切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9402阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 "Om=N@?  
    I/a/)No  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of nH`Q#ZFz]?  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "]"|"0#i  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :e_V7t)o  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _kj wFq  
    IEXt:  
    %fid=fopen('e21.dat','w'); Hw7;;HK 7  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) (MR_^t  
    M1 =3000;              % Total number of space steps >64P6P;S  
    J =100;                % Steps between output of space xfpa]Z  
    T =10;                  % length of time windows:T*T0 _oHNkKQ  
    T0=0.1;                 % input pulse width G`n_YH084  
    MN1=0;                 % initial value for the space output location .}q&5v  
    dt = T/N;                      % time step W yB3ls~  
    n = [-N/2:1:N/2-1]';           % Index R$ q; !  
    t = n.*dt;   C"!gZ8*\!9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 N):tOD@B  
    u20=u10.*0.0;                  % input to waveguide 2 N.\- 8?>  
    u1=u10; u2=u20;                 &X|#R1\  
    U1 = u1;   -n=^U  
    U2 = u2;                       % Compute initial condition; save it in U z`!XhU  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. nSW=LjrO~<  
    w=2*pi*n./T; <g1hxfKx5  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T %+j8["VEC  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ,eTUhK  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 '^No)n\`  
    for m1 = 1:1:M1                                    % Start space evolution X;i~ <Tq  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS _I)U%? V+  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; L\@I*QP  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform eM$sv9?  
       ca2 = fftshift(fft(u2)); + Af"f' )  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation W8ouO+wK  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   W+PJZn  
       u2 = ifft(fftshift(c2));                        % Return to physical space U^Q:Y}^  
       u1 = ifft(fftshift(c1)); o=50>$5jlS  
    if rem(m1,J) == 0                                 % Save output every J steps. _CmOd-y  
        U1 = [U1 u1];                                  % put solutions in U array 2nSSF x r  
        U2=[U2 u2]; H,DM1Z9rz  
        MN1=[MN1 m1]; (#Wu# F1;  
        z1=dz*MN1';                                    % output location ZZHDp&lh}  
      end pi Z[Y 5OE  
    end Bwa'`+bC  
    hg=abs(U1').*abs(U1');                             % for data write to excel Hkwl>R$  
    ha=[z1 hg];                                        % for data write to excel YL]Z<%aKt  
    t1=[0 t']; mS~o?q-n  
    hh=[t1' ha'];                                      % for data write to excel file MUTj-1H6)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format K('hC)1  
    figure(1) yf[~Yl>Ogw  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn *M:B\ D  
    figure(2) .}OR  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn L1cI`9  
    +89*)pk   
    非线性超快脉冲耦合的数值方法的Matlab程序 AS =?@2 q  
    t .7?  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   -(  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9aze>nxh.  
    .NYbi@bk(<  
    )n2 re?S  
    ~/98Id}v  
    %  This Matlab script file solves the nonlinear Schrodinger equations l|kSsP:GO  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 5*Y^\N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;1%-8f:lW  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U)E(`{p]  
    f@Zszt  
    C=1;                           aX5 z&r:{  
    M1=120,                       % integer for amplitude y#U+c*LB  
    M3=5000;                      % integer for length of coupler ] lrWgm  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 4lKq{X5<  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 0:9.;x9_  
    T =40;                        % length of time:T*T0. (oEC6F  
    dt = T/N;                     % time step m 8aITd8  
    n = [-N/2:1:N/2-1]';          % Index 3Nq N \5B:  
    t = n.*dt;   3HcQ(+Z  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1Cgso`  
    w=2*pi*n./T; #,":vr  
    g1=-i*ww./2; ?u" 4@  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; >zXsNeGQR  
    g3=-i*ww./2; y CVI\y\B  
    P1=0; |}(`kW  
    P2=0; 23RN}LUi  
    P3=1; J&.{7YF  
    P=0; 5h Q E4/hH  
    for m1=1:M1                 -o $QS,  
    p=0.032*m1;                %input amplitude M$/|)U'W  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ki?S~'a  
    s1=s10; {q `jDDM  
    s20=0.*s10;                %input in waveguide 2 ??M"6k  
    s30=0.*s10;                %input in waveguide 3 >[*8I\*@n  
    s2=s20; Z0Vl+  
    s3=s30; {^\+iK4bS  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   "1 L$|  
    %energy in waveguide 1 W-?()dX{  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   1~Oe=`{&  
    %energy in waveguide 2 q*_/to  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   U%q7Ai7  
    %energy in waveguide 3 pe]A5\4c  
    for m3 = 1:1:M3                                    % Start space evolution C71qPb|$R  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS !cO]<CWPq  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 4^WpS/#4  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; .Le?T&_  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 5|o6v1bM  
       sca2 = fftshift(fft(s2)); +a^nlW9g  
       sca3 = fftshift(fft(s3)); El.hu%#n*G  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   6{n!Cb[e  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); yku5SEJ\  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); WvBc#s-  
       s3 = ifft(fftshift(sc3)); ew#B [[  
       s2 = ifft(fftshift(sc2));                       % Return to physical space JtEo'As:[  
       s1 = ifft(fftshift(sc1)); Jk7|{W\OA  
    end = \'}g?  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); IsZHe lg  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); y9q8i(E0  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  >qS9PX  
       P1=[P1 p1/p10]; YwDbPX  
       P2=[P2 p2/p10]; U+:m4a  
       P3=[P3 p3/p10]; *K|W /'_&  
       P=[P p*p]; (tIo:j  
    end &cxRD  
    figure(1) gW>uR3Ca4  
    plot(P,P1, P,P2, P,P3); p "n$!ilbm  
    ,z;cbsV-{  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~