切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16881阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 '/%H3A#L  
    2I{"XB  
    <QGXy=  
    h!9ei6  
    然后添加了默认公差分析,基本没变 Srd4))2/0  
    kg\ >k2h  
    |(^PS8wG  
    <ZR9GlIr  
    然后运行分析的结果如下: UkGCyGyZ[  
    Y\'}a+:@Ph  
    Analysis of Tolerances ~flV`wy$$1  
    8*a&Jl  
    File : E:\光学设计资料\zemax练习\f500.ZMX g< .qUBPKX  
    Title: `5Zz5V  
    Date : TUE JUN 21 2011 jZr q{Z<  
    Eu04e N  
    Units are Millimeters. eh#(eua0/  
    All changes are computed using linear differences. [z9Z5sLO  
    0+b1vhQ  
    Paraxial Focus compensation only. Yc*; /T}  
    lsNd_7k  
    WARNING: Solves should be removed prior to tolerancing.  #:%/(j  
    )dd@\n$6  
    Mnemonics: %ULr8)R;  
    TFRN: Tolerance on curvature in fringes. 9( wK@  
    TTHI: Tolerance on thickness. x ]ot 2  
    TSDX: Tolerance on surface decentering in x. ;i:d+!3XwC  
    TSDY: Tolerance on surface decentering in y. ;t`&n['N>  
    TSTX: Tolerance on surface tilt in x (degrees). 9=2$8JN=(l  
    TSTY: Tolerance on surface tilt in y (degrees). II x#2r  
    TIRR: Tolerance on irregularity (fringes). Uf+%W;}  
    TIND: Tolerance on Nd index of refraction. NQ2E  
    TEDX: Tolerance on element decentering in x. H} g{Cr"Ex  
    TEDY: Tolerance on element decentering in y. jWfa;&Ra  
    TETX: Tolerance on element tilt in x (degrees). S|+o-[e8O  
    TETY: Tolerance on element tilt in y (degrees). jEJT-*I1+  
    M\Kx'N  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. UW EV^ &"x  
    Ooy7*W';  
    WARNING: Boundary constraints on compensators will be ignored. VyGJ=[ ]  
    )53y AyP  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Mf``_=K  
    Mode                : Sensitivities bA->{OPkT  
    Sampling            : 2 x-3\Ls[I  
    Nominal Criterion   : 0.54403234 lnR{jtWP  
    Test Wavelength     : 0.6328 sD wqH.L  
    :9 ^* ^T  
    @F*%9LPv  
    Fields: XY Symmetric Angle in degrees f& '  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY VP]%Hni]  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 12LL48bi  
    ?6Y?a2 |  
    Sensitivity Analysis: rw #$lP  
    | Xy6PN8  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| M =r)I~  
    Type                      Value      Criterion        Change          Value      Criterion        Change s->^=dy  
    Fringe tolerance on surface 1 V "h +L7T  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 J/*`7Pd  
    Change in Focus                :      -0.000000                            0.000000 sLQ^F  
    Fringe tolerance on surface 2 ~/P[J  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 | %Vh`HT  
    Change in Focus                :       0.000000                            0.000000 b SU~XGPB  
    Fringe tolerance on surface 3 w`zTR0`  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 9q[oa5INd  
    Change in Focus                :      -0.000000                            0.000000 z' >_Mc6  
    Thickness tolerance on surface 1  kPLxEwl  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 /I0%Z+`=  
    Change in Focus                :       0.000000                            0.000000 y h9*z3  
    Thickness tolerance on surface 2 @I!0-OjL  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 FJP-y5  
    Change in Focus                :       0.000000                           -0.000000 S|`o]?nc>  
    Decenter X tolerance on surfaces 1 through 3 e**qF=HCw  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 [u*5z.^  
    Change in Focus                :       0.000000                            0.000000 s!7y  
    Decenter Y tolerance on surfaces 1 through 3 Npy :!  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 G<v&4/\p`M  
    Change in Focus                :       0.000000                            0.000000 C>*u()q>4h  
    Tilt X tolerance on surfaces 1 through 3 (degrees) *bA.zmzM  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 O@C@eW#  
    Change in Focus                :       0.000000                            0.000000 ;;N9>M?b  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) NHZz _a=  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ^$hH1H+V  
    Change in Focus                :       0.000000                            0.000000 %OOl'o"V{s  
    Decenter X tolerance on surface 1 _zi|  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $ gS>FJ  
    Change in Focus                :       0.000000                            0.000000 A2jUmK.&  
    Decenter Y tolerance on surface 1 nc|p)  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 | h#u^v3  
    Change in Focus                :       0.000000                            0.000000 ]3.;PWa:  
    Tilt X tolerance on surface (degrees) 1 '$%l7  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 wi6 ~}~%  
    Change in Focus                :       0.000000                            0.000000 DN57p!z  
    Tilt Y tolerance on surface (degrees) 1 wcY? rE9  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 }?Ai87-{  
    Change in Focus                :       0.000000                            0.000000 F@B]et7  
