切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9102阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %o:2^5\W  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, >$,y5 AJ&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6'RrQc=q  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =@8H"&y`  
    [w&$|h:;  
    IrWD%/$H  
    r,Nq7Txn?  
    LbZ:&/t^y8  
    function z = zernfun(n,m,r,theta,nflag) SJ};TEA  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. mK [0L  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *L'>U[Pl7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /M*a,o  
    %   unit circle.  N is a vector of positive integers (including 0), and j~e;DO  
    %   M is a vector with the same number of elements as N.  Each element \;mH(-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) wlEo"BA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )h8\u_U  
    %   and THETA is a vector of angles.  R and THETA must have the same U=o"32n+  
    %   length.  The output Z is a matrix with one column for every (N,M) +ke1Cn'[  
    %   pair, and one row for every (R,THETA) pair. }Iz7l{al   
    % ~2zM kVH  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x"CZ]p&m  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }QsZ:J.  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~~6^Sh60g  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a /:@"&Y  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !grVR157P  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RNhJ'&SYs  
    % OHflIeq#@  
    %   The Zernike functions are an orthogonal basis on the unit circle. UD)e:G[Gat  
    %   They are used in disciplines such as astronomy, optics, and S>0nx ^P  
    %   optometry to describe functions on a circular domain. &%_& 8DkG  
    % 'D%w|Pe?Q  
    %   The following table lists the first 15 Zernike functions. yx<WSgWZ[  
    % kee|42E  
    %       n    m    Zernike function           Normalization -Z?Vd!H:  
    %       -------------------------------------------------- d)"?mD:m/M  
    %       0    0    1                                 1 F|HJH"2*&q  
    %       1    1    r * cos(theta)                    2 4#'(" #R  
    %       1   -1    r * sin(theta)                    2 ]Y| 9?9d  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `WOYoec   
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1<<kA:d  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 1 `7<2w  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >R2SQA o  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 4 8{vE3JY  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2]c {P\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) N*@aDM07  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2EK%N'H  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zP;cTF(C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3J=Y9 }  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,= &B28Qe)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?9X&tK)E-  
    %       -------------------------------------------------- S i nl  
    % F>X-w+b4r  
    %   Example 1:  N<L`c/  
    % Jz!Z2c  
    %       % Display the Zernike function Z(n=5,m=1) Fbp{,V@F2  
    %       x = -1:0.01:1; fof2 xcH!  
    %       [X,Y] = meshgrid(x,x); \i[BP  
    %       [theta,r] = cart2pol(X,Y); c0Dmq)HK?  
    %       idx = r<=1; Dr9 ?2  
    %       z = nan(size(X)); QQpP#F|w  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x5Z-{"  
    %       figure WpLZQ6wH  
    %       pcolor(x,x,z), shading interp c=6Q%S  
    %       axis square, colorbar 3<?XTv-  
    %       title('Zernike function Z_5^1(r,\theta)') =U. b% uC  
    % Z h/Uu6  
    %   Example 2: zLD|/`  
    % $y?k[Y-~  
    %       % Display the first 10 Zernike functions $^tv45  
    %       x = -1:0.01:1; =ORf%f5"'  
    %       [X,Y] = meshgrid(x,x); PjIeZ&p  
    %       [theta,r] = cart2pol(X,Y); Ce'pis   
    %       idx = r<=1; pU!o7>p  
    %       z = nan(size(X)); !tHt,eJy  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #2:a[ ~Lf  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %Z8vdU#l  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0~& "  
    %       y = zernfun(n,m,r(idx),theta(idx)); (Bo bB]~a  
    %       figure('Units','normalized') L}j0a>=x4  
    %       for k = 1:10 >bUj *#<  
    %           z(idx) = y(:,k); 1|?K\B  
    %           subplot(4,7,Nplot(k)) w#^U45y1v  
    %           pcolor(x,x,z), shading interp IF@HzT;Q  
    %           set(gca,'XTick',[],'YTick',[]) ?R5'#|EyX  
    %           axis square ]/T -t1D  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) GPWr>B.{:S  
    %       end kHJ96G  
    % 0"g@!gSrQ  
    %   See also ZERNPOL, ZERNFUN2. D^Ys)- d  
    `Vq`z]}  
    :h:@o h_=  
    %   Paul Fricker 11/13/2006 t?^9HP1b_  
    gNx+>h`AF  
