切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16051阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 nomu$|I  
    O_qu;Dx!  
    i0i.sizu  
    .LWOM8)  
    然后添加了默认公差分析,基本没变 F+lm[4n  
    V]+o)A$  
    v$qpcu#o  
    Nck!z8  
    然后运行分析的结果如下: ,?P8m"  
    L3-<Kop  
    Analysis of Tolerances %V@Rk.<  
    _%AJmt}  
    File : E:\光学设计资料\zemax练习\f500.ZMX hWl""66+5  
    Title: 6GvhEulYR  
    Date : TUE JUN 21 2011 ]C9%]`  
    5q0BG!A%T  
    Units are Millimeters. IwZZewb-a  
    All changes are computed using linear differences. aNuZ/9O  
    WO.}DUfG+  
    Paraxial Focus compensation only.  |JirBz  
    C5.\;;7^&  
    WARNING: Solves should be removed prior to tolerancing. p,M3#^ q  
    p~v2XdR  
    Mnemonics: AH"g^ gw~T  
    TFRN: Tolerance on curvature in fringes. TmRrub  
    TTHI: Tolerance on thickness. ^bZ<9}  
    TSDX: Tolerance on surface decentering in x. 9q@ z[+X  
    TSDY: Tolerance on surface decentering in y. }I` ku.@5  
    TSTX: Tolerance on surface tilt in x (degrees). yVu^ >  
    TSTY: Tolerance on surface tilt in y (degrees). k)<~nc-  
    TIRR: Tolerance on irregularity (fringes). V{ 4i$'  
    TIND: Tolerance on Nd index of refraction. ,f-T1v"  
    TEDX: Tolerance on element decentering in x. gxBl1  
    TEDY: Tolerance on element decentering in y. =B3!jir  
    TETX: Tolerance on element tilt in x (degrees). Ww a41z  
    TETY: Tolerance on element tilt in y (degrees). $9j>VGf=  
    PHe~{"|d?  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Vz=j )[  
    M]%!n3Fb  
    WARNING: Boundary constraints on compensators will be ignored. 1FXzAc(c!  
    ZmYa.4'L  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Ivd[U`=Q  
    Mode                : Sensitivities U|y;b+n`  
    Sampling            : 2 Ba\wq:  
    Nominal Criterion   : 0.54403234 C+Fh$  
    Test Wavelength     : 0.6328 )%H5iSNG$P  
    5 b#" G"  
    Jq$6$A,f  
    Fields: XY Symmetric Angle in degrees Gdc ~Lh  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 8CN7+V  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 7DC0W|Fe  
    K~fDv  i  
    Sensitivity Analysis: p;c_<>ws-Y  
    + !E{L  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| Uy_}@50"l  
    Type                      Value      Criterion        Change          Value      Criterion        Change e&FX7dsyy  
    Fringe tolerance on surface 1 g-{<v4NGI  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 5~kW-x  
    Change in Focus                :      -0.000000                            0.000000 /ut~jf`  
    Fringe tolerance on surface 2 %BKR}  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 >? A `C!i  
    Change in Focus                :       0.000000                            0.000000 /v|68x6  
    Fringe tolerance on surface 3 !4b; >y=m  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 I/ e2,  
    Change in Focus                :      -0.000000                            0.000000 x1&b@u  
    Thickness tolerance on surface 1 {C,1w  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 E&T'U2  
    Change in Focus                :       0.000000                            0.000000 edImrm1f  
    Thickness tolerance on surface 2 m_PrasZ>  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 YiQeI|{oN  
    Change in Focus                :       0.000000                           -0.000000 kp<}  
    Decenter X tolerance on surfaces 1 through 3 ;?HZ,"^I  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 3ZJagJ\O  
    Change in Focus                :       0.000000                            0.000000 V.P5v {  
    Decenter Y tolerance on surfaces 1 through 3 v|,[5IY  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 7}iewtdy,  
    Change in Focus                :       0.000000                            0.000000 Y/eN)  
    Tilt X tolerance on surfaces 1 through 3 (degrees) x" :Bw;~  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 71n uTE%!  
