切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9250阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ]6j{@z?{  
    "#g}ve,  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of wC'Szni  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of J<lW<:!3]  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Kc\fu3Q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 RxQ*  
    xoME9u0x4  
    %fid=fopen('e21.dat','w'); n+R7D.<q!!  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) nO-#Q=H,  
    M1 =3000;              % Total number of space steps 1xvu<|F  
    J =100;                % Steps between output of space eyxW 0}[  
    T =10;                  % length of time windows:T*T0 x4O~q0>:Le  
    T0=0.1;                 % input pulse width gRzxLf`K  
    MN1=0;                 % initial value for the space output location !8 b ^,  
    dt = T/N;                      % time step DHRlWQox  
    n = [-N/2:1:N/2-1]';           % Index &7s.`  
    t = n.*dt;   l U]nd[x  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 m4Zk\,1m.|  
    u20=u10.*0.0;                  % input to waveguide 2 x?<FJ"8"k  
    u1=u10; u2=u20;                 Vjpy~iP4B  
    U1 = u1;   %z$#6?OK^  
    U2 = u2;                       % Compute initial condition; save it in U ~V6D<  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. "J1 4C9u   
    w=2*pi*n./T; 1\.pMHv/  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T w32y3~  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ~VB1OLgv#.  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 0*v2y*2V  
    for m1 = 1:1:M1                                    % Start space evolution -:rUw$3J  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS T u'{&  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 2Khv>#l  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform W@esITr  
       ca2 = fftshift(fft(u2)); |':{lH6+1  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation _e2=ado  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   d_P` qA  
       u2 = ifft(fftshift(c2));                        % Return to physical space (h `V+  
       u1 = ifft(fftshift(c1)); z(~_AN M4,  
    if rem(m1,J) == 0                                 % Save output every J steps. $pz/?>!  
        U1 = [U1 u1];                                  % put solutions in U array 1.>m@Slr>  
        U2=[U2 u2]; ji= "DYtL  
        MN1=[MN1 m1]; 3(UVg!t  
        z1=dz*MN1';                                    % output location 1 TXioDs=_  
      end X wtqi@zlE  
    end 2A!FDr~cdT  
    hg=abs(U1').*abs(U1');                             % for data write to excel 8?C5L8)  
    ha=[z1 hg];                                        % for data write to excel FGkVqZ Y2?  
    t1=[0 t']; 4&iCht =  
    hh=[t1' ha'];                                      % for data write to excel file "gwSJ~:ds  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format D/' dTrR  
    figure(1) IVmo5,&5(  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn d"Y{UE  
    figure(2) 2t,zLwBdnJ  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "Rl}VeDY  
    i@'dH3-kO  
    非线性超快脉冲耦合的数值方法的Matlab程序 W_ ZJ0GuE(  
    F:ELPs4"  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   FiU#T.`9'  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ir]\|t  
    :gC#hmm^  
    :v 4]D4\o  
    j+YJbL v  
    %  This Matlab script file solves the nonlinear Schrodinger equations WEpoBP CL  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ?X;RLpEc|A  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear B/C,.?Or  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R}ecc  
    :@&/kyGH  
    C=1;                           DTs;{c  
    M1=120,                       % integer for amplitude ']oQ]Yx0  
    M3=5000;                      % integer for length of coupler {>;R?TG]$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) &.ACd+Cd  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. azU"G(6y?+  
    T =40;                        % length of time:T*T0. F1hHe<)  
    dt = T/N;                     % time step PaN"sf  
    n = [-N/2:1:N/2-1]';          % Index  S[QrS 7  
    t = n.*dt;   jFb?b6b  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. DL.!G  
    w=2*pi*n./T; ~{gqsuCCL  
    g1=-i*ww./2; L=h'Qgk%  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ET >](l9  
    g3=-i*ww./2; BORA(,  
    P1=0; r_.S>]  
    P2=0; ^}C\zW  
    P3=1; eiOW#_"\  
    P=0; @|)Z"m7  
    for m1=1:M1                 ^W@5TkkBQq  
    p=0.032*m1;                %input amplitude P>6{&(  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 D#z:()VT(  
    s1=s10; F<w/PMb  
    s20=0.*s10;                %input in waveguide 2 'W#D(l9nI  
    s30=0.*s10;                %input in waveguide 3 ?hM64jI|  
    s2=s20; >i O!*&Y>  
    s3=s30; O1kl70,`R  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \di=  
    %energy in waveguide 1 )_NO4`ejs/  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   DeYV$W B  
    %energy in waveguide 2 ,=N.FS  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   rN{ c7/|  
    %energy in waveguide 3 kNL\m[W8$  
    for m3 = 1:1:M3                                    % Start space evolution WN<zkM~3  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Xry4 7a )  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 3BLqCZ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; *9i{,I@  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform .{KVMc  
       sca2 = fftshift(fft(s2)); lHIM}~#;nd  
       sca3 = fftshift(fft(s3)); KY N0  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    yOKI*.}  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); &VcV$8k  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); o`RKXfCq  
       s3 = ifft(fftshift(sc3)); Y4(  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ;UP$yM;  
       s1 = ifft(fftshift(sc1)); snikn&  
    end Ic4H#w  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); >"<Wjr8W!$  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 4Z,!zFS$`  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]0\MmAJRn  
       P1=[P1 p1/p10]; s|ITsz0,td  
       P2=[P2 p2/p10]; cs'{5!i]  
       P3=[P3 p3/p10]; 2Wb]4-  
       P=[P p*p]; FsryEHz  
    end Xs?o{]Fe  
    figure(1) )F2OT<]m,  
    plot(P,P1, P,P2, P,P3); :a)u&g@G  
    I!?}jo3  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~