切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9387阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 4(6b(]G'#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Q\ /uKQ  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )a@k]#)Skm  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? mE`kjmX{E  
    .MQ^(  
    X\$ 0  
    40E#JF#  
    WrPUd{QM  
    function z = zernfun(n,m,r,theta,nflag) 6DG@?O  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9O{b]=>wq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fXI:Y8T  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Q+4tIrd+  
    %   unit circle.  N is a vector of positive integers (including 0), and _Z5Mw+=19  
    %   M is a vector with the same number of elements as N.  Each element !q"W{P  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jZ`;Cy\<B  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, KL$bqgc(p3  
    %   and THETA is a vector of angles.  R and THETA must have the same 2(5ebe[  
    %   length.  The output Z is a matrix with one column for every (N,M) `w I/0  
    %   pair, and one row for every (R,THETA) pair. _@S`5;4x  
    % qW:HNEiir  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (=D&A<YX  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Zo1,1O  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral f&v9Q97=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Z{&cuo.@<]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized iq( )8nxi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )95f*wte  
    % {(r6e  
    %   The Zernike functions are an orthogonal basis on the unit circle. )K &(  
    %   They are used in disciplines such as astronomy, optics, and 8@so"d2e  
    %   optometry to describe functions on a circular domain. h=;{oY<V)?  
    %  : ]C~gc  
    %   The following table lists the first 15 Zernike functions. tcxcup%  
    % 4apL4E"r  
    %       n    m    Zernike function           Normalization jLg9H/w{  
    %       -------------------------------------------------- ]_N|L|]M  
    %       0    0    1                                 1 cnTaJ/o  
    %       1    1    r * cos(theta)                    2 pz"0J_xDM  
    %       1   -1    r * sin(theta)                    2 @)J+,tg/7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) U&O: _>~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |sJSN.8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &b:1I 7Cp*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8OgLn?"P  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) '],J$ge  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >2~=)L  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]+X@ 7  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Gz .|]:1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hh+ 2mkg  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |\pbir  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %c4Hse#Y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 82l~G;.n3  
    %       -------------------------------------------------- `V##Y  
    % O%bEB g  
    %   Example 1: >y"+ -7V)  
    % .9wk@C(Eh_  
    %       % Display the Zernike function Z(n=5,m=1) !KUi\yQ1  
    %       x = -1:0.01:1; I_]^ .o1q  
    %       [X,Y] = meshgrid(x,x); F w?[lS  
    %       [theta,r] = cart2pol(X,Y); e%b6(%  
    %       idx = r<=1; @;"|@!l|  
    %       z = nan(size(X)); Yw- G'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <7~'; K  
    %       figure 3W N@J6?  
    %       pcolor(x,x,z), shading interp 7Op>i,HZk\  
    %       axis square, colorbar ui?  
    %       title('Zernike function Z_5^1(r,\theta)') 5 sX+~Q  
    % 0)gdB'9V_  
    %   Example 2: 'dn]rV0(C  
    % Hl,W=2N  
    %       % Display the first 10 Zernike functions m;,N)<~  
    %       x = -1:0.01:1; ?32&]iM oW  
    %       [X,Y] = meshgrid(x,x); FYpzQ6s~  
    %       [theta,r] = cart2pol(X,Y); s%W C/ZK  
    %       idx = r<=1; ~A\GT$  
    %       z = nan(size(X)); fb~ytl<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; J\b^)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; o4Om}]Ti  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; tS6qWtE  
    %       y = zernfun(n,m,r(idx),theta(idx)); %%[LKSTb  
    %       figure('Units','normalized') I`!<9OTBj  
    %       for k = 1:10 VXwU?_4J.  
    %           z(idx) = y(:,k); )P sY($ &  
    %           subplot(4,7,Nplot(k)) 2GDD!w#!j  
    %           pcolor(x,x,z), shading interp *_d7E   
    %           set(gca,'XTick',[],'YTick',[]) 9P+-#B  
    %           axis square 9w7n1k.  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u I )6M  
    %       end ]Gsv0Xk1  
    % Y^wW2-,m  
    %   See also ZERNPOL, ZERNFUN2. %WjXg:R  
    Jcd-  
    7fZDs j:  
    %   Paul Fricker 11/13/2006 ``hf=`We  
    8<QdMkI  
    <eWf<  
    R\!2l |_  
    W:pIPDx1=!  
    % Check and prepare the inputs: #cI{Fe0h  
    % ----------------------------- , s"^kFl  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _ 9F9W{'  
        error('zernfun:NMvectors','N and M must be vectors.') H&-zZc4\  
    end sBT2j~jhJ  
    rX2.i7i,  
    u. F9g #  
    if length(n)~=length(m) z7fp#>uw  
        error('zernfun:NMlength','N and M must be the same length.') N 5lDS  
    end *Q "wwpl?  
