切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8599阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^W-03  
    .iFd  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of r:u,  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of `4E6&&E+S  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear nzI}w7>VU  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 __jFSa`at  
    6@_Vg~=S  
    %fid=fopen('e21.dat','w'); u`Kjs}F'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) l n}2   
    M1 =3000;              % Total number of space steps 0^htwec!  
    J =100;                % Steps between output of space )r _zM~jI  
    T =10;                  % length of time windows:T*T0 wIT0A-Por4  
    T0=0.1;                 % input pulse width 9 z_9yT  
    MN1=0;                 % initial value for the space output location i}mvKV?!|1  
    dt = T/N;                      % time step sG{hUsPa  
    n = [-N/2:1:N/2-1]';           % Index @ m14x}H  
    t = n.*dt;   ~$7fU  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 %G!BbXlz  
    u20=u10.*0.0;                  % input to waveguide 2 V6%J9+DK  
    u1=u10; u2=u20;                 m}Z=m8  
    U1 = u1;    A i`  
    U2 = u2;                       % Compute initial condition; save it in U bbevy!m  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. }$-;P=k  
    w=2*pi*n./T; f{=0-%dA  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T G|5M~zP  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ~x`BV+R  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 kae &,'@JF  
    for m1 = 1:1:M1                                    % Start space evolution C FqteY"  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 9L+dN%C  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ]AjDe]  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ;Js-27_0  
       ca2 = fftshift(fft(u2)); Y> }[c   
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "?E>rWz  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   w>M8 FG(4]  
       u2 = ifft(fftshift(c2));                        % Return to physical space $ K>.|\  
       u1 = ifft(fftshift(c1)); <C0~7]XO  
    if rem(m1,J) == 0                                 % Save output every J steps. 9\F:<Bf$#  
        U1 = [U1 u1];                                  % put solutions in U array I8=p_Ie  
        U2=[U2 u2]; EN^C'n  
        MN1=[MN1 m1]; l_ /q/8-l  
        z1=dz*MN1';                                    % output location t)Q6A@$:  
      end *T(z4RVg  
    end sBozz#  
    hg=abs(U1').*abs(U1');                             % for data write to excel NijvFT$V1  
    ha=[z1 hg];                                        % for data write to excel FOz7W  
    t1=[0 t']; EMy Med_  
    hh=[t1' ha'];                                      % for data write to excel file no_(J>p^&  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 5c*kgj:x  
    figure(1) 'urn5[i  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 4N&4TUIM  
    figure(2) + k1|+zzS  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn rv/O^aL`Y  
    W10=SM}  
    非线性超快脉冲耦合的数值方法的Matlab程序 )%D2JC  
    59eq"08  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   04eE\%?  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^_dYE]t  
    q.]>uBAQ?  
    Sl@$  
    +r0ItqkM  
    %  This Matlab script file solves the nonlinear Schrodinger equations 3\J-=U  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kaBP& 6|Z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }%z {tn  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 F2QX ^*  
    iQryX(z  
    C=1;                           hq}kAv4B=  
    M1=120,                       % integer for amplitude _=ani9E]uF  
    M3=5000;                      % integer for length of coupler +S!gS|8P  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ESdjDg$[u  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. \nQV{J  
    T =40;                        % length of time:T*T0. /Yk4%ZJ{  
    dt = T/N;                     % time step qcYF&  
    n = [-N/2:1:N/2-1]';          % Index 2, bo  
    t = n.*dt;   *`]LbS  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. R0>GM`{  
    w=2*pi*n./T; 6$#p}nE  
    g1=-i*ww./2; ".Lwq_  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~&bn} M>W  
    g3=-i*ww./2; ` drds  
    P1=0; eJWcrVpn  
    P2=0; O>P792)  
    P3=1; )HPt(Ck  
    P=0; Y*!J +A#  
    for m1=1:M1                 GjDs,9@f  
    p=0.032*m1;                %input amplitude !/pE6)a  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 #=~n>qn]  
    s1=s10; !RX7TYf  
    s20=0.*s10;                %input in waveguide 2 <PCa37  
    s30=0.*s10;                %input in waveguide 3 D[d+lq#p  
    s2=s20; ]w2nVC 3  
    s3=s30; //9M~qHa"  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   <[7 bUB  
    %energy in waveguide 1 4.?tP7UE  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   3LT[?C]H$  
    %energy in waveguide 2 _T,X z_  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   O3Jp:.ps  
    %energy in waveguide 3 |3tq.JU  
    for m3 = 1:1:M3                                    % Start space evolution eC+S'Jgf  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS x8L$T (^  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ][Ne;F6  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; }bwH(OOS  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ?!PpooYK  
       sca2 = fftshift(fft(s2)); <B,z)c  
       sca3 = fftshift(fft(s3)); # tN#_<W  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   `/WX!4eR,  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); $w,&h:.p  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); d9'gH#f?  
       s3 = ifft(fftshift(sc3)); P)VysYb?  
       s2 = ifft(fftshift(sc2));                       % Return to physical space $+#Lq.3,  
       s1 = ifft(fftshift(sc1)); >Q159qZ  
    end ZM:!LkK  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); tS1(.CRk  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); B]):$#{Rxl  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); -ti nL(?3  
       P1=[P1 p1/p10]; ^pAgo B  
       P2=[P2 p2/p10]; gEFs4; CN  
       P3=[P3 p3/p10]; /uXEh61$8  
       P=[P p*p]; f@:.bp8VB8  
    end B2}|b^'I  
    figure(1) 58T<~u7  
    plot(P,P1, P,P2, P,P3); q|Oz   
    |2oCEb1  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~