    Decenter X tolerance on surface 2 (0_2sfS  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 XuM'_FN`A<  
    Change in Focus                :       0.000000                            0.000000 :^B1~p(?sK  
    Decenter Y tolerance on surface 2 RdR p.pb8  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ;@Y;g(bw:  
    Change in Focus                :       0.000000                            0.000000 5taT5?n2  
    Tilt X tolerance on surface (degrees) 2 _^%,x  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 _.Uh)-yR  
    Change in Focus                :       0.000000                            0.000000 x-&@wMqkc  
    Tilt Y tolerance on surface (degrees) 2 mSh[}%swj  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 nk' s_a*Z  
    Change in Focus                :       0.000000                            0.000000 CN8Y\<Ar  
    Decenter X tolerance on surface 3 Vb]=B~^`  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 % ^1V4  
    Change in Focus                :       0.000000                            0.000000 JO6)-U$7UG  
    Decenter Y tolerance on surface 3 +}os&[S  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 K F!Yf\  
    Change in Focus                :       0.000000                            0.000000 ,M ^<CJ  
    Tilt X tolerance on surface (degrees) 3 PP33i@G  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 R)s:rJQ=p  
    Change in Focus                :       0.000000                            0.000000 jkF^-Up.  
    Tilt Y tolerance on surface (degrees) 3 SbrecZ  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Ls+2Zbh  
    Change in Focus                :       0.000000                            0.000000 "n5N[1b k  
    Irregularity of surface 1 in fringes dn$!&  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 Gm^U;u}=f  
    Change in Focus                :       0.000000                            0.000000 |~mOfuQb  
    Irregularity of surface 2 in fringes >$/>#e~  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 N]=q|D  
    Change in Focus                :       0.000000                            0.000000 ,w:U#r~s"  
    Irregularity of surface 3 in fringes HJ[cM6$2  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 XW)lDiJl  
    Change in Focus                :       0.000000                            0.000000 O23k:=Av  
    Index tolerance on surface 1 YHygo#4=8  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 4*cEag   
    Change in Focus                :       0.000000                            0.000000 a![{M<Y~  
    Index tolerance on surface 2 ytJ/g/,A0i  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 `%9 uE(  
    Change in Focus                :       0.000000                           -0.000000 bI9~jWgGp  
    LG|fq/;  
    Worst offenders: ~/iKh1 1  
    Type                      Value      Criterion        Change a P@N)"  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Ww+IWW@  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ZdWm:(nkU  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 h_3E)jc  
    TSTX   2             0.20000000     0.35349910    -0.19053324 U,{eHe ?>T  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 J$w<$5UY  
    TSTY   1             0.20000000     0.42678383    -0.11724851 `MN4uC  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 V1 `o%;j  
    TSTX   1             0.20000000     0.42678383    -0.11724851 :v&$o'Sak  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Ed df2;-.  
    TSTY   3             0.20000000     0.42861670    -0.11541563 &>W$6>@  
    ep)n_!$OH"  
    Estimated Performance Changes based upon Root-Sum-Square method: dhf!o0'1M  
    Nominal MTF                 :     0.54403234 x,@B(9No  
    Estimated change            :    -0.36299231 U- (01-  
    Estimated MTF               :     0.18104003 S3*`jF>q  
    XZ]uUP  
    Compensator Statistics: bP$dU,@p~  
    Change in back focus: lc1(t:"[  
    Minimum            :        -0.000000 }t=!(GOb}  
    Maximum            :         0.000000 3-qr)h  
    Mean               :        -0.000000 _Gi4A  
    Standard Deviation :         0.000000 }Gm>`cw-  
    eFTpnG  
    Monte Carlo Analysis: 5o'FS{6U  
    Number of trials: 20 :tB1D@Cb6  
    ;dtA4:IRZ4  
    Initial Statistics: Normal Distribution l<LP&  
    kY|utoAP  
      Trial       Criterion        Change mt+Oi70  
          1     0.42804416    -0.11598818 RSyUaA  
    Change in Focus                :      -0.400171 %G/ hD  
          2     0.54384387    -0.00018847 K6/Q}W   
    Change in Focus                :       1.018470 I7vz+>Jr  
          3     0.44510003    -0.09893230 < #}5IQ5`Z  
    Change in Focus                :      -0.601922 5z8d} I  
          4     0.18154684    -0.36248550 TA`1U;c{n  
    Change in Focus                :       0.920681 *ebSq)  
          5     0.28665820    -0.25737414 c%2QZC  
    Change in Focus                :       1.253875 ;!mzyb*  
          6     0.21263372    -0.33139862 F^t DL:  
    Change in Focus                :      -0.903878 [P=Jw:E  
          7     0.40051424    -0.14351809 vrhT<+q  
    Change in Focus                :      -1.354815 y^,1a[U.  
