切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8704阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 SA}]ZK P  
    Ii;~ xc  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of }mX;0qO  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Bm^vKzp  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Mq6"7L  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @!K)(B;A0b  
    )82x)c<e  
    %fid=fopen('e21.dat','w'); dGZVWEaPfx  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) PF4Cs3m/  
    M1 =3000;              % Total number of space steps Ff.gRx  
    J =100;                % Steps between output of space U|iSJ%K  
    T =10;                  % length of time windows:T*T0 #K  ]k  
    T0=0.1;                 % input pulse width {GZHD^Ce  
    MN1=0;                 % initial value for the space output location 8_W<BXW  
    dt = T/N;                      % time step Z!tt(y\  
    n = [-N/2:1:N/2-1]';           % Index V5M_N;h  
    t = n.*dt;   '%)7%O,2  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 0gxbo  
    u20=u10.*0.0;                  % input to waveguide 2 tTC[^Dji  
    u1=u10; u2=u20;                 tZ4W]od  
    U1 = u1;   o^gqpQv  
    U2 = u2;                       % Compute initial condition; save it in U 1)M3*h3  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. :h?Zg(l  
    w=2*pi*n./T; ,p0R 4gi  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ck-wMd  
    L=4;                           % length of evoluation to compare with S. Trillo's paper .LdLm991,Y  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 YQ2ie>C8  
    for m1 = 1:1:M1                                    % Start space evolution ]yA| m3^2  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS NaLec|6<t  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; )7:2v1Xr]  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform N#Y4nllJ  
       ca2 = fftshift(fft(u2)); Xv6z>z.  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation oO!@s`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   \O`B@!da~  
       u2 = ifft(fftshift(c2));                        % Return to physical space ll73}v  
       u1 = ifft(fftshift(c1)); i3N _wv{  
    if rem(m1,J) == 0                                 % Save output every J steps. hyFq>XFo  
        U1 = [U1 u1];                                  % put solutions in U array F5:4 B]ZF  
        U2=[U2 u2]; J*qepq`_  
        MN1=[MN1 m1]; 7G!SlC X}W  
        z1=dz*MN1';                                    % output location g,mcxXO  
      end zN*/G6>A  
    end mI"`.  
    hg=abs(U1').*abs(U1');                             % for data write to excel NC|&7qQ  
    ha=[z1 hg];                                        % for data write to excel ,??xW{* |  
    t1=[0 t']; {WT"\Xj>B?  
    hh=[t1' ha'];                                      % for data write to excel file 8K7zh.E  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format @4_W}1W  
    figure(1) NZmmO )p4  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn DBbmM*r  
    figure(2) "\]kK @,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn K4snp u hC  
    M"ZP s   
    非线性超快脉冲耦合的数值方法的Matlab程序 f!eC|:D  
    pu,/GBG_  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   WUMx:a0!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JaiYVx(  
    4f'WF5S/}8  
    }mk9-7  
    'P39^rb  
    %  This Matlab script file solves the nonlinear Schrodinger equations )k- 7mwkZ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of n!A')]y"  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ,bKA]#(2  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C<eeAWP3v  
    0q>f x  
    C=1;                           m>jX4D7KZ  
    M1=120,                       % integer for amplitude }ZlJ  
    M3=5000;                      % integer for length of coupler ^7vh ize  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) #c./<<P5}  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. \bZbz/+D  
    T =40;                        % length of time:T*T0. >dn[oS,  
    dt = T/N;                     % time step 0&$e:O'v  
    n = [-N/2:1:N/2-1]';          % Index LPvyfD;Zy  
    t = n.*dt;   cg}46)^<QH  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ]nEN3RJ  
    w=2*pi*n./T; `3*>tq  
    g1=-i*ww./2; &W)k s  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 0[x?Q[~S_0  
    g3=-i*ww./2; TJ ;4QL  
    P1=0; )|q,RAn  
    P2=0; gjk=`lU  
    P3=1; > rB7ms/@E  
    P=0; WB"$NYB  
    for m1=1:M1                 K &Ht37T  
    p=0.032*m1;                %input amplitude  Xb&r|pR  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Z[slN5]([  
    s1=s10; -P!vCf^{ t  
    s20=0.*s10;                %input in waveguide 2 72@8M  
    s30=0.*s10;                %input in waveguide 3 ^kch]?  
    s2=s20; _Oh;._PS  
    s3=s30; cJGA5m/{I  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   v'2EYTVNJD  
    %energy in waveguide 1 bv)E>%Yy  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Z"mpE+U*  
    %energy in waveguide 2 L/c$p`-  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   (uD(,3/Cw  
    %energy in waveguide 3 -$.$6"]  
    for m3 = 1:1:M3                                    % Start space evolution 7"Zr:|$U  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Fx/9T2%=  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6jO*rseC  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;  N_=7  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ,D  [  
       sca2 = fftshift(fft(s2)); 4&R\6!*s  
       sca3 = fftshift(fft(s3)); 0v,DQJ?w8  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   jcYI"f"~  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); {o*ziZh  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .1t$(]CyC  
       s3 = ifft(fftshift(sc3)); Go^W\y   
       s2 = ifft(fftshift(sc2));                       % Return to physical space aGr(djD  
       s1 = ifft(fftshift(sc1)); 6<(HT#=#  
    end P(VQD>G  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); qWy{{ A+  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~lzV=c$t  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); k(3 s^B  
       P1=[P1 p1/p10]; bsR^H5O@  
       P2=[P2 p2/p10]; 2Qc&6-;`  
       P3=[P3 p3/p10]; 'i%Azzv  
       P=[P p*p]; i6h:%n]Io  
    end !Z<GUbl t  
    figure(1) #:"\6s  
    plot(P,P1, P,P2, P,P3); Rl=NVo  
    %&V<kH"7Q{  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~