切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16884阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 正序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 u ? }T)B  
    h1(GzL%i_  
    [ T6MaP?  
    l0v]+>1i:  
    然后添加了默认公差分析,基本没变 o^\L41x3  
    $`wo8A|)  
    !W4X4@  
    @ptE&m  
    然后运行分析的结果如下: vNA~EV02  
    ,&q Q[i  
    Analysis of Tolerances A.v'ws+VDP  
    OgOs9=cE{  
    File : E:\光学设计资料\zemax练习\f500.ZMX ru5T0w";V  
    Title: ev LZ<|  
    Date : TUE JUN 21 2011 UNC%<=  
    C)RJjaOr  
    Units are Millimeters. '",+2=JJ  
    All changes are computed using linear differences. (QFu``ae+  
    ImG7E w  
    Paraxial Focus compensation only. *}Cm/li/w  
    w vQ.9  
    WARNING: Solves should be removed prior to tolerancing. gz~)v\5D/  
    ,K-?M5(n9  
    Mnemonics: 1UwpLd  
    TFRN: Tolerance on curvature in fringes. iiWm>yy  
    TTHI: Tolerance on thickness. 1M<;}hJ{/  
    TSDX: Tolerance on surface decentering in x. 7_^JgA|Kk7  
    TSDY: Tolerance on surface decentering in y. B=;p wX  
    TSTX: Tolerance on surface tilt in x (degrees). )_H>d<di  
    TSTY: Tolerance on surface tilt in y (degrees). EqjaD/6Y`  
    TIRR: Tolerance on irregularity (fringes). }TDoQ]P  
    TIND: Tolerance on Nd index of refraction. *@-a{T}  
    TEDX: Tolerance on element decentering in x. 'k1vV  
    TEDY: Tolerance on element decentering in y. +p\+ 15  
    TETX: Tolerance on element tilt in x (degrees). <W2 YG6^i  
    TETY: Tolerance on element tilt in y (degrees). ro8c-[V  
    nu<kx  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. z"PU`v  
    "P9SW?',  
    WARNING: Boundary constraints on compensators will be ignored. 9N*!C{VW  
    j +u3VP  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm jFwu&e[9;  
    Mode                : Sensitivities ./r#\X)dc  
    Sampling            : 2 _]"uq/UWp  
    Nominal Criterion   : 0.54403234 c_Fz?R+f?K  
    Test Wavelength     : 0.6328 *vS)aRK  
    j3$\+<m]  
    a*3h|b<  
    Fields: XY Symmetric Angle in degrees QZ?%xN(4  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY loByT p ^  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ` & {  
    |k [hk  
    Sensitivity Analysis: OY'6~w9  
    U3rpmml  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| <%ZlJ_cM  
    Type                      Value      Criterion        Change          Value      Criterion        Change $?M$^- (e  
    Fringe tolerance on surface 1 A` )A=L  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 & Do|Hw  
    Change in Focus                :      -0.000000                            0.000000 SYaL@54  
    Fringe tolerance on surface 2 )>+J`NFa  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 yE=tuHv(0  
    Change in Focus                :       0.000000                            0.000000 {K ,-fbE  
    Fringe tolerance on surface 3 o7^u@*"F  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 .'Rz tBv  
    Change in Focus                :      -0.000000                            0.000000 +T*]!9%<`:  
    Thickness tolerance on surface 1 &$<7]a\dM  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 _fmOTz G  
    Change in Focus                :       0.000000                            0.000000 Bm:N@wg  
    Thickness tolerance on surface 2 =Dc9|WuHN  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 227 Z6#CF!  
    Change in Focus                :       0.000000                           -0.000000 /vrjg)fer  
    Decenter X tolerance on surfaces 1 through 3 XMi)PXs$  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 yh{Wuz=T  
    Change in Focus                :       0.000000                            0.000000 <52)  
    Decenter Y tolerance on surfaces 1 through 3 wU(N<9  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 bG&vCH;}%  
    Change in Focus                :       0.000000                            0.000000 T.B} k`$  
    Tilt X tolerance on surfaces 1 through 3 (degrees) n\'@]qG)Z4  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ,Jqk0cW2  
    Change in Focus                :       0.000000                            0.000000 "Wz74ble  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) p5?8E$VHV  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Hr/3nq}.  
    Change in Focus                :       0.000000                            0.000000 Rf0F`D k  
    Decenter X tolerance on surface 1 }$D{YHF  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 O od?ifA  
    Change in Focus                :       0.000000                            0.000000 NoD\t(@h  
    Decenter Y tolerance on surface 1 g6l&;S40  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Q ~>="Yiu  
    Change in Focus                :       0.000000                            0.000000 ?CHFy2%Y  
    Tilt X tolerance on surface (degrees) 1 w W1>#F  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 |p"4cG?)  
