切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8445阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `a%MD>R_Lg  
    >%ovL8F  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Cz)&R^  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of v\[+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1<Sg@  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <iA\ZS:  
    Z5E; FGPb  
    %fid=fopen('e21.dat','w'); P6&%`$  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 1uO2I&B  
    M1 =3000;              % Total number of space steps ! ,bQ;p3g|  
    J =100;                % Steps between output of space ftG3!}  
    T =10;                  % length of time windows:T*T0 ;=7K*npT  
    T0=0.1;                 % input pulse width au04F]-|j8  
    MN1=0;                 % initial value for the space output location e P,bFc  
    dt = T/N;                      % time step lm6hFvEZ  
    n = [-N/2:1:N/2-1]';           % Index /Kd7# @  
    t = n.*dt;   8IA1@0n&  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 0-uw3U<  
    u20=u10.*0.0;                  % input to waveguide 2 f1]zsn:  
    u1=u10; u2=u20;                 f~F{@),acZ  
    U1 = u1;   P}]o$nWT  
    U2 = u2;                       % Compute initial condition; save it in U AN:yL a!  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. @ 5^nrB  
    w=2*pi*n./T; !b"?l"C+u  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T qVKdc*R-  
    L=4;                           % length of evoluation to compare with S. Trillo's paper %@Z;;5L  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 1X[^^p~^  
    for m1 = 1:1:M1                                    % Start space evolution ,sIC=V +  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS <sw@P":F  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; <|3%}?  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform \"1>NJn&k)  
       ca2 = fftshift(fft(u2)); <^\rv42'(2  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation m`9nDiV  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   <)p.GAZ  
       u2 = ifft(fftshift(c2));                        % Return to physical space w`;HwK$ ,  
       u1 = ifft(fftshift(c1)); qXg&E}]:=  
    if rem(m1,J) == 0                                 % Save output every J steps. *68 TTBq(  
        U1 = [U1 u1];                                  % put solutions in U array )Xh}N  
        U2=[U2 u2]; HeO:=OE~>  
        MN1=[MN1 m1]; CVW T >M<  
        z1=dz*MN1';                                    % output location g"Y _!)X  
      end +4.s4&f)  
    end !( rAI  
    hg=abs(U1').*abs(U1');                             % for data write to excel 4WJY+)  
    ha=[z1 hg];                                        % for data write to excel >UMxlvTg&  
    t1=[0 t']; 4/Y?eUQ  
    hh=[t1' ha'];                                      % for data write to excel file $8)XN-%(  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format X3\PVsH$K  
    figure(1) "~5cz0 H3v  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn F)(^c  
    figure(2) X>Vc4n<}  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn R7/S SuG6\  
    vY-CXWC7  
    非线性超快脉冲耦合的数值方法的Matlab程序 `^Vd*  
    n&njSj/  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   =nGFLH6)  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;NR|Hi]  
    _Xt/U>N  
    `UTPX'Vz  
    mUa#sTm  
    %  This Matlab script file solves the nonlinear Schrodinger equations &h0LWPl  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of b)<WC$"  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear N<9 c/V  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^o{{kju  
    q1T)H2S  
    C=1;                           z_!IA ] v  
    M1=120,                       % integer for amplitude =P]Z"Ok  
    M3=5000;                      % integer for length of coupler {+WBi(=W  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) -67Z!N  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. =I`S7oF  
    T =40;                        % length of time:T*T0. |n/;x$Cb  
    dt = T/N;                     % time step 8f9wUPr  
    n = [-N/2:1:N/2-1]';          % Index #NW+t|E  
    t = n.*dt;   UZI:st   
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. -Cs( 3[  
    w=2*pi*n./T; Jh3  
    g1=-i*ww./2; +6#$6hG  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; zr /v.$<  
    g3=-i*ww./2; i%-yR DIX  
    P1=0; |%C2 cx  
    P2=0; gsbr8zwG,  
    P3=1; ^eh.Iml'@  
    P=0; ENZym  
    for m1=1:M1                 ryL1<u ~  
    p=0.032*m1;                %input amplitude ~HB#7+b  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 5vyg-'  
    s1=s10; V: D;?$Jl  
    s20=0.*s10;                %input in waveguide 2 w7Yu} JY^  
    s30=0.*s10;                %input in waveguide 3 p^pd7)sBr  
    s2=s20; e*2^  
    s3=s30; zMv`<m%  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   nQ\`]_C  
    %energy in waveguide 1 H?=W]<!W{y  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   O>' }q/  
    %energy in waveguide 2 8"j$=T6;W  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   \J+a7N8m,  
    %energy in waveguide 3 x4I!f)8Q  
    for m3 = 1:1:M3                                    % Start space evolution ,<U= 7<NU  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS g{V(WyT@  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; [P &B  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; G'\[dwD,u  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform .o/|]d`%  
       sca2 = fftshift(fft(s2)); l zFiZx  
       sca3 = fftshift(fft(s3)); [c3!xHt5O  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   8g0 #WV  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 3gUY13C}:p  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); >%tP"x{  
       s3 = ifft(fftshift(sc3)); R4'.QZ-x  
       s2 = ifft(fftshift(sc2));                       % Return to physical space G<?RH"RZr  
       s1 = ifft(fftshift(sc1)); b-_l&;NWg  
    end rr tMd  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); G3_7e A#;  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); N|yA]dg[  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); h"1}j'2>@  
       P1=[P1 p1/p10]; }k VC ]+  
       P2=[P2 p2/p10]; d~aTjf  
       P3=[P3 p3/p10]; p%$r\G-x  
       P=[P p*p]; GJB+] b-  
    end !0l|[c4 e>  
    figure(1) 16 AlmegDk  
    plot(P,P1, P,P2, P,P3); +S~ u,=  
    <.ZIhDiEl  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~