切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9382阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 yHS=8!  
    @I{v  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of i|zs Li/  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of |TCHPKN  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *` }Rt  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .<Y7,9;YEF  
    {Vy2uow0  
    %fid=fopen('e21.dat','w'); Gt9(@USK  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) YKF5|;}  
    M1 =3000;              % Total number of space steps !?t#QD o  
    J =100;                % Steps between output of space bDh,r!I  
    T =10;                  % length of time windows:T*T0 B J,U,!  
    T0=0.1;                 % input pulse width wvH=4TT=w"  
    MN1=0;                 % initial value for the space output location e !_+TyI  
    dt = T/N;                      % time step B&J;yla6`d  
    n = [-N/2:1:N/2-1]';           % Index G$b*N4yR  
    t = n.*dt;   @f<q&K%FJ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ^HpUbZpat)  
    u20=u10.*0.0;                  % input to waveguide 2 {9(#X]'  
    u1=u10; u2=u20;                 pwq a/Yi  
    U1 = u1;   @=@7Uu-  
    U2 = u2;                       % Compute initial condition; save it in U <5oG[1j  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. "AH1)skB:  
    w=2*pi*n./T; +6cOL48"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >fCz,.L  
    L=4;                           % length of evoluation to compare with S. Trillo's paper tbbZGyg5b  
    dz=L/M1;                       % space step, make sure nonlinear<0.05  \*5`@>_  
    for m1 = 1:1:M1                                    % Start space evolution tPDd~fOk  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS bUR; d78  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; sxac( L  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform :Iy4 B+  
       ca2 = fftshift(fft(u2)); *AEN  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation &p/ ^A[  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   NkWU5E!  
       u2 = ifft(fftshift(c2));                        % Return to physical space rnB-e?>  
       u1 = ifft(fftshift(c1)); :el]IH  
    if rem(m1,J) == 0                                 % Save output every J steps. %bs6Uy5g)a  
        U1 = [U1 u1];                                  % put solutions in U array aZK%?c  
        U2=[U2 u2]; GR@jn]50  
        MN1=[MN1 m1]; /5@4}m>Z@  
        z1=dz*MN1';                                    % output location ``l7|b jJ  
      end P2lDi!q|  
    end IhIPy~Hgt  
    hg=abs(U1').*abs(U1');                             % for data write to excel u 3&9R)J1  
    ha=[z1 hg];                                        % for data write to excel KHK|Zu#k '  
    t1=[0 t']; Mp8BilH-T  
    hh=[t1' ha'];                                      % for data write to excel file K x7'm1  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format tvh)N{j  
    figure(1) ?V3kIb  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn }E?{M~"<  
    figure(2) Kwc~\k  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 8KQD w:  
    }jF67c->  
    非线性超快脉冲耦合的数值方法的Matlab程序 lRIS&9vA3  
    u$A*Vsmr  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   FQc8j:'  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B?;!j)FUtt  
    s@Q, wa(  
    )ad-p.Hus  
    Ebmd[A&&  
    %  This Matlab script file solves the nonlinear Schrodinger equations C7|z DJ_  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of UOi[#L@N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  3+[R !  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Rh%c<</`0s  
    z%$,F9/  
    C=1;                           @"B"*z-d  
    M1=120,                       % integer for amplitude 3bMQ[G  
    M3=5000;                      % integer for length of coupler l]pHj4`uv  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) )0RznFJ+X  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. -F&4<\=+  
    T =40;                        % length of time:T*T0. Q/JX8<7K  
    dt = T/N;                     % time step @j|B1:O  
    n = [-N/2:1:N/2-1]';          % Index +7HM7cw  
    t = n.*dt;    >^<%9{  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. hB]\vA7  
    w=2*pi*n./T; O@$wU9 D<  
    g1=-i*ww./2; 1:L _qL  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; "JHd F&  
    g3=-i*ww./2; w_O3];  
    P1=0; 'a}<|Et.  
    P2=0; U{^~X_?  
    P3=1; x)+3SdH  
    P=0; Wmm'j&hI  
    for m1=1:M1                 3k5C;5  
    p=0.032*m1;                %input amplitude `V(z z  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ?b}d"QsmU  
    s1=s10; WyO7,Qr\   
    s20=0.*s10;                %input in waveguide 2 s>A!Egmo  
    s30=0.*s10;                %input in waveguide 3 )Ha`>  
    s2=s20; h3}gg@Fm  
    s3=s30; `i'72\(  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   L?W F[nF R  
    %energy in waveguide 1 -F7GUB6B  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   H%}ro.u  
    %energy in waveguide 2 \( S69@f  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   mBp3_E.t  
    %energy in waveguide 3 |U~m8e&:  
    for m3 = 1:1:M3                                    % Start space evolution !uoQLiH+  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS n!nXM  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; J\WUBt-M  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; A,P_|  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 6}Iu~| 5  
       sca2 = fftshift(fft(s2)); I U Mt^z  
       sca3 = fftshift(fft(s3)); (JgW")M`cY  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   4| 6<nk_  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); zc}qAy'<  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); t[L_n m5-  
       s3 = ifft(fftshift(sc3)); %syFHUBw  
       s2 = ifft(fftshift(sc2));                       % Return to physical space PT`];C(he  
       s1 = ifft(fftshift(sc1)); uQ}0hs  
    end 3 &aBU [  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); KGVAP  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ucVWvXCr  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); /b44;U`v5-  
       P1=[P1 p1/p10]; xK8n~.T('  
       P2=[P2 p2/p10]; PYOU=R%o`8  
       P3=[P3 p3/p10]; \0{g~cU4  
       P=[P p*p]; U c6]]Bbc  
    end ? iX1;c9  
    figure(1) NXJyRAJ*%  
    plot(P,P1, P,P2, P,P3); "0,d)L0,"  
    a\UhOPFF  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~