切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15738阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 P,={ C6*  
    xw~3x*{  
    b!c2j   
    ,]_<8@R  
    然后添加了默认公差分析,基本没变 9; `E,w  
    UA(&_-C\  
    0c$ ')`! m  
    P|QM0GI  
    然后运行分析的结果如下: b+e9Pi*\  
    v)%0`%nSR  
    Analysis of Tolerances 0^ >b=a  
    4O:y ?D/e  
    File : E:\光学设计资料\zemax练习\f500.ZMX bSj-xxB]e  
    Title: }ISc^W) t  
    Date : TUE JUN 21 2011 ytyB:# J  
    v&8s>~i`K  
    Units are Millimeters. pra0:oHN  
    All changes are computed using linear differences. a?8boN(  
    (svKq(X  
    Paraxial Focus compensation only. vMeB2r<  
    }5]7lGR  
    WARNING: Solves should be removed prior to tolerancing. M992XXd  
    QHgkfo  
    Mnemonics: JXF0}T)C  
    TFRN: Tolerance on curvature in fringes. L^x h5{  
    TTHI: Tolerance on thickness. _DLELcH Y  
    TSDX: Tolerance on surface decentering in x. -xL^UcG0  
    TSDY: Tolerance on surface decentering in y. s%i \z }/  
    TSTX: Tolerance on surface tilt in x (degrees). v^3s?V D  
    TSTY: Tolerance on surface tilt in y (degrees). f:KZP;/[c  
    TIRR: Tolerance on irregularity (fringes). %abc -q  
    TIND: Tolerance on Nd index of refraction. $tB `dDj  
    TEDX: Tolerance on element decentering in x. XS=f>e1<W  
    TEDY: Tolerance on element decentering in y. 6d/1PGB  
    TETX: Tolerance on element tilt in x (degrees). U%rq(`;  
    TETY: Tolerance on element tilt in y (degrees). Fuy"JmeR  
    =[nuesP'  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. &.[I}KH|B  
    =2e{T J/  
    WARNING: Boundary constraints on compensators will be ignored. <ZjT4><  
    vE&K!k`  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm =buarxk  
    Mode                : Sensitivities rk &ME#<r  
    Sampling            : 2 V)A7q9Bum  
    Nominal Criterion   : 0.54403234 rr]-$]Q  
    Test Wavelength     : 0.6328 U88gJ[$  
    TW-^C ;  
    -S7i':  
    Fields: XY Symmetric Angle in degrees 1'f&  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ;L[N.ZY!  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 TGHyBPJb  
    )>,ndKT~  
    Sensitivity Analysis: H @5dj}  
    VWrb`p@  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| W#kd[Wi  
    Type                      Value      Criterion        Change          Value      Criterion        Change HsKq/Oyk  
    Fringe tolerance on surface 1 5Zn:$?7  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 m\G45%m  
    Change in Focus                :      -0.000000                            0.000000 F+)g!NQZ  
    Fringe tolerance on surface 2 Egmp8:nZl@  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 B["jndyr  
    Change in Focus                :       0.000000                            0.000000 `t3w|%La}  
    Fringe tolerance on surface 3 & tjL*/  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 lQ&J2H<w  
    Change in Focus                :      -0.000000                            0.000000 p# JPLCs  
    Thickness tolerance on surface 1 Cs2kbG_  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 1>L8EImx]V  
    Change in Focus                :       0.000000                            0.000000 )zkr[;j~`  
    Thickness tolerance on surface 2 TeKU/&fkc  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 E8L\3V4  
    Change in Focus                :       0.000000                           -0.000000 {9v Mc  
    Decenter X tolerance on surfaces 1 through 3 OmlM9cXm^4  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;$3e pP  
    Change in Focus                :       0.000000                            0.000000 CbFO9q  
    Decenter Y tolerance on surfaces 1 through 3 |_OoD9,M  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 <l5s[  
    Change in Focus                :       0.000000                            0.000000 )M* Sg?L  
    Tilt X tolerance on surfaces 1 through 3 (degrees) 9r> iP L2H  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 'LYN{  
    Change in Focus                :       0.000000                            0.000000 !uP8powO  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) :9f 9Z7M  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Pq1j  
    Change in Focus                :       0.000000                            0.000000 b9VI(s>  
    Decenter X tolerance on surface 1 .EZ8yJj1Q  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 +/ ?oyC+Z  
    Change in Focus                :       0.000000                            0.000000 1 dOB|  
    Decenter Y tolerance on surface 1 `jec|i@oO  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 .|@2Uf  
    Change in Focus                :       0.000000                            0.000000 @H}{?-XyA  
    Tilt X tolerance on surface (degrees) 1 6Ev+!!znu  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 m -0}Pe9L  
    Change in Focus                :       0.000000                            0.000000 9Zr6 KA{  
