我现在在初学zemax的
公差分析,找了一个双胶合
透镜 N:x--,2 X|y(B%:
WPI<SsLd /W9(}Id6 然后添加了默认公差分析,基本没变
{7'Wi$^F ;x%"o[[>
jVi>9[rz
h!=h0 然后运行分析的结果如下:
2*Zk^h= p>_Qns7W Analysis of Tolerances
& OYo l0 =[MXM4 File : E:\光学设计资料\zemax练习\f500.ZMX
'HKDGQl` Title:
@GUlw[vi Date : TUE JUN 21 2011
txE=AOY5 DK)T2{: Units are Millimeters.
!6!Gx: All changes are computed using linear differences.
)G#mC0?PV =' uePM") Paraxial Focus compensation only.
*:bexD H bd]9kRq1K WARNING: Solves should be removed prior to tolerancing.
5EU~T.4C< v{d$DZUs Mnemonics:
V'hb 4}@ TFRN: Tolerance on curvature in fringes.
3P@D!lV&K TTHI: Tolerance on thickness.
&S,_Z/BS; TSDX: Tolerance on surface decentering in x.
*4/FN TC TSDY: Tolerance on surface decentering in y.
>)F "lR:o TSTX: Tolerance on surface tilt in x (degrees).
J3 `0i@ TSTY: Tolerance on surface tilt in y (degrees).
!iO2yp TIRR: Tolerance on irregularity (fringes).
8Cs;.>75[ TIND: Tolerance on Nd index of refraction.
H-vHcqFx3 TEDX: Tolerance on element decentering in x.
u
3^pQ6Q TEDY: Tolerance on element decentering in y.
m _cRK}> TETX: Tolerance on element tilt in x (degrees).
,qx^D TETY: Tolerance on element tilt in y (degrees).
8EI9&L> 1U%
/~ WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
jp_|pC' fIl;qGz85 WARNING: Boundary constraints on compensators will be ignored.
GLgf%A`5/_
C];P yQS Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
v3#,Z! Mode : Sensitivities
oNZ_7tU Sampling : 2
yQuL[#p Nominal Criterion : 0.54403234
N_IKH)
Test Wavelength : 0.6328
D|)a7_ 8[;vC$ _0(%^5Y Fields: XY Symmetric Angle in degrees
S=(<m%f # X-Field Y-Field Weight VDX VDY VCX VCY
gVrQAcJj 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
jUE gu s3HVX' Sensitivity Analysis:
Jy5sZ}t[ baBBn%_V |----------------- Minimum ----------------| |----------------- Maximum ----------------|
2 /FQ;<L Type Value Criterion Change Value Criterion Change
jMgXIK\ Fringe tolerance on surface 1
Hs*["zFc TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
,Cb3R|L8 Change in Focus :
-0.000000 0.000000
#8|LPfA Fringe tolerance on surface 2
?u|@,tQ[ TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
]I [~0PCSX Change in Focus : 0.000000 0.000000
=}vT>b Fringe tolerance on surface 3
odCt6Du TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
^cm]
[9 Change in Focus : -0.000000 0.000000
Xx"<^FS[zC Thickness tolerance on surface 1
7p{Pmq[ TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
7Ml4u%? Change in Focus : 0.000000 0.000000
?3=G'Ip5n Thickness tolerance on surface 2
&^r>Q`u
TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
`&M,B=E Change in Focus : 0.000000 -0.000000
Zge(UhZ Decenter X tolerance on surfaces 1 through 3
|M7cB$y TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
]3rVULU"K- Change in Focus : 0.000000 0.000000
G18w3BFx Decenter Y tolerance on surfaces 1 through 3
&3BoK/y3 TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
.!x&d4;,q Change in Focus : 0.000000 0.000000
83n%pS4x Tilt X tolerance on surfaces 1 through 3 (degrees)
$@D a|d4 TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
