切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9339阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 M&faa7  
    p-EU"O  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 6~W@$SP,F  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of !plu;w  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear I''n1v?N  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <pHm=q/U  
    eu_ZsseZ  
    %fid=fopen('e21.dat','w'); VEI ct{  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) f#GMJ mCQs  
    M1 =3000;              % Total number of space steps ?r8hl.Z>  
    J =100;                % Steps between output of space $2i@@#g8  
    T =10;                  % length of time windows:T*T0 (&v|,.c^)1  
    T0=0.1;                 % input pulse width lic-68T  
    MN1=0;                 % initial value for the space output location e`7>QS ;.  
    dt = T/N;                      % time step ,5}w]6bCr  
    n = [-N/2:1:N/2-1]';           % Index #<e D  
    t = n.*dt;   A4#F AFy  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #Y'b?&b  
    u20=u10.*0.0;                  % input to waveguide 2 =VZ_';b h  
    u1=u10; u2=u20;                 } }~a4p>%  
    U1 = u1;   CqZHs 9+e&  
    U2 = u2;                       % Compute initial condition; save it in U +5Dc5Bl  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. +s8R]3NJ_H  
    w=2*pi*n./T; qs bo"29  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T m}RZ )c  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ,>kVVpu  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 NqOX);'L0  
    for m1 = 1:1:M1                                    % Start space evolution !yrh50tD  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS a`f@&A`z  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; dlCYdwP  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform v;;3 K*c>  
       ca2 = fftshift(fft(u2)); 2; ,8 u  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation J!5b~8`v  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   _<sN54  
       u2 = ifft(fftshift(c2));                        % Return to physical space o}/|"(K  
       u1 = ifft(fftshift(c1)); DQXcf*R  
    if rem(m1,J) == 0                                 % Save output every J steps. .f-=gZ* *  
        U1 = [U1 u1];                                  % put solutions in U array #Mk: 4  
        U2=[U2 u2]; v3M$UiN,:  
        MN1=[MN1 m1]; {GnZ@Q:F  
        z1=dz*MN1';                                    % output location dz +Dk6"R  
      end _FE uQ9E  
    end T7.SjR6X>  
    hg=abs(U1').*abs(U1');                             % for data write to excel qA`@~\ qh"  
    ha=[z1 hg];                                        % for data write to excel 2Zuo).2a.  
    t1=[0 t']; $rr@3H+  
    hh=[t1' ha'];                                      % for data write to excel file h{ix$Xn~  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ~v pIy-  
    figure(1) u?dPCgs;h  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn wW)(mY?   
    figure(2) OM\1TD/-  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn AL3iNkEa  
    FibZT1-k  
    非线性超快脉冲耦合的数值方法的Matlab程序 _[Imwu}  
    HSRO gBNI:  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   pl1CPxSdO  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Bh cp=#  
    ^4"AWps  
    y||RK` H  
    u4SL:IH{D  
    %  This Matlab script file solves the nonlinear Schrodinger equations fDqT7}L  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of j"h/v7~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $>O~7Nfst7  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }a~hd*-#  
    e]88 4FP  
    C=1;                           ;2 &"  
    M1=120,                       % integer for amplitude O |P<s+  
    M3=5000;                      % integer for length of coupler OQ?N_zs,  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) \-;f<%+  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. At=d//5FFP  
    T =40;                        % length of time:T*T0. 0]c&K  
    dt = T/N;                     % time step x@rQ7K>  
    n = [-N/2:1:N/2-1]';          % Index hd9HM5{p  
    t = n.*dt;   miQ*enZi  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. lm;hW&O9  
    w=2*pi*n./T; P o@;PR=  
    g1=-i*ww./2; ([< HFc`  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ;]=w6'dP!  
    g3=-i*ww./2; Wmcd{MOS  
    P1=0; ]&Y^  
    P2=0; Z8xB a0  
    P3=1; 1r$-Uh  
    P=0; G)}[!'<rR  
    for m1=1:M1                 Ri"hU/H{  
    p=0.032*m1;                %input amplitude X=]utn  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 OR~ui[w  
    s1=s10; =#W:z.w  
    s20=0.*s10;                %input in waveguide 2 T*C25l;w  
    s30=0.*s10;                %input in waveguide 3 eZT8gKbjJ)  
    s2=s20; ;n(f?RO3X  
    s3=s30; a,RCK~GR  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   z6E =%-`  
    %energy in waveguide 1 U0j>u*yE  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   PZ8,E{V  
    %energy in waveguide 2 >;c);|'}q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   oxc;DfJ_  
    %energy in waveguide 3 ?c RF;!o"  
    for m3 = 1:1:M3                                    % Start space evolution BK%B[f*[OA  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS P1LOj  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5>f"  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ANu>*  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform [//i "Nm  
       sca2 = fftshift(fft(s2)); aHW34e@ebL  
       sca3 = fftshift(fft(s3)); gU x}vE-  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   8N'hG,  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); xo'!$a}I2  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); :\"0jQ.y|  
       s3 = ifft(fftshift(sc3)); raPOF6-_rH  
       s2 = ifft(fftshift(sc2));                       % Return to physical space @s-P!uCaT  
       s1 = ifft(fftshift(sc1)); nahq O|~  
    end 3qe`#j  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); OmWEa  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); "PI;/(kR  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); /)_4QSz7  
       P1=[P1 p1/p10]; (cLKhn@  
       P2=[P2 p2/p10]; e*}zl>f  
       P3=[P3 p3/p10]; X13+n2^8]  
       P=[P p*p]; (X"5x]7]  
    end a4^hC[a  
    figure(1) KUZi3\p9W>  
    plot(P,P1, P,P2, P,P3); q\o#<'F1J  
    z U[pn)pe  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~