切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16882阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 `n`"g<K)Q  
    ^mueFw}\  
    ncattp   
    c~UAr k S  
    然后添加了默认公差分析,基本没变 D2</^]3Su  
    iv:/g|MBI&  
    z5` 8G =A  
    x8?x/xE  
    然后运行分析的结果如下: ge):<k_  
    ,.jHV  
    Analysis of Tolerances {HHh.K  
    eKVALUw  
    File : E:\光学设计资料\zemax练习\f500.ZMX hiRR+`L%  
    Title: 6f?BltFaN  
    Date : TUE JUN 21 2011 QW~5+c9JJ  
    $iqi:vY  
    Units are Millimeters. pAil]f6  
    All changes are computed using linear differences. *)bd1B#  
    :%#r.p"6x  
    Paraxial Focus compensation only. AL]h|)6QpC  
    f[Fgh@4cj  
    WARNING: Solves should be removed prior to tolerancing. vZE|Z[M+<  
    T+WZE  
    Mnemonics: E-sSRt  
    TFRN: Tolerance on curvature in fringes. e" Eqi-  
    TTHI: Tolerance on thickness. LMFK3Gd[  
    TSDX: Tolerance on surface decentering in x. G7Z vfLR{:  
    TSDY: Tolerance on surface decentering in y. 1a&/Zlr  
    TSTX: Tolerance on surface tilt in x (degrees). HX3D*2v":  
    TSTY: Tolerance on surface tilt in y (degrees). drENkS=,  
    TIRR: Tolerance on irregularity (fringes). VJN/#   
    TIND: Tolerance on Nd index of refraction. >wKu6- ]a  
    TEDX: Tolerance on element decentering in x. o)tKH@`vE  
    TEDY: Tolerance on element decentering in y. 2"leUur~rO  
    TETX: Tolerance on element tilt in x (degrees). O xT}I  
    TETY: Tolerance on element tilt in y (degrees). ut4r~~Ar  
    4L=$K2R2r  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 4YDT%_h0  
    - J"qrpZ^  
    WARNING: Boundary constraints on compensators will be ignored. "Su b4F`  
    &_9YLXtMi;  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm t/KcXM  
    Mode                : Sensitivities -c+>j  
    Sampling            : 2 "H>r-cyh  
    Nominal Criterion   : 0.54403234 <rX \LwR  
    Test Wavelength     : 0.6328 X!o[RJY  
    W?qpnPW  
    7q%|4Z-~  
    Fields: XY Symmetric Angle in degrees C}b|2y  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 5^i.;>(b  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 =[]x\&@t  
    y]}b?R~p=  
    Sensitivity Analysis: | }K  
    =oE_.ux\  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ^W Y8-6  
    Type                      Value      Criterion        Change          Value      Criterion        Change |XKOXa3.  
    Fringe tolerance on surface 1 (9mbF%b  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 i`[#W(m  
    Change in Focus                :      -0.000000                            0.000000 @B,j;2eb  
    Fringe tolerance on surface 2 oL<BLr9>  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 YBX)eWslK  
    Change in Focus                :       0.000000                            0.000000 tJ=3'?T_k  
    Fringe tolerance on surface 3 J>`v.8y  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ^Xs%.`Gv/  
    Change in Focus                :      -0.000000                            0.000000 -$+,]t^GV  
    Thickness tolerance on surface 1 >=if8t!  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 \U/v;Ijf  
    Change in Focus                :       0.000000                            0.000000 izMYVI?0  
    Thickness tolerance on surface 2 q*\NRq  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 lijB#1<8*  
    Change in Focus                :       0.000000                           -0.000000 3A-*vaySV  
    Decenter X tolerance on surfaces 1 through 3 `6&`wKz  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 b,#`n  
    Change in Focus                :       0.000000                            0.000000 8h2D+1,PZC  
    Decenter Y tolerance on surfaces 1 through 3 vqq6B/r@Fu  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 WgE@89  
    Change in Focus                :       0.000000                            0.000000 807al^s x  
    Tilt X tolerance on surfaces 1 through 3 (degrees) 60"5?=D  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 glv ;C/l  
    Change in Focus                :       0.000000                            0.000000 9Ei5z6Vk/+  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) L e*`r2  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 gs?8Wzh90*  
    Change in Focus                :       0.000000                            0.000000 /@VsqD  
    Decenter X tolerance on surface 1 wHx}U M"  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 swt tp`  
    Change in Focus                :       0.000000                            0.000000 R.K?  
