切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8720阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ~i_ R%z:y  
    9OJ\n|,(  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of D^R! |K/  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of u):Rw  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear yQA"T?  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6Nd_YX  
    >* Qk~kv<%  
    %fid=fopen('e21.dat','w'); vsr~[d=  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ]zM90$6  
    M1 =3000;              % Total number of space steps 3bI|X!j  
    J =100;                % Steps between output of space dE9aE#o  
    T =10;                  % length of time windows:T*T0 uwS'*5tU  
    T0=0.1;                 % input pulse width N(({2'Rr  
    MN1=0;                 % initial value for the space output location J<P/w%i2  
    dt = T/N;                      % time step :#!F 7u  
    n = [-N/2:1:N/2-1]';           % Index cX=b q_  
    t = n.*dt;   /RULPd PH  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 EpoQV^ Ey  
    u20=u10.*0.0;                  % input to waveguide 2 '?!<I  
    u1=u10; u2=u20;                 nrD=[kc!w  
    U1 = u1;   C` 1\$U~%  
    U2 = u2;                       % Compute initial condition; save it in U ~zOU/8n ,F  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. TXk"[>,:H  
    w=2*pi*n./T; fS$Yl~-m?  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T pcxl2I  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 8'_ ]gfF  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 1.OXkgh  
    for m1 = 1:1:M1                                    % Start space evolution o _,$`nEJ  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ABYW1K=  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; c.me1fGn  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform LF,c-Cv!jL  
       ca2 = fftshift(fft(u2)); ~(doy@0M  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation nh.v?|  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Z YO/'YW  
       u2 = ifft(fftshift(c2));                        % Return to physical space V9 t:JY  
       u1 = ifft(fftshift(c1)); h^,YYoA$  
    if rem(m1,J) == 0                                 % Save output every J steps. "@<g'T0  
        U1 = [U1 u1];                                  % put solutions in U array PT*@#:MA  
        U2=[U2 u2]; O7_NXfh|  
        MN1=[MN1 m1]; w\Eve:  
        z1=dz*MN1';                                    % output location E6IL,Iq9  
      end 1~iBzPU2  
    end  u^eC  
    hg=abs(U1').*abs(U1');                             % for data write to excel ).#D:eO[~  
    ha=[z1 hg];                                        % for data write to excel T=KrT7  
    t1=[0 t']; cngPc]?N  
    hh=[t1' ha'];                                      % for data write to excel file Vh-h{  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format #S74C*'8  
    figure(1) eMMiSO!3  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn :QY9pT  
    figure(2) v?'k)B  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Mh B=+S[@  
    L1w4WFWO  
    非线性超快脉冲耦合的数值方法的Matlab程序 si4=C  
    $fpDABf  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   j3'/jk]\  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Iz=E8R g  
    ov.rHVeI  
    /u1zRw  
    x~,?Zj)n?C  
    %  This Matlab script file solves the nonlinear Schrodinger equations *>H'@gS  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of <5L`d}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @?NLME  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vb2O4%7tw  
    y,eoTmaI  
    C=1;                           N9hWx()v  
    M1=120,                       % integer for amplitude ~9 nrS9)  
    M3=5000;                      % integer for length of coupler -P uVI5L<  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) [9Hm][|Ph  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. :EAfD(D{)  
    T =40;                        % length of time:T*T0. j[ YTg]  
    dt = T/N;                     % time step 5 `mVe0uI  
    n = [-N/2:1:N/2-1]';          % Index A)0m~+?{J  
    t = n.*dt;   +K4v"7C V  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. q:eAL'OkM  
    w=2*pi*n./T; j>=".^J  
    g1=-i*ww./2;  C3Z(k}  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; !: [` V!{  
    g3=-i*ww./2; m#(x D~V  
    P1=0; g5]DA.&(  
    P2=0; u9%:2$[  
    P3=1; PltPIu)F  
    P=0; dNmX<WXG  
    for m1=1:M1                 5{=MUU=  
    p=0.032*m1;                %input amplitude ~0  t'+.  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 0a;zT O/"v  
    s1=s10; %[;KO&Ga  
    s20=0.*s10;                %input in waveguide 2 rJ*WxOoS{  
    s30=0.*s10;                %input in waveguide 3 .j,&/y&  
    s2=s20; #_5+kBA+>'  
    s3=s30; KWkT 9[H  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   O~1p]j  
    %energy in waveguide 1 LD"}$vfs  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   .h } D%Qa  
    %energy in waveguide 2 <0MUn#7'  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   z#!Cg*K(  
    %energy in waveguide 3 D{}\7qe  
    for m3 = 1:1:M3                                    % Start space evolution \p|!=H@  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS }jXUd=.Nu  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; m)2U-3*iX  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; #@`^  .  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform vdM\scO:  
       sca2 = fftshift(fft(s2)); ~nlY8B(  
       sca3 = fftshift(fft(s3)); 27gm_ *  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   3`I_  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); +{*&I DW  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); tt91)^GdYa  
       s3 = ifft(fftshift(sc3)); q3:' 69  
       s2 = ifft(fftshift(sc2));                       % Return to physical space +d15a%^`  
       s1 = ifft(fftshift(sc1)); g==^ioS}*  
    end L*38T\  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 3s Nq3I  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Tj#XsD?J  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Gj?q+-d!(5  
       P1=[P1 p1/p10]; sJvn#cS  
       P2=[P2 p2/p10]; suSIz 7:  
       P3=[P3 p3/p10]; [J#(k`@  
       P=[P p*p]; F3'G9Xf8Q=  
    end [Hf FC3U  
    figure(1) q5Mif\  
    plot(P,P1, P,P2, P,P3); %stktVDAP  
     O@$i  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~