切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8886阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, =9@t6   
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, t,m},c(B:  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 8wQ|Ep\  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ON~K(O2g(  
    #Z.2g].  
    ,F)9{ <r]  
    _[_mmf1;:'  
    A]k-bX= s  
    function z = zernfun(n,m,r,theta,nflag) aE'nW@YL.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6xsB#v*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %x G3z7;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the y@?t[A#v  
    %   unit circle.  N is a vector of positive integers (including 0), and d#*n@@V4  
    %   M is a vector with the same number of elements as N.  Each element KqH_?r`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) RN"O/b}qQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 4`Z8EV  
    %   and THETA is a vector of angles.  R and THETA must have the same yDdi+  
    %   length.  The output Z is a matrix with one column for every (N,M) E")g1xGaK  
    %   pair, and one row for every (R,THETA) pair. '&#YaD=""  
    % k_}aiHdG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]sf1+3  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !33)6*s  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral !=w&=O0(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hL8GW> `a  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized D+"-(k  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YrWC\HR_  
    % yd-Kg zm8n  
    %   The Zernike functions are an orthogonal basis on the unit circle. _:Jra  
    %   They are used in disciplines such as astronomy, optics, and YLEa;MR  
    %   optometry to describe functions on a circular domain. u{_jweZ  
    % Z[{k-_HgAm  
    %   The following table lists the first 15 Zernike functions. zu@5,AH  
    % RXF%A5FXh  
    %       n    m    Zernike function           Normalization n)'5h &#  
    %       -------------------------------------------------- .h;PMY+  
    %       0    0    1                                 1 !y{t}|U/d  
    %       1    1    r * cos(theta)                    2 ;HPQhN_  
    %       1   -1    r * sin(theta)                    2 S)h0@;q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^XIVWf#`H  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z :_o3W.E  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /QeJ#EHn  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) l1h;ng6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) '.mHx#?7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _FRwaFVJ3  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :172I1|7  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %di]1vQ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }bg_?o;X}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) v,] &[`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .%'$3=/oe  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) B?G!~lQ)o  
    %       -------------------------------------------------- )t-Jc+*A>  
    % W]t!I}yPR  
    %   Example 1: WjrUns  
    % \ tK{!v+  
    %       % Display the Zernike function Z(n=5,m=1) >O:31Uk  
    %       x = -1:0.01:1; 0xe!tA  
    %       [X,Y] = meshgrid(x,x); OZ /!= ;  
    %       [theta,r] = cart2pol(X,Y); 4KkjBPV  
    %       idx = r<=1; w!=Fi  
    %       z = nan(size(X)); Y<vsMf_U  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); aq|R?  
    %       figure EPZ^I)  
    %       pcolor(x,x,z), shading interp qXH\e|  
    %       axis square, colorbar @4'bI)  
    %       title('Zernike function Z_5^1(r,\theta)') x'.OLXx>  
    % *r&q;ER  
    %   Example 2: ygvX}q  
    % 9b/7~w.  
    %       % Display the first 10 Zernike functions krw_1Mm  
    %       x = -1:0.01:1; Bj ~bsT@a.  
    %       [X,Y] = meshgrid(x,x); GomTec9.  
    %       [theta,r] = cart2pol(X,Y); QX'EMyK$  
    %       idx = r<=1; JE<zQf(&  
    %       z = nan(size(X)); [CBhipoc  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Kf.G'v46  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; wQ4IQ!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0!:1o61  
    %       y = zernfun(n,m,r(idx),theta(idx)); PyS~2)=B  
    %       figure('Units','normalized') epWO}@ b a  
    %       for k = 1:10 '>}dqp{Wr  
    %           z(idx) = y(:,k); 33{(IzL0  
    %           subplot(4,7,Nplot(k)) _m  *8f\  
    %           pcolor(x,x,z), shading interp Qe&K  
    %           set(gca,'XTick',[],'YTick',[]) Aj9Onz,Lg  
    %           axis square ~1NK@=7T  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lR^OS*v  
    %       end Zewx*Y|  
    % `v1Xywg9P  
    %   See also ZERNPOL, ZERNFUN2. fY|Bc<,V9)  
    AF=9KWqf  
    jWg7RuN  
    %   Paul Fricker 11/13/2006 yN0!uzdW*  
    hU}!:6G%[P  
    ;Jn"^zT  
    ",b3C.  
    k k&8:;Vj  
    % Check and prepare the inputs: 6a+w/IO3OU  
    % ----------------------------- \,w*K'B_Y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Lqt.S|  
        error('zernfun:NMvectors','N and M must be vectors.') "w)Y0Qq*z  
    end Myl!tXawe8  
    LEq"g7YH  
    bN ,>,hj  
    if length(n)~=length(m) t Z_ni}  
        error('zernfun:NMlength','N and M must be the same length.') =aWj+ggd@  
    end 8$|< `:~J  
    n>)'!   
