切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8961阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Jm3iYR+,  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, }O8#4-E_Ji  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? RQW<Sp~  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ;mXw4_{  
    _;u@xl=  
    t**o<p#)f  
    ^:]~6p#  
    UP@-@syGw  
    function z = zernfun(n,m,r,theta,nflag) jHpFl4VPz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $qk(yzY  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8p.O rdp  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ^vr`t9EE  
    %   unit circle.  N is a vector of positive integers (including 0), and qW t 9Tr  
    %   M is a vector with the same number of elements as N.  Each element uDG#L6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) YojYb]y+ j  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, QW6\~l 4  
    %   and THETA is a vector of angles.  R and THETA must have the same A!p70km2  
    %   length.  The output Z is a matrix with one column for every (N,M) y0cB@pWp  
    %   pair, and one row for every (R,THETA) pair. 84YZT+TEN  
    % >TwL&la  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike KHt.g`1:R  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), y%xn(Bn  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral < c[dpK5c  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Hv<jf38  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5E}~iC&  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m'ykDK\B  
    % ompkDl\E  
    %   The Zernike functions are an orthogonal basis on the unit circle. .RxAYf|  
    %   They are used in disciplines such as astronomy, optics, and VD-2{em  
    %   optometry to describe functions on a circular domain. I:,D:00+  
    % (f?&zQ!+  
    %   The following table lists the first 15 Zernike functions. Dv[ 35[Yh  
    % i*Ee(m]I  
    %       n    m    Zernike function           Normalization yXL]uh#b  
    %       -------------------------------------------------- tS&rR0<OW  
    %       0    0    1                                 1 jwZBWt )5  
    %       1    1    r * cos(theta)                    2 o;2QZ"v  
    %       1   -1    r * sin(theta)                    2 H| 1O>p&  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &[ 4lP~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) J,]U"+;H  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) k-a3oLCR,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) l*z.20^P  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z4@GcdZ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 'hl4cHk14  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) WZJ}HHePr  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1b-_![&]1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #jNN?,ZK  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `+O7IyTM A  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yZ]u{LJS  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o$-!E(p  
    %       -------------------------------------------------- B M$+r(#t  
    % ]:vo"{*C  
    %   Example 1: 01" b9`jU  
    % &?gvW//L2  
    %       % Display the Zernike function Z(n=5,m=1) QSq0{  
    %       x = -1:0.01:1; .#ASo!O5q  
    %       [X,Y] = meshgrid(x,x); 27-GfC=7*  
    %       [theta,r] = cart2pol(X,Y); aZ{]t:]  
    %       idx = r<=1; mh=YrDU+L  
    %       z = nan(size(X)); 9akIu.H  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); PhOtSml0  
    %       figure q2C._{ 0'  
    %       pcolor(x,x,z), shading interp a@&P\"k  
    %       axis square, colorbar d~U}IMj  
    %       title('Zernike function Z_5^1(r,\theta)') zwa%$U  
    % ~t-!{F  
    %   Example 2: 6@[7  
    % rW(<[2vg  
    %       % Display the first 10 Zernike functions >l3iAy!sZ  
    %       x = -1:0.01:1; 7; e$ sr  
    %       [X,Y] = meshgrid(x,x); -@EAL:kY  
    %       [theta,r] = cart2pol(X,Y); 5p7?e3  
    %       idx = r<=1; 1$#{om9  
    %       z = nan(size(X)); 96FS-`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X|w[:[P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; swh8-_[c/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; yhpeP  
    %       y = zernfun(n,m,r(idx),theta(idx)); .sOEqwO}>  
    %       figure('Units','normalized') C[xY 0<^B  
    %       for k = 1:10 ,=@%XMS  
    %           z(idx) = y(:,k); b,Vg3BS  
    %           subplot(4,7,Nplot(k)) kZ>Xl- LV  
    %           pcolor(x,x,z), shading interp y:R!E *.L'  
    %           set(gca,'XTick',[],'YTick',[]) J>XMaI})U  
    %           axis square BQ7p<{G  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {5, ]7=]  
    %       end }; ;Thfd  
    % yxx'g+D*  
    %   See also ZERNPOL, ZERNFUN2. <_N<L\  
    -)p S\$GC  
    6S GV}dAx  
    %   Paul Fricker 11/13/2006 W1T% Q88  
    0<";9qN)6  
    n+XLZf#  
    \_w>I_=F  
    =h Lw 1~  
    % Check and prepare the inputs: BHZCM^  
    % ----------------------------- 5SNa~ kC&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8*iIJ  
        error('zernfun:NMvectors','N and M must be vectors.') Y%1 94fY$  
    end zv8AvNDK  
    (rfR:[JkC2  
    JE<w7:R&  
    if length(n)~=length(m) NlG~{rfI  
        error('zernfun:NMlength','N and M must be the same length.') f~0CpB*X  
    end <lo\7p$A  
    dz>2/'  
    p-Jp/*R5  
    n = n(:); 3Hd~mfO\  
    m = m(:); -/'_XR@1  
    if any(mod(n-m,2)) N a $eeM  
        error('zernfun:NMmultiplesof2', ... MoX~ZewWR  
              'All N and M must differ by multiples of 2 (including 0).') e>] gCa  
    end o#~Lb9`@U  
    ]~K&b96(  
    f)x(sk  
    if any(m>n) . \t8s0A  
        error('zernfun:MlessthanN', ... !K[UJQ s\  
              'Each M must be less than or equal to its corresponding N.') ("r\3Mvs  
    end  J^V}%N".  
