计算脉冲在非线性耦合器中演化的Matlab 程序 Q# Yba tg~@(IT}j % This Matlab script file solves the coupled nonlinear Schrodinger equations of
I5%#A/|z % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
j0wpaIp % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
R`HC
EX) % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
D\H;_k8 d!P3<:+R[ %fid=fopen('e21.dat','w');
m8ApiGG N = 128; % Number of Fourier modes (Time domain sampling points)
gJFx#s0?6. M1 =3000; % Total number of space steps
P Y&(ObC J =100; % Steps between output of space
3xX^pjk T =10; % length of time windows:T*T0
p[^a4E_v T0=0.1; % input pulse width
1OI/,y8} MN1=0; % initial value for the space output location
UURYK~$K: dt = T/N; % time step
l^k/Y
] n = [-N/2:1:N/2-1]'; % Index
BN>t"9XpW t = n.*dt;
G2y`yg u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
$p;<1+! u20=u10.*0.0; % input to waveguide 2
=bHS@h8N< u1=u10; u2=u20;
Rt+ak} U1 = u1;
YZdV0-S U2 = u2; % Compute initial condition; save it in U
x>!bvZ2 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
uB1>.Pvxb w=2*pi*n./T;
CK=TD`$w g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
;R[w}#Sm L=4; % length of evoluation to compare with S. Trillo's paper
tv 7"4$T dz=L/M1; % space step, make sure nonlinear<0.05
EA``G8Vn> for m1 = 1:1:M1 % Start space evolution
xg;I::hE7X u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
ZJf:a}=h u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
^B?brH} ca1 = fftshift(fft(u1)); % Take Fourier transform
% B^BN|r ca2 = fftshift(fft(u2));
E'
_6v c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
UbDpSfub c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
Ys@OgdS@: u2 = ifft(fftshift(c2)); % Return to physical space
`k.0d`3( u1 = ifft(fftshift(c1));
G%F}H/|R if rem(m1,J) == 0 % Save output every J steps.
%M5{-pJ|C U1 = [U1 u1]; % put solutions in U array
k -!Jww U2=[U2 u2];
uA[c$tBe MN1=[MN1 m1];
+4g H=6 z1=dz*MN1'; % output location
f`K[oCfu end
{oftZXwf end
s1>d)2lX hg=abs(U1').*abs(U1'); % for data write to excel
/~1Ew ha=[z1 hg]; % for data write to excel
@L ,4JPk t1=[0 t'];
Q+7+||RW hh=[t1' ha']; % for data write to excel file
N?s`a;Q[= %dlmwrite('aa',hh,'\t'); % save data in the excel format
[/Sk+ID figure(1)
Ib(G!oO:E- waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
/T<))@$ figure(2)
=/e$Rp waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
`lcQ
Yd<,4 2|A?9aE%0 非线性超快脉冲耦合的数值方法的Matlab程序 Qf($F,)K p#0L@!, 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
]o?r(1 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
=Cc]ugl7- AL{iQxQ6 uGpLh0 zQ#2BOx1 % This Matlab script file solves the nonlinear Schrodinger equations
hS'!JAM>Q % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
25Uw\rKeO % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
j8)rz % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
G{74o8 H7
"r^s]D C=1;
y>>)Yo&| M1=120, % integer for amplitude
3gv@JGt7` M3=5000; % integer for length of coupler
B9dc* N = 512; % Number of Fourier modes (Time domain sampling points)
37b6w6{D dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
: G'a"%x T =40; % length of time:T*T0.
VHm.uL_UW dt = T/N; % time step
8?hZ5QvA(j n = [-N/2:1:N/2-1]'; % Index
0at['zw t = n.*dt;
\Mzr[dI ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
~e_ w=2*pi*n./T;
\0n<6^y g1=-i*ww./2;
oU|_(p"e| g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
0TaN# g3=-i*ww./2;
3b?8<* P1=0;
?vP6~$*B P2=0;
JAX`iQd P3=1;
(#BOcx5J] P=0;
w<u@L for m1=1:M1
Van=dzG p=0.032*m1; %input amplitude
[]G@l. ]W s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
K;ocs?rk/ s1=s10;
uD\rmO{ s20=0.*s10; %input in waveguide 2
=I0J1Ob s30=0.*s10; %input in waveguide 3
K'f^=bcI s2=s20;
w7c0jIf{ s3=s30;
n_(f"Uv p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
lnGg1/ %energy in waveguide 1
g:s|D
hE[ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
4Uhh]/ %energy in waveguide 2
5<M$ XT p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
8 ,W*)Q %energy in waveguide 3
TBZhL for m3 = 1:1:M3 % Start space evolution
R*?!xDJ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
@RZbo@{~ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
i|rC Ga0} s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
V4&a+MJ@ sca1 = fftshift(fft(s1)); % Take Fourier transform
ibn\&}1 sca2 = fftshift(fft(s2));
nErr &{C sca3 = fftshift(fft(s3));
EE*|# sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
Qxfds`4V9i sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
1vYa&! sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
,$Cr9R&/ s3 = ifft(fftshift(sc3));
H<tU[U=G s2 = ifft(fftshift(sc2)); % Return to physical space
b7y#uL1AE s1 = ifft(fftshift(sc1));
-p"}K~lt: end
yg6o#; p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
xiV!\Z} p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
x)pR^t7u8 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
p
+nh] P1=[P1 p1/p10];
+6x}yc:yd P2=[P2 p2/p10];
kt kS$ P3=[P3 p3/p10];
k;K-6<^h P=[P p*p];
Z_a@,k:+[ end
k7&
cc|y figure(1)
=b8u8*ua plot(P,P1, P,P2, P,P3);
bYmk5fpRG FOteNQTj 转自:
http://blog.163.com/opto_wang/