计算脉冲在非线性耦合器中演化的Matlab 程序 e~3]/BL
^u3*hl}YKy
% This Matlab script file solves the coupled nonlinear Schrodinger equations of g%ZdIKj!
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?vMK'"
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "oHp.$+K
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d3og?{i<}&
) sRN!~
%fid=fopen('e21.dat','w'); ^)Smv\Md
N = 128; % Number of Fourier modes (Time domain sampling points) 7,f:Qi@g
M1 =3000; % Total number of space steps Wux 0RF&
J =100; % Steps between output of space `(P
"u
T =10; % length of time windows:T*T0 3xP~~j;7
T0=0.1; % input pulse width 3\,MsoAl
MN1=0; % initial value for the space output location *3!(*F@M,
dt = T/N; % time step vf6`s\6
n = [-N/2:1:N/2-1]'; % Index DE'Xq6#PK
t = n.*dt; h|K\z{ A
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 :DDO=
u20=u10.*0.0; % input to waveguide 2 K*TnUQ
u1=u10; u2=u20; *+NGi(N
U1 = u1; #,t2*tM
U2 = u2; % Compute initial condition; save it in U K1/
U
(A
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. L7X7Zt8%
w=2*pi*n./T; BQ).`f";d
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T j[_t6Z
L=4; % length of evoluation to compare with S. Trillo's paper yVT&rQ"{
dz=L/M1; % space step, make sure nonlinear<0.05 hJecCOA)'
for m1 = 1:1:M1 % Start space evolution mluW=fE
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS T:be 9 5!,
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 3Wjq >\
ca1 = fftshift(fft(u1)); % Take Fourier transform TViBCed40
ca2 = fftshift(fft(u2)); 4s[`yV
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation "(Mvl1^BT
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift o^8*aH)I>Y
u2 = ifft(fftshift(c2)); % Return to physical space ixIh
T
u1 = ifft(fftshift(c1)); k&WUv0
if rem(m1,J) == 0 % Save output every J steps. 5P-K *C&
U1 = [U1 u1]; % put solutions in U array pTc$+Z73
U2=[U2 u2]; { k
kAqJ
MN1=[MN1 m1]; r5D jCV"
z1=dz*MN1'; % output location O5g}2
end J>><o:~@
end !>CE(;E>z
hg=abs(U1').*abs(U1'); % for data write to excel 2O?Vr"
A
ha=[z1 hg]; % for data write to excel YI L'YNH
t1=[0 t']; F~tm`n8Z
hh=[t1' ha']; % for data write to excel file 7h(HG?2Y
%dlmwrite('aa',hh,'\t'); % save data in the excel format n/ui<&(
figure(1) CW.&Y?>Tv
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn }9{dR4hD
figure(2) K%98;e9
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn ?R dmKA
`Af{H/qiI
非线性超快脉冲耦合的数值方法的Matlab程序 Gtj(
83mlZ1jQz
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Y'tq m&}
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 OAmES;Ck$(
r~8D\_=s
^>3tYg&7
5x:Ift
*
% This Matlab script file solves the nonlinear Schrodinger equations lc\>DH\n6
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of i}.{m Et
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Zkf 3t>[
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 pem3G5
`g=
qFvg}}^y
C=1; 5F'%i;)oq
M1=120, % integer for amplitude It#h p,@e
M3=5000; % integer for length of coupler 1"8Z
y6t
N = 512; % Number of Fourier modes (Time domain sampling points)
f$:7A0
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. |pfhrwJp
T =40; % length of time:T*T0. {Q{lb(6Ba
dt = T/N; % time step #Tr;JAzVjG
n = [-N/2:1:N/2-1]'; % Index o?:;8]sr!
t = n.*dt; *>H M$.?Q
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. CBiU#h
q
w=2*pi*n./T; >wz;}9v
g1=-i*ww./2; 08<k'Oi]
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @5{.K/s
g3=-i*ww./2; xi
'72
P1=0; bBkm]
>
P2=0; !!?+M @
P3=1; .`oJcJ
P=0; 4+ASwN9
for m1=1:M1 &