计算脉冲在非线性耦合器中演化的Matlab 程序 [
MyE2^ @Jn!0Y1_3 % This Matlab script file solves the coupled nonlinear Schrodinger equations of
cn`iX(ZgR % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
fCw*$:O % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
h6v07 7qG % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
!*{q^IO9v& 8b(!k FxD %fid=fopen('e21.dat','w');
>IfV\w32 N = 128; % Number of Fourier modes (Time domain sampling points)
*O~e
T M1 =3000; % Total number of space steps
G~,:2
o3 J =100; % Steps between output of space
vXE0%QE'Q T =10; % length of time windows:T*T0
iE].&>w T0=0.1; % input pulse width
b:W-l? MN1=0; % initial value for the space output location
j;0vAf dt = T/N; % time step
sG7u}r n = [-N/2:1:N/2-1]'; % Index
<vV_%uoM t = n.*dt;
8LzBh_J? u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
3Q^fVn$tk u20=u10.*0.0; % input to waveguide 2
GVGlVAo|@ u1=u10; u2=u20;
9+=gke U1 = u1;
ino:N5&;; U2 = u2; % Compute initial condition; save it in U
QzvHm1,@ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
8\.b4FNJ w=2*pi*n./T;
S\i@s_ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
7gF"=7{- L=4; % length of evoluation to compare with S. Trillo's paper
a_~=#]a dz=L/M1; % space step, make sure nonlinear<0.05
Kn`M4O for m1 = 1:1:M1 % Start space evolution
~`ny@WD9 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
p>w]rE:} u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
<AH1i@4 ca1 = fftshift(fft(u1)); % Take Fourier transform
Yf@e=: ca2 = fftshift(fft(u2));
Ifc]K? c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
#%0Bx3uM c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
QS[L~97m2M u2 = ifft(fftshift(c2)); % Return to physical space
=FP0\cQ. u1 = ifft(fftshift(c1));
co8"sz0(U if rem(m1,J) == 0 % Save output every J steps.
o\b- _E5"? U1 = [U1 u1]; % put solutions in U array
ia @'%8 U2=[U2 u2];
>Gml4vGK MN1=[MN1 m1];
I#F!N6; z1=dz*MN1'; % output location
'k0[rDFc#3 end
=@&cH Y end
ElhRF{R hg=abs(U1').*abs(U1'); % for data write to excel
:KJ pk:< ha=[z1 hg]; % for data write to excel
l e4?jQQ@L t1=[0 t'];
4`m~FNVS hh=[t1' ha']; % for data write to excel file
V"\0Y0 %dlmwrite('aa',hh,'\t'); % save data in the excel format
sUJ%x#u}Fk figure(1)
O/s$SX%g waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
8BOZh6BV figure(2)
%ts^Z*3u waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
IYn]U4P.
\MC-4Yz 非线性超快脉冲耦合的数值方法的Matlab程序 g[RI.&? R0ID2:i]F 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
,2Q o7(A Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
!* Ti}oIo& zi R5:d3 M>9-=$7 o1W:ox?kO % This Matlab script file solves the nonlinear Schrodinger equations
R'EUV0KX>Y % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
%,Sf1fUJ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
U$]|~41# % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
00v&lQBW Vtc36-\1* C=1;
?Nf>]|K:Q M1=120, % integer for amplitude
%~L>1ShtU M3=5000; % integer for length of coupler
eAv4FA4g N = 512; % Number of Fourier modes (Time domain sampling points)
MYJg8 '[j dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
'o|30LzYgQ T =40; % length of time:T*T0.
L^2FQti> dt = T/N; % time step
r.3/F[. n = [-N/2:1:N/2-1]'; % Index
S5~VD?O, t = n.*dt;
f` =CpO* ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
w(kf w=2*pi*n./T;
(py]LBZ g1=-i*ww./2;
{ eCC$&" g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
I2nF-JzD2a g3=-i*ww./2;
H
0+dV3 P1=0;
$o$
maA0 P2=0;
.ObZ\.I P3=1;
~U;rw&'H P=0;
^O^l(e!3 for m1=1:M1
0#w?HCx= p=0.032*m1; %input amplitude
B<j'm0a>B s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
?A(QyaKz s1=s10;
DXz}YIEC s20=0.*s10; %input in waveguide 2
-@T/b$]'n s30=0.*s10; %input in waveguide 3
PV|uPuz s2=s20;
64hk2a8 s3=s30;
4`JH&))} p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
\j&^aAp r %energy in waveguide 1
m[j70jYe p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
foJdu+^ %energy in waveguide 2
Neg,qOt p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
x| yEtO& %energy in waveguide 3
FQ
g~l4WX for m3 = 1:1:M3 % Start space evolution
`PY>Hgb s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
>3z5ww s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
6iCrRjY* s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
K|dso]b/ sca1 = fftshift(fft(s1)); % Take Fourier transform
0eK*9S] sca2 = fftshift(fft(s2));
%Gt.m sca3 = fftshift(fft(s3));
z5)s/;Sc sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
jDQZQ NS sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
H54R8O$ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
2W4qBaG$= s3 = ifft(fftshift(sc3));
Z!ha fhcX s2 = ifft(fftshift(sc2)); % Return to physical space
'fW6
.0fXa s1 = ifft(fftshift(sc1));
5nsq[Q` end
!
u:Weoz p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
,"B+r6}EF p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
]Kr
`9r), p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
&hRvol\J P1=[P1 p1/p10];
+nJUFc P2=[P2 p2/p10];
7)s^8+ P3=[P3 p3/p10];
D1__n6g[ P=[P p*p];
I1PuHf Qs end
cReB~wk figure(1)
CiB%B`,N plot(P,P1, P,P2, P,P3);
HuOIFv 8MSC.0 转自:
http://blog.163.com/opto_wang/