb.  
    b& +zAt.  
    Dz: +. @k  
    % EOF zernfun ^obuMQ;  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  s6 yvq#:  
    QQl.5'PP  
    DDE还是手动输入的呢? 46:<[0Psl/  
    \O|SPhaIf  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究