切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15591阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1075
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 3Jt# Mp  
    S*|/txE'~Y  
    'L-DMNxBr  
    !U>WAD9  
    然后添加了默认公差分析,基本没变 dFDf/tH  
    #0Y_!'j  
    pr7lm5  
    ]d@>vzCO  
    然后运行分析的结果如下: gGUKB2)  
    >5:O%zQ@  
    Analysis of Tolerances $7c,<=  
    !|i #g$  
    File : E:\光学设计资料\zemax练习\f500.ZMX q~[s KAh  
    Title: d[J_iD{ &  
    Date : TUE JUN 21 2011 MuQ)F-GSUu  
    PnaiSt9p?r  
    Units are Millimeters. 5B4/2q=  
    All changes are computed using linear differences. G$MEVfd"  
    F]UH\1  
    Paraxial Focus compensation only. Q=fl!>P  
    \3^ue0  
    WARNING: Solves should be removed prior to tolerancing. e@anX^M;  
    ) y;7\-K0  
    Mnemonics: ow{.iv\,u  
    TFRN: Tolerance on curvature in fringes. ,!^5w,P:   
    TTHI: Tolerance on thickness. 2M'dT Xz  
    TSDX: Tolerance on surface decentering in x. )Hmf=eoc  
    TSDY: Tolerance on surface decentering in y. ,NS*`F[O  
    TSTX: Tolerance on surface tilt in x (degrees). FA$32*v  
    TSTY: Tolerance on surface tilt in y (degrees). j]<K%lwp  
    TIRR: Tolerance on irregularity (fringes). uW[[8+t|  
    TIND: Tolerance on Nd index of refraction. p^|l ',e  
    TEDX: Tolerance on element decentering in x. HNv~ZAzBG-  
    TEDY: Tolerance on element decentering in y. y^`JWs,  
    TETX: Tolerance on element tilt in x (degrees). |?2fq&2  
    TETY: Tolerance on element tilt in y (degrees). m 0vW<  
    /B~[,ES@1  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. -[ gT}{k!  
    )3:0TFS}}k  
    WARNING: Boundary constraints on compensators will be ignored. Z%B6J>;uM  
    3cL iZ%6^  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 3U+FXK#6  
    Mode                : Sensitivities HdI)Z<Krp  
    Sampling            : 2 9tPRQ M7  
    Nominal Criterion   : 0.54403234 Q]/%Y[%|  
    Test Wavelength     : 0.6328 A8Q^y AP^  
    jxkjPf?  
    \"nut7";2  
    Fields: XY Symmetric Angle in degrees ~r5S{&  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY !LwHKCj  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 -R:_o1"  
    XgHJ Oqt  
    Sensitivity Analysis: 0O>ClE~P  
    G_S>{<[  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ud$-A  
    Type                      Value      Criterion        Change          Value      Criterion        Change 3>@VPMi  
    Fringe tolerance on surface 1 0zB[seyE  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 </`\3t  
    Change in Focus                :      -0.000000                            0.000000 \>- M&C  
    Fringe tolerance on surface 2 ([dd)QU  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 W H/.h$  
    Change in Focus                :       0.000000                            0.000000 (;},~( 2B  
    Fringe tolerance on surface 3 A,cXN1V  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 V9BW@G@9  
    Change in Focus                :      -0.000000                            0.000000 5MAfuHq^  
    Thickness tolerance on surface 1 gE#'Zv{7  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 MkPQ@so  
    Change in Focus                :       0.000000                            0.000000 &b tI#  
    Thickness tolerance on surface 2 =zcvR {Dkp  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 3>aEP5  
    Change in Focus                :       0.000000                           -0.000000 BA]$Fi.Mw  
    Decenter X tolerance on surfaces 1 through 3 g=56|G7n  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 gYc]z5`  
    Change in Focus                :       0.000000                            0.000000 Xi98:0<=  
    Decenter Y tolerance on surfaces 1 through 3 ?!U[~Gq  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ]$[sfPKA  
    Change in Focus                :       0.000000                            0.000000 Wjw ,LwB  
    Tilt X tolerance on surfaces 1 through 3 (degrees) !{t|z=Qg  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Ey|_e3Lf[  
    Change in Focus                :       0.000000                            0.000000 f|~{j(.v  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 7PX`kI  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 3uqhYT;  
    Change in Focus                :       0.000000                            0.000000 d}h{#va*  
    Decenter X tolerance on surface 1 =Nxkr0])!  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 0B]q /G(  
    Change in Focus                :       0.000000                            0.000000 hu.o$sV3;  
    Decenter Y tolerance on surface 1 L>h8>JvQ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 LZRg%3.E  
    Change in Focus                :       0.000000                            0.000000 ro{!X,_$,  
    Tilt X tolerance on surface (degrees) 1 7#0buXBg  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 `.W2t5 Y  
    Change in Focus                :       0.000000                            0.000000 'j6O2=1  
    Tilt Y tolerance on surface (degrees) 1 tTLg;YjN  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 P9 <U+\z  
    Change in Focus                :       0.000000                            0.000000 \xkKgI/  
    Decenter X tolerance on surface 2 bx8](cT_  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 TJO$r6&  
    Change in Focus                :       0.000000                            0.000000 qq| 5[I.?  