    +/?iCmW  
    eu'1H@vX(  
    jLcHY-P0V  
    % Check and prepare the inputs: T[Pa/j{  
    % ----------------------------- G*\h\ @  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P=H+ #  
        error('zernfun:NMvectors','N and M must be vectors.') MF[z -7  
    end 1'G8o=~  
    J Lb6C 52  
    Ih1|LR/c  
    if length(n)~=length(m) 0W>9'Rw  
        error('zernfun:NMlength','N and M must be the same length.') :[M[(  
    end c#b:3dXx9  
    B(l-}|m_  
    tLcEl'Eo  
    n = n(:); $gp!w8h  
    m = m(:); @<_`2eW'/R  
    if any(mod(n-m,2)) Qrz4}0  
        error('zernfun:NMmultiplesof2', ... :k46S<RE  
              'All N and M must differ by multiples of 2 (including 0).') AH.9A_dG  
    end _eLVBG35z  
    sa1mC  
    FoPginZ]J  
    if any(m>n) G5Q!L;3HZ  
        error('zernfun:MlessthanN', ... ~_!ts{[E  
              'Each M must be less than or equal to its corresponding N.') m%QqmTH  
    end )Mzt3u  
    >Csbjf6  
    X9~m8c){z  
    if any( r>1 | r<0 ) f|xLKcOP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') z^s ST  
    end ${U6=  
    J-J3=JG  
    b"8FlZ$  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Rq7p29w  
        error('zernfun:RTHvector','R and THETA must be vectors.') um8AdiK  
    end /~}_hO$S  
    {Iy7.c8S  
    ~uPk  
    r = r(:); 7tH]*T9e>  
    theta = theta(:); Goj4`Hc  
    length_r = length(r); i=QqB0  
    if length_r~=length(theta) L2U x9_S  
        error('zernfun:RTHlength', ... Xyv8LB  
              'The number of R- and THETA-values must be equal.') eX<K5K.B  
    end |l90g|isJ  
    Rlw9$/D!Z  
    R'EW7}&  
    % Check normalization: sT<{SmBF  
    % -------------------- =|y|P80w  
    if nargin==5 && ischar(nflag) o_ yRn16  
        isnorm = strcmpi(nflag,'norm'); B5Va%?Wg?H  
        if ~isnorm R}J-nJlb  
            error('zernfun:normalization','Unrecognized normalization flag.') @;9()ad  
        end "d?f:x3v^  
    else !C7<sZ`C  
        isnorm = false; ^`&HWp  
    end PN\V[#nS  
    e?)yb^7K  
    0]a15  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?"@ET9  
    % Compute the Zernike Polynomials E:Y:X~vy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;4d.)-<No_  
    N&B>#:  
    ZA.fa0n  
    % Determine the required powers of r: Cnur"?w@o  
    % ----------------------------------- y@9Y,ZR*  
    m_abs = abs(m); Kcn\g.  
    rpowers = []; fjkT5LNx k  
    for j = 1:length(n) R+^zy"~  
        rpowers = [rpowers m_abs(j):2:n(j)]; eH=c|m]!P  
    end /s-d?  
    rpowers = unique(rpowers); CTU9~~Xk  
    'aPCb`^;w  
    5 TET<f6R  
    % Pre-compute the values of r raised to the required powers, {@\/a  
    % and compile them in a matrix: n49s3|#)G  
    % ----------------------------- -eYL*Pa  
    if rpowers(1)==0 ?W<cB`J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w?;b7i  
        rpowern = cat(2,rpowern{:}); jmPp-} tS7  
        rpowern = [ones(length_r,1) rpowern]; ,$i<@2/=m  
    else QAXYrRu  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H8"tbU  
        rpowern = cat(2,rpowern{:}); ;5RIwD  
    end j}RM.C\7  
    _U=S]2 Q W  
    O<iI  
    % Compute the values of the polynomials: / T#o<D  
    % -------------------------------------- o?=fhc  
    y = zeros(length_r,length(n)); Eb7}$Ji\  
    for j = 1:length(n) Jh(mbD  
        s = 0:(n(j)-m_abs(j))/2; wKrdcWI,Z  
        pows = n(j):-2:m_abs(j); J<-Fua^  
        for k = length(s):-1:1 T=yCN#cqQ`  
            p = (1-2*mod(s(k),2))* ... 0&o WfTg  
                       prod(2:(n(j)-s(k)))/              ... .6I%64m  
                       prod(2:s(k))/                     ... U:Fpj~E_w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "{6KZ!+0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); q\G{]dz?R  
            idx = (pows(k)==rpowers); lzI/\%  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^B6`e^ <  
        end .n=xbx:=  
         ^X(_zinN"  
        if isnorm X?_v+'G  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); s3y}Yg  
        end 8\u;Wf  
    end 6%z`)d  
    % END: Compute the Zernike Polynomials DMRs}Yz6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7Fc |  
    t3M0La&  
    ^zkd{ov  
    % Compute the Zernike functions: @+Pf[J41  
    % ------------------------------ ur`V{9g  
    idx_pos = m>0; `ITDTZ J  
    idx_neg = m<0;  1dXh\r_n  
    RDJ82{  
    _qk9o  
    z = y; SaTEZ.  
    if any(idx_pos) =1_jaDp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]#+5)[N$>  
    end _4g}kL02.  
    if any(idx_neg) 1w6.   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); uJ7,rq  
    end u'{sB5_H  
    ~mW>_[RT;  
    &8.z$}m  
    % EOF zernfun rHR5,N:  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  9-e[S3ziM  
    IU;pkgBj0Y  
    DDE还是手动输入的呢? eUUD|U*b   
    `U?H^,FVA  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究