切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8866阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 [P0c,97_ H  
    y~Yv^'Epf  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of xFJT&=Af W  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of v;-0^s/P  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear JG&E"j#q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 kM@e_YtpY  
     *M$mAy<  
    %fid=fopen('e21.dat','w'); N"tX K  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) gPA8A>U)[  
    M1 =3000;              % Total number of space steps t=My=pG  
    J =100;                % Steps between output of space x>,wmk5)  
    T =10;                  % length of time windows:T*T0 6 8fnh'I!  
    T0=0.1;                 % input pulse width tOte[~,  
    MN1=0;                 % initial value for the space output location 2}bXX'Y  
    dt = T/N;                      % time step S6\E  I5S  
    n = [-N/2:1:N/2-1]';           % Index X\w["! B  
    t = n.*dt;   P.g./8N`z  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 *3OlWnZ?  
    u20=u10.*0.0;                  % input to waveguide 2 q2OF-.rE  
    u1=u10; u2=u20;                 c<~DYe;;  
    U1 = u1;   J_j4Zb% K  
    U2 = u2;                       % Compute initial condition; save it in U SUIu.4Mz  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. L_|iQwU%  
    w=2*pi*n./T; Wb#<ctM>  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T MRZN4<}9  
    L=4;                           % length of evoluation to compare with S. Trillo's paper O2yD{i#l*#  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 XiV K4sD8  
    for m1 = 1:1:M1                                    % Start space evolution xls US'Eo  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 9i lJ  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ,\1Rf.  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform b|may/xWH  
       ca2 = fftshift(fft(u2)); !KT.p2\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation QFN9j  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   tUW^dGo.  
       u2 = ifft(fftshift(c2));                        % Return to physical space nv7)X2jja  
       u1 = ifft(fftshift(c1)); h,-i\8gq  
    if rem(m1,J) == 0                                 % Save output every J steps. 9b&;4Yq!f  
        U1 = [U1 u1];                                  % put solutions in U array keKsLrd  
        U2=[U2 u2]; *a0#PfS[  
        MN1=[MN1 m1]; Os]. IL$  
        z1=dz*MN1';                                    % output location r+6 DlT a  
      end [} d39  
    end lPC{R k.\C  
    hg=abs(U1').*abs(U1');                             % for data write to excel ^^24a_+2  
    ha=[z1 hg];                                        % for data write to excel -UAMHd}4  
    t1=[0 t']; DHyQ:0q  
    hh=[t1' ha'];                                      % for data write to excel file ftRdK>a D  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format \}<J>R@  
    figure(1) ^y93h8\y  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn R<hsG%BS(D  
    figure(2) &B1!,joH~  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ar'VoL}  
    0B2f[A  
    非线性超快脉冲耦合的数值方法的Matlab程序 ACFEM9 [=  
    #Aj#C>  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   a@9W'/?igk  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C43I(.2g  
    7Up-a^k^`  
    J-azBi  
    %U .x9UL  
    %  This Matlab script file solves the nonlinear Schrodinger equations vXSA_" 0t  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of rTOex]@N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear {K|ds($ 5  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q1 BpE8  
    m(5LXH Jnv  
    C=1;                           Q&@<?K9  
    M1=120,                       % integer for amplitude P]2 /}\f  
    M3=5000;                      % integer for length of coupler Cv&>:k0V  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) `r}a:w-  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .vIRz-S  
    T =40;                        % length of time:T*T0. &N3a`Ua  
    dt = T/N;                     % time step $RHw6*COG  
    n = [-N/2:1:N/2-1]';          % Index e(OKE7  
    t = n.*dt;   uKJo5%>  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1gvh6eE F  
    w=2*pi*n./T; !:uh? RW  
    g1=-i*ww./2; naeppBo  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; nDLiER;U  
    g3=-i*ww./2; 9\E];~"iP  
    P1=0; ~H[_=  
    P2=0; ]D^; Ca  
    P3=1; JuRWR0@`  
    P=0; RaymSh  
    for m1=1:M1                 Pp4Q)2X  
    p=0.032*m1;                %input amplitude =BV_ ?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +K2HMf'  
    s1=s10; c"Q9ob  
    s20=0.*s10;                %input in waveguide 2 h ^w# I  
    s30=0.*s10;                %input in waveguide 3 :Fh_Ya0  
    s2=s20; "CFU$~  
    s3=s30; !NKPy+v  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   jCg4$),b  
    %energy in waveguide 1 a", 8N"'  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));    ZLf(m35  
    %energy in waveguide 2 \!0~$?_)P  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   n2["Ln mO  
    %energy in waveguide 3 & ##JZ  
    for m3 = 1:1:M3                                    % Start space evolution /CbM-jf  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS h<WTN_i}  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; v|jwz.jM  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =}e{U&CX  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 6}\J-A/  
       sca2 = fftshift(fft(s2)); lZ`@ }^&  
       sca3 = fftshift(fft(s3)); hsI9{j]f  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^~bAixH^k  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Ro2!$[P  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); KJV],6d  
       s3 = ifft(fftshift(sc3)); :<1PCX2  
       s2 = ifft(fftshift(sc2));                       % Return to physical space |4` ;G(ta  
       s1 = ifft(fftshift(sc1)); Dk g-y9  
    end WxtB:7J  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); HLq2a vs\  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); yoBR'$-=  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); VlxHZ  
       P1=[P1 p1/p10]; C33RXt$X  
       P2=[P2 p2/p10]; }. V!|R,  
       P3=[P3 p3/p10]; bHz H0v]:  
       P=[P p*p]; SMA' VU  
    end 0j' Xi_uM  
    figure(1) )hfI,9I~  
    plot(P,P1, P,P2, P,P3); sz4;hSTy  
    l?x'R("{  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~