计算脉冲在非线性耦合器中演化的Matlab 程序 $WS?/H0C M!)~h<YL % This Matlab script file solves the coupled nonlinear Schrodinger equations of
'BOMFp7c % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
2Mo oqJp % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Qf#=Y j % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
'YTSakNJ} a
0+W-#G %fid=fopen('e21.dat','w');
ziTE*rNJ N = 128; % Number of Fourier modes (Time domain sampling points)
J=sj+:GS M1 =3000; % Total number of space steps
NwbX]pDT J =100; % Steps between output of space
b[s=FH]#N T =10; % length of time windows:T*T0
f~?4 T0=0.1; % input pulse width
f5o##ia7: MN1=0; % initial value for the space output location
&A!?:?3%O dt = T/N; % time step
=jIP29+ n = [-N/2:1:N/2-1]'; % Index
G~nQR
qv t = n.*dt;
*P0sl( & u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
fIwG9cR u20=u10.*0.0; % input to waveguide 2
jH~VjE> u1=u10; u2=u20;
MlH0 U1 = u1;
{&,MkWgG U2 = u2; % Compute initial condition; save it in U
V3v/hV: ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
>%1mx\y^ w=2*pi*n./T;
wx[Y2lUh6 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
Zv&<r+<g L=4; % length of evoluation to compare with S. Trillo's paper
6 TkV+\ dz=L/M1; % space step, make sure nonlinear<0.05
_A]=45cn~ for m1 = 1:1:M1 % Start space evolution
gO%oA} !i u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
Or<OmxJg u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
|B~^7RHXo ca1 = fftshift(fft(u1)); % Take Fourier transform
$3)Z>p ca2 = fftshift(fft(u2));
:xy4JRcF c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
4RyQ^vL c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
O~DdMW u2 = ifft(fftshift(c2)); % Return to physical space
R8N*. [ u1 = ifft(fftshift(c1));
N SkIzaNY if rem(m1,J) == 0 % Save output every J steps.
!}I+)@~\w U1 = [U1 u1]; % put solutions in U array
!si}m~K!_ U2=[U2 u2];
nv'YtmR MN1=[MN1 m1];
V<ExR@|}.% z1=dz*MN1'; % output location
EAZLo; end
C2(VYw end
O0RV>Ml'& hg=abs(U1').*abs(U1'); % for data write to excel
\9N
)71n( ha=[z1 hg]; % for data write to excel
m4x8W2q t1=[0 t'];
`PS^o# hh=[t1' ha']; % for data write to excel file
Hkzx(yTi %dlmwrite('aa',hh,'\t'); % save data in the excel format
D&*'|}RZ figure(1)
zTS P8Q7 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
-F`uz,wZ figure(2)
s~>0<3{5 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
(,^jgv|I UiQF4Uc" 非线性超快脉冲耦合的数值方法的Matlab程序 7
V3r!y QA=mD^A 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
/vNHb_- Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Aq;WQyZ2 &ieb6@RO`Q R
q9(<'F SL5QhP % This Matlab script file solves the nonlinear Schrodinger equations
J. $U_k % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
8>AST, % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
^{g('BQx % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
vM?jm!nd 1w} DfI C=1;
[yx8?5 M1=120, % integer for amplitude
pE381Cw M3=5000; % integer for length of coupler
GZzBATx N = 512; % Number of Fourier modes (Time domain sampling points)
QE4TvnhK dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
wu~ ?P ` T =40; % length of time:T*T0.
3A!Qu$r9 dt = T/N; % time step
ypLt6(1j% n = [-N/2:1:N/2-1]'; % Index
=`E{QCW t = n.*dt;
;5&=I|xqe ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
"@(Sw>*o w=2*pi*n./T;
b*TQKYT g1=-i*ww./2;
('1]f?:M g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
$0&<Jx g3=-i*ww./2;
9a$ 7$4m P1=0;
9o+e3TXp# P2=0;
"U|u-ka8B P3=1;
ukc<yc].+? P=0;
`=P=i>, for m1=1:M1
o:PdPuZVR p=0.032*m1; %input amplitude
6Sz|3ms s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
a\*_b2 ^n s1=s10;
h@jk3J9^ s20=0.*s10; %input in waveguide 2
B\\M%!a> s30=0.*s10; %input in waveguide 3
Qb#iT}!p% s2=s20;
tQ,3nI!|xF s3=s30;
q);@iiJ- p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
bkS-[rW %energy in waveguide 1
-Ra-Ux p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
v~:'t\n %energy in waveguide 2
<2t%<<% p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
$ Gs|Z$( %energy in waveguide 3
+wGFJLHJ for m3 = 1:1:M3 % Start space evolution
Bmv5yc+; s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
NeR1}W s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
@y8)
"m" s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
~;vt{pk sca1 = fftshift(fft(s1)); % Take Fourier transform
kE854Ej sca2 = fftshift(fft(s2));
,:xses*7 sca3 = fftshift(fft(s3));
k-I U}|Xz sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
=3|5=ZU034 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
#Q/xQ`+|. sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
YQ`88z s3 = ifft(fftshift(sc3));
>!PCEw<i s2 = ifft(fftshift(sc2)); % Return to physical space
r#NR3_@9 s1 = ifft(fftshift(sc1));
B3W2?5p end
D-Q54 "^3 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
IHwoG(A~< p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
.#LvvAeh p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
4VP$,|a P1=[P1 p1/p10];
r#B{j$Rw
P2=[P2 p2/p10];
u-R;rf5%k P3=[P3 p3/p10];
]SUW"5L- P=[P p*p];
s&M#]8x;x end
juB /?'$~ figure(1)
_-z; plot(P,P1, P,P2, P,P3);
"c*#ZP WDF6.i ? 转自:
http://blog.163.com/opto_wang/