切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15458阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    958
    光币
    1062
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 =TP( UJ  
    <?0~1o\Ur  
    !'=15&5@  
    8wH.et25k  
    然后添加了默认公差分析,基本没变 Zs2-u^3&  
    K={qU[_O  
    <P%}|@  
    >%Ee#m  
    然后运行分析的结果如下: I NSkgOo  
    P%Ay3cR+E  
    Analysis of Tolerances f-2$ L  
    `N/RHb%  
    File : E:\光学设计资料\zemax练习\f500.ZMX T88Y qI  
    Title: !5}l&7:(MN  
    Date : TUE JUN 21 2011 hIJ)MZU|  
    6 fz}  
    Units are Millimeters. utlpY1#q/  
    All changes are computed using linear differences. ?yXAu0  
    /q\_&@  
    Paraxial Focus compensation only. ~Z$bf>[(R7  
    (IbW; bV  
    WARNING: Solves should be removed prior to tolerancing. B6}FIg)  
     6qo^2  
    Mnemonics: D~K;~nI  
    TFRN: Tolerance on curvature in fringes. hbOnlj4  
    TTHI: Tolerance on thickness. iF+RnWX\  
    TSDX: Tolerance on surface decentering in x. ?v}Bd!'+P  
    TSDY: Tolerance on surface decentering in y. E{Pgf8  
    TSTX: Tolerance on surface tilt in x (degrees). nL]^$J$  
    TSTY: Tolerance on surface tilt in y (degrees). 4\ /*jA  
    TIRR: Tolerance on irregularity (fringes). c:M$m3Cs?  
    TIND: Tolerance on Nd index of refraction. IO.<q,pP!_  
    TEDX: Tolerance on element decentering in x. 3b[jwCt  
    TEDY: Tolerance on element decentering in y. ~<qt%W?  
    TETX: Tolerance on element tilt in x (degrees). ALd;$fd qf  
    TETY: Tolerance on element tilt in y (degrees). smAC,-6 ]~  
    h7_)%U<J2  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. X7*`  
    2 4\g bv<  
    WARNING: Boundary constraints on compensators will be ignored. J#3{S]* v_  
    7q9gngT1LA  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm u3tZ[Y2 c  
    Mode                : Sensitivities ET^|z  
    Sampling            : 2 f%qt)Ick  
    Nominal Criterion   : 0.54403234 6\d X  
    Test Wavelength     : 0.6328 cm>E[SHr  
    7_KhV  
    ^ DAa%u  
    Fields: XY Symmetric Angle in degrees eo#^L}  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY @fn6<3  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 zz$q5[n  
    R -elIp  
    Sensitivity Analysis: i&+w _hD  
    v$|mo;6  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| rE!1wc>L  
    Type                      Value      Criterion        Change          Value      Criterion        Change msTB'0  
    Fringe tolerance on surface 1 9|:^k.  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 [!*xO?yCJ  
    Change in Focus                :      -0.000000                            0.000000 (hZ:X)E>  
    Fringe tolerance on surface 2 hY \{|  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 L0h G  
    Change in Focus                :       0.000000                            0.000000 \ a-CN>  
    Fringe tolerance on surface 3 U :9=3A2$x  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 4B O %{  
    Change in Focus                :      -0.000000                            0.000000 7$T8&Mh  
    Thickness tolerance on surface 1 \MYU<6{u  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 0my9l;X   
    Change in Focus                :       0.000000                            0.000000  ~Nh&.a  
    Thickness tolerance on surface 2 I ,FqN}  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 x(r+P9f\<  
    Change in Focus                :       0.000000                           -0.000000 p%RUHN3G[  
    Decenter X tolerance on surfaces 1 through 3 <DiOWi  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ,a(O`##Bn  
    Change in Focus                :       0.000000                            0.000000 ?g  }kb  
    Decenter Y tolerance on surfaces 1 through 3 xl!K;Y2<  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;lfWu U%R  
    Change in Focus                :       0.000000                            0.000000 !ng\` |8?  
