切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9320阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, RIXUzKLO  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, N :E7rtT,M  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]|cL+|':y  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? _h#SP+>  
    l@-J&qG  
    pVTx# rY  
    (/J$2V5-  
    }]cKOv2  
    function z = zernfun(n,m,r,theta,nflag) IaDc hI  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. rYI9?q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '2+Rb7V  
    %   and angular frequency M, evaluated at positions (R,THETA) on the i*`;/x'+  
    %   unit circle.  N is a vector of positive integers (including 0), and # [c`]v  
    %   M is a vector with the same number of elements as N.  Each element Xrpzc~(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @}&o(q1M0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, y:Ycn+X.  
    %   and THETA is a vector of angles.  R and THETA must have the same HhfuHZ<  
    %   length.  The output Z is a matrix with one column for every (N,M) Yc+0OBH[  
    %   pair, and one row for every (R,THETA) pair. #8.%YG  
    % 0( fN  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _aOisN{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]kC/b^~+m  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 9N^&~O|1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, r0=Aru5n  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;5 W|#{I  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. so h3 d  
    % 3| 5Af  
    %   The Zernike functions are an orthogonal basis on the unit circle. g0w<vD`<g  
    %   They are used in disciplines such as astronomy, optics, and D.G+*h@ g  
    %   optometry to describe functions on a circular domain. MrIo.  
    % e6{}hiM  
    %   The following table lists the first 15 Zernike functions. F5Tah{  
    % z@hlN3dg  
    %       n    m    Zernike function           Normalization "i$Av m  
    %       -------------------------------------------------- U[9`:aV;  
    %       0    0    1                                 1 Hf P2o5-  
    %       1    1    r * cos(theta)                    2 Qn> 0s  
    %       1   -1    r * sin(theta)                    2 pNFL;k+p}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @A(*&PU>j  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :4|W;Lkd!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) eaQ)r?M  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @$ E&H`da  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) e=KA|"v xh  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8)  ajF-T=5  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3QSP](W-(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |}paa  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9W$FX  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9j458Yd4*  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l v]TE"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]Bw2>6W  
    %       -------------------------------------------------- FJl#NOp&  
    % R.Xh&@f`  
    %   Example 1: N( 0G!sTI  
    % fw@n[u{~  
    %       % Display the Zernike function Z(n=5,m=1) Q:$<`K4)  
    %       x = -1:0.01:1; wowv>!N!X-  
    %       [X,Y] = meshgrid(x,x); G" &9u2k  
    %       [theta,r] = cart2pol(X,Y); YUdCrb9F  
    %       idx = r<=1; d0YN :lJc  
    %       z = nan(size(X)); f]H[uzsV  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); *"#62U6  
    %       figure E/@w6uIK[  
    %       pcolor(x,x,z), shading interp LU5e!bP  
    %       axis square, colorbar 9u";%5 4  
    %       title('Zernike function Z_5^1(r,\theta)') >h>X/a(=~  
    % zSMN k AM  
    %   Example 2: !P7&{I,e  
    % f Co-ony  
    %       % Display the first 10 Zernike functions zJNiAc  
    %       x = -1:0.01:1; D4%5T>^LW[  
    %       [X,Y] = meshgrid(x,x); wS"[m>.{v  
    %       [theta,r] = cart2pol(X,Y); 5tI4m#y2  
    %       idx = r<=1; qQC<oR  
    %       z = nan(size(X)); p$dVGvM(  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9dl\`zlA*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Vrl)[st!;I  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; i8A{DMc,U  
    %       y = zernfun(n,m,r(idx),theta(idx)); G v(bD6Rz  
    %       figure('Units','normalized') t_1a.Jv  
    %       for k = 1:10 +grIw# j  
    %           z(idx) = y(:,k); ^Nl)ocHv!  
    %           subplot(4,7,Nplot(k)) BG!;9Z{u  
    %           pcolor(x,x,z), shading interp a=bP   
    %           set(gca,'XTick',[],'YTick',[]) ;=piJ%k  
    %           axis square ]O2ku^yM  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .8[B }S(  
    %       end qUX   
    % y&T(^EA;  
    %   See also ZERNPOL, ZERNFUN2. 'j>+eA>  
    z,/0e@B >  
    e R"XXF0u  
    %   Paul Fricker 11/13/2006 5`CPaJT$  
    !<\"XxK+l  
    S'~Zlv 3`  
    Oo{+W 5[  
    wW s<{ T  
    % Check and prepare the inputs: [V'3/#Z  
    % ----------------------------- ??tyz4$;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "4N%I  
        error('zernfun:NMvectors','N and M must be vectors.') FtbqZN[  
    end 6||zwwk'.  
    5qo^SiB.  
