切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8961阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 X1Qr _o-BR  
    4iwf\#  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 47KNT7C  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of d [r-k 2  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kL|\wci  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 yX`#s]M  
    Wj&nUp{  
    %fid=fopen('e21.dat','w'); vTdUuj3N  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) sMP:sCRC  
    M1 =3000;              % Total number of space steps ^CUSlnB\(  
    J =100;                % Steps between output of space I`NUurQTX  
    T =10;                  % length of time windows:T*T0 R }1W  
    T0=0.1;                 % input pulse width P7Xg{L&@.  
    MN1=0;                 % initial value for the space output location GLCAiSMz[  
    dt = T/N;                      % time step m~;B:LN<  
    n = [-N/2:1:N/2-1]';           % Index "e@n:N!  
    t = n.*dt;   +>!V ]S  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 >zQOK-  
    u20=u10.*0.0;                  % input to waveguide 2 e gI&epN  
    u1=u10; u2=u20;                 m^Glc?g<  
    U1 = u1;   wqP2Gw7jh6  
    U2 = u2;                       % Compute initial condition; save it in U $C u R}g  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. !.*iw k`  
    w=2*pi*n./T; UU[H@ym#  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T <6/= y1QC)  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ~cIl$b  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 UA0F):  
    for m1 = 1:1:M1                                    % Start space evolution $Zxt&a  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS /D'M24  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; hCAZ{+`z  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform W&YU^&`Yr  
       ca2 = fftshift(fft(u2)); FIS "Z(  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation DHv2&zH  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   b1xpz1  
       u2 = ifft(fftshift(c2));                        % Return to physical space q*bt4,D&Es  
       u1 = ifft(fftshift(c1)); -%,"iaO  
    if rem(m1,J) == 0                                 % Save output every J steps. BZ+;n |<r  
        U1 = [U1 u1];                                  % put solutions in U array >'b=YlUL  
        U2=[U2 u2]; )S*1C@  
        MN1=[MN1 m1]; &?y7I Pp  
        z1=dz*MN1';                                    % output location x#r<,uNn,  
      end *C7F2o  
    end &iBNO,v  
    hg=abs(U1').*abs(U1');                             % for data write to excel H:Y&OZ  
    ha=[z1 hg];                                        % for data write to excel 45<y{8  
    t1=[0 t']; 9 I{/zKq  
    hh=[t1' ha'];                                      % for data write to excel file G>K@AW #  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format s6n`?,vw  
    figure(1) pawl|Z'Ez  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @PX\{6&  
    figure(2) nxfoWy  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Bd# TUy  
    <*wM=aq  
    非线性超快脉冲耦合的数值方法的Matlab程序 s$ z2 c  
    ]Lm'RlV  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   %j5ywr:  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~KPv7WfG  
    ),` 8eQC  
    $(rc/h0/E  
    TH:W#Ot  
    %  This Matlab script file solves the nonlinear Schrodinger equations Z9[+'ZWt  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of .3X Y&6  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]iVLHVqz  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 '!Wvqs  
    '3Q3lM'lh  
    C=1;                           8:dQ._#v  
    M1=120,                       % integer for amplitude #]Y*0Wzpfn  
    M3=5000;                      % integer for length of coupler snC/H G7  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Wekqn!h  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. "@yyXS r  
    T =40;                        % length of time:T*T0. 24B<[lSK  
    dt = T/N;                     % time step %u!b& 5]e  
    n = [-N/2:1:N/2-1]';          % Index `]<`$71w  
    t = n.*dt;   B<,YPS8w  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. FFvCi@oT  
    w=2*pi*n./T; JvL{| KtyU  
    g1=-i*ww./2; Ch5+N6c^  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; e;(  
    g3=-i*ww./2; >cgpajx*  
    P1=0; ,H[SI0];  
    P2=0; Bp_wnd  
    P3=1; Z a(|(M H  
    P=0; ahGT4d`)9  
    for m1=1:M1                 OfZN|S+~W  
    p=0.032*m1;                %input amplitude sn{tra  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 {HrZ4xQnpV  
    s1=s10; q>s`uFRg(  
    s20=0.*s10;                %input in waveguide 2 MKg,!TELe  
    s30=0.*s10;                %input in waveguide 3 S v`qB'e2  
    s2=s20; #/70!+J_UF  
    s3=s30; 1@qgF  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   :Li/=>R^  
    %energy in waveguide 1 @R q}nq=k  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Mvcfk$pA  
    %energy in waveguide 2 D/ Dt   
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Adx`8}N8  
    %energy in waveguide 3 sWqM?2g  
    for m3 = 1:1:M3                                    % Start space evolution \?lz&<  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS rx!=q8=0R  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Yj3I5RG  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; `JURQ:l)3^  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 46No%cSiG  
       sca2 = fftshift(fft(s2)); 5?u}#zO  
       sca3 = fftshift(fft(s3)); =RsXI&&vh  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   f.xA_Y>  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); "![L#)"s  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .*5Z"Q['G  
       s3 = ifft(fftshift(sc3)); B\CN<<N>dD  
       s2 = ifft(fftshift(sc2));                       % Return to physical space lpm JLH.F  
       s1 = ifft(fftshift(sc1)); \".^K5Pm  
    end ))T>jh   
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); #R&H &1  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 8P: spD0  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); wCKj7y[  
       P1=[P1 p1/p10]; %X1x4t]  
       P2=[P2 p2/p10]; @g-Tk  
       P3=[P3 p3/p10]; MaY682}|y  
       P=[P p*p]; B[o`k]]  
    end NXk!qGV2  
    figure(1) )"<8K}%!  
    plot(P,P1, P,P2, P,P3); osP\D iQ  
    sen=0SB/  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~