切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9295阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, b#e]1Q  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, V@Ax}<$A  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?l(nM+[kSL  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? w8O hJv  
    >}mNi:6xq  
    . c#90RP  
    &:-GI)[o  
    $x/J+9Ww  
    function z = zernfun(n,m,r,theta,nflag) )eVzSj>MT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. <. ezw4ju  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N makaI0M  
    %   and angular frequency M, evaluated at positions (R,THETA) on the n<=y"*  
    %   unit circle.  N is a vector of positive integers (including 0), and r}Ltv?4  
    %   M is a vector with the same number of elements as N.  Each element =P 1RdyP  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) hjw4Xzju  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gfV]^v  
    %   and THETA is a vector of angles.  R and THETA must have the same \A` gK\/h  
    %   length.  The output Z is a matrix with one column for every (N,M) D\@e{.$MZ|  
    %   pair, and one row for every (R,THETA) pair. w 7Cne%J8  
    % dvC0 <*V  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H^ESA s6  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7? +5%7-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5aa}FdUq  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KsZ@kTs  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7sCR!0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6Wf*>G*h  
    % :P HUsy  
    %   The Zernike functions are an orthogonal basis on the unit circle. ys:1Z\$P  
    %   They are used in disciplines such as astronomy, optics, and ,xm;JXJ  
    %   optometry to describe functions on a circular domain. ]r"31.w(  
    % cb\jrbj6  
    %   The following table lists the first 15 Zernike functions. 9yO{JgKA  
    % lO%MyP  
    %       n    m    Zernike function           Normalization -bv>iIC  
    %       -------------------------------------------------- c(QG4.)m  
    %       0    0    1                                 1 &8pCHGmV)  
    %       1    1    r * cos(theta)                    2 l~`txe  
    %       1   -1    r * sin(theta)                    2 PWADbu{+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Tnzco  
    %       2    0    (2*r^2 - 1)                    sqrt(3) =1%zI%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) MtMvpHk  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z&AHM &,yj  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 45]Ym{]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) n$XMsl.>  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Bl>_&A)  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %i;r]z-  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0sq=5 BnO  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 67Af} >Q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W;xW: -  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) O|A~dj `  
    %       -------------------------------------------------- UchALR^5  
    % ]#vvlM>/  
    %   Example 1: w`H.ey  
    % o[5=S,'  
    %       % Display the Zernike function Z(n=5,m=1) $O;N/N:m  
    %       x = -1:0.01:1; 0X ] ekq  
    %       [X,Y] = meshgrid(x,x); V+4k!  
    %       [theta,r] = cart2pol(X,Y); Xq=!"E  
    %       idx = r<=1; F{a0X0ru~  
    %       z = nan(size(X)); jhjW* F<u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =:t@;y  
    %       figure EM>c%BH<N  
    %       pcolor(x,x,z), shading interp ^.pE`l%1}  
    %       axis square, colorbar / K2.V@T  
    %       title('Zernike function Z_5^1(r,\theta)') | TQedC  
    % P#vv+]/  
    %   Example 2: @p9e:[  
    % Zztt)/6*  
    %       % Display the first 10 Zernike functions ECmHy@(  
    %       x = -1:0.01:1; a}[=_vb}K  
    %       [X,Y] = meshgrid(x,x); /-G qG)PX  
    %       [theta,r] = cart2pol(X,Y); DK#65H'  
    %       idx = r<=1; ZNL;8sI?>  
    %       z = nan(size(X)); 0-;DN:>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O+{pF.P#V  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]yj4~_&O  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !Vp,YN+yN  
    %       y = zernfun(n,m,r(idx),theta(idx)); Egjk^:@  
    %       figure('Units','normalized') 7gZVg@   
    %       for k = 1:10 _D7HQ  
    %           z(idx) = y(:,k); teQaHe#  
    %           subplot(4,7,Nplot(k)) T@d_ t  
    %           pcolor(x,x,z), shading interp Mc#O+'](f  
    %           set(gca,'XTick',[],'YTick',[]) tF;& x g  
    %           axis square @4 Os?_gJ\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -Y 6.?z  
    %       end 82Z[eo  
    % Y*5@|Q  
    %   See also ZERNPOL, ZERNFUN2. R%]9y]HQ  
    A .jp<>  
    ^w&5@3d  
    %   Paul Fricker 11/13/2006 PJSDY1T  
    2]_4&mU  
