切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9512阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +smPR  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, [wjA8d.  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? m mu{K$9}I  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )<UNiC   
    hJkIFyQ{j  
    P,j)m\|  
    A>bo Xcr  
    %_(e{Mf)  
    function z = zernfun(n,m,r,theta,nflag) R8W{[@  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?r'rvu'/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0%cbno@1V  
    %   and angular frequency M, evaluated at positions (R,THETA) on the H8mmmt6g  
    %   unit circle.  N is a vector of positive integers (including 0), and mKvk6OC  
    %   M is a vector with the same number of elements as N.  Each element 3*/y<Z'H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $eCxpb..  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u1~H1 ]Ii  
    %   and THETA is a vector of angles.  R and THETA must have the same <omSK- T-  
    %   length.  The output Z is a matrix with one column for every (N,M) f*0[[J0]  
    %   pair, and one row for every (R,THETA) pair. (caxl^=  
    % GghZ".O  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nkG1&wiX  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jRm v~]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~Z=Q+'Hu0  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^I5k+cL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Z0`Bn5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. VEkv JX.  
    % ,@;",  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,?3r-bM  
    %   They are used in disciplines such as astronomy, optics, and ]L"jt8E  
    %   optometry to describe functions on a circular domain. jav7V"$  
    % 0/6f9A  
    %   The following table lists the first 15 Zernike functions. U,gg@!1GJo  
    % 5hr$tkk L  
    %       n    m    Zernike function           Normalization nVoL7ew+  
    %       -------------------------------------------------- `%ZM(9T  
    %       0    0    1                                 1 @a'Rn  
    %       1    1    r * cos(theta)                    2 `1=n H/E  
    %       1   -1    r * sin(theta)                    2 _s[ohMlh  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) -lQ8 &eB  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ^a0{"|Lq  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [i== Tp  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) az*c0Z<pl  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) j_H9l,V  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j2#RO>`,I  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) D|9xD  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) e4fh<0gX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8d?r )/~  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 6ey{+8  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) --6C>iY[&u  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) >gRb.-{ux  
    %       -------------------------------------------------- M4w,J2_8MK  
    % i%_W{;e  
    %   Example 1: 8oK*NB29  
    % Q bjO*:c4  
    %       % Display the Zernike function Z(n=5,m=1) f~%|Iu1ob  
    %       x = -1:0.01:1; -GJ~xcf0  
    %       [X,Y] = meshgrid(x,x); 3k(A&]~v  
    %       [theta,r] = cart2pol(X,Y); s1.EE|h,5  
    %       idx = r<=1;  ?12[8   
    %       z = nan(size(X)); R}_B\#Q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <tXk\ cOg  
    %       figure -N $4\yp  
    %       pcolor(x,x,z), shading interp {e~#6.$:  
    %       axis square, colorbar C jISU$O  
    %       title('Zernike function Z_5^1(r,\theta)') mhVdsa  
    % H(Pzo+k*  
    %   Example 2: 'i+j;.  
    % S3 12#X(%  
    %       % Display the first 10 Zernike functions `k2YH?  
    %       x = -1:0.01:1; U2<8U  
    %       [X,Y] = meshgrid(x,x); !0!m |^c5  
    %       [theta,r] = cart2pol(X,Y); K~Nx;{{d  
    %       idx = r<=1; _zt)c!  
    %       z = nan(size(X)); h*d1G9%Q1  
    %       n = [0  1  1  2  2  2  3  3  3  3]; pse$S=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~8:q-m_h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GB,f'Afl  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3w!8PPl  
    %       figure('Units','normalized') RT`.S uN  
    %       for k = 1:10 o]/*YaB2>  
    %           z(idx) = y(:,k); tf[)Q:|  
    %           subplot(4,7,Nplot(k)) CGw,RNV  
    %           pcolor(x,x,z), shading interp 3MX&%_wUhB  
    %           set(gca,'XTick',[],'YTick',[]) g?B4b7II  
    %           axis square StLFq6BO  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =Ot|d #_  
    %       end OD[q u  
    % D[/h7Ha  
    %   See also ZERNPOL, ZERNFUN2. RK )1@Tz7!  
    5<U:Yy  
    2(I S*idq  
    %   Paul Fricker 11/13/2006 o-I:p$B-  
    Q~k5 }n8  
    O]_a$U*6  
    ~'1gX`o:  
    @*e5(@R  
    % Check and prepare the inputs: C(CwsdlP  
    % ----------------------------- &?g!)O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?}g^/g !  
        error('zernfun:NMvectors','N and M must be vectors.') QNbV=*F?  
    end ,="hI:*<  
    Th_PmkvC  
    BSH2Kq  
    if length(n)~=length(m) 2ieyU5q7#  
        error('zernfun:NMlength','N and M must be the same length.') |P0!dt7sQ  
    end f8e :J#jbS  
    jQBL 8<  
    9*Q6/?v  
    n = n(:); V82HO{ D  
    m = m(:); CKI.\o  
    if any(mod(n-m,2)) ?}RPn f  
        error('zernfun:NMmultiplesof2', ... y>^FKN/  
              'All N and M must differ by multiples of 2 (including 0).') -\<\OV:c*  
    end unKPqc%q=n  
    )Cu2xRr^`  
    TB}6iIe  
    if any(m>n) {x{~%)-  
        error('zernfun:MlessthanN', ... ]A%]W^G  
              'Each M must be less than or equal to its corresponding N.') +Jm~Um!  
