切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9205阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 \v B9fA:*  
    e /ppZ>  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of % DHP  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hwG||;&/H  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear #<^/yoH7C6  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 LK oM\g(  
    Xb8:*Y1'  
    %fid=fopen('e21.dat','w'); C:TuC5Sr  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) P<g|y4h  
    M1 =3000;              % Total number of space steps `3H?*\<(  
    J =100;                % Steps between output of space j.e`ip  
    T =10;                  % length of time windows:T*T0 S<)RVm,!e  
    T0=0.1;                 % input pulse width A_8`YN"Xk  
    MN1=0;                 % initial value for the space output location bDcWb2 lqs  
    dt = T/N;                      % time step INeWi=1  
    n = [-N/2:1:N/2-1]';           % Index @vDgpb@TM  
    t = n.*dt;   4B%5-VQ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 'R-JQ E-]  
    u20=u10.*0.0;                  % input to waveguide 2 ahz@HX  
    u1=u10; u2=u20;                 ` Mv5!H5l  
    U1 = u1;   +;4AG::GN  
    U2 = u2;                       % Compute initial condition; save it in U %K/G+  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Qg86XU%l  
    w=2*pi*n./T; lu9Ir>c  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T )yz9? ]a  
    L=4;                           % length of evoluation to compare with S. Trillo's paper QvT-&|  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 *U5> j#,  
    for m1 = 1:1:M1                                    % Start space evolution M2;(+8 b  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS N:sECGS,  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; <yb=!  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform EUYa =-  
       ca2 = fftshift(fft(u2)); D[FfJcV'$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation cnjj) c  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [M zc^I&  
       u2 = ifft(fftshift(c2));                        % Return to physical space b{ubp  
       u1 = ifft(fftshift(c1)); tkUW)ScJ  
    if rem(m1,J) == 0                                 % Save output every J steps. n=Z[w5  
        U1 = [U1 u1];                                  % put solutions in U array Cvu8X&y  
        U2=[U2 u2]; `)xU;-  
        MN1=[MN1 m1]; 71.:p,Z@z  
        z1=dz*MN1';                                    % output location S'H0nJ3  
      end ct|'I]nB.h  
    end PSrt/y!  
    hg=abs(U1').*abs(U1');                             % for data write to excel 4<K ,w{I  
    ha=[z1 hg];                                        % for data write to excel =G3J.S*Riy  
    t1=[0 t']; ]!S)O|_D[  
    hh=[t1' ha'];                                      % for data write to excel file FZ'>LZ  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format `'tw5}  
    figure(1) P*qNRP%  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ;V}FbWz^v6  
    figure(2) W:N"O\`{m  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "Jv,QTIcS  
    `peJ s~V  
    非线性超快脉冲耦合的数值方法的Matlab程序 =B 4gEWR  
    e7j]BzGvl  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   v!v0,?b*  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 xuH<=-O>ki  
    ,Elga}7u  
    -QNMB4  
    5['B- Iw  
    %  This Matlab script file solves the nonlinear Schrodinger equations )9sr,3w  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of \gW\Sa ^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S:GUR6g8D  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &Bdt+OQ ;  
    '[ddE!ta  
    C=1;                           SO jDtZ  
    M1=120,                       % integer for amplitude A#07Ly8kXn  
    M3=5000;                      % integer for length of coupler (NWN&  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) xo"4mbTV  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. z E7ocul  
    T =40;                        % length of time:T*T0. XU })3]/  
    dt = T/N;                     % time step NS/L! "g  
    n = [-N/2:1:N/2-1]';          % Index QvQf@o  
    t = n.*dt;   QbKYB  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. #$z-]i  
    w=2*pi*n./T; o>,z %+  
    g1=-i*ww./2; ,/?V+3l  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; KD3To%  
    g3=-i*ww./2; !Z2n;.w  
    P1=0; ";Xbr;N  
    P2=0; b2@x(5#  
    P3=1; =$z$VbBv  
    P=0; gB{R6 \<O  
    for m1=1:M1                 m_U6"\n 5  
    p=0.032*m1;                %input amplitude EqDYQ 7  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 WBIB'2:m  
    s1=s10; *B~:L"N  
    s20=0.*s10;                %input in waveguide 2 Rw^YTv  
    s30=0.*s10;                %input in waveguide 3 >^ 1S26  
    s2=s20; TF3q?0  
    s3=s30; :XY3TI  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   <`p'6n79  
    %energy in waveguide 1 p$G3r0 @  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   s6h Wq&C  
    %energy in waveguide 2 `1v!sSR0R  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   I; }%k;v6  
    %energy in waveguide 3 d/zX%  
    for m3 = 1:1:M3                                    % Start space evolution Fmle|  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 64j 4P 7  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; v})Ti190  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; +rw3.d  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform PC7.+;1  
       sca2 = fftshift(fft(s2)); kb\v}gfiD/  
       sca3 = fftshift(fft(s3)); (_5+`YsV  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   [hj'Yg8{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Ln%_8yth  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #UN{ J6{  
       s3 = ifft(fftshift(sc3)); ~\IDg/9 Cj  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Sqt"G6<  
       s1 = ifft(fftshift(sc1)); q5?mP6   
    end [bVP2j  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &Gwh<%=U  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Donf9]&U  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 0J-ux"kfI  
       P1=[P1 p1/p10]; 9)hC,)5  
       P2=[P2 p2/p10]; g]Ny?61  
       P3=[P3 p3/p10]; hQx e0Pdt  
       P=[P p*p]; gUtbCqDS  
    end rAdcMFW  
    figure(1) K'/x9.'%  
    plot(P,P1, P,P2, P,P3); `IQC\DSl/  
    m D q,,  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~