切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8427阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 M:3h e  
    "xHgqgFyO  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Y2SJ7  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of : b~6i%b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear D'A/wG  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TGe;HZ  
    ,%Up0Rr,  
    %fid=fopen('e21.dat','w'); B'EKM)dA  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) C #6dC0  
    M1 =3000;              % Total number of space steps \z7SkZt,GT  
    J =100;                % Steps between output of space ;R?I4}O#R8  
    T =10;                  % length of time windows:T*T0 +0q>fp_K(+  
    T0=0.1;                 % input pulse width 4^Q :  
    MN1=0;                 % initial value for the space output location fKeT~z{~  
    dt = T/N;                      % time step pg%aI,  
    n = [-N/2:1:N/2-1]';           % Index K7Wk6Aw  
    t = n.*dt;   Z%Zd2 v  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #x3ujJ  
    u20=u10.*0.0;                  % input to waveguide 2 '-b*EZU8t  
    u1=u10; u2=u20;                  S"$m]  
    U1 = u1;   I{ :(z3  
    U2 = u2;                       % Compute initial condition; save it in U 1u(.T0j7f  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Ej>g.vp8I  
    w=2*pi*n./T; i21Gw41p:  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T GJp85B!PlO  
    L=4;                           % length of evoluation to compare with S. Trillo's paper _Bp1co85MQ  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 c#]q^L\x  
    for m1 = 1:1:M1                                    % Start space evolution hcbv;[bG  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS h!:~f-@j4  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Y> Wu  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform _({A\}Q|  
       ca2 = fftshift(fft(u2)); S"k *6 U  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation iVTGF<  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ?Wt$6{)  
       u2 = ifft(fftshift(c2));                        % Return to physical space `8>Py~  
       u1 = ifft(fftshift(c1)); d[^~'V  
    if rem(m1,J) == 0                                 % Save output every J steps. >P $;79<  
        U1 = [U1 u1];                                  % put solutions in U array X'% ;B  
        U2=[U2 u2]; B0!"A  
        MN1=[MN1 m1]; O Wj@< N  
        z1=dz*MN1';                                    % output location -7&Gi +]  
      end +_xOLiu  
    end 0}xFD6{X  
    hg=abs(U1').*abs(U1');                             % for data write to excel BQ2wnGc  
    ha=[z1 hg];                                        % for data write to excel e^Ky<*Y  
    t1=[0 t']; *"r~-&IL  
    hh=[t1' ha'];                                      % for data write to excel file B8%{}[q  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format TkO[rAC  
    figure(1) h=_0+\%  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0 Ir<y  
    figure(2) [mr9(m[F  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 9{8GP  
    >ap1"n9k  
    非线性超快脉冲耦合的数值方法的Matlab程序 )){9&5,0:  
    }sFm9j7yR  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   S#Sb]  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 F0UVo  
    f5==";eP  
    H'UR8%  
    l-$uHHyu*  
    %  This Matlab script file solves the nonlinear Schrodinger equations Z@%HvB7  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of i^!ez5z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <ExZ:ip  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ed_FiQd  
    %F*|;o7s  
    C=1;                           1#4PG'H  
    M1=120,                       % integer for amplitude {Pu\?Cq  
    M3=5000;                      % integer for length of coupler T'aec]u  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) k') E/n  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 2',w[I  
    T =40;                        % length of time:T*T0. ?kz+R'  
    dt = T/N;                     % time step yj(vkifEB  
    n = [-N/2:1:N/2-1]';          % Index b4""|P?L  
    t = n.*dt;   fn/7wO$!  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. S"hTE7`   
    w=2*pi*n./T; tD Cw-  
    g1=-i*ww./2; d@3}U6,  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; EK$Kee}~  
    g3=-i*ww./2; ;u(Du-Os!  
    P1=0; ?`Y\)'}   
    P2=0; }/,CbKi,+  
    P3=1; 02k4 N%  
    P=0; DF{ Qw@P!  
    for m1=1:M1                 lw(e3j  
    p=0.032*m1;                %input amplitude F("#^$  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 @&hnL9D8lL  
    s1=s10; ] k8/#@19  
    s20=0.*s10;                %input in waveguide 2 |uH%6&\  
    s30=0.*s10;                %input in waveguide 3 5]1h8PW!Y  
    s2=s20; `:G%   
    s3=s30;  l"zUv  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));    X}6#II  
    %energy in waveguide 1 B,(Heg  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   .~gl19#:T  
    %energy in waveguide 2 <d7V<&@o=  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   2spg?]  
    %energy in waveguide 3 Sm2>'C  
    for m3 = 1:1:M3                                    % Start space evolution Fequm+  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS do ^RF<G  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S? 0)1O  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; <[/%{sUNC  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform }p9F#gr  
       sca2 = fftshift(fft(s2)); ]fI/(e_U  
       sca3 = fftshift(fft(s3)); 7a$ G@  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ksjUr1o  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 9><mp]E4  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); -6Mm#sX  
       s3 = ifft(fftshift(sc3)); @oG)LT  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 9%iFV N'  
       s1 = ifft(fftshift(sc1)); cxYfZ4++m  
    end !z zW2>  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); s/1 #DM"  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); oT|m1aGE  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); bO/*2oau  
       P1=[P1 p1/p10]; 2PSTGG8JV  
       P2=[P2 p2/p10]; xqHL+W  
       P3=[P3 p3/p10]; :'r6 TVDW  
       P=[P p*p]; ~mN% (w!^  
    end zG c[Z3N  
    figure(1) HpexH{.u)  
    plot(P,P1, P,P2, P,P3); ~tGCLf]c\  
    xkA2g[  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~