qOwql(vX Change in Focus : 0.000000 0.000000
L5-|-PP|; Tilt Y tolerance on surfaces 1 through 3 (degrees)
aYWWln TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
^U}k Change in Focus : 0.000000 0.000000
H"#ITL Decenter X tolerance on surface 1
flsejj$ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
"f,{d}u Change in Focus : 0.000000 0.000000
9af.t Decenter Y tolerance on surface 1
KwuucY TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
d9K8[Q5^3 Change in Focus : 0.000000 0.000000
`ePC$Ovn Tilt X tolerance on surface (degrees) 1
p+CUYo( TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
`#N/]4(j Change in Focus : 0.000000 0.000000
,%M[$S' Tilt Y tolerance on surface (degrees) 1
K:wI'N"N TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
/ad9Q~nJ Change in Focus : 0.000000 0.000000
=l/6-j^ Decenter X tolerance on surface 2
!sb r!Qt TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
cCe~OlXQ Change in Focus : 0.000000 0.000000
AcC &Q:g Decenter Y tolerance on surface 2
CkT(\6B- TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
5E&#Kh(I Change in Focus : 0.000000 0.000000
.T|
}rB<c Tilt X tolerance on surface (degrees) 2
(N7uaZ?Z TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
|eqBCZn Change in Focus : 0.000000 0.000000
*m~-8_ >; Tilt Y tolerance on surface (degrees) 2
X@rA2);6 TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
TSlB.pw%v Change in Focus : 0.000000 0.000000
[9 W@<p Decenter X tolerance on surface 3
eU[g@Pq:Y TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
fpD$%.y'J Change in Focus : 0.000000 0.000000
+0'F@l Decenter Y tolerance on surface 3
KK){/I=z TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
cHs3:F~~ Change in Focus : 0.000000 0.000000
Ld4U Tilt X tolerance on surface (degrees) 3
i%hCV o TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
0l!#u`cCI Change in Focus : 0.000000 0.000000
WYw#mSp Tilt Y tolerance on surface (degrees) 3
gcJ!_KZK TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
C=:<[_m` Change in Focus : 0.000000 0.000000
&X=7b@r Irregularity of surface 1 in fringes
szI7I$Qb TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
kZ40a\9
Ye Change in Focus : 0.000000 0.000000
$x0SWJ \G Irregularity of surface 2 in fringes
g.lTNQm$u TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
T] zEcx+e Change in Focus : 0.000000 0.000000
3k Ci5C Irregularity of surface 3 in fringes
h>-P / TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
. %RM8 Change in Focus : 0.000000 0.000000
C($l'jd& Index tolerance on surface 1
a`xq
h2P TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
L, JQ\!c Change in Focus : 0.000000 0.000000
G]^[i6PQs Index tolerance on surface 2
Cp8=8N(Xb TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
"mlQ z4D)5 Change in Focus : 0.000000 -0.000000
JU 9GJ"
Dw-d`8* Worst offenders:
!wAT`0<94F Type Value Criterion Change
*FlPGBjJ TSTY 2 -0.20000000 0.35349910 -0.19053324
,,H "?VO TSTY 2 0.20000000 0.35349910 -0.19053324
g^ AQBF TSTX 2 -0.20000000 0.35349910 -0.19053324
