下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _|bIl%W;\'
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _{)e\n
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? y5 $h
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,OsFv}v7
lOt3^`
3*"$E_%
Gy
hoo'<
w?d~c*4+
function z = zernfun(n,m,r,theta,nflag) >t&Frw/Bl
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. _(&^M[O
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .i>; ?(GH
% and angular frequency M, evaluated at positions (R,THETA) on the 1@6dHFA`o
% unit circle. N is a vector of positive integers (including 0), and '3O@Nxof4
% M is a vector with the same number of elements as N. Each element 3,+)3,N
% k of M must be a positive integer, with possible values M(k) = -N(k) qv y~b
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !Low%rP
% and THETA is a vector of angles. R and THETA must have the same (|I:d!>:U
% length. The output Z is a matrix with one column for every (N,M) \/g.`Pe
% pair, and one row for every (R,THETA) pair. &u( eu'Q3
% Q3vC^}Dmr
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <[ />M
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +!6aB|-
% with delta(m,0) the Kronecker delta, is chosen so that the integral [x
?38
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0W<:3+|n4
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3`S|I_$(T"
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K9B_o,
% (=}cc
% The Zernike functions are an orthogonal basis on the unit circle. I
*YO
% They are used in disciplines such as astronomy, optics, and _]a8lr+_-
% optometry to describe functions on a circular domain. aN?{MA\
% [,Q(~Qb
% The following table lists the first 15 Zernike functions. #;sUAR?]
% N=^{FZ
% n m Zernike function Normalization Z{s&myd
% -------------------------------------------------- "K
n
JUXpl
% 0 0 1 1 ")'o5V
% 1 1 r * cos(theta) 2 @d]I3?`
% 1 -1 r * sin(theta) 2 j}7as&
% 2 -2 r^2 * cos(2*theta) sqrt(6) .[%em9u
% 2 0 (2*r^2 - 1) sqrt(3) rVgz+'rFD[
% 2 2 r^2 * sin(2*theta) sqrt(6) x%ju(B>
% 3 -3 r^3 * cos(3*theta) sqrt(8) 4bLk+EY4A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~G|un}g=
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 99w;Q 2k
% 3 3 r^3 * sin(3*theta) sqrt(8) LW<