下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ]2m=lt1
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, B0b|+5WhR
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? T3oFgzoO
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? CbM~\6R
U>*@VOgB
e">&B]#}
0x~+=GUN
8i]
S[$Fc
function z = zernfun(n,m,r,theta,nflag) Vwp>:'Pu
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ppIXS(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1oO(;--u_
% and angular frequency M, evaluated at positions (R,THETA) on the @xdtl{5G
% unit circle. N is a vector of positive integers (including 0), and
dHx4yFS
% M is a vector with the same number of elements as N. Each element x} =,'Ko}3
% k of M must be a positive integer, with possible values M(k) = -N(k) @Dsw.@/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, O:GP uVb\
% and THETA is a vector of angles. R and THETA must have the same Ag0
6M U
% length. The output Z is a matrix with one column for every (N,M) eg*a Vb
% pair, and one row for every (R,THETA) pair. O<p=&=TD7
% DtBvfYO8)>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ).jQ+XE'>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 00;SK!+$
% with delta(m,0) the Kronecker delta, is chosen so that the integral &w^9#L
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, spP[S"gI
% and theta=0 to theta=2*pi) is unity. For the non-normalized &,{>b[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. r
jn:E
% g0B-<>E
% The Zernike functions are an orthogonal basis on the unit circle. UUz{Qm%
% They are used in disciplines such as astronomy, optics, and Me z&@{
% optometry to describe functions on a circular domain. D,..gsg
% !j7mY9x+
% The following table lists the first 15 Zernike functions. ugN%8N
% . h)VR
5?j
% n m Zernike function Normalization )kjQ W&)g
% -------------------------------------------------- " TCJT390
% 0 0 1 1 uM'n4 oH
% 1 1 r * cos(theta) 2 v @M6D}
% 1 -1 r * sin(theta) 2 J1(SL~e],
% 2 -2 r^2 * cos(2*theta) sqrt(6) }f;TG:6
% 2 0 (2*r^2 - 1) sqrt(3) =C$"e4%Be
% 2 2 r^2 * sin(2*theta) sqrt(6) =k d-rIBc
% 3 -3 r^3 * cos(3*theta) sqrt(8) O6$,J12l
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) nnhI]#,a{
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uDG>m7(}/h
% 3 3 r^3 * sin(3*theta) sqrt(8) b'^<0c
% 4 -4 r^4 * cos(4*theta) sqrt(10) =g6~2p=H
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zK~_e\m
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) b&E"r*i|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l@w\
Vxr
% 4 4 r^4 * sin(4*theta) sqrt(10) PSAEW.L
% -------------------------------------------------- T] H'l
% k {{eyC
% Example 1: /kr|}`#
Z
% m~=VUhPd
% % Display the Zernike function Z(n=5,m=1) 'S}3lsIE
% x = -1:0.01:1; vt"bB
% [X,Y] = meshgrid(x,x); ~b*|V
% [theta,r] = cart2pol(X,Y); q}jh>`d
% idx = r<=1; fif'ptK
% z = nan(size(X)); 7?g({]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]srL>29_b
% figure CEkf0%YJ
% pcolor(x,x,z), shading interp Q& d;UVp
% axis square, colorbar }t(5n $go6
% title('Zernike function Z_5^1(r,\theta)') !b0A%1W;
% 8@;R2]Q
% Example 2: |Z>}#R!,P
% WllQM,h
% % Display the first 10 Zernike functions ,^1 #Uz8
% x = -1:0.01:1; 4VF]tX?o
% [X,Y] = meshgrid(x,x); 1)}hzA
% [theta,r] = cart2pol(X,Y); 8rJf2zL
% idx = r<=1; 4j+M<g
% z = nan(size(X)); Qg1kF^=
% n = [0 1 1 2 2 2 3 3 3 3]; bly `mp8#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; sw1gpkX
% Nplot = [4 10 12 16 18 20 22 24 26 28]; =j w?*
% y = zernfun(n,m,r(idx),theta(idx)); .+8#&Uy
% figure('Units','normalized') !RLXB$@`
% for k = 1:10 TRgj`FG
% z(idx) = y(:,k); _W Hi<,-
% subplot(4,7,Nplot(k)) sjLm-pn3
% pcolor(x,x,z), shading interp p;zT #%
% set(gca,'XTick',[],'YTick',[]) (O:&RAkk7
% axis square v8\_6}*I
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HYdt3GtJ?
