计算脉冲在非线性耦合器中演化的Matlab 程序 X)S4rW% 8%B @[YDe % This Matlab script file solves the coupled nonlinear Schrodinger equations of
T@.CwV % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
wAYc)u# % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
zQJbZ=5Bu" % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
f5v|}gMAX 5+J/Qm8{bb %fid=fopen('e21.dat','w');
|xOOdy6 )~ N = 128; % Number of Fourier modes (Time domain sampling points)
`{":*V
M1 =3000; % Total number of space steps
'M{_S J =100; % Steps between output of space
Ws(>}
qjy T =10; % length of time windows:T*T0
nq;)!Wry T0=0.1; % input pulse width
:OM>z4mQ MN1=0; % initial value for the space output location
2}AV_]] dt = T/N; % time step
f#jAjzmYL n = [-N/2:1:N/2-1]'; % Index
gg9W7%t/ t = n.*dt;
vPi+8) u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
"%Ak[04' u20=u10.*0.0; % input to waveguide 2
HT'dft # u1=u10; u2=u20;
y;H
3g# U1 = u1;
_ U\vHa$# U2 = u2; % Compute initial condition; save it in U
g;pymz ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
RzkJS9)m w=2*pi*n./T;
(g\'Zw5bk g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
4^5s\f B L=4; % length of evoluation to compare with S. Trillo's paper
6Jm4?ex dz=L/M1; % space step, make sure nonlinear<0.05
T+fU+GLD for m1 = 1:1:M1 % Start space evolution
Q=[&~^Y) u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
mAMKCxz, u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
lF<(yF5 ca1 = fftshift(fft(u1)); % Take Fourier transform
%rsW:nl ca2 = fftshift(fft(u2));
K67x.P Z c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
wU3Q c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
wJ}8y4O!N u2 = ifft(fftshift(c2)); % Return to physical space
8c#*T%Vf u1 = ifft(fftshift(c1));
n| %{R|s if rem(m1,J) == 0 % Save output every J steps.
[T|~Kh%# U1 = [U1 u1]; % put solutions in U array
_Z%C{~,7)x U2=[U2 u2];
-4;u|0_ MN1=[MN1 m1];
!O\r[c z1=dz*MN1'; % output location
*KMCU
m end
R ~b$7jpd end
"^\ 4xI hg=abs(U1').*abs(U1'); % for data write to excel
~I'hiV^- ha=[z1 hg]; % for data write to excel
v1:5r t1=[0 t'];
g7F>o76M hh=[t1' ha']; % for data write to excel file
QwiC2}/ %dlmwrite('aa',hh,'\t'); % save data in the excel format
Uhf
-}Jdw figure(1)
3,GSBiK3} waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
iL(E`_I< figure(2)
s=q}XIWK waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
Wrlmo'31 79Iz,_ 非线性超快脉冲耦合的数值方法的Matlab程序 J&5|'yVX Uc&0>_Z 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
eI@O9<.& Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
IL<5Suz: nQ mkDPjU J[9jNCq| u5lj+? % This Matlab script file solves the nonlinear Schrodinger equations
g\ke,r6 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
/];F4AO5 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
.w0? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
=U:iR Z/64E^ C=1;
>IRo]-, M1=120, % integer for amplitude
Axr'zc M3=5000; % integer for length of coupler
P)T:6K N = 512; % Number of Fourier modes (Time domain sampling points)
5~qr+la dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
]xuq2MU,l T =40; % length of time:T*T0.
{#7t(:x dt = T/N; % time step
XOxm<3gXn n = [-N/2:1:N/2-1]'; % Index
I%%$O'S t = n.*dt;
[ML4<Eb+x ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
ohwQ%NDl w=2*pi*n./T;
A/'G.H g1=-i*ww./2;
-wY6da*.W g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
'0[l'Dt' g3=-i*ww./2;
4kx#=MLt P1=0;
/({5x[ P2=0;
}!2|*Y P3=1;
LG;xZQx' P=0;
BKN]DxJ6 for m1=1:M1
pPh$Jvo] p=0.032*m1; %input amplitude
&4]%&mX)- s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
B64%|
S s1=s10;
g|W~0A@D s20=0.*s10; %input in waveguide 2
;]p#PNQ0 s30=0.*s10; %input in waveguide 3
7%aB>uA s2=s20;
0O[q6!&] s3=s30;
Nz2}Ma 2 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
0^hz 1\g %energy in waveguide 1
8R)*8bb p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
}UX >O %energy in waveguide 2
H>M0GL p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Qg3
-%i/@ %energy in waveguide 3
!j\yt for m3 = 1:1:M3 % Start space evolution
wjY3:S~ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
?onZ:s2 s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
z]tvy). s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
F> ..eK sca1 = fftshift(fft(s1)); % Take Fourier transform
ww=< = sca2 = fftshift(fft(s2));
~aBALD0D; sca3 = fftshift(fft(s3));
sjztT<{Q^- sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
W/fM0=! sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
d!,V"*S sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
ZQ@^(64 s3 = ifft(fftshift(sc3));
F+9|D s2 = ifft(fftshift(sc2)); % Return to physical space
$lUZm\R|k s1 = ifft(fftshift(sc1));
,VbP$1t end
Pf]L`haGN p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
KWM.b"WnXr p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
eml(F p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
`$Q
$l P1=[P1 p1/p10];
nAg|m,gA P2=[P2 p2/p10];
8DyE
P3=[P3 p3/p10];
M7UVL&_z% P=[P p*p];
,>e)8 end
S__+S7]Nr figure(1)
*|MPYxJ< plot(P,P1, P,P2, P,P3);
]l`?"X|^ 3xbA]u;gp 转自:
http://blog.163.com/opto_wang/