    Decenter Y tolerance on surface 2 MIrx,d  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 27e!KG[&  
    Change in Focus                :       0.000000                            0.000000 N7+L@CC6T  
    Tilt X tolerance on surface (degrees) 2 _5jT}I<k  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 lD/9:@q\V  
    Change in Focus                :       0.000000                            0.000000 Q!e560@  
    Tilt Y tolerance on surface (degrees) 2 ?BnU0R_r]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @Nek;xJ  
    Change in Focus                :       0.000000                            0.000000 KhHFJo[8sf  
    Decenter X tolerance on surface 3 "La;$7ds  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 "]+g5G  
    Change in Focus                :       0.000000                            0.000000 Xo34~V@(  
    Decenter Y tolerance on surface 3 T }}2J/sj  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 qz-QVY,  
    Change in Focus                :       0.000000                            0.000000 N T`S)P*?  
    Tilt X tolerance on surface (degrees) 3 ~|V^IJZ22  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Wh)D_  
    Change in Focus                :       0.000000                            0.000000 h+FM?ct6}  
    Tilt Y tolerance on surface (degrees) 3 f2i:I1 p("  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 sS>b}u+v#!  
    Change in Focus                :       0.000000                            0.000000 A9$x8x*Lt  
    Irregularity of surface 1 in fringes tJ\ $%  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 /,Xl8<~#  
    Change in Focus                :       0.000000                            0.000000 &]nx^C8V;  
    Irregularity of surface 2 in fringes c{1;x)L  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 o|kykxcq  
    Change in Focus                :       0.000000                            0.000000 ;A*SuFbV  
    Irregularity of surface 3 in fringes zw/AZLS  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 \CL8~  
    Change in Focus                :       0.000000                            0.000000 {>f"&I<xw  
    Index tolerance on surface 1 cMw<3u\  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 H3A$YkK [  
    Change in Focus                :       0.000000                            0.000000 h: ' |)O  
    Index tolerance on surface 2 f!9i6  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 m@td[^O-  
    Change in Focus                :       0.000000                           -0.000000 e8F]m`{_"  
    ;w7mr1  
    Worst offenders: ] G&*HMtp  
    Type                      Value      Criterion        Change 8>&@"j  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 95l)s],  
    TSTY   2             0.20000000     0.35349910    -0.19053324 u^" I3u8$  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 cgg6E O(  
    TSTX   2             0.20000000     0.35349910    -0.19053324 sTM;l,  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ^3;B4tj[  
    TSTY   1             0.20000000     0.42678383    -0.11724851 6Y9N= \`  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 No^gKh24  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Nd~B$venh  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 X0lPRk53(  
    TSTY   3             0.20000000     0.42861670    -0.11541563 +V3mF_s|z  
    .H" ?& Mf  
    Estimated Performance Changes based upon Root-Sum-Square method: o*cu-j3  
    Nominal MTF                 :     0.54403234 (Xd8'-G$m  
    Estimated change            :    -0.36299231 aZOn01v;!&  
    Estimated MTF               :     0.18104003 X?5{2ulrI  
    QL?_FwZL  
    Compensator Statistics: A3jxjQ  
    Change in back focus: fF@w:;u  
    Minimum            :        -0.000000 (8d uV  
    Maximum            :         0.000000 @!sK@&ow@%  
    Mean               :        -0.000000 a>wCBkD  
    Standard Deviation :         0.000000 W0qR? jc  
    ?Nos;_/  
    Monte Carlo Analysis: =8AT[.Hh  
    Number of trials: 20 tW\yt~q,  
    oz) [ -  
    Initial Statistics: Normal Distribution yPN'@{ 5#  
    o`bch? ]  
      Trial       Criterion        Change uO%0rKW  
          1     0.42804416    -0.11598818 1Cr&6't  
    Change in Focus                :      -0.400171 po| Ux`u  
          2     0.54384387    -0.00018847 K d&/9<{>  
    Change in Focus                :       1.018470 DB'v7 Ij0  
          3     0.44510003    -0.09893230 GAz -yCJp  
    Change in Focus                :      -0.601922 mUYRioNj  
          4     0.18154684    -0.36248550 Br1R++]  
    Change in Focus                :       0.920681 OUX7 *_  
          5     0.28665820    -0.25737414 hlzB cz*  
    Change in Focus                :       1.253875 ij" ~]I  
          6     0.21263372    -0.33139862 a=z] tTs4  
    Change in Focus                :      -0.903878 uo9#(6  
          7     0.40051424    -0.14351809 )(iv#;ByL  
    Change in Focus                :      -1.354815 VD;*UkapZx  
          8     0.48754161    -0.05649072 Un?|RF  
    Change in Focus                :       0.215922 RRL{a6(?  
