下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, =9@t6
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, t,m},c(B:
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 8wQ|Ep\
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ON~K(O2g(
#Z.2g].
,F)9{ <r]
_[_mmf1;:'
A]k-bX= s
function z = zernfun(n,m,r,theta,nflag) aE'nW@YL.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6xsB#v*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %x G3z7;
% and angular frequency M, evaluated at positions (R,THETA) on the y@?t[A#v
% unit circle. N is a vector of positive integers (including 0), and d#*n@@V4
% M is a vector with the same number of elements as N. Each element KqH_?r`
% k of M must be a positive integer, with possible values M(k) = -N(k) RN"O/b}qQ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 4`Z8EV
% and THETA is a vector of angles. R and THETA must have the same y Ddi+
% length. The output Z is a matrix with one column for every (N,M) E")g1xGaK
% pair, and one row for every (R,THETA) pair. 'YaD=""
% k_}aiHdG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]sf1+3
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !33)6*s
% with delta(m,0) the Kronecker delta, is chosen so that the integral
!=w&=O0(
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hL8GW> `a
% and theta=0 to theta=2*pi) is unity. For the non-normalized D+"-(k
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YrWC\HR_
% yd-Kg zm8n
% The Zernike functions are an orthogonal basis on the unit circle. _:Jra
% They are used in disciplines such as astronomy, optics, and YLEa;MR
% optometry to describe functions on a circular domain. u{_jweZ
% Z[{k-_HgAm
% The following table lists the first 15 Zernike functions. zu@5,AH
% RXF%A5FXh
% n m Zernike function Normalization n)'5h
% -------------------------------------------------- .h;PMY+
% 0 0 1 1 !y{t}|U/d
% 1 1 r * cos(theta) 2 ;HPQhN_
% 1 -1 r * sin(theta) 2 S)h0@;q
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^XIVWf#`H
% 2 0 (2*r^2 - 1) sqrt(3) z:_o3W.E
% 2 2 r^2 * sin(2*theta) sqrt(6) /QeJ#EHn
% 3 -3 r^3 * cos(3*theta) sqrt(8) l1h;ng6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) '.mHx#?7
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _FRwaFVJ3
% 3 3 r^3 * sin(3*theta) sqrt(8) :172I1|7
% 4 -4 r^4 * cos(4*theta) sqrt(10) %di]1vQ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }bg_?o;X}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) v,] &[`
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .%'$3=/oe
% 4 4 r^4 * sin(4*theta) sqrt(10) B?G!~lQ)o
% -------------------------------------------------- )t-Jc+*A>
% W]t!I}yPR
% Example 1: WjrUns
% \ tK{!v+
% % Display the Zernike function Z(n=5,m=1) >O:31Uk
% x = -1:0.01:1; 0xe!tA
% [X,Y] = meshgrid(x,x); OZ/!=;
% [theta,r] = cart2pol(X,Y); 4KkjBPV
% idx = r<=1; w!=Fi
% z = nan(size(X)); Y<vsMf_U
% z(idx) = zernfun(5,1,r(idx),theta(idx)); aq|R?
% figure EPZ^I)
% pcolor(x,x,z), shading interp qXH\e|
% axis square, colorbar @4'bI)
% title('Zernike function Z_5^1(r,\theta)') x'.OLXx>
% *r&q;ER
% Example 2: ygvX}q
% 9b/7~w.
% % Display the first 10 Zernike functions krw_1Mm
% x = -1:0.01:1; Bj ~bsT@a.
% [X,Y] = meshgrid(x,x); GomTec9.
% [theta,r] = cart2pol(X,Y); QX'EMyK$
% idx = r<=1; JE<zQf( &
% z = nan(size(X)); [CBhipoc
% n = [0 1 1 2 2 2 3 3 3 3]; Kf.G'v46
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; wQ4IQ!
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0! :1o61
% y = zernfun(n,m,r(idx),theta(idx)); PyS~2)=B
% figure('Units','normalized') epWO}@
b a
% for k = 1:10 '>}dqp{Wr
% z(idx) = y(:,k); 33{(IzL0
% subplot(4,7,Nplot(k)) _m
*8f\
% pcolor(x,x,z), shading interp Qe&K
% set(gca,'XTick',[],'YTick',[]) Aj9Onz,Lg
% axis square ~1NK@=7T
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lR^OS*v
% end Zewx*Y|
% `v1Xywg9P
% See also ZERNPOL, ZERNFUN2. fY|Bc<,V9)
AF=9KWqf
jWg7RuN
% Paul Fricker 11/13/2006 yN0!uzdW*
hU}!:6G%[P
;Jn"^zT
",b3C.
k
k&8:;Vj
% Check and prepare the inputs: 6a+w/IO3OU
% ----------------------------- \,w*K'B_Y
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Lqt.S|
error('zernfun:NMvectors','N and M must be vectors.') "w)Y0Qq*z
end Myl!tXawe8
LEq"g7YH
bN,>,hj
if length(n)~=length(m) t Z_ni}
error('zernfun:NMlength','N and M must be the same length.') =aWj+ggd@
end 8$|<`:~J
n>)'!
