下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (G%gVk]
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, x0$:"68PW
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]m#MwN$
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? LEnP"o9ZW
4qXRDsbCf
V^/^OR4k
_m?(O /BTx
x&oBO{LNK,
function z = zernfun(n,m,r,theta,nflag) L8xprHgL
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. AaC1||?R
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N M#=5u`h
% and angular frequency M, evaluated at positions (R,THETA) on the
C|;Mhe'r=
% unit circle. N is a vector of positive integers (including 0), and C*6)Ut '
% M is a vector with the same number of elements as N. Each element 8 E+C:"
% k of M must be a positive integer, with possible values M(k) = -N(k) 4yZ+,hqJ<9
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, cPaWJ+c
% and THETA is a vector of angles. R and THETA must have the same (Cd{#j<
% length. The output Z is a matrix with one column for every (N,M) lF"(|n"R
% pair, and one row for every (R,THETA) pair. v[DbhIXU
% p't:bR
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q;0&idYC
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !v4j`A;%
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^pV>b(?qw
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RHl=$Hm.%
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4'hcHdL9
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?&<o_/`-H5
% mS~ ]I$
% The Zernike functions are an orthogonal basis on the unit circle. J[Yg]6
% They are used in disciplines such as astronomy, optics, and `CEj 4
% optometry to describe functions on a circular domain. <6O_t,K]
% h4.=sbzZ
% The following table lists the first 15 Zernike functions. U;Ll.BFP
% D<3V#Opw
% n m Zernike function Normalization V]kGcS}
% -------------------------------------------------- eQaxZMU
% 0 0 1 1 .0fh>kQ
% 1 1 r * cos(theta) 2 )!}-\5F
% 1 -1 r * sin(theta) 2 69j~?w)^
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]\ 2RVDC
% 2 0 (2*r^2 - 1) sqrt(3) /`O]etr`d
% 2 2 r^2 * sin(2*theta) sqrt(6) ?7nr\g"g(
% 3 -3 r^3 * cos(3*theta) sqrt(8) oBNX8%5w
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) u!3]RGJ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) DMcxa.Sd!
% 3 3 r^3 * sin(3*theta) sqrt(8) kAB+28A
% 4 -4 r^4 * cos(4*theta) sqrt(10) {29S`-|P
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 87pXv6'FQ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Am4^v?q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KA-/k@1&
% 4 4 r^4 * sin(4*theta) sqrt(10) vG<pc_ak
% -------------------------------------------------- 7Cd_zZ
% g?[&0r1
% Example 1: mhi90J c
% D_n}p8blT
% % Display the Zernike function Z(n=5,m=1) \9(- /rE
% x = -1:0.01:1; b~r{J5x@
% [X,Y] = meshgrid(x,x); *fH_lG%
% [theta,r] = cart2pol(X,Y); o!toO&=
% idx = r<=1; ey\m)6A$
% z = nan(size(X)); %t`SSW7I
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8 ih;#I=q
% figure O%JsUKV
% pcolor(x,x,z), shading interp LZc$:<J<6
% axis square, colorbar wLOQhviI^-
% title('Zernike function Z_5^1(r,\theta)') :K^gu%,&$
% % nmY:}um
% Example 2: JpxbB)/
% 5`E`Kb+@
% % Display the first 10 Zernike functions *K,hrpYR
% x = -1:0.01:1; Z<ajET`)
% [X,Y] = meshgrid(x,x); gM3]%L_
% [theta,r] = cart2pol(X,Y); )W1(tEq59
% idx = r<=1; JS/M~8+Et
% z = nan(size(X)); :/v,r=Y9p
% n = [0 1 1 2 2 2 3 3 3 3]; Jh43)#G-
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !0ce kSesr
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (/SGT$#8
% y = zernfun(n,m,r(idx),theta(idx)); ^.D}k
% figure('Units','normalized') OpK.Lsd0y
% for k = 1:10 %-#
qO
% z(idx) = y(:,k); ZMoJ#p(
% subplot(4,7,Nplot(k)) rps(Jos_~
% pcolor(x,x,z), shading interp os1?6z~
% set(gca,'XTick',[],'YTick',[]) WDEe$k4.
% axis square |As2"1_f
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ok `]:gf
% end L\ }Pzxn
% w{3Q( =&
% See also ZERNPOL, ZERNFUN2. ,{?q^"
I( ]BMMj
-=$% {
% Paul Fricker 11/13/2006 20UqJM8Ot
jow7t\wk
IV{FH&t^T"
P3iA(3I24<
2yln7[a
% Check and prepare the inputs: |e*Gz D
% ----------------------------- ~n[b^b
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *O@sh
error('zernfun:NMvectors','N and M must be vectors.') A3AP51
!
end 4K9Rpm
FUaI2
#>8T*B
if length(n)~=length(m) {~"7vkc+
error('zernfun:NMlength','N and M must be the same length.') ,0!uem}1i
end -@''[m .*
O)`fvpVU
Ue(r}*
n = n(:); tTotPPZf}
m = m(:); YywEZ?X
if any(mod(n-m,2)) ajn-KG!A
error('zernfun:NMmultiplesof2', ... j$@?62)6
'All N and M must differ by multiples of 2 (including 0).') iQt!PMF.
end R?
