切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9497阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l *yml  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, vNd4Fn)H  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? uV52ko,  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^=pn!lK;^  
    ~7 C` a$  
    6~&4>2b0f  
    +aEE(u6%E@  
    9w}A7('  
    function z = zernfun(n,m,r,theta,nflag) ~ ${. sD\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. e {N8|l  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ss236&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Uj0DX >I  
    %   unit circle.  N is a vector of positive integers (including 0), and i~ n>dc YW  
    %   M is a vector with the same number of elements as N.  Each element K) sO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) [US.n +G6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;?yd;GOt)  
    %   and THETA is a vector of angles.  R and THETA must have the same )<1M'2  
    %   length.  The output Z is a matrix with one column for every (N,M) 72&xEx  
    %   pair, and one row for every (R,THETA) pair. /(E)|*~6  
    % )e4nKh],  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5bH@R@3m  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bMxzJRrNg  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hCc_+/j|  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F4e<=R  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g Uy >I(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. PLw;9^<  
    % }PK8[N  
    %   The Zernike functions are an orthogonal basis on the unit circle. )`,3/i9C$  
    %   They are used in disciplines such as astronomy, optics, and @Ej{sC!0T  
    %   optometry to describe functions on a circular domain. nr! kx)j  
    % (YGJw?]  
    %   The following table lists the first 15 Zernike functions. ]{0 2!  
    % J5mMx)t@  
    %       n    m    Zernike function           Normalization g&\A1H  
    %       -------------------------------------------------- -wW%+wH  
    %       0    0    1                                 1 n>+M4Zb  
    %       1    1    r * cos(theta)                    2 )<UNiC   
    %       1   -1    r * sin(theta)                    2 hJkIFyQ{j  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) w6qx  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @2L+"=u#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 3!Gnc0%c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) cIw)ScY  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b_|`jHes  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) bs kG!w  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) wZ0$ylEX  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 54-sb~]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y7u"a)T  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) f}Mc2PQ-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (VI4kRj  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Zyu4!  
    %       -------------------------------------------------- 38 tRb"3zP  
    % dArg'Dc4  
    %   Example 1: T5=3 jPQ  
    % ~N;kF.q&>&  
    %       % Display the Zernike function Z(n=5,m=1) l7ZqkGG]  
    %       x = -1:0.01:1; 'hf#Q9W5  
    %       [X,Y] = meshgrid(x,x); \@N8[  
    %       [theta,r] = cart2pol(X,Y); %{Kp#R5E  
    %       idx = r<=1; O8w R#(/  
    %       z = nan(size(X)); & VJ+X|Z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Ty}'A(U  
    %       figure [GyW1-p33w  
    %       pcolor(x,x,z), shading interp yS0!#AG  
    %       axis square, colorbar Ovq-rI{  
    %       title('Zernike function Z_5^1(r,\theta)') Q=)$  
    % ~5N0=)  
    %   Example 2: @dvlSqm)  
    % dAh&Z:86\  
    %       % Display the first 10 Zernike functions Nz'fMdaX,  
    %       x = -1:0.01:1; [o<Rgq 4  
    %       [X,Y] = meshgrid(x,x); _rdEur C6  
    %       [theta,r] = cart2pol(X,Y); ?xWO>#/  
    %       idx = r<=1; ",k"c}3G  
    %       z = nan(size(X)); E].hoq7WiB  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g=0`^APql  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %c<e`P;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; V8@VR`!'  
    %       y = zernfun(n,m,r(idx),theta(idx)); }xk85*V  
    %       figure('Units','normalized') b(Zh$86  
    %       for k = 1:10 7 y5`YJ}!  
    %           z(idx) = y(:,k); *P7 H=Yf&  
    %           subplot(4,7,Nplot(k)) ZP &q7HK\  
    %           pcolor(x,x,z), shading interp F0qpJM,  
    %           set(gca,'XTick',[],'YTick',[]) [_Fj2nb*  
    %           axis square $Ypt /`  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  l+HmG< P  
    %       end 7hQXGY,q  
    % 2Nrb}LH  
    %   See also ZERNPOL, ZERNFUN2. h6Ovl  
    0/5 a3-3{  
    2w_[c.  
    %   Paul Fricker 11/13/2006 cc- liY "  
    [1nfSW  
    _JNSl2  
    p{ X?_F  
    Tsg;i;  
    % Check and prepare the inputs: @rI+.X  
    % ----------------------------- bWWZGl9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) GVR/p  
        error('zernfun:NMvectors','N and M must be vectors.') hGh91c;4  
    end _^w&k{T  
    bca4'`3\|  
    e0;0X7  
    if length(n)~=length(m) 5QN~^  
        error('zernfun:NMlength','N and M must be the same length.') Oxsx\f_  
    end |`eHUtjH  
    1i3;P/  
    [wOz<<  
    n = n(:); NH9"89]E  
    m = m(:); o|`[X '  
    if any(mod(n-m,2)) e_=TkG1E6  
        error('zernfun:NMmultiplesof2', ... 0OCmyy  
              'All N and M must differ by multiples of 2 (including 0).') ?, B4  
    end ^G(U@-0..  
