切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8718阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 GTvb^+6  
    Ymvd= F   
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of B!anY}/U  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?[">%^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear RwKN  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;_ton?bF  
    eL!6}y}W  
    %fid=fopen('e21.dat','w'); de=T7,G#  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) jd*H$BU^  
    M1 =3000;              % Total number of space steps \O~P !`  
    J =100;                % Steps between output of space (*tJCz`Sj  
    T =10;                  % length of time windows:T*T0 >6 q@Tr  
    T0=0.1;                 % input pulse width 2S/7f:  
    MN1=0;                 % initial value for the space output location H[Cn@XE  
    dt = T/N;                      % time step w6 .HvH-@?  
    n = [-N/2:1:N/2-1]';           % Index q[ZYlF,Ho  
    t = n.*dt;   VPbNLi  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 'fsOKx4Z  
    u20=u10.*0.0;                  % input to waveguide 2 E~Nr4vq  
    u1=u10; u2=u20;                 HC+R :Dz  
    U1 = u1;   'l;|t"R12  
    U2 = u2;                       % Compute initial condition; save it in U uy~j$lrn  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. v/dcb%  
    w=2*pi*n./T; oJy/PR 3  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T <s >SnOD  
    L=4;                           % length of evoluation to compare with S. Trillo's paper CqV \:50g  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 2]wh1)  
    for m1 = 1:1:M1                                    % Start space evolution {`> x"Y5  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS %94"e7Hy  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; G1|:b-C  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform :08UeEy  
       ca2 = fftshift(fft(u2)); V ALYA=w/  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation mx2 Jt1  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   }$ der  
       u2 = ifft(fftshift(c2));                        % Return to physical space dXhV]xK  
       u1 = ifft(fftshift(c1)); (%1*<6ka  
    if rem(m1,J) == 0                                 % Save output every J steps. s~CA @  
        U1 = [U1 u1];                                  % put solutions in U array BlCKJp{m$  
        U2=[U2 u2]; HZNX1aQ|Q#  
        MN1=[MN1 m1]; 4Ki'r&L\  
        z1=dz*MN1';                                    % output location t{9Ph]e  
      end QHK$  
    end 6822xk  
    hg=abs(U1').*abs(U1');                             % for data write to excel :gXj( $  
    ha=[z1 hg];                                        % for data write to excel 2bmppDk  
    t1=[0 t']; l_WY];a  
    hh=[t1' ha'];                                      % for data write to excel file .1;?#t]ZV  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 81&!!qhfS  
    figure(1) = j -  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn _>.%X45xi  
    figure(2) n~Ix8|S h  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn &oBJY'1  
    Qk= w ,`  
    非线性超快脉冲耦合的数值方法的Matlab程序 hwJ.M4  
    M6>l%[  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   i~4Kek6,I  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -kO=pYP*O  
    4'M#m|V  
    7">.{ @S  
    O`eNuQSv  
    %  This Matlab script file solves the nonlinear Schrodinger equations 1EN5ZN,  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of | zf||ju  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pR $c<p  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zI(Pti  
    eUl[gHP  
    C=1;                           ^,3 >}PU  
    M1=120,                       % integer for amplitude IKt9=Tx  
    M3=5000;                      % integer for length of coupler ;iEqa"gO  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) =o {`vv  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. "3K0 wR5  
    T =40;                        % length of time:T*T0. F~ :5/-zs  
    dt = T/N;                     % time step &8N\ 6K=  
    n = [-N/2:1:N/2-1]';          % Index :?,& u,8  
    t = n.*dt;   ,F1$Of/'@\  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. `JC!uc  
    w=2*pi*n./T; WJ%b9{<  
    g1=-i*ww./2; r=vE0;7  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; z}5XLa^  
    g3=-i*ww./2; Y\rKw!u_!  
    P1=0; T@L^RaPX  
    P2=0; Sdn] f4  
    P3=1; :=/DF  
    P=0; `f (!i mN  
    for m1=1:M1                 @{bf]Oc  
    p=0.032*m1;                %input amplitude E^  rN)  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 R75sK(oS  
    s1=s10; 4B |f}7%\  
    s20=0.*s10;                %input in waveguide 2 XjV7Ew^7  
    s30=0.*s10;                %input in waveguide 3 f~53:;L/  
    s2=s20; DP?gozm  
    s3=s30; v;OA hFr|  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   $wBUu   
    %energy in waveguide 1 7':|f"  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   iaMZ37  
    %energy in waveguide 2 Q5Wb)  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Q>|<R[.7  
    %energy in waveguide 3 x[_+U4-/  
    for m3 = 1:1:M3                                    % Start space evolution MQI6e".  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS J[^-k!9M  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; CkOd>Kn  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; \X(.%5xC  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform m$U2|5un&  
       sca2 = fftshift(fft(s2)); p}h)WjC  
       sca3 = fftshift(fft(s3)); RSp=If+4  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   oRCj]9I$  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 5y.kOe4vH  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); \KTX{qI"f  
       s3 = ifft(fftshift(sc3)); VlK WWQj  
       s2 = ifft(fftshift(sc2));                       % Return to physical space M]oaWQu  
       s1 = ifft(fftshift(sc1)); ?@tp1?)  
    end -ohqw+D  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); .(! $j-B  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); gg<lWeS/3  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Wu:evaZ:i  
       P1=[P1 p1/p10]; 5Ba eHzI  
       P2=[P2 p2/p10]; f- _~rQ  
       P3=[P3 p3/p10]; pJV<#<#Z  
       P=[P p*p]; ;XANIT V  
    end "wdC/  
    figure(1) 6z~6o0s~  
    plot(P,P1, P,P2, P,P3); 9OX&;O+5  
    =ove#3  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~