下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, eUvIO+av
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 6zs&DOB
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? gwk$|aT@
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $Z)Dvy|
)@.bkzW
9`}Wp2
UJG)-x
w)-@?jN
function z = zernfun(n,m,r,theta,nflag) X1U7$/t
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. BQVpp,]
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }OO(uC2
% and angular frequency M, evaluated at positions (R,THETA) on the
&T?>Kx
% unit circle. N is a vector of positive integers (including 0), and a5WVDh,cR
% M is a vector with the same number of elements as N. Each element >B$ZKE
% k of M must be a positive integer, with possible values M(k) = -N(k) ~Nf01,F
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \dj&4u3
% and THETA is a vector of angles. R and THETA must have the same ! *\)7D
% length. The output Z is a matrix with one column for every (N,M) b u%p,u!
% pair, and one row for every (R,THETA) pair. CBx 1.xL
% cSCO7L2E18
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike SeAokz>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5)4*J.
% with delta(m,0) the Kronecker delta, is chosen so that the integral 0'O; H[nrl
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]xQPSs_
% and theta=0 to theta=2*pi) is unity. For the non-normalized kvs^*X''Ep
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ";B.^pBv@;
% :P`sK&b_
% The Zernike functions are an orthogonal basis on the unit circle. Hno@
% They are used in disciplines such as astronomy, optics, and }xTTz,Oj$
% optometry to describe functions on a circular domain. DG8]FhD^b
% /b,+YyWi%
% The following table lists the first 15 Zernike functions. 2|F.J G^
% V ~w(^;o@
% n m Zernike function Normalization `+$'bNPn&
% -------------------------------------------------- L>$yslH;b
% 0 0 1 1 [oOZ6\?HB
% 1 1 r * cos(theta) 2 S!8eY `C.
% 1 -1 r * sin(theta) 2 i_ws*7B<
% 2 -2 r^2 * cos(2*theta) sqrt(6) zR
h1
% 2 0 (2*r^2 - 1) sqrt(3) [P)'LY6F
% 2 2 r^2 * sin(2*theta) sqrt(6) y
%Get
% 3 -3 r^3 * cos(3*theta) sqrt(8) bTZ/$7pp9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) I_.(&hMn
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) # 'G/&&<
% 3 3 r^3 * sin(3*theta) sqrt(8) 6gwjrGje\
% 4 -4 r^4 * cos(4*theta) sqrt(10) BZEY^G
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @PuJre4!;L
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) RL |.y~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )0`;leli
% 4 4 r^4 * sin(4*theta) sqrt(10) 6NJ"ty9Bp
% -------------------------------------------------- qC?J`
% qa#Fa)g*
% Example 1: 7a0ZI
% [CBA Lj5
% % Display the Zernike function Z(n=5,m=1) c#nFm&}dm
% x = -1:0.01:1; `;WiTE)&)
% [X,Y] = meshgrid(x,x); >i~W$;t
% [theta,r] = cart2pol(X,Y); /S1EQ%_
% idx = r<=1; * #e%3N05_
% z = nan(size(X)); Da1BxbDeI
% z(idx) = zernfun(5,1,r(idx),theta(idx)); o%X_V!B{V
% figure 7CYu"+Ea
% pcolor(x,x,z), shading interp R'qB-v.
% axis square, colorbar %1SA!1>j
% title('Zernike function Z_5^1(r,\theta)') 1i#uKKwE
% NUiZ!&
% Example 2: ~\4l*$3(^
% LtbL[z>]
% % Display the first 10 Zernike functions ZgF-.(GV
% x = -1:0.01:1; m9ts&b+TE
% [X,Y] = meshgrid(x,x); ,kuJWaUC@
% [theta,r] = cart2pol(X,Y); SSycQ4[{o
% idx = r<=1; D|Wekhm
% z = nan(size(X)); kW\=Z1\#
% n = [0 1 1 2 2 2 3 3 3 3]; ^DXERt&3
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; pl
Ii
% Nplot = [4 10 12 16 18 20 22 24 26 28]; +oBf\!{cW
% y = zernfun(n,m,r(idx),theta(idx)); 2_;.iH
6
% figure('Units','normalized') pSkP8'
?
% for k = 1:10 (~xFd^W9o
% z(idx) = y(:,k); ^ $Q',
% subplot(4,7,Nplot(k)) [J\5DctX;c
% pcolor(x,x,z), shading interp N}nU\e6 Y
% set(gca,'XTick',[],'YTick',[]) sY7:Lzs.,
% axis square >T;"bcb
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) H`]nY`HYg
% end mm/U9hbp%
% >WE3$Q>bi
% See also ZERNPOL, ZERNFUN2. ?|TVz!3
Ks@S5:9sp
6:>4}WOP
% Paul Fricker 11/13/2006 r!V#@Md
l@Ma{*s6=5
1c~c_Cc4
cf1Ve\(YGI
$5yS`IqS
% Check and prepare the inputs: yk!,{Q?<$
% ----------------------------- (`GO@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 78#j e=MDg
error('zernfun:NMvectors','N and M must be vectors.')
f<9H#S:
end Y oNg3
u91;GBY
QXishHk&
if length(n)~=length(m) R!W!8rr3
error('zernfun:NMlength','N and M must be the same length.') c.m '%4
end ]
M"{=z
jIK*psaV
6hXL`A&},
n = n(:); 1lfkb1BM
m = m(:); af\>+7x93
if any(mod(n-m,2)) X/lLM`
error('zernfun:NMmultiplesof2', ... ?(Dkh${@
'All N and M must differ by multiples of 2 (including 0).') \
lP
c,8)
end eHF#ME
iOPv
% [
epCU(d*b
if any(m>n) go m<V?$
error('zernfun:MlessthanN', ... c 6}d{B[
'Each M must be less than or equal to its corresponding N.') JTNQz
end @Rj&9/\L
_zI95
mC
n,I
if any( r>1 | r<0 ) UA>~xJp=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') dc5w_98o
end N6cf`xye
rK)So#'
Ul^/Dh
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _xI'p6C
error('zernfun:RTHvector','R and THETA must be vectors.') A`Z!=og=
end %'"#X?jk1
7]d396%
<oI{:KH
r = r(:); *I`Sc|A
theta = theta(:); ;E(gl$c:
length_r = length(r); ( u@[}!
if length_r~=length(theta) vI{JBWE,S
error('zernfun:RTHlength', ... #w*1 !
'The number of R- and THETA-values must be equal.') a)MjX<y
end x6* {@J&5*
<>A:Oi3^
1}tZ,w>
% Check normalization: :7D&=n )
% -------------------- 9b@L^]Kg
if nargin==5 && ischar(nflag) /YR*KxIx
isnorm = strcmpi(nflag,'norm'); [^A.$,
if ~isnorm {0q;:7Bt
error('zernfun:normalization','Unrecognized normalization flag.') =2s5>Oz+
end 1B+MCt4
else /[Vaf R!
isnorm = false; ?xGxr|+a
end w8wF;:>
~&CaC
J<p<