切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8701阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, FQz?3w&ia  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, I6!5Yj]O"  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? JAjmrX  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AK!hK>u`  
    oR1^/e  
    Y-mK+1 2  
    &MZ$j46  
    lv&mp0V+  
    function z = zernfun(n,m,r,theta,nflag) O,2~"~kF  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. g7V8D  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?>c=}I#Ui-  
    %   and angular frequency M, evaluated at positions (R,THETA) on the F>je4S;  
    %   unit circle.  N is a vector of positive integers (including 0), and X~=xXN.  
    %   M is a vector with the same number of elements as N.  Each element fWc|gq  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "@A![iP  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, j(:I7%3&(*  
    %   and THETA is a vector of angles.  R and THETA must have the same ^N}Wnk7ks'  
    %   length.  The output Z is a matrix with one column for every (N,M) GQQ.OvEc  
    %   pair, and one row for every (R,THETA) pair. K;hh&sTB  
    % aNn"X y\ k  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M->*{D@a  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '^BV_QQ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral H=*5ASc  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :A %^^F%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Wz4&7KYY  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {rfF'@[  
    % 2kAx>R  
    %   The Zernike functions are an orthogonal basis on the unit circle. YJg,B\z}  
    %   They are used in disciplines such as astronomy, optics, and h&.wo !  
    %   optometry to describe functions on a circular domain. @E( 7V(m/  
    %  T9)nQ[  
    %   The following table lists the first 15 Zernike functions. fkSO( C)  
    % !Cgx.   
    %       n    m    Zernike function           Normalization <!-sZ_qq  
    %       -------------------------------------------------- ]<(]u#g_d  
    %       0    0    1                                 1 9)xUA;Qw?z  
    %       1    1    r * cos(theta)                    2 BqDKT  
    %       1   -1    r * sin(theta)                    2 9a\nszwa  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Xs&TJ8a  
    %       2    0    (2*r^2 - 1)                    sqrt(3) MV_Srz  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :j|IP)-f  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ES~^M840f  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 73{'k K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^ -FX  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Ol"3a|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) T=hho Gn  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7Dnp'*H  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) &l$Q^g  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J q{7R  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1im^17 X  
    %       -------------------------------------------------- o"wXIHUmV  
    % WN(ymcdYB  
    %   Example 1: y;mj^/SxK  
    % Pe C7  
    %       % Display the Zernike function Z(n=5,m=1) !O\;Nua  
    %       x = -1:0.01:1; [E#UGJ@  
    %       [X,Y] = meshgrid(x,x); [."[pY  
    %       [theta,r] = cart2pol(X,Y); 8WE{5#oi  
    %       idx = r<=1; zR!o{8  
    %       z = nan(size(X)); +&zYZA8v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); LjL[V'JL  
    %       figure nJPyM/p  
    %       pcolor(x,x,z), shading interp 1qV@qz  
    %       axis square, colorbar o=FE5"t  
    %       title('Zernike function Z_5^1(r,\theta)') hTP:[w)  
    % R52I= a5,*  
    %   Example 2: $$:ZX  
    % 1ygpp0IGJ  
    %       % Display the first 10 Zernike functions zlR?,h-[3  
    %       x = -1:0.01:1; omWJJ|b~  
    %       [X,Y] = meshgrid(x,x); VMoSLFp^R  
    %       [theta,r] = cart2pol(X,Y); \!]Ua.e<  
    %       idx = r<=1; %|G"-%_E  
    %       z = nan(size(X)); \{Q?^E  
    %       n = [0  1  1  2  2  2  3  3  3  3]; f+rz|(6vs{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Y+K|1r  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; =^H4Yck/5  
    %       y = zernfun(n,m,r(idx),theta(idx)); fgihy  
    %       figure('Units','normalized') cRX~z  
    %       for k = 1:10 5[j`6l  
    %           z(idx) = y(:,k); - 0?^#G}3}  
    %           subplot(4,7,Nplot(k)) jxJv.  
    %           pcolor(x,x,z), shading interp 3\T2?w9u(  
    %           set(gca,'XTick',[],'YTick',[]) 7d92 Pe  
    %           axis square ''\;z<v   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~4q5 k5.,  
    %       end NEa>\K<\  
    % 9&RFO$WH  
    %   See also ZERNPOL, ZERNFUN2. FI"`DMb}  
    ~ %B<  
    ]kG(G%r|M  
    %   Paul Fricker 11/13/2006 bQ|V!mrN}  
    sB69R:U;  
    OFje+S  
    =@F&o4)r  
    e.c3nKXZ q  
    % Check and prepare the inputs: Zo>]rKeV  
    % ----------------------------- ?f/n0U4w  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =IAsH85Q  
        error('zernfun:NMvectors','N and M must be vectors.') Gycm,Cy  
    end QRLt9L  
    9'hv%A:\3  
    bI|2@H V2  
    if length(n)~=length(m) 1~ $);US  
        error('zernfun:NMlength','N and M must be the same length.') #97h6m?  