    9U&~H*Hf  
    $ /`X7a{  
    if any(m>n) !=Scpo_  
        error('zernfun:MlessthanN', ... {$qE>ic  
              'Each M must be less than or equal to its corresponding N.') Lmsc ~~  
    end 41uiW,  
    sE^ee2]OI@  
    $,u>,  
    if any( r>1 | r<0 ) p{|!LcSU$2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]QC9y:3  
    end .>#X*u  
    sg`   
    V#X#rDfJZ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MHj RPh  
        error('zernfun:RTHvector','R and THETA must be vectors.') #{_iNra9  
    end Mc,3j~i  
    U}T{r%9  
    Upw`|$1S  
    r = r(:); A(eB\qG  
    theta = theta(:);  jYUN:  
    length_r = length(r); e dTFk$0  
    if length_r~=length(theta) wxJu=#!M  
        error('zernfun:RTHlength', ... j%+>y;).  
              'The number of R- and THETA-values must be equal.') ,>!%KYD/f  
    end .jUM'; l  
    3 C{A  
    &R5zt]4d&  
    % Check normalization: )Cu2xRr^`  
    % -------------------- TB}6iIe  
    if nargin==5 && ischar(nflag) {x{~%)-  
        isnorm = strcmpi(nflag,'norm'); ]A%]W^G  
        if ~isnorm +Jm~Um!  
            error('zernfun:normalization','Unrecognized normalization flag.') t)|~8xpP  
        end D*&#}c,*  
    else }1 ,\ *)5  
        isnorm = false; UpaF>,kM  
    end ?wP/l  
    `=V p 0tPI  
    GXaPfC0-y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hCBre5  
    % Compute the Zernike Polynomials 40%fOu,u`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \5|MW)x  
    NX4G;+6  
    2##;[  
    % Determine the required powers of r: GQ(*k)'a  
    % ----------------------------------- H +' 6*akV  
    m_abs = abs(m); Yt[LIn-v:  
    rpowers = []; cgnMoBIc  
    for j = 1:length(n) nW)?cQ I  
        rpowers = [rpowers m_abs(j):2:n(j)]; ZIN1y;dJ  
    end /!?b&N/d)  
    rpowers = unique(rpowers); EXMW,  
    kXV;J$1  
    ~R&rQJJeJ  
    % Pre-compute the values of r raised to the required powers, 7Kf  
    % and compile them in a matrix: L{&>,ww  
    % ----------------------------- S B~opN  
    if rpowers(1)==0 ku4Gc6f#gG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i?ZVVE=r  
        rpowern = cat(2,rpowern{:}); Xdi<V_!BC-  
        rpowern = [ones(length_r,1) rpowern]; + -uQ] ^n  
    else -T}r$A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /qKA1-R}4  
        rpowern = cat(2,rpowern{:}); Wv|CJN;4  
    end mqHcD8X  
    {#st>%i  
    -AD@wn!wCJ  
    % Compute the values of the polynomials:  svx7  
    % -------------------------------------- c2t`i  
    y = zeros(length_r,length(n)); ~s-bA#0S  
    for j = 1:length(n) ht*N[Pi4;  
        s = 0:(n(j)-m_abs(j))/2; ftvu69f  
        pows = n(j):-2:m_abs(j); oi m7=I0  
        for k = length(s):-1:1 {yv_Ni*6!  
            p = (1-2*mod(s(k),2))* ... Td ade+  
                       prod(2:(n(j)-s(k)))/              ... w$IUm_~waa  
                       prod(2:s(k))/                     ... =;+gge!?bB  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XD?Lu _.  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  V~VUl)  
            idx = (pows(k)==rpowers); ] )iP?2{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); gg.]\#3g  
        end @ <3E `j'p  
         tA^+RO4  
        if isnorm @  R[K8  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O&MH5^I  
        end 'z^'+}iyv  
    end w[F})u]E  
    % END: Compute the Zernike Polynomials >yr;Y4y7K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -<g[P_#  
    JNY?] |=  
    *v%gNq  
    % Compute the Zernike functions: <o9AjASv\,  
    % ------------------------------ gyq6LRb  
    idx_pos = m>0; ~r?tFE* +  
    idx_neg = m<0; qH0JZdk  
    kQe<a1 8  
    g4=C]\1  
    z = y; (V&8 WN  
    if any(idx_pos) H#7=s{u  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '$Z@oCY#  
    end { TI,|'>5[  
    if any(idx_neg) *+zFsu4l  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _YG@P1  
    end 2z*}fkJ  
    m_Pk$Vwx  
    Zo-,TKgY'  
    % EOF zernfun jI'?7@32`  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  A7XA?>~+|  
    e2tru_#  
    DDE还是手动输入的呢? m+7%]$  
    )+Z.J]$O-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究