切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9486阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, =.y~fA!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, }MRd@ 0-?!  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0QPH}Vi5}  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? j2Tr $gx<  
    EPS={w$'s  
    N*%@  
    (EK"V';   
    ld3-C55  
    function z = zernfun(n,m,r,theta,nflag) $"0MU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $tz;<M7B  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WtViW=j'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j*F`"df  
    %   unit circle.  N is a vector of positive integers (including 0), and XD|E=s  
    %   M is a vector with the same number of elements as N.  Each element XS`M-{f`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) #Xhdn\7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, v[#9+6P=  
    %   and THETA is a vector of angles.  R and THETA must have the same , FhekaA  
    %   length.  The output Z is a matrix with one column for every (N,M) >2~+.WePu  
    %   pair, and one row for every (R,THETA) pair. " Om[~-31  
    % hJwC~HG5  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %FXfqF9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NLS%Sq  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .jS~By|r  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8#(Q_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mocI&=EF2X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =0^Ruh  
    % Q>/C*@  
    %   The Zernike functions are an orthogonal basis on the unit circle. P8^hBv*  
    %   They are used in disciplines such as astronomy, optics, and zXv3:uRp.  
    %   optometry to describe functions on a circular domain. :> D[n1v  
    % ZZcEt  
    %   The following table lists the first 15 Zernike functions. '3TW [!m  
    % Swp;HW7x  
    %       n    m    Zernike function           Normalization uwa~-xX6  
    %       -------------------------------------------------- jov:]Bic  
    %       0    0    1                                 1 e?_@aa9~@{  
    %       1    1    r * cos(theta)                    2 T^T[$26  
    %       1   -1    r * sin(theta)                    2 "`M?R;DH  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) :!5IW?2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) M&N B/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) PH?#)l D  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ?shIj;c[  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) w=j  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) I4i2+ *l}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _@ *+~9%8p  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;3\3q1oX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u}!@ ,/)  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) si&S%4(  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ##@$|6  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) COTp  
    %       -------------------------------------------------- 356>QW'm  
    % {]E+~%Va  
    %   Example 1: FDVcow*]n  
    % Jrg2/ee,*  
    %       % Display the Zernike function Z(n=5,m=1) L:_bg8eD#  
    %       x = -1:0.01:1; Bn61AFy`  
    %       [X,Y] = meshgrid(x,x); 9uRF nzJVx  
    %       [theta,r] = cart2pol(X,Y); PQK(0iCo4  
    %       idx = r<=1; ]4R[<<hd  
    %       z = nan(size(X)); \[gReaI  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); QmLF[\Oo_  
    %       figure F1jglH/MF)  
    %       pcolor(x,x,z), shading interp GP&vLt51  
    %       axis square, colorbar r*$Ner  
    %       title('Zernike function Z_5^1(r,\theta)') Z^]|o<.<I  
    % $aN-Y?U%  
    %   Example 2: *uo'VJI7_,  
    % = M]iIWQ@`  
    %       % Display the first 10 Zernike functions g.'yZvaP  
    %       x = -1:0.01:1; ]8icBneA~'  
    %       [X,Y] = meshgrid(x,x); P( XaTU&-  
    %       [theta,r] = cart2pol(X,Y); 5B&;uY  
    %       idx = r<=1; F)+{AQL  
    %       z = nan(size(X)); %F:)5gT?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; oP!;\a( SL  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |1ST=O7.LH  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; AC;V m: @{  
    %       y = zernfun(n,m,r(idx),theta(idx)); hQ(qbt{e  
    %       figure('Units','normalized') SB5&A_tr  
    %       for k = 1:10 hSFn8mpXT  
    %           z(idx) = y(:,k); NzU,va N  
    %           subplot(4,7,Nplot(k)) Qb)C[5a}  
    %           pcolor(x,x,z), shading interp ]J:1P`k.  
    %           set(gca,'XTick',[],'YTick',[]) Ma8_:7`>O  
    %           axis square lu#LCG-.  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )(tM/r4`c&  
    %       end QHWBAGA  
    % X=Ys<TM,  
    %   See also ZERNPOL, ZERNFUN2. {_Lg tu  
    #% of;mJv  
    wKi^C 8Z2  
    %   Paul Fricker 11/13/2006 8}fu,$$5  
    mcn 2Wt  
    W -  
    `ORECg)  
    $2M#qkik-  
    % Check and prepare the inputs: -s|}Rh?Y  
    % ----------------------------- *;m5'}jsy  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^S)cjH`P  
        error('zernfun:NMvectors','N and M must be vectors.') : C b&v07  
    end %e`$p=m  
    WBNw~|DO]  
    +&Hr4@pgW  
    if length(n)~=length(m) rHf&:~   
        error('zernfun:NMlength','N and M must be the same length.') CBDG./  
    end Rb%%?*|  
    M)+$wp  
    wWSdTLX  
    n = n(:); _>=L>*  
    m = m(:); ?UK|>9y}Z  
    if any(mod(n-m,2)) 7lS#f1E  
        error('zernfun:NMmultiplesof2', ... ovwQ2TuK  
              'All N and M must differ by multiples of 2 (including 0).') f)g7 3=  
    end Fe.t/amS/  
    MB%Q WU  
    [tg^GOf '  
    if any(m>n) N?5x9duK  
        error('zernfun:MlessthanN', ... f+|$&p%  
              'Each M must be less than or equal to its corresponding N.') M @3"<[g  
    end N<Q jdD&  
    E;d7ch  
    >@ YtDl8R  
    if any( r>1 | r<0 )  P\]B<  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @x eAc0.^  
    end  Y!WG)u5  
    Fbu5PWhlc  
    PG8^.)]M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?-tVSRKQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') MwfOy@|N  
    end kPQtQh]y%  
    $2<d<Um~z  
    .<z!3O&L  
    r = r(:); }hYZ" A~  
    theta = theta(:); <BO)E(  
    length_r = length(r); /'Pd`Nxl.  
