切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9352阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, k?;@5r)y-  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6an= C_Mb`  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? POI|#[-V  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? z 4qEC  
    hw({>cH\  
    }eAV8LU  
    $d*PY_  
    *X /i<  
    function z = zernfun(n,m,r,theta,nflag) |)*9BN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?0tm{qP  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @]YEOk-  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }2hU7YWt  
    %   unit circle.  N is a vector of positive integers (including 0), and kx,3[qe'S  
    %   M is a vector with the same number of elements as N.  Each element %n^ugm0B  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )kEH}P&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, WBWIHv{j  
    %   and THETA is a vector of angles.  R and THETA must have the same @TJ2 |_s6]  
    %   length.  The output Z is a matrix with one column for every (N,M) j6WDh}#  
    %   pair, and one row for every (R,THETA) pair. &LYH >  
    % WH_ W:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike muMd9\p  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), z&Xk~R*$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral BA8g[T A7K  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N u3B02D*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized b!<)x}-t>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M#k$[w}=  
    % '#a;n  
    %   The Zernike functions are an orthogonal basis on the unit circle. &NX7  
    %   They are used in disciplines such as astronomy, optics, and 39~te%;C7  
    %   optometry to describe functions on a circular domain. to;^'#B  
    % eD|"?@cE  
    %   The following table lists the first 15 Zernike functions. M5:j)o W  
    % vNHvuw K  
    %       n    m    Zernike function           Normalization biG :Xn  
    %       -------------------------------------------------- A,EuUp  
    %       0    0    1                                 1 P@5}}vwS  
    %       1    1    r * cos(theta)                    2 ojyP.R  
    %       1   -1    r * sin(theta)                    2 wf_ $#.;m  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A=sz8?K+`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) NiYT%K%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) E|A~T7G=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) OF0v0Y/a  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ITy/h]0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @RZbo@{~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i|rCGa0}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V 4&a+MJ@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ibn\&}1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Wuk!\<T{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LrT? ]o  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) c!GJS`/  
    %       -------------------------------------------------- 8)>4ZNXz  
    % U]W "  
    %   Example 1: }USOWsLSt  
    % YU XxQ|  
    %       % Display the Zernike function Z(n=5,m=1) < lUpvr  
    %       x = -1:0.01:1; Uz=o l.E  
    %       [X,Y] = meshgrid(x,x); rk47 $36X  
    %       [theta,r] = cart2pol(X,Y); 'w=aLu5dY  
    %       idx = r<=1; N8DouDq  
    %       z = nan(size(X)); E#Ol{6  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); o;21|[z  
    %       figure qDcoccEf  
    %       pcolor(x,x,z), shading interp 9 e|[9  
    %       axis square, colorbar Y6T{/!  
    %       title('Zernike function Z_5^1(r,\theta)') &Ez+4.srkh  
    % -q(*)N5.2  
    %   Example 2: a)L|kux;l  
    % X3] [C  
    %       % Display the first 10 Zernike functions +-T|ov<  
    %       x = -1:0.01:1; 9Wg;M#c2Y|  
    %       [X,Y] = meshgrid(x,x); At'M? Q@v  
    %       [theta,r] = cart2pol(X,Y); q VavP6I  
    %       idx = r<=1; &?TXsxf1Zh  
    %       z = nan(size(X)); 1h#/8 X  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $KhD>4^ jL  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; j{johV+`8  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ("YWJJ'H  
    %       y = zernfun(n,m,r(idx),theta(idx)); Dbb=d8utE  
    %       figure('Units','normalized') A%X=yqY  
    %       for k = 1:10 xLms|jS  
    %           z(idx) = y(:,k); m2&Vm~Py6b  
    %           subplot(4,7,Nplot(k)) 4 9HP2E  
    %           pcolor(x,x,z), shading interp qO/3:-  
    %           set(gca,'XTick',[],'YTick',[]) 'V8o["P  
    %           axis square }|&^Sg%95  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KdD~;Ap$  
    %       end "Pu917_P  
    % +p&zM3:9w  
    %   See also ZERNPOL, ZERNFUN2. ,Vl2U"   
    Gm &jlN  
    *>HS>#S  
    %   Paul Fricker 11/13/2006 XB@i{/6K  
    8C[eHC*r  
    wn|;Li  
