切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8903阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 N+y&,N,  
    ()3O=!  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of l!g]a2x*  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1rDqa(7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear g'|MA~4yB  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6%VV,$p  
    6MxKl D7kl  
    %fid=fopen('e21.dat','w'); ?A )hN8  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) YR;^hs?  
    M1 =3000;              % Total number of space steps x4/M}%h!;B  
    J =100;                % Steps between output of space Y>&Ew*Y  
    T =10;                  % length of time windows:T*T0 m:/ wG& !  
    T0=0.1;                 % input pulse width ,Uy|5zv  
    MN1=0;                 % initial value for the space output location 2[ r^M'J  
    dt = T/N;                      % time step 91xB9k1zO  
    n = [-N/2:1:N/2-1]';           % Index xQp|;oW;z  
    t = n.*dt;   h`H,a7  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 C|o`k9I#  
    u20=u10.*0.0;                  % input to waveguide 2 QQV~?iW{~  
    u1=u10; u2=u20;                 J:kmqk!  
    U1 = u1;   @, Wvvh  
    U2 = u2;                       % Compute initial condition; save it in U T0]*{k(FR  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. w&x!,yd;  
    w=2*pi*n./T; !eUDi(   
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T bpxeznz  
    L=4;                           % length of evoluation to compare with S. Trillo's paper kGN+rHo   
    dz=L/M1;                       % space step, make sure nonlinear<0.05 (S v~2  
    for m1 = 1:1:M1                                    % Start space evolution A+UU~?3y  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,DZX$Ug~+E  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; uy}%0vLo  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Usta0Ag  
       ca2 = fftshift(fft(u2)); b?j< BvQ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %bdjBa}  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   3dDX8M?  
       u2 = ifft(fftshift(c2));                        % Return to physical space 0]jA<vLR  
       u1 = ifft(fftshift(c1)); >N.]|\V  
    if rem(m1,J) == 0                                 % Save output every J steps. Y!T %cTK)a  
        U1 = [U1 u1];                                  % put solutions in U array nQ/E5y  
        U2=[U2 u2]; A<B=f<N3gV  
        MN1=[MN1 m1]; "kA*Vc#  
        z1=dz*MN1';                                    % output location pm6>_Kz  
      end :Pv*, qHE  
    end c-Pw]Ju  
    hg=abs(U1').*abs(U1');                             % for data write to excel ?]4>rl}  
    ha=[z1 hg];                                        % for data write to excel V$uk6#  
    t1=[0 t']; !XzF67  
    hh=[t1' ha'];                                      % for data write to excel file b%Eei2Gm%  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &EpAg@9!  
    figure(1) {iq3|x2[:  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn q@jq0D)g  
    figure(2) 8dlw-Q'S  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn XduV+$ 03  
    [S@}T zE  
    非线性超快脉冲耦合的数值方法的Matlab程序 }E7:ihy  
    W\L`5CW  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ts8+V<g  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 CV{r5Sye  
    \fjMc }'  
    ~%2pp~1 K  
    e*.b3 z  
    %  This Matlab script file solves the nonlinear Schrodinger equations _H^^y$+1  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of wm+})SOX9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G5FaYL.7  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >[1W:KQA  
    +GAf O0  
    C=1;                           8L1ohj  
    M1=120,                       % integer for amplitude NzW`B^p  
    M3=5000;                      % integer for length of coupler Z,.G%"i3C  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) kZ=s'QRgL  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. d O~O |Xsb  
    T =40;                        % length of time:T*T0. \))=gu)I  
    dt = T/N;                     % time step Ia'ZV7'  
    n = [-N/2:1:N/2-1]';          % Index Nlj^D m  
    t = n.*dt;   tM#lFmdd\P  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ^Eo=W/   
    w=2*pi*n./T; Cz8f1suO4  
    g1=-i*ww./2; Gx 72  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; e9E\% p  
    g3=-i*ww./2; _aPh(qprc  
    P1=0; wI5Yn h  
    P2=0; uZi.HG{<)  
    P3=1; ;2m<CSv!D  
    P=0; 1+7GUSIb  
    for m1=1:M1                 I_q~*/<h  
    p=0.032*m1;                %input amplitude $@i"un;  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2:LHy[{5  
    s1=s10; emW:C-/h/@  
    s20=0.*s10;                %input in waveguide 2 &''WRgZ}  
    s30=0.*s10;                %input in waveguide 3 y4Er @8I`  
    s2=s20; RJeSi`19T)  
    s3=s30; /(8a~f&%r  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   DS xUdEK6  
    %energy in waveguide 1 wJlX4cT4YV  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   DKm Z  
    %energy in waveguide 2 R3X{:1{j  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ,Os? f:Y6  
    %energy in waveguide 3 W~Z<1[  
    for m3 = 1:1:M3                                    % Start space evolution HWm#t./  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS {5|("0[F  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; |*mL1#bB  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; :3$}^uzIq  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform rbZ[!LA  
       sca2 = fftshift(fft(s2)); aV1lJ ;0  
       sca3 = fftshift(fft(s3)); p#KW$OQ]8  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   H7[6yh  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 0L^u2HZYL  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); aJqeD'\>  
       s3 = ifft(fftshift(sc3)); A*tKF&U5  
       s2 = ifft(fftshift(sc2));                       % Return to physical space \b*X:3g*  
       s1 = ifft(fftshift(sc1)); rNl.7O9b  
    end x&A vUJ  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); s4H2/EC  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); M|i o4+sy  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); A`6ra}U<  
       P1=[P1 p1/p10]; V|MY!uV  
       P2=[P2 p2/p10]; tD$lNh^  
       P3=[P3 p3/p10]; Fd\ e*ww'  
       P=[P p*p]; 5y4u5Tm-%  
    end {I{:GcS  
    figure(1) X%9*O[6{  
    plot(P,P1, P,P2, P,P3); i.1U|Pi  
     StYzGJ  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~