切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8794阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <-KHy`u  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, pE.f}  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? za{z2# aJ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =*EIe z*.x  
    jM`)N d  
    ($a ?zJr  
    <WXO].^  
    $50rj  
    function z = zernfun(n,m,r,theta,nflag) X"QIH|qx-  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~P&Brn"=Rs  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v^;-w~?3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the a(}dF?M=  
    %   unit circle.  N is a vector of positive integers (including 0), and ;M,u,KH)/  
    %   M is a vector with the same number of elements as N.  Each element !9GJ9ZEXM  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @j +8M  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {z)&=v@  
    %   and THETA is a vector of angles.  R and THETA must have the same p<>x qU  
    %   length.  The output Z is a matrix with one column for every (N,M) l|#WQXs*c{  
    %   pair, and one row for every (R,THETA) pair. 4.]xK2sW  
    % !<9sOvka{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1 o<l;:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d&S4`\g?8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -dX{ R_*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, scmn-4j'{  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ~F5JN^5Y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b=:$~N@Y  
    % G dZ_  
    %   The Zernike functions are an orthogonal basis on the unit circle. =%u\x=u|  
    %   They are used in disciplines such as astronomy, optics, and 8`bQ,E+2  
    %   optometry to describe functions on a circular domain. /18Z4TA  
    % Hx;ij?  
    %   The following table lists the first 15 Zernike functions.  ?39B(T  
    % <~aQ_l  
    %       n    m    Zernike function           Normalization YTBZklM  
    %       -------------------------------------------------- kOfq6[JC  
    %       0    0    1                                 1 HI}$Z =C  
    %       1    1    r * cos(theta)                    2 Uh.XL=wY  
    %       1   -1    r * sin(theta)                    2 cG|)z<Z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =)Z!qjf1U  
    %       2    0    (2*r^2 - 1)                    sqrt(3) u<8 f ;C_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j.C)KwelBS  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) a'R)3:S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) W}+f}/&l  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iUuG}rqj  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )9_jr(s  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) u15-|i{y7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^B9rt\,q  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 99XbpP55  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h&|wqna  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) l!2hwRR  
    %       -------------------------------------------------- z-(#Mlq:!  
    % ciKkazx.  
    %   Example 1: EZvB#cuL-  
    % u rGk_.f  
    %       % Display the Zernike function Z(n=5,m=1) gI^);J rTE  
    %       x = -1:0.01:1; $V"NB`T  
    %       [X,Y] = meshgrid(x,x); StUiL>9T#  
    %       [theta,r] = cart2pol(X,Y); gv=mz,z  
    %       idx = r<=1; _Q<wb8+/  
    %       z = nan(size(X)); by*>w/@9)k  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); DJl06-s V  
    %       figure a/@<KnT  
    %       pcolor(x,x,z), shading interp COS(pfC  
    %       axis square, colorbar yQwj [  
    %       title('Zernike function Z_5^1(r,\theta)') XQEGMaZ  
    % YJgw%UVJ5m  
    %   Example 2: \=+ s3p5N  
    % 33d86H% ;  
    %       % Display the first 10 Zernike functions 3Rid 1;L0U  
    %       x = -1:0.01:1; uM0!,~&9|  
    %       [X,Y] = meshgrid(x,x); '[shY  
    %       [theta,r] = cart2pol(X,Y); #plwK-tPR  
    %       idx = r<=1; gi`K^L=C  
    %       z = nan(size(X)); <YbOO{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; # k+Gg w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; $[VeZ-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7Dy\-9:v  
    %       y = zernfun(n,m,r(idx),theta(idx)); +Ux)m4}j  
    %       figure('Units','normalized') o{*8l#x8  
    %       for k = 1:10 H~-zq} 4  
    %           z(idx) = y(:,k); qB3{65  
    %           subplot(4,7,Nplot(k)) LV:oNK(  
    %           pcolor(x,x,z), shading interp ^RkHdA  
    %           set(gca,'XTick',[],'YTick',[]) 4QWDuLu  
    %           axis square 02X~' To"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Xu#\CYk  
    %       end 7BCCQsz<  
    % 8VvoPlo  
    %   See also ZERNPOL, ZERNFUN2. OVO0Emv  
    * [*#cMZ   
    g~d}?B\<@  
    %   Paul Fricker 11/13/2006 JH2?^h|{  
    ]s jFj  
    G8`q-B}q  
    =Mq=\T  
    p#.B Fy  
    % Check and prepare the inputs: >HnD'y*  
    % ----------------------------- L@?Dmn'v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 64}Oa+*s  
        error('zernfun:NMvectors','N and M must be vectors.') &0TOJ:RP  
    end );$Uf!v4  
    !TY4C`/  
    ~Dr/+h:^\  
    if length(n)~=length(m) %" $.2O@  
        error('zernfun:NMlength','N and M must be the same length.') Y',s|M1})\  
    end P*/px4;6  
    f(DGC2R <  
    +3vK=d_Va  
    n = n(:); Ig1cf9 :  
    m = m(:); yY*OAC  
    if any(mod(n-m,2)) BZ1@?3  
        error('zernfun:NMmultiplesof2', ... xk86?2b{)  
              'All N and M must differ by multiples of 2 (including 0).') 2uw%0r3Vi6  
    end @{.rDz  
    6KhHS@Z  
    ,KkENp_  
    if any(m>n) >8SX,  
        error('zernfun:MlessthanN', ... 5 d|*E_yu  
              'Each M must be less than or equal to its corresponding N.') uW4G!Kw28  
    end HhNH"b&  
    qsFA~{o.  