          8     0.48754161    -0.05649072 oWim}Er=  
    Change in Focus                :       0.215922 rq/yD,I,  
          9     0.40357468    -0.14045766 :bu/^mW[  
    Change in Focus                :       0.281783 T@:Wp4>69  
         10     0.26315315    -0.28087919 L_uVL#To  
    Change in Focus                :      -1.048393 7Oa#c<2]  
         11     0.26120585    -0.28282649 RK'\C\gMDu  
    Change in Focus                :       1.017611 tqvN0vY5  
         12     0.24033815    -0.30369419 0d"[l@UU0  
    Change in Focus                :      -0.109292 p$NQyS5C"S  
         13     0.37164046    -0.17239188 Pw7]r<Q  
    Change in Focus                :      -0.692430 <ro7vPKNa  
         14     0.48597489    -0.05805744 * 8yAG]z  
    Change in Focus                :      -0.662040 F3v !AvA|  
         15     0.21462327    -0.32940907 B:;pvW]  
    Change in Focus                :       1.611296 U0 Yll4E  
         16     0.43378226    -0.11025008 b8`)y<7  
    Change in Focus                :      -0.640081 G C),N\@Q  
         17     0.39321881    -0.15081353 [LjT*bi  
    Change in Focus                :       0.914906 g:'xae/]S  
         18     0.20692530    -0.33710703 qPX~@^`9  
    Change in Focus                :       0.801607 0_95|3kc  
         19     0.51374068    -0.03029165 [fya)}  
    Change in Focus                :       0.947293 6y%qVx#!  
         20     0.38013374    -0.16389860 (lBCO?`fx  
    Change in Focus                :       0.667010 dUeN*Nq&(,  
    E"\<s3  
    Number of traceable Monte Carlo files generated: 20 DkY4MH?  
    q1$N>;&  
    Nominal     0.54403234 ]_mb7X>  
    Best        0.54384387    Trial     2  N_kMK  
    Worst       0.18154684    Trial     4 ??-[eB.  
    Mean        0.35770970 :t"^6xt  
    Std Dev     0.11156454 (Du@ S  
    ~drS} V  
    F'={q{2wH  
    Compensator Statistics: V%7WUq  
    Change in back focus: Gv!2f  
    Minimum            :        -1.354815 ]^.  _z  
    Maximum            :         1.611296 =1FRFZI!j  
    Mean               :         0.161872 I+%[d^,  
    Standard Deviation :         0.869664 {NmWQyEv  
    U8s2|G;K  
    90% >       0.20977951               7{e  4c  
    80% >       0.22748071               i^X]j  
    50% >       0.38667627               9N#_( uwt  
    20% >       0.46553746               fa jGZyd0:  
    10% >       0.50064115                {k>&?Vd!  
    I*:%ni2  
    End of Run. aD<A.Lhy  
    XV7Ex\D*  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 vjbASFF0=  
    ,8S/t+H  
    ''A_[J `>  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 |k )=0mCz  
    YFLZ%(  
    不吝赐教
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 ]vB$~3||  
    80% >       0.22748071                 vSGH[nyCY  
    50% >       0.38667627                 i7CX65&b  
    20% >       0.46553746                 H9Gh>u]}  
    10% >       0.50064115 PF0_8,@U  
    [CTnXb  
    最后这个数值是MTF值呢,还是MTF的公差? F;Spi  
    T )&A2q  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   =bAx,,D#  
    v1#otrf  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : G+9,,`2  
    90% >       0.20977951                 qyb?49I  
    80% >       0.22748071                 _=>He=v/  
    50% >       0.38667627                 `K"L /I9  
    20% >       0.46553746                 3F"lXguS  
    10% >       0.50064115 e v}S+!|U  
    ....... 'B$yo]  
    kb%;=t2  
    q$L%36u~/  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   4(n-_BS  
    Mode                : Sensitivities =>S]q71  
    Sampling            : 2 >dXGee>'M  
    Nominal Criterion   : 0.54403234 ]|pe>:gf'  
    Test Wavelength     : 0.6328 t|?ez4/{z  
    d7^}tM  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? hR n<em  
    hF?1y`20  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试