切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8660阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 /q\_&@  
    *pzq.#  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of l_/C65%.:  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %m{U& -(l@  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear s,*c@1f?  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 w'7R4  
    lo&#(L+2  
    %fid=fopen('e21.dat','w'); W</n=D<,I  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |rRG=tG_'  
    M1 =3000;              % Total number of space steps T:asm1BC[  
    J =100;                % Steps between output of space \nrP$  
    T =10;                  % length of time windows:T*T0 1+y"i<3)  
    T0=0.1;                 % input pulse width IO.<q,pP!_  
    MN1=0;                 % initial value for the space output location 3b[jwCt  
    dt = T/N;                      % time step ~<qt%W?  
    n = [-N/2:1:N/2-1]';           % Index _DPOyR2  
    t = n.*dt;   eyw'7  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 m:Go-tk  
    u20=u10.*0.0;                  % input to waveguide 2 '_+9y5  
    u1=u10; u2=u20;                 ts9pM~_~  
    U1 = u1;   O';ew)tI  
    U2 = u2;                       % Compute initial condition; save it in U "L& k)J  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. B`#h{)[  
    w=2*pi*n./T; x;BbTBc>  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T '3l$al:H^  
    L=4;                           % length of evoluation to compare with S. Trillo's paper mZ0J!QYk  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 xcCl (M]+  
    for m1 = 1:1:M1                                    % Start space evolution T9y;OG  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS oholt/gb+0  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; q$ghLGz  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform jkrx]`A{~  
       ca2 = fftshift(fft(u2)); BZ+-p5]-  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation = Rc"^oS  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   D>T],3U(H  
       u2 = ifft(fftshift(c2));                        % Return to physical space ySN V^+  
       u1 = ifft(fftshift(c1)); =)<3pGO  
    if rem(m1,J) == 0                                 % Save output every J steps. J>S3sP  
        U1 = [U1 u1];                                  % put solutions in U array &w~Xa( uu  
        U2=[U2 u2]; =F%RLpNU4  
        MN1=[MN1 m1]; ;\)=f6N  
        z1=dz*MN1';                                    % output location uf)Oy7FQ  
      end Nofu7xiDw[  
    end ZKbDp~  
    hg=abs(U1').*abs(U1');                             % for data write to excel CVKnTEs  
    ha=[z1 hg];                                        % for data write to excel /nB'kg[h\  
    t1=[0 t']; ddpl Pzm#  
    hh=[t1' ha'];                                      % for data write to excel file )GB`*M[   
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 89eq[ |G_  
    figure(1) ^3I'y UsY  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ]YD(`42x  
    figure(2) jD< pIHau  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn E)'8U  
    wgd<3 X  
    非线性超快脉冲耦合的数值方法的Matlab程序 cz.3|Lby  
    x6yW:tUG5  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   R ZcH+?7  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b 6W#SpCF  
    [Z }B"  
    a>Re^GT+z  
    z& 'f/w8  
    %  This Matlab script file solves the nonlinear Schrodinger equations EnCU4CU`  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of B%b_/F]e  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear # 3.)H9  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 E3\ZJjG  
    N=ifIVc  
    C=1;                           m4**>!I  
    M1=120,                       % integer for amplitude QPg2Y<2  
    M3=5000;                      % integer for length of coupler X=_Z(;<&  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) :0Te4UE;P7  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. O3_B<Em  
    T =40;                        % length of time:T*T0. m6so]xr  
    dt = T/N;                     % time step KRk~w]  
    n = [-N/2:1:N/2-1]';          % Index <?|6*2_=  
    t = n.*dt;   D!l8l49hLu  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. STT2o=   
    w=2*pi*n./T; kEAhTh&g*  
    g1=-i*ww./2; _g6wQdxT  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; fA XE~  
    g3=-i*ww./2; fPE?hG<x  
    P1=0; Mvof%I  
    P2=0; iSd?N}2,I  
    P3=1; z>:U{!5k  
    P=0; c^-YcGwa  
    for m1=1:M1                 i_Ar<9a~  
    p=0.032*m1;                %input amplitude =J.EH|  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 <9 },M  
    s1=s10; wznn #j  
    s20=0.*s10;                %input in waveguide 2 FE6C6dW{  
    s30=0.*s10;                %input in waveguide 3 R~c1)[[E  
    s2=s20; TzY!D *%z  
    s3=s30; u9}!Gq  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   + U5U.f%  
    %energy in waveguide 1 3/tJDb5  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   twv lQ|  
    %energy in waveguide 2 cs5ix"1A  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   w a.f![  
    %energy in waveguide 3 (HSw%e  
    for m3 = 1:1:M3                                    % Start space evolution uHrb:X!q  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS q] ZSj J  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; W"O-L  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ohTd'+Lm  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Z!)f*  
       sca2 = fftshift(fft(s2)); 0.(Ml5&e  
       sca3 = fftshift(fft(s3)); T{;=#rG<  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   5 ZUy:  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); vTcZ8|3e  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); b6Xi  
       s3 = ifft(fftshift(sc3)); &G=0  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #fzw WP  
       s1 = ifft(fftshift(sc1)); &:#A+4&  
    end u2,H ]-  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ]c,l5u}A$  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); V Q h/  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); pg5&=  
       P1=[P1 p1/p10]; eEie?#Z/6  
       P2=[P2 p2/p10]; N4+g("  
       P3=[P3 p3/p10]; x!`KhTu`_A  
       P=[P p*p]; :5<#X8>d  
    end @:IL/o*  
    figure(1) M)tv;!eQ  
    plot(P,P1, P,P2, P,P3); EFv4=OWB  
    AA_@\: w^  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~