切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9244阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Jm1AJ4mw  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, XJ1nhE  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =smY/q^3  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? N+@@EOmH  
    +?m=f}>W1  
    96V, [-arf  
    _2n/vF;I+_  
    G C#95  
    function z = zernfun(n,m,r,theta,nflag) Ko1?jPE  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :tDGNz*zG  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /s0VyUV=  
    %   and angular frequency M, evaluated at positions (R,THETA) on the kC#B7*[RM  
    %   unit circle.  N is a vector of positive integers (including 0), and bDh(;%=  
    %   M is a vector with the same number of elements as N.  Each element e$+? v2.  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 5xV/&N  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !I+u/f?TO7  
    %   and THETA is a vector of angles.  R and THETA must have the same j9fL0$+FI  
    %   length.  The output Z is a matrix with one column for every (N,M) ['YRY B  
    %   pair, and one row for every (R,THETA) pair. `DY4d$!4  
    % u H;^>`DT  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =&G|} M  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Vm8_ !$F  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral op{(mn  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l|QFNW[i  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized LZbHK.G=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YG+ Yb{^"  
    % 0`Qs=R`OM  
    %   The Zernike functions are an orthogonal basis on the unit circle. aj-uk(r  
    %   They are used in disciplines such as astronomy, optics, and ',ybHW%D%i  
    %   optometry to describe functions on a circular domain. jQlK-U=oi  
    % u= i^F|  
    %   The following table lists the first 15 Zernike functions. MZF ;k$R  
    % sOHAW*+  
    %       n    m    Zernike function           Normalization g wiC ,  
    %       -------------------------------------------------- 8l,hP.  
    %       0    0    1                                 1 2%%U)|39mB  
    %       1    1    r * cos(theta)                    2 2Rp{]s$jo  
    %       1   -1    r * sin(theta)                    2 8@#Y <{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) lMf5F8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0#nXxkw  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  o|im  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ] :#IZ0#  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) H;te)km}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 13@| {H CB  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ;rdLYmmx^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) iiFKt(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,Yt&PE  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) r?>Hg+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (ZSSp1R v  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }Q(I&uz  
    %       -------------------------------------------------- 4T^WRS  
    % laJ%fBWmbi  
    %   Example 1: AlhiF\+ C  
    % wi >ta  
    %       % Display the Zernike function Z(n=5,m=1) };sm8P{M  
    %       x = -1:0.01:1; TzXl ?N  
    %       [X,Y] = meshgrid(x,x); _$lQK{@rY  
    %       [theta,r] = cart2pol(X,Y); 3c6)  
    %       idx = r<=1; W5;sps  
    %       z = nan(size(X)); /;ITnG  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ![n`n(oN  
    %       figure / /rWc,c  
    %       pcolor(x,x,z), shading interp nuA!Jln_  
    %       axis square, colorbar o~>go_Y  
    %       title('Zernike function Z_5^1(r,\theta)') b=l}|)a  
    % wfzb:Aig`  
    %   Example 2: ,DZLEsFM  
    % fs12<~+z  
    %       % Display the first 10 Zernike functions g?M69~G$:x  
    %       x = -1:0.01:1; Sw)ftC~d  
    %       [X,Y] = meshgrid(x,x); >D aS*r  
    %       [theta,r] = cart2pol(X,Y); xK ux5u _  
    %       idx = r<=1; #pFybk  
    %       z = nan(size(X)); M 4?3l  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xI8*sTx 6  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @jeV[N,0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Br??Gdd  
    %       y = zernfun(n,m,r(idx),theta(idx)); ITiw) M  
    %       figure('Units','normalized') !7DS  
    %       for k = 1:10 1OL~)X3  
    %           z(idx) = y(:,k); 2kve?/  
    %           subplot(4,7,Nplot(k)) 5gEK$7Vp  
    %           pcolor(x,x,z), shading interp lEs/_f3;A  
    %           set(gca,'XTick',[],'YTick',[]) M XQ7%G  
    %           axis square "de:plMofy  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (*]Y<ve  
    %       end Z;:-8 HPDY  
    % p,fin?nW c  
    %   See also ZERNPOL, ZERNFUN2. ha 5\T'  
    >?KyPp  
    8uiQm;W  
    %   Paul Fricker 11/13/2006 nU)f]4q{Ec  
    EK^2 2vi$  
    Az[z} r4  
    Lf9h;z>#  
    Sm5"Q  
    % Check and prepare the inputs: Q1yTDJ(2  
    % ----------------------------- {n'}S(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yfrgYA  
        error('zernfun:NMvectors','N and M must be vectors.') -9EbU7>!  
    end [u:_J qf-  
    fM{Vy])J  
    ZW"J]"A  
    if length(n)~=length(m) E*vi@aI  
        error('zernfun:NMlength','N and M must be the same length.') hZy*E[i  
    end |99eDgK,  
    40XI\yE_?  
