切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9177阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C@qWour  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 2VV>?s  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? E3wpC#[Q1  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? oywPPVxj  
    +`F(wk["m  
    "r6qFxY  
    1sXCu|\q  
    U.TZd"  
    function z = zernfun(n,m,r,theta,nflag) :cA P{rSe  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !>Nlp,r&~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .w4|$.H  
    %   and angular frequency M, evaluated at positions (R,THETA) on the n~lB}  
    %   unit circle.  N is a vector of positive integers (including 0), and ~|KqG  
    %   M is a vector with the same number of elements as N.  Each element ~?NCmU=3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0eO!,/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, s`x2Go  
    %   and THETA is a vector of angles.  R and THETA must have the same 0Px Hf*  
    %   length.  The output Z is a matrix with one column for every (N,M) a @? $#>  
    %   pair, and one row for every (R,THETA) pair. r8(oTx  
    % 6@|!m'  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i7dDklj4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ](oeMl18R  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral M.H!dZ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GIlaJ!/  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )nHMXZ>Td  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7b1 yF,N  
    % w (HVC  
    %   The Zernike functions are an orthogonal basis on the unit circle. N)(m^M(~0  
    %   They are used in disciplines such as astronomy, optics, and f?Ex$gnI  
    %   optometry to describe functions on a circular domain. g;Fd m5Q  
    % `pbCPa{Y  
    %   The following table lists the first 15 Zernike functions. "0!#De  
    % MO ~T_6  
    %       n    m    Zernike function           Normalization jpi,BVTI-X  
    %       -------------------------------------------------- I 6WHC*  
    %       0    0    1                                 1 M0m%S:2  
    %       1    1    r * cos(theta)                    2 6%EpF;T`  
    %       1   -1    r * sin(theta)                    2 R.|h<bur  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )-+tN>Bb  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  '0f!o&?g  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -~.+3rcZ]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =)y$&Ydj  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) G,A?yM'Vw  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) e[k\VYj[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Cdl"TZ<  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) LEKE+775  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~a=]w#-KD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tDAX pi(  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '5$: #|-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1mgw0QO  
    %       -------------------------------------------------- <> =(BAw  
    % g?1bEOA!  
    %   Example 1: }!g$k $y  
    % LZ#A`&qUd  
    %       % Display the Zernike function Z(n=5,m=1) 2s2KI=6  
    %       x = -1:0.01:1; r(]Gd`]  
    %       [X,Y] = meshgrid(x,x); \.P'8As  
    %       [theta,r] = cart2pol(X,Y); 0Wd5s{S  
    %       idx = r<=1; b0f6?s  
    %       z = nan(size(X)); 6jr}l  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >Dv=lgPF  
    %       figure 7<jr0)  
    %       pcolor(x,x,z), shading interp \U]<HEc^  
    %       axis square, colorbar 7OZ0;fK  
    %       title('Zernike function Z_5^1(r,\theta)') 7TX$  
    % #\~m}O,  
    %   Example 2: ;|rFP  
    % Uwiy@ T Z  
    %       % Display the first 10 Zernike functions %Y`)ZKh  
    %       x = -1:0.01:1; ,vi6<C\  
    %       [X,Y] = meshgrid(x,x); ;rJ#>7K  
    %       [theta,r] = cart2pol(X,Y); @ 6jKjI  
    %       idx = r<=1; a6T!)g  
    %       z = nan(size(X)); C 1HNcfa7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ~O;?;@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !H^R_GC  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; yaj1nq! *"  
    %       y = zernfun(n,m,r(idx),theta(idx)); w4y ???90)  
    %       figure('Units','normalized') Z _<Wr7D  
    %       for k = 1:10 MoC/xF&  
    %           z(idx) = y(:,k); 0} \;R5a<  
    %           subplot(4,7,Nplot(k)) VjSbx'i  
    %           pcolor(x,x,z), shading interp :B/u>  
    %           set(gca,'XTick',[],'YTick',[]) S r7EcT-  
    %           axis square r-BqIoVT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) D//Ts`}+n  
    %       end U,/9fzgd  
    % wW/wvC-  
    %   See also ZERNPOL, ZERNFUN2. h" YA>_1  
    Th])jQ*  
    6l?KX  
    %   Paul Fricker 11/13/2006 QZ-6aq\sgp  
    ?IG+U TI  
    [0NH#88ym<  
    ,J-YfL^x6*  
    ``?Z97rH  
    % Check and prepare the inputs: () HIcu*i  
    % ----------------------------- \U`rF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a67NWH  
        error('zernfun:NMvectors','N and M must be vectors.') ~f2-%~  
    end vw q Y;7  
    6v -2(Y  
    .=b)Ae c  
    if length(n)~=length(m) 1lUY27MF  
        error('zernfun:NMlength','N and M must be the same length.') g|3FJA/  
    end bO{wQ1)Z_  
    .!Q[kn0a  
    rUF= uO(  
    n = n(:); 9%uJ:c?  
    m = m(:); my3W[3#  
    if any(mod(n-m,2)) {,m W7  
        error('zernfun:NMmultiplesof2', ... T;I>5aQ:q4  
              'All N and M must differ by multiples of 2 (including 0).') EEp,Z`  
    end H"g p  
    Q,f5r%A.  
    G0h7MO%x  
    if any(m>n) t5za$kW'&  
        error('zernfun:MlessthanN', ... ~|)'vK8W  
              'Each M must be less than or equal to its corresponding N.') +l$BUX  
    end ,}#l0 BY  
    B1gBvss  
    3>sA_  
    if any( r>1 | r<0 ) q:v&wb%  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') uod&'g{N  
    end ZgI1Byf  
    bjJ212J  
    PM%Gsy]q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) >'lte&  
        error('zernfun:RTHvector','R and THETA must be vectors.') !n/"39KT  
    end X}3o  
    *] cm{N  
    Xn3Ph!\Z5e  
    r = r(:); +lqX;*a=N  
    theta = theta(:); _gF )aE  
    length_r = length(r); 13P8Zmco  
    if length_r~=length(theta) F\;G'dm  
        error('zernfun:RTHlength', ... 7fJWb)z!k  
              'The number of R- and THETA-values must be equal.') vJfex,#lv  
    end 3"hPplE  
    "M.vu}~>  
    +O @0gl  
    % Check normalization: wg=ge]E5  
    % -------------------- }A%Sx!7~  
    if nargin==5 && ischar(nflag) #Hr>KQ5mJQ  
        isnorm = strcmpi(nflag,'norm'); 4`7:gfrO,  
        if ~isnorm /uzU]3KF~  
            error('zernfun:normalization','Unrecognized normalization flag.') ?8Hr 9  
        end !1}A\S  
    else AA um1xl  
        isnorm = false; _0<EbJ8Z  
    end Rs cU=oaKi  
    bgjo_!J+Pp  
    64>o3Hb2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Xo>P?^c4?  
    % Compute the Zernike Polynomials {\L /?#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5Vzi{y/bL  
    f6ad@2  
    1/YWDxo,  
    % Determine the required powers of r: @4D$Xl  
    % ----------------------------------- O&?i8XsB  
    m_abs = abs(m); {(#>%f+|C  
    rpowers = []; q(J3fjY)  
    for j = 1:length(n) 8`*Wl;9u  
        rpowers = [rpowers m_abs(j):2:n(j)]; --S2lN/:T  
    end A-&C.g  
    rpowers = unique(rpowers);  c6;tbL  
    XOzd{  
    pN"d~Z8  
    % Pre-compute the values of r raised to the required powers, MGd 7Ont  
    % and compile them in a matrix: &JM|u ww?1  
    % ----------------------------- dw8Ce8W  
    if rpowers(1)==0 2#:h.8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 61q:nWs  
        rpowern = cat(2,rpowern{:}); ;aip1Df  
        rpowern = [ones(length_r,1) rpowern]; !PI& y  
    else 8=H!&+aGh  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }^;Tt-*k  
        rpowern = cat(2,rpowern{:}); Tt.wY=,K  
    end hGx)X64Mw  
    "]81+ D  
    SXn1v.6  
    % Compute the values of the polynomials: PYYOC"$  
    % -------------------------------------- O<Rm9tZ8  
    y = zeros(length_r,length(n)); ++Qg5FukR  
    for j = 1:length(n) @JS O=8  
        s = 0:(n(j)-m_abs(j))/2; lz?F ,].  
        pows = n(j):-2:m_abs(j); yT<yy>J9l#  
        for k = length(s):-1:1 vlAYKtl3]  
            p = (1-2*mod(s(k),2))* ... VQO6!ToKY  
                       prod(2:(n(j)-s(k)))/              ... #`rvL6W q}  
                       prod(2:s(k))/                     ... TpLlbsd  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^<#08L;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7yLO<o?9w  
            idx = (pows(k)==rpowers); 8S[`(] )  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "If]qX(w  
        end rYbb&z!u  
         00 Qn1  
        if isnorm {%ZD ^YSA  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); JW;DA E<  
        end u;m[,  
    end GU\}}j]  
    % END: Compute the Zernike Polynomials 3zU!5t g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <J4|FOz!=  
    st"uD\L1p:  
    xwr<ib:  
    % Compute the Zernike functions: e$M \HPc  
    % ------------------------------ S+G!o]&2  
    idx_pos = m>0; y~CK&[H  
    idx_neg = m<0; !%<bLD8  
    hiWfVz{~  
    E(F<shT#  
    z = y; V )CS,w  
    if any(idx_pos) :!a'N3o>  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C~IsYdln  
    end Zb<IZ)i#1  
    if any(idx_neg) c`94a SnV  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); E Z95)pk  
    end \M-}(>Pfk  
    rnvKfTpZDU  
    iO)FZ%?"  
    % EOF zernfun @Omgk=6  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ,BuN]9#  
    QW ~-+BD  
    DDE还是手动输入的呢? n ,<`.^  
    ]V9z)uz  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究