切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8708阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 (zBQ^97]  
    eW0=m:6  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of R5"p7>  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +b+sQ<w?.  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Qx;A; n!lw  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jvQ"cs$.  
    :!$z1u8R  
    %fid=fopen('e21.dat','w'); PS6`o  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) J~q+G  
    M1 =3000;              % Total number of space steps 919g5f`  
    J =100;                % Steps between output of space l'QR2r7&.  
    T =10;                  % length of time windows:T*T0 F6p1 VFs  
    T0=0.1;                 % input pulse width <Z' hZ  
    MN1=0;                 % initial value for the space output location p( *3U[1  
    dt = T/N;                      % time step t5h_Q92N  
    n = [-N/2:1:N/2-1]';           % Index 1!3kAcBP  
    t = n.*dt;   W1 Qc1T8  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 F/sBr7I  
    u20=u10.*0.0;                  % input to waveguide 2 Gq/6{eRo\  
    u1=u10; u2=u20;                 T;@>O^  
    U1 = u1;   Wi^rnr'S s  
    U2 = u2;                       % Compute initial condition; save it in U s~ A8/YoU}  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. |@.<} /  
    w=2*pi*n./T; s.'\&B[  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T aUK4{F ;  
    L=4;                           % length of evoluation to compare with S. Trillo's paper e6lOmgHn5  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 zF&UdS3  
    for m1 = 1:1:M1                                    % Start space evolution *GP_ut%  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS RFY!o<   
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; YS~t d+*  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform )H)Udhz  
       ca2 = fftshift(fft(u2)); 'V#ew\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ]0 RXo3  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   RWCS u$  
       u2 = ifft(fftshift(c2));                        % Return to physical space RH]>>tJ^e  
       u1 = ifft(fftshift(c1)); ~qxXou,J  
    if rem(m1,J) == 0                                 % Save output every J steps. ?4e6w  
        U1 = [U1 u1];                                  % put solutions in U array l-}5@D[  
        U2=[U2 u2]; z\>X[yNpA  
        MN1=[MN1 m1]; $?AA"Nz  
        z1=dz*MN1';                                    % output location @T1+b"TC  
      end ]31XX=  
    end 9ox|.68q  
    hg=abs(U1').*abs(U1');                             % for data write to excel 0WE1}.J<  
    ha=[z1 hg];                                        % for data write to excel e8mbEC(AK  
    t1=[0 t']; uhB!k-ir  
    hh=[t1' ha'];                                      % for data write to excel file FJ8@b  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format @jSbMI  
    figure(1) d`uO7jlm  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn PMhhPw]  
    figure(2) ++DQS9b{  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn yr2L  
    puN=OX}C  
    非线性超快脉冲耦合的数值方法的Matlab程序 u# WTh%/  
    T% 13 '  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ,G|aLBn  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k_>Fw>Y  
    6\fMzm  
    kN |5 J  
    ,GkW. vEU  
    %  This Matlab script file solves the nonlinear Schrodinger equations ikN!ut  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 68<Z\WP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rn:zKTyhw  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \UqS -j|  
    4:&qT Y)H  
    C=1;                           HJaw\zbL  
    M1=120,                       % integer for amplitude a`b zFu{  
    M3=5000;                      % integer for length of coupler aT:AxYn8  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) }?]yxa~  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. uO@3vY',n  
    T =40;                        % length of time:T*T0. hr4ye`c j  
    dt = T/N;                     % time step x2;i< |  
    n = [-N/2:1:N/2-1]';          % Index >q@Sd  
    t = n.*dt;   ?koxt4 4  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. {&=qM!2e  
    w=2*pi*n./T; bLEATT[  
    g1=-i*ww./2; 2k}-25xxL  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 51G=RYay9  
    g3=-i*ww./2; fA_%8CjI  
    P1=0; KBw9(  
    P2=0; R G0S  
    P3=1; }PQSCl^I  
    P=0; yvd `nV  
    for m1=1:M1                 QhX C>)PW  
    p=0.032*m1;                %input amplitude daB l%a=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 %7v@n+Q  
    s1=s10; 6L,lq;  
    s20=0.*s10;                %input in waveguide 2 9Ue7 ~"=  
    s30=0.*s10;                %input in waveguide 3 l^ 0_> R  
    s2=s20; yw.~trF&%  
    s3=s30; 3p3WDL7  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   O5qW*r'  
    %energy in waveguide 1 2zKo  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   TD{=L*{+  
    %energy in waveguide 2 r%F(?gKXkd  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   n{^<&GWox  
    %energy in waveguide 3 f(6UL31  
    for m3 = 1:1:M3                                    % Start space evolution O}MZ-/z=o~  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS @q+cm JKv  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; kOAY@a  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; d]CviQUq  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform z$c&=Q  
       sca2 = fftshift(fft(s2)); ,rZn`9  
       sca3 = fftshift(fft(s3)); L$lo~7<]  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ZD)0P=%  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); }KA-t}8  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); W(2+z5z  
       s3 = ifft(fftshift(sc3)); lmhbF  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #d Z/UM(u  
       s1 = ifft(fftshift(sc1)); VFl 1 f  
    end %6A-OF  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Y9i9Uc.]  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ,@Fgr(?'`>  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); E kBae=  
       P1=[P1 p1/p10]; `RL,ZoYuu  
       P2=[P2 p2/p10]; ~v2V`lxh  
       P3=[P3 p3/p10]; ?ds f@\  
       P=[P p*p]; =[P%_v``  
    end Kc%n(,+%"  
    figure(1) =w ^TcV  
    plot(P,P1, P,P2, P,P3); D3S+LV  
    z;dcAdz9  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~