切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9222阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3ew8m}A{O  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hIJ)MZU|  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? utlpY1#q/  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /cFzotr"9  
    Xl |1YX1&m  
    O)R(==P26P  
    iP3Z  
    vQ@2FZzu>  
    function z = zernfun(n,m,r,theta,nflag) kJs^ z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ap\AP{S4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lo&#(L+2  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =wi*Nd7L  
    %   unit circle.  N is a vector of positive integers (including 0), and E{Pgf8  
    %   M is a vector with the same number of elements as N.  Each element S06Hs~>Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) L3(^{W]|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Cup@TET35  
    %   and THETA is a vector of angles.  R and THETA must have the same $t rAC@3O@  
    %   length.  The output Z is a matrix with one column for every (N,M) ps:f=6m2  
    %   pair, and one row for every (R,THETA) pair. 9O,,m~B  
    % tZWrz e^  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d6 _C"r  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >x:EJV   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral R@T6U:1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S(eQ{rSs  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized IF k  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B`#h{)[  
    %  ZC^C  
    %   The Zernike functions are an orthogonal basis on the unit circle. \[wCp*;1}  
    %   They are used in disciplines such as astronomy, optics, and ?Ce#BwQ>  
    %   optometry to describe functions on a circular domain. ?T: jk4+  
    % oholt/gb+0  
    %   The following table lists the first 15 Zernike functions. N1--~e  
    % iy5R5L 2  
    %       n    m    Zernike function           Normalization QBE@(2G}C  
    %       -------------------------------------------------- U!q[e`B  
    %       0    0    1                                 1  h=RD O  
    %       1    1    r * cos(theta)                    2 GSVdb/+  
    %       1   -1    r * sin(theta)                    2 FJM;X-UOY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *ftC_v@p5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 73NZ:h%=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) q{4|Kpx@  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) %I4zQiJ%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) f!GHEhQ9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) dXu{p  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T.?k>A k  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]= x 1`j  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aSnp/g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 7$T8&Mh  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !)H*r|*[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) z)L}ECZh9  
    %       -------------------------------------------------- Y\t_&px  
    % r:.uBc&_  
    %   Example 1: o$bUY7_  
    % 99ASIC!  
    %       % Display the Zernike function Z(n=5,m=1) x6yW:tUG5  
    %       x = -1:0.01:1; . 5hp0L}  
    %       [X,Y] = meshgrid(x,x); jqoPLbxT  
    %       [theta,r] = cart2pol(X,Y); mA{#]Yvf1  
    %       idx = r<=1; {gkwOMW  
    %       z = nan(size(X)); !ng\` |8?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); NtZ6$o<Y  
    %       figure t3F?>G#y  
    %       pcolor(x,x,z), shading interp V2`;4dX*2  
    %       axis square, colorbar I"Q<n[g0'  
    %       title('Zernike function Z_5^1(r,\theta)') N=ifIVc  
    % 1Kc^m\  
    %   Example 2: r\mPIr|  
    % C6k4g75U2  
    %       % Display the first 10 Zernike functions L{PH0Jf  
    %       x = -1:0.01:1; i-13~Dk  
    %       [X,Y] = meshgrid(x,x); zHFTCL>"  
    %       [theta,r] = cart2pol(X,Y); V<0$xV1b|=  
    %       idx = r<=1; (Pz8 iz  
    %       z = nan(size(X));  nP_=GI  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ep?:;98|t  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Qb@eK$wo}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; G' Hh{_:  
    %       y = zernfun(n,m,r(idx),theta(idx)); Y+|PY? ~  
    %       figure('Units','normalized') Dc:DY:L^  
    %       for k = 1:10 PNmF}"  
    %           z(idx) = y(:,k); 6&],WGz  
    %           subplot(4,7,Nplot(k)) kMS5h~D[  
    %           pcolor(x,x,z), shading interp v>I<|  
    %           set(gca,'XTick',[],'YTick',[]) <d! 6[,W;  
    %           axis square ZlM_ m >,o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2v^lD('  
    %       end Jr?!Mh-  
    % )5i* /I\  
    %   See also ZERNPOL, ZERNFUN2. ?'+8[OHiF^  
    #:W%,$ 9\P  
    x(6vh2#vD  
    %   Paul Fricker 11/13/2006 /+P5)q TKL  
    :@e\'~7sH  
    ;Uk!jQh  
    qhxC 5f4Z  
    44Qk;8*  
    % Check and prepare the inputs: !rHx}n{rw  
    % ----------------------------- I =b'j5c  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) bA+[{  
        error('zernfun:NMvectors','N and M must be vectors.') nt`<y0ta  
    end '?k' 6R$'\  
    p,s&61]  
    IDmsz  
    if length(n)~=length(m) H /%}R  
        error('zernfun:NMlength','N and M must be the same length.') k!c7a\">{  
    end Qg{WMlyOP  
    jNqVdP]d\  
    d"l}Ny)C  
    n = n(:); ;(`e^IVf  
    m = m(:); f-]><z  
    if any(mod(n-m,2)) a(!3Afi  
        error('zernfun:NMmultiplesof2', ... LH.%\TMN$  
              'All N and M must differ by multiples of 2 (including 0).') \!7*(&yly  
    end r4S=I   
    N4+g("  
    R}.3|0  
    if any(m>n) >DS}#'N4l  
        error('zernfun:MlessthanN', ... .J:;_4x  
              'Each M must be less than or equal to its corresponding N.') |Ib.)  
