下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )ib7K1GJ
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, OZa88&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ~JAjr(G#o
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AzxL%,_
]L$4Py
`,Xb8^M2
KjBOjD'I
keaj3#O
function z = zernfun(n,m,r,theta,nflag) &0JK38(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. k)|'JDm
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HLM;EZ
% and angular frequency M, evaluated at positions (R,THETA) on the ;m''9z)2
% unit circle. N is a vector of positive integers (including 0), and {v,{x1
% M is a vector with the same number of elements as N. Each element ' *}^@[&
% k of M must be a positive integer, with possible values M(k) = -N(k) 2+,5p
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, u]P03B
% and THETA is a vector of angles. R and THETA must have the same _yNT=#/
% length. The output Z is a matrix with one column for every (N,M) luibB&p1
% pair, and one row for every (R,THETA) pair. zuk"
% Ut]2` 8-
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sRi?]9JIl
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TF%3uH
% with delta(m,0) the Kronecker delta, is chosen so that the integral oPCrD.s
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -%>8.#~G
% and theta=0 to theta=2*pi) is unity. For the non-normalized E2kW=6VO>|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `bzr_fJ
% {>wI8
% The Zernike functions are an orthogonal basis on the unit circle. T<f2\q8Uo=
% They are used in disciplines such as astronomy, optics, and tCX9:2c
% optometry to describe functions on a circular domain. |O57N'/
% ;CA ?eI
% The following table lists the first 15 Zernike functions. pF|8OB%
% qZXyi'(d
% n m Zernike function Normalization IhUW=1&J
% -------------------------------------------------- <njIXa{
% 0 0 1 1 Cca6L9%
% 1 1 r * cos(theta) 2 K2*1T+?X
% 1 -1 r * sin(theta) 2 n"mJEkHE
% 2 -2 r^2 * cos(2*theta) sqrt(6) D!X>O}
% 2 0 (2*r^2 - 1) sqrt(3) :G^"e
% 2 2 r^2 * sin(2*theta) sqrt(6) JOJh,8C)6
% 3 -3 r^3 * cos(3*theta) sqrt(8) >~h>#{&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) VPWxHVf
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) u/_Gq[Q,u
% 3 3 r^3 * sin(3*theta) sqrt(8) zwMQXI'k83
% 4 -4 r^4 * cos(4*theta) sqrt(10) %I_&Ehu
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ==nYe{2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9!5b2!JL
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -E6J f$
% 4 4 r^4 * sin(4*theta) sqrt(10) I0I_vu
% -------------------------------------------------- 4sj9Z:
% m
&9)'o
% Example 1: #D=
tX
% hK:#+hg,
% % Display the Zernike function Z(n=5,m=1) +xn&K"]:3
% x = -1:0.01:1; Jz=;mrW
% [X,Y] = meshgrid(x,x); Y=5!QLV4
% [theta,r] = cart2pol(X,Y); g4zT(,ZY
% idx = r<=1; 2^cAK t6bC
% z = nan(size(X)); w/qQ(]n8
% z(idx) = zernfun(5,1,r(idx),theta(idx)); g!p+rq_f
% figure se~ *<5
% pcolor(x,x,z), shading interp iSOD&J_
% axis square, colorbar nwY2BIB
% title('Zernike function Z_5^1(r,\theta)') PXOrOK
% +F1]M2p]
% Example 2: 0\V\qAk
% eA~J4k_
% % Display the first 10 Zernike functions }UyzMy,
% x = -1:0.01:1; p#ZMABlE,P
% [X,Y] = meshgrid(x,x); TvQWdX=
% [theta,r] = cart2pol(X,Y); Z|]l"W*w
% idx = r<=1; [P.@1mV
% z = nan(size(X)); C*"Rd
% n = [0 1 1 2 2 2 3 3 3 3]; vs5
D:cZ}
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; `Mo~EHso.
% Nplot = [4 10 12 16 18 20 22 24 26 28]; EZ:I$X
% y = zernfun(n,m,r(idx),theta(idx)); &i4
(s%z#
% figure('Units','normalized') 6&g!ZE'G
% for k = 1:10 k\4g|Lya
% z(idx) = y(:,k); Ytl:YzXCi
% subplot(4,7,Nplot(k)) vN{vJlpY
% pcolor(x,x,z), shading interp :GN)7|:
% set(gca,'XTick',[],'YTick',[]) OwNA N
% axis square #]?,gwvTf
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F7k4C2r
% end .a 'ETNY:>
% i;E9ZaW
% See also ZERNPOL, ZERNFUN2. 2N6Pa(6
c28oLT1|D
0!3!?E <
% Paul Fricker 11/13/2006 "U/NMGMj
uKLOh<oio
rnzsfr-|(2
5pNvzw
8.Pcr<