切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16961阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Ao)hb4ex  
    lQQXV5NV  
    S W(h%`U  
    (;YO]U4  
    然后添加了默认公差分析,基本没变 8>a/x,  
    Knsb`1"E^6  
    k+S+ : 5  
    +4^XFPq~  
    然后运行分析的结果如下: `EVTlq@<  
    <K!5N&vh  
    Analysis of Tolerances M iIH&z  
    BX$t |t;!m  
    File : E:\光学设计资料\zemax练习\f500.ZMX F^b C!;~x  
    Title: K;;Q*NN-  
    Date : TUE JUN 21 2011 Ge$cV}  
    Zzr+p.  
    Units are Millimeters. ^57[&{MuBF  
    All changes are computed using linear differences. *>%34m93  
    Z'dY,<@  
    Paraxial Focus compensation only. 1) V,>)Ak  
    o>#<c @  
    WARNING: Solves should be removed prior to tolerancing. @OAX#iQl  
    FV^CSaN[R  
    Mnemonics: , RfU1R  
    TFRN: Tolerance on curvature in fringes. a%f{mP$m  
    TTHI: Tolerance on thickness. Ga~N7  
    TSDX: Tolerance on surface decentering in x. +kTAOf M  
    TSDY: Tolerance on surface decentering in y. Mp; t?C4  
    TSTX: Tolerance on surface tilt in x (degrees). pW O-YZ#+  
    TSTY: Tolerance on surface tilt in y (degrees). '"QC^Joz  
    TIRR: Tolerance on irregularity (fringes). {"8\~r&b  
    TIND: Tolerance on Nd index of refraction. d}tn/Eu?B  
    TEDX: Tolerance on element decentering in x. ZV}BDwOFI  
    TEDY: Tolerance on element decentering in y. VHVU*6_w  
    TETX: Tolerance on element tilt in x (degrees). LA$uD?YA  
    TETY: Tolerance on element tilt in y (degrees). qT#+DDEAL  
    T_Q/KhLU  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. f]"][!e!,  
    Taxi79cH  
    WARNING: Boundary constraints on compensators will be ignored. #C|:]moe  
    7|PpAvMF  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm XG<J'3  
    Mode                : Sensitivities d+~c$(M)  
    Sampling            : 2 #/sKb2eQ  
    Nominal Criterion   : 0.54403234 >`= '~y8  
    Test Wavelength     : 0.6328 o1"U'y-9V  
    y=YD4m2W  
    g. f!Uc{  
    Fields: XY Symmetric Angle in degrees gwQL9 UYx  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY @]tFRV  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 0:Js{$ZL4  
    K @"m0  
    Sensitivity Analysis: KrVF>bq+  
    R?1;'pvpa[  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| $=iz&{9  
    Type                      Value      Criterion        Change          Value      Criterion        Change O]w&uim  
    Fringe tolerance on surface 1 ^te9f%>$l  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 : Ey  
    Change in Focus                :      -0.000000                            0.000000 qfE/,L(B  
    Fringe tolerance on surface 2 &9PzBc  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 k='sI^lF  
    Change in Focus                :       0.000000                            0.000000 R+lKQAyC0=  
    Fringe tolerance on surface 3 +^<CJNDL9  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 zm2&\8J  
    Change in Focus                :      -0.000000                            0.000000 .{HU1/!  
