切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8701阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `2N&{(  
    +@*}_%^l"  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of zY_xJ"/9  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of QcQQQM  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 0qP&hybL[(  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 XJJdCv^  
    uG<VQ2LM  
    %fid=fopen('e21.dat','w'); r*?rwtFtg  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) & D@/_m $  
    M1 =3000;              % Total number of space steps GP=i6I6C  
    J =100;                % Steps between output of space l{q$[/J~)  
    T =10;                  % length of time windows:T*T0 v`&  
    T0=0.1;                 % input pulse width _ nFsC  
    MN1=0;                 % initial value for the space output location "9F]Wv/  
    dt = T/N;                      % time step )Dn~e#  
    n = [-N/2:1:N/2-1]';           % Index L(Ww6oj  
    t = n.*dt;   CUJP"u>8M  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~q0g7?}&  
    u20=u10.*0.0;                  % input to waveguide 2 ) D_ZZPq_  
    u1=u10; u2=u20;                 1K(a=o[Ce  
    U1 = u1;   r*$$82s  
    U2 = u2;                       % Compute initial condition; save it in U ttQX3rmF01  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. MtE18m "z  
    w=2*pi*n./T; C-25\  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [f`^+,U  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ifA=qn0=}  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Qdepzo>E  
    for m1 = 1:1:M1                                    % Start space evolution j5hM |\]  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS tF:'Y ~3 p  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; !%w#h0(b  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform jC_7cAsl  
       ca2 = fftshift(fft(u2));  3Ee8_(E\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation /rMxl(wD'  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   \=n0@1Q=>  
       u2 = ifft(fftshift(c2));                        % Return to physical space aJh=4j~.  
       u1 = ifft(fftshift(c1)); *Nfn6lVB  
    if rem(m1,J) == 0                                 % Save output every J steps. _PTo !aJL  
        U1 = [U1 u1];                                  % put solutions in U array b1X.#pz7F  
        U2=[U2 u2]; .-kqt^Gc  
        MN1=[MN1 m1]; $#Mew:J  
        z1=dz*MN1';                                    % output location  }qf9ra  
      end  $^&SEz  
    end Znl&.,c)  
    hg=abs(U1').*abs(U1');                             % for data write to excel &uLxA w  
    ha=[z1 hg];                                        % for data write to excel ,.# SEv5  
    t1=[0 t']; XBJ9"G5  
    hh=[t1' ha'];                                      % for data write to excel file B_f0-nKP  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format qg7] YT&  
    figure(1) i&cH  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn {HgW9N(  
    figure(2) |. bp  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn G5^gwG+  
    "|1MJuY_6  
    非线性超快脉冲耦合的数值方法的Matlab程序 @G/':N   
    .aRL'1xHl  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   +{%@kX<V_  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %}z/_QZ  
    7ko7)"N  
    tE)%*z@<Lt  
    ?nm:e.S+?  
    %  This Matlab script file solves the nonlinear Schrodinger equations +B*8$^,V)  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ~;ink   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j/zD`yd j  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Kuh! b`9  
    47Y| 1  
    C=1;                           Z&mV1dxR  
    M1=120,                       % integer for amplitude Pn{yk`6E  
    M3=5000;                      % integer for length of coupler lYd#pNN  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) #unE>#DW  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. b0a'Y"oef4  
    T =40;                        % length of time:T*T0. rT`D@ I  
    dt = T/N;                     % time step y$)gj4k/D  
    n = [-N/2:1:N/2-1]';          % Index uo1G   
    t = n.*dt;   ':,6s  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. l<<G". ?  
    w=2*pi*n./T; 2|k*rv}l  
    g1=-i*ww./2; c$f|a$$b   
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; i '!M<>7  
    g3=-i*ww./2; W7N Hr5RC  
    P1=0; ^H+j;K{5,  
    P2=0; bw*@0;  
    P3=1; -X@;"0v  
    P=0; QN(f8t(  
    for m1=1:M1                 TJtW?c7  
    p=0.032*m1;                %input amplitude m[^;HwJ  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 i_GE9A=h  
    s1=s10; syh0E= If_  
    s20=0.*s10;                %input in waveguide 2 z(< E %  
    s30=0.*s10;                %input in waveguide 3 )Jx!VJ^Y  
    s2=s20; VGcl)fIqw?  
    s3=s30; #e%.z+7I  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   oWyg/{M  
    %energy in waveguide 1 ;U<) $5  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   _lQ+J=J$.R  
    %energy in waveguide 2 @"9y\1u  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   gb:Cc,F,%  
    %energy in waveguide 3 , IUMH]D  
    for m3 = 1:1:M3                                    % Start space evolution 3w )S=4lB  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS cFLu+4.jsG  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; hE:P'O1  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; o*n""m  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform _}]o~  
       sca2 = fftshift(fft(s2)); rOY^w9!  
       sca3 = fftshift(fft(s3)); Tu_dkif'  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   P's<M  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); K! /E0G&  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9BANCW"  
       s3 = ifft(fftshift(sc3)); Oe9{`~  
       s2 = ifft(fftshift(sc2));                       % Return to physical space nGW wXySq  
       s1 = ifft(fftshift(sc1)); V`69%35*@  
    end ?l,i(I  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); @6*<Xs =  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); iy tSC  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]CC= \ <  
       P1=[P1 p1/p10]; hl~(&D1^  
       P2=[P2 p2/p10]; 9r1pdG_C@  
       P3=[P3 p3/p10]; -lL*WA`  
       P=[P p*p]; 9+QLcb  
    end Cu;X{F'H  
    figure(1) ! # tRl  
    plot(P,P1, P,P2, P,P3); n2#uH  
    glHag"(  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~