切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16890阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ?ix0n,m  
    w&:h^u  
    YM+}Mmu  
    -^\k+4;  
    然后添加了默认公差分析,基本没变 q`9~F4\  
    %aL>n=$  
    #BlH)Cv  
    q)<5&|V  
    然后运行分析的结果如下: |FPx8b;#  
    3=sA]j-+(  
    Analysis of Tolerances Fk=_Q LI  
    P{QRmEE  
    File : E:\光学设计资料\zemax练习\f500.ZMX Mk,8v],-Tj  
    Title: 2MB\!fh  
    Date : TUE JUN 21 2011 b^hCm`2w*  
    Z2*hQ`eE  
    Units are Millimeters. +=u*!6S  
    All changes are computed using linear differences. 8*6J\FE<p  
    .$v]B xu  
    Paraxial Focus compensation only. d'Gv\i&e  
    3S'V>:  
    WARNING: Solves should be removed prior to tolerancing. fa5($jJ&  
    If!0w ;h  
    Mnemonics: De:w(Rm  
    TFRN: Tolerance on curvature in fringes. v`beql  
    TTHI: Tolerance on thickness. $V`O%Sz  
    TSDX: Tolerance on surface decentering in x. B;W=61d  
    TSDY: Tolerance on surface decentering in y. Z4h P  
    TSTX: Tolerance on surface tilt in x (degrees). as o8  
    TSTY: Tolerance on surface tilt in y (degrees). >k_Z]J6Pd  
    TIRR: Tolerance on irregularity (fringes). WMh'<'w N_  
    TIND: Tolerance on Nd index of refraction. j] M)i:n  
    TEDX: Tolerance on element decentering in x. pok,`yW\  
    TEDY: Tolerance on element decentering in y. ufEt"P-X.  
    TETX: Tolerance on element tilt in x (degrees). 8 _`Lx_R  
    TETY: Tolerance on element tilt in y (degrees). ;J?^M!l2=  
    /:awPYGH<1  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. @$+l ^"#-]  
    FopD/D{  
    WARNING: Boundary constraints on compensators will be ignored. ~}4H=[Zu  
    sPc\xY  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm B#EF/\5  
    Mode                : Sensitivities 36Wuc@<H  
    Sampling            : 2 _;LHC;,:  
    Nominal Criterion   : 0.54403234 9Cf^Q3)5o  
    Test Wavelength     : 0.6328 #Kn7 xn[  
    hh:)"<[  
    ax7 M  
    Fields: XY Symmetric Angle in degrees "lN<v=  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 1Rp|*>  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 )](8 {}wo  
    i Cv &<C@  
    Sensitivity Analysis: K<+AJ(C  
     pLyX9C  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| TU[f"!z^  
    Type                      Value      Criterion        Change          Value      Criterion        Change _DJ0 MR~3  
    Fringe tolerance on surface 1 \?qXscq  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 8 LaZ5  
    Change in Focus                :      -0.000000                            0.000000 G ROl9xp2  
    Fringe tolerance on surface 2 rM>&! ?y+  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 `I m;@_J  
    Change in Focus                :       0.000000                            0.000000 JmN;v|wF:c  
    Fringe tolerance on surface 3 XTZWbhNF  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 uLL#(bhDr  
    Change in Focus                :      -0.000000                            0.000000 A9tQb:  
    Thickness tolerance on surface 1 bdcuO)3  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 zWjGGTP~3&  
    Change in Focus                :       0.000000                            0.000000 hk,Q=};  
    Thickness tolerance on surface 2 )]qFI"B7  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Y|B/(  
    Change in Focus                :       0.000000                           -0.000000 nMVThN*I g  
    Decenter X tolerance on surfaces 1 through 3 }T(|\ X  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 eh)J'G]G  
    Change in Focus                :       0.000000                            0.000000 t.knYO)  
    Decenter Y tolerance on surfaces 1 through 3 R9=,T0Y p  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ={feN L  
    Change in Focus                :       0.000000                            0.000000 dm,bZHo  
    Tilt X tolerance on surfaces 1 through 3 (degrees) "?avb`YU'  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 $L`7(0U-  
    Change in Focus                :       0.000000                            0.000000 %Yd}},X_E  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) mX|AptND  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 QAb[M\G  
    Change in Focus                :       0.000000                            0.000000 8q tNK> D  
    Decenter X tolerance on surface 1 "aa6W  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 1 !\pwd@{  
    Change in Focus                :       0.000000                            0.000000 -@J;FjrXmP  
    Decenter Y tolerance on surface 1 IOmIkx&`GP  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 cwpDad[Kx  
    Change in Focus                :       0.000000                            0.000000 da[l[b;  
    Tilt X tolerance on surface (degrees) 1 %LVk%kz  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 E176O[(V=  
    Change in Focus                :       0.000000                            0.000000 {z.}u5N  