    Tilt X tolerance on surfaces 1 through 3 (degrees) J 3?Dj  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 K r3];(w{  
    Change in Focus                :       0.000000                            0.000000 LdTIR]  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 71iRG*O  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 |_pl;&;:  
    Change in Focus                :       0.000000                            0.000000 j=3-Qk`"/|  
    Decenter X tolerance on surface 1 O2#S: ~h  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ,nE&Me&#J  
    Change in Focus                :       0.000000                            0.000000 C6k4g75U2  
    Decenter Y tolerance on surface 1 }$)&{d G  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ,Aa|Bd]b  
    Change in Focus                :       0.000000                            0.000000 _nX%#/{  
    Tilt X tolerance on surface (degrees) 1 h(:<(o@<  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 P>htQ  
    Change in Focus                :       0.000000                            0.000000 i,OKf Xp  
    Tilt Y tolerance on surface (degrees) 1 *wUdC  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 E%*AXkJ'dZ  
    Change in Focus                :       0.000000                            0.000000 3q~Fl=|.o  
    Decenter X tolerance on surface 2 jU$Y>S>l  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 NNX% Bq  
    Change in Focus                :       0.000000                            0.000000 ER<eX4oU  
    Decenter Y tolerance on surface 2 5#u.pu  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 'O "kt T  
    Change in Focus                :       0.000000                            0.000000 xyV]?~7  
    Tilt X tolerance on surface (degrees) 2 ?M"HXu  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 X% J%A-k]  
    Change in Focus                :       0.000000                            0.000000 \!PV*%P  
    Tilt Y tolerance on surface (degrees) 2 G2@KI-  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 v72,h  
    Change in Focus                :       0.000000                            0.000000 hZF(/4Z2  
    Decenter X tolerance on surface 3 s`Vf+ l0  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 @.o@-3k  
    Change in Focus                :       0.000000                            0.000000 +!$dO'0nt,  
    Decenter Y tolerance on surface 3 33M}>$ZH  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 {,v: GMsm  
    Change in Focus                :       0.000000                            0.000000 22I Yrk  
    Tilt X tolerance on surface (degrees) 3 $h]NXC6J  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 "yri[X  
    Change in Focus                :       0.000000                            0.000000 PN9^[X  
    Tilt Y tolerance on surface (degrees) 3 QZ0R:TY  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 $B ?? Ip?P  
    Change in Focus                :       0.000000                            0.000000 3Q$c'C  
    Irregularity of surface 1 in fringes `(T!>QVW+g  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 [D9:A  
    Change in Focus                :       0.000000                            0.000000 ylim/`u}6  
    Irregularity of surface 2 in fringes P'FKk<  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 x~(y "^ph  
    Change in Focus                :       0.000000                            0.000000 X8.y4{5  
    Irregularity of surface 3 in fringes kpT>G$s~gy  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 <[5#c*A  
    Change in Focus                :       0.000000                            0.000000 - #Jj-t_Fe  
    Index tolerance on surface 1 <|Iyt[s  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 \!7*(&yly  
    Change in Focus                :       0.000000                            0.000000 eEie?#Z/6  
    Index tolerance on surface 2 q-uLA&4  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 *s36O F!  
    Change in Focus                :       0.000000                           -0.000000 yjR)Z9t  
    .]zw*t*  
    Worst offenders: M)tv;!eQ  
    Type                      Value      Criterion        Change EFv4=OWB  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 u m{e&5jk  
    TSTY   2             0.20000000     0.35349910    -0.19053324 7A[Ogro  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 @dl<-  
    TSTX   2             0.20000000     0.35349910    -0.19053324 vhNohCt  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 s/PhXf\MN  
    TSTY   1             0.20000000     0.42678383    -0.11724851 z^9E;  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 {)uU6z {'  
    TSTX   1             0.20000000     0.42678383    -0.11724851 /6smVz@O  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 t@r#b67WJe  
    TSTY   3             0.20000000     0.42861670    -0.11541563 Jbkt'Z(&J  
    ef,F[-2^o  
    Estimated Performance Changes based upon Root-Sum-Square method: y* rY~U#3  
    Nominal MTF                 :     0.54403234 T#Fn:6_=  
    Estimated change            :    -0.36299231 _4Ii5CNNU  
    Estimated MTF               :     0.18104003 W`5a:"Vg  
    <\Vi,,  
    Compensator Statistics: 6w@,I;   
    Change in back focus: CCn/ udp@  
    Minimum            :        -0.000000 67fIIXk&  
    Maximum            :         0.000000 }*Dd/'2+1  
    Mean               :        -0.000000 dGa@<hg  
    Standard Deviation :         0.000000 -@#Pc#  
    oN4G1U Kc  
    Monte Carlo Analysis: ^}tL nF  
    Number of trials: 20 6g8M7<og9R  
    `{%-*f^  
    Initial Statistics: Normal Distribution 3 ^pYC K%  
    (A2U~j?Ry}  
      Trial       Criterion        Change 6G$/NW=L  
          1     0.42804416    -0.11598818 vD_u[j]  
    Change in Focus                :      -0.400171 wJ/ ~q)  
          2     0.54384387    -0.00018847 <TL])@da  
    Change in Focus                :       1.018470 d`UF0T  
          3     0.44510003    -0.09893230 8KZ$ F>T]>  
    Change in Focus                :      -0.601922 y>%W;r)  
          4     0.18154684    -0.36248550 ]u~Os<   
    Change in Focus                :       0.920681 |c=d;+  
          5     0.28665820    -0.25737414 E}Ljo  
    Change in Focus                :       1.253875 7Onk!NH  
          6     0.21263372    -0.33139862 8b{U tT  
    Change in Focus                :      -0.903878 QaIi.* tic  
          7     0.40051424    -0.14351809 CJ0$;et  
    Change in Focus                :      -1.354815 bd.j,4^  
          8     0.48754161    -0.05649072 "Jf4N  
    Change in Focus                :       0.215922 2$iw/ r  
          9     0.40357468    -0.14045766 M\9IlV?'  
