下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, KJUH(]>F
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, oN~&_*FE
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 'T;P;:!\
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ];$L &5^
^rR1ZVY
f1RWP@iar
{GT*ZU*
& bm
1Fz
function z = zernfun(n,m,r,theta,nflag) 23eX;gL
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. tyDU
@M
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ' ,wFTV&
% and angular frequency M, evaluated at positions (R,THETA) on the fSj5ZsO
% unit circle. N is a vector of positive integers (including 0), and Pl06:g2I
% M is a vector with the same number of elements as N. Each element wc@X.Q[
% k of M must be a positive integer, with possible values M(k) = -N(k) WF+99?75
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |-67\p]
% and THETA is a vector of angles. R and THETA must have the same #pow ub
% length. The output Z is a matrix with one column for every (N,M) A0s ZOCky
% pair, and one row for every (R,THETA) pair. wo{gG?B
% &{n.]]%O.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +4~_Ei[i
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Igt#V;kK"2
% with delta(m,0) the Kronecker delta, is chosen so that the integral *!t/"b
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, nsC3
% and theta=0 to theta=2*pi) is unity. For the non-normalized U[-o> W#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
=%K;X\NB
% epe)a
% The Zernike functions are an orthogonal basis on the unit circle. 3BUSv#w{i
% They are used in disciplines such as astronomy, optics, and Ms#M+[a
% optometry to describe functions on a circular domain. N7zft
% yjX9oxhtL
% The following table lists the first 15 Zernike functions. ZgcMv,=
% h
0Q5-EA
% n m Zernike function Normalization '3tCH)s
% -------------------------------------------------- ibk6|pp
% 0 0 1 1 7hcYD!DS
% 1 1 r * cos(theta) 2 f|c{5$N!
% 1 -1 r * sin(theta) 2 9ULQrq$?
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,AFu C<
% 2 0 (2*r^2 - 1) sqrt(3) s?}e^/"v
% 2 2 r^2 * sin(2*theta) sqrt(6) (k.[GfCbD
% 3 -3 r^3 * cos(3*theta) sqrt(8) hBUn \~z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ]y'>=a|T
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ql{OETn#
% 3 3 r^3 * sin(3*theta) sqrt(8) n0 {i&[I~+
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3z?> j]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
Do7Tj
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) I; |B.j
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }B+C~@j
% 4 4 r^4 * sin(4*theta) sqrt(10) lvz7#f L~
% -------------------------------------------------- 8qTys8
% BC.87Fji/
% Example 1: \ :sUL!
% *Kgks 4
% % Display the Zernike function Z(n=5,m=1) t\,PB{P:J
% x = -1:0.01:1; =s2*H8]
% [X,Y] = meshgrid(x,x); ,!y$qVg'\f
% [theta,r] = cart2pol(X,Y); Y"aJur=`
% idx = r<=1; S`0(*A[W*
% z = nan(size(X)); & l&:`nsJ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); q,|j]+9q
% figure 9}<ile7^
% pcolor(x,x,z), shading interp +gtbcF@rx
% axis square, colorbar JIOR4' 9
% title('Zernike function Z_5^1(r,\theta)') pJ"qu,w
% ]Ie 0S~
% Example 2: Be2DN5)
% Ckuh:bs
% % Display the first 10 Zernike functions 6j]0R*B7`Q
% x = -1:0.01:1; u cW-I;"
% [X,Y] = meshgrid(x,x); [!#L6&:a8
% [theta,r] = cart2pol(X,Y); 6iE<T&$3P
% idx = r<=1; Hk.TM2{w
% z = nan(size(X)); /]Md~=yNp
% n = [0 1 1 2 2 2 3 3 3 3]; &.Qrs:U
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Yu^4VXp~M%
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MaQqs=
% y = zernfun(n,m,r(idx),theta(idx)); P* BmHz4KL
% figure('Units','normalized') %RRNJf}z
% for k = 1:10 BG]#o|KW
% z(idx) = y(:,k); YfKdR"i+.
% subplot(4,7,Nplot(k)) E]n&=\
% pcolor(x,x,z), shading interp Hd ={CFip
% set(gca,'XTick',[],'YTick',[]) s$`0yGmQ
% axis square u^I|T.w<r6
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ZG8DIV\D7
% end =K[yT:
% EUX\^c]n
% See also ZERNPOL, ZERNFUN2. )g%d:xI
Flm%T-Dl
@:vwb\azVD
% Paul Fricker 11/13/2006 |3"KK
KU(&%|;g
%XQ(fj>
#r\4sVg
#f]SK[nR
% Check and prepare the inputs: 16( QR-
% ----------------------------- >@_^fw)
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2-EIE4ds
error('zernfun:NMvectors','N and M must be vectors.') E4/Dr}4
end Ioa$51&
3,qr-g|;jM
~HsJUro
if length(n)~=length(m) nMUw_7Y6
error('zernfun:NMlength','N and M must be the same length.') iz PDd{[
end d^
8ZeC#
j6 z^Tt12
?NsW|w_
n = n(:); _Q 4)X)F
m = m(:); ndMA-`Ny,
if any(mod(n-m,2)) 7[XRd9a5(
error('zernfun:NMmultiplesof2', ... d{3QP5
'All N and M must differ by multiples of 2 (including 0).') &B1Wt