切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9525阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, f}t8V% ^E  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, AGGT] 58|  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Miz?t*|{[  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? n'@*RvI:  
    RG.wu6Av  
    "U-dw%b}b  
    o1?S*  
    , .E>  
    function z = zernfun(n,m,r,theta,nflag) mKBO<l{S  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ij,Rq`}l  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ka_(8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ubv>* iO  
    %   unit circle.  N is a vector of positive integers (including 0), and bq2f?uD-}  
    %   M is a vector with the same number of elements as N.  Each element E/zclD5S  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3rY\y+m  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, fC".K Yjp  
    %   and THETA is a vector of angles.  R and THETA must have the same DNr*|A2<  
    %   length.  The output Z is a matrix with one column for every (N,M) n?778Wo}  
    %   pair, and one row for every (R,THETA) pair. k<|}&<h  
    % >xXC=z+g]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike RGL2S]UFs  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), zI0d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |R2p^!m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l,*5*1lM  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @^R l{p  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _X|prIOb=  
    % J5(^VKj  
    %   The Zernike functions are an orthogonal basis on the unit circle. .DI?-=p|_#  
    %   They are used in disciplines such as astronomy, optics, and ?N(<w?Gat  
    %   optometry to describe functions on a circular domain. wB bCGU  
    % d'"|Qg_'  
    %   The following table lists the first 15 Zernike functions. d_Jj&:"l  
    % Qvty;2$o@  
    %       n    m    Zernike function           Normalization W4,'?o  
    %       --------------------------------------------------  !TivQB  
    %       0    0    1                                 1 W*Si"s2  
    %       1    1    r * cos(theta)                    2 Ze[,0Y!u&  
    %       1   -1    r * sin(theta)                    2 `{|w*)mD  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0'HQ=pP  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *7E#=xb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) T(qTipq0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P2@Z7DhQ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Wb>;L@jB7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @mJ~?d95v  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) yM`u]p1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d@ >i=l [  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L+*:VP6WD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8ok=&Gq4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) OIJT~Z}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @H<*|3J  
    %       -------------------------------------------------- #N"u 0  
    % 2n$Wey[  
    %   Example 1: |Iwglb!k  
    % 4&=</ok6`0  
    %       % Display the Zernike function Z(n=5,m=1) uIbAlE  
    %       x = -1:0.01:1; <=V{tl  
    %       [X,Y] = meshgrid(x,x); E%DT;1  
    %       [theta,r] = cart2pol(X,Y); 9|lLce$  
    %       idx = r<=1;  4=ovm[  
    %       z = nan(size(X)); -pIz-*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); W7Y@]QMX  
    %       figure S2e3d  
    %       pcolor(x,x,z), shading interp =kfa1kD&{  
    %       axis square, colorbar 6UqAs<c9  
    %       title('Zernike function Z_5^1(r,\theta)') 71y{Dwya  
    % <zL_6Y2  
    %   Example 2: Ix6\5}.c9  
    % ^;'8yE/  
    %       % Display the first 10 Zernike functions 8>t,n,k  
    %       x = -1:0.01:1; /OWwC%tM/  
    %       [X,Y] = meshgrid(x,x); Q#G xo  
    %       [theta,r] = cart2pol(X,Y); 8}m J )9<7  
    %       idx = r<=1; ol*,&C:{  
    %       z = nan(size(X)); +C8O"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Eamt_/LKf  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :09NZ !!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9OV@z6  
    %       y = zernfun(n,m,r(idx),theta(idx)); |$b8(g$s)  
    %       figure('Units','normalized') F_(~b  
    %       for k = 1:10  0U@#&pUc  
    %           z(idx) = y(:,k); ~1%*w*  
    %           subplot(4,7,Nplot(k)) ]c~yMA+]FZ  
    %           pcolor(x,x,z), shading interp L FkDb}  
    %           set(gca,'XTick',[],'YTick',[]) K^U ="  
    %           axis square B=r DU$z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O7Jux-E1C  
    %       end 2t9UJu4  
    % OemY'M? ZQ  
    %   See also ZERNPOL, ZERNFUN2. p X{wEc6}  
    L?j0t*do  
    A4!X{qUT-  
    %   Paul Fricker 11/13/2006 yAryw{(  
    fJ[ ^_,O  
    .Pponmy  
