切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15556阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1063
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 naB[0I& N  
    }W%}_UT  
    Md m(xUs  
    UuA=qWC  
    然后添加了默认公差分析,基本没变 sAc)X!}  
    *KV] MdS  
    WqU$cQD"  
    8|Y^z_C  
    然后运行分析的结果如下: ma* 9O |v^  
    {k~$\J?.  
    Analysis of Tolerances u09OnP\  
    tv|=`~Y  
    File : E:\光学设计资料\zemax练习\f500.ZMX `^N;%[c`z  
    Title: CnA*o 8w  
    Date : TUE JUN 21 2011 7y`~T+  
    r*3XM{bZ/@  
    Units are Millimeters. !8s:3]  
    All changes are computed using linear differences. /3Gv51'  
    IweQB}d  
    Paraxial Focus compensation only. q C|re!K  
    %F/tbXy{  
    WARNING: Solves should be removed prior to tolerancing. wy&*6>.  
    ;[ zx'e?!  
    Mnemonics: p0YTZS ]h  
    TFRN: Tolerance on curvature in fringes. CC87<>V  
    TTHI: Tolerance on thickness. }&naP   
    TSDX: Tolerance on surface decentering in x. cE]kI,Fw,M  
    TSDY: Tolerance on surface decentering in y. y! 1NS  
    TSTX: Tolerance on surface tilt in x (degrees). p9sxA|O=y  
    TSTY: Tolerance on surface tilt in y (degrees). <*5D0q#~"  
    TIRR: Tolerance on irregularity (fringes). )*JTxMQ  
    TIND: Tolerance on Nd index of refraction. \)"qN^we  
    TEDX: Tolerance on element decentering in x. 1!NaOfP;@  
    TEDY: Tolerance on element decentering in y. 9VY_gi=vL  
    TETX: Tolerance on element tilt in x (degrees). Cw2+@7?|  
    TETY: Tolerance on element tilt in y (degrees).  G0&w#j  
    BzUx@,  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. (jyJ-qe  
    dCyQCA[  
    WARNING: Boundary constraints on compensators will be ignored. ff hD+-gTU  
    jH G(d$h  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm tE>:kx0*3  
    Mode                : Sensitivities 5astv:p,P  
    Sampling            : 2 FxT [4  
    Nominal Criterion   : 0.54403234 =f p(hX"  
    Test Wavelength     : 0.6328 y@z #Jw<  
    DpR%s",Q  
    [(K^x?\Y0'  
    Fields: XY Symmetric Angle in degrees \ a<Ye T  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY LMDa68 s  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Q'Tn+}B&  
    ZqGq%8\.s  
    Sensitivity Analysis: G j:|  
    ZtT`_G&  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| K&h|r`W(  
    Type                      Value      Criterion        Change          Value      Criterion        Change ouI0"R&@  
    Fringe tolerance on surface 1 1FX-#Y`e  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 8| /YxF<  
    Change in Focus                :      -0.000000                            0.000000 5f5`7uVJF  
    Fringe tolerance on surface 2 #75;%a8  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 33 4*nQ  
    Change in Focus                :       0.000000                            0.000000  h 2zCX  
    Fringe tolerance on surface 3 +Lr0i_al  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 kgu+ q\?  
    Change in Focus                :      -0.000000                            0.000000 b +_E)4  
    Thickness tolerance on surface 1 /P%:u0fX,  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 3^a"$VW1  
    Change in Focus                :       0.000000                            0.000000 5%$#3LT|  
    Thickness tolerance on surface 2 aU!UY(  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 _V?Q4}7d/  
    Change in Focus                :       0.000000                           -0.000000 P;/T`R=Vr"  
    Decenter X tolerance on surfaces 1 through 3 A!~o?ej  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 }R x%&29&  
    Change in Focus                :       0.000000                            0.000000 J@fE" )  
    Decenter Y tolerance on surfaces 1 through 3 73.b9mF  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 9.B7Owgr89  
    Change in Focus                :       0.000000                            0.000000 .wSAysiQ|P  
    Tilt X tolerance on surfaces 1 through 3 (degrees) pf_ /jR  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 S7vE[VF5  
    Change in Focus                :       0.000000                            0.000000 Y4O L 82Y  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ;a`X|N9  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 >A/=eW/q  
    Change in Focus                :       0.000000                            0.000000 \v_C7R;&  
    Decenter X tolerance on surface 1 ik*_,51Zj  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 JNz0!wi  
    Change in Focus                :       0.000000                            0.000000 `dZ|}4[1  
    Decenter Y tolerance on surface 1 $%-?S]6)  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 :Mk}Suf&H  
    Change in Focus                :       0.000000                            0.000000 -Me\nu8(RF  
    Tilt X tolerance on surface (degrees) 1 p3o?_ !Z  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ._Xtb,p{  
    Change in Focus                :       0.000000                            0.000000 v2'J L(=  
    Tilt Y tolerance on surface (degrees) 1 gib]#n1!p  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ?+\,a+46P_  
