切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16799阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 %zQ2:iT5@=  
    T&*eOr  
    K#)bjxz  
    OfLM  
    然后添加了默认公差分析,基本没变 4#@0T"T~M  
    {~1M  
    Dauo(Uhuo  
    ^Kum%<[i  
    然后运行分析的结果如下: =U_ @zDD@V  
    d<?X3&J  
    Analysis of Tolerances x`3. Wu\  
    5j1 IH,yW  
    File : E:\光学设计资料\zemax练习\f500.ZMX 0gi}"v  
    Title: ASM1Y]'Z  
    Date : TUE JUN 21 2011 _<Vg[ -:1  
    `#<eA*^g5  
    Units are Millimeters. J{x##p<F$  
    All changes are computed using linear differences. |vT=Nnu  
    c0hdLl;5  
    Paraxial Focus compensation only. i59k"pNm  
    y|LXDq4Wj  
    WARNING: Solves should be removed prior to tolerancing. #PPsRKj3c  
    ugRV5bUk  
    Mnemonics: KK .cDAR  
    TFRN: Tolerance on curvature in fringes. /Sh4pu"'  
    TTHI: Tolerance on thickness. BDnBBbBrz  
    TSDX: Tolerance on surface decentering in x. A1 b6Zt  
    TSDY: Tolerance on surface decentering in y. A7e_w 7?a  
    TSTX: Tolerance on surface tilt in x (degrees). p+5#dbyr  
    TSTY: Tolerance on surface tilt in y (degrees). :.C)7( 8S  
    TIRR: Tolerance on irregularity (fringes). GdL4|xv  
    TIND: Tolerance on Nd index of refraction. ":z@c,  
    TEDX: Tolerance on element decentering in x. #Z#_!o  
    TEDY: Tolerance on element decentering in y. eKS:7:X  
    TETX: Tolerance on element tilt in x (degrees). >sB=\  
    TETY: Tolerance on element tilt in y (degrees). d`<#}-nh  
    X.:_"+I;  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. >02i8:Tp5K  
    %PSz o8.l  
    WARNING: Boundary constraints on compensators will be ignored. X%*brl$D  
    ~F=#}6kg_  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm IcO9V<Q|  
    Mode                : Sensitivities R|6RI}  
    Sampling            : 2   -kV|  
    Nominal Criterion   : 0.54403234 ]Oig ..LJ  
    Test Wavelength     : 0.6328 XC 57];-  
    Qdh"X^^  
    B44]NsYks~  
    Fields: XY Symmetric Angle in degrees \qRjXadj  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY R20a(4 m  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 /{49I,  
    60(}_%  
    Sensitivity Analysis: \>w@=bq26  
    ]5aux >.n  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| Y+}OClS  
    Type                      Value      Criterion        Change          Value      Criterion        Change 5Q2TT $P  
    Fringe tolerance on surface 1 !Q<8c =f  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 HFpjNR  
    Change in Focus                :      -0.000000                            0.000000 xuw//F  
    Fringe tolerance on surface 2 _D!M nTK  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 mNGb} lR  
    Change in Focus                :       0.000000                            0.000000 l;.[W|  
    Fringe tolerance on surface 3 pqRO[XEp2  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 uQXs>JuD  
    Change in Focus                :      -0.000000                            0.000000 q{jk.:;'  
    Thickness tolerance on surface 1 ,S7~=S  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 >MBn2(\B;  
    Change in Focus                :       0.000000                            0.000000 P6.)P|n7=  
    Thickness tolerance on surface 2 6kgCS{MZ  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 '33Yl+h  
    Change in Focus                :       0.000000                           -0.000000 n-L]YrDPK[  
    Decenter X tolerance on surfaces 1 through 3 z{7,.S u  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 7"h=MB_  
    Change in Focus                :       0.000000                            0.000000 UEx(~>  
    Decenter Y tolerance on surfaces 1 through 3 >' BU*  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 i2`.#YJ&v  
    Change in Focus                :       0.000000                            0.000000 \= )[  
    Tilt X tolerance on surfaces 1 through 3 (degrees) x`/m>~_  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ,.1&Ff)S  
    Change in Focus                :       0.000000                            0.000000 9;m#>a@Y  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) /It.>1~2@  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 B h.6:9{  
    Change in Focus                :       0.000000                            0.000000 =6L :I x  
    Decenter X tolerance on surface 1 =rs=8Ty?S  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 vQ9 xG))  
    Change in Focus                :       0.000000                            0.000000 o3(|FN  
    Decenter Y tolerance on surface 1 :7 s#5b  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 PW~cqo B71  
    Change in Focus                :       0.000000                            0.000000 Q>#)LHX  
    Tilt X tolerance on surface (degrees) 1 6c;?`C  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 XACEt~y  
    Change in Focus                :       0.000000                            0.000000 J~nJpUyP*  
    Tilt Y tolerance on surface (degrees) 1 p~k`Z^ xY$  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 C {H'  
    Change in Focus                :       0.000000                            0.000000 #I*ht0++  
    Decenter X tolerance on surface 2 s\n,Z?m  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 T3B |r<>I  
    Change in Focus                :       0.000000                            0.000000 z}Mb4{d1  
    Decenter Y tolerance on surface 2 V2<k0@y  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 L?/M2zc9Y  
    Change in Focus                :       0.000000                            0.000000 %te'J G<  
    Tilt X tolerance on surface (degrees) 2 $6]x,Ct  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324  9\W5   
    Change in Focus                :       0.000000                            0.000000 l[!C-Tq  
    Tilt Y tolerance on surface (degrees) 2 d}^ :E  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 SFm.<^6  
    Change in Focus                :       0.000000                            0.000000 o@Cn_p^X  
    Decenter X tolerance on surface 3 b;t}7.V'%  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ix_$Ok  
    Change in Focus                :       0.000000                            0.000000 #L)4 |  
    Decenter Y tolerance on surface 3 E<fwl1<88  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 &_Xv:?  
