计算脉冲在非线性耦合器中演化的Matlab 程序 X1Qr_o-BR
4iwf\#
% This Matlab script file solves the coupled nonlinear Schrodinger equations of 47KNT7C
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of d [r-k 2
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kL|\wci
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 yX`#s]M
Wj&nUp{
%fid=fopen('e21.dat','w'); vTdUuj3N
N = 128; % Number of Fourier modes (Time domain sampling points) sMP:sCRC
M1 =3000; % Total number of space steps ^CUSlnB\(
J =100; % Steps between output of space I`NUurQTX
T =10; % length of time windows:T*T0 R }1W
T0=0.1; % input pulse width P7Xg{L&@.
MN1=0; % initial value for the space output location GLCAiSMz[
dt = T/N; % time step m~;B:LN<
n = [-N/2:1:N/2-1]'; % Index "e@n:N!
t = n.*dt; +>!V]S
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
>zQOK-
u20=u10.*0.0; % input to waveguide 2 e gI&epN
u1=u10; u2=u20; m^Glc?g<
U1 = u1; wqP2Gw7jh6
U2 = u2; % Compute initial condition; save it in U $C uR}g
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. !.*iw
k`
w=2*pi*n./T; UU[H@ym#
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T <6/= y1QC)
L=4; % length of evoluation to compare with S. Trillo's paper ~cIl$b
dz=L/M1; % space step, make sure nonlinear<0.05 UA0F):
for m1 = 1:1:M1 % Start space evolution $Zxt&a
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS /D'M 24
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; hCAZ{+`z
ca1 = fftshift(fft(u1)); % Take Fourier transform W&YU^&`Yr
ca2 = fftshift(fft(u2)); FIS "Z(
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation DHv2&zH
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift b1xpz1
u2 = ifft(fftshift(c2)); % Return to physical space q*bt4,D&Es
u1 = ifft(fftshift(c1)); -%,"iaO
if rem(m1,J) == 0 % Save output every J steps. BZ+;n
|<r
U1 = [U1 u1]; % put solutions in U array >'b=YlUL
U2=[U2 u2]; )S*1C@
MN1=[MN1 m1]; &?y7I Pp
z1=dz*MN1'; % output location x#r<,uNn,
end *C7F2o
end &iBNO,v
hg=abs(U1').*abs(U1'); % for data write to excel H:Y&OZ
ha=[z1 hg]; % for data write to excel 45<y{8
t1=[0 t']; 9 I{/zKq
hh=[t1' ha']; % for data write to excel file G>K@AW#
%dlmwrite('aa',hh,'\t'); % save data in the excel format s6n`?,vw
figure(1) pawl|Z'Ez
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn @PX\{6&
figure(2) nxfoWy
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn Bd#
TUy
<