计算脉冲在非线性耦合器中演化的Matlab 程序 P
gK> Z, j9]H~:g$d % This Matlab script file solves the coupled nonlinear Schrodinger equations of
a2\r^fY/ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Ed=]RR4R % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
~k[q:$T % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
ohj(1jt RbGq$vYol/ %fid=fopen('e21.dat','w');
5zR9N>!c N = 128; % Number of Fourier modes (Time domain sampling points)
t
(>} M1 =3000; % Total number of space steps
[W{WfJ-HwG J =100; % Steps between output of space
i%eq!q T =10; % length of time windows:T*T0
|#_`aT" T0=0.1; % input pulse width
T.kQ] h2ZG MN1=0; % initial value for the space output location
mhZ60 RW dt = T/N; % time step
J_ S]jE{ n = [-N/2:1:N/2-1]'; % Index
5<?s86GHh' t = n.*dt;
>qhoGg u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
1hnw+T<<W u20=u10.*0.0; % input to waveguide 2
uy^vQ/ u1=u10; u2=u20;
HHU0Nku@ho U1 = u1;
(#`1[n+b`x U2 = u2; % Compute initial condition; save it in U
<qpDAz4k ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Zn]njf1x w=2*pi*n./T;
-p\uW0XA g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
[h^>Iq
(Z L=4; % length of evoluation to compare with S. Trillo's paper
~KF>Jow?Y dz=L/M1; % space step, make sure nonlinear<0.05
.uGvmD<;x for m1 = 1:1:M1 % Start space evolution
i1E~ F u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
zPKx: I3 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
2IGoAt>V ca1 = fftshift(fft(u1)); % Take Fourier transform
ohPCYt ca2 = fftshift(fft(u2));
Ug1n4X3FKn c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
_K5R?"H0 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
rbw5.NU u2 = ifft(fftshift(c2)); % Return to physical space
#ovmX u1 = ifft(fftshift(c1));
9;*-y$@ if rem(m1,J) == 0 % Save output every J steps.
sa26u`? U1 = [U1 u1]; % put solutions in U array
]gHi5]\NC U2=[U2 u2];
eVy> MN1=[MN1 m1];
m5/d=k0l z1=dz*MN1'; % output location
eAPNF?0yh end
CMI V"- end
{+V]saYP hg=abs(U1').*abs(U1'); % for data write to excel
bXw!fYm& ha=[z1 hg]; % for data write to excel
GV"Hk E; t1=[0 t'];
+4Uxq{.K hh=[t1' ha']; % for data write to excel file
$V0G[!4 %dlmwrite('aa',hh,'\t'); % save data in the excel format
ZFNn(n figure(1)
^UEExjf waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
2sryhS'(H figure(2)
QxaW
x waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
d}2$J1` {r,MRZaa 非线性超快脉冲耦合的数值方法的Matlab程序 L~PBD?l 2Vn~o_ga 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
f*ICZM Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
i6@c@n XFiP8aX<
RrG5`2 ipThwp9 % This Matlab script file solves the nonlinear Schrodinger equations
E9"P~ nz % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
X*^^W_LH. % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
g$N/pg2>cT % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
N#Y|MfLc WX9ABh& 5 C=1;
dpPu&m+ M1=120, % integer for amplitude
Tt.#O~2:9 M3=5000; % integer for length of coupler
;;#_[Zl N = 512; % Number of Fourier modes (Time domain sampling points)
\[57Dmo dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
~Gz
b^ T =40; % length of time:T*T0.
BM,]Wjfdj dt = T/N; % time step
aA|<W
g n = [-N/2:1:N/2-1]'; % Index
p!OCF]r t = n.*dt;
]#fmih^ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
&P@dx=6d w=2*pi*n./T;
(1pR= g1=-i*ww./2;
B,_/'DneQK g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
m);0sb g3=-i*ww./2;
{|E' P1=0;
'[z529HN P2=0;
t6+c"=P# P3=1;
KS3>c7 P=0;
9[5qN!P;y for m1=1:M1
fK %${ p=0.032*m1; %input amplitude
K|{IX^3)V s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
iiw\ s1=s10;
*:+&SxL s20=0.*s10; %input in waveguide 2
%tOGs80_{ s30=0.*s10; %input in waveguide 3
`Pcbc\"*y s2=s20;
D["~G v s3=s30;
RI[=N:C^ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
.T63: %energy in waveguide 1
'BiR ,M$mY p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
%wDE+&M %energy in waveguide 2
U{JD\G8m p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Ki,SFww8r %energy in waveguide 3
cR*5iqA for m3 = 1:1:M3 % Start space evolution
vR)f'+_Nz s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
3bd(.he2u s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
RnaxRnXVR s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
F+m%PVW: sca1 = fftshift(fft(s1)); % Take Fourier transform
j TyR+#Wn sca2 = fftshift(fft(s2));
ev'` K=n8 sca3 = fftshift(fft(s3));
:]rb} 1nLB sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
c;13V(Djy sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
wqnHaWd* sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
e2><Y< s3 = ifft(fftshift(sc3));
;J>upI s2 = ifft(fftshift(sc2)); % Return to physical space
ms]r1x" s1 = ifft(fftshift(sc1));
b4R;#rm end
Mjon++>Z p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
a7fFp9l! p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
Lhz*o6) p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
rsaN<6#_^Q P1=[P1 p1/p10];
#hZ`r5GvTj P2=[P2 p2/p10];
9zL(PkC%\ P3=[P3 p3/p10];
@BmI1 P=[P p*p];
li37* end
#aua6V!" figure(1)
N8E plot(P,P1, P,P2, P,P3);
Img$D*BM wU5.t-|` 转自:
http://blog.163.com/opto_wang/