下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Jm3iYR+,
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, }O8#4-E_Ji
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? RQW<Sp~
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ;mXw4_{
_;u@xl=
t**o<p#)f
^:]~6p#
UP@-@syGw
function z = zernfun(n,m,r,theta,nflag) jHpFl4VPz
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. $qk(yzY
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8p.O rdp
% and angular frequency M, evaluated at positions (R,THETA) on the ^vr`t9EE
% unit circle. N is a vector of positive integers (including 0), and qW t 9Tr
% M is a vector with the same number of elements as N. Each element uDG#L6
% k of M must be a positive integer, with possible values M(k) = -N(k) YojYb]y+j
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QW6\~l 4
% and THETA is a vector of angles. R and THETA must have the same A!p70km2
% length. The output Z is a matrix with one column for every (N,M) y0cB@pWp
% pair, and one row for every (R,THETA) pair. 84YZT+TEN
% >TwL&la
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike KHt.g`1:R
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), y%xn(Bn
% with delta(m,0) the Kronecker delta, is chosen so that the integral < c[dpK5c
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Hv<jf38
% and theta=0 to theta=2*pi) is unity. For the non-normalized 5E}~iC&
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m'ykDK\B
% ompkDl\E
% The Zernike functions are an orthogonal basis on the unit circle. .RxAYf|
% They are used in disciplines such as astronomy, optics, and VD- 2{em
% optometry to describe functions on a circular domain. I:,D:00+
% (f?&zQ!+
% The following table lists the first 15 Zernike functions. Dv[ 35[Yh
% i*Ee(m]I
% n m Zernike function Normalization yXL]uh#b
% -------------------------------------------------- tS&rR0<OW
% 0 0 1 1 jwZBWt )5
% 1 1 r * cos(theta) 2 o;2QZ"v
% 1 -1 r * sin(theta) 2 H| 1O>p&
% 2 -2 r^2 * cos(2*theta) sqrt(6) &[4lP~
% 2 0 (2*r^2 - 1) sqrt(3) J,]U"+;H
% 2 2 r^2 * sin(2*theta) sqrt(6) k-a3oLCR,
% 3 -3 r^3 * cos(3*theta) sqrt(8) l*z.20^P
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z4@GcdZ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 'hl4cHk14
% 3 3 r^3 * sin(3*theta) sqrt(8) WZJ}HHePr
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1b-_![&]1
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #jNN?,ZK
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `+O7IyTMA
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yZ]u{LJS
% 4 4 r^4 * sin(4*theta) sqrt(10) o$-!E(p
% -------------------------------------------------- B
M$+r(#t
% ]:vo"{*C
% Example 1: 01" b9`jU
% &?gvW//L2
% % Display the Zernike function Z(n=5,m=1) QSq0{
% x = -1:0.01:1; .#ASo!O5q
% [X,Y] = meshgrid(x,x); 27-GfC=7*
% [theta,r] = cart2pol(X,Y); aZ{]t:]
% idx = r<=1; mh=YrDU+L
% z = nan(size(X)); 9akIu.H
% z(idx) = zernfun(5,1,r(idx),theta(idx)); PhOtSml0
% figure q2C._{ 0'
% pcolor(x,x,z), shading interp a@&P\"k
% axis square, colorbar d~U}IMj
% title('Zernike function Z_5^1(r,\theta)') zwa%$U
% ~t-!{F
% Example 2: 6@[7
% rW(<[2 vg
% % Display the first 10 Zernike functions >l3iAy!sZ
% x = -1:0.01:1; 7; e$ sr
% [X,Y] = meshgrid(x,x); -@EAL:kY
% [theta,r] = cart2pol(X,Y); 5p7?e3
% idx = r<=1; 1$#{om9
% z = nan(size(X)); 96FS-`
% n = [0 1 1 2 2 2 3 3 3 3]; X|w[:[P
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; swh8-_[c/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; yhpeP
% y = zernfun(n,m,r(idx),theta(idx)); .sOEqwO}>
% figure('Units','normalized') C[xY 0<^B
% for k = 1:10 ,=@%XMS
% z(idx) = y(:,k); b,Vg3BS
% subplot(4,7,Nplot(k)) k Z>Xl- LV
% pcolor(x,x,z), shading interp y:R!E *.L'
% set(gca,'XTick',[],'YTick',[]) J>XMaI})U
% axis square BQ7p<{G
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {5,
]7 =]
% end }; ;Thfd
% yxx'g+D*
% See also ZERNPOL, ZERNFUN2. <_N<L\
-)p
S\$GC
6SGV}dAx
% Paul Fricker 11/13/2006 W1T%
Q88
0<";9qN)6
n+XLZf#
\_w>I_=F
=h
Lw1~
% Check and prepare the inputs: BHZCM^
% ----------------------------- 5SNa~
kC&
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8*iIJ
error('zernfun:NMvectors','N and M must be vectors.') Y%1 94fY$
end zv8AvNDK
(rfR:[JkC2
JE<w7:R&
if length(n)~=length(m) NlG~{rfI
error('zernfun:NMlength','N and M must be the same length.') f~0CpB*X
end <lo\7p$A
dz>2/'
p-Jp/*R5
n = n(:); 3Hd~mfO\
m = m(:); -/'_XR@1
if any(mod(n-m,2)) N a$eeM
error('zernfun:NMmultiplesof2', ... MoX~ZewWR
'All N and M must differ by multiples of 2 (including 0).') e>] gCa
end o#~Lb9`@U
]~K&b96(
f)x(sk
if any(m>n) . \t8s0A
error('zernfun:MlessthanN', ... !K[UJQs\
'Each M must be less than or equal to its corresponding N.') ("r\3Mvs
end J^V}%N".
