计算脉冲在非线性耦合器中演化的Matlab 程序 P^-9?uBno OSk9Eb4ld % This Matlab script file solves the coupled nonlinear Schrodinger equations of
4F!d V;"Z( % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
e vuP4-[y % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
b"9,DQB=i % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
s6uAF(4, z& jDO ex %fid=fopen('e21.dat','w');
(7,Awf5D~ N = 128; % Number of Fourier modes (Time domain sampling points)
bux-t3g7+ M1 =3000; % Total number of space steps
L~~Yh{< J =100; % Steps between output of space
BZ9iy~ T =10; % length of time windows:T*T0
?Y* PVx9Y T0=0.1; % input pulse width
o5R40[" MN1=0; % initial value for the space output location
@Iu-F4YT dt = T/N; % time step
:_ox8xS4 n = [-N/2:1:N/2-1]'; % Index
_#B/#^a t = n.*dt;
W^f#xrq> u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
SGm?"esEt u20=u10.*0.0; % input to waveguide 2
xkovoTzV u1=u10; u2=u20;
= ;d<Ikj U1 = u1;
K-3 _4As U2 = u2; % Compute initial condition; save it in U
/+msrrpD ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Lw`\J|%p w=2*pi*n./T;
|sz9l/,lG g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
|{T2|iJI L=4; % length of evoluation to compare with S. Trillo's paper
`Fj(g!` dz=L/M1; % space step, make sure nonlinear<0.05
stPCw$@ for m1 = 1:1:M1 % Start space evolution
(6nw8vQ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
lDeWs%n u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
se[};t: ca1 = fftshift(fft(u1)); % Take Fourier transform
0J~4
ca2 = fftshift(fft(u2));
-}@9lhS, c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
-wB AFr c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
hr5)$qZW u2 = ifft(fftshift(c2)); % Return to physical space
}T,uw8?f! u1 = ifft(fftshift(c1));
hh9{md\ if rem(m1,J) == 0 % Save output every J steps.
[@6iStRg7 U1 = [U1 u1]; % put solutions in U array
@#apOoVW> U2=[U2 u2];
V_!i KEU MN1=[MN1 m1];
nP^$p C z1=dz*MN1'; % output location
o6 /?WR 9 end
zKNk(/y end
H^G*5EQK hg=abs(U1').*abs(U1'); % for data write to excel
jPfoI- ha=[z1 hg]; % for data write to excel
@zbXG_J t1=[0 t'];
GSp1,E2J hh=[t1' ha']; % for data write to excel file
<T).+
M/ %dlmwrite('aa',hh,'\t'); % save data in the excel format
P*>V6SK>b figure(1)
7
<xxOY>y waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
U{EW +> figure(2)
9\F^\h{ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
U,'n}]=4A3 Y~R wsx 非线性超快脉冲耦合的数值方法的Matlab程序 w8qI7/ cu-WY8n 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
`f'P Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
K_i2%t3 5S1m&s5k t(Uoi~#[ qb Q> z+c % This Matlab script file solves the nonlinear Schrodinger equations
)-(NL!?` % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
DjIs"5Iei % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
(rJvE* % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
(k?OYz]c VI?[8@*Z C=1;
Dng^4VRd M1=120, % integer for amplitude
GOt@x9% M3=5000; % integer for length of coupler
nV,a|V5Xm N = 512; % Number of Fourier modes (Time domain sampling points)
(I$hw"%& dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
F<$&G'% H T =40; % length of time:T*T0.
-8IiQRS dt = T/N; % time step
nMhc3t n = [-N/2:1:N/2-1]'; % Index
Z]tz<YSkG t = n.*dt;
y;;@T X ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
L|<Mtw w=2*pi*n./T;
Oe$C5KA>LW g1=-i*ww./2;
4t":WutC g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
9cLKb g3=-i*ww./2;
du !.j P1=0;
<XNLeJdY P2=0;
D<MtLwH P3=1;
9;PtYdJ8 P=0;
IY'S<)vOY for m1=1:M1
tm$3ZzP4 p=0.032*m1; %input amplitude
!Ej<J&e s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
{?8rvAjY s1=s10;
4
QWHGh" s20=0.*s10; %input in waveguide 2
@c.pOX[]m, s30=0.*s10; %input in waveguide 3
%\A~w3 E s2=s20;
i[B%:q:& s3=s30;
M-n +3E9 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
D3]_AS&\ %energy in waveguide 1
'G&w[8mqY p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
Q]8r72uSk %energy in waveguide 2
`!i>fo~ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
~%]+5^Ka] %energy in waveguide 3
o\N),;LM for m3 = 1:1:M3 % Start space evolution
]]+"`t,- s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
2'D2>^os s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
>">-4L17m s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
.L}ar7 sca1 = fftshift(fft(s1)); % Take Fourier transform
C`fQ` RL\ sca2 = fftshift(fft(s2));
/wQDcz sca3 = fftshift(fft(s3));
q N>j2~ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
dwRJ0D]& sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
~!I
\{( sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
i9d.Ls s3 = ifft(fftshift(sc3));
=dPrG=A s2 = ifft(fftshift(sc2)); % Return to physical space
&a V`u?'e s1 = ifft(fftshift(sc1));
&W1cc#( end
\QVL%,.%M p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
:>|[ o&L p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
a$ Z06j p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Gd!y,n&s P1=[P1 p1/p10];
j
sm{|' P2=[P2 p2/p10];
/0A}N$?>: P3=[P3 p3/p10];
OmsNo0OA P=[P p*p];
qTG/7tn
" end
2TdcZ<k}J figure(1)
-{^Gzui plot(P,P1, P,P2, P,P3);
-Wf 2m6t ikUG`F%W 转自:
http://blog.163.com/opto_wang/