切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8862阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 h{p=WWK  
    4^Q :  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]=";IN:SU  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Kt|1&Gk  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear QC;^xG+W  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  KiOcu=F  
    iN0nw]_*  
    %fid=fopen('e21.dat','w'); .0O2Qqdg  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) F[[TWf/  
    M1 =3000;              % Total number of space steps yz*6W zD  
    J =100;                % Steps between output of space !0C^TCuG  
    T =10;                  % length of time windows:T*T0 D{d>5P?W  
    T0=0.1;                 % input pulse width XW s"jt  
    MN1=0;                 % initial value for the space output location J6G(_(d  
    dt = T/N;                      % time step F^LZeF[#t  
    n = [-N/2:1:N/2-1]';           % Index P(73!DT+  
    t = n.*dt;   8o 0%@5M  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 *9c!^ $V  
    u20=u10.*0.0;                  % input to waveguide 2 }HYjA4o\A  
    u1=u10; u2=u20;                 % v7[[U{T  
    U1 = u1;   tl'9IGlc  
    U2 = u2;                       % Compute initial condition; save it in U /E5 5Pec  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. >Ll$p 0W  
    w=2*pi*n./T; ZMLg;-T.&4  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T i?:_:"^x  
    L=4;                           % length of evoluation to compare with S. Trillo's paper s)2fG\1  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 mL`5u f  
    for m1 = 1:1:M1                                    % Start space evolution 0,rTdjH7  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS m[@Vf9  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 1YJC{bO  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform z2hc.29t  
       ca2 = fftshift(fft(u2)); Xy &uZ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation pzgSg[|  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   n` TSu$  
       u2 = ifft(fftshift(c2));                        % Return to physical space ] 0m&(9  
       u1 = ifft(fftshift(c1)); "0k8IVwp  
    if rem(m1,J) == 0                                 % Save output every J steps. a~!G%})'a  
        U1 = [U1 u1];                                  % put solutions in U array -,{-bi  
        U2=[U2 u2]; ^ Dt#$Z  
        MN1=[MN1 m1]; qTo-pA G`  
        z1=dz*MN1';                                    % output location N**g]T 0`  
      end pOkLb #  
    end R$Tp8G>j  
    hg=abs(U1').*abs(U1');                             % for data write to excel 3y~r72J  
    ha=[z1 hg];                                        % for data write to excel P?]aWJ  
    t1=[0 t']; \7 NpT}dj  
    hh=[t1' ha'];                                      % for data write to excel file -TOIc%  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format "y<?Q}1  
    figure(1) \ y{Tn@7  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn g@Qgxsyk>  
    figure(2) V$rlA' +1v  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn )& <=.q  
    iTg;7~1pY  
    非线性超快脉冲耦合的数值方法的Matlab程序 ~E^,=4  
    N#_GJSG_|  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   2JS`Wqy  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 awUx=%ERtA  
    *8tI*Pus  
    KyO8A2'U  
    I;?X f  
    %  This Matlab script file solves the nonlinear Schrodinger equations h<\_XJJ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of zn @N'R/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear xN@Pz)yo  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o!r8{L  
    X*7\lf2  
    C=1;                           Ep4Hqx $  
    M1=120,                       % integer for amplitude C}*cx$.  
    M3=5000;                      % integer for length of coupler b]JI@=s?  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) W Qc>  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. D*Q.G8(  
    T =40;                        % length of time:T*T0. e%>b+ Sv  
    dt = T/N;                     % time step CCGV~e+  
    n = [-N/2:1:N/2-1]';          % Index F("#^$  
    t = n.*dt;   @&hnL9D8lL  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ] k8/#@19  
    w=2*pi*n./T; |uH%6&\  
    g1=-i*ww./2; 5]1h8PW!Y  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; `:G%   
    g3=-i*ww./2;  l"zUv  
    P1=0;  X}6#II  
    P2=0; B,(Heg  
    P3=1; .~gl19#:T  
    P=0; <d7V<&@o=  
    for m1=1:M1                 2spg?]  
    p=0.032*m1;                %input amplitude Sm2>'C  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Fequm+  
    s1=s10; do ^RF<G  
    s20=0.*s10;                %input in waveguide 2 p=QYc)3F  
    s30=0.*s10;                %input in waveguide 3 Ih[+K#t+E  
    s2=s20; }p9F#gr  
    s3=s30; OlQ,Ce  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   #DkD!dW(l  
    %energy in waveguide 1 ^SfS~G Q  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   1 Ee>S\9t  
    %energy in waveguide 2 cDXsi#Raj  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   @oG)LT  
    %energy in waveguide 3 m!OMrZ%)}  
    for m3 = 1:1:M3                                    % Start space evolution <39!G7ny  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 1[;@AE2Y  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; oT|m1aGE  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; bO/*2oau  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform WnAd5#G  
       sca2 = fftshift(fft(s2)); - n6jG}01b  
       sca3 = fftshift(fft(s3)); p&K\]l}  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   L6i|:D32p  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);  [&P`ak  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); >LF&EM]  
       s3 = ifft(fftshift(sc3)); !)Rr] ~  
       s2 = ifft(fftshift(sc2));                       % Return to physical space cub <G!K  
       s1 = ifft(fftshift(sc1)); xkA2g[  
    end O:.,+,BH  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); v&MU=Tcqi  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); K.SeK3(  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ! ]Mc4!E  
       P1=[P1 p1/p10]; emA!Ew(g  
       P2=[P2 p2/p10]; B">yKB:D}t  
       P3=[P3 p3/p10]; czBi Dk4  
       P=[P p*p]; 8Xm@r#Oy5  
    end I&1!v8  
    figure(1) *[kxF*^  
    plot(P,P1, P,P2, P,P3); (=T$_-Dj`}  
    xNN@1P[*  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~