    Decenter Y tolerance on surface 1 :-z&Y492  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 >-!r9"8@  
    Change in Focus                :       0.000000                            0.000000 >K\3*]>J3  
    Tilt X tolerance on surface (degrees) 1 7 0_}S*T  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 @B?FE\  
    Change in Focus                :       0.000000                            0.000000 >tN5vWW  
    Tilt Y tolerance on surface (degrees) 1 >-b&v$  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 0; 7#ji  
    Change in Focus                :       0.000000                            0.000000 -$. 0Dc)3!  
    Decenter X tolerance on surface 2 TN5>"? ?"  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 B`i$Wt<7  
    Change in Focus                :       0.000000                            0.000000 u t$c)_  
    Decenter Y tolerance on surface 2 e,(a6X  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ymYBm: "  
    Change in Focus                :       0.000000                            0.000000 @Tm`d ?^  
    Tilt X tolerance on surface (degrees) 2 c S4DN  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 jgG$'|s}  
    Change in Focus                :       0.000000                            0.000000 GMl"{ Oxo&  
    Tilt Y tolerance on surface (degrees) 2 }MP>]8Aq  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 !NTH.U:g  
    Change in Focus                :       0.000000                            0.000000 P$_&  
    Decenter X tolerance on surface 3 ~(P&g7u  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 5$kdgFq(  
    Change in Focus                :       0.000000                            0.000000 )>V?+L5M  
    Decenter Y tolerance on surface 3 {Ur7# h5  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 6hO-H&r++  
    Change in Focus                :       0.000000                            0.000000 "tUwo(K[  
    Tilt X tolerance on surface (degrees) 3 |jsb@  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 jXixVNw  
    Change in Focus                :       0.000000                            0.000000 =_l)gx+Y+y  
    Tilt Y tolerance on surface (degrees) 3 sf$o(^P9\A  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 \8{\;L C  
    Change in Focus                :       0.000000                            0.000000 j C)-`_  
    Irregularity of surface 1 in fringes wjrG7*_Y4v  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 M diw Ri  
    Change in Focus                :       0.000000                            0.000000 5X#E@3g5  
    Irregularity of surface 2 in fringes -jB3L:  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ^*0'\/N&  
    Change in Focus                :       0.000000                            0.000000 yrnv!moc%t  
    Irregularity of surface 3 in fringes \9`#]#1bx5  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 rh66_eV  
    Change in Focus                :       0.000000                            0.000000 7b,(\Fm  
    Index tolerance on surface 1 1yM r~Fo  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 4 j X3lq|  
    Change in Focus                :       0.000000                            0.000000 2Q@Y^t   
    Index tolerance on surface 2 $5NKFJc  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 gv|"OlB  
    Change in Focus                :       0.000000                           -0.000000 Od##U6e`  
    ~W-cGb3c  
    Worst offenders: H}/05e  
    Type                      Value      Criterion        Change "u492^  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 | &7S8Q  
    TSTY   2             0.20000000     0.35349910    -0.19053324 BRzfic :e  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 Z+4D.bA  
    TSTX   2             0.20000000     0.35349910    -0.19053324 z=g$Exl  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ml0*1Dw  
    TSTY   1             0.20000000     0.42678383    -0.11724851 Su7bm1  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 q9]IIv  
    TSTX   1             0.20000000     0.42678383    -0.11724851 >P=Q #;v  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 "g0(I8  
    TSTY   3             0.20000000     0.42861670    -0.11541563 u-3:k  
    -DjJ",h( $  
    Estimated Performance Changes based upon Root-Sum-Square method: i{Ds&{  
    Nominal MTF                 :     0.54403234 \~~}N4  
    Estimated change            :    -0.36299231 wNYg$d0M  
    Estimated MTF               :     0.18104003 6;iJ*2f5V  
    4CrLkr  
    Compensator Statistics: %S \8.  
    Change in back focus: Z"y=sDO{  
    Minimum            :        -0.000000 D +RiM~LH8  
    Maximum            :         0.000000 oyvKa g  
    Mean               :        -0.000000 tU :EN;H  
    Standard Deviation :         0.000000 S6g<M5^R  
    KC#/Z2A|<  
    Monte Carlo Analysis: %JyXbv3m,  
    Number of trials: 20 }D;WN@],  
    _zMgoc7  
    Initial Statistics: Normal Distribution aG%, cQ1  
    -LW[7s$  
      Trial       Criterion        Change _S`o1^Ad  
          1     0.42804416    -0.11598818 mJ}opy!{;  
    Change in Focus                :      -0.400171 >V$ Gx>I  
          2     0.54384387    -0.00018847 VIJ<``9[  
    Change in Focus                :       1.018470 Wl- <HR!n  
          3     0.44510003    -0.09893230 [p;E~-S  
    Change in Focus                :      -0.601922 y[?-@7i  
          4     0.18154684    -0.36248550 rsXq- Pq*  
    Change in Focus                :       0.920681 bZ1 78>J]  
          5     0.28665820    -0.25737414 XYr J/!*.  
