下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, pT1[<X!<s
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .YnFH$;$
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? tBT<EV{ G
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? l)w Hl%p
RE=+Dz{
ivz>dJ ?T
S:q3QgU=X
\nB8WSvk2W
function z = zernfun(n,m,r,theta,nflag)
wm")[!h)v
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. oY|,GvCnK
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R8UYP=Kp
% and angular frequency M, evaluated at positions (R,THETA) on the UybW26C;aU
% unit circle. N is a vector of positive integers (including 0), and Cc<,z*T
% M is a vector with the same number of elements as N. Each element Fxqp-}:
% k of M must be a positive integer, with possible values M(k) = -N(k) -zO2|@S,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Ra/Ukv_ v
% and THETA is a vector of angles. R and THETA must have the same !\#_Jw%y
% length. The output Z is a matrix with one column for every (N,M) <[J[idY1he
% pair, and one row for every (R,THETA) pair. _s$_Sa ;
% P<2+L|X?}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7kK #\dI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6uKMCQ=h
% with delta(m,0) the Kronecker delta, is chosen so that the integral -0eq_+oQ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
-0Tnh;&=
% and theta=0 to theta=2*pi) is unity. For the non-normalized f\1A!Yp
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [NIlbjYH
% f%)zg(YlO
% The Zernike functions are an orthogonal basis on the unit circle. lz0TK)kuC
% They are used in disciplines such as astronomy, optics, and RQB]/D\BO
% optometry to describe functions on a circular domain. )VK }m9Ae
% iy\nio`
% The following table lists the first 15 Zernike functions. 7Irau_
% k@D0 {z
% n m Zernike function Normalization 1s*.A6EP"
% -------------------------------------------------- p,<&zHb>K
% 0 0 1 1 ?D)<,
% 1 1 r * cos(theta) 2 :@xm-.D
% 1 -1 r * sin(theta) 2 M9f?q.Bv
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?$Wn!"EC8
% 2 0 (2*r^2 - 1) sqrt(3) )wtaKF.-
% 2 2 r^2 * sin(2*theta) sqrt(6) KkMay
% 3 -3 r^3 * cos(3*theta) sqrt(8) =!UR=Hq
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "ZHtR/;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8dOo Q
% 3 3 r^3 * sin(3*theta) sqrt(8) C*te^3k>B
% 4 -4 r^4 * cos(4*theta) sqrt(10) !.<T"8BUpv
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3!o4)yJWx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \^K&vW;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \zkw2*t
% 4 4 r^4 * sin(4*theta) sqrt(10) (zYy}g#n
% -------------------------------------------------- $W42vjr4
% )Vk6;__
% Example 1: >x@P|\
% \mN[gT}LHm
% % Display the Zernike function Z(n=5,m=1) "SoHt]%#
% x = -1:0.01:1; M4LktR-[
% [X,Y] = meshgrid(x,x); +P`(Rf"luu
% [theta,r] = cart2pol(X,Y); !lmWb-v%36
% idx = r<=1; s;YKeE!8
% z = nan(size(X)); rf9_eP
% z(idx) = zernfun(5,1,r(idx),theta(idx)); h2;z4
% figure rJ'I>Q~x6
% pcolor(x,x,z), shading interp )g@S%Yu
% axis square, colorbar 5;TuVU.8Q
% title('Zernike function Z_5^1(r,\theta)') ^Ori|
4}'
% 1fL<&G
% Example 2: >7U>Yh
% 7W9d6i)
% % Display the first 10 Zernike functions kF V7l
% x = -1:0.01:1; $O:w(U
% [X,Y] = meshgrid(x,x); =`C4qC_
% [theta,r] = cart2pol(X,Y); Qc{RaMwD
% idx = r<=1; cM &'[CI
% z = nan(size(X)); .`Zf}[5[
% n = [0 1 1 2 2 2 3 3 3 3]; =KX<_;E
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; cQZ652F9
% Nplot = [4 10 12 16 18 20 22 24 26 28]; n1:v HBM@\
% y = zernfun(n,m,r(idx),theta(idx)); AdoZs8Q
% figure('Units','normalized') 2vKx]w
% for k = 1:10 dd7 =)XT+
% z(idx) = y(:,k); k6?cP0I)5
% subplot(4,7,Nplot(k)) 9f}XRz
% pcolor(x,x,z), shading interp b }zBn8l
% set(gca,'XTick',[],'YTick',[]) fd8#Ng"1
% axis square 8C.!V =@\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SHqyvF
% end +MO E
% TQ1WVq
}*
% See also ZERNPOL, ZERNFUN2. nyT[^n
xQlT%X;'
r<L#q)]
% Paul Fricker 11/13/2006 SLk2X;c]o
Oz:ZQ M
JK~ m(oQ
~j @UlP
bn 4
&O
% Check and prepare the inputs: HrqF![_
% ----------------------------- 8h?X!2Nq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) MdhT!?
