下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Q\N >W+d
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,aIkiT
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Uyxn+j5
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? BCtKxtbS
4p%^?L?
m#4h5_N
oTrit_@3
.[Qi4jm>`
function z = zernfun(n,m,r,theta,nflag) NE4]i
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }pGjc_:']
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "=LeHY=9
% and angular frequency M, evaluated at positions (R,THETA) on the K(HrwH`a{
% unit circle. N is a vector of positive integers (including 0), and ;#mm_*L%@
% M is a vector with the same number of elements as N. Each element =woP~+
% k of M must be a positive integer, with possible values M(k) = -N(k) /F6"uZSt4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, q_9 8=fyE6
% and THETA is a vector of angles. R and THETA must have the same mF
UsTb]f
% length. The output Z is a matrix with one column for every (N,M) f4&;l|R0a
% pair, and one row for every (R,THETA) pair. ?FwHqyFVlQ
% GVfRy@7n
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike w9n0p0xr<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ya(3Z_f+VZ
% with delta(m,0) the Kronecker delta, is chosen so that the integral &Pc.[k
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m/,80J8L+f
% and theta=0 to theta=2*pi) is unity. For the non-normalized hT `&Xb
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b"nkF\P@Fj
% C](djkA$
% The Zernike functions are an orthogonal basis on the unit circle. wQ[!~>A
% They are used in disciplines such as astronomy, optics, and 9+/D\|"{
% optometry to describe functions on a circular domain. 0d1!Q!PH3
% #lMC#Ld
% The following table lists the first 15 Zernike functions. &N]e pV>
% u%Mo.<PI
% n m Zernike function Normalization [j0jAl
% -------------------------------------------------- 6']G HDK
% 0 0 1 1 O+/{[9s
% 1 1 r * cos(theta) 2 *{5/" H5
% 1 -1 r * sin(theta) 2 A/"2a55
% 2 -2 r^2 * cos(2*theta) sqrt(6) pred{HEye
% 2 0 (2*r^2 - 1) sqrt(3) )rlkQ'DN
% 2 2 r^2 * sin(2*theta) sqrt(6) g"kET]KP"
% 3 -3 r^3 * cos(3*theta) sqrt(8) |o*qZ}6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) lY2~{Y|4s
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) s,AJR
[
% 3 3 r^3 * sin(3*theta) sqrt(8) _+H $Pa}?
% 4 -4 r^4 * cos(4*theta) sqrt(10) h7@%}<%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;C=V- r
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (44L8)I.D
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ` N
R,8F
% 4 4 r^4 * sin(4*theta) sqrt(10) =e0MEV#s.
% -------------------------------------------------- J<4_<.o(a
% b5I 8jPj4c
% Example 1: s@GE(Pu7
% ~%eE%5!k
% % Display the Zernike function Z(n=5,m=1) R3.w")6
% x = -1:0.01:1; 7oc Ng
% [X,Y] = meshgrid(x,x); :UAcS^n7h"
% [theta,r] = cart2pol(X,Y); a>9_#_hI
% idx = r<=1; [>\e@ =
% z = nan(size(X)); <a&xhG}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); [2>zaag
% figure 33wVP}e5
% pcolor(x,x,z), shading interp RlbJ4`a
% axis square, colorbar ;b. m X
% title('Zernike function Z_5^1(r,\theta)') )s4:&!
% bg_io* K
% Example 2: TTbJ9O<43
% dw!Xt@,[g{
% % Display the first 10 Zernike functions i)$+#N
% x = -1:0.01:1;
5e1oxSU
% [X,Y] = meshgrid(x,x); aBQ@n
% [theta,r] = cart2pol(X,Y); bj0<A
% idx = r<=1; #W
l^!)#j?
