切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9425阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 e~3]/BL  
    ^u3*hl}YKy  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of g%ZdIKj!  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?vMK'"  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "oHp.$+K  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d3og?{i<}&  
    )sRN!~  
    %fid=fopen('e21.dat','w'); ^)Smv\Md  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 7,f:Qi@g  
    M1 =3000;              % Total number of space steps Wux0RF&  
    J =100;                % Steps between output of space `(P "u  
    T =10;                  % length of time windows:T*T0 3xP~~j;7  
    T0=0.1;                 % input pulse width 3\,MsoAl  
    MN1=0;                 % initial value for the space output location *3 !(*F@M,  
    dt = T/N;                      % time step vf6`s\6  
    n = [-N/2:1:N/2-1]';           % Index DE'Xq6#PK  
    t = n.*dt;   h|K\z{ A  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 :DDO=  
    u20=u10.*0.0;                  % input to waveguide 2 K *TnUQ  
    u1=u10; u2=u20;                 *+NGi(N  
    U1 = u1;   #,t2*tM  
    U2 = u2;                       % Compute initial condition; save it in U K1/ U (A  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. L7X7Zt8%  
    w=2*pi*n./T; BQ).`f";d  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T j[_t6Z  
    L=4;                           % length of evoluation to compare with S. Trillo's paper yVT&rQ"{  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 hJecCOA)'  
    for m1 = 1:1:M1                                    % Start space evolution mluW=fE  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS T:be 9 5!,  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 3Wjq>\  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform TViBCed40  
       ca2 = fftshift(fft(u2)); 4s[`yV  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "(Mvl1^BT  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   o^8*aH)I>Y  
       u2 = ifft(fftshift(c2));                        % Return to physical space ixIh T  
       u1 = ifft(fftshift(c1)); k&WUv0  
    if rem(m1,J) == 0                                 % Save output every J steps. 5P-K *C&  
        U1 = [U1 u1];                                  % put solutions in U array pTc$+Z7 3  
        U2=[U2 u2]; {k kAqJ  
        MN1=[MN1 m1]; r5D jCV"  
        z1=dz*MN1';                                    % output location O 5g}2  
      end J>><o:~@  
    end !>CE(;E>z  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2O?Vr" A  
    ha=[z1 hg];                                        % for data write to excel YI L'YNH  
    t1=[0 t']; F~tm`n8Z  
    hh=[t1' ha'];                                      % for data write to excel file 7h(HG?2Y  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format n/ui<&(  
    figure(1) CW.&Y?>Tv  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn }9{dR4hD  
    figure(2) K%98;e9  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?R dmKA  
    `Af{H/qiI  
    非线性超快脉冲耦合的数值方法的Matlab程序 Gtj (  
    83mlZ1jQz  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Y'tqm&}  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 OAmES;Ck$(  
    r~8D\_=s  
    ^>3tYg&7  
    5x:Ift *  
    %  This Matlab script file solves the nonlinear Schrodinger equations lc\>DH\n6  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of i}.{m Et  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Zkf 3t>[  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 pem3G5 `g=  
    qFvg}}^y  
    C=1;                           5F'%i;)oq  
    M1=120,                       % integer for amplitude It#hp,@e  
    M3=5000;                      % integer for length of coupler 1"8Z y6t  
    N = 512;                      % Number of Fourier modes (Time domain sampling points)  f$:7A0  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. |pfhrwJp  
    T =40;                        % length of time:T*T0. {Q{lb(6Ba  
    dt = T/N;                     % time step #Tr;JAzVjG  
    n = [-N/2:1:N/2-1]';          % Index o?:;8]sr!  
    t = n.*dt;   *>H M$.?Q  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. CBiU#h q  
    w=2*pi*n./T; >wz;}9v  
    g1=-i*ww./2; 08<k'Oi]  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @5{.K/s  
    g3=-i*ww./2; xi '72  
    P1=0; bBkm]  >  
    P2=0; !!?+M @  
    P3=1; .`oJcJ  
    P=0; 4+ASw N9  
    for m1=1:M1                 &/b? I `  
    p=0.032*m1;                %input amplitude @4 zi]v  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 &"U9X"8b  
    s1=s10; 8zP:*|D  
    s20=0.*s10;                %input in waveguide 2 oV0LJ%  
    s30=0.*s10;                %input in waveguide 3 .Q=2WCv0  
    s2=s20; DhtU]w}  
    s3=s30; &{-oA_@  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   )GiFkG  
    %energy in waveguide 1 eT7!a']x  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   m#5|J@]  
    %energy in waveguide 2 ;n(#b8r9  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   tnQR<  
    %energy in waveguide 3 1g~Dm}m  
    for m3 = 1:1:M3                                    % Start space evolution (cOND/S  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 'Z*\1Ci  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; nUI63?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; uR06&SaA>  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform _H~pH7WU  
       sca2 = fftshift(fft(s2)); baUEsg[~V  
       sca3 = fftshift(fft(s3)); KKeb ioW  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Hrd5p+j  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); H(5S Kv5  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ]p4`7@@)*  
       s3 = ifft(fftshift(sc3)); f7EIDFX>pt  
       s2 = ifft(fftshift(sc2));                       % Return to physical space x'E'jh%  
       s1 = ifft(fftshift(sc1)); rh:s 7  
    end 2]of SdM  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 8{}Pj  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); fWtb mUq  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ?/`C~e<J  
       P1=[P1 p1/p10]; p`E|SNt/W  
       P2=[P2 p2/p10]; J[j/aDdP  
       P3=[P3 p3/p10]; ~6@c]:  
       P=[P p*p]; p^pQZ6-  
    end EuKrYY]g  
    figure(1) #hy5c,}>  
    plot(P,P1, P,P2, P,P3); TnvHO_P,  
    _/QKWk&j  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~