我现在在初学zemax的
公差分析,找了一个双胶合
透镜 v?F~fRH J~9l+?
0&E{[~Pv ]e@'9`G-' 然后添加了默认公差分析,基本没变
sc\4.Ux%Q R@-rc|FunJ
sqFMO+ g|tnYN 然后运行分析的结果如下:
WBLfxr Ho9 a#9 Analysis of Tolerances
UaA6 kaQn'5 File : E:\光学设计资料\zemax练习\f500.ZMX
Z6\OkD Title:
# kl?ww U Date : TUE JUN 21 2011
~]a:9Ev* ,d'x]&a Units are Millimeters.
fmILkXKz All changes are computed using linear differences.
^5x\cR HWG5Ghu8,) Paraxial Focus compensation only.
@2cGx/1# ;0( |06= WARNING: Solves should be removed prior to tolerancing.
(Vnv"= ( N
'2Nv Mnemonics:
V\r!H>
TFRN: Tolerance on curvature in fringes.
7'\<\oT
TTHI: Tolerance on thickness.
yyb8ll?@a TSDX: Tolerance on surface decentering in x.
_"%mLH=!8 TSDY: Tolerance on surface decentering in y.
'+LC.l M TSTX: Tolerance on surface tilt in x (degrees).
m~mw1r TSTY: Tolerance on surface tilt in y (degrees).
JJ[.K*dO TIRR: Tolerance on irregularity (fringes).
. S4Xw2MS TIND: Tolerance on Nd index of refraction.
m?VA 1 TEDX: Tolerance on element decentering in x.
& F\HR TEDY: Tolerance on element decentering in y.
=Bu>}$BD TETX: Tolerance on element tilt in x (degrees).
MgyV{` TETY: Tolerance on element tilt in y (degrees).
CqOvVv U<QO@5 WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
?G%C}8a wGD*25M7$ WARNING: Boundary constraints on compensators will be ignored.
]E$h7I ")LcB'C Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
Ucr$5^ME Mode : Sensitivities
Q{1Q w'+@ Sampling : 2
Ey7SQb Nominal Criterion : 0.54403234
&6V[@gmD
Test Wavelength : 0.6328
P0,@#M& Y@N-q (
`T;nz Fields: XY Symmetric Angle in degrees
#InuN8sI # X-Field Y-Field Weight VDX VDY VCX VCY
] }XsP 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
f*U3s N^y _dCdyf Sensitivity Analysis:
1'ts>6b 3BHPD;U |----------------- Minimum ----------------| |----------------- Maximum ----------------|
I~ Q2jg2 Type Value Criterion Change Value Criterion Change
C.`C T7 Fringe tolerance on surface 1
IJ >qs8 TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
^ z!g3 Change in Focus :
-0.000000 0.000000
1$nlRQi Fringe tolerance on surface 2
W
u?A} fH TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
~.\CG'g Change in Focus : 0.000000 0.000000
&[QvMh Fringe tolerance on surface 3
,`kag~bZ TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
p,#t[K Change in Focus : -0.000000 0.000000
+P YX. Thickness tolerance on surface 1
5DB4 vh TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
mN+
w, Change in Focus : 0.000000 0.000000
/o@6?UH Thickness tolerance on surface 2
Mkc
TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
n$]78\C Change in Focus : 0.000000 -0.000000
;\1/4;m Decenter X tolerance on surfaces 1 through 3
W%Jw\ z= TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
3azyqpwU$ Change in Focus : 0.000000 0.000000
NPc@;g]d" Decenter Y tolerance on surfaces 1 through 3
0m8mHJ<& TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
cP8g.+ Change in Focus : 0.000000 0.000000
APye Tilt X tolerance on surfaces 1 through 3 (degrees)
[\|`C4@3a TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
$#2zxpr, Change in Focus : 0.000000 0.000000
