切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9163阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )ib7K1GJ  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, OZa88&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ~JAjr(G#o  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AzxL%,_  
    ]L$4P y  
    `,Xb8^M2  
    KjBOjD'I  
    keaj3#O  
    function z = zernfun(n,m,r,theta,nflag) &0JK38(  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. k)|'JDm  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HLM;EZ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;m' '9z)2  
    %   unit circle.  N is a vector of positive integers (including 0), and { v,{x1  
    %   M is a vector with the same number of elements as N.  Each element ' *}^@[&  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 2+,5p  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u]P03B  
    %   and THETA is a vector of angles.  R and THETA must have the same _yNT=#/  
    %   length.  The output Z is a matrix with one column for every (N,M) luibB&p1  
    %   pair, and one row for every (R,THETA) pair. zuk"  
    % Ut]2`8-  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sRi?]9JIl  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TF%3uH  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral oPCrD.s  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -% >8.#~G  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized E2kW=6VO>|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `bzr_fJ  
    % {>wI8  
    %   The Zernike functions are an orthogonal basis on the unit circle. T<f2\q8Uo=  
    %   They are used in disciplines such as astronomy, optics, and tCX9:2c  
    %   optometry to describe functions on a circular domain. | O57N'/  
    % ;CA ?eI  
    %   The following table lists the first 15 Zernike functions. pF|8OB%  
    % qZXyi'(d  
    %       n    m    Zernike function           Normalization IhUW=1& J  
    %       -------------------------------------------------- <nj IXa{  
    %       0    0    1                                 1 Cca6L9%  
    %       1    1    r * cos(theta)                    2 K2*1T+?X  
    %       1   -1    r * sin(theta)                    2 n"mJEkHE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D!X>O}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :G^"e  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JOJh,8C) 6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >~h>#{&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) VPWxHVf  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) u/_Gq[Q,u  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) zwMQXI'k83  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %I_&Ehu  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ==nYe { 2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9!5b2!JL  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -E6Jf$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) I0I_vu  
    %       -------------------------------------------------- 4sj9Z:  
    % m &9)'o  
    %   Example 1: #D= tX  
    % hK:#+hg,  
    %       % Display the Zernike function Z(n=5,m=1) +xn&K"]:3  
    %       x = -1:0.01:1; Jz=;mrW  
    %       [X,Y] = meshgrid(x,x); Y=5!QLV4  
    %       [theta,r] = cart2pol(X,Y); g4zT(,ZY  
    %       idx = r<=1; 2^cAK t6bC  
    %       z = nan(size(X)); w/qQ(]n8  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); g!p+rq_f  
    %       figure se~ *<5  
    %       pcolor(x,x,z), shading interp iSOD&J_  
    %       axis square, colorbar n wY2BIB  
    %       title('Zernike function Z_5^1(r,\theta)') PXOrOK  
    % +F1]M2p]  
    %   Example 2: 0\V\qAk  
    % eA~J4k_  
    %       % Display the first 10 Zernike functions }UyzM y,  
    %       x = -1:0.01:1; p#ZMABlE,P  
    %       [X,Y] = meshgrid(x,x); TvQWdX=  
    %       [theta,r] = cart2pol(X,Y); Z|]l"W*w  
    %       idx = r<=1; [P.@1mV  
    %       z = nan(size(X)); C*"Rd   
    %       n = [0  1  1  2  2  2  3  3  3  3]; vs5 D:cZ}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; `Mo~EHso.  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; EZ:I$X  
    %       y = zernfun(n,m,r(idx),theta(idx)); &i4 (s%z#  
    %       figure('Units','normalized') 6&g!ZE'G  
    %       for k = 1:10 k\4g|Lya  
    %           z(idx) = y(:,k); Ytl:YzXCi  
    %           subplot(4,7,Nplot(k)) vN{vJlpY  
    %           pcolor(x,x,z), shading interp :GN)7|:  
    %           set(gca,'XTick',[],'YTick',[]) OwNAN  
    %           axis square #]?,gwvTf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F7k4C2r  
    %       end .a 'ETNY:>  
    % i;E9Za W  
    %   See also ZERNPOL, ZERNFUN2. 2N6Pa(6  
    c28oLT1|D  
    0!3!?E <  
    %   Paul Fricker 11/13/2006 "U/NMGMj  
    uKLOh<oio  
    rnzsfr-|(2  
