下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, c`soVqT$?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, pASX-rb
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4T31<wk
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? aOH|[
C<
9x\JY%
M@R"-$Z
j:h}ka/!p
i'm<{v
function z = zernfun(n,m,r,theta,nflag) N[po)}hp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. G
IN|cv=
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w}gmVJ#p
% and angular frequency M, evaluated at positions (R,THETA) on the !l9{R8m>eJ
% unit circle. N is a vector of positive integers (including 0), and ^ +SE_ -+]
% M is a vector with the same number of elements as N. Each element Z^_qXerjP
% k of M must be a positive integer, with possible values M(k) = -N(k) kJJT`Ba&/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, TI'v /=;)
% and THETA is a vector of angles. R and THETA must have the same _K o#36.S
% length. The output Z is a matrix with one column for every (N,M) $D1ha CL
% pair, and one row for every (R,THETA) pair. Bn7uKa{P
%
ECOJ .^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +nE>)ZH
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KLyRb0V
% with delta(m,0) the Kronecker delta, is chosen so that the integral D5,]E`jwu
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lS4r pbU_
% and theta=0 to theta=2*pi) is unity. For the non-normalized VHxBs
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,AP0*Ln
% ~w?02FU
% The Zernike functions are an orthogonal basis on the unit circle. =6u@JpOl
% They are used in disciplines such as astronomy, optics, and Zz0bd473k?
% optometry to describe functions on a circular domain. J#I RbO)
% ;Z]Wj9iY
% The following table lists the first 15 Zernike functions. G&ck98
% (QDKw}O2b
% n m Zernike function Normalization 7%y$^B7{
% -------------------------------------------------- J].Oxch&y
% 0 0 1 1 =rA?,74
% 1 1 r * cos(theta) 2 'X;cgAq8(
% 1 -1 r * sin(theta) 2 >Uw:cq
% 2 -2 r^2 * cos(2*theta) sqrt(6) AELj"=RA
% 2 0 (2*r^2 - 1) sqrt(3) 8K,X3a9
% 2 2 r^2 * sin(2*theta) sqrt(6) l=E86"m
% 3 -3 r^3 * cos(3*theta) sqrt(8) ev4[4T-(@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) k =5k)}i
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) +V4)><
% 3 3 r^3 * sin(3*theta) sqrt(8) z`wIb
% 4 -4 r^4 * cos(4*theta) sqrt(10) tF:AnNp=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )9hqd
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) fz(YP=@ZnP
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &t=:xVn-M
% 4 4 r^4 * sin(4*theta) sqrt(10) `HX:U3/
% -------------------------------------------------- iXDG-_K
% ~CNB3r5R
% Example 1: L7$f01*
% IL*B@E8
% % Display the Zernike function Z(n=5,m=1) csy6_q(
% x = -1:0.01:1; ("8 Hku?
% [X,Y] = meshgrid(x,x); @7Ec(]yp
% [theta,r] = cart2pol(X,Y); ^Hx}.?1
% idx = r<=1; 2lTt
% z = nan(size(X)); "wgPPop
% z(idx) = zernfun(5,1,r(idx),theta(idx)); OG5{oH#K
% figure J :O!4gI
% pcolor(x,x,z), shading interp 8,U~ p<Gz
% axis square, colorbar #_DpiiS,.Q
% title('Zernike function Z_5^1(r,\theta)') Fi i(dmn
% riIubX#
% Example 2: ~<[+!&<U
% }j/\OY _&
% % Display the first 10 Zernike functions #Zdh<.
% x = -1:0.01:1; GHsDZ(d3.
% [X,Y] = meshgrid(x,x); UD-+BUV
% [theta,r] = cart2pol(X,Y); Ok!P~2J
% idx = r<=1; " .7@
% z = nan(size(X)); ]3 "0#Y
% n = [0 1 1 2 2 2 3 3 3 3]; %p 6Ms
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; zDvV%+RW)
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _}F&^
% y = zernfun(n,m,r(idx),theta(idx)); j9fBl:Fr
% figure('Units','normalized') f Fi=/}
% for k = 1:10 tK3$,9+
% z(idx) = y(:,k); "9;
% subplot(4,7,Nplot(k)) j,OA>{-$
% pcolor(x,x,z), shading interp Q`k;E}x_-
% set(gca,'XTick',[],'YTick',[]) JLd%rM\m
% axis square z qA>eDx
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7J);{ &x9h
% end z4YDngf=4
% mnA_$W3~I
% See also ZERNPOL, ZERNFUN2. && ]ix3
lV'?X%
EB3/o7)L
% Paul Fricker 11/13/2006 #6M |T+=
:Racu;xf
z};|.N}
_WS8I>
ew\:&"@2]w
% Check and prepare the inputs: y3;M$Jr
% ----------------------------- Uh.swBC n
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |sGJum&=
error('zernfun:NMvectors','N and M must be vectors.') .i;.5)shsu
end fq>{5ODO
"~VKUvDu
`+Nv=vk
if length(n)~=length(m) !$NK7-
error('zernfun:NMlength','N and M must be the same length.') 9wx]xg4l"
end &J/EBmY[
M[qhy.
