切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9456阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Q\N >W+d  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,aIkiT  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Uyxn+j 5  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? BCtKxtbS  
    4p%^?L?  
    m#4h5_N  
    oTrit_@3  
    .[Qi4jm>`  
    function z = zernfun(n,m,r,theta,nflag) NE4]i  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }pGjc_:']  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "=LeHY=9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the K(HrwH`a{  
    %   unit circle.  N is a vector of positive integers (including 0), and ;#mm_*L%@  
    %   M is a vector with the same number of elements as N.  Each element =woP~+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) /F6"uZSt4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, q_98=fyE6  
    %   and THETA is a vector of angles.  R and THETA must have the same mF UsTb]f  
    %   length.  The output Z is a matrix with one column for every (N,M) f4&;l|R0a  
    %   pair, and one row for every (R,THETA) pair. ?FwHqyFVlQ  
    % GVfRy@7n  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike w9n0p0xr<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ya(3Z_f+VZ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &Pc.[k  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m/,80J8L+f  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized hT`&Xb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b"nkF\P@Fj  
    % C ](djkA$  
    %   The Zernike functions are an orthogonal basis on the unit circle. wQ[!~>A  
    %   They are used in disciplines such as astronomy, optics, and 9+/D\|"{  
    %   optometry to describe functions on a circular domain. 0d1!Q!PH3  
    % #lMC#Ld  
    %   The following table lists the first 15 Zernike functions. &N]e pV>  
    % u%Mo.<PI  
    %       n    m    Zernike function           Normalization [j0jAl  
    %       -------------------------------------------------- 6']G HDK  
    %       0    0    1                                 1 O+/{[9s  
    %       1    1    r * cos(theta)                    2 *{5/" H5  
    %       1   -1    r * sin(theta)                    2 A/"2a55  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) pred{HEye  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )rlkQ'DN  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) g"kET]KP"  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |o*qZ}6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) lY2~{Y|4s  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) s,AJR [  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _+H $Pa}?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h7@%}<%  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;C=V -r  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (44L8)I.D  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ` N R,8F  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =e0MEV#s.  
    %       -------------------------------------------------- J<4_<.o(a  
    % b5I 8jPj4c  
    %   Example 1: s@GE(Pu7  
    % ~%eE%5!k  
    %       % Display the Zernike function Z(n=5,m=1) R3.w")6  
    %       x = -1:0.01:1; 7oc Ng  
    %       [X,Y] = meshgrid(x,x); :UAcS^n7h"  
    %       [theta,r] = cart2pol(X,Y); a>9_#_hI  
    %       idx = r<=1; [>\e@ =  
    %       z = nan(size(X)); <a&xhG}  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); [2>zaag  
    %       figure 33wVP}e5  
    %       pcolor(x,x,z), shading interp R lbJ4`a  
    %       axis square, colorbar ;b. m X  
    %       title('Zernike function Z_5^1(r,\theta)') )s4: &!  
    % bg_io*K  
    %   Example 2: TTbJ9O<43  
    % dw!Xt@,[g{  
    %       % Display the first 10 Zernike functions i )$+#N  
    %       x = -1:0.01:1; 5e1oxSU  
    %       [X,Y] = meshgrid(x,x); aBQ@n  
    %       [theta,r] = cart2pol(X,Y); bj0<A  
    %       idx = r<=1; #W l^!)#j?  
    %       z = nan(size(X)); ,fN <I  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ?<Hgq8J  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; J><hrZ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; g& f)WQ(  
    %       y = zernfun(n,m,r(idx),theta(idx)); }NRt:JC  
    %       figure('Units','normalized') ;l<Hen*  
    %       for k = 1:10 0pl'*r*9  
    %           z(idx) = y(:,k); .j"heYF)  
    %           subplot(4,7,Nplot(k)) /u`Opv&I  
    %           pcolor(x,x,z), shading interp Z_<NUPE  
    %           set(gca,'XTick',[],'YTick',[]) iT s" RW  
    %           axis square xj&~>&U){;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lUp%1x+  
    %       end 9 C{Xpu  
    % $sZ4r>-  
    %   See also ZERNPOL, ZERNFUN2. 4:733Q3oK  
    |id7@3leu  
    `[XH=-p  
    %   Paul Fricker 11/13/2006 |nr;OM  
    J7e /+W~  
    w@O)b-b|w  
    "*V'   
    &B=z*m  
    % Check and prepare the inputs: CdcB E.%<  
    % ----------------------------- )56L`5#tS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w40*vBz  
        error('zernfun:NMvectors','N and M must be vectors.') W<[7LdAB  
    end Ol<LL#<j4  
    H4{7,n  
    GukwN]*OY  
    if length(n)~=length(m) B}* \ pdJ  
        error('zernfun:NMlength','N and M must be the same length.') z|Xt'?9&n  
    end N1'Yo:_A  
    I")Ud?v0)  
    QwF.c28[  
    n = n(:); -em3 #V  
    m = m(:); {ehYE^%N  
    if any(mod(n-m,2)) p)"EenUK  
        error('zernfun:NMmultiplesof2', ... eb,QT\/G  
              'All N and M must differ by multiples of 2 (including 0).') QJ>=a./  
    end #)#'^MZX  
    IM[=]j.?  
