我现在在初学zemax的
公差分析,找了一个双胶合
透镜 }
!y5hv!_ !?=U{^|7y
hidQO h ,[)l>!0\H 然后添加了默认公差分析,基本没变
uxB` Fk^N7EJ:$
4QTHBT+2` gKQV99 然后运行分析的结果如下:
{M5t)-
|<5F08]v Analysis of Tolerances
qR_>41JU" *3rs+0 File : E:\光学设计资料\zemax练习\f500.ZMX
O1S7t)ag Title:
ts9wSx~[+ Date : TUE JUN 21 2011
tW/g0lC% Fx|`0LI+C Units are Millimeters.
IWq#W(yM All changes are computed using linear differences.
m\X\Xp~A J=t}9.H~= Paraxial Focus compensation only.
@OkoT: %,~?;JAj WARNING: Solves should be removed prior to tolerancing.
G}9f/$'3 w"wW0uE^ Mnemonics:
&9fQW?Czs TFRN: Tolerance on curvature in fringes.
/s}
"0/Y\ TTHI: Tolerance on thickness.
[
'lu;1-, TSDX: Tolerance on surface decentering in x.
}Sbk qd5 TSDY: Tolerance on surface decentering in y.
HE%/+mZN TSTX: Tolerance on surface tilt in x (degrees).
WFh.oe8
TSTY: Tolerance on surface tilt in y (degrees).
sQac%.H;`U TIRR: Tolerance on irregularity (fringes).
FK593z TIND: Tolerance on Nd index of refraction.
N)GHQlgH TEDX: Tolerance on element decentering in x.
ao"2kqa)r TEDY: Tolerance on element decentering in y.
U/^#nU., TETX: Tolerance on element tilt in x (degrees).
rpK&OR/ TETY: Tolerance on element tilt in y (degrees).
; Byt'S tP7<WGHd/ WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
PPr Pj^%z= #Uu,yHMv:; WARNING: Boundary constraints on compensators will be ignored.
L_RVHvA=M/ bo/9k 4N3 Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
T7.Iqw3p Mode : Sensitivities
{0Y6jk>I Sampling : 2
Q_|}~4_+ Nominal Criterion : 0.54403234
h_[{-WC Test Wavelength : 0.6328
d#a/J.Z$A d\l{tmte hdHz", ) Fields: XY Symmetric Angle in degrees
q.`<q # X-Field Y-Field Weight VDX VDY VCX VCY
~TEn + 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
Y?NL|cW4 H3<tsK=: Sensitivity Analysis:
P:4"~]} 5@m
,*n&[ |----------------- Minimum ----------------| |----------------- Maximum ----------------|
LhbdvJAk@ Type Value Criterion Change Value Criterion Change
Sv{n?BYq Fringe tolerance on surface 1
J<QZ)<T,& TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
$jg[6`L$ Change in Focus :
-0.000000 0.000000
w\o6G7 Fringe tolerance on surface 2
jJ$B^Y"4 TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
_d5:Y Change in Focus : 0.000000 0.000000
RI&O@?+U Fringe tolerance on surface 3
J
W@6m TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
X]p3?"7 Change in Focus : -0.000000 0.000000
Fm0d0j Thickness tolerance on surface 1
5 ix*wu`, TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
PJC(:R(j Change in Focus : 0.000000 0.000000
BZ?3=S1* Thickness tolerance on surface 2
4 k<o TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
Op ar+|p\ Change in Focus : 0.000000 -0.000000
DOKe.k Decenter X tolerance on surfaces 1 through 3
M/=36{,w- TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
1"ZtE\{
" Change in Focus : 0.000000 0.000000
5MB`yRVv Decenter Y tolerance on surfaces 1 through 3
)bOfs*S TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
9f( X7kt Change in Focus : 0.000000 0.000000
[g/D<g5O Tilt X tolerance on surfaces 1 through 3 (degrees)