    Change in Focus                :       0.000000                            0.000000 R1b )  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ,N@Icl  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 #G4~]Qml  
    Change in Focus                :       0.000000                            0.000000 < 4EB|@E  
    Decenter X tolerance on surface 1 Ymk4Cu.s  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 uYFcq  
    Change in Focus                :       0.000000                            0.000000 6UzT]"LR;  
    Decenter Y tolerance on surface 1 J9$]]\52s.  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ;o)`9<es!2  
    Change in Focus                :       0.000000                            0.000000 @qr3v>3X<  
    Tilt X tolerance on surface (degrees) 1 [&O:qaD^  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 V~uA(3\U  
    Change in Focus                :       0.000000                            0.000000 p?`|CE@h7  
    Tilt Y tolerance on surface (degrees) 1 ,ov v  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ]Buk9LTe  
    Change in Focus                :       0.000000                            0.000000 lWyP[>*  
    Decenter X tolerance on surface 2 JXy667_  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 uB#B\i  
    Change in Focus                :       0.000000                            0.000000 pTV@nP  
    Decenter Y tolerance on surface 2 4f@\f7 \  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 5, "^"*@<  
    Change in Focus                :       0.000000                            0.000000 {'K;aJ'\  
    Tilt X tolerance on surface (degrees) 2 {;(g[H=q;  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324  [k&s!Qp  
    Change in Focus                :       0.000000                            0.000000 5z(>4d!  
    Tilt Y tolerance on surface (degrees) 2 1n5e^'z  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 h C`p<jp/  
    Change in Focus                :       0.000000                            0.000000 d`q)^  
    Decenter X tolerance on surface 3 XL&eJ  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Fi3(glgd-  
    Change in Focus                :       0.000000                            0.000000 \$\(9!=  
    Decenter Y tolerance on surface 3 [m+O0VK$  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 "a`0w9Mm}  
    Change in Focus                :       0.000000                            0.000000 !L.z4n,n+  
    Tilt X tolerance on surface (degrees) 3 OD@A+"  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 u1|Y;*  
    Change in Focus                :       0.000000                            0.000000 <~8f0+"  
    Tilt Y tolerance on surface (degrees) 3 d8q$&(]<  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Ckl]fy@D}  
    Change in Focus                :       0.000000                            0.000000 =smY/q^3  
    Irregularity of surface 1 in fringes uY%3X/^j  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 <x;[ H%  
    Change in Focus                :       0.000000                            0.000000 YU\t+/b  
    Irregularity of surface 2 in fringes ~x^+OXf!^g  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 _G8y9!J  
    Change in Focus                :       0.000000                            0.000000 ve]95w9J  
    Irregularity of surface 3 in fringes )Jjw}}$}Y  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 #FDu 4xi  
    Change in Focus                :       0.000000                            0.000000 Bma|!p{  
    Index tolerance on surface 1 6Q?6-,?_  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 jnLu|W&  
    Change in Focus                :       0.000000                            0.000000 :Y?08/V  
    Index tolerance on surface 2 ~~E=E;9  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ] 8cX#N,M  
    Change in Focus                :       0.000000                           -0.000000 zs^\z Cb8  
    qmeEUch`  
    Worst offenders: 3&d+U)E  
    Type                      Value      Criterion        Change s?I=}  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 eDZ3SIZ  
    TSTY   2             0.20000000     0.35349910    -0.19053324 #7:9XID /  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 l:C0:m%  
    TSTX   2             0.20000000     0.35349910    -0.19053324 J0)WRn"h  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 L=Jk"qWV0  
    TSTY   1             0.20000000     0.42678383    -0.11724851 YG+ Yb{^"  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 0`Qs=R`OM  
    TSTX   1             0.20000000     0.42678383    -0.11724851 aj-uk(r  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ',ybHW%D%i  
    TSTY   3             0.20000000     0.42861670    -0.11541563 jQlK-U=oi  
    lz5j~t5>Q  
    Estimated Performance Changes based upon Root-Sum-Square method: lxJ.h&"P  
    Nominal MTF                 :     0.54403234 ,O`*AzjS5Q  
    Estimated change            :    -0.36299231 }Nc!8'@  
    Estimated MTF               :     0.18104003 2F(\}%UT~  
    ",@g  
    Compensator Statistics: /r{5Lyk*  
    Change in back focus: e ^& 8x  
    Minimum            :        -0.000000 !7kOw65+0  
    Maximum            :         0.000000 'WgwLE_  
    Mean               :        -0.000000 vK>^#b3  
    Standard Deviation :         0.000000 W@}5e-q)O  
    I:7,CV  
    Monte Carlo Analysis: H~K2`Cr)4  
    Number of trials: 20 x%7x^]$  
    ]b$,.t5  
    Initial Statistics: Normal Distribution ]h8V{%H  
    HpC4$JMm  
      Trial       Criterion        Change (ZSSp1R v  
          1     0.42804416    -0.11598818 }Q(I&uz  
    Change in Focus                :      -0.400171 #gT^hl5/  
          2     0.54384387    -0.00018847 F!t13%yeu?  
