切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9280阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 VsIDd}~C%  
    ~m`j=ot  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Mk-zeq<2z  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 3MqyHOOv  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o8uak*"{  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5?] Dn k.o  
    5~,usA*  
    %fid=fopen('e21.dat','w'); Veeuw  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) },eV?eGj  
    M1 =3000;              % Total number of space steps _ tba:a(  
    J =100;                % Steps between output of space >#u9W'@|  
    T =10;                  % length of time windows:T*T0 (:|g"8mQm  
    T0=0.1;                 % input pulse width qcVmt1"  
    MN1=0;                 % initial value for the space output location jWpm"C  
    dt = T/N;                      % time step H6o_*Y  
    n = [-N/2:1:N/2-1]';           % Index 3UR'*5|'  
    t = n.*dt;   CdZS"I  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 M9C v00&  
    u20=u10.*0.0;                  % input to waveguide 2 zG^|W8um_  
    u1=u10; u2=u20;                 ,8Eg/  
    U1 = u1;   ?^} z  
    U2 = u2;                       % Compute initial condition; save it in U ^*g= 65!1  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 2E 0A`  
    w=2*pi*n./T; |K.J@zW  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T uW 7Yem&  
    L=4;                           % length of evoluation to compare with S. Trillo's paper >;^t)6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 jjJvyZi~J  
    for m1 = 1:1:M1                                    % Start space evolution xj< K6  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Xtk3~@  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; #MyF 1E  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform zg}#X6\G<_  
       ca2 = fftshift(fft(u2)); u.yjk/jF  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ka c-@  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   3[*x'"Q;H  
       u2 = ifft(fftshift(c2));                        % Return to physical space 9EFQo^ E  
       u1 = ifft(fftshift(c1)); ]broU%#"  
    if rem(m1,J) == 0                                 % Save output every J steps. ^1w<wB\B  
        U1 = [U1 u1];                                  % put solutions in U array MkK6.qV\z  
        U2=[U2 u2]; qsG}A  
        MN1=[MN1 m1]; HrK7qLw7  
        z1=dz*MN1';                                    % output location 16-1&WuY@  
      end QHHj.ZY  
    end *KYh_i  
    hg=abs(U1').*abs(U1');                             % for data write to excel ]^>RBegJBO  
    ha=[z1 hg];                                        % for data write to excel tBjMm8lgb  
    t1=[0 t']; =Sjf-o1V  
    hh=[t1' ha'];                                      % for data write to excel file hd>_K*oH  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 49!(Sa_]j  
    figure(1) ,>3b|-C-  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn p!/ *(TT  
    figure(2) eW\C@>Ke  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn J;5G]$s  
    :"Gd;~p.  
    非线性超快脉冲耦合的数值方法的Matlab程序 Ue&I]/?;$  
    pP)> x*1  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   *|B5,Ey  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 j V'~>  
    D6fGr$(N%  
    dF+R q|n{  
    GLiD,QX<  
    %  This Matlab script file solves the nonlinear Schrodinger equations Hd ${I",  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [A'9sxG  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear vSv:!5*  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1SG^g*mf  
    LTZ~Id-)P  
    C=1;                           zlhU[J}"1|  
    M1=120,                       % integer for amplitude i Qa=4'9;  
    M3=5000;                      % integer for length of coupler 2#_ i_j  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) NOQSLT=  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. S{S.H?{F  
    T =40;                        % length of time:T*T0. 1Gp| _8  
    dt = T/N;                     % time step xX~; /e&,  
    n = [-N/2:1:N/2-1]';          % Index l0BYv&tu  
    t = n.*dt;   rrrn8b6  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ? oQ_qleuo  
    w=2*pi*n./T; t-Zk)*d/0  
    g1=-i*ww./2; ia*Bcx_RW+  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; K*aGz8N  
    g3=-i*ww./2; nC@UK{tVa  
    P1=0; ' p!\[* e  
    P2=0; `{+aJ0<S  
    P3=1; fctVJ{?  
    P=0; pIgjo>K  
    for m1=1:M1                 PS/00F/Ak  
    p=0.032*m1;                %input amplitude PbIir=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +8 }p-<a  
    s1=s10; ^~DClZ  
    s20=0.*s10;                %input in waveguide 2 *3h!&.zm  
    s30=0.*s10;                %input in waveguide 3 s}Q*zy  
    s2=s20; ]-8yZWal  
    s3=s30; r!)jxIL\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   @YI- @  
    %energy in waveguide 1 kWxcB7)uk  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5@`DS-7h  
    %energy in waveguide 2 a3B^RbDP&8  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   8gXf4A(N  
    %energy in waveguide 3 x0ICpt{;  
    for m3 = 1:1:M3                                    % Start space evolution WXX08"  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (k<__W c_t  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; xf 4`+[  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; o0FVVSl  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 4L/8Hj#g  
       sca2 = fftshift(fft(s2)); Na>?1F"KHk  
       sca3 = fftshift(fft(s3)); 5tcJT z  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   i1-wzI  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); C^9bur/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 4qg] oiT  
       s3 = ifft(fftshift(sc3)); zf?U q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ^<v]x; 3  
       s1 = ifft(fftshift(sc1)); L<O"36R  
    end ky{-NrK  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); #RVN 7-x  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); DS>qth  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9p%8VDF=  
       P1=[P1 p1/p10]; O_[]+5.TX  
       P2=[P2 p2/p10]; =(]||1 .  
       P3=[P3 p3/p10]; |emZZj  
       P=[P p*p]; ZfSAXr "(  
    end c@)}zcw*  
    figure(1) @ >Ul0&Mf?  
    plot(P,P1, P,P2, P,P3); p WLFJH}N  
    8L,i}hIo.  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~