切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9059阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^K n{L  
    6$*ZH *  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of l<=Y.P_2  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of uP veAK}h  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear \*k}RKDwT  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7>>6c7e  
    0*}%v:uN9  
    %fid=fopen('e21.dat','w'); nA>kJSL'$  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) gl~>MasV&  
    M1 =3000;              % Total number of space steps ?:XbZ"25pJ  
    J =100;                % Steps between output of space /4PV<[ :_  
    T =10;                  % length of time windows:T*T0 Ju.B!)uS#  
    T0=0.1;                 % input pulse width 3,RaM^5dV  
    MN1=0;                 % initial value for the space output location 6Cd% @Q2cr  
    dt = T/N;                      % time step 6`Af2Y_  
    n = [-N/2:1:N/2-1]';           % Index 9py *gN#  
    t = n.*dt;   ~]&,v|g&  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 *%wfR7G[B  
    u20=u10.*0.0;                  % input to waveguide 2 }hd:avze  
    u1=u10; u2=u20;                 p?,:  
    U1 = u1;   ?A7_&=J%  
    U2 = u2;                       % Compute initial condition; save it in U (R)(%I1Oz  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. U$5 lh  
    w=2*pi*n./T; `cBV+00YS  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T &?mJL0fy  
    L=4;                           % length of evoluation to compare with S. Trillo's paper vkQkU,q  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ;.4A,7w#  
    for m1 = 1:1:M1                                    % Start space evolution b 5X~^L  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS '8b/TL  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; pk0C x  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 1hn4YcHb  
       ca2 = fftshift(fft(u2)); s9'lw'  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation KixS)sG  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   o|?bvFC  
       u2 = ifft(fftshift(c2));                        % Return to physical space E Z}c8b  
       u1 = ifft(fftshift(c1)); N1O.U"L;  
    if rem(m1,J) == 0                                 % Save output every J steps. 6(uK5eD(!n  
        U1 = [U1 u1];                                  % put solutions in U array $<(FZb=  
        U2=[U2 u2]; 1JI\e6]I  
        MN1=[MN1 m1]; ~@wM[}ThP$  
        z1=dz*MN1';                                    % output location <p74U( V  
      end "\9!9U#!  
    end `pzXh0}|  
    hg=abs(U1').*abs(U1');                             % for data write to excel uYv"5U]MFv  
    ha=[z1 hg];                                        % for data write to excel - s,M+Q(<  
    t1=[0 t']; a*Oc:$  
    hh=[t1' ha'];                                      % for data write to excel file 0[qU k(=}[  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ub0uxvz  
    figure(1) {:;599l  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 2HemPth  
    figure(2) 9j;L-  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn XH?}0D(  
    "V;5Lp b  
    非线性超快脉冲耦合的数值方法的Matlab程序 mu?6Phj  
    3 0fsVwE2  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   !F_BLHig  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9$u'2TV  
    |%@.@c  
    }  :@s  
    [8o!X)  
    %  This Matlab script file solves the nonlinear Schrodinger equations ?/ @~ d  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ^/<0r] =  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear c3>#.NP_  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $YX\&%N  
    k9ThWo/#u  
    C=1;                           u&!QP4$"z  
    M1=120,                       % integer for amplitude q@}eYQ=P|e  
    M3=5000;                      % integer for length of coupler PsLMV:O9S  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) H~IN<3ko  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. #=G[ ~m\  
    T =40;                        % length of time:T*T0. AI|8E8h+D  
    dt = T/N;                     % time step LXIQpD,M  
    n = [-N/2:1:N/2-1]';          % Index %ifq4'?Z   
    t = n.*dt;   ?5A!/`E&%  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. -Tw96 dv  
    w=2*pi*n./T; s:6pPJL  
    g1=-i*ww./2; Nl3@i`;  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ;!JI$_ -\  
    g3=-i*ww./2; /=5YHq>  
    P1=0; q^e4  
    P2=0; &3SQVOW ~T  
    P3=1; u7oHqo`  
    P=0; gRk%ObJGqm  
    for m1=1:M1                 l 4zl|6%  
    p=0.032*m1;                %input amplitude 1q])"l"<  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 =lzRx%tm  
    s1=s10; ZZ<uiN$  
    s20=0.*s10;                %input in waveguide 2 b#:Pl`n6u  
    s30=0.*s10;                %input in waveguide 3 rHir> p  
    s2=s20; ]ZQ3|ZJ?<  
    s3=s30; b>B.3E\Pc  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \M H\!  
    %energy in waveguide 1 S+mZ.aFS0z  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   jb!R  
    %energy in waveguide 2 FZW)C'j  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   F ;o ^.  
    %energy in waveguide 3 P,2FH2Eyj  
    for m3 = 1:1:M3                                    % Start space evolution 5ayM}u%\~  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS {R2gz]v4  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 1<y|,  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; yA8e"$  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform x-Kq=LFy.  
       sca2 = fftshift(fft(s2)); Vt {uG  
       sca3 = fftshift(fft(s3)); z$VA]tI(  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   VOkEDH  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); jm_b3!J  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 1ke H1[  
       s3 = ifft(fftshift(sc3)); I.[2-~yf  
       s2 = ifft(fftshift(sc2));                       % Return to physical space T ~9)0A"]  
       s1 = ifft(fftshift(sc1)); |mSFa8G@  
    end !$/1Q+  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 03WLVP@  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); y#4f^J!V  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); `aj;FrF  
       P1=[P1 p1/p10]; u~| D;e  
       P2=[P2 p2/p10]; @WV}VKm  
       P3=[P3 p3/p10]; HA?<j|M  
       P=[P p*p]; kEH(\3,l  
    end 3yWu-U \k  
    figure(1) i?.7o*w8  
    plot(P,P1, P,P2, P,P3); bbDl?m&bq  
    *o}LI6_u  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~