切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8951阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &~e$:8 +  
    N#C1-*[C  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]bi)$j.9s  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of S8, Z;y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o*g|m.SjL  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 L,,*gK  
    l8h&|RY[  
    %fid=fopen('e21.dat','w'); D]s]"QQ8  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) hsKmnH@#  
    M1 =3000;              % Total number of space steps `Y=WMNy  
    J =100;                % Steps between output of space qT:zEt5  
    T =10;                  % length of time windows:T*T0 JRMM?y  
    T0=0.1;                 % input pulse width 'R<&d}@P*#  
    MN1=0;                 % initial value for the space output location z*$q8Z&7rg  
    dt = T/N;                      % time step Q7X3X,  
    n = [-N/2:1:N/2-1]';           % Index SLfFqc+n0  
    t = n.*dt;   E\nv~Y?SG  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 6$fYt&1  
    u20=u10.*0.0;                  % input to waveguide 2 wd(Hv  
    u1=u10; u2=u20;                 VdSv  
    U1 = u1;    y! .J  
    U2 = u2;                       % Compute initial condition; save it in U '_k+WH&  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. `1OgYs  
    w=2*pi*n./T; wCf~O'XLw  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T xM[Vc  
    L=4;                           % length of evoluation to compare with S. Trillo's paper P + "Y  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 b1XRC`Gy  
    for m1 = 1:1:M1                                    % Start space evolution 7!y5 SX8C  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS jOpcV|2  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; qn1255fB  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 2QpHvsl_  
       ca2 = fftshift(fft(u2)); %?^6).aEK  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation z@Q@^ &0Mr  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [%Bf< J<  
       u2 = ifft(fftshift(c2));                        % Return to physical space !o=U19)  
       u1 = ifft(fftshift(c1)); [[d(jV=*  
    if rem(m1,J) == 0                                 % Save output every J steps. l!}:|N Yh!  
        U1 = [U1 u1];                                  % put solutions in U array p Dx-2:}  
        U2=[U2 u2]; Ch$*Gm19Z  
        MN1=[MN1 m1]; +YLejjQ  
        z1=dz*MN1';                                    % output location ae"]\a\&1o  
      end hQ6a~?f  
    end N,2s?Y_!  
    hg=abs(U1').*abs(U1');                             % for data write to excel Hn>B!Bm*  
    ha=[z1 hg];                                        % for data write to excel kF;D BN  
    t1=[0 t']; m-^ 8W[r+_  
    hh=[t1' ha'];                                      % for data write to excel file K{b(J Nd  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format fFj grK8  
    figure(1) dVB~Smsr  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn bl_H4  
    figure(2) x8\A<(G_M=  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn D`J6h,=2l/  
    M?b6'd9f  
    非线性超快脉冲耦合的数值方法的Matlab程序 Le<w R  
    A;\ 7|'4  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   o?1;<gs  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M?&h~V1OI~  
    2C{H$ A,pW  
    B+^(ktZp@  
    1+-_s  
    %  This Matlab script file solves the nonlinear Schrodinger equations l]~n3IK"  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of K=!Bh*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear qd"_Wu6aF=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 dq[Mj5eC  
    =@k%&* Y?  
    C=1;                           h/B>S  
    M1=120,                       % integer for amplitude 2z\zh[(w  
    M3=5000;                      % integer for length of coupler [mEql,x3  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) kJW N.  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. z1^gDjkZ  
    T =40;                        % length of time:T*T0. s"Pf+aTW  
    dt = T/N;                     % time step meN2ZB?Y  
    n = [-N/2:1:N/2-1]';          % Index s w39\urf  
    t = n.*dt;   J|'7_0OAx  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. G8Nt 8U~  
    w=2*pi*n./T; +w=AJdc  
    g1=-i*ww./2; asY[8r?U  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (JM4R8fR&  
    g3=-i*ww./2; JaB<EL-9r2  
    P1=0; P!"&%d  
    P2=0; \:'%9 x  
    P3=1; z<B8mB  
    P=0; \P1S|ufv  
    for m1=1:M1                 6N)!aT9eo  
    p=0.032*m1;                %input amplitude ?c0xRO%y  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 JyR/1 W  
    s1=s10; p~*UpU8u  
    s20=0.*s10;                %input in waveguide 2 WVY\&|)$  
    s30=0.*s10;                %input in waveguide 3 R(n^)^?  
    s2=s20; Bz5-ITX   
    s3=s30; i1S>yV^l  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   2h[85\4  
    %energy in waveguide 1 [HCAmnb  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   keB&Bjd&  
    %energy in waveguide 2 {uGP&cS~(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   KiJT!moB  
    %energy in waveguide 3 < yC  
    for m3 = 1:1:M3                                    % Start space evolution &3yD_P_3  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS wm+/e#'&  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ID#I`}h.k  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Ug&,Y/tFw2  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform eds26(  
       sca2 = fftshift(fft(s2)); )Tk1 QHU  
       sca3 = fftshift(fft(s3)); B" 3dQwQ  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   -eX5z  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); da (km+  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !qX_I db\  
       s3 = ifft(fftshift(sc3)); }#X8@  
       s2 = ifft(fftshift(sc2));                       % Return to physical space :O(^w}sle  
       s1 = ifft(fftshift(sc1)); =zyC-;r!  
    end }d<}FJ-,  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); !"eIV@7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); H@ t'~ZO  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); W"Gkq!3u{  
       P1=[P1 p1/p10]; `X3^fg  
       P2=[P2 p2/p10]; gdkwWoN .  
       P3=[P3 p3/p10]; -&<Whhs.@  
       P=[P p*p]; Vb9',a?#n  
    end -YsLd 9^4  
    figure(1) \?jeWyo  
    plot(P,P1, P,P2, P,P3); +wkjS r`e  
    IEU^#=n  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~