切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9251阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, pT1[<X!<s  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .YnFH$;$  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? tBT<EV{ G  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? l)w Hl%p  
    RE=+ Dz{  
    ivz>dJ?T  
    S:q3QgU=X  
    \nB8WSvk2W  
    function z = zernfun(n,m,r,theta,nflag) wm")[!h)v  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. oY|,GvCnK  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R8UYP=Kp  
    %   and angular frequency M, evaluated at positions (R,THETA) on the UybW26C;aU  
    %   unit circle.  N is a vector of positive integers (including 0), and Cc<,z*T  
    %   M is a vector with the same number of elements as N.  Each element Fxqp-}:  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -zO2|@S,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Ra/Ukv_v  
    %   and THETA is a vector of angles.  R and THETA must have the same !\#_Jw%y  
    %   length.  The output Z is a matrix with one column for every (N,M) <[J[idY1he  
    %   pair, and one row for every (R,THETA) pair. _s$_Sa ;  
    % P<2 +L|X?}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7kK #\dI  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6uKMCQ=h  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -0eq_+oQ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -0Tnh;&=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized f\1A! Yp  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [NIlbjYH  
    % f%)zg(YlO  
    %   The Zernike functions are an orthogonal basis on the unit circle. lz0TK)kuC  
    %   They are used in disciplines such as astronomy, optics, and RQB]/D\BO  
    %   optometry to describe functions on a circular domain. )VK }m9Ae  
    % iy\nio`  
    %   The following table lists the first 15 Zernike functions. 7Irau_  
    % k@D0 {z  
    %       n    m    Zernike function           Normalization 1 s*.A6EP"  
    %       -------------------------------------------------- p,<&zHb>K  
    %       0    0    1                                 1 ?D)<,  
    %       1    1    r * cos(theta)                    2 :@xm-.D  
    %       1   -1    r * sin(theta)                    2 M9f?q.Bv  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?$Wn!"EC8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )wtaKF.-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) KkMay  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =!UR=Hq  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "ZHtR/;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8dOo Q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C*te^3k>B  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !.<T"8BUpv  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3!o4)yJWx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  \^K&vW;  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \zkw2*t  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) (zYy }g#n  
    %       -------------------------------------------------- $W42vjr4  
    % )Vk6;__  
    %   Example 1: >x@P|\  
    % \mN[gT}LHm  
    %       % Display the Zernike function Z(n=5,m=1) "SoHt]%#  
    %       x = -1:0.01:1; M4LktR-[  
    %       [X,Y] = meshgrid(x,x); +P`(Rf"luu  
    %       [theta,r] = cart2pol(X,Y); !lmWb-v%36  
    %       idx = r<=1; s;YKeE!8  
    %       z = nan(size(X)); rf9_eP  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); h2;z 4  
    %       figure rJ'I>Q~x6  
    %       pcolor(x,x,z), shading interp )g@S%Yu  
    %       axis square, colorbar 5;TuVU.8Q  
    %       title('Zernike function Z_5^1(r,\theta)') ^Ori| 4}'  
    % 1fL<&G  
    %   Example 2: >7U>Yh  
    % 7W9d6i)  
    %       % Display the first 10 Zernike functions kF V7l  
    %       x = -1:0.01:1; $O:w(U  
    %       [X,Y] = meshgrid(x,x); =`C4qC _  
    %       [theta,r] = cart2pol(X,Y); Qc{RaMwD  
    %       idx = r<=1; cM&'[CI  
    %       z = nan(size(X)); .`Zf}[5[  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =KX<_;E  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; cQZ652F9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; n1:v HBM@\  
    %       y = zernfun(n,m,r(idx),theta(idx)); AdoZs8Q  
    %       figure('Units','normalized') 2 vKx]w  
    %       for k = 1:10 dd7 =)XT+  
    %           z(idx) = y(:,k); k6?cP0I)5  
    %           subplot(4,7,Nplot(k)) 9f}XRz  
    %           pcolor(x,x,z), shading interp b}zBn8l  
    %           set(gca,'XTick',[],'YTick',[]) fd8#Ng"1  
    %           axis square 8C.!V =@\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SHqyvF  
    %       end +MO E  
    % TQ1WVq }*  
    %   See also ZERNPOL, ZERNFUN2. nyT[^n  
    xQlT%X;'  
    r<L#q)]  
    %   Paul Fricker 11/13/2006 SLk2X;c]o  
    Oz:ZQ M  
    JK~ m(oQ  
    ~j @UlP  
    bn 4 &O  
    % Check and prepare the inputs: HrqF![_  
    % ----------------------------- 8h?X!2Nq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) MdhT!?  
        error('zernfun:NMvectors','N and M must be vectors.') ^,2c-  
    end dNV v4{S  
    =!-5+I#e  
    .)8   
    if length(n)~=length(m) 0v"&G<J  
        error('zernfun:NMlength','N and M must be the same length.') D)&o8D`  
    end H^CilwD158  
    [7"}=9  
    ?SUQk55w  
    n = n(:); >3 Ko.3&  
    m = m(:); uJ'9R`E ]1  
    if any(mod(n-m,2)) }NX\~S"  
        error('zernfun:NMmultiplesof2', ... %7`d/dgR  
              'All N and M must differ by multiples of 2 (including 0).') 5FuK\y  
    end + >sci  
    5urE  
     ~B@ }R  
    if any(m>n) \kwe51MQ  
        error('zernfun:MlessthanN', ... 5(}H ?  
