计算脉冲在非线性耦合器中演化的Matlab 程序 {KODwP'~ =#uXO< % This Matlab script file solves the coupled nonlinear Schrodinger equations of
RN!oflb % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
haB$W 4x % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Kx#G_N@ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Km-lWreTH 0*h\/!e %fid=fopen('e21.dat','w');
$(C71M|CT N = 128; % Number of Fourier modes (Time domain sampling points)
9;q@;)'5 M1 =3000; % Total number of space steps
+dR$;!WB3 J =100; % Steps between output of space
v!40>[?|p T =10; % length of time windows:T*T0
ptrLnJ|% T0=0.1; % input pulse width
]`+>{Sx 1 MN1=0; % initial value for the space output location
=@B9I<GKf dt = T/N; % time step
u},<On n = [-N/2:1:N/2-1]'; % Index
Z\TH=UA t = n.*dt;
#&&^5r-b- u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
KWU#Swa` u20=u10.*0.0; % input to waveguide 2
X%39cXM C u1=u10; u2=u20;
=q>eoXp U1 = u1;
~I2IgEj>] U2 = u2; % Compute initial condition; save it in U
} fSbH ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
2Xgn[oI{ w=2*pi*n./T;
!%]]lxi g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
!MQo=k L=4; % length of evoluation to compare with S. Trillo's paper
`} Q+: dz=L/M1; % space step, make sure nonlinear<0.05
~"{Kjr#R for m1 = 1:1:M1 % Start space evolution
[ bE9Y; u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
;J2=6np u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
7nfQ=?XNK ca1 = fftshift(fft(u1)); % Take Fourier transform
Ma wio5 ca2 = fftshift(fft(u2));
3u-j`7 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
T4._S:~ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
)%WS(S>8 u2 = ifft(fftshift(c2)); % Return to physical space
oZP:}= F u1 = ifft(fftshift(c1));
CEZ*a 0}= if rem(m1,J) == 0 % Save output every J steps.
q'{E $V)E U1 = [U1 u1]; % put solutions in U array
RIb<
7 U2=[U2 u2];
;nSaZ$`5 MN1=[MN1 m1];
.(nq"&u-* z1=dz*MN1'; % output location
v5 $"v?PT end
@ttcFX1:W end
8V^gOUF. hg=abs(U1').*abs(U1'); % for data write to excel
efRa|7!HK ha=[z1 hg]; % for data write to excel
naM4X@jl t1=[0 t'];
kLADd"C hh=[t1' ha']; % for data write to excel file
A5B 5pJ %dlmwrite('aa',hh,'\t'); % save data in the excel format
~ia#=|1} figure(1)
<86upS6 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
JrS/"QSA figure(2)
v"=^?5B waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
r'k-*I E #8 `X 非线性超快脉冲耦合的数值方法的Matlab程序 HrWXPac
A % e:VeP~ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
V#C[I~l Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
19&!#z |OuZaCJG N2xgyKy~ ]p@7[8} % This Matlab script file solves the nonlinear Schrodinger equations
cM.q^{d` % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
W!V06. % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
NuW9.6$Jrf % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
\Qz>us=G 2t/ba3Rfk C=1;
.K;*uq:0 M1=120, % integer for amplitude
P[aB}<1f0 M3=5000; % integer for length of coupler
1,9RfY V N = 512; % Number of Fourier modes (Time domain sampling points)
jHTaG%oh dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
%\Ig{Rj; T =40; % length of time:T*T0.
D("['`{ dt = T/N; % time step
XOVZ'V n = [-N/2:1:N/2-1]'; % Index
,Ix7Yg[ t = n.*dt;
auaFP-$`f ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
_N0x&9S$ w=2*pi*n./T;
J1yy6Wq3[ g1=-i*ww./2;
i#iY;R8 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
jZe]zdml g3=-i*ww./2;
\D>' P1=0;
H[fD
> P2=0;
3zMmpeq P3=1;
qS+'#Sn P=0;
fh:=ja?bM3 for m1=1:M1
L&q~5 9 p=0.032*m1; %input amplitude
YtxBkKiJ2V s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
hFs0qPVY s1=s10;
R qOEQ*k s20=0.*s10; %input in waveguide 2
yV=hi?f-[V s30=0.*s10; %input in waveguide 3
_Ev"/% s2=s20;
;x|4Tm s3=s30;
-L</,>p p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
/$]dVvhX% %energy in waveguide 1
ir3iW*5k p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
a}El!7RO0 %energy in waveguide 2
x.>z2. p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
rL&585 %energy in waveguide 3
MoO
jM&9 for m3 = 1:1:M3 % Start space evolution
LHR%dt|M s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
qA
Jgz7=c s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
4,wdIdSm4 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
s[8<@I*u sca1 = fftshift(fft(s1)); % Take Fourier transform
_av%`bb&z9 sca2 = fftshift(fft(s2));
mzfj!0zR* sca3 = fftshift(fft(s3));
fb&K.6" sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
%~ZOQ%c1 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
@fPiGu`L sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
I `p44}D3 s3 = ifft(fftshift(sc3));
m 9.QGX\] s2 = ifft(fftshift(sc2)); % Return to physical space
Y&]pC s1 = ifft(fftshift(sc1));
%fK"g2: end
'hg, W] p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
8 mV`|2> p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
YmNBtGhT p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
}eULcgRG P1=[P1 p1/p10];
kc1 *@<L6 P2=[P2 p2/p10];
33s.p' P3=[P3 p3/p10];
.#lQZo6$\| P=[P p*p];
NrhU70y end
6(<M.U_ft figure(1)
*.ZV.( plot(P,P1, P,P2, P,P3);
&z&Jl#t-) rqT@i(i 转自:
http://blog.163.com/opto_wang/