计算脉冲在非线性耦合器中演化的Matlab 程序 AC;ja$A# }ac0} % This Matlab script file solves the coupled nonlinear Schrodinger equations of
*^e06xc: % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
0l=g$G
\% % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
B~K@o.% % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
FJDx80J &i179Qg! %fid=fopen('e21.dat','w');
MA0}BJoW N = 128; % Number of Fourier modes (Time domain sampling points)
99j^<) M1 =3000; % Total number of space steps
6}zargu(; J =100; % Steps between output of space
M}2a/}4 T =10; % length of time windows:T*T0
MwMv[];I T0=0.1; % input pulse width
:Lu=t3#
MN1=0; % initial value for the space output location
f-6-!
dt = T/N; % time step
[+<lm
5t n = [-N/2:1:N/2-1]'; % Index
*Y8nea^$ t = n.*dt;
{WfZE&B u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
>|Ps23J# u20=u10.*0.0; % input to waveguide 2
!8S$tk u1=u10; u2=u20;
Khp`KPxz% U1 = u1;
<pJeiMo U2 = u2; % Compute initial condition; save it in U
4d~Sn81xW ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
b3]QH
h/ w=2*pi*n./T;
uf4C+ci g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
f'._{" L=4; % length of evoluation to compare with S. Trillo's paper
',`GdfAsH dz=L/M1; % space step, make sure nonlinear<0.05
'}3@D$YiM% for m1 = 1:1:M1 % Start space evolution
faH113nc u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
yzJ
VU0s u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
Ni"n_Yun ca1 = fftshift(fft(u1)); % Take Fourier transform
hZ6CiEJB ca2 = fftshift(fft(u2));
1Z-f@PoM c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
vZ3/t8$* c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
JtA
tG% u2 = ifft(fftshift(c2)); % Return to physical space
]@YBa4}w u1 = ifft(fftshift(c1));
$KDH"J if rem(m1,J) == 0 % Save output every J steps.
P(B:tg U1 = [U1 u1]; % put solutions in U array
uXD?s3Wv U2=[U2 u2];
[AgS@^"sf5 MN1=[MN1 m1];
/sHWJ?`&/, z1=dz*MN1'; % output location
)w\E^ end
kex4U6&OQB end
x`:zC# hg=abs(U1').*abs(U1'); % for data write to excel
#J&45 ha=[z1 hg]; % for data write to excel
5>{ t1=[0 t'];
<Sw>5M!j hh=[t1' ha']; % for data write to excel file
ZmM/YPy %dlmwrite('aa',hh,'\t'); % save data in the excel format
cF6eMml; figure(1)
rm}OVL waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
8JYF0r7 figure(2)
cbsU!8 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
CF"u8yE N0`v;4gF$] 非线性超快脉冲耦合的数值方法的Matlab程序 DdO$&/`)YP Y*oT( 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
6%N.'wf Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
zl~`> (vL-Z[M! wCT. (d_ u17e % This Matlab script file solves the nonlinear Schrodinger equations
HHd;<% q % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
FwD"Pc2 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
'L$%)`;e % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
MA9Oi(L)K C9+`sFau@ C=1;
)<Cf,R M1=120, % integer for amplitude
eRV4XB : M3=5000; % integer for length of coupler
DK-V3}`q} N = 512; % Number of Fourier modes (Time domain sampling points)
#9=as Y dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
ZV :cgv T =40; % length of time:T*T0.
1$1s0yg dt = T/N; % time step
8#?jYhT7 n = [-N/2:1:N/2-1]'; % Index
Ns3k(j16 t = n.*dt;
E RnuM ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
(- ]A1WQ? w=2*pi*n./T;
c& &^Do g1=-i*ww./2;
4rpx g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
Pr|:nJs g3=-i*ww./2;
){'Ef_/R P1=0;
w0`aW6t# P2=0;
.&|Ivz6 P3=1;
W ='c+3O6 P=0;
2h Wtpus for m1=1:M1
8Jnl!4 p=0.032*m1; %input amplitude
g>g]qQ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
WX2:c,%: s1=s10;
HfQZRDH s20=0.*s10; %input in waveguide 2
d46PAA{' s30=0.*s10; %input in waveguide 3
2@&|/O6_\h s2=s20;
A:{PPjs%LA s3=s30;
heLWVI[so p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
6xDYEvHS %energy in waveguide 1
_tl p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
8 K7.; t1 %energy in waveguide 2
vUlGE p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
$>Y2N5 %energy in waveguide 3
gG^A6Ol%D for m3 = 1:1:M3 % Start space evolution
}@+3QHwYU s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
R8Kj3wp s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
>a6{y s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
$ NNd4d* sca1 = fftshift(fft(s1)); % Take Fourier transform
cM'\u~m{ sca2 = fftshift(fft(s2));
b#h}g>l sca3 = fftshift(fft(s3));
zk#NM"C+ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
% 3"xn!'vf sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
wNNInS6 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
Z>9uVBE02 s3 = ifft(fftshift(sc3));
QJeL&mf s2 = ifft(fftshift(sc2)); % Return to physical space
)9oF?l^q s1 = ifft(fftshift(sc1));
?p&CR[ end
](^$5Am p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
PTt#Ixn, p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
X`,=tM p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
he/WqCZg P1=[P1 p1/p10];
D9hV`fA P2=[P2 p2/p10];
Bf)}g4nYn P3=[P3 p3/p10];
eootHK P=[P p*p];
!06
!`LT end
3e)W_P*0? figure(1)
CrvL[6i plot(P,P1, P,P2, P,P3);
!+<OED=qe [UP-BX( 转自:
http://blog.163.com/opto_wang/