计算脉冲在非线性耦合器中演化的Matlab 程序 VRYj&s'@ 3,8>\yf` % This Matlab script file solves the coupled nonlinear Schrodinger equations of
R 2uo ZA, % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
zV\\T(R) % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
3_W1)vd{ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
2*6b{}yJH nV-A0"z_& %fid=fopen('e21.dat','w');
cn$E?&- N = 128; % Number of Fourier modes (Time domain sampling points)
1!"0fZh9U M1 =3000; % Total number of space steps
!5Ko^: +Y J =100; % Steps between output of space
/s3AZ j9 T =10; % length of time windows:T*T0
Iaf"j 2B T0=0.1; % input pulse width
sO~:e?F MN1=0; % initial value for the space output location
+53 Tf dt = T/N; % time step
#`5{?2gS9 n = [-N/2:1:N/2-1]'; % Index
hPhNDmL#3 t = n.*dt;
3jIi$X06 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
#pbPaRJL( u20=u10.*0.0; % input to waveguide 2
P
agzp%m u1=u10; u2=u20;
k=2]@K$% U1 = u1;
bv`gjR U2 = u2; % Compute initial condition; save it in U
CUgXpU* ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
XUmL 8 w=2*pi*n./T;
*ktM<N58 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
xQX,1NbH5 L=4; % length of evoluation to compare with S. Trillo's paper
.%7#o dz=L/M1; % space step, make sure nonlinear<0.05
)cnB>Qul for m1 = 1:1:M1 % Start space evolution
Z
55iq u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
[vkz<sL" u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
,vEwck# ca1 = fftshift(fft(u1)); % Take Fourier transform
Ml` f+$ ca2 = fftshift(fft(u2));
7pDov@K<{ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
TJ3CXyRq c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
=.,]} u2 = ifft(fftshift(c2)); % Return to physical space
77- Jx`C u1 = ifft(fftshift(c1));
?y82S*sb# if rem(m1,J) == 0 % Save output every J steps.
cQ~}qE>I U1 = [U1 u1]; % put solutions in U array
+!IIt {u U2=[U2 u2];
%"~\Pu*> MN1=[MN1 m1];
U7d%*g z1=dz*MN1'; % output location
GUJ[2/V~A end
((wG
K|d end
i.Iiwe0G hg=abs(U1').*abs(U1'); % for data write to excel
F|q-ZlpW- ha=[z1 hg]; % for data write to excel
|?6r&bT t1=[0 t'];
_Z'j%/-4@D hh=[t1' ha']; % for data write to excel file
Hzs]\%" %dlmwrite('aa',hh,'\t'); % save data in the excel format
O;c;>x_dA figure(1)
0UeDM* waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
@EH:4~ figure(2)
Kl<qp7o0 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
s0"S;{_# u1a5Vtel 非线性超快脉冲耦合的数值方法的Matlab程序 m`!C|?hu }R:e[lKj 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
5 7e'a&}e Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
=s`\W7/;{- R,CFU l7Q WmTSxneo dxbP'2~ % This Matlab script file solves the nonlinear Schrodinger equations
-M}#-qwf % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
U2z1HIs % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
kxt@t# % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
+L1%mVq]y vwDnz/- C=1;
Jr
m<ut M1=120, % integer for amplitude
u9rlNmf$ M3=5000; % integer for length of coupler
\tTZN N = 512; % Number of Fourier modes (Time domain sampling points)
BsiHVr dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
Wf/Gt\? T =40; % length of time:T*T0.
&gxRw l dt = T/N; % time step
#4"(M9kf n = [-N/2:1:N/2-1]'; % Index
@O9.~6 t = n.*dt;
GFasGHAw ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
;rWgt!l w=2*pi*n./T;
4VINu9\V g1=-i*ww./2;
Iih~W& g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
@'`!2[2'? g3=-i*ww./2;
}N^.4HOS8 P1=0;
mY?^]3-_ P2=0;
{Y-<#U~iH P3=1;
o
%sBU P=0;
/,dcr* for m1=1:M1
rLO1Sv p=0.032*m1; %input amplitude
<RY5ZP s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
/n;-f%dL s1=s10;
T X.YTU s20=0.*s10; %input in waveguide 2
?_q
e
2R. s30=0.*s10; %input in waveguide 3
X[b= 25Ct s2=s20;
E>f+ E8? s3=s30;
?{l}35Q.@ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
WGFp<R %energy in waveguide 1
W]MKc&R p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
^6s< %energy in waveguide 2
|Fz/9+I p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
f<WP<!N% %energy in waveguide 3
3jQy"9f for m3 = 1:1:M3 % Start space evolution
ve[` 0 s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
uu L"o s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
>2tQ')%DJ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
FWI<_KZO sca1 = fftshift(fft(s1)); % Take Fourier transform
1o\P7PLe sca2 = fftshift(fft(s2));
>aXyi3B sca3 = fftshift(fft(s3));
U 2am1} sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
8enlF\I8g sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
(`PgvBL: sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
4b]/2H s3 = ifft(fftshift(sc3));
i356m9j s2 = ifft(fftshift(sc2)); % Return to physical space
{/`iZzPg s1 = ifft(fftshift(sc1));
mne4u W end
S0().2# p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
U_ n1QU p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
9r.Os p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
}&A!h P1=[P1 p1/p10];
i"mN0% P2=[P2 p2/p10];
KDr?<"2L P3=[P3 p3/p10];
nNJU@<|{* P=[P p*p];
@\0U`*]^) end
a@:(L"Or figure(1)
ZHT_o\ plot(P,P1, P,P2, P,P3);
-d]-R?mQ 1!_$HA 转自:
http://blog.163.com/opto_wang/