切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9073阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 aFnel8  
    R;< q<i_l  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ^hIdmTf6  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of W XQ@kQD  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear u^Q`xd1  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8u[_t.y4m  
    kK? SG3  
    %fid=fopen('e21.dat','w'); KgL!~J  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) [YDSS/  
    M1 =3000;              % Total number of space steps 6D;N.wDZ  
    J =100;                % Steps between output of space V b0T)C  
    T =10;                  % length of time windows:T*T0 ]fyfL|(;  
    T0=0.1;                 % input pulse width ^b8~X [1J_  
    MN1=0;                 % initial value for the space output location 8 x{Owj:Q  
    dt = T/N;                      % time step IG^@VQ%  
    n = [-N/2:1:N/2-1]';           % Index P?0X az  
    t = n.*dt;   ]E`<8hRB  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 &2 tfj(ms  
    u20=u10.*0.0;                  % input to waveguide 2 a|ufm^ F  
    u1=u10; u2=u20;                 1!#N-^qk  
    U1 = u1;   U+S=MP }:  
    U2 = u2;                       % Compute initial condition; save it in U S6~y!J6Ok4  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. cn'>dz3v  
    w=2*pi*n./T; +,Eam6g{  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T v3-/ [-XB:  
    L=4;                           % length of evoluation to compare with S. Trillo's paper DH(<{ #u  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 2dn^K3  
    for m1 = 1:1:M1                                    % Start space evolution _#8hgwf>  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 2b"*~O;  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 78& |^sq  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform z0 "DbZ;d  
       ca2 = fftshift(fft(u2)); 8D*7{Q  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation l]*RiK2AC  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   )x.%PUA  
       u2 = ifft(fftshift(c2));                        % Return to physical space n Bu!2c  
       u1 = ifft(fftshift(c1)); f|d~=\0y  
    if rem(m1,J) == 0                                 % Save output every J steps. +3v)@18B1  
        U1 = [U1 u1];                                  % put solutions in U array u$nzpw0=H  
        U2=[U2 u2]; y=3 dGOFB  
        MN1=[MN1 m1]; _7c3=f83  
        z1=dz*MN1';                                    % output location h@,ja  
      end @C;1e7  
    end JF=R$!5  
    hg=abs(U1').*abs(U1');                             % for data write to excel :qzg?\(  
    ha=[z1 hg];                                        % for data write to excel @r"\bBi  
    t1=[0 t']; !>`Q]M`  
    hh=[t1' ha'];                                      % for data write to excel file bLc5$U$!I  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format |XyX%5p*  
    figure(1) FYAEM!dyy  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 6= ?0&Bx&  
    figure(2) ]!hjKu"  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn WogUILB  
    #CS>_qe.{  
    非线性超快脉冲耦合的数值方法的Matlab程序 M 8},RR@{  
    k8gH#ENNK  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   vq$6e*A  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %cF`x_h[j  
    &Vlno*  
    EC+t-:a]  
    OSu&vFKz  
    %  This Matlab script file solves the nonlinear Schrodinger equations z/7q#~J,  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of bt}8ymcG  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear so-5%S  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PRh C1#  
    {oQs*`=l>  
    C=1;                           pbMANZU[  
    M1=120,                       % integer for amplitude _>gz&  
    M3=5000;                      % integer for length of coupler  3.&BhLT  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 6)INr,d  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. pc`P;Eui  
    T =40;                        % length of time:T*T0. )nm+_U  
    dt = T/N;                     % time step JPI%{@Qc^  
    n = [-N/2:1:N/2-1]';          % Index L8 P0bNi  
    t = n.*dt;   EP>u%]#  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. k+QGvgP[4@  
    w=2*pi*n./T; `z!AjAT-G  
    g1=-i*ww./2; FXCBX:LnvU  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; F^dJ{<yX  
    g3=-i*ww./2; [4Q;(67  
    P1=0; % km <+F=~  
    P2=0; +M j 6.X  
    P3=1; '6N)sqTR  
    P=0; -]3K#M)s  
    for m1=1:M1                 E$"NOR  
    p=0.032*m1;                %input amplitude Fa("Gok[  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ?2@^O=I  
    s1=s10; SioeIXU  
    s20=0.*s10;                %input in waveguide 2 Tm %5:/<8  
    s30=0.*s10;                %input in waveguide 3 ?:R]p2ID  
    s2=s20; ]E9iaq6Z  
    s3=s30; cU;Bm}U  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   I;4quFBlMu  
    %energy in waveguide 1 !LK xZ"  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   E\iK_'#  
    %energy in waveguide 2 -}7$;QK&a  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   jCqz^5=$  
    %energy in waveguide 3 *HrEh;3^J  
    for m3 = 1:1:M3                                    % Start space evolution 1]xmOx[mb  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ^ :VH?I=  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; I~7iIUD  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; pGie!2T E  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 1AJ6NBC&c  
       sca2 = fftshift(fft(s2)); ;4 O[/;i  
       sca3 = fftshift(fft(s3)); -%fQr5  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   WwmYJl0  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); yP58H{hQM8  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /^=1]+_!  
       s3 = ifft(fftshift(sc3)); IMM;LC%rD9  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ,_V V;P  
       s1 = ifft(fftshift(sc1)); @eYpARF  
    end a`wjZ"}'[  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Xi="gxp$%  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); D||0c"E  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); (cj9xROx  
       P1=[P1 p1/p10]; 0|e[o"  
       P2=[P2 p2/p10];  +n1!xv]  
       P3=[P3 p3/p10]; >LBA0ynh {  
       P=[P p*p]; *7Vb([x4;  
    end J v}  
    figure(1) [8QK @5[  
    plot(P,P1, P,P2, P,P3); hjL;B 'IL  
    VMah3T!  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~