计算脉冲在非线性耦合器中演化的Matlab 程序 ]mc,FlhU@ ql4T@r3l}3 % This Matlab script file solves the coupled nonlinear Schrodinger equations of
(X8N?tJ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Eg9502Bl~8 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
_k}b % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
r'8e"pTi k91Y"_& %fid=fopen('e21.dat','w');
%6n;B|! N = 128; % Number of Fourier modes (Time domain sampling points)
Wj3H
y4 M1 =3000; % Total number of space steps
(*EN! -/ J =100; % Steps between output of space
H$;\TG@, T =10; % length of time windows:T*T0
/oI''O%M T0=0.1; % input pulse width
R'F|z{8 MN1=0; % initial value for the space output location
w 8E,zH dt = T/N; % time step
HG^8&uh] n = [-N/2:1:N/2-1]'; % Index
lRrOoON t = n.*dt;
ovHbs^H% u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
5!Guf?i u20=u10.*0.0; % input to waveguide 2
1/gh\9h u1=u10; u2=u20;
+,%x&L&I U1 = u1;
HqbTJ!a U2 = u2; % Compute initial condition; save it in U
4b#YpK$7U ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
[AU1JO`\" w=2*pi*n./T;
a}fW3+> g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
JmBYD[h, L=4; % length of evoluation to compare with S. Trillo's paper
\h
yTcFb dz=L/M1; % space step, make sure nonlinear<0.05
h m"B kOA for m1 = 1:1:M1 % Start space evolution
^a(q7ZfY u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
?gkK*\x2 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
bi5'- .B
ca1 = fftshift(fft(u1)); % Take Fourier transform
)yK!EK\ ca2 = fftshift(fft(u2));
#*~ ( c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
oU2RxK->u c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
Ro1l:P)C` u2 = ifft(fftshift(c2)); % Return to physical space
QCjmg5bf'7 u1 = ifft(fftshift(c1));
J@$>d if rem(m1,J) == 0 % Save output every J steps.
Ywni2-)< U1 = [U1 u1]; % put solutions in U array
cB<Zez U2=[U2 u2];
c>^_4QQ MN1=[MN1 m1];
-H]svOX z1=dz*MN1'; % output location
3"B|w^6'2 end
aw,8'N) end
H'Po hg=abs(U1').*abs(U1'); % for data write to excel
7(oxmv}#Q ha=[z1 hg]; % for data write to excel
8-m"] o3 t1=[0 t'];
rg
$71Ir hh=[t1' ha']; % for data write to excel file
,^'Y7" %dlmwrite('aa',hh,'\t'); % save data in the excel format
I5e!vCG) figure(1)
lmod8B waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
OZ-F+#d figure(2)
%~eZrG. waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
;zGGT^Dn xNx!2MrR; 非线性超快脉冲耦合的数值方法的Matlab程序 @P8q=j}l9 ]\GGC]:\@
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
?=\h/C Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
4(Mt6{q Z8:iaP) IX3r$}4 gDA hl % This Matlab script file solves the nonlinear Schrodinger equations
osnDW
aN % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
h;B'#$_ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Q8P;AN_JS % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
vzVl2 *zmbo >{( C=1;
Yu8WmX,[ M1=120, % integer for amplitude
wp@c;gK7 M3=5000; % integer for length of coupler
KsHMAp3 N = 512; % Number of Fourier modes (Time domain sampling points)
F6fm{ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
c xX T =40; % length of time:T*T0.
NSx DCTw dt = T/N; % time step
(;s\Ip0 n = [-N/2:1:N/2-1]'; % Index
1sgoT f% t = n.*dt;
8*|@A6ig ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
q k !Q2W w=2*pi*n./T;
Q.5a"(d@ g1=-i*ww./2;
yJr' \( g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
JiRW|+`pe g3=-i*ww./2;
Hiw{1E:rW P1=0;
G;tIhq[$Vb P2=0;
DB?[h<^m P3=1;
x*_c'\F| P=0;
V57^0^Zp` for m1=1:M1
8I@_X~R p=0.032*m1; %input amplitude
XX/cJp s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
<8H`y(S s1=s10;
$ccI(J`zux s20=0.*s10; %input in waveguide 2
C=. s30=0.*s10; %input in waveguide 3
$biCm$a s2=s20;
QjRVdb> s3=s30;
e#08,wgW p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
Ar>-xCTD %energy in waveguide 1
p[W8XX p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
\n /_Px %energy in waveguide 2
Rk"_4zJk p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
M34*$>bk %energy in waveguide 3
_7 n+j for m3 = 1:1:M3 % Start space evolution
YRB,jwne s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
R|Ykez!D s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
.lqo>Ta
y s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
sYeZ.MacU sca1 = fftshift(fft(s1)); % Take Fourier transform
f^ nogw<z! sca2 = fftshift(fft(s2));
h v9s sca3 = fftshift(fft(s3));
1z*] MYU sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
TlM ]d;9G sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
@1rF9<
4g sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
_<xU"8b"5 s3 = ifft(fftshift(sc3));
=7Nm=5@ s2 = ifft(fftshift(sc2)); % Return to physical space
%vMi
kibI s1 = ifft(fftshift(sc1));
R$v{ p[ end
[ UQzCqV p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
=:5yRP p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
1!,lI?j, p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
_ 57m] ;& P1=[P1 p1/p10];
hYF<Wn3L P2=[P2 p2/p10];
qc@CV: P3=[P3 p3/p10];
fU$zG"a_ P=[P p*p];
N=-hXgX^ end
MB:E/ figure(1)
, Lhgv1 plot(P,P1, P,P2, P,P3);
E5.)ro=$ KeY)%{ 转自:
http://blog.163.com/opto_wang/