    #(26t _a  
    , $D&WH  
    Je4.9?Ch  
    % Check and prepare the inputs: (to/9OrG  
    % ----------------------------- Z CQt1;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0T{c:m~QXe  
        error('zernfun:NMvectors','N and M must be vectors.') 98b9%Z'2f  
    end 5 vu_D^Q  
    z6L>!=  
    WO+?gu  
    if length(n)~=length(m) H>X\C;X[  
        error('zernfun:NMlength','N and M must be the same length.') {g:/ BFLr#  
    end 0c\|S>g [  
    #0YzPMV  
    e8P!/x-y  
    n = n(:); `1[Sv"  
    m = m(:); Hq"<vp  
    if any(mod(n-m,2)) E^EU+})Ujr  
        error('zernfun:NMmultiplesof2', ... kj<D4)  
              'All N and M must differ by multiples of 2 (including 0).') @6i8RmOu}  
    end hI>rtaY_  
    )kY _"= d  
    Fl'xmz^  
    if any(m>n)  z7.C\l  
        error('zernfun:MlessthanN', ... Q 2SSJ  
              'Each M must be less than or equal to its corresponding N.') _'v }=:X  
    end Y+"hu2aPkY  
    asmW W8lz  
    "6*Kgf2G  
    if any( r>1 | r<0 ) %9 -#`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') F)<G]i8n~  
    end hiK[!9r  
    mb*h73{{  
    K+\0}qn  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]\9B?W(#  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1R+ )T'in  
    end M;vlQ"Yl'  
     /nD0hb  
    lA Ck$E  
    r = r(:); HBga'xJ  
    theta = theta(:); nGJIjo_I  
    length_r = length(r); ]stLC; nI  
    if length_r~=length(theta) BqEubP(si  
        error('zernfun:RTHlength', ... >s 8:1l  
              'The number of R- and THETA-values must be equal.') )r6SGlE[Y  
    end xO9]yULgu  
    D-+)M8bt  
    D'sboOY  
    % Check normalization: v YmtpKNj%  
    % -------------------- GT\s!D;<  
    if nargin==5 && ischar(nflag) 7^t(RNq  
        isnorm = strcmpi(nflag,'norm'); .jGsO0  
        if ~isnorm hZ\W ?r  
            error('zernfun:normalization','Unrecognized normalization flag.') L};;o+5uJD  
        end U37?P7i's  
    else M?4r5R  
        isnorm = false; ao" ;5 m  
    end ]R0A{+]n  
    [TfV2j* e  
    x V 1Z&l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q"K>ML>0  
    % Compute the Zernike Polynomials 8$jT#\_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uA/.4 b  
    Sp$x%p0  
    m[Ac'la  
    % Determine the required powers of r: :mtw}H 'F8  
    % ----------------------------------- % x*Ec[l  
    m_abs = abs(m); DEwtP  
    rpowers = []; F+y`4>x  
    for j = 1:length(n) 5@Lxbe( q  
        rpowers = [rpowers m_abs(j):2:n(j)]; ESf7b `tS  
    end 46?F+,Rzl  
    rpowers = unique(rpowers); I&NpN~AU  
    )!*M 71  
    AoOG[to7  
    % Pre-compute the values of r raised to the required powers, 16> >4U:Y  
    % and compile them in a matrix: ,vdP #:  
    % ----------------------------- 3w:Z4]J  
    if rpowers(1)==0 tDLk ZCP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @G$<6CG\  
        rpowern = cat(2,rpowern{:}); 0S5C7df  
        rpowern = [ones(length_r,1) rpowern]; ut5!2t$c  
    else W*DIW;8p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~md|k  
        rpowern = cat(2,rpowern{:}); 1 l*(8!_  
    end tfKeo|DM"  
    &MQt2aL  
    MJ/%$  
    % Compute the values of the polynomials: ]%Yis=v  
    % -------------------------------------- /uz5V/i0  
    y = zeros(length_r,length(n)); 68GGS`&  
    for j = 1:length(n)  t-x"(  
        s = 0:(n(j)-m_abs(j))/2; +2fJ  
        pows = n(j):-2:m_abs(j); `"b7y(M  
        for k = length(s):-1:1 Z *<x  
            p = (1-2*mod(s(k),2))* ... ;I))gY-n  
                       prod(2:(n(j)-s(k)))/              ... pBnf^Ew1  
                       prod(2:s(k))/                     ... >h( rd1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... :E&T}RN  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); yz$1qEII`q  
            idx = (pows(k)==rpowers); U9[A(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); yGG\[I;7  
        end _xL&sy09t  
         /FV6lR!0^  
        if isnorm vrnj}f[h  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m'"VuH?^  
        end ow$l!8  
    end 9}0Jc(B/x  
    % END: Compute the Zernike Polynomials mS&\m#s<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fX$4TPy(h  
    C(*@-N pf[  
    -LK(C`gB  
    % Compute the Zernike functions: o4'4H y  
    % ------------------------------ F20-!b  
    idx_pos = m>0; @=#s~ 3  
    idx_neg = m<0; }ZVv  
    f#Cdx"  
    _v=WjN  
    z = y; 9x^ /kAB  
    if any(idx_pos) :O+b4R+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m1o65FsY08  
    end `/ReJj&~  
    if any(idx_neg) x  Bw.M{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2LH;d`H[0  
    end fvMhq:Bu  
    I%C:d#p  
    zp-~'kIJ  
    % EOF zernfun |Pl{Oo+  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  -8e tH&  
    ^E*C~;^S  
    DDE还是手动输入的呢? ]2 N';(R  
    40/[ uW"  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究