下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <-KHy`u
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, pE.f}
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? za{z2#aJ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =*EIe z*.x
jM`)Nd
($a ?zJr
<WXO].^
$50rj
function z = zernfun(n,m,r,theta,nflag) X"QIH|qx-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~P&Brn"=Rs
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v^;-w~?3
% and angular frequency M, evaluated at positions (R,THETA) on the a(}dF?M=
% unit circle. N is a vector of positive integers (including 0), and ;M,u,KH)/
% M is a vector with the same number of elements as N. Each element !9GJ9ZEXM
% k of M must be a positive integer, with possible values M(k) = -N(k) @j
+8 M
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {z)&=v@
% and THETA is a vector of angles. R and THETA must have the same p<>xqU
% length. The output Z is a matrix with one column for every (N,M) l|#WQXs*c{
% pair, and one row for every (R,THETA) pair. 4.]xK2sW
% !<9sOvka{
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1 o<l;:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d&S4`\g?8
% with delta(m,0) the Kronecker delta, is chosen so that the integral -dX{ R_*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, scmn-4j'{
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~F5JN^5Y
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b=:$~N@Y
% GdZ_
% The Zernike functions are an orthogonal basis on the unit circle. =%u\x=u|
% They are used in disciplines such as astronomy, optics, and 8`bQ,E+2
% optometry to describe functions on a circular domain. /18Z4TA
% Hx;ij?
% The following table lists the first 15 Zernike functions. ?39B(T
% <~aQ_l
% n m Zernike function Normalization YTBZklM
% -------------------------------------------------- kOfq6[JC
% 0 0 1 1 HI}$Z=C
% 1 1 r * cos(theta) 2 Uh.XL=wY
% 1 -1 r * sin(theta) 2 cG|)z<Z
% 2 -2 r^2 * cos(2*theta) sqrt(6) =)Z!qjf1U
% 2 0 (2*r^2 - 1) sqrt(3) u<8 f;C_
% 2 2 r^2 * sin(2*theta) sqrt(6) j.C)KwelBS
% 3 -3 r^3 * cos(3*theta) sqrt(8) a'R)3:S
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) W}+f}/&l
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) iUuG}rqj
% 3 3 r^3 * sin(3*theta) sqrt(8) )9_jr(s
% 4 -4 r^4 * cos(4*theta) sqrt(10) u15-|i{y7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^B9rt\,q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 99Xbp P55
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h&|wqna
% 4 4 r^4 * sin(4*theta) sqrt(10) l!2hwRR
% -------------------------------------------------- z-(#Mlq:!
% ciKkazx.
% Example 1: EZvB#cuL-
% urGk_.f
% % Display the Zernike function Z(n=5,m=1) gI^);JrTE
% x = -1:0.01:1; $V"NB`T
% [X,Y] = meshgrid(x,x); StUiL>9T#
% [theta,r] = cart2pol(X,Y); gv=mz,z
% idx = r<=1; _Q<wb8+/
% z = nan(size(X)); by*>w/@9)k
% z(idx) = zernfun(5,1,r(idx),theta(idx)); DJl06-s V
% figure a/@<KnT
% pcolor(x,x,z), shading interp COS(pfC
% axis square, colorbar yQwj[
% title('Zernike function Z_5^1(r,\theta)') XQEGMaZ
% YJgw%UVJ5m
% Example 2: \=+s3p5N
% 33d86H%;
% % Display the first 10 Zernike functions 3Rid1;L0U
% x = -1:0.01:1; uM0!,~&9|
% [X,Y] = meshgrid(x,x); '[shY
% [theta,r] = cart2pol(X,Y); #plwK-tPR
% idx = r<=1; gi`K^L=C
% z = nan(size(X)); <YbOO{
% n = [0 1 1 2 2 2 3 3 3 3]; # k+Ggw
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $[VeZ-
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7Dy\-9:v
% y = zernfun(n,m,r(idx),theta(idx)); +Ux)m4}j
% figure('Units','normalized') o{*8l#x8
% for k = 1:10 H~-zq}4
% z(idx) = y(:,k); qB3{65
% subplot(4,7,Nplot(k)) LV:oNK(
% pcolor(x,x,z), shading interp ^RkHdA
% set(gca,'XTick',[],'YTick',[]) 4QWDuLu
% axis square 02X ~' To"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Xu#\CYk
% end 7BCCQsz<
% 8VvoPlo
% See also ZERNPOL, ZERNFUN2. OVO0Emv
*[*#cMZ
g~d}?B\<@
% Paul Fricker 11/13/2006 JH2?^h|{
]s jFj
G8`q-B}q
=Mq=\T
p#.B Fy
% Check and prepare the inputs: >HnD'y*
% ----------------------------- L@?Dmn'v
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 64}Oa+*s
error('zernfun:NMvectors','N and M must be vectors.') &0TOJ:RP
end );$Uf!v4
!TY4C`/
~Dr/+h:^\
if length(n)~=length(m) %"
$.2O@
error('zernfun:NMlength','N and M must be the same length.') Y',s|M1})\
end P*/p x4;6
f(DGC2R
<
+3vK=d_Va
n = n(:); Ig1cf9 :
m = m(:); yY*OAC
if any(mod(n-m,2)) BZ1@?3
error('zernfun:NMmultiplesof2', ... xk86?2b{)
'All N and M must differ by multiples of 2 (including 0).') 2uw%0r3Vi6
end @{.rDz
6KhHS@Z
,KkENp_
if any(m>n) >8SX ,
error('zernfun:MlessthanN', ... 5d|*E_yu
'Each M must be less than or equal to its corresponding N.') uW4G!Kw28
end HhNH"b&