切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16618阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 正序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 lY~xoHT;[  
    s:jwwE2  
    y]Y)?])  
    i_MDLS>-  
    然后添加了默认公差分析,基本没变 `:8&m  
    { "/@,!9rJ  
    C}Khh`8@5.  
    A81kb  
    然后运行分析的结果如下: X \h]N  
    ,xGlWH wrY  
    Analysis of Tolerances 4[6A~iC_  
    "8-]6p3u  
    File : E:\光学设计资料\zemax练习\f500.ZMX 9 Hm!B )Y  
    Title: Tkd4nRo~  
    Date : TUE JUN 21 2011 _uRgKoiy  
    O9opX\9  
    Units are Millimeters. bNqjjg  
    All changes are computed using linear differences.  bSmRo  
    oV*3Mec  
    Paraxial Focus compensation only. %3q@\:s  
    ~<|xS  
    WARNING: Solves should be removed prior to tolerancing. BqR8%F  
    b2Ct^`|M5  
    Mnemonics: c=ZX7U  
    TFRN: Tolerance on curvature in fringes. %DiZ&}^Ck  
    TTHI: Tolerance on thickness. Jx 'p\*  
    TSDX: Tolerance on surface decentering in x. -8-Aqh8|  
    TSDY: Tolerance on surface decentering in y. L%<1cE))  
    TSTX: Tolerance on surface tilt in x (degrees). N^)L@6  
    TSTY: Tolerance on surface tilt in y (degrees). Nf3L  
    TIRR: Tolerance on irregularity (fringes). 9m<>G3Jr  
    TIND: Tolerance on Nd index of refraction. #j@Su )+  
    TEDX: Tolerance on element decentering in x. J L]6o8x  
    TEDY: Tolerance on element decentering in y. &359tG0@P  
    TETX: Tolerance on element tilt in x (degrees). C[~b6 UP  
    TETY: Tolerance on element tilt in y (degrees). W$,c]/u|  
    pO"V9[p]  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ?+51 B-  
    p#3P`I>ZrT  
    WARNING: Boundary constraints on compensators will be ignored. 1(C%/g#"  
    O10h(Wg  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm bGDV9su  
    Mode                : Sensitivities Y(<>[8S m  
    Sampling            : 2 Jln dypE  
    Nominal Criterion   : 0.54403234 5?QR  
    Test Wavelength     : 0.6328 iX~V(~v  
    7:;P>sF@  
    Cgt{5  
    Fields: XY Symmetric Angle in degrees T#T!a0  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY xAsbP$J:  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 W| ~Ehg  
    .4U::j}  
    Sensitivity Analysis: DUa`8cE}  
    I,.>tC  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| g,9o'fs`x  
    Type                      Value      Criterion        Change          Value      Criterion        Change %<K`d  
    Fringe tolerance on surface 1 8j8FQ!M  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 > `u} G1T\  
    Change in Focus                :      -0.000000                            0.000000 YwEXTy>0  
    Fringe tolerance on surface 2 <0pBu7a  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 WFy90*@Z  
    Change in Focus                :       0.000000                            0.000000 5^[V%4y>  
    Fringe tolerance on surface 3 6EJ,czt(  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 iYBs )  
    Change in Focus                :      -0.000000                            0.000000 8L.Y0_x  
    Thickness tolerance on surface 1 oT.g@kf=H  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 &rk /ya[  
    Change in Focus                :       0.000000                            0.000000 H$WuT;cTE  
    Thickness tolerance on surface 2 k.?b2]@$  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 )9J&M6LX  
    Change in Focus                :       0.000000                           -0.000000 i9uJ%nd:  
    Decenter X tolerance on surfaces 1 through 3 K5'@$Km  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 |5`z;u7V  
    Change in Focus                :       0.000000                            0.000000  H 2\KI(  
    Decenter Y tolerance on surfaces 1 through 3 =((#kDrN  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 E[^66(KR  
    Change in Focus                :       0.000000                            0.000000 ]uj6-0q){W  
    Tilt X tolerance on surfaces 1 through 3 (degrees) BY72fy#e  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 z`5d,M  
    Change in Focus                :       0.000000                            0.000000 wSnY;Z9W_  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 4mPCAA7  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 A F>!:  
    Change in Focus                :       0.000000                            0.000000 h@t&n@8O?  
