下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, FQz?3w&ia
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, I6!5Yj]O"
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? JAjmrX
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AK!hK>u`
oR1^/e
Y-mK+12
&MZ$j46
l v&mp0V+
function z = zernfun(n,m,r,theta,nflag) O,2~"~kF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. g7V8D
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?>c=}I#Ui-
% and angular frequency M, evaluated at positions (R,THETA) on the F>je4S;
% unit circle. N is a vector of positive integers (including 0), and X~=xXN.
% M is a vector with the same number of elements as N. Each element fWc|gq
% k of M must be a positive integer, with possible values M(k) = -N(k) "@A![iP
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, j(:I7%3&(*
% and THETA is a vector of angles. R and THETA must have the same ^N}Wnk7ks'
% length. The output Z is a matrix with one column for every (N,M) GQQ.OvEc
% pair, and one row for every (R,THETA) pair. K;hh&sTB
% aNn"X y\ k
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M->*{D@a
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '^BV_ QQ
% with delta(m,0) the Kronecker delta, is chosen so that the integral H=*5ASc
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :A
%^^F%
% and theta=0 to theta=2*pi) is unity. For the non-normalized Wz4&7KYY
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {rfF'@[
% 2kAx>R
% The Zernike functions are an orthogonal basis on the unit circle. YJg,B\z}
% They are used in disciplines such as astronomy, optics, and h&.wo !
% optometry to describe functions on a circular domain. @E( 7V(m/
% T9)nQ[
% The following table lists the first 15 Zernike functions. fkSO( C)
% !Cgx.
% n m Zernike function Normalization <!-sZ_qq
% -------------------------------------------------- ]<(]u#g_d
% 0 0 1 1 9)xUA;Qw?z
% 1 1 r * cos(theta) 2 BqDKT
% 1 -1 r * sin(theta) 2 9a\nszwa
% 2 -2 r^2 * cos(2*theta) sqrt(6) Xs&TJ8a
% 2 0 (2*r^2 - 1) sqrt(3) MV_Srz
% 2 2 r^2 * sin(2*theta) sqrt(6) :j|IP)-f
% 3 -3 r^3 * cos(3*theta) sqrt(8) ES~^M840f
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 73{'kK
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ^ -FX
% 3 3 r^3 * sin(3*theta) sqrt(8)
Ol"3a|
% 4 -4 r^4 * cos(4*theta) sqrt(10) T=hh oGn
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7Dnp'*H
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &l$Q^g
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J q{7R
% 4 4 r^4 * sin(4*theta) sqrt(10) 1im^17X
% -------------------------------------------------- o"wXIHUmV
% WN(ymcdYB
% Example 1: y;mj^/SxK
% Pe C7
% % Display the Zernike function Z(n=5,m=1) !O\;Nua
% x = -1:0.01:1; [E#UGJ@
% [X,Y] = meshgrid(x,x); [."[pY
% [theta,r] = cart2pol(X,Y); 8WE{5#oi
% idx = r<=1; zR!o{8
% z = nan(size(X)); +&zYZA