切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9306阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 $6Q^u r:  
    9 " q-Bb  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of }O*`I(  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of qS\#MMsTd  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear e4` L8  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3'.@aMA@  
    J- S.m(  
    %fid=fopen('e21.dat','w'); 1<G+KC[F  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) N#l2wT  
    M1 =3000;              % Total number of space steps K ~mUO  
    J =100;                % Steps between output of space jae9!W i  
    T =10;                  % length of time windows:T*T0 I Id4w~|  
    T0=0.1;                 % input pulse width O?X[&t  
    MN1=0;                 % initial value for the space output location ^i%S}VK  
    dt = T/N;                      % time step gbuh04#~  
    n = [-N/2:1:N/2-1]';           % Index ULAr!  
    t = n.*dt;   bq ED5;d'#  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Ef#LRcG-Z  
    u20=u10.*0.0;                  % input to waveguide 2 upuN$4m&{  
    u1=u10; u2=u20;                 ?:wb#k)Z/  
    U1 = u1;   W#bYz{s.  
    U2 = u2;                       % Compute initial condition; save it in U KzVi:Hm  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. O#U maNj/  
    w=2*pi*n./T; Qel)%|dOn  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T m'N AM%$}J  
    L=4;                           % length of evoluation to compare with S. Trillo's paper n.+'9Fj  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 (j'\h/  
    for m1 = 1:1:M1                                    % Start space evolution M<Wi:r:  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Y_CVDKdcY  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; To*+Z3Wd  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform y`va6 %u{  
       ca2 = fftshift(fft(u2)); w5 .^meU  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation cp@Fj"  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   8Nzn%0(Q  
       u2 = ifft(fftshift(c2));                        % Return to physical space - UkK$wP5  
       u1 = ifft(fftshift(c1)); B4b'0p  
    if rem(m1,J) == 0                                 % Save output every J steps. :gV~L3YW5  
        U1 = [U1 u1];                                  % put solutions in U array 9InP2u\&:  
        U2=[U2 u2]; kxhsDD$@p  
        MN1=[MN1 m1]; ARu_S B  
        z1=dz*MN1';                                    % output location NVb}uH*i  
      end R@K\   
    end k K=VG< :M  
    hg=abs(U1').*abs(U1');                             % for data write to excel %NQ%6 B  
    ha=[z1 hg];                                        % for data write to excel 6X@z(EEL  
    t1=[0 t']; hH`x*:Qja  
    hh=[t1' ha'];                                      % for data write to excel file Be|! S_Y P  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format zgGysjV  
    figure(1) r)|~Rs!y,  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 4fKvB@O@.  
    figure(2) 9}6_B|  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn NIQ}A-b  
    w<H Xe  
    非线性超快脉冲耦合的数值方法的Matlab程序 Rmw=~NP5  
    A1p~K*[[  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   nG'Yo8I^5  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5$ =[x!x  
    ;$iT]S  
    sg,\!'  
    Ln# o:"E  
    %  This Matlab script file solves the nonlinear Schrodinger equations 5}G_2<G  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of @m5J%8>k  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <~dfp  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +DRt2a #  
    eF%M2:&c;  
    C=1;                           STwGp<8  
    M1=120,                       % integer for amplitude ~Fb@E0 }!  
    M3=5000;                      % integer for length of coupler MQP9^+f)O?  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) O H>.N"IG  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. w<B S  
    T =40;                        % length of time:T*T0. zh2<!MH  
    dt = T/N;                     % time step wK2$hsque  
    n = [-N/2:1:N/2-1]';          % Index x~5,v5R^]  
    t = n.*dt;   c6F?#@?   
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. eA1g}ipm  
    w=2*pi*n./T; ,&,%B|gT]  
    g1=-i*ww./2; KRxJ2  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; .8QhJHwd  
    g3=-i*ww./2; W%+02_/)  
    P1=0; m^oG9&";  
    P2=0; 'yCVB&`b  
    P3=1; .h <=C&Yg  
    P=0; V30w`\1A  
    for m1=1:M1                 O + aK#eF  
    p=0.032*m1;                %input amplitude Tp-W/YC  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 #MY oy7=  
    s1=s10; 1?QVt fwY  
    s20=0.*s10;                %input in waveguide 2 Oey Ph9^V  
    s30=0.*s10;                %input in waveguide 3 yr+QV:oVA  
    s2=s20; )s>|;K{  
    s3=s30; h.?<( I  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   YQD `4ND  
    %energy in waveguide 1 <p<6!tdO  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   lai@,_<GV  
    %energy in waveguide 2 U)'YR$2<  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   uB+#<F/c  
    %energy in waveguide 3 ^JxVs 7  
    for m3 = 1:1:M3                                    % Start space evolution fP<== DK  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS RK@K>)"f  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; jkl dr@t  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; pImq< Z  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform r4u ,I<ZbH  
       sca2 = fftshift(fft(s2)); ?MywA'N@x  
       sca3 = fftshift(fft(s3)); ^N7cXK*  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   iJh{ ,0))g  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 8o:h/F  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2. nT k   
       s3 = ifft(fftshift(sc3)); O)^F z:  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ~<u\YIJ  
       s1 = ifft(fftshift(sc1)); d0T 8Cwc b  
    end ?6*\  M  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); CHS}tCfos>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~Q"qz<WO  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); rui 8x4c  
       P1=[P1 p1/p10]; EiD41N  
       P2=[P2 p2/p10]; ipu~T)}  
       P3=[P3 p3/p10]; [|$C2Dhw=  
       P=[P p*p]; kK6t|Yn&  
    end ,^CG\);  
    figure(1) sz%]rN6$  
    plot(P,P1, P,P2, P,P3); @[FO;4w  
    UK'8cz9  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~