pT90TcI2
n = n(:); ~{#$`o=
m = m(:); 9(9+h]h+3
if any(mod(n-m,2))
g1je':
error('zernfun:NMmultiplesof2', ... qfO=_z ES
'All N and M must differ by multiples of 2 (including 0).') l1_Tr2A}7/
end MWsjkI`
`m~x*)L#
GTj=R$%09
if any(m>n) ECO4ut.d
error('zernfun:MlessthanN', ... $=x1_
'Each M must be less than or equal to its corresponding N.') ')d&:K*M
end `]Uu` b
U{IY
F{;@
?e`4
sf_~
if any( r>1 | r<0 ) @}
nI$x.
error('zernfun:Rlessthan1','All R must be between 0 and 1.') F-\Swbx+
end }~?B>vZS
#Ub"Ii
uhyw?#f
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4(VVEe
error('zernfun:RTHvector','R and THETA must be vectors.') L|y4u;-Q
end u|!On
di@4'$5#
1]yOC)u"i
r = r(:); b8?qYm
theta = theta(:); D 8nt%vy
length_r = length(r); Mp *S +Plp
if length_r~=length(theta) LvWl*:z
error('zernfun:RTHlength', ... +E8Itb,
'The number of R- and THETA-values must be equal.') jV(\]g"/=
end vv2N;/;I
~?V+^<P
3:">]LMi
% Check normalization: U
Hej5-B
% --------------------
T 4}SF
if nargin==5 && ischar(nflag) a@|/D\C
isnorm = strcmpi(nflag,'norm'); [}7j0&
if ~isnorm GM.2bA(y
error('zernfun:normalization','Unrecognized normalization flag.') )Ir_:lk
end +Zaew679
else b#**`Y
isnorm = false; 63s<U/N
end !Gv*iWg
FmfPi
.;1
uCA!L)$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1E(~x;*)
% Compute the Zernike Polynomials {U$qxC]M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "[` .I*WNo
-hM
nA)+
81\$X
% Determine the required powers of r: e
~X<+3<
% ----------------------------------- UbBo#(TZ)
m_abs = abs(m); Hpo/CY/
rpowers = []; ]dXHjOpA
for j = 1:length(n) q<Zdf
rpowers = [rpowers m_abs(j):2:n(j)]; '64&'.{#>r
end -{Lc?=
rpowers = unique(rpowers); kzA%.bP|
tMN^"sjf*
M7Pvc%\)
% Pre-compute the values of r raised to the required powers, U Ox$Xwp5&
% and compile them in a matrix: 8
S'g%
% ----------------------------- aZ$$a+
if rpowers(1)==0 _$<Q$P6y
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n-h2SQl!
rpowern = cat(2,rpowern{:}); "W_C%elg
rpowern = [ones(length_r,1) rpowern]; 5lp
L$
else e=11EmN9
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N4 O'{
rpowern = cat(2,rpowern{:}); "J0,SFu:
end 6E9y[ %+
GCxtW FXH
IAr
% Compute the values of the polynomials: jL$&]sQ`O)
% -------------------------------------- E"ju<q/Q
y = zeros(length_r,length(n)); :n3)vK
for j = 1:length(n) O[p;IG`
s = 0:(n(j)-m_abs(j))/2; G)(\!0pNZ
pows = n(j):-2:m_abs(j); ],*^wQ
for k = length(s):-1:1 _":yUa0D
p = (1-2*mod(s(k),2))* ... Cdjh/+!f
prod(2:(n(j)-s(k)))/ ... >
,L'A;c}
prod(2:s(k))/ ... :Zy7h7P,lT
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Luxo,Ve
prod(2:((n(j)+m_abs(j))/2-s(k))); b P>!&s_
idx = (pows(k)==rpowers); ;T0Y=yC
y(:,j) = y(:,j) + p*rpowern(:,idx); lYlU8l5>
end qp(F}@
O*3x'I*a
if isnorm ?^z!yD\
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); xO2S|DH{
end I0 y+,~\
end q% Eze
% END: Compute the Zernike Polynomials @MfuV4*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aqvt$u8
Rd5ni2-nve
/Kmzi9j+
% Compute the Zernike functions: 1sFTXl
% ------------------------------ +):t6oX|
idx_pos = m>0; 5YJn<XEc
idx_neg = m<0; T^-fn
K
7)1wiEj
Vp
$]
z = y; Si<9Oh
if any(idx_pos) $!c)%qDq
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); GyV3 ]Qqj
end dw)SF,
if any(idx_neg) ..qAE.%%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H'myd=*h~8
end ||y5XXs
&Z682b$
IxT[1$e
% EOF zernfun Bcx-t)[