切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8670阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ={@6{-tl  
    -fW*vE:  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of UhQj Qaa~  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Od,qbU4O  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @O^6&\s>  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @YTaSz$L  
    ,S]7 'UP  
    %fid=fopen('e21.dat','w'); =R$u[~Xl2X  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) )W _v:?A9  
    M1 =3000;              % Total number of space steps Tqn@P  
    J =100;                % Steps between output of space CU2*z(]&  
    T =10;                  % length of time windows:T*T0 w-L=LWL\  
    T0=0.1;                 % input pulse width q ,]L$  
    MN1=0;                 % initial value for the space output location ra gXn  
    dt = T/N;                      % time step mLLDE;7|}  
    n = [-N/2:1:N/2-1]';           % Index 8\A#CQ5b  
    t = n.*dt;   sLT3Y}IO  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 uo%)1NS!  
    u20=u10.*0.0;                  % input to waveguide 2 !Pfr,a  
    u1=u10; u2=u20;                 q Y? j#fzi  
    U1 = u1;   Pw`8Wj  
    U2 = u2;                       % Compute initial condition; save it in U w;:*P  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. IDriGZZ<)6  
    w=2*pi*n./T; u[=r,^YQ  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T YWO)HsjP  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ">,|V-H  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 A&Usddcp  
    for m1 = 1:1:M1                                    % Start space evolution jZkcBIK2  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS yEoF4bt  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >rmqBDKaQ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform >7T'OC  
       ca2 = fftshift(fft(u2)); w4{<n /"  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ]dmrkZz:  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ~1AgD-:Jz  
       u2 = ifft(fftshift(c2));                        % Return to physical space \aUC(K~o\;  
       u1 = ifft(fftshift(c1)); By",rD- r  
    if rem(m1,J) == 0                                 % Save output every J steps. WUXx;9>  
        U1 = [U1 u1];                                  % put solutions in U array :g=qz~2Xk  
        U2=[U2 u2]; .|>3k'<l  
        MN1=[MN1 m1]; goOCu  
        z1=dz*MN1';                                    % output location Y0dEH^I  
      end cj|80$cSA  
    end Ma']?Rb`  
    hg=abs(U1').*abs(U1');                             % for data write to excel g63(E,;;J  
    ha=[z1 hg];                                        % for data write to excel J7Hl\Q[D1  
    t1=[0 t']; @&3EJ1  
    hh=[t1' ha'];                                      % for data write to excel file i0kak`x0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format `*cxH..  
    figure(1) m{cGK`/\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn CMG&7(MR  
    figure(2) H0gbSd+  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn t[;LD_  
     JWhdMU  
    非线性超快脉冲耦合的数值方法的Matlab程序 */^q{PsN  
    ;yLu R  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   p\tm:QWD;  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *-=(Q`3  
    Y^;ovH~ ve  
    N06OvU2>xU  
    S.94 edQ  
    %  This Matlab script file solves the nonlinear Schrodinger equations }mYx_=+VX  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of FQ7T'G![  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear SpLzm A  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BB!THj69a6  
    z2_*%S@  
    C=1;                           HI R~"It$  
    M1=120,                       % integer for amplitude i$:*Pb3mV  
    M3=5000;                      % integer for length of coupler c"n\cNP<  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) wc NOLUl  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05.  gmO!  
    T =40;                        % length of time:T*T0. y^,1a[U.  
    dt = T/N;                     % time step oWim}Er=  
    n = [-N/2:1:N/2-1]';          % Index rq/yD,I,  
    t = n.*dt;   ?FeYN+qR  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. T@:Wp4>69  
    w=2*pi*n./T; L_uVL#To  
    g1=-i*ww./2; 7Oa#c<2]  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ^& tZ  
    g3=-i*ww./2; tqvN0vY5  
    P1=0; "$Z= %.3Q  
    P2=0; 7$vYo _  
    P3=1; Pw7]r<Q  
    P=0; nQX:T;WL@  
    for m1=1:M1                 * 8yAG]z  
    p=0.032*m1;                %input amplitude F3v !AvA|  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 [#<-ZC#T*  
    s1=s10; 8>2.UrC  
    s20=0.*s10;                %input in waveguide 2 b8`)y<7  
    s30=0.*s10;                %input in waveguide 3 G C),N\@Q  
    s2=s20; [LjT*bi  
    s3=s30; g:'xae/]S  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   qPX~@^`9  
    %energy in waveguide 1 L O_k@3  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   \ =?a/  
    %energy in waveguide 2 cz#rb*b  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   '8RsN-w  
    %energy in waveguide 3 UqFO|r"M  
    for m3 = 1:1:M3                                    % Start space evolution "/*\1v9  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS R[h9"0Y^  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; xjuN-  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8`q:Gz=M\  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform t9kzw*U9  
       sca2 = fftshift(fft(s2)); $<dH?%!7  
       sca3 = fftshift(fft(s3)); k$z_:X  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   <y2U3; t  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); fn jPSts0  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); _JzEGpeG  
       s3 = ifft(fftshift(sc3)); ITE{@1  
       s2 = ifft(fftshift(sc2));                       % Return to physical space *KZYv=s,u  
       s1 = ifft(fftshift(sc1)); ?yrX)3hyH  
    end =t#llgi~  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); iW]j9}t  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); q 6:dy  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  &=@IzmA  
       P1=[P1 p1/p10]; 'Vzp2  
       P2=[P2 p2/p10]; '1P2$#  
       P3=[P3 p3/p10]; ?(' wn<  
       P=[P p*p]; zsEc(  
    end G}9Jg  
    figure(1) .;y.]Z/;  
    plot(P,P1, P,P2, P,P3); m)ky*"(  
    ^b4 9  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~