计算脉冲在非线性耦合器中演化的Matlab 程序 x;bA\b H}G 9gi % This Matlab script file solves the coupled nonlinear Schrodinger equations of
v%2Dz % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
e&T-GL % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
,\&r\!= % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
jLMy27Cn 03zt^< %fid=fopen('e21.dat','w');
??.aLeF& N = 128; % Number of Fourier modes (Time domain sampling points)
|X XO0 M1 =3000; % Total number of space steps
J|
wk})? J =100; % Steps between output of space
hPz=Ec<zW T =10; % length of time windows:T*T0
.IY@Q T0=0.1; % input pulse width
,66(*\xT MN1=0; % initial value for the space output location
p&<n_b dt = T/N; % time step
d(RMD n = [-N/2:1:N/2-1]'; % Index
NV(jp'i~ t = n.*dt;
V*2*5hx u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
u]O}Ub` u20=u10.*0.0; % input to waveguide 2
E24}?t^| u1=u10; u2=u20;
>m!Z$m([J U1 = u1;
n=~!x U2 = u2; % Compute initial condition; save it in U
}m^^6h ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
/!t:MK; w=2*pi*n./T;
[ypE[ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
M,ybj5:6 L=4; % length of evoluation to compare with S. Trillo's paper
+IbV dz=L/M1; % space step, make sure nonlinear<0.05
b5]<!~Fv:` for m1 = 1:1:M1 % Start space evolution
"0 %fR" u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
}dMX1e1h8 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
jP}Ry=V/ ca1 = fftshift(fft(u1)); % Take Fourier transform
<zTz/Hk` ca2 = fftshift(fft(u2));
HRbv% c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
toD!RE c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
[Rq|;p u2 = ifft(fftshift(c2)); % Return to physical space
`DSFaBj, u1 = ifft(fftshift(c1));
{%k[Z9*tO if rem(m1,J) == 0 % Save output every J steps.
`~lG5| U1 = [U1 u1]; % put solutions in U array
adri02C/ U2=[U2 u2];
4:O.x#p MN1=[MN1 m1];
kRwY# z1=dz*MN1'; % output location
%rlqq* end
$'d,X@}8 end
'?.']U,: $ hg=abs(U1').*abs(U1'); % for data write to excel
$39TP@?:Z) ha=[z1 hg]; % for data write to excel
v)|a}5={ t1=[0 t'];
reYIF* hh=[t1' ha']; % for data write to excel file
<Pe'&u %dlmwrite('aa',hh,'\t'); % save data in the excel format
6?.S-.Mr figure(1)
?G!p4u?C waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
n.NWS/v_{ figure(2)
l]t^MEoc8 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
nB :i G q2`mu4B 非线性超快脉冲耦合的数值方法的Matlab程序 (yuOY/~k/ L">jSZW[[ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
z.)*/HGJm Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
@Ss W HL$7Ou ~X<$l+5 wfu`(4 % This Matlab script file solves the nonlinear Schrodinger equations
O#J7GbrHO % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
';.y`{/
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
!J {[XT % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
,d.5K*?aI Ji=`XsV C=1;
s{X+0_@Q M1=120, % integer for amplitude
OaoHN& " M3=5000; % integer for length of coupler
~@ <o-|# N = 512; % Number of Fourier modes (Time domain sampling points)
%)dp
a dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
pV:44 T =40; % length of time:T*T0.
wM;=^br dt = T/N; % time step
MZX@Gi<S[ n = [-N/2:1:N/2-1]'; % Index
&E!m(|6?+ t = n.*dt;
B 2_fCSlg ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
,.=7{y~ w=2*pi*n./T;
gth_Sz5!# g1=-i*ww./2;
"5N$u(: b g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
l`X?C~JhJ g3=-i*ww./2;
;Tq4!w'rH P1=0;
0/z$W.! P2=0;
n
>E1\($ P3=1;
} 21!b :a P=0;
SjA'<ZX>TM for m1=1:M1
UF89gG4 p=0.032*m1; %input amplitude
&FZ~n?;hQ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
\>j@!W s1=s10;
,*x/L?.Z! s20=0.*s10; %input in waveguide 2
Aq'~'hS`1 s30=0.*s10; %input in waveguide 3
&i`(y>\ s2=s20;
#!yX2lR s3=s30;
n1R{[\ >1 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
:y{@=E=XSC %energy in waveguide 1
0R]'HA> p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
y6G6wk; %energy in waveguide 2
c5KciTD^ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
,]9p&xu %energy in waveguide 3
^foCcO for m3 = 1:1:M3 % Start space evolution
$|!3ks s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
rT4q x2 u s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
pf yJL?_% s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
w; f LnEz_ sca1 = fftshift(fft(s1)); % Take Fourier transform
CA$|3m9)NM sca2 = fftshift(fft(s2));
EQHCw<e sca3 = fftshift(fft(s3));
2`FDY3n sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
o9]!*Y!RA sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Ne1W!0YLK sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
r=RiuxxTq s3 = ifft(fftshift(sc3));
#&K}w0}k s2 = ifft(fftshift(sc2)); % Return to physical space
dg0WH_# s1 = ifft(fftshift(sc1));
8f'r_," end
v806f8 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
CzDg?w b p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
n5fc_N/8O= p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
7s0y.i~ P1=[P1 p1/p10];
] J|#WtS P2=[P2 p2/p10];
K)n058PO P3=[P3 p3/p10];
dg(sRTi{ P=[P p*p];
1dy" end
.NF3dC\ figure(1)
J/Ch
/Sa plot(P,P1, P,P2, P,P3);
Jep/%cT$w V4,\vgGu 转自:
http://blog.163.com/opto_wang/