下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )XFMlSx)
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 5VfP@{
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? gTT-7
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =*pu+o,?
%?seX+ne
Qk=
w ,`
hwJ.M4
M6>l%[
function z = zernfun(n,m,r,theta,nflag)
2B#WWb
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. -kO=pYP*O
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4'M#m|V
% and angular frequency M, evaluated at positions (R,THETA) on the 7">.{
@S
% unit circle. N is a vector of positive integers (including 0), and O`eNuQSv
% M is a vector with the same number of elements as N. Each element 1EN5ZN,
% k of M must be a positive integer, with possible values M(k) = -N(k) |zf||ju
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, pR$c<p
% and THETA is a vector of angles. R and THETA must have the same 1D$k:|pP~
% length. The output Z is a matrix with one column for every (N,M) _v\QuI6
% pair, and one row for every (R,THETA) pair. Z(s}
#-
% Q]\xO/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p w,.*N3P
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Aq-v3$XL
% with delta(m,0) the Kronecker delta, is chosen so that the integral shD$,!
k
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EpiagCS
% and theta=0 to theta=2*pi) is unity. For the non-normalized xg8<b
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ZISR]xay
% 5HB4B <2
% The Zernike functions are an orthogonal basis on the unit circle. NJ~'`{3v
% They are used in disciplines such as astronomy, optics, and uo0(W3Q *
% optometry to describe functions on a circular domain. oq|K:<l
% `
H"5nQRV
% The following table lists the first 15 Zernike functions. Y9Pb
% Y\rKw!u_!
% n m Zernike function Normalization |:AjQ&PM)
% -------------------------------------------------- :c\NBKHv*
% 0 0 1 1 $]_=B Jyu
% 1 1 r * cos(theta) 2 ]2<g"zo0
% 1 -1 r * sin(theta) 2 )}EwEM
% 2 -2 r^2 * cos(2*theta) sqrt(6) 7M4iBk4I
% 2 0 (2*r^2 - 1) sqrt(3) 90q*V%cS
% 2 2 r^2 * sin(2*theta) sqrt(6) \"Np'$4eu
% 3 -3 r^3 * cos(3*theta) sqrt(8) OSBE5
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) + 7Z%N9
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Tb}b*d3
% 3 3 r^3 * sin(3*theta) sqrt(8) V{8mx70
% 4 -4 r^4 * cos(4*theta) sqrt(10) vK$W)(Z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d"V^^I)yx&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) u`ZnxD>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
z\\MLyS
% 4 4 r^4 * sin(4*theta) sqrt(10) %T&kK2d;
% -------------------------------------------------- H;v*/~zl
% % $J^dF_0
% Example 1: Dx8^V%b
% 4"GY0)
Q
% % Display the Zernike function Z(n=5,m=1) D =3NI
% x = -1:0.01:1; MQI6e".
% [X,Y] = meshgrid(x,x); F:n7yey
% [theta,r] = cart2pol(X,Y); 0_ ;-QAd
% idx = r<=1; dfNNCPu]+
% z = nan(size(X)); CzwnmSv{.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $+Xohtt
% figure ?&[`=ZVn
% pcolor(x,x,z), shading interp Ts.61Rx
% axis square, colorbar H#f
FU
% title('Zernike function Z_5^1(r,\theta)') n|8fdiK#}
% 5y.kOe4vH
% Example 2: ZN.
#g_
% +] FdgmK:
% % Display the first 10 Zernike functions um[.r,++
% x = -1:0.01:1; Hi
)n]OE
% [X,Y] = meshgrid(x,x); WXJ%bH
% [theta,r] = cart2pol(X,Y); W &*0F~
% idx = r<=1; z+;+c$X
% z = nan(size(X)); >1W)J3
% n = [0 1 1 2 2 2 3 3 3 3]; f-
_~rQ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; LnLuWr<;}
% Nplot = [4 10 12 16 18 20 22 24 26 28]; C}7Sh6
% y = zernfun(n,m,r(idx),theta(idx)); b8Y-!]F
% figure('Units','normalized') Qax=_[r
% for k = 1:10 0DGXMO$;
% z(idx) = y(:,k); :X+7}!Wlo
% subplot(4,7,Nplot(k)) _/hWzj=q
% pcolor(x,x,z), shading interp ) !3sB{H
% set(gca,'XTick',[],'YTick',[]) 'v?Z~"w=
% axis square <5=^s%H
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :
xW.(^(d
% end .|!Kv+yD
% w?Y;pc}1B
% See also ZERNPOL, ZERNFUN2. dtJ?J<m}
>Ka}v:E
K;Fy&p^d
% Paul Fricker 11/13/2006 G8j$&1`:
T$!.
