切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9259阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &D, Iwq  
    wQ_4_W  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of #M,&g{  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of N5Js.j>z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /K=OsMl2b8  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x/|W;8g4  
    ? SFBUX(p  
    %fid=fopen('e21.dat','w'); 6h 0qtXn-  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) {)YbksrJ{  
    M1 =3000;              % Total number of space steps uLhGp@Dx  
    J =100;                % Steps between output of space ;pnF%co9  
    T =10;                  % length of time windows:T*T0 Z,&O8Jelf  
    T0=0.1;                 % input pulse width iw@rW5%'~  
    MN1=0;                 % initial value for the space output location qeZG/\,  
    dt = T/N;                      % time step |v&)O)Jg  
    n = [-N/2:1:N/2-1]';           % Index 7?P'f3)fG  
    t = n.*dt;   |IgR1kp+.  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 l.Q  
    u20=u10.*0.0;                  % input to waveguide 2 i7x&[b  
    u1=u10; u2=u20;                 n,N->t$i  
    U1 = u1;   v{u3[c   
    U2 = u2;                       % Compute initial condition; save it in U fSo8O  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ]OAU&t{  
    w=2*pi*n./T; \CB^9-V3  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _4{0He`q  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 'gwh:  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 u 3WU0Z`  
    for m1 = 1:1:M1                                    % Start space evolution ^<;W+dWdU  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS )nUdU = m  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; r!r08y f  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ~ua(Qm  
       ca2 = fftshift(fft(u2)); }$ y.qqG  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation OC! {8MR  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   pdu1 kL  
       u2 = ifft(fftshift(c2));                        % Return to physical space $LP(\T([  
       u1 = ifft(fftshift(c1));  2&6D`{"P  
    if rem(m1,J) == 0                                 % Save output every J steps. >A Ep\ *  
        U1 = [U1 u1];                                  % put solutions in U array K\xz|Gq  
        U2=[U2 u2]; w,%"+ tY_  
        MN1=[MN1 m1]; *5'8jC"2g  
        z1=dz*MN1';                                    % output location [(X~C*VdxM  
      end Z+xkN  
    end 5Tsz|k  
    hg=abs(U1').*abs(U1');                             % for data write to excel y?s z&*:  
    ha=[z1 hg];                                        % for data write to excel pa-*&p  
    t1=[0 t']; Xo PJ?6 3  
    hh=[t1' ha'];                                      % for data write to excel file }8'_M/u\  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format j{C~wy!J  
    figure(1) #2=l\y-#  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 757&bH|a  
    figure(2) 8mX!mYO3c  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn |d0X1(  
    01(U)F\  
    非线性超快脉冲耦合的数值方法的Matlab程序 p$,7qGST  
    ;~3;CijJ8  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   k>i88^kPV  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 pH~\~  
    {i>AQ+z61f  
    M$x,B#b  
    (Mv~0ShakO  
    %  This Matlab script file solves the nonlinear Schrodinger equations Dj/Hz\  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of L15)+^4n  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear `E~"T0RX  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1^_W[+<S/  
    Z~:)hwF  
    C=1;                           lDS y$  
    M1=120,                       % integer for amplitude )U/Kz1U  
    M3=5000;                      % integer for length of coupler XX=OyDLqP  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) :6n4i$  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05.  Wvb ~j  
    T =40;                        % length of time:T*T0. 'a(y]QG  
    dt = T/N;                     % time step =CzGI|pb  
    n = [-N/2:1:N/2-1]';          % Index +9/K|SB{ $  
    t = n.*dt;   r1~W(r.x  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 0hY3vBQ!  
    w=2*pi*n./T; (N/u@M  
    g1=-i*ww./2; 4m~y%> &  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; O%%Q./oh  
    g3=-i*ww./2; 65Z}Hf  
    P1=0; +149 o2  
    P2=0; ^*jwe^  
    P3=1; hy/ g*>  
    P=0; y,?=,x}o#  
    for m1=1:M1                 HOi~eX1d  
    p=0.032*m1;                %input amplitude p,=IL_  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 =2q#- ,t  
    s1=s10; Up Z 9g"  
    s20=0.*s10;                %input in waveguide 2 4EYD5  
    s30=0.*s10;                %input in waveguide 3 auI`'O`/  
    s2=s20; E"}%$=yK  
    s3=s30; !S~)U{SSK  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   7,)E1dx -V  
    %energy in waveguide 1 A":=-$)  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   OcB&6!1u  
    %energy in waveguide 2 G!%m~+",  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   *mV?_4!,f7  
    %energy in waveguide 3 Z71_D  
    for m3 = 1:1:M3                                    % Start space evolution (YJ2- X~  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 23|JgKuA  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; f0eQq;D$K  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; hq4&<Zr(  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 5]mH.{$x$?  
       sca2 = fftshift(fft(s2)); 1G A.c:  
       sca3 = fftshift(fft(s3));  /$93#$  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   wmpQF<  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); uj;iE 9  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); HFB>0<$  
       s3 = ifft(fftshift(sc3)); y%|Ez  
       s2 = ifft(fftshift(sc2));                       % Return to physical space L@RnLaoQ  
       s1 = ifft(fftshift(sc1)); C;ab-gh  
    end O0y0'P-rJq  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ;{8 X+H  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); RrLj5Jq  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Dj= {%  
       P1=[P1 p1/p10]; 3 85qQppz  
       P2=[P2 p2/p10]; [#wt3<d`)  
       P3=[P3 p3/p10]; b73}|4v  
       P=[P p*p]; W +Piqf*  
    end C!_=L?QT^  
    figure(1) c}v8j2{  
    plot(P,P1, P,P2, P,P3); [-`s`g-  
    ^?|4<Rm  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~