切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9025阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 1;iUWU1@  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, xD7]C|8o  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Nboaf  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4ppz,L,4  
    F"kAkX>3}  
    @6]JIJE  
    ~6gPS 13  
    C# pjmT_  
    function z = zernfun(n,m,r,theta,nflag) D+c>F5  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =pr7G+_u  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s#MPX3itK  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =MWHJ'3-/  
    %   unit circle.  N is a vector of positive integers (including 0), and atzX;@"K  
    %   M is a vector with the same number of elements as N.  Each element 8CE = 4  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `@%LzeGz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, |[lKY+26:{  
    %   and THETA is a vector of angles.  R and THETA must have the same (?];VG  
    %   length.  The output Z is a matrix with one column for every (N,M) y>LBl]  
    %   pair, and one row for every (R,THETA) pair. =|9!vzG4  
    % l"]V6!-U  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F[MFx^sT{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YZ7.1`8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral d=^z`nt !R  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, p}P-6&k,U  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ABkl%m6xf  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ipz5H*  
    % zeRyL3fnmb  
    %   The Zernike functions are an orthogonal basis on the unit circle. [B3RfCV{  
    %   They are used in disciplines such as astronomy, optics, and ^sZ,2,^  
    %   optometry to describe functions on a circular domain. hGrdtsH?  
    % )}v l\7=  
    %   The following table lists the first 15 Zernike functions. 1x^GWtRp  
    % V6Dbd" i9  
    %       n    m    Zernike function           Normalization 8k79&|  
    %       -------------------------------------------------- <N @Gu!N8  
    %       0    0    1                                 1 fy$1YI>!Q  
    %       1    1    r * cos(theta)                    2 n@w%Zl  
    %       1   -1    r * sin(theta)                    2 ?ubro0F:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) cCX*D_kCB  
    %       2    0    (2*r^2 - 1)                    sqrt(3) q(}bfIf  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) LQ% `c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) kVL.PY\K  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ca\6vR  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) }7X%'Bg=M  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )e{}V\;q  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) WhDJ7{D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {Ha57Wk8D  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?Ob3tUz2  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g&.=2uP  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0IpmRH/  
    %       -------------------------------------------------- s`U J1eJ  
    % |hQ;l|SWg  
    %   Example 1: Js;h%  
    % j!ch5A  
    %       % Display the Zernike function Z(n=5,m=1) 1eKT^bgM  
    %       x = -1:0.01:1; svSVG:48  
    %       [X,Y] = meshgrid(x,x); t&p|Ynz?i  
    %       [theta,r] = cart2pol(X,Y); 1&2>LE/P  
    %       idx = r<=1; E.f%H(b  
    %       z = nan(size(X));  3CJwj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); e# bn#  
    %       figure M(fTKs  
    %       pcolor(x,x,z), shading interp ~5g~;f[4  
    %       axis square, colorbar %3 rP `A  
    %       title('Zernike function Z_5^1(r,\theta)') ])!*_  
    % o(HbGHIP  
    %   Example 2: Y ay?=Y{  
    % O@P"MXEG  
    %       % Display the first 10 Zernike functions ;\]@K6m/Ap  
    %       x = -1:0.01:1; #1[u (<AS  
    %       [X,Y] = meshgrid(x,x); Je{ykL?N  
    %       [theta,r] = cart2pol(X,Y); H#&00Q[  
    %       idx = r<=1; 4m)n+ll  
    %       z = nan(size(X)); W4N{S.#!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; u&NV,6Fj2[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; B1STGL`nK  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h\e.e3/  
    %       y = zernfun(n,m,r(idx),theta(idx)); $u.z*b_yy  
    %       figure('Units','normalized') 626r^c=  
    %       for k = 1:10 g5yJfRLxp  
    %           z(idx) = y(:,k); a =QCp4^  
    %           subplot(4,7,Nplot(k)) #*}+J3/  
    %           pcolor(x,x,z), shading interp Q;u pau  
    %           set(gca,'XTick',[],'YTick',[]) 8_8l.!~  
    %           axis square Vc2`b3"Br  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) g 'gdgfvn  
    %       end hQ i2U  
    % B3BN`mdn>  
    %   See also ZERNPOL, ZERNFUN2. :r[`.`  
    nlYNN/@"  
    "fI6Cpc  
    %   Paul Fricker 11/13/2006 vbNBLCwug  
    G?ZXWu.  
    w@b)g  
    q7!{?\T%  
    2?5>o!C  
    % Check and prepare the inputs: E3i4=!Y  
    % ----------------------------- eJSxn1GW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P%6~&woF  
        error('zernfun:NMvectors','N and M must be vectors.') ]A"h&`Cvt  
    end TO_e^A#  
    yLGRi^d#  
    q@&6#B  
    if length(n)~=length(m) xmX 4qtAL  
        error('zernfun:NMlength','N and M must be the same length.') /mMV{[  
    end '7/)Ot(  
    *fdTpXa  
    n ;Ei\\p!  
    n = n(:); Gq6*SaTk  
    m = m(:); Th%zn2R B  
    if any(mod(n-m,2)) Kgv T"s.  
