切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8842阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 >z2 {D7  
    V}("8L  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of mEA w^  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ,AJd2ix  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S"dQ@r9  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5v]xk?Eb  
    +CACs7tV  
    %fid=fopen('e21.dat','w'); JO$0Z  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 0 [s1!Cm!i  
    M1 =3000;              % Total number of space steps +1rJ;G  
    J =100;                % Steps between output of space g$+3IVq&  
    T =10;                  % length of time windows:T*T0  :sf;Fq  
    T0=0.1;                 % input pulse width (mzyA%;W  
    MN1=0;                 % initial value for the space output location /w|YNDA]j  
    dt = T/N;                      % time step *]rV,\z:  
    n = [-N/2:1:N/2-1]';           % Index "/q6E  
    t = n.*dt;   \"Np'$4eu  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 It4F;Ah  
    u20=u10.*0.0;                  % input to waveguide 2 ?VJ Fp^Ra  
    u1=u10; u2=u20;                 Tb}b*d3  
    U1 = u1;   V{8mx70  
    U2 = u2;                       % Compute initial condition; save it in U :%0Z  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 35ng_,t $  
    w=2*pi*n./T; _C##U;e!  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T  z\ \MLyS  
    L=4;                           % length of evoluation to compare with S. Trillo's paper %T&kK2d;  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 H;v*/~zl  
    for m1 = 1:1:M1                                    % Start space evolution G#csN&|,  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS g ,.iM8  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; jWm<!< ~  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform p4/D%*G^`  
       ca2 = fftshift(fft(u2)); /rquI y^  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation J[^-k!9M  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   CkOd>Kn  
       u2 = ifft(fftshift(c2));                        % Return to physical space \X(.%5xC  
       u1 = ifft(fftshift(c1)); m$U2|5un&  
    if rem(m1,J) == 0                                 % Save output every J steps. {3l] /X3  
        U1 = [U1 u1];                                  % put solutions in U array 8garRB{  
        U2=[U2 u2]; S-im o  
        MN1=[MN1 m1]; gG#M-2P  
        z1=dz*MN1';                                    % output location ec{pWzAe  
      end \=w|Zeu{l  
    end V%"aU}   
    hg=abs(U1').*abs(U1');                             % for data write to excel VlK WWQj  
    ha=[z1 hg];                                        % for data write to excel M]oaWQu  
    t1=[0 t']; ?@tp1?)  
    hh=[t1' ha'];                                      % for data write to excel file -ohqw+D  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format q$\KE4v"  
    figure(1) gg<lWeS/3  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Wu:evaZ:i  
    figure(2) 5Ba eHzI  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn f- _~rQ  
    LnLuWr<;}  
    非线性超快脉冲耦合的数值方法的Matlab程序 #HqXC\~n  
    Ug/b;( dJ'  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Qax=_[r  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0DGXMO$;  
    :X+7}!Wlo  
    _/hWzj=q  
    )!3sB{ H  
    %  This Matlab script file solves the nonlinear Schrodinger equations 'v?Z~"w=  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 3d[fP#NY7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear : x W.(^(d  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BjSLbw-C  
    Uh{|@D  
    C=1;                           L\o-zNY  
    M1=120,                       % integer for amplitude g%Eb{~v  
    M3=5000;                      % integer for length of coupler rxt)l  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) t}+P|$[  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. af.yC[  
    T =40;                        % length of time:T*T0. nzU^G)  
    dt = T/N;                     % time step 9[T}cN=|  
    n = [-N/2:1:N/2-1]';          % Index L2+~I<|>  
    t = n.*dt;   |%Pd*yZA  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ',~,hJ0  
    w=2*pi*n./T;  `i;f  
    g1=-i*ww./2; ji5c0WH  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; p4[cPt~C  
    g3=-i*ww./2; U8 '}(  
    P1=0; Y$ ZZ0m  
    P2=0; :hC+r=!I  
    P3=1; > <^ ,  
    P=0; uS;N&6;:  
    for m1=1:M1                 )k$ +T%  
    p=0.032*m1;                %input amplitude /d*d'3{c  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 E {*d`n  
    s1=s10; OF-$*  
    s20=0.*s10;                %input in waveguide 2 ^z)p@sk#  
    s30=0.*s10;                %input in waveguide 3 ^-Bx zOp  
    s2=s20; q-}q rg  
    s3=s30; B^nE^"b  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   d#NG]V/   
    %energy in waveguide 1 ^\KZE|^3@  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   WS6'R    
    %energy in waveguide 2 j"1#n? 0  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   <*oTVl4fS  
    %energy in waveguide 3 l$ ^LY)i  
    for m3 = 1:1:M3                                    % Start space evolution >cJfD9-<h  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 6fY-D qF!  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 0o7*5| T4  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; c&X2k\  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform +VT/ c  
       sca2 = fftshift(fft(s2)); @L0xU??"|  
       sca3 = fftshift(fft(s3)); ZW7z[,tk<.  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~>SqJ&-moo  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); qjDt6B^RO  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); stQRl_('  
       s3 = ifft(fftshift(sc3)); %\$~B?At  
       s2 = ifft(fftshift(sc2));                       % Return to physical space :J6 xYy$  
       s1 = ifft(fftshift(sc1)); FLUvFD  
    end (X zy~l<  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); RqB 8g  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); zi%Ql|zI~  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); {#y~ Qk;T  
       P1=[P1 p1/p10]; Dk%+|c  
       P2=[P2 p2/p10]; /xq^]0xy  
       P3=[P3 p3/p10]; 37<^Oly!  
       P=[P p*p]; *be"$ Q  
    end h>k[  
    figure(1) XSHK7vpMf  
    plot(P,P1, P,P2, P,P3); '-X[T}  
    SFJ"(ey$  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~