下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, AF9[2AH=Y
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, J1gEjd
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? v&[X&Hu[
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? L5-T6CD
'[M^f+H|
<WQ<<s@#pb
q 2_N90u
O X5Co<u
function z = zernfun(n,m,r,theta,nflag) ex@,F,u>o
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8xD<A|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8osS OOzM
% and angular frequency M, evaluated at positions (R,THETA) on the U- *8%>Qp
% unit circle. N is a vector of positive integers (including 0), and "2#-xOCO
% M is a vector with the same number of elements as N. Each element )JY_eG&2Dx
% k of M must be a positive integer, with possible values M(k) = -N(k) i&}zcGC
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1Rb XM n
% and THETA is a vector of angles. R and THETA must have the same ^.Ih,@N6
% length. The output Z is a matrix with one column for every (N,M) niBjq#bJi
% pair, and one row for every (R,THETA) pair. m
p|20`go
% He0N
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike OW63^wA`s
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N SxPN:
% with delta(m,0) the Kronecker delta, is chosen so that the integral Y?&DEKFbD
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .@8m\
% and theta=0 to theta=2*pi) is unity. For the non-normalized Dh!iY0Lz
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]@ Sc}
% Z3abem<Q
% The Zernike functions are an orthogonal basis on the unit circle. Bah.\ZsYQP
% They are used in disciplines such as astronomy, optics, and M0Kh>u
% optometry to describe functions on a circular domain. %0~wtZH_!
% U&]p!DV&;
% The following table lists the first 15 Zernike functions. tz0Ttu=xH
% dm/\uE'l
% n m Zernike function Normalization |$SvD2^
% -------------------------------------------------- }`<>$2b
% 0 0 1 1 53,,%Ue
% 1 1 r * cos(theta) 2 4I:JaRT
d
% 1 -1 r * sin(theta) 2 ~J. Fl[
% 2 -2 r^2 * cos(2*theta) sqrt(6) syC"eH3{
% 2 0 (2*r^2 - 1) sqrt(3) cyHak u+
% 2 2 r^2 * sin(2*theta) sqrt(6) IioE<wS)
% 3 -3 r^3 * cos(3*theta) sqrt(8) qm'C^X?
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) jL7MmR#y5"
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) bWQORjnd8
% 3 3 r^3 * sin(3*theta) sqrt(8) \yX !P1
% 4 -4 r^4 * cos(4*theta) sqrt(10) ExOB P
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]\D6;E8P-~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) AHMV@o`V
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /|u]Y/ *
% 4 4 r^4 * sin(4*theta) sqrt(10) "k6IV&0
3x
% -------------------------------------------------- !OZhfMVd
% nnd-pf-
% Example 1: x@ s`;qz
% ~0^,L3M
% % Display the Zernike function Z(n=5,m=1) <zDw&s2
% x = -1:0.01:1; |B{$URu
% [X,Y] = meshgrid(x,x); |`(?<m
% [theta,r] = cart2pol(X,Y); Q~w G(0'8
% idx = r<=1; Lx:N!RDw
% z = nan(size(X)); q5\LdI2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); D
5 r
% figure jC Kt;lj
% pcolor(x,x,z), shading interp &zh+:TRm
% axis square, colorbar = C'e1=]
% title('Zernike function Z_5^1(r,\theta)') I_6` Z 0
% `Z7ITvF>
% Example 2: aWsKJo>j[#
% d a?th
% % Display the first 10 Zernike functions Bbt8fJA~
% x = -1:0.01:1; #HnyE+tD
% [X,Y] = meshgrid(x,x); \2<yZCn
% [theta,r] = cart2pol(X,Y); HsgTHe
% idx = r<=1; b%!`fn-;
% z = nan(size(X)); N;ecT@Ug
% n = [0 1 1 2 2 2 3 3 3 3]; QV
H'06"{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; mQA<t)1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^n45N&916
% y = zernfun(n,m,r(idx),theta(idx)); r4NT`&`g?
% figure('Units','normalized') 3JE;:2O~P
% for k = 1:10 ='bmjXu
% z(idx) = y(:,k); *ckrn>E{h
% subplot(4,7,Nplot(k)) FTYLMQ
i
% pcolor(x,x,z), shading interp wpdEI(
% set(gca,'XTick',[],'YTick',[]) ?-F'0-t4%
% axis square 33KPo0g7
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) UH^wyKbM
% end 8(_g] u#B;
% iBiA0 W
% See also ZERNPOL, ZERNFUN2. j_WF38o
e$^!~+J7
oJ@PJvmR&a
% Paul Fricker 11/13/2006 *T2&$W|_a
F+$@3[Q`N
WmVw>.]@~
+$=Wms-z
D_ZBx+/_?
