切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8627阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 )Dk0V!%N  
    0j a  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of b*'=W"%\  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of _V_8p)%  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5UrXVdP  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fG8}=xH_&  
    4pfix1F g  
    %fid=fopen('e21.dat','w'); 5CY@R  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) X%4uShM  
    M1 =3000;              % Total number of space steps c:?#zX  
    J =100;                % Steps between output of space IS0HV$OI  
    T =10;                  % length of time windows:T*T0 @n~>j&Kp  
    T0=0.1;                 % input pulse width wZ]BY;  
    MN1=0;                 % initial value for the space output location Oi kU$~|  
    dt = T/N;                      % time step L#7)X5a__  
    n = [-N/2:1:N/2-1]';           % Index Ww'TCWk@  
    t = n.*dt;   V 9QvQA r  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 eZR8<Z %  
    u20=u10.*0.0;                  % input to waveguide 2 )MD*)O  
    u1=u10; u2=u20;                 ctc`^#q  
    U1 = u1;   E1l\~%A  
    U2 = u2;                       % Compute initial condition; save it in U DK@w^ZW6JA  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. m]-v IUpb  
    w=2*pi*n./T; ;G4HMtL  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T gq/ePSa  
    L=4;                           % length of evoluation to compare with S. Trillo's paper AjL?Qh4  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 aiR|.opIb  
    for m1 = 1:1:M1                                    % Start space evolution r7Q:l ?F2  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS o/  x5  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; A<YZBR_  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform h87L8qh9  
       ca2 = fftshift(fft(u2)); Zeme`/aBb  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation l# !@{ <  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   {x&jh|f`g  
       u2 = ifft(fftshift(c2));                        % Return to physical space !dbA (  
       u1 = ifft(fftshift(c1)); {0)WS}&  
    if rem(m1,J) == 0                                 % Save output every J steps. qa0JQ_?o]  
        U1 = [U1 u1];                                  % put solutions in U array HjUw[Yz+6  
        U2=[U2 u2]; j;AzkReb  
        MN1=[MN1 m1]; <PfPh~  
        z1=dz*MN1';                                    % output location nIT^'  
      end FQ9csUjpB  
    end e&H<lT  
    hg=abs(U1').*abs(U1');                             % for data write to excel -;@5Ua1uf  
    ha=[z1 hg];                                        % for data write to excel XY+aunLf  
    t1=[0 t']; N}l]Ilm$34  
    hh=[t1' ha'];                                      % for data write to excel file xPfnyAo?%z  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format +3o)L?:g  
    figure(1) St3(1mApl  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn *(\;}JF-  
    figure(2) . ~A"Wyu\  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn *nsnX/e(-  
    ZB^4(F')H  
    非线性超快脉冲耦合的数值方法的Matlab程序 wWOT*R_  
    n7,6a  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ~\)&{ '  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u6qi  
    uu@'02G8  
    (;2J(GZ:$U  
    soqNzdTB2  
    %  This Matlab script file solves the nonlinear Schrodinger equations T24#gF~  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 2;?wN`}5g=  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear WW\)B-}T  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $p6Xa;j$9  
    X,!OWz:[  
    C=1;                           H8t{ >C)]  
    M1=120,                       % integer for amplitude  Sj{rvW  
    M3=5000;                      % integer for length of coupler vn%U;}  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) a5U2[Ko80  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. U70@}5!  
    T =40;                        % length of time:T*T0. [>J~M!yu:r  
    dt = T/N;                     % time step bhm~Ii  
    n = [-N/2:1:N/2-1]';          % Index ,Y\4xg*`  
    t = n.*dt;   6B;_uIq5  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. j=jrzG+`  
    w=2*pi*n./T; B> " r-O  
    g1=-i*ww./2; E-U;8cOMv  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; dW^_tzfF7  
    g3=-i*ww./2; !DX/^b  
    P1=0; c7nk~K[6  
    P2=0; fkv{\zN  
    P3=1; Lq $4.l[j  
    P=0; hA,rSq  
    for m1=1:M1                 SE}RP3dF!  
    p=0.032*m1;                %input amplitude \I,Dje/:w  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ^SSOh#  
    s1=s10; k89gJ5B$  
    s20=0.*s10;                %input in waveguide 2 p4t!T=o/  
    s30=0.*s10;                %input in waveguide 3 hzPB~obC  
    s2=s20; K<7T}XzU$  
    s3=s30; VF!kr1n!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Lc:SqF  
    %energy in waveguide 1 %qjyk=z+Z  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   $:gSc &mx  
    %energy in waveguide 2 sv{0XVn+^  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   :Ye#NPOI  
    %energy in waveguide 3 io?{ew  
    for m3 = 1:1:M3                                    % Start space evolution *sIG&  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS \PMKmJ X0O  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Y %D*O  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; v^18o$=K",  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform }Keon.N?   
       sca2 = fftshift(fft(s2)); }Ka.bZS  
       sca3 = fftshift(fft(s3)); x< y[na  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   /2\= sTd  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); KjfKo;T  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); pQMpkAX  
       s3 = ifft(fftshift(sc3)); 10I`AjF0  
       s2 = ifft(fftshift(sc2));                       % Return to physical space OTHd1PSOu  
       s1 = ifft(fftshift(sc1)); >5vl{{,$K  
    end yJ`1},^  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); k$x 'v#  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); "T1#*"{j  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); N9h@1'>  
       P1=[P1 p1/p10]; a~eLkWnh<k  
       P2=[P2 p2/p10]; Qbt>}?-  
       P3=[P3 p3/p10]; ,bwopRcA  
       P=[P p*p]; "`gZ y)E  
    end )%@WoBRj  
    figure(1) |VR5Q(d  
    plot(P,P1, P,P2, P,P3); GGQ(|?w  
    ^]!1'xg  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~