切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16883阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 `t&;Yk]-L  
    AtDrQ<>y'  
    1 7oxD  
    a7G2C oM8  
    然后添加了默认公差分析,基本没变 Yur)_m  
    [i7)E]*oTA  
    0)V-|v`  
    S45>f(!  
    然后运行分析的结果如下: GN c|)$  
    _ZBR<{  
    Analysis of Tolerances YWrY{6M  
    o q)"1  
    File : E:\光学设计资料\zemax练习\f500.ZMX A> A'dQ69  
    Title: CJ  
    Date : TUE JUN 21 2011 QL18MbfqP  
    >:&p(eu)L0  
    Units are Millimeters. `r(J6,O  
    All changes are computed using linear differences. |9]K:A  
    lG>e6[Wc  
    Paraxial Focus compensation only. z 5+]Z a~  
    PSS/JFZ^  
    WARNING: Solves should be removed prior to tolerancing. RLNuH2y;  
    zq r%7U  
    Mnemonics: Fjt,  
    TFRN: Tolerance on curvature in fringes. z %E!tB2o  
    TTHI: Tolerance on thickness. PM!t"[@&  
    TSDX: Tolerance on surface decentering in x. }#5roNH~Z  
    TSDY: Tolerance on surface decentering in y. 9mphj)`d;#  
    TSTX: Tolerance on surface tilt in x (degrees). AiK4t-  
    TSTY: Tolerance on surface tilt in y (degrees). h\\2r>  
    TIRR: Tolerance on irregularity (fringes). os^SD&hL  
    TIND: Tolerance on Nd index of refraction. +N:6wZ7<f  
    TEDX: Tolerance on element decentering in x. .BDRD~kB  
    TEDY: Tolerance on element decentering in y. <|Eby!KXR  
    TETX: Tolerance on element tilt in x (degrees). wg0.i?R-]  
    TETY: Tolerance on element tilt in y (degrees). !&p:=}s  
    n4T2'e  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. @i-@mxk6<  
    FKnQwX.0  
    WARNING: Boundary constraints on compensators will be ignored. oHd0 <TO  
    0P3|1=  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm )Q/`o,Vm  
    Mode                : Sensitivities aw%vu  
    Sampling            : 2 *1S.9L  
    Nominal Criterion   : 0.54403234 42wC."A  
    Test Wavelength     : 0.6328 Tc5OI'-V  
    1"B9Z6jf  
    PG[O?l  
    Fields: XY Symmetric Angle in degrees Y_>-p(IH  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ^^3va)1{!  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 )wzs~Fn/  
    |SukiXJZF  
    Sensitivity Analysis: 4m[C-NB!g  
    '# IuY  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| C"Q=(3  
    Type                      Value      Criterion        Change          Value      Criterion        Change V3~a!k  
    Fringe tolerance on surface 1 Y1aF._Z  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 5@t uo`k  
    Change in Focus                :      -0.000000                            0.000000 JKi@Kw  
    Fringe tolerance on surface 2 :F w"u4WI  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ) a\DS yr  
    Change in Focus                :       0.000000                            0.000000 ) wo2GF  
    Fringe tolerance on surface 3 !^bB/e  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ]op^dW1;0_  
    Change in Focus                :      -0.000000                            0.000000 wt=>{JM  
    Thickness tolerance on surface 1 imCl{vt(kj  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 v\9,j  
    Change in Focus                :       0.000000                            0.000000 Q1I_=fT  
    Thickness tolerance on surface 2 |od4kt  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 X)iWb(@k"7  
    Change in Focus                :       0.000000                           -0.000000 .6 ?>t!&W  
    Decenter X tolerance on surfaces 1 through 3 a.&#dxgW[  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 VfA5r`^  
    Change in Focus                :       0.000000                            0.000000 9H, &nET  
    Decenter Y tolerance on surfaces 1 through 3 +V+*7s%fL  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 -=t3O#  
    Change in Focus                :       0.000000                            0.000000 :UDn^ (#  
    Tilt X tolerance on surfaces 1 through 3 (degrees) &;h~JS=  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 EfBVu  
    Change in Focus                :       0.000000                            0.000000 Y^ZBA\D2,k  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) & kjwIg{  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 n:^"[Le  
    Change in Focus                :       0.000000                            0.000000 Fx[A8G  
    Decenter X tolerance on surface 1 <X I35\^  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 #C,f/PXfaB  
    Change in Focus                :       0.000000                            0.000000 "X{aS}  
    Decenter Y tolerance on surface 1 q4.dLU,1  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 m~j\?mb{+  
    Change in Focus                :       0.000000                            0.000000 FH`'1iVH  
    Tilt X tolerance on surface (degrees) 1 Q(;B)  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Neo^C_[vN  
    Change in Focus                :       0.000000                            0.000000 r0g/:lJi  
    Tilt Y tolerance on surface (degrees) 1 bDFCZH-:'O  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 4j/iG\  
    Change in Focus                :       0.000000                            0.000000 d7_g u  
    Decenter X tolerance on surface 2 aa0`y  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 _+Jf.n20  
