切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8600阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 P# Z+:T  
    Jn1(-  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of R"JT+m  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of FS6ZPjG)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear k'1i quc#u  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fq[,9lK  
    Uv=hxV[7y  
    %fid=fopen('e21.dat','w'); *W1:AGpz  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Hl*/s  
    M1 =3000;              % Total number of space steps PZCOJK  
    J =100;                % Steps between output of space !}&f2!?.W  
    T =10;                  % length of time windows:T*T0 um mkAeWb  
    T0=0.1;                 % input pulse width ! d" i  
    MN1=0;                 % initial value for the space output location ,Je9]XT  
    dt = T/N;                      % time step ADlLodG  
    n = [-N/2:1:N/2-1]';           % Index jb!15Vlt"  
    t = n.*dt;   { daEKac5  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 >l0D,-O]m  
    u20=u10.*0.0;                  % input to waveguide 2 w 8oIq*  
    u1=u10; u2=u20;                 3 *[YM7y  
    U1 = u1;   <a$'tw-8  
    U2 = u2;                       % Compute initial condition; save it in U  *4{GI D  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. G\o *j |  
    w=2*pi*n./T; t3FfPV!P"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T A>Oi9%OY:  
    L=4;                           % length of evoluation to compare with S. Trillo's paper oxgh;v*  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 CB%O8d #  
    for m1 = 1:1:M1                                    % Start space evolution /-&a]PJ  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ^-pHhh|g  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; + |d[q?  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform W{*w<a_ `  
       ca2 = fftshift(fft(u2)); `]l*H3+hg  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation g{$F;qbkO  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Q.])En >i  
       u2 = ifft(fftshift(c2));                        % Return to physical space s*.&DN  
       u1 = ifft(fftshift(c1)); Qo \;)  
    if rem(m1,J) == 0                                 % Save output every J steps. d"hW45L  
        U1 = [U1 u1];                                  % put solutions in U array m}>#s3KPA  
        U2=[U2 u2]; r4FGz!U  
        MN1=[MN1 m1]; H+2m  
        z1=dz*MN1';                                    % output location 58.b@@T  
      end ^# gR"\F`d  
    end *^ -~J/  
    hg=abs(U1').*abs(U1');                             % for data write to excel uf&Ke k,  
    ha=[z1 hg];                                        % for data write to excel Z{J{6j  
    t1=[0 t']; uS,XQy2  
    hh=[t1' ha'];                                      % for data write to excel file 0!!z'm3  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format )M(-EDL>Qk  
    figure(1) B&k"B?9mL  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn j @+QwZL|  
    figure(2) BD (  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn C@Fk  
    Y)]x1I  
    非线性超快脉冲耦合的数值方法的Matlab程序 ley: =(  
    [qGj*`@C  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ;wvhe;!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jV!9IK;HA.  
    u!WjG@  
    5 U{}A\q  
    #:n:3]t  
    %  This Matlab script file solves the nonlinear Schrodinger equations EvEI5/ z  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of wnoL<p  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &>&UqWL  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c O[Hr  
    .q^+llM  
    C=1;                           (lBwkQNQGd  
    M1=120,                       % integer for amplitude 8LM 91  
    M3=5000;                      % integer for length of coupler nd)bRB  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) BYBf`F)4  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. :CJ]^v   
    T =40;                        % length of time:T*T0. Y &"rf   
    dt = T/N;                     % time step _R?:?{r,  
    n = [-N/2:1:N/2-1]';          % Index ]NrA2i?  
    t = n.*dt;   J$X{4  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. `96PY !$u  
    w=2*pi*n./T; ggn:DE "  
    g1=-i*ww./2; bW9a_myE  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; > R5<D'cEN  
    g3=-i*ww./2; _:0  
    P1=0; `78:TU~5S  
    P2=0; #nOS7Q#uW  
    P3=1; R8U?s/*  
    P=0; fxKhe[;  
    for m1=1:M1                 ^YLk&A)X  
    p=0.032*m1;                %input amplitude wZ_k]{J  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -U"h3Ye^  
    s1=s10; zJ2dPp~u  
    s20=0.*s10;                %input in waveguide 2 Rt^~db  
    s30=0.*s10;                %input in waveguide 3 !C$bOhc  
    s2=s20; ^t{2k[@  
    s3=s30; ]a}K%D)H  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   hkhk,bhI  
    %energy in waveguide 1 2MapB*  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   `X06JTqf:  
    %energy in waveguide 2 mrgieb%  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   1>BY:xZr  
    %energy in waveguide 3 J XKqQxZ[X  
    for m3 = 1:1:M3                                    % Start space evolution (` N@4w=  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS L93&.d@m9  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; L&WhX3$u  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;  XAb!hc   
       sca1 = fftshift(fft(s1));                       % Take Fourier transform g]hTz)8fF  
       sca2 = fftshift(fft(s2)); '%2q'LqSA  
       sca3 = fftshift(fft(s3)); tXgsWG?v[H  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   n7r )wy  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); FXi"o $N  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); TC%ENxDR  
       s3 = ifft(fftshift(sc3)); b;X|[tB  
       s2 = ifft(fftshift(sc2));                       % Return to physical space \ LQ?s)~  
       s1 = ifft(fftshift(sc1)); #@#/M)  
    end 2!u4nxZ.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <oc"!c;T  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); t%`GXJb  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); C{r Sq  
       P1=[P1 p1/p10]; j6NK 7Li  
       P2=[P2 p2/p10]; 8 )W{&#C>  
       P3=[P3 p3/p10]; SGuLL+|W#8  
       P=[P p*p]; Sas &P:# r  
    end f ;[\'_.*  
    figure(1) |@a.dgz,  
    plot(P,P1, P,P2, P,P3); EO<{Bj=2  
    9HjtWQn  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~