@x1cV_s[
n = n(:); 9,8/DW.K
m = m(:); kI"9T`owR
if any(mod(n-m,2)) y{M7kYWtHV
error('zernfun:NMmultiplesof2', ... ~C{:G;Iy0
'All N and M must differ by multiples of 2 (including 0).') E]Mx<7;\.
end ,|*Gr"Q=
Tv#d>ZSD
l$5nv5r
if any(m>n) 4V9BmVS|Th
error('zernfun:MlessthanN', ... m^FKE:
'Each M must be less than or equal to its corresponding N.') ViW2q"4=
end *-ys}sX
W$X/8K bn
3D6&0xTq
if any( r>1 | r<0 ) &j~9{ C
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `Ij EwKra
end d%I7OBBx@
|[~S&
6Gg`ExcT5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "$N$:B @U
error('zernfun:RTHvector','R and THETA must be vectors.') UIU Pi
gd
end &yP|t":HWX
*ELU">!}G
%KVmpWku
r = r(:); V]Te_ >E;w
theta = theta(:); (1cB Tf
length_r = length(r); E-1u_7
if length_r~=length(theta) RL&0?OT
error('zernfun:RTHlength', ... }bRn&)e
'The number of R- and THETA-values must be equal.') K bQXH!J
end z
8M\(<
9Tr ceL;
Qq6'[Od
% Check normalization: PCwc=
% -------------------- \5tG>>c i
if nargin==5 && ischar(nflag) Vs TgK
isnorm = strcmpi(nflag,'norm'); $hc=H
if ~isnorm 4Y'Ne2M{
error('zernfun:normalization','Unrecognized normalization flag.') `StuUa
end y=sae
else 6|lsG6uf
isnorm = false; :YRHO|
end ;1yF[<a
@-K[@e/uwy
!4<D^eh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WI&A+1CK-5
% Compute the Zernike Polynomials hlreeXv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WL(Y1>|j
tJ_Y6oFm=
CH(Y.Kj-
% Determine the required powers of r: #qk=R7"Q
% ----------------------------------- MA_YMxP.'
m_abs = abs(m); VMF?qT3Nd
rpowers = []; Q7e4MKy7
for j = 1:length(n) =}tomN(F~[
rpowers = [rpowers m_abs(j):2:n(j)]; Kn3Xn`P?
end 3=U#v<
rpowers = unique(rpowers); S]=.p-Am
q{G8Po$z'
~-NSIV:f
% Pre-compute the values of r raised to the required powers, NRG06M
% and compile them in a matrix: g?|Z/eVJ
% ----------------------------- SFh<>J^ 0a
if rpowers(1)==0 mW {uChHP
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @"h4S*U
rpowern = cat(2,rpowern{:}); O13]H"O_
rpowern = [ones(length_r,1) rpowern]; OLt0Q.{
else 5nBJj
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t$,G%micj
rpowern = cat(2,rpowern{:}); L<oQKe7Q:
end A`M-N<T
&ZMQ]'&
MCTJ^ g"D
% Compute the values of the polynomials: [z\baL|
% -------------------------------------- W4av?H
y = zeros(length_r,length(n)); \IC^z
for j = 1:length(n) \15'~]d
s = 0:(n(j)-m_abs(j))/2; %m/lPL
pows = n(j):-2:m_abs(j); W$wX[
for k = length(s):-1:1 UAz^P6iQ`~
p = (1-2*mod(s(k),2))* ... <uBRLe`)
prod(2:(n(j)-s(k)))/ ... JFc,f
prod(2:s(k))/ ... #b&tNZ4!_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~9APc{"A
prod(2:((n(j)+m_abs(j))/2-s(k))); ts(u7CJd
idx = (pows(k)==rpowers); bBc<p{
y(:,j) = y(:,j) + p*rpowern(:,idx); *w.":\P]
end 'Q=)-
"9^b1UH<
if isnorm y5=,q]Qjk[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b{-"GqMO
end (
./MFf
end -1B. A
% END: Compute the Zernike Polynomials AfhJ6cSIE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8pA<1H%
I+twI&GS
2 <OU)rVE4
% Compute the Zernike functions: a+J>
% ------------------------------ Hmm0H6&u
idx_pos = m>0; 4x-,l1NMR
idx_neg = m<0; H-&27?s^
oB!Y)f6H1
0U/[hG"DKN
z = y; &qPezyt
if any(idx_pos) un!v1g9O
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V;R gO}
end 2V%z=
if any(idx_neg) %U}6(~
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H;_Ce'oU(
end t\QLj&h}E
"3]}V=L<5
4qE4 i:b
% EOF zernfun MC,Qv9m