    Change in Focus                :       1.018470 \ku{-^7  
          3     0.44510003    -0.09893230 Q9V4-MC9  
    Change in Focus                :      -0.601922 6$.Xj\zl  
          4     0.18154684    -0.36248550 WU@,1.F:  
    Change in Focus                :       0.920681 ^>28>!"1  
          5     0.28665820    -0.25737414 p=T\3_q  
    Change in Focus                :       1.253875 <b40\Z{+  
          6     0.21263372    -0.33139862 R;ug+N  
    Change in Focus                :      -0.903878 #ms98pw%5  
          7     0.40051424    -0.14351809 -"L6^IH7  
    Change in Focus                :      -1.354815 1 niTkop  
          8     0.48754161    -0.05649072 ~q>ilnL"h  
    Change in Focus                :       0.215922 MUl+Oy>  
          9     0.40357468    -0.14045766 RuuU}XQ  
    Change in Focus                :       0.281783 q|2C>{8  
         10     0.26315315    -0.28087919 &Wk<F3qN  
    Change in Focus                :      -1.048393 A1;t60z+q>  
         11     0.26120585    -0.28282649 #| Po&yu4R  
    Change in Focus                :       1.017611 A*i_- ;W)  
         12     0.24033815    -0.30369419 zvj >KF|y  
    Change in Focus                :      -0.109292 J[AgOUc  
         13     0.37164046    -0.17239188 ti% e.p0[  
    Change in Focus                :      -0.692430 )Ggx  
         14     0.48597489    -0.05805744 |Ay#0uQ5Y  
    Change in Focus                :      -0.662040 XITQB|C??$  
         15     0.21462327    -0.32940907 "j>0A Hem  
    Change in Focus                :       1.611296 "YZ`g}sG  
         16     0.43378226    -0.11025008 0w]?yqnE  
    Change in Focus                :      -0.640081 }@4*0_g"Aw  
         17     0.39321881    -0.15081353 wH<*  
    Change in Focus                :       0.914906 jT0fF  
         18     0.20692530    -0.33710703 ~?r6Ax-R  
    Change in Focus                :       0.801607 9-SXu lgu  
         19     0.51374068    -0.03029165 `,"Jc<R7Z  
    Change in Focus                :       0.947293 O}V2> W$  
         20     0.38013374    -0.16389860 mqw.v$>  
    Change in Focus                :       0.667010 -nSqB{s!SD  
    p04w 83 jX  
    Number of traceable Monte Carlo files generated: 20 bcNYoZ8`  
    ~Sq >c3Wn  
    Nominal     0.54403234 2{N0.  |5  
    Best        0.54384387    Trial     2 v~3q4P  
    Worst       0.18154684    Trial     4 "{lnSLk  
    Mean        0.35770970 VxoMK7'O=/  
    Std Dev     0.11156454 h,g~J-x`|  
    bcfOp A  
    k,& QcYw  
    Compensator Statistics: Af~AE2b3"  
    Change in back focus: )M~5F,)  
    Minimum            :        -1.354815 g9JtWgu  
    Maximum            :         1.611296 d8po`J#nb  
    Mean               :         0.161872 ly@CX((W  
    Standard Deviation :         0.869664 _De;SB %V  
    G y2XjO8b  
    90% >       0.20977951               ;Wdo*ysW  
    80% >       0.22748071               kE}?"<l  
    50% >       0.38667627               ^ z;pP  
    20% >       0.46553746               C&gJP7UF  
    10% >       0.50064115                S"l&=J2dc  
    l ki(_ @3  
    End of Run. zZ63 P  
    |HLh?AcX  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 f?QD##~;  
    0OXd*  
    q$P"o].EK  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 gqG"t@Y+  
    y\x<!_&D  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 lWR  
    80% >       0.22748071                 f' eKX7R  
    50% >       0.38667627                 'EQAG' YV  
    20% >       0.46553746                 (/^&3xs9  
    10% >       0.50064115 j2z$kw%  
    |Z<adOg  
    最后这个数值是MTF值呢,还是MTF的公差? &8N\ 6K=  
    :?,& u,8  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ,F1$Of/'@\  
    `JC!uc  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : qLcs)&}/A  
    90% >       0.20977951                 -ohqw+D  
    80% >       0.22748071                 }4$UlTA'  
    50% >       0.38667627                 z+;+c$X  
    20% >       0.46553746                 l{kum2DT  
    10% >       0.50064115 -(Yq$5Zc&  
    ....... 1;>J9  
    t1D6#JP(a  
    b8Y-!] F  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   _pL:dKfy7  
    Mode                : Sensitivities uq'T:d  
    Sampling            : 2 VTS8IXz  
    Nominal Criterion   : 0.54403234 ]e!9{\X,*  
    Test Wavelength     : 0.6328 NU O9,  
    |%Pd*yZA  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? wX[g\,?}'  
    3,t3\`=  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试