下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 1;iUWU1@
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, xD 7]C|8o
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Nboaf
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4ppz,L,4
F"kAkX>3}
@6]JIJE
~6gPS
13
C#pjmT_
function z = zernfun(n,m,r,theta,nflag) D+c>F5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =pr7G+_u
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s#MPX3itK
% and angular frequency M, evaluated at positions (R,THETA) on the =MWHJ'3-/
% unit circle. N is a vector of positive integers (including 0), and atzX;@"K
% M is a vector with the same number of elements as N. Each element 8CE = 4
% k of M must be a positive integer, with possible values M(k) = -N(k) `@%LzeGz
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |[lKY+26:{
% and THETA is a vector of angles. R and THETA must have the same (?];VG
% length. The output Z is a matrix with one column for every (N,M) y>LBl]
% pair, and one row for every (R,THETA) pair. =|9!vzG4
% l"]V6!-U
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F[MFx^sT{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YZ7.1`8
% with delta(m,0) the Kronecker delta, is chosen so that the integral d=^z`nt !R
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, p}P-6&k,U
% and theta=0 to theta=2*pi) is unity. For the non-normalized ABkl%m6xf
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ipz5 H*
% zeRyL3fnmb
% The Zernike functions are an orthogonal basis on the unit circle. [B3RfCV{
% They are used in disciplines such as astronomy, optics, and ^sZ,2,^
% optometry to describe functions on a circular domain. hGrdtsH?
% )}vl\7=
% The following table lists the first 15 Zernike functions. 1x^GWtRp
% V6Dbd"
i9
% n m Zernike function Normalization 8k79&|
% -------------------------------------------------- <N@Gu!N8
% 0 0 1 1 fy$1YI>!Q
% 1 1 r * cos(theta) 2 n@w%Zl
% 1 -1 r * sin(theta) 2 ?ubro0F:
% 2 -2 r^2 * cos(2*theta) sqrt(6) cCX*D_kCB
% 2 0 (2*r^2 - 1) sqrt(3) q(}bfIf
% 2 2 r^2 * sin(2*theta) sqrt(6) LQ% `c
% 3 -3 r^3 * cos(3*theta) sqrt(8) kVL.PY\K
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Ca\6vR
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) }7X%'Bg=M
% 3 3 r^3 * sin(3*theta) sqrt(8) )e{}V\;q
% 4 -4 r^4 * cos(4*theta) sqrt(10) WhDJ7{D
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {Ha57Wk8D
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?Ob3tUz2
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g&.=2uP
% 4 4 r^4 * sin(4*theta) sqrt(10) 0IpmRH/
% -------------------------------------------------- s`UJ1eJ
% |hQ;l|SWg
% Example 1: Js;h%
% j!ch5A
% % Display the Zernike function Z(n=5,m=1) 1eKT^bgM
% x = -1:0.01:1; svSVG:48
% [X,Y] = meshgrid(x,x); t&p|Ynz?i
% [theta,r] = cart2pol(X,Y); 1&2>LE/P
% idx = r<=1; E.f%H(b
% z = nan(size(X));
3CJwj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); e# bn#
% figure M(fTKs
% pcolor(x,x,z), shading interp ~5g ~;f[4
% axis square, colorbar %3rP`A
% title('Zernike function Z_5^1(r,\theta)') ])!*_
% o(HbGHIP
% Example 2: Y ay?=Y{
% O@P"MXEG
% % Display the first 10 Zernike functions ;\]@K6m/Ap
% x = -1:0.01:1; #1[u(<AS
% [X,Y] = meshgrid(x,x); Je{ykL?N
% [theta,r] = cart2pol(X,Y); H#&00 Q[
% idx = r<=1; 4m)n+ll
% z = nan(size(X)); W4N{S.#!
% n = [0 1 1 2 2 2 3 3 3 3]; u&NV,6Fj2[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; B1STG L`nK
% Nplot = [4 10 12 16 18 20 22 24 26 28]; h\e.e3/
% y = zernfun(n,m,r(idx),theta(idx)); $u.z*b_yy
% figure('Units','normalized') 626r^c=
% for k = 1:10 g5yJfRLxp
% z(idx) = y(:,k); a
=QCp4^
% subplot(4,7,Nplot(k)) #*}+J3/
% pcolor(x,x,z), shading interp Q;u pau
% set(gca,'XTick',[],'YTick',[]) 8_8l.!~
% axis square Vc2`b3"Br
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) g'gdgfvn
% end hQi2U
% B3BN`mdn>
% See also ZERNPOL, ZERNFUN2. :r[`.`
nlYNN/@"
"fI6Cpc
% Paul Fricker 11/13/2006 vbNBLCwug
G?ZXWu.
w@b)g
q7!{?\T%
2?5>o!C
% Check and prepare the inputs: E3i4=!Y
% ----------------------------- eJSxn1GW
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P%6~&woF
error('zernfun:NMvectors','N and M must be vectors.') ]A"h&`Cvt
end TO_e^A#
yLGRi^d#
q@&6#B
if length(n)~=length(m) xmX 4qtAL
error('zernfun:NMlength','N and M must be the same length.') /mMV{[
end '7/)Ot(
*fdTpXa
n ;Ei\\p!
n = n(:); Gq6*SaTk
m = m(:); Th%zn2R B
if any(mod(n-m,2)) Kgv T"s.
error('zernfun:NMmultiplesof2', ... <[v[ci
'All N and M must differ by multiples of 2 (including 0).')
