切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8193阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 I#GsEhi  
    V>B*_J,z.  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of B{-+1f4  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of zK ir  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear \ Q0-yNt  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Jkub|w#QH  
    0?\d%J!"S  
    %fid=fopen('e21.dat','w'); ]?j[P=\  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Avo"jN*<d  
    M1 =3000;              % Total number of space steps vV /fTO  
    J =100;                % Steps between output of space a3(q;^v  
    T =10;                  % length of time windows:T*T0 @P xX]e  
    T0=0.1;                 % input pulse width >Wr  
    MN1=0;                 % initial value for the space output location UZ3oc[#D=]  
    dt = T/N;                      % time step te8lF{R  
    n = [-N/2:1:N/2-1]';           % Index jthGNVZ  
    t = n.*dt;   Zmr*$,v<y  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 jBnvu@K"  
    u20=u10.*0.0;                  % input to waveguide 2 2:D1<z6RQ  
    u1=u10; u2=u20;                 CsW*E,|xyP  
    U1 = u1;   qC$h~Epp4  
    U2 = u2;                       % Compute initial condition; save it in U ]2'{W]m  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. mp+lN:  
    w=2*pi*n./T; ,K[}Bz  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Q.`O;D}x  
    L=4;                           % length of evoluation to compare with S. Trillo's paper o9D]\PdL>  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 qaN%&K9F8  
    for m1 = 1:1:M1                                    % Start space evolution } l4d/I  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 4.0JgX  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >aV Q  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform K#oF=4_/|  
       ca2 = fftshift(fft(u2)); UXN!iU)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation OBJk\j+Wi  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   LG3:V'|  
       u2 = ifft(fftshift(c2));                        % Return to physical space )4/227b/(  
       u1 = ifft(fftshift(c1)); dr8`;$;G*  
    if rem(m1,J) == 0                                 % Save output every J steps. KgMW  
        U1 = [U1 u1];                                  % put solutions in U array 4Js9"<w  
        U2=[U2 u2]; ;*_U)th  
        MN1=[MN1 m1]; Uq}-<q  
        z1=dz*MN1';                                    % output location K\]I@UTwq  
      end rezH5d6z62  
    end C!r9+z)<  
    hg=abs(U1').*abs(U1');                             % for data write to excel M,nLPHgK  
    ha=[z1 hg];                                        % for data write to excel .ko}m{  
    t1=[0 t']; "vnWq=E 2  
    hh=[t1' ha'];                                      % for data write to excel file }n91aE3v  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format D/=  AU  
    figure(1) *K1GX  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1Ev#[FOc  
    figure(2) drZ1D s  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ".R5K ?  
    d 9n{jv|  
    非线性超快脉冲耦合的数值方法的Matlab程序 EO[UezuU  
    p|b&hgA  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   MVpk/S%W  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $5;RQNhXh  
    8=h$6=1S  
    7f9i5E1  
    "L p"o  
    %  This Matlab script file solves the nonlinear Schrodinger equations G~\ SI.  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of xRx8E;Q@h?  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear H _%yh,L  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ltt+BUJc  
    /6%<97/d  
    C=1;                           (YJ]}J^  
    M1=120,                       % integer for amplitude >^Zyls  
    M3=5000;                      % integer for length of coupler >v DD.  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ]%K 8  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. yb(zyGe  
    T =40;                        % length of time:T*T0. `RG_FS"v  
    dt = T/N;                     % time step 4l~0LdYXKm  
    n = [-N/2:1:N/2-1]';          % Index >{dj6Wo  
    t = n.*dt;   gZs UX^%  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. faVR %  
    w=2*pi*n./T; +|w-1&-  
    g1=-i*ww./2; jJmg9&^R  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 1JU1XQi  
    g3=-i*ww./2; nPj+mg  
    P1=0; @?GOOD_i  
    P2=0; |# zznT"  
    P3=1; .7HnWKUV  
    P=0; Hlw0i a  
    for m1=1:M1                 E Fx@O  
    p=0.032*m1;                %input amplitude &x(^=sTHI  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Z-!W#   
    s1=s10; 79>8tOuo  
    s20=0.*s10;                %input in waveguide 2 7Lr}Y/1=  
    s30=0.*s10;                %input in waveguide 3 ^'|\8  
    s2=s20; 1z\>>N$7B  
    s3=s30; MO{6B#(<F  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   `2Buf8|a,  
    %energy in waveguide 1 N2"4dVV;  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   @42!\1YT  
    %energy in waveguide 2 QcQ:hHF  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   %` c?cB  
    %energy in waveguide 3 Xj\SJ*  
    for m3 = 1:1:M3                                    % Start space evolution S:UtmS+K  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ,'CDKzY  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; bm{L6D E  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; {GS7J  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform `3$S^|v  
       sca2 = fftshift(fft(s2)); HgwL~vG  
       sca3 = fftshift(fft(s3)); .>-`2B*/  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   h<wF;g,  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); L7jMpz&  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); NC 0H5  
       s3 = ifft(fftshift(sc3)); SR#%gR_SC  
       s2 = ifft(fftshift(sc2));                       % Return to physical space w@P c7$EP  
       s1 = ifft(fftshift(sc1)); $+Hv5]/hb  
    end iz`u@QKc%  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); a$c7d~p$I  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));  KUfk5Y  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Aa5IccR  
       P1=[P1 p1/p10]; Zcg=a_  
       P2=[P2 p2/p10]; %$ ^yot  
       P3=[P3 p3/p10]; ms=I lz  
       P=[P p*p]; ?Rl?Pp=>  
    end 8VLr*83~8  
    figure(1) Z\E3i  
    plot(P,P1, P,P2, P,P3); `@{qnCNQ  
    m7 !Fb  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~