切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9020阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ;HO=  
    @*( (1(q  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of oap4rHk}  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )Ql%r?(F+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear %>{0yEC  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x s|FE3:a  
    NC(~l  
    %fid=fopen('e21.dat','w'); aqk!T%fg  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) (O3nL.  
    M1 =3000;              % Total number of space steps x7[BK_SY  
    J =100;                % Steps between output of space eeB{c.#  
    T =10;                  % length of time windows:T*T0 tG a8W  
    T0=0.1;                 % input pulse width zK@@p+n_#.  
    MN1=0;                 % initial value for the space output location 3 Za}b|  
    dt = T/N;                      % time step h2d(?vOT  
    n = [-N/2:1:N/2-1]';           % Index o>pJPV  
    t = n.*dt;   ZD{LXJ{Vm  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $xN|5;+  
    u20=u10.*0.0;                  % input to waveguide 2 fE mr^ R  
    u1=u10; u2=u20;                 /k3:']G,s  
    U1 = u1;   wf<M)Rs|  
    U2 = u2;                       % Compute initial condition; save it in U .?$gpM?i  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. <)D$51 &0  
    w=2*pi*n./T; H/M@t\$Dc  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ew4U)2J+  
    L=4;                           % length of evoluation to compare with S. Trillo's paper H4+i.*T#  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 6=Otq=WH  
    for m1 = 1:1:M1                                    % Start space evolution S)@j6(HC4  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS C,4e"yynb  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 3^yK!-Wp(  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform WH^%:4  
       ca2 = fftshift(fft(u2)); 8Zd]wYO  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation + {'.7#  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   >^3i|PB  
       u2 = ifft(fftshift(c2));                        % Return to physical space VI *$em O0  
       u1 = ifft(fftshift(c1)); qIT@g"%}t  
    if rem(m1,J) == 0                                 % Save output every J steps. 7@W>E;go  
        U1 = [U1 u1];                                  % put solutions in U array (#c:b  
        U2=[U2 u2]; vnuN6M{  
        MN1=[MN1 m1]; EfT=?  
        z1=dz*MN1';                                    % output location dSHDWu&  
      end 5Gm_\kd  
    end 1?l1:}^L  
    hg=abs(U1').*abs(U1');                             % for data write to excel ZbKg~jdF  
    ha=[z1 hg];                                        % for data write to excel ]7A'7p $Y  
    t1=[0 t']; \s\?l(ooq"  
    hh=[t1' ha'];                                      % for data write to excel file ;!Fn1|)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 5|)W.*Q  
    figure(1) =Dj#gV  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 4CTi]E=H{  
    figure(2) GTHt'[t@;  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn =?8@#]G+  
    ]6j{@z?{  
    非线性超快脉冲耦合的数值方法的Matlab程序 w,D+j74e$  
    Zv{'MIv&v  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   1_G^w qk  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~wdGd+ez  
    (/$^uWj  
    }x ,S%M-  
    {{!-Gr  
    %  This Matlab script file solves the nonlinear Schrodinger equations :Zlwy-[  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Q/Rqa5LI:  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1xvu<|F  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 uXiN~j &Be  
    |I=T @1_D  
    C=1;                           gRzxLf`K  
    M1=120,                       % integer for amplitude t6t!t*jO  
    M3=5000;                      % integer for length of coupler DHRlWQox  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) &7s.`  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. l U]nd[x  
    T =40;                        % length of time:T*T0. 4<v&S2Yq  
    dt = T/N;                     % time step x?<FJ"8"k  
    n = [-N/2:1:N/2-1]';          % Index Vjpy~iP4B  
    t = n.*dt;   |uJ%5y#  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ~V6D<  
    w=2*pi*n./T; "J1 4C9u   
    g1=-i*ww./2; 1\.pMHv/  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; w32y3~  
    g3=-i*ww./2; ~VB1OLgv#.  
    P1=0; 1Z&(6cDY8M  
    P2=0; : rVnc =k  
    P3=1; \{D" !e  
    P=0; ,]D,P  
    for m1=1:M1                 QZ8IV>  
    p=0.032*m1;                %input amplitude xyxy`qRA  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _"{Xi2@H  
    s1=s10; }-`4DHgq  
    s20=0.*s10;                %input in waveguide 2 E" vS $  
    s30=0.*s10;                %input in waveguide 3 !n%j)`0M  
    s2=s20; E*lxVua  
    s3=s30; +cRn%ioVi  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ptaKf4P^r  
    %energy in waveguide 1 R@2X3s:  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   h@BY]80  
    %energy in waveguide 2 H;"4 C8K7  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   V.2_i*  
    %energy in waveguide 3 [-x7_=E#  
    for m3 = 1:1:M3                                    % Start space evolution w2'5#`m  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS |l!aB(NW  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; P2nu;I_ &  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; tl>7^hH  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform WY]s |2a  
       sca2 = fftshift(fft(s2)); Ea=P2:3*  
       sca3 = fftshift(fft(s3)); yh=N@Z*zP  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Xnh8e  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); f *)Z)6E  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); DaVa}  
       s3 = ifft(fftshift(sc3)); K> e7pu  
       s2 = ifft(fftshift(sc2));                       % Return to physical space !_(Tqyg&  
       s1 = ifft(fftshift(sc1)); :E?V.  
    end Z6m)tZVM  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); M3Kfd  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); %|4UsWZ  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); WF"k[2  
       P1=[P1 p1/p10]; #fM'>$N  
       P2=[P2 p2/p10]; )`}:8y?  
       P3=[P3 p3/p10]; PI<vxjOK`  
       P=[P p*p]; I}Q2Vu<  
    end MO]&bHH7;  
    figure(1) Q@HV- (A  
    plot(P,P1, P,P2, P,P3); g,Y/M3>(  
    B erwI 7!=  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~