下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %o:2^5\W
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, >$,y5 AJ&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6'RrQc=q
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =@8H"&y`
[w&$| h:;
IrWD%/$H
r,Nq7Txn?
LbZ:&/t^y8
function z = zernfun(n,m,r,theta,nflag) SJ};TEA
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. mK [0L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *L'>U[Pl7
% and angular frequency M, evaluated at positions (R,THETA) on the /M*a,o
% unit circle. N is a vector of positive integers (including 0), and j~e;DO
% M is a vector with the same number of elements as N. Each element \;mH(-
% k of M must be a positive integer, with possible values M(k) = -N(k) wlEo"BA
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, )h8\u_U
% and THETA is a vector of angles. R and THETA must have the same U=o"32n+
% length. The output Z is a matrix with one column for every (N,M) +ke1Cn'[
% pair, and one row for every (R,THETA) pair. }Iz7l{al
% ~2zMkVH
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x"CZ]p&m
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }QsZ:J.
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~~6^Sh60g
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a
/:@"&Y
% and theta=0 to theta=2*pi) is unity. For the non-normalized !grVR157P
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RNhJ'&SYs
% OHflIeq#@
% The Zernike functions are an orthogonal basis on the unit circle. UD)e:G[Gat
% They are used in disciplines such as astronomy, optics, and S>0nx ^P
% optometry to describe functions on a circular domain. &%_& 8DkG
% 'D%w|Pe?Q
% The following table lists the first 15 Zernike functions. yx<WSgWZ[
% kee|42E
% n m Zernike function Normalization -Z?Vd!H:
% -------------------------------------------------- d)"?mD:m/M
% 0 0 1 1 F|HJH"2*&q
% 1 1 r * cos(theta) 2 4#'("#R
% 1 -1 r * sin(theta) 2 ]Y| 9?9d
% 2 -2 r^2 * cos(2*theta) sqrt(6) `WOYoec
% 2 0 (2*r^2 - 1) sqrt(3) 1<<kA:d
% 2 2 r^2 * sin(2*theta) sqrt(6) 1 `7<2w
% 3 -3 r^3 * cos(3*theta) sqrt(8) >R2SQA o
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 4
8{vE3JY
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 2]c{P\
% 3 3 r^3 * sin(3*theta) sqrt(8) N*@aDM07
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2EK%N'H
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zP;cTF(C
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 3J=Y9 }
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,=
&B28Qe)
% 4 4 r^4 * sin(4*theta) sqrt(10) ?9X&tK)E-
% -------------------------------------------------- S inl
% F>X-w+b4r
% Example 1: N<L`c/
% Jz! Z2c
% % Display the Zernike function Z(n=5,m=1) Fbp{,V@F2
% x = -1:0.01:1; fof2
xcH!
% [X,Y] = meshgrid(x,x); \i[BP
% [theta,r] = cart2pol(X,Y); c0Dmq)HK?
% idx = r<=1; D r9 ?2
% z = nan(size(X)); QQpP#F|w
% z(idx) = zernfun(5,1,r(idx),theta(idx)); x5Z-{"
% figure WpLZQ6wH
% pcolor(x,x,z), shading interp c=6Q%S
% axis square, colorbar 3<?XTv-
% title('Zernike function Z_5^1(r,\theta)') =U.
b% uC
% Zh/Uu6
% Example 2: zLD|/`
% $y?k[Y-~
% % Display the first 10 Zernike functions $^tv45
% x = -1:0.01:1; =ORf%f5"'
% [X,Y] = meshgrid(x,x); PjIeZ&p
% [theta,r] = cart2pol(X,Y); Ce'pis
% idx = r<=1; pU!o7>p
% z = nan(size(X)); !tHt,eJy
% n = [0 1 1 2 2 2 3 3 3 3]; #2:a[
~Lf
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %Z8vdU# l
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0~ &"
% y = zernfun(n,m,r(idx),theta(idx)); (Bo bB]~a
% figure('Units','normalized') L}j0a> =x4
% for k = 1:10 >bUj*#<
% z(idx) = y(:,k); 1|?K\B
% subplot(4,7,Nplot(k)) w#^U45y1v
% pcolor(x,x,z), shading interp IF@HzT;Q
% set(gca,'XTick',[],'YTick',[]) ?R5'#|EyX
% axis square ]/T-t1D
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) GPWr>B.{:S
% end kHJ96G
