计算脉冲在非线性耦合器中演化的Matlab 程序 l{hO"fzy
C%AN4Mo
% This Matlab script file solves the coupled nonlinear Schrodinger equations of *`V r P
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of !%/(a)B$^$
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear h=dFSK?*D
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G| qsJ
]BfJ~+ N
%fid=fopen('e21.dat','w'); 8JU{]Z!G<;
N = 128; % Number of Fourier modes (Time domain sampling points) _eUd
RL>
M1 =3000; % Total number of space steps a!\^O).pA
J =100; % Steps between output of space S>y}|MG
T =10; % length of time windows:T*T0 z4JhLef %
T0=0.1; % input pulse width X-`PF
MN1=0; % initial value for the space output location t4+bRmS`_
dt = T/N; % time step HEm XB=
n = [-N/2:1:N/2-1]'; % Index ;nKhmcQ4
t = n.*dt; p']{WLDj2
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 >9t+lr1
u20=u10.*0.0; % input to waveguide 2 u^( s0q
u1=u10; u2=u20; fwv.^kx
U1 = u1; t!o=-k
U2 = u2; % Compute initial condition; save it in U %XH%.Ps/
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. IgPU^?sp
w=2*pi*n./T; jfpbD
/
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T i&0Zli
L=4; % length of evoluation to compare with S. Trillo's paper |N:kf&]b
dz=L/M1; % space step, make sure nonlinear<0.05 C;oO=R3r
for m1 = 1:1:M1 % Start space evolution #2;8/"v
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS LrdX^_,nt
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; _^`TG]F
ca1 = fftshift(fft(u1)); % Take Fourier transform Tfw5i,{
ca2 = fftshift(fft(u2)); 76b2 3|
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation wexa\o
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift U3t)yr h
u2 = ifft(fftshift(c2)); % Return to physical space Pa"[&{ :
u1 = ifft(fftshift(c1)); K[i&!Z&
if rem(m1,J) == 0 % Save output every J steps. BQ(sjJ$v6F
U1 = [U1 u1]; % put solutions in U array ';I(#J6
U2=[U2 u2]; w$jq2?l
MN1=[MN1 m1]; )u]1j@Id
z1=dz*MN1'; % output location ZV$!dHW/
end yDAvl+
end $LOf2 kn
hg=abs(U1').*abs(U1'); % for data write to excel dm"|\7
ha=[z1 hg]; % for data write to excel ~{q;
-&
t1=[0 t']; L\\'n )
hh=[t1' ha']; % for data write to excel file S y^et
%dlmwrite('aa',hh,'\t'); % save data in the excel format Nl9}*3r
figure(1) pf#~|n#t
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn I?CfdI
figure(2) Aq_?8 Cd
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn bDnT><eH
[>|6qY$D
非线性超快脉冲耦合的数值方法的Matlab程序 '-_tF3x
p?sFX$S
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 4q\gFFV4
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G@rV9
RU\MT'E>(
nBzju?X)I
O[z-K K<
% This Matlab script file solves the nonlinear Schrodinger equations o(g}eP,g}
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ogG:Ai)90
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear As(6E}{S
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z
9~|Su
r_pZK(G%
C=1; M)CQ|P
M1=120, % integer for amplitude lLN5***47J
M3=5000; % integer for length of coupler wQ '_, d
N = 512; % Number of Fourier modes (Time domain sampling points) fn Pej?f:
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. q=;U(,Y
T =40; % length of time:T*T0. x,#?
dt = T/N; % time step 'v%v*Ujf[
n = [-N/2:1:N/2-1]'; % Index sDjbvC0
t = n.*dt; (4C_Ft*~j
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. HA~BXxa/
w=2*pi*n./T; p
s_o:*$l
g1=-i*ww./2; \8/$ZEom
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; XF`?5G~~#
g3=-i*ww./2; nmClP
P1=0; CMU\DO
P2=0; 7$7#z\VWu
P3=1; L^??*XEUJ
P=0; '(SqHP|8&g
for m1=1:M1 -x+K#T0Z
p=0.032*m1; %input amplitude yXCJ?
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 2(25IYMS8
s1=s10; g.COKA
s20=0.*s10; %input in waveguide 2 Ev,b5KelD
s30=0.*s10; %input in waveguide 3 tWA<OOl
s2=s20; J@o$V- KK
s3=s30; Q,nXc
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); AV;x'H7G
%energy in waveguide 1 Zn]!*}
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); oTk?a!Q
%energy in waveguide 2 =S|dzgS/
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); cR!Mn$m
%energy in waveguide 3 |[MtUWEW
for m3 = 1:1:M3 % Start space evolution ~)
vz`bD1
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS *q0vp^?
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5`{u! QE
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; oZw #]Q@
sca1 = fftshift(fft(s1)); % Take Fourier transform hGj`IAW
sca2 = fftshift(fft(s2)); ^) 5*?8#
sca3 = fftshift(fft(s3)); <MgC7S2I
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift >5j&Q