计算脉冲在非线性耦合器中演化的Matlab 程序 P+$:(I \<g*8?yFs % This Matlab script file solves the coupled nonlinear Schrodinger equations of
M|Rb&6O % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
|DsnNk0c % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
7.`fJf? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Phke`3tth 7nuU^wc %fid=fopen('e21.dat','w');
y:6; LZ9[ N = 128; % Number of Fourier modes (Time domain sampling points)
KGg3 !jY M1 =3000; % Total number of space steps
J_;o|gqX J =100; % Steps between output of space
Dtj&W<NXo T =10; % length of time windows:T*T0
!50[z: T0=0.1; % input pulse width
LGtIm7 MN1=0; % initial value for the space output location
Y0X-Zqk' dt = T/N; % time step
?Ec7" hK n = [-N/2:1:N/2-1]'; % Index
G["c\Xux t = n.*dt;
Bi{$@n&?f u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
YD7Oao4:o u20=u10.*0.0; % input to waveguide 2
' MxrQ;|S u1=u10; u2=u20;
Q@HopiC U1 = u1;
->V<DZK U2 = u2; % Compute initial condition; save it in U
1@-Ns ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
k`N^Vdr w=2*pi*n./T;
?5{>;#0Z g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
G
nG>7f[v L=4; % length of evoluation to compare with S. Trillo's paper
OE- gC2&Bm dz=L/M1; % space step, make sure nonlinear<0.05
jB(|";G for m1 = 1:1:M1 % Start space evolution
a0#J9O_ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
zO iu5 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
{lc\,F* $ ca1 = fftshift(fft(u1)); % Take Fourier transform
V=*wKuB ca2 = fftshift(fft(u2));
1{JV}O c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
&e!7Z40w@& c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
N}t
2Nu- u2 = ifft(fftshift(c2)); % Return to physical space
hr)B[<9 u1 = ifft(fftshift(c1));
1 |jt"Hz if rem(m1,J) == 0 % Save output every J steps.
ruld B,n U1 = [U1 u1]; % put solutions in U array
9c("x%nLpB U2=[U2 u2];
eYvWZJa4 MN1=[MN1 m1];
NN?`"Fww z1=dz*MN1'; % output location
5wDg'X]>V end
K9up:.{QQ end
2_Z ? #Y hg=abs(U1').*abs(U1'); % for data write to excel
<Pi|J-Y ha=[z1 hg]; % for data write to excel
:w^Ed%>y7 t1=[0 t'];
)z28=%g hh=[t1' ha']; % for data write to excel file
m* kl %dlmwrite('aa',hh,'\t'); % save data in the excel format
2V#>)R#k figure(1)
Zo~ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
m+T;O/lG0{ figure(2)
=7m)sxj]w waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
"9Q40w\ Fkd+pS\9g~ 非线性超快脉冲耦合的数值方法的Matlab程序
c$yk s z+n,uHs 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
_y}
T/I9 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
}WH&iES@P LF& z yL-YzF2 Yz+ZY % This Matlab script file solves the nonlinear Schrodinger equations
#;2n;.a % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
t,+nQ9 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
|$
lM#Ua % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
z)r=+ - 4J/}]Dr5 C=1;
7Bd-!$j+ M1=120, % integer for amplitude
[rV>57`YD M3=5000; % integer for length of coupler
waj0"u^# N = 512; % Number of Fourier modes (Time domain sampling points)
fy@<&U5rg dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
3!|;iJRH T =40; % length of time:T*T0.
?q{,R" dt = T/N; % time step
hRD=Y<>A n = [-N/2:1:N/2-1]'; % Index
heC/\@B t = n.*dt;
(Fhs" ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
#PH~1`vl w=2*pi*n./T;
[QoK5Yw{ g1=-i*ww./2;
q%"VYt4 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
NRIG 1v> g3=-i*ww./2;
.ufTQ?Fe P1=0;
_n50C"X=&( P2=0;
`n@*{J8 P3=1;
|8l<$J P=0;
8y.wSu
for m1=1:M1
V8C:"UZ; p=0.032*m1; %input amplitude
S79;^X s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
O
@j} K4 s1=s10;
TE7nJ gm s20=0.*s10; %input in waveguide 2
Vy Xhl; s30=0.*s10; %input in waveguide 3
iW%I|& s2=s20;
DpvI[r//'* s3=s30;
OuID%p"O p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
bU2Z[sn. %energy in waveguide 1
y[)> yq y p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
PGhY>$q>b %energy in waveguide 2
CR"|^{G p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
/-_h1.! %energy in waveguide 3
8m\7*l^D: for m3 = 1:1:M3 % Start space evolution
4gz
H8sF s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
( u\._Gwsx s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
_u5#v0Y s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
.*Ct bGw sca1 = fftshift(fft(s1)); % Take Fourier transform
C.Kh[V\Ut sca2 = fftshift(fft(s2));
T?tgdJ sca3 = fftshift(fft(s3));
e478U$ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
>,$_| C sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
NV72 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
"$+Jnc!! s3 = ifft(fftshift(sc3));
/v1Q4mq s2 = ifft(fftshift(sc2)); % Return to physical space
ff,pvk8N5 s1 = ifft(fftshift(sc1));
;o2$
Q end
1{ ~#H<K p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
0ghGBuv1s p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
|,gc_G p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
mS$j?>m P1=[P1 p1/p10];
S1Wj8P- P2=[P2 p2/p10];
K1"*.\?F P3=[P3 p3/p10];
Z<1FSk,[ P=[P p*p];
{JZZZY!n2 end
(2J: # figure(1)
8dZSi plot(P,P1, P,P2, P,P3);
la0BiLzb] XHK<AO^ 转自:
http://blog.163.com/opto_wang/