切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9390阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 !f+H,]D"  
    `6xkf&Kt  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of "UJ S5[7$  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of dp*u9z~NA  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~'CE[G5  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /Dj=iBO  
    Q{lpKe0  
    %fid=fopen('e21.dat','w'); a,WICv0E  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) | ]X  
    M1 =3000;              % Total number of space steps >b{q.  
    J =100;                % Steps between output of space BjzPz  
    T =10;                  % length of time windows:T*T0 XnWr5-;  
    T0=0.1;                 % input pulse width z=3\Ab  
    MN1=0;                 % initial value for the space output location x" L20}  
    dt = T/N;                      % time step Aw5HF34J  
    n = [-N/2:1:N/2-1]';           % Index M%kO7>h8  
    t = n.*dt;   G8Y<1%`<  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 p$3sME$L  
    u20=u10.*0.0;                  % input to waveguide 2 ftF@Wq1f  
    u1=u10; u2=u20;                 +P`*kj-P\  
    U1 = u1;   `.Qi?* ^  
    U2 = u2;                       % Compute initial condition; save it in U Evjj"h&0J  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. \hEN4V[  
    w=2*pi*n./T; Nu?-0>  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T n4#;k=mA  
    L=4;                           % length of evoluation to compare with S. Trillo's paper d! LE{  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 +y3%3EKs1~  
    for m1 = 1:1:M1                                    % Start space evolution d5gR"ja  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS S_IUV)  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; cZ2kYn 8  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform L$E{ycn  
       ca2 = fftshift(fft(u2)); T"DlT/\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation -K3^BZ HI  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   *=I}Qh(1  
       u2 = ifft(fftshift(c2));                        % Return to physical space |='z{WS  
       u1 = ifft(fftshift(c1)); c5D)   
    if rem(m1,J) == 0                                 % Save output every J steps. @8pp EFw  
        U1 = [U1 u1];                                  % put solutions in U array 5Ezw ~hn  
        U2=[U2 u2]; \S! e![L/  
        MN1=[MN1 m1]; ]X ?7ZI^  
        z1=dz*MN1';                                    % output location zIu E9l  
      end 2vWx)Drb6  
    end zM(vr"U   
    hg=abs(U1').*abs(U1');                             % for data write to excel !~rY1T~  
    ha=[z1 hg];                                        % for data write to excel n4R(.N00  
    t1=[0 t']; sWc*5Rt  
    hh=[t1' ha'];                                      % for data write to excel file Yd=>K HVD  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format r'HtZo$^R  
    figure(1) Xy$3VU*  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn li}1S  
    figure(2) )E-inHD /  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn uJC~LC N  
    |w<H!lGe!$  
    非线性超快脉冲耦合的数值方法的Matlab程序 Ne[7gxpu  
    G(G{RAk>  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   UVd7 JGR  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z:sg}  
    4hTMbS_;  
    K k-S}.E  
    x"gd8j]s  
    %  This Matlab script file solves the nonlinear Schrodinger equations JS CZ{v J$  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ?7.7`1m !v  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear IpcNuZo9&  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ; Q3n  
    "2)H'<  
    C=1;                           0+kH:dP{  
    M1=120,                       % integer for amplitude hp5|@  
    M3=5000;                      % integer for length of coupler C(#u[8  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) a!"$~y$*  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. @M_oH:GV  
    T =40;                        % length of time:T*T0. 0Tx{3#  
    dt = T/N;                     % time step LH kc7X$  
    n = [-N/2:1:N/2-1]';          % Index %'s>QF]'  
    t = n.*dt;   3TY5;6  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. gT0BkwIV  
    w=2*pi*n./T; m g4nrr\  
    g1=-i*ww./2; w~"KA6^  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 6/r)y+H  
    g3=-i*ww./2; w&o&jAb-M  
    P1=0; N D(/uyI  
    P2=0; -ZRO@&tMD  
    P3=1; S||}nJ0  
    P=0; --%N8L;e  
    for m1=1:M1                 $_o-~F2i5  
    p=0.032*m1;                %input amplitude \KQ71yqY  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1  @Z\,q's  
    s1=s10; V C24sU  
    s20=0.*s10;                %input in waveguide 2 {f2S/$q  
    s30=0.*s10;                %input in waveguide 3 clL2k8VS  
    s2=s20; g!?:Ye`5  
    s3=s30; tG9BfGF  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   @` 1Ds  
    %energy in waveguide 1 QxVq^H  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Q@<S[Qh[.  
    %energy in waveguide 2 @|63K)Xy  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   $JJrSwR<h  
    %energy in waveguide 3 f78An 8  
    for m3 = 1:1:M3                                    % Start space evolution jr /pj?  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS q_g+Jf P-D  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Y2ZT.l  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; pb ~u E  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform b F"G[pD  
       sca2 = fftshift(fft(s2)); aWWU4xe  
       sca3 = fftshift(fft(s3)); UEM(@zD]  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   #LL?IRH9^  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Mc09ES  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); %l}D.ml  
       s3 = ifft(fftshift(sc3)); g X ]-\  
       s2 = ifft(fftshift(sc2));                       % Return to physical space wsIW |@  
       s1 = ifft(fftshift(sc1)); aT)BR?OYSJ  
    end 4'`{H@]tb  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); vY  }A  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); bx{$Y_L+p  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); p?7v$ev_  
       P1=[P1 p1/p10]; 9`I _Et  
       P2=[P2 p2/p10]; zR1^I~ %  
       P3=[P3 p3/p10]; 2ORNi,_I  
       P=[P p*p]; 6:Ch^c+IZ  
    end ] >LhkA@V  
    figure(1) 5!DBmAB  
    plot(P,P1, P,P2, P,P3); P9^-6;'Y  
    p^%YBY#,H  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~