切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8192阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 8 OY3A  
    de.&`lPRf  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 52:HNA\E/  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of uwzvbgup?  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ,J,/."Y  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iU$] {c2;A  
    r e/@D@%  
    %fid=fopen('e21.dat','w'); } ()5"QB  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) #lmB AL~3  
    M1 =3000;              % Total number of space steps *scVJ  
    J =100;                % Steps between output of space KHe=O1 %QO  
    T =10;                  % length of time windows:T*T0 >7lx=T x  
    T0=0.1;                 % input pulse width [I '0,y  
    MN1=0;                 % initial value for the space output location *6sl   
    dt = T/N;                      % time step i UCXAWP  
    n = [-N/2:1:N/2-1]';           % Index g7}Gip}.>  
    t = n.*dt;   U`R5'Tf;  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 1"zDin!A  
    u20=u10.*0.0;                  % input to waveguide 2 )97SnCkal  
    u1=u10; u2=u20;                 8ja$g,  
    U1 = u1;   sF!($k;!  
    U2 = u2;                       % Compute initial condition; save it in U |n+qMql'  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. (D#B_`;-  
    w=2*pi*n./T; %<k2#6K  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T c`J.Tm[_u  
    L=4;                           % length of evoluation to compare with S. Trillo's paper QLXN*c  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 7C,&*Ax,9  
    for m1 = 1:1:M1                                    % Start space evolution E27vR 7  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 6h|q'.Y  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; t[ubn+  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform V=R 3)GC  
       ca2 = fftshift(fft(u2)); K-bD<X  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation R<\F:9  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   %eX{WgH  
       u2 = ifft(fftshift(c2));                        % Return to physical space QQ%D8$k"  
       u1 = ifft(fftshift(c1)); .>= (' -  
    if rem(m1,J) == 0                                 % Save output every J steps. f!\lg  
        U1 = [U1 u1];                                  % put solutions in U array tjIl-IQ  
        U2=[U2 u2]; !nqUBa  
        MN1=[MN1 m1]; /qMG=Z  
        z1=dz*MN1';                                    % output location +ln9c  
      end 3.|S  
    end S=5<^o^h3  
    hg=abs(U1').*abs(U1');                             % for data write to excel (U&tt]|  
    ha=[z1 hg];                                        % for data write to excel QKyo`g7  
    t1=[0 t']; }+)fMZz  
    hh=[t1' ha'];                                      % for data write to excel file gp5_Z-me  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format C"6?bg5N  
    figure(1) <v)1<*I  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn KC/=TSSXd.  
    figure(2) pOGeru u?  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn gRCdY8GH  
    't1 ax^-g  
    非线性超快脉冲耦合的数值方法的Matlab程序  'C`U"I  
    !k 6K?xt  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ?{/4b:ua  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >pU$wq|i  
    Lx\ 8Z=  
    p2ogn}`  
    T ? $:'XJ  
    %  This Matlab script file solves the nonlinear Schrodinger equations s %qF/70'  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !Y$h"<M  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fmQ_P.c  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q1z"-~i )E  
    ZIf  
    C=1;                           D ~stM  
    M1=120,                       % integer for amplitude ;|p BFKx  
    M3=5000;                      % integer for length of coupler Y'1S`.  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) kw#;w=\>R{  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. zDw5]*R  
    T =40;                        % length of time:T*T0. mtJ9nC  
    dt = T/N;                     % time step N/Z2hn/m  
    n = [-N/2:1:N/2-1]';          % Index :Pvzl1  
    t = n.*dt;   \DYWy*pe  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. !F1M(zFD  
    w=2*pi*n./T; T^Y([23  
    g1=-i*ww./2; a2dnbfSWa[  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; I/a/)No  
    g3=-i*ww./2; ;1:Js0=;H  
    P1=0; x.f]1S7h[  
    P2=0; ZG>PQA  
    P3=1; {1IfU  
    P=0; IEXt:  
    for m1=1:M1                 kddZZA3`  
    p=0.032*m1;                %input amplitude (MR_^t  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 >64P6P;S  
    s1=s10; uehDIl0\[b  
    s20=0.*s10;                %input in waveguide 2 $K]m{  
    s30=0.*s10;                %input in waveguide 3 Fgp]l2*  
    s2=s20; v:!Z=I}>  
    s3=s30; byLft 1  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   H=g`hF]`  
    %energy in waveguide 1 M!/Cknm  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   jE}33"  
    %energy in waveguide 2 ;g@4|Ro  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -&3hEv5  
    %energy in waveguide 3 mzeY%A<0^  
    for m3 = 1:1:M3                                    % Start space evolution ;LG#.~f  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS JBi*P.79^  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; }\%Fi/6Z{  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; <R''oEf9  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ?98("T|y;  
       sca2 = fftshift(fft(s2)); ;%<,IdhN  
       sca3 = fftshift(fft(s3)); jFASX2.p  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   L;*ljZ^c  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); P0W*C6&71|  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); G_0( |%  
       s3 = ifft(fftshift(sc3)); >+JqA7K  
       s2 = ifft(fftshift(sc2));                       % Return to physical space [U5\bX@$  
       s1 = ifft(fftshift(sc1)); VKq=7^W  
    end HkO7R `  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); "t (p&;d  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); P!H_1RwXKC  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); vbb 5f#WZ  
       P1=[P1 p1/p10]; bmfI~8  
       P2=[P2 p2/p10]; [P&7i57  
       P3=[P3 p3/p10]; JT-J#Ag  
       P=[P p*p]; Kla'lCZ  
    end  f4Xk,1Is  
    figure(1) 0\[Chja  
    plot(P,P1, P,P2, P,P3); te3}d'9&|  
    v.pBX<  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~