切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9246阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Xh?J"kjof  
    TQL_K8k@_  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 0Qr|!B:+9)  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of /Z1>3=G by  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear O*lMIWx  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BbG=vy8'l  
    iezY+`x4  
    %fid=fopen('e21.dat','w'); H tx)MEZ  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) c~)H" n  
    M1 =3000;              % Total number of space steps M <K}H8?  
    J =100;                % Steps between output of space 70F(`;  
    T =10;                  % length of time windows:T*T0 Iy;bzHXs  
    T0=0.1;                 % input pulse width dTVh{~/  
    MN1=0;                 % initial value for the space output location gg?O0W{  
    dt = T/N;                      % time step u`gY/]y!  
    n = [-N/2:1:N/2-1]';           % Index z{ (c-7*  
    t = n.*dt;   WqRaD=R->;  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 3J}/<&wv  
    u20=u10.*0.0;                  % input to waveguide 2 OrRU$5Lo  
    u1=u10; u2=u20;                 AVO$R\1YR  
    U1 = u1;   Tqm)-|[  
    U2 = u2;                       % Compute initial condition; save it in U 1Q!^%{Y;  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ,R*YI  
    w=2*pi*n./T; 4"et4Y7  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F*_ytL  
    L=4;                           % length of evoluation to compare with S. Trillo's paper |>v8yS5  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 l0BYv&tu  
    for m1 = 1:1:M1                                    % Start space evolution #eY?6Kjn  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS }kF*I@:g  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; !{S HlS  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform BDcA_= ^R&  
       ca2 = fftshift(fft(u2)); evE$$# 6R  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation !glGW[r/7  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   &\5%C\0Z<  
       u2 = ifft(fftshift(c2));                        % Return to physical space l~#%j( Yo  
       u1 = ifft(fftshift(c1)); 1z-Q~m@@  
    if rem(m1,J) == 0                                 % Save output every J steps. iX6'3\Q3A  
        U1 = [U1 u1];                                  % put solutions in U array qwvch^?>FQ  
        U2=[U2 u2];  t@+z r3  
        MN1=[MN1 m1]; zuYz"-(L  
        z1=dz*MN1';                                    % output location pP*`b<|  
      end >mp" =Y  
    end `y*o -St3  
    hg=abs(U1').*abs(U1');                             % for data write to excel JU!vVA_  
    ha=[z1 hg];                                        % for data write to excel mApl}I  
    t1=[0 t']; 6B&ERdoX  
    hh=[t1' ha'];                                      % for data write to excel file qVr?st  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format (R^Ca7F  
    figure(1) p77  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn F(;95TB  
    figure(2) #TD0)C/  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn vFH1hm  
    QmY1Bn?s  
    非线性超快脉冲耦合的数值方法的Matlab程序  cE7IHQ  
    N6uKFQL:{  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   9RnXp&w  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +*Pj,+;W  
    3sz?49tX  
    .*c%A^>  
    11BfJvs:  
    %  This Matlab script file solves the nonlinear Schrodinger equations #2Z\K>L  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ?gl[ =N V  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear gB}UzEj^<  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $?dutbE  
    8BggK6X  
    C=1;                           [ |dQZ  
    M1=120,                       % integer for amplitude Sj9NhtF]f  
    M3=5000;                      % integer for length of coupler {"@E_{\  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ['\ u?m  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. {on+ ;,  
    T =40;                        % length of time:T*T0. rEY5,'?YHv  
    dt = T/N;                     % time step z|WDqB%/I  
    n = [-N/2:1:N/2-1]';          % Index N-<m/RS  
    t = n.*dt;   Z >F5rkJ  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. {aYCrk1  
    w=2*pi*n./T; YN($rAkL  
    g1=-i*ww./2; 6^v HFJ$  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; > @n?W"  
    g3=-i*ww./2; )+v' @]r  
    P1=0; TptXH?  
    P2=0; FX:'38-fk  
    P3=1; WoX,F1o  
    P=0; (g#,AX  
    for m1=1:M1                 P'p5-l UK  
    p=0.032*m1;                %input amplitude bT#re  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 X0Z r?$q  
    s1=s10; "M4 gl  
    s20=0.*s10;                %input in waveguide 2 _do(   
    s30=0.*s10;                %input in waveguide 3 Wz-7oP%;I  
    s2=s20; =d`/BDD  
    s3=s30; X7{ h/^  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Kk<MS$Ov  
    %energy in waveguide 1 5Q.z#]L g  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   dT4e[4l  
    %energy in waveguide 2 Hpq?I-g<^  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Rln JlY/  
    %energy in waveguide 3 u|uPvbM  
    for m3 = 1:1:M3                                    % Start space evolution @T 8$/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS .m \y6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; /%5X:*:H  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; z{ydP Ra  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Th\t6K~  
       sca2 = fftshift(fft(s2)); +Rb0:r>kU  
       sca3 = fftshift(fft(s3)); Tv`-h  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   #+ 6t|  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 4KCJ(<p|  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); a~"<lzu|$  
       s3 = ifft(fftshift(sc3)); 0Rze9od]$  
       s2 = ifft(fftshift(sc2));                       % Return to physical space z 8\;XR  
       s1 = ifft(fftshift(sc1)); 3f^~mTY9>]  
    end ^VAvQ(b!:i  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); -|&5aH]  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); s5SKQ#,@P  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); L#X!.  
       P1=[P1 p1/p10]; RmcQGQ  
       P2=[P2 p2/p10]; Rr3<ln  
       P3=[P3 p3/p10]; +7|Qd}\X  
       P=[P p*p]; DV">9{"5']  
    end  LAfv1  
    figure(1) Nw=mSW^E  
    plot(P,P1, P,P2, P,P3); cp\A xWtUZ  
    c<n <!!vi  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~