下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IW-lC{hK
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, UA]U_P$c
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? KG8Km
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 'o.A8su,
MH=;[ | N
*='J>z.]
_"R /k`8
%`1p 8>n
function z = zernfun(n,m,r,theta,nflag) szW85{<+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. t?<pyw $
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N qKL
mL2O
% and angular frequency M, evaluated at positions (R,THETA) on the ae`6hW2
% unit circle. N is a vector of positive integers (including 0), and MeXGE
% M is a vector with the same number of elements as N. Each element fNTe_akp
% k of M must be a positive integer, with possible values M(k) = -N(k) RNB ha&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :Lze8oY(D}
% and THETA is a vector of angles. R and THETA must have the same `X ;2lgL
% length. The output Z is a matrix with one column for every (N,M) mcFJ__3MAV
% pair, and one row for every (R,THETA) pair. 6o!Y^^/U
% 7C"&f *lEi
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike pwG" _|h
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), hxQx$
% with delta(m,0) the Kronecker delta, is chosen so that the integral 98x&2(N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m0zbG1OE
% and theta=0 to theta=2*pi) is unity. For the non-normalized 9C2DW,?
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1 /dy@'
% #2\
0#HN
% The Zernike functions are an orthogonal basis on the unit circle. d"Aer
% They are used in disciplines such as astronomy, optics, and zv}3Sl@
% optometry to describe functions on a circular domain. lZ![?t}2`
% uiQR RT
% The following table lists the first 15 Zernike functions. y2:~_MD
% fce~a\y0
% n m Zernike function Normalization O${B)C,
% -------------------------------------------------- OX!<{9o
% 0 0 1 1 u^Sa{Jk=
% 1 1 r * cos(theta) 2 TCI%Ox|a
% 1 -1 r * sin(theta) 2 RC>79e/u<
% 2 -2 r^2 * cos(2*theta) sqrt(6) "g=g' W#
% 2 0 (2*r^2 - 1) sqrt(3) "ke>O'
% 2 2 r^2 * sin(2*theta) sqrt(6) 1FfSqd
% 3 -3 r^3 * cos(3*theta) sqrt(8) WQ>y;fi5/{
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) +M^+qt;]V
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) *t3uj
% 3 3 r^3 * sin(3*theta) sqrt(8) 8M&q
% 4 -4 r^4 * cos(4*theta) sqrt(10) yRF
%SWO
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y6C3u5`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) >.X& v
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]6BV`r]
% 4 4 r^4 * sin(4*theta) sqrt(10) WY)*3?
% -------------------------------------------------- $>csm
% /+g9C(['
% Example 1: S7Tc9"oqV
% q{:]D(
% % Display the Zernike function Z(n=5,m=1) n
9X:s?B/
% x = -1:0.01:1; `BOG e;pl
% [X,Y] = meshgrid(x,x); Q?uHdmY*X
% [theta,r] = cart2pol(X,Y); #D2.RN
% idx = r<=1; Q]v><
% z = nan(size(X)); S_ELV#X
% z(idx) = zernfun(5,1,r(idx),theta(idx)); -cL{9r&X
% figure aHR&6zj4
% pcolor(x,x,z), shading interp LI`H,2Km
% axis square, colorbar cU
% title('Zernike function Z_5^1(r,\theta)') $9%UAqk9
% Z|
f~
% Example 2:
x $@Gp
% ;?K>dWf3f
% % Display the first 10 Zernike functions {`>;I
% x = -1:0.01:1; {^jk_G\ys
% [X,Y] = meshgrid(x,x); Q`{2yU:r
% [theta,r] = cart2pol(X,Y); Q%Fa1h:2&
% idx = r<=1; s`63
y&Z[
% z = nan(size(X)); 9-(
\\$%
% n = [0 1 1 2 2 2 3 3 3 3]; )' 3V4Z&
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; e_v_y$
% Nplot = [4 10 12 16 18 20 22 24 26 28]; vkgAI<
% y = zernfun(n,m,r(idx),theta(idx)); V[RsSZx
=
% figure('Units','normalized') d09qZj>
% for k = 1:10 $[1J[eY*
% z(idx) = y(:,k); FIEA'kUy
% subplot(4,7,Nplot(k)) S+*g
% pcolor(x,x,z), shading interp 6Ex16
% set(gca,'XTick',[],'YTick',[]) r 1x2)
% axis square l =Is-N`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~M?^T$5
% end /ho7O/aAa
% 'Xb?vOU
% See also ZERNPOL, ZERNFUN2. GJo`9
1[k.apn
4Y
`=`{Q
% Paul Fricker 11/13/2006 y|Vwy4tK9
jM'(Qa
)r|Pm-:A{
nSR<( -j!
