切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9361阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 I4^}C;p0?  
    EcW$'>^  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of |{H-PH*Iz  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of \i$WXW]|  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear do(komP<\  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5\$8"/H  
    o%\pI%  
    %fid=fopen('e21.dat','w'); j{u! /FD  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) kKR Z79"7s  
    M1 =3000;              % Total number of space steps -g]g  
    J =100;                % Steps between output of space M/mUY  
    T =10;                  % length of time windows:T*T0 CJu3h&Rp  
    T0=0.1;                 % input pulse width 9K5[a^q|My  
    MN1=0;                 % initial value for the space output location naoH685R4  
    dt = T/N;                      % time step BKQI|i  
    n = [-N/2:1:N/2-1]';           % Index _o-D},f*e  
    t = n.*dt;   ~wsD g[  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 {JlW1;Jc7  
    u20=u10.*0.0;                  % input to waveguide 2 79 ZBVe(}  
    u1=u10; u2=u20;                 'Nbae-pf  
    U1 = u1;   )pA N_e"  
    U2 = u2;                       % Compute initial condition; save it in U C4~`3Mk  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. RZeU{u<O  
    w=2*pi*n./T; 4_w+NI,;  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ;f7;U=gl,  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ,pz^8NJAI  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 + B#3!  
    for m1 = 1:1:M1                                    % Start space evolution )m Uc !TP  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS :5`BhFAd  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; A+lP]Oy0S  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 4^0L2BVcv  
       ca2 = fftshift(fft(u2)); R1DXi  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Xbb('MoI63  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   PDnwaK   
       u2 = ifft(fftshift(c2));                        % Return to physical space OO:^#Mvv5  
       u1 = ifft(fftshift(c1)); -  zQ  
    if rem(m1,J) == 0                                 % Save output every J steps. P]@m0f  
        U1 = [U1 u1];                                  % put solutions in U array 'e4  ;,m  
        U2=[U2 u2]; \e/'d~F  
        MN1=[MN1 m1]; IP`;hC  
        z1=dz*MN1';                                    % output location %:eep G|  
      end 9 1r"-%(r  
    end Jyx6{O j  
    hg=abs(U1').*abs(U1');                             % for data write to excel (f  0p   
    ha=[z1 hg];                                        % for data write to excel q.OkZI0n   
    t1=[0 t']; 8h#/b1\  
    hh=[t1' ha'];                                      % for data write to excel file U'st\Dt  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format pOn>m1|  
    figure(1) q=5#t~?  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn x-5XOqD{'  
    figure(2) &\$l%icuo  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn / W}Za&]  
    K>TdN+Z}=  
    非线性超快脉冲耦合的数值方法的Matlab程序 9T4x1{mO  
    |-hzvuSX  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    @t  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .ya^8gM  
    byYdX'd.  
    tVZj tGz=  
    J>P{8Aw  
    %  This Matlab script file solves the nonlinear Schrodinger equations 9tVA.:FOZ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of LX e{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K YFumR  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;wfzlUBC  
    Z4Nl{  6  
    C=1;                           -i@1sNx&'  
    M1=120,                       % integer for amplitude GQTMQXn(  
    M3=5000;                      % integer for length of coupler zQ$*!1FmN  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) xS` %3+|  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;/W;M> ^  
    T =40;                        % length of time:T*T0. }Lx?RU+@=  
    dt = T/N;                     % time step M`ETH8Su=  
    n = [-N/2:1:N/2-1]';          % Index  b]s*z<|%  
    t = n.*dt;   2B7X~t>8a  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Z@=1-l  
    w=2*pi*n./T; }!\ZJoa  
    g1=-i*ww./2; cjU*  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Da!A1|"  
    g3=-i*ww./2; u0^: XwZ!  
    P1=0; e uS"C*  
    P2=0; &,xN$  
    P3=1; 5Cd>p<  
    P=0; &inu mc  
    for m1=1:M1                 1O1/P,u+  
    p=0.032*m1;                %input amplitude , e{kC  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2l#Ogn`k  
    s1=s10; }u&.n pc  
    s20=0.*s10;                %input in waveguide 2 "_JGe#=  
    s30=0.*s10;                %input in waveguide 3 *M5 =PQfb  
    s2=s20; N.C<Mo  
    s3=s30; ;}{%|UAsx  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   | eIN<RY5  
    %energy in waveguide 1 mHo}, |  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ~#dNGWwG  
    %energy in waveguide 2 p6]4YGw*^  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   <k'=_mC_  
    %energy in waveguide 3 5 fjeBfy  
    for m3 = 1:1:M3                                    % Start space evolution w: ~66 TCI  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS eOjoxnD-$  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; a&~d,vC  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Z VuHO7'  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform |k:MXI  
       sca2 = fftshift(fft(s2)); TmG$Cjf84  
       sca3 = fftshift(fft(s3)); }.Ht=E]  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _e$15qW+  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); q4<3 O"c1  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); L,| 60*  
       s3 = ifft(fftshift(sc3)); [!4p5;  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /c~z(wv  
       s1 = ifft(fftshift(sc1)); S,m)yh.  
    end 1`N q K  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); dJM)~Ay-  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ziR}  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9hEIf,\  
       P1=[P1 p1/p10]; @Hj5ZJ 3  
       P2=[P2 p2/p10]; ./LD  
       P3=[P3 p3/p10]; 2e zQX2q  
       P=[P p*p]; pw*<tXH!  
    end TU{^/-l  
    figure(1) Od70w*,  
    plot(P,P1, P,P2, P,P3); ^4_)a0Kcm,  
    1u7Kc'.xc  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~