切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9109阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 El<*)  
    f?sm~PwC-  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of :9UgERjra  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 8J(j}</>a  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :uo1QavO@,  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 tf~B,?  
    29RP$$gR  
    %fid=fopen('e21.dat','w'); _K~h? \u  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) AYA{_^#+3  
    M1 =3000;              % Total number of space steps $5&%X'jk  
    J =100;                % Steps between output of space Ocx"s\q(  
    T =10;                  % length of time windows:T*T0 ljNwt  
    T0=0.1;                 % input pulse width %f1%9YH  
    MN1=0;                 % initial value for the space output location z5fE<=<X_W  
    dt = T/N;                      % time step f)/Z7*Z  
    n = [-N/2:1:N/2-1]';           % Index V|MGG  
    t = n.*dt;   XA2Ld  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 1XSnnkJm  
    u20=u10.*0.0;                  % input to waveguide 2 :*''ci  
    u1=u10; u2=u20;                 QF"7.~~2  
    U1 = u1;   V^2_]VFj  
    U2 = u2;                       % Compute initial condition; save it in U n(F!t,S1i  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. @N>7+ 4  
    w=2*pi*n./T; .zO2g8(VR  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T l/X_CM8y~  
    L=4;                           % length of evoluation to compare with S. Trillo's paper AatSN@,~z  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 +NPL.b|  
    for m1 = 1:1:M1                                    % Start space evolution E JkHPn  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS wX"hUu  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Ht Fr(g\"$  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ~$HB}/  
       ca2 = fftshift(fft(u2)); X1| +9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation EU?qLj':  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   I@'[>t  
       u2 = ifft(fftshift(c2));                        % Return to physical space K&L!O3#(  
       u1 = ifft(fftshift(c1)); ?gE=hh  
    if rem(m1,J) == 0                                 % Save output every J steps. ")|/\ w,  
        U1 = [U1 u1];                                  % put solutions in U array h:%,>I%{  
        U2=[U2 u2]; e%\^V\L  
        MN1=[MN1 m1]; +lym8n~-O  
        z1=dz*MN1';                                    % output location NfgXOLthM  
      end QHk\Z  
    end *'/,  
    hg=abs(U1').*abs(U1');                             % for data write to excel Bs~~C8+  
    ha=[z1 hg];                                        % for data write to excel OsgPNy0  
    t1=[0 t']; ?*fa5=ql  
    hh=[t1' ha'];                                      % for data write to excel file  q#K{~:  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _\WR3Q!V  
    figure(1) A WR :~{  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn >f]/VaMH{  
    figure(2) AjVC{\Ik  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn B5lwQp]  
    nh} Xu~#_  
    非线性超快脉冲耦合的数值方法的Matlab程序 R}&?9tVRR  
    MKHnA|uQ](  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   !m@cTB7i   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8 1,N92T5  
    G]K1X"W?  
    iiPVqU%  
    ;s B=f  
    %  This Matlab script file solves the nonlinear Schrodinger equations l;; 2\mL?  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of E'AR.!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *QC6zJ  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 my 'nDi  
    -c`xeuzK'  
    C=1;                           %F*9D3^h  
    M1=120,                       % integer for amplitude mxv ?PP  
    M3=5000;                      % integer for length of coupler (Z),gxt  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) BhJ>G%  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. E)v~kC}7.  
    T =40;                        % length of time:T*T0. voa)V 1A/]  
    dt = T/N;                     % time step  0,Ds1y^  
    n = [-N/2:1:N/2-1]';          % Index -^@FZ R^Y  
    t = n.*dt;   !dqC6a  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Wg-mJu(  
    w=2*pi*n./T; }a]`"_i;[  
    g1=-i*ww./2; VE\L&d2S  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; %_!/4^smE  
    g3=-i*ww./2; x@ -K  
    P1=0; `Y&`2WZ ~  
    P2=0; S:xXD^n#H  
    P3=1; BZeEZ2"  
    P=0; ~;"eNg{ T  
    for m1=1:M1                 [OC( ~b  
    p=0.032*m1;                %input amplitude y1V}c ,  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 TFSdb\g  
    s1=s10; &h5Vhzq(<  
    s20=0.*s10;                %input in waveguide 2 r:QLU]   
    s30=0.*s10;                %input in waveguide 3 A*h8 o9M  
    s2=s20; b_x!m{  
    s3=s30; E?w#$HS  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   8F sQLeOE  
    %energy in waveguide 1 ndSu-8?L  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   RD`|Z~:q:K  
    %energy in waveguide 2 Ac_P^  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3D|Lb]=  
    %energy in waveguide 3 x\yM|WGL  
    for m3 = 1:1:M3                                    % Start space evolution > X~\(|EM  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS _}{KS, f]0  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; # qd!_oN  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; u Kx:7"KD  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ,N$Q']Td  
       sca2 = fftshift(fft(s2)); 7 [Us.V@  
       sca3 = fftshift(fft(s3)); [@K'}\U^+  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Y>$5j}K  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); rZI63S  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); %`C e#b()'  
       s3 = ifft(fftshift(sc3)); @&*TGU  
       s2 = ifft(fftshift(sc2));                       % Return to physical space OTy!Q,0$.  
       s1 = ifft(fftshift(sc1)); |~9jO/&r  
    end Dl!0Hl  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); wSR|uh  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); VwR\"8r3  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); m[%356u  
       P1=[P1 p1/p10]; :!i=g+e]  
       P2=[P2 p2/p10]; X}#vt?mu  
       P3=[P3 p3/p10]; 8@3=SO  
       P=[P p*p]; `^#Rwn#  
    end ;MfqI/B{  
    figure(1) }s2CND  
    plot(P,P1, P,P2, P,P3); ^B.Z3Y  
    e1[ReZW  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~