p/WE[8U
% Check and prepare the inputs: d"U'\ID2y
% ----------------------------- RJ0:O
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tB/'3#o
error('zernfun:NMvectors','N and M must be vectors.') 2[QyH'"^E
end NS3qNj
FNy-&{P2
YU6D;
if length(n)~=length(m) 4E0 Y=
error('zernfun:NMlength','N and M must be the same length.') O;CC(
end e.l3xwt>$
r
t\eze_5A
25wvB@0&
n = n(:); 7:$zSj#y
m = m(:); ^P~NE#p5
if any(mod(n-m,2)) Zg;%$ kSQ
error('zernfun:NMmultiplesof2', ... h'|J$
'All N and M must differ by multiples of 2 (including 0).') 5q 95.rw
end Cj1nll8c
m&{%6
(*Fb/
if any(m>n) ,%4~ulKMn
error('zernfun:MlessthanN', ... :vo#(
'Each M must be less than or equal to its corresponding N.') hreG5g9{
end Ds@nuQ
-![>aqWmj1
*h4x`luJ
if any( r>1 | r<0 ) ''3b[<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zy&?.d[z
end k?VH4yA
%z"${ zw
K!jMW
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lSK<LytB
error('zernfun:RTHvector','R and THETA must be vectors.') (>M?
iB
end w6<zPrA
-]!zj#&
E;-*LT&{
r = r(:); "*JyNwf
theta = theta(:); u 1)
#^?
length_r = length(r); JGG (mrvR
if length_r~=length(theta) [iGL~RiXtn
error('zernfun:RTHlength', ... bv9nDNPD4
'The number of R- and THETA-values must be equal.') k#DMd9
end kS1?%E,)q
!63]t?QXMG
G-Dc(QhU&
% Check normalization: r"bV{v
% -------------------- MR}h}JEx0
if nargin==5 && ischar(nflag) %pBc]n@_
isnorm = strcmpi(nflag,'norm'); pWOK~=t
if ~isnorm
j7sRmQCl
error('zernfun:normalization','Unrecognized normalization flag.') V8-*dE
end u)9YRMl
else =.\PG[
isnorm = false; @;`d\lQ
end )Nnrsa
vV*i)`IXe
u=f}t=3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n?}7vz;
% Compute the Zernike Polynomials ;Yu|LaI\<m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D0VbD" y
+Z1y1%a
B*&HQW *u
% Determine the required powers of r: ..;ep2jSs
% ----------------------------------- 9six]T
m_abs = abs(m); #iVr @|,
rpowers = []; cg).b?g
for j = 1:length(n) $b`~K MO
rpowers = [rpowers m_abs(j):2:n(j)]; qLa6c2o,
end Bhg,P.7
rpowers = unique(rpowers); '@G=xYR
(Q F-=o
u5rHQA0%
% Pre-compute the values of r raised to the required powers, z2IKd'Wy
% and compile them in a matrix: ++Fv )KY@
% ----------------------------- kj/v$m
if rpowers(1)==0 =cWg39$(I
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h42dk(B
rpowern = cat(2,rpowern{:}); nl+8C}=u
rpowern = [ones(length_r,1) rpowern]; mIah[~G
else f(E[jwy
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5KC
Zg'h
rpowern = cat(2,rpowern{:}); /j"aOLL|
end sM6o(=>
4`'V%)M
H{I,m-
% Compute the values of the polynomials: nXAGwU8a
% -------------------------------------- wuKr9W9Xa
y = zeros(length_r,length(n)); "] [u
for j = 1:length(n) /0(c-Dv
s = 0:(n(j)-m_abs(j))/2; ^Fg!.X_
pows = n(j):-2:m_abs(j); O6$n VpD3
for k = length(s):-1:1 <8YIQA
p = (1-2*mod(s(k),2))* ... 5
[X,?
prod(2:(n(j)-s(k)))/ ... h{VdW}g
prod(2:s(k))/ ... #8r1<`']!
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... RW|Xh8.O
prod(2:((n(j)+m_abs(j))/2-s(k))); nUScDb2|
idx = (pows(k)==rpowers); 9O|k|FD
y(:,j) = y(:,j) + p*rpowern(:,idx); e`bP=7`0
end 1{.5X8y1x
N4$ K{
if isnorm $/"QYSF
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NKMVp/66D
end 'H-hp
end Tl L\&n.$
% END: Compute the Zernike Polynomials 2U&+K2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >6Ody<JPHP
sGO+O$J
UY^TTRrH
% Compute the Zernike functions: #Q$e%VJ(c1
% ------------------------------ {Lugdf'
idx_pos = m>0; >/G[Oo
idx_neg = m<0; ih(A l<IS
52.%f+Oa
tu6<>
z = y; .s\_H,
if any(idx_pos) Dn:1Mtj-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); TF~cDn
end 0.0r?T
if any(idx_neg) E'^ny4gL
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); OXS.CFZM
end kJpr:4;@_
lY[\eQ
1:
hq?F81
% EOF zernfun hCob^o