下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 4(6b(]G'#
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Q\ /uKQ
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )a@k]#)Skm
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? mE`kjmX{ E
.MQ^(
X\$ 0
40E#JF#
WrPUd{QM
function z = zernfun(n,m,r,theta,nflag) 6 DG@?O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9O{b]=>wq
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fXI:Y8T
% and angular frequency M, evaluated at positions (R,THETA) on the Q+4tIrd+
% unit circle. N is a vector of positive integers (including 0), and _Z5Mw+=19
% M is a vector with the same number of elements as N. Each element !q"W{P
% k of M must be a positive integer, with possible values M(k) = -N(k) jZ`;Cy\<B
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, KL$bqgc(p3
% and THETA is a vector of angles. R and THETA must have the same 2(5ebe[
% length. The output Z is a matrix with one column for every (N,M) `w I /0
% pair, and one row for every (R,THETA) pair. _@S`5;4x
% qW:HNEiir
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (=D&A<YX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Zo1,1O
% with delta(m,0) the Kronecker delta, is chosen so that the integral f&v9Q97=
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Z{&cuo.@<]
% and theta=0 to theta=2*pi) is unity. For the non-normalized iq(
)8nxi
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )95f*wte
% {( r6e
% The Zernike functions are an orthogonal basis on the unit circle. )K &(
% They are used in disciplines such as astronomy, optics, and 8@so"d2e
% optometry to describe functions on a circular domain. h=;{oY<V)?
% :
]C~gc
% The following table lists the first 15 Zernike functions. tcxcup%
% 4apL4E"r
% n m Zernike function Normalization jLg9H/w{
% -------------------------------------------------- ]_N|L|]M
% 0 0 1 1 cnTaJ/o
% 1 1 r * cos(theta) 2 pz"0J_xDM
% 1 -1 r * sin(theta) 2 @)J+,tg/7
% 2 -2 r^2 * cos(2*theta) sqrt(6) U&O:
_>~
% 2 0 (2*r^2 - 1) sqrt(3) |sJSN.8
% 2 2 r^2 * sin(2*theta) sqrt(6) &b:1I7Cp*
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8OgLn?"P
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) '],J$ge
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >2~=)L
% 3 3 r^3 * sin(3*theta) sqrt(8) ]+X@
7
% 4 -4 r^4 * cos(4*theta) sqrt(10) Gz.|]:1
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hh+ 2mkg
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |\pbir
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %c4Hse#Y
% 4 4 r^4 * sin(4*theta) sqrt(10) 82l~G;.n3
% -------------------------------------------------- ` V##Y
% O%bEB g
% Example 1: >y"+ -7V)
% .9wk@C(Eh_
% % Display the Zernike function Z(n=5,m=1) !KUi\yQ1
% x = -1:0.01:1; I_]^ .o1q
% [X,Y] = meshgrid(x,x); F w?[lS
% [theta,r] = cart2pol(X,Y); e%b6(%
% idx = r<=1; @;"|@!l|
% z = nan(size(X)); Yw-G'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <7~'; K
% figure 3W
N@J6?
% pcolor(x,x,z), shading interp 7Op>i,HZk\
% axis square, colorbar ui?
% title('Zernike function Z_5^1(r,\theta)') 5 sX+~Q
% 0)gdB'9V_
% Example 2: 'dn]rV0(C
% Hl,W=2N
% % Display the first 10 Zernike functions m;,N)<~
% x = -1:0.01:1; ?32&]iM
oW
% [X,Y] = meshgrid(x,x); FYpzQ6s~
% [theta,r] = cart2pol(X,Y); s%W C/ZK
% idx = r<=1; ~A\GT$
% z = nan(size(X)); fb~ytl<
% n = [0 1 1 2 2 2 3 3 3 3]; J\b^)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; o4Om}]Ti
% Nplot = [4 10 12 16 18 20 22 24 26 28]; tS6qWtE
% y = zernfun(n,m,r(idx),theta(idx)); %%[LKSTb
% figure('Units','normalized') I`!<9OTBj
% for k = 1:10 VXwU?_4J.
% z(idx) = y(:,k); )P
sY($ &
% subplot(4,7,Nplot(k)) 2GDD!w#!j
% pcolor(x,x,z), shading interp *_d7E
% set(gca,'XTick',[],'YTick',[]) 9P+-#B
% axis square 9w7n1k.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uI )6M
% end ]Gsv0Xk1
% Y^wW2-,m
% See also ZERNPOL, ZERNFUN2. %WjXg:R
J cd-
7fZDsj:
% Paul Fricker 11/13/2006 ``hf=`We
8<QdMkI
<eWf<
R\!2l|_
W:pIPDx1=!
% Check and prepare the inputs: #cI{Fe0h
% ----------------------------- ,s"^kFl
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _9F9W{'
error('zernfun:NMvectors','N and M must be vectors.') H&