:v
{ZB7,\
bIR7g(PJ.b
ca5Ir<mL
% Check and prepare the inputs: !ouJ3Jn
% ----------------------------- ht)J#Di
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ub3^Js!b%
error('zernfun:NMvectors','N and M must be vectors.') uvi+#4~G
end ApR>b%
.O@T#0&=_
4 1q|R[js!
if length(n)~=length(m) ]U82A**n
error('zernfun:NMlength','N and M must be the same length.') C`Zz\DNG@
end (/JiOg^cw
)17CG*K1
c3lU
n = n(:); DY1UP(y
m = m(:); N
8 n`f
if any(mod(n-m,2)) 3,t3\`=
error('zernfun:NMmultiplesof2', ... 0F/o
'All N and M must differ by multiples of 2 (including 0).') O!#r2Y"?K1
end C8ek{o)%W
JYc;6p$<i
m5`<XwD9
if any(m>n) G*^4+^Vz?
error('zernfun:MlessthanN', ... >8PGyc*9
'Each M must be less than or equal to its corresponding N.') V^apDV\AV
end DxoW,GW
lk;4l Z
hT go
if any( r>1 | r<0 ) p?PK8GL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') @Jr:+|v3B
end /fv;`?~d*
mQUI9
9vZ:oO
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vY)5<z&
error('zernfun:RTHvector','R and THETA must be vectors.') m9M#)<@*
end :Y>FuE
wNl{,aH@
VUmf;~
r = r(:); {9B"'65o
theta = theta(:); &PZ&'N|P
length_r = length(r); 6
);8z!+
if length_r~=length(theta) iC2``[m"
error('zernfun:RTHlength', ... zi%Ql|zI~
'The number of R- and THETA-values must be equal.') H< 51dJn~
end e|>
5
R
Gu@n1/m@o
m55|&Ux|
% Check normalization: X)Zc*9XA
% -------------------- mUA!GzJ~u-
if nargin==5 && ischar(nflag) 4M*Z1
isnorm = strcmpi(nflag,'norm'); SFJ"(ey$
if ~isnorm VDT.L,9
error('zernfun:normalization','Unrecognized normalization flag.') C2
4"H|D
end ANWfRtiU#
else 18nT
Iz_
isnorm = false; /:B2-4>Q!
end R`KlG/Tk
N1iP!m9Q
|tN:o=
6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X~g U$
% Compute the Zernike Polynomials WF] |-)vw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xB`j*
%
}i._&x`):
g>E.Snj}
% Determine the required powers of r: oZ5 ,y+L4
% ----------------------------------- `NySTd)\
m_abs = abs(m); +N}yqgE
rpowers = []; %-fQ[@5
for j = 1:length(n) zt;aB>jz#
rpowers = [rpowers m_abs(j):2:n(j)]; ?[?;%Y
end 'C7$,H'
rpowers = unique(rpowers); P](/5KrK
l=UXikx
Z\r?>2
% Pre-compute the values of r raised to the required powers, b|pp}il
% and compile them in a matrix: 8'qq!WR~
% ----------------------------- ^u(-v/D9
if rpowers(1)==0 1 HY
K&
',
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %/oeV;D
rpowern = cat(2,rpowern{:}); i0nu5kD+d
rpowern = [ones(length_r,1) rpowern]; H
S)$|m_
else nvB<pSm
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sm Kp3_r
rpowern = cat(2,rpowern{:}); 8 qlQC.VA[
end &6e A.
yXQ 28A
`*WzHDv5p
% Compute the values of the polynomials: ]TVc 'G;
% -------------------------------------- #+&"m7
s
y = zeros(length_r,length(n)); oP~%7Jt
for j = 1:length(n) ~6=aoF5"3?
s = 0:(n(j)-m_abs(j))/2; ;Wgkf_3
pows = n(j):-2:m_abs(j); =%SH2kb
for k = length(s):-1:1 XTJA"y
p = (1-2*mod(s(k),2))* ... bgeJVI
prod(2:(n(j)-s(k)))/ ... v]\T&w%9
prod(2:s(k))/ ... |G)P
I`BH
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `
ZBOaN^if
prod(2:((n(j)+m_abs(j))/2-s(k))); ivg W[]
idx = (pows(k)==rpowers); {b|V;/
y(:,j) = y(:,j) + p*rpowern(:,idx); O"}O~lZ[6T
end :}-VLp4b
&o]fBdn
if isnorm QtA@p
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ?)g [Xc;K
end [Lcy &+
end 2?F?C
% END: Compute the Zernike Polynomials [9d\WPLC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YpgO]\/w
(%'`t(<
e=+q*]>
% Compute the Zernike functions: _\<TjGtG
% ------------------------------ d ATAH}r&
idx_pos = m>0; 9*P-k.Bl
idx_neg = m<0; 5Y 7 %Z
W=y9mW|p/
M?5v oV*
z = y; X4L@|"ZI
if any(idx_pos) M< H+$}[
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); b/_u\R
]-'
end 0v#p4@Z
if any(idx_neg) NtmmPJ|5
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `_sKR,LhB
end F-XMy>9
?69E_E
cd`P'GDF
% EOF zernfun XP[~ :+