    end ) >te|@}o  
    "7q!u,u  
    }1 ,\ *)5  
    if any( r>1 | r<0 ) UpaF>,kM  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?wP/l  
    end `=V p 0tPI  
    7Q^p|;~a  
    A!cY!aQ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =kTHfdin&  
        error('zernfun:RTHvector','R and THETA must be vectors.') 6l'J!4*qY  
    end dd=ca0c7e  
    OUq%d8 W  
    }W)b  
    r = r(:); x(n|zp ("  
    theta = theta(:); Yt[LIn-v:  
    length_r = length(r); cgnMoBIc  
    if length_r~=length(theta) nW)?cQ I  
        error('zernfun:RTHlength', ... ZIN1y;dJ  
              'The number of R- and THETA-values must be equal.') /!?b&N/d)  
    end +T\<oj%}2  
    u*f`\vs  
    X1HEeJ|  
    % Check normalization: -Ew>3Q  
    % -------------------- C7O8B;  
    if nargin==5 && ischar(nflag) R_D&"&   
        isnorm = strcmpi(nflag,'norm'); 4a0Ud !Qcs  
        if ~isnorm +e^ CL#Gs  
            error('zernfun:normalization','Unrecognized normalization flag.') z3Yi$*q <  
        end qV9}N-sS  
    else et2;{Tb,5  
        isnorm = false; v w 6$v  
    end CBO*2?]s  
    #+QJ5VI :  
    (gnN </%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _dELVs7OL  
    % Compute the Zernike Polynomials IQ$!y,VJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AyWdJ<OU  
    uh2 F r  
    :zX^H9'E<(  
    % Determine the required powers of r: |sI@m@  
    % ----------------------------------- i=L 86Ks  
    m_abs = abs(m); tm/=Oc1p  
    rpowers = []; : tBe/(e4#  
    for j = 1:length(n) Ni8%K6]z  
        rpowers = [rpowers m_abs(j):2:n(j)]; t{g@z3  
    end L(bDk'zi  
    rpowers = unique(rpowers); X!:J1'FE  
    :pM)I5MN[  
    #K0/ >W  
    % Pre-compute the values of r raised to the required powers, <THw l/a  
    % and compile them in a matrix: +m]-)  
    % ----------------------------- S{?l/*Il*_  
    if rpowers(1)==0 j85B{Mab&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LofpBO6^  
        rpowern = cat(2,rpowern{:}); ^^&H:q  
        rpowern = [ones(length_r,1) rpowern]; =/}Rnl+c  
    else K\wu9z8M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \s%g'g;  
        rpowern = cat(2,rpowern{:}); "n]x%. *  
    end GMg! 2CIU  
    k,$/l1D  
    hP8w3gl_  
    % Compute the values of the polynomials: Zr1"'+-  
    % -------------------------------------- #q K.AZi  
    y = zeros(length_r,length(n)); JN:L%If  
    for j = 1:length(n) z Ohv>a  
        s = 0:(n(j)-m_abs(j))/2; -8l(eDm"m  
        pows = n(j):-2:m_abs(j); lX%-oRQ/os  
        for k = length(s):-1:1 wm^1Fn--  
            p = (1-2*mod(s(k),2))* ... VXiU5n^  
                       prod(2:(n(j)-s(k)))/              ... c]Gs{V]\  
                       prod(2:s(k))/                     ... T*mR9 8i  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... GZWqP M4S\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); `*[\b9>  
            idx = (pows(k)==rpowers); )^BZ,e  
            y(:,j) = y(:,j) + p*rpowern(:,idx); K\KQ(N8F  
        end x]yIe&*('  
         h<)ceD<,  
        if isnorm  5k@T{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T u%XhXl:j  
        end 6\u. [2lE^  
    end 0<:rp]<,  
    % END: Compute the Zernike Polynomials w>\oz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ]Tb?z&  
    T[^&ZS]s  
    hSxK*.W*3  
    % Compute the Zernike functions: <{8x-zbR+  
    % ------------------------------ EZ{{p+e ^  
    idx_pos = m>0; Zyr| J!VF  
    idx_neg = m<0; )b (+=  
    lwfM>%%N  
    :%33m'EV}  
    z = y; r>! @Z2%s  
    if any(idx_pos) QnOs8%HS-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); n|?sNM<J3  
    end 5x|$q kI  
    if any(idx_neg) IJKdVb~   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n:B){'S  
    end )X," NJG  
    5FuV=Yuc  
    w)* H&8h@  
    % EOF zernfun jl}!UG  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  %[~g84@  
    = \oW {?  
    DDE还是手动输入的呢? {[/A?AV;F  
    n"}*C|(k  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究