下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, f}t8V% ^E
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, AGGT]
58|
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Miz?t*|{[
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? n'@*RvI:
RG.wu6Av
"U-dw%b}b
o1?S*
,
.E>
function z = zernfun(n,m,r,theta,nflag) mKBO<l{S
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ij,Rq`}l
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ka_(8
% and angular frequency M, evaluated at positions (R,THETA) on the ubv>*iO
% unit circle. N is a vector of positive integers (including 0), and bq2f?uD-}
% M is a vector with the same number of elements as N. Each element E/zclD5S
% k of M must be a positive integer, with possible values M(k) = -N(k) 3rY\y+m
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, fC".K
Yjp
% and THETA is a vector of angles. R and THETA must have the same DNr*|A2<
% length. The output Z is a matrix with one column for every (N,M) n?778Wo}
% pair, and one row for every (R,THETA) pair. k<|}&<h
% >xXC=z+g]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R GL2S]UFs
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), zI0d
% with delta(m,0) the Kronecker delta, is chosen so that the integral |R2p^!m
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l,*5*1lM
% and theta=0 to theta=2*pi) is unity. For the non-normalized @^Rl{p
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _X|prIOb=
% J 5(^VKj
% The Zernike functions are an orthogonal basis on the unit circle. .DI?-=p|_#
% They are used in disciplines such as astronomy, optics, and ?N(<w?Gat
% optometry to describe functions on a circular domain. wB bCGU
% d'"|Qg_'
% The following table lists the first 15 Zernike functions. d_Jj&:"l
% Qvty;2$o@
% n m Zernike function Normalization W4,'?o
% -------------------------------------------------- !TivQB
% 0 0 1 1 W*Si"s2
% 1 1 r * cos(theta) 2 Ze[,0Y!u&
% 1 -1 r * sin(theta) 2 `{|w*)mD
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0'HQ=pP
% 2 0 (2*r^2 - 1) sqrt(3) *7E#=xb
% 2 2 r^2 * sin(2*theta) sqrt(6) T(qTipq0
% 3 -3 r^3 * cos(3*theta) sqrt(8) P2@Z7DhQ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Wb>;L@jB7
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @mJ~?d95v
% 3 3 r^3 * sin(3*theta) sqrt(8) yM `u]p1
% 4 -4 r^4 * cos(4*theta) sqrt(10) d@ >i=l [
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L+*:VP6WD
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8ok=&Gq4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) OIJT~Z}
% 4 4 r^4 * sin(4*theta) sqrt(10) @H<*|3J
% -------------------------------------------------- #N"u 0
% 2n$Wey[
% Example 1: |Iw glb!k
% 4&=</ok6`0
% % Display the Zernike function Z(n=5,m=1) uIbAlE
% x = -1:0.01:1; <=V{tl
% [X,Y] = meshgrid(x,x); E%DT;1
% [theta,r] = cart2pol(X,Y); 9|lLce$
% idx = r<=1; 4=o vm[
% z = nan(size(X)); -pIz-*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); W7Y@]QMX
% figure S2e3d
% pcolor(x,x,z), shading interp =kfa1kD&{
% axis square, colorbar 6UqAs<c9
% title('Zernike function Z_5^1(r,\theta)') 71y{Dwya
% <zL_6Y2
% Example 2: Ix6\5}.c 9
% ^;'8yE/
% % Display the first 10 Zernike functions 8>t,n,k
% x = -1:0.01:1; /OWwC%tM/
% [X,Y] = meshgrid(x,x); Q#G xo
% [theta,r] = cart2pol(X,Y); 8}m J)9<7
% idx = r<=1; ol*,&C:{
% z = nan(size(X)); +C8O"
% n = [0 1 1 2 2 2 3 3 3 3]; Eamt_/LKf
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :09NZ
!!
