切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15408阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    958
    光币
    1062
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 <+2M,fq+  
    Vg^@6zU  
    ]/C1pG*o  
    h=Xr J  
    然后添加了默认公差分析,基本没变 U3zwC5}BN  
    )s';m$  
     )$ +5imi  
    7 *#pv}Y  
    然后运行分析的结果如下: rBUdHd9  
    j)[ w X  
    Analysis of Tolerances "0yO~;a  
    ND|!U#wMNV  
    File : E:\光学设计资料\zemax练习\f500.ZMX WF{rrU:  
    Title: !b+/zXp3I  
    Date : TUE JUN 21 2011 ctg[C$<q|  
    2rK<UPIq  
    Units are Millimeters. hiN6]jL|O  
    All changes are computed using linear differences. 1vF^<{%v  
    nS}XY  
    Paraxial Focus compensation only. e2 ?7>?  
    Y"U -Rc  
    WARNING: Solves should be removed prior to tolerancing. M6+_Mi.  
    k!lz_Y  
    Mnemonics: 5YG?m{hyn_  
    TFRN: Tolerance on curvature in fringes. -r!N; s$t  
    TTHI: Tolerance on thickness. LOkNDmj  
    TSDX: Tolerance on surface decentering in x. b6k'`vLA  
    TSDY: Tolerance on surface decentering in y. fem>WPvG  
    TSTX: Tolerance on surface tilt in x (degrees). oKJj?%dHK9  
    TSTY: Tolerance on surface tilt in y (degrees). ^BruRgc+  
    TIRR: Tolerance on irregularity (fringes). p7A&r:qq#  
    TIND: Tolerance on Nd index of refraction. ttwfWfX  
    TEDX: Tolerance on element decentering in x. i-b++R/WN  
    TEDY: Tolerance on element decentering in y. hl[!4#b]K  
    TETX: Tolerance on element tilt in x (degrees). HZ1e~IIw  
    TETY: Tolerance on element tilt in y (degrees). P*# H]Pv  
    3PEv.hGx  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. [8VB"{{&  
    d2x|PpmH  
    WARNING: Boundary constraints on compensators will be ignored. n~#%>C7  
    l(T CF  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm C NNyz$  
    Mode                : Sensitivities 2B# ]z  
    Sampling            : 2 /l,V0+p  
    Nominal Criterion   : 0.54403234 ( *(#;|m  
    Test Wavelength     : 0.6328 ~7W?W<  
    CE$c/d[N.  
    DFz,>DM;  
    Fields: XY Symmetric Angle in degrees 0wLu*K5$4E  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY \S)\~>.`y!  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 u(7PtmV[!  
    aMSX"N"ot  
    Sensitivity Analysis: _U.D*f<3)  
    3+<}Hm+  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| t]~L o3  
    Type                      Value      Criterion        Change          Value      Criterion        Change HXTBxh  
    Fringe tolerance on surface 1 99@uU[&IJ  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 8Vkw vc  
    Change in Focus                :      -0.000000                            0.000000 3%] %c6  
    Fringe tolerance on surface 2 JRkC~fv  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 SsDe\"?Q  
    Change in Focus                :       0.000000                            0.000000 x?:[:Hf   
    Fringe tolerance on surface 3 &k /uR;yw  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 {q%wr*  
    Change in Focus                :      -0.000000                            0.000000  $&96qsr  
    Thickness tolerance on surface 1 P"J(O<(1-:  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Lt+ Cm$3  
    Change in Focus                :       0.000000                            0.000000 0Ii* "?s  
    Thickness tolerance on surface 2 %X Jv;|  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 3[E3]]OVa  
    Change in Focus                :       0.000000                           -0.000000 C:/O]slH  
    Decenter X tolerance on surfaces 1 through 3 gRS}Y8  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 TKpka]nJ  
    Change in Focus                :       0.000000                            0.000000 S ni Ck*T,  
    Decenter Y tolerance on surfaces 1 through 3 .v36xXK(  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 XO+^q9  
    Change in Focus                :       0.000000                            0.000000 4tR:O#($V  
    Tilt X tolerance on surfaces 1 through 3 (degrees) (PjC]`FK  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ZR<T\w  
    Change in Focus                :       0.000000                            0.000000 Kv'2^B  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) JzJS?ZF  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 0b9;v lGq$  
    Change in Focus                :       0.000000                            0.000000 <=A1d\   
    Decenter X tolerance on surface 1 _ji"##K  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 3%Z:B8:<y  
    Change in Focus                :       0.000000                            0.000000 ~6z<tyD^  
    Decenter Y tolerance on surface 1 ,y}?Z 8?63  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 PG<tic<?  
