计算脉冲在非线性耦合器中演化的Matlab 程序 SA7(EJ95 gB~^dv { % This Matlab script file solves the coupled nonlinear Schrodinger equations of
zy5FO<-> % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Q8MIpa!: % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
3{fg3? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
bF6J>&]! f}J(nz>Sh %fid=fopen('e21.dat','w');
6tFi\,)E N = 128; % Number of Fourier modes (Time domain sampling points)
$1g1Bn M1 =3000; % Total number of space steps
H8B$#. J =100; % Steps between output of space
"Kdn`zN{ T =10; % length of time windows:T*T0
:AS`1\ C T0=0.1; % input pulse width
em'ADRxG+ MN1=0; % initial value for the space output location
`XpQR=IOMb dt = T/N; % time step
S*$?~4{R n = [-N/2:1:N/2-1]'; % Index
+:"0%( t = n.*dt;
X'-Yz7J?o u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
xJ2I@*DN u20=u10.*0.0; % input to waveguide 2
BM`6<Z "3q u1=u10; u2=u20;
&7oL2Wf U1 = u1;
1[T7;i$ U2 = u2; % Compute initial condition; save it in U
*= ?|n ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
vENf3;o0 w=2*pi*n./T;
B0%=! & g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
x Ek8oc L=4; % length of evoluation to compare with S. Trillo's paper
FF~r&h8H dz=L/M1; % space step, make sure nonlinear<0.05
VX&PkGi?o for m1 = 1:1:M1 % Start space evolution
0~z\WSo u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
@0 /qP<E u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
r5Tdp)S ca1 = fftshift(fft(u1)); % Take Fourier transform
n{i,`oQ" ca2 = fftshift(fft(u2));
2 U]d1 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
6tndC
o; ` c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
L- !1ybB^ u2 = ifft(fftshift(c2)); % Return to physical space
z V\+za, u1 = ifft(fftshift(c1));
U!`iKy- if rem(m1,J) == 0 % Save output every J steps.
Pal=I) U1 = [U1 u1]; % put solutions in U array
Be=rBrI> U2=[U2 u2];
|PlNVd2 MN1=[MN1 m1];
kJp~'\b z1=dz*MN1'; % output location
O|~C qb end
]Ob|!L( end
`r -jWK\ hg=abs(U1').*abs(U1'); % for data write to excel
d.^g#&h ha=[z1 hg]; % for data write to excel
[104;g < t1=[0 t'];
Vh;zV Y hh=[t1' ha']; % for data write to excel file
weSq|f %dlmwrite('aa',hh,'\t'); % save data in the excel format
b.@a,:" figure(1)
D**GC waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
QCF'/G figure(2)
n+Kv^Y`qxO waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
+7^p d9F. RHg-Cg` 非线性超快脉冲耦合的数值方法的Matlab程序 *L$2M?xkY %)x9u$4W2 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
`daqzn Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
$Sgf jm o^\Pt<~W 6JDHwV /,I cs % This Matlab script file solves the nonlinear Schrodinger equations
ba);f[> % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
K"H\gmV_g % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
6t6Z&0$h~ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
/.Ak'Vmi *[3xc*5F/A C=1;
&$F<]]& M1=120, % integer for amplitude
}OL"38P M3=5000; % integer for length of coupler
N8b\OTk2 N = 512; % Number of Fourier modes (Time domain sampling points)
xi=ApwNj dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
kg[%Q]] T =40; % length of time:T*T0.
6'r8.~O dt = T/N; % time step
t?W}=%M[ n = [-N/2:1:N/2-1]'; % Index
*h!fqT%9 t = n.*dt;
qW0:q.
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
.B#
.
w=2*pi*n./T;
//U1mDFT g1=-i*ww./2;
aa`(2%(: g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
U]iI8c g3=-i*ww./2;
@h%V:c P1=0;
2Wz8E2. P2=0;
a /sj W P3=1;
G^~[|a4` P=0;
:$MOdL[ir for m1=1:M1
&12KpEyf p=0.032*m1; %input amplitude
2J ZR"P s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
=|S%Rzsk s1=s10;
[1VA`:?W s20=0.*s10; %input in waveguide 2
+jGHR&A t s30=0.*s10; %input in waveguide 3
*1b|j|5v s2=s20;
.$qa?$@ s3=s30;
|h>PUt@LL p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
fFjpQ~0 %energy in waveguide 1
z-5`6aE9< p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
(^d7K:-' %energy in waveguide 2
mL{P4a 1xf p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
"is( %energy in waveguide 3
@ _Ey"k< for m3 = 1:1:M3 % Start space evolution
W$rWg>4> s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
0
&zp s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
GXtMX ha, s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
`>g G"1,] sca1 = fftshift(fft(s1)); % Take Fourier transform
UN]gn>~j sca2 = fftshift(fft(s2));
94u{k1d x sca3 = fftshift(fft(s3));
;b$P*dSG} sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
,ks2&e sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
1 em,/>" sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
Z/#_Swv s3 = ifft(fftshift(sc3));
iC
gZ3M] s2 = ifft(fftshift(sc2)); % Return to physical space
m&UP@hUV- s1 = ifft(fftshift(sc1));
uJ!&T end
B$4*U"tk p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
,fkvvM{mq p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
>
;,S|| p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
uN|A}/hr] P1=[P1 p1/p10];
l!mbpFt P2=[P2 p2/p10];
Mt[yY|Ec| P3=[P3 p3/p10];
3Vb4zZsl P=[P p*p];
"yn~axk7 end
k ut=(; figure(1)
-aoYoJ ' plot(P,P1, P,P2, P,P3);
rf.pT+g.P N9e'jM>Oos 转自:
http://blog.163.com/opto_wang/