下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :[7.YQ
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, P[C03a!lXg
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? HCKj8-*
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kc70HrG
v"G) G)*z
1\+d 5Q0
p*]nCUs}n
+46?+kKt
function z = zernfun(n,m,r,theta,nflag) C\p _
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ndr4e?Xa,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B":u5_B
% and angular frequency M, evaluated at positions (R,THETA) on the zAdZXa[MRY
% unit circle. N is a vector of positive integers (including 0), and uPtS.j=
% M is a vector with the same number of elements as N. Each element Og~3eL[1%C
% k of M must be a positive integer, with possible values M(k) = -N(k) 6,;7iA]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >0qe*4n|M
% and THETA is a vector of angles. R and THETA must have the same ]pP [0S
% length. The output Z is a matrix with one column for every (N,M) lVQy
{`Ns
% pair, and one row for every (R,THETA) pair. vS'5Lm
% z gDc=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike AVbGJ+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VVyms7
VN
% with delta(m,0) the Kronecker delta, is chosen so that the integral )X-/0G=N-
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YE\s<$
% and theta=0 to theta=2*pi) is unity. For the non-normalized AjA.="3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 73OYHp_j
% x4vowF
% The Zernike functions are an orthogonal basis on the unit circle. B7!dp`rPp
% They are used in disciplines such as astronomy, optics, and Bys _8x}
% optometry to describe functions on a circular domain. l TRQ/B
% Qcf5*]V
% The following table lists the first 15 Zernike functions. !q_fcd^c
% 1#<KZN =$
% n m Zernike function Normalization Z,jK(7D(
% -------------------------------------------------- L
H`z '7&/
% 0 0 1 1 Xi!`+N4
% 1 1 r * cos(theta) 2 '+cPx\4
% 1 -1 r * sin(theta) 2 :F`yAB3
% 2 -2 r^2 * cos(2*theta) sqrt(6) 9!sR}
% 2 0 (2*r^2 - 1) sqrt(3) rVo?I
% 2 2 r^2 * sin(2*theta) sqrt(6) 9>k-";
% 3 -3 r^3 * cos(3*theta) sqrt(8) E|fQbkfw
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9xm' 0 '
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >AT T<U=
% 3 3 r^3 * sin(3*theta) sqrt(8) Gv3AJ'NL
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9c_h+XN?y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c={bunnz#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^|1)6P}6
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .;xt{kK
% 4 4 r^4 * sin(4*theta) sqrt(10) ZBAtRs
% -------------------------------------------------- P@z,[,sy"$
% y=)xo7(
% Example 1: 1ZF>e`t8
% e):rr*
% % Display the Zernike function Z(n=5,m=1) H_CX5=Nq^
% x = -1:0.01:1; i>`!W|=_
% [X,Y] = meshgrid(x,x); g/ict2!
% [theta,r] = cart2pol(X,Y); $h( B2
% idx = r<=1; eBW=bK~[VP
% z = nan(size(X)); xi
=\]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); h#>%\Pvt;
% figure Tp7slKc0p
% pcolor(x,x,z), shading interp aA-gl9
% axis square, colorbar Cg!]x
o
% title('Zernike function Z_5^1(r,\theta)') /{9"O y7E
% nrpxZA
% Example 2: &m>sGCZ
% VTt{0 ~
% % Display the first 10 Zernike functions ,{br6*E
% x = -1:0.01:1; WTcrfs)T
% [X,Y] = meshgrid(x,x); GrB+Y!{{
% [theta,r] = cart2pol(X,Y); *uq}jlD`!
% idx = r<=1; @m=xCg.Z
% z = nan(size(X)); 0cwb^ffN
% n = [0 1 1 2 2 2 3 3 3 3]; #&cNR_"w
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; fv",4L
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %fyah}=
% y = zernfun(n,m,r(idx),theta(idx)); *"pf3x6
% figure('Units','normalized') XOe8(cXa9
% for k = 1:10 8sG0HI$f+
% z(idx) = y(:,k); };:+0k/
% subplot(4,7,Nplot(k)) $C;) Tlh
% pcolor(x,x,z), shading interp d}.*hgk
% set(gca,'XTick',[],'YTick',[]) $#/-+>
% axis square h8Bs=T
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;L gxL
Qy;
% end 2V1|b`b#4
% dt -=7mz#
% See also ZERNPOL, ZERNFUN2. A80r@)i
gJ8+HV
n8.W$ &-ia
% Paul Fricker 11/13/2006 n!r<\4I
/Y>$w$S
vncak
cBO.96ZHE
]d}U68$T+
% Check and prepare the inputs: ue5C
]
% ----------------------------- ,p,$(V
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'TF5CNX
error('zernfun:NMvectors','N and M must be vectors.') )\bA'LuFy
end e7(iMe
?J<V-,i
cF[L6{Oe
if length(n)~=length(m) )NoNgU\7!
error('zernfun:NMlength','N and M must be the same length.') 7$l! f
end 8<Y*@1*j
=q%Q^
}'y=JV>l
n = n(:); <QUjhWxDb
m = m(:); f8T6(cA
if any(mod(n-m,2)) CBqeO@M
error('zernfun:NMmultiplesof2', ... O]>FNsh !
