切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8925阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 2itJD1;  
    B ``)  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of (sXR@Ce$  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of (4hCT*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K!JXsdHK  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nkv+O$LXP  
    'T8(md299  
    %fid=fopen('e21.dat','w'); .+;;-]})  
    N = 128;                       % Number of Fourier modes (Time domain sampling points)  Stzv  
    M1 =3000;              % Total number of space steps g3} K  
    J =100;                % Steps between output of space ?gp:uxq,.  
    T =10;                  % length of time windows:T*T0 .ykCmznf*  
    T0=0.1;                 % input pulse width y@5{.jsr_  
    MN1=0;                 % initial value for the space output location :{(` ;fJ  
    dt = T/N;                      % time step U]aH4 N  
    n = [-N/2:1:N/2-1]';           % Index ]dx6E6A,  
    t = n.*dt;   baD`k?](  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 x*Lm{c5+  
    u20=u10.*0.0;                  % input to waveguide 2 K,!"5WrX*  
    u1=u10; u2=u20;                 <vMdfw"(  
    U1 = u1;   O% 1X[  
    U2 = u2;                       % Compute initial condition; save it in U eQiK\iDS  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. mHm"QBa!  
    w=2*pi*n./T; 3kTOWIX  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T yX^/Oc@j  
    L=4;                           % length of evoluation to compare with S. Trillo's paper b6@(UneVM  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 W[+=_B  
    for m1 = 1:1:M1                                    % Start space evolution 8f\sG:$  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS #s4v0auK  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 9`A}-YA !  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform (1t b  
       ca2 = fftshift(fft(u2)); d]89DdZk  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation |f :1Br  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   k>2tC<  
       u2 = ifft(fftshift(c2));                        % Return to physical space j9V*f HK  
       u1 = ifft(fftshift(c1)); R-L*N$@!  
    if rem(m1,J) == 0                                 % Save output every J steps. jkzC^aG  
        U1 = [U1 u1];                                  % put solutions in U array 8PR1RC J  
        U2=[U2 u2]; s+EJXox w  
        MN1=[MN1 m1]; :`pgdn  
        z1=dz*MN1';                                    % output location p\"WX  
      end Sk ~( t  
    end $.7Ov|  
    hg=abs(U1').*abs(U1');                             % for data write to excel O|5Z-r0<  
    ha=[z1 hg];                                        % for data write to excel i`FskEoijq  
    t1=[0 t']; 0q@U>#  
    hh=[t1' ha'];                                      % for data write to excel file *dTI4k  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format cZ<@1I5QK  
    figure(1) 4iDlBs+  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 3NLC~CJ  
    figure(2) 1x"S^j   
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn %,Pwo{SH  
    k*?Axk#  
    非线性超快脉冲耦合的数值方法的Matlab程序 o 0-3[W'x<  
    U2lDTRt  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   q|;Sn  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -Um|:[*I  
    F$|Ec9  
    -naj.omG|  
    F!LVyY"w  
    %  This Matlab script file solves the nonlinear Schrodinger equations rJ@yOed["b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of i*T>, z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear wDL dmrB  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 xE[CNJ%t^,  
    +2ZBj6 e9  
    C=1;                           I^CKq?V?:  
    M1=120,                       % integer for amplitude rA">< pH  
    M3=5000;                      % integer for length of coupler B.J_(V+  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) !oJ226>WI  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. v0d<P2ix  
    T =40;                        % length of time:T*T0. ZRK1 UpP  
    dt = T/N;                     % time step KMhEU**  
    n = [-N/2:1:N/2-1]';          % Index FL,av>mV  
    t = n.*dt;   {<p-/|Z52  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 'ot,6@~x>  
    w=2*pi*n./T; :k-(%E](  
    g1=-i*ww./2; #S*@RKSE|7  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; voD0 u  
    g3=-i*ww./2; "EE=j$8u+  
    P1=0; uTX0lu;  
    P2=0; EYsf<8cl  
    P3=1; lrE|>R  
    P=0; h=1cD\^|qw  
    for m1=1:M1                 '&|]tu:q  
    p=0.032*m1;                %input amplitude "F$0NYb]I  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -UhSy>m  
    s1=s10; No'^]r  
    s20=0.*s10;                %input in waveguide 2 a2z1/Nh  
    s30=0.*s10;                %input in waveguide 3 09r0Rb  
    s2=s20; SviGLv;oR  
    s3=s30; hPM:=@ N$  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   =LUDg7P  
    %energy in waveguide 1 dV:vM9+x  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   DaK2P;WP  
    %energy in waveguide 2 r N.<S[  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Xyf7sHQ  
    %energy in waveguide 3 W,g0n=2V  
    for m3 = 1:1:M3                                    % Start space evolution W{{{c2 .  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ]xYm@%>6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; NY& |:F  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; LHS^[}x^1  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform <f')]  
       sca2 = fftshift(fft(s2)); 5W(S~}  
       sca3 = fftshift(fft(s3)); WN_i-A1G/h  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _ i-(` 5  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); E>|xv#:~DV  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); UP*\p79oO  
       s3 = ifft(fftshift(sc3)); (16U]s  
       s2 = ifft(fftshift(sc2));                       % Return to physical space \N?,6;%xB  
       s1 = ifft(fftshift(sc1)); .2si[:_(p  
    end C8J3^ ?7E  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); W8/8V,  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); cl4Vi%   
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); )(Z)yz  
       P1=[P1 p1/p10]; Z Rjqjx  
       P2=[P2 p2/p10]; B!#F!Wk"  
       P3=[P3 p3/p10]; W$l%= /  
       P=[P p*p]; Y?^1=9?6  
    end ZgXn8O[a  
    figure(1) i l)LkZ@  
    plot(P,P1, P,P2, P,P3); JLZ[sWP='  
    RyxEZ7dC<y  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~