计算脉冲在非线性耦合器中演化的Matlab 程序 ={@6{-tl
-fW*vE:
% This Matlab script file solves the coupled nonlinear Schrodinger equations of UhQj
Qaa~
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Od,qbU4O
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @O^6&\s>
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @YTaSz$L
,S]7 'UP
%fid=fopen('e21.dat','w'); =R$u[~Xl2X
N = 128; % Number of Fourier modes (Time domain sampling points) )W
_v:?A9
M1 =3000; % Total number of space steps Tqn@P
J =100; % Steps between output of space CU2*z(]&
T =10; % length of time windows:T*T0 w-L=LWL\
T0=0.1; % input pulse width q ,]L$
MN1=0; % initial value for the space output location ra
g Xn
dt = T/N; % time step mLLDE;7|}
n = [-N/2:1:N/2-1]'; % Index 8\A#CQ5b
t = n.*dt; sLT3Y}IO
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 uo%)1NS!
u20=u10.*0.0; % input to waveguide 2 !Pfr,a
u1=u10; u2=u20; q Y?j#fzi
U1 = u1; Pw`8Wj
U2 = u2; % Compute initial condition; save it in U w;:*P
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. IDriGZZ<)6
w=2*pi*n./T; u[=r,^YQ
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T YWO)HsjP
L=4; % length of evoluation to compare with S. Trillo's paper ">,|V-H
dz=L/M1; % space step, make sure nonlinear<0.05 A&Usddcp
for m1 = 1:1:M1 % Start space evolution jZkcBIK2
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS yEoF4bt
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >rmqBDKaQ
ca1 = fftshift(fft(u1)); % Take Fourier transform >7T'OC
ca2 = fftshift(fft(u2)); w4{<n/"
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation ]dmrkZz:
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift ~1AgD-:Jz
u2 = ifft(fftshift(c2)); % Return to physical space \aUC(K~o\;
u1 = ifft(fftshift(c1)); By",rD- r
if rem(m1,J) == 0 % Save output every J steps. WUXx;9 >
U1 = [U1 u1]; % put solutions in U array :g=qz~2Xk
U2=[U2 u2]; .|>3k'<l
MN1=[MN1 m1];
goOCu
z1=dz*MN1'; % output location Y0dEH^I
end cj|80$cSA
end Ma']?Rb`
hg=abs(U1').*abs(U1'); % for data write to excel g63(E,;;J
ha=[z1 hg]; % for data write to excel J7Hl\Q[D1
t1=[0 t']; @&3EJ1
hh=[t1' ha']; % for data write to excel file i0kak`x0
%dlmwrite('aa',hh,'\t'); % save data in the excel format `*cxH..
figure(1) m{cGK`/\
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn CMG&7(MR
figure(2) H0gbSd+
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn t[;LD_
JWhdMU
非线性超快脉冲耦合的数值方法的Matlab程序 */^q{PsN
;yLu R
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 p\tm:QWD;
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *-=(Q`3
Y^;ovH~ ve
N06OvU2>xU
S.94edQ
% This Matlab script file solves the nonlinear Schrodinger equations }mYx_=+VX
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of F Q7T'G![
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear SpLzm A
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 BB!THj69a6
z2_*%S@
C=1; HIR~"It$
M1=120, % integer for amplitude i$:*Pb3mV
M3=5000; % integer for length of coupler c"n\cNP<
N = 512; % Number of Fourier modes (Time domain sampling points) wc NOLUl
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. gmO!
T =40; % length of time:T*T0. y^,1a[U.
dt = T/N; % time step oWim}Er=
n = [-N/2:1:N/2-1]'; % Index rq/yD,I,
t = n.*dt; ?FeYN+qR
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. T@:Wp4>69
w=2*pi*n./T; L_uVL#To
g1=-i*ww./2; 7Oa#c<2]
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ^& tZ
g3=-i*ww./2; tqvN0vY5
P1=0; "$Z= %.3Q
P2=0; 7$vYo
_
P3=1; Pw7]r<Q
P=0; nQX:T;WL@
for m1=1:M1 *8yAG]z
p=0.032*m1; %input amplitude F3v!AvA|
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 [#<-ZC#T*
s1=s10; 8>2.UrC
s20=0.*s10; %input in waveguide 2 b8`)y<