计算脉冲在非线性耦合器中演化的Matlab 程序 "Om=N@?
I/a/)No
% This Matlab script file solves the coupled nonlinear Schrodinger equations of nH`Q#ZFz]?
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "]"|"0#i
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :e_V7t)o
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _kj wFq
IEXt:
%fid=fopen('e21.dat','w'); Hw7;;HK
7
N = 128; % Number of Fourier modes (Time domain sampling points) (MR_^t
M1 =3000; % Total number of space steps >64P6P;S
J =100; % Steps between output of space xfpa]Z
T =10; % length of time windows:T*T0 _oHNkKQ
T0=0.1; % input pulse width G`n_YH084
MN1=0; % initial value for the space output location .} q&5v
dt = T/N; % time step W yB3ls~
n = [-N/2:1:N/2-1]'; % Index R$q;
!
t = n.*dt; C"!gZ8*\!9
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 N):tOD@B
u20=u10.*0.0; % input to waveguide 2 N.\-
8?>
u1=u10; u2=u20; &X|#R1\
U1 = u1; -n=^U
U2 = u2; % Compute initial condition; save it in U z`!XhU
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. nSW=LjrO~<
w=2*pi*n./T; <g1hxfKx5
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T %+j8["VEC
L=4; % length of evoluation to compare with S. Trillo's paper ,eTUhK
dz=L/M1; % space step, make sure nonlinear<0.05 '^No)n\`
for m1 = 1:1:M1 % Start space evolution X;i~<Tq
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS _I)U%?V+
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; L\@I*QP
ca1 = fftshift(fft(u1)); % Take Fourier transform eM$s v9?
ca2 = fftshift(fft(u2)); +Af"f' )
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation W8ouO+wK
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift W+PJZn
u2 = ifft(fftshift(c2)); % Return to physical space U^Q:Y}^
u1 = ifft(fftshift(c1)); o=50>$5jlS
if rem(m1,J) == 0 % Save output every J steps. _CmOd-y
U1 = [U1 u1]; % put solutions in U array 2nSSFx r
U2=[U2 u2]; H,DM1Z9rz
MN1=[MN1 m1]; (#Wu#F1;
z1=dz*MN1'; % output location ZZHDp&lh}
end pi
Z[Y
5OE
end Bwa'`+bC
hg=abs(U1').*abs(U1'); % for data write to excel Hkwl>R$
ha=[z1 hg]; % for data write to excel YL]Z<%aKt
t1=[0 t']; mS~o?q-n
hh=[t1' ha']; % for data write to excel file MUTj-1 H6)
%dlmwrite('aa',hh,'\t'); % save data in the excel format K('hC)1
figure(1) yf[~Yl>Ogw
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn *M:B\D
figure(2) .}O[dR
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn L1cI`9
+89*)pk
非线性超快脉冲耦合的数值方法的Matlab程序 AS
=?@2 q
t.7?
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 -(
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9aze>nxh.
.NYbi@bk(<
)n2 re?S
~/98Id}v
% This Matlab script file solves the nonlinear Schrodinger equations l|kSsP:GO
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 5*Y^\N
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;1%-8f:lW
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U)E(`{p]
f@Zszt
C=1; aX5
z&r:{
M1=120, % integer for amplitude y#U+c*LB
M3=5000; % integer for length of coupler ] lrWgm
N = 512; % Number of Fourier modes (Time domain sampling points) 4lKq{X5<
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 0:9.;x9_
T =40; % length of time:T*T0. (oEC6F
dt = T/N; % time step m 8aITd8
n = [-N/2:1:N/2-1]'; % Index 3NqN\5B:
t = n.*dt; 3HcQ(+Z
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 1Cgso`
w=2*pi*n./T; #,":vr
g1=-i*ww./2; ?u "
4@
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; >zXsNeGQR
g3=-i*ww./2; yCVI\y\B
P1=0; |}(`kW
P2=0; 23RN}LUi
P3=1; J&.{7YF
P=0; 5hQE4/hH
for m1=1:M1 -o$QS,
p=0.032*m1; %input amplitude M$/|)U'W
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ki?S~'a
s1=s10; {q`jDDM
s20=0.*s10; %input in waveguide 2 ??M"6k
s30=0.*s10; %input in waveguide 3 >[*8I\*@n
s2=s20; Z0Vl+
s3=s30; {^\+iK4bS
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); "1L$|
%energy in waveguide 1 W-?()dX{
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
1~Oe=`{&
%energy in waveguide 2 q*_/to
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); U%q7Ai7
%energy in waveguide 3 pe] A5\4c
for m3 = 1:1:M3 % Start space evolution C71qPb|$R
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS !cO]<