切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8967阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 R+=wSG]  
    /*GCuc|  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of IP)%y%ycw  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of S&D8Rao5  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o]GZq..  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FMWM:  
    ;0uiO.  
    %fid=fopen('e21.dat','w'); ~]n=TEJ>  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) =Tfm~+7nE  
    M1 =3000;              % Total number of space steps aB`jFp-  
    J =100;                % Steps between output of space 1S yG  
    T =10;                  % length of time windows:T*T0 hZ "Sqm]  
    T0=0.1;                 % input pulse width m3&b)O7  
    MN1=0;                 % initial value for the space output location ocZ^rqo2w  
    dt = T/N;                      % time step \]dvwN3x  
    n = [-N/2:1:N/2-1]';           % Index M 5`hMfg  
    t = n.*dt;   3~Ap1_9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 .Sv/0&O  
    u20=u10.*0.0;                  % input to waveguide 2 l 3 jlKB  
    u1=u10; u2=u20;                 Q5sJ|]Bc  
    U1 = u1;   y'non0P.  
    U2 = u2;                       % Compute initial condition; save it in U g0-rQA  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. b"B:DDw00  
    w=2*pi*n./T; &VG  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T #u +~ ^M  
    L=4;                           % length of evoluation to compare with S. Trillo's paper QFgKEUNgl  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 #]Jg>  
    for m1 = 1:1:M1                                    % Start space evolution . lNf.x#u  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS P'*Fd3B#A=  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }XqC'z  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform v I,T1%llu  
       ca2 = fftshift(fft(u2)); @Qp#Tg<'  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation aP"!}*  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Wv ~&Qh}  
       u2 = ifft(fftshift(c2));                        % Return to physical space %36@1l-N  
       u1 = ifft(fftshift(c1)); 8xkLfN|N=  
    if rem(m1,J) == 0                                 % Save output every J steps. ,lFp4 C  
        U1 = [U1 u1];                                  % put solutions in U array s#(%u t  
        U2=[U2 u2]; T8yMaC  
        MN1=[MN1 m1]; !fjB oK+  
        z1=dz*MN1';                                    % output location 4=N(@mS  
      end ,zxv>8Nt  
    end @ rF|WT  
    hg=abs(U1').*abs(U1');                             % for data write to excel 62K#rR S  
    ha=[z1 hg];                                        % for data write to excel oArJ%Y>  
    t1=[0 t']; x0)WrDb  
    hh=[t1' ha'];                                      % for data write to excel file >2X-98,  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format l kyK  
    figure(1) 9}H]4"f7  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn cH+ ~|3  
    figure(2) P]armg%  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ru4M=D  
    aK 7 }}  
    非线性超快脉冲耦合的数值方法的Matlab程序 \xQu*M:!  
    _rmKvSD%  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   {Byh:-e<  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 T)',}=  
    :+"H h%  
    yqB!0) <  
    c5: X$k\  
    %  This Matlab script file solves the nonlinear Schrodinger equations Cl{Ar8d}  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 8(L6I%k*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear N,3iSH=cN[  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l[rK)PM   
    -Zp BYX5e_  
    C=1;                           ,i8%qm8  
    M1=120,                       % integer for amplitude n=|% H'U  
    M3=5000;                      % integer for length of coupler !e*T. 1Kz  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Rz[3cN)?q  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 5L_`Fw\l  
    T =40;                        % length of time:T*T0. n 8 K6m(  
    dt = T/N;                     % time step 1l Cr?  
    n = [-N/2:1:N/2-1]';          % Index `*D"=5G+  
    t = n.*dt;   =G" ney2  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. \-f/\P/ w  
    w=2*pi*n./T; U3Z-1G~*r  
    g1=-i*ww./2; mrr~#Bb>  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; / :6|)AW.{  
    g3=-i*ww./2; \O\q1 s~  
    P1=0; 0G0(g,3p  
    P2=0; p@[ fZj  
    P3=1; "F6gV;{Bt  
    P=0; KSHq0A6/q%  
    for m1=1:M1                 c*\;!dbP  
    p=0.032*m1;                %input amplitude 1:>F{g  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 "?<h,Hvi  
    s1=s10; d325Cw?  
    s20=0.*s10;                %input in waveguide 2 x":o*(rSQ  
    s30=0.*s10;                %input in waveguide 3 ?_cOU@n  
    s2=s20; i'4.w?OZ  
    s3=s30; &;=/^~EG  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   6U.|0mG[  
    %energy in waveguide 1 QR_h#N2h  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   u05Yy&(f  
    %energy in waveguide 2 /,UnT(/k(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -e sQyLx  
    %energy in waveguide 3 7D4tuXUq2  
    for m3 = 1:1:M3                                    % Start space evolution Ak8Y?#"wz  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ! Dj2/][  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; #<ST.f@*  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ,wXmJ)/WZ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform VpSpj/\m)'  
       sca2 = fftshift(fft(s2)); _SJ:|I  
       sca3 = fftshift(fft(s3)); w6WPfy(/2  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   =:]v~Ehq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); R&a$w8  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); T~(Sc'8  
       s3 = ifft(fftshift(sc3)); X 8R`C0   
       s2 = ifft(fftshift(sc2));                       % Return to physical space Lj9RF<39g  
       s1 = ifft(fftshift(sc1)); &i.sSqSI5  
    end !8| }-eFY  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Q2uV/M1?  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); RtzSe$O  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [ ~2imS  
       P1=[P1 p1/p10]; ^gZ,A]  
       P2=[P2 p2/p10]; M +r!63T  
       P3=[P3 p3/p10]; : -d_  
       P=[P p*p]; rp{|{>'`.q  
    end `fTM/"  
    figure(1) kS:#|yY8%  
    plot(P,P1, P,P2, P,P3); m!ueqV"  
    -TH MTRFz  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~