切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8979阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 I9y.e++/  
    @R2at  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of kCP$I732  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of W{"XJt_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bE\,}DTy  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b"j|Bb  
    7"v$- Wy  
    %fid=fopen('e21.dat','w'); u5E]t9~Pq  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) S"2qJ!.u  
    M1 =3000;              % Total number of space steps dZ(|uC!?  
    J =100;                % Steps between output of space ;?L\Fz(<   
    T =10;                  % length of time windows:T*T0 6XV<? 9q  
    T0=0.1;                 % input pulse width 5\4g>5PD  
    MN1=0;                 % initial value for the space output location :`,3h%  
    dt = T/N;                      % time step SW?p?<  
    n = [-N/2:1:N/2-1]';           % Index 2XSHZ|;  
    t = n.*dt;   \FzM4-  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 a}nbo4jK  
    u20=u10.*0.0;                  % input to waveguide 2 X" R<J#4  
    u1=u10; u2=u20;                 r.3KPiYK  
    U1 = u1;   : mGAt[Cc  
    U2 = u2;                       % Compute initial condition; save it in U _D!g4"  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. )ZR+lX }  
    w=2*pi*n./T; V6a``i]  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T JhK/']R  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 6j9)/H P  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 pK&I^r   
    for m1 = 1:1:M1                                    % Start space evolution [J#1Ff;  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS H=MCjh&$q  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; (k"_># %  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform j2n,f7hl.  
       ca2 = fftshift(fft(u2)); ">jwh.  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation qoU3"8  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   30cd| S?  
       u2 = ifft(fftshift(c2));                        % Return to physical space MBr:?PE7  
       u1 = ifft(fftshift(c1)); y9HK |  
    if rem(m1,J) == 0                                 % Save output every J steps. Es5p}uh.[Y  
        U1 = [U1 u1];                                  % put solutions in U array Ka_S n  
        U2=[U2 u2]; j ) vlM+  
        MN1=[MN1 m1]; ZU&"73   
        z1=dz*MN1';                                    % output location FH5ql~  
      end y }2F9=  
    end j -O2aL  
    hg=abs(U1').*abs(U1');                             % for data write to excel gPC@Yy  
    ha=[z1 hg];                                        % for data write to excel ~%y@Xsot>  
    t1=[0 t']; ]dPZ.r  
    hh=[t1' ha'];                                      % for data write to excel file Owv +1+B  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format '_0]vupvY  
    figure(1) wo^Sy41bF  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn W  0[N0c  
    figure(2) JqUADm  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn UHO_Z  
    VV_l$E$  
    非线性超快脉冲耦合的数值方法的Matlab程序 9l/EjF^  
    vP-M,4c  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Pt< s* (  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \>/M .2  
    i, nD5 @#  
    6)gd^{  
    Z0,~V  
    %  This Matlab script file solves the nonlinear Schrodinger equations LxN*)[Wb  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of `cB_.&  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear xl4=++pu)  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BNGe exs@  
    4jm K].  
    C=1;                           }odV_WT  
    M1=120,                       % integer for amplitude TW&DFKK`  
    M3=5000;                      % integer for length of coupler n]CbDbNw7)  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) (zo^Nn9VJ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. %i{;r35M;9  
    T =40;                        % length of time:T*T0. %,*$D} H  
    dt = T/N;                     % time step F_;tT%ywfx  
    n = [-N/2:1:N/2-1]';          % Index ': F}3At  
    t = n.*dt;   B)SLG]72f  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. M@UVpQwgv  
    w=2*pi*n./T; nY?  
    g1=-i*ww./2; {OMg d3%14  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; #TJk-1XM*q  
    g3=-i*ww./2; rjA@U<o  
    P1=0; N> Jw  
    P2=0; 25{ uz  
    P3=1; }2>"<)  
    P=0; tV;% J4E'  
    for m1=1:M1                 cSP*f0n,eo  
    p=0.032*m1;                %input amplitude LwJ0  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 8|1^|B(l  
    s1=s10; h+UnZfm  
    s20=0.*s10;                %input in waveguide 2 R""%F#4XJ2  
    s30=0.*s10;                %input in waveguide 3 =ZYThfAEw  
    s2=s20; ,lN5,zI=S  
    s3=s30; A]`:VC=IU  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   DtCEm(b0  
    %energy in waveguide 1 {i{xo2<1"  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   {kB `>VS  
    %energy in waveguide 2 2i=H"('G)+  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3SG?W_  
    %energy in waveguide 3  ^y.UbI  
    for m3 = 1:1:M3                                    % Start space evolution 8}p8r|d!ls  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS haSM=;uPM  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; [`fI:ao|  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Iq5pAHm>M6  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform w:=V@-S 8  
       sca2 = fftshift(fft(s2)); F}?<v8#z0  
       sca3 = fftshift(fft(s3)); NC23Z0y  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   +JdZPb  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); T3J'fjY  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); $K}. +`vVO  
       s3 = ifft(fftshift(sc3)); oY9FK{  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 5fjd{Y[k  
       s1 = ifft(fftshift(sc1)); mNmUUj9z  
    end *dE^-dm#  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ZXiRw)rM  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3x*z\VJ  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); XJ\hd,R   
       P1=[P1 p1/p10]; E0f{iO;}  
       P2=[P2 p2/p10]; 93%{scrm  
       P3=[P3 p3/p10]; rs8\)\z  
       P=[P p*p]; Csst[3V  
    end HD`>-E#  
    figure(1) l[h'6+o  
    plot(P,P1, P,P2, P,P3); )najO *n  
    7!V @/S}7  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~