    Tilt Y tolerance on surface (degrees) 1 x"A\ Z-xxz  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 KQ ^E\,@o  
    Change in Focus                :       0.000000                            0.000000 4lI&y<F  
    Decenter X tolerance on surface 2 LI>Bl  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ^UBzX;|p  
    Change in Focus                :       0.000000                            0.000000 a:s$[+'Y  
    Decenter Y tolerance on surface 2 =.l>Uw!  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 2 ,krVb?<  
    Change in Focus                :       0.000000                            0.000000 >sQf{uL  
    Tilt X tolerance on surface (degrees) 2 qe/5'dw  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 N'0nt]&a  
    Change in Focus                :       0.000000                            0.000000 vhzz(UPUt  
    Tilt Y tolerance on surface (degrees) 2 $."F z x  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 <) -]'@*c  
    Change in Focus                :       0.000000                            0.000000 hqV_MeHv'  
    Decenter X tolerance on surface 3 !&5|:96o  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 [AYJ(H/  
    Change in Focus                :       0.000000                            0.000000 Gn4XVzB`O  
    Decenter Y tolerance on surface 3 `Om W#\  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 _o&NbDH  
    Change in Focus                :       0.000000                            0.000000 @2`nBtk  
    Tilt X tolerance on surface (degrees) 3 %vbov}R  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 jI~$iDdOfs  
    Change in Focus                :       0.000000                            0.000000 .g94|P  
    Tilt Y tolerance on surface (degrees) 3 goNDS5}  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 >8&fFq  
    Change in Focus                :       0.000000                            0.000000 n8JM 0 U-  
    Irregularity of surface 1 in fringes 9*XT|B  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 C3~O6<,Jh  
    Change in Focus                :       0.000000                            0.000000 FGeKhA 8jT  
    Irregularity of surface 2 in fringes {REGoe=W%  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 h-x~:$Z,  
    Change in Focus                :       0.000000                            0.000000 , eSpt#M  
    Irregularity of surface 3 in fringes -j1]H"-  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Yp\Y]pym  
    Change in Focus                :       0.000000                            0.000000 qRz /$|.  
    Index tolerance on surface 1 A\v53AT  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 olKM0K  
    Change in Focus                :       0.000000                            0.000000 /m i&7C(6  
    Index tolerance on surface 2 PEaZ3{-  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 OzR<jCOS  
    Change in Focus                :       0.000000                           -0.000000 Cxe(iwa.  
    E33WT{H&_'  
    Worst offenders: #99=wn  
    Type                      Value      Criterion        Change 6PC?*^v  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 d. ZfK  
    TSTY   2             0.20000000     0.35349910    -0.19053324 "p+JME(  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 o_5[}d  
    TSTX   2             0.20000000     0.35349910    -0.19053324 = J]M#6N0  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Z$%!H7w  
    TSTY   1             0.20000000     0.42678383    -0.11724851 /%)(Uz  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 1H-~+lf  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Ggy?5N7P  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 lXEn m-_  
    TSTY   3             0.20000000     0.42861670    -0.11541563 mHa~c(x  
    _xBhMu2f  
    Estimated Performance Changes based upon Root-Sum-Square method: BB_(!omq[  
    Nominal MTF                 :     0.54403234 ~Q5]?ZNX  
    Estimated change            :    -0.36299231 c= ?Tu  
    Estimated MTF               :     0.18104003 d= ?lPEzSA  
    r%NzKPW'  
    Compensator Statistics: F`,Hf Cb\  
    Change in back focus: =#A/d `2 b  
    Minimum            :        -0.000000 y\[q2M<  
    Maximum            :         0.000000 U* uMMb}$  
    Mean               :        -0.000000 |C5{[ z  
    Standard Deviation :         0.000000 8VuLL<\|  
    3o"l sly  
    Monte Carlo Analysis: ej1WkaR8  
    Number of trials: 20 S~&9DQNj  
    [;o>q;75Jz  
    Initial Statistics: Normal Distribution m\E=I5*/  
    CrG!8}  
      Trial       Criterion        Change P% 8U  
          1     0.42804416    -0.11598818  Z`|\%D%  
    Change in Focus                :      -0.400171 q(4Ny<=,'K  
          2     0.54384387    -0.00018847 ]z| 2  
    Change in Focus                :       1.018470 J6ed  
          3     0.44510003    -0.09893230 hZ.](rD  
    Change in Focus                :      -0.601922 TtQd#mSI\  
          4     0.18154684    -0.36248550 PO^#G @  
    Change in Focus                :       0.920681 Zq H-]?)  
