我现在在初学zemax的
公差分析,找了一个双胶合
透镜 ,?LE5] huqtk4u
NioqJG?p u""26k51 然后添加了默认公差分析,基本没变
`NhG|g nHRsr x
OK4r) bEF2-FO 然后运行分析的结果如下:
lAnOO5@8 KS#A*BRQ Analysis of Tolerances
<IWg]AJT: zsQ]U!*rD File : E:\光学设计资料\zemax练习\f500.ZMX
cQ1[x>OcU Title:
"PMJh 3q Date : TUE JUN 21 2011
& *tL)qKDc dQ;8,JzIw& Units are Millimeters.
M*k,M=sX All changes are computed using linear differences.
a)lCp `BZ|[
q3 Paraxial Focus compensation only.
>}wFePl e<+)IW: WARNING: Solves should be removed prior to tolerancing.
_#M4zO7 9'(^Coq Mnemonics:
HG /fp<[ TFRN: Tolerance on curvature in fringes.
QcWg TTHI: Tolerance on thickness.
b7hICO-w TSDX: Tolerance on surface decentering in x.
M2V`|19Q TSDY: Tolerance on surface decentering in y.
(J4( Ge TSTX: Tolerance on surface tilt in x (degrees).
Z>UM gu3c TSTY: Tolerance on surface tilt in y (degrees).
q-CgXwU TIRR: Tolerance on irregularity (fringes).
Tf=1p1!3 TIND: Tolerance on Nd index of refraction.
~NE`Ad.G TEDX: Tolerance on element decentering in x.
`i|!wD,=\ TEDY: Tolerance on element decentering in y.
)09ltr0@" TETX: Tolerance on element tilt in x (degrees).
PP!/WX TETY: Tolerance on element tilt in y (degrees).
uj)vh E6R\DM WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
2v(Y'f. V.8Vy1 $ WARNING: Boundary constraints on compensators will be ignored.
xjD$i'V+ '=G6$O2 Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
j0"4X Mode : Sensitivities
^PC;fn,I Sampling : 2
"%Ief4 Nominal Criterion : 0.54403234
B4HMs$> Test Wavelength : 0.6328
7*K2zu3 ,2 xD>+= I]+OYWp Fields: XY Symmetric Angle in degrees
l?b*T#uIk # X-Field Y-Field Weight VDX VDY VCX VCY
zk1]? 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
tSni[,4Kq D?dS/agA Sensitivity Analysis:
%<+Ku11 <k3KCt |----------------- Minimum ----------------| |----------------- Maximum ----------------|
^:$ShbX"P Type Value Criterion Change Value Criterion Change
f/z]kfgw Fringe tolerance on surface 1
SnX)&>B TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
OI0@lSAo< Change in Focus :
-0.000000 0.000000
N`d%4)|{ Fringe tolerance on surface 2
uzb|yV'B TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
>B``+Z^2 Change in Focus : 0.000000 0.000000
,Y|
;V Fringe tolerance on surface 3
OW6dK#CFt TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
<}.!G>X Change in Focus : -0.000000 0.000000
\d.\M Thickness tolerance on surface 1
-|u
yJh TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
T+gH38!e Change in Focus : 0.000000 0.000000
?ecR9X k Thickness tolerance on surface 2
3A0Qjj= TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
mQt0?c _ Change in Focus : 0.000000 -0.000000
2zbn8tO Decenter X tolerance on surfaces 1 through 3
K[?@nl?,z TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
v.sjWF Change in Focus : 0.000000 0.000000
h'GOO( Decenter Y tolerance on surfaces 1 through 3
6shN% TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
?Vh#Gr Change in Focus : 0.000000 0.000000
S&&QU# Tilt X tolerance on surfaces 1 through 3 (degrees)
yW*,Llb5 TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