    Change in Focus                :       0.000000                            0.000000 .KU SNrs'  
    Decenter Y tolerance on surface 2 6mF{ImbRbS  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 [*?_  
    Change in Focus                :       0.000000                            0.000000 8pq-nuf|K  
    Tilt X tolerance on surface (degrees) 2 ]Ic?:lKN  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 +F7<5YW&(  
    Change in Focus                :       0.000000                            0.000000 x'@32gv  
    Tilt Y tolerance on surface (degrees) 2 inPdV9  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ~[uV  
    Change in Focus                :       0.000000                            0.000000 4g6ksdFQ  
    Decenter X tolerance on surface 3 ,na=~.0R:  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 x'M^4{4[  
    Change in Focus                :       0.000000                            0.000000 C'8!cPFVv  
    Decenter Y tolerance on surface 3 .W@(nQ-<  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 i (%tHa37  
    Change in Focus                :       0.000000                            0.000000 F[7Kw"~J  
    Tilt X tolerance on surface (degrees) 3 Yt/SnF  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Q9yGQu  
    Change in Focus                :       0.000000                            0.000000 o/dMm:TF  
    Tilt Y tolerance on surface (degrees) 3 W3jXZ>  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 oxMUW<gYd  
    Change in Focus                :       0.000000                            0.000000 !O F?xW  
    Irregularity of surface 1 in fringes U50s!Z t45  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 +w k]iH  
    Change in Focus                :       0.000000                            0.000000 ib(>vp$V  
    Irregularity of surface 2 in fringes @QVqpE<|  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 {HIR>])o  
    Change in Focus                :       0.000000                            0.000000 uO ?Od  
    Irregularity of surface 3 in fringes a)_rka1(  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 $c@w$2  
    Change in Focus                :       0.000000                            0.000000 && DD  
    Index tolerance on surface 1 "+n4c'  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Z p7yaz3y  
    Change in Focus                :       0.000000                            0.000000 XdGpW  
    Index tolerance on surface 2 XDpfpJ,z"}  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 e$Xq    
    Change in Focus                :       0.000000                           -0.000000 E7X!cm/2<  
    Cdp]Nv6  
    Worst offenders: @%EE0)IA  
    Type                      Value      Criterion        Change k'[ S@+5  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 .1.J5>/n  
    TSTY   2             0.20000000     0.35349910    -0.19053324 jFuC=6aF  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 x7P([^i  
    TSTX   2             0.20000000     0.35349910    -0.19053324 o~v_PD[S  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 k]SAJ~bS|  
    TSTY   1             0.20000000     0.42678383    -0.11724851 & Fg|%,fv]  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 b&lN%+%}  
    TSTX   1             0.20000000     0.42678383    -0.11724851 F>~ xzc  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 *M> iZO*@  
    TSTY   3             0.20000000     0.42861670    -0.11541563 $ ^W-Wmsz  
    G3RrjWtO  
    Estimated Performance Changes based upon Root-Sum-Square method: ?w+ QbT  
    Nominal MTF                 :     0.54403234 !;o\5x<'$O  
    Estimated change            :    -0.36299231 M11"<3]D  
    Estimated MTF               :     0.18104003 r-RCe3%g%  
    *2JH_Cj`  
    Compensator Statistics: ds*m6#1b  
    Change in back focus: ,c4c@|Bh?  
    Minimum            :        -0.000000 *:=];1 O  
    Maximum            :         0.000000 I86e&"40  
    Mean               :        -0.000000 uP{; *E3?  
    Standard Deviation :         0.000000 LXHwX*`Y  
    *0%4l_i  
    Monte Carlo Analysis: p+, 1Fi  
    Number of trials: 20 IK*oFo{C=K  
    \*f;!{P{  
    Initial Statistics: Normal Distribution aB6Ye/Io  
    #/ OUGeJ  
      Trial       Criterion        Change z 0~j  
          1     0.42804416    -0.11598818 ,f} h}  
    Change in Focus                :      -0.400171 =2^Vgc  
          2     0.54384387    -0.00018847 FE/$(7rM  
    Change in Focus                :       1.018470 >f&xJq  
          3     0.44510003    -0.09893230 \'n$&PFe  
    Change in Focus                :      -0.601922 oi7 3YOB  
          4     0.18154684    -0.36248550 9*#$0Y=  
    Change in Focus                :       0.920681 B|cA[  
          5     0.28665820    -0.25737414 : @'fpN  
    Change in Focus                :       1.253875 ,LhE shf  
          6     0.21263372    -0.33139862 CN$I:o04C  
    Change in Focus                :      -0.903878 ?n!lUr$:y  
          7     0.40051424    -0.14351809 @Z?7E8(  
    Change in Focus                :      -1.354815 WK pUn8&N  
          8     0.48754161    -0.05649072 |q3f]T&+>{  
    Change in Focus                :       0.215922 `vudS?  