    Tilt Y tolerance on surface (degrees) 1 Ogjjjy84vM  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 5#2vSq!H  
    Change in Focus                :       0.000000                            0.000000 ;#Mq=Fr-SG  
    Decenter X tolerance on surface 2 MGmtA(  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 +Z{ 4OJK  
    Change in Focus                :       0.000000                            0.000000 y>~Ke UC  
    Decenter Y tolerance on surface 2 f-{[ushj  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 1W/= =+%I  
    Change in Focus                :       0.000000                            0.000000 =,0E3:X^  
    Tilt X tolerance on surface (degrees) 2 SH`"o  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 !J:DBtGT  
    Change in Focus                :       0.000000                            0.000000 LI nN-b#  
    Tilt Y tolerance on surface (degrees) 2 xaeY^"L  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 UiYA#m  
    Change in Focus                :       0.000000                            0.000000 *dKA/.g  
    Decenter X tolerance on surface 3 (U7%Z<  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 jR/X}XQtY  
    Change in Focus                :       0.000000                            0.000000 7q67_u? @  
    Decenter Y tolerance on surface 3 uF^+}Y ZT  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 qC3 rHT]  
    Change in Focus                :       0.000000                            0.000000 xH' H! 8  
    Tilt X tolerance on surface (degrees) 3 47icy-@kg  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 m,.d< **  
    Change in Focus                :       0.000000                            0.000000 k| jC c  
    Tilt Y tolerance on surface (degrees) 3 ~F' $p  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 "3hw]`a}  
    Change in Focus                :       0.000000                            0.000000 W)9KYI9u  
    Irregularity of surface 1 in fringes FlkAo]  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 o oS4F1ta  
    Change in Focus                :       0.000000                            0.000000 PGw"\-F  
    Irregularity of surface 2 in fringes 0{B5C[PTG  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 i_=P!%,  
    Change in Focus                :       0.000000                            0.000000 s]2k@3|e  
    Irregularity of surface 3 in fringes GN~:rdd  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 S$$:G$j  
    Change in Focus                :       0.000000                            0.000000 U2Ur N?T  
    Index tolerance on surface 1 @:c 1+  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 1DLQ Zq  
    Change in Focus                :       0.000000                            0.000000 zJx<]=]  
    Index tolerance on surface 2 [M;P:@  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 goHr# @  
    Change in Focus                :       0.000000                           -0.000000 lI5{]?'  
    cAiIbh>c  
    Worst offenders: 1-qQp.Wj  
    Type                      Value      Criterion        Change 4XKg3l1  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 0` S!+d  
    TSTY   2             0.20000000     0.35349910    -0.19053324 G A7  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ^ #Wf  
    TSTX   2             0.20000000     0.35349910    -0.19053324 d[o =  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 aG" UV\  
    TSTY   1             0.20000000     0.42678383    -0.11724851 (JM4W "7'  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 i "-#1vy=  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Gpgi@ Uf  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 x[>A'.m@)  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ]&9f:5',  
    :s$9#}hw,  
    Estimated Performance Changes based upon Root-Sum-Square method: )v|a:'%K_  
    Nominal MTF                 :     0.54403234 T}\U:@b  
    Estimated change            :    -0.36299231 G;^iwxzhO  
    Estimated MTF               :     0.18104003 4 bJ3uIP#  
    WUHx0I  
    Compensator Statistics: .KB*u*h  
    Change in back focus: YqDw*S{  
    Minimum            :        -0.000000 3s|tS2^4  
    Maximum            :         0.000000 fO:*85 %}7  
    Mean               :        -0.000000 _QErQ^`  
    Standard Deviation :         0.000000 f?{Y<M~]  
    F.\]Hqq  
    Monte Carlo Analysis: nTHP~]  
    Number of trials: 20 4$|G$h  
    9Qkww&VEk  
    Initial Statistics: Normal Distribution  Et- .[  
    l'o}4am  
      Trial       Criterion        Change Y8AU<M  
          1     0.42804416    -0.11598818 /g8yc'{p  
    Change in Focus                :      -0.400171 .&[nS<~`  
          2     0.54384387    -0.00018847 L@2H>Lh35  
    Change in Focus                :       1.018470 ZPMEN,Dw  
          3     0.44510003    -0.09893230 Bf-&[ 5N}  
    Change in Focus                :      -0.601922 nY*ODL  
          4     0.18154684    -0.36248550 *3k~%RM%?  