^Nds@MR{8' Change in Focus : 0.000000 0.000000
UCj<FN ` Tilt Y tolerance on surfaces 1 through 3 (degrees)
ru/{s3 TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
[_ uT+q3 Change in Focus : 0.000000 0.000000
v=dK2FaY Decenter X tolerance on surface 1
o:*$G~. k TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
RH7!3ye Change in Focus : 0.000000 0.000000
Ps(oxj7 Decenter Y tolerance on surface 1
2B)1
tP TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
a*&&6Fo Change in Focus : 0.000000 0.000000
}fef* >>} Tilt X tolerance on surface (degrees) 1
aMT=pGU TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
oO7)7$|1 Change in Focus : 0.000000 0.000000
=j20A6gND Tilt Y tolerance on surface (degrees) 1
]R!YRu TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
\QG2V$ Change in Focus : 0.000000 0.000000
3A =\Mb Decenter X tolerance on surface 2
eA``fpr TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
?I+$KjE+ Change in Focus : 0.000000 0.000000
C%ZPWOc_8 Decenter Y tolerance on surface 2
']sjW'~ TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
+BhJske Change in Focus : 0.000000 0.000000
JJs*2y Tilt X tolerance on surface (degrees) 2
B\aVE|~PB TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
oLq N Change in Focus : 0.000000 0.000000
|+[Y_j Tilt Y tolerance on surface (degrees) 2
6Z=Qs=q TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
Yi[MoYe/K Change in Focus : 0.000000 0.000000
~gQYgv<7 Decenter X tolerance on surface 3
4MzPm~Ct TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
@.)[U:N Change in Focus : 0.000000 0.000000
:AQ9-&i/a- Decenter Y tolerance on surface 3
u"wWekB TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
9@mvG^ Change in Focus : 0.000000 0.000000
rXBCM Tilt X tolerance on surface (degrees) 3
c4Q9foE
TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
.kkhW8: Change in Focus : 0.000000 0.000000
!&.-{ _$ Tilt Y tolerance on surface (degrees) 3
<dVJV?i; TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
mQSn*;9\T3 Change in Focus : 0.000000 0.000000
QUZ+#*:s Irregularity of surface 1 in fringes
'mm>E TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
1U^KN~! Change in Focus : 0.000000 0.000000
XWNo)#_3 Irregularity of surface 2 in fringes
RE D@|[Qh TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
`|v/qk7
^? Change in Focus : 0.000000 0.000000
}J-e:FUF# Irregularity of surface 3 in fringes
8^_e>q*W TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
Lm<WT*@ Change in Focus : 0.000000 0.000000
C9""sVs Index tolerance on surface 1
@SaxM4 TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
qUn+1.[% Change in Focus : 0.000000 0.000000
!g)rp`? Index tolerance on surface 2
EDh-pK TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
QoxQ"r9Wh Change in Focus : 0.000000 -0.000000
][#|5UK8L C(z'oi:f Worst offenders:
;R<V-gab Type Value Criterion Change
Bu?Qyz2O TSTY 2 -0.20000000 0.35349910 -0.19053324
to1r
88X TSTY 2 0.20000000 0.35349910 -0.19053324
s%>8y\MaK TSTX 2 -0.20000000 0.35349910 -0.19053324
