切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8727阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序  JYI,N  
    y%cP1y)  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Z"xvh81P  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of I^-Sb=j?Z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear UcHJR"M~c  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 rH Lm\3  
    6P l<'3&  
    %fid=fopen('e21.dat','w'); ~Fcm[eoC  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Ty?cC**  
    M1 =3000;              % Total number of space steps N#_H6TfMG  
    J =100;                % Steps between output of space z43M] P<  
    T =10;                  % length of time windows:T*T0 eu-*?]&Di  
    T0=0.1;                 % input pulse width k1~&x$G  
    MN1=0;                 % initial value for the space output location 'rkdZ=x{  
    dt = T/N;                      % time step CY5Z{qiX  
    n = [-N/2:1:N/2-1]';           % Index IHac:=*Q  
    t = n.*dt;   ""G'rN_=Bi  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 -uG +BraI  
    u20=u10.*0.0;                  % input to waveguide 2 6<QQ@5_  
    u1=u10; u2=u20;                 ?);v`]  
    U1 = u1;   FDs>m #e  
    U2 = u2;                       % Compute initial condition; save it in U $Ds2>G4c  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. j</: WRA`]  
    w=2*pi*n./T; r q].UCj  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T U%QI a TN*  
    L=4;                           % length of evoluation to compare with S. Trillo's paper X&`t{Id?6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 A?P_DA  
    for m1 = 1:1:M1                                    % Start space evolution f}P3O3Yv&  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS vpr.Hn  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; +I|vzz`ZVr  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform gR;i(81U  
       ca2 = fftshift(fft(u2)); wlqksG[B  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation tS=(}2Q  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   FTUv IbT  
       u2 = ifft(fftshift(c2));                        % Return to physical space db7B^|Di  
       u1 = ifft(fftshift(c1)); }&J q}j  
    if rem(m1,J) == 0                                 % Save output every J steps. ~B?y{  
        U1 = [U1 u1];                                  % put solutions in U array ^hM4j{|&M  
        U2=[U2 u2]; 7R\<inCQ  
        MN1=[MN1 m1]; $%#!bV  
        z1=dz*MN1';                                    % output location fIU#M]Xx  
      end aX'*pK/-  
    end uy$e?{Jf  
    hg=abs(U1').*abs(U1');                             % for data write to excel p_%Rt"!  
    ha=[z1 hg];                                        % for data write to excel e*NnVys  
    t1=[0 t']; ?CPahU  
    hh=[t1' ha'];                                      % for data write to excel file }19\.z&J  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format iqWQ!r^  
    figure(1) ]N?kG`[  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?Z/V~,  
    figure(2) hz@bW2S.  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn !Wnb|=j  
    vA8nvoi  
    非线性超快脉冲耦合的数值方法的Matlab程序 OQJ6e:BGt  
    %IWPM"  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   2c*GuF9(0  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |@d\S[~^G  
    lt8|9"9<  
    .aQ \jA  
    8{sGNCvU  
    %  This Matlab script file solves the nonlinear Schrodinger equations t'ql[  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of EaN6^S=  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 83#mB:^R  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4H&+dR I"  
    ?6WY:Zec@  
    C=1;                           [{,1=AB  
    M1=120,                       % integer for amplitude l]8uk^E  
    M3=5000;                      % integer for length of coupler T_4/C2  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) wnC81$1l~  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. *$g-:ILRuZ  
    T =40;                        % length of time:T*T0. 4^:=xL  
    dt = T/N;                     % time step C~/a-  
    n = [-N/2:1:N/2-1]';          % Index wFZP,fQ9l  
    t = n.*dt;   <RL]  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Qvhl4-XjZa  
    w=2*pi*n./T; Ysv" 6b}  
    g1=-i*ww./2; 3[*}4}k9  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; /j.9$H'y  
    g3=-i*ww./2; 7qS)c}Q\  
    P1=0; G4"F+%.  
    P2=0; |yPu!pfl  
    P3=1; sfl<qD+?  
    P=0; N;`n@9BF  
    for m1=1:M1                 IH+|}z4N?>  
    p=0.032*m1;                %input amplitude w``U=sfmV  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ]D\D~!R  
    s1=s10; A.w.rVDD  
    s20=0.*s10;                %input in waveguide 2 SE*g;Cvg1  
    s30=0.*s10;                %input in waveguide 3 u>vL/nI  
    s2=s20; o }m3y  
    s3=s30; l.M0`Cn-%  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   4o5t#qP5$S  
    %energy in waveguide 1 CU!Dhm/U  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   El8,,E  
    %energy in waveguide 2 1?l1:}^L  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3ckclO\|>  
    %energy in waveguide 3 KMax$  
    for m3 = 1:1:M3                                    % Start space evolution \s\?l(ooq"  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ;!Fn1|)  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5|)W.*Q  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =Dj#gV  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform %8v\FS  
       sca2 = fftshift(fft(s2)); 6_B]MN!(  
       sca3 = fftshift(fft(s3)); $%f&a3#  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   2&cT~ZX&'  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); '~ 47)fN  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); j1<Yg,_.p  
       s3 = ifft(fftshift(sc3)); wC'Szni  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ) )Za&S*<  
       s1 = ifft(fftshift(sc1)); #AY&BWS$  
    end {P-):  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); /yZcDK4  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~"A0Rs=  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &H+xzN  
       P1=[P1 p1/p10]; 8eRLy/`gd  
       P2=[P2 p2/p10]; |w3M7;~eF  
       P3=[P3 p3/p10]; VIbq:U  
       P=[P p*p]; [V`r^  
    end K (|}dl:  
    figure(1) f6p/5]=J26  
    plot(P,P1, P,P2, P,P3); yf,z$CR  
    +ZX{>:vo   
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~