下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )m'_>-`^:
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, c:6w >:
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?hmb"^vlG
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,9pi9\S
0K2[E^.WN
5&kR1Bp#-
<R(2 9QN
Tk!b`9
function z = zernfun(n,m,r,theta,nflag) ~ZNhU;%YW
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4bBxZY
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N EsWszpRqb
% and angular frequency M, evaluated at positions (R,THETA) on the CS{9|FNz
% unit circle. N is a vector of positive integers (including 0), and \l2 s^7G_
% M is a vector with the same number of elements as N. Each element [>:gwl
_\
% k of M must be a positive integer, with possible values M(k) = -N(k) bn`zI~WS
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 4eEs_R
% and THETA is a vector of angles. R and THETA must have the same =_H39)|T
% length. The output Z is a matrix with one column for every (N,M) :mrGB3x{
% pair, and one row for every (R,THETA) pair. kwL)&@
% &wuV}S7
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )q^vitkjup
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q"Md)?5N
% with delta(m,0) the Kronecker delta, is chosen so that the integral y|dXxd9
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d<Os TA
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8<kme"%s
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '=H^m D+gl
% ?>y-5B[K/(
% The Zernike functions are an orthogonal basis on the unit circle. u J`&hX
% They are used in disciplines such as astronomy, optics, and )1vojp
4Za
% optometry to describe functions on a circular domain. ~ YK<T+
% #{M
-3
% The following table lists the first 15 Zernike functions. vVW=1(QWI#
% @5y(>>C}8%
% n m Zernike function Normalization z~H Gc"~
% -------------------------------------------------- Wj:QC<5
v
% 0 0 1 1 )^\='(s
% 1 1 r * cos(theta) 2 tTt3D]h(
% 1 -1 r * sin(theta) 2 3+-(;>>\
% 2 -2 r^2 * cos(2*theta) sqrt(6) %5G BMMn
% 2 0 (2*r^2 - 1) sqrt(3) lnDDFsA
% 2 2 r^2 * sin(2*theta) sqrt(6) [&CM-`
N
% 3 -3 r^3 * cos(3*theta) sqrt(8) Q
8rtZ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) O i0;.<kX
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) +V@=G &Ou0
% 3 3 r^3 * sin(3*theta) sqrt(8) kYB
<FwwB
% 4 -4 r^4 * cos(4*theta) sqrt(10) /;rN/ot2o
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )DmiN ^:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) r?!xL\C\
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m-8 9nOls
% 4 4 r^4 * sin(4*theta) sqrt(10) ,}tdfkZFYl
% -------------------------------------------------- tA-B3 ]
% 9oP{Al
% Example 1: skz]@{38
% f~FehN7
% % Display the Zernike function Z(n=5,m=1) (U_Q7hja?
% x = -1:0.01:1; 'pY;]^M
% [X,Y] = meshgrid(x,x); ~
ZL`E
% [theta,r] = cart2pol(X,Y); Z0eBx
% idx = r<=1; mi<D
bnou
% z = nan(size(X)); 9|?Lz
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !Blk=L+p
% figure wYA/<0'yH
% pcolor(x,x,z), shading interp |{)xC=
% axis square, colorbar el?V2v[
% title('Zernike function Z_5^1(r,\theta)') 5j,qAay9
% ,-3(^d\1F
% Example 2: ;q; C^l
% `4H9f&8(
% % Display the first 10 Zernike functions A+*oT(`
% x = -1:0.01:1; \83A|+k
% [X,Y] = meshgrid(x,x); 8 tygs
% [theta,r] = cart2pol(X,Y); 50ew/fZj|
% idx = r<=1; %^=!s
% z = nan(size(X)); -1
% n = [0 1 1 2 2 2 3 3 3 3]; <cv1$
x ~P
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; '$XHRS/q]
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Bh,)5E^m
% y = zernfun(n,m,r(idx),theta(idx)); +MZO%4
% figure('Units','normalized') /iy*3P,`
% for k = 1:10 5^K#Tj ;2
% z(idx) = y(:,k); ~H|LWCU)K8
% subplot(4,7,Nplot(k)) lo UwRz
% pcolor(x,x,z), shading interp SP*JleQN
% set(gca,'XTick',[],'YTick',[]) d?M!acB
% axis square bmVgTm&
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) qH
Ga
% end ;Uqx&5P}
% 'e>sHL
% See also ZERNPOL, ZERNFUN2. DRW.NL o
2c~?UK[1
s#4ew}
% Paul Fricker 11/13/2006 !mxh]x<e
O;0<^M/0G
y)/$ge_U
]jVSsSv
mvA xx`jc
% Check and prepare the inputs: bepYeT
% ----------------------------- QHzX
5$IM
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k,R~oSA'n
error('zernfun:NMvectors','N and M must be vectors.') '<D `:srV
end to!W={S<ol
<,pLW~2-"
FPMSaN P
if length(n)~=length(m) $',GkK{NX
error('zernfun:NMlength','N and M must be the same length.') \+Rwm:lI
end Kt90mA
R_Gq8t$
8<-oJs_o+
n = n(:); (L0hS'
m = m(:); JXY!c\,
if any(mod(n-m,2)) a^XTW7]r
error('zernfun:NMmultiplesof2', ... ;WS7.
