切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9083阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 9-ozrw8t  
    79h~w{IT@  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of TLdlPBnr8  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 3"y 6|e/5  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bHwEd%f  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 i5 rkP`)j  
    \/NF??k,jk  
    %fid=fopen('e21.dat','w'); T D _@0Rd  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Q7s@,c!m_  
    M1 =3000;              % Total number of space steps  js_`L#t  
    J =100;                % Steps between output of space [oLV,O|s|j  
    T =10;                  % length of time windows:T*T0 Gnkar[oa&  
    T0=0.1;                 % input pulse width WTvUz.Et  
    MN1=0;                 % initial value for the space output location 5>x_G#W  
    dt = T/N;                      % time step k +-w%  
    n = [-N/2:1:N/2-1]';           % Index `geHSx_  
    t = n.*dt;   }E 'r?N  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~G!JqdKJ0  
    u20=u10.*0.0;                  % input to waveguide 2 |YJ83nSO~  
    u1=u10; u2=u20;                 I~GF%$-G  
    U1 = u1;   ZwmucY%3  
    U2 = u2;                       % Compute initial condition; save it in U <S@jf4  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Wc3z7xK1@  
    w=2*pi*n./T; ;5Sdx5`_  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ?{ir$M  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ( ay AP  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 jJ ,_-ui  
    for m1 = 1:1:M1                                    % Start space evolution f O*jCl  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS QZ a.c  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; '/W$9jm  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform PMzPj,  
       ca2 = fftshift(fft(u2)); yayhL DL  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation c3vb~l)  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   %MHb  
       u2 = ifft(fftshift(c2));                        % Return to physical space -=ZL(r 1  
       u1 = ifft(fftshift(c1)); b9.M'P\  
    if rem(m1,J) == 0                                 % Save output every J steps. l:85 _E  
        U1 = [U1 u1];                                  % put solutions in U array F/>_PH57  
        U2=[U2 u2]; ^J'_CA  
        MN1=[MN1 m1]; )Z}AhX  
        z1=dz*MN1';                                    % output location ,lyW'<~gA  
      end `9~ %6N?7#  
    end GtA`0B  
    hg=abs(U1').*abs(U1');                             % for data write to excel U ZM #O  
    ha=[z1 hg];                                        % for data write to excel {0zn~+  
    t1=[0 t']; 4.RQ3SoDa  
    hh=[t1' ha'];                                      % for data write to excel file f-b],YE  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !gsvF\XDM  
    figure(1) &.?XntI9O  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn y>^a~}Zq  
    figure(2) V>Wk\'h  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn {MUB4-@?F$  
     T{YZ`[  
    非线性超快脉冲耦合的数值方法的Matlab程序 * QgKo$IF  
    Uzu6>yT  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    <wH+\  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %`Re {%1;  
    {28|LwmL  
    4=zs&   
    zkQ[<  
    %  This Matlab script file solves the nonlinear Schrodinger equations _VtQMg|u  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of .HqFdsm  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "}4%vZz  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :=*de Z<  
    kB\{1;  
    C=1;                           &p0e)o~Ux  
    M1=120,                       % integer for amplitude UO/sv2CN  
    M3=5000;                      % integer for length of coupler VtreOJ+  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) je4l3Hl  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .g*j]!_]  
    T =40;                        % length of time:T*T0. PnlI {d  
    dt = T/N;                     % time step Gr"CHz/  
    n = [-N/2:1:N/2-1]';          % Index D #ddx  
    t = n.*dt;   \ mqx '  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. .n-#A  
    w=2*pi*n./T; $vO&C6m$  
    g1=-i*ww./2; x0*{oP  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; QrZ#<{,J5  
    g3=-i*ww./2;  C0rf  
    P1=0; ny={OhP-  
    P2=0; ~Bd=]a$mj  
    P3=1; 39pG-otJ  
    P=0; *{o7G  a  
    for m1=1:M1                 SC{m@  
    p=0.032*m1;                %input amplitude hlTbCl  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 6_LeP9s )  
    s1=s10; H=t"qEp  
    s20=0.*s10;                %input in waveguide 2 Ucj?$=  
    s30=0.*s10;                %input in waveguide 3 d_RgKdR )k  
    s2=s20; 5of3&  
    s3=s30; " \$^j#o  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   >ZA=9v  
    %energy in waveguide 1 sE1cvAw9l  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   8a)AuAi?!  
    %energy in waveguide 2 enoj4g7em^  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   7ubz7*  
    %energy in waveguide 3 YFKE>+  
    for m3 = 1:1:M3                                    % Start space evolution Fe+ @;  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 'j1e(wq  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; hy;VvAH 5  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;  ao(T81  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform _GOSqu!3Y  
       sca2 = fftshift(fft(s2)); dWqn7+:  
       sca3 = fftshift(fft(s3)); |s|}u`(@9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   X1L@ G  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ~z,o):q1 }  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8H F^^Cva  
       s3 = ifft(fftshift(sc3)); _n&Nw7d2 M  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 3} A$+PX  
       s1 = ifft(fftshift(sc1)); U=>S|>daR  
    end ?RRO  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); :Pud%}'  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); n ]ikc|  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); V"FQVtTx7  
       P1=[P1 p1/p10]; V+d_1] l  
       P2=[P2 p2/p10]; xO$P C,  
       P3=[P3 p3/p10]; >r.]a`  
       P=[P p*p]; 0.aXg"  
    end 'CLZ7 pV  
    figure(1) L`NIYH<^  
    plot(P,P1, P,P2, P,P3); 99m2aT()  
    <@<rU:o=V  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~