切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9125阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 9c6=[3)V  
    }=U\v'%m  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Lh}he:k+  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ')BQ 0sg  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear _W;u Qg']  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !o@-kl  
    ;Y"J j  
    %fid=fopen('e21.dat','w'); EY>A(   
    N = 128;                       % Number of Fourier modes (Time domain sampling points) =N=,;<6%A  
    M1 =3000;              % Total number of space steps `G'V9Xs(  
    J =100;                % Steps between output of space Ur`v*LT}~  
    T =10;                  % length of time windows:T*T0 ;Gi w7a)  
    T0=0.1;                 % input pulse width ^{s)`j'I*  
    MN1=0;                 % initial value for the space output location ^Z*_@A_v  
    dt = T/N;                      % time step B$bsh.  
    n = [-N/2:1:N/2-1]';           % Index v% 1#y5  
    t = n.*dt;   ]HRZ9oP  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ; H3kb +  
    u20=u10.*0.0;                  % input to waveguide 2 g5 E]o)  
    u1=u10; u2=u20;                 p})&Zl)V  
    U1 = u1;   $\bH 5|Hk]  
    U2 = u2;                       % Compute initial condition; save it in U oI>;O#  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 4=9F1[  
    w=2*pi*n./T; I$Z"o9"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T RwwKPE  
    L=4;                           % length of evoluation to compare with S. Trillo's paper uk1IT4+  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 K)qmJ-Gub  
    for m1 = 1:1:M1                                    % Start space evolution !-QKh aY  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS C?B7xK  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; y|p:^41Ro  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform V><P`  
       ca2 = fftshift(fft(u2)); ~ e"^-x  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation DGU$3w  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   0`x<sjG\q  
       u2 = ifft(fftshift(c2));                        % Return to physical space WDZEnauE  
       u1 = ifft(fftshift(c1)); <W?,n%  
    if rem(m1,J) == 0                                 % Save output every J steps. 78X;ZMY  
        U1 = [U1 u1];                                  % put solutions in U array xWDwg@ P  
        U2=[U2 u2]; jk|0<-3  
        MN1=[MN1 m1]; E`i;9e'S  
        z1=dz*MN1';                                    % output location ?832#a?FZ;  
      end >fjf] 6  
    end b#P8Je`;9  
    hg=abs(U1').*abs(U1');                             % for data write to excel hE=cgO`QU  
    ha=[z1 hg];                                        % for data write to excel j'7FTVmJ  
    t1=[0 t']; +`[$w<I  
    hh=[t1' ha'];                                      % for data write to excel file os2yiF",   
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format %B~`bUHjq  
    figure(1) !XFN/-Q ,  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ]\jhtC=2  
    figure(2) ,^+3AT  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn F/!C=nS  
    $/D@=P kc  
    非线性超快脉冲耦合的数值方法的Matlab程序 9A6ly9DIS  
    89L -k%R  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ZK13[_@9  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 sOHh&e  
    H[Qh*pq2  
    >uQ!B/C!  
    Yux7kD\c  
    %  This Matlab script file solves the nonlinear Schrodinger equations DF|qNX  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9oaq%Sf  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear iBZ+gsSP  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 'aCnj8B  
    }x%"Oq|2]x  
    C=1;                           c`iSe$eS  
    M1=120,                       % integer for amplitude o$Jk2 7  
    M3=5000;                      % integer for length of coupler /aK },+  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) i P/I% D  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. {!-w|&bF  
    T =40;                        % length of time:T*T0. eo@:@O+bm  
    dt = T/N;                     % time step { }>"f]3  
    n = [-N/2:1:N/2-1]';          % Index !Zs;m`j&9  
    t = n.*dt;   LIR2B"3F  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. UP,(zKTA  
    w=2*pi*n./T; fxc~5~$>  
    g1=-i*ww./2; i1/FNem  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ^m5{:\ Xk  
    g3=-i*ww./2; 0AaN  
    P1=0; Y(&phv&  
    P2=0; OyH:  
    P3=1; M]6=Rxq1:E  
    P=0; ]qXfg c  
    for m1=1:M1                 s&c^Wr  
    p=0.032*m1;                %input amplitude x[)S3U J  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 BkIvoW_  
    s1=s10; -5E<BmM  
    s20=0.*s10;                %input in waveguide 2 K[ylyQ1  
    s30=0.*s10;                %input in waveguide 3 x{+rx.  
    s2=s20; 2)U3/TNe  
    s3=s30; (Q\w4?ci  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   <1hwXo  
    %energy in waveguide 1  R z[-  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   )of_"gZ$3A  
    %energy in waveguide 2 u'=#~'6  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   z9VQsC'K  
    %energy in waveguide 3 3Hq0\Y"Y  
    for m3 = 1:1:M3                                    % Start space evolution xvgIYc{  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS eNXpRvY  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 1Ce:<.99B  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; S;CT:kG6Y{  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform mNV4"lNR  
       sca2 = fftshift(fft(s2)); X-t4irZ)  
       sca3 = fftshift(fft(s3)); Ir]b. 6B  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   zO!`sPP  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); u<+;]8[o  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); AjZT- Q0L  
       s3 = ifft(fftshift(sc3)); |Q7Ch]G  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Z-:$)0f  
       s1 = ifft(fftshift(sc1)); uz*C`T0:rj  
    end ;7qk9rz4  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); YXBS!89m  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); h; {?z  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); a8dR.  
       P1=[P1 p1/p10]; :CH'Bt4<  
       P2=[P2 p2/p10]; ;&[0 h)  
       P3=[P3 p3/p10]; 2y,~i;;_  
       P=[P p*p];  gs9f2t  
    end J :,  
    figure(1) [J:vSt  
    plot(P,P1, P,P2, P,P3); +L_.XToq-  
    <KJ18/  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~