切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8832阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 e6T?2`5P  
    aH500  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of `\BBdQ#bH  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of &(x>J:b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear hNp.%XnnZ  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c Ct5m  
    HE2t0sAYX  
    %fid=fopen('e21.dat','w'); Z\)P|#L$  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ]HG> Og  
    M1 =3000;              % Total number of space steps ,zBc-Cm  
    J =100;                % Steps between output of space WCI'Kh   
    T =10;                  % length of time windows:T*T0 8Tc:TaL  
    T0=0.1;                 % input pulse width (i@(ZG]/  
    MN1=0;                 % initial value for the space output location ,fm{ krE  
    dt = T/N;                      % time step Q6[h;lzGV  
    n = [-N/2:1:N/2-1]';           % Index =D 5!Xq'|  
    t = n.*dt;   .d4&s7n0  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 D sBZ%  
    u20=u10.*0.0;                  % input to waveguide 2 + k   
    u1=u10; u2=u20;                 VF"c}  
    U1 = u1;   2 t]=-@  
    U2 = u2;                       % Compute initial condition; save it in U 6<n+p'+n  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &#]||T-  
    w=2*pi*n./T; Nn5sD3z#  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T baf@"P9@\A  
    L=4;                           % length of evoluation to compare with S. Trillo's paper {JcMJZ3  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 KH[Oqd  
    for m1 = 1:1:M1                                    % Start space evolution E{}eYU  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ".fnx8v,  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; &gvX<X4e  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform UWBR5  
       ca2 = fftshift(fft(u2)); |Gb~[6u   
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation .-p?skm=a  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   t\<*Q3rl-  
       u2 = ifft(fftshift(c2));                        % Return to physical space c5HW.3"  
       u1 = ifft(fftshift(c1)); Fz_8m4  
    if rem(m1,J) == 0                                 % Save output every J steps. ?vP }#N!=d  
        U1 = [U1 u1];                                  % put solutions in U array & =vi]z:[  
        U2=[U2 u2]; gf|&u4D  
        MN1=[MN1 m1]; ,<CzS,(  
        z1=dz*MN1';                                    % output location 55x.Q  
      end p:|p?  
    end <ZeZq  
    hg=abs(U1').*abs(U1');                             % for data write to excel 7(5 wP(  
    ha=[z1 hg];                                        % for data write to excel ]<E\J+5K  
    t1=[0 t']; t*!Q9GC_  
    hh=[t1' ha'];                                      % for data write to excel file 9uY$@7qH  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format , @6_sl  
    figure(1) /57)y_ \  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn p \,PY  
    figure(2) mv9@Az9  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn WAh{*$Rpl  
    ljj}X JQ  
    非线性超快脉冲耦合的数值方法的Matlab程序 uTUkRqtD!  
    ?s{Pp  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   80O[pf*?  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6imQjtI  
    '[Ch8Yf\  
    >c8EgSZJ  
    9m_Hm')VG  
    %  This Matlab script file solves the nonlinear Schrodinger equations I=yy I  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of PF/eQZ*4  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear sBu- \P#  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 'd=B{7k@  
    5ayH5=(t  
    C=1;                           e? !A]2  
    M1=120,                       % integer for amplitude ^T/d34A;SP  
    M3=5000;                      % integer for length of coupler UPJ3YpK  
    N = 512;                      % Number of Fourier modes (Time domain sampling points)  |<1  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. FFqqAT5  
    T =40;                        % length of time:T*T0. GbZqLZ0  
    dt = T/N;                     % time step rQPV@J]:  
    n = [-N/2:1:N/2-1]';          % Index XQL]I$?  
    t = n.*dt;   IirXF?&t  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. A\7qPfpG  
    w=2*pi*n./T; IMDGinHAy  
    g1=-i*ww./2; _Hn-bp[?>  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; m:,S1V_jl  
    g3=-i*ww./2; q'%-8t  
    P1=0; d)&}% 2ku  
    P2=0; & A%*sD6  
    P3=1; >Hq)1o  
    P=0; HTz&h#)JQ  
    for m1=1:M1                 prx)Cfv  
    p=0.032*m1;                %input amplitude w{1DwCLKq  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 `}YCUm[SI  
    s1=s10; 1 \_S1ZS  
    s20=0.*s10;                %input in waveguide 2 &nk[gb o\  
    s30=0.*s10;                %input in waveguide 3 2O^7zW  
    s2=s20; ? L A>5  
    s3=s30; {>E`Zf:  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   GDgq 4vfj  
    %energy in waveguide 1 ySLa4DQf  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));    1 U|IN=  
    %energy in waveguide 2 V uqJ&U.-  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   !vB8Pk"  
    %energy in waveguide 3 +p:#$R)MW  
    for m3 = 1:1:M3                                    % Start space evolution T(E$0a)#  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS FCu0)\  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; GoK[tjb  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; y()7m/  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform <lj;}@qQ<  
       sca2 = fftshift(fft(s2)); i1"4z tZ  
       sca3 = fftshift(fft(s3)); A3VXh^y+  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Hvto]~=GQ  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ^x8yW brE  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Bn 5]{Df  
       s3 = ifft(fftshift(sc3)); gn>qd6P  
       s2 = ifft(fftshift(sc2));                       % Return to physical space J_]B,' 6  
       s1 = ifft(fftshift(sc1)); 2cy: l03  
    end e^?0uVxS1  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); FvpI\%#~  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ^a6c/2K  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); p<w2e  
       P1=[P1 p1/p10]; %QW1?VVP  
       P2=[P2 p2/p10]; DdY89R 6  
       P3=[P3 p3/p10]; Z Sj[GI  
       P=[P p*p]; &\Es\qVSf  
    end qHT_,\l2  
    figure(1) dD Qx[  
    plot(P,P1, P,P2, P,P3); b '1n1L  
    kf3 u',}R  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~