计算脉冲在非线性耦合器中演化的Matlab 程序 ;b-XWK=
ER,1(1]N
% This Matlab script file solves the coupled nonlinear Schrodinger equations of oudxm[/U
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )GHq/:1W
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear U&O:
_>~
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )1X#*mCxk
E>l~-PaZY
%fid=fopen('e21.dat','w'); 98^V4maR:
N = 128; % Number of Fourier modes (Time domain sampling points) 13taFVdU
M1 =3000; % Total number of space steps 03C0L&
J =100; % Steps between output of space a+n0|CvF
T =10; % length of time windows:T*T0 m *JaXa
T0=0.1; % input pulse width yPq'( PV
MN1=0; % initial value for the space output location GSH>7!.#
dt = T/N; % time step 5oAK8I
n = [-N/2:1:N/2-1]'; % Index p5G?N(l
t = n.*dt; Jv^h\~*jH
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 ;^Dpl'v%\
u20=u10.*0.0; % input to waveguide 2 wmTb97o
u1=u10; u2=u20; P&f7@MOV.P
U1 = u1; h$2</J"
U2 = u2; % Compute initial condition; save it in U )ut&@]
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. %7|9sQ:
w=2*pi*n./T; &Xf}8^T<V
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T YPxM<Gfa8
L=4; % length of evoluation to compare with S. Trillo's paper .mR8q+I6
dz=L/M1; % space step, make sure nonlinear<0.05 {;2PL^i
for m1 = 1:1:M1 % Start space evolution YOcO4
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS a|X a3E
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; lnjXDoVb<
ca1 = fftshift(fft(u1)); % Take Fourier transform v/ _
ca2 = fftshift(fft(u2)); wRVUu)
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
$ ` ""
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift vX.VfY
u2 = ifft(fftshift(c2)); % Return to physical space
+U3DG$
u1 = ifft(fftshift(c1)); }~L.qG
if rem(m1,J) == 0 % Save output every J steps. Abc)i7!.,.
U1 = [U1 u1]; % put solutions in U array ,y#Kv|R
U2=[U2 u2]; > ;*b|Ik
MN1=[MN1 m1]; HAa;hb
z1=dz*MN1'; % output location A6thXs2
end c24dSNJg,
end \2h!aRWR
hg=abs(U1').*abs(U1'); % for data write to excel x<ZJb
ha=[z1 hg]; % for data write to excel DW[N|-L
t1=[0 t']; #"G]ke1l$
hh=[t1' ha']; % for data write to excel file NPp;78O0[
%dlmwrite('aa',hh,'\t'); % save data in the excel format .:F%_dS D
figure(1) #AJM6* G9
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn t7aefV&_,
figure(2) tVN
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn ) AvN\sC
s*. hl.k.
非线性超快脉冲耦合的数值方法的Matlab程序 8)_XJ"9)G
?82xdpg
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 "~|6tQLc
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |IzPgC
rD3v$B
Hquc
o
8.O8No:'&
% This Matlab script file solves the nonlinear Schrodinger equations K &N
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 3`DQo%<
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ,s"^kFl
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s;ls qQk
H&