计算脉冲在非线性耦合器中演化的Matlab 程序 T%;k% IN]`lJ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
?0 KiR? % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
dXf]G6 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
r_qncy,F % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
B;Q`vKY =!I8vQ> %fid=fopen('e21.dat','w');
(1saof*p% N = 128; % Number of Fourier modes (Time domain sampling points)
o>/uW8 M1 =3000; % Total number of space steps
r_!{!i3B J =100; % Steps between output of space
e>ZbZy? T =10; % length of time windows:T*T0
*o:BoP=S T0=0.1; % input pulse width
|IyM"UH MN1=0; % initial value for the space output location
8gu'dG = dt = T/N; % time step
i{1)=_$Vt` n = [-N/2:1:N/2-1]'; % Index
/h}wM6pg t = n.*dt;
bn<I#ZH2 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
)D6'k{6 M u20=u10.*0.0; % input to waveguide 2
S20 nk.x u1=u10; u2=u20;
@M1yBN U1 = u1;
H`+]dXLB U2 = u2; % Compute initial condition; save it in U
{Kq*5Aq8 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
L~?,6 w=2*pi*n./T;
^^t]vojX g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
IxK 3,@d L=4; % length of evoluation to compare with S. Trillo's paper
)n[`Z# dz=L/M1; % space step, make sure nonlinear<0.05
^6N3n kyZ for m1 = 1:1:M1 % Start space evolution
^-csi u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
kp#c:ym u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
[7SI<xkv ca1 = fftshift(fft(u1)); % Take Fourier transform
?h>%Ix ca2 = fftshift(fft(u2));
';fU.uy c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
4:%El+,_Y c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
kcma/d u2 = ifft(fftshift(c2)); % Return to physical space
fmZzBZ_ u1 = ifft(fftshift(c1));
jiw`i if rem(m1,J) == 0 % Save output every J steps.
g# 9*bF U1 = [U1 u1]; % put solutions in U array
y$r?t0 U2=[U2 u2];
btB(n<G2# MN1=[MN1 m1];
n'x`oI)- z1=dz*MN1'; % output location
g O\f:Pg end
VQG /g\ end
{8>_,z^P) hg=abs(U1').*abs(U1'); % for data write to excel
JJbM)B@- ha=[z1 hg]; % for data write to excel
h!t2H6eyF t1=[0 t'];
>m;|I/2@ hh=[t1' ha']; % for data write to excel file
=`7)X\i@z %dlmwrite('aa',hh,'\t'); % save data in the excel format
>FEQtD~F figure(1)
!,-qn)b waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
u6bB5(s`& figure(2)
[w#x5Xsn waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
B 3,ig9 *fuGVA 非线性超快脉冲耦合的数值方法的Matlab程序 ?[L0LL?ce 8en#PH } 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
:'^dy%&UB Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
{*5;:QnT Tr}$Pb1 MR l*rK Jz:W-o % This Matlab script file solves the nonlinear Schrodinger equations
"#eNFCo7k % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
Jj^<:t5{rN % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
w3]0
!)t1 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Ph7(JV{ T$8$9D_u C=1;
o`y*yucHI M1=120, % integer for amplitude
+D{*L0$D" M3=5000; % integer for length of coupler
M@LaD 5 N = 512; % Number of Fourier modes (Time domain sampling points)
WHD/s dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
[0,q7d?" T =40; % length of time:T*T0.
#*;fQ&p dt = T/N; % time step
` $x#_-Hn n = [-N/2:1:N/2-1]'; % Index
o4I!VK(C#s t = n.*dt;
;HLMU36q ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
k~s>8N:&G w=2*pi*n./T;
9|kEq>d g1=-i*ww./2;
Iy1Xn S* g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
.5Z@5g` g3=-i*ww./2;
{i7Fu+xZj P1=0;
;(iUY/ h[h P2=0;
$nd-[xV P3=1;
wGQ hr=" P=0;
d=5}^v#4 for m1=1:M1
gJ[q
{b p=0.032*m1; %input amplitude
}zfLm`vJ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
I>4Tbwy.- s1=s10;
a518N*]j s20=0.*s10; %input in waveguide 2
]zR;%p s30=0.*s10; %input in waveguide 3
Z?!:=x>7m s2=s20;
G>{:D'# s3=s30;
Er+3S@sfq, p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
ThqfZl=V %energy in waveguide 1
*$Wx*Jo p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
#/sE{jm %energy in waveguide 2
/dvnQW4}8 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
G|Yp<W%o %energy in waveguide 3
Vi-!E for m3 = 1:1:M3 % Start space evolution
uc (yos s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
y8WXp_\ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
.gsu_N_v s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
L!Zxc~ sca1 = fftshift(fft(s1)); % Take Fourier transform
uB&I56 sca2 = fftshift(fft(s2));
ZzaW@6LJF sca3 = fftshift(fft(s3));
{4jSj0W sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
PNxO\Rc sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
f!kdcr=/" sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
mt6uW+t/ s3 = ifft(fftshift(sc3));
xA1pDrfC/ s2 = ifft(fftshift(sc2)); % Return to physical space
lG^nT s1 = ifft(fftshift(sc1));
7)It1i- end
(a4y1k t- p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
%|6Q7'@p p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
uXW.
(x7"f p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
}6{ )Jv P1=[P1 p1/p10];
)^2jsy
-/ P2=[P2 p2/p10];
f%%En5e+ P3=[P3 p3/p10];
SE-, 1p P=[P p*p];
%Bu n@ end
yW,#&>]# | figure(1)
[&}<!:9' plot(P,P1, P,P2, P,P3);
kk./-G GN"LU>9| 转自:
http://blog.163.com/opto_wang/