切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8860阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 _ yu d  
    $CXMeY{tOo  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of NQFMExg,  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]+!{^h$  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear h^)R}jy+f  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8n[6BF);  
    '1jG?D  
    %fid=fopen('e21.dat','w'); ;VL v2J*  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) FK^JCs^  
    M1 =3000;              % Total number of space steps aLWNqe&1  
    J =100;                % Steps between output of space |3a1hCxt  
    T =10;                  % length of time windows:T*T0 3p%B  
    T0=0.1;                 % input pulse width us_o{  
    MN1=0;                 % initial value for the space output location T[z}^"  
    dt = T/N;                      % time step S m%\,/3  
    n = [-N/2:1:N/2-1]';           % Index {D6E@a  
    t = n.*dt;   vLc7RL  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 v}Gpw6   
    u20=u10.*0.0;                  % input to waveguide 2 HkP')= sa  
    u1=u10; u2=u20;                 6c?;-5.  
    U1 = u1;   w6PKr^  
    U2 = u2;                       % Compute initial condition; save it in U o)(N*tC  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1.  L$Uy  
    w=2*pi*n./T; &V$qIvN$  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _4#8o\  
    L=4;                           % length of evoluation to compare with S. Trillo's paper {x-iBg9#l2  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 sy ]k  
    for m1 = 1:1:M1                                    % Start space evolution [\Ks+S  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS {hXIP`  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 5Oa`1?C1  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 9(\eL9^  
       ca2 = fftshift(fft(u2)); <3 b|Sk:T  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation tR! !Q  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift    |>Q ] q  
       u2 = ifft(fftshift(c2));                        % Return to physical space R>r@I_  
       u1 = ifft(fftshift(c1)); 9i&(VzY[=  
    if rem(m1,J) == 0                                 % Save output every J steps. |#&{`3$CG[  
        U1 = [U1 u1];                                  % put solutions in U array qHGwD20 ~  
        U2=[U2 u2]; a-A>A_.  
        MN1=[MN1 m1]; !vaS fL*]  
        z1=dz*MN1';                                    % output location xD:t$~  
      end J$]-)`[G&  
    end \o&\r)FX  
    hg=abs(U1').*abs(U1');                             % for data write to excel X\z `S##kj  
    ha=[z1 hg];                                        % for data write to excel /8)-j}gZa  
    t1=[0 t']; #[Z1W8e  
    hh=[t1' ha'];                                      % for data write to excel file eaG_)y  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ke+3J\;>  
    figure(1) S\,~6]^T  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn U #u=9%'  
    figure(2) :c*_W /  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn P0Q]Ds|  
    ,n}h_ct  
    非线性超快脉冲耦合的数值方法的Matlab程序 (O&R-5m  
    4TP AD)C  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   p)dD{+"/2  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JGJy_.C  
    W N5`zD$  
    ![>j`i  
    fP:n=A{  
    %  This Matlab script file solves the nonlinear Schrodinger equations Ojh\H  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of \V1geSoE  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kF1Tg KSd  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ZFJ qI  
    ||}k99y +  
    C=1;                           cE|Z=}4I7  
    M1=120,                       % integer for amplitude d,hKy2  
    M3=5000;                      % integer for length of coupler U= Gw(  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ']x`d  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]]EOCGZ"  
    T =40;                        % length of time:T*T0. hxXl0egI  
    dt = T/N;                     % time step 2b[R^O}   
    n = [-N/2:1:N/2-1]';          % Index 8Hdm(>  
    t = n.*dt;   vFz#A/1  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. &e-MOM2&  
    w=2*pi*n./T; dr54 D  
    g1=-i*ww./2; ^#V7\;v$G  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; &&Uc%vIN  
    g3=-i*ww./2; l2&s4ERqSm  
    P1=0; c=^A3[AM  
    P2=0; %6%QE'D  
    P3=1; dYEsSFB m  
    P=0; /^2&@P7  
    for m1=1:M1                 vmY 88Kx&S  
    p=0.032*m1;                %input amplitude MYmH?A  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 )Rlh[Y& r  
    s1=s10; ,sOdc!![  
    s20=0.*s10;                %input in waveguide 2 Im<i.a <`  
    s30=0.*s10;                %input in waveguide 3 DJ!<:9FD  
    s2=s20; 0tFR. sS?  
    s3=s30; jNC@b>E?~  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \i2S'AblYq  
    %energy in waveguide 1 [yEH!7  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   03!!# 5iJ  
    %energy in waveguide 2 >U.f`24  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   /'ukeK+'  
    %energy in waveguide 3 5, j&-{ 0W  
    for m3 = 1:1:M3                                    % Start space evolution Yu`KHvur  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS BM }{};p6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; -J`VXG:M  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; |)4aIa  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 2JMMNpya  
       sca2 = fftshift(fft(s2)); #guq/g$  
       sca3 = fftshift(fft(s3)); Q!T+Jc9N  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   WlF}R\N!  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); |E(`9  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); u> @ Yoyc  
       s3 = ifft(fftshift(sc3)); 4(hHp6}b  
       s2 = ifft(fftshift(sc2));                       % Return to physical space <* vWcCS1  
       s1 = ifft(fftshift(sc1)); g?mfpwZj  
    end #cF ?a5  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); iVQ)hs W/  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); G'dN_6ho3  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); s^QXCmb$8  
       P1=[P1 p1/p10]; s4&JBm(33N  
       P2=[P2 p2/p10]; 1p DL()t  
       P3=[P3 p3/p10]; v=Y) A?  
       P=[P p*p]; F s{}bQyQ  
    end O^_$cq  
    figure(1) d*===~  
    plot(P,P1, P,P2, P,P3); ]i@WZ(  
    Z7G l^4zn  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~