    Change in Focus                :       0.000000                            0.000000 3~~KtH=  
    Tilt X tolerance on surface (degrees) 1 'c3P3`o,;  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Yy6Mkw7X  
    Change in Focus                :       0.000000                            0.000000 aA?Uf~ "t  
    Tilt Y tolerance on surface (degrees) 1 FUic7>  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ufE;rcYE  
    Change in Focus                :       0.000000                            0.000000 .5*h']iFr1  
    Decenter X tolerance on surface 2 fr$E'+l)  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 zdFO&YHTw  
    Change in Focus                :       0.000000                            0.000000 ct+ ;W  
    Decenter Y tolerance on surface 2 p]/HZS.-b  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ,U+y)w]ar  
    Change in Focus                :       0.000000                            0.000000 C?jk#T  
    Tilt X tolerance on surface (degrees) 2 MaDdiyeC  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 &<}vs`W  
    Change in Focus                :       0.000000                            0.000000 K' xN>qc  
    Tilt Y tolerance on surface (degrees) 2 DD`Bl1)  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 e^)+bmh  
    Change in Focus                :       0.000000                            0.000000 #nV F.  
    Decenter X tolerance on surface 3 Umx~!YL!  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 4RCD<7  
    Change in Focus                :       0.000000                            0.000000 ^'j? { @  
    Decenter Y tolerance on surface 3 kR2kV"-l  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 jC3ta  
    Change in Focus                :       0.000000                            0.000000 ocCq$%Ka  
    Tilt X tolerance on surface (degrees) 3 ME"B1 Se\  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 U.]5UP:a  
    Change in Focus                :       0.000000                            0.000000 Y ;$wD9W  
    Tilt Y tolerance on surface (degrees) 3 LT7C>b  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 0$)uOUVJ  
    Change in Focus                :       0.000000                            0.000000 :.wR*E  
    Irregularity of surface 1 in fringes eT33&:n4  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 !n9H[QP^9  
    Change in Focus                :       0.000000                            0.000000 `|maf=SnY5  
    Irregularity of surface 2 in fringes THC7e>P4  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Fk(nf9M%  
    Change in Focus                :       0.000000                            0.000000 {j$:9  H  
    Irregularity of surface 3 in fringes t5: 1' N9P  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 hKVj\88  
    Change in Focus                :       0.000000                            0.000000 \)KLm  
    Index tolerance on surface 1 N 4Kj)E@  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 \*x'7c/qg  
    Change in Focus                :       0.000000                            0.000000 !C13E lf  
    Index tolerance on surface 2 e ]-fb{oVH  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 H_w&_h&  
    Change in Focus                :       0.000000                           -0.000000 j#:IG/)GL  
    D%[yAr;r  
    Worst offenders: +i"^"/2f{  
    Type                      Value      Criterion        Change .V~z6  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 v@m2c_,  
    TSTY   2             0.20000000     0.35349910    -0.19053324 =PU! hZj"L  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 @ sLb=vb  
    TSTX   2             0.20000000     0.35349910    -0.19053324 z~8`xn,  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 X5[.X()M4  
    TSTY   1             0.20000000     0.42678383    -0.11724851 d$DNiJ ,  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 dsJMhB_41U  
    TSTX   1             0.20000000     0.42678383    -0.11724851 >3aB{[[N  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 MTI[Mez  
    TSTY   3             0.20000000     0.42861670    -0.11541563 p>Z18  
    CMu/n]?c  
    Estimated Performance Changes based upon Root-Sum-Square method: )W,tL*9[  
    Nominal MTF                 :     0.54403234 |E]`rfr  
    Estimated change            :    -0.36299231 ^w|D^F=o  
    Estimated MTF               :     0.18104003 }EJAC*W,  
    +95: O 8  
    Compensator Statistics: dgbqMu"  
    Change in back focus: ?7;_3+T#  
    Minimum            :        -0.000000 HNXMM  
    Maximum            :         0.000000 'xK ,|U  
    Mean               :        -0.000000 eMT}"u8$A  
    Standard Deviation :         0.000000 hCpX# rg?  
    !H)Cua)  
    Monte Carlo Analysis: Y8i'=Po%,  
    Number of trials: 20 9:\#GOg  
    U5[,UrC  
    Initial Statistics: Normal Distribution 3lh^maQ]  
    0NB5YQ8_]  
      Trial       Criterion        Change n]nb+_-97  
          1     0.42804416    -0.11598818 V^S` d8?  
    Change in Focus                :      -0.400171 i>elK<R4  
          2     0.54384387    -0.00018847 VbU*&{j  
    Change in Focus                :       1.018470 ^RIDC/B=V6  
          3     0.44510003    -0.09893230 s?j||  
    Change in Focus                :      -0.601922 [B_(,/?  
