计算脉冲在非线性耦合器中演化的Matlab 程序 WR`NISSp t$~'$kM)< % This Matlab script file solves the coupled nonlinear Schrodinger equations of
;gZ/i93:Q % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
$|@vmv0 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
W;cYg.W2 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
"&/2@ i7 21(1 %fid=fopen('e21.dat','w');
<xF]ca N = 128; % Number of Fourier modes (Time domain sampling points)
"oNl!<ep M1 =3000; % Total number of space steps
xpO;V}M| J =100; % Steps between output of space
\o/eF& T =10; % length of time windows:T*T0
;Vc|3 T0=0.1; % input pulse width
uDXV@;6< MN1=0; % initial value for the space output location
\>pm (gF dt = T/N; % time step
oQ,<Yx%E3 n = [-N/2:1:N/2-1]'; % Index
>$9}" t = n.*dt;
'Etq;^H u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
b=xn(HE8| u20=u10.*0.0; % input to waveguide 2
KK #E
qJ u1=u10; u2=u20;
T@i*
F M U1 = u1;
_<{<b U2 = u2; % Compute initial condition; save it in U
K0_gMi+bR ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
U|Gy 9" w=2*pi*n./T;
[:#K_EI5% g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
-y$6gCRY L=4; % length of evoluation to compare with S. Trillo's paper
P_NF;v5v dz=L/M1; % space step, make sure nonlinear<0.05
c`p'5qz for m1 = 1:1:M1 % Start space evolution
t"YsIOT:O" u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
k_,&
Q?GtU u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
(DY[OIHI ca1 = fftshift(fft(u1)); % Take Fourier transform
^i Jyo&I ca2 = fftshift(fft(u2));
^d{5GK' c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
M /v@C*c c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
$C5*@`GM$ u2 = ifft(fftshift(c2)); % Return to physical space
K)mQcB-"? u1 = ifft(fftshift(c1));
9$z$yGjl if rem(m1,J) == 0 % Save output every J steps.
[RN]?, U1 = [U1 u1]; % put solutions in U array
7+hF1eoI U2=[U2 u2];
&e:+;7 MN1=[MN1 m1];
[%^sl>,7 z1=dz*MN1'; % output location
M @-:iP end
WEe7\bWF end
cPuXye hg=abs(U1').*abs(U1'); % for data write to excel
jF0"AA ha=[z1 hg]; % for data write to excel
eBnx$ t1=[0 t'];
oo2d, hh=[t1' ha']; % for data write to excel file
86 e13MF %dlmwrite('aa',hh,'\t'); % save data in the excel format
>FwK_Zd' figure(1)
QCb%d'_w+ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
$8UW^#Bpq figure(2)
QJ4$) Fr( waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
?@,EGY< w/ rQOHV{ 非线性超快脉冲耦合的数值方法的Matlab程序 "4H@&:-(p jK]1X8 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
3MNM<Ih Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
4xmJQ>/ 8I/3T ,P`NtTN- 5X)M)"rq;V % This Matlab script file solves the nonlinear Schrodinger equations
Dk^AnMx%_ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
{<gv1Yht % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
A8vd@0 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
4BCe;Q^6 }rfikm C=1;
rx2']. M1=120, % integer for amplitude
IUv#nB3 M3=5000; % integer for length of coupler
oC>J{z N = 512; % Number of Fourier modes (Time domain sampling points)
O;<wDh)Yt dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
!P=Cv= T =40; % length of time:T*T0.
ftxL-7y% dt = T/N; % time step
,.QJS6Yv n = [-N/2:1:N/2-1]'; % Index
yj&GJuNb~ t = n.*dt;
U _5` ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
`_OrBu[ w=2*pi*n./T;
"Esl I g1=-i*ww./2;
#Z2'Y[@. g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
Dc-K08c g3=-i*ww./2;
} jJKE P1=0;
lEFd^@t P2=0;
%}9tU>?F# P3=1;
ErK1j P=0;
:,JaOn' for m1=1:M1
bKCE;Wu:G p=0.032*m1; %input amplitude
hbx4[Pf s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
yqq1 a
o s1=s10;
(V6bX]< s20=0.*s10; %input in waveguide 2
apk,\L@sZ s30=0.*s10; %input in waveguide 3
F*PhV|XU s2=s20;
2 3PRb<q s3=s30;
<C'_:&M p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
!\7`I}: %energy in waveguide 1
}b(hD|e p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
AuXUD9- %energy in waveguide 2
uH9Vj<E$K p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
*XhlIQ %energy in waveguide 3
<@.e.H for m3 = 1:1:M3 % Start space evolution
R}0gIp= s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
f $Agcy s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
XMI*obS'z s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
/@ @F
nQ++ sca1 = fftshift(fft(s1)); % Take Fourier transform
n;Oe- +oSC sca2 = fftshift(fft(s2));
dw <i)P^
sca3 = fftshift(fft(s3));
s0?'mC+p sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
DPzW,aIgv sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
4@-tT;$ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
)-3~^Y#r_ s3 = ifft(fftshift(sc3));
:.*Q@X}-I s2 = ifft(fftshift(sc2)); % Return to physical space
gS+X% s1 = ifft(fftshift(sc1));
pKc!sdC end
G7 UUx+ X p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
AhF@ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
_h-agn4[i p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
XZ
|L D# P1=[P1 p1/p10];
<=7nTcO~ P2=[P2 p2/p10];
VAL?
Z P3=[P3 p3/p10];
k2D*`\
D P=[P p*p];
*m"9F'(Sd end
ta)gOc)r
R figure(1)
gFTU9k< plot(P,P1, P,P2, P,P3);
]%6%rq%9C .4CDQ&B0K 转自:
http://blog.163.com/opto_wang/