% z = nan(size(X)); ,fN <I
% n = [0 1 1 2 2 2 3 3 3 3]; ?<Hgq8J
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; J><hrZ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; g& f)WQ(
% y = zernfun(n,m,r(idx),theta(idx)); }NRt:JC
% figure('Units','normalized') ;l<Hen*
% for k = 1:10 0pl'*r*9
% z(idx) = y(:,k); .j"heYF)
% subplot(4,7,Nplot(k)) /u`Opv&I
% pcolor(x,x,z), shading interp Z_<NUPE
% set(gca,'XTick',[],'YTick',[]) iTs"RW
% axis square xj&~>&U){;
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lUp%1x+
% end 9C{Xpu
% $sZ4r>-
% See also ZERNPOL, ZERNFUN2. 4:733Q3oK
|id7@3leu
`[XH=-p
% Paul Fricker 11/13/2006 |nr;OM
J7e/+W~
w@O)b-b|w
"*V'
&B=z*m
% Check and prepare the inputs: CdcBE.%<
% ----------------------------- )56L`5#tS
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w40*vBz
error('zernfun:NMvectors','N and M must be vectors.') W<[7LdAB
end Ol<LL#<j4
H4{7,n
GukwN]*OY
if length(n)~=length(m) B}*\ pdJ
error('zernfun:NMlength','N and M must be the same length.') z|Xt'?9&n
end N1'Yo:_A
I")Ud?v0)
QwF.c28[
n = n(:); -em3 #V
m = m(:); {ehYE ^%N
if any(mod(n-m,2)) p)"EenUK
error('zernfun:NMmultiplesof2', ... eb,QT\/G
'All N and M must differ by multiples of 2 (including 0).') QJ>=a./
end #)#'^MZX
IM[=]j.?
eecIF0hp
if any(m>n) 8{{^pW?x
error('zernfun:MlessthanN', ... <5CQ#^cK
'Each M must be less than or equal to its corresponding N.') sk0/3X*Q%
end gh"_,ZhZt
J4iu8_eH!D
|8x_Av0
if any( r>1 | r<0 ) IF//bgk-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >s,*=a
end 4"{g{8
2"P1I
?V_v=X%w
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 73tjDO7d
error('zernfun:RTHvector','R and THETA must be vectors.') @cm[]]f'l
end 6Q+VW_~
"/UPq6
|L-- j
r = r(:); ?o/p}6
theta = theta(:); N5k9o:2
length_r = length(r); ,p\*cHB9
if length_r~=length(theta) 9{A*[.XK]
error('zernfun:RTHlength', ... HBk5p>&
'The number of R- and THETA-values must be equal.') AO5a
end [ei5QSL |
%VXIiu[
F[.IF5_
% Check normalization: #SD2b,f
% -------------------- MzlE
if nargin==5 && ischar(nflag) 6e}T
zc\@(
isnorm = strcmpi(nflag,'norm'); <!|=_W6
if ~isnorm L9whgXD
error('zernfun:normalization','Unrecognized normalization flag.') +yHzp
end CyB1`&G>
else Rob:W|
isnorm = false; kaDn=
={YM
end
Ox'KC
5pRVA
*\Hut'7 d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {>brue*)
% Compute the Zernike Polynomials "DJ%Yo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n4ti{-^4|d
W}wd?WIps
tfe'].uT
% Determine the required powers of r: %]O#t<D
% ----------------------------------- \OK}DhY#
m_abs = abs(m); ^AUQsRA7PZ
rpowers = []; 0upZ4eN
for j = 1:length(n) HI)U6.'
rpowers = [rpowers m_abs(j):2:n(j)]; ];0:aSi#
end v\kd78,
rpowers = unique(rpowers); wo^1%:@/2
W*4!A\K
<)@^TRS
% Pre-compute the values of r raised to the required powers, uQWd`7
% and compile them in a matrix: O}7aX '
% ----------------------------- ]d&;QZ#w
if rpowers(1)==0
"M]`>eixL
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MpJx>0j/J
rpowern = cat(2,rpowern{:}); U(:t$SBKy
rpowern = [ones(length_r,1) rpowern]; #-d-zV*
else +,9Muf h
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +Pn`AV1
rpowern = cat(2,rpowern{:}); `"bp-/
end q?&J