下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3a_S-&?X
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :t]YPt
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 5-bd1!o
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )k3zOKZ;
u9e A"\s
}@}jwi)l
w/N.#s^
Fp-d69Npo
function z = zernfun(n,m,r,theta,nflag) )oa6;=go
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (eN\s98)/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vI#\Qe
% and angular frequency M, evaluated at positions (R,THETA) on the ;|b
D@%@
% unit circle. N is a vector of positive integers (including 0), and 7[:9vY
% M is a vector with the same number of elements as N. Each element K3TMT Y<p
% k of M must be a positive integer, with possible values M(k) = -N(k) DVRE ;+Jt
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, H(!)]dO
% and THETA is a vector of angles. R and THETA must have the same X#-U
% length. The output Z is a matrix with one column for every (N,M) W=o90TwbN
% pair, and one row for every (R,THETA) pair. NZ'S~Lr
% KQ xKU?b1
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R\MM2_I
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 29pIO]8;
% with delta(m,0) the Kronecker delta, is chosen so that the integral |~CN]N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, VLc=!W}
% and theta=0 to theta=2*pi) is unity. For the non-normalized z![RC59S
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. veAGUE
%3
% ~DVAk|fc
% The Zernike functions are an orthogonal basis on the unit circle. uE-~7Q(@
% They are used in disciplines such as astronomy, optics, and 7Cx%G/(
% optometry to describe functions on a circular domain. w:Tz&$&Y$
% _UYt
% The following table lists the first 15 Zernike functions. FlRbGg^
% W j/.rG&tE
% n m Zernike function Normalization ;_,=
% -------------------------------------------------- U/m6% )Yx(
% 0 0 1 1 ]0zXpMNI
% 1 1 r * cos(theta) 2 %s%v|HDs
% 1 -1 r * sin(theta) 2 fEWS3`Yy
% 2 -2 r^2 * cos(2*theta) sqrt(6)
7<oLe3fbM
% 2 0 (2*r^2 - 1) sqrt(3) ^~0\d;l_
% 2 2 r^2 * sin(2*theta) sqrt(6) y1(smZU
% 3 -3 r^3 * cos(3*theta) sqrt(8) Xp{+){Iu
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) b"t!nfgo
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) j{IAZs#@>
% 3 3 r^3 * sin(3*theta) sqrt(8) hJ>{`Tw
% 4 -4 r^4 * cos(4*theta) sqrt(10) ngcXS2S_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _LFZ 0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /fWVgyW>6
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =E8lpN'
% 4 4 r^4 * sin(4*theta) sqrt(10) c</d1x T
% -------------------------------------------------- p V(b>O
% ]YQlCx`
% Example 1: Ajr]&H4
% [P]zdw
w#
% % Display the Zernike function Z(n=5,m=1) C#`eN{%.YT
% x = -1:0.01:1; *{P"u(K
% [X,Y] = meshgrid(x,x); +n %uIv
% [theta,r] = cart2pol(X,Y); `ux
U
H#
% idx = r<=1; 4WG~7eIgy
% z = nan(size(X)); :kfHILi
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 3205gI,
% figure 4$+1jjC]>~
% pcolor(x,x,z), shading interp [iwn"e
% axis square, colorbar cj`g)cX|
% title('Zernike function Z_5^1(r,\theta)') #{1w#Iz;
% 81fpeoNO
% Example 2: j#"?Oe{_1
% t;TMD\BU
% % Display the first 10 Zernike functions &7!&]kA+
% x = -1:0.01:1; _p\
% [X,Y] = meshgrid(x,x); Aj#CB.y
% [theta,r] = cart2pol(X,Y); E9;cd$}K
% idx = r<=1; <- Q=h?D
% z = nan(size(X)); V{p*N*
% n = [0 1 1 2 2 2 3 3 3 3]; 4*g`!~)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; SG2s!Ht
% Nplot = [4 10 12 16 18 20 22 24 26 28]; -LJbx<'
% y = zernfun(n,m,r(idx),theta(idx)); (GJ)FWen0"
% figure('Units','normalized') M%7{g"J*
% for k = 1:10 SEq_37
% z(idx) = y(:,k); w7$*J:{
% subplot(4,7,Nplot(k)) d_BECx<\
% pcolor(x,x,z), shading interp <LIL{g0eX
% set(gca,'XTick',[],'YTick',[]) ~C6d5\
% axis square Yj|Oy
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1hw1AJ}(F
% end Zj99]4?9
% 4pq@o
