我现在在初学zemax的
公差分析,找了一个双胶合
透镜 8W[QV e&<#8;2X
]^8:"Ky' E@0wt^ 然后添加了默认公差分析,基本没变
^Ac0#oX]M JBeC\ \QX
96}/;e]@ ?9Fv0-g&n 然后运行分析的结果如下:
qVZ=:D{ vTh-I&}: Analysis of Tolerances
sOzjViv '+f!(teLz File : E:\光学设计资料\zemax练习\f500.ZMX
{|%5}\% Title:
[0m'a\YE9 Date : TUE JUN 21 2011
G?<L{J2"Q Hu1w/PLq Units are Millimeters.
}x~|XbG All changes are computed using linear differences.
X'7 T" 5! m-, ' Paraxial Focus compensation only.
O4]Ss}ol UF D_ WARNING: Solves should be removed prior to tolerancing.
^q%~K{'`- X
H{5E4P Mnemonics:
}\J oE4 TFRN: Tolerance on curvature in fringes.
[9[tn- TTHI: Tolerance on thickness.
|os2@G$ TSDX: Tolerance on surface decentering in x.
yw#P<8{/[ TSDY: Tolerance on surface decentering in y.
WuSRA<{P TSTX: Tolerance on surface tilt in x (degrees).
;9,Ll%Lk< TSTY: Tolerance on surface tilt in y (degrees).
<2}"Y(zwKl TIRR: Tolerance on irregularity (fringes).
qW;nWfkYC TIND: Tolerance on Nd index of refraction.
a9FlzR TEDX: Tolerance on element decentering in x.
0EPF;
Xx TEDY: Tolerance on element decentering in y.
;#~rd8Z52 TETX: Tolerance on element tilt in x (degrees).
ZS^EKz~ + TETY: Tolerance on element tilt in y (degrees).
%do|>7MO@ Fe"0Hp+ WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
SDA
+XnmH 1V FAfv%} WARNING: Boundary constraints on compensators will be ignored.
cM C1|3 /e4hB Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
I/XVo2Ee Mode : Sensitivities
?#J~X\5 Sampling : 2
/5U?4l(6[f Nominal Criterion : 0.54403234
8eWb{nuJ> Test Wavelength : 0.6328
9
r+' o# zT!JHG J@!Sf7k42 Fields: XY Symmetric Angle in degrees
rf1-E5 7# # X-Field Y-Field Weight VDX VDY VCX VCY
>]ZojdOl) 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
i"Ct}7i J[VQ6fD% Sensitivity Analysis:
?|N:[. axXAy5 |----------------- Minimum ----------------| |----------------- Maximum ----------------|
A' dt
WD Type Value Criterion Change Value Criterion Change
AL
H^tV? Fringe tolerance on surface 1
/x0zZ+}V TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
1G{$ B^
f Change in Focus :
-0.000000 0.000000
+es.V
/ Fringe tolerance on surface 2
AD*+?%hj TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
+~w '?vNc Change in Focus : 0.000000 0.000000
v,Ep2$ Fringe tolerance on surface 3
r4!zA-{ TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
4V43(G Change in Focus : -0.000000 0.000000
,lL0'$k~ Thickness tolerance on surface 1
/SlCcozFL~ TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
Nm#KHA='Z Change in Focus : 0.000000 0.000000
f.rHX<%q9B Thickness tolerance on surface 2
',J3^h!b TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
SJy:5e?zk Change in Focus : 0.000000 -0.000000
;M@/AAZ Decenter X tolerance on surfaces 1 through 3
L.+5`& TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
T3'dfe U Change in Focus : 0.000000 0.000000
zzq/%jki Decenter Y tolerance on surfaces 1 through 3
7v%~^l7:x TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
`P :-a7_ Change in Focus : 0.000000 0.000000
olK%TM[Y Tilt X tolerance on surfaces 1 through 3 (degrees)
~[ve?51 TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
