下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, -U[`pUY?f
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, P%HyIODS
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? PM!t"[@&
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? }#5roNH~Z
\3?;[xD
4^_Au^8R(
bCUh^#]x
$ywh%OEH
function z = zernfun(n,m,r,theta,nflag) ^)^|;C\`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. O \8G~V
5"
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N y7EX&
% and angular frequency M, evaluated at positions (R,THETA) on the yc=#Jn?S
% unit circle. N is a vector of positive integers (including 0), and @ ]wem
% M is a vector with the same number of elements as N. Each element ?9@Af{b t2
% k of M must be a positive integer, with possible values M(k) = -N(k) cG!2Iy~lA
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, )wv[!cYyW
% and THETA is a vector of angles. R and THETA must have the same T)f_W
% length. The output Z is a matrix with one column for every (N,M) L$c%u
% pair, and one row for every (R,THETA) pair. D s,"E#?
% {<4?o?
1g
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike l'".}6S
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), J*KBG2+13
% with delta(m,0) the Kronecker delta, is chosen so that the integral 4eL54).1O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8;f<q u|w
% and theta=0 to theta=2*pi) is unity. For the non-normalized IYg3ve`x
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,xe@G)a
% dQ`ZrWd_U
% The Zernike functions are an orthogonal basis on the unit circle. !_H8Q}a
% They are used in disciplines such as astronomy, optics, and wDMB
% optometry to describe functions on a circular domain. <ZC^H
% u m2s^G
% The following table lists the first 15 Zernike functions.
)k] !u
% ;6
6_G Sjz
% n m Zernike function Normalization 5@t uo`k
% -------------------------------------------------- JKi@Kw
% 0 0 1 1 :F
w"u4WI
% 1 1 r * cos(theta) 2 xc<eU`-'b
% 1 -1 r * sin(theta) 2 5J\|gZQF
% 2 -2 r^2 * cos(2*theta) sqrt(6) n.6
0$kR`
% 2 0 (2*r^2 - 1) sqrt(3) ~7 L)n
% 2 2 r^2 * sin(2*theta) sqrt(6) dzE Q$u/I
% 3 -3 r^3 * cos(3*theta) sqrt(8) cc(r,ij~4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1L=Qg4 H
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6O@ ^`T
% 3 3 r^3 * sin(3*theta) sqrt(8) +IO1ipc4cE
% 4 -4 r^4 * cos(4*theta) sqrt(10) hB$Y4~T%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #JR ,C
-w
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (6#yw`\
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U[e8K
% 4 4 r^4 * sin(4*theta) sqrt(10) vV\F^
% -------------------------------------------------- LVFsd6:h
% FDd>(!>
% Example 1: G9y12HV
% L8w76|
% % Display the Zernike function Z(n=5,m=1) ]1|Ql*6y,
% x = -1:0.01:1; kl3S~gE4@
% [X,Y] = meshgrid(x,x); 6n6VEwYj
% [theta,r] = cart2pol(X,Y); m`\i+
% idx = r<=1; <,4R2'
% z = nan(size(X)); CX ]\Q-y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ^Im%D(MY
% figure Rp`_Grcd
% pcolor(x,x,z), shading interp JfP\7
% axis square, colorbar :OQ:@Yk
% title('Zernike function Z_5^1(r,\theta)') 2hwXWTSu
% Ux)p%-
% Example 2: ,+f0cv4
% T^%n!t
% % Display the first 10 Zernike functions l@Eq|y,
% x = -1:0.01:1; M$]O=2h+2
% [X,Y] = meshgrid(x,x); _]D#)-uv}C
% [theta,r] = cart2pol(X,Y); Vyt~OTI\
% idx = r<=1; *n*N|6+
% z = nan(size(X));
kF+ }.x%
% n = [0 1 1 2 2 2 3 3 3 3]; 0n<(*bfW
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; o,Tr^e$
% Nplot = [4 10 12 16 18 20 22 24 26 28]; qzHqj;
% y = zernfun(n,m,r(idx),theta(idx)); <jRFN&"h}
% figure('Units','normalized') e:GgA
% for k = 1:10 5e/qgI)M5
% z(idx) = y(:,k); |DFvZ6}
% subplot(4,7,Nplot(k)) Hr<C2p^a
% pcolor(x,x,z), shading interp kToVBU$
% set(gca,'XTick',[],'YTick',[]) g<rKV+$6
% axis square `Ge +(1x
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )p!*c,
% end [C+Gmu
% ;la#Vf:]
% See also ZERNPOL, ZERNFUN2. e\A(#l@g
N7~)qqb
2i7i\?<.
