切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9132阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 $AoN,B>  
    oSxHTbp?  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of fuQ? @F  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ++xEMP)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear #  *\PU  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 HdVGkv/  
    *K!V$8k=99  
    %fid=fopen('e21.dat','w'); ,rQznE1e  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) /+%1Kq.hP  
    M1 =3000;              % Total number of space steps fY\QI =  
    J =100;                % Steps between output of space (ZDRjBth[  
    T =10;                  % length of time windows:T*T0 }nu hLt1  
    T0=0.1;                 % input pulse width o <sX6a9e  
    MN1=0;                 % initial value for the space output location lv,<[Hw1  
    dt = T/N;                      % time step >pr{)bp G  
    n = [-N/2:1:N/2-1]';           % Index an.)2*u  
    t = n.*dt;   "#(]{MY  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 U1dz:OG>  
    u20=u10.*0.0;                  % input to waveguide 2 }56"4/  Z  
    u1=u10; u2=u20;                 H=EvT'g  
    U1 = u1;   j&ddpS(s  
    U2 = u2;                       % Compute initial condition; save it in U haS`V  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. /8lGP! z  
    w=2*pi*n./T; ]x! vPIyq  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T amOBUD5Ld`  
    L=4;                           % length of evoluation to compare with S. Trillo's paper "h\{PoG  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ^BW V6  
    for m1 = 1:1:M1                                    % Start space evolution zkB_$=sbn#  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Wk`G+VR+  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; P5kkaLzG  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform q f-1}  
       ca2 = fftshift(fft(u2)); 3Cq17A 9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation J %URg=r  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $}N'm  
       u2 = ifft(fftshift(c2));                        % Return to physical space -_v[oqf$  
       u1 = ifft(fftshift(c1)); &H<-joZ)Z\  
    if rem(m1,J) == 0                                 % Save output every J steps. p<tj6O  
        U1 = [U1 u1];                                  % put solutions in U array yin"+&<T  
        U2=[U2 u2]; (yn!~El3  
        MN1=[MN1 m1]; Xfk&{zO-j  
        z1=dz*MN1';                                    % output location CZt)Q4  
      end =]E;wWC  
    end mbU[fHyV  
    hg=abs(U1').*abs(U1');                             % for data write to excel DO(FG-R  
    ha=[z1 hg];                                        % for data write to excel (WX,&`a<$  
    t1=[0 t']; USfOc  
    hh=[t1' ha'];                                      % for data write to excel file E:L =>}  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format t :sKvJ  
    figure(1) Q];+?Pu.  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn /EA4-#uw  
    figure(2) D\bW' k]!  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 6(VCQ{  
    @?f3(G h,  
    非线性超快脉冲耦合的数值方法的Matlab程序 ?&j[Rj0pH  
    G/bWn@  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Lr V)}1&5  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9co1+y=i{  
    U_y)p Cd  
    Atzp\oO  
    UXnd~DA  
    %  This Matlab script file solves the nonlinear Schrodinger equations W EZ(4ah  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of \M'b %  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8(\Az5%  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !Yz~HO,u+  
    1)X%n)2pr  
    C=1;                           pTX{j=n!  
    M1=120,                       % integer for amplitude s-J>(|  
    M3=5000;                      % integer for length of coupler z<hy#BIjnd  
    N = 512;                      % Number of Fourier modes (Time domain sampling points)  ZOi8)Y~  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Ul)2A  
    T =40;                        % length of time:T*T0. oOnk,U  
    dt = T/N;                     % time step ZjF$zVk  
    n = [-N/2:1:N/2-1]';          % Index t=d~\_Oa  
    t = n.*dt;   ]4@_KKP  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 0bVtku K;G  
    w=2*pi*n./T; rc<^6HqD  
    g1=-i*ww./2; :w_Zr5H]  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; s 'u6Ep/V  
    g3=-i*ww./2; j]6 Z*AxQ  
    P1=0; ![18+Q\  
    P2=0; k:nr!Y<  
    P3=1; e%afK@c  
    P=0; 1>[3(o3t  
    for m1=1:M1                 m1heU3BUWU  
    p=0.032*m1;                %input amplitude kS%FV;9>(  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 G!C2[:[g  
    s1=s10; u`xmF/jhQ  
    s20=0.*s10;                %input in waveguide 2 !vHnMY~AG  
    s30=0.*s10;                %input in waveguide 3 yNoJrA  
    s2=s20; pn{Mj  
    s3=s30; Zm >Q-7r9  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   pLE|#58I  
    %energy in waveguide 1 zQMsS  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   y+)][Wa0  
    %energy in waveguide 2 )O#]Wvr  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Zz'(!h Uy  
    %energy in waveguide 3 bN`oQ.Z 4  
    for m3 = 1:1:M3                                    % Start space evolution RFU(wek  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS :Ag]^ot  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; f<= #WV  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; EW%%W6O6  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform `(vgBz`e[  
       sca2 = fftshift(fft(s2)); O[+S/6uy  
       sca3 = fftshift(fft(s3)); lbZ,?wm  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   M}k )Ep9  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); DN2K4%cM%'  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); r :{2}nE  
       s3 = ifft(fftshift(sc3)); 2Vxr  
       s2 = ifft(fftshift(sc2));                       % Return to physical space N)K};yMf  
       s1 = ifft(fftshift(sc1)); <*3{Twa1T  
    end B.-5$4*s  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); :DXkAb2  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); gbL99MZ@~  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); (YVl5}V  
       P1=[P1 p1/p10]; \bw71( Q  
       P2=[P2 p2/p10]; S7N3L."  
       P3=[P3 p3/p10]; ^>gRK*,  
       P=[P p*p]; ^3B{|cqf  
    end FbO-K-  
    figure(1) {+r pMUs#  
    plot(P,P1, P,P2, P,P3); LyH8T'C~  
    ,UopGlA ,  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~