切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9181阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 x @1px&^  
    jd ["eI  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of y#]}5gJ  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of gB(9vhj $  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear R&6n?g6@/V  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |7rR99  
    p>k]C:h  
    %fid=fopen('e21.dat','w'); KqN!?anPr  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 7*zB*"B'1t  
    M1 =3000;              % Total number of space steps 25xcD1*  
    J =100;                % Steps between output of space ixOEdQ  
    T =10;                  % length of time windows:T*T0 CnabD{uTf  
    T0=0.1;                 % input pulse width y._'K+nl  
    MN1=0;                 % initial value for the space output location Z:I*y7V-  
    dt = T/N;                      % time step %z(9lAe  
    n = [-N/2:1:N/2-1]';           % Index %  2I  
    t = n.*dt;   9aTL22U?  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 |WB"=PE  
    u20=u10.*0.0;                  % input to waveguide 2 C= >B_EO  
    u1=u10; u2=u20;                 .|T2\M  
    U1 = u1;   j h; 9 [  
    U2 = u2;                       % Compute initial condition; save it in U ^fkCyE;=  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. fucUwf\_  
    w=2*pi*n./T; 66oK3%[  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T M[A-1]'  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 0r1g$mKb  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Oz :D.V 3~  
    for m1 = 1:1:M1                                    % Start space evolution $v FrUv  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS SV&kWbS  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Q`N18I3  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform d{W}p~UbH  
       ca2 = fftshift(fft(u2)); [u[ U_g*  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation GOGt?iw*<  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   L*P_vCC  
       u2 = ifft(fftshift(c2));                        % Return to physical space W3^.5I  
       u1 = ifft(fftshift(c1)); Ru:n~77{  
    if rem(m1,J) == 0                                 % Save output every J steps. qc3~cH.@  
        U1 = [U1 u1];                                  % put solutions in U array |Z d]= tue  
        U2=[U2 u2]; ~u! gUJ:  
        MN1=[MN1 m1]; &(g|="T  
        z1=dz*MN1';                                    % output location 5)mVy?Z  
      end 7k `_#  
    end 3 :UA<&=s  
    hg=abs(U1').*abs(U1');                             % for data write to excel ^b=XV&{q  
    ha=[z1 hg];                                        % for data write to excel K${}r0   
    t1=[0 t']; VQ2Fnb4  
    hh=[t1' ha'];                                      % for data write to excel file =:4?>2)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format r]9e^  
    figure(1) q?yMa9ZZky  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn _D-5}a"  
    figure(2) @.k5MOn  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ovz#  
    zHV|-R  
    非线性超快脉冲耦合的数值方法的Matlab程序 >=Jsv  
    P&mtA2  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ^PC\E}  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 va^0JfQ  
    x:qr\Rz  
    wk@yTTnb  
    i *B:El1  
    %  This Matlab script file solves the nonlinear Schrodinger equations l]$40 j  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Y[ ?`\c|  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )=Zsv40O  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 AeaPK  
    <PioQ>~  
    C=1;                           !_dR'  
    M1=120,                       % integer for amplitude ]% Y\ZIS  
    M3=5000;                      % integer for length of coupler 9\>sDSCx  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ) \ 4 |  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. x<@kjfm5  
    T =40;                        % length of time:T*T0. fe';b[q)#  
    dt = T/N;                     % time step x<s|vgl|  
    n = [-N/2:1:N/2-1]';          % Index AFm,CINa  
    t = n.*dt;   \6:>{0\  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. gfm;xT/y  
    w=2*pi*n./T; V!xwb:J  
    g1=-i*ww./2; *> KHRR<N  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; \B&6TeR  
    g3=-i*ww./2; <BPRV> 0X  
    P1=0; wyzOcx>M  
    P2=0; GmbIFOT~  
    P3=1; ]`d2_mu  
    P=0; ZBJ3VK  
    for m1=1:M1                 JOHR mfqR  
    p=0.032*m1;                %input amplitude `NSy"6{Z  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2e.N"eLNt  
    s1=s10; ~.6|dw\p!  
    s20=0.*s10;                %input in waveguide 2 +#s;yc#=2  
    s30=0.*s10;                %input in waveguide 3 1ef'7a7e8  
    s2=s20; 72,"Cj  
    s3=s30; q@kOTkHv)  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   _q)!B,y-/N  
    %energy in waveguide 1 AK*N  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   4\6: \  
    %energy in waveguide 2 9 mPIykAj8  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ~{M@?8wi  
    %energy in waveguide 3 jo_ sAb  
    for m3 = 1:1:M3                                    % Start space evolution KDD@%E  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Sl>>SP  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; jV^C19  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Hbk&6kS  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform C(o.Cy6  
       sca2 = fftshift(fft(s2));  rN"Xz  
       sca3 = fftshift(fft(s3)); 2xn<E>]  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^i'y6J  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); @Tr&`Hi  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); V7C1FV2  
       s3 = ifft(fftshift(sc3)); :}9j^}"c3  
       s2 = ifft(fftshift(sc2));                       % Return to physical space o@/xPo|  
       s1 = ifft(fftshift(sc1)); SY1GR n  
    end `c(\i$1JY)  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); %8w9E=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); jK3\K/ob(  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); TnA?u (R%  
       P1=[P1 p1/p10]; cJ/]+|PQ  
       P2=[P2 p2/p10]; [M:S`{SbY  
       P3=[P3 p3/p10]; #hJQbv=B"  
       P=[P p*p]; Au5rR>W  
    end U =cWmH  
    figure(1) a2yE:16o6  
    plot(P,P1, P,P2, P,P3); ^u)rB<#BR  
    OOB^gf}$'  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~