O-x9
HWqLcQ d:P
izCaB~{/
if any(m>n) ' _B_&is
error('zernfun:MlessthanN', ... L@w0N)P<!{
'Each M must be less than or equal to its corresponding N.') tbq|,"
end a{h%DpG
$ye^uu;Z
$v]T8|h
if any( r>1 | r<0 ) 3bWum
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ezp<@'0ZT
end RCzV5g
ibvJWg
BBcj=]"_
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) KiQ(XNx
error('zernfun:RTHvector','R and THETA must be vectors.') tNU-2r
end
LI[ ?~P2\
j"5Pe
lLH$`Wnv
r = r(:); wG+=}1X
theta = theta(:); vF"c
length_r = length(r); [*<.?9n)or
if length_r~=length(theta) B={/nC}G~
error('zernfun:RTHlength', ... uJgI<l'|e3
'The number of R- and THETA-values must be equal.') :/B:FY=
end Y;} 2'"
~z5@V5z
=yo{[&Jz
% Check normalization: RU6KIg{H
% -------------------- [g#s&bF
if nargin==5 && ischar(nflag)
l^P#kQA
isnorm = strcmpi(nflag,'norm'); 0 h22V$
if ~isnorm V]rhVMA
error('zernfun:normalization','Unrecognized normalization flag.') Rp0|zP,5
end yO=p3PV d
else cf)J )
isnorm = false; n12UBvc}%
end 4.8nY\_WF
3L>d!qD
|Ab{H%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2JVxzj<~`
% Compute the Zernike Polynomials ryg4hHspl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~b Rd)1
1Y#HcW&
l4KbTKm7
% Determine the required powers of r: r'p =`2=
% ----------------------------------- c`
,
2h#
m_abs = abs(m); FPF6H puV
rpowers = [];
O}C)~GU
for j = 1:length(n) %(`#A.yaE
rpowers = [rpowers m_abs(j):2:n(j)]; =h|wwQE
end MLV:U
rpowers = unique(rpowers); # ORO&78
1* ^'\W.
"b]#MO}P
% Pre-compute the values of r raised to the required powers, cD2+hp|9
% and compile them in a matrix: fywvJ$HD]L
% ----------------------------- `XW*kxpm
if rpowers(1)==0 f"Vgefk
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \0ov[T N.>
rpowern = cat(2,rpowern{:}); ^P?vkO"pB?
rpowern = [ones(length_r,1) rpowern]; 1CkdpYjsj
else {oUAP1V^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R-
rpowern = cat(2,rpowern{:}); X\\7$
end >&WhQhZ3kg
rQJ"&CapT
T 6Ctf#
% Compute the values of the polynomials: R{?vQsLk
% -------------------------------------- >.<ooWw
y = zeros(length_r,length(n)); % ucjMa>t
for j = 1:length(n) +}aC-&
s = 0:(n(j)-m_abs(j))/2; B[F-gq-
pows = n(j):-2:m_abs(j); X3wX`V}
for k = length(s):-1:1 5wT>N46UX
p = (1-2*mod(s(k),2))* ... !8R@@,_v
prod(2:(n(j)-s(k)))/ ... g?G+dnl/8
prod(2:s(k))/ ... u1Ek y/e-
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ufrqsv]=
prod(2:((n(j)+m_abs(j))/2-s(k))); ghAi{@s$)
idx = (pows(k)==rpowers); ;:mu}
y(:,j) = y(:,j) + p*rpowern(:,idx); \?Mf _
end -.iNNM&a
uP@\#/4u
if isnorm v+=k-;-
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [ohBPQO
end hat>kXm2K
end k6(r !mc
% END: Compute the Zernike Polynomials ECcZz.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tmJgm5v
j U[
O
A6{b?aQ
% Compute the Zernike functions: 909md|9K3
% ------------------------------ QA;!caNp
idx_pos = m>0; ~@4'HMQ
idx_neg = m<0; !kL> ,O>/
+ G;LX'B
`/n M[
z = y; Pc_VY>Ty
if any(idx_pos) 2i7e#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '91".c,3?
end A8DFm{})c
if any(idx_neg) fuX'~$b.fA
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "D][e'
end &dR=?bz-A
r~7:daG*
Hkd^-=]]no
% EOF zernfun hhI)' $