切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9188阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 :>{!%-1Z  
    Z! O4hA4  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of \/YRhQ  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of n H?6o#]N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear P?/JyiO }  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `6)Qi*Z  
    3\@2!:>  
    %fid=fopen('e21.dat','w'); Hvm}@3F|  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %rG4X  
    M1 =3000;              % Total number of space steps rL1yq|]I  
    J =100;                % Steps between output of space b(GV4%  
    T =10;                  % length of time windows:T*T0 d-B+s%>D  
    T0=0.1;                 % input pulse width ;6P>S4`w  
    MN1=0;                 % initial value for the space output location }6%XiP|  
    dt = T/N;                      % time step f(w>(1&/B  
    n = [-N/2:1:N/2-1]';           % Index 7/IL" D  
    t = n.*dt;   }x`Cnn  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 MGm*({%  
    u20=u10.*0.0;                  % input to waveguide 2 I{cH$jt<  
    u1=u10; u2=u20;                 |-}. Y(y  
    U1 = u1;   o13jd NQ-  
    U2 = u2;                       % Compute initial condition; save it in U >|A,rE^Ojt  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. isL zgN%  
    w=2*pi*n./T; yO1 7C  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T dgpE3 37Lt  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 49Jnp>h  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 oYkd%N9P  
    for m1 = 1:1:M1                                    % Start space evolution 6]b"n'G  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS XeI2 <=@%  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; XYzaSp=bb  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform \uOM,98xS  
       ca2 = fftshift(fft(u2)); bwXeEA@{  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation V'j+)!w5  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   \s&Mz;:  
       u2 = ifft(fftshift(c2));                        % Return to physical space y(Gn+  
       u1 = ifft(fftshift(c1)); :,0(aB  
    if rem(m1,J) == 0                                 % Save output every J steps. a{T.U-0   
        U1 = [U1 u1];                                  % put solutions in U array >n09K8 A  
        U2=[U2 u2]; Y 3ApW vS  
        MN1=[MN1 m1]; mp8GHV  
        z1=dz*MN1';                                    % output location [ @eA o>  
      end g4h{dFb|_  
    end i7.8H*z'  
    hg=abs(U1').*abs(U1');                             % for data write to excel ":udoVS!  
    ha=[z1 hg];                                        % for data write to excel :>fT=$i@  
    t1=[0 t']; ;bB#P g  
    hh=[t1' ha'];                                      % for data write to excel file 9O3#d  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format o4kLgY !Q  
    figure(1) =Pl@+RgK+  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn tr<f ii 3<  
    figure(2) [_'A(.  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~-zTY&c_  
    skcyLIb  
    非线性超快脉冲耦合的数值方法的Matlab程序 2xLtJR4L  
    9i5?J]o^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   d.vNiq,`  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }d?;kt  
    l)[|wPf  
    ]#]Z]9w  
    OZxJDg  
    %  This Matlab script file solves the nonlinear Schrodinger equations {1Ra |,;  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of GGuU(sL*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear vdq=F|&  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  8${n}}  
    f#!+l1GV  
    C=1;                           -"I$$C  
    M1=120,                       % integer for amplitude +^Xf:r` G  
    M3=5000;                      % integer for length of coupler )*BZo>"  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) "#O9ij  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. +06{5-,  
    T =40;                        % length of time:T*T0. srv4kodj  
    dt = T/N;                     % time step 05LkLB  
    n = [-N/2:1:N/2-1]';          % Index r1r$y2v~  
    t = n.*dt;   eyMn! a  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ,j*9)  
    w=2*pi*n./T; oVpZR$  
    g1=-i*ww./2; ST?{H SCz  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; xQFY/Z  
    g3=-i*ww./2; 7\ _MA!:<  
    P1=0; kg^0%-F  
    P2=0; jKml:)k  
    P3=1; x []ad"R  
    P=0; s>J5.Z7"'j  
    for m1=1:M1                 E5^\]`9P  
    p=0.032*m1;                %input amplitude OvX&5Q5  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 d0 )725Ia  
    s1=s10; |E1U$,s~u  
    s20=0.*s10;                %input in waveguide 2 xT+_JT65  
    s30=0.*s10;                %input in waveguide 3 0&,D&y%  
    s2=s20; jB?SX  
    s3=s30; ;g!rc#z2g  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   u}nSdZC  
    %energy in waveguide 1 lJdBUoO  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   bh.&vp.kP  
    %energy in waveguide 2 +c~&o83[  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   BXYHJ  
    %energy in waveguide 3 &4-;;h\H  
    for m3 = 1:1:M3                                    % Start space evolution XjN4EDi+E  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS _2jL]mB  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; `> %QCc\  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; >Q/;0>V  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform "/zgh  
       sca2 = fftshift(fft(s2)); ?/o 8f7Z  
       sca3 = fftshift(fft(s3)); X}Oe'y  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   |P>7C  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); KkCGL*]K  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Y$ jX  
       s3 = ifft(fftshift(sc3)); !_ W/p`Tc  
       s2 = ifft(fftshift(sc2));                       % Return to physical space gq?7O<  
       s1 = ifft(fftshift(sc1)); ov_l)vt  
    end @[g7\d  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ~lo43$)^  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); {mJ' Lb0;  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); i O$87!  
       P1=[P1 p1/p10]; Fx:38Ae  
       P2=[P2 p2/p10]; ~X3g_<b_8  
       P3=[P3 p3/p10]; }:2##<"\t  
       P=[P p*p]; relt7sK  
    end ]6e(-v!U  
    figure(1) *S}@DoXS  
    plot(P,P1, P,P2, P,P3); hW#^H5?  
    I0+6p8,  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~