切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8277阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 {KODwP'~  
    =#uXO<   
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of RN!oflb  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of haB$W 4x  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Kx#G_N@  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Km-lWreTH  
    0*h\/!e  
    %fid=fopen('e21.dat','w'); $(C71M|CT  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 9;q@;)'5  
    M1 =3000;              % Total number of space steps +dR$;!WB3  
    J =100;                % Steps between output of space v!40>[?|p  
    T =10;                  % length of time windows:T*T0 ptrLnJ|%  
    T0=0.1;                 % input pulse width ]`+>{Sx 1  
    MN1=0;                 % initial value for the space output location =@B9I<GKf  
    dt = T/N;                      % time step u},<On  
    n = [-N/2:1:N/2-1]';           % Index Z\TH=UA  
    t = n.*dt;   #&&^5r-b-  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 KWU#Swa`  
    u20=u10.*0.0;                  % input to waveguide 2 X%39cXM C  
    u1=u10; u2=u20;                 =q>eoXp  
    U1 = u1;   ~I2 IgEj>]  
    U2 = u2;                       % Compute initial condition; save it in U } fSbH  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 2Xgn[oI{  
    w=2*pi*n./T; !%]]lxi  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T !MQo= k  
    L=4;                           % length of evoluation to compare with S. Trillo's paper `}Q+:  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ~"{Kjr#R  
    for m1 = 1:1:M1                                    % Start space evolution [bE9Y;  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ;J2=6np  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 7nfQ=?XNK  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Ma wio5  
       ca2 = fftshift(fft(u2)); 3 u-j`7  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation T4._S:~  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   )%WS(S>8  
       u2 = ifft(fftshift(c2));                        % Return to physical space oZP:}= F  
       u1 = ifft(fftshift(c1)); CEZ*a 0}=  
    if rem(m1,J) == 0                                 % Save output every J steps. q'{E $V)E  
        U1 = [U1 u1];                                  % put solutions in U array RIb< 7  
        U2=[U2 u2]; ;nSaZ$`5  
        MN1=[MN1 m1]; .(nq"&u-*  
        z1=dz*MN1';                                    % output location v5 $"v?PT  
      end @ttcFX1:W  
    end 8V^gOUF.  
    hg=abs(U1').*abs(U1');                             % for data write to excel ef Ra|7!HK  
    ha=[z1 hg];                                        % for data write to excel naM4X@jl  
    t1=[0 t']; kLADd"C  
    hh=[t1' ha'];                                      % for data write to excel file A5B 5pJ  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ~ia#=|1}  
    figure(1) <86upS6  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn JrS/"QSA  
    figure(2) v"=^?5B  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn r'k-*I  
    E#8`X  
    非线性超快脉冲耦合的数值方法的Matlab程序 HrWXPac A  
    %e:VeP~  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   V#C[I~l  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 19&!#z  
    |OuZaCJG  
    N2xgyKy~  
    ]p@7[8}  
    %  This Matlab script file solves the nonlinear Schrodinger equations cM.q^{d`  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of W!V06.  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear NuW9.6$Jrf  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \Qz>us=G  
    2t/ba3Rfk  
    C=1;                           .K;*uq:0  
    M1=120,                       % integer for amplitude P[aB}<1f0  
    M3=5000;                      % integer for length of coupler 1,9RfYV  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) jHTaG%oh  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. %\Ig{Rj;  
    T =40;                        % length of time:T*T0. D("['`{  
    dt = T/N;                     % time step XOVZ'V  
    n = [-N/2:1:N/2-1]';          % Index ,Ix7Yg[  
    t = n.*dt;   auaFP-$`f  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. _N0x&9S$  
    w=2*pi*n./T; J1yy6Wq3[  
    g1=-i*ww./2; i#iY;R8  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; jZe]zdml  
    g3=-i*ww./2; \D>'  
    P1=0;  H[fD >  
    P2=0; 3zMmpeq  
    P3=1; qS+'#Sn  
    P=0; fh:=ja?bM3  
    for m1=1:M1                 L&q~5 9  
    p=0.032*m1;                %input amplitude YtxBkKiJ2V  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 hFs0qPVY  
    s1=s10; R qOEQ*k  
    s20=0.*s10;                %input in waveguide 2 yV=hi?f-[V  
    s30=0.*s10;                %input in waveguide 3 _Ev"/ %  
    s2=s20; ;x| 4Tm  
    s3=s30; -L</,>p  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   /$]dVvhX%  
    %energy in waveguide 1 ir3iW*5k  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   a}El!7RO0  
    %energy in waveguide 2 x.>z2.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   rL&585  
    %energy in waveguide 3 MoO jM&9  
    for m3 = 1:1:M3                                    % Start space evolution LHR%dt|M  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS qA Jgz7=c  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 4,wdIdSm4  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; s[8<@I*u  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform _av%`bb&z9  
       sca2 = fftshift(fft(s2)); mzfj!0zR*  
       sca3 = fftshift(fft(s3)); fb&K.6"  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   %~ZOQ%c1  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); @fPiGu`L  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); I`p44}D3  
       s3 = ifft(fftshift(sc3)); m9.QGX\]  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Y&]pC  
       s1 = ifft(fftshift(sc1)); %fK"g2:  
    end 'hg, W]  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 8mV`|2>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); YmNBtGhT  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); }eULcgRG  
       P1=[P1 p1/p10]; kc1 *@<L6  
       P2=[P2 p2/p10]; 3 3s.p'  
       P3=[P3 p3/p10]; .#lQZo6$\|  
       P=[P p*p]; NrhU70y  
    end 6(<M.U_ft  
    figure(1) *.ZV.(  
    plot(P,P1, P,P2, P,P3); &z&Jl#t-)  
    rq T@i(i  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~