切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9433阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 f\rE{%  
    d5>EvK U  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ih|;H:"^  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of R XCjYzt  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3ey.r%n  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q@G}Hjn  
    i[?VF\Y(  
    %fid=fopen('e21.dat','w'); 1V wcJd  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) .Y|wG<E  
    M1 =3000;              % Total number of space steps U(PW$\l  
    J =100;                % Steps between output of space nQOzKw<j%  
    T =10;                  % length of time windows:T*T0 v, CWE  
    T0=0.1;                 % input pulse width c1q;  
    MN1=0;                 % initial value for the space output location ,(RpBTV  
    dt = T/N;                      % time step (q0vql  
    n = [-N/2:1:N/2-1]';           % Index E/hT/BOPK  
    t = n.*dt;   %Z+**>1J  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 T, +=ka$  
    u20=u10.*0.0;                  % input to waveguide 2 ,1g_{dMx  
    u1=u10; u2=u20;                 >=d 5Scix  
    U1 = u1;   0x,**6  
    U2 = u2;                       % Compute initial condition; save it in U 7|o!v);uR  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. mrq,kwM  
    w=2*pi*n./T; HOx+umjxW  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Qqi?DW1)-  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 2cO6'?b  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 bSz@@s.  
    for m1 = 1:1:M1                                    % Start space evolution NiFe#SLA  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS +J85Re `  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 0~EGrEt  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform [K@(,/$  
       ca2 = fftshift(fft(u2)); ie11syhV"  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation qDTdYf  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   v k= |TE  
       u2 = ifft(fftshift(c2));                        % Return to physical space d&+0JI<  
       u1 = ifft(fftshift(c1)); hj&~Dn(  
    if rem(m1,J) == 0                                 % Save output every J steps. t`'jr=e,~  
        U1 = [U1 u1];                                  % put solutions in U array W mbIz[un  
        U2=[U2 u2]; f`KO#Wc  
        MN1=[MN1 m1]; (t\U5-w  
        z1=dz*MN1';                                    % output location fdWqc_  
      end -$kIVh  
    end ?E_;[(Mcr  
    hg=abs(U1').*abs(U1');                             % for data write to excel Zwz co  
    ha=[z1 hg];                                        % for data write to excel +I-BqA9  
    t1=[0 t']; 7AS_Aw1L  
    hh=[t1' ha'];                                      % for data write to excel file z@ J>A![m  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format K@JaN/OM  
    figure(1) [KFCc_:  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ByuBZ!m  
    figure(2) RJUIB  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn D)pTE?@W'  
    }zS5o [OE  
    非线性超快脉冲耦合的数值方法的Matlab程序 g1?9ge 1  
    uO-|?{29  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    sa&`CEa  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 WF-jy7+  
    $=Ns7Sbup  
    tHo|8c~ [  
    @D !*@M6  
    %  This Matlab script file solves the nonlinear Schrodinger equations n((A:b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Xz)qtDN|(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }vh4ix  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %LzARTX  
    !V(r p80  
    C=1;                           f1v4h[)-  
    M1=120,                       % integer for amplitude ]j>`BK>FE  
    M3=5000;                      % integer for length of coupler Cc*R3vHM6  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 3^nH>f-Y  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. dCS f$5  
    T =40;                        % length of time:T*T0. j}B86oX  
    dt = T/N;                     % time step }IZw6KiN  
    n = [-N/2:1:N/2-1]';          % Index -|^)8  
    t = n.*dt;   \v6lcAL-  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. +t%2V?  
    w=2*pi*n./T; $/|) ,n  
    g1=-i*ww./2; A6 .wXv,  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ,Pcg+^A  
    g3=-i*ww./2; .4U*.Rf  
    P1=0; *!JB^5(H  
    P2=0; In?#?:Q@&  
    P3=1; Z]R#F0"U  
    P=0; '2i !RT-  
    for m1=1:M1                 @tY]=pqn_  
    p=0.032*m1;                %input amplitude oSmETk\  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 "OK[uug  
    s1=s10; :UP8nq  
    s20=0.*s10;                %input in waveguide 2 ~Gz9pBv1  
    s30=0.*s10;                %input in waveguide 3 #T2J +  
    s2=s20; z'$1$~I  
    s3=s30; =EMB~i  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   }mK,Bi?bj  
    %energy in waveguide 1 "O0xh_Nr  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   }.&;NgZS  
    %energy in waveguide 2 &mmaoWR  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   d)bsyZ;U  
    %energy in waveguide 3 |%F,n2  
    for m3 = 1:1:M3                                    % Start space evolution mICEJ\`x  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS .?Y"o3  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; %b<W]HwA  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; +x}9a~QG#  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform d?J&mLQ6  
       sca2 = fftshift(fft(s2)); 72"H#dy%U  
       sca3 = fftshift(fft(s3)); Q2- lHn^L:  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   L;$>SLl,  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ltDohm?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); :&TM0O  
       s3 = ifft(fftshift(sc3)); Z:7eroZP  
       s2 = ifft(fftshift(sc2));                       % Return to physical space rvy%8%e?  
       s1 = ifft(fftshift(sc1)); tkcs6uy  
    end 1u7D:h>#  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); V0_tk"  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @WS77d~S  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); < A8>To<  
       P1=[P1 p1/p10]; IF0!@f  
       P2=[P2 p2/p10]; [V:~j1{3  
       P3=[P3 p3/p10]; &xN+a{&  
       P=[P p*p]; I2}eFz&FE  
    end "QNQ00[T`>  
    figure(1) g ,EDE6`8  
    plot(P,P1, P,P2, P,P3); N;'c4=M~(  
    bA#9'Qu^j  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~