切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9466阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, g`\Vy4w  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, QTM+ WD  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? dDAdZxd  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? HnZr RHT 0  
    n0nkv[  
    H~&9xtuHN  
    ?^0#:QevC  
    H`m| R  
    function z = zernfun(n,m,r,theta,nflag) d7P| x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $O7>E!uVD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v||8Q\d  
    %   and angular frequency M, evaluated at positions (R,THETA) on the dEns|r  
    %   unit circle.  N is a vector of positive integers (including 0), and 2= u5N[*  
    %   M is a vector with the same number of elements as N.  Each element sLb[ZQ;j  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) j =[Td   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 'N0d==aI  
    %   and THETA is a vector of angles.  R and THETA must have the same %;9wToyK>  
    %   length.  The output Z is a matrix with one column for every (N,M) LR'F/.Dx  
    %   pair, and one row for every (R,THETA) pair. ]@>bz  
    % yAXw?z!`O  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7J7uHl`yq`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), l\jf]BHX'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (H0nO7Bk  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $v$~.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ~~b[X\1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u%3Z +[  
    % B?$pIG^Mn  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5(tOQ%AQ  
    %   They are used in disciplines such as astronomy, optics, and , B h[jb`y  
    %   optometry to describe functions on a circular domain. 0 B>{31)  
    % UACWs3`s+  
    %   The following table lists the first 15 Zernike functions. %)u5A !"  
    % )!e-5O49r  
    %       n    m    Zernike function           Normalization b:Wl B[5  
    %       -------------------------------------------------- X#Ajt/XQ  
    %       0    0    1                                 1 mdtq-v  
    %       1    1    r * cos(theta)                    2 #p6#,PZ  
    %       1   -1    r * sin(theta)                    2 [D^KM|I%+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %7z  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 9#@dQ/*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +}J2\!Jw  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q;InFV3rv  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /F5g@ X&  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \:'=ccf  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2~K.m@U}!Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h7wm xa;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) + 79?}|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~ubGx  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7eqax33f  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) (sq4  
    %       -------------------------------------------------- Q!(C$&f  
    % o=X6PoJ N_  
    %   Example 1: EX~ U(JB6  
    % 0-oR { {  
    %       % Display the Zernike function Z(n=5,m=1) $RuJm\f  
    %       x = -1:0.01:1; SYOND>E  
    %       [X,Y] = meshgrid(x,x); ~B'K_#  
    %       [theta,r] = cart2pol(X,Y); Q?B5@J  
    %       idx = r<=1; )3V5P%Q  
    %       z = nan(size(X)); T9osueh4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); wyzj[PDS  
    %       figure #DXC 6f  
    %       pcolor(x,x,z), shading interp ==F[5]?  
    %       axis square, colorbar Dt0S"`^=k  
    %       title('Zernike function Z_5^1(r,\theta)') iov55jT~l@  
    % Z$ {I 4a  
    %   Example 2: s? @{  
    % "gADHt=MIR  
    %       % Display the first 10 Zernike functions gk>-h,>"  
    %       x = -1:0.01:1; T^x7w+  
    %       [X,Y] = meshgrid(x,x); B @H.O!  
    %       [theta,r] = cart2pol(X,Y); &~ QQZ]q6  
    %       idx = r<=1; (Hb i+IHV  
    %       z = nan(size(X)); DBANq\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M:z)uLDw  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 9JV(}v5[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8;mn7XX  
    %       y = zernfun(n,m,r(idx),theta(idx)); ??5qR8n.  
    %       figure('Units','normalized') *|h-iA+9  
    %       for k = 1:10 T>2)YOx  
    %           z(idx) = y(:,k); T%A45BE V  
    %           subplot(4,7,Nplot(k)) Z;M]^?  
