切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9431阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 NP_b~e6O=  
    ~!A*@a C  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of O!=ae|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of &Y/Myh[P  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~|t 7  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `PVr;&  
    2^.qKY@g@  
    %fid=fopen('e21.dat','w'); X \GB:#:X  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %@9pn1,  
    M1 =3000;              % Total number of space steps n 0*a.  
    J =100;                % Steps between output of space yw3E$~k  
    T =10;                  % length of time windows:T*T0 ~DJ>)pp  
    T0=0.1;                 % input pulse width lmjoSINy  
    MN1=0;                 % initial value for the space output location 5l ioL)  
    dt = T/N;                      % time step eO?.8OM-a  
    n = [-N/2:1:N/2-1]';           % Index 5^W},:3R  
    t = n.*dt;   JDA:)[;  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 `3KXWN`.s  
    u20=u10.*0.0;                  % input to waveguide 2 qh<h|C]V  
    u1=u10; u2=u20;                 %/r}_V(UN  
    U1 = u1;   '.8E_Jd0E  
    U2 = u2;                       % Compute initial condition; save it in U 5\6S5JyIL  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. (g>>   
    w=2*pi*n./T; gBZ1Weu-'  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T gfW8s+  
    L=4;                           % length of evoluation to compare with S. Trillo's paper eJv_`#R&Of  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 5C^oqUZ  
    for m1 = 1:1:M1                                    % Start space evolution E)h&<{%  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `*`@ro  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; q=H dGv  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform W@( EEMhw  
       ca2 = fftshift(fft(u2)); I8RPW:B;B  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 5u=(zg  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ]*M-8_D  
       u2 = ifft(fftshift(c2));                        % Return to physical space E"|LA[o  
       u1 = ifft(fftshift(c1)); /y.+N`_  
    if rem(m1,J) == 0                                 % Save output every J steps. cJ> #jl&  
        U1 = [U1 u1];                                  % put solutions in U array <,S5(pZ  
        U2=[U2 u2]; l(CMP!mY  
        MN1=[MN1 m1]; QlmZ4fT[r  
        z1=dz*MN1';                                    % output location t|ih{0  
      end & 1:_+  
    end $aFCe}3b<  
    hg=abs(U1').*abs(U1');                             % for data write to excel :"pA0oB  
    ha=[z1 hg];                                        % for data write to excel `- \J/I  
    t1=[0 t']; E>}(r%B  
    hh=[t1' ha'];                                      % for data write to excel file !Xzne_V<  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ?^< E#2a  
    figure(1) x=%p~$C  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn #J,?oe=<4  
    figure(2) 2{sx"/k\A  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn T|{1,wP  
    {vf"`#Q9  
    非线性超快脉冲耦合的数值方法的Matlab程序 %FDv6peH  
    ^D=1%@l?#  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   i#lnSJ08  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s?irT;=  
    %}nNwuJ  
    b,8\i|*!f  
    ~rN:4Q]/  
    %  This Matlab script file solves the nonlinear Schrodinger equations a->;K+  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of z~S(OM@olJ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Pr%Y!|  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TBGN',,  
    ey~5DY7  
    C=1;                           j<HBzqP%6  
    M1=120,                       % integer for amplitude ds*N1[ *  
    M3=5000;                      % integer for length of coupler #'@pL0dj  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) t Lz,t&h  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. R@+%~"Z  
    T =40;                        % length of time:T*T0. l. 9 i `  
    dt = T/N;                     % time step :?*|Dp1  
    n = [-N/2:1:N/2-1]';          % Index Ju"* ;/  
    t = n.*dt;   !m* YPY31  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1TagQ  
    w=2*pi*n./T; " aEk#W  
    g1=-i*ww./2; Y M <8>d  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =nQgS.D  
    g3=-i*ww./2; $E j;CN59  
    P1=0; N}j]S{j}'  
    P2=0; su/!<y  
    P3=1; jc4#k+sb  
    P=0; mO6rj=L^  
    for m1=1:M1                 /{[Y l[{"<  
    p=0.032*m1;                %input amplitude 3u)NkS=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 [%);N\o2Y  
    s1=s10; *Va;ra(V2  
    s20=0.*s10;                %input in waveguide 2 >;$C@  
    s30=0.*s10;                %input in waveguide 3 k"kGQk4  
    s2=s20; x?aNK$A~X  
    s3=s30; G`_LD+  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   t+ ,'  
    %energy in waveguide 1 GV+K] KDI  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   e|t@"MxvC  
    %energy in waveguide 2 Q1A_hW2x  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   m ll-cp  
    %energy in waveguide 3 bc?\lD$ $  
    for m3 = 1:1:M3                                    % Start space evolution J@Qt(rRxi  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS  $:7 T  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; al<;*n{/  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 6/%dD DU  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform _V jfH2Y  
       sca2 = fftshift(fft(s2)); VP7g::Ab  
       sca3 = fftshift(fft(s3)); wb#ZRmx}  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   k3HPY}-  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); R;G"LT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #{m~=1%;Ya  
       s3 = ifft(fftshift(sc3)); K~C6dy  
       s2 = ifft(fftshift(sc2));                       % Return to physical space hyHeyDO2  
       s1 = ifft(fftshift(sc1)); <WHu</  
    end ,esryFRG  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); g+X .8>=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ^Uj\s /  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); *&=sL  
       P1=[P1 p1/p10]; ^5MPK@)c,/  
       P2=[P2 p2/p10]; \6{w#HsP8  
       P3=[P3 p3/p10]; D?Mj<||  
       P=[P p*p]; l"{1v ~I  
    end 17 k9h?s*  
    figure(1) j$<sq  
    plot(P,P1, P,P2, P,P3); SU,#:s(  
    *N C9S,eSP  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~