切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9146阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IW-lC{hK  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, UA]U_P$c  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? KG8Km  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 'o.A8su,  
    MH=;[| N  
    *='J>z.]  
    _"R /k`8  
    %`1 p8>n  
    function z = zernfun(n,m,r,theta,nflag) szW85{<+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. t?<pyw $  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N qKL mL2O  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ae`6hW2  
    %   unit circle.  N is a vector of positive integers (including 0), and Me XGE  
    %   M is a vector with the same number of elements as N.  Each element fNTe_akp  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) RNB ha&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :Lze8oY(D}  
    %   and THETA is a vector of angles.  R and THETA must have the same `X ;2lgL  
    %   length.  The output Z is a matrix with one column for every (N,M) mcFJ__3MAV  
    %   pair, and one row for every (R,THETA) pair. 6o!Y^^/U  
    % 7C"&f *lEi  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike pwG"_|h  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), hxQx$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 98x&2(N  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m0zbG1OE  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9C2DW,?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1 /dy@'  
    % #2\ 0#HN  
    %   The Zernike functions are an orthogonal basis on the unit circle. d"Aer  
    %   They are used in disciplines such as astronomy, optics, and zv}3Sl@  
    %   optometry to describe functions on a circular domain. lZ![?t}2`  
    % uiQRRT  
    %   The following table lists the first 15 Zernike functions. y2:~_MD  
    % fce~a\y0  
    %       n    m    Zernike function           Normalization O${B)C,  
    %       -------------------------------------------------- OX!<{9o  
    %       0    0    1                                 1 u^Sa{Jk=  
    %       1    1    r * cos(theta)                    2 TCI%Ox|a  
    %       1   -1    r * sin(theta)                    2 RC>79e/u<  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) "g=g' W#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "ke>O'   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 1Ff Sqd  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) WQ>y;fi5/{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +M^+qt;]V  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) *t3uj  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 8M&q  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) yRF %SWO  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y6C3u5`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) >.X& v  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]6BV`r]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) WY)*3?  
    %       -------------------------------------------------- $>csm  
    % /+g9C(['  
    %   Example 1: S7Tc9"oqV  
    % q{:]D(   
    %       % Display the Zernike function Z(n=5,m=1) n 9X:s?B/  
    %       x = -1:0.01:1; `BOG e;pl  
    %       [X,Y] = meshgrid(x,x); Q?uHdmY*X  
    %       [theta,r] = cart2pol(X,Y); #D2.RN  
    %       idx = r<=1; Q]v><  
    %       z = nan(size(X)); S_ELV#X  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); -cL{9r&X  
    %       figure aHR&6zj4  
    %       pcolor(x,x,z), shading interp LI`H,2Km  
    %       axis square, colorbar cU  
    %       title('Zernike function Z_5^1(r,\theta)') $ 9%UAqk9  
    % Z| f~   
    %   Example 2: x $@Gp  
    % ;?K>dWf3f  
    %       % Display the first 10 Zernike functions {`>;I  
    %       x = -1:0.01:1; {^jk_G\ys  
    %       [X,Y] = meshgrid(x,x); Q`{2 yU:r  
    %       [theta,r] = cart2pol(X,Y); Q%Fa1h:2&  
    %       idx = r<=1; s`63 y&Z[  
    %       z = nan(size(X)); 9-( \\$%  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )'3V4Z&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; e_v_y$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vkgAI<  
    %       y = zernfun(n,m,r(idx),theta(idx)); V[RsSZx =  
    %       figure('Units','normalized') d09qZj>  
    %       for k = 1:10 $[1J[eY*  
    %           z(idx) = y(:,k); FIEA 'kUy  
    %           subplot(4,7,Nplot(k)) S+* g  
    %           pcolor(x,x,z), shading interp 6Ex 16  
    %           set(gca,'XTick',[],'YTick',[]) r 1x2)  
    %           axis square l =Is-N`  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~M?^T$5  
    %       end /ho7O/aAa  
    % 'Xb?vOU  
    %   See also ZERNPOL, ZERNFUN2. GJo`9  
    1[k.apn  
    4Y `=`{Q  
    %   Paul Fricker 11/13/2006 y|Vwy4tK9  
    jM'(Qa  
    )r|Pm-:A{  
    nSR<(-j!  