,YYEn^:> TSTX 2 0.20000000 0.35349910 -0.19053324
GG}% TSTY 1 -0.20000000 0.42678383 -0.11724851
>4:d) TSTY 1 0.20000000 0.42678383 -0.11724851
1U 6B$(V^i TSTX 1 -0.20000000 0.42678383 -0.11724851
AK:cDKBO TSTX 1 0.20000000 0.42678383 -0.11724851
U7r8FL l TSTY 3 -0.20000000 0.42861670 -0.11541563
hXW` n*Zw TSTY 3 0.20000000 0.42861670 -0.11541563
nM,:f)z -%nD'qy,. Estimated Performance Changes based upon Root-Sum-Square method:
La4S/. Nominal MTF : 0.54403234
+$2{u_m, Estimated change : -0.36299231
Gw
M:f/eV Estimated MTF : 0.18104003
$3-vW{< rP@#_(22 Compensator Statistics: !X>u.}?g Change in back focus: 0RUk^ Minimum : -0.000000 2MkrVQQ9g Maximum : 0.000000 qQ@| Cj Mean : -0.000000 / f%mYL Standard Deviation : 0.000000 @/2Kfr 9T,/R1N8 Monte Carlo Analysis:
Dg&84,bv^ Number of trials: 20
-yqsJGY 7T~M`$h Initial Statistics: Normal Distribution
2*#|t: (c @Nu2
:~JO Trial Criterion Change
_z\/{ 1 0.42804416 -0.11598818
Gp"GTPT{ Change in Focus : -0.400171
L@}PW)# 2 0.54384387 -0.00018847
G7Nw}cVJ) Change in Focus : 1.018470
{SoI;o_> 3 0.44510003 -0.09893230
$=aO*i Change in Focus : -0.601922
Y\|#Lu>B 4 0.18154684 -0.36248550
lC i{v. Change in Focus : 0.920681
=ily=j"hK 5 0.28665820 -0.25737414
lqzt[z gN Change in Focus : 1.253875
lu8G$EQI 6 0.21263372 -0.33139862
u9lZHh#V- Change in Focus : -0.903878
b 2gng} 7 0.40051424 -0.14351809
. "Ms7= Change in Focus : -1.354815
iD^,O)b 8 0.48754161 -0.05649072
_|k$[^ln^ Change in Focus : 0.215922
]
V
D 9 0.40357468 -0.14045766
.;#T<S" Change in Focus : 0.281783
G6SgVaM 10 0.26315315 -0.28087919
[ks_wvY:' Change in Focus : -1.048393
Ni$'#
W?t 11 0.26120585 -0.28282649
Q
eeV< Change in Focus : 1.017611
RLF&-[mr3 12 0.24033815 -0.30369419
N&9o 1_} Change in Focus : -0.109292
k,h602( 13 0.37164046 -0.17239188
v.0qE}'
| Change in Focus : -0.692430
o%d
TcoCN 14 0.48597489 -0.05805744
@]\fO)\f Change in Focus : -0.662040
Fs+tcr/\[ 15 0.21462327 -0.32940907
QX,$JM3 Change in Focus : 1.611296
G0FzXtu)q 16 0.43378226 -0.11025008
BK$y>=
` Change in Focus : -0.640081
j3-YZKpg 17 0.39321881 -0.15081353
n1[c\1 Change in Focus : 0.914906
&kb`)F3nU 18 0.20692530 -0.33710703
P_bB{~$4 Change in Focus : 0.801607
uF ?[H -y 19 0.51374068 -0.03029165
]5%0EE64 Change in Focus : 0.947293
pR0[qsQM 20 0.38013374 -0.16389860
w5FIHYl6B Change in Focus : 0.667010
K<JzIuf& s%[F,hQRk Number of traceable Monte Carlo files generated: 20
WQ|:TLQ ZOK!SBn^? Nominal 0.54403234
?K1B^M=8 Best 0.54384387 Trial 2
2y[Q Worst 0.18154684 Trial 4
*TOd Iq&z Mean 0.35770970
#w$Y1bjn Std Dev 0.11156454
;(Yb9Mr)z A40DbD\^ad qGk+4 yC Compensator Statistics:
d^=BXCoC Change in back focus:
>P6"-x,[" Minimum : -1.354815
]8G 'R-8} Maximum : 1.611296
l;8t%JV5 Mean : 0.161872
)f8>kz( Standard Deviation : 0.869664
u6iW1,# lg%fjBY 90% > 0.20977951 kHM Jh~ 80% > 0.22748071 kG^76dAQL 50% > 0.38667627 q^X7x_ 20% > 0.46553746 Y,]Lk<Hm3 10% > 0.50064115 a@}.96lStD ew;;e|24 End of Run.
xC76jE4 vHaM yA- 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
\PX4>/d@y
.1QGNW pn" !wqg 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
q<RjAi !z?
不吝赐教