切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9053阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 :hMuxHr  
    mnil1*-c0  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 3N]pN<3@  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of t4gD*j6J3  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !5A nr  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p~3CXmUc~  
    k ,<L#?,a  
    %fid=fopen('e21.dat','w'); (Mtc&+n{  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ~Zj?%4  
    M1 =3000;              % Total number of space steps k.lnG5e  
    J =100;                % Steps between output of space c7iu[vE'+  
    T =10;                  % length of time windows:T*T0 u8?ceM^r  
    T0=0.1;                 % input pulse width %{HqF>=~  
    MN1=0;                 % initial value for the space output location 'kh%^_FH7  
    dt = T/N;                      % time step r`S]`&#}(  
    n = [-N/2:1:N/2-1]';           % Index x7NxHTL  
    t = n.*dt;   ( j-(fS  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 5n9F\T5  
    u20=u10.*0.0;                  % input to waveguide 2 dvL'>'g  
    u1=u10; u2=u20;                 P%/+?(?  
    U1 = u1;   8AefgjE  
    U2 = u2;                       % Compute initial condition; save it in U sL\|y38'  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. MnX2sX|  
    w=2*pi*n./T; S>"dUM  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T {X"X.`p  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ax 3:rl  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 '6xn!dK  
    for m1 = 1:1:M1                                    % Start space evolution QPFpGS{d  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 0 \h2&  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; (O<lVz@8  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform }XXE hOO  
       ca2 = fftshift(fft(u2)); 9s7B1Pf  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Y/$SriC_+'  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   +m+HC(Z  
       u2 = ifft(fftshift(c2));                        % Return to physical space G4RsH/  
       u1 = ifft(fftshift(c1)); k~q[qKb8y:  
    if rem(m1,J) == 0                                 % Save output every J steps. m.^6e f  
        U1 = [U1 u1];                                  % put solutions in U array F(XWnfUv  
        U2=[U2 u2]; D:F!;n9  
        MN1=[MN1 m1]; >Y \4 v}-  
        z1=dz*MN1';                                    % output location \4vFEJSh  
      end x`lBG%Y[-v  
    end Mq7|37(N[  
    hg=abs(U1').*abs(U1');                             % for data write to excel 9Q.j <  
    ha=[z1 hg];                                        % for data write to excel z?gJHN<  
    t1=[0 t']; {==Q6BG*  
    hh=[t1' ha'];                                      % for data write to excel file b#y}VY)?  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format DX!$k[  
    figure(1) 5S7Z]DXiT8  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn [ wu%t8O2  
    figure(2) 4o=G) KO{  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Tl1?5  
    &G"]v]V  
    非线性超快脉冲耦合的数值方法的Matlab程序 9<YB &:<  
    3{_+dE"9  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   '{+hti,Lh  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +Rh'VZJs  
     (&gCVf  
    %(e=Q^=  
    brVT  
    %  This Matlab script file solves the nonlinear Schrodinger equations ]':C~-RV{  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of jxoEOEA  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear A9R}74e4g  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m0#hG x  
    x[?_F  
    C=1;                           eU12*(  
    M1=120,                       % integer for amplitude /J6CSk  
    M3=5000;                      % integer for length of coupler EP8LJzd"  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 1rKR=To  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05.  I&v B\A  
    T =40;                        % length of time:T*T0. m2}&5vD8-  
    dt = T/N;                     % time step *PI3L/*  
    n = [-N/2:1:N/2-1]';          % Index D H.ljGb  
    t = n.*dt;   [Ytia#Vv  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. %*/[aq,#  
    w=2*pi*n./T; ._R82 gy  
    g1=-i*ww./2; 3a5H<3w_  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |/s.PNP2  
    g3=-i*ww./2; ~W#f,mf  
    P1=0; MVj@0W33m  
    P2=0; ?y '.sQ  
    P3=1; jsG9{/Ov3  
    P=0; 4R0_%x6vG  
    for m1=1:M1                 O3_Mrn(R  
    p=0.032*m1;                %input amplitude *H$nydQ:  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 /qCYNwWH9  
    s1=s10; H{V-C_  
    s20=0.*s10;                %input in waveguide 2 m0edkt-x  
    s30=0.*s10;                %input in waveguide 3 hw7_8pAbh  
    s2=s20; lAGxE-B^a"  
    s3=s30; mA."*)8VNg  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   CJC|%i3  
    %energy in waveguide 1 d}G?iX;c}  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   `SG70/  
    %energy in waveguide 2 >hhd9  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   she`_'?5  
    %energy in waveguide 3 l?~ci ;lG  
    for m3 = 1:1:M3                                    % Start space evolution IQ_0[  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS dOhV`8l  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; AVJk  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; EvYw$ j  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Vy9n3W"FB1  
       sca2 = fftshift(fft(s2)); GWW@8GNI  
       sca3 = fftshift(fft(s3)); pta%%8":  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   U %4g:s  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ^4[\-L8Lpq  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); S ~_%  
       s3 = ifft(fftshift(sc3)); \w:u&6,0O  
       s2 = ifft(fftshift(sc2));                       % Return to physical space j\vK`.z  
       s1 = ifft(fftshift(sc1)); 8x{vgx @M  
    end J.&q[  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); OBl8kH(b>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); MJb = +L  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); QA3l:D}u  
       P1=[P1 p1/p10]; <H p"ZCN  
       P2=[P2 p2/p10]; *"5a5.`%,  
       P3=[P3 p3/p10]; R*y[/Aw  
       P=[P p*p]; rNAu@B  
    end z>{KeX:  
    figure(1) EH3G|3^xz  
    plot(P,P1, P,P2, P,P3); )k1,oUx  
    H>] z=w~  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~