切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9350阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Zb134b'  
    9Y<#=C  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ph#tgLJ  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of N?m0US u*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear yx<WSgWZ[  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <6G1 1-K  
    gt7VxZ  
    %fid=fopen('e21.dat','w'); d)"?mD:m/M  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) F|HJH"2*&q  
    M1 =3000;              % Total number of space steps 4#'(" #R  
    J =100;                % Steps between output of space i]#+1Hf  
    T =10;                  % length of time windows:T*T0 `WOYoec   
    T0=0.1;                 % input pulse width 1<<kA:d  
    MN1=0;                 % initial value for the space output location 1<h>B:  
    dt = T/N;                      % time step >R2SQA o  
    n = [-N/2:1:N/2-1]';           % Index F5 ]C{  
    t = n.*dt;   \6 93kQ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 =SAU4xjo  
    u20=u10.*0.0;                  % input to waveguide 2 MCP "GZK6W  
    u1=u10; u2=u20;                 /2RajsK  
    U1 = u1;   zA;@@)hwR  
    U2 = u2;                       % Compute initial condition; save it in U gn{=%`[  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. \G2B?>E;  
    w=2*pi*n./T; Go&D[#  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T D>!6,m2  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ,\aUq|~  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @Fpb-Qd"  
    for m1 = 1:1:M1                                    % Start space evolution :~ A%#  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 62>zt2=  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Zv_jy@k  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform p<v.Q   
       ca2 = fftshift(fft(u2)); ~kCwJ<E  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 0liR  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ]O:N-Y  
       u2 = ifft(fftshift(c2));                        % Return to physical space 4TwQO$C  
       u1 = ifft(fftshift(c1)); JNFIT;L  
    if rem(m1,J) == 0                                 % Save output every J steps. tyDY'W\]  
        U1 = [U1 u1];                                  % put solutions in U array iHp\o=#  
        U2=[U2 u2]; nCKbgM'"  
        MN1=[MN1 m1]; aRc'  
        z1=dz*MN1';                                    % output location A`u$A9[  
      end T`9-VX;`  
    end Kwhdu<6  
    hg=abs(U1').*abs(U1');                             % for data write to excel V >,Z-&.%  
    ha=[z1 hg];                                        % for data write to excel o y<J6  
    t1=[0 t']; a0*2) uL}  
    hh=[t1' ha'];                                      % for data write to excel file SxjCwX">  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ~=Ncp9ej#  
    figure(1) #2tCV't  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @wq#>bm  
    figure(2) ? /JBt /b  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn w&BGJYI  
    `E\imL  
    非线性超快脉冲耦合的数值方法的Matlab程序 %k0EpJE%  
    R1-k3;v^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   $iM=4 3W  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 I@l>w._.  
    T#O??3/%$1  
    SLhEc  
    g8'DoHJ*  
    %  This Matlab script file solves the nonlinear Schrodinger equations *wV[TKaN  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of `Vq`z]}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :h:@o h_=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #~ Q8M*~@  
    oH2!5;A|  
    C=1;                           M)cGz$Q|  
    M1=120,                       % integer for amplitude zx1:`K0bi  
    M3=5000;                      % integer for length of coupler y@wF_WX2  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) IwpbfZ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. hFvi 5I-b  
    T =40;                        % length of time:T*T0. y5 m!*=`l`  
    dt = T/N;                     % time step  <1&Ke  
    n = [-N/2:1:N/2-1]';          % Index o7+>G~i  
    t = n.*dt;   j K8'T_Pah  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. %q_Miu@  
    w=2*pi*n./T; x:t<ZG&Xwg  
    g1=-i*ww./2; *T4<&  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; MjaUdfx  
    g3=-i*ww./2; %McO6.M@  
    P1=0; \%,&~4 !  
    P2=0; Oe1 t\  
    P3=1; !5x Ly6=}  
    P=0; "D* Wi7  
    for m1=1:M1                 THhy~wC".  
    p=0.032*m1;                %input amplitude # X.+  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 S:Tm23pe  
    s1=s10; KIL18$3J  
    s20=0.*s10;                %input in waveguide 2 v\ZBv zd  
    s30=0.*s10;                %input in waveguide 3 ?kt=z4h9(  
    s2=s20; he )ulB  
    s3=s30; S*%iiD)  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   PdY>#Cyh  
    %energy in waveguide 1 .F0]6#(  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ykq'g|  
    %energy in waveguide 2 ]Qi,j#X  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   c!&Qj  
    %energy in waveguide 3 \Kd7dK9&]  
    for m3 = 1:1:M3                                    % Start space evolution 9u wL{P&  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS S2$5!(P  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; nR8]@cC  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 1a9w(X  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform za,2r^  
       sca2 = fftshift(fft(s2)); /~}_hO$S  
       sca3 = fftshift(fft(s3)); {Iy7.c8S  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~uPk  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Z|^MGyn  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2H&{1f\Bf  
       s3 = ifft(fftshift(sc3)); gw Qvao  
       s2 = ifft(fftshift(sc2));                       % Return to physical space qtSs)n  
       s1 = ifft(fftshift(sc1)); kqB\xlS7k  
    end +0pW/4x  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); D6!tVdnVe  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); DY><qk  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); T 2bnzI i  
       P1=[P1 p1/p10]; 5_G'68;OV  
       P2=[P2 p2/p10];  a@|.;#FF  
       P3=[P3 p3/p10]; bNvAyKc-  
       P=[P p*p]; xQz#i-v  
    end Kp_jy.e7&  
    figure(1) oofFrAaT  
    plot(P,P1, P,P2, P,P3);  3t  
    IYNMU\s  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~