我现在在初学zemax的
公差分析,找了一个双胶合
透镜 3Jt#
Mp S*|/txE'~Y
'L-DMNxBr !U>WAD9 然后添加了默认公差分析,基本没变
dFDf/tH #0Y_!'j
pr7lm5 ]d@>vzCO 然后运行分析的结果如下:
gGUKB2) >5:O%zQ@ Analysis of Tolerances
$7c,<= !|i #g$ File : E:\光学设计资料\zemax练习\f500.ZMX
q~[sKAh Title:
d[J_iD{ & Date : TUE JUN 21 2011
MuQ)F-GSUu PnaiSt9p?r Units are Millimeters.
5B4/2q= All changes are computed using linear differences.
G$MEVfd" F]UH\1 Paraxial Focus compensation only.
Q= fl!>P \3^ue0 WARNING: Solves should be removed prior to tolerancing.
e@anX^M; )y;7\-K0 Mnemonics:
ow{. iv\,u TFRN: Tolerance on curvature in fringes.
,!^5w,P: TTHI: Tolerance on thickness.
2M'dTXz TSDX: Tolerance on surface decentering in x.
)Hmf=eoc TSDY: Tolerance on surface decentering in y.
,NS*`F[O TSTX: Tolerance on surface tilt in x (degrees).
FA$32*v TSTY: Tolerance on surface tilt in y (degrees).
j]<K%lwp TIRR: Tolerance on irregularity (fringes).
uW[[8+t| TIND: Tolerance on Nd index of refraction.
p^|l ',e TEDX: Tolerance on element decentering in x.
HNv~ZAzBG- TEDY: Tolerance on element decentering in y.
y^`JWs, TETX: Tolerance on element tilt in x (degrees).
|?2fq&2 TETY: Tolerance on element tilt in y (degrees).
m 0vW< /B~[,ES@1 WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
-[
gT}{k! )3:0TFS}}k WARNING: Boundary constraints on compensators will be ignored.
Z%B6J>;u M 3cL
iZ%6^ Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
3U+FXK#6 Mode : Sensitivities
HdI)Z<Krp Sampling : 2
9tPRQM7 Nominal Criterion : 0.54403234
Q]/%Y[%| Test Wavelength : 0.6328
A8Q^y
AP^ jxkjPf? \"nut7";2 Fields: XY Symmetric Angle in degrees
~r5S{& # X-Field Y-Field Weight VDX VDY VCX VCY
!LwHKCj 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
-R:_o1" XgHJ Oqt Sensitivity Analysis:
0O>ClE~P G_S>{<[ |----------------- Minimum ----------------| |----------------- Maximum ----------------|
ud$-A Type Value Criterion Change Value Criterion Change
3>@VPMi Fringe tolerance on surface 1
0zB[seyE TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
</`\3t Change in Focus :
-0.000000 0.000000
\>-
M&C Fringe tolerance on surface 2
([dd)QU TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
W
H/.h$ Change in Focus : 0.000000 0.000000
(;},~( 2B Fringe tolerance on surface 3
A,c XN1V TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
V9BW@G@9 Change in Focus : -0.000000 0.000000
5MAfuHq^ Thickness tolerance on surface 1
gE#'Zv {7 TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
MkPQ@so Change in Focus : 0.000000 0.000000
&btI# Thickness tolerance on surface 2
=zcvR {Dkp TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
3>aEP5 Change in Focus : 0.000000 -0.000000
BA]$Fi.Mw Decenter X tolerance on surfaces 1 through 3
g=56|G7n TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
gYc]z5` Change in Focus : 0.000000 0.000000
Xi98:0<= Decenter Y tolerance on surfaces 1 through 3
?!U[~Gq TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
]$[sfPKA Change in Focus : 0.000000 0.000000
Wjw,LwB Tilt X tolerance on surfaces 1 through 3 (degrees)