    5pNvzw  
    8.Pcr<  
    % Check and prepare the inputs: {q5hF5!`)  
    % ----------------------------- Y;a6:>D%cT  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x]yHBc  
        error('zernfun:NMvectors','N and M must be vectors.') #J%h!#3g  
    end dg!1wD   
    X+(aQ >y  
    HB/ _O22  
    if length(n)~=length(m) PO=ZxG   
        error('zernfun:NMlength','N and M must be the same length.') >#${.+y  
    end kphy7> Km  
    5n|MA  
    J@u!S~&r  
    n = n(:); |Fh`.iT%c  
    m = m(:); @B>%B EC  
    if any(mod(n-m,2)) puf;"c6e'  
        error('zernfun:NMmultiplesof2', ... 44/ 0}v]  
              'All N and M must differ by multiples of 2 (including 0).') 4fU5RB7%  
    end x|~D(zo  
    EkfGw/WDw  
    _umO)]Si  
    if any(m>n) 1xFhhncf  
        error('zernfun:MlessthanN', ... P:zEx]Y%  
              'Each M must be less than or equal to its corresponding N.') yK @X^jf  
    end PBP J/puW  
    } (GQDJp  
    6`$,-(J=  
    if any( r>1 | r<0 ) {ra Esb-X  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') E| 8s2t  
    end IdC k  
    n WO~v{h3J  
    ^<5^9]x  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %n V@'3EI  
        error('zernfun:RTHvector','R and THETA must be vectors.') ZT3jxwe  
    end duiKFNYN  
    hQW#a]]V:  
    ><Mbea=U+  
    r = r(:); ]i_):@  
    theta = theta(:); R!M|k%(  
    length_r = length(r); #L+s%OJ`  
    if length_r~=length(theta) ^5zS2nm  
        error('zernfun:RTHlength', ... 8Vg`;_-  
              'The number of R- and THETA-values must be equal.') "_% 0|;  
    end RIVN>G[;L  
    wtgO;w  
    `[W)6OUCx}  
    % Check normalization: |'l* $  
    % -------------------- TTw~.x,  
    if nargin==5 && ischar(nflag) ="[+6X  
        isnorm = strcmpi(nflag,'norm'); jrMGc=KL  
        if ~isnorm JY,l#?lM{  
            error('zernfun:normalization','Unrecognized normalization flag.') brhJ&|QDE  
        end sO f)/19  
    else zs]>XO~Jg  
        isnorm = false; 94>7-d  
    end =4%WOI  
    /[)P^L`  
    s-YV_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ",,qFM!  
    % Compute the Zernike Polynomials y^Xxa'y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D3 Ea2}8  
    d'eM(4R@  
    *dn-,Q%`  
    % Determine the required powers of r: )F9%^a(  
    % ----------------------------------- V1+o3g{}  
    m_abs = abs(m); W} +6L|  
    rpowers = []; -:1Gr8  
    for j = 1:length(n) ]V[  
        rpowers = [rpowers m_abs(j):2:n(j)]; 3 T#3<gqM[  
    end 6T'43h. :  
    rpowers = unique(rpowers); I{P$B-  
    :WKyEt!3  
    ~TmHnAz  
    % Pre-compute the values of r raised to the required powers, oz5lt4  
    % and compile them in a matrix: UVuuIW0k  
    % ----------------------------- YUE 1 '}  
    if rpowers(1)==0 ]8j5Ou6#y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z~R/ p;@  
        rpowern = cat(2,rpowern{:}); Z( clw  
        rpowern = [ones(length_r,1) rpowern]; XS~w_J#q  
    else  9%hB   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]KII?{ <k  
        rpowern = cat(2,rpowern{:}); IU"!oM^  
    end sT8kVN|Uv  
    FU3IK3}  
    Q?'W >^*J  
    % Compute the values of the polynomials: <PA$hTYM  
    % -------------------------------------- _:z;j{@4  
    y = zeros(length_r,length(n)); Iw-6Z+ 94  
    for j = 1:length(n) &[\arwe)  
        s = 0:(n(j)-m_abs(j))/2; F u=VY{U4  
        pows = n(j):-2:m_abs(j); jI pcMN<  
        for k = length(s):-1:1 K^p"Z$$  
            p = (1-2*mod(s(k),2))* ... kys-~&@+  
                       prod(2:(n(j)-s(k)))/              ... *h8XbBZH  
                       prod(2:s(k))/                     ... Y-9j2.{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cyn]>1ZM  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $7ME a"a  
            idx = (pows(k)==rpowers); =$`")3y3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &5CeRx7%  
        end w@D@,q'x  
         :=KGQ3V~eK  
        if isnorm t5[JN:an  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `>HthK  
        end >?\ !k c  
    end ku8Z;ONeH  
    % END: Compute the Zernike Polynomials 7VD7di=D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |6G5  ?|  
    l%V}'6T  
    5 BG&r*U  
    % Compute the Zernike functions: 8IcQpn#  
    % ------------------------------ _34YH5  
    idx_pos = m>0; #nL0Hx7]E  
    idx_neg = m<0; {twf7.eY  
    Y{B_OoTun  
    W5yu`Br  
    z = y; y")>"8H  
    if any(idx_pos) ;:YjgZ:+Q]  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =|^W]2W$  
    end  Z~:lfCK`  
    if any(idx_neg) )%W2XvG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jWjK-q@Y  
    end =njj.<BO  
    U-:Z ^+Y  
    ^E,Uc K;  
    % EOF zernfun VZl0)YLK  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  VdgPb (  
    {DR+sE  
    DDE还是手动输入的呢? -0{WB(P  
    h9mR+ng*oD  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究