切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9342阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Jg| XH L)  
    ?.;c$'  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of )P|),S,;Z  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of oM`0y@QCf  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ZzT9j~  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p= } Nn(  
    @J`"[%U  
    %fid=fopen('e21.dat','w'); ,nDaqQ-C!!  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) #4 pB@_  
    M1 =3000;              % Total number of space steps TbW38\>.R  
    J =100;                % Steps between output of space >I&5j/&}+  
    T =10;                  % length of time windows:T*T0 AkQ ~k0i}b  
    T0=0.1;                 % input pulse width JnM["Q=`  
    MN1=0;                 % initial value for the space output location V33T+P~j  
    dt = T/N;                      % time step j#q-^h3H  
    n = [-N/2:1:N/2-1]';           % Index 0Z{ZO*rK  
    t = n.*dt;   f=K]XTw~  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ut7zVp<"  
    u20=u10.*0.0;                  % input to waveguide 2 ^3L0w}#  
    u1=u10; u2=u20;                 v,>Dbxn  
    U1 = u1;   4@# `t5H  
    U2 = u2;                       % Compute initial condition; save it in U j+  0I-p  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. o:Sa, !DK  
    w=2*pi*n./T; #'9HU2  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T -C?ZB}`   
    L=4;                           % length of evoluation to compare with S. Trillo's paper ?+}_1x`  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Y glmX"fLf  
    for m1 = 1:1:M1                                    % Start space evolution Qjv}$`M  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS I(BQ34q  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ]|P iF+  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform l)l^[2  
       ca2 = fftshift(fft(u2)); ExL0?FemWV  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Cd}<a?m,  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   'kO!^6=4M  
       u2 = ifft(fftshift(c2));                        % Return to physical space &Ys<@M7E:  
       u1 = ifft(fftshift(c1)); IKilr'  
    if rem(m1,J) == 0                                 % Save output every J steps. *mvlb (' &  
        U1 = [U1 u1];                                  % put solutions in U array x)O!["'"  
        U2=[U2 u2]; V{3x!+q  
        MN1=[MN1 m1]; |imM# wF  
        z1=dz*MN1';                                    % output location z/@slT  
      end 6fEqqUeV  
    end 1ztG;\  
    hg=abs(U1').*abs(U1');                             % for data write to excel >V8-i`  
    ha=[z1 hg];                                        % for data write to excel K} X&AJ5A  
    t1=[0 t']; \\B(r  
    hh=[t1' ha'];                                      % for data write to excel file )W _v:?A9  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Iom'Y@x  
    figure(1) +E(L\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn <&g,Nc'5C  
    figure(2) EaY?aAuS:  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn >$/>#e~  
    XrGglBIV  
    非线性超快脉冲耦合的数值方法的Matlab程序 8\A#CQ5b  
    `Cynj+PCe  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   @>2i+)=E5  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !Pfr,a  
    L2i_X@/  
    4yr'W8X_  
    w;:*P  
    %  This Matlab script file solves the nonlinear Schrodinger equations ,Ae6/D$h/  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of u[=r,^YQ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear YWO)HsjP  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ">,|V-H  
    A&Usddcp  
    C=1;                           jZkcBIK2  
    M1=120,                       % integer for amplitude b&N'C9/8  
    M3=5000;                      % integer for length of coupler >rmqBDKaQ  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) >7T'OC  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. w4{<n /"  
    T =40;                        % length of time:T*T0. x}I+Iggi  
    dt = T/N;                     % time step ~1AgD-:Jz  
    n = [-N/2:1:N/2-1]';          % Index \aUC(K~o\;  
    t = n.*dt;   By",rD- r  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. WUXx;9>  
    w=2*pi*n./T; :g=qz~2Xk  
    g1=-i*ww./2; .|>3k'<l  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; goOCu  
    g3=-i*ww./2; Y0dEH^I  
    P1=0; cj|80$cSA  
    P2=0; Ma']?Rb`  
    P3=1; g63(E,;;J  
    P=0; s.QwSbw-g  
    for m1=1:M1                 @&3EJ1  
    p=0.032*m1;                %input amplitude i0kak`x0  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 `*cxH..  
    s1=s10; b;W3j   
    s20=0.*s10;                %input in waveguide 2 CMG&7(MR  
    s30=0.*s10;                %input in waveguide 3 H0gbSd+  
    s2=s20; t[;LD_  
    s3=s30;  JWhdMU  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   */^q{PsN  
    %energy in waveguide 1 ;yLu R  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   p\tm:QWD;  
    %energy in waveguide 2 *-=(Q`3  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Y^;ovH~ ve  
    %energy in waveguide 3 y@:h4u"3  
    for m3 = 1:1:M3                                    % Start space evolution /h H  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS FQ7T'G![  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; SpLzm A  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8f)?{AX0  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform z2_*%S@  
       sca2 = fftshift(fft(s2)); =_ ./~  
       sca3 = fftshift(fft(s3)); HU8900k+  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~Z?TFg  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); L:pYn_  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); r?lf($ D*  
       s3 = ifft(fftshift(sc3)); 2~1SQ.Q<RY  
       s2 = ifft(fftshift(sc2));                       % Return to physical space JPc+rfF  
       s1 = ifft(fftshift(sc1)); 0y" $MC v  
    end FxtQXu-g  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); r6MMCJ|G  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); G%AbC"  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9~5uaP$S  
       P1=[P1 p1/p10]; RXpw!  
       P2=[P2 p2/p10]; Pg0x/X{t  
       P3=[P3 p3/p10]; 9N%We|L,c  
       P=[P p*p]; D9 CaFu  
    end Vod\a 5c  
    figure(1) hOu3 bA  
    plot(P,P1, P,P2, P,P3); .9on@S  
    uk< 4+x,2)  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~