下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :vz_f$=
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'j6PL;~c
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? L1D{LzlBti
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? WBFG_])
rR@ t5
*A':^vgk
>:!TfuU^R
W'hE,
function z = zernfun(n,m,r,theta,nflag) /-TJtR4>
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. $`W.9
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <i``#"/
% and angular frequency M, evaluated at positions (R,THETA) on the x_CB'Rr6
% unit circle. N is a vector of positive integers (including 0), and ^} P|L
% M is a vector with the same number of elements as N. Each element qcEiJ}-
% k of M must be a positive integer, with possible values M(k) = -N(k) _Il/ i&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ))^rk6
% and THETA is a vector of angles. R and THETA must have the same
Pou-AzEP$
% length. The output Z is a matrix with one column for every (N,M) .|}ogTEf
% pair, and one row for every (R,THETA) pair. |FGt'
% `X'-4/Y
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W|_
@ju
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }\k"azQ`
% with delta(m,0) the Kronecker delta, is chosen so that the integral F/sXr(7
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, R|
[mp%Q
% and theta=0 to theta=2*pi) is unity. For the non-normalized "z)dz,&T
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *T'
/5,rX2
% w'oP{=y[
% The Zernike functions are an orthogonal basis on the unit circle. fEf",{I
% They are used in disciplines such as astronomy, optics, and h4N!zj[
% optometry to describe functions on a circular domain. uF_gfjR[m
% rT9<_<
% The following table lists the first 15 Zernike functions. )F4H'
% x a#0y
% n m Zernike function Normalization y
Dg
% -------------------------------------------------- ye=*m
% 0 0 1 1 Sr Z\]
% 1 1 r * cos(theta) 2 3CK4a,]Dm
% 1 -1 r * sin(theta) 2 N>!RKf:ir
% 2 -2 r^2 * cos(2*theta) sqrt(6) >MZWm6M8
% 2 0 (2*r^2 - 1) sqrt(3) GzxtC&
% 2 2 r^2 * sin(2*theta) sqrt(6) kKFmTo
% 3 -3 r^3 * cos(3*theta) sqrt(8) iD+Q\l;%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) mJe;BU"y]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8gwJ%"-K
% 3 3 r^3 * sin(3*theta) sqrt(8) hn\<'|n
% 4 -4 r^4 * cos(4*theta) sqrt(10) (yIl]ZN*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fYU/Jn#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 4^vEMq8lB
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (oO*|\9u
% 4 4 r^4 * sin(4*theta) sqrt(10) U\'.rT[#
% -------------------------------------------------- H'|b$rP0@
% M>^Ho2
% Example 1: |Z'NMJU
% ?JO x9;`
% % Display the Zernike function Z(n=5,m=1) }w .[ZeP
% x = -1:0.01:1; g BfYm
% [X,Y] = meshgrid(x,x); VcKufV'
% [theta,r] = cart2pol(X,Y); m-9{@kgAM?
% idx = r<=1; ZRN*.
% z = nan(size(X)); !N:!x[5
% z(idx) = zernfun(5,1,r(idx),theta(idx)); b)RU+9x &
% figure m`CcU`s
% pcolor(x,x,z), shading interp +InAK>NZ'
% axis square, colorbar l6Wa~ E
% title('Zernike function Z_5^1(r,\theta)') )\#w=P
% +M-x*;.
% Example 2: |;3Ru vX?+
% ?Iy$'am]L
% % Display the first 10 Zernike functions ; mnV)8:F
% x = -1:0.01:1; 'X&sH/>r
% [X,Y] = meshgrid(x,x); lj0"2@z3"E
% [theta,r] = cart2pol(X,Y); (PAkKY}
% idx = r<=1; dx}) 1%
% z = nan(size(X)); !wy
Qk
% n = [0 1 1 2 2 2 3 3 3 3]; ~Z-M?8:
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; rmXxid
% Nplot = [4 10 12 16 18 20 22 24 26 28]; )jkX&7x
% y = zernfun(n,m,r(idx),theta(idx)); 1Q1NircJ
% figure('Units','normalized') <?UbzT7X
% for k = 1:10 Y/cnj n
% z(idx) = y(:,k); G?$|aQ0j
% subplot(4,7,Nplot(k)) (n:d
{bKV
% pcolor(x,x,z), shading interp <>JN3?
% set(gca,'XTick',[],'YTick',[]) _)s<E9t2N
% axis square AuIb>@a
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1|$V
% end !]AM#LJ
% 7x`dEi<
% See also ZERNPOL, ZERNFUN2. ArWMbT>Zqw
2z9\p%MX
|hBX"
% Paul Fricker 11/13/2006
~/Gx~P]
/RD@ [ 8
{(;dHF%{
lnuf_;0
$D{KXkrd
% Check and prepare the inputs: 1OB,UU"S$
% ----------------------------- 8xs}neDg*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !$&k@#v:
error('zernfun:NMvectors','N and M must be vectors.')
