切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9269阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, }g#&Q0  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, oI)GKA_Ng7  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 'XY`(3q  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? oAWzYu(v  
    Q#h 9n]5  
    '>$]{vQ3  
    Y]]}*8  
    ]EwVpvTw  
    function z = zernfun(n,m,r,theta,nflag) 1]IQg;q  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. K=!Bh*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lEHzyh}2k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the p.+ho~sC,.  
    %   unit circle.  N is a vector of positive integers (including 0), and $zB[B;-!$  
    %   M is a vector with the same number of elements as N.  Each element &Ysosy*  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 1]orUF&_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, A,r*%&4~  
    %   and THETA is a vector of angles.  R and THETA must have the same l;y7]DO  
    %   length.  The output Z is a matrix with one column for every (N,M) k} ]T;|h]  
    %   pair, and one row for every (R,THETA) pair. /Uo y/}!  
    % zC _<(4$-"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }y9mNT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y"OG@1V;8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "\0v,!@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, v1a6?-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (JM4R8fR&  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }%Bl>M  
    % ?wnzTbJN  
    %   The Zernike functions are an orthogonal basis on the unit circle. U|g:`v7  
    %   They are used in disciplines such as astronomy, optics, and )(y) A[  
    %   optometry to describe functions on a circular domain. uV 7BK+[O  
    % /-bO!RTwf  
    %   The following table lists the first 15 Zernike functions. r}uz7}z %"  
    % ,V*%V;  
    %       n    m    Zernike function           Normalization (@iMLuewK  
    %       -------------------------------------------------- Oft4- 4$E  
    %       0    0    1                                 1 n_3O-X(  
    %       1    1    r * cos(theta)                    2 1"pw  
    %       1   -1    r * sin(theta)                    2 tv!_e$CR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5|jw^s7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [HCAmnb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Qg6 W5Hc  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s}N#n(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) }:Z#}8  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wm+/e#'&  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) u]vQ>Uu  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 'uq#ai[5I  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X^WrccNX  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0_CN/5F  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #!)n {h+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) tU_y6  
    %       -------------------------------------------------- C+|b1/N-  
    % ?JL:CBvCp  
    %   Example 1: ,\qs4&  
    % _x!7}O#k  
    %       % Display the Zernike function Z(n=5,m=1) A45A:hqs  
    %       x = -1:0.01:1; ei rzYt  
    %       [X,Y] = meshgrid(x,x); wC5ee:u C%  
    %       [theta,r] = cart2pol(X,Y); Y5F]:gs@  
    %       idx = r<=1; {'U Rz[g  
    %       z = nan(size(X)); $z+8<?YD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +|tC'gCnV  
    %       figure @-+Q# Zz`  
    %       pcolor(x,x,z), shading interp A<W 6=5h  
    %       axis square, colorbar RIIitgV_  
    %       title('Zernike function Z_5^1(r,\theta)') Y+Fljr*  
    % NMA}Q$o s  
    %   Example 2: +zy=50,   
    % PG,_^QGCX  
    %       % Display the first 10 Zernike functions cq$i  
    %       x = -1:0.01:1; e*L.U~ZR  
    %       [X,Y] = meshgrid(x,x); T8^5=/  
    %       [theta,r] = cart2pol(X,Y); [ :zO}r:  
    %       idx = r<=1; j\m_o% 4  
    %       z = nan(size(X)); s>^dxF!+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; / z}~zO  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; X,LD   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; {#{DH?=^)u  
    %       y = zernfun(n,m,r(idx),theta(idx)); -=(!g&0  
    %       figure('Units','normalized') Kw#i),M  
    %       for k = 1:10 {RF-sqce  
    %           z(idx) = y(:,k); tzs</2 G,  
    %           subplot(4,7,Nplot(k)) mQY_`&Jq  
    %           pcolor(x,x,z), shading interp $jg*pmR-  
    %           set(gca,'XTick',[],'YTick',[]) f"St&q>[s  
    %           axis square n/h,Lr)Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L: z?Zt)|  
    %       end Y*! qG  
    % ahPoEh  
    %   See also ZERNPOL, ZERNFUN2. %DdJ ^qHI  
    Op_RzZP`  
    ezMI \r6  
    %   Paul Fricker 11/13/2006 ?yj6CL(,  
    P><o,s"v  