    Change in Focus                :       0.000000                            0.000000 'f$?/5@@  
    Tilt X tolerance on surface (degrees) 3 njx\$,ruN  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 !x!L&p  
    Change in Focus                :       0.000000                            0.000000 } cH"lppX  
    Tilt Y tolerance on surface (degrees) 3 -`ys pE0?  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 pCud` :o"  
    Change in Focus                :       0.000000                            0.000000 N]P*6sf-6  
    Irregularity of surface 1 in fringes l1.Aw|'D  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 UmHJ/DI@  
    Change in Focus                :       0.000000                            0.000000 =[CS2VQ'  
    Irregularity of surface 2 in fringes i}&mz~  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 hdNZ":1s  
    Change in Focus                :       0.000000                            0.000000 u/c~PxC  
    Irregularity of surface 3 in fringes |^&2zyUj/  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 p~{%f#V  
    Change in Focus                :       0.000000                            0.000000 2l}Fg D  
    Index tolerance on surface 1 tg%WVy2  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 GE|^ryh  
    Change in Focus                :       0.000000                            0.000000 2>_LX!kyP]  
    Index tolerance on surface 2 nR|uAw  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 -uY:2  
    Change in Focus                :       0.000000                           -0.000000 5|B(K @<  
    qI/r_  
    Worst offenders: V IRv  
    Type                      Value      Criterion        Change N*4IxY'vX/  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 C&#KdvN/r  
    TSTY   2             0.20000000     0.35349910    -0.19053324 EKJc)|8  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 #I@[^^Vw  
    TSTX   2             0.20000000     0.35349910    -0.19053324 onypwfIk)t  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ObHz+qRG  
    TSTY   1             0.20000000     0.42678383    -0.11724851 07WIa@Q  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 {bsr 9.k(  
    TSTX   1             0.20000000     0.42678383    -0.11724851 WaZ@  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 tS.b5$Q  
    TSTY   3             0.20000000     0.42861670    -0.11541563 J*4_|j;Z-E  
    d=u%"36y  
    Estimated Performance Changes based upon Root-Sum-Square method: UBk 5O&  
    Nominal MTF                 :     0.54403234 "u$ ]q1S  
    Estimated change            :    -0.36299231 e+[J[<8  
    Estimated MTF               :     0.18104003 dUVTQ18F  
    Fl|&eO,e  
    Compensator Statistics: j$i8@]  
    Change in back focus: 7-0twq   
    Minimum            :        -0.000000 ~}9H<K3V  
    Maximum            :         0.000000 Jj _+YfIM  
    Mean               :        -0.000000 L08;z  
    Standard Deviation :         0.000000 ,i((;/O6  
    Ognq*[om  
    Monte Carlo Analysis: _ .   
    Number of trials: 20 [g 68O*  
    \(7#N<-  
    Initial Statistics: Normal Distribution w5JC2   
    w+TuS).  
      Trial       Criterion        Change )k<~}wvQ0  
          1     0.42804416    -0.11598818 l4.@YYzbp.  
    Change in Focus                :      -0.400171 TKutO0  
          2     0.54384387    -0.00018847 KKTfxNxJn  
    Change in Focus                :       1.018470 4 Fc1 '  
          3     0.44510003    -0.09893230 @T=HcUP)  
    Change in Focus                :      -0.601922 vT<wd#  
          4     0.18154684    -0.36248550 4]Nr$FY  
    Change in Focus                :       0.920681 zpQ/E  
          5     0.28665820    -0.25737414 x/q$RcDOm  
    Change in Focus                :       1.253875 -(,6w?  
