切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8814阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 >9+h2B  
    0..]c-V(G  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of F T$x#>  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of w{"ro~9o  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear d",VOhW7)S  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Vv_lBYV  
    {' UK> S  
    %fid=fopen('e21.dat','w'); 8zrLl:{  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) y[DS$>E  
    M1 =3000;              % Total number of space steps % pQi}x  
    J =100;                % Steps between output of space W690N&Wz  
    T =10;                  % length of time windows:T*T0 ~[Z,:=z  
    T0=0.1;                 % input pulse width DR(/|?k+  
    MN1=0;                 % initial value for the space output location pnp)- a*7  
    dt = T/N;                      % time step h#}'9oA  
    n = [-N/2:1:N/2-1]';           % Index /2x@Z>  
    t = n.*dt;   1xDh[:6  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #By~gcN  
    u20=u10.*0.0;                  % input to waveguide 2 sEHA?UP$<F  
    u1=u10; u2=u20;                 sI5S)^'IQ  
    U1 = u1;   |.?X ov]  
    U2 = u2;                       % Compute initial condition; save it in U YZZog6%  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. kL e{3>}j  
    w=2*pi*n./T; 6){nu rDBG  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T c+ukVn`r  
    L=4;                           % length of evoluation to compare with S. Trillo's paper & R,QJ4L  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 PB;j4  
    for m1 = 1:1:M1                                    % Start space evolution c@x6<S%*  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS H+5S )r  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; )S^[b2P]y_  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform "]}?{2i;  
       ca2 = fftshift(fft(u2)); i}/Het+(  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation T-y5U},  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   `4-m$ab  
       u2 = ifft(fftshift(c2));                        % Return to physical space o]aMhSol  
       u1 = ifft(fftshift(c1)); ke19(r Ch  
    if rem(m1,J) == 0                                 % Save output every J steps. @e2P3K gg  
        U1 = [U1 u1];                                  % put solutions in U array d Z}|G-:  
        U2=[U2 u2]; U"535<mR  
        MN1=[MN1 m1]; 5Bp>*MR/".  
        z1=dz*MN1';                                    % output location |& _(I  
      end d 0 mfqP=  
    end 7`SrqI&  
    hg=abs(U1').*abs(U1');                             % for data write to excel .RpWE.C  
    ha=[z1 hg];                                        % for data write to excel nq:'jdY5|  
    t1=[0 t']; XBm ^7'  
    hh=[t1' ha'];                                      % for data write to excel file ;umbld0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format oA+'9/UY  
    figure(1) W?yGV{#V(=  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn -Yg?@yt  
    figure(2) 0QY9vuhL<  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 5Un)d<!7&u  
    +wcif-  
    非线性超快脉冲耦合的数值方法的Matlab程序 wPvYnhr|G-  
    +@dgHDJ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   $pajE^d4V  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p7Z/%~0v:  
    CcZM0  
    +8.1cDEH\  
    Pv\-D<&@m  
    %  This Matlab script file solves the nonlinear Schrodinger equations SN;_.46k  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of h]WW?.   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear P,)\#([vc  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |XJ|vQGU  
    |N0RBa4%  
    C=1;                           x{3q'2  
    M1=120,                       % integer for amplitude (^$SM uC  
    M3=5000;                      % integer for length of coupler MPMAFs  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) /\U:F  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. fJ;1ii~  
    T =40;                        % length of time:T*T0. |u.3Tp|3W  
    dt = T/N;                     % time step (H-kWT  
    n = [-N/2:1:N/2-1]';          % Index O )INM  
    t = n.*dt;   WfYC`e7q  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. z q@"qnr  
    w=2*pi*n./T; %t%D|cf  
    g1=-i*ww./2; toel!+  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~8EzK_c  
    g3=-i*ww./2; P9M. J^<  
    P1=0; Ph17(APt,Q  
    P2=0; 9-E dT4=r,  
    P3=1; 5>>JQ2'W  
    P=0; c3J12+~;  
    for m1=1:M1                  q{pa _  
    p=0.032*m1;                %input amplitude i!+0''i{#  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 |H;+9(  
    s1=s10; LzD,]{CC5  
    s20=0.*s10;                %input in waveguide 2 Q1P=A:*]9  
    s30=0.*s10;                %input in waveguide 3 @"n]v)[4  
    s2=s20; I[P_j`aE  
    s3=s30; RP%FMb}nt  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ]%+T+ zg(Y  
    %energy in waveguide 1 /|8/C40aY  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   bdHHOpXM  
    %energy in waveguide 2 8b< 'jft  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Ie/dMB=t  
    %energy in waveguide 3 V(0V$&qipc  
    for m3 = 1:1:M3                                    % Start space evolution KVPWJHGr  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS T=VBKaSbU  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; lMe+.P|  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; S&NWZ:E3[  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform `It3X.^}  
       sca2 = fftshift(fft(s2)); VJgYXPE `  
       sca3 = fftshift(fft(s3)); _z53r+A  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   98lz2d/Fcq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ageTv/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); N;* wd<  
       s3 = ifft(fftshift(sc3)); F_~A8y  
       s2 = ifft(fftshift(sc2));                       % Return to physical space .DHQJ|J-1  
       s1 = ifft(fftshift(sc1)); $J*lD -h-  
    end [n&SA]a  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); , nW)A/?}  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 9S8V`aC  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); yw*| HT  
       P1=[P1 p1/p10]; af|x(:!H  
       P2=[P2 p2/p10]; FMz>p1s|dK  
       P3=[P3 p3/p10]; t"X^|!hKIF  
       P=[P p*p]; cN~F32<  
    end I.kuYD62  
    figure(1) 13f 'zx(AO  
    plot(P,P1, P,P2, P,P3); +Os9}uKf  
    ))E| SAr  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~