MONX&$ TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Wn(!6yid Change in Focus : 0.000000 0.000000
5p[}<I{ Tilt Y tolerance on surfaces 1 through 3 (degrees)
z}!g2d TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Bdw33z*m Change in Focus : 0.000000 0.000000
#XDgvX > Decenter X tolerance on surface 1
!Zj]0,^ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
g8##Be Change in Focus : 0.000000 0.000000
I/Vw2 Decenter Y tolerance on surface 1
[ ulub| TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
PR.3EL Change in Focus : 0.000000 0.000000
UPuoIfuqI Tilt X tolerance on surface (degrees) 1
3}fOb TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
mZR3Hl$ Change in Focus : 0.000000 0.000000
6WY/[TC- Tilt Y tolerance on surface (degrees) 1
f$xXR$mjf TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
wsWFD xR Change in Focus : 0.000000 0.000000
5CFNBb%Xy Decenter X tolerance on surface 2
p"ytt|H
TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
O:wG/et Change in Focus : 0.000000 0.000000
k."p& Decenter Y tolerance on surface 2
)@N d3Z TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
13X}pnW Change in Focus : 0.000000 0.000000
H{*Dc_ Tilt X tolerance on surface (degrees) 2
Lb/GL\J) TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
Jbu2y'zE Change in Focus : 0.000000 0.000000
4b2d(x)0X Tilt Y tolerance on surface (degrees) 2
N y'\Q"Y] TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
B}iEhWO6 Change in Focus : 0.000000 0.000000
%qoS(iO`h Decenter X tolerance on surface 3
|"gL{De TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
0kkDlWkzo Change in Focus : 0.000000 0.000000
p'K`K\X Decenter Y tolerance on surface 3
j<p.#jkT TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
bC<W7qf]} Change in Focus : 0.000000 0.000000
D@bGJc0 Tilt X tolerance on surface (degrees) 3
32YbBGDN!f TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Tlw'05\{J Change in Focus : 0.000000 0.000000
Du+W7]yCl Tilt Y tolerance on surface (degrees) 3
dkC[SG`
TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
p~$cwbQ! Change in Focus : 0.000000 0.000000
vgwpuRL5b Irregularity of surface 1 in fringes
;V}:0{p TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
"h sT^sy Change in Focus : 0.000000 0.000000
'#'noB;,
Irregularity of surface 2 in fringes
UT<e/ TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
R=z]) Change in Focus : 0.000000 0.000000
|./mPV r Irregularity of surface 3 in fringes
6zi>Q?] 1 TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
')"+ a^c Change in Focus : 0.000000 0.000000
za_b jE Index tolerance on surface 1
"n%s>@$ TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
U)J5K Change in Focus : 0.000000 0.000000
4ijtx)SA Index tolerance on surface 2
JusU5 e| TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
YZol4q|ic Change in Focus : 0.000000 -0.000000
/{^k8
Q ORExI.<`W Worst offenders:
n Nt28n@ Type Value Criterion Change
80=0S^gEZ TSTY 2 -0.20000000 0.35349910 -0.19053324
&9yZfp TSTY 2 0.20000000 0.35349910 -0.19053324
jxog8E TSTX 2 -0.20000000 0.35349910 -0.19053324
