计算脉冲在非线性耦合器中演化的Matlab 程序 &&nvv &a Uz} #. % This Matlab script file solves the coupled nonlinear Schrodinger equations of
l#Ipo5= % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
[sy~i{Bm % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
bzF>Efza % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
tMR&>hM P\pHos %fid=fopen('e21.dat','w');
zgI!S6q N = 128; % Number of Fourier modes (Time domain sampling points)
.hzzoLI2 M1 =3000; % Total number of space steps
6c$ so J =100; % Steps between output of space
SDwTGQ/0 T =10; % length of time windows:T*T0
hs!a'E T0=0.1; % input pulse width
anxgD?<+B MN1=0; % initial value for the space output location
G%jgr"]\z dt = T/N; % time step
iVu n = [-N/2:1:N/2-1]'; % Index
- 0R5g3^*/ t = n.*dt;
(y*7
gf u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
K`{P/w u20=u10.*0.0; % input to waveguide 2
3CL/9C> u1=u10; u2=u20;
4>-'w MW") U1 = u1;
:PE{2* U2 = u2; % Compute initial condition; save it in U
'y[74?1 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
#>iBu:\J w=2*pi*n./T;
@.0>gmY;: g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
_kg<KD=P L=4; % length of evoluation to compare with S. Trillo's paper
@a$_F3W dz=L/M1; % space step, make sure nonlinear<0.05
w$[&ejFb for m1 = 1:1:M1 % Start space evolution
&kUEnwQ- u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
j)xRzImu u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
rofj&{w ca1 = fftshift(fft(u1)); % Take Fourier transform
)S@e&a|
ca2 = fftshift(fft(u2));
#s>AiD c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
]Wr2I M c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
R/ix,GC u2 = ifft(fftshift(c2)); % Return to physical space
kw{dvE\K u1 = ifft(fftshift(c1));
~"|MwR!0 if rem(m1,J) == 0 % Save output every J steps.
6
<XQ'tM]N U1 = [U1 u1]; % put solutions in U array
`@TWZ%f6 U2=[U2 u2];
[U]^:sV) MN1=[MN1 m1];
-@L7!,j z1=dz*MN1'; % output location
5.! OC5tO end
gR1vUad7 end
q)te/J@ hg=abs(U1').*abs(U1'); % for data write to excel
`yF6-F ha=[z1 hg]; % for data write to excel
diHK t1=[0 t'];
-LzkM" hh=[t1' ha']; % for data write to excel file
X
.,Lmh %dlmwrite('aa',hh,'\t'); % save data in the excel format
mh#NmW>n figure(1)
@n2Dt d waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
|?v(? figure(2)
yC \dM1X waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
]Q0m]OaT k;/K']4y 非线性超快脉冲耦合的数值方法的Matlab程序 "o_s=^U E{s p 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
zUq ^ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
[l44,!Z& gxnIur) # dA9v7 {=K);z % This Matlab script file solves the nonlinear Schrodinger equations
Ey|{yUmU+ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
eJbZA&: % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
43wm_4C!H % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
>AK9F.
_z {E=BFs C=1;
Lb]!TOl M1=120, % integer for amplitude
d*$L$1S M3=5000; % integer for length of coupler
5PY4PT=G N = 512; % Number of Fourier modes (Time domain sampling points)
/cHUqn30a dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
OSoIH`tA T =40; % length of time:T*T0.
Me 5Xd| dt = T/N; % time step
f$>KTb({B n = [-N/2:1:N/2-1]'; % Index
R7\T.;8+ t = n.*dt;
A1Ru&fd! ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
*^y,Gg/ w=2*pi*n./T;
B]2m(0Y>>v g1=-i*ww./2;
<+y%k~(" g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
ycq+C8J+Ep g3=-i*ww./2;
!$u:[T_8 P1=0;
0oK_u Y
4g P2=0;
E)3Ah! P3=1;
:$6mS[@| P=0;
:+_uyp2V for m1=1:M1
Bnp\G h p=0.032*m1; %input amplitude
B4@1WZn<8 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
+Y?)? s1=s10;
2dsXG$-W2 s20=0.*s10; %input in waveguide 2
7D(Eo{ue s30=0.*s10; %input in waveguide 3
*82+GY] s2=s20;
CCHGd&\Z s3=s30;
!78P+i p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
_C@A>]GT %energy in waveguide 1
w#v-h3XcF p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
shgZru %energy in waveguide 2
*I:a\o~$[ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
o 9rZ&Q< %energy in waveguide 3
GIb,y,PDB for m3 = 1:1:M3 % Start space evolution
bvW3[ V s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
LpK? C<?x s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
BOflhoUX s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
s"UUo|hM sca1 = fftshift(fft(s1)); % Take Fourier transform
Pm7lP5 sca2 = fftshift(fft(s2));
IayF<y,8 sca3 = fftshift(fft(s3));
K
0e*K=UM sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
1%$t;R sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
oeYUsnsbi sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
}}qY,@eeX s3 = ifft(fftshift(sc3));
`]`S"W7& s2 = ifft(fftshift(sc2)); % Return to physical space
CKnPMvmz s1 = ifft(fftshift(sc1));
1B#iJZ} end
U5
ia| V p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
9Y:Iha`$w p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
Avww@$ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Cxd^i P1=[P1 p1/p10];
uZM%F) P2=[P2 p2/p10];
<a&w$Zc/ P3=[P3 p3/p10];
%Rt
5$+dNT P=[P p*p];
+~>cAWZq_ end
tkYPfUvTE figure(1)
D GL=\ plot(P,P1, P,P2, P,P3);
!hFzIp ( Sjlm^bca 转自:
http://blog.163.com/opto_wang/