切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9393阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 +'|nsIx,  
    |:w)$i& *  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of $c {fPFe-  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of : X}n[K  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear vf5q8/a  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B#DnU;=O#+  
    ${)oi:K@:  
    %fid=fopen('e21.dat','w'); 5 ) q_Aro  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) xx@[ecW  
    M1 =3000;              % Total number of space steps +70x0z2  
    J =100;                % Steps between output of space VUi> ]v/e  
    T =10;                  % length of time windows:T*T0 eo*l^7  
    T0=0.1;                 % input pulse width a]/KJn /B(  
    MN1=0;                 % initial value for the space output location B:Y F|k}T  
    dt = T/N;                      % time step e9RH[:  
    n = [-N/2:1:N/2-1]';           % Index jp;]dyU  
    t = n.*dt;   B*(BsXQLY  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 b:5-0uxjs  
    u20=u10.*0.0;                  % input to waveguide 2 u69UUkG  
    u1=u10; u2=u20;                 yJ/YK  
    U1 = u1;   jF@BWPtF=  
    U2 = u2;                       % Compute initial condition; save it in U < 1%}8t"  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 43 vF(<r&f  
    w=2*pi*n./T; XV}}A ^  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T %8H$62w]  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 9W0*|!tQ,+  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Lf)JO|o  
    for m1 = 1:1:M1                                    % Start space evolution M1]}yTCd  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS k;B[wEW@  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ;W T<]  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform C :An  
       ca2 = fftshift(fft(u2)); y/E:6w  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation h'HI92; [  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   H:|.e)$i  
       u2 = ifft(fftshift(c2));                        % Return to physical space 0l3[?YtXc  
       u1 = ifft(fftshift(c1)); %AN,cE*  
    if rem(m1,J) == 0                                 % Save output every J steps. OwT_W)$  
        U1 = [U1 u1];                                  % put solutions in U array 1>uAVPa  
        U2=[U2 u2]; gnGh )  
        MN1=[MN1 m1]; H| _@9V  
        z1=dz*MN1';                                    % output location vV xw*\`<6  
      end twu,yC!  
    end x`c 7*q%  
    hg=abs(U1').*abs(U1');                             % for data write to excel nU' qE  
    ha=[z1 hg];                                        % for data write to excel m_;fj~m  
    t1=[0 t']; 0hhxTOp  
    hh=[t1' ha'];                                      % for data write to excel file -K lR":  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format {sf ,(.W  
    figure(1) -wrVEH8  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn R[14scV  
    figure(2) +;\w'dBi,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn '}9 Nvr)+  
    RcO"k3J  
    非线性超快脉冲耦合的数值方法的Matlab程序 &XV9_{Hm  
    (uDAdE5  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   (3K3)0fy  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 N,Z*d  
    oN[}i6^,e  
    nw\C+1F  
    o">~ObR  
    %  This Matlab script file solves the nonlinear Schrodinger equations '#yqw%  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 4Z>gK(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (6B;  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 mI5J] hk  
    \i/HHP[%  
    C=1;                           4BUG\~eI3  
    M1=120,                       % integer for amplitude }LCm_av  
    M3=5000;                      % integer for length of coupler !qp$Xtf+  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 9tU"+  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. :'B(DzUR  
    T =40;                        % length of time:T*T0. _7\`xU  
    dt = T/N;                     % time step _?:jZ1wZ  
    n = [-N/2:1:N/2-1]';          % Index P))BS  
    t = n.*dt;   M 9-Q  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 'iF%mnJ  
    w=2*pi*n./T; Pc*lHoVL  
    g1=-i*ww./2; a7c`[   
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; u4IK7[=  
    g3=-i*ww./2; p @kRo#~l  
    P1=0; }2@Z{5sh)  
    P2=0; z &X l  
    P3=1; f*<Vq:N=\  
    P=0; -Uy)=]Zae  
    for m1=1:M1                 J}&Us p  
    p=0.032*m1;                %input amplitude 0uIY6e0E  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 )2RRa^=&  
    s1=s10; vRH^en  
    s20=0.*s10;                %input in waveguide 2 r&m49N,d  
    s30=0.*s10;                %input in waveguide 3 pJvPEKN  
    s2=s20; r@}`Sw]@  
    s3=s30; ij!d-eM/b  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   _\KFMe= PV  
    %energy in waveguide 1 ` @  YV  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   gy%.+!4>v`  
    %energy in waveguide 2 g kO^J{_@q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   2zqaR[C  
    %energy in waveguide 3 >STthPO  
    for m3 = 1:1:M3                                    % Start space evolution `X5!s  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS )-_^vB  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; tu<<pR>  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; p~@,zetS  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform O_8 SlW0e  
       sca2 = fftshift(fft(s2)); x)*Lu">  
       sca3 = fftshift(fft(s3)); aSvv(iV  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Nna.NU1  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 0t? o6 e  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); *0xL(  
       s3 = ifft(fftshift(sc3)); : c~SH/qS  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 5aizWz  
       s1 = ifft(fftshift(sc1)); ?VNtT/  
    end sJ|pR=g)!  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); c 9f"5~  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]B,tCBt  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); h40;Q<D  
       P1=[P1 p1/p10]; Cu8mNB{H  
       P2=[P2 p2/p10]; a$|U4Eqo  
       P3=[P3 p3/p10]; p /-du^:2  
       P=[P p*p]; 0TmEa59P  
    end n#g_)\  
    figure(1) R>O_2`c  
    plot(P,P1, P,P2, P,P3); V?j,$LixY  
    yuZLsH  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~