    Change in Focus                :       0.920681 V3`*LU  
          5     0.28665820    -0.25737414 PD$'xY|1=  
    Change in Focus                :       1.253875 cX&c%~  
          6     0.21263372    -0.33139862 =-:o?&64  
    Change in Focus                :      -0.903878 v |i(peA#  
          7     0.40051424    -0.14351809 WK=!<FsC$  
    Change in Focus                :      -1.354815 fe Q%L  
          8     0.48754161    -0.05649072 <<`."RY#0  
    Change in Focus                :       0.215922 '<Vvv^Er  
          9     0.40357468    -0.14045766 9u)h$VC  
    Change in Focus                :       0.281783 M9N|Ql  
         10     0.26315315    -0.28087919 2+^#<Uok  
    Change in Focus                :      -1.048393 |4'E&(BU-  
         11     0.26120585    -0.28282649 tl4;2m3w  
    Change in Focus                :       1.017611 7v?Ygtv  
         12     0.24033815    -0.30369419 x/Ds`\  
    Change in Focus                :      -0.109292 q&N&n%rbm  
         13     0.37164046    -0.17239188 *".7O*jjV  
    Change in Focus                :      -0.692430 Dho~6K }"  
         14     0.48597489    -0.05805744 eR}d"F4W  
    Change in Focus                :      -0.662040 I%(+tJ  
         15     0.21462327    -0.32940907 NKMB,b  
    Change in Focus                :       1.611296 c '(]n]a%  
         16     0.43378226    -0.11025008 r|#4+'  
    Change in Focus                :      -0.640081  <Nw?9P  
         17     0.39321881    -0.15081353 $DQ -.WI  
    Change in Focus                :       0.914906 a{8GT2h`4  
         18     0.20692530    -0.33710703 mDq0 1fU4  
    Change in Focus                :       0.801607 '}OrFN  
         19     0.51374068    -0.03029165 Uvuvr_IP  
    Change in Focus                :       0.947293 ~k J#IA  
         20     0.38013374    -0.16389860 : i(h[0  
    Change in Focus                :       0.667010 LCdc7  
    wY=ky629  
    Number of traceable Monte Carlo files generated: 20 )Q\;N C=4  
    ud.S, 8Sy  
    Nominal     0.54403234 J:Qp(s-N^:  
    Best        0.54384387    Trial     2 :wF(([&4p!  
    Worst       0.18154684    Trial     4 Fdzd!r1 v  
    Mean        0.35770970 N@)g3mX>  
    Std Dev     0.11156454 T JVNR_x  
    eHjR/MMr_  
    %TR->F  
    Compensator Statistics: 7.=u:PK7kM  
    Change in back focus: g\^(>Ouc  
    Minimum            :        -1.354815 C :e 'wmA  
    Maximum            :         1.611296 9~4Kbmr>q  
    Mean               :         0.161872 z1L.  
    Standard Deviation :         0.869664 &,#VhT![  
    `P GWu1/  
    90% >       0.20977951               \/,SH?>4x  
    80% >       0.22748071               P EbB0GL  
    50% >       0.38667627               'LX=yL]I  
    20% >       0.46553746               B8P%4@T  
    10% >       0.50064115                Vk-_v5  
    ; lK2]  
    End of Run. [Y:HVr,  
    4RzG3CJdS  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 n =v %}@f2  
    iCc \p2p  
    {jv1hKTa  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 jb*#!m.l  
    B(>_.x#kv  
    不吝赐教
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 .K0BK)axO  
    80% >       0.22748071                 .3Ap+V8?  
    50% >       0.38667627                 !cq4+0{O;&  
    20% >       0.46553746                 P_Z o}.{  
    10% >       0.50064115 9 V;m;sz  
    G(4k#jB  
    最后这个数值是MTF值呢,还是MTF的公差? 00Rk%QV  
    ?@u &3/&  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   j^k{~]+_^]  
    ?^7~|?v  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ](O!6_'d  
    90% >       0.20977951                 %++q+pa  
    80% >       0.22748071                 ]_ _M*  
    50% >       0.38667627                 6Y=$7%z  
    20% >       0.46553746                 4~ iKo  
    10% >       0.50064115 i\3`?d  
    ....... ?2i``-|Wa  
    v<c8qg  
    *AJW8tIP  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   8'f:7KF  
    Mode                : Sensitivities Xl}>mbB  
    Sampling            : 2 Dl7#h,GTc<  
    Nominal Criterion   : 0.54403234 .-o$ IQsS  
    Test Wavelength     : 0.6328 bclA+!1  
    _kar5B$  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? z;Kyg}  
    aiz_6@Qfz*  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试