切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9393阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3a_S-&?X  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :t]YPt  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 5-bd1!o  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )k3zOKZ;  
    u9e A"\s  
    }@}jwi)l  
    w/N.#s^  
    Fp-d69Npo  
    function z = zernfun(n,m,r,theta,nflag) )oa6;=go  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. (eN\s98)/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vI#\ Qe  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;|b D@%@  
    %   unit circle.  N is a vector of positive integers (including 0), and 7[:9vY  
    %   M is a vector with the same number of elements as N.  Each element K3TMTY<p  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DVRE;+Jt  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, H(!)]dO  
    %   and THETA is a vector of angles.  R and THETA must have the same X #-U  
    %   length.  The output Z is a matrix with one column for every (N,M) W=o90TwbN  
    %   pair, and one row for every (R,THETA) pair. NZ'S~Lr   
    % KQ xKU?b1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R\MM2_I  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 29pIO]8;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |~CN]N  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, VLc=!W}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized z![RC59 S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. veAGUE %3  
    % ~ DVAk|fc  
    %   The Zernike functions are an orthogonal basis on the unit circle. uE-~7Q(@  
    %   They are used in disciplines such as astronomy, optics, and 7Cx%G/(  
    %   optometry to describe functions on a circular domain. w:Tz&$&Y$  
    % _UYt  
    %   The following table lists the first 15 Zernike functions. FlRbGg^  
    % Wj/.rG&tE  
    %       n    m    Zernike function           Normalization ;_,=  
    %       -------------------------------------------------- U/m6% )Yx(  
    %       0    0    1                                 1 ]0zXpMNI  
    %       1    1    r * cos(theta)                    2 %s%v|HDs  
    %       1   -1    r * sin(theta)                    2 fEWS3`Yy  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7<oLe3fbM  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ^~0\d;l_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y1(smZU  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Xp{+){Iu  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b"t!nfgo  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j{IAZs#@>  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) hJ>{`Tw  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ngcXS2S_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _LFZ0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /fWVgyW> 6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =E8lpN'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) c</d1xT  
    %       -------------------------------------------------- pV(b>O  
    % ]YQlCx`  
    %   Example 1: A jr]&H4  
    % [P]zdw w#  
    %       % Display the Zernike function Z(n=5,m=1) C#`eN{%.YT  
    %       x = -1:0.01:1; *{P"u(K  
    %       [X,Y] = meshgrid(x,x); +n%uIv  
    %       [theta,r] = cart2pol(X,Y); `ux U H#  
    %       idx = r<=1; 4WG~7eIgy  
    %       z = nan(size(X)); :kfHILi  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3205gI,  
    %       figure 4$+1jjC]>~  
    %       pcolor(x,x,z), shading interp [iwn"e  
    %       axis square, colorbar cj`g)cX|  
    %       title('Zernike function Z_5^1(r,\theta)') #{1w#Iz;  
    % 81fpeoNO  
    %   Example 2: j#"?Oe{_1  
    % t;T MD\BU  
    %       % Display the first 10 Zernike functions &7!&]kA+  
    %       x = -1:0.01:1;   _p\  
    %       [X,Y] = meshgrid(x,x); Aj#CB.y  
    %       [theta,r] = cart2pol(X,Y); E9;cd$}K  
    %       idx = r<=1; <- Q=h?D  
    %       z = nan(size(X)); V{p*N*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4*g`!~)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; SG2s!Ht  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -LJbx<'  
    %       y = zernfun(n,m,r(idx),theta(idx)); (GJ)FWen0"  
    %       figure('Units','normalized') M%7{g"J*  
    %       for k = 1:10 SEq_37  
    %           z(idx) = y(:,k); w7$*J:{  
    %           subplot(4,7,Nplot(k)) d_BECx <\  
    %           pcolor(x,x,z), shading interp <LIL{g0eX  
    %           set(gca,'XTick',[],'YTick',[]) ~C6d5\  
    %           axis square Yj|Oy  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1hw1AJ}(F  
    %       end Zj99]4?9  
    % 4pq@o  
    %   See also ZERNPOL, ZERNFUN2. WLd{+y5#  
    O6NgI2[O  
    "~0m_brf  
    %   Paul Fricker 11/13/2006 xAw$bJj~s  
    47ra`*  
    ~0,Utqy  
