计算脉冲在非线性耦合器中演化的Matlab 程序 U:n~S kc P ZIP: % This Matlab script file solves the coupled nonlinear Schrodinger equations of
iQ8{N:58DN % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
%7aJSuQN% % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
<3@nv% % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
9"+MZ$ %N~c9B %fid=fopen('e21.dat','w');
@-\=`#C** N = 128; % Number of Fourier modes (Time domain sampling points)
+pYwc0~ M1 =3000; % Total number of space steps
rA B=H*|6 J =100; % Steps between output of space
{nUmlP=mS T =10; % length of time windows:T*T0
YjTr49Af0 T0=0.1; % input pulse width
%H" MN1=0; % initial value for the space output location
Fs $FR-x dt = T/N; % time step
fx(8 o+ n = [-N/2:1:N/2-1]'; % Index
2#lpIj t = n.*dt;
]w;t0Bk u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
3!gz^[!?EN u20=u10.*0.0; % input to waveguide 2
m[2[9bQ0 u1=u10; u2=u20;
||pOiR5 U1 = u1;
qp6'n&^& U2 = u2; % Compute initial condition; save it in U
uKM` umE ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Ea<\a1Tl43 w=2*pi*n./T;
=5B5 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
$3>Rw/, L=4; % length of evoluation to compare with S. Trillo's paper
\:1$E[3v dz=L/M1; % space step, make sure nonlinear<0.05
bF_0',W for m1 = 1:1:M1 % Start space evolution
IO"P /Q u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
T5ky:{Y( u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
m)pHCS ca1 = fftshift(fft(u1)); % Take Fourier transform
h~Z &L2V ca2 = fftshift(fft(u2));
JcmMbd&B c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
3I( n]; c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
^$O(oE(D u2 = ifft(fftshift(c2)); % Return to physical space
5Wa)_@qI)` u1 = ifft(fftshift(c1));
*f;$5B#^ if rem(m1,J) == 0 % Save output every J steps.
">t^jt{ U1 = [U1 u1]; % put solutions in U array
w/(T U2=[U2 u2];
L3wj vq^ MN1=[MN1 m1];
';Nc;9 z1=dz*MN1'; % output location
HP[B% end
wk8fa end
R"O%##Ws hg=abs(U1').*abs(U1'); % for data write to excel
4To$!= ha=[z1 hg]; % for data write to excel
T?!SEblP] t1=[0 t'];
WR#h~N
9c hh=[t1' ha']; % for data write to excel file
OQ_<V xz %dlmwrite('aa',hh,'\t'); % save data in the excel format
Y#V(CIDe figure(1)
H#hpaP; waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
iz/CC V L figure(2)
#'%ii,;wQ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
AU`z.Isf "A~dt5GJ 非线性超快脉冲耦合的数值方法的Matlab程序 ~Uv#) 2'M5+[8y8 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
i7h^L)M Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
!\%JOf} H'YK j' 8w[O% 1/:vFX % This Matlab script file solves the nonlinear Schrodinger equations
*lLCH, % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
=#9#unvE! % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
RbxQTM_:M % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
<HRPloVKo ]$s)6)kW C=1;
]Bf1p M1=120, % integer for amplitude
2RNee@!JJP M3=5000; % integer for length of coupler
2Q@na@s N = 512; % Number of Fourier modes (Time domain sampling points)
[O_5`X9| dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
6<S-o|Xw T =40; % length of time:T*T0.
6q>iPK Jt dt = T/N; % time step
]SU)L5Dt; n = [-N/2:1:N/2-1]'; % Index
2@Nd02v| t = n.*dt;
~gZ1*8 s` ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
<$A/ (' w=2*pi*n./T;
vS5}OV g1=-i*ww./2;
aDX&j2/ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
h~
_i::vg
g3=-i*ww./2;
zB+e;x f | P1=0;
[|*7"Q( P2=0;
lW#2 ox P3=1;
ceks~[rP P=0;
~1*37 w~ for m1=1:M1
RE4#a2 p=0.032*m1; %input amplitude
H'!OEZ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
) aMiT s1=s10;
k^K76m B s20=0.*s10; %input in waveguide 2
[>p!*%m s30=0.*s10; %input in waveguide 3
z0ufLxq s2=s20;
\^y~w~g? s3=s30;
xh#_K@ 8 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
C "@>NC_ %energy in waveguide 1
OMjPC_ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
b+whZtNk7 %energy in waveguide 2
_IU5HT}2 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
TeZu*c %energy in waveguide 3
^hZ0"c for m3 = 1:1:M3 % Start space evolution
.c<U5/ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
}I}GA:~$% s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
+[n#{;]< s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
=m (u=|N3 sca1 = fftshift(fft(s1)); % Take Fourier transform
rf+}J_ sca2 = fftshift(fft(s2));
'M? ptu?f sca3 = fftshift(fft(s3));
`:r-&QdU o sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
lAA6tlc#C sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Iy*Q{H3[ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
j&S.k s3 = ifft(fftshift(sc3));
*HV_$^)= s2 = ifft(fftshift(sc2)); % Return to physical space
&*O'qOO<2 s1 = ifft(fftshift(sc1));
M9Sj@ ww end
mz<,nR\ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
8_`C&vx p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
=$#5Ge]b p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
N&k\X]U P1=[P1 p1/p10];
SufM~9Ll P2=[P2 p2/p10];
#;8VBbc\^ P3=[P3 p3/p10];
B!)9
> P=[P p*p];
mhU=^/X end
;IPk+,hpmi figure(1)
.@;5" plot(P,P1, P,P2, P,P3);
T&S=/cRBK} 6f#Mi+" 转自:
http://blog.163.com/opto_wang/