切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8711阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 _ak.G=  
    "bL P3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of lrM.RM96  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of X+fu hcn  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear hn*}5!^  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3ZLr"O1l)  
    d91I  
    %fid=fopen('e21.dat','w'); /2=_B4E2  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) qFB9,cUqh  
    M1 =3000;              % Total number of space steps aU,0gvI(}  
    J =100;                % Steps between output of space }mkA Hmu4  
    T =10;                  % length of time windows:T*T0 i G?w;  
    T0=0.1;                 % input pulse width $@XPL~4  
    MN1=0;                 % initial value for the space output location bL6L-S  
    dt = T/N;                      % time step `\4RFr$  
    n = [-N/2:1:N/2-1]';           % Index ;F" kD  
    t = n.*dt;   $yP'k&b!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ? Yynd  
    u20=u10.*0.0;                  % input to waveguide 2 \k2C 5f  
    u1=u10; u2=u20;                 vY8WqG]  
    U1 = u1;   My`josJ`Pb  
    U2 = u2;                       % Compute initial condition; save it in U ^R&_}bp  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. h Kp,4D>2_  
    w=2*pi*n./T; A?%XO %  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 'M]CZ}  
    L=4;                           % length of evoluation to compare with S. Trillo's paper AIIBd  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 o+PQ;Dl  
    for m1 = 1:1:M1                                    % Start space evolution <ls i.x\y<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS VuYWb)@  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; U)IsTk~}O  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform A,-[/Z K/  
       ca2 = fftshift(fft(u2)); 8Iqk%n~(  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation _"FbjQ"  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   M9ter&  
       u2 = ifft(fftshift(c2));                        % Return to physical space ?(|TP^  
       u1 = ifft(fftshift(c1)); FcJ.)U  
    if rem(m1,J) == 0                                 % Save output every J steps. M4L~bK   
        U1 = [U1 u1];                                  % put solutions in U array .~V".tZV[  
        U2=[U2 u2]; ,_e/a   
        MN1=[MN1 m1]; ~Sn5;g8+\  
        z1=dz*MN1';                                    % output location Cz$H k;3\6  
      end [5}cU{M  
    end MfZ}xu  
    hg=abs(U1').*abs(U1');                             % for data write to excel -Lz1#Sk]A  
    ha=[z1 hg];                                        % for data write to excel ys~p(  
    t1=[0 t']; PG-cu$\??  
    hh=[t1' ha'];                                      % for data write to excel file !$ J)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format <7sF<KD  
    figure(1) q^T&A[hMPx  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn t6H2tP\AS  
    figure(2) 7oqn;6<[>,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn sbq44L)  
    R+@sHsZ@  
    非线性超快脉冲耦合的数值方法的Matlab程序 i85+p2i7  
     HC<BGIgL  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [h2p8i 'o  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 HCe-]nMd  
    3qV>TE]6,  
    l yLK$B?/  
    2C 8L\  
    %  This Matlab script file solves the nonlinear Schrodinger equations S3JygN*  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +2_6C;_DX  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6{F S /+  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ADwwiq#E  
    `)gkkZ$)j  
    C=1;                           '8kL1  
    M1=120,                       % integer for amplitude Br.$L  
    M3=5000;                      % integer for length of coupler R;Ix<y{U  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 2=UTH% 1D  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;MdK3c  
    T =40;                        % length of time:T*T0. /n<Ncf  
    dt = T/N;                     % time step @Tm0T7C  
    n = [-N/2:1:N/2-1]';          % Index =:R[gdA#1  
    t = n.*dt;   }1^ tK(Am  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Kw5+4R(5  
    w=2*pi*n./T; O<H@:W #k  
    g1=-i*ww./2; m= beB\=  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; N%M>,wT  
    g3=-i*ww./2; 1H2u,{O  
    P1=0; .tHv4.ob  
    P2=0; d9e H}#OY  
    P3=1; ju2X*  
    P=0; " :nVigw&  
    for m1=1:M1                 ;]`NR  
    p=0.032*m1;                %input amplitude vng8{Mx90*  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 AQBx k[  
    s1=s10; b3HTCO-,fC  
    s20=0.*s10;                %input in waveguide 2 #.t$A9'  
    s30=0.*s10;                %input in waveguide 3 G4`sRaT.  
    s2=s20; YaE['a  
    s3=s30; <xh'@592  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   + 1%^c(3  
    %energy in waveguide 1 HDXjH|of  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   V~^6 TS(  
    %energy in waveguide 2 #}]il0d  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Zo638*32  
    %energy in waveguide 3 h/y}  
    for m3 = 1:1:M3                                    % Start space evolution BrH`:Dw  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS `?S?)0B  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; . L6@Rs  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ]e3}9.  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform moM&2rgdrQ  
       sca2 = fftshift(fft(s2)); (j8,n<o  
       sca3 = fftshift(fft(s3)); v(nQd6;T  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   7J_f/st  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); LyPBFo[?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #di_V"  
       s3 = ifft(fftshift(sc3)); ~X(xa  
       s2 = ifft(fftshift(sc2));                       % Return to physical space kAF}*&Kzd~  
       s1 = ifft(fftshift(sc1)); Bc@r*zb  
    end W2LblZE!  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); EQ`t:jc {  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); YGO7lar  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 5$G??="K  
       P1=[P1 p1/p10]; T|iF/p]F  
       P2=[P2 p2/p10]; JGNxJ S<]  
       P3=[P3 p3/p10]; 0*M}QXt  
       P=[P p*p]; umn~hb5O  
    end qO3BQ]UF  
    figure(1) 1kw4'#J8  
    plot(P,P1, P,P2, P,P3); U$JIF/MO_  
    ^{+:w:g  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~