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 9OV@z6
% y = zernfun(n,m,r(idx),theta(idx)); |$b8(g$s)
% figure('Units','normalized') F_(~b
% for k = 1:10 0U@#&pUc
% z(idx) = y(:,k); ~1%*w*
% subplot(4,7,Nplot(k)) ]c~yMA+]FZ
% pcolor(x,x,z), shading interp L FkDb}
% set(gca,'XTick',[],'YTick',[]) K^U="
% axis square B=r DU$z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O7Jux-E1C
% end 2t9UJu4
% OemY'M?ZQ
% See also ZERNPOL, ZERNFUN2. pX{wEc6}
L?j0t*do
A4!X{qUT-
% Paul Fricker 11/13/2006 yAryw{(
fJ[ ^_,O
.Pponmy
<@"rI>=
(<r)xkn
% Check and prepare the inputs: } Xo#/9
% ----------------------------- 7%i'F=LzT
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B`Z3e%g#
error('zernfun:NMvectors','N and M must be vectors.')
LNWS
end b^Z2Vf:k]
ea"X$<s>-
n2bhCd]j<b
if length(n)~=length(m) L@{'J
error('zernfun:NMlength','N and M must be the same length.') IQ@9S
end Tv DSs])
h(HpeN%`#
/"8e,
n = n(:); dGYR
'x
m = m(:); M5ZH6X@5
if any(mod(n-m,2)) 5[jcw`
error('zernfun:NMmultiplesof2', ... 7K\v=
'All N and M must differ by multiples of 2 (including 0).') /=S@3?cQAB
end ~j'D%:[+VH
22ON=NN
k_,7#:+
if any(m>n) Xx{| [2`
error('zernfun:MlessthanN', ... ICN>kJ\;M
'Each M must be less than or equal to its corresponding N.') ;[}OZt
end &T,|?0>~=J
4{YA['
?Ts]zO%%Z
if any( r>1 | r<0 ) EwzR4,r\M
error('zernfun:Rlessthan1','All R must be between 0 and 1.') k9}8xpH
end k~8-Eu1
N.JR($N$
{Nl?
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ksv]
error('zernfun:RTHvector','R and THETA must be vectors.') Iw`tbN
L[
end o1ZVEvp
!0,q[|m
{s
mk<NL
r = r(:); V1]GOmXz
theta = theta(:); [f_^BU&
length_r = length(r); z< L2W",
if length_r~=length(theta) U3{<+vSR`
error('zernfun:RTHlength', ... KEOk%'c,
'The number of R- and THETA-values must be equal.') JD$g%hcVZa
end 1%+-}yo<
7#R)+
;d6Dm)/(
% Check normalization: r%.k,FzGZY
% -------------------- eTa_RO,x
if nargin==5 && ischar(nflag) i<"lXu
isnorm = strcmpi(nflag,'norm'); +-j-)WU?,
if ~isnorm G?$@6
error('zernfun:normalization','Unrecognized normalization flag.') -Q n-w3~&
end sG`x |%t
else D.a>i?W
isnorm = false; dipfsH]p
end OT
0c5x
>5-1?vi
)q=F_:$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G!Zb27u+
% Compute the Zernike Polynomials y!=,u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bTum|GWf
wb$uq/|
mXRkR.zu+
% Determine the required powers of r: q6>eb
% ----------------------------------- .$&^yp
m_abs = abs(m); :0r,.)
rpowers = []; #d@wjQ0DW
for j = 1:length(n) Ol>q(-ea
rpowers = [rpowers m_abs(j):2:n(j)]; U!(.i1^n
end 5s[nE\oaG
rpowers = unique(rpowers); pp@
Owpb
i1B!oZ3q
f7x2"&?vg
% Pre-compute the values of r raised to the required powers, 7_I83$p'
% and compile them in a matrix: Ek L2nI
% ----------------------------- %+~\I\)1
if rpowers(1)==0 D~C'1C&W
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ab6I*DbF
rpowern = cat(2,rpowern{:}); $%~JG(
rpowern = [ones(length_r,1) rpowern]; zgwez$
else v6*0@/L
M
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RCWmdR#}V
rpowern = cat(2,rpowern{:}); q^aDZzx,z
end : "85w#r
C8-7XQ=B:b
3k1e
% Compute the values of the polynomials: JIyS e:p3
% -------------------------------------- w)EYj+L
y = zeros(length_r,length(n)); AQ'%}(#0
for j = 1:length(n) fp [gKRSF
s = 0:(n(j)-m_abs(j))/2; ]}v]j`9m%
pows = n(j):-2:m_abs(j); <