切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8666阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 .r\|9 *j<  
    u{%dm5  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of >h{)7Hv  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of D&!c7_^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear wL~-k  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u Xo?  
    j kV9$W0  
    %fid=fopen('e21.dat','w');  {B7${AE  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |wGmu&fY  
    M1 =3000;              % Total number of space steps 7&3  
    J =100;                % Steps between output of space bO+]1nZ.  
    T =10;                  % length of time windows:T*T0 aXh~w<5F  
    T0=0.1;                 % input pulse width }}u16x}*n  
    MN1=0;                 % initial value for the space output location ;2[o>73F  
    dt = T/N;                      % time step XS=f>e1<W  
    n = [-N/2:1:N/2-1]';           % Index /|>?!;   
    t = n.*dt;   #R*7y%cO  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 jhH&}d9  
    u20=u10.*0.0;                  % input to waveguide 2 Ox9M![fC  
    u1=u10; u2=u20;                 }j;G`mV2  
    U1 = u1;   tX~ *.W:  
    U2 = u2;                       % Compute initial condition; save it in U _t?#  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _@OS,A  
    w=2*pi*n./T; =hi{J M  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T =buarxk  
    L=4;                           % length of evoluation to compare with S. Trillo's paper rk &ME#<r  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 V)A7q9Bum  
    for m1 = 1:1:M1                                    % Start space evolution IZ<Et/3H  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 4)?s?+  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 8,-U`.  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ]\ t20R{z  
       ca2 = fftshift(fft(u2)); 9xaieR  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation gubw&W  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   pMd!Jl#(N  
       u2 = ifft(fftshift(c2));                        % Return to physical space D-LQQ{!D5  
       u1 = ifft(fftshift(c1)); eL88lV]I  
    if rem(m1,J) == 0                                 % Save output every J steps. uSUog+i  
        U1 = [U1 u1];                                  % put solutions in U array (/KeGgkhv  
        U2=[U2 u2]; ~Z' /b|x<3  
        MN1=[MN1 m1]; {'sp8:$a  
        z1=dz*MN1';                                    % output location TlD^EJG  
      end qyzH*#d=Cf  
    end \1<8'at  
    hg=abs(U1').*abs(U1');                             % for data write to excel [xo-ZDIoG  
    ha=[z1 hg];                                        % for data write to excel WOi+y   
    t1=[0 t']; 3v ~[kVhoG  
    hh=[t1' ha'];                                      % for data write to excel file 17#t7Yk  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Nr?CZFN#  
    figure(1) M}]4tAyT  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn c!N#nt_<  
    figure(2) l'7' G$v  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn r6vI6|1  
    W:hTRq  
    非线性超快脉冲耦合的数值方法的Matlab程序 lJdrrR)wg  
    '0v]?mM  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   M)3'\x :  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zMh`Uqid  
    |f1RhB  
    <Vl`EfA(  
    cCs@[D#O1  
    %  This Matlab script file solves the nonlinear Schrodinger equations P"+R:O\!g  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of o:`^1  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pgPm0+N  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8>`8p0I$+  
    gts09{"}Y  
    C=1;                           Kx02 2rgDU  
    M1=120,                       % integer for amplitude }Z)YK}_1  
    M3=5000;                      % integer for length of coupler L@.Trso  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) gfiFRwC`v  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. `NfwW:  
    T =40;                        % length of time:T*T0. f.0HIc  
    dt = T/N;                     % time step <Ok7 -:OxA  
    n = [-N/2:1:N/2-1]';          % Index Q5]rc`} 5  
    t = n.*dt;   U/ax`_  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. mbHMy[R  
    w=2*pi*n./T; F`>qg2wO  
    g1=-i*ww./2; ~( :$c3\  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @(IA:6GN  
    g3=-i*ww./2; 5t|$Yt[  
    P1=0; \+Y5b}  
    P2=0; -$I$zo  
    P3=1; z{/#/,V5D4  
    P=0; KQ0f2?  
    for m1=1:M1                 F~/~_9RJ  
    p=0.032*m1;                %input amplitude mR~S$6cc  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 W9]0X  
    s1=s10; D;z!C ys  
    s20=0.*s10;                %input in waveguide 2 }(oWXwFb&W  
    s30=0.*s10;                %input in waveguide 3 |h6, .#n  
    s2=s20; |@VhR(^O$  
    s3=s30; pZ]&M@Ijp  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   =&PO_t5)z  
    %energy in waveguide 1 JOyM#g9-?  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   !Ej?9LHo  
    %energy in waveguide 2 *VaQ\]:d  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   (:R5"|]@<x  
    %energy in waveguide 3 8! /ue.T  
    for m3 = 1:1:M3                                    % Start space evolution ^4xl4nbx  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS GC|V>| tz#  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; n`! 6EaD  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Wu/:ES)C  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform !wC( ]Y  
       sca2 = fftshift(fft(s2)); ,+X:#$  
       sca3 = fftshift(fft(s3)); -s\R2_(  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   &'Xgf!x  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); l;@bs  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); i=&]%T6Qk  
       s3 = ifft(fftshift(sc3)); {asq[;]  
       s2 = ifft(fftshift(sc2));                       % Return to physical space b5? kgY  
       s1 = ifft(fftshift(sc1)); fcy4?SQ.<i  
    end ;zd.KaS  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \+&)9 !K  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 5mZwg(si  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 'j!n   
       P1=[P1 p1/p10]; s[VYd:}se  
       P2=[P2 p2/p10]; !_oR/)  
       P3=[P3 p3/p10]; J&B5Ll  
       P=[P p*p]; @z:E]O}  
    end &8I*N6p:%/  
    figure(1) ,$U~<Zd  
    plot(P,P1, P,P2, P,P3); uo ;m  
    W$W w/mcl+  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~