切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9299阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 =tU{7i*+  
    DI;DECQl$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of R1Ye<R!Q  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Iyo@r%I  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear u`(- -  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 L}m8AAkP[  
    MC&\bf  
    %fid=fopen('e21.dat','w'); Uje|`<X  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Zatf9yGD  
    M1 =3000;              % Total number of space steps >q7BVF6V |  
    J =100;                % Steps between output of space :pRpv hm  
    T =10;                  % length of time windows:T*T0 Y4IGDY*  
    T0=0.1;                 % input pulse width A6oq.I0  
    MN1=0;                 % initial value for the space output location }KD;0t4  
    dt = T/N;                      % time step b~BIz95  
    n = [-N/2:1:N/2-1]';           % Index K 0hu:1l)  
    t = n.*dt;   AfC>Q!-w  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 DKVT(#@T  
    u20=u10.*0.0;                  % input to waveguide 2 >h+349  
    u1=u10; u2=u20;                 f+.T^es  
    U1 = u1;   OMk5{-8B  
    U2 = u2;                       % Compute initial condition; save it in U kw`WH)+F  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. S^Au#1e   
    w=2*pi*n./T; +wW@'X  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T B-d(@7,1  
    L=4;                           % length of evoluation to compare with S. Trillo's paper RwVaZJe)l  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 *;|`E(   
    for m1 = 1:1:M1                                    % Start space evolution yFhB>i  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS _owjTo}  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; `c+/q2M  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform umLb+GbI4  
       ca2 = fftshift(fft(u2)); %c)[ kAU!  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation  Yav2q3  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   h3gWOU  
       u2 = ifft(fftshift(c2));                        % Return to physical space vKoP|z=m  
       u1 = ifft(fftshift(c1)); #'4OYY.  
    if rem(m1,J) == 0                                 % Save output every J steps.  _ q(Q  
        U1 = [U1 u1];                                  % put solutions in U array /=?ETth @  
        U2=[U2 u2]; Npn=cLC&  
        MN1=[MN1 m1]; ,%YBG1E[y  
        z1=dz*MN1';                                    % output location q8ImrC.'^  
      end @ d"wAZzD?  
    end ]S 7^ITn  
    hg=abs(U1').*abs(U1');                             % for data write to excel k n8N,,+  
    ha=[z1 hg];                                        % for data write to excel I?Q+9Rmm`J  
    t1=[0 t']; ^zEE6i  
    hh=[t1' ha'];                                      % for data write to excel file Q)af|GW$  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !G_jGc=v  
    figure(1) oPKXZU(c  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn U/;]zdP.K  
    figure(2) amQz^^  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn %i)B*9k  
    S'B6jJK2x  
    非线性超快脉冲耦合的数值方法的Matlab程序 hY<{t.ws  
    x|eeRf|  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   A>.2OC+  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @tRMe6 4  
    d77r9  
    ,)~E>[=+  
    6aOp[-Le  
    %  This Matlab script file solves the nonlinear Schrodinger equations N]5m(@h  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of oojiJ~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bXM/2Z?6  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 =neL}Fav56  
    8cHE[I  
    C=1;                           u1K\@jlw  
    M1=120,                       % integer for amplitude p2x [p  
    M3=5000;                      % integer for length of coupler [FQ\I-GNC  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) +pqM ^3t|y  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. =7 ,Kf} 6  
    T =40;                        % length of time:T*T0. ;K:8#XuV  
    dt = T/N;                     % time step > 8]j  
    n = [-N/2:1:N/2-1]';          % Index `Iy4=nVb  
    t = n.*dt;   u@%|k c`  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ;mAhY  
    w=2*pi*n./T; ]B9 ^3x[:  
    g1=-i*ww./2; b4,jN~ci  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; K'6[J"dB  
    g3=-i*ww./2; G%TL/Z40  
    P1=0; GO5~!g  
    P2=0; m(sXk}e;1  
    P3=1; JhR W[~  
    P=0; ,yLw$-  
    for m1=1:M1                 O2-M1sd$  
    p=0.032*m1;                %input amplitude )WR_ ug  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 EY>8O+  
    s1=s10; 9 -jO,l  
    s20=0.*s10;                %input in waveguide 2 e9u@`ZC07  
    s30=0.*s10;                %input in waveguide 3 igDyp0t  
    s2=s20; p*;Qz  
    s3=s30; |;;!8VO3J  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   aW5~Be$ _  
    %energy in waveguide 1 m$y]Lf  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   h5@j`{  
    %energy in waveguide 2 ACBQ3   
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   {w`:KR6o7  
    %energy in waveguide 3 #A <1aQ  
    for m3 = 1:1:M3                                    % Start space evolution Jme%  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS a5`eyL[f  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 4?]oV%aP)  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; QV,E #(\5  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform zJ& b|L  
       sca2 = fftshift(fft(s2)); ^>r^3C)_-  
       sca3 = fftshift(fft(s3)); r25Z`X Z  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   xDrV5bg  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); u39FN?<^  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); %]Cjhs"v  
       s3 = ifft(fftshift(sc3)); K%,$ V,#  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /B HepD}  
       s1 = ifft(fftshift(sc1)); ~LE[, I:q  
    end Z6=~1'<X  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); lg/sMF>z\f  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Rlc$; Z9K  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); K=kH%ZK  
       P1=[P1 p1/p10]; {},;-%xE  
       P2=[P2 p2/p10]; .1ddv4Hk  
       P3=[P3 p3/p10]; B/YcSEY;  
       P=[P p*p]; WL~`u  
    end DNth4z  
    figure(1) By)3*<5a_  
    plot(P,P1, P,P2, P,P3); \5[-Ml  
    <NQyP{p  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~