    3*<W`yed  
    n = n(:); =Ju}{ bX  
    m = m(:); XJ+sm^`vOf  
    if any(mod(n-m,2)) teb(\% ,  
        error('zernfun:NMmultiplesof2', ... 8:MYeE5  
              'All N and M must differ by multiples of 2 (including 0).') T5)?6i -N  
    end C{-pVuhK+  
    !Fi)-o  
    Y/gCtSF  
    if any(m>n) )U` c9*.  
        error('zernfun:MlessthanN', ... UpbzH(?#  
              'Each M must be less than or equal to its corresponding N.') (WC<XKf  
    end 7w|s8B  
    n$QFj'  
    whshjl?a  
    if any( r>1 | r<0 ) H b.oKo$T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )XFMlSx)  
    end 5:wf"3%%  
    :>=,sLfJ  
    [Pay<]c6g  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A}8U;<\Ig  
        error('zernfun:RTHvector','R and THETA must be vectors.') bc-"If Z&  
    end KH-.Z0 2U  
    :L,]<n  
    iBQftq7  
    r = r(:); ^*W3{eyi(L  
    theta = theta(:); Vufw:}i+^  
    length_r = length(r); !?96P|G  
    if length_r~=length(theta) 8eNGPuoL)  
        error('zernfun:RTHlength', ... Kmtr.]Nj  
              'The number of R- and THETA-values must be equal.') Dqki}k~{  
    end m(Oup=\%b}  
    !**q20-aP  
    H={,zZ11{  
    % Check normalization: U1Oq"Ij~  
    % -------------------- V+Z22  
    if nargin==5 && ischar(nflag) kDrGl{U}  
        isnorm = strcmpi(nflag,'norm'); 1{*x+GC^/  
        if ~isnorm =vWnqF:  
            error('zernfun:normalization','Unrecognized normalization flag.') G} p~VLf  
        end wBf bpoE7  
    else *+G K ?Ga  
        isnorm = false; /cg!Ap5  
    end A /MOY@%G  
    ,xiRP$hGhh  
    OA8pao~H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R$\ieNb  
    % Compute the Zernike Polynomials eWFlJ;=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *oF{ R^  
    8/=2N  
    =LC5o2bLy  
    % Determine the required powers of r: '{|87kI  
    % ----------------------------------- ,PB?pp8C}  
    m_abs = abs(m); ;J4_8N-  
    rpowers = []; 2iUF%>  
    for j = 1:length(n) |1neCP@ng  
        rpowers = [rpowers m_abs(j):2:n(j)]; (wTg aV1  
    end wL{Qni3A  
    rpowers = unique(rpowers); EV}%D9:  
    {uw]s< 6  
    )TLDNpH?J  
    % Pre-compute the values of r raised to the required powers, ALG +  
    % and compile them in a matrix: V/03m3!q  
    % ----------------------------- dCinbAQ  
    if rpowers(1)==0 _|F h^hq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =Vi+wH{xM  
        rpowern = cat(2,rpowern{:}); 4)`{ L$  
        rpowern = [ones(length_r,1) rpowern]; qRr;&M &t_  
    else {5,CW  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -v]7}[ .[  
        rpowern = cat(2,rpowern{:}); y(%6?a @  
    end -1@kt<Es  
    R_-.:n%.z  
    ,Rf<6/A  
    % Compute the values of the polynomials: u+-}|  
    % -------------------------------------- J^u{7K,  
    y = zeros(length_r,length(n)); RW3&]l=  
    for j = 1:length(n) U+\\#5$  
        s = 0:(n(j)-m_abs(j))/2; J~~WV<6  
        pows = n(j):-2:m_abs(j); rT x]%{  
        for k = length(s):-1:1 oRCj]9I$  
            p = (1-2*mod(s(k),2))* ... ,i'>+Ix<  
                       prod(2:(n(j)-s(k)))/              ... kw!! 5U;7  
                       prod(2:s(k))/                     ... j_k!9"bt  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... x]F:~(P  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); # TvY*D,  
            idx = (pows(k)==rpowers); m~2PpO  
            y(:,j) = y(:,j) + p*rpowern(:,idx); gI[x OK#  
        end &L_(yJ~-  
         VLRW,lR9O  
        if isnorm d5h:py5  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |_Vlw&qu+  
        end D&.+Dx^G  
    end 1B2>8 N  
    % END: Compute the Zernike Polynomials m'Ran3rp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O Qd,.m  
    6L8wsz CW  
    $~_TE\F1  
    % Compute the Zernike functions: ^W;\faG  
    % ------------------------------ Lb(=:Z!{  
    idx_pos = m>0; @<h@d_8^k  
    idx_neg = m<0; o4U9jU4<"  
    f`T#=6C4|  
    Y\s@'UoVN  
    z = y; iOw'NxmY  
    if any(idx_pos) :Oxrw5`=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4v Ug:'DM  
    end ?8pRRzV$  
    if any(idx_neg) J#MUtpPdQ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Oo$i,|$$  
    end G{)2f &<  
    VTS8IXz  
    ym^  
    % EOF zernfun SIVzc Hm  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  V!\'7-[R  
    C&HN#Q_  
    DDE还是手动输入的呢? \r1nMw3&  
    r(j:C%?}C  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究