切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8672阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 8 >EWKI9  
    Sv#XIMw{,  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of IMFDM."s  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of bo>*fNqAIy  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear oulVg];  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *%NT~C q  
    y2dCEmhY  
    %fid=fopen('e21.dat','w'); 2;`1h[,-^  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) _Ey9G  
    M1 =3000;              % Total number of space steps _/$Bpr{R  
    J =100;                % Steps between output of space n ATuD  
    T =10;                  % length of time windows:T*T0 ^7cGq+t  
    T0=0.1;                 % input pulse width \ a<h/4#|  
    MN1=0;                 % initial value for the space output location Qj.#)R  
    dt = T/N;                      % time step @V sG'  
    n = [-N/2:1:N/2-1]';           % Index .V/Rfq  
    t = n.*dt;   A RuA<vQ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 L#?Ek-  
    u20=u10.*0.0;                  % input to waveguide 2 X/!o\yyT  
    u1=u10; u2=u20;                 rQs)O<jl  
    U1 = u1;   8I?Wt W  
    U2 = u2;                       % Compute initial condition; save it in U 6r0krbN  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. K(rWNO  
    w=2*pi*n./T; 6dt]`zv/  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T HYZ5EV  
    L=4;                           % length of evoluation to compare with S. Trillo's paper CS5?Ti6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ".V$~n(  
    for m1 = 1:1:M1                                    % Start space evolution (O?.)jEW(.  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS z&)A,ryW0  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ;(/ZO%h  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform W~; `WR;.  
       ca2 = fftshift(fft(u2)); %QGC8Tz  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation \;3~a9q%  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |Nn)m  
       u2 = ifft(fftshift(c2));                        % Return to physical space py!|\00}  
       u1 = ifft(fftshift(c1)); o3^l~iT  
    if rem(m1,J) == 0                                 % Save output every J steps. Pb4X\9^  
        U1 = [U1 u1];                                  % put solutions in U array 0B/,/KX  
        U2=[U2 u2]; ^7U G$A  
        MN1=[MN1 m1]; m|n%$$S&  
        z1=dz*MN1';                                    % output location L|:`^M+^w  
      end  2DtM20<>  
    end - >-KCd1b  
    hg=abs(U1').*abs(U1');                             % for data write to excel Nq[uoaT  
    ha=[z1 hg];                                        % for data write to excel <tNBxa$gS  
    t1=[0 t']; !8d{q)JZ  
    hh=[t1' ha'];                                      % for data write to excel file w^|*m/h|@u  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ?k&Vy  
    figure(1) vn!3l1\+J  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn k8[n+^  
    figure(2) R6.hA_ih  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn '&tG?gb&  
    +H-6eP  
    非线性超快脉冲耦合的数值方法的Matlab程序 6+|do+0Icg  
    9igiZmM  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   m)t;9J5  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y-_`23x`  
    jh%Eq+#S  
    Fn;SF4KOm  
    V)HG(k  
    %  This Matlab script file solves the nonlinear Schrodinger equations @ $ ;q ;  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of QUc= &5 %  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]I dk:et  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {_[N<U:QT&  
    iDp)FQ$  
    C=1;                           x7&B$.>3  
    M1=120,                       % integer for amplitude dO<ERY  
    M3=5000;                      % integer for length of coupler HZC"nb}r4  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 3 *"WG O5  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. QvlObEhcS  
    T =40;                        % length of time:T*T0. ghG**3xr  
    dt = T/N;                     % time step rNWw?_H-H(  
    n = [-N/2:1:N/2-1]';          % Index zm5]J  
    t = n.*dt;   .+3g*Dv{&  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1 ~Y<//5E  
    w=2*pi*n./T; qs6]-  
    g1=-i*ww./2; :Uzm  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; D rUO-  
    g3=-i*ww./2; &tLgG4pd  
    P1=0; d9f C<Tp  
    P2=0; y| i,|  
    P3=1; nLZTK&7}  
    P=0; _~l5u8{^6  
    for m1=1:M1                 f;o5=)Y  
    p=0.032*m1;                %input amplitude {l1.2!  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 .Ni\\  
    s1=s10; ~F|+o}a `  
    s20=0.*s10;                %input in waveguide 2 A@!qv#'  
    s30=0.*s10;                %input in waveguide 3 b.JuI  
    s2=s20; ) <[XtK  
    s3=s30; HSE!x_$  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   {0Yf]FQb-a  
    %energy in waveguide 1 P6'1.R  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   T= y}y  
    %energy in waveguide 2 8yR.uMI$/  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   `!;_ho  
    %energy in waveguide 3 / |;RV"  
    for m3 = 1:1:M3                                    % Start space evolution abmYA#  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS r"3=44St  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; FF`T\&u  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; VX0 %a@ur  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform z1 | TC  
       sca2 = fftshift(fft(s2)); urs,34h  
       sca3 = fftshift(fft(s3)); wY{-BuXv  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   F3[T.sf  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); TTX5EDCrC  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Q2w_X8  
       s3 = ifft(fftshift(sc3)); KEo ,m  
       s2 = ifft(fftshift(sc2));                       % Return to physical space E1aHKjLQ  
       s1 = ifft(fftshift(sc1)); y{B=-\O]  
    end 7?!d^$B  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ?DS@e@lx  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); "yy5F>0Wt  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); bivuqKA  
       P1=[P1 p1/p10]; Drgv`z  
       P2=[P2 p2/p10]; 'A=^Se`=  
       P3=[P3 p3/p10]; ,GhS[VJjR  
       P=[P p*p]; UawyDs  
    end 9IdA%RM~mH  
    figure(1) CAig ]=2'  
    plot(P,P1, P,P2, P,P3); Fc)@,/R"v  
    HTv2#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~