{TL.2
o^ zrF
if any( r>1 | r<0 ) 31^Jg
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ht9QINo
end QB.QG!@
U5RLM_a@M
xk*&zAt
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }Be;YIhG
error('zernfun:RTHvector','R and THETA must be vectors.') !*eDT4a
end yt@7l]I
8v }B-cS
-Lhq.Q*a
r = r(:); mfqnRPZ
theta = theta(:); T@%\?=P
length_r = length(r); 9,wD
if length_r~=length(theta) y<g1q"F
error('zernfun:RTHlength', ... CBr(a'3{Z
'The number of R- and THETA-values must be equal.') )UCc!
end 2z9s$tp
#PkZi(k
hv
(yb$h0HN
% Check normalization: HSk_'g(\0
% -------------------- gHo sPY[
if nargin==5 && ischar(nflag) Gl"|t't(
isnorm = strcmpi(nflag,'norm'); TtQ'I}7q
if ~isnorm g7"2}|qxo
error('zernfun:normalization','Unrecognized normalization flag.') YSh@+AN
end ![i)_XO
else y1)ZO_'
isnorm = false; yT~rql
end >t_h/:JZ)
SF=TG84<
GoLK
95"]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FS)"MDs
% Compute the Zernike Polynomials (^NYC$ZxM=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 02_+{vk!
J%u,qF}h
"ze-Mb
% Determine the required powers of r: @-ml=S7;Sz
% ----------------------------------- )dd1B>ej]
m_abs = abs(m); /go|r '
rpowers = []; Q+oV?
S3{
for j = 1:length(n) ]h?q1
rpowers = [rpowers m_abs(j):2:n(j)]; `Gj(>z*
end Z)}UCi+/".
rpowers = unique(rpowers); N;']&f
p|C[T]J\@
0NeIQr1N_
% Pre-compute the values of r raised to the required powers, yeI>b 1>Q
% and compile them in a matrix: .ht-*
% ----------------------------- o"6
2~
if rpowers(1)==0 1<tJ3>Xl
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g/FZ?Wo
rpowern = cat(2,rpowern{:});
/&c2O X|Z
rpowern = [ones(length_r,1) rpowern]; uzI=.j
else )q66^%;S
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;I&XG
rpowern = cat(2,rpowern{:}); 6O<UW.
end
ny
cn
"[eH|z/
r'`7}@H*
% Compute the values of the polynomials: 2Rt6)hgY
% -------------------------------------- P)kJ[Zv>f
y = zeros(length_r,length(n)); ^v`naA(
for j = 1:length(n) CLTkyS)C
s = 0:(n(j)-m_abs(j))/2; f S[-K?K
pows = n(j):-2:m_abs(j); a'-u(Bw
for k = length(s):-1:1 -V4%f{9T3
p = (1-2*mod(s(k),2))* ... o@BV&|
prod(2:(n(j)-s(k)))/ ... X$;&Mdo.
prod(2:s(k))/ ... kU+|QBA@
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /)T~(o|i
prod(2:((n(j)+m_abs(j))/2-s(k))); ?G5,}%
idx = (pows(k)==rpowers); {#:31)P
y(:,j) = y(:,j) + p*rpowern(:,idx); {zWR)o .=
end vQ
L$.A3>
EJ>&\Iq
if isnorm a}uYv:
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {#ynN`tLyF
end @)BO`;*$fF
end jQ,Vs=*H
% END: Compute the Zernike Polynomials hJ$9Hb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n m<?oI*\
gfs ;?vP
Z,/K$;YWo
% Compute the Zernike functions: x ZP*%yM
% ------------------------------ l2LLM {B
idx_pos = m>0; s/=% kCo
idx_neg = m<0; K8aqC{
vjq2(I)u
uN:KivVe
z = y; mUbm3JIjJ
if any(idx_pos) Z(7kwhP[`
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =KUmvV*\
end mwo:+^v(
if any(idx_neg) v,S5C
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S~i9~jA
end z7ik/>d?
{$,\Qg
t&xoi7!$
% EOF zernfun ejlns
~