切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9211阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 }U7 ><I  
    1rhQ{6  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of GvT'v0&+  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of c- ^\YSDMN  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear uCpk1d  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z(-@8=0  
    m/W)IG>  
    %fid=fopen('e21.dat','w'); 4*9:  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) u-E*_% y  
    M1 =3000;              % Total number of space steps b 7bbrR8  
    J =100;                % Steps between output of space ws$!-t4<(  
    T =10;                  % length of time windows:T*T0 vZpt}u  
    T0=0.1;                 % input pulse width 4]]1J L(Ka  
    MN1=0;                 % initial value for the space output location "5R8Zl+  
    dt = T/N;                      % time step O WVa&8O  
    n = [-N/2:1:N/2-1]';           % Index /8w _jjW  
    t = n.*dt;   U GJ# "9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 .pQ4#AJ  
    u20=u10.*0.0;                  % input to waveguide 2 &U8W(NxN  
    u1=u10; u2=u20;                 -kd_gbnr3  
    U1 = u1;   `$D2w|  
    U2 = u2;                       % Compute initial condition; save it in U p V^hZ.  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. S_B;m1  
    w=2*pi*n./T; CvtG  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Yj^n4G(h  
    L=4;                           % length of evoluation to compare with S. Trillo's paper n.$wW =  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 9L'R;H?L  
    for m1 = 1:1:M1                                    % Start space evolution wA<#E6^vG  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS kiFTx &gf  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 0UvN ws  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 64OgE!  
       ca2 = fftshift(fft(u2)); v='h  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation e&(Di,%:  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [/ E_v gZ  
       u2 = ifft(fftshift(c2));                        % Return to physical space )5U&^tJ  
       u1 = ifft(fftshift(c1)); -\!"Kz/  
    if rem(m1,J) == 0                                 % Save output every J steps. TY3WP$u  
        U1 = [U1 u1];                                  % put solutions in U array Td5;bg6Qy  
        U2=[U2 u2]; &dkjT8L$  
        MN1=[MN1 m1]; ~cSOni`  
        z1=dz*MN1';                                    % output location 5M2G ;o  
      end r}y]B\/  
    end u;Q'xuo3  
    hg=abs(U1').*abs(U1');                             % for data write to excel Py[Z9KLX  
    ha=[z1 hg];                                        % for data write to excel wV;qc3  
    t1=[0 t']; Y|=/*?o}  
    hh=[t1' ha'];                                      % for data write to excel file 5/v@VUzH  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format `\:9 2+  
    figure(1) h@"dpmpe  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn MKYXYR  
    figure(2) p`3pRrER  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Fss7xP'  
    r~uWr'}a}  
    非线性超快脉冲耦合的数值方法的Matlab程序 Q2)z1'Wv  
    d aIt `}s  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   joh=0nk;D  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nJ`JF5tI  
    sSC yjS'T  
    H|H!VPof]  
    eM*@zo<-  
    %  This Matlab script file solves the nonlinear Schrodinger equations PYl(~Vac  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [e+"G <>  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear VGY#ph%  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y zXL8  
    N6Fj} m&E  
    C=1;                           2!/_Xh  
    M1=120,                       % integer for amplitude J}qk:xGL  
    M3=5000;                      % integer for length of coupler +1 H.5|  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) \ qc 8;"@  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 2bS)|#v<_t  
    T =40;                        % length of time:T*T0. \$2E  
    dt = T/N;                     % time step n_%JXm#\  
    n = [-N/2:1:N/2-1]';          % Index L\8 tqy.  
    t = n.*dt;   iXc-_V6  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. vIrLG1EK  
    w=2*pi*n./T; 1\q2;5  
    g1=-i*ww./2; \Clz#k8l1  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Lnnl++8Y  
    g3=-i*ww./2; Cyxt EzPp  
    P1=0; O&=?,zLO[  
    P2=0; t+k"$zR  
    P3=1; +.Kmpw4  
    P=0; +pJ;}+  
    for m1=1:M1                 g83!il\  
    p=0.032*m1;                %input amplitude (u-i{<   
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 e*e}X&|(g  
    s1=s10; MPMJkL$F^  
    s20=0.*s10;                %input in waveguide 2 <L@0w8i`  
    s30=0.*s10;                %input in waveguide 3 >A|6 kzC  
    s2=s20; 8@|_];9#.  
    s3=s30; .  \ *Z:  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   4`G":nE?We  
    %energy in waveguide 1 lcij}-z:%e  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   '+NmHu:q  
    %energy in waveguide 2 +I#5?  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   e =Vu;  
    %energy in waveguide 3 G6xdGUM  
    for m3 = 1:1:M3                                    % Start space evolution J4h7] qt  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ho2o/>Ef3  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 8w~I(2S:#  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; !}^c.<38Q  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform }`4o+  
       sca2 = fftshift(fft(s2)); %-|Po:6  
       sca3 = fftshift(fft(s3)); 0 ]U ;5  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _d&zHlc_  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Gd`qZqx#  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); A5tY4?|  
       s3 = ifft(fftshift(sc3)); Deq~"  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {j[[E/8N!y  
       s1 = ifft(fftshift(sc1)); gk~.u  
    end vV-ATIf ^  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &F[/@  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Y4}!9x  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); I@a7AuOw  
       P1=[P1 p1/p10]; f3s0.G#l  
       P2=[P2 p2/p10]; |cJyP9}n  
       P3=[P3 p3/p10]; C<2vuZD  
       P=[P p*p]; cu]2`DF  
    end g1L$+xD^  
    figure(1) %xf6U>T  
    plot(P,P1, P,P2, P,P3); XRKL;|cd  
    s2iR  }<  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~