下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %6i=lyH-
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, IG|\:Xz
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? `bqzg
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? #LWg" i
M/B/b<['
H,|YLKg-|
g1V)$s7
+^gO/0
function z = zernfun(n,m,r,theta,nflag) !Uy>eji}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^PQM;"
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N or.\)(m#(
% and angular frequency M, evaluated at positions (R,THETA) on the ,8VXA +'_
% unit circle. N is a vector of positive integers (including 0), and }Vl^EAR
% M is a vector with the same number of elements as N. Each element e5OVq
,
% k of M must be a positive integer, with possible values M(k) = -N(k) FL&dv
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, P`
]ps?l
% and THETA is a vector of angles. R and THETA must have the same j_c+.iET
% length. The output Z is a matrix with one column for every (N,M) VDn:SGj5
% pair, and one row for every (R,THETA) pair. JqEb;NiP)5
% a_%>CD${t
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike UkfA}b^@v
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Hirr=a3
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~U%j{8uH
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /7vE>mSY
% and theta=0 to theta=2*pi) is unity. For the non-normalized O6]u!NqG
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (9'be\
% L*^
V5^-
% The Zernike functions are an orthogonal basis on the unit circle. !gJzg*{u@
% They are used in disciplines such as astronomy, optics, and rKIRNc#d
% optometry to describe functions on a circular domain. bd{\{[^S!
% m1y `v"
% The following table lists the first 15 Zernike functions. 3'^S3W%
% mu>] 9ZW
% n m Zernike function Normalization A:)sg!Lt
% -------------------------------------------------- zq=&4afOE
% 0 0 1 1 e5L1er;6
% 1 1 r * cos(theta) 2 A^L?_\e6
% 1 -1 r * sin(theta) 2 %rXexy!V
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8_X.c
% 2 0 (2*r^2 - 1) sqrt(3) cNeiD@t3V&
% 2 2 r^2 * sin(2*theta) sqrt(6) vv*
|F
% 3 -3 r^3 * cos(3*theta) sqrt(8) :`5;nl63
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) r\RFDj
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) U!NI_uk
% 3 3 r^3 * sin(3*theta) sqrt(8) ;-Ado8
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5p{25N_t
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Gw`/.0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) OPLl*bnf
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ys%'#f
% 4 4 r^4 * sin(4*theta) sqrt(10) -#OwJ*-U
% -------------------------------------------------- =h7[E./U1
% !mae^A1
% Example 1: 5\3 swP_7
% E4Zxv*
% % Display the Zernike function Z(n=5,m=1) AoU_;B\b%
% x = -1:0.01:1; ``6{T1fQS
% [X,Y] = meshgrid(x,x); UQnBqkE
% [theta,r] = cart2pol(X,Y); PY\W
% idx = r<=1; j@CKO cn2
% z = nan(size(X)); R.O
% z(idx) = zernfun(5,1,r(idx),theta(idx));
[9J:bD
% figure $$\V2%v
% pcolor(x,x,z), shading interp OOfyGvs
% axis square, colorbar }pKv.
% title('Zernike function Z_5^1(r,\theta)') ~W3:xnBEk
% FvAbh]/4
% Example 2: 8XlU%a6x
% X*)?LxTj
% % Display the first 10 Zernike functions 9u?Eb~#$
% x = -1:0.01:1; |+u+)C
% [X,Y] = meshgrid(x,x); Yfe'#MKfL
% [theta,r] = cart2pol(X,Y); @wMQC\Z
% idx = r<=1; M$F{N
% z = nan(size(X)); Enu!u~1]F
% n = [0 1 1 2 2 2 3 3 3 3]; r:73uRk
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %6N)G!P
% Nplot = [4 10 12 16 18 20 22 24 26 28]; HmW=t}!
% y = zernfun(n,m,r(idx),theta(idx)); ^glX1 )
% figure('Units','normalized') "A]?M<R
% for k = 1:10 }a'cm!"
% z(idx) = y(:,k); )O9f hj)
% subplot(4,7,Nplot(k)) ~z &0qQ
% pcolor(x,x,z), shading interp 1*L^^%w
% set(gca,'XTick',[],'YTick',[]) tg3zXJ4k_
% axis square */4tJG1U
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) '!AT
% end 2G
ZF/9}
% $,.3&zsy
% See also ZERNPOL, ZERNFUN2. 4Q@\h=r
D/e&7^iK
; 4l-M2
% Paul Fricker 11/13/2006 X=JFWzC
lx`q *&E
R08&cd#$
R9Ldl97'
d3og?{i<}&
% Check and prepare the inputs: ) sRN!~
% ----------------------------- ^)Smv\Md
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7,f:Qi@g
error('zernfun:NMvectors','N and M must be vectors.') !;TR2Zcn
end
ccRlql(
EG%I1F%
DQ%`v=
if length(n)~=length(m) ix:2Z-
error('zernfun:NMlength','N and M must be the same length.') '^8g9E.4K
end Rq"VB.ef&{
E2h(w_l
[TP
n = n(:); [+y&HNf
m = m(:); ,|6Y\L
if any(mod(n-m,2)) "pOqd8>]
error('zernfun:NMmultiplesof2', ... ?0 HR(N(z!
