下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +smPR
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, [wjA8d.
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? mmu{K$9}I
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )<UNiC
hJkIFyQ{j
P,j)m\|
A>b o Xcr
%_(e{Mf)
function z = zernfun(n,m,r,theta,nflag) R8W{[@
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?r'rvu'/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0%cbno@1V
% and angular frequency M, evaluated at positions (R,THETA) on the H8mmmt6g
% unit circle. N is a vector of positive integers (including 0), and mKvk6OC
% M is a vector with the same number of elements as N. Each element 3*/y<Z'H
% k of M must be a positive integer, with possible values M(k) = -N(k) $eCxpb..
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, u1~H1
]Ii
% and THETA is a vector of angles. R and THETA must have the same <omSK-
T-
% length. The output Z is a matrix with one column for every (N,M) f*0[[J0]
% pair, and one row for every (R,THETA) pair. (c axl^=
% GghZ".O
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nkG1&wiX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jRmv~]
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~ Z=Q+'Hu0
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
^I5k+cL
% and theta=0 to theta=2*pi) is unity. For the non-normalized Z0`Bn5
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. VEkv
JX.
% ,@;",
% The Zernike functions are an orthogonal basis on the unit circle. ,?3r-bM
% They are used in disciplines such as astronomy, optics, and ] L"jt8E
% optometry to describe functions on a circular domain. jav7V"$
% 0/6f9A
% The following table lists the first 15 Zernike functions. U,gg@!1GJo
% 5hr$tkkL
% n m Zernike function Normalization nVoL7ew+
% -------------------------------------------------- `%ZM(9T
% 0 0 1 1 @a'Rn
% 1 1 r * cos(theta) 2 `1=n H/E
% 1 -1 r * sin(theta) 2 _s[ohMlh
% 2 -2 r^2 * cos(2*theta) sqrt(6) -lQ8
&eB
% 2 0 (2*r^2 - 1) sqrt(3) ^a0{"|Lq
% 2 2 r^2 * sin(2*theta) sqrt(6) [i==
Tp
% 3 -3 r^3 * cos(3*theta) sqrt(8) az*c0Z<pl
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) j_H9l,V
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) j2#RO>`,I
% 3 3 r^3 * sin(3*theta) sqrt(8) D|9xD
% 4 -4 r^4 * cos(4*theta) sqrt(10) e4fh<0gX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8d?r )/~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6ey{+8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) --6C>iY[&u
% 4 4 r^4 * sin(4*theta) sqrt(10) >gRb.-{ux
% -------------------------------------------------- M4w,J2_8MK
% i%_W{;e
% Example 1: 8oK*NB29
% QbjO*:c4
% % Display the Zernike function Z(n=5,m=1) f~%|Iu1ob
% x = -1:0.01:1; -GJ~xcf0
% [X,Y] = meshgrid(x,x); 3k(A&]~v
% [theta,r] = cart2pol(X,Y); s1.EE|h,5
% idx = r<=1;
?12[8
% z = nan(size(X)); R}_B\# Q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <tXk\cOg
% figure -N
$4\yp
% pcolor(x,x,z), shading interp {e~#6.$:
% axis square, colorbar C jISU$O
% title('Zernike function Z_5^1(r,\theta)') mhVdsa
% H(Pzo+k*
% Example 2: 'i+j;.
% S3 12#X(%
% % Display the first 10 Zernike functions `k2YH?
% x = -1:0.01:1; U2<8U
% [X,Y] = meshgrid(x,x); !0!m |^c5
% [theta,r] = cart2pol(X,Y); K~Nx;{{d
% idx = r<=1; _zt)c!
% z = nan(size(X)); h*d1G9%Q1
% n = [0 1 1 2 2 2 3 3 3 3]; pse$ S=
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ~8:q-m_h
% Nplot = [4 10 12 16 18 20 22 24 26 28]; GB,f'Afl
% y = zernfun(n,m,r(idx),theta(idx)); 3w!8PPl
% figure('Units','normalized') RT`.S
uN
% for k = 1:10 o]/*YaB2>
% z(idx) = y(:,k); tf[)Q:|
% subplot(4,7,Nplot(k)) CGw, RNV
% pcolor(x,x,z), shading interp 3MX&%_wUhB
% set(gca,'XTick',[],'YTick',[]) g?B4b7II
% axis square StLFq6BO
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =Ot|d #_
% end OD[q
u
% D[/h7Ha
% See also ZERNPOL, ZERNFUN2. RK)1@Tz7!
