切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16042阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 N:x--,2  
    X|y(B%:  
    WPI<SsLd  
    /W9(}Id6  
    然后添加了默认公差分析,基本没变 {7'Wi$^F  
    ;x%"o[[>  
    jVi> 9[rz  
    h! =h0  
    然后运行分析的结果如下: 2*Zk^h=  
    p>_Qns7W  
    Analysis of Tolerances & OYo  
    l0 =[MXM4  
    File : E:\光学设计资料\zemax练习\f500.ZMX 'HKDGQl`  
    Title: @GUlw[vi  
    Date : TUE JUN 21 2011 t xE=AOY5  
    DK)T2{:  
    Units are Millimeters. !6!Gx:  
    All changes are computed using linear differences. )G#mC0?PV  
    =' uePM")  
    Paraxial Focus compensation only. *:bexDH  
    bd]9 kRq1K  
    WARNING: Solves should be removed prior to tolerancing. 5EU~T.4C<  
    v{d$DZUs  
    Mnemonics: V'hb 4}@  
    TFRN: Tolerance on curvature in fringes. 3P@D!lV&K  
    TTHI: Tolerance on thickness. &S,_Z/BS;  
    TSDX: Tolerance on surface decentering in x. *4/FN TC  
    TSDY: Tolerance on surface decentering in y. >)F "lR:o  
    TSTX: Tolerance on surface tilt in x (degrees).  J3`0i@  
    TSTY: Tolerance on surface tilt in y (degrees). !iO2yp  
    TIRR: Tolerance on irregularity (fringes). 8Cs;.>75[  
    TIND: Tolerance on Nd index of refraction. H-vHcqFx3  
    TEDX: Tolerance on element decentering in x. u 3^pQ6Q  
    TEDY: Tolerance on element decentering in y. m _cRK}>  
    TETX: Tolerance on element tilt in x (degrees). ,qx^D  
    TETY: Tolerance on element tilt in y (degrees). 8EI9&L>  
    1U% /~  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. jp_|pC'  
    fIl;qGz85  
    WARNING: Boundary constraints on compensators will be ignored. GLgf%A`5/_  
    C];P yQS  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm v3#,Z!  
    Mode                : Sensitivities oNZ_7tU  
    Sampling            : 2 yQuL[#p  
    Nominal Criterion   : 0.54403234 N_I KH)  
    Test Wavelength     : 0.6328  D|)a7_  
    8[;vC$  
    _0(%^5Y  
    Fields: XY Symmetric Angle in degrees S=(<m%f  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY gVrQAcJj  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 jUEgu  
    s3HVX'   
    Sensitivity Analysis: Jy5sZ }t[  
    baBBn %_V  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 2 /FQ;<L  
    Type                      Value      Criterion        Change          Value      Criterion        Change jMgXIK\  
    Fringe tolerance on surface 1 Hs*["zFc  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ,Cb3R|L8  
    Change in Focus                :      -0.000000                            0.000000 #8|LPfA  
    Fringe tolerance on surface 2 ?u|@,tQ[  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ]I[~0PCSX  
    Change in Focus                :       0.000000                            0.000000 =}vT>b  
    Fringe tolerance on surface 3 odCt6Du  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ^cm ] [9  
    Change in Focus                :      -0.000000                            0.000000 Xx"<^FS[zC  
    Thickness tolerance on surface 1 7 p{Pmq[  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 7Ml4u%?  
