计算脉冲在非线性耦合器中演化的Matlab 程序 9XobTi3+' yq6!8OkF % This Matlab script file solves the coupled nonlinear Schrodinger equations of
YA{Kgc^ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
jqb,^T|j;m % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
2/B(T5PY@ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
x9-K}s]% U:_T9!fG %fid=fopen('e21.dat','w');
"9kEqz4a N = 128; % Number of Fourier modes (Time domain sampling points)
KGP2,U6 M1 =3000; % Total number of space steps
Yk?uxZ4)H J =100; % Steps between output of space
asPD>j c T =10; % length of time windows:T*T0
d 'x;]#S T0=0.1; % input pulse width
"pMXTRb MN1=0; % initial value for the space output location
8Q#&=]W$ dt = T/N; % time step
uZ<Bfrc n = [-N/2:1:N/2-1]'; % Index
>tib21* t = n.*dt;
+n2x@ 0op u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
,1^)JshZ~ u20=u10.*0.0; % input to waveguide 2
WYEvW<Hv u1=u10; u2=u20;
<XCH{Te1 U1 = u1;
Y<a/(` U2 = u2; % Compute initial condition; save it in U
FCqs' ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
mc!3FJ w=2*pi*n./T;
9Ki86 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
s_D7?o L=4; % length of evoluation to compare with S. Trillo's paper
<KHB/7 dz=L/M1; % space step, make sure nonlinear<0.05
{D`F$=Dlw for m1 = 1:1:M1 % Start space evolution
GbB&kE3KP u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
~X`vRSrH u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
D=9x/ ) *G ca1 = fftshift(fft(u1)); % Take Fourier transform
ELY$ ]^T ca2 = fftshift(fft(u2));
P5] cEZ n c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
\f /<#' c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
~@itZ,d\ u2 = ifft(fftshift(c2)); % Return to physical space
^B1vvb u1 = ifft(fftshift(c1));
nqiy)ZN#R if rem(m1,J) == 0 % Save output every J steps.
~)oC+H@{ U1 = [U1 u1]; % put solutions in U array
LoBKR
c2t U2=[U2 u2];
tC|5;'m.2 MN1=[MN1 m1];
IO v4Zx<) z1=dz*MN1'; % output location
%[NefA( end
`pII-dSC% end
LjxTRtB_ hg=abs(U1').*abs(U1'); % for data write to excel
P d*}0a~ ha=[z1 hg]; % for data write to excel
3bE^[V8/ t1=[0 t'];
"uZ'oN hh=[t1' ha']; % for data write to excel file
xu&
v(C9 %dlmwrite('aa',hh,'\t'); % save data in the excel format
0qR;Z{k figure(1)
l9P~,Ec4'' waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
'e{e>>03 figure(2)
;=B&t@ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
M}38uxP i$%;z~#wW 非线性超快脉冲耦合的数值方法的Matlab程序 |6_<4lmTxF }=XL^a|V 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
XUW~8P Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
;]<$p[m #;?z< u7a4taM$d Q?[k>fu0 % This Matlab script file solves the nonlinear Schrodinger equations
ckhW?T>l % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
.>CqZN,^ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
U%w-/!p % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
<
> f12pu ^IQC:21 C=1;
OaU$ [Z'8 M1=120, % integer for amplitude
1*>a M3=5000; % integer for length of coupler
nSd?P'PFg N = 512; % Number of Fourier modes (Time domain sampling points)
&Hh%pY" dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
FA4bv9:hi T =40; % length of time:T*T0.
(qB$I\ dt = T/N; % time step
173/A=] n = [-N/2:1:N/2-1]'; % Index
p1X
lni%= t = n.*dt;
`$MO.K{ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
>@ge[MuS w=2*pi*n./T;
<V>vDno\ g1=-i*ww./2;
d@] 0 =Ax g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
O- r"G g3=-i*ww./2;
3~Ipcr
B P1=0;
b?HW6Kfc P2=0;
3n6_yK+D P3=1;
=;@5Ue
J P=0;
299; N for m1=1:M1
<M+ZlF-` p=0.032*m1; %input amplitude
-Frx {3 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
tLV9b %i( s1=s10;
x#Hq74H, s20=0.*s10; %input in waveguide 2
T(3"bS., s30=0.*s10; %input in waveguide 3
! daXF&q s2=s20;
7%)4cHZ^$? s3=s30;
6aMqU?- p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
;t*45 %energy in waveguide 1
`n5|4yaG~ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
JNX7]j\ %energy in waveguide 2
D&N5) p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
o?hya.;h4 %energy in waveguide 3
DZLSn Ax for m3 = 1:1:M3 % Start space evolution
!;iySRZr s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
DSET!F;PG s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
lBPZB% s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
cB?HMLbG> sca1 = fftshift(fft(s1)); % Take Fourier transform
e ~*qi&,4 sca2 = fftshift(fft(s2));
i:{a-Bd sca3 = fftshift(fft(s3));
c9f~^}jNb sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
WERK JA sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
&XgB-}^: sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
pD`7N<F 3 s3 = ifft(fftshift(sc3));
ZH~m%sA s2 = ifft(fftshift(sc2)); % Return to physical space
5:56l>0 s1 = ifft(fftshift(sc1));
=@{H7z(p& end
hc~--[1c: p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
hQl3F6-ud p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
9\Yj`,i5 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
6,s@>8n P1=[P1 p1/p10];
2r[Q$GPM< P2=[P2 p2/p10];
dos$d3B4 P3=[P3 p3/p10];
r=qb[4HiV P=[P p*p];
f]o DZO%^ end
e2/&X;2 figure(1)
QLIm+)T plot(P,P1, P,P2, P,P3);
1Qf5H!5vx #sNa}292" 转自:
http://blog.163.com/opto_wang/