          6     0.21263372    -0.33139862 YY>Uf1}*9  
    Change in Focus                :      -0.903878 OL+40J  
          7     0.40051424    -0.14351809 NGD2z.  
    Change in Focus                :      -1.354815 +P;D}1B#I?  
          8     0.48754161    -0.05649072 L |G k}n  
    Change in Focus                :       0.215922 ialk6i![  
          9     0.40357468    -0.14045766 ,]N%(>ot  
    Change in Focus                :       0.281783 g<5Pc,  
         10     0.26315315    -0.28087919 +}Wo=R}  
    Change in Focus                :      -1.048393 FQ ^^6Rl  
         11     0.26120585    -0.28282649 g \h7`-#t  
    Change in Focus                :       1.017611 49kia!FR  
         12     0.24033815    -0.30369419 w)>z3L m  
    Change in Focus                :      -0.109292 G~L#v AY  
         13     0.37164046    -0.17239188 <Q~7a hF  
    Change in Focus                :      -0.692430 cr;`0  
         14     0.48597489    -0.05805744 H<Taf%JT  
    Change in Focus                :      -0.662040 8$olP:d  
         15     0.21462327    -0.32940907 %*; 8m'  
    Change in Focus                :       1.611296 3@bjIX`=H  
         16     0.43378226    -0.11025008 s+~Slgl  
    Change in Focus                :      -0.640081 90v18k  
         17     0.39321881    -0.15081353 h>Pg:*N,(  
    Change in Focus                :       0.914906 [gY__  
         18     0.20692530    -0.33710703 r1?FH2Ns  
    Change in Focus                :       0.801607 vrDRSc6_  
         19     0.51374068    -0.03029165 ~7H.<kJt  
    Change in Focus                :       0.947293 Q]:%Jj2  
         20     0.38013374    -0.16389860 4}FfHgpQ  
    Change in Focus                :       0.667010 a<36`#N  
    V1U[p3J-S  
    Number of traceable Monte Carlo files generated: 20 NX",e=  
    1g.9R@Kc$  
    Nominal     0.54403234 NUtyUv  
    Best        0.54384387    Trial     2 Ox'.sq4  
    Worst       0.18154684    Trial     4 N!~NQ-Re'  
    Mean        0.35770970 HwK "qq-  
    Std Dev     0.11156454 p~co!d.q/}  
    n?tAa|_  
    zSXC  
    Compensator Statistics: [63;8l}  
    Change in back focus: pa73`Ca]  
    Minimum            :        -1.354815 >Tx;<G  
    Maximum            :         1.611296 =^M t#h."  
    Mean               :         0.161872 JOq<lb=  
    Standard Deviation :         0.869664 aH"c0 A  
    .AW*7Pp`f  
    90% >       0.20977951               :_zKUv]  
    80% >       0.22748071               C(Y6 t1  
    50% >       0.38667627               :.Sc[UI0  
    20% >       0.46553746               FI5C&d5d  
    10% >       0.50064115                DNe^_v)]|  
    @>j \~<%  
    End of Run. *xC '  
    8hp]+k_y  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 g7F Z -  
    :W.(,65c  
    mjHY-lK  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 2ow\d b  
    1ouTZ'c?  
    不吝赐教
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 =qvU9p2o  
    80% >       0.22748071                 Dn?L   
    50% >       0.38667627                 5P!17.W'u  
    20% >       0.46553746                 :u0433z:  
    10% >       0.50064115 6dUP's_  
    ='j  
    最后这个数值是MTF值呢,还是MTF的公差? W| p?KJk)  
    R YNz TA  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   5sE}B8 mF  
    /'(P{O>{j  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ,y.0 Cb0  
    90% >       0.20977951                 b6lL8KOu  
    80% >       0.22748071                 0ePZxOSjD  
    50% >       0.38667627                 CeQcnJU  
    20% >       0.46553746                 p d6d(  
    10% >       0.50064115 `uU@(  
    ....... wKYfqNCH  
    ivm.ng[  
    7mN?;X33  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   E.}Zmr#H  
    Mode                : Sensitivities 1@y?OWC  
    Sampling            : 2 y8L:nnSj  
    Nominal Criterion   : 0.54403234 >|s=l`"Xz  
    Test Wavelength     : 0.6328 #GF1MFkoS  
    qg O)@B+  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? HCu1vjU(]  
    .D)}MyKnu  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试