          4     0.18154684    -0.36248550 au+6ookT  
    Change in Focus                :       0.920681 Aq]*$s2\G  
          5     0.28665820    -0.25737414 I_.Jo `lK~  
    Change in Focus                :       1.253875 KkK !E  
          6     0.21263372    -0.33139862 Uo]x6j<  
    Change in Focus                :      -0.903878 b^s>yN  
          7     0.40051424    -0.14351809 UngK9uB~  
    Change in Focus                :      -1.354815 6}/m~m  
          8     0.48754161    -0.05649072 ;NoD4*  
    Change in Focus                :       0.215922 !C6[m1F  
          9     0.40357468    -0.14045766 W)LtnD2 w  
    Change in Focus                :       0.281783 sUe<21:  
         10     0.26315315    -0.28087919 W{!Slf  
    Change in Focus                :      -1.048393 zZE@:P&lf  
         11     0.26120585    -0.28282649 wJ>.I<F6B  
    Change in Focus                :       1.017611 GZx?vSoHh  
         12     0.24033815    -0.30369419 K lbUs\E  
    Change in Focus                :      -0.109292 eVvDis  
         13     0.37164046    -0.17239188 yt 5'2!jc  
    Change in Focus                :      -0.692430 L"x9O'U  
         14     0.48597489    -0.05805744 uP.[,V0@^  
    Change in Focus                :      -0.662040 ^Mc zumG[  
         15     0.21462327    -0.32940907 Ld4Jp`Zg  
    Change in Focus                :       1.611296 [g Y.h/  
         16     0.43378226    -0.11025008 Om,M8!E  
    Change in Focus                :      -0.640081 ~IQ2;A  
         17     0.39321881    -0.15081353 }uo.N  
    Change in Focus                :       0.914906 S(NUuu}S  
         18     0.20692530    -0.33710703 w+Oo-AGNH  
    Change in Focus                :       0.801607 gPf^dGi7t  
         19     0.51374068    -0.03029165 8]2j*e0xV  
    Change in Focus                :       0.947293 Y'9<fSn5&  
         20     0.38013374    -0.16389860 d>bS)  
    Change in Focus                :       0.667010 egHvI&w"o  
    iS#m{1m$$  
    Number of traceable Monte Carlo files generated: 20 Kc#42 C;t/  
    y&(R1Y75  
    Nominal     0.54403234 6v(;dolBIw  
    Best        0.54384387    Trial     2 ) mG  
    Worst       0.18154684    Trial     4 Op 0Qpn  
    Mean        0.35770970 EG oe<.  
    Std Dev     0.11156454 k<.VR"I p  
    *#&s+h,^  
    Z.{r%W{2  
    Compensator Statistics: R2B0?fu  
    Change in back focus: jHx)q|2\  
    Minimum            :        -1.354815 1 GB  
    Maximum            :         1.611296 Zt{\<5j  
    Mean               :         0.161872 $?Yw{%W  
    Standard Deviation :         0.869664 Q"D%xY  
    KOP*\\1 J  
    90% >       0.20977951               yq,% ey8  
    80% >       0.22748071               O ]Stf7]%;  
    50% >       0.38667627               $@}\T  
    20% >       0.46553746               ,].S~6IM  
    10% >       0.50064115                FZJyqqA$_  
    L\/YS;Y  
    End of Run. P%^\<#Ya7  
    <cx,Z5W  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 (U@uJ  
    rxM)SC;P  
    +`$[h2Z=:  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 H>Ws)aCq  
    KRN{Ath.  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 -ip fGb  
    80% >       0.22748071                 {aRZBIv  
    50% >       0.38667627                 X/!37  
    20% >       0.46553746                 oL 69w1  
    10% >       0.50064115 :.,3Zw{l  
    ;n-IpR#|  
    最后这个数值是MTF值呢,还是MTF的公差? FII>6c  
    /|. |y S9  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   mK2M1r  
    r31H Zx1^  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : %KeQp W  
    90% >       0.20977951                 X^#.4:>.  
    80% >       0.22748071                 *mM+(]8US  
    50% >       0.38667627                 'U)|m  
    20% >       0.46553746                 xy% lp{  
    10% >       0.50064115 u_o>v{&i  
    ....... <:u)C;  
    #lax0IYY=  
    A}#@(ma7  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   xXK7i\ny  
    Mode                : Sensitivities fV3!x,H  
    Sampling            : 2 P,!k^J3:l  
    Nominal Criterion   : 0.54403234 4];Qpln  
    Test Wavelength     : 0.6328 $7aRf'  
    AQ-P3`bCb  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? )^)VyI`O  
    4aAr|!8|h!  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试