    eecIF0hp  
    if any(m>n) 8{{^pW?x  
        error('zernfun:MlessthanN', ... <5CQ#^ cK  
              'Each M must be less than or equal to its corresponding N.') sk0/3X*Q%  
    end gh"_,ZhZt  
    J4iu8_eH!D  
    |8x_Av0  
    if any( r>1 | r<0 ) IF//bgk-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >s,*=a  
    end 4"{g{8  
    2"P1I  
    ?V_v=X%w  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 73tjDO7d  
        error('zernfun:RTHvector','R and THETA must be vectors.') @cm[]]f'l  
    end 6Q+VW_~  
    "/UPq6  
    |L-- j  
    r = r(:); ?o/p}6  
    theta = theta(:); N5k9o:2  
    length_r = length(r); ,p\*cHB9  
    if length_r~=length(theta) 9{A*[.XK]  
        error('zernfun:RTHlength', ... HBk5 p>&  
              'The number of R- and THETA-values must be equal.') AO5a  
    end [ei5QSL |  
    %VXIiu[  
    F[.IF5_  
    % Check normalization: #SD2b,f  
    % -------------------- Mz lE  
    if nargin==5 && ischar(nflag) 6e}T zc\@(  
        isnorm = strcmpi(nflag,'norm'); <!|=_W6  
        if ~isnorm L9whgXD  
            error('zernfun:normalization','Unrecognized normalization flag.') +yHzp   
        end CyB1`&G>  
    else Rob: W|  
        isnorm = false; kaDn= ={YM  
    end Ox'K C  
    5pRVA  
    *\Hut'7 d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {>brue*)  
    % Compute the Zernike Polynomials "DJ%Yo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n4ti{-^4|d  
    W}wd?WIps  
    tfe'].uT  
    % Determine the required powers of r: %]O #t<D  
    % ----------------------------------- \OK}DhY#  
    m_abs = abs(m); ^AUQsRA7PZ  
    rpowers = []; 0upZ4eN  
    for j = 1:length(n) HI)U6.'  
        rpowers = [rpowers m_abs(j):2:n(j)]; ];0:aSi#  
    end v\kd78,  
    rpowers = unique(rpowers); wo^1%:@/2  
    W*4!A\K  
    <)@^TRS  
    % Pre-compute the values of r raised to the required powers, uQWd`7  
    % and compile them in a matrix: O}7aX '  
    % ----------------------------- ]d&;QZ#w  
    if rpowers(1)==0 "M]`>eixL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MpJx>0j/J  
        rpowern = cat(2,rpowern{:}); U(:t$SBKy  
        rpowern = [ones(length_r,1) rpowern]; #- d-zV*  
    else +,9Mufh  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +Pn`AV1  
        rpowern = cat(2,rpowern{:}); `"bp -/  
    end q?&JS  
     q0\$wI  
    Gv\fF;,R  
    % Compute the values of the polynomials: ]6HnK%  
    % -------------------------------------- 2Xfy?U  
    y = zeros(length_r,length(n)); ]m^ECA$  
    for j = 1:length(n) ]JI A\|b6  
        s = 0:(n(j)-m_abs(j))/2; jbTyM"Y  
        pows = n(j):-2:m_abs(j); F=kiYa}  
        for k = length(s):-1:1 `P9%[8`C 9  
            p = (1-2*mod(s(k),2))* ... u\UI6/  
                       prod(2:(n(j)-s(k)))/              ... .O.fD  
                       prod(2:s(k))/                     ... P99s   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #DH eEE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); t]pJt  
            idx = (pows(k)==rpowers); k :zGv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); faI4`.i  
        end H0mDs7  
         dtq]_HvTJ  
        if isnorm K+c>Cj}H  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); UIw6~a3E  
        end O<w7PS  
    end `#N7ym;s@  
    % END: Compute the Zernike Polynomials i'vjvc~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !GVxQll[f  
     '+C%]p  
    &]/.=J  
    % Compute the Zernike functions: rx;zd?  
    % ------------------------------ +UP?M4g  
    idx_pos = m>0; ::kpAE]  
    idx_neg = m<0; ~# |p=Y  
    "mkTCR^]e  
    :J+GodW  
    z = y; SYTzJK@vZJ  
    if any(idx_pos) L"!BN/i_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); D$c4's `5  
    end "A9 c]  
    if any(idx_neg) .c.#V:XZ#U  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5bKn6O)K  
    end jDc5p3D&[]  
    tI(co5 W  
    1{S" axSL  
    % EOF zernfun T/C1x9=?  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  C XZm/^  
    it!8+hvq9*  
    DDE还是手动输入的呢? &+=A;Y)  
    RZ9vQ\X U)  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究