% end k;Qm%B
% "kc%d'c(
% See also ZERNPOL, ZERNFUN2. 8rBa}v9
Tsu\4
cL]
;\13x][
% Paul Fricker 11/13/2006 3# 0Nd"/0
OS(Ua
+sZY0(|K8
/55 3v;l<
>;M STHeW
% Check and prepare the inputs: @Z""|H"0
% ----------------------------- `]6W*^'PD
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) NeEV=+<-G
error('zernfun:NMvectors','N and M must be vectors.') lUnC+w#[
end ^Kl<<pUaV
iH)vLD
W^,p2
if length(n)~=length(m) h|z59h&X8G
error('zernfun:NMlength','N and M must be the same length.') P|f h4b4
end <gvgr4@^yR
%gqu7}'
(A_H[xP
n = n(:); XGnC8Be{4
m = m(:); 5}9rpN{y
if any(mod(n-m,2)) C?g*c
error('zernfun:NMmultiplesof2', ... >"]t4]GVf
'All N and M must differ by multiples of 2 (including 0).') [--] ?Dr
end C91'dM
rc{F17~vX
KAT^v bR
if any(m>n) 2mthUq9b*
error('zernfun:MlessthanN', ... ?[5_/0L,=
'Each M must be less than or equal to its corresponding N.') YpSK|(
end v~!_DD
au
8Sf}z@~]
,I f9w$(z
if any( r>1 | r<0 ) \S?;5LacZ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') cn_KHz=
end J<iiA:&J
u69G
#
Hg(nC*#/Q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) dlV HyCW
error('zernfun:RTHvector','R and THETA must be vectors.') |JUAR{
end <;Td8T;
n3hlo@gYW
y<8o!=Tb5
r = r(:); j{%'A
theta = theta(:); .X4UDZQg
length_r = length(r); /-ewCCzZV
if length_r~=length(theta) b~rlh=(o#_
error('zernfun:RTHlength', ... Zr!CT5C5
'The number of R- and THETA-values must be equal.') >lK:~~1
end Ve\!:,(Y_
wqQrby<
!xC IvKW
% Check normalization: <qx qlEQT
% -------------------- S)@) @3
if nargin==5 && ischar(nflag) EhIa31>X
isnorm = strcmpi(nflag,'norm'); {*qz<U>
if ~isnorm M ~6k[ew
error('zernfun:normalization','Unrecognized normalization flag.') H#I%6k*\a
end HO8x:2m
else Oufdi3h
isnorm = false; rEsGf+4
end S\118TpD
lJ4&kF=t
Jy#21
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0\Myhh~DLE
% Compute the Zernike Polynomials V7Mp<x%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ddeH-Z
A|0\ct
cD4H@!=a
% Determine the required powers of r: l:"zYcp%
% ----------------------------------- ')v<MqBr
m_abs = abs(m); mr#XN&e
rpowers = []; a)M#O\i`
for j = 1:length(n) JiHk`e`
rpowers = [rpowers m_abs(j):2:n(j)]; pH!8vnoA
end 'sAs#
rpowers = unique(rpowers); P*8DM3':
*}N J
~]lVixr9
% Pre-compute the values of r raised to the required powers, y{uN+QS
% and compile them in a matrix: DWar3+u&0
% ----------------------------- 1ml{oqNj
if rpowers(1)==0 RVe UQ%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8G
p%Q
rpowern = cat(2,rpowern{:}); ^U@Erc#d
rpowern = [ones(length_r,1) rpowern]; j[YO1q*
else 7S]akcT/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `Ot;KDz
rpowern = cat(2,rpowern{:}); T,Zfz9{n
end x4bj?=+
%'i`Chc^!;
i_qR&X
% Compute the values of the polynomials: 095ZZ20
% -------------------------------------- 1W2hd!J7C
y = zeros(length_r,length(n)); "G
@(AE(
for j = 1:length(n) TYh_uox6
s = 0:(n(j)-m_abs(j))/2; B[6y2+6$0
pows = n(j):-2:m_abs(j); aJ}Cqk
for k = length(s):-1:1 H$n{|YO `
p = (1-2*mod(s(k),2))* ... JRl`evTS
prod(2:(n(j)-s(k)))/ ... 3XomnL{
prod(2:s(k))/ ... h\qM5Qx+Q
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
MfNguh
prod(2:((n(j)+m_abs(j))/2-s(k))); !9JK95;
idx = (pows(k)==rpowers); -&\?Q_6
y(:,j) = y(:,j) + p*rpowern(:,idx); dKwY\)\
end _;].
Yy:Q/zwo
if isnorm %?[H=v(b
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x_TtS|
end L[FNr&
end kdHP
v=/U
% END: Compute the Zernike Polynomials e^ygQ<6%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #4<Rs|K
!F&Ss|(}
AmmUoS\
% Compute the Zernike functions: (qM(~4|`
% ------------------------------ QX j4cg
idx_pos = m>0; .U:D uyT
idx_neg = m<0; ,5L[M&5
<MH| <hP
=9ISsI\Y6
z = y; )cX6o[oia
if any(idx_pos) qc-4;m o
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \f7Aj>
end :7+E
fu
if any(idx_neg)
h (`Erb
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u.s-/ g
end hVAP
) "5
KvrcO#-sL
ch%-Cg~%
% EOF zernfun ]7`)|PJ