切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9013阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 rNdeD~\  
    @AXRKYQ{t  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 986y\9Zu  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {Z529Ns  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @_gCGI>Q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ou r$Ka31  
    SMMV$;O{9  
    %fid=fopen('e21.dat','w'); PRs[! EB6  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) v4?qI >/  
    M1 =3000;              % Total number of space steps q'07  
    J =100;                % Steps between output of space .,)C^hs@  
    T =10;                  % length of time windows:T*T0 Ur`jmB  
    T0=0.1;                 % input pulse width F__(iXxC  
    MN1=0;                 % initial value for the space output location Fq]ht*  
    dt = T/N;                      % time step v<*ga7'S  
    n = [-N/2:1:N/2-1]';           % Index ?0v(_ v  
    t = n.*dt;   gUfLw  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 xq?9w$  
    u20=u10.*0.0;                  % input to waveguide 2 IfGmA.O  
    u1=u10; u2=u20;                 %0>DjzYt  
    U1 = u1;   `^rN"\  
    U2 = u2;                       % Compute initial condition; save it in U m&GxL T6  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &\3k(j  
    w=2*pi*n./T; Km5#$IiP;  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T /rKdxsI*  
    L=4;                           % length of evoluation to compare with S. Trillo's paper c.-/e u^|  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 [d( @lbV0  
    for m1 = 1:1:M1                                    % Start space evolution SR,id B&i  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS r%M.rYLG{  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; UStNUNCq  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform *rY@(|  
       ca2 = fftshift(fft(u2)); aoLYw 9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Jj<UtD+  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   k`LoRqF  
       u2 = ifft(fftshift(c2));                        % Return to physical space EcBJ-j 6d  
       u1 = ifft(fftshift(c1)); 9?VyF'r=  
    if rem(m1,J) == 0                                 % Save output every J steps. t0 [H_  
        U1 = [U1 u1];                                  % put solutions in U array &P+7Um(  
        U2=[U2 u2]; ; TaR1e0  
        MN1=[MN1 m1]; ^8,Y1r9`$  
        z1=dz*MN1';                                    % output location nqG9$!k^t  
      end )c'5M]V  
    end Pj4WWKX  
    hg=abs(U1').*abs(U1');                             % for data write to excel QJBzv|  
    ha=[z1 hg];                                        % for data write to excel V3<baxdE  
    t1=[0 t']; o"O=Epg  
    hh=[t1' ha'];                                      % for data write to excel file ~! *xi  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 54TW8y `h  
    figure(1) ZRDY `eK  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn +- ~:E_G  
    figure(2)  E*[dc  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn QZcdfJck=+  
    taS2b#6\+  
    非线性超快脉冲耦合的数值方法的Matlab程序 )!h(oR  
    /Iwnl   
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [dm&I#m=  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 a[<'%S#3x  
    k7rFbrL Z  
    ^CIO,I  
    zEG6T*  
    %  This Matlab script file solves the nonlinear Schrodinger equations s>=DfE-;"  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of (1~d/u?2\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w2-:!,X  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8p4J7 -  
    =0te.io)3O  
    C=1;                           QXXB>gOY5  
    M1=120,                       % integer for amplitude {1RI!#[\  
    M3=5000;                      % integer for length of coupler vwVK ^B  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) +T*=JHOD  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Fai_v{&?  
    T =40;                        % length of time:T*T0. _[zZm*  
    dt = T/N;                     % time step uFseO9F.2  
    n = [-N/2:1:N/2-1]';          % Index V3%"z  
    t = n.*dt;   ~H[  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. mWOW39Ku  
    w=2*pi*n./T; i$~2pr  
    g1=-i*ww./2; "N"$B~W*  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; #fq%903=  
    g3=-i*ww./2; >s 4"2X  
    P1=0; l^.d 3b  
    P2=0; ?LJDBN  
    P3=1; %4F Q~  
    P=0; ET]PF,`  
    for m1=1:M1                 j]-0m4QF  
    p=0.032*m1;                %input amplitude 8>T#sO?+  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 3 [R<JrO  
    s1=s10; }2WscxL  
    s20=0.*s10;                %input in waveguide 2 X9W'.s.[Q  
    s30=0.*s10;                %input in waveguide 3 UKYQ @m  
    s2=s20; gN2$;hb?  
    s3=s30; ~%SmH [i  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   {M`yYeo  
    %energy in waveguide 1 'q158x  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   cT2&nZ  
    %energy in waveguide 2 HGuU6@~hu  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   j_` [Z  
    %energy in waveguide 3 []i/\0C^  
    for m3 = 1:1:M3                                    % Start space evolution @ |bN[XL  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS "r!>p\.0O  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ]} D^?g^  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; )-98pp7~BB  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform J1i{n7f=@  
       sca2 = fftshift(fft(s2)); rF9|xgFK  
       sca3 = fftshift(fft(s3)); MQs!+Z"m>  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   w %4SNR  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Ban@$uf  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); cB$OkaG#  
       s3 = ifft(fftshift(sc3)); $w,?%i97  
       s2 = ifft(fftshift(sc2));                       % Return to physical space -^1}J  
       s1 = ifft(fftshift(sc1)); F52%og~N  
    end 9((BOq  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); tcDWx:Q  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); }BF!!*  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); wM$N#K@  
       P1=[P1 p1/p10]; U2v;[>=]  
       P2=[P2 p2/p10]; &zuPt5G|  
       P3=[P3 p3/p10]; VI xGD#m  
       P=[P p*p]; <x QvS^|[  
    end  H7`JqS  
    figure(1) 968<yO]  
    plot(P,P1, P,P2, P,P3); jeKqS  
    !,Ou:E?Bb  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~