计算脉冲在非线性耦合器中演化的Matlab 程序 vPn( ~d_
yk4Huq&2
% This Matlab script file solves the coupled nonlinear Schrodinger equations of d+_wN2
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of &!uNN|W
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear DA_[pR
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q3M;'m
^gwVh~j
%fid=fopen('e21.dat','w'); )2|'`
N = 128; % Number of Fourier modes (Time domain sampling points) `[<j5(T
M1 =3000; % Total number of space steps 5h9`lS2
J =100; % Steps between output of space GB1[`U%
T =10; % length of time windows:T*T0 5JE8/CbH
T0=0.1; % input pulse width {CM%QMM
MN1=0; % initial value for the space output location =gCv`SFW
dt = T/N; % time step \>8"r,hG|
n = [-N/2:1:N/2-1]'; % Index sglYT!O
t = n.*dt; 6OJ`R.DM`
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 f -N:
u20=u10.*0.0; % input to waveguide 2 QfuKpcT&
u1=u10; u2=u20; NJG-~w
U1 = u1; X&1R6O
U2 = u2; % Compute initial condition; save it in U l I&%^>
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 9Z,vpTE
w=2*pi*n./T; #:{Bd8PS
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T p m+_s]s,
L=4; % length of evoluation to compare with S. Trillo's paper b]v.jgD
dz=L/M1; % space step, make sure nonlinear<0.05 }|rnyYA
for m1 = 1:1:M1 % Start space evolution fLj#+h-!
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS d&:ABI
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Vd2bG4*=
ca1 = fftshift(fft(u1)); % Take Fourier transform f?wn;;z`
ca2 = fftshift(fft(u2));
c}a.
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation >5{Z'UWxh
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Y%v?ROql
u2 = ifft(fftshift(c2)); % Return to physical space #>+O=YO
u1 = ifft(fftshift(c1)); Np4';H
if rem(m1,J) == 0 % Save output every J steps. =,q,W$-
U1 = [U1 u1]; % put solutions in U array -hav/7g
U2=[U2 u2]; @B;2z_Y!l
MN1=[MN1 m1]; 4^T@n$2N
z1=dz*MN1'; % output location #?)g? u%g=
end -iu7/4!j
end acgtXfHR
hg=abs(U1').*abs(U1'); % for data write to excel \IL/?J
5d
ha=[z1 hg]; % for data write to excel xEN""*Q
t1=[0 t']; qJ=4HlLno
hh=[t1' ha']; % for data write to excel file _T6l*D
%dlmwrite('aa',hh,'\t'); % save data in the excel format C%ibIcm y
figure(1) /3F4t
V
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn %./vh=5)
figure(2) gTE/g'3
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn xS%Z
H#IJ&w|
非线性超快脉冲耦合的数值方法的Matlab程序 bmT_tNz
99%oY
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 D9
~jMcX
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 L~_3BX
F-?K]t#
aZt5/|B
}W{rDc kv
% This Matlab script file solves the nonlinear Schrodinger equations ezRhSN?
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ~|e?@3_G
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V!#+Ti/w4
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .i[rd4MCK
i3~"qbU%z[
C=1; B#RwW,
M1=120, % integer for amplitude okfGd=
&
M3=5000; % integer for length of coupler TwBwqQ)t
N = 512; % Number of Fourier modes (Time domain sampling points) 0 1U/{D6D
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 5gnNgt~
T =40; % length of time:T*T0. cn&\q.!fh
dt = T/N; % time step Wk$ 7<