    end ,N;v~D$Y  
    U_}hfLILi  
    "_oLe;?$c  
    if any( r>1 | r<0 ) nO}$ 76*'0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JQH7ZaN  
    end QP<FCmt8  
    r?]%d!   
    z^9E;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {)uU6z {'  
        error('zernfun:RTHvector','R and THETA must be vectors.') /6smVz@O  
    end t@r#b67WJe  
    -UTV:^  
    ^Bn1;  
    r = r(:); 79a9L{gso  
    theta = theta(:); g X8**g'  
    length_r = length(r); p&m ^IWD  
    if length_r~=length(theta) ~Q_F~0y  
        error('zernfun:RTHlength', ... m"q/,}DR  
              'The number of R- and THETA-values must be equal.') *H?t;,\  
    end ]p}#NPe5  
    b<8q 92F  
    0+p 5/5  
    % Check normalization: M!-q}5';  
    % -------------------- .2/,XwIr  
    if nargin==5 && ischar(nflag) ?|)rv  
        isnorm = strcmpi(nflag,'norm'); )L|C'dJ<k`  
        if ~isnorm G6<HO7\  
            error('zernfun:normalization','Unrecognized normalization flag.') Qz# 3p3N?  
        end 8Y7 @D$=w  
    else #*\Ry/9Q  
        isnorm = false; a&8l[xe1  
    end cJ2y)`  
    we }#Ru*  
    MHGjvSx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s5nB(L*Pjp  
    % Compute the Zernike Polynomials 1"M"h_4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gfx oJihE  
    i>WOYI9  
    x}_rnf_  
    % Determine the required powers of r: F@Pem  
    % -----------------------------------  &Q<EfB  
    m_abs = abs(m); \3L$I-]m  
    rpowers = []; #0jSZg^,"  
    for j = 1:length(n) h<GyplG  
        rpowers = [rpowers m_abs(j):2:n(j)]; G]at{(^Vz  
    end hJ<:-u+yk}  
    rpowers = unique(rpowers); B%)zGTp6  
    cgzy0$8dj\  
    B*32D8t`u  
    % Pre-compute the values of r raised to the required powers, %bEGv:88s  
    % and compile them in a matrix: >s44  
    % ----------------------------- |G>q:]+AV  
    if rpowers(1)==0 Y=hP Erw  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t`) 'LT  
        rpowern = cat(2,rpowern{:}); bGhhh/n  
        rpowern = [ones(length_r,1) rpowern]; Q3(hK<Qh;  
    else o.p+j  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b8eDD+ulk  
        rpowern = cat(2,rpowern{:}); ]aREQ?ma&z  
    end zwKg  
    #W_i{bdO  
    XSD"/_xD  
    % Compute the values of the polynomials: 58qaA\iw  
    % -------------------------------------- i:MlD5 F  
    y = zeros(length_r,length(n)); "r:H5) !  
    for j = 1:length(n) |:~("rA+v  
        s = 0:(n(j)-m_abs(j))/2; n+v!H O"2u  
        pows = n(j):-2:m_abs(j); PY[S z=[  
        for k = length(s):-1:1 2=i+L z^  
            p = (1-2*mod(s(k),2))* ... U+:S7z@j?  
                       prod(2:(n(j)-s(k)))/              ... Pw0{.W~r  
                       prod(2:s(k))/                     ... <{3q{VW*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1!K !oY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 'SsPx&)l  
            idx = (pows(k)==rpowers); mMel,iK=  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \Sz4Gr0g3Z  
        end  ]H@v  
         F! |TW6)gv  
        if isnorm U@1#!ZZ6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %iHyt,0v2  
        end Tb>IHoil  
    end ,e}mR>i=e  
    % END: Compute the Zernike Polynomials J R 8 Z6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% " 8~f  
    8 /:X& &  
    V2WUM+`uT  
    % Compute the Zernike functions: ctnAVm  
    % ------------------------------ g?k#wj1uH  
    idx_pos = m>0; 3C E 39W  
    idx_neg = m<0; S jC)6mo  
    r4]hS`X~%  
    Om&{4a\  
    z = y; w a-_O<  
    if any(idx_pos) HYa$EE2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Pf^Ly 97  
    end 75QXkJu  
    if any(idx_neg) 8u7K$Q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~ wJ3AqNC?  
    end uIVTs9\  
    +35)=Uov  
    )'/nS$\E:  
    % EOF zernfun r7]?g~zb  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  FG5c:Ep  
    WO(&<(?  
    DDE还是手动输入的呢? _l{ 5 'm  
    K%TKQ<R|  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究