% Paul Fricker 11/13/2006 i (%tHa37
F[7Kw"~J
Yt/SnF
`j}_BW_
}l}yn@hYC
% Check and prepare the inputs: sk7rU+<
% ----------------------------- ie$`pyj!x
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4j=<p@
error('zernfun:NMvectors','N and M must be vectors.') Q_QKm0!
end Y[iDX#
%su}Ru
C?[a3rNH(
if length(n)~=length(m) ?y>Y$-v/C
error('zernfun:NMlength','N and M must be the same length.') uOG-IHuF
end %R.xS}
Q
SY$J+YBLM
`sk!C7%
n = n(:); |%'6f}fnE
m = m(:); {*?sVAvj
if any(mod(n-m,2)) 2<[eD`u
error('zernfun:NMmultiplesof2', ... d`9W
'All N and M must differ by multiples of 2 (including 0).') FpdDIa
end 2/v35| ?
RHwaJ;:)#
*3_f&Y
if any(m>n) `%t$s,TiP
error('zernfun:MlessthanN', ... I #M%%5e
'Each M must be less than or equal to its corresponding N.') ?o~:'Z
end Ic[}V0dk
WCuzV7tw
;m@1Ec@*p
if any( r>1 | r<0 ) fJ)N:q`
error('zernfun:Rlessthan1','All R must be between 0 and 1.') MvFM,
end ET,Q3X\Oe
Dd!Sr8L[
%6NO 0 F^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xl+DRPzl
error('zernfun:RTHvector','R and THETA must be vectors.') 0$eyT-:d
end -ajM5S=d*
V&Xi> X8
On{~St'V
r = r(:); )p$\gwr=2
theta = theta(:); .O5LI35,
length_r = length(r); <91t`&aWW
if length_r~=length(theta) 1Yc%0L(
error('zernfun:RTHlength', ... tmO;:n<N
'The number of R- and THETA-values must be equal.') M"=8O>NZ2
end G1kaF/`O
(;;J,*NP
^ckj3Y#;
% Check normalization: e#>tM
% -------------------- ,M\j%3
if nargin==5 && ischar(nflag) cPpu
isnorm = strcmpi(nflag,'norm'); hc-lzYS
if ~isnorm HQq`pG%m6
error('zernfun:normalization','Unrecognized normalization flag.') 1<xcMn0et
end j~M#Ss-H8
else Gs[Vu@*
isnorm = false; 0o=!j3RjH
end s~S?D{!
+yzcx3<
q1YLq(e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {5T0RL{\N
% Compute the Zernike Polynomials Q`H#
fS~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% blJIto'
x!'7yx
nIf N"
% Determine the required powers of r: TE3*ktB{N
% ----------------------------------- pG/
NuImA
m_abs = abs(m); '@'B>7C#
rpowers = []; l iw,O 6
for j = 1:length(n) Vy]A,Rn7
rpowers = [rpowers m_abs(j):2:n(j)]; ]#F q>E
end "Dyym<J
rpowers = unique(rpowers); $bk>kbl P
|<sf:#YzY&
m"n.Dz/S
% Pre-compute the values of r raised to the required powers, m&Lt6_vi
% and compile them in a matrix: UM<@t%|>
% ----------------------------- QQ@9_[N
if rpowers(1)==0 ya:sW5fk
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {5>3;.
rpowern = cat(2,rpowern{:}); d-~vR(tU
rpowern = [ones(length_r,1) rpowern]; vCj4;P g
else 7'Lp8
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l1&5uwuF
rpowern = cat(2,rpowern{:}); ~%`EeJwT
end d+tj%7
ASR-a't6
Y+FP
% Compute the values of the polynomials: C5Xof|#p|
% -------------------------------------- ;v_ls)_,-
y = zeros(length_r,length(n)); 1YFeVMc
for j = 1:length(n) ]3}feU+
s = 0:(n(j)-m_abs(j))/2; ~]&B>q
pows = n(j):-2:m_abs(j); @d&g/ccMxd
for k = length(s):-1:1 z
OtkC3hY
p = (1-2*mod(s(k),2))* ... 8/Mx5~ R
prod(2:(n(j)-s(k)))/ ... +kM\
D~D1
prod(2:s(k))/ ... Vn'?3Eb<
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aVP5%
prod(2:((n(j)+m_abs(j))/2-s(k))); J;~E<_"Hn
idx = (pows(k)==rpowers); 0C]4~F x~
y(:,j) = y(:,j) + p*rpowern(:,idx);
=^Th[B
end r&SO:#rOSM
QP:9%f>=
if isnorm Lx%:t YZ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bhYU5I 9
end *6XRjq^#
end pajy#0 U
% END: Compute the Zernike Polynomials mbyih+amCr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ABcBEv3
L?HF'5o
0(8gQ
2n
% Compute the Zernike functions: Ah (iE
% ------------------------------ zrrz<dW
idx_pos = m>0; FuuS"G,S
idx_neg = m<0; 7,h3V=^)Q
PK+ x6]x
S;8. yj-
z = y; Oxv+1Ub<Dv
if any(idx_pos) =5ug\S
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2SciB*5
end J?IC~5*2
if any(idx_neg) VD/&%O8n
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =:gjz4}_8
end |<rfvsQ.
B7!;]'&d
9:-T@u
% EOF zernfun ]YsR E>