1MN! TSTX 2 0.20000000 0.35349910 -0.19053324
3^sbbm.8 TSTY 1 -0.20000000 0.42678383 -0.11724851
){;XI2 TSTY 1 0.20000000 0.42678383 -0.11724851
$YSXE
: TSTX 1 -0.20000000 0.42678383 -0.11724851
y\?ey'o TSTX 1 0.20000000 0.42678383 -0.11724851
g>lZs TSTY 3 -0.20000000 0.42861670 -0.11541563
5'zXCHt TSTY 3 0.20000000 0.42861670 -0.11541563
RzEzNV AC,RS7 Estimated Performance Changes based upon Root-Sum-Square method:
or]v]*:~l Nominal MTF : 0.54403234
J&xZN8jW Estimated change : -0.36299231
Yuvi{ 0 Estimated MTF : 0.18104003
7~7L5PRW 2JfSi2T Compensator Statistics: SMN.AJ
J Change in back focus: pQz1!0 Minimum : -0.000000 bZnOX*y] Maximum : 0.000000 -#v~;Ci Mean : -0.000000 B~]Kqp7yU Standard Deviation : 0.000000 }3(!kW XM$~HG Monte Carlo Analysis:
oZ'a}kF Number of trials: 20
(80m'.X W2vL< Initial Statistics: Normal Distribution
gaF6j!p hG1:E:} Trial Criterion Change
K`4lL5oH 1 0.42804416 -0.11598818
TKDG+`TyZ Change in Focus : -0.400171
*6Wiq5M>. 2 0.54384387 -0.00018847
{EgSjxfmw Change in Focus : 1.018470
i^s Vy 3 0.44510003 -0.09893230
&uq.k{<p\ Change in Focus : -0.601922
IKD{3cVL 4 0.18154684 -0.36248550
CFtQPTw Change in Focus : 0.920681
Sc<dxY@w7- 5 0.28665820 -0.25737414
DHO]RRGV Change in Focus : 1.253875
o4Q?K.9c 6 0.21263372 -0.33139862
A}9Z%U Change in Focus : -0.903878
(5yM%H8: 7 0.40051424 -0.14351809
j}+3+ 8D Change in Focus : -1.354815
`[/#,*\ 8 0.48754161 -0.05649072
n$iX6Cd Change in Focus : 0.215922
tLE8+[
SU 9 0.40357468 -0.14045766
0m@+ &X>w Change in Focus : 0.281783
T+Oqd\05.+ 10 0.26315315 -0.28087919
,-UF5U Change in Focus : -1.048393
vW+6_41ZM 11 0.26120585 -0.28282649
Z\!,f.>g Change in Focus : 1.017611
g3^s_*A 12 0.24033815 -0.30369419
,.,8-In^ Change in Focus : -0.109292
_7c3=f83 13 0.37164046 -0.17239188
p Cz6[*kC Change in Focus : -0.692430
^z?b6kTC 14 0.48597489 -0.05805744
e(c\ U}& Change in Focus : -0.662040
:qzg?\( 15 0.21462327 -0.32940907
R"nB4R0Uh Change in Focus : 1.611296
h]4xS?6O 16 0.43378226 -0.11025008
1T^WMn:U Change in Focus : -0.640081
WtM%(8Y[] 17 0.39321881 -0.15081353
74%vNKzc~ Change in Focus : 0.914906
k/K)nH@) 18 0.20692530 -0.33710703
Eb3 ZM# Change in Focus : 0.801607
jPh<VVQ$@ 19 0.51374068 -0.03029165
5y#,z`S Change in Focus : 0.947293
(.J/Ql0Y 20 0.38013374 -0.16389860
'E|%l!xO Change in Focus : 0.667010
"j>X^vn `PWKA;W$0 Number of traceable Monte Carlo files generated: 20
.D*Qu} eg[EFI.h Nominal 0.54403234
CK_dEh2c Best 0.54384387 Trial 2
>M<3!?fW) Worst 0.18154684 Trial 4
5P,&VB8L Mean 0.35770970
{##G.n\~ Std Dev 0.11156454
is.t,&H4P] Wf~^,]9N g )hEzL0k Compensator Statistics:
.:S/x{~ Change in back focus:
:.:^\Q0 Minimum : -1.354815
]kj^T?&n. Maximum : 1.611296
+){^HC\7h Mean : 0.161872
8Km&3nCv$Q Standard Deviation : 0.869664
!(d]f0 G]lGoa}]`u 90% > 0.20977951 &V38)83a 80% > 0.22748071 !I7$e&Uz@ 50% > 0.38667627 Ycr3$n]e 20% > 0.46553746 ~Ntk-p 10% > 0.50064115 F^dJ{<yX +t!]nE# End of Run.
y0%@^^-Ru %
km<+F=~ 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
mWviWHK
j >k
;Zj (HNc9QVC'W 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
@@Ib^sB%
*yZ6" 不吝赐教