切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16626阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 oqh@ (<%  
    Mx6 yk,  
    FO[ s;dmzu  
    oKGF'y?A>  
    然后添加了默认公差分析,基本没变 @.a59kP8X  
    fA<os+*9i  
    8(Ptse  ,  
    ,7s+-sRG  
    然后运行分析的结果如下: Tim/7*vx  
    HxW/t7Z(  
    Analysis of Tolerances Wd!Z`,R  
    s 7w A3|9  
    File : E:\光学设计资料\zemax练习\f500.ZMX Q~ Ad{yC  
    Title: )K]p^lO  
    Date : TUE JUN 21 2011 q1L>nvE  
    (D?4*9 =  
    Units are Millimeters. @8m%*pBg  
    All changes are computed using linear differences. .YvIVQ  
    ewn\'RLZ"@  
    Paraxial Focus compensation only. OhN2FkxL  
    4@\$k+v  
    WARNING: Solves should be removed prior to tolerancing. 0[d*Z  
    /^jl||'H,:  
    Mnemonics: ndDF(qHr  
    TFRN: Tolerance on curvature in fringes. ^CQp5kp]  
    TTHI: Tolerance on thickness. u@:[ dbJ  
    TSDX: Tolerance on surface decentering in x. gV9bt ~  
    TSDY: Tolerance on surface decentering in y. 2f%+1uU  
    TSTX: Tolerance on surface tilt in x (degrees). >#&25,Q  
    TSTY: Tolerance on surface tilt in y (degrees). n05GM.|*s  
    TIRR: Tolerance on irregularity (fringes). 'lpCwH  
    TIND: Tolerance on Nd index of refraction. iuXXFuh  
    TEDX: Tolerance on element decentering in x. 'J0I$-QYk  
    TEDY: Tolerance on element decentering in y. ws QuJrG  
    TETX: Tolerance on element tilt in x (degrees). sl@>GbnS  
    TETY: Tolerance on element tilt in y (degrees). o/a2n<4  
    )sK53O$  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. wBw(T1VN  
    vpT\ CjXHZ  
    WARNING: Boundary constraints on compensators will be ignored. F?FfRzZ[  
    z#`Qfvu6Hi  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm |N6.:K[`  
    Mode                : Sensitivities ;<T,W[3J  
    Sampling            : 2 #/H2p`5  
    Nominal Criterion   : 0.54403234 ' e!WZvr  
    Test Wavelength     : 0.6328 vN_ 8qzWk  
    /%jX=S.5h<  
    x%ccNP0  
    Fields: XY Symmetric Angle in degrees Q;z!]hjBM  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY pZ*%zt]-a  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 -@]b7J?`k  
    8BZ&-j{  
    Sensitivity Analysis: :EYUBtTj  
    &M3KJ I0L  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| \5j}6Wj  
    Type                      Value      Criterion        Change          Value      Criterion        Change W?wt$'  
    Fringe tolerance on surface 1 =<PEvIn  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ^ZS!1%1  
    Change in Focus                :      -0.000000                            0.000000 %LmsywPPp  
    Fringe tolerance on surface 2 g2==`f!i  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 (dyY@={q  
    Change in Focus                :       0.000000                            0.000000 x3U>5F@  
    Fringe tolerance on surface 3 +03/A`PKrB  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 |w#~v%w  
    Change in Focus                :      -0.000000                            0.000000 CSW+UaE  
    Thickness tolerance on surface 1 cvT@`1  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Svo\+S  
    Change in Focus                :       0.000000                            0.000000 q o^mp  
    Thickness tolerance on surface 2 v ?,@e5GZ  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 .:Sk=r4u\  
    Change in Focus                :       0.000000                           -0.000000 R)SY#*Y  
    Decenter X tolerance on surfaces 1 through 3 q7soV(P  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 1 \aTA,  
    Change in Focus                :       0.000000                            0.000000 /!;v$es S  
    Decenter Y tolerance on surfaces 1 through 3 d@a<Eq  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 yVXVHCB  
    Change in Focus                :       0.000000                            0.000000 [ "3s  
    Tilt X tolerance on surfaces 1 through 3 (degrees) IqepR >5t  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 7hPwa3D^  
    Change in Focus                :       0.000000                            0.000000 L$);50E  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) v)gMNzt  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 +zLw%WD[l  
    Change in Focus                :       0.000000                            0.000000 3< 6h~ek )  
    Decenter X tolerance on surface 1 9v-Y*\!w.  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 :HY =^$\  
    Change in Focus                :       0.000000                            0.000000 'PFjZGaKR  
    Decenter Y tolerance on surface 1 W|zPV`  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 o^"OKHU,S0  
    Change in Focus                :       0.000000                            0.000000 +Q);t,  
    Tilt X tolerance on surface (degrees) 1 kF,ME5%  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 $- %um  
    Change in Focus                :       0.000000                            0.000000 ]63! Wc  
    Tilt Y tolerance on surface (degrees) 1 {=Jo!t;f  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 HRM-r~2:-]  
    Change in Focus                :       0.000000                            0.000000 C$C>RYE?.  