    eCWF0a  
    HH0ck(u_A*  
    % Check and prepare the inputs: stMxlG"d  
    % ----------------------------- R+!oPWfb  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5s;@;V  
        error('zernfun:NMvectors','N and M must be vectors.') H=w6  
    end 4>2\{0r  
    ThkCKM  
    _yF@k~ h  
    if length(n)~=length(m) um%s9  
        error('zernfun:NMlength','N and M must be the same length.') 5!pNo*QK  
    end O3)B]!xL  
    df {\O* 6  
    nf[KD,f  
    n = n(:); j'Q0DF=GV  
    m = m(:); y~Yv^'Epf  
    if any(mod(n-m,2)) s];0-65)  
        error('zernfun:NMmultiplesof2', ... Q&lb]U+\u  
              'All N and M must differ by multiples of 2 (including 0).') +Z-{6C  
    end 0LYf0^P  
    bxO[y<|XL  
    ^hr # 1  
    if any(m>n)  DZ4gp  
        error('zernfun:MlessthanN', ... LE~vSm^#  
              'Each M must be less than or equal to its corresponding N.') V|F/ynJfA  
    end (kyRx+gA  
    /x]^Cqe  
    |eg8F$WU  
    if any( r>1 | r<0 ) w`r %_o-I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $=#Lf[|f=  
    end cvf?ID84  
    Nq^o8q_  
    Bn%?{z)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) he@Y1CY  
        error('zernfun:RTHvector','R and THETA must be vectors.') wAgV evE  
    end vO53?vN[m9  
    f:y:: z  
    f`K#=_Kq7  
    r = r(:); VC_F Cz  
    theta = theta(:); ("{vbs$;  
    length_r = length(r); IP-M)_I  
    if length_r~=length(theta) -e?n4YO*\  
        error('zernfun:RTHlength', ... [6 "5  
              'The number of R- and THETA-values must be equal.') N})vrB;1  
    end \zBZ$5 rE  
    '66nqJb*  
    t/%[U,m  
    % Check normalization: A>315!d"  
    % -------------------- }sJ}c}b  
    if nargin==5 && ischar(nflag) @MoCEtt  
        isnorm = strcmpi(nflag,'norm'); &j/,8 Z*  
        if ~isnorm ew~uOG+  
            error('zernfun:normalization','Unrecognized normalization flag.') PR AP~P&^  
        end 7q 5 \]J[  
    else uZ@qlq8  
        isnorm = false; 'vZy-qHrV  
    end EP<{3f y  
    A[`c+&  
    jsF5q~F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 53.jx38xS  
    % Compute the Zernike Polynomials ftRdK>a D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \}<J>R@  
    ^y93h8\y  
    R<hsG%BS(D  
    % Determine the required powers of r: &B1!,joH~  
    % ----------------------------------- ar'VoL}  
    m_abs = abs(m); }5z!FXB  
    rpowers = []; ACFEM9 [=  
    for j = 1:length(n) #Aj#C>  
        rpowers = [rpowers m_abs(j):2:n(j)]; y5D3zqCG  
    end O-pH~E  
    rpowers = unique(rpowers); R%t|R7 9I  
    \ f VX<L  
    !Htl e %  
    % Pre-compute the values of r raised to the required powers, 9x(t"VPuS  
    % and compile them in a matrix: KV'3\`v@LY  
    % ----------------------------- a3z_o)"   
    if rpowers(1)==0 Sht3\cJ8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HCYy9  
        rpowern = cat(2,rpowern{:}); /}%C'  
        rpowern = [ones(length_r,1) rpowern]; e5lJ)_o  
    else o)CW7Y#?,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Uxe]T  
        rpowern = cat(2,rpowern{:}); :RYYjmG5;  
    end /Tw $} 8  
    =i2]qj\  
    \q^ dhY>)  
    % Compute the values of the polynomials: <h<_''+  
    % -------------------------------------- -- IewW  
    y = zeros(length_r,length(n)); 4{ZVw/VP,-  
    for j = 1:length(n) V1,~GpNx  
        s = 0:(n(j)-m_abs(j))/2; xa !/.  
        pows = n(j):-2:m_abs(j); onS4ZE3B  
        for k = length(s):-1:1 }XRfHQk  
            p = (1-2*mod(s(k),2))* ... :; La V  
                       prod(2:(n(j)-s(k)))/              ... .#K\u![@N  
                       prod(2:s(k))/                     ... N ;n55N  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I8IH\5k  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); G[fg!vig#7  
            idx = (pows(k)==rpowers); 41rS0QAM  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bHTTxZ-%  
        end ;L$l0(OO  
         WS1Y maV  
        if isnorm s(=@J?7As  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); dWo$5Bls<A  
        end - s{&_]A~  
    end *Ct ^jU7  
    % END: Compute the Zernike Polynomials EU Oa8Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A9Pq}3U  
    wLg@BSC.  
    SpEu>9g&  
    % Compute the Zernike functions: THy   
    % ------------------------------ fq):'E)  
    idx_pos = m>0; 4s <Z KU  
    idx_neg = m<0; m8gU8a"(  
    I=YZ!*f/`  
    0nR_I^  
    z = y; =;?Maexp3$  
    if any(idx_pos) H4M`^r@)'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F7=&CW 0  
    end 0Yr-Q;O<f  
    if any(idx_neg) 7Fb!;W#X  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Q[aBxy (  
    end G?:5L0g  
    Xupwh5G2  
    =feVT2*  
    % EOF zernfun <bywi2]z  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  _K<Z  
    7H_*1_%ZQ  
    DDE还是手动输入的呢? "Rr650w[  
    fO 6Jug  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究