下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, g`\Vy4w
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Q TM+WD
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? dDAdZxd
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? HnZrRHT0
n0nkv[
H~&9xtuHN
?^0#:QevC
H`m|R
function z = zernfun(n,m,r,theta,nflag) d7P|
x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. $O7>E!uVD
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v||8Q\d
% and angular frequency M, evaluated at positions (R,THETA) on the dEns|r
% unit circle. N is a vector of positive integers (including 0), and 2=u5N[*
% M is a vector with the same number of elements as N. Each element sLb[ZQ;j
% k of M must be a positive integer, with possible values M(k) = -N(k) j =[Td
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 'N0d==aI
% and THETA is a vector of angles. R and THETA must have the same %;9wToyK>
% length. The output Z is a matrix with one column for every (N,M) LR'F/.Dx
% pair, and one row for every (R,THETA) pair. ]@>bz
% yAXw?z!`O
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7J7uHl`yq`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), l\jf]BHX'
% with delta(m,0) the Kronecker delta, is chosen so that the integral (H0nO7Bk
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $ v$~.
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~~b[X\1
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u%3Z +[
% B?$pIG^Mn
% The Zernike functions are an orthogonal basis on the unit circle. 5(tOQ%AQ
% They are used in disciplines such as astronomy, optics, and ,B h[jb`y
% optometry to describe functions on a circular domain. 0B>{31)
% UACWs3`s+
% The following table lists the first 15 Zernike functions. %)u5A!"
% )!e-5O49r
% n m Zernike function Normalization b:WlB[5
% -------------------------------------------------- X#Ajt/XQ
% 0 0 1 1 mdtq-v
% 1 1 r * cos(theta) 2 #p6#,PZ
% 1 -1 r * sin(theta) 2 [D^KM|I%+
% 2 -2 r^2 * cos(2*theta) sqrt(6) %7z
% 2 0 (2*r^2 - 1) sqrt(3) 9#@dQ/*
% 2 2 r^2 * sin(2*theta) sqrt(6) +}J2\!Jw
% 3 -3 r^3 * cos(3*theta) sqrt(8) q;InFV3rv
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) / F5g@ X&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \:'=ccf
% 3 3 r^3 * sin(3*theta) sqrt(8) 2~K.m@U}!Z
% 4 -4 r^4 * cos(4*theta) sqrt(10) h7wm xa;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +79?}|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~ubGx
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7eqax33f
% 4 4 r^4 * sin(4*theta) sqrt(10) (sq4
% -------------------------------------------------- Q!(C$&f
% o=X6PoJN_
% Example 1: EX~ U(JB6
% 0-oR
{
{
% % Display the Zernike function Z(n=5,m=1) $RuJm\f
% x = -1:0.01:1; SYOND>E
% [X,Y] = meshgrid(x,x); ~B'K_#
% [theta,r] = cart2pol(X,Y); Q?B5@J
% idx = r<=1; )3V5P%Q
% z = nan(size(X)); T9osueh4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); wyzj[PDS
% figure #DXC6f
% pcolor(x,x,z), shading interp ==F[5]?
% axis square, colorbar Dt0S"`^=k
% title('Zernike function Z_5^1(r,\theta)') iov55jT~l@
% Z$ {I4a
% Example 2: s?@{
% "gADHt=MIR
% % Display the first 10 Zernike functions gk >-h,>"
% x = -1:0.01:1; T^x7w+
% [X,Y] = meshgrid(x,x); B @H.O!
% [theta,r] = cart2pol(X,Y); &~ QQZ]q6
% idx = r<=1; (Hb
i+IHV
% z = nan(size(X)); DBANq\
% n = [0 1 1 2 2 2 3 3 3 3]; M:z)uLDw
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9JV(}v5[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8;mn7 XX
% y = zernfun(n,m,r(idx),theta(idx)); ??5qR8n.
% figure('Units','normalized') *|h-iA+9
% for k = 1:10 T>2) YOx
% z(idx) = y(:,k); T%A45BE
V
% subplot(4,7,Nplot(k)) Z;M]^?