    {i^ ?XdM  
    if any( r>1 | r<0 ) ^`YSl*:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q" VFcp:  
    end iUA2/ A  
    X=(8t2  
    F$ Us! NN  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %kNkDI  
        error('zernfun:RTHvector','R and THETA must be vectors.') .EH^1.|v  
    end i[d-n/)  
    ix^:qw;  
    Mim 9C]h(  
    r = r(:); Du$kDCU  
    theta = theta(:); gU>Y  
    length_r = length(r); ]G&?e9OA  
    if length_r~=length(theta) 60~{sk~E  
        error('zernfun:RTHlength', ... (W3R3>;  
              'The number of R- and THETA-values must be equal.') 9|jIrS%/~  
    end (0D0G-r:  
    Q( AOKp,F  
     ceVej'  
    % Check normalization: zo@>~G3$9  
    % -------------------- w[PW-m^`  
    if nargin==5 && ischar(nflag) / c/!13|  
        isnorm = strcmpi(nflag,'norm'); L7n->8Qk  
        if ~isnorm z^~uq:  
            error('zernfun:normalization','Unrecognized normalization flag.') {>QrI4*A  
        end lqqY5l6j  
    else QEUg=*3W=  
        isnorm = false; JS&l h  
    end M0c"wi@S_  
    XPUH\I=  
    lDp5aT;DsM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bvEk.~tC'  
    % Compute the Zernike Polynomials :+]6SC0ql  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N Ja]UZx  
    %~Nf,  
    "TtK!>!.  
    % Determine the required powers of r: =h&DW5QC  
    % ----------------------------------- J;m[1Mae&  
    m_abs = abs(m); o1zc`Ibd  
    rpowers = []; &xH>U*c  
    for j = 1:length(n) X,O&X  
        rpowers = [rpowers m_abs(j):2:n(j)]; t47 f$gq  
    end ]}>GUXe)^  
    rpowers = unique(rpowers); v.r$]O  
    ?{_dW=AQ1  
    \jq1F9,  
    % Pre-compute the values of r raised to the required powers, -Rjn<bTIy  
    % and compile them in a matrix: jGI!}4_  
    % ----------------------------- ?/#HTg)!B  
    if rpowers(1)==0 U0jq.]P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2Y  6/,W  
        rpowern = cat(2,rpowern{:}); E6)FYz7x  
        rpowern = [ones(length_r,1) rpowern]; )}G HG#D{  
    else ?/dz!{JC  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /8W}o/,s5  
        rpowern = cat(2,rpowern{:}); _?q\tyf3  
    end F;q I^{m2  
    %*}JDx#@  
    Fdc bmQ  
    % Compute the values of the polynomials: Zpu>T2Tp  
    % -------------------------------------- VJ_E]}H  
    y = zeros(length_r,length(n)); Qt>yRt  
    for j = 1:length(n) f+<-Jc  
        s = 0:(n(j)-m_abs(j))/2; 2vj)3%:7#E  
        pows = n(j):-2:m_abs(j); 8{?Oi'-|0  
        for k = length(s):-1:1 %HYC-TF#  
            p = (1-2*mod(s(k),2))* ... 8(Z*Vz uu  
                       prod(2:(n(j)-s(k)))/              ... P7u5Ykc*  
                       prod(2:s(k))/                     ... /jj}.X7yH  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... LgUaX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +hXph  
            idx = (pows(k)==rpowers); [FyE{NfiJ%  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #+Vvf  
        end #XJYkaL  
         /-BplU*"9  
        if isnorm p[Q   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lX5(KUN  
        end (x.K%QC)  
    end NO* 1km[#  
    % END: Compute the Zernike Polynomials Lk3@E u)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /}M@ @W  
    P?TFX.p7  
    sF|<m)Kt{W  
    % Compute the Zernike functions: _HGDqj L  
    % ------------------------------ fWKv3S1dT  
    idx_pos = m>0; bd)A6a\h  
    idx_neg = m<0; H,H'bd/  
    4|++0=#D$  
    [HNGTde&  
    z = y; L}:u9$w  
    if any(idx_pos) .4-;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); y'4=  
    end aNXu"US+Sp  
    if any(idx_neg) =gfLl1wY[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S4?ss I  
    end xhqIE3gd  
    TAzhD.6C  
    FirmzB Il5  
    % EOF zernfun 9.%{M#j  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  !X#=Pt[,  
    A}oR,$D-  
    DDE还是手动输入的呢? [% 3{mAd  
    [;tbNVZK  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究