    Decenter X tolerance on surface 2 :X-S&S X0  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 iOb7g@=  
    Change in Focus                :       0.000000                            0.000000 9c,/490Q  
    Decenter Y tolerance on surface 2 c[ 0`8s!  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 (^g XO  
    Change in Focus                :       0.000000                            0.000000 uCuB>x&  
    Tilt X tolerance on surface (degrees) 2 w >2G@  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7 wEv`5  
    Change in Focus                :       0.000000                            0.000000 a.?U $F  
    Tilt Y tolerance on surface (degrees) 2 lP]Y^Gz  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ybFxz  
    Change in Focus                :       0.000000                            0.000000 O_.!qk1R  
    Decenter X tolerance on surface 3 8c9<kGm$E  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 z^&$6c_  
    Change in Focus                :       0.000000                            0.000000 I"lzOD; eI  
    Decenter Y tolerance on surface 3 CP%^)LX *  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 7D:rq 8$\  
    Change in Focus                :       0.000000                            0.000000 v_/<f&r  
    Tilt X tolerance on surface (degrees) 3 NR k~  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 F |5Au>t  
    Change in Focus                :       0.000000                            0.000000 MY c&  
    Tilt Y tolerance on surface (degrees) 3 ^_P?EJ,)`  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 TKsP#Dt/  
    Change in Focus                :       0.000000                            0.000000 n@;B_Bt7  
    Irregularity of surface 1 in fringes U\j g X  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 )b2O!p  
    Change in Focus                :       0.000000                            0.000000 ~a`  xI  
    Irregularity of surface 2 in fringes i(cKg&+ktd  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Tt{z_gU6  
    Change in Focus                :       0.000000                            0.000000 rrj.]^E_~  
    Irregularity of surface 3 in fringes o'(BL:8s  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 xypgG;`\  
    Change in Focus                :       0.000000                            0.000000 \**j \m   
    Index tolerance on surface 1 } -;)G~h/"  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 eQ8t.~5;-  
    Change in Focus                :       0.000000                            0.000000 S`FIb'J  
    Index tolerance on surface 2 SN L-6]j  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 iJ8Z^=>  
    Change in Focus                :       0.000000                           -0.000000 CZeZk  
    H7;, Kr  
    Worst offenders: R0tT4V+  
    Type                      Value      Criterion        Change X _@|+d  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Mz2TwU_  
    TSTY   2             0.20000000     0.35349910    -0.19053324 \ ya@9OA  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 rQ]JM  
    TSTX   2             0.20000000     0.35349910    -0.19053324 vGh>1U:  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 MO7R3PP  
    TSTY   1             0.20000000     0.42678383    -0.11724851 vBF9!6X.  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 a*.#Zgy:lK  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ?H@<8Ra=3  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 0^u Ut-  
    TSTY   3             0.20000000     0.42861670    -0.11541563 L;j++^p  
    Lkx~>U   
    Estimated Performance Changes based upon Root-Sum-Square method: +>!nqp  
    Nominal MTF                 :     0.54403234 C<(oaeQY  
    Estimated change            :    -0.36299231 \( {'Xo >(  
    Estimated MTF               :     0.18104003 3Xd:LDZ{  
    sw$uZ$$~#  
    Compensator Statistics: @/^mFqr2  
    Change in back focus: z5M6  
    Minimum            :        -0.000000 O]@#53)Tz  
    Maximum            :         0.000000 ][?J8F  
    Mean               :        -0.000000 &b5(Su  
    Standard Deviation :         0.000000 -XV+F@`Md  
    id5`YA$  
    Monte Carlo Analysis: =|IlORf<  
    Number of trials: 20 *. |%uf.  
    AzXLlQ  
    Initial Statistics: Normal Distribution kV?fie<\)  
    *w*>\ZhOm  
      Trial       Criterion        Change F/>\uzu  
          1     0.42804416    -0.11598818 \ DZ.#=d  
    Change in Focus                :      -0.400171 XJ3sqcS  
          2     0.54384387    -0.00018847 JRFUNy1+e1  
    Change in Focus                :       1.018470 _r\M}lDh*  
          3     0.44510003    -0.09893230 *OFG3uM  
    Change in Focus                :      -0.601922 =VuSi(d;e{  
          4     0.18154684    -0.36248550 9+N%Io?!  