'All N and M must differ by multiples of 2 (including 0).') w8G7Jy
end :wFb5"
ejP,29
R_t~UTfI;
if any(m>n) +d.u##$
error('zernfun:MlessthanN', ... Rk}\)r\
'Each M must be less than or equal to its corresponding N.') 2TE\4j
end G!nl'5|y
[SK2 x4
ur?d6a
if any( r>1 | r<0 ) XAw2 X;F%
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~azF+}x90N
end _2wAaJvA
^cB49s+{e
${wU+E*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0Ulxp
error('zernfun:RTHvector','R and THETA must be vectors.') Cq-hPa}2
end ~&t!$
$$k7_rs
>?^~s(t
r = r(:); h1n*WQ-
theta = theta(:); mYntU^4f
length_r = length(r); yb[{aL^4%
if length_r~=length(theta) FX{~"
error('zernfun:RTHlength', ... YI L'YNH
'The number of R- and THETA-values must be equal.') d^ 2u}^kG
end vEu
Ka<5
<l*agH-.3
jn.R.}TT
% Check normalization: 7h(HG?2Y
% -------------------- ?lu_}t]
if nargin==5 && ischar(nflag) &r&;<Q
isnorm = strcmpi(nflag,'norm'); Mr$# e
if ~isnorm <ED8"~_
error('zernfun:normalization','Unrecognized normalization flag.') ~sZqa+jB0
end lF0K=L
else GwTT+
isnorm = false; 8dV.nO
end 6\; 4
4,3
}rO?5
5oVLv4Z9u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RpBiE8F4
% Compute the Zernike Polynomials $KoPGgC[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x, G6\QmA
i58ZV`Rk`
.}IK}A/-
% Determine the required powers of r: A~qW.
% ----------------------------------- r~ZS1Tp
m_abs = abs(m); K<$wz/\
rpowers = []; /X(@|tk:
for j = 1:length(n) hB|H9+
rpowers = [rpowers m_abs(j):2:n(j)]; clh3
end p:DL:^zx
rpowers = unique(rpowers); )B-MPuB
FZ[@])B
Xz;et>UD*B
% Pre-compute the values of r raised to the required powers, ^n\9AE3
% and compile them in a matrix: \(.nPW]9
% ----------------------------- P5'iYahCq_
if rpowers(1)==0 <_##YSGh,
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !yoSMI-
rpowern = cat(2,rpowern{:}); Ha46U6_'h
rpowern = [ones(length_r,1) rpowern]; ti$oZ4PpF
else u Y?/B~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A[sM{i~Z
rpowern = cat(2,rpowern{:}); b&\3ps
end oUW)H
tIz<+T_
ek<PISlci
% Compute the values of the polynomials: tYI]LL
% -------------------------------------- AzLbD2Pl
y = zeros(length_r,length(n)); +-Z"H)
for j = 1:length(n) *u|lmALs
s = 0:(n(j)-m_abs(j))/2; Cfv L)f
pows = n(j):-2:m_abs(j); h(C#\{V
for k = length(s):-1:1 0EL\Hd
p = (1-2*mod(s(k),2))* ... Hs:4I
prod(2:(n(j)-s(k)))/ ... K7t&fDI
prod(2:s(k))/ ... 6%\7.h
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Hmz=/.$
prod(2:((n(j)+m_abs(j))/2-s(k))); e5*5.AB6&
idx = (pows(k)==rpowers); (PCimT=5
y(:,j) = y(:,j) + p*rpowern(:,idx); { ()p%#*
end `^ieT#(O
N0y;PVAGu
if isnorm -XS+Uv
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); nUI63?
end uR06&SaA>
end _H~pH7WU
% END: Compute the Zernike Polynomials baUEsg[~V
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KKeb ioW
Bi9
N
9TYw@o5V
% Compute the Zernike functions: >< <$
% ------------------------------ f7EIDFX>pt
idx_pos = m>0; 8Pr&F
idx_neg = m<0; ?6gDbE%
A%NK0j$;}
EmtDrx4!(f
z = y;
"?2
if any(idx_pos) p6&LZ=tL3
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); p0}+071o%
end zh#OD{
if any(idx_neg) X_-Hrp!h
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jQ.>2-;H9
end )1ZJ
5t"bCzp
mJ6t.%'d
% EOF zernfun 9[t]]