切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15590阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1075
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 .i;?8?  
    ]2&RN@  
    Nw ,|4S  
    Jz0AYiCq  
    然后添加了默认公差分析,基本没变 zk@s#_3ct  
    ~4#D G^5  
    S]}}r)  
    <RbsQ^U  
    然后运行分析的结果如下: r|z B?9Q  
    0e:j=kd)NH  
    Analysis of Tolerances ?hrz@k|  
    E&"V~  
    File : E:\光学设计资料\zemax练习\f500.ZMX gLFSZ  
    Title: [k%u$  
    Date : TUE JUN 21 2011 Tqs|2at<t  
    &\ad.O/Q  
    Units are Millimeters. b'4}=Xpn  
    All changes are computed using linear differences. ;i [;%  
    svt3gkR0  
    Paraxial Focus compensation only. }0/l48G  
    ))X"bFP!3  
    WARNING: Solves should be removed prior to tolerancing. 39 pA:3iTd  
    EIpz-"S  
    Mnemonics: 1(i%nX<U  
    TFRN: Tolerance on curvature in fringes. 8X? EB6=c  
    TTHI: Tolerance on thickness. ]W`M <hEI  
    TSDX: Tolerance on surface decentering in x. z X+i2,  
    TSDY: Tolerance on surface decentering in y. t3v_o4`&  
    TSTX: Tolerance on surface tilt in x (degrees). q&:%/?)x  
    TSTY: Tolerance on surface tilt in y (degrees). ,t*H: *  
    TIRR: Tolerance on irregularity (fringes). "ChJR[4@  
    TIND: Tolerance on Nd index of refraction. {EVy.F  
    TEDX: Tolerance on element decentering in x. cUw$F{|W  
    TEDY: Tolerance on element decentering in y. yr.sfPnJK  
    TETX: Tolerance on element tilt in x (degrees). E8lq2r=  
    TETY: Tolerance on element tilt in y (degrees). p&2d&;Qo0  
    [s] ZT  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Xe\v6gbD  
    <&((vrfa  
    WARNING: Boundary constraints on compensators will be ignored. >C5u>@%9O  
    f"4w@X2F  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Hh&qjf  
    Mode                : Sensitivities cQ`0d3  
    Sampling            : 2 ~?iQnQYI  
    Nominal Criterion   : 0.54403234 s=K?-O  
    Test Wavelength     : 0.6328 !@arPN$  
    r0pwKRE~t  
    F0kAQgUv  
    Fields: XY Symmetric Angle in degrees _0ZBG(  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY YKOj  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 3".#nN  
    u3Zu ~C  
    Sensitivity Analysis: .E7"Lfs-  
    HRCnjem/v\  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ^oE#;aS  
    Type                      Value      Criterion        Change          Value      Criterion        Change >$a;+v  
    Fringe tolerance on surface 1 ~g@}A  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 5Z:qU{[  
    Change in Focus                :      -0.000000                            0.000000 \W\*'C8q\  
    Fringe tolerance on surface 2 3m&  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 #\K"FE0PGz  
    Change in Focus                :       0.000000                            0.000000 sfy}J1xIL  
    Fringe tolerance on surface 3 nuA 0%K  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 *l%&/\  
    Change in Focus                :      -0.000000                            0.000000 lO0}  
    Thickness tolerance on surface 1 E},zB*5TH  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 p3T:Y_  
    Change in Focus                :       0.000000                            0.000000 Pj!f^MN  
    Thickness tolerance on surface 2 $e  uI  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 'C>sYSL  
    Change in Focus                :       0.000000                           -0.000000 f'M([gn^_  
    Decenter X tolerance on surfaces 1 through 3 z'"Y+EWN  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 =)w#?DGpj  
    Change in Focus                :       0.000000                            0.000000 $++O@C5  
    Decenter Y tolerance on surfaces 1 through 3 *!dA/sid  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 %E [HMq<H  
    Change in Focus                :       0.000000                            0.000000 Zzb?Nbf  
    Tilt X tolerance on surfaces 1 through 3 (degrees) NnU`u.$D  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 DhsvN&yNM  
    Change in Focus                :       0.000000                            0.000000 Z B!~@Vf  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) Fw}|c  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 @:>gRD  
    Change in Focus                :       0.000000                            0.000000 dI!/H&`B]  
    Decenter X tolerance on surface 1 <jM { <8-  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 G68@(<<Z  
    Change in Focus                :       0.000000                            0.000000 MY}K.^ 4^  
    Decenter Y tolerance on surface 1 uotW[L9  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 3Y&4yIx  
    Change in Focus                :       0.000000                            0.000000 Cbm^: _LR  