rvPY Tilt Y tolerance on surfaces 1 through 3 (degrees)
ol^uM .k%_ TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
B<^yT@Wc Change in Focus : 0.000000 0.000000
Jkf%k3H3I* Decenter X tolerance on surface 1
\0bao< TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
\.!+'2!m Change in Focus : 0.000000 0.000000
:'hc&wk` Decenter Y tolerance on surface 1
~1xfE C/ TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
gl.uDO%. Change in Focus : 0.000000 0.000000
*GUQz Tilt X tolerance on surface (degrees) 1
| R\PQ/) TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
b3j?@31AD Change in Focus : 0.000000 0.000000
wAt|'wP
: Tilt Y tolerance on surface (degrees) 1
.5?e)o) TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
u?Pec:3% Change in Focus : 0.000000 0.000000
\B\G=Y Decenter X tolerance on surface 2
(%N=7? TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
{Sl#z}@s Change in Focus : 0.000000 0.000000
7\;4 d4u Decenter Y tolerance on surface 2
st4WjX_Q TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
Z|t`}lK Change in Focus : 0.000000 0.000000
z8VcV*6 Tilt X tolerance on surface (degrees) 2
,1|Qm8O TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
d1[;~) Change in Focus : 0.000000 0.000000
$%:=;1Jl Tilt Y tolerance on surface (degrees) 2
?ZF~U TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
Qk5pRoL_ Change in Focus : 0.000000 0.000000
:r+BL@9 Decenter X tolerance on surface 3
Ka4KsJN TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
GMv.G Change in Focus : 0.000000 0.000000
Fy6(N{hql Decenter Y tolerance on surface 3
.5_zh;
` TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
4`X]$. Change in Focus : 0.000000 0.000000
PH1jN?OEwZ Tilt X tolerance on surface (degrees) 3
o&U'zaj TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
":I@>t{H* Change in Focus : 0.000000 0.000000
s@$SM,tnn Tilt Y tolerance on surface (degrees) 3
V7S[rI<<r TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
2h;#BJ)) Change in Focus : 0.000000 0.000000
uge~*S Irregularity of surface 1 in fringes
w%2|Po5 TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
)/:j$aq Change in Focus : 0.000000 0.000000
L>3- z>u, Irregularity of surface 2 in fringes
~DL-@*& TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
:q>uj5% Change in Focus : 0.000000 0.000000
YqQAogyh Irregularity of surface 3 in fringes
N9S?c TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
Zws[C Change in Focus : 0.000000 0.000000
hJc^NU5 Index tolerance on surface 1
dEu\}y| TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
a#pM9n~a Change in Focus : 0.000000 0.000000
xo
GX&^= Index tolerance on surface 2
S%6 V(L| TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
Z@ dS,M* Change in Focus : 0.000000 -0.000000
n/ CP2A kJ_XG;8 Worst offenders:
>gTQD\k:D Type Value Criterion Change
l0&U7gr TSTY 2 -0.20000000 0.35349910 -0.19053324
AMSn^75 TSTY 2 0.20000000 0.35349910 -0.19053324
j
e;^i,& TSTX 2 -0.20000000 0.35349910 -0.19053324
J|uSj/8 TSTX 2 0.20000000 0.35349910 -0.19053324
Fs_zNN TSTY 1 -0.20000000 0.42678383 -0.11724851
^ZD0rp(l TSTY 1 0.20000000 0.42678383 -0.11724851
.