% Check and prepare the inputs: muX4 Y1M_
% ----------------------------- E)_!Hi0<s
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qCkg\)Ks5I
error('zernfun:NMvectors','N and M must be vectors.') 4p.{G%h
end cf!k
9x9Z
3Q~&xNf
Nt^&YE7d:
if length(n)~=length(m) K<w5[E9V.
error('zernfun:NMlength','N and M must be the same length.') k`~br249
end e/Oj T
S2
h
'sQO0611S
n = n(:); PRlo"kN
m = m(:); P_g0G#`4
if any(mod(n-m,2)) ,0~
{nQ j]
error('zernfun:NMmultiplesof2', ... iY'hkr w
'All N and M must differ by multiples of 2 (including 0).') XXwhs-:o
end Mh.eAM8 _
U1|4vd9
gwz _b
if any(m>n) xAz4ZXj=q
error('zernfun:MlessthanN', ... FC(cXPX}
'Each M must be less than or equal to its corresponding N.') =+=|{l?F
end kGq f@
I+
>(ww6vk2
+;iesULXn
if any( r>1 | r<0 ) (l_de)N7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8=o(nFJw
end %1 ^jd\
o4f9EJY
EF=D}"E6pO
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,k! f`
error('zernfun:RTHvector','R and THETA must be vectors.') >,Bu^] C
end KJC9^BAr
&2]D+aL|h
e CUcE(
r = r(:); [=1?CD
theta = theta(:); q<uLBaL_]r
length_r = length(r); 7CMgvH)O
if length_r~=length(theta) oNsx Fi:
error('zernfun:RTHlength', ... t8N9/DZ}Q
'The number of R- and THETA-values must be equal.') p2vUt
end (a!,)
mT~>4xi0
4H?Ma|,
% Check normalization: _NnOmwK7
% -------------------- }t-|^mY>
if nargin==5 && ischar(nflag) +i!M[
isnorm = strcmpi(nflag,'norm'); 0_pwY=P
if ~isnorm W1`ZS*12D
error('zernfun:normalization','Unrecognized normalization flag.') qm5pEort
end 3D
dG$@
else [
=2In;
isnorm = false; Df3v"iCq}
end 2U+p@}cQUA
r3vj o(
$rYu4^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7 ~8Fs@
% Compute the Zernike Polynomials SZD2'UaG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M%^laf
[te7uZv-
:uDB3jN[
% Determine the required powers of r:
/?xn
% ----------------------------------- aKtTx~$@
m_abs = abs(m); Ud*[2Oi|R
rpowers = []; W3rvKqdw5
for j = 1:length(n) K3D $
hb
rpowers = [rpowers m_abs(j):2:n(j)]; S$On$]~\"
end IfCqezd
rpowers = unique(rpowers); o9\m?~g!E
J vsB^F.4
to=##&ld<
% Pre-compute the values of r raised to the required powers, +[[gU;U"v
% and compile them in a matrix: 5c7a\J9>
% ----------------------------- n7uD(cL
if rpowers(1)==0 GTNTx5H
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E_rC"_Zte
rpowern = cat(2,rpowern{:}); /n:fxdhe
rpowern = [ones(length_r,1) rpowern]; hI{Yg$H1
else L"/ato
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);
m:Abq`C
rpowern = cat(2,rpowern{:}); (Z +C
end iUB ni&B
e'&{KD,-T
W%cPX0
% Compute the values of the polynomials: hDMp^^$
% -------------------------------------- j=S"KVp9NF
y = zeros(length_r,length(n)); 0pOha(,~
for j = 1:length(n) n#/m7
s = 0:(n(j)-m_abs(j))/2; \ y",Qq?
pows = n(j):-2:m_abs(j); _Z2)e*(
for k = length(s):-1:1 ,[#f}|s_
p = (1-2*mod(s(k),2))* ... iNSJOS
prod(2:(n(j)-s(k)))/ ... Mv=;+?z!
prod(2:s(k))/ ... jQ}|]pj+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... c'R|Wyf
prod(2:((n(j)+m_abs(j))/2-s(k))); xII!2.
idx = (pows(k)==rpowers); tH(#nx8
y(:,j) = y(:,j) + p*rpowern(:,idx); '~J6mojE
end Su #1yw>
rzLlM
if isnorm \_bX2Lg
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >.4Sx~VH2
end +8I0.,'
end r
|/9Dn%
% END: Compute the Zernike Polynomials h+(s/o?\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "O
"@HVF@
_P1-d`b0 a
|D:0BATRP
% Compute the Zernike functions: w2[R&hJ
% ------------------------------ xpwzz O*U
idx_pos = m>0; kw'D2692
idx_neg = m<0; ^XVa!s,d
@oNrR$7
oZtz"B
z = y; DmsloPB?_
if any(idx_pos) lUd,-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |\t_I~de
end pE N`&'4
if any(idx_neg) 7F\g3^z9`
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); % BKTN@;7
end
H'.eqZM
YeJdkt
Ipx:k+J
% EOF zernfun f *vziC<m