下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 9`vse>,-hg
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, r9u*c
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2f~s$I&l#
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9Uk9TG 5
12k)Ek9
g[Yok`e[
,sJ{2,]~
'9RHwKu&s
function z = zernfun(n,m,r,theta,nflag) tU?lfU[7
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5a_K|(~3I
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N OO\UF6MCU
% and angular frequency M, evaluated at positions (R,THETA) on the '3<YZWS
% unit circle. N is a vector of positive integers (including 0), and B|!YGfL
% M is a vector with the same number of elements as N. Each element [c3hwogf:
% k of M must be a positive integer, with possible values M(k) = -N(k) V:l; 2rW
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }*+ca>K
% and THETA is a vector of angles. R and THETA must have the same UkeW2l`:
% length. The output Z is a matrix with one column for every (N,M) )DoY*'Cl
% pair, and one row for every (R,THETA) pair. gE8>5_R|
% 242lR0#aY
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =P2T&Gb
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), v'Lckw@G4
% with delta(m,0) the Kronecker delta, is chosen so that the integral 6i&WF<%D
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, zzPgLE55
% and theta=0 to theta=2*pi) is unity. For the non-normalized g:OVAA
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. BeplS
% `cVG_=2
% The Zernike functions are an orthogonal basis on the unit circle. B\N,%vsx#U
% They are used in disciplines such as astronomy, optics, and ~omX(kPzK
% optometry to describe functions on a circular domain. ;i,yT
?so
% Ba@UX(t
% The following table lists the first 15 Zernike functions. Q@l3XNH|c
% ?2.<y_1
% n m Zernike function Normalization G =lC[i
% -------------------------------------------------- BeP0lZ
% 0 0 1 1 sd#a_
% 1 1 r * cos(theta) 2 -+c_TJ.dC
% 1 -1 r * sin(theta) 2 rsiG]o=8
% 2 -2 r^2 * cos(2*theta) sqrt(6) YMm Fpy
% 2 0 (2*r^2 - 1) sqrt(3) 9/Q5(P
% 2 2 r^2 * sin(2*theta) sqrt(6) ];(w8l
% 3 -3 r^3 * cos(3*theta) sqrt(8) /A{znE
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "9R3S[
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Tw|=;m
% 3 3 r^3 * sin(3*theta) sqrt(8) PBkKn3P3
% 4 -4 r^4 * cos(4*theta) sqrt(10) F#W'>WBU
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'fZHtnmc0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6B|IbQ^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fq\E$'o$
% 4 4 r^4 * sin(4*theta) sqrt(10) 9n44 *sZ
% -------------------------------------------------- uv._N6mj
% B \[ P/AC
% Example 1: z^=9%tLJ
% 6kYn5:BhIi
% % Display the Zernike function Z(n=5,m=1) 4.R
>mN[
% x = -1:0.01:1; ;Wb
W\,P'
% [X,Y] = meshgrid(x,x); )<jj O
% [theta,r] = cart2pol(X,Y); ~hz]x^:
% idx = r<=1; <BT}Tv9
% z = nan(size(X)); Qv[@ioc
% z(idx) = zernfun(5,1,r(idx),theta(idx)); opdi5e)jK
% figure +ZXk0sP_<
% pcolor(x,x,z), shading interp "EHwv2Hm>
% axis square, colorbar Z\`uI+`
% title('Zernike function Z_5^1(r,\theta)') 7pr@aA"vgj
% S,qsCnz
% Example 2: yg/.=M
% 9<,\+}^{
% % Display the first 10 Zernike functions XCQ=`3f
% x = -1:0.01:1; NcFHvK
% [X,Y] = meshgrid(x,x); >CNH=
% [theta,r] = cart2pol(X,Y); ~?S/0]?c
% idx = r<=1; LXfDXXF
% z = nan(size(X)); q=g;TAXZl
% n = [0 1 1 2 2 2 3 3 3 3]; E}4R[6YD
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; lHr?sMt
% Nplot = [4 10 12 16 18 20 22 24 26 28]; c00a;=ji
% y = zernfun(n,m,r(idx),theta(idx)); 0FHN
% figure('Units','normalized') >`\~=ivrD
% for k = 1:10 YV 2T$#7u
% z(idx) = y(:,k); qKZ~)B j
% subplot(4,7,Nplot(k)) ZShRE"`
% pcolor(x,x,z), shading interp ANi}q9SC
% set(gca,'XTick',[],'YTick',[]) ,in`JM<o
% axis square `3\5&B