<Uur^uB
end pI[uUu7O
|zU-KGO&
/mHqurB
if any(m>n) GeqPRah
error('zernfun:MlessthanN', ... qLCR] _*
'Each M must be less than or equal to its corresponding N.') m[$_7a5
end (mOtU8e
u!s2BC0}N
[Zrr)8A
if any( r>1 | r<0 ) ;`Z{7'^U
error('zernfun:Rlessthan1','All R must be between 0 and 1.') %C0Dw\A*:
end @ 7u 0v
i?/qY&~
=v\.h=~~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K'xV;r7Nt
error('zernfun:RTHvector','R and THETA must be vectors.') O2+ 6st
end lFkR=!?=
5N]"~w*
FsPw1A$y
r = r(:); <$YlH@;)`a
theta = theta(:); Z,=1buSz_
length_r = length(r); wq{hF<
if length_r~=length(theta) 6LZCgdS{
error('zernfun:RTHlength', ... }qUX=s
GG
'The number of R- and THETA-values must be equal.') {_}I!`opr$
end o4;(Zi#Z
~~.}ah/_d
b$7 +;I;
% Check normalization: ~,Qp^"rlW
% -------------------- Ni>[D"|
if nargin==5 && ischar(nflag) NHt\
U9l'
isnorm = strcmpi(nflag,'norm'); 5(2;|I,T
if ~isnorm h;Qk@F
error('zernfun:normalization','Unrecognized normalization flag.') 7=uj2.J6
end DDZ@$L!
else q)GdD==
isnorm = false; ^Pf WG*
end m~|40)
[UR-I0 s!/
l] vm=7:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +_!QSU,@
% Compute the Zernike Polynomials @W<m4fi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wL1MENzp*z
RCrCs
iscz}E,Y
% Determine the required powers of r: B?QIN]
% ----------------------------------- o-\[,}T)M
m_abs = abs(m); Ef\-VKh
rpowers = []; V#HuIgf-
for j = 1:length(n) "Q<MS'a
rpowers = [rpowers m_abs(j):2:n(j)]; S/ *E,))m
end n<,BmVQ
rpowers = unique(rpowers); }bDm@NU
wkq 66?
965jtn
% Pre-compute the values of r raised to the required powers, =]t|];c%
% and compile them in a matrix: 4*L_)z&4;
% ----------------------------- D9df=lv
mD
if rpowers(1)==0 H\
% 7%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J,hCvm
rpowern = cat(2,rpowern{:}); ' QG?nu
rpowern = [ones(length_r,1) rpowern]; M}a6Vu9
else {ax:RUQxy
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !1k_PY5)
rpowern = cat(2,rpowern{:}); w]H->B29C
end H|*m$|$,
45e~6",
b
6p|q_e
% Compute the values of the polynomials: bOB\--:]
% -------------------------------------- Y*^[P,+J*}
y = zeros(length_r,length(n)); KXy6Eno
for j = 1:length(n) *hx
s = 0:(n(j)-m_abs(j))/2; <} .$l
pows = n(j):-2:m_abs(j); "[k3kAm
for k = length(s):-1:1 ]lbuy7xj63
p = (1-2*mod(s(k),2))* ...
2iOV/=+
prod(2:(n(j)-s(k)))/ ... 8mMQ[#0:}
prod(2:s(k))/ ... f 2.HF@
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3<!7>]A
prod(2:((n(j)+m_abs(j))/2-s(k))); 2HdC |$_+
idx = (pows(k)==rpowers); XUYtEf
y(:,j) = y(:,j) + p*rpowern(:,idx); QY/w
end d~H`CrQE*
$X6h|?3U,
if isnorm O?2DQY?jT
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \Z/@C lCm
end
;'|Ey
end TxD#9]Q`
% END: Compute the Zernike Polynomials +2{Lh7Ks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Oz95
6N4~~O
L_T5nD^D
% Compute the Zernike functions: p'%s=TGwv
% ------------------------------ AKC`TA*E
idx_pos = m>0; 0;k# *#w
idx_neg = m<0; ?
k /`
<YY 14p
{mg2pfhB!
z = y; k:;r2f
if any(idx_pos) ! mHO$bQ"
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]DcFySyv
end vzM^$V
if any(idx_neg) C _Dn{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wT@og|M
end pP_LR
ks}
Cye.gsCT
6Oq7#3]
% EOF zernfun )e{aN+