切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9436阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 P+$:(I  
    \<g*8?yFs  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of M|R b&6O  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of |DsnNk0c  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7.`fJf?  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Phke`3tth  
    7nuU^wc  
    %fid=fopen('e21.dat','w'); y:6; LZ9[  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) KGg3 !jY  
    M1 =3000;              % Total number of space steps J_;o|gqX  
    J =100;                % Steps between output of space Dtj&W<NXo  
    T =10;                  % length of time windows:T*T0 !50[z:  
    T0=0.1;                 % input pulse width LGtIm7  
    MN1=0;                 % initial value for the space output location Y0X-Zqk'  
    dt = T/N;                      % time step ?Ec7" hK  
    n = [-N/2:1:N/2-1]';           % Index G["c\Xux  
    t = n.*dt;   Bi{$@n&?f  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 YD7Oao4:o  
    u20=u10.*0.0;                  % input to waveguide 2 ' MxrQ;|S  
    u1=u10; u2=u20;                 Q@HopiC  
    U1 = u1;   ->V<DZK  
    U2 = u2;                       % Compute initial condition; save it in U 1@-Ns  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. k`N^Vdr  
    w=2*pi*n./T; ?5 {>;#0Z  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T G nG>7f[v  
    L=4;                           % length of evoluation to compare with S. Trillo's paper OE-gC2&Bm  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 jB(|";G  
    for m1 = 1:1:M1                                    % Start space evolution a0#J9O_  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS zOiu5  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; {lc\,F*$  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform V=*wKuB  
       ca2 = fftshift(fft(u2)); 1{JV}O  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation &e!7Z40w@&  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   N}t 2Nu-  
       u2 = ifft(fftshift(c2));                        % Return to physical space hr)B[<9  
       u1 = ifft(fftshift(c1)); 1|jt"Hz  
    if rem(m1,J) == 0                                 % Save output every J steps. ruld B,n  
        U1 = [U1 u1];                                  % put solutions in U array 9c("x%nLpB  
        U2=[U2 u2]; eYvWZJa4  
        MN1=[MN1 m1]; NN?`"Fww  
        z1=dz*MN1';                                    % output location 5wDg'X]>V  
      end K9up:.{QQ  
    end 2_Z ? #Y  
    hg=abs(U1').*abs(U1');                             % for data write to excel <Pi|J-Y  
    ha=[z1 hg];                                        % for data write to excel :w^Ed%>y7  
    t1=[0 t']; )z28=%g  
    hh=[t1' ha'];                                      % for data write to excel file m*kl  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 2V#>)R#k  
    figure(1) Zo~  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn m+T;O/lG0{  
    figure(2) =7m)sxj]w  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "9Q40w\  
    Fkd+pS\9g~  
    非线性超快脉冲耦合的数值方法的Matlab程序 c$yk s  
    z+n,uHs  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   _y} T/I9  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }WH&iES@P  
    LF& z  
    yL-YzF2  
    Yz +ZY  
    %  This Matlab script file solves the nonlinear Schrodinger equations #;2n;.a  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of t,+nQ9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear |$ lM#Ua  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z)r =+ -  
    4J/}]Dr5  
    C=1;                           7Bd-!$j+  
    M1=120,                       % integer for amplitude [rV>57`YD  
    M3=5000;                      % integer for length of coupler waj0"u^#  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) fy@<&U5rg  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 3!|;iJRH  
    T =40;                        % length of time:T*T0. ?q{ ,R"  
    dt = T/N;                     % time step hRD=Y<>A  
    n = [-N/2:1:N/2-1]';          % Index heC/\@B  
    t = n.*dt;   (Fhs"  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. #PH~1`vl  
    w=2*pi*n./T; [QoK5Yw{  
    g1=-i*ww./2; q %"VYt4  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; NRIG1v>  
    g3=-i*ww./2; .ufTQ?Fe  
    P1=0; _n50C"X=&(  
    P2=0; `n @*{J8  
    P3=1; |8l<$J  
    P=0; 8y.wSu  
    for m1=1:M1                 V8C:"UZ;  
    p=0.032*m1;                %input amplitude S79;^X  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 O @j} K4  
    s1=s10; TE7nJ gm  
    s20=0.*s10;                %input in waveguide 2 VyXhl;  
    s30=0.*s10;                %input in waveguide 3 iW%I|&  
    s2=s20; DpvI[r//'*  
    s3=s30; OuID%p"O  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   bU2Z[sn.  
    %energy in waveguide 1 y[)>yq y  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   PGhY>$q>b  
    %energy in waveguide 2 CR"|^{G  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   /-_h1.!   
    %energy in waveguide 3 8m\7*l^D:  
    for m3 = 1:1:M3                                    % Start space evolution 4gz H8sF  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ( u\._Gwsx  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; _u5#v0Y  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; .*Ct bGw  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform C.Kh [V\Ut  
       sca2 = fftshift(fft(s2)); T?tgd J  
       sca3 = fftshift(fft(s3)); e478U$  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   >,$_| C  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); NV72  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); "$+Jnc!!  
       s3 = ifft(fftshift(sc3)); /v1Q4mq  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ff,pvk8N5  
       s1 = ifft(fftshift(sc1)); ;o2$ Q  
    end 1{ ~#H<K  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 0ghGBuv1s  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); |,gc_G  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); mS$j?>m  
       P1=[P1 p1/p10]; S1Wj8P-  
       P2=[P2 p2/p10]; K1"*.\?F  
       P3=[P3 p3/p10]; Z<1FSk,[  
       P=[P p*p]; {JZZZY!n2  
    end (2J: #  
    figure(1) 8dZSi  
    plot(P,P1, P,P2, P,P3); la0BiLzb]  
    XHK<AO^  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~