    p/WE[8U  
    % Check and prepare the inputs: d"U'\ID2y  
    % ----------------------------- RJ0:O   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tB/'3#o  
        error('zernfun:NMvectors','N and M must be vectors.') 2[QyH'"^E  
    end NS3qNj  
    FNy-&{P2  
    YU6D;  
    if length(n)~=length(m) 4E 0 Y=  
        error('zernfun:NMlength','N and M must be the same length.') O;C C(  
    end e.l3xwt>$  
    r t\eze_5A  
    25wvB@0&  
    n = n(:); 7:$zSj# y  
    m = m(:); ^P~NE#p5  
    if any(mod(n-m,2)) Zg;%$ kSQ  
        error('zernfun:NMmultiplesof2', ... h'|J$   
              'All N and M must differ by multiples of 2 (including 0).') 5q95.rw  
    end Cj1nll8c  
    m&{%6  
    ( *Fb/  
    if any(m>n) ,%4~ulKMn  
        error('zernfun:MlessthanN', ... :vo#(  
              'Each M must be less than or equal to its corresponding N.') hreG5g9{  
    end  Ds@nuQ  
    -![>aqWmj1  
    *h4x`luJ  
    if any( r>1 | r<0 ) ''3b[<  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zy&?.d[z  
    end k?VH4 yA  
    %z "${ zw  
    K!jMW  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lSK<LytB  
        error('zernfun:RTHvector','R and THETA must be vectors.') (>M? iB  
    end w6<zPrA  
    -]!zj#&  
    E;-*LT&{  
    r = r(:); "*JyNwf  
    theta = theta(:); u1) #^?  
    length_r = length(r); JGG(mrvR  
    if length_r~=length(theta) [iGL~RiXtn  
        error('zernfun:RTHlength', ... bv9nDNPD4  
              'The number of R- and THETA-values must be equal.') k#DMd9  
    end kS1?%E,)q  
    !63]t?QXMG  
    G-Dc(QhU&  
    % Check normalization: r"bV{v  
    % -------------------- MR}h}JEx0  
    if nargin==5 && ischar(nflag) %pBc]n@_  
        isnorm = strcmpi(nflag,'norm'); pWOK~=t  
        if ~isnorm j7sRmQCl  
            error('zernfun:normalization','Unrecognized normalization flag.') V8-*dE  
        end u)9YRMl  
    else =.\PG [  
        isnorm = false; @;`d\lQ  
    end )Nnrsa  
    vV*i)`IXe  
    u=f}t=3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n?}7vz;  
    % Compute the Zernike Polynomials ;Yu|LaI\<m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D0VbD" y  
    +Z1y1%a  
    B*&HQW *u  
    % Determine the required powers of r: ..;ep2jSs  
    % ----------------------------------- 9six]T  
    m_abs = abs(m); #iVr @|,  
    rpowers = []; cg).b?g  
    for j = 1:length(n) $b`~KMO  
        rpowers = [rpowers m_abs(j):2:n(j)]; qLa6c2o,  
    end Bhg,P.7  
    rpowers = unique(rpowers); '@G=xYR  
    (Q F-=o  
    u5rHQA0%  
    % Pre-compute the values of r raised to the required powers, z2IKd'Wy  
    % and compile them in a matrix: ++Fv )KY@  
    % ----------------------------- kj/v$m  
    if rpowers(1)==0 =cWg 39$(I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h42dk(B  
        rpowern = cat(2,rpowern{:}); nl+8C}=u  
        rpowern = [ones(length_r,1) rpowern]; mIah[~G  
    else f(E[jwy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5KC Zg'h  
        rpowern = cat(2,rpowern{:}); /j"aOLL|  
    end sM6o(=>  
    4`'V%)M  
    H{ I,m-  
    % Compute the values of the polynomials: nXAGwU8a  
    % -------------------------------------- wuKr 9W9Xa  
    y = zeros(length_r,length(n)); "] [u  
    for j = 1:length(n) /0(c-Dv  
        s = 0:(n(j)-m_abs(j))/2; ^F g!.X_  
        pows = n(j):-2:m_abs(j); O6$n VpD3  
        for k = length(s):-1:1 <8YIQA  
            p = (1-2*mod(s(k),2))* ... 5 [X,?  
                       prod(2:(n(j)-s(k)))/              ... h {VdW}g  
                       prod(2:s(k))/                     ... #8r1<`']!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... RW|Xh8.O  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nUScDb2|  
            idx = (pows(k)==rpowers); 9O|k|FD  
            y(:,j) = y(:,j) + p*rpowern(:,idx); e`bP=7`0  
        end 1{.5X8y1x  
         N4$ K {  
        if isnorm $/"QYSF  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NKMVp/66D  
        end 'H-hp   
    end Tl L\&n.$  
    % END: Compute the Zernike Polynomials 2U& +K2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >6Ody<JPHP  
    sGO+O$J  
    UY^TTRrH  
    % Compute the Zernike functions: #Q$e%VJ(c1  
    % ------------------------------ {Lugdf'  
    idx_pos = m>0; >/G[Oo  
    idx_neg = m<0; ih(Al<IS  
    52.%f+Oa  
    tu6<>  
    z = y; .s\_H,  
    if any(idx_pos) Dn:1Mtj-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); TF~cDn  
    end 0.0r?T  
    if any(idx_neg) E'^ny4gL  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); OXS.CFZM  
    end kJpr:4;@_  
    lY[\eQ 1:  
    hq?F8 1  
    % EOF zernfun hCob^o  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  e*o:ltP./  
    \>+BvF  
    DDE还是手动输入的呢? 2>im'x 5  
    ihIRB9  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究