切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8538阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 8n56rOW!  
    ,{%[/#~6  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,Vogo5~X  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "/q6E  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear \"Np'$4eu  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 OSBE5  
    ?VJ Fp^Ra  
    %fid=fopen('e21.dat','w'); Tb}b*d3  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) V{8mx70  
    M1 =3000;              % Total number of space steps v K$W)(Z  
    J =100;                % Steps between output of space d"V^^I)yx&  
    T =10;                  % length of time windows:T*T0 u`ZnxD>  
    T0=0.1;                 % input pulse width WA<~M) rb  
    MN1=0;                 % initial value for the space output location %T&kK2d;  
    dt = T/N;                      % time step H;v*/~zl  
    n = [-N/2:1:N/2-1]';           % Index % $J^dF_0  
    t = n.*dt;   Dx8^V%b  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 4"GY0) Q  
    u20=u10.*0.0;                  % input to waveguide 2 x[_+U4-/  
    u1=u10; u2=u20;                 :5dq<>~  
    U1 = u1;   F:n7yey  
    U2 = u2;                       % Compute initial condition; save it in U 0_ ;-QAd  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. dfNNCPu]+  
    w=2*pi*n./T; CzwnmSv{.  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T $+Xohtt  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ?&[`=ZVn  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Ts.6 1Rx  
    for m1 = 1:1:M1                                    % Start space evolution H#f FU  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS n|8fdiK#}  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 5y.kOe4vH  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ZN. #g_  
       ca2 = fftshift(fft(u2)); oR5'g7?  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation O)&V}hU*  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   wE'~Qj  
       u2 = ifft(fftshift(c2));                        % Return to physical space V-VR+Ndz  
       u1 = ifft(fftshift(c1)); <FP&1Eg!|  
    if rem(m1,J) == 0                                 % Save output every J steps. Ygg+*z  
        U1 = [U1 u1];                                  % put solutions in U array vzfWPjpKW  
        U2=[U2 u2]; O5E\#*<K  
        MN1=[MN1 m1]; tYVmB:l  
        z1=dz*MN1';                                    % output location 1B2>8 N  
      end m'Ran3rp  
    end O Qd,.m  
    hg=abs(U1').*abs(U1');                             % for data write to excel 6L8wsz CW  
    ha=[z1 hg];                                        % for data write to excel $~_TE\F1  
    t1=[0 t']; Mu TlN  
    hh=[t1' ha'];                                      % for data write to excel file "I u3&mc  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 1X]?-+',.  
    figure(1) WxFVbtw  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn [V =O$X_  
    figure(2) |'.\}xt7  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn G/b $cO}  
    }DoNp[`  
    非线性超快脉冲耦合的数值方法的Matlab程序 "1Vuf<?C  
    a8NL  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )A,M T i  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 I_\j05  
    d7A vx  
    86oa>#opU  
    Rkgpa/te"  
    %  This Matlab script file solves the nonlinear Schrodinger equations L2+~I<|>  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of |%Pd*yZA  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ',~,hJ0  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  `i;f  
    ji5c0WH  
    C=1;                           z`XX[9$qm  
    M1=120,                       % integer for amplitude Rjt]^gb!*  
    M3=5000;                      % integer for length of coupler `5:b=^'D /  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ibha`  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. yHe%e1  
    T =40;                        % length of time:T*T0. n2cb,b/7  
    dt = T/N;                     % time step (} ?")$.  
    n = [-N/2:1:N/2-1]';          % Index 741Sd8  
    t = n.*dt;   %d3qMnYu  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 'b~,/lZd  
    w=2*pi*n./T; )CKPzNf  
    g1=-i*ww./2; e-Mei7{%  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; .]24V!J(1w  
    g3=-i*ww./2; 0.!_k )tu  
    P1=0; z&Cz!HrS  
    P2=0; P9c!   
    P3=1; /?VwoSgV^  
    P=0; BS!VAHO"V  
    for m1=1:M1                 NH~\kV  
    p=0.032*m1;                %input amplitude muc6gwBp  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 QY|Rz(;m  
    s1=s10; ir !/{IQx  
    s20=0.*s10;                %input in waveguide 2 b@`h]]~:  
    s30=0.*s10;                %input in waveguide 3 [7 _1GSS1  
    s2=s20; '*lVVeSiFw  
    s3=s30; ^ZuwUuuf  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   C%H{"  
    %energy in waveguide 1 ZOw%Fw4B  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   m9M#)<@*  
    %energy in waveguide 2 Q #IlUo  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   #g=7fu{n:  
    %energy in waveguide 3 O/ybqU\7  
    for m3 = 1:1:M3                                    % Start space evolution y rH@:D/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS "Rc Ny~  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; %^Zu^uu   
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 2+s#5K&i  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform /0CS2mLC  
       sca2 = fftshift(fft(s2)); A*^aBWFR  
       sca3 = fftshift(fft(s3)); @S9^~W3G3  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   OGcq]ue  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ur\<NApT;  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8n??/VDRl  
       s3 = ifft(fftshift(sc3)); > zA*W<g  
       s2 = ifft(fftshift(sc2));                       % Return to physical space +adwEYRrr  
       s1 = ifft(fftshift(sc1)); N(s5YX7<hd  
    end Q-<h)WTA  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); lV".-:u_  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); =hY9lxW  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); #K&XY6cTj  
       P1=[P1 p1/p10]; '9u(9S  
       P2=[P2 p2/p10]; 0#Ae<  
       P3=[P3 p3/p10]; ` {/"?s|  
       P=[P p*p]; )5Wt(p:T6_  
    end hg7^#f95u  
    figure(1)  T_)G5a  
    plot(P,P1, P,P2, P,P3); ghGpi U$  
    ?xW,2S  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~