          9     0.40357468    -0.14045766 $O"ss>8Se  
    Change in Focus                :       0.281783 vsY?q8+P  
         10     0.26315315    -0.28087919 T &ZQ ie/  
    Change in Focus                :      -1.048393 E&M(QX5  
         11     0.26120585    -0.28282649 d$t"Vp  
    Change in Focus                :       1.017611 Fr9/TI  
         12     0.24033815    -0.30369419 70'OS:J=\  
    Change in Focus                :      -0.109292 ~ao:9 ynY  
         13     0.37164046    -0.17239188 $y(;"hy  
    Change in Focus                :      -0.692430 PX:#+bq1  
         14     0.48597489    -0.05805744 djd/QAfSC  
    Change in Focus                :      -0.662040 DI C*{aBf  
         15     0.21462327    -0.32940907 -ng1RA>  
    Change in Focus                :       1.611296 iRQ!J1SGcG  
         16     0.43378226    -0.11025008 l_I)d7   
    Change in Focus                :      -0.640081 d"wA"*8~y  
         17     0.39321881    -0.15081353 M0V<Ay\%O  
    Change in Focus                :       0.914906 t{md&k4  
         18     0.20692530    -0.33710703 f ,F X# _4  
    Change in Focus                :       0.801607 Ak'=l;  
         19     0.51374068    -0.03029165 $8tk|uh  
    Change in Focus                :       0.947293 '{&Q&3J_  
         20     0.38013374    -0.16389860 Oa|c ?|+  
    Change in Focus                :       0.667010 x#1 Fi$.  
    C6!F6Stn]g  
    Number of traceable Monte Carlo files generated: 20 oC0ndp~+&  
    X\^V{v^-  
    Nominal     0.54403234 W06aj ~7Z  
    Best        0.54384387    Trial     2 _CwTe=K}  
    Worst       0.18154684    Trial     4 -3Kh >b)  
    Mean        0.35770970 }7 N6n Zj`  
    Std Dev     0.11156454 c-w #`  
    4G&`&fff]  
    a4Q@sn;]  
    Compensator Statistics: e3I""D{)[=  
    Change in back focus: 6v`3/o  
    Minimum            :        -1.354815 RGW@@  
    Maximum            :         1.611296 rXx#<7`  
    Mean               :         0.161872 ; !n>  
    Standard Deviation :         0.869664 H:fKv7XL  
    XKp&GE@Y  
    90% >       0.20977951               .j}]J:{%  
    80% >       0.22748071               f"6W ;b2L.  
    50% >       0.38667627               y`I>|5[ `  
    20% >       0.46553746               \Y P,}_ ~  
    10% >       0.50064115                (W1 $+X  
    4Aj~mA  
    End of Run. MN?aPpr>  
    '$ei3  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 @16GF!.  
    #GzALF97  
    F8pA)!AH  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 <PLAAh8  
    8Qvs\TY  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 H4g8 1V=  
    80% >       0.22748071                 ~P3b5 -  
    50% >       0.38667627                 juF9:Eah  
    20% >       0.46553746                 56;u 7  
    10% >       0.50064115 g p:0Y  
    sq|\!T  
    最后这个数值是MTF值呢,还是MTF的公差? 'f( CN3.!  
    q5;dQ8Y ?  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   J"aw 1  
    w;'XqpP$*|  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : r;{$x  
    90% >       0.20977951                 BL&AZv/T  
    80% >       0.22748071                 Ao\P|K9MyL  
    50% >       0.38667627                 wN.S]  
    20% >       0.46553746                 u\ _yjv#  
    10% >       0.50064115 ]hV!lG1_  
    ....... X):7#x@uy  
    t`B@01;8A  
    *v%y;^{k[/  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   5, $6mU#=  
    Mode                : Sensitivities ;qaPK2 a8  
    Sampling            : 2 v#x`c_  
    Nominal Criterion   : 0.54403234 H^|TV]^;N  
    Test Wavelength     : 0.6328 F `7 v  
    8xENzTR  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? U> lf-iI2B  
    {_N9<i{T  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1075
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试