              'Each M must be less than or equal to its corresponding N.') 12r` )  
    end S+*cbA{J|  
    s%dF~DSK  
    y=o=1(  
    if any( r>1 | r<0 ) iiwpSGFl]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') REx[`x,GUh  
    end |qL;Nu,d  
    \!X?zR_  
    ( ji_o^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {qAu/ixp  
        error('zernfun:RTHvector','R and THETA must be vectors.') -v*x V;[  
    end hrlCKL&  
    !=M/j}  
    Z oTNm  
    r = r(:); k`IrZHMw  
    theta = theta(:); j-P^Zv};u  
    length_r = length(r); 5K(n3?1z)  
    if length_r~=length(theta) ]b\WaS8I  
        error('zernfun:RTHlength', ... [>uwk``_  
              'The number of R- and THETA-values must be equal.') f sX;Nj]  
    end x[m'FsR4  
    .xv ^G?GG  
    H5 q:z=A  
    % Check normalization: S 1>Z6  
    % -------------------- 9XN~Ln@}  
    if nargin==5 && ischar(nflag) jg^^\n  
        isnorm = strcmpi(nflag,'norm'); 0O ['w<_  
        if ~isnorm 2wOy}:  
            error('zernfun:normalization','Unrecognized normalization flag.') 0N1' $K$\  
        end (j`l5r#X#/  
    else [xS5z1;  
        isnorm = false; \R;K>c7=  
    end T.euoFU{Z  
    s{%fi*  
    wL|7mMM,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "11j$E9#\n  
    % Compute the Zernike Polynomials 0XQ-   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <\xQ7|e  
    tYI]=:  
    M7pvxChA  
    % Determine the required powers of r: |x[$3R1@  
    % ----------------------------------- ht$ WF  
    m_abs = abs(m); B#H2RTc  
    rpowers = []; L3' \r  
    for j = 1:length(n) "] 9_Fv  
        rpowers = [rpowers m_abs(j):2:n(j)]; 'v`~(9'Rcj  
    end Rmgxf/  
    rpowers = unique(rpowers); H!^C2  
    ;op'V6iG  
    V?WMj $l<  
    % Pre-compute the values of r raised to the required powers, 6A@Lj*:2m  
    % and compile them in a matrix: zrTY1Asw;4  
    % ----------------------------- |<2JQ[]  
    if rpowers(1)==0 nR#a)et  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kOzt"t&  
        rpowern = cat(2,rpowern{:}); J4&XPr9  
        rpowern = [ones(length_r,1) rpowern]; 8s&2gn1  
    else i!ds{`d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >T$7{ ~  
        rpowern = cat(2,rpowern{:}); y#GCtkhi  
    end f#2#g%x  
    o|BFvhg  
    xP{m9_Qj  
    % Compute the values of the polynomials: rQuOt  
    % -------------------------------------- Ny[s+2?  
    y = zeros(length_r,length(n)); mKMGdN~  
    for j = 1:length(n) IFkvv1S`  
        s = 0:(n(j)-m_abs(j))/2; V4qZc0<,H  
        pows = n(j):-2:m_abs(j); c[6zX#{`  
        for k = length(s):-1:1 iu+zw[f  
            p = (1-2*mod(s(k),2))* ... /G[+E&vj  
                       prod(2:(n(j)-s(k)))/              ... @b>YkJDk  
                       prod(2:s(k))/                     ... vJzxP y|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^S:cNRSW"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); R\i]O  
            idx = (pows(k)==rpowers); W=!F8g|Qz  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R0z?)uU#  
        end 939]8BERt  
         /6A:J]Q_  
        if isnorm B1up^(?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'XG:1Bpm  
        end wZ}n3R,   
    end X~`.}  
    % END: Compute the Zernike Polynomials cG<Q`(5~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 20S9/9ll  
    MJpP!a^Q  
    v_[)FN"]Y.  
    % Compute the Zernike functions: 'bbV<? ):  
    % ------------------------------ Cw@k.{*7,  
    idx_pos = m>0; kwDjK"  
    idx_neg = m<0; Gl d H SCy  
    Uv#>d}P  
    :H~UyrN  
    z = y; A)~ /~  
    if any(idx_pos) uVoF<={  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ze-TBh/  
    end &*LA_]1@  
    if any(idx_neg) {IF}d*:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "{,\]l&o  
    end I%.jc2kK  
    ptnMCF  
    m1M;'tT@  
    % EOF zernfun a)YJ4\Qg[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  s+\qie  
    4d3]pvv  
    DDE还是手动输入的呢? j}x O34  
    JNA}EY^2I.  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究