下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l *yml
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, vNd4Fn)H
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? uV52ko,
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^=pn!lK;^
~7 C` a$
6~&4>2b0f
+aEE(u6%E@
9w}A7('
function z = zernfun(n,m,r,theta,nflag) ~${.sD\
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. e {N8|l
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ss236&
% and angular frequency M, evaluated at positions (R,THETA) on the Uj0DX>I
% unit circle. N is a vector of positive integers (including 0), and i~n>dc YW
% M is a vector with the same number of elements as N. Each element K)sO
% k of M must be a positive integer, with possible values M(k) = -N(k) [US.n+G6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ;?yd;GOt)
% and THETA is a vector of angles. R and THETA must have the same )<1M'2
% length. The output Z is a matrix with one column for every (N,M) 72&xEx
% pair, and one row for every (R,THETA) pair. /(E)|*~6
% )e4nKh],
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5bH@R@3 m
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bMxzJRrNg
% with delta(m,0) the Kronecker delta, is chosen so that the integral hCc_+/j|
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F4e<=R
% and theta=0 to theta=2*pi) is unity. For the non-normalized gUy >I(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. PLw;9^<
% }PK8[N
% The Zernike functions are an orthogonal basis on the unit circle. )`,3/i9C$
% They are used in disciplines such as astronomy, optics, and @Ej{sC!0T
% optometry to describe functions on a circular domain. nr!kx)j
% (YGJw?]
% The following table lists the first 15 Zernike functions. ]{0
2!
% J5mMx)t@
% n m Zernike function Normalization g&\A1H
% -------------------------------------------------- -wW%+wH
% 0 0 1 1 n>+M4Zb
% 1 1 r * cos(theta) 2 )<UNiC
% 1 -1 r * sin(theta) 2 hJkIFyQ{j
% 2 -2 r^2 * cos(2*theta) sqrt(6)
w6qx
% 2 0 (2*r^2 - 1) sqrt(3) @2L+"=u#
% 2 2 r^2 * sin(2*theta) sqrt(6) 3!Gnc0%c
% 3 -3 r^3 * cos(3*theta) sqrt(8) cIw)ScY
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) b_|`jHes
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) bs
kG!w
% 3 3 r^3 * sin(3*theta) sqrt(8) wZ0$ylEX
% 4 -4 r^4 * cos(4*theta) sqrt(10) 54-sb~]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y7u"a)T
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f}Mc2PQ-
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (VI4kRj
% 4 4 r^4 * sin(4*theta) sqrt(10) Zyu4!
% -------------------------------------------------- 38tRb"3zP
% dArg'Dc4
% Example 1: T5=3 jPQ
% ~N;kF.q&>&
% % Display the Zernike function Z(n=5,m=1) l7Zqk GG]
% x = -1:0.01:1; 'hf#Q9W5
% [X,Y] = meshgrid(x,x); \@N8[
% [theta,r] = cart2pol(X,Y); %{Kp#R5E
% idx = r<=1; O8wR#(/
% z = nan(size(X)); &
VJ+X|Z
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Ty}'A(U
% figure [GyW1-p33w
% pcolor(x,x,z), shading interp yS0!#AG
% axis square, colorbar Ovq-rI{
% title('Zernike function Z_5^1(r,\theta)') Q=)$
% ~5N0=)
% Example 2: @dvlSqm)
% dAh&Z:86\
% % Display the first 10 Zernike functions Nz'fM daX,
% x = -1:0.01:1; [o<Rgq4
% [X,Y] = meshgrid(x,x); _rdEur C6
% [theta,r] = cart2pol(X,Y); ?xWO>#/
% idx = r<=1; ",k"c}3G
% z = nan(size(X)); E].hoq7WiB
% n = [0 1 1 2 2 2 3 3 3 3]; g=0`^APql
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %c<e`P;
% Nplot = [4 10 12 16 18 20 22 24 26 28]; V8@VR`!'
% y = zernfun(n,m,r(idx),theta(idx)); }xk85*V
% figure('Units','normalized') b(Zh$ 86
% for k = 1:10 7y5`YJ}!
% z(idx) = y(:,k); *P7 H=Yf&
% subplot(4,7,Nplot(k)) ZP
&q7HK\
% pcolor(x,x,z), shading interp F0qpJM,
% set(gca,'XTick',[],'YTick',[]) [_Fj2nb*
% axis square $Ypt
/`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l+HmG< P
% end 7hQXGY,q
% 2Nrb}LH
% See also ZERNPOL, ZERNFUN2. h 6Ovl
0/5
a3-3{
2w_[c.