    <@"rI>=  
    (<r)xkn  
    % Check and prepare the inputs: } Xo#/9  
    % ----------------------------- 7%i'F=LzT  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B`Z3e%g#  
        error('zernfun:NMvectors','N and M must be vectors.') LN WS  
    end b^Z2Vf:k]  
    ea"X$<s>-  
    n2bhCd]j<b  
    if length(n)~=length(m) L@{'J  
        error('zernfun:NMlength','N and M must be the same length.') IQ @9S  
    end TvDSs])  
    h(HpeN%`#  
    /"8e,  
    n = n(:); dGYR  'x  
    m = m(:); M5ZH6X@5  
    if any(mod(n-m,2)) 5[jcw`  
        error('zernfun:NMmultiplesof2', ... 7K\v=  
              'All N and M must differ by multiples of 2 (including 0).') /=S@3?cQAB  
    end ~j'D%:[+VH  
    22ON=NN  
    k_,7#:+  
    if any(m>n) Xx{| [2`  
        error('zernfun:MlessthanN', ... ICN>kJ\;M  
              'Each M must be less than or equal to its corresponding N.') ;[}OZt  
    end &T,|?0>~=J  
    4{YA['  
    ?Ts]zO%%Z  
    if any( r>1 | r<0 ) EwzR4,r\M  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') k9}8xpH  
    end k~8-E u1  
    N.JR($N$  
    {Nl?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k sv]  
        error('zernfun:RTHvector','R and THETA must be vectors.') Iw`tb N L[  
    end o1ZVEvp  
    !0,q[|m  
    {s mk<NL  
    r = r(:); V1]GOmXz  
    theta = theta(:); [f_^B U&  
    length_r = length(r); z< L2W",  
    if length_r~=length(theta) U3{<+vSR`  
        error('zernfun:RTHlength', ... KEOk%'c,  
              'The number of R- and THETA-values must be equal.') JD$g%hcVZa  
    end 1%+-}yo<  
    7#R)+  
    ;d6Dm)/(  
    % Check normalization: r%.k,FzGZY  
    % -------------------- eTa_RO,x  
    if nargin==5 && ischar(nflag) i<"lXu  
        isnorm = strcmpi(nflag,'norm'); +-j-)WU?,  
        if ~isnorm G ?$ @6  
            error('zernfun:normalization','Unrecognized normalization flag.') -Q n-w3~&  
        end sG`x |%t  
    else D.a>i?W  
        isnorm = false; dipfsH]p  
    end OT 0c5x  
    >5 -1?vi  
    )q=F_:$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G!Zb27u+  
    % Compute the Zernike Polynomials y!=,u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bTum|GWf  
    wb$uq/|  
    mXRkR.zu+  
    % Determine the required powers of r: q 6>eb  
    % ----------------------------------- .$&^yp  
    m_abs = abs(m); :0r,.)  
    rpowers = []; #d@wjQ0DW  
    for j = 1:length(n) Ol>q(-ea  
        rpowers = [rpowers m_abs(j):2:n(j)]; U!(.i1^n  
    end 5s[nE\oaG  
    rpowers = unique(rpowers); pp@ Owpb  
    i1B!oZ3q  
    f7x2"&?vg  
    % Pre-compute the values of r raised to the required powers, 7_I83$p'  
    % and compile them in a matrix: Ek L2nI  
    % ----------------------------- %+~\I\)1  
    if rpowers(1)==0 D~C'1C&W  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ab6I*DbF  
        rpowern = cat(2,rpowern{:}); $%~ JG(  
        rpowern = [ones(length_r,1) rpowern]; zgwez$  
    else v6*0@/L M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RCWmdR#}V  
        rpowern = cat(2,rpowern{:}); q^aDZzx,z  
    end : "85w#r  
    C8-7XQ=B:b  
    3k1e  
    % Compute the values of the polynomials: JIySe:p3  
    % -------------------------------------- w)EY j+L  
    y = zeros(length_r,length(n)); AQ'%}(#0  
    for j = 1:length(n) fp [gKRSF  
        s = 0:(n(j)-m_abs(j))/2; ]}v]j`9m%  
        pows = n(j):-2:m_abs(j); <A,V/']  
        for k = length(s):-1:1 pkn^K+<n,  
            p = (1-2*mod(s(k),2))* ... {:1j>4m 2  
                       prod(2:(n(j)-s(k)))/              ... ` g]  
                       prod(2:s(k))/                     ... tAv3+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  QHNyH  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Tc^ 0W=h  
            idx = (pows(k)==rpowers); n\"6ol}>E  
            y(:,j) = y(:,j) + p*rpowern(:,idx); h1_Z&VJ  
        end  i;O_B5 d  
         *{ rorir  
        if isnorm F rc  kA  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (tg.]q_=u  
        end tpJA~!mG3  
    end Jq/itsg  
    % END: Compute the Zernike Polynomials &e^;;<*w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %,@pV%2  
    UA$IVK&{  
    Z*k(Q5&U  
    % Compute the Zernike functions: .a@12J(I  
    % ------------------------------  @lN\.O  
    idx_pos = m>0; RcYUO*  
    idx_neg = m<0; \Bo$ 3  
    H!IVbL`a{  
    gC1LQ!:;Oi  
    z = y; u9"=t  
    if any(idx_pos) ZO<,V  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); OFtaOjsyUa  
    end &ksuk9M  
    if any(idx_neg) >PA*L(Dh%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,U\ s89  
    end a}y b~:TC  
    `>sOOA  
    =dGp&9K,fw  
    % EOF zernfun 5MnP6(3$  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Kz;Ar&^`N  
    h?TIxo:6/  
    DDE还是手动输入的呢? diXWm-ZKL  
    B*G]Dr)e  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究