下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C@qWour
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 2VV>?s
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? E3wpC#[Q1
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? oywPPVxj
+`F(wk["m
"r6qFxY
1sXCu|\q
U.TZd"
function z = zernfun(n,m,r,theta,nflag) :cA P{rSe
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !>Nlp,r&~
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .w4|$.H
% and angular frequency M, evaluated at positions (R,THETA) on the n~lB}
% unit circle. N is a vector of positive integers (including 0), and ~|KqG
% M is a vector with the same number of elements as N. Each element ~?NCmU=3
% k of M must be a positive integer, with possible values M(k) = -N(k) 0eO!,/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, s`x2Go
% and THETA is a vector of angles. R and THETA must have the same 0Px Hf*
% length. The output Z is a matrix with one column for every (N,M) a@? $#>
% pair, and one row for every (R,THETA) pair. r8(oTx
% 6@|!m '
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i7dDklj4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ](oeMl18R
% with delta(m,0) the Kronecker delta, is chosen so that the integral M.H!dZ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GIlaJ!/
% and theta=0 to theta=2*pi) is unity. For the non-normalized )nHMXZ>Td
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7b1
yF,N
% w(HVC
% The Zernike functions are an orthogonal basis on the unit circle. N)(m^M(~0
% They are used in disciplines such as astronomy, optics, and f?Ex$gnI
% optometry to describe functions on a circular domain. g;Fdm5Q
% `pbCPa{Y
% The following table lists the first 15 Zernike functions. "0!#De
% MO~T_6
% n m Zernike function Normalization jpi,BVTI-X
% -------------------------------------------------- I6WHC*
% 0 0 1 1 M0m%S:2
% 1 1 r * cos(theta) 2 6%EpF;T`
% 1 -1 r * sin(theta) 2 R.|h<bur
% 2 -2 r^2 * cos(2*theta) sqrt(6) )-+tN>Bb
% 2 0 (2*r^2 - 1) sqrt(3) '0f!o&?g
% 2 2 r^2 * sin(2*theta) sqrt(6) -~.+3rcZ]
% 3 -3 r^3 * cos(3*theta) sqrt(8) =)y$&Y