    PTEHP   
    _vZ"4L+Iw+  
    W16,Alf:  
    % Check and prepare the inputs: LU9A#  
    % ----------------------------- $_x^lr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m'f,_ \'  
        error('zernfun:NMvectors','N and M must be vectors.') 0A( +ZMd  
    end ;f"0~D2  
    $ >EYhLBa  
    X@f "-\  
    if length(n)~=length(m) A7n\h-b  
        error('zernfun:NMlength','N and M must be the same length.') rs~wv('  
    end ~t~-A,1  
    %%4t~XC#  
    z-b*D}&  
    n = n(:); xQ@^$_  
    m = m(:); Cm\6tD  
    if any(mod(n-m,2)) beu\cV3  
        error('zernfun:NMmultiplesof2', ... qu-/"w<3$  
              'All N and M must differ by multiples of 2 (including 0).') QPfc(Z  
    end ~SnSEhE  
    IqD_GL)Ms  
    L\#<JxY$p  
    if any(m>n) 1[yq0^\]M[  
        error('zernfun:MlessthanN', ... v_nj$1dY6  
              'Each M must be less than or equal to its corresponding N.') 6C+"`(u%V  
    end 8f3vjK'  
    J52 o g4l  
    :at$HCaK  
    if any( r>1 | r<0 ) Ba/Yl  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]~E0gsq  
    end 4A2?Uhp y  
    l@ap]R  
    nTz6LVF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7__Q1 > o  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7IjQi=#:  
    end 9s_,crq5  
    yfC^x%d7G  
    k+DR]icv  
    r = r(:); I:d[Q s  
    theta = theta(:); n8D xB@DI  
    length_r = length(r); kVy\b E0o  
    if length_r~=length(theta) :P(K2q3  
        error('zernfun:RTHlength', ... ''Cay0h  
              'The number of R- and THETA-values must be equal.') T.qNCJmB  
    end hc'-Dh  
    Ed ,D8ND  
    4X *>H  
    % Check normalization: Z"uY}P3  
    % -------------------- MC { 2X  
    if nargin==5 && ischar(nflag) j7)Ao*WN  
        isnorm = strcmpi(nflag,'norm'); [Ts"OPb% ~  
        if ~isnorm n2I V2^ "  
            error('zernfun:normalization','Unrecognized normalization flag.') T N!=@Gy  
        end +fnK /%b  
    else tT79 p.z B  
        isnorm = false; izx#3u$P  
    end Yp:KI7  
    jvQ*t_L  
    xSBc-u#< G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {je-I9%OK  
    % Compute the Zernike Polynomials bpxeznz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &zuG81F6  
    Kk{<@v)  
    V}zEK0n(6  
    % Determine the required powers of r: D2,z)O%VK  
    % ----------------------------------- I'@Ydt2  
    m_abs = abs(m); jr`Ess  
    rpowers = []; 6HlePTf8  
    for j = 1:length(n) e~"fn*"  
        rpowers = [rpowers m_abs(j):2:n(j)]; d`(@_czdF  
    end %bdjBa}  
    rpowers = unique(rpowers); G7CG~:3h+  
    ~jb"5CX  
    MX ;J5(Ae  
    % Pre-compute the values of r raised to the required powers, i}~SDY  
    % and compile them in a matrix: 0p@k({]<  
    % ----------------------------- E.U_W  
    if rpowers(1)==0 Q[d}J+l4{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hnznp1[#@  
        rpowern = cat(2,rpowern{:}); +/ &_v^sC;  
        rpowern = [ones(length_r,1) rpowern]; H`geS  
    else 0pSmj2/,.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =ID 2  
        rpowern = cat(2,rpowern{:}); A?@@*$&  
    end <2nZ&M4/s{  
    p^pOuy8  
     HyR!O>  
    % Compute the values of the polynomials: Hp(D);0+)  
    % -------------------------------------- }`NU@O#  
    y = zeros(length_r,length(n)); L =8+_0  
    for j = 1:length(n) O%ug@& S{  
        s = 0:(n(j)-m_abs(j))/2; {Ions~cO)  
        pows = n(j):-2:m_abs(j); }>[G5[ \  
        for k = length(s):-1:1 ^7.h%lSg  
            p = (1-2*mod(s(k),2))* ... 2"-S<zM  
                       prod(2:(n(j)-s(k)))/              ... Kn?lHH*w7  
                       prod(2:s(k))/                     ... `w.AQ?p@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ez9 q7SpA  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); H&yD*@  
            idx = (pows(k)==rpowers); ys#i@  
            y(:,j) = y(:,j) + p*rpowern(:,idx); M1%Dg'}G  
        end nIvJrAm4k  
         nA~E "*  
        if isnorm g(| 6~}|o+  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /NFz4h =>  
        end c1xrn4f@a  
    end +L=*:e\j  
    % END: Compute the Zernike Polynomials 0W%@gs5d&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u@3y&b  
    %r iK+  
    W k}AmC  
    % Compute the Zernike functions: c   c  
    % ------------------------------ NOS>8sy  
    idx_pos = m>0; \-*eL;qP  
    idx_neg = m<0; aSP4a+\*  
    |G/7_+J6  
    efY8M2  
    z = y; O,.!2wVrN  
    if any(idx_pos) Mzd[fR5a8  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); dgo3'ZO  
    end DE IB!n   
    if any(idx_neg) T{}fHfM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); WX4;l(P L=  
    end =@)d5^<5F  
    ,]5Ic.};p  
    %5*@l vy  
    % EOF zernfun Krs2Gre}  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  gX} g  
    )%JD8;[Jq  
    DDE还是手动输入的呢? fUcLfnr  
    =K$,E4*  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究