% pcolor(x,x,z), shading interp Xm`jD'G
% set(gca,'XTick',[],'YTick',[]) "z)dz,&T
% axis square u1s^AW8 y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6*u#^">,<
% end Nlemb:'eP3
% )F4H'
% See also ZERNPOL, ZERNFUN2. Z[<rz6%cB
D[ U[D
[ &RZ&
% Paul Fricker 11/13/2006 0Po",\^
6*9hAnH
z6 2gF|Uj
7t= e"|^
9r=@S
% Check and prepare the inputs: pv*u[ffi
% ----------------------------- V1 T?T9m
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S e/VOzzg
error('zernfun:NMvectors','N and M must be vectors.') q'~?azg:
end rt)70=
vJ9Uw
CKwrE]h
if length(n)~=length(m) n*~=O '
error('zernfun:NMlength','N and M must be the same length.') b-R!oP+vP
end g]?&qF}
U/'"w
v1y
LN}eD\
n = n(:); Mqc"
m = m(:); jq#gFt*
if any(mod(n-m,2)) ZD\`~I|gp
error('zernfun:NMmultiplesof2', ... ,5^XjU3c=
'All N and M must differ by multiples of 2 (including 0).') O|j(CaF
end >MD['=J[d
;BzbWvBo
#G2~#\
if any(m>n) mOji\qia
error('zernfun:MlessthanN', ... eaLSq
'Each M must be less than or equal to its corresponding N.') 5ZeE& vG2
end .y'iF>QQ\
MzZYzz
7x`dEi<
if any( r>1 | r<0 ) 6[fp e
error('zernfun:Rlessthan1','All R must be between 0 and 1.') PqV9k,5f
end wGdnv}#
lnuf_;0
+-tvNX%IJ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c'M#va
error('zernfun:RTHvector','R and THETA must be vectors.') ?/ xk
end &)`xlIw}
umPd+5i
DM
{r<?V
r = r(:); Ip#BR!$n
theta = theta(:); 2ghTAsUx9
length_r = length(r); ~2
L{m[s|
if length_r~=length(theta) k#mQLv
error('zernfun:RTHlength', ... zN}1Qh
'The number of R- and THETA-values must be equal.') j{k]8sI,H]
end i-1lpp I
6)<g%bH!
\@G
7Kk*l
% Check normalization: >6fc`3*!
% -------------------- b4NUx)%ln
if nargin==5 && ischar(nflag) CjtBQ5
isnorm = strcmpi(nflag,'norm'); R9=K/
if ~isnorm cuv?[M
error('zernfun:normalization','Unrecognized normalization flag.') <}e2\x
end 5=<
y%VF
else \:>GF-Z(
isnorm = false; +um
Ua
end >q W_%
[C1.*Q+l
:r5DR`Rfm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `re9-HM
% Compute the Zernike Polynomials P#e1?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E?$|`<o{|`
p)_v.D3i
%V r vu5
% Determine the required powers of r: BS-nn y
% ----------------------------------- %N((p[\H
m_abs = abs(m); )ro3yq4??
rpowers = []; 61qs`N=k
for j = 1:length(n) LjZvWts?
rpowers = [rpowers m_abs(j):2:n(j)]; "9mVBa|Q
end n*%o!=
rpowers = unique(rpowers); :{#%_^}k
y2"PKBK\_
NBLiwL37{
% Pre-compute the values of r raised to the required powers, <P)U Ggd
% and compile them in a matrix: Vz=ByyC
% ----------------------------- _8*}S=
if rpowers(1)==0 SVr3OyzI
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F.9SyB$
rpowern = cat(2,rpowern{:}); ZkbaUIQ
rpowern = [ones(length_r,1) rpowern]; .MoOjx?
else 9VqE:c /
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3Z,J&d`[
rpowern = cat(2,rpowern{:}); uJBs 3X
end xZmO^F5KHj
!_zp'V]?
rL{3O4O
% Compute the values of the polynomials: q_0So}
% --------------------------------------
$f++n5I
y = zeros(length_r,length(n)); `2}Frw+?
for j = 1:length(n) aT9+]
Ig
s = 0:(n(j)-m_abs(j))/2; /(/Z~J[
pows = n(j):-2:m_abs(j); 4!%@{H`3
for k = length(s):-1:1 j@yK#==k
p = (1-2*mod(s(k),2))* ... "nkj_pC
prod(2:(n(j)-s(k)))/ ... />wM#)o2
prod(2:s(k))/ ... i5f8}`w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... x2q6y
prod(2:((n(j)+m_abs(j))/2-s(k))); ;m/h?Y~
idx = (pows(k)==rpowers); 4CUoXs'
y(:,j) = y(:,j) + p*rpowern(:,idx); Z*AT &7
end +[LG>
&E{CQ#k
if isnorm 'hEvW
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l|,
Hj
end h=:*cqp4
end x,U'!F
% END: Compute the Zernike Polynomials W^a-K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5=;LHS*
s}
I8:ufT
GJu[af
% Compute the Zernike functions: 7H$I9e
% ------------------------------ |4$.mb.
idx_pos = m>0; 4tQ~Z6Jn;
idx_neg = m<0; :i{Svb*_'
Ri<7!Y?l
4AIo,{(
z = y; 1Q5:Vo^B#
if any(idx_pos) iMT[sb
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &dH[lB
end jOkc'
if any(idx_neg) `Z#0kpXk_
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \
F\ /<
end I]4L0r-
2HNAB4E
n7|8`?R^
% EOF zernfun :V9%R~h/