切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8947阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 *F_ dP  
    *'BA# /@  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of !}+rg2  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of /a'cP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @0v%5@  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 H0 %;t  
    c;M&;'#x  
    %fid=fopen('e21.dat','w'); GM{J3O=  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) S|_}0  
    M1 =3000;              % Total number of space steps m h5ozv$  
    J =100;                % Steps between output of space zfexaf!  
    T =10;                  % length of time windows:T*T0 )^D:VY9 2  
    T0=0.1;                 % input pulse width ` 6'dhB  
    MN1=0;                 % initial value for the space output location C{5^UCJkg  
    dt = T/N;                      % time step o 5;V=8T;  
    n = [-N/2:1:N/2-1]';           % Index "&@v[O)!xu  
    t = n.*dt;   p3f>;|uh_  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 8B|qNf `Yi  
    u20=u10.*0.0;                  % input to waveguide 2 XZ3)gYQi  
    u1=u10; u2=u20;                 %XU V[L}  
    U1 = u1;   '9w.~@7  
    U2 = u2;                       % Compute initial condition; save it in U --t5jSS44  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. FlqE!6[[  
    w=2*pi*n./T; 83|7#L  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T  '7j!B1K-  
    L=4;                           % length of evoluation to compare with S. Trillo's paper DjK  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 c!2j+ORz  
    for m1 = 1:1:M1                                    % Start space evolution (:TZ~"VY  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS q|r/%[[!o  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; L{i,.aE/nO  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform kCuIEv@  
       ca2 = fftshift(fft(u2)); m:sT)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation sC^9  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   iuxS=3lT"K  
       u2 = ifft(fftshift(c2));                        % Return to physical space .dr-I7&!  
       u1 = ifft(fftshift(c1)); <h vVh9  
    if rem(m1,J) == 0                                 % Save output every J steps. ;`(l)X+7  
        U1 = [U1 u1];                                  % put solutions in U array FFvF4]|L  
        U2=[U2 u2]; hG8 !aJo  
        MN1=[MN1 m1]; <"SOH; w  
        z1=dz*MN1';                                    % output location KK|AXoBf  
      end 13lJq:bM  
    end $QbaPmHW  
    hg=abs(U1').*abs(U1');                             % for data write to excel 0~;Owu  
    ha=[z1 hg];                                        % for data write to excel @h91: hb  
    t1=[0 t']; VD).UdUn  
    hh=[t1' ha'];                                      % for data write to excel file gTby%6- \|  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ov@N13 ,$  
    figure(1) ar#Xe;T!  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Alh"ZT^*  
    figure(2) ! ,*4d $  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Q^_*&},V  
    i!U,qV1  
    非线性超快脉冲耦合的数值方法的Matlab程序 #*"5F*  
    lls-Nir%  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   L]_1z  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o2J-&   
    |;[%ZE"  
    Fhr5)Z  
    ;@&mR <5j  
    %  This Matlab script file solves the nonlinear Schrodinger equations %xH2jf  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ];n3H~2  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7"iUyZ(  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )uJu.foE  
    , (Bo .(]  
    C=1;                           eOdB<He36  
    M1=120,                       % integer for amplitude oOj7y>Nm  
    M3=5000;                      % integer for length of coupler  #"6O3.P  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) K< ;I*cAX  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. p}r1@L s  
    T =40;                        % length of time:T*T0. 3a_=e B  
    dt = T/N;                     % time step $XOs(>~"r  
    n = [-N/2:1:N/2-1]';          % Index ?df*Y5I2  
    t = n.*dt;   v_7?Zik8E  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1_aUU,|.  
    w=2*pi*n./T; 5R?[My  
    g1=-i*ww./2; u3Qm"?$`  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; { !;I4W%!  
    g3=-i*ww./2; =gYKAr^p5  
    P1=0; U<aT%^_  
    P2=0; h yPVt6Gkj  
    P3=1; &ml7368@  
    P=0; @5i m*ubzM  
    for m1=1:M1                 DF>LN%a~  
    p=0.032*m1;                %input amplitude tcm?qro)  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 "G&S`8  
    s1=s10; ?c$z?QTMJ  
    s20=0.*s10;                %input in waveguide 2 zHEH?xZ6sD  
    s30=0.*s10;                %input in waveguide 3 C }= *%S  
    s2=s20; d5hYOhO[  
    s3=s30; \m\E*c ):  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   m7|}PH" 7  
    %energy in waveguide 1 N3Yf3rK  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   2EU((Q`>=(  
    %energy in waveguide 2 Ep.Q&(D >  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3.c0PRZ  
    %energy in waveguide 3 gHB*u!w7Z  
    for m3 = 1:1:M3                                    % Start space evolution gE_i#=bw  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS /p&V72  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; \fk%^1XY  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; +kMVl_` V  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform H;eGBVi  
       sca2 = fftshift(fft(s2)); O>h,u[0  
       sca3 = fftshift(fft(s3)); X*Qtbm,  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   0pC}+ +  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); s"7$SxMT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); i xf~3Y8  
       s3 = ifft(fftshift(sc3)); cg]\R1Gm  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 7;w x,7CUq  
       s1 = ifft(fftshift(sc1)); +J`HI1  
    end FS(bEAk}  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 'pa>;{  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); -F-RWs{yS  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); e\[z Q 2Z3  
       P1=[P1 p1/p10]; <fZ?F=  
       P2=[P2 p2/p10]; /CE]7m,7~K  
       P3=[P3 p3/p10]; e Qz_,vTk  
       P=[P p*p]; P_[A  
    end U@6bH@v5  
    figure(1) g?}$"=B   
    plot(P,P1, P,P2, P,P3); +p:?blG  
    }:b6WN;c  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~