切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8302阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 tJ* /5k &  
    %__ @G_M  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of elR1NhB|p  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?&!!(dWFH  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear QkWEVL@uM  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9ei<ou_s  
    'SXLnoeTa  
    %fid=fopen('e21.dat','w'); ^$mCF%e8H  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) N A_8<B^  
    M1 =3000;              % Total number of space steps 6kMEm)YjT  
    J =100;                % Steps between output of space RameaFX8  
    T =10;                  % length of time windows:T*T0 C^LxJG{L5  
    T0=0.1;                 % input pulse width aO}p"-'  
    MN1=0;                 % initial value for the space output location e\O625  
    dt = T/N;                      % time step (uX"n`Dk  
    n = [-N/2:1:N/2-1]';           % Index h#Mx(q  
    t = n.*dt;   B qINU  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @+_pj.D  
    u20=u10.*0.0;                  % input to waveguide 2 ny!80I  
    u1=u10; u2=u20;                 ?v-!`J>EF#  
    U1 = u1;   UV</Nx)3  
    U2 = u2;                       % Compute initial condition; save it in U 5!wjYQt3  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. -;;m/QM  
    w=2*pi*n./T; [,;O$j}  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [S-#}C?~  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Z2-tDp(I  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 4#t=%}  
    for m1 = 1:1:M1                                    % Start space evolution [w-# !X2y  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS >L8 & 6aU  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; z_#HJ}R=  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform :o87<) _F  
       ca2 = fftshift(fft(u2)); tkff\W[JU  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation k py)kS  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   4N1)+ W8k*  
       u2 = ifft(fftshift(c2));                        % Return to physical space ![eY%2;<  
       u1 = ifft(fftshift(c1));  XF>!~D  
    if rem(m1,J) == 0                                 % Save output every J steps. 2f{a||  
        U1 = [U1 u1];                                  % put solutions in U array wzmQRn;s  
        U2=[U2 u2]; #s#BYbF  
        MN1=[MN1 m1]; jwuSne  
        z1=dz*MN1';                                    % output location @7;}6,)  
      end b7">IzAe  
    end +VJyGbOcC  
    hg=abs(U1').*abs(U1');                             % for data write to excel kIe)ocJg  
    ha=[z1 hg];                                        % for data write to excel 2|(lKFkQ  
    t1=[0 t']; 0bD\`Jiv,  
    hh=[t1' ha'];                                      % for data write to excel file bYX.4(R  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format snNB;hkj  
    figure(1) ]l3Y=Cl  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn |oePB<N  
    figure(2) _ /Eg_dQ~@  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn %sPq*w.  
    8A/rkoht*  
    非线性超快脉冲耦合的数值方法的Matlab程序 )nq(XM7  
    cXr_,>k  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )c 79&S  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q4Qf/q;U  
    ;#8xRLW  
    -a"b:Q  
    :~ &#9  
    %  This Matlab script file solves the nonlinear Schrodinger equations h2= wC.  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of b`Jsu!?{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear g706*o)h  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 glkH??S  
    !/! Fc'A  
    C=1;                           ux 17q>G  
    M1=120,                       % integer for amplitude ?(}~[  
    M3=5000;                      % integer for length of coupler e? |4O< @  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Gv[(0  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. JW=q'ibR  
    T =40;                        % length of time:T*T0. +1\t 0P24  
    dt = T/N;                     % time step 4af^SZ )l  
    n = [-N/2:1:N/2-1]';          % Index v`Ja Bn  
    t = n.*dt;   _Kh8 <$h  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Cy)QS{YX  
    w=2*pi*n./T; NSR][h_  
    g1=-i*ww./2; .ezZ+@LI+#  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ZsYY)<n  
    g3=-i*ww./2; =.) :tGDp  
    P1=0; %WX^']p  
    P2=0; o,?h}@  
    P3=1; }D3hP|.X  
    P=0; 9A|9:OdG1  
    for m1=1:M1                 K!2%8Ej,J  
    p=0.032*m1;                %input amplitude wS >S\,LV  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 %F}d'TPx  
    s1=s10; PeLzZ'$D  
    s20=0.*s10;                %input in waveguide 2 *<h)q)HS  
    s30=0.*s10;                %input in waveguide 3 Bo'v!bI7  
    s2=s20; r029E-  
    s3=s30; ZqjLZ9?q  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   &]A0=h2{P*  
    %energy in waveguide 1 'TA !JB+  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   <7gv<N6BQf  
    %energy in waveguide 2 b?, =|H  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   1F+JyZK}w  
    %energy in waveguide 3 9ESV[  
    for m3 = 1:1:M3                                    % Start space evolution 5v=e(Ph +  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS `joyHKZI.  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; kP^=  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; g'2; ///  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform N&|,!Cu  
       sca2 = fftshift(fft(s2)); I\Cg-&e  
       sca3 = fftshift(fft(s3)); ^f,%dM=i=  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   8kE3\#);\  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 1qm*#4x  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); r$x;rL4  
       s3 = ifft(fftshift(sc3)); T#[#w*w/  
       s2 = ifft(fftshift(sc2));                       % Return to physical space dx$+,R~y  
       s1 = ifft(fftshift(sc1)); !!cN4X  
    end i|28:FJA  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); mMO]l(a&  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); :-(qqC:  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); FC]n?1?<(  
       P1=[P1 p1/p10]; 3~Ap1_9  
       P2=[P2 p2/p10]; IlB*JJnl  
       P3=[P3 p3/p10]; X!@ Y ,  
       P=[P p*p]; 7" )~JBH  
    end \BO6.;jA  
    figure(1) FJT0lC  
    plot(P,P1, P,P2, P,P3); NYzBfL x  
    zw iS%-F  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~