    Tilt X tolerance on surface (degrees) 1 6)20%*[  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 T{yJL<  
    Change in Focus                :       0.000000                            0.000000 H(y Gh  
    Tilt Y tolerance on surface (degrees) 1 K5jeazasp  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 +F2X2e)g"  
    Change in Focus                :       0.000000                            0.000000 #5{BxX&\  
    Decenter X tolerance on surface 2 L1y71+iqU  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 "{Y6.)x  
    Change in Focus                :       0.000000                            0.000000 _c5*9')-)  
    Decenter Y tolerance on surface 2 ,@Kn@%?$  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 /?Mr2!3N  
    Change in Focus                :       0.000000                            0.000000 $q .}eb0  
    Tilt X tolerance on surface (degrees) 2 g=,}j]tl  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 9b@yDq3hQ  
    Change in Focus                :       0.000000                            0.000000 RAuVRm=E  
    Tilt Y tolerance on surface (degrees) 2 N0JdU4'  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 :3b02}b7  
    Change in Focus                :       0.000000                            0.000000 .*.eY?,V  
    Decenter X tolerance on surface 3 uv^x  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 JO90TP $  
    Change in Focus                :       0.000000                            0.000000 k]`-Y E  
    Decenter Y tolerance on surface 3 4%I[.dBnM  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 >VX'`5r>uw  
    Change in Focus                :       0.000000                            0.000000 tCar:p4$  
    Tilt X tolerance on surface (degrees) 3 MX.?tN#F|H  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ErQ6a%~,  
    Change in Focus                :       0.000000                            0.000000 c& bms)Jwa  
    Tilt Y tolerance on surface (degrees) 3 Wcm8,?*  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ]]3rSXs2}J  
    Change in Focus                :       0.000000                            0.000000 (Nv -wU  
    Irregularity of surface 1 in fringes s{j A!T}  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 Z&P\}mm   
    Change in Focus                :       0.000000                            0.000000 0r8Wv,7Bo  
    Irregularity of surface 2 in fringes NK(_ &.F  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 )S/=5Uc  
    Change in Focus                :       0.000000                            0.000000 %qTIT?6'  
    Irregularity of surface 3 in fringes 1xkrh qq  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 )feZ&G]  
    Change in Focus                :       0.000000                            0.000000 l=(( >^i  
    Index tolerance on surface 1 &ODo7@v`1  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 3wcF R0f  
    Change in Focus                :       0.000000                            0.000000 ?(z"U b]  
    Index tolerance on surface 2 m]vV.pwv  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ;[(d=6{hc]  
    Change in Focus                :       0.000000                           -0.000000 E0 E K88  
    R^ P>yk8  
    Worst offenders: f fBd  
    Type                      Value      Criterion        Change n${k^e-=  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 g|7o1{   
    TSTY   2             0.20000000     0.35349910    -0.19053324 r\Kcg~D>  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 sowwXrECg@  
    TSTX   2             0.20000000     0.35349910    -0.19053324 SW'eTG  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 cC+2%q B  
    TSTY   1             0.20000000     0.42678383    -0.11724851 5,g +OY=\  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 %'Q2c'r  
    TSTX   1             0.20000000     0.42678383    -0.11724851 7')W+`o8eL  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 <c:H u{D  
    TSTY   3             0.20000000     0.42861670    -0.11541563 !2Z"Lm  
    =WBfaxL}  
    Estimated Performance Changes based upon Root-Sum-Square method: ( }Bb=~  
    Nominal MTF                 :     0.54403234 /> /e  
    Estimated change            :    -0.36299231 Gn_DIFa  
    Estimated MTF               :     0.18104003 z ynu0X  
    &>E gKL  
    Compensator Statistics: 4KnBb_w  
    Change in back focus: uLWu. Vx  
    Minimum            :        -0.000000 N'R^gL  
    Maximum            :         0.000000 WvSm!W  
    Mean               :        -0.000000 o ]z#~^w  
    Standard Deviation :         0.000000 {uoF5|O6K  
    ;l ZKgi8`  
    Monte Carlo Analysis: *kg->J  
    Number of trials: 20 Q}KOb4D  
    *X2PT(e[  
