切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9233阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 DG $._  
    KU}HVM{  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of $@blP<I  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of (iZE}qf7 g  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^v].mV/  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4SqZ V  
    6hs2B5)+  
    %fid=fopen('e21.dat','w'); zu Jl #3YP  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) =7c1l77z  
    M1 =3000;              % Total number of space steps _,M:"3;Z  
    J =100;                % Steps between output of space iEf6oM  
    T =10;                  % length of time windows:T*T0 wGC)gW  
    T0=0.1;                 % input pulse width F+@E6I'g  
    MN1=0;                 % initial value for the space output location OgTE^W@  
    dt = T/N;                      % time step vZns,K#4H\  
    n = [-N/2:1:N/2-1]';           % Index g(0 |p6R  
    t = n.*dt;   -\`n{$OR  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Y+#e| x  
    u20=u10.*0.0;                  % input to waveguide 2 `[;b#.  
    u1=u10; u2=u20;                 Svmyg]  
    U1 = u1;   icf[.  
    U2 = u2;                       % Compute initial condition; save it in U ReCmv/AE  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Hop$w  
    w=2*pi*n./T; EMe6Z!k  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T a9q68  
    L=4;                           % length of evoluation to compare with S. Trillo's paper !$>d75zli  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 nJ|8#U7  
    for m1 = 1:1:M1                                    % Start space evolution ul e]eRAG  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS F` ifHO  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6SMGXy*]^  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform }Vpr7_  
       ca2 = fftshift(fft(u2)); u|=G#y;3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Oifu ?f<r  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   /AR;O4X+  
       u2 = ifft(fftshift(c2));                        % Return to physical space KsGSs9  
       u1 = ifft(fftshift(c1)); 22|f!la8n  
    if rem(m1,J) == 0                                 % Save output every J steps. gkuI!=  
        U1 = [U1 u1];                                  % put solutions in U array b\ %=mN  
        U2=[U2 u2]; g]V}azLr  
        MN1=[MN1 m1]; D4m2*%M  
        z1=dz*MN1';                                    % output location S #X$QD  
      end ~4wbIE_r N  
    end 'A,&9E{%1  
    hg=abs(U1').*abs(U1');                             % for data write to excel sa`7_KB  
    ha=[z1 hg];                                        % for data write to excel }`$:3mb&f  
    t1=[0 t']; ,sk;|OAI  
    hh=[t1' ha'];                                      % for data write to excel file !+.|T9P  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 'f<0&Ci8  
    figure(1) WIo^=?%  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn :YB:)wV,P  
    figure(2) _VR Sdr5  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ]do0{I%\eq  
    B7TA:K  
    非线性超快脉冲耦合的数值方法的Matlab程序 _y)#N<  
    I<.3"F1}  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   2|o6~m<pE  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 w?.0r6j  
    !>/U6h,_  
    qyc:;3?wm  
    uG3t%CmN  
    %  This Matlab script file solves the nonlinear Schrodinger equations w&v_#\T  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of f& (u[W  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear b^PYA_k-Xn  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PDX^MYoN  
    Nm<3bd  
    C=1;                           q+t*3;X.  
    M1=120,                       % integer for amplitude /Z>#lMg\.  
    M3=5000;                      % integer for length of coupler T"t3e=xA  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 6@!<' l%z  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. _U$d.B'*)z  
    T =40;                        % length of time:T*T0. [e ;K$  
    dt = T/N;                     % time step PBr-< J  
    n = [-N/2:1:N/2-1]';          % Index -zHJ#  
    t = n.*dt;   K|Std)6  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. GfY!~J  
    w=2*pi*n./T; 5_M9T 3  
    g1=-i*ww./2; V_!hrKkL  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]BCH9%zLj  
    g3=-i*ww./2; g`gH]W FcG  
    P1=0; DI**fywu[3  
    P2=0; Yv9(8  
    P3=1; hti)<#f  
    P=0; %|o4 U0c  
    for m1=1:M1                 6ndt1W z  
    p=0.032*m1;                %input amplitude zF(I#|Vo  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2#ha Icm"  
    s1=s10; d/- f]   
    s20=0.*s10;                %input in waveguide 2 2M= gpy  
    s30=0.*s10;                %input in waveguide 3 ,;H)CUe1"  
    s2=s20; w^NE`4 -  
    s3=s30; sBq @W4  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   $PstThM  
    %energy in waveguide 1 LwkZ(Tt  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   4'?kyTO~  
    %energy in waveguide 2 e0+N1kY  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Am!$\T%2  
    %energy in waveguide 3 !u~( \ Rb;  
    for m3 = 1:1:M3                                    % Start space evolution z`xdRe{QP  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS [st4FaQ36  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; (5;w^E9*n;  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Wze\z  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform >Rjk d>K3  
       sca2 = fftshift(fft(s2)); jUZ84Gm{  
       sca3 = fftshift(fft(s3)); 4iRcmsP  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ]gHw;ry  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); &voyEvX/S  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); lycY1lK  
       s3 = ifft(fftshift(sc3)); 5)2lZ(5.A#  
       s2 = ifft(fftshift(sc2));                       % Return to physical space PE|_V  
       s1 = ifft(fftshift(sc1)); :|M0n%-X  
    end }9aYU;9D  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Q~#udEajI  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); &2Q4{i  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); HzF  
       P1=[P1 p1/p10]; 7P?z{x':T  
       P2=[P2 p2/p10]; {b"V7vn,  
       P3=[P3 p3/p10]; !BP/#  
       P=[P p*p]; 8U*}D~%!  
    end |(*ReQ?=  
    figure(1) F# y5T3(P  
    plot(P,P1, P,P2, P,P3); V?t^ J7{'  
    tVvRT*>Wb  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~