    %           pcolor(x,x,z), shading interp Xm`jD'G  
    %           set(gca,'XTick',[],'YTick',[]) "z)dz,&T  
    %           axis square u1s^AW8 y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6*u#^">,<  
    %       end Nlemb:'eP3  
    % )F4H'  
    %   See also ZERNPOL, ZERNFUN2. Z[<rz6%cB  
    D[U[ D  
    [ &RZ&  
    %   Paul Fricker 11/13/2006 0 Po",\^  
    6*9hAnH  
    z6 2gF|Uj  
    7t=e"|^  
    9r=@S  
    % Check and prepare the inputs: pv*u[ffi  
    % ----------------------------- V1 T?T9m  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Se/VOzzg  
        error('zernfun:NMvectors','N and M must be vectors.') q'~ ?azg:  
    end rt)70=  
    v J9Uw  
    CKwrE]h  
    if length(n)~=length(m) n*~=O'  
        error('zernfun:NMlength','N and M must be the same length.') b-R!oP+vP  
    end g]?&qF}  
    U/'"w v1y  
    LN}eD\  
    n = n(:); Mqc"  
    m = m(:); jq#gFt*  
    if any(mod(n-m,2)) ZD\`~I|gp  
        error('zernfun:NMmultiplesof2', ... ,5^XjU3c=  
              'All N and M must differ by multiples of 2 (including 0).') O|j(CaF  
    end >MD['=J[d  
    ;BzbWvBo  
    #G2~#\  
    if any(m>n) mOji\qia  
        error('zernfun:MlessthanN', ... e aLSq  
              'Each M must be less than or equal to its corresponding N.') 5ZeE& vG2  
    end .y'iF>QQ\  
    MzZYzz  
    7x` dEi<  
    if any( r>1 | r<0 ) 6[fpe  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') PqV9k,5f  
    end wGdnv}#  
    lnuf_;0  
    +-tvNX%IJ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c'M#va  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?/ xk  
    end &)`xlIw}  
    umPd+5i  
    DM {r<?V  
    r = r(:); Ip#BR!$n  
    theta = theta(:); 2ghTAsUx9  
    length_r = length(r); ~2 L{m[s|  
    if length_r~=length(theta) k#mQLv  
        error('zernfun:RTHlength', ... zN}1Qh  
              'The number of R- and THETA-values must be equal.') j{k]8sI,H]  
    end i-1lppI  
    6)<g%bH!  
    \@G 7Kk*l  
    % Check normalization: >6fc` 3*!  
    % -------------------- b4NUx)%ln  
    if nargin==5 && ischar(nflag) CjtBQ5  
        isnorm = strcmpi(nflag,'norm'); R9=K/  
        if ~isnorm cuv?[ M  
            error('zernfun:normalization','Unrecognized normalization flag.') <}e2\x  
        end 5=< y%VF  
    else \:>GF-Z(  
        isnorm = false; +um Ua  
    end >q W_%  
    [C1 .*Q+l  
    :r5DR`Rfm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `re9-HM  
    % Compute the Zernike Polynomials P#e1?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E?$|`<o{|`  
    p)_v.D3i  
    %V r vu5  
    % Determine the required powers of r: BS-nny  
    % ----------------------------------- %N((p[\H  
    m_abs = abs(m); )ro3yq4??  
    rpowers = []; 61qs`N=k  
    for j = 1:length(n) LjZvWts?  
        rpowers = [rpowers m_abs(j):2:n(j)]; "9mVBa|Q  
    end n*%o!=  
    rpowers = unique(rpowers);  :{#%_^}k  
    y2"PKBK\_  
    NBLiwL37{  
    % Pre-compute the values of r raised to the required powers, <P)U Ggd  
    % and compile them in a matrix: Vz=ByyC  
    % ----------------------------- _8*}S=  
    if rpowers(1)==0 SVr3OyzI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F.9SyB$  
        rpowern = cat(2,rpowern{:}); ZkbaUIQ  
        rpowern = [ones(length_r,1) rpowern]; .MoOjx?  
    else 9VqE:c /  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3Z,J &d`[  
        rpowern = cat(2,rpowern{:}); uJBs3X  
    end xZmO^F5KHj  
    !_zp'V]?  
    rL{3O4O  
    % Compute the values of the polynomials: q_0So}  
    % -------------------------------------- $f++n5I  
    y = zeros(length_r,length(n)); `2}Frw+?  
    for j = 1:length(n) aT9+] Ig  
        s = 0:(n(j)-m_abs(j))/2; /(/Z~J[  
        pows = n(j):-2:m_abs(j); 4!%@{H`3  
        for k = length(s):-1:1 j@yK#==k  
            p = (1-2*mod(s(k),2))* ... "nkj_pC  
                       prod(2:(n(j)-s(k)))/              ... />wM#)o2  
                       prod(2:s(k))/                     ... i5f8}`w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... x2q6y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;m/h?Y~  
            idx = (pows(k)==rpowers); 4CUoXs'  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Z*AT &7  
        end +[LG>  
         &E{CQ#k  
        if isnorm 'hEvW  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l|, Hj  
        end h=:*cqp4  
    end x,U '!F  
    % END: Compute the Zernike Polynomials W^a-K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5=;LHS*   
    s} I8:ufT  
    GJu[af  
    % Compute the Zernike functions: 7H$I9e  
    % ------------------------------ |4$.mb.  
    idx_pos = m>0; 4tQ~Z6Jn;  
    idx_neg = m<0; :i{Svb*_'  
    Ri<7!Y?l  
    4AIo,{(  
    z = y; 1Q5:Vo^B#  
    if any(idx_pos) iMT[s b  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &dH[lB  
    end jOkc'  
    if any(idx_neg) `Z#0kpXk_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \ F\ /<  
    end I]4L0r-  
    2HNAB4 E  
    n7|8`? R^  
    % EOF zernfun :V9%R~h/  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^N&@7s  
    ]S 3l' "  
    DDE还是手动输入的呢? =$-+~  
    P47x-;  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究