切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8256阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 l{hO"fzy  
    C%AN4Mo  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of *`V r P  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of !%/(a)B$^$  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear h=dFSK?*D  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G|qsJ  
    ]BfJ~+ N  
    %fid=fopen('e21.dat','w'); 8JU{]Z!G<;  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) _eUd RL>  
    M1 =3000;              % Total number of space steps a!\^O).pA  
    J =100;                % Steps between output of space S>y}|MG  
    T =10;                  % length of time windows:T*T0 z4JhLef%  
    T0=0.1;                 % input pulse width X- `PF  
    MN1=0;                 % initial value for the space output location t4+bRmS`_  
    dt = T/N;                      % time step H Em XB=  
    n = [-N/2:1:N/2-1]';           % Index ;nKhmcQ4  
    t = n.*dt;   p']{WLDj2  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 >9t+lr1   
    u20=u10.*0.0;                  % input to waveguide 2 u^( s0q  
    u1=u10; u2=u20;                 fwv.^k x  
    U1 = u1;   t!o=-k  
    U2 = u2;                       % Compute initial condition; save it in U %XH%.Ps/  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. IgPU^?sp  
    w=2*pi*n./T; jfpbD /  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T i&0Zli  
    L=4;                           % length of evoluation to compare with S. Trillo's paper |N:kf&]b  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 C;oO=R3r  
    for m1 = 1:1:M1                                    % Start space evolution #2;8/"v  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS LrdX^_,nt  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; _^`TG]F  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Tfw5i,{  
       ca2 = fftshift(fft(u2)); 76b2 3|  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation w exa\o  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   U3t) yr h  
       u2 = ifft(fftshift(c2));                        % Return to physical space Pa"[&{:  
       u1 = ifft(fftshift(c1)); K[i&!Z&  
    if rem(m1,J) == 0                                 % Save output every J steps. BQ(sjJ$v6F  
        U1 = [U1 u1];                                  % put solutions in U array ';I(#J6  
        U2=[U2 u2]; w$ jq2?l  
        MN1=[MN1 m1]; )u]1j@Id  
        z1=dz*MN1';                                    % output location ZV$!dHW/  
      end yD Avl+  
    end $LOf2kn  
    hg=abs(U1').*abs(U1');                             % for data write to excel dm"|\7  
    ha=[z1 hg];                                        % for data write to excel ~{q; - &  
    t1=[0 t']; L\\'n )  
    hh=[t1' ha'];                                      % for data write to excel file S y^et  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Nl9}*3r  
    figure(1) pf#~|n#t  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn I?CfdI  
    figure(2) Aq_?8Cd  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn bDnT><eH  
    [>|6qY$D  
    非线性超快脉冲耦合的数值方法的Matlab程序 '-_tF3x  
    p?sFX$S  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    4q\gFFV4  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G@rV9  
    RU\MT'E>(  
    nBzju?X)I  
    O[z-K K<  
    %  This Matlab script file solves the nonlinear Schrodinger equations o(g}eP,g }  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ogG:Ai)90  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear As(6E}{S  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z 9~|Su  
    r_pZK(G%  
    C=1;                           M)CQ|P  
    M1=120,                       % integer for amplitude lLN5***47J  
    M3=5000;                      % integer for length of coupler wQ '_, d  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) fn Pej?f:  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. q=;U(,Y  
    T =40;                        % length of time:T*T0. x, #?  
    dt = T/N;                     % time step 'v%v*Ujf[  
    n = [-N/2:1:N/2-1]';          % Index sDjbvC0  
    t = n.*dt;   (4C_Ft*~j  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. HA~BXxa/  
    w=2*pi*n./T; p s_o:*$l  
    g1=-i*ww./2; \8/$ZEom  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; XF`?5G~~#  
    g3=-i*ww./2; nmClP  
    P1=0; CMU\DO  
    P2=0; 7$7#z\VWu  
    P3=1; L^??*XEUJ  
    P=0; '(SqHP|8&g  
    for m1=1:M1                 -x+K#T0Z  
    p=0.032*m1;                %input amplitude yX CJ?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2(25IYMS8  
    s1=s10; g.COKA  
    s20=0.*s10;                %input in waveguide 2 Ev,b5KelD  
    s30=0.*s10;                %input in waveguide 3 tWA<OOl  
    s2=s20; J@o$V- KK  
    s3=s30; Q,n Xc  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   AV;x'H7G  
    %energy in waveguide 1 Zn]!*}  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   oTk?a!Q  
    %energy in waveguide 2 =S|dzgS/  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   cR!Mn$m  
    %energy in waveguide 3 |[MtUWEW  
    for m3 = 1:1:M3                                    % Start space evolution ~) vz`bD1  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS *q0vp^?  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5`{u! QE  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; oZw#]Q@  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform hGj`IAW  
       sca2 = fftshift(fft(s2)); ^) 5*?8#  
       sca3 = fftshift(fft(s3)); <MgC7S2I  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   >5j&Q#Bu  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7X/KQ97  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); D9higsN  
       s3 = ifft(fftshift(sc3)); -~&T0dt~  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ;I]$N]8YI  
       s1 = ifft(fftshift(sc1)); \04 (V'`U  
    end ^2"3h$DJfS  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); M Jtn)gXb  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); mC./,a[  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Io]KlR@!T  
       P1=[P1 p1/p10]; 8RU91H8fE  
       P2=[P2 p2/p10]; -5MQ/ujQ  
       P3=[P3 p3/p10]; [*^ rH:  
       P=[P p*p]; k:*vD"  
    end ]w~ECP(ap  
    figure(1) eOs4c`  
    plot(P,P1, P,P2, P,P3); v6O5n(5,,  
    l#rr--];  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~