切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9367阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 A#:8X1w  
    7jezw'\=~  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of @aB9%An1  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of $5/\Z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 92(~'5Qr  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FuMq|S  
    M'|)dM|  
    %fid=fopen('e21.dat','w'); S_T  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) `V~LV<v5  
    M1 =3000;              % Total number of space steps n8FT<pUq  
    J =100;                % Steps between output of space JFJIls  
    T =10;                  % length of time windows:T*T0 -RCv7U`  
    T0=0.1;                 % input pulse width (6#M9XL  
    MN1=0;                 % initial value for the space output location B? TpBd  
    dt = T/N;                      % time step El1:?4;  
    n = [-N/2:1:N/2-1]';           % Index z[FI2jl  
    t = n.*dt;   4^MSX+zt  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 gL,"ef+nM  
    u20=u10.*0.0;                  % input to waveguide 2 Cji#?!Ra?  
    u1=u10; u2=u20;                 $:]tcY-L9  
    U1 = u1;   7BrV<)ih{*  
    U2 = u2;                       % Compute initial condition; save it in U ?k w/S4  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. )T<D6l Lt  
    w=2*pi*n./T; X o_] v  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T zK /f$}  
    L=4;                           % length of evoluation to compare with S. Trillo's paper v+7*R)/  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 t_Z _!Qy  
    for m1 = 1:1:M1                                    % Start space evolution MyM+C}  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS L+(C5L93}  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; {SHqW5VX  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform x{QBMe`  
       ca2 = fftshift(fft(u2)); ,?#*eJD  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 8q{1E];:q  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   I<9n(rA  
       u2 = ifft(fftshift(c2));                        % Return to physical space )j(fWshP  
       u1 = ifft(fftshift(c1)); mj,qQ=n;p  
    if rem(m1,J) == 0                                 % Save output every J steps. !}j,TPpG  
        U1 = [U1 u1];                                  % put solutions in U array ^VC7C~NZ!M  
        U2=[U2 u2]; ^h"n03VFA  
        MN1=[MN1 m1]; u[: P  
        z1=dz*MN1';                                    % output location ,?;sT`Mh)  
      end g!.Ut:8L9  
    end #EEG>M*xB  
    hg=abs(U1').*abs(U1');                             % for data write to excel 9DY|Sa]#=  
    ha=[z1 hg];                                        % for data write to excel f^ywW[dF  
    t1=[0 t']; 7s$6XO!  
    hh=[t1' ha'];                                      % for data write to excel file )fy <P;g  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Y+OYoI  
    figure(1) % Mw'e/?  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn EK:Y2WZ  
    figure(2) N!.kq4$.  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn q!9^#c  
    '?z9,oW{  
    非线性超快脉冲耦合的数值方法的Matlab程序 1Q0%7zRirI  
    @-}D7?  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   y`\mQ48V  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 pqkcf \  
    ^#}dPGm  
    Ny]'RS-  
    X9DM ^tt  
    %  This Matlab script file solves the nonlinear Schrodinger equations mQmBf|Rl  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of -??!@R7V  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear DBLA% {05  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^l&nB.  
    l@~1CMyN  
    C=1;                           d.L OyO  
    M1=120,                       % integer for amplitude g&|4  
    M3=5000;                      % integer for length of coupler J2)-cY5G  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) YG-Z.{d5Z  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. JTSq{NN  
    T =40;                        % length of time:T*T0. AB/,S  
    dt = T/N;                     % time step `WraOsoY  
    n = [-N/2:1:N/2-1]';          % Index XKpL4]{&q4  
    t = n.*dt;   HKq2Js  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. XhQw+j~1.  
    w=2*pi*n./T; W\nHX I  
    g1=-i*ww./2; YJ &lB&xH  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 4jDs0Hn"  
    g3=-i*ww./2; " whO}  
    P1=0; iMP*]K-O  
    P2=0; bbfDt^  
    P3=1; oV%( 37W9=  
    P=0; D2>hMc  
    for m1=1:M1                 ^zBjG/'7  
    p=0.032*m1;                %input amplitude </K%i;l  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ~E^yM=:h  
    s1=s10; n25irCD`  
    s20=0.*s10;                %input in waveguide 2 K> c8r8!  
    s30=0.*s10;                %input in waveguide 3 va`l*N5  
    s2=s20; 2rPcNh9  
    s3=s30; \O8Y3|<  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   d,h~u{  
    %energy in waveguide 1 ^8o_Iz)r,  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   pDLu+ }@  
    %energy in waveguide 2 hj[+d%YZY"  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   kX ~-g  
    %energy in waveguide 3 XgwMppacw  
    for m3 = 1:1:M3                                    % Start space evolution { r< (t#  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS >%PL_<Vbv  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; hLDch5J5~  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; KdBq@  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform LUe>)eqw  
       sca2 = fftshift(fft(s2)); 1YF+(fk  
       sca3 = fftshift(fft(s3)); el2*\(XT  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _IQU<Za  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 4yJ*85e]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Q1O_CC}  
       s3 = ifft(fftshift(sc3)); Gvt;Q,hH  
       s2 = ifft(fftshift(sc2));                       % Return to physical space reqfgNg  
       s1 = ifft(fftshift(sc1)); Lo$Z>u4(c  
    end ;~'cITL  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); vp )}/&/  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2A@Y&g(6T7  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 5 WN`8?  
       P1=[P1 p1/p10]; /pAm8vK   
       P2=[P2 p2/p10]; EPE!V>  
       P3=[P3 p3/p10]; cuV8#: i  
       P=[P p*p]; L5-T6CD  
    end LK   
    figure(1) w (vE2Y ?  
    plot(P,P1, P,P2, P,P3); d'lr:=GQ  
    'XZI{q2i  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~