    tI0d!8K  
    Xi^3o  
    % Check and prepare the inputs: H'Bor\;[>  
    % ----------------------------- oA%8k51>~K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0tv"tA;  
        error('zernfun:NMvectors','N and M must be vectors.') w>>)3:Ytd  
    end i[/g&fx  
    T3,"g=  
    l)m\i_r:  
    if length(n)~=length(m) sy=M#WGS  
        error('zernfun:NMlength','N and M must be the same length.') A9' [x7N  
    end Fq>=0 )  
    CpNnywDRwU  
    U~n>k<`sr  
    n = n(:); ~F[}*%iR  
    m = m(:); q(4W /y  
    if any(mod(n-m,2)) mD{<Lp=  
        error('zernfun:NMmultiplesof2', ... [`nY /g:  
              'All N and M must differ by multiples of 2 (including 0).') D7H,49#1Q  
    end |7XSC,"  
    3o&PVU? Q  
    =p,+a/*  
    if any(m>n) r|wB& PGW  
        error('zernfun:MlessthanN', ... Ca?5bCI,  
              'Each M must be less than or equal to its corresponding N.') 23 j{bK  
    end PXqLK3AE  
    jX}}^XwX  
    .}n,  
    if any( r>1 | r<0 ) 2?9 FFlX  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 83~ Gu[  
    end /fC@T  
    ?muI8b  
    M24FuS  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xP%`QTl\  
        error('zernfun:RTHvector','R and THETA must be vectors.') Kk#g(YgNz  
    end tgXIj5z  
    86igP  
    T\ZWKx*#  
    r = r(:); 0`.3`Mk   
    theta = theta(:); y`O !,kW  
    length_r = length(r); NfvvwG;M  
    if length_r~=length(theta) "9 ,z"k  
        error('zernfun:RTHlength', ... y^7;I-  
              'The number of R- and THETA-values must be equal.') |M]#D0v  
    end ^Yz.,!B[  
    k~f3~-"  
    0f~7n*XH  
    % Check normalization: 8}9|hT;  
    % -------------------- v$c*3H.seM  
    if nargin==5 && ischar(nflag) y57]q#k  
        isnorm = strcmpi(nflag,'norm'); [5K& J-W  
        if ~isnorm e=K2]Y Q{  
            error('zernfun:normalization','Unrecognized normalization flag.') 4np,"^c  
        end e+jp03m\W  
    else "Y0:Y?Vz"  
        isnorm = false; kx,9n)  
    end ;d$PQi  
    9l) .L L  
    <YX)am'\y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (qd$wv^ h  
    % Compute the Zernike Polynomials .2?tx OKh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W:D'k^u  
    0"q_c-_Bg  
    62lG,y_L  
    % Determine the required powers of r: N2:};a[ui5  
    % ----------------------------------- fFP>$  
    m_abs = abs(m); YT7,=k_  
    rpowers = []; Sh'>5z2  
    for j = 1:length(n) Ei!t#'*D<  
        rpowers = [rpowers m_abs(j):2:n(j)]; O%?TxzX;  
    end +E8 \g  
    rpowers = unique(rpowers); /3|uU  
    <SM{yMz  
    <L|eY(:  
    % Pre-compute the values of r raised to the required powers, Wy^43g38'p  
    % and compile them in a matrix: XVwaX2=L  
    % ----------------------------- :&D>?{b0  
    if rpowers(1)==0 B.wihJVDg  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }p-<+sFo  
        rpowern = cat(2,rpowern{:}); }#~@HM>6Z  
        rpowern = [ones(length_r,1) rpowern]; 6<0-GD}M  
    else VB6EM|bphl  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VsS. \1  
        rpowern = cat(2,rpowern{:}); 9>~UqP9  
    end 48X;'b,h  
    &t)dE7u5  
    YrAaL"20  
    % Compute the values of the polynomials: .5=Qf vi*  
    % -------------------------------------- ERxA79  
    y = zeros(length_r,length(n)); Q*wub9  
    for j = 1:length(n) 4k'2FkDA  
        s = 0:(n(j)-m_abs(j))/2; 2yqm$i9C  
        pows = n(j):-2:m_abs(j); o6f^DG3*  
        for k = length(s):-1:1 ' k~'aZ  
            p = (1-2*mod(s(k),2))* ... U9:?d>7  
                       prod(2:(n(j)-s(k)))/              ... <3\t J  
                       prod(2:s(k))/                     ... pT Yq#9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #6g-{OBv  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Jp)>Wd  
            idx = (pows(k)==rpowers); $ijWwrh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ydp?%RB3w  
        end R_4]6{Rm  
         n 99>oh  
        if isnorm U" eP>HHp  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hDc, #~!  
        end v5"5UPi-  
    end 3md yY\+&  
    % END: Compute the Zernike Polynomials K{[ySB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1_vaSEov  
    #"|Y"#@k  
    (1e;7sNG@  
    % Compute the Zernike functions: >o{(f  
    % ------------------------------ $LUNA.  
    idx_pos = m>0; $q#|B3N%  
    idx_neg = m<0; ~7PPB|XY  
    yC. ve;lG  
    0Eq.l<  
    z = y; ;6aTt2BQ  
    if any(idx_pos) C[ <OF/  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]X4 A)4y  
    end d!) &@k  
    if any(idx_neg) EgIFi{q=0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @]lKQZ^2&  
    end FY"!%)TV  
    .Ajs0 T2  
    ` c~:3^?9d  
    % EOF zernfun 6L@g]f|Y@  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  -\\}K\*MJ  
    01 6l$K4  
    DDE还是手动输入的呢? h=YY> x  
    fGb(=l  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究