'All N and M must differ by multiples of 2 (including 0).') UkE fuH
end w$X"E*~>8
Y~P1r]piB
w&vZ$n-|
if any(m>n) <}@*i
error('zernfun:MlessthanN', ... yl>V'
'Each M must be less than or equal to its corresponding N.') o1m+4.-
end |#_ F
']N1OVw^vf
3N(5V;ti
if any( r>1 | r<0 ) E^)>9f7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') aDV~T24
end +:a#+]g
M x/G^yO9
Y+,ii$Ce~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) KlMSkdmW
error('zernfun:RTHvector','R and THETA must be vectors.') ^dR="N
end qHZ!~Kq,"'
m#\I&(l+
9vQI
~rz?
r = r(:); ZU=omRh5
theta = theta(:); 4jOq.j
length_r = length(r); X=8CZq4
if length_r~=length(theta) (R.l{(A
error('zernfun:RTHlength', ... hu]l{TXi
'The number of R- and THETA-values must be equal.') !O`aaLc
end ;;^OKrzWW
8=GgTpO5
Io|3zE*<
% Check normalization: t",=]k
% -------------------- ~rUcko8
if nargin==5 && ischar(nflag) |ODi[~y
isnorm = strcmpi(nflag,'norm'); V0rS^SAF
if ~isnorm I@$cw3
error('zernfun:normalization','Unrecognized normalization flag.') b"DV8fdX
end {Wi)/B}
else $s2Y,0>I6
isnorm = false; I"=a:q
end XF6ed
$
$=N'Q
'ie+/O@G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _d[4EY
% Compute the Zernike Polynomials .T>^bLuFy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U#qs^f7R
hT=6XO od4
bAUruTn
% Determine the required powers of r: 6m~ N2^z
% ----------------------------------- sp-){k
m_abs = abs(m); T5AoBUw
rpowers = []; =tKb7:KU
for j = 1:length(n) m0}1P]dc
rpowers = [rpowers m_abs(j):2:n(j)]; ~7G@S&<PK(
end Z\\'0yuY(
rpowers = unique(rpowers); !_No\O
"f
Ni3<x]
I+!?~]AUuq
% Pre-compute the values of r raised to the required powers, &OMe'P
% and compile them in a matrix: $:RP tG
% ----------------------------- <Z>p1S
if rpowers(1)==0 ;VS\'#{e
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Wx`|u
rpowern = cat(2,rpowern{:}); Ft[)m#Dj`
rpowern = [ones(length_r,1) rpowern]; _Nx#)(x
else ?V{APM$x
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G-DvM6T
rpowern = cat(2,rpowern{:}); 1v?|n8
end ,S%DHT
?BEO(;'
-~|E(ys
% Compute the values of the polynomials: 'QP~uK
% -------------------------------------- smJ#.I6/L
y = zeros(length_r,length(n)); < %t$0'
for j = 1:length(n) @hG]Gs[,o
s = 0:(n(j)-m_abs(j))/2; GGWdMGI/
pows = n(j):-2:m_abs(j); 67{3/(`x
for k = length(s):-1:1 Qp5YS
p = (1-2*mod(s(k),2))* ... 9i?Q=Vuc~<
prod(2:(n(j)-s(k)))/ ... 'KU)]v
prod(2:s(k))/ ... rIhe}1
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /7o{%~O
prod(2:((n(j)+m_abs(j))/2-s(k))); Jg2*$gL;_
idx = (pows(k)==rpowers); &~
.n}h&
y(:,j) = y(:,j) + p*rpowern(:,idx); "%?$BoJR0
end S#|dmg;p
P'Gf7sQt7
if isnorm fJdTVs@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |/M^q{h&7s
end ~snYf7
end +FGw)>g8'm
% END: Compute the Zernike Polynomials s~)I1G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V-N`R-FSr
z7PmyU
>
3yXSv1
% Compute the Zernike functions: DZ*m"Bi
% ------------------------------ "/~KB~bB
idx_pos = m>0; t91z<Y|
idx_neg = m<0; tDQo1,(oY
6$ \69
b&_u+g
z = y; $psPNJG
if any(idx_pos) Y
*?hA'
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r1R\cor
end }[O/u <Z
if any(idx_neg) l(j._j~p
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7+c}D>/`:
end P6~&,a
~ ~U,
E8Y(C_:s
% EOF zernfun zAA3bgaa