切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9523阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (UT*T  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, \^LR5S&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !`=?<Fl  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? !I/kz }N@  
    BVp.A]  
    rO%+)M$A  
    E8<i PTJs  
    =V 7w CW  
    function z = zernfun(n,m,r,theta,nflag) k ,(:[3J  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. B[X6A Qj}d  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K!gFD  
    %   and angular frequency M, evaluated at positions (R,THETA) on the &L~rq)r/&  
    %   unit circle.  N is a vector of positive integers (including 0), and BniVZCct  
    %   M is a vector with the same number of elements as N.  Each element |YFlJ2w  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0^Cx`xdX:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }rZ=j6Z  
    %   and THETA is a vector of angles.  R and THETA must have the same Z+4Oa f!  
    %   length.  The output Z is a matrix with one column for every (N,M) S]g)^f'a65  
    %   pair, and one row for every (R,THETA) pair. L-$g& -  
    % Nq6CvDXi  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike dtl<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m/nn}+*C  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral RR=l&uT  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )yZE>>3-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ^ s4|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x&Rp m<4  
    % K$]B" s  
    %   The Zernike functions are an orthogonal basis on the unit circle. H4Ek,m|c  
    %   They are used in disciplines such as astronomy, optics, and iW~f  
    %   optometry to describe functions on a circular domain. @R{&>Q:.  
    % 0O4mA&&!oK  
    %   The following table lists the first 15 Zernike functions. ~A4WuA  
    % X5[sw;rk  
    %       n    m    Zernike function           Normalization z\ pT+9&  
    %       -------------------------------------------------- 0u\@-np  
    %       0    0    1                                 1 Bx >@HU  
    %       1    1    r * cos(theta)                    2 a$8?0` (  
    %       1   -1    r * sin(theta)                    2 =^vUb  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ;A!i V |  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ek!N eu>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) nQ~L.V  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) U$ bM:d  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Q.\ovk~,a  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) <~w#sIh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) blv6  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]:fHvx_?`7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D I[Ee?  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9t1_"{'N1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JH#+E04#  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 9k&$bC+Q  
    %       -------------------------------------------------- Y;>'~V#R  
    % 8<!9mgh  
    %   Example 1: FG\?_G  
    % C:{'0m*jKs  
    %       % Display the Zernike function Z(n=5,m=1) ,#l oVLy  
    %       x = -1:0.01:1; iI0'z=J  
    %       [X,Y] = meshgrid(x,x); [4yQ-L)]e  
    %       [theta,r] = cart2pol(X,Y); _Hk`e}}  
    %       idx = r<=1; (eP)>G]  
    %       z = nan(size(X)); Nl _Jp:8s  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); e>.xXg6Zn  
    %       figure ta(x4fP_  
    %       pcolor(x,x,z), shading interp + aF jtb  
    %       axis square, colorbar 'C<=bUM  
    %       title('Zernike function Z_5^1(r,\theta)') eSU8/9B  
    % >2/zL.O  
    %   Example 2: {r)M@@[  
    % *TkABUL  
    %       % Display the first 10 Zernike functions v( B4Bz2  
    %       x = -1:0.01:1; ZxW V ,s&p  
    %       [X,Y] = meshgrid(x,x); }I]q$3 .  
    %       [theta,r] = cart2pol(X,Y); =@>&kU%$&  
    %       idx = r<=1; i1C'  
    %       z = nan(size(X)); 3Y8 V?* 1|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <T]kpP<lC  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ZlzFmNe60  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; cS"6%:hQ  
    %       y = zernfun(n,m,r(idx),theta(idx)); [tN/}_]  
    %       figure('Units','normalized') FCPbp!q6  
    %       for k = 1:10 9'M_tMm5  
    %           z(idx) = y(:,k);  M > <   
    %           subplot(4,7,Nplot(k)) -=w.tJD  
    %           pcolor(x,x,z), shading interp ->(B: Cz  
    %           set(gca,'XTick',[],'YTick',[]) S0`*  
    %           axis square rIb{=';  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \!3='~2:=o  
    %       end =Sq7U^(>  
    % a=R-F!P)  
    %   See also ZERNPOL, ZERNFUN2. M*N8p]3Cq  
    #z.x3D@^r6  
    RZZB?vx  
    %   Paul Fricker 11/13/2006 q'q{M-U<  
    Fwr,e;Z  
    53QP~[F8R]  
    W=*\4B]  
    X)~-MY*p  
    % Check and prepare the inputs: 7^F?key?  