    Change in Focus                :       0.281783 _d/GdeLs  
         10     0.26315315    -0.28087919 ]X/O IfdWe  
    Change in Focus                :      -1.048393 4 iik5  
         11     0.26120585    -0.28282649 Vn@A]Jx^  
    Change in Focus                :       1.017611 +yt6.L  
         12     0.24033815    -0.30369419  {`tHJ|8  
    Change in Focus                :      -0.109292 5 Xk~,%-C  
         13     0.37164046    -0.17239188 LH bZjZ2  
    Change in Focus                :      -0.692430 l.sm~/  
         14     0.48597489    -0.05805744 s z;=mMr/Z  
    Change in Focus                :      -0.662040 gQu\[e%mVo  
         15     0.21462327    -0.32940907 *X%?3"WH8  
    Change in Focus                :       1.611296  ~WzMK  
         16     0.43378226    -0.11025008 SnH:(tO[X  
    Change in Focus                :      -0.640081 Fp wlV}:  
         17     0.39321881    -0.15081353 1hF2eNh  
    Change in Focus                :       0.914906 (MZ A  
         18     0.20692530    -0.33710703 e6Wl7&@6  
    Change in Focus                :       0.801607 3S;>ki4(0  
         19     0.51374068    -0.03029165 /,=Wy"0TJ  
    Change in Focus                :       0.947293 jn0t-":  
         20     0.38013374    -0.16389860 5hlJbWJa  
    Change in Focus                :       0.667010 <{3q{VW*  
    f<Va<TL6-  
    Number of traceable Monte Carlo files generated: 20 !a.3OpQ  
    hz&^_ G6`  
    Nominal     0.54403234 ZJ;wRd@  
    Best        0.54384387    Trial     2 /%2:+w  
    Worst       0.18154684    Trial     4 9OE_?R0c!  
    Mean        0.35770970 E!:.G+SEl  
    Std Dev     0.11156454 BnY\FQ)K  
    MBnK&GS  
    .%-6&%1  
    Compensator Statistics: <|mE9u  
    Change in back focus: de3yP,  
    Minimum            :        -1.354815 8Sd?b5|G~  
    Maximum            :         1.611296 AT2NC6{M  
    Mean               :         0.161872 ;mCGh~?G  
    Standard Deviation :         0.869664 8A`p  
    : OS mr  
    90% >       0.20977951               }Bv30V2-(  
    80% >       0.22748071               'p4da2%  
    50% >       0.38667627               w*|=k~z  
    20% >       0.46553746               Requ.?!fG;  
    10% >       0.50064115                %!N2!IiVs  
    ' lQ  
    End of Run. Q' OuZKhA  
    fRca"vV  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 j TB<E=WC  
    [| c@Yw  
    -oaG|  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 wj5qQ]WC  
    *!wO:< -  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 pJ)+}vascR  
    80% >       0.22748071                 `lV  
    50% >       0.38667627                 8f6;y1!;  
    20% >       0.46553746                 U||w6:W5  
    10% >       0.50064115 CLFxq@%nu~  
    !txELA~24  
    最后这个数值是MTF值呢,还是MTF的公差? w50Bq&/jX  
    7/U<\(V!g  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   N8MlT \+r  
    3Q!J9t5dc  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : gy,TT<1)  
    90% >       0.20977951                 "O*W]e  
    80% >       0.22748071                 F)5B[.ce  
    50% >       0.38667627                 &pY G   
    20% >       0.46553746                 $@qs(Xwr  
    10% >       0.50064115 n\"LN3  
    ....... \`p~b(  
    v yLAs;  
    -z 5k4Y  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   5<?c_l9X^  
    Mode                : Sensitivities hCvLwZ?LF  
    Sampling            : 2 aLk2#1$g  
    Nominal Criterion   : 0.54403234 (DMnwqr  
    Test Wavelength     : 0.6328 6BN(^y#-X  
    -%V-'X5  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 1LIV/l^}f  
    Cl.T'A$  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试