    {TL.2  
    o^ zrF  
    if any( r>1 | r<0 ) 31^Jg  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ht9QINo  
    end QB.QG!@  
    U5RLM_a@M  
    xk*&zAt  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }B e;YIhG  
        error('zernfun:RTHvector','R and THETA must be vectors.') ! *eDT4a  
    end yt@7l]I  
    8 v}B-cS  
    -Lhq.Q*a  
    r = r(:); mfqnRPZ  
    theta = theta(:); T@%\?=P  
    length_r = length(r); 9,wD  
    if length_r~=length(theta) y<g1q"F  
        error('zernfun:RTHlength', ... CBr(a'3{Z  
              'The number of R- and THETA-values must be equal.') ) UCc!  
    end 2z9s$tp  
    #PkZi(k hv  
    (yb$h0HN  
    % Check normalization: HSk_'g(\0  
    % -------------------- gHo sPY[  
    if nargin==5 && ischar(nflag) Gl"|t't(  
        isnorm = strcmpi(nflag,'norm'); TtQ'I}7q  
        if ~isnorm g7" 2}|qxo  
            error('zernfun:normalization','Unrecognized normalization flag.') YSh@+AN  
        end ![i)_XO  
    else y1)ZO_'  
        isnorm = false; yT~rql  
    end >t_h/:JZ)  
    SF=TG84<  
    GoLK 95"]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FS)"MDs  
    % Compute the Zernike Polynomials (^NYC$ZxM=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 02_+{vk!  
    J%u,qF}h  
    "ze-Mb  
    % Determine the required powers of r: @-ml=S7;Sz  
    % ----------------------------------- )dd1B>ej]  
    m_abs = abs(m); /go|r '  
    rpowers = []; Q+oV? S3{  
    for j = 1:length(n) ]h?q1    
        rpowers = [rpowers m_abs(j):2:n(j)]; `Gj(>z*  
    end Z)}UCi+/".  
    rpowers = unique(rpowers); N; '] &f  
    p|C[T]J\@  
    0NeIQr1N_  
    % Pre-compute the values of r raised to the required powers, yeI> b 1>Q  
    % and compile them in a matrix: .ht-*  
    % ----------------------------- o "6 2~  
    if rpowers(1)==0 1<tJ3>Xl  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g/FZ?Wo  
        rpowern = cat(2,rpowern{:}); /&c2O X|Z  
        rpowern = [ones(length_r,1) rpowern]; uzI=.j  
    else )q66^% ;S  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;I&XG  
        rpowern = cat(2,rpowern{:}); 6O <UW.  
    end n y cn  
    "[eH|z/  
    r'`7}@H*  
    % Compute the values of the polynomials: 2Rt6)hgY  
    % -------------------------------------- P)kJ[Zv>f  
    y = zeros(length_r,length(n)); ^v `naA(  
    for j = 1:length(n) CLTkyS)C  
        s = 0:(n(j)-m_abs(j))/2; f S[-K?K  
        pows = n(j):-2:m_abs(j); a'-u(Bw  
        for k = length(s):-1:1 -V4%f{9T3  
            p = (1-2*mod(s(k),2))* ... o@BV&|  
                       prod(2:(n(j)-s(k)))/              ... X$;&Mdo.  
                       prod(2:s(k))/                     ... kU+|QBA@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /)T~(o|i  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ?G5,}%  
            idx = (pows(k)==rpowers); {#:31)P  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {zWR)o .=  
        end vQ L$.A3>  
         EJ>&\Iq  
        if isnorm a}uYv:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {#ynN`tLyF  
        end @)BO`;*$fF  
    end jQ,Vs=*H  
    % END: Compute the Zernike Polynomials hJ$9Hb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n m<?oI*\  
    gfs;?vP  
    Z,/K$;YWo  
    % Compute the Zernike functions: xZP*%yM  
    % ------------------------------ l2LLM{B  
    idx_pos = m>0; s/=%kCo  
    idx_neg = m<0; K8aqC{  
    vjq2(I)u  
    uN:KivVe  
    z = y; mUbm3JIjJ  
    if any(idx_pos) Z(7kwhP[`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =KUmvV*\  
    end mwo:+^v(  
    if any(idx_neg) v,S5C  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S~i9~jA  
    end z 7ik/>d?  
    {$,\Qg  
    t&xoi7!$  
    % EOF zernfun ejlns ~  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ZWCsrV*;  
    =Fz mifTc  
    DDE还是手动输入的呢? B~I ]3f  
    -s 0SQe{!_  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究