下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Z_mQpt|y
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, FJBB@<>:
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #VsS C1
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? VFKFO9
z&\N^tBv
CtZOIx.;|
)!;20Po
#X0Xc2}{f
function z = zernfun(n,m,r,theta,nflag) X2{Aa T*M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q9c-UQB(!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #q5tG\gnM
% and angular frequency M, evaluated at positions (R,THETA) on the Zh_3ydMD1
% unit circle. N is a vector of positive integers (including 0), and u(8dsgR
% M is a vector with the same number of elements as N. Each element t+M'05-U2
% k of M must be a positive integer, with possible values M(k) = -N(k) _>_"cKS
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 55=YM'5]
% and THETA is a vector of angles. R and THETA must have the same QQD7NN>
% length. The output Z is a matrix with one column for every (N,M) 9<o*aFgCa
% pair, and one row for every (R,THETA) pair. -?-yeJP2
% iu2O/l#r
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .vd*~U"
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]l`V#Rd
% with delta(m,0) the Kronecker delta, is chosen so that the integral +^%)QH>9
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )|W6Z
% and theta=0 to theta=2*pi) is unity. For the non-normalized En4!-pWHQ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G/_xn5XDD
% g'2}Y5m$`
% The Zernike functions are an orthogonal basis on the unit circle. +o35${
% They are used in disciplines such as astronomy, optics, and -fN5-AC
% optometry to describe functions on a circular domain. a%`L+b5-$
% ! vuun |
% The following table lists the first 15 Zernike functions. fS p
% ""IPaNHQ
% n m Zernike function Normalization qCq?`0&#
% -------------------------------------------------- 2iC BF-,
% 0 0 1 1 I1JL`\;4
% 1 1 r * cos(theta) 2 ,rOh*ebF
% 1 -1 r * sin(theta) 2 l~[
K.p&
% 2 -2 r^2 * cos(2*theta) sqrt(6) W{1l?Wo
% 2 0 (2*r^2 - 1) sqrt(3) =%|f-x
% 2 2 r^2 * sin(2*theta) sqrt(6) ~*`wRiUhis
% 3 -3 r^3 * cos(3*theta) sqrt(8)
$QwzL/a
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) j$4lyDfD
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !j3Xzn9
% 3 3 r^3 * sin(3*theta) sqrt(8) "V5_B^Gzb]
% 4 -4 r^4 * cos(4*theta) sqrt(10) JURg=r]LI
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZgmK~iJ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Q |hBGH9:B
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b#n
% 4 4 r^4 * sin(4*theta) sqrt(10) Z%
]LZ/O8
% -------------------------------------------------- c?6(mU\x
% R<^E?FI
% Example 1: QBA{*@ A-
% +e#(p<
% % Display the Zernike function Z(n=5,m=1) Wxgs66
% x = -1:0.01:1; Equ%6x
% [X,Y] = meshgrid(x,x); &SPIu,
% [theta,r] = cart2pol(X,Y); ]qx!51S
% idx = r<=1; ony;U#^T
% z = nan(size(X)); g_eR&kuh
% z(idx) = zernfun(5,1,r(idx),theta(idx)); hTPvt
% figure "$q"Kilj%
% pcolor(x,x,z), shading interp Z/;hbbG
% axis square, colorbar "&\(:#L
% title('Zernike function Z_5^1(r,\theta)') ~/Y8wxg
% )iZhE"?z
% Example 2: S+?*l4QK
% |T-Ytuy8
% % Display the first 10 Zernike functions )ri'W
<l
% x = -1:0.01:1; |aj]]l[@S
% [X,Y] = meshgrid(x,x); cca]@Ox]
% [theta,r] = cart2pol(X,Y); 7w\!3pv
% idx = r<=1; 9h<iw\$'
% z = nan(size(X)); Z*(OcQ-
% n = [0 1 1 2 2 2 3 3 3 3]; 0:x+;R<P*w
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ANR611-a
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Ko
"JH=<
% y = zernfun(n,m,r(idx),theta(idx)); 6!){-IV
% figure('Units','normalized') I,V'J|=j
% for k = 1:10 k1LbWR1%wB
% z(idx) = y(:,k); uL^X$8K;(
% subplot(4,7,Nplot(k)) R5 EC/@
% pcolor(x,x,z), shading interp y }h2
% set(gca,'XTick',[],'YTick',[]) 1M[|9nWUC
% axis square r)<n)eXeD
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .SBN^fq
% end fQw|SW
% }@53*h i(
% See also ZERNPOL, ZERNFUN2. >_X(rar0
}-vP~I
~\zIb/ #
% Paul Fricker 11/13/2006 'NnmLM(oh
@d|]BqQ4jh
l_fERp#y
0IsnG?"
6X$\:>
% Check and prepare the inputs: iT1HbAT]
% ----------------------------- ">nFzg?Y
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3>z+3!I z
error('zernfun:NMvectors','N and M must be vectors.') 0%3T'N%
end `?T8NK
T8vMBaU!qY
g$8aB{)
if length(n)~=length(m) n>%TIoY
error('zernfun:NMlength','N and M must be the same length.') |^GN<