    Thickness tolerance on surface 1 ] =b?^'  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 *j><a  
    Change in Focus                :       0.000000                            0.000000 wQb")3dw  
    Thickness tolerance on surface 2 eJE?H]  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 eOy{]< l3  
    Change in Focus                :       0.000000                           -0.000000 td q;D  
    Decenter X tolerance on surfaces 1 through 3 JO5~Vj_"  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 kJy<vb~   
    Change in Focus                :       0.000000                            0.000000 X1:|   
    Decenter Y tolerance on surfaces 1 through 3 Zp@p9][C  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 1W8[ RET  
    Change in Focus                :       0.000000                            0.000000 e+bpbyV_#  
    Tilt X tolerance on surfaces 1 through 3 (degrees) s!Y>\3rMW  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 B;N40d*W  
    Change in Focus                :       0.000000                            0.000000 vuuID24:  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) )gvX eJ  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 wke$  
    Change in Focus                :       0.000000                            0.000000 RmO-".$yt  
    Decenter X tolerance on surface 1 |^Try2@  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 R_uA!MoLs  
    Change in Focus                :       0.000000                            0.000000 !OPK?7   
    Decenter Y tolerance on surface 1 =NAL*4c+  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 N_$ X4.7p  
    Change in Focus                :       0.000000                            0.000000 /+2^xEIjE  
    Tilt X tolerance on surface (degrees) 1 ?ZdHuuDN~  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 2{"Wa|o`  
    Change in Focus                :       0.000000                            0.000000 ,bmiIW%  
    Tilt Y tolerance on surface (degrees) 1 xex/L%!Rj  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 =/.[&DG  
    Change in Focus                :       0.000000                            0.000000 T'\ lntN  
    Decenter X tolerance on surface 2 #$K\:V+ 4  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 *ky5SM(NR  
    Change in Focus                :       0.000000                            0.000000 _zJY1cr  
    Decenter Y tolerance on surface 2 j!&g:{ e  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 5 LhFD  
    Change in Focus                :       0.000000                            0.000000 vBj{bnl  
    Tilt X tolerance on surface (degrees) 2 }pPxN@X  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 =4 &9!Z  
    Change in Focus                :       0.000000                            0.000000 Niou=PI@  
    Tilt Y tolerance on surface (degrees) 2 `iv,aQ '  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 +q) ^pCC  
    Change in Focus                :       0.000000                            0.000000 Da_g3z  
    Decenter X tolerance on surface 3 M<"&$qZ$R  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 qB3 SQ:y  
    Change in Focus                :       0.000000                            0.000000 ?&)<h_R4p  
    Decenter Y tolerance on surface 3 $>OWGueq64  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 L2P~moVIi  
    Change in Focus                :       0.000000                            0.000000 pb$U~TvzhM  
    Tilt X tolerance on surface (degrees) 3 /V46:`V  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 65=i`!f  
    Change in Focus                :       0.000000                            0.000000 _(<[!c!@0  
    Tilt Y tolerance on surface (degrees) 3 ocAoqjlT[  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 AmRppbj/wO  
    Change in Focus                :       0.000000                            0.000000 >\^:xx Tf  
    Irregularity of surface 1 in fringes z]=A3!H/Y  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 hn)mNb!  
    Change in Focus                :       0.000000                            0.000000 bCdEItcD  
    Irregularity of surface 2 in fringes 6~&4>2b0f  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ,8c`  
    Change in Focus                :       0.000000                            0.000000 7tUl$H;I/R  
    Irregularity of surface 3 in fringes mxq'A  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 &0K H00l  
    Change in Focus                :       0.000000                            0.000000 53=s'DZ  
    Index tolerance on surface 1 bf'@sh%W  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 >7@F4a  
    Change in Focus                :       0.000000                            0.000000 ]|Vm*zO  
    Index tolerance on surface 2 Ca*^U-  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 !R[o6V5T  
    Change in Focus                :       0.000000                           -0.000000 <{3VK  
    E{_p&FF  
    Worst offenders: (lwkg8WC  
    Type                      Value      Criterion        Change O>Xyl4U  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 . ?[2,4F;  
    TSTY   2             0.20000000     0.35349910    -0.19053324 hR[Qdu6r  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 9-Qu b+0o  
    TSTX   2             0.20000000     0.35349910    -0.19053324 W _yVVr  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 zRD{"uqi  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ts{Tk5+  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ^WVH z;  
    TSTX   1             0.20000000     0.42678383    -0.11724851 xx#; )]WT  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 w~;1R\?|  
    TSTY   3             0.20000000     0.42861670    -0.11541563 !HY+6!hk  
    jQj`GnN|  
    Estimated Performance Changes based upon Root-Sum-Square method: ] GJIrtS4  
    Nominal MTF                 :     0.54403234 0{@E=}}h  
    Estimated change            :    -0.36299231 My5h;N@C  
    Estimated MTF               :     0.18104003 teg LGp@_  
    kZ[E493bV  
    Compensator Statistics: H--(zxK  
    Change in back focus: @L=xY[&{  
    Minimum            :        -0.000000 QApil  
    Maximum            :         0.000000 Z81]>  
    Mean               :        -0.000000 !n}"D:L(  
    Standard Deviation :         0.000000 2Af1-z^^K  
    ](aXZ<,  
    Monte Carlo Analysis: |jU/R  
    Number of trials: 20 V'mQ {[{R  
    mKvk6OC  
    Initial Statistics: Normal Distribution 3*/y<Z'H  
    tOn/r@Fd^E  
      Trial       Criterion        Change va:5pvt2&  
          1     0.42804416    -0.11598818 :,fs' !  