    Change in Focus                :       0.920681 0`c{9gY.  
          5     0.28665820    -0.25737414 =tt3nfZ9  
    Change in Focus                :       1.253875 `DgK$QM  
          6     0.21263372    -0.33139862 wv{ Qx^  
    Change in Focus                :      -0.903878 HV/:OCK  
          7     0.40051424    -0.14351809 AK&>3D  
    Change in Focus                :      -1.354815 V27RK-.N!  
          8     0.48754161    -0.05649072 U[?_|=~7  
    Change in Focus                :       0.215922 N2A6C$s  
          9     0.40357468    -0.14045766 si6CWsb_f  
    Change in Focus                :       0.281783 QE[<Y3M  
         10     0.26315315    -0.28087919 `<se&IZE  
    Change in Focus                :      -1.048393 =cjO]  
         11     0.26120585    -0.28282649 }5oI` 9VT  
    Change in Focus                :       1.017611 QWfSm^ t  
         12     0.24033815    -0.30369419 |3,WiK='  
    Change in Focus                :      -0.109292 H@xS<=:lM  
         13     0.37164046    -0.17239188 ySO\9#Ho  
    Change in Focus                :      -0.692430 r@zT!.sc!  
         14     0.48597489    -0.05805744 \N0vA~N.  
    Change in Focus                :      -0.662040 z6E =%-`  
         15     0.21462327    -0.32940907 ,*6K3/kW  
    Change in Focus                :       1.611296 0N>K4ho6{  
         16     0.43378226    -0.11025008 EA6l11{Gk1  
    Change in Focus                :      -0.640081 ;NRh0)%|o  
         17     0.39321881    -0.15081353 ; o_0~l=-/  
    Change in Focus                :       0.914906 [ZSC]w^  
         18     0.20692530    -0.33710703 o6O-\d7^M  
    Change in Focus                :       0.801607 f- 9t  
         19     0.51374068    -0.03029165 fS4W*P[B3  
    Change in Focus                :       0.947293 @y;VV*  
         20     0.38013374    -0.16389860 ^*.$@M  
    Change in Focus                :       0.667010 *%KIq/V  
    63u%=-T%a  
    Number of traceable Monte Carlo files generated: 20 ]}rNxT4<  
    x0Loid\f  
    Nominal     0.54403234 +M I{B="7.  
    Best        0.54384387    Trial     2 >t cEx(  
    Worst       0.18154684    Trial     4 gp`@dn';  
    Mean        0.35770970 `3T=z{HR9g  
    Std Dev     0.11156454 (y>N\xS9  
    K)Lo Z^x0)  
    *FC8=U2\X  
    Compensator Statistics: ,R`CAf%*  
    Change in back focus: ,6g{-r-2  
    Minimum            :        -1.354815 > U?\WgE$  
    Maximum            :         1.611296 St%x\[D  
    Mean               :         0.161872 (?1$  
    Standard Deviation :         0.869664 iLSUz j`  
    'xqyG XI  
    90% >       0.20977951               x7zc3%T's  
    80% >       0.22748071               (t@)`N{  
    50% >       0.38667627               Y`ip. Nx  
    20% >       0.46553746               06.%9R{  
    10% >       0.50064115                [y`G p#  
    6P _+:Mf  
    End of Run. X.4WVI  
    .2JZ7  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Ljz)%y[s  
    9/0H,qZc  
    u?72]?SM  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 nb/q!8  
    9abUh3  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 H[KX xNYZ_  
    80% >       0.22748071                 UiV#w#&P  
    50% >       0.38667627                 M(+Pd_c6  
    20% >       0.46553746                 /a32QuS  
    10% >       0.50064115 M%ecWr!tj  
    =p.avAuSn  
    最后这个数值是MTF值呢,还是MTF的公差? moxmQ>xoH  
    WZ ?>F  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   V6dq8Z"h  
    dnD@BQ  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : M`al~9  
    90% >       0.20977951                 D*2*FDGI  
    80% >       0.22748071                 mWZP.w^-  
    50% >       0.38667627                 *7H *epUa  
    20% >       0.46553746                 $=diG  
    10% >       0.50064115 P^"RH&ZQJ  
    ....... {Ni]S$7  
    &!4E3&+2m  
    EGgw#JAi#t  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   l4i 51S"  
    Mode                : Sensitivities $"NH{%95}  
    Sampling            : 2 Kd 1=mC  
    Nominal Criterion   : 0.54403234 oS$7k3s fj  
    Test Wavelength     : 0.6328 xdbzp U  
    aHu0z:  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? \^,Jh|T  
    y _apT<P  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试