    end u4Em%:Xj  
    :_M;E"9R  
    ePIiF_X  
    n = n(:); VY)s+Bx  
    m = m(:); Nan[<  
    if any(mod(n-m,2)) :x_'i_w  
        error('zernfun:NMmultiplesof2', ... IHRGw  
              'All N and M must differ by multiples of 2 (including 0).') OzC\9YeA  
    end 'U'yC2BI n  
    bTQNb!&  
    <V>dM4Mkr  
    if any(m>n) B:7mpSnEQ  
        error('zernfun:MlessthanN', ... }B~If}7  
              'Each M must be less than or equal to its corresponding N.') {\[5}nV  
    end ZoArQ(YFy  
    +VQ\mA59  
    i*CZV|t US  
    if any( r>1 | r<0 ) !Ra*)b "  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5E notp[  
    end 9(":,M(/o  
    }<'5 z qS  
    [V:\\$  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LY-2sa#B$-  
        error('zernfun:RTHvector','R and THETA must be vectors.') }%D^8>S  
    end "--t e  
    /> 4"~q)  
    0@AAulRl  
    r = r(:); "W(Q%1!Wi  
    theta = theta(:); 0T46sm r  
    length_r = length(r); kY'T{Sm1^  
    if length_r~=length(theta) I[n ^{8gz  
        error('zernfun:RTHlength', ... ES40?o*]x  
              'The number of R- and THETA-values must be equal.')  rb{P :MX  
    end [|l?2j\  
    O`vTnrY  
    *YlV-C<}W"  
    % Check normalization: 6S~sVUL9`  
    % -------------------- Uo2GK3nT  
    if nargin==5 && ischar(nflag) tY <Z'xA?  
        isnorm = strcmpi(nflag,'norm'); t:fFU1x  
        if ~isnorm ~RWktv  
            error('zernfun:normalization','Unrecognized normalization flag.') Gm\/Y:U  
        end D.mHIsX6\  
    else _2N$LLbg  
        isnorm = false; O eL}EVs8=  
    end Onwp-!!.  
    &d|r~NhP  
    <^$<#K d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hqRw^2F  
    % Compute the Zernike Polynomials <ZB1Vi9}8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7k8pZ  
    "Y\_TtY  
    Q~T$N  
    % Determine the required powers of r: H#ncM~y*  
    % ----------------------------------- 5ls6t{Ci  
    m_abs = abs(m); ;amXY@RmH  
    rpowers = []; &iV,W4  
    for j = 1:length(n) ){UcS/GI=  
        rpowers = [rpowers m_abs(j):2:n(j)]; RSo& (Uv  
    end ^yOZArc'r  
    rpowers = unique(rpowers); sM9+dh  
    1/"WD?a  
    =%/)m:f!^  
    % Pre-compute the values of r raised to the required powers, /i77  
    % and compile them in a matrix: ]9 @F~)  
    % -----------------------------  f& CBU  
    if rpowers(1)==0 o]opdw  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gg8Uo G  
        rpowern = cat(2,rpowern{:}); s;A@*Y;v  
        rpowern = [ones(length_r,1) rpowern]; KRA/MQ^7~U  
    else k5T,990  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zE_i*c"`  
        rpowern = cat(2,rpowern{:}); Ih"XV  
    end CvD "sHVq%  
    ~sXcnxLz  
    O6OP =K!t:  
    % Compute the values of the polynomials: )vSRHE  
    % -------------------------------------- S;- LIv  
    y = zeros(length_r,length(n)); L+i(TM=  
    for j = 1:length(n) >:b Q  
        s = 0:(n(j)-m_abs(j))/2; pfI"36]F  
        pows = n(j):-2:m_abs(j); aca=yDs2  
        for k = length(s):-1:1 3p'I5,}  
            p = (1-2*mod(s(k),2))* ... 5^x1cUB]  
                       prod(2:(n(j)-s(k)))/              ... Ct>GYk$  
                       prod(2:s(k))/                     ... 1Yn +<I  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <.? jc%  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <Sr  
            idx = (pows(k)==rpowers); O`<KwUx !  
            y(:,j) = y(:,j) + p*rpowern(:,idx); SBS3?hw  
        end \7'+h5a  
         aYSCw 3C<  
        if isnorm ?pd8w#O  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); KGFv"u{  
        end  .P"D  
    end 55fC~J<  
    % END: Compute the Zernike Polynomials n~V ]Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XD2v*l|Po  
    Qr{E[6  
    M "94#.dKK  
    % Compute the Zernike functions: _+E5T*dk  
    % ------------------------------ #e$5d>j(  
    idx_pos = m>0; Ptdpj)oi&Q  
    idx_neg = m<0; 1bn^.768l  
    6l:qD`_  
    @P?~KW6<|  
    z = y;  e0,|Wm  
    if any(idx_pos) 4.5|2 \[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =D<PVGo9  
    end %Da1(bBh  
    if any(idx_neg) CTZ8Da^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Jh!I:;/  
    end bl&nhI)w  
    &n8_0|gK  
    @y\X R  
    % EOF zernfun G\+L~t  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  SPX$ U5&  
    =9O^p@Q#W  
    DDE还是手动输入的呢? oTU!R ,  
    ~?4PBq  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究