切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8989阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 XDot3)2`  
    4!I;U>b b  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of {m<NPtp910  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of .5t|FJ]`$  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "1-|ahW  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 kOQq+_Y  
    WgV'T#*  
    %fid=fopen('e21.dat','w'); #VLO6  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ITq$8  
    M1 =3000;              % Total number of space steps hv6w=?7  
    J =100;                % Steps between output of space &ND8^lR=Y;  
    T =10;                  % length of time windows:T*T0 E&RiEhuv  
    T0=0.1;                 % input pulse width ;)SWUXa;{  
    MN1=0;                 % initial value for the space output location dV:vM9+x  
    dt = T/N;                      % time step DaK2P;WP  
    n = [-N/2:1:N/2-1]';           % Index r N.<S[  
    t = n.*dt;   Xyf7sHQ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 w<4,;FFlZ/  
    u20=u10.*0.0;                  % input to waveguide 2 VkD8h+)  
    u1=u10; u2=u20;                 /.[;u1z"^  
    U1 = u1;   <21@jdu3n,  
    U2 = u2;                       % Compute initial condition; save it in U lwhVP$q}  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. RyJN=;5p  
    w=2*pi*n./T; MmvMuX]#)  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T \N?,6;%xB  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ]rhxB4*1  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 >`@c9 m  
    for m1 = 1:1:M1                                    % Start space evolution S]P80|!|  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS VgoN=S  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6z(eW]p  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform }EW@/; kC  
       ca2 = fftshift(fft(u2)); "]"!"#aMv  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation N?7vcN+-t)  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   p-6(>,+E[  
       u2 = ifft(fftshift(c2));                        % Return to physical space l5 FM>q  
       u1 = ifft(fftshift(c1)); ] VN4;R  
    if rem(m1,J) == 0                                 % Save output every J steps.  <0,szw  
        U1 = [U1 u1];                                  % put solutions in U array ;M95A  
        U2=[U2 u2]; c<(LXf+61  
        MN1=[MN1 m1]; bay7%[BLB  
        z1=dz*MN1';                                    % output location xz#.3|_('  
      end Ke_ & dgsq  
    end j.5;0b_L^  
    hg=abs(U1').*abs(U1');                             % for data write to excel &)8-iO  
    ha=[z1 hg];                                        % for data write to excel Q]?Lg  
    t1=[0 t']; $c WO`\XM  
    hh=[t1' ha'];                                      % for data write to excel file g.cD3N  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format uMB|x,X I  
    figure(1) c04"d"$ x  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn jMT];%$[  
    figure(2) l9 K 3E<g  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0Q]p#;  
    K]b_JDEk  
    非线性超快脉冲耦合的数值方法的Matlab程序 VHyP@JB  
    Rilr)$  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ]/_GHG9  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^aW?0qsH  
    L 1fK  
    q0}?F  
    &|:T+LVv$+  
    %  This Matlab script file solves the nonlinear Schrodinger equations s 4Mi9h_  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ""dX4^gtU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K-xmLEu  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 aWLeyXsAu  
    f> u{e~Q,  
    C=1;                           Tz=YSQy$9  
    M1=120,                       % integer for amplitude /R_*u4}iD  
    M3=5000;                      % integer for length of coupler $rZ:$d.C  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Ozygr?*X  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. #$vef  
    T =40;                        % length of time:T*T0. sH^?v0^a  
    dt = T/N;                     % time step $J~~.PUXQ  
    n = [-N/2:1:N/2-1]';          % Index pearf2F  
    t = n.*dt;   tGKIJ`w*h  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. A/ eZ!"Y  
    w=2*pi*n./T; i w,F)O  
    g1=-i*ww./2; NZ\aK}?~!  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~dIb>[7wy  
    g3=-i*ww./2; kXj%thDx  
    P1=0; FmALmS  
    P2=0; !n=@(bT*wT  
    P3=1; /12D >OK  
    P=0; "CEy r0h  
    for m1=1:M1                 W~1/vJ.*l  
    p=0.032*m1;                %input amplitude ]~,V(K  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 5-277?  
    s1=s10; ,_66U;T  
    s20=0.*s10;                %input in waveguide 2 :'OCQ.[{s  
    s30=0.*s10;                %input in waveguide 3 BO5gwvyI  
    s2=s20; G-U%  
    s3=s30; +[ _)i9a  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   iA~b[20&  
    %energy in waveguide 1 Dm@wTt8N(  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ASuxty  
    %energy in waveguide 2 8ycmvpJ  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   {__Z\D2I  
    %energy in waveguide 3 -R!qDA"  
    for m3 = 1:1:M3                                    % Start space evolution W|U!kqU  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 0Fw0#eE  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; :<%q9)aPf`  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 5 zlgmCGow  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Sx,O)  
       sca2 = fftshift(fft(s2)); Lw=.LN  
       sca3 = fftshift(fft(s3)); qYg4H|6  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   O&# bC  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); >'i d/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /j]r?KAzw  
       s3 = ifft(fftshift(sc3)); "y>\ mC  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ]P TTI\n  
       s1 = ifft(fftshift(sc1)); ,L+tm>I  
    end #@,39!;,:O  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); v>3)^l:=Y*  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Sti)YCXH  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ;Ef:mr"Nu  
       P1=[P1 p1/p10]; PXGS5,  
       P2=[P2 p2/p10]; S;$@?vF  
       P3=[P3 p3/p10]; 4z-sR/d  
       P=[P p*p]; P'#m1ntxQ  
    end ?~rF3M.=|  
    figure(1) %3e}YQe)  
    plot(P,P1, P,P2, P,P3); Y&xmy|O#  
    0f vQPs!O  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~