切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8787阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ;>?h/tS6  
    nQc#AFg  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of EraGG"+  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of dDPQDIx  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G>V6{g2Q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {.:$F3T  
    p u(mHB  
    %fid=fopen('e21.dat','w'); jn2=)KBa_  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) *1dDs^D#|  
    M1 =3000;              % Total number of space steps KG'i#(u[  
    J =100;                % Steps between output of space !K>iSF<  
    T =10;                  % length of time windows:T*T0 =j,WQ66r3  
    T0=0.1;                 % input pulse width B?VTIq>  
    MN1=0;                 % initial value for the space output location LCHMh6  
    dt = T/N;                      % time step j<<d A[X  
    n = [-N/2:1:N/2-1]';           % Index ;/K2h_=3z  
    t = n.*dt;   cszvt2BIg  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 -* ,CMw  
    u20=u10.*0.0;                  % input to waveguide 2 <sH}X$/  
    u1=u10; u2=u20;                 \Rny*px  
    U1 = u1;   L80(9Y^xn  
    U2 = u2;                       % Compute initial condition; save it in U ?"d$SK"6Z  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. VPUVPq~&  
    w=2*pi*n./T; .;?!I_`  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T jo`ZuN{  
    L=4;                           % length of evoluation to compare with S. Trillo's paper p-[WpY3  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 75^6?#GS  
    for m1 = 1:1:M1                                    % Start space evolution ":Dm/g  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,>  zEG  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; |9I)YD  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform E#k{<LYI  
       ca2 = fftshift(fft(u2)); ywa*?3?c  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation /'/I^ab  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   '.mepxf< f  
       u2 = ifft(fftshift(c2));                        % Return to physical space `S {&gl  
       u1 = ifft(fftshift(c1)); `R[Hxi  
    if rem(m1,J) == 0                                 % Save output every J steps. 5'lPXKn+L  
        U1 = [U1 u1];                                  % put solutions in U array Ww7Ya]b.k  
        U2=[U2 u2]; A lU^ ,X  
        MN1=[MN1 m1]; A]z*#+Sl  
        z1=dz*MN1';                                    % output location 9njl,Q:  
      end cr1x CPJj  
    end !/zRw-q3B  
    hg=abs(U1').*abs(U1');                             % for data write to excel v 4ot08 C  
    ha=[z1 hg];                                        % for data write to excel 6\4-I^=B  
    t1=[0 t']; !U^{`V jp[  
    hh=[t1' ha'];                                      % for data write to excel file 0t <nH%N}^  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format qkb'@f=  
    figure(1) X]0>0=^  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn )[Y B&  
    figure(2) g52a vG  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn D|;O9iks#  
    r"7n2   
    非线性超快脉冲耦合的数值方法的Matlab程序 #.Rn6|V/4  
    sXIYl% d  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   pCIzpEsRs  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 isQ(O  
    .JhQxXj  
    ht3.e[%'b  
    ~4~`bT9  
    %  This Matlab script file solves the nonlinear Schrodinger equations ]?Ef0?44  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of }Z!D?(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tq3Wga!5  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *r7v Dc  
    Yd^@Ei9  
    C=1;                           .|UQ)J?s  
    M1=120,                       % integer for amplitude u^80NR  
    M3=5000;                      % integer for length of coupler G-aR%]7$g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) $<}c[Nm  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Zi!Ta"}8  
    T =40;                        % length of time:T*T0. $NXP)Lic)  
    dt = T/N;                     % time step F@w; .e!  
    n = [-N/2:1:N/2-1]';          % Index xs$$fPAQ  
    t = n.*dt;   3*b5V<}'|  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. RZ".?  
    w=2*pi*n./T; cnv>&6a)  
    g1=-i*ww./2; w0pMH p'Y  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; YG p+[|'  
    g3=-i*ww./2; zw0w."V  
    P1=0; %bW_,b  
    P2=0; xP;r3u s  
    P3=1; C8N)!5(A  
    P=0; !rvEo =^  
    for m1=1:M1                 )Fw/Cu  
    p=0.032*m1;                %input amplitude +.G"ool  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 qWt}8_"  
    s1=s10; t}EM X9SQ  
    s20=0.*s10;                %input in waveguide 2 N ##`  
    s30=0.*s10;                %input in waveguide 3 ' W/M>!X  
    s2=s20; "q@m6fs  
    s3=s30; MK$u }G  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Tb/TP3N  
    %energy in waveguide 1 \ mqx '  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   N.F5)04  
    %energy in waveguide 2 }pc9uvmIJ  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   P]E-Wp'p  
    %energy in waveguide 3 QrZ#<{,J5  
    for m3 = 1:1:M3                                    % Start space evolution  C0rf  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ny={OhP-  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~Bd=]a$mj  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; H}@:Bri  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 2G8pDvBr  
       sca2 = fftshift(fft(s2)); eim+oms  
       sca3 = fftshift(fft(s3)); C@rGa7  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   .R9Z$Kbq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); U, 6iT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2_o#Gx'  
       s3 = ifft(fftshift(sc3)); :|7#D,2  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 5=dL`  
       s1 = ifft(fftshift(sc1)); @ [$_cGR7  
    end [,%=\%5  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Z6jEj9?O  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); OMGggg  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 1I +9?fa  
       P1=[P1 p1/p10]; )8Va%{j  
       P2=[P2 p2/p10]; NE995;  
       P3=[P3 p3/p10]; <N<Q9}`V  
       P=[P p*p]; "L~(%Nx3  
    end md!6@)S-p  
    figure(1) _GOSqu!3Y  
    plot(P,P1, P,P2, P,P3); dWqn7+:  
    |s|}u`(@9  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~