切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9116阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 vPn(~d_  
    yk4Huq&2  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of d+_wN2  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of &!uN N|W  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear DA_[pR  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q3M;'m  
    ^gwVh~j  
    %fid=fopen('e21.dat','w'); )2|'`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) `[<j5(T  
    M1 =3000;              % Total number of space steps 5h9`lS2  
    J =100;                % Steps between output of space GB1[`U%  
    T =10;                  % length of time windows:T*T0 5 JE8/CbH  
    T0=0.1;                 % input pulse width {CM%QMM  
    MN1=0;                 % initial value for the space output location =gCv`SFW  
    dt = T/N;                      % time step \>8"r,hG|  
    n = [-N/2:1:N/2-1]';           % Index sglYT!O  
    t = n.*dt;   6OJ`R.DM`  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 f-N:  
    u20=u10.*0.0;                  % input to waveguide 2 QfuKpcT &  
    u1=u10; u2=u20;                 NJG-~ w  
    U1 = u1;   X&1R6 O  
    U2 = u2;                       % Compute initial condition; save it in U l  I&%^>  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 9Z,vpTE  
    w=2*pi*n./T; #:{Bd8PS  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T pm+_s]s,  
    L=4;                           % length of evoluation to compare with S. Trillo's paper b]v.jgD  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 }|rnyYA  
    for m1 = 1:1:M1                                    % Start space evolution fLj#+h-!  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS d&: ABI  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Vd2bG4*=  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform f?wn;;z`  
       ca2 = fftshift(fft(u2)); c}a.  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation >5{Z'UWxh  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Y%v?ROql  
       u2 = ifft(fftshift(c2));                        % Return to physical space #>+O=YO  
       u1 = ifft(fftshift(c1)); Np4';H  
    if rem(m1,J) == 0                                 % Save output every J steps.  =,q,W$-  
        U1 = [U1 u1];                                  % put solutions in U array -hav/7g  
        U2=[U2 u2]; @B;2z_Y!l  
        MN1=[MN1 m1]; 4^T@n$2N  
        z1=dz*MN1';                                    % output location #?)g?u%g=  
      end -iu7/4!j  
    end acgtXfHR  
    hg=abs(U1').*abs(U1');                             % for data write to excel \IL/?J 5d  
    ha=[z1 hg];                                        % for data write to excel xEN""*Q  
    t1=[0 t']; qJ=4HlLno  
    hh=[t1' ha'];                                      % for data write to excel file _T6l*D  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format C%ibIcm y  
    figure(1) /3F4t V  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn %./vh=5)  
    figure(2) gTE/g'3  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn xS%Z   
    H#IJ&w|  
    非线性超快脉冲耦合的数值方法的Matlab程序 bmT_tNz  
    99%oY  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   D9 ~jMcX  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 L~_3BX  
    F-?K]t#  
    aZt5/|B  
    }W{rDc kv  
    %  This Matlab script file solves the nonlinear Schrodinger equations ezRhSN?  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ~|e?@3_G  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V!#+Ti/w4  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .i[rd4MCK  
    i3~"qbU%z[  
    C=1;                           B#RwW,  
    M1=120,                       % integer for amplitude okfGd= &  
    M3=5000;                      % integer for length of coupler Tw BwqQ)t  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 0 1U/{D6D  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 5gnNgt~  
    T =40;                        % length of time:T*T0. cn&\q.!fh  
    dt = T/N;                     % time step Wk$ 7<gkr  
    n = [-N/2:1:N/2-1]';          % Index +uMOT#KjR  
    t = n.*dt;   j4j %r(  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. uMl.}t2uYu  
    w=2*pi*n./T; UR|UGldt_T  
    g1=-i*ww./2; J-t5kU;L{  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =h,6/cs  
    g3=-i*ww./2; fHTqLYd-  
    P1=0; tZlz0BY!  
    P2=0; f/t1@d!  
    P3=1; <11pk  
    P=0; w '?xewx  
    for m1=1:M1                 c,a+u  
    p=0.032*m1;                %input amplitude qkB)CY7  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ]O'dwC  
    s1=s10; {2<A\nW  
    s20=0.*s10;                %input in waveguide 2  PZZTRgVc  
    s30=0.*s10;                %input in waveguide 3 9 p6QNDp  
    s2=s20; 1"J\iwN3  
    s3=s30; N1rBpt  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   '<" eG!O  
    %energy in waveguide 1 s[h& Uv"G  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ("(:wYR%  
    %energy in waveguide 2 Ei!5Qya>  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   r8\"'4B1  
    %energy in waveguide 3 Lc ,te1  
    for m3 = 1:1:M3                                    % Start space evolution j+0=)Q%I=  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 5~Vra@iab:  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; | k"?I  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; '`g#Zo  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform b|F_]i T  
       sca2 = fftshift(fft(s2)); =KfV;.&  
       sca3 = fftshift(fft(s3)); 19a/E1  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~~eR,HYk  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ~IvAnwQ'  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); z(]14250  
       s3 = ifft(fftshift(sc3)); ,H!E :k  
       s2 = ifft(fftshift(sc2));                       % Return to physical space =fmM=@!$<  
       s1 = ifft(fftshift(sc1)); Dohq@+] O  
    end t}LV[bj1u  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); s'\PU1{  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); *B"p:F7J|  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); v;.7-9c*  
       P1=[P1 p1/p10]; s)Bl1\Q  
       P2=[P2 p2/p10]; jt|e?1:vF  
       P3=[P3 p3/p10]; EVc Ees  
       P=[P p*p]; gf/$M[H!   
    end /mLOh2 T  
    figure(1) c>+l3&`  
    plot(P,P1, P,P2, P,P3); uM"G)$I\  
     y/t{*a  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~