切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8332阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ;b-XWK=  
    ER,1(1]N  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of oudxm[/U  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )GHq/:1W  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear U&O: _>~  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )1X#*mCxk  
    E>l~-PaZY  
    %fid=fopen('e21.dat','w'); 98^V4maR:  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 13taFV dU  
    M1 =3000;              % Total number of space steps 03C0L&  
    J =100;                % Steps between output of space a+n0|CvF  
    T =10;                  % length of time windows:T*T0 m*JaXa  
    T0=0.1;                 % input pulse width yPq'( PV  
    MN1=0;                 % initial value for the space output location GSH>7!.#  
    dt = T/N;                      % time step 5oAK8I  
    n = [-N/2:1:N/2-1]';           % Index p5G?N(l  
    t = n.*dt;   Jv^h\~*jH  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ;^Dpl'v%\  
    u20=u10.*0.0;                  % input to waveguide 2 wmTb97o  
    u1=u10; u2=u20;                 P&f7@MOV.P  
    U1 = u1;   h $2</J"  
    U2 = u2;                       % Compute initial condition; save it in U )ut&@]  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. %7|9sQ:  
    w=2*pi*n./T; &Xf}8^T<V  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T YPxM<Gfa8  
    L=4;                           % length of evoluation to compare with S. Trillo's paper .mR8q+I6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 {;2PL^i  
    for m1 = 1:1:M1                                    % Start space evolution YOcO4   
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS a |X a3E  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; lnjXD oVb<  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform v/_  
       ca2 = fftshift(fft(u2)); wRVUu)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $` ""  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   vX.VfY  
       u2 = ifft(fftshift(c2));                        % Return to physical space +U3DG$  
       u1 = ifft(fftshift(c1)); }~L.qG  
    if rem(m1,J) == 0                                 % Save output every J steps. Abc)i7!.,.  
        U1 = [U1 u1];                                  % put solutions in U array ,y#Kv|R  
        U2=[U2 u2]; > ;*b|Ik  
        MN1=[MN1 m1]; HAa; hb  
        z1=dz*MN1';                                    % output location A6thXs2  
      end c24dSNJg,  
    end \2h!aRWR  
    hg=abs(U1').*abs(U1');                             % for data write to excel x<ZJb  
    ha=[z1 hg];                                        % for data write to excel DW[N|-L  
    t1=[0 t']; #"G]ke1l$  
    hh=[t1' ha'];                                      % for data write to excel file NPp;78O0[  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format .:F%_dS D  
    figure(1) #AJM6* G9  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn t7aefV&_,  
    figure(2)  tVN  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ) AvN\sC  
    s*.hl.k.  
    非线性超快脉冲耦合的数值方法的Matlab程序 8)_XJ"9)G  
    ?82xdp g  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   "~|6tQLc  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |IzPgC  
    rD 3v$B  
    Hquc o  
    8.O8No:'&  
    %  This Matlab script file solves the nonlinear Schrodinger equations K  &N  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 3`DQo%<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear , s"^kFl  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s;ls qQk  
    H&-zZc4\  
    C=1;                           P/W XaE4  
    M1=120,                       % integer for amplitude T4Pgbop  
    M3=5000;                      % integer for length of coupler Q' {M L4  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) z7fp#>uw  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. AP 2_MV4W  
    T =40;                        % length of time:T*T0. 8}O lL,fP  
    dt = T/N;                     % time step 4O^xY 6m  
    n = [-N/2:1:N/2-1]';          % Index lR6@ xJd:@  
    t = n.*dt;   KW pVw!  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. %]}  
    w=2*pi*n./T; A P?R"%  
    g1=-i*ww./2; ia!y!_L\'  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Ng2twfSl$  
    g3=-i*ww./2; vN;N/mL  
    P1=0; r@H /kD  
    P2=0; &]|?o_p3W  
    P3=1; #lL^?|M  
    P=0; P@V0Mi),  
    for m1=1:M1                 K0|FY=#2y  
    p=0.032*m1;                %input amplitude KPKt^C  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2} /aFR  
    s1=s10; V ]lLw)  
    s20=0.*s10;                %input in waveguide 2 NJWA3zz   
    s30=0.*s10;                %input in waveguide 3 ];[}:f  
    s2=s20; 7x|9n  
    s3=s30; g}k`o!q  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   E Nh l&J  
    %energy in waveguide 1 f@wquG'  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   B" 1c  
    %energy in waveguide 2 JcsHt;  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   he;dq)-e9  
    %energy in waveguide 3 U ]H#MiC!  
    for m3 = 1:1:M3                                    % Start space evolution hF~n)oQ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS P~>O S5^  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; *v^Jb/E315  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; |"8b_Cq{  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform o,\$ZxSlm  
       sca2 = fftshift(fft(s2)); Tztu}t]N  
       sca3 = fftshift(fft(s3)); \kL 3.W_  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   l *(8i ^  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 8mvy\l EEH  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); aFX=C >M  
       s3 = ifft(fftshift(sc3)); )-I { ^(  
       s2 = ifft(fftshift(sc2));                       % Return to physical space & p  
       s1 = ifft(fftshift(sc1)); /L g)i\R;  
    end S6Q  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); q$d>(vb q  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); JzQ_{J`k  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); H(ARw'M  
       P1=[P1 p1/p10]; r= `Jn6@  
       P2=[P2 p2/p10]; U2#"p   
       P3=[P3 p3/p10]; {T$9?`h~M  
       P=[P p*p]; q_[o" wq/  
    end G:<aB  
    figure(1) A4x]Qh3OO  
    plot(P,P1, P,P2, P,P3); iy.p n  
    i+ ?^8#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~