    Change in Focus                :       0.000000                            0.000000 ? 3=G'Ip5n  
    Thickness tolerance on surface 2 &^r>Q`u  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 `&M,B=E  
    Change in Focus                :       0.000000                           -0.000000 Zge(UhZ  
    Decenter X tolerance on surfaces 1 through 3 |M7cB$y  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ]3rVULU"K-  
    Change in Focus                :       0.000000                            0.000000 G18w3BFx  
    Decenter Y tolerance on surfaces 1 through 3 & 3BoK/y3  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 .!x&d4;,q  
    Change in Focus                :       0.000000                            0.000000 83n%pS4x  
    Tilt X tolerance on surfaces 1 through 3 (degrees) $@D a|d4  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 qOwql(vX  
    Change in Focus                :       0.000000                            0.000000 L5-|-PP|;  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) a YWWln  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ^U }k   
    Change in Focus                :       0.000000                            0.000000 H"#ITL  
    Decenter X tolerance on surface 1 flsejj$  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 "f,{d}u  
    Change in Focus                :       0.000000                            0.000000 9af.t  
    Decenter Y tolerance on surface 1 KwuucY  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 d9K8[Q5^3  
    Change in Focus                :       0.000000                            0.000000 `ePC$Ovn  
    Tilt X tolerance on surface (degrees) 1 p+ CUYo(  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 `#N/]4(j  
    Change in Focus                :       0.000000                            0.000000 ,%M[$S'  
    Tilt Y tolerance on surface (degrees) 1 K:wI'N"N  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 /ad9Q~nJ  
    Change in Focus                :       0.000000                            0.000000 =l/6-j^  
    Decenter X tolerance on surface 2 !sb r!Qt  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 cCe~Ol XQ  
    Change in Focus                :       0.000000                            0.000000 AcC &Q:g  
    Decenter Y tolerance on surface 2 CkT(\6B-  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 5E&#Kh(I  
    Change in Focus                :       0.000000                            0.000000 .T| }rB<c  
    Tilt X tolerance on surface (degrees) 2 (N7 uaZ?Z  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 |eqBCZn  
    Change in Focus                :       0.000000                            0.000000 *m~-8_ >;  
    Tilt Y tolerance on surface (degrees) 2 X@rA2);6  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 TSlB.pw%v  
    Change in Focus                :       0.000000                            0.000000 [9 W@<p  
    Decenter X tolerance on surface 3 eU[g@Pq:Y  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 fpD$%.y'J  
    Change in Focus                :       0.000000                            0.000000 +0'F@l  
    Decenter Y tolerance on surface 3 KK){/I=z  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 cHs3:F~~  
    Change in Focus                :       0.000000                            0.000000 Ld4U  
    Tilt X tolerance on surface (degrees) 3 i%hCV o  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 0l!#u`cCI  
    Change in Focus                :       0.000000                            0.000000 WYw#mSp  
    Tilt Y tolerance on surface (degrees) 3 gcJ!_KZK  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 C=: <[_m`  
    Change in Focus                :       0.000000                            0.000000 &X=7b@r  
    Irregularity of surface 1 in fringes szI7 I$Qb  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 kZ40a\9 Ye  
    Change in Focus                :       0.000000                            0.000000 $x0SWJ \G  
    Irregularity of surface 2 in fringes g.lTNQm$u  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 T] zEcx+e  
    Change in Focus                :       0.000000                            0.000000 3k Ci5C  
    Irregularity of surface 3 in fringes h>-P/  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 . %RM8  
    Change in Focus                :       0.000000                            0.000000 C($l'jd&  
    Index tolerance on surface 1 a`xq h2P  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 L, JQ\!c  
    Change in Focus                :       0.000000                            0.000000 G]^[i6PQs  
    Index tolerance on surface 2 Cp8=8N(Xb  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 "mlQ z4D)5  
    Change in Focus                :       0.000000                           -0.000000 JU 9GJ"  
    Dw-d`8*  
    Worst offenders: !wAT`0<94F  
    Type                      Value      Criterion        Change *FlPGBjJ  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ,,H"?VO  
    TSTY   2             0.20000000     0.35349910    -0.19053324 g^AQBF  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ,YYEn^:>  
    TSTX   2             0.20000000     0.35349910    -0.19053324 GG} %  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 >4:d)  
    TSTY   1             0.20000000     0.42678383    -0.11724851 1U 6B$(V^i  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 AK:cDKBO  
    TSTX   1             0.20000000     0.42678383    -0.11724851 U7r8FLl  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 hXW` n*Zw  
    TSTY   3             0.20000000     0.42861670    -0.11541563 nM,:f)z  
    -%nD'qy,.  
    Estimated Performance Changes based upon Root-Sum-Square method: La4S/.  
    Nominal MTF                 :     0.54403234 +$2{u_m,  
    Estimated change            :    -0.36299231 Gw M:f/eV  
    Estimated MTF               :     0.18104003 $3-v W{<  
    rP@#_(22  
    Compensator Statistics: !X>u.}?g  
    Change in back focus: 0RUk^  
    Minimum            :        -0.000000 2MkrVQQ9g  
    Maximum            :         0.000000 qQ@| Cj  
    Mean               :        -0.000000 / f%mYL  
    Standard Deviation :         0.000000  @/2Kfr  
    9T,/R1N8  
    Monte Carlo Analysis: Dg&84,bv^  
    Number of trials: 20 -yqsJGY  
    7T~ M`$h  
    Initial Statistics: Normal Distribution 2*#|t: (c  
    @Nu2 :~JO  
      Trial       Criterion        Change _z\/{  
          1     0.42804416    -0.11598818 Gp"GTPT{  
    Change in Focus                :      -0.400171 L@}PW)#  
          2     0.54384387    -0.00018847 G7Nw}cVJ)  
    Change in Focus                :       1.018470 {SoI;o_>  
          3     0.44510003    -0.09893230 $=aO*i  
    Change in Focus                :      -0.601922 Y\|#Lu>B  
          4     0.18154684    -0.36248550 lCi{v.  