    Change in Focus                :       0.000000                            0.000000 |\] _u 3  
    Tilt Y tolerance on surface (degrees) 1 r>.^4Z@  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 fNNik7  
    Change in Focus                :       0.000000                            0.000000 q+)csgN  
    Decenter X tolerance on surface 2 S1G=hgF_L  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 >7j(V`i"y  
    Change in Focus                :       0.000000                            0.000000 C$#X6Q!,  
    Decenter Y tolerance on surface 2 0\a;} S'g#  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 3E`poE  
    Change in Focus                :       0.000000                            0.000000 y jQpdO  
    Tilt X tolerance on surface (degrees) 2 = }6l.9  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 81&5g'  
    Change in Focus                :       0.000000                            0.000000 <'l;j"&lp  
    Tilt Y tolerance on surface (degrees) 2 gW_^GrKpI  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 1 6G/'Hb  
    Change in Focus                :       0.000000                            0.000000 ?KF.v1w7  
    Decenter X tolerance on surface 3 v.pj PBU1  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ?~fuMy B  
    Change in Focus                :       0.000000                            0.000000 97~*Z|#<+  
    Decenter Y tolerance on surface 3 o:C],G_  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 E])X$:P?  
    Change in Focus                :       0.000000                            0.000000 xulwn{R s  
    Tilt X tolerance on surface (degrees) 3 Lf} @v  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 {nl4(2$  
    Change in Focus                :       0.000000                            0.000000 WeqQw?-  
    Tilt Y tolerance on surface (degrees) 3 Bvy(vc=UDW  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ^"hsbk&Yu  
    Change in Focus                :       0.000000                            0.000000 6yRxb (  
    Irregularity of surface 1 in fringes 1> wt  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 wU= @,K  
    Change in Focus                :       0.000000                            0.000000 q9mYhT/Im  
    Irregularity of surface 2 in fringes km+}./@  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 \/ 8 V|E  
    Change in Focus                :       0.000000                            0.000000 <+2M,fq+  
    Irregularity of surface 3 in fringes n^m6m%J)  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 a}]zwV&  
    Change in Focus                :       0.000000                            0.000000 TRSR5D[  
    Index tolerance on surface 1 P0N%77p>"  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 {2,OK=XM|  
    Change in Focus                :       0.000000                            0.000000 K;}h u(*\]  
    Index tolerance on surface 2 q<` g  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 i'}Z>g5D  
    Change in Focus                :       0.000000                           -0.000000 2n`OcXCh/  
    Axtf,x+lH  
    Worst offenders: hc4W|Ofj  
    Type                      Value      Criterion        Change |K%nVcR=  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ,'69RL?-Wg  
    TSTY   2             0.20000000     0.35349910    -0.19053324 )^o7%KX  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 Tfba3+V  
    TSTX   2             0.20000000     0.35349910    -0.19053324 &v#*  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 DMY?'Nts!  
    TSTY   1             0.20000000     0.42678383    -0.11724851 d;kdw  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ua -cX3E  
    TSTX   1             0.20000000     0.42678383    -0.11724851 c>*RQ4vE  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 a ykNH>#Po  
    TSTY   3             0.20000000     0.42861670    -0.11541563 fGD#|a;,  
    '[h|f  
    Estimated Performance Changes based upon Root-Sum-Square method: oU.LYz_  
    Nominal MTF                 :     0.54403234 kN)m"}gX  
    Estimated change            :    -0.36299231 Y :0SrB!\  
    Estimated MTF               :     0.18104003 b6k'`vLA  
    6jRUkI-!  
    Compensator Statistics: 9rn[46s`  
    Change in back focus: 8R6!SB  
    Minimum            :        -0.000000 u}7#3JfLn  
    Maximum            :         0.000000 Y M_\ ZK:  
    Mean               :        -0.000000 p6yC1\U!o  
    Standard Deviation :         0.000000 M)U 32gI:  
    G^]7!:0  
    Monte Carlo Analysis: 4oF8F)ASj  
    Number of trials: 20 7O)U(<70  
    h>6'M  
    Initial Statistics: Normal Distribution Jz!8Xg%a  
    _:,:U[@Vz  
      Trial       Criterion        Change H?P:;1A]c  
          1     0.42804416    -0.11598818 EEaf/D/jt  
    Change in Focus                :      -0.400171 0r?}LWjf  
          2     0.54384387    -0.00018847 w6fVZY4  
    Change in Focus                :       1.018470 XZv(B^  
          3     0.44510003    -0.09893230 A&2)iQ  
    Change in Focus                :      -0.601922 z~/z>_y$nv  
          4     0.18154684    -0.36248550 v [_C^;  
    Change in Focus                :       0.920681 =-`}(b2N  
          5     0.28665820    -0.25737414 \S)\~>.`y!  
    Change in Focus                :       1.253875 u(7PtmV[!  