          5     0.28665820    -0.25737414 [xQ.qZ[h&  
    Change in Focus                :       1.253875 66$ hdT$  
          6     0.21263372    -0.33139862 ?6L8#"=  
    Change in Focus                :      -0.903878 O1+yOef"k  
          7     0.40051424    -0.14351809 Xq"Es  
    Change in Focus                :      -1.354815 8Qj1%Ri:U  
          8     0.48754161    -0.05649072 8@|{n`n]  
    Change in Focus                :       0.215922 2=%]Ax"R  
          9     0.40357468    -0.14045766 `B,R+==G:  
    Change in Focus                :       0.281783 mS49l  
         10     0.26315315    -0.28087919 -KfMK N~  
    Change in Focus                :      -1.048393 IWI$@dng6  
         11     0.26120585    -0.28282649 z46Sh&+  
    Change in Focus                :       1.017611 oq b(w+<  
         12     0.24033815    -0.30369419 !lA~;F  
    Change in Focus                :      -0.109292 U-U(_W5&  
         13     0.37164046    -0.17239188 VuN#j<H  
    Change in Focus                :      -0.692430 hzpl;Mj  
         14     0.48597489    -0.05805744 NLUO{'uUW  
    Change in Focus                :      -0.662040 fu-,<m{  
         15     0.21462327    -0.32940907 Y"nz l]T  
    Change in Focus                :       1.611296 J4 U]_|  
         16     0.43378226    -0.11025008 M a3}w-=;  
    Change in Focus                :      -0.640081 3II*NANeg  
         17     0.39321881    -0.15081353 Z|)1ftcC  
    Change in Focus                :       0.914906 c>Ri6=C  
         18     0.20692530    -0.33710703 Nus]]Iy-g  
    Change in Focus                :       0.801607 bfpoX,:   
         19     0.51374068    -0.03029165 )n[=)"rf  
    Change in Focus                :       0.947293 (m=1yj9  
         20     0.38013374    -0.16389860 U!E}(9 tb  
    Change in Focus                :       0.667010 _::ssnG3jT  
    Der'45]*^  
    Number of traceable Monte Carlo files generated: 20 v yt|x5  
    @=Dc(5`[  
    Nominal     0.54403234 ,p!IFS`  
    Best        0.54384387    Trial     2 P^U.VXY}  
    Worst       0.18154684    Trial     4 ,4B8?0sH|  
    Mean        0.35770970 BWB}bq  
    Std Dev     0.11156454 E]S:F3  
    kpNp}b8']  
    cm q4w&x/  
    Compensator Statistics: Y]5MM:mI  
    Change in back focus: 1s(i\&B  
    Minimum            :        -1.354815 0O-"tP8o  
    Maximum            :         1.611296 qG9j}[d'  
    Mean               :         0.161872 Vl>KeZ+  
    Standard Deviation :         0.869664 "5?1S-Vl  
    02,.UqCz  
    90% >       0.20977951               E}<i?;  
    80% >       0.22748071               C@<gCMj,"  
    50% >       0.38667627               ] ;CJ6gM~  
    20% >       0.46553746               '/AX 'U8Y  
    10% >       0.50064115                ~k}O"{ y  
    <Of-,PcCV  
    End of Run. x"cB8bZ!$  
    FJxb!- 0&  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 G)_Zls2 ;  
    YD{N)v  
    8U4In[4  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 2iO{*cB  
     Vo%Z|  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 #uCfXJ-  
    80% >       0.22748071                 oJ/=&c  
    50% >       0.38667627                 -%{+\x2  
    20% >       0.46553746                 @U1t~f^  
    10% >       0.50064115 9>`dB  
    *~b~y7C  
    最后这个数值是MTF值呢,还是MTF的公差? )ZFc5m^+u  
    { 9\/aXPS  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   9RkNRB)8  
    xe3Jxo !U  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : Lc "{ePFh  
    90% >       0.20977951                 vu*9(t)EC  
    80% >       0.22748071                 eiRVw5g  
    50% >       0.38667627                 \nL@P6X  
    20% >       0.46553746                 IMpL+W.  
    10% >       0.50064115 QXEZ?gx  
    ....... |W&K@g$  
    rL?{+S]&^)  
    n3 Rf:j^R  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   '] _7Xa'  
    Mode                : Sensitivities r'XWt]B+[  
    Sampling            : 2 Qk@BM  
    Nominal Criterion   : 0.54403234 s9fEx -!y  
    Test Wavelength     : 0.6328 4FKgp|Y0  
    %%h.`p1  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? [g+WL\1  
    #ZHKq7  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试