切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8980阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 jdV  E/5  
    U/&!F  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of p=jD "lq  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of N ~L3 9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2MmqGB}YcW  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FQ>KbZh  
    )s1W)J?8  
    %fid=fopen('e21.dat','w'); V*SKWP  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ext`%$ U7  
    M1 =3000;              % Total number of space steps qsn6i%VH  
    J =100;                % Steps between output of space }|MGYS)  
    T =10;                  % length of time windows:T*T0 Epsc2TuH7  
    T0=0.1;                 % input pulse width ac6Lv}w_  
    MN1=0;                 % initial value for the space output location B<(v\=xZ  
    dt = T/N;                      % time step D%kY  
    n = [-N/2:1:N/2-1]';           % Index vK)^;T ;  
    t = n.*dt;   .]g>.  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 U)a}XRS  
    u20=u10.*0.0;                  % input to waveguide 2 F`-|@k  
    u1=u10; u2=u20;                 vttmSdY  
    U1 = u1;   |,L_d2lb  
    U2 = u2;                       % Compute initial condition; save it in U wQJY,|.  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. #>C.61Fx  
    w=2*pi*n./T; 2/O/h  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T H2`aw3  
    L=4;                           % length of evoluation to compare with S. Trillo's paper >t')ZSjRs  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 k !Nl#.j  
    for m1 = 1:1:M1                                    % Start space evolution Bh?K_{e  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS msOk~ZPE6\  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; vBAds  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Q9=vgOW+  
       ca2 = fftshift(fft(u2)); /PF X1hSu  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation !Vl>?U?AN  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   H Yt& MK  
       u2 = ifft(fftshift(c2));                        % Return to physical space x0B|CO  
       u1 = ifft(fftshift(c1)); = 7pLU+ u  
    if rem(m1,J) == 0                                 % Save output every J steps. SbU=Lkx#  
        U1 = [U1 u1];                                  % put solutions in U array o^%4w>|  
        U2=[U2 u2]; k/hE68<6i  
        MN1=[MN1 m1]; JPW+(n|g  
        z1=dz*MN1';                                    % output location Y,z15i3j?  
      end /H&:  
    end 0@z=0}0Z  
    hg=abs(U1').*abs(U1');                             % for data write to excel LM }0QL m?  
    ha=[z1 hg];                                        % for data write to excel nAv@^G2  
    t1=[0 t']; *#{[9d  
    hh=[t1' ha'];                                      % for data write to excel file .q#2 op  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format YFgQ!\&59  
    figure(1) VXlTA>a }  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn e8O[xM  
    figure(2) VE1 B"s</  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn fvccut;K  
    o\u31,  
    非线性超快脉冲耦合的数值方法的Matlab程序 m~ :W$x1+  
    LyRto  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    Ub(zwR;  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ex^|[iV  
    9v&{; %U  
    l@7X gsey  
    W zYy<  
    %  This Matlab script file solves the nonlinear Schrodinger equations ,y@` =  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 10xo<@l  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (NrH)+)J!a  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ciO^2X  
    SOQm>\U'i  
    C=1;                           C*Avu  
    M1=120,                       % integer for amplitude r!+-"hS!  
    M3=5000;                      % integer for length of coupler . OA_)J7  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) !/O c)Yk  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. }<`Mn34@  
    T =40;                        % length of time:T*T0. L/9f"%kZ  
    dt = T/N;                     % time step LQ pUyqR  
    n = [-N/2:1:N/2-1]';          % Index |r_S2)zH9m  
    t = n.*dt;   E8#r<=(m  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. f.,ozL3*  
    w=2*pi*n./T; "P;_-i9O  
    g1=-i*ww./2; "pTyQT9P  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 2}:scag  
    g3=-i*ww./2;  L>Bf}^  
    P1=0; XmN3[j  
    P2=0; 8$}1|"F  
    P3=1; /Y|oDfv  
    P=0; CI$pPY<u1  
    for m1=1:M1                 JK0L&t<  
    p=0.032*m1;                %input amplitude *fVs|  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 J@'}lG  
    s1=s10; 13(JW  
    s20=0.*s10;                %input in waveguide 2 h7mJXS)t|  
    s30=0.*s10;                %input in waveguide 3 f;M7y:A8q,  
    s2=s20; 1!<k-vt  
    s3=s30; U{n< n8  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   v WKUV|  
    %energy in waveguide 1 <EKDP>,~  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ]v96Q/a  
    %energy in waveguide 2 D(6d#c  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   :=x-b3U  
    %energy in waveguide 3 JJlwzH  
    for m3 = 1:1:M3                                    % Start space evolution Ftu~nh}  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS KZ^W@*`D  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; WF#eqU*&  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8;>vgD  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 2lPj%i 5  
       sca2 = fftshift(fft(s2)); `h+ia/  
       sca3 = fftshift(fft(s3)); Z!o&};_j  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Xi3:Ok6FZ  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); -Gjz;/s%XH  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ++ !BSQ e  
       s3 = ifft(fftshift(sc3)); ((L=1]w  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ;KqH]h)  
       s1 = ifft(fftshift(sc1)); 7kapa59  
    end EJ&[I%jU  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); jeM %XI  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));  J5 PXmL  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 3D>syf  
       P1=[P1 p1/p10]; O}\$E{-  
       P2=[P2 p2/p10]; iW\cLp "  
       P3=[P3 p3/p10]; C8i6ESmU  
       P=[P p*p]; bp Q/#\Z  
    end ;~Y0H9`  
    figure(1) 9fR`un)f}  
    plot(P,P1, P,P2, P,P3); D4WvRxki  
    ;A)w:"m  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~