    if length_r~=length(theta) >(y<0   
        error('zernfun:RTHlength', ... _;4 [Q1  
              'The number of R- and THETA-values must be equal.') 557(EM  
    end %lX%8Z$v  
    >XOiu#kC  
    1yV: qp  
    % Check normalization: sHcTd>xS  
    % -------------------- (;%|-{7e-  
    if nargin==5 && ischar(nflag) :K ~  
        isnorm = strcmpi(nflag,'norm');  PlYm&  
        if ~isnorm -!0_:m3  
            error('zernfun:normalization','Unrecognized normalization flag.') 0<PR+Iv*i  
        end jqH3J2L  
    else i/b'4o=8  
        isnorm = false; S!PzLTc  
    end AW#<i_Ybf  
    d*oUfiW  
    goJ|oi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7 Sa1;%R  
    % Compute the Zernike Polynomials BS&;n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dfd-^N!  
    kQaSbpNmH  
    Fkf97Oi  
    % Determine the required powers of r: m~lpyAw  
    % ----------------------------------- p#SY /KIw  
    m_abs = abs(m); D0mI09=GtQ  
    rpowers = []; ,Rx{yf]k  
    for j = 1:length(n) Bm\qxQ  
        rpowers = [rpowers m_abs(j):2:n(j)]; UZEI:k,dv  
    end =&!HwOnp  
    rpowers = unique(rpowers); 5'w^@Rs5  
    QQe;1O  
    `VQb-V  
    % Pre-compute the values of r raised to the required powers, BZb]SoAL  
    % and compile them in a matrix: 83cW=?UgA  
    % ----------------------------- "xAWG$b  
    if rpowers(1)==0 CSV;+,Vv  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 577:u<Yt  
        rpowern = cat(2,rpowern{:}); X%bFN  
        rpowern = [ones(length_r,1) rpowern]; hI pKJ&hm  
    else NNG}M(/V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); okq[ o90  
        rpowern = cat(2,rpowern{:}); 51# "3S  
    end M=xQ=j?  
    xsjO)))f  
    XJ!(F#zc  
    % Compute the values of the polynomials:  q{die[J  
    % -------------------------------------- IMnP[WA!  
    y = zeros(length_r,length(n)); /D_+{dtE  
    for j = 1:length(n) 1!p/6  
        s = 0:(n(j)-m_abs(j))/2; Wk^RA_  
        pows = n(j):-2:m_abs(j); ^MD;"A<  
        for k = length(s):-1:1 Aa?I8sbc  
            p = (1-2*mod(s(k),2))* ... FFEfp.T1M  
                       prod(2:(n(j)-s(k)))/              ... gPzL*6OS A  
                       prod(2:s(k))/                     ... )4xu^=N&as  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~#}Dx :HH  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); `>D9P_Y"jI  
            idx = (pows(k)==rpowers); &V7>1kD3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); G6K  <  
        end #JA}3]  
         /,5Z-Z*wq  
        if isnorm NHw x:-RH  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Pw@olG'Ah  
        end iA!7E;o  
    end t ]c{c#N/  
    % END: Compute the Zernike Polynomials 'mdMq=VI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P&*sB%B  
    ql5x2n  
    W[NEe,.>  
    % Compute the Zernike functions: +TeFt5[)h  
    % ------------------------------ gLL-VvJ[  
    idx_pos = m>0; iy\KzoB  
    idx_neg = m<0; kE;O7sN   
    ovf/;Q/}  
    LF*Q!  
    z = y; e=/&(Y  
    if any(idx_pos) 1xnLB>jP#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); v| z08\a[  
    end SC#sax4N!=  
    if any(idx_neg) (}!C4S3#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +rNkN:/L  
    end OySy6IN]q  
    S"snB/  
    cJn HW  
    % EOF zernfun Mo|wME#M  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ( pD7  
    8eX8IR!K9  
    DDE还是手动输入的呢? (+MC<J/i  
    =R9*;6?N  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究