切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9148阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 )E@A0W  
    i;LXu%3\  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 'EDda  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?7<JQh)"e  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S;$-''o?9  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s l]_M  
    t2,A@2DU 2  
    %fid=fopen('e21.dat','w'); QFYWA1<pDh  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) }:X*7 n(&  
    M1 =3000;              % Total number of space steps d ,4]VE  
    J =100;                % Steps between output of space &boOtl^  
    T =10;                  % length of time windows:T*T0 _?OW0x4  
    T0=0.1;                 % input pulse width ='`/BY(m[  
    MN1=0;                 % initial value for the space output location At-U2a#J{  
    dt = T/N;                      % time step  IiY/(N+J  
    n = [-N/2:1:N/2-1]';           % Index tjupJ*Rt  
    t = n.*dt;   S30?VG9U0f  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 (M*FIX  
    u20=u10.*0.0;                  % input to waveguide 2 cWoPB _  
    u1=u10; u2=u20;                 UK<Nj<-'t  
    U1 = u1;   ZosP(Tdq  
    U2 = u2;                       % Compute initial condition; save it in U G6T_O  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. c-B cA  
    w=2*pi*n./T; $0 vb^  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T eeyHy"@  
    L=4;                           % length of evoluation to compare with S. Trillo's paper !o:f$6EA~C  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 {phNds%  
    for m1 = 1:1:M1                                    % Start space evolution 1v71rf&w  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS bD/~eIcWL  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Y;?{|  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 9I6a"PGDb  
       ca2 = fftshift(fft(u2)); mIK7p6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation eEuvl`&  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   zd @m~V  
       u2 = ifft(fftshift(c2));                        % Return to physical space \ExMk<y_&  
       u1 = ifft(fftshift(c1)); ,6-:VIHQ  
    if rem(m1,J) == 0                                 % Save output every J steps. Tj:B!>>  
        U1 = [U1 u1];                                  % put solutions in U array D)L+7N0D~  
        U2=[U2 u2]; U4d:] z  
        MN1=[MN1 m1]; Qk:Y2mL  
        z1=dz*MN1';                                    % output location XD.)Dl8  
      end < jJ  
    end gt@m?w(  
    hg=abs(U1').*abs(U1');                             % for data write to excel uG,5BV.M  
    ha=[z1 hg];                                        % for data write to excel f|\onHI)>  
    t1=[0 t']; RW<D<5C  
    hh=[t1' ha'];                                      % for data write to excel file )h7<?@wv&  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format vSEuk}pk  
    figure(1) jYk&/@`Ly  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn |olA9mp|]  
    figure(2) <0Xf9a8>  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ;lE%M  
    ,J+}rPe"sf  
    非线性超快脉冲耦合的数值方法的Matlab程序 Zy`m!]G]80  
    LY%WD%pL  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   aAD^^l#  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4K\G16'$v  
    e|"WQ>  
    6 (]Dh;gC  
    \NPmym_ 6J  
    %  This Matlab script file solves the nonlinear Schrodinger equations oKuI0-*mR  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of '=b/6@&  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V<GHpFi0  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R!}H;[c  
    dYJ(!V&  
    C=1;                           EJMM9(DQ7  
    M1=120,                       % integer for amplitude 8A##\j )  
    M3=5000;                      % integer for length of coupler Te"ioU?.  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) p{r}?a  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. >;e~WF>+K  
    T =40;                        % length of time:T*T0. ]Sf]J4eQ  
    dt = T/N;                     % time step KcWN,!G  
    n = [-N/2:1:N/2-1]';          % Index Va"0>KX  
    t = n.*dt;   d; boIP`M;  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. TM%| '^)  
    w=2*pi*n./T; "\: `/k3  
    g1=-i*ww./2; =$'6(aDH  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]_f_w 9]  
    g3=-i*ww./2; j()7_  
    P1=0; p`olCp'  
    P2=0; u^^[Q2LDU}  
    P3=1; NcBIg:V\c  
    P=0; rV` #[d  
    for m1=1:M1                 DX#Nf""Pw  
    p=0.032*m1;                %input amplitude Ag-(5:  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 p|U?86 t  
    s1=s10; +}Dw3;W}m  
    s20=0.*s10;                %input in waveguide 2 YvaK0p0Z  
    s30=0.*s10;                %input in waveguide 3 'OITI TM  
    s2=s20; <FV1Wz  
    s3=s30; .s?L^Z^  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   _>&X\`D   
    %energy in waveguide 1 =W(Q34  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   - YEZ]:"  
    %energy in waveguide 2 q+yQwX{  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   V(H1q`ao9  
    %energy in waveguide 3 BX`{73sw  
    for m3 = 1:1:M3                                    % Start space evolution i1}:8Unxf  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ^UP`%egR  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 0yk]o5a++  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; X8Bd3-B  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Dj"F\j 1  
       sca2 = fftshift(fft(s2)); ;AG8C#_  
       sca3 = fftshift(fft(s3)); 01 }D,W`  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Cjn#00  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); %z=le7  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Q *D;U[  
       s3 = ifft(fftshift(sc3)); Kg{+T`  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {&&z-^  
       s1 = ifft(fftshift(sc1)); =x/X:;)>  
    end R$R *'l  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \j$&DCv   
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Y`~Ut:fZ  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); '{cIAw/"n  
       P1=[P1 p1/p10]; L^1NY3=$  
       P2=[P2 p2/p10]; (d(CT;  
       P3=[P3 p3/p10]; ]%;:7?5l  
       P=[P p*p]; )v'WWwXY>  
    end 6fkRrD  
    figure(1) y6g&Y.:o  
    plot(P,P1, P,P2, P,P3); g_;\iqxL  
    fBU`k_  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~