% 0"g@!gSrQ
% See also ZERNPOL, ZERNFUN2. D^Ys)- d
`Vq`z]}
:h:@o h_=
% Paul Fricker 11/13/2006 t?^9HP1b_
gNx+>h`AF
+/?iCmW
eu'1H@vX(
jLcHY-P0V
% Check and prepare the inputs: T[Pa/j{
% ----------------------------- G*\h\@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P=H+ #
error('zernfun:NMvectors','N and M must be vectors.') MF[z-7
end 1'G8o=~
JLb6C52
Ih1|LR/c
if length(n)~=length(m) 0W>9'Rw
error('zernfun:NMlength','N and M must be the same length.') :[M[(
end c#b:3dXx9
B(l-}|m_
tLcEl'Eo
n = n(:); $gp!w8h
m = m(:); @<_`2eW'/R
if any(mod(n-m,2)) Qrz4}0
error('zernfun:NMmultiplesof2', ... :k46S<RE
'All N and M must differ by multiples of 2 (including 0).') AH.9A_dG
end _eLVBG35z
sa1mC
FoPginZ]J
if any(m>n) G5Q!L;3HZ
error('zernfun:MlessthanN', ... ~_ !ts{[E
'Each M must be less than or equal to its corresponding N.') m%QqmTH
end )Mzt3u
>Csbjf6
X9~m8c){z
if any( r>1 | r<0 ) f|xLKcOP
error('zernfun:Rlessthan1','All R must be between 0 and 1.') z^sST
end ${U6=
J-J3=JG
b"8FlZ$
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Rq7p29w
error('zernfun:RTHvector','R and THETA must be vectors.') um8AdiK
end /~}_h O$S
{Iy7.c8S
~uPk
r = r(:); 7tH]*T9e>
theta = theta(:); Goj4`Hc
length_r = length(r); i=QqB0
if length_r~=length(theta) L2Ux9_S
error('zernfun:RTHlength', ... Xyv8LB
'The number of R- and THETA-values must be equal.') eX<K5K.B
end |l90g|isJ
Rlw9$/D!Z
R'EW7}&
% Check normalization: sT<{SmBF
% -------------------- =|y|P80w
if nargin==5 && ischar(nflag) o_yRn16
isnorm = strcmpi(nflag,'norm'); B5Va%?Wg?H
if ~isnorm R}J-nJlb
error('zernfun:normalization','Unrecognized normalization flag.') @;9()ad
end "d?f:x3v^
else !C7<sZ`C
isnorm = false; ^`&HWp
end PN\V[#nS
e?)yb^7K
0]a1 5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?"@ET9
% Compute the Zernike Polynomials E:Y:X~vy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;4d.)-<No_
N&B>#:
ZA.fa0n
% Determine the required powers of r: Cnur"?w@o
% ----------------------------------- y@9Y,ZR*
m_abs = abs(m); Kcn\g.
rpowers = []; fjkT5LNxk
for j = 1:length(n) R+^z y"~
rpowers = [rpowers m_abs(j):2:n(j)]; eH=c|m]!P
end /s-d?
rpowers = unique(rpowers); CTU9~~Xk
'aPCb`^;w
5TET<f6R
% Pre-compute the values of r raised to the required powers,
{@\/a
% and compile them in a matrix: n49s3|#)G
% ----------------------------- -eYL*Pa
if rpowers(1)==0 ?W<cB`J
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w?;b7i
rpowern = cat(2,rpowern{:}); jmPp-}tS7
rpowern = [ones(length_r,1) rpowern]; ,$i<@2/=m
else QAXYrRu
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);
H8"tbU
rpowern = cat(2,rpowern{:}); ;5RIwD
end j}RM.C\7
_U=S]2QW
O<iI
% Compute the values of the polynomials: /T#o<D
% -------------------------------------- o?=fhc
y = zeros(length_r,length(n)); Eb7}$Ji\
for j = 1:length(n) Jh(mbD
s = 0:(n(j)-m_abs(j))/2; wKrdcWI,Z
pows = n(j):-2:m_abs(j); J<-Fua^
for k = length(s):-1:1 T=yCN#cqQ`
p = (1-2*mod(s(k),2))* ... 0&o
WfTg
prod(2:(n(j)-s(k)))/ ... .6I%64m
prod(2:s(k))/ ... U:Fpj~E_w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "{6KZ! +0
prod(2:((n(j)+m_abs(j))/2-s(k))); q\G{]dz?R
idx = (pows(k)==rpowers); lzI/\%
y(:,j) = y(:,j) + p*rpowern(:,idx); ^B6`e^<
end .n=xbx:=
^X(_zinN"
if isnorm X?_v+'G
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); s3y}Yg
end 8\u;Wf
end 6%z`)d
% END: Compute the Zernike Polynomials DMRs}Yz6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7Fc |
t3M0La&
^zkd{ov
% Compute the Zernike functions: @+Pf[J41
% ------------------------------ ur`V{9g
idx_pos = m>0; `ITDTZ
J
idx_neg = m<0; 1dXh\r_n
RDJ82{
_qk9o
z = y; SaTEZ.
if any(idx_pos) =1_j aDp
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]#+5)[N$>
end _4g}kL02.
if any(idx_neg) 1w6.
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); uJ7,rq
end u'{sB5_H
~mW>_[RT;
&8.z$}m
% EOF zernfun rHR5,N: