切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9375阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, XBh0=E?qiS  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, si.ZTG9m  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9l]+ rs +  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Rr{mD#+  
    ;%0$3a  
    sC(IeGbX  
    K7 -AVMY  
    |Rd?s0u  
    function z = zernfun(n,m,r,theta,nflag) ; $i{>mDT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. *:{s|18Pj  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wDVKp['  
    %   and angular frequency M, evaluated at positions (R,THETA) on the {P&{+`sov  
    %   unit circle.  N is a vector of positive integers (including 0), and V|13%aE_v  
    %   M is a vector with the same number of elements as N.  Each element nm`[\3R  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ?\"GT]5D  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "v@Y[QI  
    %   and THETA is a vector of angles.  R and THETA must have the same Ub2t7MU  
    %   length.  The output Z is a matrix with one column for every (N,M) >-*rtiE  
    %   pair, and one row for every (R,THETA) pair. U0 nSI  
    % O3/][\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6!*be|<&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ikX"f?Q;S2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral o$;t  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^~9fQJNs  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized q^; SZ^yW5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 't.I YBHx  
    % v[{g "C  
    %   The Zernike functions are an orthogonal basis on the unit circle. dWqKt0uh!  
    %   They are used in disciplines such as astronomy, optics, and mvgsf(a*'  
    %   optometry to describe functions on a circular domain. d,8L-pT$FM  
    % ZP~Mgz{f  
    %   The following table lists the first 15 Zernike functions. [ R  
    % X6)%2TwO  
    %       n    m    Zernike function           Normalization JZI)jIh  
    %       -------------------------------------------------- U*(/eEtd-  
    %       0    0    1                                 1 9: N[9;('  
    %       1    1    r * cos(theta)                    2 Q6)Wh6Cm  
    %       1   -1    r * sin(theta)                    2 BbsgZ4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]^:sV)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) -@L7! ,j  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 5.! OC5tO  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) gR1vUad7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) |>|f?^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?1w{lz(P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) [$M=+YRHMW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (K xI*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \]<e Lw- v  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5|O~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /5:2g# S4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) IUf&*'_  
    %       -------------------------------------------------- Voy1  
    % 7>.d*?eao\  
    %   Example 1: ^/]w}C#:d  
    % QiH>!Ssw  
    %       % Display the Zernike function Z(n=5,m=1) ,+2!&"zD  
    %       x = -1:0.01:1; & pHSX  
    %       [X,Y] = meshgrid(x,x); )|3BS`  
    %       [theta,r] = cart2pol(X,Y); wnUuoX(  
    %       idx = r<=1; e~oh%l^C72  
    %       z = nan(size(X)); &s6;2G&L$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); HQ /D)D  
    %       figure GdN9bA&,  
    %       pcolor(x,x,z), shading interp ]#k=VKdV  
    %       axis square, colorbar Z9wKjxu+  
    %       title('Zernike function Z_5^1(r,\theta)') 9K!kU6Gh  
    % !0-KB#  
    %   Example 2: (A(j.[4a  
    % ;k ?Z,M:  
    %       % Display the first 10 Zernike functions \k4tYL5  
    %       x = -1:0.01:1; LV2#w_^I  
    %       [X,Y] = meshgrid(x,x); RN^<bt{_U  
    %       [theta,r] = cart2pol(X,Y); =csh=V@s  
    %       idx = r<=1; ej91)3AO  
    %       z = nan(size(X)); :2t0//@X  
    %       n = [0  1  1  2  2  2  3  3  3  3]; elJ?g &"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; i~3\jD=<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; m^!Kthq  
    %       y = zernfun(n,m,r(idx),theta(idx)); 4Jn+Ot.,d  
    %       figure('Units','normalized') ,V^2Oa  
    %       for k = 1:10 ygK@\JHn  
    %           z(idx) = y(:,k); \LG0   
    %           subplot(4,7,Nplot(k)) >\br8=R  
    %           pcolor(x,x,z), shading interp QM('bbN  
    %           set(gca,'XTick',[],'YTick',[]) dNu?O>=  
    %           axis square X9 N4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^>Vl@cW0uz  
    %       end 7 D(Eo{ue  
    % VLPPEV-u  
    %   See also ZERNPOL, ZERNFUN2. C5Vlqc;  
    !zVjbYWY  
    'XJqh|G  
    %   Paul Fricker 11/13/2006 0Q7|2{  
    jn +*G<NJ  
    *I:a \o~$[  
    lvAKL>qX  
    _u3%16,o  
    % Check and prepare the inputs: "D,}|  
    % ----------------------------- e0<Wed  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q2 b>Z6!5  
        error('zernfun:NMvectors','N and M must be vectors.') %i6/= 'u  
    end bMq)[8,N  
    j/t)=c  
    Tnv,$KOhs  
    if length(n)~=length(m) S5BS![-QK  
        error('zernfun:NMlength','N and M must be the same length.') dQn , 0  
    end `pb=y}  
    ~9y/MR  
    HTLS$o;Q  
    n = n(:); >*MGF=.QG  
    m = m(:); ."Kp6s`k  
    if any(mod(n-m,2)) DHg)]FQ/  
        error('zernfun:NMmultiplesof2', ... (gRTSd T ?  
              'All N and M must differ by multiples of 2 (including 0).') :}U jX|D  
    end wP7 E8'  
    )[ QT ?;  
    DH7]TRCMZ)  
    if any(m>n) NR,R.N^[  
        error('zernfun:MlessthanN', ... tkYPfUvTE  
              'Each M must be less than or equal to its corresponding N.') D GL=\  
    end !hFzIp  
    pocXQEg$]  
    \_(|$Dhq  
    if any( r>1 | r<0 ) .6!cHL3ln  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -d9L  
    end }uwZS=pw  
    ;qO3m -(d  
    Mp QsM-iW  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F}.R -j#  
        error('zernfun:RTHvector','R and THETA must be vectors.') 'rNLh3  
    end "574%\#4z  
    ^-L nO%h?  
    wV\7  
    r = r(:);  wh#IQ.E-  
    theta = theta(:); @QMU$]&i]  
    length_r = length(r); l_s#7.9$  
    if length_r~=length(theta) v^J']p  
        error('zernfun:RTHlength', ... d/3bE*gr  
              'The number of R- and THETA-values must be equal.') xS(VgP&YGO  
    end  9mW   
    {Hie% 2V  
    |{ =Jp<} s  
    % Check normalization: 1,Es'  
    % -------------------- vmv6y*qU  
    if nargin==5 && ischar(nflag) 3&I3ViAH  
        isnorm = strcmpi(nflag,'norm'); F~0iJnF  
        if ~isnorm TS`m&N{i")  
            error('zernfun:normalization','Unrecognized normalization flag.') ._]*Y`5)d  
        end p1[|5r5Day  
    else HWIn.ij  
        isnorm = false; guVuO  
    end fRxn,HyV  
    n2dOCntN>  
    <00nu'Ex1v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :]4s;q:m  
    % Compute the Zernike Polynomials r:PYAb=g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Em4'b1mDX%  
    mo9(2@~<  
    ~1XC5.*-  
    % Determine the required powers of r: # F6<N]i  
    % ----------------------------------- .AQTUd(_  
    m_abs = abs(m); mG1!~}[  
    rpowers = []; i1X!G|Awfv  
    for j = 1:length(n) RD0*]4>]  
        rpowers = [rpowers m_abs(j):2:n(j)]; M;W&#Fz%  
    end M1]w0~G  
    rpowers = unique(rpowers); i03=Af3  
    ~;-2eKw  
    O 3?^P"C  
    % Pre-compute the values of r raised to the required powers, lKf kRyO_S  
    % and compile them in a matrix: 7L!}F;yT  
    % ----------------------------- mhM;`dl  
    if rpowers(1)==0 wz@[rMf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >Hmho'  
        rpowern = cat(2,rpowern{:}); j+>[~c;0)  
        rpowern = [ones(length_r,1) rpowern]; t\]kVo)  
    else W4qnXD1n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fLeHn,*,"  
        rpowern = cat(2,rpowern{:}); I?nU+t;  
    end EuA352x  
    iaQfxQP1w%  
    `gF ]  
    % Compute the values of the polynomials: V6+:g=@U-l  
    % -------------------------------------- \),zDO+  
    y = zeros(length_r,length(n)); nET<u;  
    for j = 1:length(n) QpiDBJCL  
        s = 0:(n(j)-m_abs(j))/2; I. Xbowl  
        pows = n(j):-2:m_abs(j); A/&u /?*C  
        for k = length(s):-1:1 O>I%O^  
            p = (1-2*mod(s(k),2))* ... G^z>2P  
                       prod(2:(n(j)-s(k)))/              ... M04u>| ,  
                       prod(2:s(k))/                     ... @\:@_}Z`_}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `Ba?4_>k  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); vR pO0qG  
            idx = (pows(k)==rpowers); O'(D:D?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "r8N- h/P  
        end asE.!g?  
         fGW~xul_  
        if isnorm +6~zMKp  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RH$l?j6  
        end !b+!] 2~g}  
    end [z*1#lj S  
    % END: Compute the Zernike Polynomials bSQj=|h1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z#l6BXK  
    zTl,VIa3p  
    t?b@l<, s  
    % Compute the Zernike functions: @HE?G  
    % ------------------------------ a[,p1}!_  
    idx_pos = m>0; VV#'d  
    idx_neg = m<0; I.>8p]X  
    1(_[awBx  
    YG5mzP<T  
    z = y; hQz1zG`z7  
    if any(idx_pos) Q \S Sv;3_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~$rSy|19  
    end _;/+8=  
    if any(idx_neg) c>! ^\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |VjD. ]I  
    end ;>fM?ae5  
    R:ecLbC  
    t0?t Xe.B  
    % EOF zernfun bPkz=^-  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  XK)0Mt\  
    ~]'yUd1gSZ  
    DDE还是手动输入的呢? 9kbczL^Y  
    FchO 6O  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究