    % ----------------------------- jX%Q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) OsXQWSkj~  
        error('zernfun:NMvectors','N and M must be vectors.') tdm /U  
    end R)=<q]Ms  
    +j,;g#d  
    Sa0\9 3oa  
    if length(n)~=length(m) -_3.]o/J  
        error('zernfun:NMlength','N and M must be the same length.') 3A5" %  
    end jv ";?*I6.  
    qA30G~S  
    >7 |37a  
    n = n(:); 62"ND+D4  
    m = m(:); OX"`VE  
    if any(mod(n-m,2)) e#wn;wo?  
        error('zernfun:NMmultiplesof2', ... xM:dFS  
              'All N and M must differ by multiples of 2 (including 0).') KR*/yeG!E  
    end ,<BTv;4p  
    P1kd6]s  
    w%ForDB>P  
    if any(m>n) ~BC5no  
        error('zernfun:MlessthanN', ... OQq7|dZu  
              'Each M must be less than or equal to its corresponding N.') L2$%h1  
    end 1\Mcs X4  
    6T-(GHzfHJ  
    Wg[`H=)Q  
    if any( r>1 | r<0 ) MI/1uw  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') i< ih :  
    end XxIUB(.QI  
    &zZSWNW  
    [;(| ^0  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SG~R!kN}Q  
        error('zernfun:RTHvector','R and THETA must be vectors.') Gi-tf<  
    end Q_dFZ  
    [8"nRlXH  
    pO^ 6p%  
    r = r(:); <AVpFy  
    theta = theta(:); G~JQcJFj  
    length_r = length(r); O/Fzw^  
    if length_r~=length(theta) JwO+Dd  
        error('zernfun:RTHlength', ... 6jn<YR E-  
              'The number of R- and THETA-values must be equal.') Y/ `fPgE  
    end lBCM; #P  
    olqHa5qn  
    7 MfpZgC  
    % Check normalization:  -x7L8Wj  
    % -------------------- +,smjg:O  
    if nargin==5 && ischar(nflag) MV/JZ;55  
        isnorm = strcmpi(nflag,'norm'); !} 1p:@  
        if ~isnorm M! s&<Bi  
            error('zernfun:normalization','Unrecognized normalization flag.') fROhn}<**[  
        end <Z vG&  
    else O:#to  
        isnorm = false; Z#F2<*+Pe  
    end cv^^NgQ  
    ]`MRH[{  
    }, ]W/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B *:6U+I  
    % Compute the Zernike Polynomials !u^(<.xJ   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rO-Tr  
    Sh"} c2  
    *P_TG"^{W  
    % Determine the required powers of r: $, =n  
    % ----------------------------------- k -SUp8}g  
    m_abs = abs(m); MZ{)`7acR\  
    rpowers = []; IlwY5iL  
    for j = 1:length(n) X1+Wb9P  
        rpowers = [rpowers m_abs(j):2:n(j)]; [P[syi#]t  
    end ?J>^X-z  
    rpowers = unique(rpowers); Xdjxt?*  
    )q#b^( v  
    uy B ?-Y+  
    % Pre-compute the values of r raised to the required powers, j"c"sF\q  
    % and compile them in a matrix: *u-TNg  
    % ----------------------------- 6OVAsmE  
    if rpowers(1)==0 m86w{b$8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s|q B;  
        rpowern = cat(2,rpowern{:}); bzZEwMc6  
        rpowern = [ones(length_r,1) rpowern]; 8Uc#>Ae'_  
    else g6N{Z e Wg  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8zr)oQ:  
        rpowern = cat(2,rpowern{:}); w{0UA6+  
    end ?bbguwo~F  
    d(h`bOjI  
    u%&zY97/  
    % Compute the values of the polynomials: 9#1lxT4%  
    % -------------------------------------- BM:je(*p  
    y = zeros(length_r,length(n)); B&tl6?7h  
    for j = 1:length(n) lT*Hj.  
        s = 0:(n(j)-m_abs(j))/2; +lE 9*Gs_$  
        pows = n(j):-2:m_abs(j); b-ZvEDCR  
        for k = length(s):-1:1 }4+S_b  
            p = (1-2*mod(s(k),2))* ... R,tR{| 8  
                       prod(2:(n(j)-s(k)))/              ... x3)qK6,\  
                       prod(2:s(k))/                     ... N2C^'dFj  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w2Pkw'a{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); (zUERw\a X  
            idx = (pows(k)==rpowers); \p.ku%{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Q~uj:A]n<  
        end 514;!Q4K  
         W<kJ%42^j  
        if isnorm KO:o GUR  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U{HJNftdpm  
        end #VD[\#  
    end H+-9R  
    % END: Compute the Zernike Polynomials 7Sr7a {  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j5tA!o  
    2E;*kKw[  
    AOeptv^k3}  
    % Compute the Zernike functions: wz;IKdk[  
    % ------------------------------ Ao 1*a%-.  
    idx_pos = m>0; Zs)HzOP)9  
    idx_neg = m<0; RBiDU}j  
    3%'$AM}+s  
    }F**!%4d  
    z = y; 'R?;T[s%  
    if any(idx_pos) ]*Zg(YA  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); p ^T0(\1  
    end 1[/X$DyaK  
    if any(idx_neg) 5G= 2=E  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); FjVC&+c  
    end 6wfCC,2  
    P)ZGNtO9fG  
    K@`F*^A}V  
    % EOF zernfun 9aYCU/3  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  fOs"\Y4  
    "E =\Vz  
    DDE还是手动输入的呢? TR/'L!EE  
    }u8o*P|,  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究