切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8533阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 gZQ,br*  
    ni$7)YcF  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of V_*TY6  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of X!r9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Tdvw7I-q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c%,~1l  
    e >W}3H5w0  
    %fid=fopen('e21.dat','w'); W#1t%hT$  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) C"w>U   
    M1 =3000;              % Total number of space steps ,<]X0;~oB  
    J =100;                % Steps between output of space }{<@wE%s  
    T =10;                  % length of time windows:T*T0 6X{RcX]/  
    T0=0.1;                 % input pulse width m:@-]U@ 6  
    MN1=0;                 % initial value for the space output location r9@4-U7v&  
    dt = T/N;                      % time step Y'6GY*dL  
    n = [-N/2:1:N/2-1]';           % Index 8':^tMd  
    t = n.*dt;   ,1+AfI  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 u'"VbW3u n  
    u20=u10.*0.0;                  % input to waveguide 2 5N=QS1<$5  
    u1=u10; u2=u20;                 L$*sv.  
    U1 = u1;   )sg@HFhY'  
    U2 = u2;                       % Compute initial condition; save it in U  Qx,jUL#2  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Zr`pOUk!4  
    w=2*pi*n./T; {L 7O{:J  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T :BFecS&i5  
    L=4;                           % length of evoluation to compare with S. Trillo's paper lc%2fVG-e  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 i^LLKx7M&  
    for m1 = 1:1:M1                                    % Start space evolution 0_7A <   
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS }r`m(z$z  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; (9bFIvMc  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform cnfjO g'\{  
       ca2 = fftshift(fft(u2)); 8:V:^`KaSs  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 5x";}Vp>P  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   -:w+`x?XaB  
       u2 = ifft(fftshift(c2));                        % Return to physical space }lZfZ?oAz  
       u1 = ifft(fftshift(c1)); d\Q~L 3x  
    if rem(m1,J) == 0                                 % Save output every J steps. vMOI&_[\z  
        U1 = [U1 u1];                                  % put solutions in U array #kD8U#  
        U2=[U2 u2]; FF]xwptrx  
        MN1=[MN1 m1]; A8bDg:G1i  
        z1=dz*MN1';                                    % output location 1^<R2x  
      end O=c^Ak   
    end 7;H!F!K]  
    hg=abs(U1').*abs(U1');                             % for data write to excel Nrp0z:  
    ha=[z1 hg];                                        % for data write to excel RtZK2  
    t1=[0 t']; ~4HS 2\  
    hh=[t1' ha'];                                      % for data write to excel file u;$g1 3  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format WVPnyVDc  
    figure(1) CT1)tRN  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn L[4Su;D  
    figure(2) 8sm8L\-  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ZuV/!9qU  
    FM\yf ]'  
    非线性超快脉冲耦合的数值方法的Matlab程序 {%WQQs  
     c=? =u  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   qi!Nv$e  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7}+U;0,)  
    &m@~R|  
    +r0ItqkM  
    3\J-=U  
    %  This Matlab script file solves the nonlinear Schrodinger equations kaBP& 6|Z  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of }%z {tn  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear F2QX ^*  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iQryX(z  
    hq}kAv4B=  
    C=1;                           _=ani9E]uF  
    M1=120,                       % integer for amplitude +S!gS|8P  
    M3=5000;                      % integer for length of coupler ESdjDg$[u  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) l(;~9u0sa  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. DQ'yFPE  
    T =40;                        % length of time:T*T0. 2, bo  
    dt = T/N;                     % time step *`]LbS  
    n = [-N/2:1:N/2-1]';          % Index R0>GM`{  
    t = n.*dt;   6$#p}nE  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. :xdl I`S  
    w=2*pi*n./T; !)1r{u  
    g1=-i*ww./2; ` drds  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; eJWcrVpn  
    g3=-i*ww./2; 5#Z>}@/  
    P1=0; fJ \bm  
    P2=0; ?f{{{0$S  
    P3=1; obYXDj2  
    P=0; >f7;45i  
    for m1=1:M1                 JO*}\Es  
    p=0.032*m1;                %input amplitude v6r,2Va/  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -rC_8.u :  
    s1=s10; Q a(>$.h  
    s20=0.*s10;                %input in waveguide 2 >z&|<H%  
    s30=0.*s10;                %input in waveguide 3 6I,^4U  
    s2=s20; fQZ,kl  
    s3=s30; y7)s0g>%H  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Qrr8i:Y^  
    %energy in waveguide 1 \[m{&%^G  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ,{{e'S9cy  
    %energy in waveguide 2 Yvky=RM  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Jzqv6A3G  
    %energy in waveguide 3 RweK<Flo'S  
    for m3 = 1:1:M3                                    % Start space evolution %`rZ]^H  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS FT0HU<." 1  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; F(j vdq  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; e;QPn(  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform +k@$C,A  
       sca2 = fftshift(fft(s2)); nP9zTa  
       sca3 = fftshift(fft(s3)); 8t{-  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   E038p]M!  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ``l7|b jJ  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); P2lDi!q|  
       s3 = ifft(fftshift(sc3)); IhIPy~Hgt  
       s2 = ifft(fftshift(sc2));                       % Return to physical space u 3&9R)J1  
       s1 = ifft(fftshift(sc1)); zq(R!a6  
    end $9_yD&&  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); XYeuYLut  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); nYfZ[Q>v  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); #0yU K5J  
       P1=[P1 p1/p10]; x3dP`<   
       P2=[P2 p2/p10]; {yPJYF_l  
       P3=[P3 p3/p10]; nq9|cS%-  
       P=[P p*p]; y]dA<d?u  
    end MiB"CcU  
    figure(1) "qb1jv#to  
    plot(P,P1, P,P2, P,P3); 4dfR}C  
    0~.OMG:=  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~