ZVK;m1?' Change in Focus : 0.000000 0.000000
i]9SCO Tilt Y tolerance on surfaces 1 through 3 (degrees)
WlWBYnphZs TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Dugr{Y/0 Change in Focus : 0.000000 0.000000
==UH)o`?8 Decenter X tolerance on surface 1
"xnek8F TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
?\ho9nyK Change in Focus : 0.000000 0.000000
]%shs Decenter Y tolerance on surface 1
Oyj!N`&z@ TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
zx;x@";p Change in Focus : 0.000000 0.000000
-kQ{~">w Tilt X tolerance on surface (degrees) 1
{%UY1n TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
VPtA
%1 Change in Focus : 0.000000 0.000000
r95$B6 Tilt Y tolerance on surface (degrees) 1
<(s+ TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
F?5kl/(" Change in Focus : 0.000000 0.000000
)oHIRsr Decenter X tolerance on surface 2
6j_
A{*~Ng TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
JGH9b!}-1 Change in Focus : 0.000000 0.000000
]2K>#sn-] Decenter Y tolerance on surface 2
mxP{"6 TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
B6$s*SXNp Change in Focus : 0.000000 0.000000
];zi3oS^ Tilt X tolerance on surface (degrees) 2
[4t_ 83 TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
{_ewc/~ Change in Focus : 0.000000 0.000000
@36^4E>h Tilt Y tolerance on surface (degrees) 2
%"+FN2nbm TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
s)xfTr_$ Change in Focus : 0.000000 0.000000
63-`3R?; Decenter X tolerance on surface 3
{7B$%G' TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
]O&TU X@) Change in Focus : 0.000000 0.000000
=2->1<!x6< Decenter Y tolerance on surface 3
tEBf2|< TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
T5W r;a Change in Focus : 0.000000 0.000000
/$I&D}uR` Tilt X tolerance on surface (degrees) 3
|wVoJO!O} TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
-D{~7& Change in Focus : 0.000000 0.000000
KC8A22 Tilt Y tolerance on surface (degrees) 3
*!lq1h TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
H-7*)D Change in Focus : 0.000000 0.000000
6Y\9h)1Jo Irregularity of surface 1 in fringes
a,lH6lDk TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
LdVGFlcXi Change in Focus : 0.000000 0.000000
2ORWdR.b Irregularity of surface 2 in fringes
^_)CQ%W? TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
P#rwYPww\ Change in Focus : 0.000000 0.000000
URJ" Irregularity of surface 3 in fringes
M8S4D&vpD4 TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
@oYTJd(v{ Change in Focus : 0.000000 0.000000
-[Zau$;J< Index tolerance on surface 1
N |7<*\o TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
j!:U*}f Change in Focus : 0.000000 0.000000
-v >BeVF Index tolerance on surface 2
YM+}Mmu TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
~iF*+\ Change in Focus : 0.000000 -0.000000
gh i!4 %aL>n=$ Worst offenders:
#BlH)Cv Type Value Criterion Change
q)<5&|V TSTY 2 -0.20000000 0.35349910 -0.19053324
|FPx8b;# TSTY 2 0.20000000 0.35349910 -0.19053324
3=sA]j-+( TSTX 2 -0.20000000 0.35349910 -0.19053324