1@Abs
end gzfs9e
xCU^4DO3p
ZC}'! $r7
if length(n)~=length(m) Y_m/? [:
error('zernfun:NMlength','N and M must be the same length.') wh4ik`S 1
end 48;6C g
}
IJ
xs+pCK |
n = n(:); %Jy0?W N
m = m(:); 533n
z8&9@
if any(mod(n-m,2)) M-inlZNR
error('zernfun:NMmultiplesof2', ... t^eWFX
'All N and M must differ by multiples of 2 (including 0).') hBb&-/
end N-XOPwx'
G.v zz-yG
#[ZF'9x
if any(m>n) ZH'- >/
error('zernfun:MlessthanN', ... 9G njJ
'Each M must be less than or equal to its corresponding N.') &o{=
end ;',hwo_LBf
%`*`HU#X
6)<g%bH!
if any( r>1 | r<0 ) [O)(0
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >6fc`3*!
end p4l^b[p
OZ{YQ}t{^1
JjBG9Rp{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <dzfD;
error('zernfun:RTHvector','R and THETA must be vectors.') B~S"1EE[
end +?"N5%a%F
;. jnRPo";
\HR<^xY
r = r(:); Xvy3D@o
theta = theta(:); c6 O1Z\M@\
length_r = length(r); IE/F =Wr
if length_r~=length(theta) WhPwD6l>
error('zernfun:RTHlength', ... 7G,{BBB
'The number of R- and THETA-values must be equal.') {NmpTb
end uu08q<B5b)
b*C\0D
k^A17Nf`2
% Check normalization: S
b0p?
% -------------------- "J51\8G@@
if nargin==5 && ischar(nflag) ]J<2a`IK!
isnorm = strcmpi(nflag,'norm'); 4sU*UePr
if ~isnorm [!^Q_O
error('zernfun:normalization','Unrecognized normalization flag.') }^T7S2_Qy
end w8MQA!=l
else 2|="!c8K
isnorm = false; 8:W,""
end 8GRp1'\Hi
82w;}(!
~!PAs_O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vTrjhTa\
% Compute the Zernike Polynomials M5$YFGGR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gk"o/]Sf
\*>r[6]*&5
R$[nYw
% Determine the required powers of r: +TA'P$j
% ----------------------------------- ;rBd_
m_abs = abs(m); ].E89 _|O
rpowers = []; 5U%J,W
for j = 1:length(n) G8]DK3#
rpowers = [rpowers m_abs(j):2:n(j)]; I``S%`h
end &ZkY9XO
rpowers = unique(rpowers); OR{<)L
kNC.^8ryz[
h$F.(N IYe
% Pre-compute the values of r raised to the required powers, RQaB_bg7
% and compile them in a matrix: jO` b&]0
% ----------------------------- 2Fi~GY_
if rpowers(1)==0 (#|CL/ &
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [73 \jT
rpowern = cat(2,rpowern{:}); )<J|kC\r6c
rpowern = [ones(length_r,1) rpowern]; 0F"W~OQ6
else yH\3*#+
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E5^P*6c(
rpowern = cat(2,rpowern{:}); R`IFKmA EJ
end hW^*b:v{
QNH-b9u>8
79DzrLu
% Compute the values of the polynomials: DC&3=Nd
% -------------------------------------- (8Q0?SZN
y = zeros(length_r,length(n)); 4rcNBmA,
for j = 1:length(n) ~0;l\^
s = 0:(n(j)-m_abs(j))/2; W^a-K
pows = n(j):-2:m_abs(j); goE \C
for k = length(s):-1:1 s}
I8:ufT
p = (1-2*mod(s(k),2))* ... GJu[af
prod(2:(n(j)-s(k)))/ ... 7H$I9e
prod(2:s(k))/ ... |4$.mb.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M2pe*z
prod(2:((n(j)+m_abs(j))/2-s(k))); :i{Svb*_'
idx = (pows(k)==rpowers); Ri<7!Y?l
y(:,j) = y(:,j) + p*rpowern(:,idx); 4AIo,{(
end 1Q5:Vo^B#
iMT[sb
if isnorm &dH[lB
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); jOkc'
end `Z#0kpXk_
end nrhzNW>]
% END: Compute the Zernike Polynomials )S:,q3gxJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2HNAB4E
n7|8`?R^
Z[ NO`!<
% Compute the Zernike functions: cuw 7P
% ------------------------------ I pp#{'Do
idx_pos = m>0; '-,$@l#
idx_neg = m<0; F
K7cDaI
6UAn#d9
As}eI!
z = y; Rudj"OGO
if any(idx_pos) 65HP9`5Tm
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {h}0"5
end P&>!B,f
if any(idx_neg) <:n!qQS6
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); s~z~9#G(6
end gNWTzz<[f>
rexNsKRK_
r_x|2 AoO
% EOF zernfun Qm"&=<