切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8440阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 CRb8WD6.  
    [{znwK@  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of p4' .1.@  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ejROJXB  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear jEc_!Q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 DXFu9RE\{  
    |3*9+4]a  
    %fid=fopen('e21.dat','w'); IGdiIhH~2  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) n ~t{]if"  
    M1 =3000;              % Total number of space steps 1K72}Gj)ZL  
    J =100;                % Steps between output of space 6K/RO)  
    T =10;                  % length of time windows:T*T0 g9_zkGc7  
    T0=0.1;                 % input pulse width p=8Qv  
    MN1=0;                 % initial value for the space output location 1|bXIY.J*  
    dt = T/N;                      % time step LD$5KaOW  
    n = [-N/2:1:N/2-1]';           % Index ~P4C`Q1PT#  
    t = n.*dt;   B VBn.ut  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 zTz}H*U  
    u20=u10.*0.0;                  % input to waveguide 2 /x<g$!`X  
    u1=u10; u2=u20;                 wu41Mz7  
    U1 = u1;   7+O)AU{  
    U2 = u2;                       % Compute initial condition; save it in U )DSeXS[ e  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ,UNb#=it  
    w=2*pi*n./T; !NXjax\r  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T pGbfdX  
    L=4;                           % length of evoluation to compare with S. Trillo's paper A~zn;  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 IpP%WW u  
    for m1 = 1:1:M1                                    % Start space evolution ke4E 1T-1n  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Y-VDi.]W  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 4>JSZ6i#n  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform vgfC{]v<W]  
       ca2 = fftshift(fft(u2)); >p_W(u@ z$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation H;Wrcf2  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   !`69.v  
       u2 = ifft(fftshift(c2));                        % Return to physical space E$ d#4x  
       u1 = ifft(fftshift(c1)); +C( -f  
    if rem(m1,J) == 0                                 % Save output every J steps. YEL0h0gn  
        U1 = [U1 u1];                                  % put solutions in U array nL@'??I1  
        U2=[U2 u2]; uYJS=NGNA  
        MN1=[MN1 m1]; %xt9k9=vZ  
        z1=dz*MN1';                                    % output location > I2rj2M#  
      end -JW~_Q[  
    end --yF%tRMP  
    hg=abs(U1').*abs(U1');                             % for data write to excel #mxOwvJ  
    ha=[z1 hg];                                        % for data write to excel @HT\Y%E  
    t1=[0 t']; ' \JE>#  
    hh=[t1' ha'];                                      % for data write to excel file )M0YX?5A R  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format s :vNr@TS  
    figure(1) p|>*M\LE#  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn u'YXI="(  
    figure(2)  |/Nh#  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn _~kw^!p>Kr  
    ? SFBUX(p  
    非线性超快脉冲耦合的数值方法的Matlab程序 6h 0qtXn-  
    ZU4=&K  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ^T=9j.e'ja  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3I)~;>meo  
    IH|zNg{\Y  
    pUIN`ya[[  
    ,jU>V]YC  
    %  This Matlab script file solves the nonlinear Schrodinger equations qu=~\t1[6  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ?N#I2jxaD  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear TdhfX{nk  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %~rEJB@{  
    oD)x\ )t8  
    C=1;                           byHc0ktI\  
    M1=120,                       % integer for amplitude E`HoJhB  
    M3=5000;                      % integer for length of coupler XlppA3JON|  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 4:/]Y=)x  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^e:z ul{;]  
    T =40;                        % length of time:T*T0. hkK>h  
    dt = T/N;                     % time step -@v^. @[Z&  
    n = [-N/2:1:N/2-1]';          % Index !:{Qbv&T  
    t = n.*dt;   ak(s@@k  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. eG=d)`.JaV  
    w=2*pi*n./T; .N(R~_  
    g1=-i*ww./2; L+t / E`  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; B=SA +{o  
    g3=-i*ww./2; lhUGo =  
    P1=0; a>4/2#J  
    P2=0; ~q>jXi  
    P3=1; ;-db/$O  
    P=0; {^]qaQ[5N  
    for m1=1:M1                 HQ-[k$d W4  
    p=0.032*m1;                %input amplitude >6es 5}  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ; 476t  
    s1=s10; di\.*7l?  
    s20=0.*s10;                %input in waveguide 2 Bm~^d7;Cw  
    s30=0.*s10;                %input in waveguide 3 -l[H]BAMXy  
    s2=s20; .k#PrT1C  
    s3=s30; P`tOL#UeZL  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   X5WA-s(?0  
    %energy in waveguide 1 Y3~Uz#`SU  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   E|=x+M1sH  
    %energy in waveguide 2 3u@,OE  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   j.M]F/j  
    %energy in waveguide 3 u`ir(JIj]  
    for m3 = 1:1:M3                                    % Start space evolution q <}IO  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS [^"}jbn/  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; {_7hX`p  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; lMv6QL\>'  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform FSuC)Xg  
       sca2 = fftshift(fft(s2)); FB k7Cn!  
       sca3 = fftshift(fft(s3)); z~{08M7  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   HT7,B(.}  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); !t%1G.  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); f6r!3y  
       s3 = ifft(fftshift(sc3)); GMU!GSY  
       s2 = ifft(fftshift(sc2));                       % Return to physical space `E~"T0RX  
       s1 = ifft(fftshift(sc1)); 1^_W[+<S/  
    end C(>!?-.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); xM())Z|2  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); )U/Kz1U  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); XX=OyDLqP  
       P1=[P1 p1/p10]; ch# )XomN  
       P2=[P2 p2/p10]; {-)^?Zb @  
       P3=[P3 p3/p10]; U|wST&rU|  
       P=[P p*p]; %YVPm*J ~  
    end uc9h}QJ*  
    figure(1) `;mgJD  
    plot(P,P1, P,P2, P,P3); jHEP1rNHE  
    (-<hx~  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~