计算脉冲在非线性耦合器中演化的Matlab 程序 Smjg[
\UR/tlw+/
% This Matlab script file solves the coupled nonlinear Schrodinger equations of _6/q.
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of j+-+<h/(
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear H6! <y-
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C?h`i ^ >2
"JBTsQDj!
%fid=fopen('e21.dat','w'); P3u,)P&
N = 128; % Number of Fourier modes (Time domain sampling points) 1}>u Y
M1 =3000; % Total number of space steps I6B4S"Q5<
J =100; % Steps between output of space " +n\0j;
T =10; % length of time windows:T*T0 !5escR!\D
T0=0.1; % input pulse width *]]C.t-cd
MN1=0; % initial value for the space output location /N?vVp
dt = T/N; % time step q(YFt*(;w
n = [-N/2:1:N/2-1]'; % Index I,0Z* rw
t = n.*dt; yDn8{uI
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 InCo[ 8SI
u20=u10.*0.0; % input to waveguide 2 QZ:xG:qyk;
u1=u10; u2=u20; m=.}}DcSs
U1 = u1; n>-"\cjV
U2 = u2; % Compute initial condition; save it in U !v`C-1}70
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Wgr`)D
w=2*pi*n./T; Mq[|w2.
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 2B<0|EGtzw
L=4; % length of evoluation to compare with S. Trillo's paper 3Hg}G#]WS
dz=L/M1; % space step, make sure nonlinear<0.05 Bx&F* a;5
for m1 = 1:1:M1 % Start space evolution ``j8T[g
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 7\e96+j|f
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; g\O&gNq<)-
ca1 = fftshift(fft(u1)); % Take Fourier transform ^>H+#@R
ca2 = fftshift(fft(u2)); LG6k
KG
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation e_{!8u.+
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 28rC>*+z
u2 = ifft(fftshift(c2)); % Return to physical space H*&ZXAKv
u1 = ifft(fftshift(c1)); ?5yj</W
if rem(m1,J) == 0 % Save output every J steps. ! !9l@
U1 = [U1 u1]; % put solutions in U array SSh=r
U2=[U2 u2]; W<"{d
MN1=[MN1 m1]; rt5eN:'qY
z1=dz*MN1'; % output location i9FtS7
end b}OOG
end C1YG=!
hg=abs(U1').*abs(U1'); % for data write to excel _s> ZY0
ha=[z1 hg]; % for data write to excel [q5N 4&q\
t1=[0 t']; :a#pzEK
hh=[t1' ha']; % for data write to excel file 1G6MO
%dlmwrite('aa',hh,'\t'); % save data in the excel format >tFv&1iR
figure(1) ^& R
H]q
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ^twJNm{99
figure(2) z%pD3J?>
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn nR()ei^X
D#?jddr-
非线性超快脉冲耦合的数值方法的Matlab程序 /j0zb&
/V%]lmxQ
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 djxM/"xo
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 J/o$\8tiMw
D" 4*&
(3;dtp>Xx
^ew<|J2,B
% This Matlab script file solves the nonlinear Schrodinger equations S
;; Z
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of '\iWp?`$
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $)fybnY
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U.[?1:v
\f AL:mJ
C=1; 1>!wm0;x
M1=120, % integer for amplitude s, 8a1o
M3=5000; % integer for length of coupler jD
eNCJ
N = 512; % Number of Fourier modes (Time domain sampling points) RXj6L~vs5_
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 3hrODts
T =40; % length of time:T*T0. `S{Blv
dt = T/N; % time step =CE(M},d
n = [-N/2:1:N/2-1]'; % Index E9yBa=#*c
t = n.*dt; vFL\O
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. i{$h]D_fD
w=2*pi*n./T; Po:)b
g1=-i*ww./2; # XD-a
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; bxS+ R\
g3=-i*ww./2; 3N]
P1=0; /W6r{Et
P2=0; 71h?t`N
P3=1; u*<G20~A
P=0; 0H6^2T<
for m1=1:M1 ~
}<!ON;
p=0.032*m1; %input amplitude h]#wwJF
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 +foyPj!%
s1=s10; r.V< 5xV
s20=0.*s10; %input in waveguide 2 =7Wr
s30=0.*s10; %input in waveguide 3 C98 Ks
s2=s20; 7D;g\{>M
s3=s30; +6xEz67A<
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); Pkm3&sW
%energy in waveguide 1 ~x>?1K
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); #h 4`f
%energy in waveguide 2 ]/p)XHKo
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 'e3[m
%energy in waveguide 3 |^ao,3h#
for m3 = 1:1:M3 % Start space evolution oM@X)6P_
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS |Q'l&Gt6
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; zLs[vg.(
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; H@uCbT
sca1 = fftshift(fft(s1)); % Take Fourier transform {ER%r'(4Z
sca2 = fftshift(fft(s2)); 8qEK6-
sca3 = fftshift(fft(s3)); @CSTp6{y
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift COx<X\
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); kW#{[,7r
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #l(cBM9sz
s3 = ifft(fftshift(sc3)); (L)tC*Qjc
s2 = ifft(fftshift(sc2)); % Return to physical space @+v;B:
s1 = ifft(fftshift(sc1)); P|[i{h
end 2[\I{<2/9
p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); EcA@bZ0
p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 9M)N2+hkZ
p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ,Z7tpFC
P1=[P1 p1/p10]; i6^COr
P2=[P2 p2/p10]; dz',!|>
P3=[P3 p3/p10]; %C]K`=vI-
P=[P p*p]; 2/9P&c-r