    pT90TcI2  
    n = n(:); ~{#$`o=  
    m = m(:); 9(9+h]h+3  
    if any(mod(n-m,2)) g1je':  
        error('zernfun:NMmultiplesof2', ... qfO=_z ES  
              'All N and M must differ by multiples of 2 (including 0).') l1_Tr2A}7/  
    end MWsjkI`  
    `m~x*)L#  
    GTj=R$%09  
    if any(m>n) ECO4ut.d  
        error('zernfun:MlessthanN', ... $=x1_  
              'Each M must be less than or equal to its corresponding N.') ')d&:K*M  
    end `]Uu`b  
    U{IY F{;@  
    ?e`4 s f_~  
    if any( r>1 | r<0 ) @} nI$x.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') F-\Swbx+  
    end }~?B>vZS  
    #Ub"Ii  
    uhyw?#f  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4(VVEe  
        error('zernfun:RTHvector','R and THETA must be vectors.') L|y4u;-Q  
    end u|!On  
    di@4'$5#  
    1]yOC)u"i  
    r = r(:); b8?qYm  
    theta = theta(:); D 8nt%vy  
    length_r = length(r); Mp*S+Plp  
    if length_r~=length(theta) LvWl*:z  
        error('zernfun:RTHlength', ... +E8Itb,  
              'The number of R- and THETA-values must be equal.') jV(\]g"/=  
    end vv2N;/;I  
    ~?V+^<P  
    3:">]LMi  
    % Check normalization: U Hej5-B  
    % --------------------  T4}SF  
    if nargin==5 && ischar(nflag) a@|/D\C  
        isnorm = strcmpi(nflag,'norm'); [}7j0&  
        if ~isnorm GM.2bA(y  
            error('zernfun:normalization','Unrecognized normalization flag.') )Ir_:lk  
        end +Za ew679  
    else b#**`Y  
        isnorm = false; 63s<U/N  
    end !Gv*iWg  
    FmfPi .;1  
    uCA! L)$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1E(~x;*)  
    % Compute the Zernike Polynomials {U$qxC]M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "[`.I*WNo  
    -hM nA)+  
    81\$X  
    % Determine the required powers of r: e ~X<+3<  
    % ----------------------------------- UbBo#(TZ)  
    m_abs = abs(m); Hpo/CY/  
    rpowers = []; ]dXHjOpA  
    for j = 1:length(n) q<Zdf  
        rpowers = [rpowers m_abs(j):2:n(j)]; '64&'.{#>r  
    end -{Lc?=  
    rpowers = unique(rpowers); kzA%.bP|  
    tMN^"sjf*  
    M7Pvc%\)  
    % Pre-compute the values of r raised to the required powers, U Ox$Xwp5&  
    % and compile them in a matrix: 8 S'g%  
    % ----------------------------- aZ$$a+  
    if rpowers(1)==0 _$<Q$P6y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n-h2SQl!  
        rpowern = cat(2,rpowern{:}); "W_C%elg  
        rpowern = [ones(length_r,1) rpowern]; 5lp L$  
    else e=11EmN9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N4 O'{  
        rpowern = cat(2,rpowern{:}); "J0,SFu:  
    end 6E9y[ %+  
    GCxtWFXH  
    IAr  
    % Compute the values of the polynomials: jL$&]sQ`O)  
    % -------------------------------------- E"ju<q/Q  
    y = zeros(length_r,length(n)); :n3)vK   
    for j = 1:length(n) O[p;IG`  
        s = 0:(n(j)-m_abs(j))/2; G)(\!0pNZ  
        pows = n(j):-2:m_abs(j); ],*^wQ   
        for k = length(s):-1:1 _":yUa0D  
            p = (1-2*mod(s(k),2))* ... Cdjh/+!f  
                       prod(2:(n(j)-s(k)))/              ... > ,L'A;c}  
                       prod(2:s(k))/                     ... :Zy7h7P,lT  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Luxo,Ve  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); b P>!&s_  
            idx = (pows(k)==rpowers); ;T0Y= yC  
            y(:,j) = y(:,j) + p*rpowern(:,idx); lYlU8l5>  
        end qp(F}@  
         O*3x'I*a  
        if isnorm ?^z!yD\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); xO2S|DH{  
        end I0 y+,~\  
    end q% Eze  
    % END: Compute the Zernike Polynomials @MfuV4*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aqvt$u8  
    Rd5ni2-nve  
    /K mzi9j+  
    % Compute the Zernike functions: 1sFTXl  
    % ------------------------------ +):t6oX|  
    idx_pos = m>0; 5YJn<XEc  
    idx_neg = m<0; T^-fn  
    K 7)1wiEj  
    Vp $]  
    z = y; Si<9O h  
    if any(idx_pos) $!c)%qDq  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); GyV3]Qqj  
    end dw)SF,  
    if any(idx_neg) .. qAE.%%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H'myd=*h~8  
    end ||y5XXs  
    &Z682b$  
    I xT[1$e  
    % EOF zernfun Bcx-t)[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  '/U[ ui0{  
    xaSvjc\  
    DDE还是手动输入的呢? sfi.zu G  
    V %'`nJ!  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究