        error('zernfun:NMmultiplesof2', ... <[v[ci  
              'All N and M must differ by multiples of 2 (including 0).')  <Uur^uB  
    end pI[uUu7O  
    |zU-KGO&  
    /mHqurB  
    if any(m>n) GeqPRah  
        error('zernfun:MlessthanN', ... qLCR] _*  
              'Each M must be less than or equal to its corresponding N.') m[$_7a5  
    end (mOtU8e  
    u!s2 BC0}N  
    [Zrr)8A  
    if any( r>1 | r<0 ) ;`Z{7'^U  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %C0Dw\A*:  
    end @7u0v  
    i?/qY&~  
    =v\.h=~~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K'xV;r7Nt  
        error('zernfun:RTHvector','R and THETA must be vectors.') O2+6st  
    end lFk R=!?=  
    5N]"~w*  
    FsPw1A$y  
    r = r(:); <$YlH@;)`a  
    theta = theta(:); Z,=1buSz_  
    length_r = length(r); wq{hF<  
    if length_r~=length(theta) 6LZCgdS{  
        error('zernfun:RTHlength', ... }qUX=s GG  
              'The number of R- and THETA-values must be equal.') {_}I!`opr$  
    end o4;(Zi#Z  
    ~~.}ah/_d  
    b$7 +;I;  
    % Check normalization: ~,Qp^"rlW  
    % -------------------- Ni>[D"|  
    if nargin==5 && ischar(nflag) NHt\ U9l'  
        isnorm = strcmpi(nflag,'norm'); 5(2;|I,T  
        if ~isnorm h;Qk @F  
            error('zernfun:normalization','Unrecognized normalization flag.') 7=uj2.J6  
        end DDZ@$L!  
    else q)GdD==  
        isnorm = false; ^Pf WG*  
    end m~|40)   
    [UR-I0 s!/  
    l]vm=7:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +_!QSU,@  
    % Compute the Zernike Polynomials @W<m 4fi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wL1MENzp*z  
    RCrCs  
    iscz}E,Y  
    % Determine the required powers of r: B?QIN]  
    % ----------------------------------- o-\[,}T)M  
    m_abs = abs(m); Ef\ -VKh  
    rpowers = []; V#HuIgf-  
    for j = 1:length(n) "Q<MS'a  
        rpowers = [rpowers m_abs(j):2:n(j)]; S/ *E,))m  
    end n<,BmVQ  
    rpowers = unique(rpowers); }bDm@NU  
    wkq 66?  
    965 jtn  
    % Pre-compute the values of r raised to the required powers, =]t|];c%  
    % and compile them in a matrix: 4*L_)z&4;  
    % ----------------------------- D9df=lv mD  
    if rpowers(1)==0 H\ %7%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J,hCvm  
        rpowern = cat(2,rpowern{:}); ' QG?nu  
        rpowern = [ones(length_r,1) rpowern]; M}a6Vu9  
    else {ax:RUQxy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !1k_PY5)  
        rpowern = cat(2,rpowern{:}); w]H->B29C  
    end H|*m$| $,  
    4 5e~6",  
    b 6p|q_e  
    % Compute the values of the polynomials: bOB \--:]  
    % -------------------------------------- Y*^[P,+J*}  
    y = zeros(length_r,length(n)); KXy6Eno  
    for j = 1:length(n) *hx  
        s = 0:(n(j)-m_abs(j))/2; <} .$l  
        pows = n(j):-2:m_abs(j); "[k3kAm  
        for k = length(s):-1:1 ]lbuy7xj63  
            p = (1-2*mod(s(k),2))* ... 2iOV/=+  
                       prod(2:(n(j)-s(k)))/              ... 8m MQ[#0:}  
                       prod(2:s(k))/                     ... f 2.HF@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3<!7>]A  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2HdC |$_+  
            idx = (pows(k)==rpowers); XUYtEf  
            y(:,j) = y(:,j) + p*rpowern(:,idx); QY/w  
        end d~H`CrQE*  
         $X6h|?3U,  
        if isnorm O?2DQY?jT  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \Z/@C lCm  
        end ;'|Ey  
    end Tx D#9]Q`  
    % END: Compute the Zernike Polynomials +2{Lh7Ks  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Oz95  
    6 N4~~O  
    L_T5nD^D  
    % Compute the Zernike functions: p'%s=TGwv  
    % ------------------------------ AKC`TA*E  
    idx_pos = m>0; 0;k# *#w  
    idx_neg = m<0; ? k/`  
    <YY14p  
    {mg2pfhB!  
    z = y; k:;r2f  
    if any(idx_pos) ! mHO$bQ"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]DcFySyv  
    end vzM ^$V  
    if any(idx_neg) C_Dn{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wT@og|M  
    end pP_LR ks}  
    Cy e.gsCT  
    6Oq 7#3]  
    % EOF zernfun )e{aN+  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  C!gZN9-  
    tbr=aY$jY  
    DDE还是手动输入的呢? u8^lB7!e/  
    [E_9V%^  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究