计算脉冲在非线性耦合器中演化的Matlab 程序 q2HYiH^L
<dyewy*.L
% This Matlab script file solves the coupled nonlinear Schrodinger equations of tabT0
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of HF|oBX$_
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fnx-s{c?
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [qsEUc+Z.'
\EseGgd21
%fid=fopen('e21.dat','w'); 0!v->Dk
N = 128; % Number of Fourier modes (Time domain sampling points) @cU&n6C@
M1 =3000; % Total number of space steps %`Z!4L
J =100; % Steps between output of space G
"P4-
T =10; % length of time windows:T*T0 ybp -$e
T0=0.1; % input pulse width E*i#?u
MN1=0; % initial value for the space output location &/,|+U[
dt = T/N; % time step r'gOVi4t1*
n = [-N/2:1:N/2-1]'; % Index F;^F+H
t = n.*dt; `~eUee3b.~
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 |7x\m t
u20=u10.*0.0; % input to waveguide 2 K98i[,rP
u1=u10; u2=u20; gv5*!eI
U1 = u1; ^n0]dizB
U2 = u2; % Compute initial condition; save it in U @JdZ5Q
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. YJ$1N!rG
w=2*pi*n./T; q+,Q<2J
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ^pHq66d%Z
L=4; % length of evoluation to compare with S. Trillo's paper Sp@-p9#
dz=L/M1; % space step, make sure nonlinear<0.05 G@j0rnn>B
for m1 = 1:1:M1 % Start space evolution T0]MuIJ).
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS -_$$Te
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; cu+FM
ca1 = fftshift(fft(u1)); % Take Fourier transform ](|\whI
ca2 = fftshift(fft(u2)); nB .G
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation [`
sL?&a
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift nT2)E&U6%
u2 = ifft(fftshift(c2)); % Return to physical space ToYAW,U[d
u1 = ifft(fftshift(c1)); /*0K92NB
if rem(m1,J) == 0 % Save output every J steps. Bj7gQ%>H4
U1 = [U1 u1]; % put solutions in U array T
Q,?>6n
U2=[U2 u2]; @IXsy
MN1=[MN1 m1]; v$^Z6>vVI
z1=dz*MN1'; % output location %.Q
!oYehj
end 6Cp]NbNrq
end >t7x>_~
hg=abs(U1').*abs(U1'); % for data write to excel K(aJi,e>
ha=[z1 hg]; % for data write to excel y|wc,n%L>
t1=[0 t']; {s;U~!3aY
hh=[t1' ha']; % for data write to excel file *g^x*|f6
%dlmwrite('aa',hh,'\t'); % save data in the excel format Z(Jt~a3o
figure(1) @V!r"Bkg.
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn _o8?E&d
figure(2) 1@$Ko5
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn ZRYEqSm
++E3]X|
非线性超快脉冲耦合的数值方法的Matlab程序 V*~Zs'L'E
}u1O#L}F5
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 &4_qF^9J
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3h<,
0bo/XUpi
vhhC>
7
o6p98Dpg
% This Matlab script file solves the nonlinear Schrodinger equations ]LM-@G+Jz
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of `jOX6_z?I
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }1r m
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 bcupo:N
4ni3kmvX
C=1; #^]n0!
M1=120, % integer for amplitude Si~vDQ7"
M3=5000; % integer for length of coupler G%Lt.?m[
N = 512; % Number of Fourier modes (Time domain sampling points) B-r0"MX&
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 1x,tu}<u^
T =40; % length of time:T*T0. h\'n**f_x
dt = T/N; % time step SCTA=l.
n = [-N/2:1:N/2-1]'; % Index #BSTlz
t = n.*dt; L31|\x]
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. D$x_o!JT
w=2*pi*n./T; zL J/5&
g1=-i*ww./2; 3g6j?yYqb
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; y8DhOlewQ
g3=-i*ww./2; jQ)T6 7
P1=0; +}a ]GTBgA
P2=0; 1</kTm/Qa
P3=1; .(WQYOMl0
P=0; %!1Q P[}K
for m1=1:M1 }C|dyyr
p=0.032*m1; %input amplitude B2O} 1.
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 !3ctB3eJ
s1=s10; -!
K-Htb-
s20=0.*s10; %input in waveguide 2 [VWUqlNt>
s30=0.*s10; %input in waveguide 3 kTvd+TP4
s2=s20; LupkrxV
s3=s30; ,f&5pw
=
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); 7t*"%]o
%energy in waveguide 1 1w&!H]%{
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); 9rA=pH%<>B
%energy in waveguide 2 _H/8_[xk
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 'f?$"U JF
%energy in waveguide 3 S1?-I_t+]
for m3 = 1:1:M3 % Start space evolution ',S'.U
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS rX1QMR7?
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; YSe.t_K2C
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ;"m ,:5%
sca1 = fftshift(fft(s1)); % Take Fourier transform &sd}ulEg`
sca2 = fftshift(fft(s2)); ~T89_L
sca3 = fftshift(fft(s3)); P$-X)c$&
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift n9xAPB }
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ,zT y?OQ
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Zg.&