切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8681阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 [ MyE2^  
    @Jn!0Y1_3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of cn`iX(ZgR  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of fCw*$:O  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear h6v077qG  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !*{q^IO9v&  
    8b(!k FxD  
    %fid=fopen('e21.dat','w'); >IfV\ w32  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) *O~e T  
    M1 =3000;              % Total number of space steps G~,:2 o3  
    J =100;                % Steps between output of space vXE0%QE'Q  
    T =10;                  % length of time windows:T*T0 iE].&>w  
    T0=0.1;                 % input pulse width b:W-l?  
    MN1=0;                 % initial value for the space output location j;0vAf  
    dt = T/N;                      % time step sG7u}r  
    n = [-N/2:1:N/2-1]';           % Index <vV_%uo M  
    t = n.*dt;   8LzBh_J?  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 3Q^fVn$tk  
    u20=u10.*0.0;                  % input to waveguide 2 GVGlVAo|@  
    u1=u10; u2=u20;                 9+=gke  
    U1 = u1;   ino:N5&;;  
    U2 = u2;                       % Compute initial condition; save it in U QzvHm1,@  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 8\.b4FNJ  
    w=2*pi*n./T; S \i@s_  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 7gF"=7{-  
    L=4;                           % length of evoluation to compare with S. Trillo's paper a_~=#]a  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Kn`M4 O  
    for m1 = 1:1:M1                                    % Start space evolution ~`ny @WD9  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS p>w]rE:}  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; <AH1i@4  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Y f@e=:  
       ca2 = fftshift(fft(u2)); Ifc]K?  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation #%0Bx3uM  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   QS[L~97m2M  
       u2 = ifft(fftshift(c2));                        % Return to physical space =FP0\cQ.  
       u1 = ifft(fftshift(c1)); co8"sz0(U  
    if rem(m1,J) == 0                                 % Save output every J steps. o\b-_E5"?  
        U1 = [U1 u1];                                  % put solutions in U array ia@'%8  
        U2=[U2 u2]; >Gml4vGK  
        MN1=[MN1 m1]; I#F!N6;  
        z1=dz*MN1';                                    % output location 'k0[rDFc#3  
      end =@&cHY  
    end ElhRF{R  
    hg=abs(U1').*abs(U1');                             % for data write to excel :KJ pk:<  
    ha=[z1 hg];                                        % for data write to excel l e4?jQQ@L  
    t1=[0 t']; 4`m~FNVS   
    hh=[t1' ha'];                                      % for data write to excel file V" \0Y0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format sUJ%x#u}Fk  
    figure(1) O/s $SX%g  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 8BOZh6BV  
    figure(2) %ts^Z*3u  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn IYn]U4P.  
    \MC-4Yz  
    非线性超快脉冲耦合的数值方法的Matlab程序 g[RI.&?  
    R0ID2:i]F  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ,2Q o7(A  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !* Ti}oIo&  
    zi R5:d3   
    M>9-=$7  
    o1W:ox?kO  
    %  This Matlab script file solves the nonlinear Schrodinger equations R'EUV0KX>Y  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of %,Sf1fUJ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear U$]|~41#  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 00v&lQBW  
    Vtc36-\1*  
    C=1;                           ?Nf>]|K:Q  
    M1=120,                       % integer for amplitude %~L>1ShtU  
    M3=5000;                      % integer for length of coupler eAv4FA4g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) MYJg8 '[j  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 'o|30LzYgQ  
    T =40;                        % length of time:T*T0. L^2FQti>  
    dt = T/N;                     % time step r.3/F[.  
    n = [-N/2:1:N/2-1]';          % Index S5~VD?O,  
    t = n.*dt;   f` =CpO*  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. w(kf  
    w=2*pi*n./T; (py]LBZ  
    g1=-i*ww./2; { eCC$&"  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; I2nF-JzD2a  
    g3=-i*ww./2; H 0+dV3  
    P1=0; $o$ maA0  
    P2=0;  .ObZ\.I  
    P3=1; ~U;rw&'H  
    P=0; ^O^l(e!3  
    for m1=1:M1                 0#w?HCx=  
    p=0.032*m1;                %input amplitude B<j'm0a>B  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ? A(QyaKz  
    s1=s10; DXz} YIEC  
    s20=0.*s10;                %input in waveguide 2 -@T/b$]'n  
    s30=0.*s10;                %input in waveguide 3 PV|uPuz  
    s2=s20; 64hk2a8  
    s3=s30; 4`JH&))}  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \j&^aAp r  
    %energy in waveguide 1 m[j70jYe  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   foJdu+^  
    %energy in waveguide 2 Neg,qOt  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   x|yEt O&  
    %energy in waveguide 3 FQ g~l4WX  
    for m3 = 1:1:M3                                    % Start space evolution `PY>Hgb  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS >3z5ww  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6iCrRjY*  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; K|dso]b/  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 0eK*9S]  
       sca2 = fftshift(fft(s2)); %Gt .m  
       sca3 = fftshift(fft(s3)); z5)s/;Sc  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   jDQZQ NS  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); H54 R8O$  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2W4qBaG$=  
       s3 = ifft(fftshift(sc3)); Z!hafhcX  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 'fW6 .0fXa  
       s1 = ifft(fftshift(sc1)); 5nsq[Q`  
    end ! u:Weoz  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ,"B+r6}EF  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]Kr `9r),  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &hRvol\J  
       P1=[P1 p1/p10]; +nJUFc  
       P2=[P2 p2/p10]; 7)s^8+  
       P3=[P3 p3/p10]; D1__n6g[  
       P=[P p*p]; I1PuHf Qs  
    end  cReB~wk  
    figure(1) CiB%B`,N  
    plot(P,P1, P,P2, P,P3); HuOIFv  
    8MSC.0   
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~