    Change in Focus                :       0.920681 =ily=j"hK  
          5     0.28665820    -0.25737414 lqzt[zgN  
    Change in Focus                :       1.253875 lu8G $EQI  
          6     0.21263372    -0.33139862 u9lZHh#V-  
    Change in Focus                :      -0.903878 b 2gng}  
          7     0.40051424    -0.14351809 ."Ms7=  
    Change in Focus                :      -1.354815 iD^,O)b  
          8     0.48754161    -0.05649072 _|k$[^ln^  
    Change in Focus                :       0.215922 ] V D  
          9     0.40357468    -0.14045766 .;#T<S "  
    Change in Focus                :       0.281783 G6SgVaM  
         10     0.26315315    -0.28087919 [ks_wvY:'  
    Change in Focus                :      -1.048393 Ni$'# W?t  
         11     0.26120585    -0.28282649 Q eeV<  
    Change in Focus                :       1.017611 RLF&-[mr3  
         12     0.24033815    -0.30369419 N&9o  1_}  
    Change in Focus                :      -0.109292 k,h602(  
         13     0.37164046    -0.17239188 v.0qE}' |  
    Change in Focus                :      -0.692430 o%d TcoCN  
         14     0.48597489    -0.05805744 @]\fO)\f  
    Change in Focus                :      -0.662040 Fs+ tcr/\[  
         15     0.21462327    -0.32940907 QX,$JM3  
    Change in Focus                :       1.611296 G0FzXtu)q  
         16     0.43378226    -0.11025008 BK$y>= `  
    Change in Focus                :      -0.640081 j3-YZKpg  
         17     0.39321881    -0.15081353 n1[c\1   
    Change in Focus                :       0.914906 &kb`)F3nU  
         18     0.20692530    -0.33710703 P_bB{~$4  
    Change in Focus                :       0.801607 uF ?[H -y  
         19     0.51374068    -0.03029165 ]5%0EE64  
    Change in Focus                :       0.947293 pR0[qsQM  
         20     0.38013374    -0.16389860 w5FIHYl6B  
    Change in Focus                :       0.667010 K<JzIuf&  
    s%[F,hQRk  
    Number of traceable Monte Carlo files generated: 20 WQ|:TLQ  
    ZOK!SBn^?  
    Nominal     0.54403234 ?K1B^M=8  
    Best        0.54384387    Trial     2 2y [Q  
    Worst       0.18154684    Trial     4 *TOdIq&z  
    Mean        0.35770970 #w$Y1bjn  
    Std Dev     0.11156454 ;(Yb9Mr)z  
    A40DbD\^ad  
    qGk+4 yC  
    Compensator Statistics: d^=BXC oC  
    Change in back focus: >P6"-x,["  
    Minimum            :        -1.354815 ]8G 'R-8}  
    Maximum            :         1.611296 l;8t%JV5  
    Mean               :         0.161872 )f8>kz(  
    Standard Deviation :         0.869664 u6iW1,#  
    lg%fjBY  
    90% >       0.20977951               kHM Jh~  
    80% >       0.22748071               kG^76dAQL  
    50% >       0.38667627               q^X7x_  
    20% >       0.46553746               Y,]Lk<Hm3  
    10% >       0.50064115                a@}.96lStD  
    ew;;e|24  
    End of Run. xC76jE4  
    vHaM yA-  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 \PX4>/d@y  
    .1QGNW  
    pn"!wqg  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 q<Rj Ai  
    !z?   
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 9.)z]Gav  
    80% >       0.22748071                 :.PA(97x b  
    50% >       0.38667627                 v^A+LZ*d  
    20% >       0.46553746                 s|IBX0^@  
    10% >       0.50064115 WcmX"{  
    /gAT@Vx  
    最后这个数值是MTF值呢,还是MTF的公差? AKk=XAGW  
    @Y0ZW't  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   . !1[I{KU  
    &l6@C3N$  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : J2}poNmm  
    90% >       0.20977951                 r10VFaly  
    80% >       0.22748071                 ~QSX 1w"  
    50% >       0.38667627                 c:7V..   
    20% >       0.46553746                 Hc\C0V<  
    10% >       0.50064115 #b/L~Bw[  
    ....... IP/%=m)\%  
    o/3.U=px~  
    rf H1Zl  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   |\dv$`_T  
    Mode                : Sensitivities vyDxX  
    Sampling            : 2 O:#YLmbCN  
    Nominal Criterion   : 0.54403234 |K_%]1*riC  
    Test Wavelength     : 0.6328 MrzD ah9UG  
    7f+@6jqD\)  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? k Nc- @B  
    +r'&6Me!  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试