error('zernfun:NMvectors','N and M must be vectors.') ^,2c-
end dNVv4{S
=!-5+I#e
.)8
if length(n)~=length(m) 0v"&G<J
error('zernfun:NMlength','N and M must be the same length.') D)&o8D`
end H^CilwD158
[7"}=9
?SUQk55w
n = n(:); > 3 Ko.3&
m = m(:); uJ'9R`E ]1
if any(mod(n-m,2)) }NX\~S"
error('zernfun:NMmultiplesof2', ... %7`d/dgR
'All N and M must differ by multiples of 2 (including 0).') 5FuK \y
end +
>sci
5urE
~B@}R
if any(m>n) \kwe51MQ
error('zernfun:MlessthanN', ... 5(}H
?
'Each M must be less than or equal to its corresponding N.') 12r` )
end S+*cbA{J|
s%dF~DSK
y=o=1(
if any( r>1 | r<0 ) iiwpSGFl]
error('zernfun:Rlessthan1','All R must be between 0 and 1.') REx[`x,GUh
end |qL;Nu,d
\!X?zR_
(
ji_o^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {qAu/ixp
error('zernfun:RTHvector','R and THETA must be vectors.') -v*x V;[
end hrlCKL&
!=M/j}
Z oTNm
r = r(:); k`IrZHMw
theta = theta(:); j-P^Zv};u
length_r = length(r); 5K(n3?1z)
if length_r~=length(theta) ]b\WaS8I
error('zernfun:RTHlength', ... [>uwk``_
'The number of R- and THETA-values must be equal.') f
sX;Nj]
end x[m'FsR4
.xv^G?GG
H5q:z=A
% Check normalization: S1>Z6
% -------------------- 9XN~Ln@}
if nargin==5 && ischar(nflag) jg^^\n
isnorm = strcmpi(nflag,'norm'); 0O['w<_
if ~isnorm 2wOy}:
error('zernfun:normalization','Unrecognized normalization flag.') 0N1' $K$\
end (j`l5r#X#/
else [xS5z1;
isnorm = false; \R;K>c7=
end T.euoFU{Z
s{% fi*
wL|7mMM,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "11j$E9#\n
% Compute the Zernike Polynomials 0XQ-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <\xQ7|e
tYI]=:
M7pvxChA
% Determine the required powers of r: |x[$3R1@
% ----------------------------------- ht$ WF
m_abs = abs(m); B#H2RTc
rpowers = []; L3' \r
for j = 1:length(n) "]9_Fv
rpowers = [rpowers m_abs(j):2:n(j)]; 'v`~(9'Rcj
end R mgxf/
rpowers = unique(rpowers); H!^C 2
;op'V6iG
V?WMj
$l<
% Pre-compute the values of r raised to the required powers, 6A@Lj*:2m
% and compile them in a matrix: zrTY1Asw;4
% ----------------------------- |<2JQ[]
if rpowers(1)==0 nR#a)et
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kOzt"t&