切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8746阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 S<9gyW  
    FF jRf  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of w#rVSSXQ3  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 3jS7 uU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^} tuP  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U(!?d ]en  
    {F/q{c~]  
    %fid=fopen('e21.dat','w'); Z]7tjRvq)  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) oHk27U G  
    M1 =3000;              % Total number of space steps d&?F#$>7|  
    J =100;                % Steps between output of space mfz"M)1p1  
    T =10;                  % length of time windows:T*T0 ^t7_3%%w  
    T0=0.1;                 % input pulse width ys/vI/e\  
    MN1=0;                 % initial value for the space output location c{ 7<H  
    dt = T/N;                      % time step vU7&'ca  
    n = [-N/2:1:N/2-1]';           % Index y{?Kao7Ij  
    t = n.*dt;   :Nkz,R?  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 zv,\@Z9.($  
    u20=u10.*0.0;                  % input to waveguide 2 `LqnEutzc  
    u1=u10; u2=u20;                 n}f3Vrl  
    U1 = u1;   vyujC`61d  
    U2 = u2;                       % Compute initial condition; save it in U HMhLTl{;  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 51z/  
    w=2*pi*n./T; !*9FKDB{  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T X&/(x  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 2G H)iUmc  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 $Q=$?>4U  
    for m1 = 1:1:M1                                    % Start space evolution KjC[q  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS w gmWo8  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; v,8Si'"i+  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform @\+%GDv  
       ca2 = fftshift(fft(u2)); f^~2^p 1te  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 7WXiG0  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   K[n<+e;G  
       u2 = ifft(fftshift(c2));                        % Return to physical space t6j-?c('  
       u1 = ifft(fftshift(c1)); 3mybG%39  
    if rem(m1,J) == 0                                 % Save output every J steps. vu44!c@  
        U1 = [U1 u1];                                  % put solutions in U array 7bHE!#L`0  
        U2=[U2 u2]; >}mNi:6xq  
        MN1=[MN1 m1]; 6<#Slw[  
        z1=dz*MN1';                                    % output location f]hBPkZ6  
      end $x/J+9Ww  
    end ykJ+%gla  
    hg=abs(U1').*abs(U1');                             % for data write to excel DZ,<Jmg&e*  
    ha=[z1 hg];                                        % for data write to excel mSy|&(l  
    t1=[0 t']; vs* >onCf  
    hh=[t1' ha'];                                      % for data write to excel file e#K rgUG  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format * q+oeAYX  
    figure(1) LE<:.?<Z-  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn  PE^eP}O1  
    figure(2) ]Qh[%GD  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn iOKr9%9?Z  
    :vw0r`  
    非线性超快脉冲耦合的数值方法的Matlab程序 ZBPd(;"x+  
    2-QuT"Gkd  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   }5QZ6i#  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 tWcizj;?wK  
    kx:c*3q.k  
    NJ.rv  
    o7m99(  
    %  This Matlab script file solves the nonlinear Schrodinger equations tX+0 GLz  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Q S5dP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fLLnf].O  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 f34_?F<h  
    zuK/(qZ  
    C=1;                           d&O'r[S  
    M1=120,                       % integer for amplitude tq2-.]Y@U  
    M3=5000;                      % integer for length of coupler B?$S~5  }  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Q]yV:7  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^qE<yn  
    T =40;                        % length of time:T*T0. .`:oP&9r  
    dt = T/N;                     % time step Z|V"8jE  
    n = [-N/2:1:N/2-1]';          % Index 4x=V|"  
    t = n.*dt;   XYz,NpK  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. xgZV0!%  
    w=2*pi*n./T; er&uC4Y]a  
    g1=-i*ww./2; Y{+zg9L*  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =>gyc;{2K<  
    g3=-i*ww./2; !%SdTaC{T  
    P1=0; yg]suU<z]  
    P2=0;  Oz"@yL}  
    P3=1; W@R$' r,@O  
    P=0; rD:gN%B=  
    for m1=1:M1                 x.jYip  
    p=0.032*m1;                %input amplitude ls8olLM>  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _ C7abw-  
    s1=s10; $)kk8Q4+K  
    s20=0.*s10;                %input in waveguide 2 IKNFYe[9e  
    s30=0.*s10;                %input in waveguide 3 }CB=c]p  
    s2=s20; o=mq$Z:}  
    s3=s30; fvAh?<Ul  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   G%V=idU*"  
    %energy in waveguide 1 r[C3u[  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   eO|^Lu]+  
    %energy in waveguide 2 '6Pu[^x  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   :F!dTD$  
    %energy in waveguide 3 @m !9"QhC  
    for m3 = 1:1:M3                                    % Start space evolution [TiT ff&LV  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS pgLzFY['  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; N7RG5?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ae9k[=-  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 3Hb .Z LE#  
       sca2 = fftshift(fft(s2)); .N2nJ/   
       sca3 = fftshift(fft(s3)); $sd3h\P&R  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ,d9%Ce.$2  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); =]5DYRhX]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); |!jYv'%  
       s3 = ifft(fftshift(sc3)); ZNL;8sI?>  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 0-;DN:>  
       s1 = ifft(fftshift(sc1)); mVc'%cPaw  
    end zm;*:]S  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ?<>,XyY  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); S*2L4Uj`|  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); z[0LU]b<  
       P1=[P1 p1/p10]; E :'  
       P2=[P2 p2/p10]; d[P>jl%7  
       P3=[P3 p3/p10]; wB1-|= K1  
       P=[P p*p]; !}Woo$#ND  
    end (dO'_s&M]/  
    figure(1) o3\SO  
    plot(P,P1, P,P2, P,P3); *_"c! eW  
    8JjU 9#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~