          9     0.40357468    -0.14045766 +0VG[ c\8  
    Change in Focus                :       0.281783 t,RyeS/  
         10     0.26315315    -0.28087919 Tdg6kkJ  
    Change in Focus                :      -1.048393 @u,+F0Yd  
         11     0.26120585    -0.28282649 I0!j<G  
    Change in Focus                :       1.017611 M]c7D`%s  
         12     0.24033815    -0.30369419 Z.!g9fi8>  
    Change in Focus                :      -0.109292 `)"tO&Fn  
         13     0.37164046    -0.17239188 5v"Y\k+1  
    Change in Focus                :      -0.692430 j5kA^MTG  
         14     0.48597489    -0.05805744 A:/}`  
    Change in Focus                :      -0.662040 Q~phGD3!~  
         15     0.21462327    -0.32940907 &]w#z=5SXi  
    Change in Focus                :       1.611296  1Yud~[c  
         16     0.43378226    -0.11025008 &GuF\wJ{7  
    Change in Focus                :      -0.640081 S#k{e72 *  
         17     0.39321881    -0.15081353 !~WZ_z  
    Change in Focus                :       0.914906 [q'eEN G  
         18     0.20692530    -0.33710703 (#oYyM]  
    Change in Focus                :       0.801607 #zxd;;p3  
         19     0.51374068    -0.03029165 dsV ~|D6:  
    Change in Focus                :       0.947293 'GkvUrD9D$  
         20     0.38013374    -0.16389860 f3 !n$lj  
    Change in Focus                :       0.667010 TM0b-W (H  
    `4LJ;KC(  
    Number of traceable Monte Carlo files generated: 20 u*hH }  
    3!aEClRtq  
    Nominal     0.54403234 +$PFHXB  
    Best        0.54384387    Trial     2 z=qWJQ  
    Worst       0.18154684    Trial     4 %VWp&a8  
    Mean        0.35770970 x@Y|v@}BE  
    Std Dev     0.11156454 /u=aX  
    mH)OB?+lq  
    [<yz)<<  
    Compensator Statistics: G;NB\3 ~X  
    Change in back focus: 2 l(Dee Y  
    Minimum            :        -1.354815 p'}lN|"{O  
    Maximum            :         1.611296 k52QaMKa~A  
    Mean               :         0.161872 (k8Z=/N~  
    Standard Deviation :         0.869664 N+NK`  
    IP04l;p/  
    90% >       0.20977951               hfg O  
    80% >       0.22748071               N`HSE=u>  
    50% >       0.38667627               y:.?5KsPI  
    20% >       0.46553746               gKWzFnW  
    10% >       0.50064115                6}ftBmv  
    x9%-plP  
    End of Run. #&V5H{  
    t@)my[!  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 .a,(pq Jg  
    9<l-NU9 _  
    =UNT.]  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 T%kKVr  
    KzG_ <<  
    不吝赐教
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 hk} t:<  
    80% >       0.22748071                 &XQZs`41+  
    50% >       0.38667627                 Q]#Z9H  
    20% >       0.46553746                 l.oBcg[  
    10% >       0.50064115 L\L"mc|O  
    tOH0IE c  
    最后这个数值是MTF值呢,还是MTF的公差? Pm^lr!3p  
    0`n 5x0R  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   nY0sb8lZJ  
    E >}q2  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : (F8AL6  
    90% >       0.20977951                 c_1/W{  
    80% >       0.22748071                 ]US[5)EL-  
    50% >       0.38667627                 3k' .(P|F  
    20% >       0.46553746                 Y8ehmz|g]J  
    10% >       0.50064115 Z;b+>2oL  
    ....... )#`H."Z  
    9#rt:&xo0  
    \!H{Ks{#R.  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   yP\Up  
    Mode                : Sensitivities 2k1aX~?  
    Sampling            : 2 .nZ3kT`  
    Nominal Criterion   : 0.54403234 vWY(%Q,  
    Test Wavelength     : 0.6328 z $6JpG  
    Z+idLbIs  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? q)iTn)Z!  
    kRot7-7I|  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1907
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试