    Decenter X tolerance on surface 1 td&W>(3d  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 QVm3(;&'  
    Change in Focus                :       0.000000                            0.000000 j;)U5X  
    Decenter Y tolerance on surface 1 b\F(.8  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 &Nt4dp`qj  
    Change in Focus                :       0.000000                            0.000000 S2h?Q $e3  
    Tilt X tolerance on surface (degrees) 1 c{7!:hi`x  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 2/x+7F}w5  
    Change in Focus                :       0.000000                            0.000000 D~G24k6b3  
    Tilt Y tolerance on surface (degrees) 1 >y &9!G  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 mn)kd  
    Change in Focus                :       0.000000                            0.000000 la[xbv   
    Decenter X tolerance on surface 2 vn9_tL&  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 &AG,]#  
    Change in Focus                :       0.000000                            0.000000 sTU`@}}  
    Decenter Y tolerance on surface 2 *O+G}_}  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 M9[Fx= qY  
    Change in Focus                :       0.000000                            0.000000 ]]J2#mN:n  
    Tilt X tolerance on surface (degrees) 2 6$lj$8\  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 bT2b)nf  
    Change in Focus                :       0.000000                            0.000000 XL1v&'HLV  
    Tilt Y tolerance on surface (degrees) 2 49E<`f0  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 U5[xW  
    Change in Focus                :       0.000000                            0.000000 ^ duNEu0*  
    Decenter X tolerance on surface 3 #%rXDGDS  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ! jm>  
    Change in Focus                :       0.000000                            0.000000 }1f@>'o  
    Decenter Y tolerance on surface 3 BC=U6>`/  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ri<E[8\  
    Change in Focus                :       0.000000                            0.000000 4N|^Joi  
    Tilt X tolerance on surface (degrees) 3 ]'3e#Cqeh  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 b)tvXiO1>  
    Change in Focus                :       0.000000                            0.000000 prV:Kq;O  
    Tilt Y tolerance on surface (degrees) 3 DBI[OG9  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 " qY Pi  
    Change in Focus                :       0.000000                            0.000000 VPx"l5\  
    Irregularity of surface 1 in fringes _=Ed>2M)no  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 *tC]Z&5  
    Change in Focus                :       0.000000                            0.000000 -^`]tF`M  
    Irregularity of surface 2 in fringes }SR}ET&z  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 C: @T5m  
    Change in Focus                :       0.000000                            0.000000 . T6fPEb  
    Irregularity of surface 3 in fringes @kw#\%Uz  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 XbsEO>_Z'A  
    Change in Focus                :       0.000000                            0.000000 vr+O)/P})  
    Index tolerance on surface 1 ^Qt4}V=  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 7{e0^V,\k  
    Change in Focus                :       0.000000                            0.000000 B{^o}:e  
    Index tolerance on surface 2 Sp3?I2 o  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 rV>/:FG  
    Change in Focus                :       0.000000                           -0.000000 po~V{>fUm  
    i/N4uq}'A<  
    Worst offenders: vtM!?#  
    Type                      Value      Criterion        Change ~3< Li}W  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 { K'QE0'x  
    TSTY   2             0.20000000     0.35349910    -0.19053324 |r[yMI|VR  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 t84(kzcC  
    TSTX   2             0.20000000     0.35349910    -0.19053324 :_E q(r  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 _C$JO   
    TSTY   1             0.20000000     0.42678383    -0.11724851 ;+t~$5  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 P$?3\`U;  
    TSTX   1             0.20000000     0.42678383    -0.11724851 @5+ JXD  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 !VUxy  
    TSTY   3             0.20000000     0.42861670    -0.11541563 fmC)]O%q  
    ;O5p>o  
    Estimated Performance Changes based upon Root-Sum-Square method: ">PpC]Y1  
    Nominal MTF                 :     0.54403234 Nn5z   
    Estimated change            :    -0.36299231 (;T$[ru`  
    Estimated MTF               :     0.18104003 P{v>o,a.  
    Xo]QV.n  
    Compensator Statistics: 28J ; 9  
    Change in back focus: <8nl}^d5  
    Minimum            :        -0.000000 STmn%&  
    Maximum            :         0.000000 HQlhT  
    Mean               :        -0.000000 lL_M=td8W  
    Standard Deviation :         0.000000 N% /if  
    %upnXRzw  
    Monte Carlo Analysis: 0O+[z9  
    Number of trials: 20 p_T>"v  
    22lC^)`TE  
    Initial Statistics: Normal Distribution mVFz[xI  
    $ K1 /^  
      Trial       Criterion        Change `\LhEnIwu  
          1     0.42804416    -0.11598818 "X4L+]"$g  
    Change in Focus                :      -0.400171 oxT..=-  
          2     0.54384387    -0.00018847 72@lDY4cE  
    Change in Focus                :       1.018470 e]R`B}vO  
          3     0.44510003    -0.09893230 CMn&1  
    Change in Focus                :      -0.601922 /Ud<4j-  
          4     0.18154684    -0.36248550 mGR}hsQpn  
    Change in Focus                :       0.920681 P[{qp8(g  
          5     0.28665820    -0.25737414 )vVt{g  
    Change in Focus                :       1.253875 vM@2C'  
          6     0.21263372    -0.33139862 wG6@. ;3  
    Change in Focus                :      -0.903878 ;O` \rP5w  
          7     0.40051424    -0.14351809 _q*4+x  
    Change in Focus                :      -1.354815 *c'nPa$+|S  
          8     0.48754161    -0.05649072 rF C6"_  
    Change in Focus                :       0.215922 f@U\2r  
          9     0.40357468    -0.14045766 vpR^G`/  
    Change in Focus                :       0.281783 ` QC  
         10     0.26315315    -0.28087919 P{2V@ <}  
    Change in Focus                :      -1.048393 F ^& Rg  
         11     0.26120585    -0.28282649 %Ci`O hT  
    Change in Focus                :       1.017611 '6U~|d  
         12     0.24033815    -0.30369419 QH%Zbt2qS  
    Change in Focus                :      -0.109292 pm$ZKM  
         13     0.37164046    -0.17239188 )wkh  
    Change in Focus                :      -0.692430 $B6CLWB  
         14     0.48597489    -0.05805744 Fr{u=0 X  
    Change in Focus                :      -0.662040 Ckd=tvL  
         15     0.21462327    -0.32940907 c"qaULY  
    Change in Focus                :       1.611296 Exir?G}\  
         16     0.43378226    -0.11025008 ]iu}5]?)  
