切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8762阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 6H'HxB4  
    /tUy3myJ  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of IKi5 v~bE  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of -=(!g&0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Kw#i),M  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %*\es7m}  
    z@wMc EH  
    %fid=fopen('e21.dat','w'); mQY_`&Jq  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) $jg*pmR-  
    M1 =3000;              % Total number of space steps f"St&q>[s  
    J =100;                % Steps between output of space n/h,Lr)Z  
    T =10;                  % length of time windows:T*T0 SCz(5[MZJ  
    T0=0.1;                 % input pulse width ca>Z7qT!  
    MN1=0;                 % initial value for the space output location &\Amn?Iq  
    dt = T/N;                      % time step z(H^..<!5  
    n = [-N/2:1:N/2-1]';           % Index ~ {Mn{  
    t = n.*dt;   N&M~0iw  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ?2oHZ%G  
    u20=u10.*0.0;                  % input to waveguide 2 .B\5OI,]  
    u1=u10; u2=u20;                 $H-!j%hV  
    U1 = u1;   [/X4"D-uOK  
    U2 = u2;                       % Compute initial condition; save it in U SXy=<%ed  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. AW,53\ 0  
    w=2*pi*n./T; 6qaulwV4t  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 3JVK  
    L=4;                           % length of evoluation to compare with S. Trillo's paper >ss/D^YS  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 :duo#w"K  
    for m1 = 1:1:M1                                    % Start space evolution R%'^gFk 8  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS HB7;0yt`:  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ]Oif|k`{  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform }oNhl^JC  
       ca2 = fftshift(fft(u2)); 2/0v B>  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation L>YU,I\o  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   3Oi nK['  
       u2 = ifft(fftshift(c2));                        % Return to physical space qv@$ZLR  
       u1 = ifft(fftshift(c1)); m o:D9  
    if rem(m1,J) == 0                                 % Save output every J steps. lg b?)=  
        U1 = [U1 u1];                                  % put solutions in U array Rb{U+/gq  
        U2=[U2 u2]; Q*b]_0Rb  
        MN1=[MN1 m1]; M6}3wM*4  
        z1=dz*MN1';                                    % output location 'CN|'W)g7  
      end WAS U0  
    end Oj^,m.R  
    hg=abs(U1').*abs(U1');                             % for data write to excel ^6_Cc  
    ha=[z1 hg];                                        % for data write to excel 7bV{Q355P  
    t1=[0 t']; M-giR:,  
    hh=[t1' ha'];                                      % for data write to excel file 67VT\f  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format iURk=*Z=  
    figure(1) fF V!)Zj  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ) lZp9O  
    figure(2) Lg+G; W  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <NuUW9+  
    oDU ;E  
    非线性超快脉冲耦合的数值方法的Matlab程序 B}&xaY  
    u6bXv(  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   !H}vu]R  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nTz6LVF  
    <Ce2r"U1e  
    <0PT"ij  
    yd?x= |  
    %  This Matlab script file solves the nonlinear Schrodinger equations -Q U^c2  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of k+DR]icv  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear I:d[Q s  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :.45u}[  
    PgRDKygE  
    C=1;                           INyk3`FT  
    M1=120,                       % integer for amplitude 7%{ |  
    M3=5000;                      % integer for length of coupler T9879[ZU\  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) [mPjP%{=@  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 14"J d\M8  
    T =40;                        % length of time:T*T0. ?|ZTaX6A  
    dt = T/N;                     % time step #Z<a  
    n = [-N/2:1:N/2-1]';          % Index #2EI\E&$  
    t = n.*dt;   `8Lo{P  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ]TyisaT  
    w=2*pi*n./T; .({smN,B  
    g1=-i*ww./2; Ey4z.s'-l  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; P'O#I}Dmw<  
    g3=-i*ww./2; = hN !;7G  
    P1=0; Qx'`PNU9\  
    P2=0; C(K; zo*S(  
    P3=1; xQ'2BAEa  
    P=0; P:N1#|g  
    for m1=1:M1                 HuV J\%.  
    p=0.032*m1;                %input amplitude {pHM},WJ  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 U_{Ux 2  
    s1=s10; MG{YrX)oi  
    s20=0.*s10;                %input in waveguide 2 EVNY*&p  
    s30=0.*s10;                %input in waveguide 3 +r<0zh,n.  
    s2=s20; V}zEK0n(6  
    s3=s30; D2,z)O%VK  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   I'@Ydt2  
    %energy in waveguide 1 jr`Ess  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6HlePTf8  
    %energy in waveguide 2 Usta0Ag  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   b?j< BvQ  
    %energy in waveguide 3 ?Oc{bF7  
    for m3 = 1:1:M3                                    % Start space evolution 3dDX8M?  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 0]jA<vLR  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; o#hjvg  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Y!T %cTK)a  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform nQ/E5y  
       sca2 = fftshift(fft(s2)); shMSN]S_x  
       sca3 = fftshift(fft(s3)); !Lh^oPT"I  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   @ G4X  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); eBJUv]o %  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ;-Jb1"5  
       s3 = ifft(fftshift(sc3)); :hI@AA>g  
       s2 = ifft(fftshift(sc2));                       % Return to physical space &wB\ ~Ie-  
       s1 = ifft(fftshift(sc1)); 1\r|g2Z :  
    end %/rMg"f:  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); K_ ci_g":  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); MW+b;0U`#  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); xrN &N_K#  
       P1=[P1 p1/p10]; ''kS*3  
       P2=[P2 p2/p10]; 41_SRh7N  
       P3=[P3 p3/p10]; RAp=s  
       P=[P p*p]; EFc-foN  
    end 1DA1N<'  
    figure(1) ":nQgV\ 9  
    plot(P,P1, P,P2, P,P3); <u=4*:QE  
    m B\C?=_  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~