切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8772阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 izw}25SW  
    aVb]H0  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of #+G2ZJxL|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +NY4j-O  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ss:,#|   
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K_aN7?#.v`  
    {|%O)fr,  
    %fid=fopen('e21.dat','w'); ,W-0qN&%/  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) <j#EyGAV  
    M1 =3000;              % Total number of space steps #.)>geLC>9  
    J =100;                % Steps between output of space a< EC]-nw  
    T =10;                  % length of time windows:T*T0 F~AS(sk  
    T0=0.1;                 % input pulse width r;C\eN  
    MN1=0;                 % initial value for the space output location EHHxCq?  
    dt = T/N;                      % time step "=(;l3-o  
    n = [-N/2:1:N/2-1]';           % Index E-D5iiF  
    t = n.*dt;   _XZ=4s  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 B`aAvD`7  
    u20=u10.*0.0;                  % input to waveguide 2 NjxW A&[ng  
    u1=u10; u2=u20;                 SS~Q;9o  
    U1 = u1;   sdWl5 "  
    U2 = u2;                       % Compute initial condition; save it in U xNkY'4%  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. "BRE0Ir:  
    w=2*pi*n./T; Z]f2&  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >B  
    L=4;                           % length of evoluation to compare with S. Trillo's paper OpLSjr  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 nS4S[|w"  
    for m1 = 1:1:M1                                    % Start space evolution obq}#  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS p'qH [<s  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; )mdNvb[*n  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform s>\g03=  
       ca2 = fftshift(fft(u2)); pG6-.F;  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation BT3O_X`u  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   hhGpB$A  
       u2 = ifft(fftshift(c2));                        % Return to physical space .}N^AO=  
       u1 = ifft(fftshift(c1)); ;l()3;  
    if rem(m1,J) == 0                                 % Save output every J steps. 0Q>|s_  
        U1 = [U1 u1];                                  % put solutions in U array _vH!0@QFU  
        U2=[U2 u2]; WZ&@ JB  
        MN1=[MN1 m1]; 0)5Sx /5'  
        z1=dz*MN1';                                    % output location VWy:U#;+8  
      end 9 Zm<1Fw  
    end e,&%Z  
    hg=abs(U1').*abs(U1');                             % for data write to excel 7V (7JV<>  
    ha=[z1 hg];                                        % for data write to excel xUi!|c  
    t1=[0 t']; R+0"B  
    hh=[t1' ha'];                                      % for data write to excel file )`mF.87b&h  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format PAV2w_X~  
    figure(1) r5!M;hU1j  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn (H+[^(3d2  
    figure(2) Vor9 ?F&w  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn X&.$/xaT  
    yQ{_\t1Wd  
    非线性超快脉冲耦合的数值方法的Matlab程序 J.2]km  
    ,jsx]U/^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Ko)T>8:  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (B,t 1+%  
    T1HiHvJ  
    y%bqeo L~  
    }#*zjMOz  
    %  This Matlab script file solves the nonlinear Schrodinger equations a=.db&;vY  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of n "KJB  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !a(qqZ|s  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 14 'x-w^~k  
    9~'Ip7X,!  
    C=1;                           5qQ(V)ah  
    M1=120,                       % integer for amplitude n UCk0:{  
    M3=5000;                      % integer for length of coupler -^Km}9g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) u6I0<i_KZ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. /{ MH'  
    T =40;                        % length of time:T*T0. JS?l?~  
    dt = T/N;                     % time step <VR&= YJ  
    n = [-N/2:1:N/2-1]';          % Index h;UdwmT  
    t = n.*dt;   x ETVt q  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. "rDzrz  
    w=2*pi*n./T; [I<'E LX  
    g1=-i*ww./2; q\ y#  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; T>Rf?%o  
    g3=-i*ww./2; 1qKxg  
    P1=0; sFM>gG  
    P2=0; 1fhK{9#  
    P3=1; f9XO9N,hE:  
    P=0; h9w^7MbO  
    for m1=1:M1                 )7"DR+;:  
    p=0.032*m1;                %input amplitude Y1_6\zpA  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 h8= MVh(I  
    s1=s10; VueQP|   
    s20=0.*s10;                %input in waveguide 2 $CwTNm?  
    s30=0.*s10;                %input in waveguide 3 pkV\D  
    s2=s20; 27 YLg c  
    s3=s30; 4U a~*58  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   GlgORy=>  
    %energy in waveguide 1 vua1iN1  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   p C2c(4  
    %energy in waveguide 2 ;7^j-6  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   `Y({#U  
    %energy in waveguide 3 3g#=sd!0O@  
    for m3 = 1:1:M3                                    % Start space evolution 9EA !j}  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS aU]O$Pg{  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; g yH7((#i  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; a0/n13c?G  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform t"bPKFRy9E  
       sca2 = fftshift(fft(s2)); >;&V~q:di  
       sca3 = fftshift(fft(s3)); S}p&\w H  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   -f;j1bQ  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); [F V=@NI  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); )>X|o$2  
       s3 = ifft(fftshift(sc3)); # pjyhH@  
       s2 = ifft(fftshift(sc2));                       % Return to physical space p5# P r  
       s1 = ifft(fftshift(sc1)); ~iR!3+yg4  
    end )av'u.]%c  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 0jJ28.kOp  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 0@e}hv;  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); am'p^Z @  
       P1=[P1 p1/p10]; )4F/T,{;m  
       P2=[P2 p2/p10]; 0O['-x  
       P3=[P3 p3/p10]; qfP"UAc{/  
       P=[P p*p]; d,J<SG&L&  
    end $7gB&T.x  
    figure(1) SL\y\G aV  
    plot(P,P1, P,P2, P,P3); hzuMTKH9  
    7MuK/q.  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~