切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8650阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 0b6jGa  
    J9eOBom8e<  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of G%^jgr)  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of  9uR+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear waI?X2  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g%Bh-O9\  
    Wip@MGtJ  
    %fid=fopen('e21.dat','w'); ?lq  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) B|pO2d e  
    M1 =3000;              % Total number of space steps #(swVo:+E  
    J =100;                % Steps between output of space ze2%#<  
    T =10;                  % length of time windows:T*T0 0t*e#,y  
    T0=0.1;                 % input pulse width Lh%z2 5t  
    MN1=0;                 % initial value for the space output location EP,j+^RVf  
    dt = T/N;                      % time step xfoQx_]$Im  
    n = [-N/2:1:N/2-1]';           % Index 9$[6\jMh  
    t = n.*dt;   Ak3cE_*Y/  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 _PT5  
    u20=u10.*0.0;                  % input to waveguide 2 cq]JD6937  
    u1=u10; u2=u20;                 p3r("\Za,  
    U1 = u1;   aItQ(+y  
    U2 = u2;                       % Compute initial condition; save it in U ' ` _TFTO  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. GWFF.Mo^  
    w=2*pi*n./T; `_aX>fw  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F!7dGa$  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ezimQ  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 (P!r^87  
    for m1 = 1:1:M1                                    % Start space evolution Vu.VH([b]Q  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS O6*2oUKqK  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; &1 /OwTI4J  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform "DaE(S&  
       ca2 = fftshift(fft(u2)); Zt_~Zxn3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation m`i_O0T  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   u7&q(Z&&O  
       u2 = ifft(fftshift(c2));                        % Return to physical space &Va="HNKt  
       u1 = ifft(fftshift(c1)); .~$!BWP  
    if rem(m1,J) == 0                                 % Save output every J steps. U!d|5W.{Q  
        U1 = [U1 u1];                                  % put solutions in U array .RNY}bbk  
        U2=[U2 u2]; Pi+pQFz5  
        MN1=[MN1 m1]; R2Es~T  
        z1=dz*MN1';                                    % output location T@wgWE<0y_  
      end >|X )  
    end vB74r]'F  
    hg=abs(U1').*abs(U1');                             % for data write to excel |I[/Fl:  
    ha=[z1 hg];                                        % for data write to excel yPrF2@#XZ/  
    t1=[0 t']; 6VUs:iO1j5  
    hh=[t1' ha'];                                      % for data write to excel file \?v?%}x  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format E5aRTDLq  
    figure(1) vtq$@#?~ b  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Mj&G5R~_  
    figure(2) uMx6:   
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn xX f,j#`"  
    0=0,ix7?#  
    非线性超快脉冲耦合的数值方法的Matlab程序 8)lrQvZ  
    dGyrzuPJ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   lArKfs/   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 dI%?uk  
    1=Z!ZY}}e  
    ;NOmI+t0w&  
    .k:heN2-x  
    %  This Matlab script file solves the nonlinear Schrodinger equations },n?  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ?g\emhG  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;6eBfMhL  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 rD+mI/_J`  
    h1t~hrq  
    C=1;                           wz'=  
    M1=120,                       % integer for amplitude ({ O~O5k  
    M3=5000;                      % integer for length of coupler 7fI2b,~  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 0G31Kou  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. NbC2N)L4  
    T =40;                        % length of time:T*T0. :8K}e]!c1  
    dt = T/N;                     % time step q<j9l'dHG  
    n = [-N/2:1:N/2-1]';          % Index \TZSn1isZX  
    t = n.*dt;   @9eN\b%I^H  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 2x>7>;>  
    w=2*pi*n./T; U9ZuD40\  
    g1=-i*ww./2; M8V c5  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 6Df*wi!jI  
    g3=-i*ww./2; k".kbwcaF  
    P1=0; <UF0Xc&X'  
    P2=0; (3Q$)0t  
    P3=1; qA;Gl"HF  
    P=0; ;4U"y8PVTh  
    for m1=1:M1                 LSo*JO6  
    p=0.032*m1;                %input amplitude )s,LFIy<A  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 @DIEENiM  
    s1=s10; GE`1j'^-  
    s20=0.*s10;                %input in waveguide 2 3.@LAF  
    s30=0.*s10;                %input in waveguide 3 y XKddD  
    s2=s20; EK= y!>  
    s3=s30; RC}m]!Uz  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   #i .,+Q  
    %energy in waveguide 1 "u]&~$  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   C6EGM/m8  
    %energy in waveguide 2 ,{mv6?_  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   D Qz+t  
    %energy in waveguide 3 Vpne-PW  
    for m3 = 1:1:M3                                    % Start space evolution "={*0P  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS .%y'q!?  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; pHuR_U5*?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; }K8e(i6z  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform |_ +#&x  
       sca2 = fftshift(fft(s2)); cF 4,dnI  
       sca3 = fftshift(fft(s3)); JO*/UC>"  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    z3]W #  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ?m5E Xe  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ]Zt]wnL+  
       s3 = ifft(fftshift(sc3));  63 'X#S  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 7UY4* j|[C  
       s1 = ifft(fftshift(sc1)); ^D5Jqh)  
    end (8aj`> y  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); #M{qMJHDo  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); `3 i<jZMG  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ,cL;,YN  
       P1=[P1 p1/p10]; )l$}plT4  
       P2=[P2 p2/p10]; y+T[="W  
       P3=[P3 p3/p10]; ;}iB9 Tl  
       P=[P p*p]; nj0sh"~+  
    end m3BL  
    figure(1) O >pv/Ns  
    plot(P,P1, P,P2, P,P3); Yb-{+H8{J  
    oz>2P.7  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~