计算脉冲在非线性耦合器中演化的Matlab 程序 j@u]( nf @s.civ!Yk % This Matlab script file solves the coupled nonlinear Schrodinger equations of
G nPrwDB % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
8yDe{ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
c4V%>A % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
yQ!I`T>a s3sPj2e{ %fid=fopen('e21.dat','w');
E< Y!BT[X N = 128; % Number of Fourier modes (Time domain sampling points)
`F`{s`E) M1 =3000; % Total number of space steps
oH='\M%+ J =100; % Steps between output of space
|}><)} T =10; % length of time windows:T*T0
rt0_[i T0=0.1; % input pulse width
<BiSx MN1=0; % initial value for the space output location
?>s[B7wMp dt = T/N; % time step
U!i1~)s n = [-N/2:1:N/2-1]'; % Index
WCD)yTg:ES t = n.*dt;
e);`hNLih u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
35%\"Y? u20=u10.*0.0; % input to waveguide 2
K1$
u1=u10; u2=u20;
+3F%soum95 U1 = u1;
$W]}m"l U2 = u2; % Compute initial condition; save it in U
Jo''yrJpB ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
RJ1@a w=2*pi*n./T;
Dv"HFQuF g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
43?uTnX/ L=4; % length of evoluation to compare with S. Trillo's paper
+L|x^B3 dz=L/M1; % space step, make sure nonlinear<0.05
46##(4RF for m1 = 1:1:M1 % Start space evolution
FrC)2wX u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
v>0I=ut u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
C2{*m{
D ca1 = fftshift(fft(u1)); % Take Fourier transform
oy-y QYX ca2 = fftshift(fft(u2));
MfZamu5+F c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
0bG#'.- c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
C#LTF-$]) u2 = ifft(fftshift(c2)); % Return to physical space
'*B%&QC- u1 = ifft(fftshift(c1));
OcLahz6 if rem(m1,J) == 0 % Save output every J steps.
;,/4Ry22j- U1 = [U1 u1]; % put solutions in U array
5=#2@qp U2=[U2 u2];
+rJDDIb MN1=[MN1 m1];
" GY3sam z1=dz*MN1'; % output location
Ihp
Ea,v) end
I0*N
"07n end
B$M4f7 hg=abs(U1').*abs(U1'); % for data write to excel
E7q,6f3@r ha=[z1 hg]; % for data write to excel
*ze,X~8- t1=[0 t'];
y$+=>p|d.^ hh=[t1' ha']; % for data write to excel file
,T*\9'Q %dlmwrite('aa',hh,'\t'); % save data in the excel format
6 2#@Y-5 figure(1)
{53|X=D64 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
nC(Lr,( figure(2)
=~ k}XB waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
;nrkC\SYh: Ma4eu8
非线性超快脉冲耦合的数值方法的Matlab程序 /dO*t4$ @? xR8y"CpE 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
{n&GZG"f Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
x_ t$* >0_{80bdO ~)F_FS 7K ~)7U % This Matlab script file solves the nonlinear Schrodinger equations
zm8k,e +5- % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
{#~A `crO % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
V-3;7 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
AZf69z YYL3a=;`a C=1;
A'$>~Ev M1=120, % integer for amplitude
<Sr:pm M3=5000; % integer for length of coupler
$4*gi& N = 512; % Number of Fourier modes (Time domain sampling points)
Ii#+JY0k dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
-(7oFOtg T =40; % length of time:T*T0.
`n@;%*6/ dt = T/N; % time step
* =*\w\
te n = [-N/2:1:N/2-1]'; % Index
gF`hlYD t = n.*dt;
Vju/+ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
X"vDFE`? w=2*pi*n./T;
~k%XW$cV g1=-i*ww./2;
V CVKh g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
!Na@T]J g3=-i*ww./2;
X,c`,B03 P1=0;
r9*6=*J| P2=0;
'y5H%I! P3=1;
>6Jz=N, P=0;
7nBX@Uo for m1=1:M1
&bGf{P*Da p=0.032*m1; %input amplitude
'Fc$?$c\ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
p"7[heExw s1=s10;
P,b&F s20=0.*s10; %input in waveguide 2
!@*= b1 s30=0.*s10; %input in waveguide 3
jcjl q-x s2=s20;
Q+/P>5O/ s3=s30;
R T~oJ~t; p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
rxs:)# ?A %energy in waveguide 1
R\Ckk;<$ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
9Fw NX %energy in waveguide 2
#2lvRJB p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
8C?E1fH\ %energy in waveguide 3
OG_v[ C5 for m3 = 1:1:M3 % Start space evolution
_k;HhLj` s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
)||CU]"b? s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
J qmL|S) s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
.;S1HOHz4 sca1 = fftshift(fft(s1)); % Take Fourier transform
yu@Pd3 sca2 = fftshift(fft(s2));
x<OVtAUB sca3 = fftshift(fft(s3));
j/F('r~L sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
m>3\1`ZF~< sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
fW[RCd sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
=diGuIB s3 = ifft(fftshift(sc3));
}$sTnea s2 = ifft(fftshift(sc2)); % Return to physical space
xJnN95`R@ s1 = ifft(fftshift(sc1));
NTO.;S|2% end
W`P>vK@= p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
MttFB;Tp p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
uRYq.`v, p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
2[j`bYNe P1=[P1 p1/p10];
Dd,i^,4Gj P2=[P2 p2/p10];
t@a&& P3=[P3 p3/p10];
/"8|26 P=[P p*p];
'1fyBU end
T\ukJ25! figure(1)
kBnb9'.A1 plot(P,P1, P,P2, P,P3);
w~jm0jK] LU8:]zOY 转自:
http://blog.163.com/opto_wang/