g8WMm TSTX 1 -0.20000000 0.42678383 -0.11724851
6j6P&[ TSTX 1 0.20000000 0.42678383 -0.11724851
D/`b~Yl TSTY 3 -0.20000000 0.42861670 -0.11541563
QUb#84 TSTY 3 0.20000000 0.42861670 -0.11541563
4_KRH1 1i=p5,| Estimated Performance Changes based upon Root-Sum-Square method:
#I-qL/Lm Nominal MTF : 0.54403234
6DxT(VU} Estimated change : -0.36299231
IAFj_VWC0 Estimated MTF : 0.18104003
+01bjM6F_1 5uAUi=XA>S Compensator Statistics: jQX9KwSP Change in back focus: i}_d&.DbF Minimum : -0.000000 UNhM:!A Maximum : 0.000000 KkPr08 Mean : -0.000000 +rOfQ'lQ Standard Deviation : 0.000000 z#Cgd-^7.# 'iikcf*)C Monte Carlo Analysis:
A5 <T7~U Number of trials: 20
"tUc 5X}OUn8 Initial Statistics: Normal Distribution
J]gtgt^ pP^"p"<s Trial Criterion Change
b l]YPx8 1 0.42804416 -0.11598818
3BK_$Fy Change in Focus : -0.400171
r.10b]b 2 0.54384387 -0.00018847
<,+6:NmT Change in Focus : 1.018470
$E35W=~) 3 0.44510003 -0.09893230
&?0hj@kd~ Change in Focus : -0.601922
c]3^2Ag, 4 0.18154684 -0.36248550
f'& Change in Focus : 0.920681
&aWY{ ?_ 5 0.28665820 -0.25737414
qy,X#y'FuE Change in Focus : 1.253875
Mw{skK>b 6 0.21263372 -0.33139862
*rmwTD" Change in Focus : -0.903878
W}.p, d 7 0.40051424 -0.14351809
BDc "0XH Change in Focus : -1.354815
1IeB_t 8 0.48754161 -0.05649072
i=s>a;*# Change in Focus : 0.215922
<^YZ#3~1T 9 0.40357468 -0.14045766
Ku<_N]9 Change in Focus : 0.281783
V~ [I /Vi 10 0.26315315 -0.28087919
X0zE-h6P Change in Focus : -1.048393
~\~XD+jy" 11 0.26120585 -0.28282649
%q5iy0~P Change in Focus : 1.017611
S$%Y{ 12 0.24033815 -0.30369419
HHaerc Change in Focus : -0.109292
~8^)[n+)x 13 0.37164046 -0.17239188
+Heen3 Change in Focus : -0.692430
h|
]BA}D 14 0.48597489 -0.05805744
M$AQZ')9 Change in Focus : -0.662040
d+Bz
pS@p 15 0.21462327 -0.32940907
*l\vqgv.Z Change in Focus : 1.611296
-E>se8 %" 16 0.43378226 -0.11025008
Bg0 aLU)[ Change in Focus : -0.640081
$C ?G7Vs 17 0.39321881 -0.15081353
~zA{=|I2 Change in Focus : 0.914906
a FrVP 18 0.20692530 -0.33710703
C@q&0\HN Change in Focus : 0.801607
Co^a$K 19 0.51374068 -0.03029165
&m>txzo Change in Focus : 0.947293
0CS80
pC 20 0.38013374 -0.16389860
G9uWn%5r Change in Focus : 0.667010
wJF Fg : ne\N1`AU Number of traceable Monte Carlo files generated: 20
X>6VucH{\ ,wlSNb@' Nominal 0.54403234
tf@x} Best 0.54384387 Trial 2
NurbioFL Worst 0.18154684 Trial 4
M[ZuXH} Mean 0.35770970
)B'U_* Std Dev 0.11156454
;o0o6pF *tZ#^YG{( -?Aa RwZ, Compensator Statistics:
m%?b"kxL[ Change in back focus:
Bt^];DjH Minimum : -1.354815
]0wmvTR Maximum : 1.611296
K\GIh8L Mean : 0.161872
.cX,"2;n Standard Deviation : 0.869664
P$|DiiH PX1Scvi 90% > 0.20977951 @5# RGM)5^ 80% > 0.22748071
YErn50L 50% > 0.38667627 o )
FjWf; 20% > 0.46553746 Q,A`"e#: 10% > 0.50064115 +6*
.lRA v1j]&3O End of Run.
V-(LHv 7" wn024 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
/@bLc1"
#2!M+S D|D1`CIM 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
(d C<N3 It\ob7n 不吝赐教