切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9414阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 TmI~P+5w  
    `M0m`Up  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of cJ[ gCS  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of h- )tWJ c  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear WI@l2`X  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 v|DgRPY  
    ft |W  
    %fid=fopen('e21.dat','w'); nPlg5&E  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Y3%_IwSJ|  
    M1 =3000;              % Total number of space steps Jz"Yb  
    J =100;                % Steps between output of space 1 Hw%DJ  
    T =10;                  % length of time windows:T*T0 0?@;zTE0  
    T0=0.1;                 % input pulse width B?bdHO:E~  
    MN1=0;                 % initial value for the space output location D==C"}J  
    dt = T/N;                      % time step l X g.`  
    n = [-N/2:1:N/2-1]';           % Index -8Z;s8ACo  
    t = n.*dt;   >;wh0dBe  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 e`]x?t<U4/  
    u20=u10.*0.0;                  % input to waveguide 2 pZeJ$3@vk  
    u1=u10; u2=u20;                 [S Jx\Os  
    U1 = u1;   Y52f8qQq  
    U2 = u2;                       % Compute initial condition; save it in U 94uAt&&b(  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. } O:Y?Wq^  
    w=2*pi*n./T; EV=/'f[++  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T JU>F&g/|  
    L=4;                           % length of evoluation to compare with S. Trillo's paper l~",<bTc  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 a] =k-Xh  
    for m1 = 1:1:M1                                    % Start space evolution *;E\,,Io  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS @Z}TF/Rx4  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;  m$XMq  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform NW=gi qB  
       ca2 = fftshift(fft(u2)); :v$][jZ2  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $U*b;'o  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   <m"fzT<"  
       u2 = ifft(fftshift(c2));                        % Return to physical space t%S2D  
       u1 = ifft(fftshift(c1)); UnVYGch  
    if rem(m1,J) == 0                                 % Save output every J steps. ?WEKRl  
        U1 = [U1 u1];                                  % put solutions in U array q8m[ S4Q]g  
        U2=[U2 u2]; :{ 8,O-  
        MN1=[MN1 m1]; bd'io O  
        z1=dz*MN1';                                    % output location Vi 9Kah+  
      end }Od=WQv+  
    end V*d@@%u**  
    hg=abs(U1').*abs(U1');                             % for data write to excel  4:Ton  
    ha=[z1 hg];                                        % for data write to excel K;L6<a A#  
    t1=[0 t']; n{*A<-vL  
    hh=[t1' ha'];                                      % for data write to excel file uO^,N**R#  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format lVptA3F  
    figure(1) ]H {g/C{j  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn #MyF 1E  
    figure(2) zg}#X6\G<_  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn u.yjk/jF  
    y8.3tp  
    非线性超快脉冲耦合的数值方法的Matlab程序 RKb{QAK!v  
    )\PPIY>iP  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   8"=E 0(m  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 } q?*13iy(  
    Tebu?bj  
    z km#w  
    {3@"}Eh  
    %  This Matlab script file solves the nonlinear Schrodinger equations n_9Wrx328  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of vp|.x |@  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear APUpqY  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JTcE{i  
    1lLXu  
    C=1;                           N2uTWT>  
    M1=120,                       % integer for amplitude -n"7G%$M  
    M3=5000;                      % integer for length of coupler 8+mu'RZ X  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) wl N l|+ K  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. INNTp[  
    T =40;                        % length of time:T*T0. {>h,@  
    dt = T/N;                     % time step ]|8*l]oc  
    n = [-N/2:1:N/2-1]';          % Index FT;I|+H*P  
    t = n.*dt;   !*!i&0QC~R  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. *|B5,Ey  
    w=2*pi*n./T; j V'~>  
    g1=-i*ww./2; =`EVg>+^  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; dF+R q|n{  
    g3=-i*ww./2; mV;)V8'  
    P1=0; ' JAcN@q~z  
    P2=0; Z}`A'#!  
    P3=1; =<.h.n  
    P=0; SU7 erCHX  
    for m1=1:M1                 s*tzU.E (  
    p=0.032*m1;                %input amplitude 0?w4  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 i*6 1i0  
    s1=s10; v$~ZT_"(9  
    s20=0.*s10;                %input in waveguide 2 4c,{Js  
    s30=0.*s10;                %input in waveguide 3 - (VX+XHW  
    s2=s20; #9/S2m2\YG  
    s3=s30; f)#nXTXeC  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ;~"#aL50fe  
    %energy in waveguide 1 1#V&'A  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   |bX{MF  
    %energy in waveguide 2 ]]6  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   H|8i|vbi  
    %energy in waveguide 3 ^K?Mq1"Db  
    for m3 = 1:1:M3                                    % Start space evolution "ZR^w5  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS w9,w?%F  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; OE(!^"5?[  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; :^J'_  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Ey]P >J  
       sca2 = fftshift(fft(s2)); X8~gLdv8  
       sca3 = fftshift(fft(s3)); G|LcTV  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   \w=*:Z  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); [ J6q(} f  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); s-e<&*D[  
       s3 = ifft(fftshift(sc3)); ;|D8"D6]  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /9<62F@zJ"  
       s1 = ifft(fftshift(sc1)); 9V?:!%J  
    end TIVrbO\!o  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); $@eFSA5k,7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); *GC9o/  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~IS3i'bh  
       P1=[P1 p1/p10]; ]GmXZi  
       P2=[P2 p2/p10]; QvDD   
       P3=[P3 p3/p10]; X0BBJ(e  
       P=[P p*p]; *:,y`!F=y  
    end P3+?gW'  
    figure(1) xf 4`+[  
    plot(P,P1, P,P2, P,P3); o0FVVSl  
    4L/8Hj#g  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~