8TU(5:xJo TSTX 2 0.20000000 0.35349910 -0.19053324
p8?"} TSTY 1 -0.20000000 0.42678383 -0.11724851
=8rNOi TSTY 1 0.20000000 0.42678383 -0.11724851
Tdz#,]Q TSTX 1 -0.20000000 0.42678383 -0.11724851
k{hNv|:, TSTX 1 0.20000000 0.42678383 -0.11724851
3Z`
wU TSTY 3 -0.20000000 0.42861670 -0.11541563
-okq=9 TSTY 3 0.20000000 0.42861670 -0.11541563
K_:2sDCaN T5I#7LN# Estimated Performance Changes based upon Root-Sum-Square method:
5Fj9.K~k Nominal MTF : 0.54403234
4%_xTo Estimated change : -0.36299231
vM$hCV~N Estimated MTF : 0.18104003
agkKm?xIL 6R$Yh0% Compensator Statistics: 28c6~*Te# Change in back focus: gh
:5 Minimum : -0.000000 rKT.~ZP\ Maximum : 0.000000 wf\7sz Mean : -0.000000 D:z_FNN Standard Deviation : 0.000000 ]|=`-)AP3 lkR^2P Monte Carlo Analysis:
PyK!Cyq Number of trials: 20
ab.B?bx 9HlWoHuC Initial Statistics: Normal Distribution
$e,r>tgD YTTij|( Trial Criterion Change
nII#uI/!q 1 0.42804416 -0.11598818
02NVdpo[wU Change in Focus : -0.400171
<r>Sj/w<D 2 0.54384387 -0.00018847
G%zJ4W% Change in Focus : 1.018470
K)+]as 3 0.44510003 -0.09893230
\DBEs02 Change in Focus : -0.601922
q"DHMZB 4 0.18154684 -0.36248550
vifw
FPe Change in Focus : 0.920681
D`'Cnt/ 5 0.28665820 -0.25737414
=K|#5p` Change in Focus : 1.253875
>LN*3&W 6 0.21263372 -0.33139862
0S'@(p[A Change in Focus : -0.903878
=VT\$
5A 7 0.40051424 -0.14351809
D&G?Klq Change in Focus : -1.354815
~ISY( & 8 0.48754161 -0.05649072
7sWe32 Change in Focus : 0.215922
qdmAkYUC 9 0.40357468 -0.14045766
(\r^0>H Change in Focus : 0.281783
.jC5 y& 10 0.26315315 -0.28087919
q@;1{ Change in Focus : -1.048393
.}Ys+d1b9c 11 0.26120585 -0.28282649
q4G$I?4 Change in Focus : 1.017611
d<HO~+9 12 0.24033815 -0.30369419
V}7)>i$A Change in Focus : -0.109292
P{:Z xli0 13 0.37164046 -0.17239188
^w"hA; Change in Focus : -0.692430
wPu.hVz 14 0.48597489 -0.05805744
]\oT({$6B Change in Focus : -0.662040
l]Xbd{ 15 0.21462327 -0.32940907
A"s?;hv\fS Change in Focus : 1.611296
ur=:Ha 16 0.43378226 -0.11025008
4`fV_H.8 Change in Focus : -0.640081
@uN+]e+3 17 0.39321881 -0.15081353
_8F;-7Sz Change in Focus : 0.914906
eOkiB!G. 18 0.20692530 -0.33710703
jvD_{r Change in Focus : 0.801607
sDTw</@ 19 0.51374068 -0.03029165
#3{}(T7 Change in Focus : 0.947293
v6[VdWOx5 20 0.38013374 -0.16389860
s,!vBSn8 Change in Focus : 0.667010
ST~YO ?z6K/'? Number of traceable Monte Carlo files generated: 20
BS,EW 9V&+xbR& Nominal 0.54403234
}|N88PN Best 0.54384387 Trial 2
}~ N\A Worst 0.18154684 Trial 4
6gO(
8 Mean 0.35770970
XP:fL
NpQ Std Dev 0.11156454
v&7<f$5 `
"-P g5 >9i>A: Compensator Statistics:
$>uUn3hSx\ Change in back focus:
,O:p`"3`0= Minimum : -1.354815
vWrTB Maximum : 1.611296
7(
Z9\ Mean : 0.161872
|`Yn'Mj8rm Standard Deviation : 0.869664
yV(9@lj3; e{Vn{.i,5 90% > 0.20977951 N;BuBm5K 80% > 0.22748071 m_Z(osoE#W 50% > 0.38667627 &V SZ 20% > 0.46553746 K`uPPyv 10% > 0.50064115 X&5N89 gd#?rc*f<3 End of Run.
O;McPw<&\: P2iuB|B@ 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
9IrCu?n9b
{D(l#;,iX2 "rEfhzmyF 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
/YU8L NV?XZ[<*< 不吝赐教