          6     0.21263372    -0.33139862 McgTTM;E  
    Change in Focus                :      -0.903878 -$E_L :M  
          7     0.40051424    -0.14351809 pr8eRV!x  
    Change in Focus                :      -1.354815 <|M cE  
          8     0.48754161    -0.05649072 HXTBxh  
    Change in Focus                :       0.215922 );wSay>%(  
          9     0.40357468    -0.14045766 $T\z  
    Change in Focus                :       0.281783 3%] %c6  
         10     0.26315315    -0.28087919 gp:,DC?(  
    Change in Focus                :      -1.048393 Zu\(XN?62  
         11     0.26120585    -0.28282649 x?:[:Hf   
    Change in Focus                :       1.017611 &k /uR;yw  
         12     0.24033815    -0.30369419 V fJYYR  
    Change in Focus                :      -0.109292 jmbwV,@Q2  
         13     0.37164046    -0.17239188  iK$)Iy0  
    Change in Focus                :      -0.692430 I_('Mr)  
         14     0.48597489    -0.05805744 _-&\~w  
    Change in Focus                :      -0.662040 Cg/L/0Ak  
         15     0.21462327    -0.32940907 [a;U'v*  
    Change in Focus                :       1.611296 u=h:d+rq@  
         16     0.43378226    -0.11025008 [2UjY^\;T  
    Change in Focus                :      -0.640081 #YM5P  
         17     0.39321881    -0.15081353 ~a:0Q{>a  
    Change in Focus                :       0.914906 ')w:`8Tl  
         18     0.20692530    -0.33710703 _uuxTNN0x*  
    Change in Focus                :       0.801607 l+'@y (}Q  
         19     0.51374068    -0.03029165 MO+g*N  
    Change in Focus                :       0.947293 XYtDovbv&  
         20     0.38013374    -0.16389860 $DZ\61  
    Change in Focus                :       0.667010 \0iF <0oy  
    a$p?r3y  
    Number of traceable Monte Carlo files generated: 20 IWvLt  
    D9M<>Xz)  
    Nominal     0.54403234 V,<3uQD9a  
    Best        0.54384387    Trial     2 lC Bb0k2  
    Worst       0.18154684    Trial     4 D.zEE-cGyb  
    Mean        0.35770970 W3s>+yU  
    Std Dev     0.11156454 tCAh?nR  
    -t_t3aU|  
    =7@N'xX  
    Compensator Statistics: xJtblZ1sr  
    Change in back focus: +85i;gO5  
    Minimum            :        -1.354815 :c@v_J6C&  
    Maximum            :         1.611296 96UL](l(`  
    Mean               :         0.161872 Vp*#,(_G:  
    Standard Deviation :         0.869664 ?!=yp#  
    iB;EV8E  
    90% >       0.20977951               =&RpW7]  
    80% >       0.22748071               f]MKNX  
    50% >       0.38667627               YIv!\`^ \  
    20% >       0.46553746               0b%"=J2/p.  
    10% >       0.50064115                G. Z:00x  
    p R=FH#  
    End of Run. vt@5Hb)  
    "c8 -xG  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 P` Hxj> {  
    ?AC flU_k  
    64Gd^.Z  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Atc<xp  
    f8yE>qJP  
    不吝赐教
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
     
    分享到
    离线nd871693070
    发帖
    64
    光币
    1
    光券
    0
    只看该作者 24楼 发表于: 2020-03-19
    一起学习下 GCaiogiBg  
    离线唐千永
    发帖
    195
    光币
    153
    光券
    0
    只看该作者 23楼 发表于: 2014-04-17
         公差分析这里 我也不是很清楚 ,学习一下
    离线zhu1988zi
    发帖
    19
    光币
    4
    光券
    0
    只看该作者 22楼 发表于: 2013-11-28
    楼主的头像太慎人!
    离线毛毛虫07
    发帖
    22
    光币
    236
    光券
    0
    只看该作者 21楼 发表于: 2013-06-21
    回 天地大同 的帖子
    天地大同:Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   d{FD.eI 0  
    Mode                : Sensitivities ( L ]C  
    Sam .. (2011-06-23 09:38)  l(A>Rw|  
    g@s'-8}X^  
    我们导师说让用蒙特卡罗分析法,是不是skip sensitivity 模式?还有,geom MTF和 diff MTF有什么区别?
    离线毛毛虫07
    发帖
    22
    光币
    236
    光券
    0
    只看该作者 20楼 发表于: 2013-06-21
    请问,公差设置的阿贝偏差应该设置成多少呢?
    离线wmh1985
    发帖
    2039
    光币
    6034
    光券
    0
    只看该作者 19楼 发表于: 2012-08-06
    楼主 太强大了  能不能讲的 系统一些了 =2tl149m/z  
    离线licc
    发帖
    280
    光币
    74
    光券
    0
    只看该作者 18楼 发表于: 2012-08-04
    好高深
    离线nanuto
    发帖
    1014
    光币
    193
    光券
    0
    只看该作者 17楼 发表于: 2012-03-09
    好样的
    离线雷伽多
    发帖
    34
    光币
    19
    光券
    0
    只看该作者 16楼 发表于: 2012-03-07
    额。。。请问你把敏感的公差调紧了后,百分比数有所变化吗?我也遇到同样的问题。。。