切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8428阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 vK`S!7x'&  
    :b,o B==%  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of *e,CDV  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of i/M+t~   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ,{TQ ~LP  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9 G((wiE  
    g` kZ T} h  
    %fid=fopen('e21.dat','w'); ec`>KuY  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) l^BEFk;  
    M1 =3000;              % Total number of space steps -|$*l Q  
    J =100;                % Steps between output of space ev*c4^z:s  
    T =10;                  % length of time windows:T*T0 ;HT0w_,  
    T0=0.1;                 % input pulse width o[2Y;kP3*P  
    MN1=0;                 % initial value for the space output location [5-!d!a|st  
    dt = T/N;                      % time step =yo=q)W  
    n = [-N/2:1:N/2-1]';           % Index *\C}Ok=  
    t = n.*dt;   yvS^2+jW  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 H7J`]nr6  
    u20=u10.*0.0;                  % input to waveguide 2 % M+s{ l  
    u1=u10; u2=u20;                 e8 v; D  
    U1 = u1;   ;,FT&|3o  
    U2 = u2;                       % Compute initial condition; save it in U Vz k cZK  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 8\P JSr  
    w=2*pi*n./T; fyGCfM  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T I S.F  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Ep,1}Dx  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 .k p $oAL  
    for m1 = 1:1:M1                                    % Start space evolution ]zX\8eHp!  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS %d ZM9I0  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Mn-<51.%  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform mMga"I9  
       ca2 = fftshift(fft(u2)); a_xQ~:H  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %~ ;nlDw  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   jDFp31_X  
       u2 = ifft(fftshift(c2));                        % Return to physical space pFS F[9?e>  
       u1 = ifft(fftshift(c1)); Q1K"%  
    if rem(m1,J) == 0                                 % Save output every J steps. D1"1MUSod  
        U1 = [U1 u1];                                  % put solutions in U array a\.//?  
        U2=[U2 u2]; 'et(:}i  
        MN1=[MN1 m1]; VvzPQk  
        z1=dz*MN1';                                    % output location (di)`D5Q  
      end (}VuiNY<3  
    end 1w(<0Be  
    hg=abs(U1').*abs(U1');                             % for data write to excel cF-Jc}h  
    ha=[z1 hg];                                        % for data write to excel qT 5Wa O)  
    t1=[0 t']; X9p+a,  
    hh=[t1' ha'];                                      % for data write to excel file gCjH%=s  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format K lPm=  
    figure(1) ::kpl2r\c  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 27}.s0{D  
    figure(2) wEZqkV  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~:R4))qpg  
    :Fw *r|  
    非线性超快脉冲耦合的数值方法的Matlab程序 6(!,H<bON  
    s$Ic DuBu  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   {\ A_%  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ADuZ}]  
    hnH)Jy;>  
    PEMxoe<+  
    E!r4AjaC  
    %  This Matlab script file solves the nonlinear Schrodinger equations hhN(;.  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 1uKD&k%q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6nM rO$i0k  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VGq{y{(  
    [~zE,!  
    C=1;                           .N?|t$J  
    M1=120,                       % integer for amplitude kfH9Y%bOy  
    M3=5000;                      % integer for length of coupler w@<<zItSo  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 9aW8wYL~b  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;igE IGR  
    T =40;                        % length of time:T*T0. !pE>O-| K  
    dt = T/N;                     % time step }xpe  
    n = [-N/2:1:N/2-1]';          % Index @B}&62T  
    t = n.*dt;   |:`?A3^m#  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. PX+"" #  
    w=2*pi*n./T; #JX|S'\x  
    g1=-i*ww./2; D3,t6\m  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; q>Dr)x)  
    g3=-i*ww./2; Vs2v j  
    P1=0; pO-)x:Wg  
    P2=0; !XG/,)A  
    P3=1; BV_a-\Sa=  
    P=0; ee__3>H"/  
    for m1=1:M1                 b}"vI Rz  
    p=0.032*m1;                %input amplitude 0B#rqTEKu  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 LNsE7t  
    s1=s10; T%z!+/=&^  
    s20=0.*s10;                %input in waveguide 2 0  /D5  
    s30=0.*s10;                %input in waveguide 3 1tuator  
    s2=s20; [qc6Q:  
    s3=s30; fb;hf:B:  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   x_>"Rnv:K  
    %energy in waveguide 1 q[We][Nrzb  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   lcuH]z  
    %energy in waveguide 2 ^@l5u=  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Au\ =ypK  
    %energy in waveguide 3 exa}dh/uC  
    for m3 = 1:1:M3                                    % Start space evolution 0|f_C3  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS jHUz`.8B  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; A=@V LU4%  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; w|3fioLs  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform GtGyY0  
       sca2 = fftshift(fft(s2)); "X!_37kQ  
       sca3 = fftshift(fft(s3)); ,sy / r V  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^O,6(@>  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); g tSHy*3]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); NR@SDW  
       s3 = ifft(fftshift(sc3)); ] "7El;2z  
       s2 = ifft(fftshift(sc2));                       % Return to physical space -qr:c9\px  
       s1 = ifft(fftshift(sc1)); U iPVZ@?  
    end d<^6hF  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); )gm\e?^   
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); cmC&s'/8`D  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); hPX2 Bp  
       P1=[P1 p1/p10]; x Ps& CyI  
       P2=[P2 p2/p10]; *jqPKK/  
       P3=[P3 p3/p10]; //@sktHsw(  
       P=[P p*p]; :5qqu{GL  
    end 9EY_R&Yq%  
    figure(1) [eTck73  
    plot(P,P1, P,P2, P,P3); YP@ ?j  
    PhaQ3%  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~