% Paul Fricker 11/13/2006 cc- liY"
[1nfSW
_JNSl2
p{X?_ F
Tsg;i;
% Check and prepare the inputs: @rI+.X
% ----------------------------- bWWZGl9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) GVR/p
error('zernfun:NMvectors','N and M must be vectors.') hGh91c;4
end _^w&k{T
bca4'`3\|
e0;0 X7
if length(n)~=length(m) 5QN~^
error('zernfun:NMlength','N and M must be the same length.') Oxsx\f_
end |`eHUtjH
1i3;P/
[wOz<<
n = n(:); NH9"89]E
m = m(:); o|`[X'
if any(mod(n-m,2)) e_=TkG1E6
error('zernfun:NMmultiplesof2', ... 0OCmyy
'All N and M must differ by multiples of 2 (including 0).') ?,
B4
end ^G(U@-0..
9U&~H*Hf
$ /`X7a{
if any(m>n) !=Scpo_
error('zernfun:MlessthanN', ... {$qE>ic
'Each M must be less than or equal to its corresponding N.') Lmsc~~
end 41uiW,
sE^ee2]OI@
$,u>,
if any( r>1 | r<0 ) p{|!LcSU$2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]QC9y:3
end .>#X *u
sg`
V#X#rDfJZ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MHj
RPh
error('zernfun:RTHvector','R and THETA must be vectors.') #{_iNr a9
end Mc,3j~i
U}T{r%9
Upw`|$1S
r = r(:); A(eB\qG
theta = theta(:); jYUN:
length_r = length(r); e dTFk$0
if length_r~=length(theta) wxJu=#!M
error('zernfun:RTHlength', ... j%+>y;).
'The number of R- and THETA-values must be equal.') ,>!%KYD/f
end .jUM';
l
3 C{A
&R5zt]4d&
% Check normalization: )Cu2xRr^`
% -------------------- TB}6iIe
if nargin==5 && ischar(nflag) {x{~%)-
isnorm = strcmpi(nflag,'norm'); ]A%]W ^G
if ~isnorm +Jm~Um!
error('zernfun:normalization','Unrecognized normalization flag.') t)|~8xpP
end D*&#}c,*
else }1
,\*)5
isnorm = false; Upa F>,kM
end ?wP/l
`=V p 0tPI
GXaPfC0-y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hCBre5
% Compute the Zernike Polynomials 40%fOu,u`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \5|MW)x
NX4G;+6
2##;[
% Determine the required powers of r: GQ(*k)'a
% ----------------------------------- H +'6*akV
m_abs = abs(m); Yt[LIn-v:
rpowers = []; cgnMoBIc
for j = 1:length(n) nW)?cQ
I
rpowers = [rpowers m_abs(j):2:n(j)]; ZIN1y;dJ
end /!?b&N/d)
rpowers = unique(rpowers); EXMW,
kXV;J$1
~R&rQJJeJ
% Pre-compute the values of r raised to the required powers, 7Kf
% and compile them in a matrix: L{&>,ww
% ----------------------------- S B~opN
if rpowers(1)==0 ku4Gc6f#gG
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i?ZVVE=r
rpowern = cat(2,rpowern{:}); Xdi<V_!BC-
rpowern = [ones(length_r,1) rpowern]; + -uQ] ^n
else -T}r$A
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /qKA1-R}4
rpowern = cat(2,rpowern{:}); Wv|CJN;4
end mqHcD8X
{#st>%i
-AD@wn!wCJ
% Compute the values of the polynomials: svx7
% -------------------------------------- c2t`i
y = zeros(length_r,length(n)); ~s-bA#0S
for j = 1:length(n) ht*N[Pi4;
s = 0:(n(j)-m_abs(j))/2; ftvu69f
pows = n(j):-2:m_abs(j); oi
m7=I0
for k = length(s):-1:1 {yv_Ni*6!
p = (1-2*mod(s(k),2))* ... Tdade+
prod(2:(n(j)-s(k)))/ ... w$IUm_~waa
prod(2:s(k))/ ... =;+gge!?bB
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XD?Lu
_.
prod(2:((n(j)+m_abs(j))/2-s(k))); V~VUl)
idx = (pows(k)==rpowers); ]
)iP?2{
y(:,j) = y(:,j) + p*rpowern(:,idx); gg.]\#3g
end @<3E`j'p
tA^+RO4
if isnorm @ R[K8
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O&MH5^I
end 'z^'+}iyv
end w[F})u]E
% END: Compute the Zernike Polynomials >yr;Y4y7K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -<g[P_#
JNY ?]|=
*v%gNq
% Compute the Zernike functions: <o9AjASv\,
% ------------------------------ gyq6LRb
idx_pos = m>0; ~r?tFE*+
idx_neg = m<0; qH0JZdk
kQe<a1 8
g4=C]\1
z = y; (V&8
WN
if any(idx_pos) H#7=s{u
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '$Z@oCY#
end { TI,|'>5[
if any(idx_neg) *+zFsu4l
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _YG@P1
end 2z*}fkJ
m_Pk$Vwx
Zo-,TKgY'
% EOF zernfun jI'?7@32`