5<U:Yy
2(I S*idq
% Paul Fricker 11/13/2006 o-I:p$B -
Q~k5 }n8
O]_a$U*6
~'1gX`o:
@*e5(@R
% Check and prepare the inputs: C(CwsdlP
% ----------------------------- &?g!)O
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?}g^/g !
error('zernfun:NMvectors','N and M must be vectors.') QNbV=*F?
end ,="hI:*<
Th_PmkvC
B SH2Kq
if length(n)~=length(m) 2ieyU5q7#
error('zernfun:NMlength','N and M must be the same length.') |P0!dt7sQ
end f8e :J#jbS
jQBL8<
9*Q6/?v
n = n(:); V82HO{ D
m = m(:); CKI.\o
if any(mod(n-m,2)) ?}RPnf
error('zernfun:NMmultiplesof2', ... y>^FKN/
'All N and M must differ by multiples of 2 (including 0).') -\<\OV:c*
end unKPqc%q=n
)Cu2xRr^`
TB}6iIe
if any(m>n) {x{~%)-
error('zernfun:MlessthanN', ... ]A%]W ^G
'Each M must be less than or equal to its corresponding N.') +Jm~Um!
end ) >te|@}o
"7q!u,u
}1
,\*)5
if any( r>1 | r<0 ) Upa F>,kM
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?wP/l
end `=V p 0tPI
7Q^p|;~a
A!cY!aQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =kTHfdin&
error('zernfun:RTHvector','R and THETA must be vectors.') 6l'J!4*qY
end dd=ca0c7e
OUq%d8W
}W)b
r = r(:); x(n|zp ("
theta = theta(:); Yt[LIn-v:
length_r = length(r); cgnMoBIc
if length_r~=length(theta) nW)?cQ
I
error('zernfun:RTHlength', ... ZIN1y;dJ
'The number of R- and THETA-values must be equal.') /!?b&N/d)
end +T\<oj%}2
u*f`\vs
X1HEeJ|
% Check normalization: -Ew>3Q
% -------------------- C7O8B;
if nargin==5 && ischar(nflag) R_D&"&
isnorm = strcmpi(nflag,'norm'); 4a0Ud !Qcs
if ~isnorm +e^CL#Gs
error('zernfun:normalization','Unrecognized normalization flag.') z3Yi$*q <
end qV9}N-sS
else et2;{Tb,5
isnorm = false; vw 6$v
end CBO*2?]s
#+QJ5VI:
(gnN</%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _dELVs7OL
% Compute the Zernike Polynomials IQ$!y,VJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AyWdJ<OU
uh2 Fr
:zX^H9'E<(
% Determine the required powers of r: |sI@m@
% ----------------------------------- i=L 86Ks
m_abs = abs(m); tm/=Oc1p
rpowers = []; :tBe/(e4#
for j = 1:length(n) Ni8%K6]z
rpowers = [rpowers m_abs(j):2:n(j)]; t{g@z3
end L(bDk'zi
rpowers = unique(rpowers); X!:J1'FE
:pM)I5MN[
#K0/ >W
% Pre-compute the values of r raised to the required powers, <THwl/a
% and compile them in a matrix: +m]-)
% ----------------------------- S{?l/*Il*_
if rpowers(1)==0 j85B{Mab&
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);
LofpBO6^
rpowern = cat(2,rpowern{:}); ^ ^&H:q
rpowern = [ones(length_r,1) rpowern]; =/}Rnl+c
else K\wu9z8M
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \s%g'g;
rpowern = cat(2,rpowern{:}); "n]x%. *
end GMg!2CIU
k,$/l1D
hP8w3gl_
% Compute the values of the polynomials: Zr1"'+-
% -------------------------------------- #q K.AZi
y = zeros(length_r,length(n)); JN:L%If
for j = 1:length(n) z Ohv>a
s = 0:(n(j)-m_abs(j))/2; -8l(eDm"m
pows = n(j):-2:m_abs(j); lX%-oRQ/os
for k = length(s):-1:1 wm^1Fn--
p = (1-2*mod(s(k),2))* ... VXiU5n^
prod(2:(n(j)-s(k)))/ ... c]Gs{V]\
prod(2:s(k))/ ...
T*mR9 8i
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... GZWqPM4S\
prod(2:((n(j)+m_abs(j))/2-s(k))); `*[\b9>
idx = (pows(k)==rpowers); )^BZ,e
y(:,j) = y(:,j) + p*rpowern(:,idx); K\KQ(N8F
end x]yIe&*('
h<)ceD<,
if isnorm 5k@T{
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T u%XhXl:j
end 6\u. [2lE^
end 0<:rp]<,
% END: Compute the Zernike Polynomials w>\oz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]Tb?z&
T[^&ZS]s
hSxK*.W*3
% Compute the Zernike functions: <{8x-zbR+
% ------------------------------ EZ{{p+e^
idx_pos = m>0; Zyr|J!VF
idx_neg = m<0; )b (+=
lwfM>%%N
:%33m'EV}
z = y; r>! @Z2%s
if any(idx_pos) QnOs8%HS-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); n|? sNM<J3
end 5x|$q kI
if any(idx_neg) IJKdVb~
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n:B){'S
end )X," NJG
5FuV=Y uc
w)* H&8h@
% EOF zernfun jl}!UG