切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9385阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 2GStN74Xr  
    6S\8$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,6W>can  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of WOf 4o  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear C{wEzM :  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BFW&2  
    <b<j=_3  
    %fid=fopen('e21.dat','w'); ;6hOx(>`=  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ,,|^%Ct']  
    M1 =3000;              % Total number of space steps H 7 ^/q7  
    J =100;                % Steps between output of space uRe'%?W  
    T =10;                  % length of time windows:T*T0 k-""_WJ~^  
    T0=0.1;                 % input pulse width 2VCI 1E  
    MN1=0;                 % initial value for the space output location P L+sR3bR  
    dt = T/N;                      % time step uUw5l})%Fi  
    n = [-N/2:1:N/2-1]';           % Index s(roJbJ_;  
    t = n.*dt;   HE_8(Ms ;8  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 kz7(Z'pw  
    u20=u10.*0.0;                  % input to waveguide 2 O<W_fx8_'  
    u1=u10; u2=u20;                 G9@0@2aY8  
    U1 = u1;   w)jISu;RG  
    U2 = u2;                       % Compute initial condition; save it in U 8sK9G` k  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Nl(Foya%)  
    w=2*pi*n./T; RY*U"G0#w  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T maR"t+  
    L=4;                           % length of evoluation to compare with S. Trillo's paper y L~W.H  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 B4 8={  
    for m1 = 1:1:M1                                    % Start space evolution ~.lPEA %%  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Lq!>kT<]!  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; HiJE}V;Vq  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform {T~#?v(  
       ca2 = fftshift(fft(u2));  1ZB"EQ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 8kDp_s i  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   BJo*'US-Q  
       u2 = ifft(fftshift(c2));                        % Return to physical space "G9xMffW  
       u1 = ifft(fftshift(c1)); ]:/Q]n^  
    if rem(m1,J) == 0                                 % Save output every J steps. ib791  
        U1 = [U1 u1];                                  % put solutions in U array ps DetP  
        U2=[U2 u2]; ges J/I  
        MN1=[MN1 m1]; u08mqEa  
        z1=dz*MN1';                                    % output location t.\dpBq  
      end U\!X,a*ts{  
    end =zs`#-^8  
    hg=abs(U1').*abs(U1');                             % for data write to excel w917N 4$  
    ha=[z1 hg];                                        % for data write to excel 6/dI6C!  
    t1=[0 t']; 7W.~  
    hh=[t1' ha'];                                      % for data write to excel file @49S`  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format X+]G-  
    figure(1) QUQ'3  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn %3''}Y5  
    figure(2) I ?.^ho  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn {3vNPQJ  
    x# 5A(g  
    非线性超快脉冲耦合的数值方法的Matlab程序 cDkf qcC  
    D*|Bb?  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   _ZkI)o  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K8Y=S12Ti  
    \mlqO[ S  
    R]*K:~DM  
    OY@ %p}l  
    %  This Matlab script file solves the nonlinear Schrodinger equations P\)iZiGc  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ijx0gh`~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6<(.4a?  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :tv,]05t  
    Vj>8a)"B5a  
    C=1;                           %sQ^.` 2  
    M1=120,                       % integer for amplitude A1zjPG&]  
    M3=5000;                      % integer for length of coupler [QT#Yf0  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) *$ %a:q1U  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 0v$~90)  
    T =40;                        % length of time:T*T0. c=.(!qdH  
    dt = T/N;                     % time step TT3|/zwn  
    n = [-N/2:1:N/2-1]';          % Index #$qTFN  
    t = n.*dt;   <B8!.|19  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. %&t<K3&Yh  
    w=2*pi*n./T; WU=59gB+jL  
    g1=-i*ww./2; 3WIk  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; G {%LB}2  
    g3=-i*ww./2; 0F><P?5  
    P1=0; Bh]P{H%  
    P2=0; j]/RC(;?  
    P3=1; RF0HjgP  
    P=0; _/5H l`  
    for m1=1:M1                 Aj+F |l  
    p=0.032*m1;                %input amplitude i5,kd~%O  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1  p|D/;Mk  
    s1=s10; (mtk 4  
    s20=0.*s10;                %input in waveguide 2 )gy!GK  
    s30=0.*s10;                %input in waveguide 3 j^rIH#V   
    s2=s20; i9][N5\$  
    s3=s30; M{hg0/}sUW  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   $,Yd>%Y  
    %energy in waveguide 1 I,@6J(9  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6MdiY1Lr!K  
    %energy in waveguide 2 F;0}x;:>  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ?o#%Xs  
    %energy in waveguide 3 IG9VdDj  
    for m3 = 1:1:M3                                    % Start space evolution ur7q [n  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS )iK6:s #  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; H-fX(9  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; LvUj9eVb/L  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ..'_o~Ka  
       sca2 = fftshift(fft(s2)); M,mvys$  
       sca3 = fftshift(fft(s3)); xLH)P<^`C  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Jcm&RI"{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); +-CtjhoS  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); (|1A?@sJ#h  
       s3 = ifft(fftshift(sc3)); ZlzjVU/E  
       s2 = ifft(fftshift(sc2));                       % Return to physical space g0ly  
       s1 = ifft(fftshift(sc1)); @xYlS5{  
    end >y:,9;  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \<TXS)w]  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); R>mmoG}MQ[  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); h/hmlnOQl  
       P1=[P1 p1/p10]; _#8RSr8'y  
       P2=[P2 p2/p10]; +<3X J7D  
       P3=[P3 p3/p10]; ~d*(=G  
       P=[P p*p]; uurh??R  
    end d8=x0~7  
    figure(1) {w^+\]tC  
    plot(P,P1, P,P2, P,P3); JKmIvZ)8  
    Opc ZU{4 b  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~