!{t|z=Qg TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Ey|_e3Lf[ Change in Focus : 0.000000 0.000000
f|~ {j(.v Tilt Y tolerance on surfaces 1 through 3 (degrees)
7PX`kI TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
3uqhYT; Change in Focus : 0.000000 0.000000
d}h{#va* Decenter X tolerance on surface 1
=Nxkr0])! TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
0B]q /G( Change in Focus : 0.000000 0.000000
hu.o$sV3; Decenter Y tolerance on surface 1
L>h8>JvQ TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
LZRg%3.E Change in Focus : 0.000000 0.000000
ro{!X, _$, Tilt X tolerance on surface (degrees) 1
7#0buXBg TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
`.W2t5Y Change in Focus : 0.000000 0.000000
'j6O2=1 Tilt Y tolerance on surface (degrees) 1
tTLg;YjN TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
P9
<U+\z Change in Focus : 0.000000 0.000000
\xkKgI/ Decenter X tolerance on surface 2
bx8](cT_ TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
TJO$r6& Change in Focus : 0.000000 0.000000
qq| 5[I.? Decenter Y tolerance on surface 2
M Irx,d TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
27e!KG[& Change in Focus : 0.000000 0.000000
N7+L@CC6T Tilt X tolerance on surface (degrees) 2
_5jT}I<k TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
lD/9:@q\V Change in Focus : 0.000000 0.000000
Q!e560@ Tilt Y tolerance on surface (degrees) 2
?BnU0R_r] TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
@Nek;xJ Change in Focus : 0.000000 0.000000
KhHFJo[8sf Decenter X tolerance on surface 3
"La;$7ds TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
"]+g5G Change in Focus : 0.000000 0.000000
Xo34~V@( Decenter Y tolerance on surface 3
T }}2J/sj TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
qz-QVY, Change in Focus : 0.000000 0.000000
N T`S)P*? Tilt X tolerance on surface (degrees) 3
~|V^IJZ22 TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Wh)D_ Change in Focus : 0.000000 0.000000
h+FM?ct6} Tilt Y tolerance on surface (degrees) 3
f2i:I1 p(" TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
sS>b}u+v#! Change in Focus : 0.000000 0.000000
A9$x8x*Lt Irregularity of surface 1 in fringes
tJ\
$% TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
/,Xl8<~# Change in Focus : 0.000000 0.000000
&]nx^C8V; Irregularity of surface 2 in fringes
c{1;x)L TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
o|kykxcq Change in Focus : 0.000000 0.000000
;A*SuFbV Irregularity of surface 3 in fringes
zw/AZLS TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
\CL8~ Change in Focus : 0.000000 0.000000
{>f"&I<xw Index tolerance on surface 1
cMw<3u\ TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
H3A$YkK [ Change in Focus : 0.000000 0.000000
h:
' |)O Index tolerance on surface 2
f!9i6 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
m@td[^O- Change in Focus : 0.000000 -0.000000
e8F]m`{_" ;w7 mr1 Worst offenders:
] G&*HMtp Type Value Criterion Change
8>&@"j TSTY 2 -0.20000000 0.35349910 -0.19053324
95l)s], TSTY 2 0.20000000 0.35349910 -0.19053324
u^"
I3u8$ TSTX 2 -0.20000000 0.35349910 -0.19053324
cgg6E