    Change in Focus                :       0.000000                            0.000000 A@OV!DJe]  
    Decenter X tolerance on surface 2 Ul Iw&U  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 De_</1Au!2  
    Change in Focus                :       0.000000                            0.000000 ;GS JnV  
    Decenter Y tolerance on surface 2 `^kST><  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 O|~'-^  
    Change in Focus                :       0.000000                            0.000000 $EIkk= z  
    Tilt X tolerance on surface (degrees) 2 wrU[#g,uvr  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 vp@+wh]#  
    Change in Focus                :       0.000000                            0.000000 g OM`I+CwT  
    Tilt Y tolerance on surface (degrees) 2 @\?f77Of6  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 3#[I _  
    Change in Focus                :       0.000000                            0.000000 MVdx5,t  
    Decenter X tolerance on surface 3 #Au&2_O  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 N3<Jh  
    Change in Focus                :       0.000000                            0.000000 CdO-xL6F  
    Decenter Y tolerance on surface 3 KoJG! Rm  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 +kL(lBv'  
    Change in Focus                :       0.000000                            0.000000 ?xZmm%JF  
    Tilt X tolerance on surface (degrees) 3 sBnPS[Oo  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 8B/9{8  
    Change in Focus                :       0.000000                            0.000000 m5N&7qgp  
    Tilt Y tolerance on surface (degrees) 3 lv*uXg.k^  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 'wrpW#  
    Change in Focus                :       0.000000                            0.000000 {6sfa?1j  
    Irregularity of surface 1 in fringes 5nAF=Bj  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 (qN(#~  
    Change in Focus                :       0.000000                            0.000000 ]s@8I2_  
    Irregularity of surface 2 in fringes CaBS0' n  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 /g''-yT7#  
    Change in Focus                :       0.000000                            0.000000 ~*[4DQ[\  
    Irregularity of surface 3 in fringes `F8;{`a  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 RfG$Px '  
    Change in Focus                :       0.000000                            0.000000 C:MGi7f  
    Index tolerance on surface 1 jqWvLBU!  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 /H@")je  
    Change in Focus                :       0.000000                            0.000000 ycD.:w p\'  
    Index tolerance on surface 2 T(^8ki  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 5Suc#0y  
    Change in Focus                :       0.000000                           -0.000000 l$_rA~Mo  
    mtddLd,  
    Worst offenders: {PtTPz  
    Type                      Value      Criterion        Change &Ld8Z9IeFp  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 [)>8z8'f  
    TSTY   2             0.20000000     0.35349910    -0.19053324 @!3^/D3  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 !p2,|6Y`y  
    TSTX   2             0.20000000     0.35349910    -0.19053324 1iL xXd  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 D ;$+]2  
    TSTY   1             0.20000000     0.42678383    -0.11724851 $ n[7  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 C&N4<2b  
    TSTX   1             0.20000000     0.42678383    -0.11724851 $i~`vu*  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 C /XyDbH  
    TSTY   3             0.20000000     0.42861670    -0.11541563 gEHfsR=D6  
    BrMp_M  
    Estimated Performance Changes based upon Root-Sum-Square method: Q$/FgS  
    Nominal MTF                 :     0.54403234 >Eg. c  
    Estimated change            :    -0.36299231 }AZx/[k |z  
    Estimated MTF               :     0.18104003 l zPS RT  
    J&65B./mD9  
    Compensator Statistics: +\vY;!^  
    Change in back focus: <L/vNP  
    Minimum            :        -0.000000 dt&Lwf/  
    Maximum            :         0.000000 W;]U P$5l  
    Mean               :        -0.000000 F6]!?@  
    Standard Deviation :         0.000000 ~{Rt4o _W  
    SliQwm5  
    Monte Carlo Analysis: 0lr4d Y  
    Number of trials: 20 R${4Q1  
    JO{- P  
    Initial Statistics: Normal Distribution K |} ]<  
    Z)T@`B6  
      Trial       Criterion        Change _XNR um4  
          1     0.42804416    -0.11598818 hs_|nr0;[  
    Change in Focus                :      -0.400171 ,xe@G)a  
          2     0.54384387    -0.00018847 RdvTtXg  
    Change in Focus                :       1.018470 ur,"K' w  
          3     0.44510003    -0.09893230 NG!cEo:2aa  
    Change in Focus                :      -0.601922 r9a!,^}F  
          4     0.18154684    -0.36248550 O8~U<'=*  
    Change in Focus                :       0.920681 _QUu'zJ  
          5     0.28665820    -0.25737414 as |c`4r\O  
    Change in Focus                :       1.253875 =)1YYJTe9  
          6     0.21263372    -0.33139862 ^ O Xr: P  
    Change in Focus                :      -0.903878 ^npS==Y]!.  
