切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8797阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 =_TCtH  
    {y :/9  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of lS}5bcjR=k  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of u0N1+-6kr+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear dGZVWEaPfx  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PF4Cs3m/  
    Ff.gRx  
    %fid=fopen('e21.dat','w'); +8v!vuO'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) B<+}_3.  
    M1 =3000;              % Total number of space steps [<bfwTFsl  
    J =100;                % Steps between output of space 8_W<BXW  
    T =10;                  % length of time windows:T*T0 Z!tt(y\  
    T0=0.1;                 % input pulse width V5M_N;h  
    MN1=0;                 % initial value for the space output location '%)7%O,2  
    dt = T/N;                      % time step 0gxbo  
    n = [-N/2:1:N/2-1]';           % Index tTC[^Dji  
    t = n.*dt;   tZ4W]od  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 o^gqpQv  
    u20=u10.*0.0;                  % input to waveguide 2 1)M3*h3  
    u1=u10; u2=u20;                 :h?Zg(l  
    U1 = u1;   ,p0R 4gi  
    U2 = u2;                       % Compute initial condition; save it in U ck-wMd  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. lO)p  
    w=2*pi*n./T; O+c@B}[!  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T spgY &OI;  
    L=4;                           % length of evoluation to compare with S. Trillo's paper NNSn]LP  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 |VTm5.23  
    for m1 = 1:1:M1                                    % Start space evolution 0 E{$u  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS BpRQG]L  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; T|r@:t[  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ?GX 5Pvg  
       ca2 = fftshift(fft(u2)); 6?z&G6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation v?5Xx{ym  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   omY%sQ{)  
       u2 = ifft(fftshift(c2));                        % Return to physical space #;>J<>  
       u1 = ifft(fftshift(c1)); )k=8.j4  
    if rem(m1,J) == 0                                 % Save output every J steps. 7G!SlC X}W  
        U1 = [U1 u1];                                  % put solutions in U array Lab{?!E>U  
        U2=[U2 u2]; iiKFV>;t/  
        MN1=[MN1 m1]; mI"`.  
        z1=dz*MN1';                                    % output location 8gr&{-5  
      end cKdy)T%;  
    end CQQX7Y\  
    hg=abs(U1').*abs(U1');                             % for data write to excel U*1rA/"n  
    ha=[z1 hg];                                        % for data write to excel @4_W}1W  
    t1=[0 t']; I3p ~pt2  
    hh=[t1' ha'];                                      % for data write to excel file DBbmM*r  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format =^O8 4Cp 6  
    figure(1) 1KAA(W;nq  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn M"ZP s   
    figure(2)  qqLmjDv  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn )%f]`<o  
    !JJCG  
    非线性超快脉冲耦合的数值方法的Matlab程序 G{$9e}#  
    XBdC/DM[  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   n-}.Yc  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +7^{T:^ht  
    NhS0D=v6  
    iMYvCw/t6  
    e*:[#LJ]C  
    %  This Matlab script file solves the nonlinear Schrodinger equations e#)}.   
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ]Y}faW(&Y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &(IL`%  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /<Zy-+3  
    t-3wjS1v  
    C=1;                           45> w=O  
    M1=120,                       % integer for amplitude R1\cAP^ 0  
    M3=5000;                      % integer for length of coupler >5i1M^g(  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 0&$e:O'v  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. LPvyfD;Zy  
    T =40;                        % length of time:T*T0. cg}46)^<QH  
    dt = T/N;                     % time step ]nEN3RJ  
    n = [-N/2:1:N/2-1]';          % Index `3*>tq  
    t = n.*dt;   &W)k s  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 0[x?Q[~S_0  
    w=2*pi*n./T; TJ ;4QL  
    g1=-i*ww./2; )|q,RAn  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; gjk=`lU  
    g3=-i*ww./2; > rB7ms/@E  
    P1=0; EAqTXB@XU  
    P2=0;  QSmE:Y  
    P3=1; N|WnUlf]:  
    P=0; Z[slN5]([  
    for m1=1:M1                 )U`H7\*)  
    p=0.032*m1;                %input amplitude 72@8M  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ^kch]?  
    s1=s10; oy;N3  
    s20=0.*s10;                %input in waveguide 2 4Q,HhqV'  
    s30=0.*s10;                %input in waveguide 3 v'2EYTVNJD  
    s2=s20; bv)E>%Yy  
    s3=s30; I^qk`5w  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   r9yUye}  
    %energy in waveguide 1 (uD(,3/Cw  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   -$.$6"]  
    %energy in waveguide 2 3Yp_k  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   N`Zm[Sv7  
    %energy in waveguide 3 ]j}zN2[A  
    for m3 = 1:1:M3                                    % Start space evolution  N_=7  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ,D  [  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 4&R\6!*s  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 0v,DQJ?w8  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform jcYI"f"~  
       sca2 = fftshift(fft(s2)); {o*ziZh  
       sca3 = fftshift(fft(s3)); .1t$(]CyC  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Go^W\y   
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); aGr(djD  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 6<(HT#=#  
       s3 = ifft(fftshift(sc3)); P(VQD>G  
       s2 = ifft(fftshift(sc2));                       % Return to physical space qWy{{ A+  
       s1 = ifft(fftshift(sc1)); ~lzV=c$t  
    end k(3 s^B  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); bsR^H5O@  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @433?g`2b  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); st:[|`  
       P1=[P1 p1/p10]; 'N,x=1R5  
       P2=[P2 p2/p10];  i/y+kL  
       P3=[P3 p3/p10]; Yc"G="XP;  
       P=[P p*p]; ;TEZD70r  
    end "Y7RvL!U  
    figure(1) Yu9Ccj`  
    plot(P,P1, P,P2, P,P3); F<Z"W}I+6  
    0;!aO.l]K  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~