'All N and M must differ by multiples of 2 (including 0).') \ ~LU 'j
end 5'kTe=
@b!R2Yq
32 1={\X
if any(m>n) I4<{R
error('zernfun:MlessthanN', ... HcBH!0
'Each M must be less than or equal to its corresponding N.') {{]=zt|69
end @x=BJuUuX
PF'5z#] NP
`F2*o47|t
if any( r>1 | r<0 ) f1Yv hvWL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') siRnH(^J
end h#@4@x{
Ie2w0Cs28
gl9pgY1ni
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I^M#[xA
error('zernfun:RTHvector','R and THETA must be vectors.') 11B{gUv.]
end {wpMg
V8nz-DL{
6t_ 3%{
r = r(:); !k:zLjtp
theta = theta(:); T^'*_*m
length_r = length(r); %89"A'g
if length_r~=length(theta) {V%%^Zhwy
error('zernfun:RTHlength', ... 8L7Y
A)u
'The number of R- and THETA-values must be equal.') EFRZ% Y
end 0r0\b*r
Lz9$,Y[
)l!J$X+R
% Check normalization: hB
P$9GR
% -------------------- )4!CR /ao
if nargin==5 && ischar(nflag) rysP)e
isnorm = strcmpi(nflag,'norm'); + 9\:$wMN
if ~isnorm NoJnchiU
error('zernfun:normalization','Unrecognized normalization flag.') +H[}T ]
end Ok}{jwJ%W;
else FI?gT
isnorm = false; >J^7}J
end NIGB[2V(
V6@*\+:3)
J|gdO+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yN 9$gfJC^
% Compute the Zernike Polynomials -uv
9(r\P
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M.xhVgFf)
OX)#F'Sl}
7m|`tjQ1
% Determine the required powers of r: L,C? gd@"
% ----------------------------------- Tn4W\?R
m_abs = abs(m); !paN`Fz\a
rpowers = []; m4Phn~>Gg
for j = 1:length(n) 6\,DnO
rpowers = [rpowers m_abs(j):2:n(j)]; ,zAK3d&hj
end }zkL[qu;
rpowers = unique(rpowers); >W`S(a Mn
CN\|_y
C2+{U
% Pre-compute the values of r raised to the required powers, mP9cBLz
% and compile them in a matrix: 22)0zY%\
% ----------------------------- Jh37pI
if rpowers(1)==0 b$dJ?%W
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);
E
fP>O
rpowern = cat(2,rpowern{:}); 3)6+1Yc
rpowern = [ones(length_r,1) rpowern]; uSABh^
else B;xZ%M]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0V<Aub[${
rpowern = cat(2,rpowern{:}); $Cz1C
end c=b+g+*xd
rnnX|}J
[NHg&R H
% Compute the values of the polynomials: |. J,8~x
% -------------------------------------- - *:p.(c
y = zeros(length_r,length(n)); SX1X<9
for j = 1:length(n) t2=a(N-/,
s = 0:(n(j)-m_abs(j))/2; 8O~0RYk
pows = n(j):-2:m_abs(j); gW%pM{PW
for k = length(s):-1:1 TA Ftcs:
p = (1-2*mod(s(k),2))* ... {V}t'x`4c
prod(2:(n(j)-s(k)))/ ... &?SX4c~?u
prod(2:s(k))/ ... KKLR'w,A>
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /Jh1rck
prod(2:((n(j)+m_abs(j))/2-s(k))); 7]p>XAb
idx = (pows(k)==rpowers); <e;jWK
y(:,j) = y(:,j) + p*rpowern(:,idx); EfFz7j&X
end Gx.P]O 3
{I4%
if isnorm v2Dt3$@H6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4cott^K.
end +J"' 'cZ
end [dl+:P:zc
% END: Compute the Zernike Polynomials Xl#Dw bx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M0RRmW@f.a
]kRI}Om2
bRWIDPh
% Compute the Zernike functions: 3Bejp+xX
% ------------------------------ fZ[kh{|
idx_pos = m>0; Vd,' s
idx_neg = m<0; py]KTRzy
gh TcB
[-4KY4R
z = y; -M6L.gi)oJ
if any(idx_pos) wAw42{M
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8s<^]sFP
end A'GlCp
if any(idx_neg) 92ZWU2"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); w'A tf
end :d.1;st
B1E$v(P3M
N*Yy&[
% EOF zernfun O]t\B*%}