下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :A8r{`R'N
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, sTd@/>S?p
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ur+U#}
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AGFA;X
%V=%ARP|
X(tx8~z
=K:[26
q|ce7HnK
function z = zernfun(n,m,r,theta,nflag) Sn[xI9}O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |Z>-<]p9g
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fizW\f8ai
% and angular frequency M, evaluated at positions (R,THETA) on the Y*BmBRN
% unit circle. N is a vector of positive integers (including 0), and &h/r]KrZ
% M is a vector with the same number of elements as N. Each element ddgDq0N1j
% k of M must be a positive integer, with possible values M(k) = -N(k) uqcG3Pi
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, My>q%lF=fw
% and THETA is a vector of angles. R and THETA must have the same 48 -j
% length. The output Z is a matrix with one column for every (N,M) %1
)c{7
% pair, and one row for every (R,THETA) pair. 43k'96[2d
% pEwo}NS*H
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2{j$1EdI@-
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 45 ^ Z5t
% with delta(m,0) the Kronecker delta, is chosen so that the integral vN(~}gOd\
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >T;!Z 5L1
% and theta=0 to theta=2*pi) is unity. For the non-normalized y^H5iB[SPL
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Milp"L?B%
% !Q"L)%)'A
% The Zernike functions are an orthogonal basis on the unit circle. - ;gQy[U
% They are used in disciplines such as astronomy, optics, and u0#KBXRo
% optometry to describe functions on a circular domain. e\X[\ve
% p
l^;'|=M
% The following table lists the first 15 Zernike functions. `!cdxKLR
% &vmk!wAs
% n m Zernike function Normalization fuj9x;8X0
% -------------------------------------------------- K{d3)lVYCS
% 0 0 1 1 ,esEh5=Ir
% 1 1 r * cos(theta) 2 4P#jMox
% 1 -1 r * sin(theta) 2 )bg |l?
% 2 -2 r^2 * cos(2*theta) sqrt(6) lq.:/_m0
% 2 0 (2*r^2 - 1) sqrt(3) 8`L]<Dm
% 2 2 r^2 * sin(2*theta) sqrt(6) M_!]9#:K7
% 3 -3 r^3 * cos(3*theta) sqrt(8) HsYzIQLL
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !y$##PZ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~j[?3E4L}
% 3 3 r^3 * sin(3*theta) sqrt(8) 6Mk#) ebM
% 4 -4 r^4 * cos(4*theta) sqrt(10) _
uOi:Ti
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (87wWhH
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f&$Bjq
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <%.%q
% 4 4 r^4 * sin(4*theta) sqrt(10) 07SW$INb
% -------------------------------------------------- ;R6f9tu2
% U~=?I)Ni
% Example 1: Vl+UC1M}B>
% HIw)HYF2
% % Display the Zernike function Z(n=5,m=1) `.;U)}Tn
% x = -1:0.01:1; Z4G%Ve[
% [X,Y] = meshgrid(x,x); SOG(&)b
% [theta,r] = cart2pol(X,Y); eTjPztdJbx
% idx = r<=1; Zsapu1HoL\
% z = nan(size(X)); b$;oty9Y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); D'[:35z
% figure s2L]H
% pcolor(x,x,z), shading interp 0fstEExw
% axis square, colorbar =xkaF)AW&v
% title('Zernike function Z_5^1(r,\theta)') o.r D
% &M5v EPR
% Example 2: k-&<_ghT \
% #qVvh3#g
% % Display the first 10 Zernike functions ,62~u'hR5
% x = -1:0.01:1; 1VYH:uGuAU
% [X,Y] = meshgrid(x,x); ]N}/L
lq
% [theta,r] = cart2pol(X,Y); [<i3l'V/[
% idx = r<=1; }s?3
% z = nan(size(X)); E[t[R<v,P!
% n = [0 1 1 2 2 2 3 3 3 3]; :kcqf,7
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;e_us!Sn
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,(oolx"Xa
% y = zernfun(n,m,r(idx),theta(idx)); QN;5+p[N
% figure('Units','normalized') x]YzVJ =Y
% for k = 1:10 O:I]v@
% z(idx) = y(:,k); #<Y3*^~5d
% subplot(4,7,Nplot(k)) Ruq;:5u
% pcolor(x,x,z), shading interp ,l!>+@
% set(gca,'XTick',[],'YTick',[]) 5Kd"W,
% axis square @G]*]rkKb
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vy2<'V*y}
% end W 8`6O2
% B{0]v-w
% See also ZERNPOL, ZERNFUN2. U}HSL5v
7`~0j6FY
^+%bh/2_W
% Paul Fricker 11/13/2006 851BOkRal4
/)v+|%U
a(IE8:yU`
0-OKbw5%=b
[,st: Y
% Check and prepare the inputs: O_s/BoB@
% ----------------------------- Q7pCF,;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F+VNrt-
error('zernfun:NMvectors','N and M must be vectors.') ~:,}?9
end ga KZ4#
$C=XSuPNK
<x$nw'H9
if length(n)~=length(m) **-rPonM[
error('zernfun:NMlength','N and M must be the same length.') 4T52vM
end 3,Z;J5VL4!
