切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8944阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &oK/ ]lub  
    37M[9m|D*  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of \ /X!tlwxh  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of !\D] \|Bo  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Pi]s<3PL  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {$QF*j  
    IG3K Pmu  
    %fid=fopen('e21.dat','w'); % &Q7;?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 2M( PH]D  
    M1 =3000;              % Total number of space steps VkP:%-*#v  
    J =100;                % Steps between output of space C6=;(=?C  
    T =10;                  % length of time windows:T*T0 krnk%ug  
    T0=0.1;                 % input pulse width oe_[h]Hgl  
    MN1=0;                 % initial value for the space output location z&HN>7  
    dt = T/N;                      % time step tU~H@'  
    n = [-N/2:1:N/2-1]';           % Index W0?Y%Da(4m  
    t = n.*dt;   *mhw5Z=!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 RT+30Q?  
    u20=u10.*0.0;                  % input to waveguide 2 f6_|dvY3  
    u1=u10; u2=u20;                 lt(-,md  
    U1 = u1;   J/&*OC  
    U2 = u2;                       % Compute initial condition; save it in U ]2s Zu7  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Qj~W-^/ -  
    w=2*pi*n./T; ,;ruH^  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T '8pPGh9D  
    L=4;                           % length of evoluation to compare with S. Trillo's paper u{lDof>  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 fOjt` ~ToI  
    for m1 = 1:1:M1                                    % Start space evolution D(ntVR  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,DUQto  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; yW=hnV{  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 6_}){ZR  
       ca2 = fftshift(fft(u2)); ~aq?Kk  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ujHzG}2z  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   )+{omQ7v  
       u2 = ifft(fftshift(c2));                        % Return to physical space ; dHOH\,:  
       u1 = ifft(fftshift(c1)); "E[*rnsLN  
    if rem(m1,J) == 0                                 % Save output every J steps. Cq;K,B9  
        U1 = [U1 u1];                                  % put solutions in U array QO`SnN}  
        U2=[U2 u2]; '*{Rn7B5  
        MN1=[MN1 m1]; 0~L 8yMM  
        z1=dz*MN1';                                    % output location ppo$&W &z  
      end A5H8+gATK  
    end Wes "t}[25  
    hg=abs(U1').*abs(U1');                             % for data write to excel bFdg '_  
    ha=[z1 hg];                                        % for data write to excel -bb7Y  
    t1=[0 t']; S$_Ts1Ge6  
    hh=[t1' ha'];                                      % for data write to excel file Sw9mrhzJfe  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ]( 6vG$\  
    figure(1) X1PlW8pd  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn &#\7w85$  
    figure(2) MKYE]D;  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Kz2^f@5=F  
    [-94=|S @  
    非线性超快脉冲耦合的数值方法的Matlab程序 &IPK5o,  
    ;%.k}R%O@  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   3:gO7Uv  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 GQAg ex)D  
    T`0gtSS  
    JRs[%w`kD  
    n~cm?"  
    %  This Matlab script file solves the nonlinear Schrodinger equations zgOwSg8  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of r\- k/0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  Jy[8,X  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 RpXGgw  
    lSv;wwEg  
    C=1;                           gK_[3FiKt  
    M1=120,                       % integer for amplitude K]Cs2IpI  
    M3=5000;                      % integer for length of coupler >l*9DaZ  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) [*E.G~IS`  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. +uXnFf d^  
    T =40;                        % length of time:T*T0. .Eyk?"^  
    dt = T/N;                     % time step C^v -&*v  
    n = [-N/2:1:N/2-1]';          % Index oa|*-nw  
    t = n.*dt;   EF{'J8AQ  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. h/~BUg'  
    w=2*pi*n./T; 8pt<)Rs}  
    g1=-i*ww./2; dllf~:b  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; :rc[j@|pH  
    g3=-i*ww./2; tF1%=&ss  
    P1=0; *J5euA5=  
    P2=0; 4gt "dfy+  
    P3=1; 3sIM7WD?  
    P=0; iz5wUyeg  
    for m1=1:M1                 TTak[e&j3  
    p=0.032*m1;                %input amplitude JJ06f~Iw[  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 QRa6*AYm  
    s1=s10; rZ4<*Zegv  
    s20=0.*s10;                %input in waveguide 2 mV]g5>Q\  
    s30=0.*s10;                %input in waveguide 3 ]Y! Vyn  
    s2=s20; ai9,4  
    s3=s30; RxG./GY  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   4?uG> ;V  
    %energy in waveguide 1 1caod0gor  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   HBGA lZ  
    %energy in waveguide 2 UHHKI)(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   70(?X/5#  
    %energy in waveguide 3 H5t`E^E  
    for m3 = 1:1:M3                                    % Start space evolution % E_{L  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS |^!@  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6;V 1PK>9  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; IcA~f@  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 1<e%)? G  
       sca2 = fftshift(fft(s2)); K0a 50@B]  
       sca3 = fftshift(fft(s3)); SXF_)1QO\W  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   L#b Q`t  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); e:occT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); "b7C0NE  
       s3 = ifft(fftshift(sc3)); bUL9*{>G  
       s2 = ifft(fftshift(sc2));                       % Return to physical space jo#F&  
       s1 = ifft(fftshift(sc1)); 1OS3Gv8jc~  
    end ^Z+D7Q  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); :N:8O^D^<  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3&:fS|L~c  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); EOC"a}Cq-  
       P1=[P1 p1/p10]; F\72^,0  
       P2=[P2 p2/p10]; >*CK@"o  
       P3=[P3 p3/p10]; #C}(7{Vt  
       P=[P p*p]; =1Jo-!{{  
    end l]&)an  
    figure(1) Okc*)crw  
    plot(P,P1, P,P2, P,P3); 9x,+G['Zt  
    k JFHUR  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~