    5m2(7FC%su  
    if length(n)~=length(m) xo#&&/6  
        error('zernfun:NMlength','N and M must be the same length.') _%#Q \ D  
    end 1.WdxMpW9  
    vaQZ1a,  
    H'68K8i0  
    n = n(:); Oq~>P!=   
    m = m(:); 0&$+ CWSM  
    if any(mod(n-m,2)) ]Cd 1&  
        error('zernfun:NMmultiplesof2', ... f&=y\uP]  
              'All N and M must differ by multiples of 2 (including 0).') ( XYYbP  
    end }}Ah-QU  
    !%b.k6%>w  
    [OFg (R-  
    if any(m>n) OoOKr  
        error('zernfun:MlessthanN', ... ~J1;Z0}#  
              'Each M must be less than or equal to its corresponding N.') gNr/rp9A$m  
    end Sqj'2<~W  
    I,dH\]^h=  
    4Fhiac  
    if any( r>1 | r<0 ) %m[ :},  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') (pXZ$R:  
    end cF{5[?wS  
    -.ITcD g  
    )2T?Z)"hO  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) bv$g$  
        error('zernfun:RTHvector','R and THETA must be vectors.') Hb5^+.xur  
    end cQEK>aAd  
    ~?&;nTwHe  
    P1DYjm[+D  
    r = r(:); xXQ#?::m  
    theta = theta(:); 'T@K$xL8  
    length_r = length(r); t{?UNW  
    if length_r~=length(theta) 8m Tjf Br  
        error('zernfun:RTHlength', ... 8XtZF,Du  
              'The number of R- and THETA-values must be equal.') %Y8#I3jVJ  
    end ~5$V8yfx h  
    yv| |:wZC  
    h,B ]5Of  
    % Check normalization: *=i|E7Irg  
    % -------------------- +jD?h-]  
    if nargin==5 && ischar(nflag) _U)BOE0o  
        isnorm = strcmpi(nflag,'norm'); m}w~ d /  
        if ~isnorm J^[>F{8!n  
            error('zernfun:normalization','Unrecognized normalization flag.') C!xqp   
        end hEAt4z0P  
    else _ +Ww1 f  
        isnorm = false; g[fCvWm#d  
    end [f["9(:  
    "o&_tB;O  
    ^ sIxR*C[v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O-- "\4  
    % Compute the Zernike Polynomials |T7 < !  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n[4F\I>  
    -;=0dfC(  
    @dE|UZ=(  
    % Determine the required powers of r: %RA8M- d  
    % ----------------------------------- M B|+F  
    m_abs = abs(m); j|3p.Cy  
    rpowers = []; fis**f0  
    for j = 1:length(n) xZAc~~9tD  
        rpowers = [rpowers m_abs(j):2:n(j)]; K(RG:e~R0i  
    end n%PHHu  
    rpowers = unique(rpowers); /CX_@%m}e=  
    1iBOf8  
    7z!|sPW](b  
    % Pre-compute the values of r raised to the required powers, y7aBF13Kl  
    % and compile them in a matrix: Sz4YP l  
    % ----------------------------- _?Zg$7VJ  
    if rpowers(1)==0 Cv{>|g#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ut4cli&cC  
        rpowern = cat(2,rpowern{:}); :lz@G 4 =C  
        rpowern = [ones(length_r,1) rpowern]; '5zolp%St  
    else PR?Ls{}p\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); em`z=JGG  
        rpowern = cat(2,rpowern{:}); xaQ]Vjw  
    end b%<-(o/  
    +O P8U]~  
    xab1`~%K  
    % Compute the values of the polynomials: In)8AK(Hw  
    % -------------------------------------- /Zw^EM6c  
    y = zeros(length_r,length(n)); ;w ";s$  
    for j = 1:length(n) [#$:X+lw  
        s = 0:(n(j)-m_abs(j))/2; F9(*MP|  
        pows = n(j):-2:m_abs(j); t_1(Ex  
        for k = length(s):-1:1 ?EF[OyE  
            p = (1-2*mod(s(k),2))* ... U{(B)dFTH  
                       prod(2:(n(j)-s(k)))/              ... MKIX(r( |  
                       prod(2:s(k))/                     ... @]yd Wd  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... SQ7Ws u>T@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); -[A4B)  
            idx = (pows(k)==rpowers); qP? V{N  
            y(:,j) = y(:,j) + p*rpowern(:,idx); q_PxmPE@3v  
        end \fG?j@Qx  
         3>X]`Oj7y  
        if isnorm !}7FC>Cx  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @-y.Y}k#$~  
        end KSsv~!3Yf  
    end QiBo]`)%  
    % END: Compute the Zernike Polynomials ^PDz"L<*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }gw \w?/  
    V'TBt=!=]  
    +\~.cP7[  
    % Compute the Zernike functions: T:$a x  
    % ------------------------------ l1*qDzb  
    idx_pos = m>0; ]6)^+(zU  
    idx_neg = m<0; 4^h_n1 A  
    {&Kck>C'  
    A/eZnsk  
    z = y; " %$jl0i_c  
    if any(idx_pos) HD^Ou5YB  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1#LXy%^tO  
    end 5~GHAi  
    if any(idx_neg) Q/'jw yj_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ia#Z$I6  
    end .}'49=c  
    98 dl -?  
    /'KCW_Q  
    % EOF zernfun z|,YO6(L  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  0jJ:WPR  
    pie8 3Wy>  
    DDE还是手动输入的呢? o;kxu(>yL'  
    e 48N[p  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究