o *U-.&
*eD[[HbKX
n = n(:); r]}6iF.
m = m(:); \+Qd=,!i(
if any(mod(n-m,2)) gCYe^KJ
error('zernfun:NMmultiplesof2', ... VxOWv8}|
'All N and M must differ by multiples of 2 (including 0).') ekfa"X_
end hG`@#9|f
f@9XSZ<.71
5mVO9Qj
if any(m>n) >8{{H"$;(
error('zernfun:MlessthanN', ... }X])055S
'Each M must be less than or equal to its corresponding N.') 2T%sHp~qt
end H!FaI(YZl
f3vl=EA4|
b&,ZmDJh
if any( r>1 | r<0 ) N DI4EA~z
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &RuTq6)r
end +MYrNR.p
IuFr:3(
RI<smt.Ng
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1foG*
error('zernfun:RTHvector','R and THETA must be vectors.') 7CSn79E
end C_;nlG6
Y1AZ%{^0a
hb0)<^xu
r = r(:); *E>R1bJ8
theta = theta(:); SG~HzQ\%
length_r = length(r); @D["#pe,}
if length_r~=length(theta) bFG?mG:
error('zernfun:RTHlength', ... E!WlQr:b$
'The number of R- and THETA-values must be equal.') YVHf-uP
end L|D9+u L
F;/^5T3wI
u"T9w]Z\
% Check normalization: ?&qQOM~b-\
% -------------------- 1Xh@x
if nargin==5 && ischar(nflag) {&Rz>JK
isnorm = strcmpi(nflag,'norm'); A3HNMz
if ~isnorm E>E^t=;[
error('zernfun:normalization','Unrecognized normalization flag.') toj5b;+4F
end dA2@PKK
else >X[:(m'
isnorm = false; 2S:B%cj9m
end G.N`
lHliMBSc
7c%dSs6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dbx zqd
% Compute the Zernike Polynomials B4zuWCE@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \Lb wfd=
rHybP6C<
gDw(_KC
% Determine the required powers of r: ,9F3~Ryt(
% ----------------------------------- V3|"
v4
m_abs = abs(m); DqI "B
rpowers = []; -ciwIS9L
for j = 1:length(n) xVI"sBUu
rpowers = [rpowers m_abs(j):2:n(j)];
C>-}BeY!
end V%t_,AT
rpowers = unique(rpowers); +wHa)A0MW
F}F{/
"-5FUKI-
% Pre-compute the values of r raised to the required powers, c/F!cW{z^
% and compile them in a matrix: QiqRx
% ----------------------------- P uQ
if rpowers(1)==0 {65YTt%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S,'ekWVD
rpowern = cat(2,rpowern{:}); " :[;}f;
rpowern = [ones(length_r,1) rpowern]; JvCy&xrE;
else F7=\*U
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E+ XR[p
rpowern = cat(2,rpowern{:}); !6#.%"{-
end 9Ns%<FRO@
@.dM1DN)
;<cCT!A
% Compute the values of the polynomials: ,#^2t_c/
% -------------------------------------- vZ6R>f
y = zeros(length_r,length(n)); uzp\<\d-t
for j = 1:length(n) =:TQ_>$Nc2
s = 0:(n(j)-m_abs(j))/2; f*m^x7
pows = n(j):-2:m_abs(j); 5yW}#W>
for k = length(s):-1:1 gId
:IR
p = (1-2*mod(s(k),2))* ... ,>kXn1 ,
prod(2:(n(j)-s(k)))/ ... ?<OyJ|;V
prod(2:s(k))/ ... D51O/.:U2
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Pc+,iK>
prod(2:((n(j)+m_abs(j))/2-s(k))); `sv]/8RN
idx = (pows(k)==rpowers); 8H3O6ro
y(:,j) = y(:,j) + p*rpowern(:,idx); @P=n{-pIW
end h9nh9a(2
A~s6~
if isnorm @te}Asv
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,&@FToR
end y#O/Xw
end M%!j\}2A
% END: Compute the Zernike Polynomials O
"Aeg|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,6A/| K-
%u Dd#+{
D [v22 5
% Compute the Zernike functions: !l9#a{#6l
% ------------------------------ I'<sJs*p
idx_pos = m>0; xKT;1(Mk
idx_neg = m<0; k?Zcv*[)D+
=wl0
$ Fy)+<
z = y; COH.`Tv{*
if any(idx_pos) nXh<+7
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); u b@'(*
end Lk)TK/JM)
if any(idx_neg) 1@+&6UC
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X`]>J5
end j{m{hVa
LH~
t5
eW_EWVH
% EOF zernfun (d[JMO^@8