    Change in Focus                :      -0.640081 (bEX"U-  
         17     0.39321881    -0.15081353 `CCuwe<v  
    Change in Focus                :       0.914906 a#H2H`%  
         18     0.20692530    -0.33710703  z.fh4p  
    Change in Focus                :       0.801607 C? pi8Xg  
         19     0.51374068    -0.03029165 c`:hEQs  
    Change in Focus                :       0.947293 7w}D2|+  
         20     0.38013374    -0.16389860 {ctEjgiE  
    Change in Focus                :       0.667010 ,nn5LQ|l.j  
    VrL==aTYXs  
    Number of traceable Monte Carlo files generated: 20 56 6vjE  
    v=!Ap ; 2L  
    Nominal     0.54403234 :|hFpLt  
    Best        0.54384387    Trial     2 RiHOX&-7  
    Worst       0.18154684    Trial     4 5Z2E))UU  
    Mean        0.35770970 }6/L5j:+  
    Std Dev     0.11156454 h{zE;!+)D  
    F O"8B  
    5f+ziiZ  
    Compensator Statistics: f tBbO8e  
    Change in back focus: m)G=4kK52-  
    Minimum            :        -1.354815 L<'8#J[_5  
    Maximum            :         1.611296 Q `$Q(/  
    Mean               :         0.161872 aoNTRJ c$  
    Standard Deviation :         0.869664 VAkZ@ u3'~  
    3$Ecq|4J:  
    90% >       0.20977951               >r Nff!Ow  
    80% >       0.22748071               Cj).  
    50% >       0.38667627               |ocIp/ $  
    20% >       0.46553746               nya-Io.  
    10% >       0.50064115                HN'r ZAZ(  
    -rE_pV;  
    End of Run. &P8 Run  
    B<.XowT'  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 ]8,:E ]`O  
    Izrf42 >k  
    f.f5f%lO~  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 $lkd9r1   
    [~&C6pR  
    不吝赐教
     
    分享到
    离线nd871693070
    发帖
    64
    光币
    1
    光券
    0
    只看该作者 24楼 发表于: 2020-03-19
    一起学习下 q|PB[*T  
    离线唐千永
    发帖
    195
    光币
    153
    光券
    0
    只看该作者 23楼 发表于: 2014-04-17
         公差分析这里 我也不是很清楚 ,学习一下
    离线zhu1988zi
    发帖
    19
    光币
    4
    光券
    0
    只看该作者 22楼 发表于: 2013-11-28
    楼主的头像太慎人!
    离线毛毛虫07
    发帖
    22
    光币
    236
    光券
    0
    只看该作者 21楼 发表于: 2013-06-21
    回 天地大同 的帖子
    天地大同:Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   c@ En4[a'  
    Mode                : Sensitivities ] V]~I.  
    Sam .. (2011-06-23 09:38)  *we3i  
    fJOU1%  
    我们导师说让用蒙特卡罗分析法,是不是skip sensitivity 模式?还有,geom MTF和 diff MTF有什么区别?
    离线毛毛虫07
    发帖
    22
    光币
    236
    光券
    0
    只看该作者 20楼 发表于: 2013-06-21
    请问,公差设置的阿贝偏差应该设置成多少呢?
    离线wmh1985
    发帖
    2039
    光币
    5950
    光券
    0
    只看该作者 19楼 发表于: 2012-08-06
    楼主 太强大了  能不能讲的 系统一些了 #k)G1Y[c  
    离线licc
    发帖
    280
    光币
    74
    光券
    0
    只看该作者 18楼 发表于: 2012-08-04
    好高深
    离线nanuto
    发帖
    1014
    光币
    193
    光券
    0
    只看该作者 17楼 发表于: 2012-03-09
    好样的
    离线雷伽多
    发帖
    34
    光币
    19
    光券
    0
    只看该作者 16楼 发表于: 2012-03-07
    额。。。请问你把敏感的公差调紧了后,百分比数有所变化吗?我也遇到同样的问题。。。