    $Nhs1st*8  
    p8Qk 'F=h  
    n = n(:); *RJG!t*t  
    m = m(:); n{ar gI8wF  
    if any(mod(n-m,2)) @niHl  
        error('zernfun:NMmultiplesof2', ... t.i 8 2Q  
              'All N and M must differ by multiples of 2 (including 0).') &w_j/nW^'  
    end g}1B;zGf  
    52Z2]T c ,  
    L [pBB  
    if any(m>n) nFHUy9q  
        error('zernfun:MlessthanN', ... :(P9mt  
              'Each M must be less than or equal to its corresponding N.') ,is3&9  
    end 6d<r= C=  
    #A JDWelD  
    lZ]ZDb?P  
    if any( r>1 | r<0 ) (c=6yV@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {k TE He  
    end .ypL=~Rp  
    ^BikV  
    dy%;W%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z!ZtzD]cb  
        error('zernfun:RTHvector','R and THETA must be vectors.') -b9\=U[  
    end )Q&(f/LT  
    |4;Fd9q^m  
    /[ 5gX^A  
    r = r(:); ) j#`r/  
    theta = theta(:); l[0RgO*S  
    length_r = length(r); PR#exm&  
    if length_r~=length(theta) #wwH m3  
        error('zernfun:RTHlength', ... {HltvO%8  
              'The number of R- and THETA-values must be equal.') X!TpYUZ '  
    end *K8$eDNZ  
    LM<qT-/qs  
    l*Gvf_UH  
    % Check normalization: {4<C_52t  
    % -------------------- O`IQ(,yef  
    if nargin==5 && ischar(nflag) t&C1Oo}=3  
        isnorm = strcmpi(nflag,'norm'); & p  
        if ~isnorm *5C7d*'  
            error('zernfun:normalization','Unrecognized normalization flag.') ;#W2|'HD  
        end }c,}V  
    else C!<Ou6}!b  
        isnorm = false; 6jD=F ^jw  
    end X:"i4i[}{9  
    n,y ZRY  
    4 #MtF'J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^,TO#%$iE  
    % Compute the Zernike Polynomials G:<aB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -V77C^()8d  
    $Vg>I>i  
    >C>.\  
    % Determine the required powers of r: NZ:,ph  
    % ----------------------------------- =7=]{Cx[  
    m_abs = abs(m); Ju@c~Xm  
    rpowers = []; ?=sDM& '  
    for j = 1:length(n) )hsgC'H{~]  
        rpowers = [rpowers m_abs(j):2:n(j)]; ,q`\\d  
    end Mq156TL  
    rpowers = unique(rpowers); D0-3eV -  
    "<N*"euH  
    gD @){Ip  
    % Pre-compute the values of r raised to the required powers, ZPLm]I\]  
    % and compile them in a matrix: oWT3apGO  
    % ----------------------------- Hk3sI-XkA  
    if rpowers(1)==0 g wRZ%.Cn  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); q 'yva  
        rpowern = cat(2,rpowern{:}); W aRw05r  
        rpowern = [ones(length_r,1) rpowern]; Vx u0F]%  
    else 6P l<'3&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B6DYZ+7A  
        rpowern = cat(2,rpowern{:}); W:2( .?  
    end ~,Zc%s~|  
    `Y$4 H,8L  
    *Hn8)x}E  
    % Compute the values of the polynomials: L,/%f<wd  
    % -------------------------------------- %$Tji  
    y = zeros(length_r,length(n)); eu-*?]&Di  
    for j = 1:length(n) %YscBG  
        s = 0:(n(j)-m_abs(j))/2; zY{A'<\O  
        pows = n(j):-2:m_abs(j); zR:L! S  
        for k = length(s):-1:1 EI%89i`3^  
            p = (1-2*mod(s(k),2))* ... S9y}  
                       prod(2:(n(j)-s(k)))/              ... K;G~V\  
                       prod(2:s(k))/                     ... %J?xRv!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @Cyvf5|bL  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 1.GQau~  
            idx = (pows(k)==rpowers); aeJHMHFc  
            y(:,j) = y(:,j) + p*rpowern(:,idx); *L^,|   
        end g*_&  
         BX7kO0j  
        if isnorm zwjgE6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E{`fF8]K  
        end XNkn|q2  
    end 6A-|[(NS  
    % END: Compute the Zernike Polynomials R 'zWYQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KkbDW3-  
    r`d4e,(  
    \Gvm9M  
    % Compute the Zernike functions: [RhO$c$[\  
    % ------------------------------ LU%E:i|  
    idx_pos = m>0; Bj;'qB>3  
    idx_neg = m<0; ;N0XFjdR  
    qo bc<-  
    dUZ ,m9u  
    z = y; $%#!bV  
    if any(idx_pos) *^ZV8c}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VY4yS*y  
    end ( Erc3Ac8  
    if any(idx_neg) p_%Rt"!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); nDxz~8  
    end hRhe& ,v  
    }19\.z&J  
    iqWQ!r^  
    % EOF zernfun ]N?kG`[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)   Nz-&MS  
    #w=~lq)9  
    DDE还是手动输入的呢? yB!dp;gM{  
    ^<6[.)  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究