    Initial Statistics: Normal Distribution v^8sL` F  
    V K 7  
      Trial       Criterion        Change @z{SDM  
          1     0.42804416    -0.11598818 ]a4+]vLK  
    Change in Focus                :      -0.400171 kP ,8[r  
          2     0.54384387    -0.00018847 ^-[ I;P  
    Change in Focus                :       1.018470 RLB"}&SF]  
          3     0.44510003    -0.09893230 31alQ\TH  
    Change in Focus                :      -0.601922 !]82$  
          4     0.18154684    -0.36248550 =\5WYC  
    Change in Focus                :       0.920681 >RAg63!`  
          5     0.28665820    -0.25737414 tHZ"o!(S  
    Change in Focus                :       1.253875 fx[&"$X  
          6     0.21263372    -0.33139862 tZz%x?3G  
    Change in Focus                :      -0.903878 >(S)aug$1  
          7     0.40051424    -0.14351809 10 *Tk 8  
    Change in Focus                :      -1.354815 fe98 Y-e  
          8     0.48754161    -0.05649072 9&AO  
    Change in Focus                :       0.215922 'yq?xlIj  
          9     0.40357468    -0.14045766 5~@-LXqL  
    Change in Focus                :       0.281783 >19s:+  
         10     0.26315315    -0.28087919 ~$5XiY8A  
    Change in Focus                :      -1.048393 YZ4`b-  
         11     0.26120585    -0.28282649 3?]81v/  
    Change in Focus                :       1.017611 85q/|9D  
         12     0.24033815    -0.30369419 )Ak#1w&q  
    Change in Focus                :      -0.109292 PENB5+1OK  
         13     0.37164046    -0.17239188 rxu_Ssd@"  
    Change in Focus                :      -0.692430 <TtPwUX  
         14     0.48597489    -0.05805744 e8^/S^ =&d  
    Change in Focus                :      -0.662040 wTU$jd1;+  
         15     0.21462327    -0.32940907 #NYnZ^6e  
    Change in Focus                :       1.611296 A%Ka)UU+n  
         16     0.43378226    -0.11025008 O& Sk}^  
    Change in Focus                :      -0.640081 d\]KG(T  
         17     0.39321881    -0.15081353 otR7E+*3  
    Change in Focus                :       0.914906 v7wyQx+Q  
         18     0.20692530    -0.33710703 8xgBNQdPT  
    Change in Focus                :       0.801607  Jc ze.t  
         19     0.51374068    -0.03029165 B=& [Z2  
    Change in Focus                :       0.947293 _uMG?Sbx  
         20     0.38013374    -0.16389860 *m+FMyr  
    Change in Focus                :       0.667010 ISs&1`Y  
    f^B8!EY#:  
    Number of traceable Monte Carlo files generated: 20 s0f+AS|}  
    ~^Cx->l  
    Nominal     0.54403234 bXF8V  
    Best        0.54384387    Trial     2 Kgr<OL}VJ  
    Worst       0.18154684    Trial     4 @i>)x*I#AI  
    Mean        0.35770970 ?96r7C|  
    Std Dev     0.11156454 oOpEpQ}}q  
    (l{8Ix s  
    04Zdg:[3-!  
    Compensator Statistics: scH61Y8`  
    Change in back focus: 1n^N`lD8]6  
    Minimum            :        -1.354815 sT2`y$ '  
    Maximum            :         1.611296 8p%0d`sX  
    Mean               :         0.161872 e72Fz#<q  
    Standard Deviation :         0.869664 bTimJp[b  
    ,5;M(ft#  
    90% >       0.20977951               8fP2qj0  
    80% >       0.22748071               n~ad#iN  
    50% >       0.38667627               z.-yL,Rc`-  
    20% >       0.46553746               Ba m.B6-  
    10% >       0.50064115                t"GnmeH i  
    ?;~E*kzO&  
    End of Run. q< q IT  
    -@(LN%7!C  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 F,~BhKkbV  
    }? / Blr  
    >2{Y5__+e  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 z Fm`e:td  
    mc?IM(t  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 .ifz9 jM'  
    80% >       0.22748071                 p\ =T#lb  
    50% >       0.38667627                 L3Y,z3/  
    20% >       0.46553746                 1}\p:`  
    10% >       0.50064115 G%bv<_R  
    /";tkad^  
    最后这个数值是MTF值呢,还是MTF的公差? % vUU Fub  
    f9u=h}  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   $}W T"K  
    J;_4 3eS  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : t)W=0iEd9  
    90% >       0.20977951                 K^<?LXJF  
    80% >       0.22748071                 (NFrZ0  
    50% >       0.38667627                 `D%i`"~Lf&  
    20% >       0.46553746                 F3(Sb M-  
    10% >       0.50064115 &fB=&jc*j  
    ....... `C: 7 N=9  
    YtvDayR>  
    X:s~w#>R  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   \r:*`Z*y  
    Mode                : Sensitivities Brxnl,%\  
    Sampling            : 2 X(/fE?%;  
    Nominal Criterion   : 0.54403234 6V$ )ym*F  
    Test Wavelength     : 0.6328 nmiJ2edx  
    \Ebh6SRp\  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? <b"^\]l  
    J=Kv-@I>E  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试