          7     0.40051424    -0.14351809 Iki+5  
    Change in Focus                :      -1.354815 4\SBf\ c  
          8     0.48754161    -0.05649072 2n;;Tso"  
    Change in Focus                :       0.215922 CSqb)\8Oi*  
          9     0.40357468    -0.14045766 ~EWfEHf*BJ  
    Change in Focus                :       0.281783 V&j.>Y  
         10     0.26315315    -0.28087919 2G}7R5``9  
    Change in Focus                :      -1.048393 AH 87UkNL  
         11     0.26120585    -0.28282649 YEPG[W<kg  
    Change in Focus                :       1.017611 +IO1ipc4cE  
         12     0.24033815    -0.30369419 2T(,H.O  
    Change in Focus                :      -0.109292 y_4krY|Zx  
         13     0.37164046    -0.17239188 QD;f~fZ  
    Change in Focus                :      -0.692430 'Kzr-)JS  
         14     0.48597489    -0.05805744  1C,C)  
    Change in Focus                :      -0.662040 -,fa{yt-  
         15     0.21462327    -0.32940907 V_A,d8=lt  
    Change in Focus                :       1.611296 6|>\&Y!Q  
         16     0.43378226    -0.11025008 _ kSPUP5  
    Change in Focus                :      -0.640081 .UhBvHH  
         17     0.39321881    -0.15081353 ~eV!!38 J  
    Change in Focus                :       0.914906 MLD>"W  
         18     0.20692530    -0.33710703 /mB Beg^a  
    Change in Focus                :       0.801607 Ril21o! j  
         19     0.51374068    -0.03029165 V3A>Ag+^~  
    Change in Focus                :       0.947293 +x9"#0|k;  
         20     0.38013374    -0.16389860 $sL|'ZMbS  
    Change in Focus                :       0.667010 8K JQ(  
    [' OCw {<  
    Number of traceable Monte Carlo files generated: 20 )lDIzLp  
    #u<o EDQ  
    Nominal     0.54403234 7fW=5wc  
    Best        0.54384387    Trial     2 eFj6p<  
    Worst       0.18154684    Trial     4 01{r^ZT`RH  
    Mean        0.35770970 {Sr=SE  
    Std Dev     0.11156454 _[{:!?-?  
    ldCKSWIi-  
    F@K*T2uh  
    Compensator Statistics: 0nD=|W\@{  
    Change in back focus: bhqq  
    Minimum            :        -1.354815 N{hF [F  
    Maximum            :         1.611296 @ Zgl>  
    Mean               :         0.161872 R<lNk<  
    Standard Deviation :         0.869664 Y7:Y{7E7  
    +{C9uY)$vf  
    90% >       0.20977951               }@:QYTBi }  
    80% >       0.22748071               }rY?=I  
    50% >       0.38667627               eb.cq"C  
    20% >       0.46553746               3?*M{Y|  
    10% >       0.50064115                Y0 X"Zw  
    =(|xU?OL  
    End of Run. CmJ?_>  
    )pZekh]v  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Z4HA94  
    2 %{YYT   
    rZ!Yi*? f  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 "'F;lzq  
    iO9nvM<  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1063
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1063
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 f=:3!k,S  
    80% >       0.22748071                 *%T)\\H2  
    50% >       0.38667627                 ? o~:'Z  
    20% >       0.46553746                 VX^o"9Ntl  
    10% >       0.50064115 Gh]_L+  
    $=PWT-GIR  
    最后这个数值是MTF值呢,还是MTF的公差? XMN?;Hj>  
    4AY _#f5u  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Y{k>*: Ax_  
    Z0 [)u_<  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1063
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ($c`s8mp  
    90% >       0.20977951                 r=h8oUNEJ*  
    80% >       0.22748071                 KwS`3 6:  
    50% >       0.38667627                 EPc!p>  
    20% >       0.46553746                 CE)*qFs  
    10% >       0.50064115 HtxLMzgz<<  
    ....... h ~ $&  
    }04Dg '  
    "X`RQ6~]>  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   %*6RzJO6  
    Mode                : Sensitivities 6#E7!-u(-  
    Sampling            : 2 L_^`k4ct  
    Nominal Criterion   : 0.54403234 `mrCu>7  
    Test Wavelength     : 0.6328 D3y>iQd   
    TFO74^  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1063
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ehE-SrkU'  
    N`HSE=u>  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1063
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试