切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9405阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 =?hGa;/rb  
    ~~,] b  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of o6L\39v_  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of KG7 ~)g  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear oZm)@Vv;  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~5S[Sl  
    /Ilve U`E  
    %fid=fopen('e21.dat','w'); b?S,%  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) =UY)U-  
    M1 =3000;              % Total number of space steps i[,9hp  
    J =100;                % Steps between output of space jNRR=0  
    T =10;                  % length of time windows:T*T0 ,=!_7'm  
    T0=0.1;                 % input pulse width TKJs'%Q7F6  
    MN1=0;                 % initial value for the space output location CWF(OMA  
    dt = T/N;                      % time step %@Mv-A6)  
    n = [-N/2:1:N/2-1]';           % Index I|&<!{Rq  
    t = n.*dt;   aTXmF1_n  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 &d}1) ?  
    u20=u10.*0.0;                  % input to waveguide 2 X+6`]]  
    u1=u10; u2=u20;                 mmSC0F  
    U1 = u1;   {"f4oK{w  
    U2 = u2;                       % Compute initial condition; save it in U Xm#rkF[,  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. |7XPu  
    w=2*pi*n./T; \M$e#^g  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T o_=t9\:  
    L=4;                           % length of evoluation to compare with S. Trillo's paper .tRp  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 -;T!d  
    for m1 = 1:1:M1                                    % Start space evolution ITpo:"X g  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS LdAWCBLS  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; I$yFCdXr  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform e'"2yA8dh"  
       ca2 = fftshift(fft(u2)); ">zK1t5=  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ( x)}k&B;  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ::goqajV  
       u2 = ifft(fftshift(c2));                        % Return to physical space X8m@xFW}  
       u1 = ifft(fftshift(c1)); P_7QZ0k/  
    if rem(m1,J) == 0                                 % Save output every J steps. $qndG,([F  
        U1 = [U1 u1];                                  % put solutions in U array M{(g"ha  
        U2=[U2 u2]; 'c]Fhe fb  
        MN1=[MN1 m1]; [2~^~K  
        z1=dz*MN1';                                    % output location Ui:WbH<b{  
      end VPC7Dh%.  
    end :`jB1rI  
    hg=abs(U1').*abs(U1');                             % for data write to excel )-jA4!&  
    ha=[z1 hg];                                        % for data write to excel <vb%i0+b.^  
    t1=[0 t']; 1:Sq?=&  
    hh=[t1' ha'];                                      % for data write to excel file r^g"%nq9/  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format U!y GZEU"[  
    figure(1) 4fR}+[~2  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Chso]N.1  
    figure(2) FqWW[Bgd  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn g]$e-X@k  
    3P, ul*e  
    非线性超快脉冲耦合的数值方法的Matlab程序 +Oxw?`I$  
    NUN~T (  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   z*oe ho  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6y0CEly>3#  
    ]?un'$%e  
    RA_gj lJi  
    R(t1Ei.-?  
    %  This Matlab script file solves the nonlinear Schrodinger equations s!g06F  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of y"I8^CA  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear - f&m4J} E  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +hZ{/  
    d~QZc R  
    C=1;                           UM(`Oh8  
    M1=120,                       % integer for amplitude H6.  
    M3=5000;                      % integer for length of coupler c*!xdK  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) E[=# Rw!*  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $wm.,Vb  
    T =40;                        % length of time:T*T0. >LAhc7I  
    dt = T/N;                     % time step =JW.1;  
    n = [-N/2:1:N/2-1]';          % Index S%Bm4jY  
    t = n.*dt;   n1Z*wMwC  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. =".sCV9"N  
    w=2*pi*n./T; 7*MjQzg-P  
    g1=-i*ww./2; eaWK2%v  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; hy}n&h  
    g3=-i*ww./2; L> \/%x>Wx  
    P1=0; ^[=1J  
    P2=0; /EvnwYQy  
    P3=1; N5F+h94z]  
    P=0; yhsbso,5 a  
    for m1=1:M1                 uQmtd  
    p=0.032*m1;                %input amplitude } Q1m  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Qd"R@+i  
    s1=s10; c#L.I  
    s20=0.*s10;                %input in waveguide 2 K&IHt?vh!  
    s30=0.*s10;                %input in waveguide 3 JY0}#FtgV  
    s2=s20; *eEn8rAr  
    s3=s30; &0Bs?oq_  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Ir?ehA  
    %energy in waveguide 1 E]&tgZO  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   (GJX[$@  
    %energy in waveguide 2 _|C T|q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   TjWMdoU$J  
    %energy in waveguide 3 08W^  
    for m3 = 1:1:M3                                    % Start space evolution Yw6d-5=:  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS s$?u'}G3  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; aUyJi  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Fu*Qci1Z  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 3;er.SFu{  
       sca2 = fftshift(fft(s2)); 3f)!RKS9q  
       sca3 = fftshift(fft(s3)); /8[T2Z!  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    0N`'a?x  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); F !MxC  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); {^N90,!  
       s3 = ifft(fftshift(sc3)); hNL_ e3  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ,0^9VWZV  
       s1 = ifft(fftshift(sc1)); w<m e(!-'  
    end )%Lgo${[;  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); K-6+fgeB  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); PESJ7/^E  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); :}+m[g  
       P1=[P1 p1/p10]; J?[}h&otQ  
       P2=[P2 p2/p10]; c]3^2Ag,  
       P3=[P3 p3/p10]; f' &  
       P=[P p*p]; &aWY{ ?_  
    end qy,X#y'FuE  
    figure(1) Mw{skK>b  
    plot(P,P1, P,P2, P,P3); *rmwTD"  
    W}.p,d  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~