% See also ZERNPOL, ZERNFUN2. WLd{+y5#
O6NgI2[O
"~0m_brf
% Paul Fricker 11/13/2006 xAw$bJj~s
47ra`*
~0,Utqy
tI0d!8K
Xi^3o
% Check and prepare the inputs: H'Bor\;[>
% ----------------------------- oA%8k51>~K
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0tv"tA;
error('zernfun:NMvectors','N and M must be vectors.') w>>)3:Ytd
end i[/g&fx
T3,"g=
l)m\i_r:
if length(n)~=length(m) sy=M#WGS
error('zernfun:NMlength','N and M must be the same length.') A9'
[x7N
end Fq>=0 )
CpNnywDRwU
U~n>k<`sr
n = n(:); ~F [}*%iR
m = m(:); q(4W/y
if any(mod(n-m,2)) mD{<Lp=
error('zernfun:NMmultiplesof2', ... [`nY/g:
'All N and M must differ by multiples of 2 (including 0).') D7H,49#1Q
end
|7XSC,"
3o&PVU?Q
=p,+a/*
if any(m>n) r|wB&
PGW
error('zernfun:MlessthanN', ... Ca?5bCI,
'Each M must be less than or equal to its corresponding N.') 23 j{bK
end PXqLK3AE
jX}}^XwX
.}n,
if any( r>1 | r<0 ) 2?9 FFlX
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 83~
Gu[
end /fC@T
?muI8b
M24FuS
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xP%`QTl\
error('zernfun:RTHvector','R and THETA must be vectors.') Kk#g(YgNz
end tgXIj5z
86igP
T\ZWKx*#
r = r(:); 0`.3`Mk
theta = theta(:); y`O !,kW
length_r = length(r); NfvvwG;M
if length_r~=length(theta) "9,z"k
error('zernfun:RTHlength', ... y^7;I-
'The number of R- and THETA-values must be equal.') |M]#D0v
end ^Y z.,!B[
k~f3~- "
0f~7n*XH
% Check normalization: 8}9|hT;
% -------------------- v$c*3H.seM
if nargin==5 && ischar(nflag) y57]q#k
isnorm = strcmpi(nflag,'norm'); [5K&J-W
if ~isnorm e=K2]Y Q{
error('zernfun:normalization','Unrecognized normalization flag.') 4np,"^c
end e+jp03m\W
else "Y0:Y?Vz"
isnorm = false; kx,9n)
end ;d$PQi
9l).L L
<YX)am'\y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (qd $wv^h
% Compute the Zernike Polynomials .2?txOKh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W:D'k^u
0"q_c-_Bg
62lG,y_L
% Determine the required powers of r: N2:};a[ui5
% ----------------------------------- fFP>$
m_abs = abs(m); YT7,=k _
rpowers = []; Sh'>5z2
for j = 1:length(n) Ei!t#'*D<
rpowers = [rpowers m_abs(j):2:n(j)]; O%? TxzX;
end + E8\g
rpowers = unique(rpowers); /3|uU
<SM{yMz
<L|eY(:
% Pre-compute the values of r raised to the required powers, Wy^43g38'p
% and compile them in a matrix: XVwaX2=L
% ----------------------------- :&D>?{b0
if rpowers(1)==0 B.w ihJVDg
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }p-<+sFo
rpowern = cat(2,rpowern{:}); }#~@HM>6Z
rpowern = [ones(length_r,1) rpowern]; 6<0-GD}M
else VB6EM|bphl
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VsS.\1
rpowern = cat(2,rpowern{:}); 9>~UqP9
end 48X;'b,h
&t)dE7u5
YrAaL"20
% Compute the values of the polynomials: .5=Qfvi*
% -------------------------------------- ERxA79
y = zeros(length_r,length(n)); Q*wub9
for j = 1:length(n) 4k'2FkDA
s = 0:(n(j)-m_abs(j))/2; 2yqm$i9C
pows = n(j):-2:m_abs(j); o6f^DG3*
for k = length(s):-1:1 ' k~'aZ
p = (1-2*mod(s(k),2))* ... U9:?d>7
prod(2:(n(j)-s(k)))/ ... <3\t J
prod(2:s(k))/ ... pT Yq#9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #6g-{OBv
prod(2:((n(j)+m_abs(j))/2-s(k))); Jp)>Wd
idx = (pows(k)==rpowers); $ijWwrh
y(:,j) = y(:,j) + p*rpowern(:,idx); ydp?%RB3w
end R_4]6{Rm
n99>oh
if isnorm U" eP>HHp
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hDc,#~!
end v5"5UPi-
end 3md yY\+&
% END: Compute the Zernike Polynomials K{[yS B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1_vaSEov
#"|Y"#@k
(1e;7sNG@
% Compute the Zernike functions: > o{(f
% ------------------------------ $LUNA.
idx_pos = m>0; $q#|B3N%
idx_neg = m<0; ~7PPB|XY
yC.ve;lG
0Eq.l <
z = y; ;6aTt2BQ
if any(idx_pos) C[ <OF/
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]X4
A)4y
end d!)
&@k
if any(idx_neg) EgIFi{q=0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @]lKQZ^2&
end FY"!%)TV
.Ajs0 T2
` c~:3^?9d
% EOF zernfun 6L@g]f|Y@