切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8733阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 *?rO@sQy]  
    ^H`4BWc  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of aIo%~w  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ok1-`c P  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K1CgM1v  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 45Lzq6  
    BG_6$9y  
    %fid=fopen('e21.dat','w'); 4w#:?Y _\[  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) )(+q~KA}  
    M1 =3000;              % Total number of space steps Ij2T h]  
    J =100;                % Steps between output of space 8lFYk`|g  
    T =10;                  % length of time windows:T*T0 sB0m^Y'  
    T0=0.1;                 % input pulse width m+QZ|  
    MN1=0;                 % initial value for the space output location nm,(Wdr  
    dt = T/N;                      % time step KGrYF  
    n = [-N/2:1:N/2-1]';           % Index d+p^fBz  
    t = n.*dt;   z:oi @q  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 m:Fdgu9  
    u20=u10.*0.0;                  % input to waveguide 2 PIHKSAnq  
    u1=u10; u2=u20;                 eCjyx|:J  
    U1 = u1;   L, 2;-b|  
    U2 = u2;                       % Compute initial condition; save it in U ^B$cfs@*  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. j [4l'8Ek  
    w=2*pi*n./T; A "/|h].  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >02p,W6S>  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 8&SW Q  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 .UYhj8  
    for m1 = 1:1:M1                                    % Start space evolution e)$a;6  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS "u)Le6.  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; z\-/R9E/5-  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform '.]<lh!  
       ca2 = fftshift(fft(u2)); K=> j+a5$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 9^E!2CJ  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   45H9pY w  
       u2 = ifft(fftshift(c2));                        % Return to physical space ]fSpG\yU  
       u1 = ifft(fftshift(c1)); 5!BW!-q  
    if rem(m1,J) == 0                                 % Save output every J steps. T0N6k acl  
        U1 = [U1 u1];                                  % put solutions in U array KG GJ\r6  
        U2=[U2 u2]; :xk+`` T  
        MN1=[MN1 m1]; ko"xR%Q  
        z1=dz*MN1';                                    % output location U6#9W}CE  
      end Ec&_&  
    end :qj7i(  
    hg=abs(U1').*abs(U1');                             % for data write to excel n7.85p@ua  
    ha=[z1 hg];                                        % for data write to excel [U:P&)  
    t1=[0 t']; R`M@;9I.@  
    hh=[t1' ha'];                                      % for data write to excel file #'y&M t  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format XB]>Z)  
    figure(1) Bm;: cmB0e  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn y"k %Wa`*  
    figure(2) HGF&'@dn  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 3|%058bF  
    I~4!8W-Y  
    非线性超快脉冲耦合的数值方法的Matlab程序 >z7 3uKA(  
    ^ywDa^;-  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   T^q^JOC4  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 QZJnb%]  
    =t %;mi,M  
    tAkv'.  
    mV+9*or  
    %  This Matlab script file solves the nonlinear Schrodinger equations o .V JnrJ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of e ^ZY  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Hc-up.?v'v  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4I#@xm8)  
    |Xt6`~iC  
    C=1;                           ;]k\F  
    M1=120,                       % integer for amplitude _ jH./ @G  
    M3=5000;                      % integer for length of coupler <o/lK\>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) -/Zy{2 <u  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. X^rFRk  
    T =40;                        % length of time:T*T0. \jb62Jp  
    dt = T/N;                     % time step g_rk_4]  
    n = [-N/2:1:N/2-1]';          % Index G8'  
    t = n.*dt;   /x<uv_"  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 'uF-}_ |  
    w=2*pi*n./T; *S?'[PS]1  
    g1=-i*ww./2; \-sW>LIA  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; yCuLo`  
    g3=-i*ww./2; G cB<i  
    P1=0; DXQ]b)y+N  
    P2=0; y9k'jEZ"oh  
    P3=1; Wiw~oXo  
    P=0; lMcO2006L  
    for m1=1:M1                 4q.yp0E  
    p=0.032*m1;                %input amplitude +VL:O]`DJ  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 y`z4S,  
    s1=s10; FL4BdJ\  
    s20=0.*s10;                %input in waveguide 2 Ai)>ot  
    s30=0.*s10;                %input in waveguide 3 wd3OuDrU  
    s2=s20; ,3!TyQ \m'  
    s3=s30; nw#AKtd@x  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   PPh<9$1\g  
    %energy in waveguide 1 j& ykce  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   XA;f.u  
    %energy in waveguide 2 Y!+H9R  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   gYbcBb%z  
    %energy in waveguide 3 ouO9%)zv  
    for m3 = 1:1:M3                                    % Start space evolution Pz\ByD  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS +3sbpl2}  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; RJKi98xwJ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /qMiv7m~Q  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform PHJHW#sv  
       sca2 = fftshift(fft(s2));  P1)87P  
       sca3 = fftshift(fft(s3)); O*Y?: t  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    \< dg  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); j<`3xd'  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9EY`j,{4  
       s3 = ifft(fftshift(sc3)); ]{|lGtK %  
       s2 = ifft(fftshift(sc2));                       % Return to physical space lBm`W]3T  
       s1 = ifft(fftshift(sc1)); sbhzER  
    end hwA&SS  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); G/#m. =t  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); An^)K  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); W*Ow%$%2  
       P1=[P1 p1/p10];  <4< y  
       P2=[P2 p2/p10]; pvb&vtp  
       P3=[P3 p3/p10]; Y[_|sIy*  
       P=[P p*p]; B/o8r4[80  
    end ,k*%=TF7N  
    figure(1) E " >`  
    plot(P,P1, P,P2, P,P3); G B"Orm.  
    \)6bLB!  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~