O( TSTX 2 0.20000000 0.35349910 -0.19053324
sT M;l, TSTY 1 -0.20000000 0.42678383 -0.11724851
^3;B4tj[ TSTY 1 0.20000000 0.42678383 -0.11724851
6Y9N=\` TSTX 1 -0.20000000 0.42678383 -0.11724851
No^gKh24 TSTX 1 0.20000000 0.42678383 -0.11724851
Nd~B$venh TSTY 3 -0.20000000 0.42861670 -0.11541563
X0lPRk53( TSTY 3 0.20000000 0.42861670 -0.11541563
+V3mF_s|z .H" ?&Mf Estimated Performance Changes based upon Root-Sum-Square method:
o*cu-j3 Nominal MTF : 0.54403234
(Xd8'-G$m Estimated change : -0.36299231
aZOn01v;!& Estimated MTF : 0.18104003
X?5{2ulrI QL?_FwZL Compensator Statistics: A3jxjQ Change in back focus: fF@w:;u Minimum : -0.000000 (8duV Maximum : 0.000000 @!sK@&ow@% Mean : -0.000000 a>wCBkD Standard Deviation : 0.000000 W0qR?jc ?Nos;_/ Monte Carlo Analysis:
=8AT[.Hh Number of trials: 20
tW\yt~q, oz)[- Initial Statistics: Normal Distribution
yPN '@{ 5# o`bch?] Trial Criterion Change
uO%0rKW 1 0.42804416 -0.11598818
1Cr&6 't Change in Focus : -0.400171
po| Ux`u 2 0.54384387 -0.00018847
K d&/9<{> Change in Focus : 1.018470
DB'v7
Ij0 3 0.44510003 -0.09893230
GAz-yCJp Change in Focus : -0.601922
mUYRioNj 4 0.18154684 -0.36248550
Br1R++] Change in Focus : 0.920681
OUX7
*_ 5 0.28665820 -0.25737414
hlzB
cz* Change in Focus : 1.253875
ij"~]I 6 0.21263372 -0.33139862
a=z] tTs4 Change in Focus : -0.903878
uo9#(6 7 0.40051424 -0.14351809
)(iv#;ByL Change in Focus : -1.354815
VD;*UkapZx 8 0.48754161 -0.05649072
Un?|RF Change in Focus : 0.215922
RRL{a6(? 9 0.40357468 -0.14045766
$O"ss>8Se Change in Focus : 0.281783
vsY?q8+P 10 0.26315315 -0.28087919
T &ZQie/ Change in Focus : -1.048393
E&M(QX5 11 0.26120585 -0.28282649
d$t"Vp Change in Focus : 1.017611
Fr9/TI 12 0.24033815 -0.30369419
70'OS:J=\ Change in Focus : -0.109292
~ao:9ynY 13 0.37164046 -0.17239188
$y(;"hy Change in Focus : -0.692430
PX:#+bq1 14 0.48597489 -0.05805744
djd/QAfSC Change in Focus : -0.662040
DIC*{aBf 15 0.21462327 -0.32940907
-ng1RA> Change in Focus : 1.611296
iRQ!J1SGcG 16 0.43378226 -0.11025008
l_I)d7 Change in Focus : -0.640081
d"wA"*8~y 17 0.39321881 -0.15081353
M0V<Ay\%O Change in Focus : 0.914906
t{md&k4 18 0.20692530 -0.33710703
f ,F X# _4 Change in Focus : 0.801607
Ak'=l; 19 0.51374068 -0.03029165
$8tk|uh Change in Focus : 0.947293
'{&Q&3J_ 20 0.38013374 -0.16389860
Oa|c ?|+ Change in Focus : 0.667010
x#1Fi$. C6!F6Stn]g Number of traceable Monte Carlo files generated: 20
oC0ndp~+& X\^V{v^- Nominal 0.54403234
W06aj ~7Z Best 0.54384387 Trial 2
_CwTe=K} Worst 0.18154684 Trial 4
-3K h
>b) Mean 0.35770970
}7 N6nZj` Std Dev 0.11156454
c -w #` 4G&`&fff] a4Q@sn;] Compensator Statistics:
e3I""D{)[= Change in back focus:
6v`3/o Minimum : -1.354815
RGW@@ Maximum : 1.611296
rXx#<7` Mean : 0.161872
;!n> Standard Deviation : 0.869664
H:fKv7XL XKp&GE@Y 90% > 0.20977951 .j}]J:{% 80% > 0.22748071 f"6W ;b2L. 50% > 0.38667627 y`I>|5[` 20% > 0.46553746 \YP,}_~ 10% > 0.50064115 (W1$+X 4Aj~mA End of Run.
MN?aPpr> '$ei3 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
@16GF!.
#GzALF97 F8pA)!AH 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
<PLAAh8 8Qv s\TY 不吝赐教