    Change in Focus                :       1.253875 oCS2E =O&  
          6     0.21263372    -0.33139862 T~:|!`  
    Change in Focus                :      -0.903878 _iV]_\0W2  
          7     0.40051424    -0.14351809 .2) =vf'd  
    Change in Focus                :      -1.354815 bm% $86  
          8     0.48754161    -0.05649072 iyta;dw9  
    Change in Focus                :       0.215922 nh>K`+>co  
          9     0.40357468    -0.14045766  ._O  
    Change in Focus                :       0.281783 hr GH}CU"  
         10     0.26315315    -0.28087919 Tr0B[QF  
    Change in Focus                :      -1.048393 $*R/tJ.  
         11     0.26120585    -0.28282649 U}k9 Py  
    Change in Focus                :       1.017611 \ZU1J b1c  
         12     0.24033815    -0.30369419 Q'O[R+YT ,  
    Change in Focus                :      -0.109292 jPZaD>!  
         13     0.37164046    -0.17239188 cWyW~Ek  
    Change in Focus                :      -0.692430 ^ vilgg~  
         14     0.48597489    -0.05805744 !> }.~[M  
    Change in Focus                :      -0.662040 r.ZF_^y}+  
         15     0.21462327    -0.32940907 0tg8~H3yy  
    Change in Focus                :       1.611296 e]=lKxFh&l  
         16     0.43378226    -0.11025008 !V 2/A1?  
    Change in Focus                :      -0.640081 mtz#}qD66  
         17     0.39321881    -0.15081353 YH&bD16c3  
    Change in Focus                :       0.914906 Xce0~\_ A  
         18     0.20692530    -0.33710703 qt%D'  
    Change in Focus                :       0.801607 N- H^lqD  
         19     0.51374068    -0.03029165 29CINC  
    Change in Focus                :       0.947293 91>fqe  
         20     0.38013374    -0.16389860 fjk\L\1  
    Change in Focus                :       0.667010 ?`zXLY9q7  
     Jc&y9]  
    Number of traceable Monte Carlo files generated: 20 ';Zi@f"  
    w@JKl5  
    Nominal     0.54403234 4lhw3,5  
    Best        0.54384387    Trial     2 evkH05+;W  
    Worst       0.18154684    Trial     4 M])dJ9&e  
    Mean        0.35770970 om?-WJI  
    Std Dev     0.11156454 s*U1  
    >{\7&}gz  
     <1%f@}+8  
    Compensator Statistics: <\kr1qH H  
    Change in back focus: _=CZR7:O  
    Minimum            :        -1.354815 FFdBtB  
    Maximum            :         1.611296 ~ .;<  Bj  
    Mean               :         0.161872 ]BR,M4   
    Standard Deviation :         0.869664 m3Il3ZY.  
    hW!)w  
    90% >       0.20977951               mU}F!J#6  
    80% >       0.22748071               T^J>ZDA  
    50% >       0.38667627               z~`b\A,$  
    20% >       0.46553746               Uf}\p~;  
    10% >       0.50064115                5onm]V]  
    Vz6Qxd{m3  
    End of Run. p+)YTzzc  
    B,,D7cQC  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 &gzCteS  
    a!O0,y  
    @E:,lA  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 -D6exTxh"  
    4Y[1aQ(%  
    不吝赐教
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 '*3h!lW1.  
    80% >       0.22748071                 H- $)3"K  
    50% >       0.38667627                 A,a.8!*}vd  
    20% >       0.46553746                 :8OZ#D_Hl  
    10% >       0.50064115 ;n 7/O5M|  
    :5{wf Am  
    最后这个数值是MTF值呢,还是MTF的公差? ')$+G152  
    `E>1>'  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   <*qnY7c&N;  
    aeD;5VV  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : J  IUx  
    90% >       0.20977951                 `p2+&&]S  
    80% >       0.22748071                 ;$.J3!  
    50% >       0.38667627                 /_I]H  
    20% >       0.46553746                 1g8_Xe4  
    10% >       0.50064115 UC]\yUK1J  
    ....... 0i!uUF  
    TO]@ Zu1  
    ,!#*GZ.ix  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   e7Xeo+/  
    Mode                : Sensitivities a, k'Vk{  
    Sampling            : 2 Wh+{mvu#  
    Nominal Criterion   : 0.54403234 &"f";  
    Test Wavelength     : 0.6328 TC!Yb_H}gN  
    [^Os kJ4  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? IUE~_7  
    -lbm* -(  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试