    Change in Focus                :      -0.400171 }(hx$G^M  
          2     0.54384387    -0.00018847 0AZ Vc  
    Change in Focus                :       1.018470 dTB^6 >H  
          3     0.44510003    -0.09893230 Cz+`C9#  
    Change in Focus                :      -0.601922 jRm v~]  
          4     0.18154684    -0.36248550 ~Z=Q+'Hu0  
    Change in Focus                :       0.920681 2h@/Q)z  
          5     0.28665820    -0.25737414 >j4;{r+eQw  
    Change in Focus                :       1.253875 P@`@?kMU  
          6     0.21263372    -0.33139862 sPyq.oG  
    Change in Focus                :      -0.903878 G yvEc3|@  
          7     0.40051424    -0.14351809 }Cvf[H1+  
    Change in Focus                :      -1.354815 ?rKewdGY  
          8     0.48754161    -0.05649072 &_x:+{06  
    Change in Focus                :       0.215922 K pDKIi  
          9     0.40357468    -0.14045766 k^w!|%a[  
    Change in Focus                :       0.281783 S4n\<+dR<  
         10     0.26315315    -0.28087919 >OgA3)X  
    Change in Focus                :      -1.048393 `k+ci7;  
         11     0.26120585    -0.28282649 4[44Eku\  
    Change in Focus                :       1.017611  Eh^c4x  
         12     0.24033815    -0.30369419 [d`J2^z}  
    Change in Focus                :      -0.109292 @!=q.4b  
         13     0.37164046    -0.17239188 jL8.*pfv  
    Change in Focus                :      -0.692430 ]]Sz|6P  
         14     0.48597489    -0.05805744 }Y[xj{2$O  
    Change in Focus                :      -0.662040 ^":UkPFCx:  
         15     0.21462327    -0.32940907 4QARrG%  
    Change in Focus                :       1.611296  _/;vsQB  
         16     0.43378226    -0.11025008 `aD~\O  
    Change in Focus                :      -0.640081 :XC~G&HuF6  
         17     0.39321881    -0.15081353 h64<F3}  
    Change in Focus                :       0.914906 \}P3mS"e3  
         18     0.20692530    -0.33710703 y'(( tBWa!  
    Change in Focus                :       0.801607 mSm:>hBd  
         19     0.51374068    -0.03029165 i882r=TE3  
    Change in Focus                :       0.947293 RP9#P&Qk  
         20     0.38013374    -0.16389860 InBnU`(r  
    Change in Focus                :       0.667010 /H/@7>  
    ]$oo1ssZ1  
    Number of traceable Monte Carlo files generated: 20 o%;R4 s,  
    `|)V]<  
    Nominal     0.54403234 &b'IYoe  
    Best        0.54384387    Trial     2 `d2 r5*<  
    Worst       0.18154684    Trial     4 mM0VUSy  
    Mean        0.35770970 BCMQ^hP}t  
    Std Dev     0.11156454 T1%_sq  
    F$.h+v   
    f^Sl(^f  
    Compensator Statistics: {k*rD!tT  
    Change in back focus: L{1MyR7`I+  
    Minimum            :        -1.354815 @`xR1pXQ  
    Maximum            :         1.611296 .;}vp*  
    Mean               :         0.161872 NXo$rf:  
    Standard Deviation :         0.869664 0`UI^Y~Q  
    QiC}hj$  
    90% >       0.20977951               l7 Pn5c  
    80% >       0.22748071                PgI H(  
    50% >       0.38667627               ywQ[>itMa  
    20% >       0.46553746               o|(Ivt7jk  
    10% >       0.50064115                ) rw!. )  
    0h/bC)z  
    End of Run. V1di#i:  
    AK$&'t+$}7  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 "QSmxr  
    mO<1&{qMZ  
    NW_i<#  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 8uAA6h+  
    X!,huB^i  
    不吝赐教
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 qP{Fwn  
    80% >       0.22748071                 bT7+$^NHf  
    50% >       0.38667627                 rMWJ  
    20% >       0.46553746                 y%Rq6P=4Q  
    10% >       0.50064115 'uC=xG.*}  
    7F2 WmMS  
    最后这个数值是MTF值呢,还是MTF的公差? C19}Y4r:  
    %u}#|+8}  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   j)ME%17  
    P{,A%t  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 8 :WN@  
    90% >       0.20977951                 4#{f8  
    80% >       0.22748071                 vh.-9eD  
    50% >       0.38667627                 *^%+PQ  
    20% >       0.46553746                 (/2rj[F&  
    10% >       0.50064115 [O<F`u"a  
    ....... @ <3E `j'p  
    43E)ltR=]  
    O&MH5^I  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   @D=B5f@(o  
    Mode                : Sensitivities Dt<MEpbur  
    Sampling            : 2 c0Bqm  
    Nominal Criterion   : 0.54403234 |||m5(`S  
    Test Wavelength     : 0.6328 L){V(*K '  
    SHs [te[  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? w>\oz  
    X31%T"  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试