.'D+De&y TSTX 2 0.20000000 0.35349910 -0.19053324
uyjZmT/- TSTY 1 -0.20000000 0.42678383 -0.11724851
Z0`? TSTY 1 0.20000000 0.42678383 -0.11724851
6sB!m|zm]: TSTX 1 -0.20000000 0.42678383 -0.11724851
$@8\9Y
{ TSTX 1 0.20000000 0.42678383 -0.11724851
]p+t>'s TSTY 3 -0.20000000 0.42861670 -0.11541563
"eh"'Z TSTY 3 0.20000000 0.42861670 -0.11541563
8*6J\FE<p :Q$3P+6 a Estimated Performance Changes based upon Root-Sum-Square method:
|byB7f Nominal MTF : 0.54403234
a;/4 ht Estimated change : -0.36299231
bp$8hUNYz- Estimated MTF : 0.18104003
X] Tb4 &\Cvrxa Compensator Statistics: t'm]E2/ Change in back focus: B>a`mFM Minimum : -0.000000 K%Q^2"Eb0 Maximum : 0.000000 [.dNX Mean : -0.000000 D|9B1>A,m Standard Deviation : 0.000000 0Xk;X1Xl ~R!(%j ] Monte Carlo Analysis:
*;"^b\f5_ Number of trials: 20
']+H P9i$ ?:n{GK Initial Statistics: Normal Distribution
K=`*cSU> Qyd3e O_ Trial Criterion Change
l*% voKZG 1 0.42804416 -0.11598818
\4zvknk< Change in Focus : -0.400171
=7Tbu'O; 2 0.54384387 -0.00018847
q. BqOa: Change in Focus : 1.018470
8Bhot,u'T 3 0.44510003 -0.09893230
=Eef Change in Focus : -0.601922
)2rI/=R 4 0.18154684 -0.36248550
H@aCo(# Change in Focus : 0.920681
DB?_E{y] 5 0.28665820 -0.25737414
;F~GKn;} Change in Focus : 1.253875
nV']^3b 6 0.21263372 -0.33139862
rw+0<r3|K Change in Focus : -0.903878
m\@Q/_v 7 0.40051424 -0.14351809
z:<(b Change in Focus : -1.354815
&Lq @af# 8 0.48754161 -0.05649072
7Dm^49H Change in Focus : 0.215922
|G%MiYd 9 0.40357468 -0.14045766
~xvQ?c?- Change in Focus : 0.281783
:I<%.|8 10 0.26315315 -0.28087919
@ Cqg2 Change in Focus : -1.048393
zq1&MXR)l 11 0.26120585 -0.28282649
{-17;M$ Change in Focus : 1.017611
8oA6'%.e 12 0.24033815 -0.30369419
-t*C-C'"| Change in Focus : -0.109292
uLL#(bhDr 13 0.37164046 -0.17239188
\V:
_Zs Change in Focus : -0.692430
CB?.|)Xam 14 0.48597489 -0.05805744
g3x192f Change in Focus : -0.662040
j&8 ~X2?* 15 0.21462327 -0.32940907
K= 06I Change in Focus : 1.611296
vv%Di.V 16 0.43378226 -0.11025008
L~ 1Lv? Change in Focus : -0.640081
.v;2Q7X 17 0.39321881 -0.15081353
gVq{g,yi Change in Focus : 0.914906
n,Ux>L 18 0.20692530 -0.33710703
{v]>sn;P1 Change in Focus : 0.801607
=
b)q.2'# 19 0.51374068 -0.03029165
SB
\ptF Change in Focus : 0.947293
xR1g 20 0.38013374 -0.16389860
8,kbGlSD Change in Focus : 0.667010
aG=Y 6j
G (G$m}ng Number of traceable Monte Carlo files generated: 20
SAo"+% K90Zf Nominal 0.54403234
< W&~tVv Best 0.54384387 Trial 2
Po^2+s(fY Worst 0.18154684 Trial 4
1 !\pwd@{ Mean 0.35770970
`yC
R.3+ Std Dev 0.11156454
Wg}#{[4 )k7`!@ID j j$'DZk Compensator Statistics:
?TzN?\ Change in back focus:
CQtd%'rt6 Minimum : -1.354815
Hs-NP#I Maximum : 1.611296
d3n TJ X Mean : 0.161872
z,]fR Standard Deviation : 0.869664
8Q6il- ;W+.]_$6)T 90% > 0.20977951 ]pB~&0jg 80% > 0.22748071 MGmtA( 50% > 0.38667627 yY&(?6\{<< 20% > 0.46553746 y>~KeUC 10% > 0.50064115 }.T$bj1B;V hc[GpZcw, End of Run.
CZ&TUE|:DA wkd591d* 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
H!45w;,I
h_CeGl!M} |f zo$Bq 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
;
9'*w=V Zn9w1ev 不吝赐教