切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9315阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 /5pVzv+rm  
    BRyrdt*_e  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 6C7|e00v  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of `B-jwVrN(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rUmaKh?v|X  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \W4|.[  
    f@rR2xZoQ  
    %fid=fopen('e21.dat','w'); ~x4]^XS  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) C/_Z9LL?F  
    M1 =3000;              % Total number of space steps !59u z4  
    J =100;                % Steps between output of space b9X"p*'p  
    T =10;                  % length of time windows:T*T0 b"k1N9  
    T0=0.1;                 % input pulse width P-U9FKrt  
    MN1=0;                 % initial value for the space output location {el,CT#  
    dt = T/N;                      % time step O4t0 VL$  
    n = [-N/2:1:N/2-1]';           % Index V q4g#PcG  
    t = n.*dt;   G LU7?2`t  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 wN Mf-~  
    u20=u10.*0.0;                  % input to waveguide 2 *sz:c3{_  
    u1=u10; u2=u20;                 1L3 +KD~  
    U1 = u1;   POB6#x  
    U2 = u2;                       % Compute initial condition; save it in U ~T">)Y~+xI  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3e,"B S)+  
    w=2*pi*n./T; Q!.JV. (  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T r^zra|]  
    L=4;                           % length of evoluation to compare with S. Trillo's paper C)hS^D:  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 1K\z amBg  
    for m1 = 1:1:M1                                    % Start space evolution a!guZUg6  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 1#}}:  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; DsX+/)d  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform s`#g<_{X  
       ca2 = fftshift(fft(u2)); "d"6.ND  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ZB+~0[C  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   oDW)2*8yF  
       u2 = ifft(fftshift(c2));                        % Return to physical space q!f'?yFYK  
       u1 = ifft(fftshift(c1)); [$]qJ~kz  
    if rem(m1,J) == 0                                 % Save output every J steps. B5v5D[ o5  
        U1 = [U1 u1];                                  % put solutions in U array tw k  
        U2=[U2 u2]; \&BT#8ELG  
        MN1=[MN1 m1]; <*_DC)&7 9  
        z1=dz*MN1';                                    % output location 5LaF'>1yY  
      end [jnA?Ge:  
    end NWue;u^  
    hg=abs(U1').*abs(U1');                             % for data write to excel &a8%j+j  
    ha=[z1 hg];                                        % for data write to excel 03Uj0.Z|7  
    t1=[0 t']; <]Btx;}  
    hh=[t1' ha'];                                      % for data write to excel file !(A<  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format d C>[[_  
    figure(1) /`s{!t#Y  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn =[do([A  
    figure(2) #u"$\[G  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn YgV"*~  
    1$_|h@  
    非线性超快脉冲耦合的数值方法的Matlab程序 yU|=)p5  
    T3bYj|rh=  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   rczwxWK  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 a! gj_  
    yRy^'E~  
    W %<,GV  
    ^Ycn&`s  
    %  This Matlab script file solves the nonlinear Schrodinger equations ?G>E[!8ev  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of \ lW*.<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear gY {/)"  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BN1,R] *;  
    W4#E&8g%  
    C=1;                           ]?sw<D{  
    M1=120,                       % integer for amplitude pnpf/T{xpM  
    M3=5000;                      % integer for length of coupler n,#o6ali>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) xey?.2K1A  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. h9Tst)iRi  
    T =40;                        % length of time:T*T0. woUt*G@  
    dt = T/N;                     % time step T_j0*A $  
    n = [-N/2:1:N/2-1]';          % Index {W'{A  
    t = n.*dt;   "G!,gtA~  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. RPw1i*  
    w=2*pi*n./T; II]-mb  
    g1=-i*ww./2; Bo4iX,zu  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; wBCBZs$H  
    g3=-i*ww./2; a(_3271  
    P1=0; D\Fu4Eg  
    P2=0; 9Xe|*bT  
    P3=1; _};T:GOT  
    P=0; g oZw![4l  
    for m1=1:M1                 'tDVSj  
    p=0.032*m1;                %input amplitude 8Xa{.y"  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 a;f A0_  
    s1=s10; uCjbb  
    s20=0.*s10;                %input in waveguide 2 ^f] 9^U{  
    s30=0.*s10;                %input in waveguide 3 \iH\N/  
    s2=s20; PmA_cP7~  
    s3=s30; u}-)ywX  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   5Z_aN|Xn  
    %energy in waveguide 1 7I0K= 'D7  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   "y-/ 9C  
    %energy in waveguide 2 _#yd0E  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   P\3H<?@4  
    %energy in waveguide 3 mr+8[0  
    for m3 = 1:1:M3                                    % Start space evolution )U+&XjK  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 7Ga'FT.F  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; }LwKi-G?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Lpk`qJ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform T^@P.zX  
       sca2 = fftshift(fft(s2)); -+n? Q;  
       sca3 = fftshift(fft(s3)); 6C- !^8[f  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   *#Iqz9X.Y3  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); o(YF`;OhvS  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); P G*FIRDb  
       s3 = ifft(fftshift(sc3)); m88[(l  
       s2 = ifft(fftshift(sc2));                       % Return to physical space x8Nij: K#  
       s1 = ifft(fftshift(sc1)); #{~3bgY  
    end oF.H?lG7`  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); U=N]XwjVK<  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); W;T (q~XK  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 4EFP*7X  
       P1=[P1 p1/p10]; i&Me7=~  
       P2=[P2 p2/p10]; XBos ^Q  
       P3=[P3 p3/p10]; oN[# C>#(  
       P=[P p*p]; ~2}^ -,  
    end &Ui&2 EW  
    figure(1) yHxi^D]  
    plot(P,P1, P,P2, P,P3); QD^"cPC)mM  
    +||[H)qym  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~