切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9332阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 3h4>edM  
    O@l`D`  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Agl[Z>Q  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 4u<oe_n  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (*|hlD~  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k?_Miqr  
    "2 Kh2[K  
    %fid=fopen('e21.dat','w'); O:1YG$uKa  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) o/Z?/alt4  
    M1 =3000;              % Total number of space steps smSUo /  
    J =100;                % Steps between output of space wL:3RZB  
    T =10;                  % length of time windows:T*T0 !4|7U\;  
    T0=0.1;                 % input pulse width %zWtPxAf  
    MN1=0;                 % initial value for the space output location -gzk,ymp  
    dt = T/N;                      % time step _Ab|<!a/R  
    n = [-N/2:1:N/2-1]';           % Index o0AREZ+I  
    t = n.*dt;   $} ~:x_[  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 K(hqDif*6  
    u20=u10.*0.0;                  % input to waveguide 2 'E6)6N  
    u1=u10; u2=u20;                 "BK&C6]  
    U1 = u1;   ^)X^Pcx  
    U2 = u2;                       % Compute initial condition; save it in U 0%v p'v  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. <CeDIX t  
    w=2*pi*n./T; 4/$]wK`  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T QH+Oi&xH  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 9Czc$fSSt  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 D{ c`H}/`  
    for m1 = 1:1:M1                                    % Start space evolution MwiT1sB~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 0rF{"HM~  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ~/QzL.S;p  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform =*}|y;I  
       ca2 = fftshift(fft(u2)); 9kTU|py  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation k5|h8%h8  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [gU z9iU  
       u2 = ifft(fftshift(c2));                        % Return to physical space KN5.2pp  
       u1 = ifft(fftshift(c1)); E: #VS~  
    if rem(m1,J) == 0                                 % Save output every J steps. B+,Z 3*  
        U1 = [U1 u1];                                  % put solutions in U array ;|66AIwDe  
        U2=[U2 u2]; s2q#D.f  
        MN1=[MN1 m1]; gzxLHPiw  
        z1=dz*MN1';                                    % output location ^ygN/a>rr  
      end Z>'.+OW  
    end {um~]  
    hg=abs(U1').*abs(U1');                             % for data write to excel EFhe``  
    ha=[z1 hg];                                        % for data write to excel [@Y?'={qE  
    t1=[0 t']; V*LpO 8=  
    hh=[t1' ha'];                                      % for data write to excel file #k*e>d$  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format "J$vt`  
    figure(1) ^[!LU  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn jrG@ +" }  
    figure(2) jf@#&%AC9  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn m;k' j@:  
    |K7JU^"OQ  
    非线性超快脉冲耦合的数值方法的Matlab程序 YaDr6)  
    d-lC|5U%  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Jv a&"}Cb  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Busxg?=  
    0fwo8NgX  
    J1hc :I<;  
    QXniWJJ  
    %  This Matlab script file solves the nonlinear Schrodinger equations ]=7}Y%6  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of \f05(ld  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ?=-18@:.ss  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u+kXJ  
    !'[f!vsyM{  
    C=1;                           ?FxxH*>"  
    M1=120,                       % integer for amplitude BNnGtVAbZ  
    M3=5000;                      % integer for length of coupler C&D!TR!K  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) vaW, O/F  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. &dH/V-te  
    T =40;                        % length of time:T*T0. }]'Z~5T  
    dt = T/N;                     % time step ]W]o6uo7  
    n = [-N/2:1:N/2-1]';          % Index 8 W79  
    t = n.*dt;   "o+< \B~  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. A7C+-N  
    w=2*pi*n./T; vm_+U*%c  
    g1=-i*ww./2; IR(qjm\V  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; iG!tRNQ{y  
    g3=-i*ww./2; ?Bno?\  
    P1=0; /q0[T{Wz$  
    P2=0; ia?{]!7$  
    P3=1; =]K;"  
    P=0; S=*rWh8)%<  
    for m1=1:M1                 <-D>^p9  
    p=0.032*m1;                %input amplitude <j+DY@*  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 gG!L#J?  
    s1=s10; :?S1#d_  
    s20=0.*s10;                %input in waveguide 2 ~xer ZQgc  
    s30=0.*s10;                %input in waveguide 3 5hF iK K7  
    s2=s20; 4"nb>tA  
    s3=s30; %wzDBsX  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   <%Zg;]2H`  
    %energy in waveguide 1 J^m#984  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   wM9HZraB<  
    %energy in waveguide 2 {N42z0c  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   W2?6f:  
    %energy in waveguide 3 ;'~U5Po8  
    for m3 = 1:1:M3                                    % Start space evolution ]%>7OH'  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS hd^?mZ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; M_lQ^7/  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; N_Q)AXr)  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform (NR8B9qLN  
       sca2 = fftshift(fft(s2)); ^lud2x$O^C  
       sca3 = fftshift(fft(s3)); ND $m|V-C  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   SaceIV%(  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {]BPSj{B  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); VRV*\*~$  
       s3 = ifft(fftshift(sc3)); |Ii[WfFA|J  
       s2 = ifft(fftshift(sc2));                       % Return to physical space jeXP|;#Una  
       s1 = ifft(fftshift(sc1)); AqnDsr!  
    end / Vy pN,  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); (&t741DN|  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Fjch<gAofS  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); n,/eT,48`  
       P1=[P1 p1/p10]; 50kjX}  
       P2=[P2 p2/p10]; Jmg<mjq/G  
       P3=[P3 p3/p10]; Yz7H@Y2i  
       P=[P p*p]; {BPNb{dBKr  
    end 3>asl54  
    figure(1) v8 rK\  
    plot(P,P1, P,P2, P,P3); m.!n|_}]  
    >n3w'b  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~