切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9042阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 E0 `Lg c  
    ,`ZYvF^%  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of EkGQ(fZ1|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of F u&EhGm6  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear nqwAQhzy(  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o9cM{ya/>  
    3 %.#}O,(  
    %fid=fopen('e21.dat','w'); Gmf B  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) el:9wq  
    M1 =3000;              % Total number of space steps 8]&i-VFof  
    J =100;                % Steps between output of space +}f9   
    T =10;                  % length of time windows:T*T0 K&8dA0i2u2  
    T0=0.1;                 % input pulse width 3O7!`Nm@  
    MN1=0;                 % initial value for the space output location _`64gS}^  
    dt = T/N;                      % time step }Tf9S<xpq3  
    n = [-N/2:1:N/2-1]';           % Index BD`2l!d  
    t = n.*dt;   L%>n>w  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 !S&L*OH,  
    u20=u10.*0.0;                  % input to waveguide 2 5]M>8ll  
    u1=u10; u2=u20;                 o] mD"3_  
    U1 = u1;   Qt vYv!  
    U2 = u2;                       % Compute initial condition; save it in U a{{g<< H  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. P-ri=E}>  
    w=2*pi*n./T; B<C*  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _/wV;h~R  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 2Ry1b+\  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 D@!=d@V.  
    for m1 = 1:1:M1                                    % Start space evolution i;!H!-sM  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS IpP~Uz  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ^h{)Gf,+\  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 1KjU ] r2  
       ca2 = fftshift(fft(u2)); rk)##)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation sg+uBCGB  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   I4&::y^ C  
       u2 = ifft(fftshift(c2));                        % Return to physical space >Wz;ySEz  
       u1 = ifft(fftshift(c1)); @:KJYm[  
    if rem(m1,J) == 0                                 % Save output every J steps. z )HD`Ho  
        U1 = [U1 u1];                                  % put solutions in U array ;A#`]-i C  
        U2=[U2 u2]; ^5=B`aich  
        MN1=[MN1 m1]; 5 Kkdo!z  
        z1=dz*MN1';                                    % output location ve\X3"p#  
      end WJ_IuX51'  
    end _6wFba@>/n  
    hg=abs(U1').*abs(U1');                             % for data write to excel w: >5=mfk  
    ha=[z1 hg];                                        % for data write to excel q7"7U=W0  
    t1=[0 t']; _Gu- uuy  
    hh=[t1' ha'];                                      % for data write to excel file {#)0EzV6  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Me=CSQqf<  
    figure(1) =C~/7N,lW]  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn .|/~op4;  
    figure(2) W^s ;Bi+Nw  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn gB<3-J1R  
    W^G>cC8.L  
    非线性超快脉冲耦合的数值方法的Matlab程序  |jM4E$  
    XP@1~$  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   4Z/f@ZD  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @r?Uua  
    s>^dxF!+  
    # vry0i  
    zL\OB?)5J  
    %  This Matlab script file solves the nonlinear Schrodinger equations |O"lNUW   
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of IKi5 v~bE  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear -=(!g&0  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Kw#i),M  
    {RF-sqce  
    C=1;                           z@wMc EH  
    M1=120,                       % integer for amplitude VZ\B<i  
    M3=5000;                      % integer for length of coupler *cEob b  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) NOp609\^  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. =KR NvW  
    T =40;                        % length of time:T*T0. L: z?Zt)|  
    dt = T/N;                     % time step Y*! qG  
    n = [-N/2:1:N/2-1]';          % Index ahPoEh  
    t = n.*dt;   4T=u`3pD7l  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 9k6r_G"  
    w=2*pi*n./T; Ud!4"<C_  
    g1=-i*ww./2; =MvjLh"s  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Pcw6!xH  
    g3=-i*ww./2; +-G<c6 |  
    P1=0; f-%NaTI  
    P2=0; !&"<oPjr+  
    P3=1; 4fKC6UR  
    P=0; "70WUx(\t  
    for m1=1:M1                 Jm42b4  
    p=0.032*m1;                %input amplitude >ss/D^YS  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :duo#w"K  
    s1=s10; R%'^gFk 8  
    s20=0.*s10;                %input in waveguide 2 MX@_=Sp-  
    s30=0.*s10;                %input in waveguide 3 $ mI0Bk  
    s2=s20; }oNhl^JC  
    s3=s30; 2/0v B>  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   L>YU,I\o  
    %energy in waveguide 1 3Oi nK['  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   qv@$ZLR  
    %energy in waveguide 2 rp0ZvEX  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   d,=r 9.  
    %energy in waveguide 3 BN4_:  
    for m3 = 1:1:M3                                    % Start space evolution kP?KXT3y  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS xQ@^$_  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; *q1%IJ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; V#`fs|e;y  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform _-#'j2  
       sca2 = fftshift(fft(s2)); #cCL.p"]  
       sca3 = fftshift(fft(s3)); Q_Gi]M9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   dX)GPC-D7  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); /;utcc  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); AqV7\gdOC  
       s3 = ifft(fftshift(sc3)); uxzze~_+C  
       s2 = ifft(fftshift(sc2));                       % Return to physical space E~_]Lfs)  
       s1 = ifft(fftshift(sc1)); OdB?_.+$  
    end dx+hhg\L  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); UNkCL4N  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7=DjI ~  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]~E0gsq  
       P1=[P1 p1/p10]; 4A2?Uhp y  
       P2=[P2 p2/p10]; l@ap]R  
       P3=[P3 p3/p10]; nTz6LVF  
       P=[P p*p]; <Ce2r"U1e  
    end 7IjQi=#:  
    figure(1) 9s_,crq5  
    plot(P,P1, P,P2, P,P3); yfC^x%d7G  
    k+DR]icv  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~