切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9302阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ZliJc7lss  
    CBVL/pxy  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ZSUbPz  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ;4!,19AT  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3Aqw )B'"_  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d<@SRHP(  
    REj<2Lo  
    %fid=fopen('e21.dat','w'); lO>9Q]S<  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) DMcH, _(  
    M1 =3000;              % Total number of space steps u@{z xYn  
    J =100;                % Steps between output of space FD+y?UF  
    T =10;                  % length of time windows:T*T0 $ncJc  
    T0=0.1;                 % input pulse width [2 yxTK  
    MN1=0;                 % initial value for the space output location NhgzU+)+  
    dt = T/N;                      % time step K!\$MBI  
    n = [-N/2:1:N/2-1]';           % Index H E'1Wa0r  
    t = n.*dt;   xX5EhVR   
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 3R=R k  
    u20=u10.*0.0;                  % input to waveguide 2 ?}tWI7KI  
    u1=u10; u2=u20;                 W|yF jE&dr  
    U1 = u1;   ALOS>Bi&  
    U2 = u2;                       % Compute initial condition; save it in U 'Wv`^{y <^  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 6 #vc"5@M  
    w=2*pi*n./T; m,"N 4a@  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T V(5=-8k  
    L=4;                           % length of evoluation to compare with S. Trillo's paper b;K]; o-/f  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 dHUcu@,  
    for m1 = 1:1:M1                                    % Start space evolution cj5; XK  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS D J:N  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; %!vgAH4  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform JR_s-&GaM  
       ca2 = fftshift(fft(u2)); @_L:W1[  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Ny6 daf3f  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   :1 Y*&s  
       u2 = ifft(fftshift(c2));                        % Return to physical space g:yUZ;U  
       u1 = ifft(fftshift(c1)); 3%NbT  
    if rem(m1,J) == 0                                 % Save output every J steps. M`=bJO:  
        U1 = [U1 u1];                                  % put solutions in U array O9_S"\8]@  
        U2=[U2 u2]; dZ"B6L!^(  
        MN1=[MN1 m1]; 'cpO"d?{  
        z1=dz*MN1';                                    % output location p[&6hXTd  
      end 9wB}EDZ  
    end S Y7'S#  
    hg=abs(U1').*abs(U1');                             % for data write to excel XoZw8cY  
    ha=[z1 hg];                                        % for data write to excel 2=[deQs  
    t1=[0 t']; OZ9ud ]@\  
    hh=[t1' ha'];                                      % for data write to excel file J:  T  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format dPtQ Sa  
    figure(1) ee7{5  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn :-.K.Ch|:  
    figure(2) CB1AL]|3  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn DsI{*#  
    i=ztWKwKf  
    非线性超快脉冲耦合的数值方法的Matlab程序 r'GD  
    5IsRIz[`TK  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   IdzrQP  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B\ITXmd   
    `n{yls7.  
    MUeS8:q-N  
    !K~L&.\T  
    %  This Matlab script file solves the nonlinear Schrodinger equations Og8'K=O#  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of aglW\L T^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 4YmN3i  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0nDlqy6b1b  
    +=qazE<:0  
    C=1;                           ;Bs^+R7  
    M1=120,                       % integer for amplitude F:P&hK  
    M3=5000;                      % integer for length of coupler Bv)4YU  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) } XJZw|n  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 5V($|3PI  
    T =40;                        % length of time:T*T0. dl%KD8  
    dt = T/N;                     % time step }_A#O|dxO  
    n = [-N/2:1:N/2-1]';          % Index k\~A\UIYo  
    t = n.*dt;   &M6cCT]&M  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. )iiwxpdw  
    w=2*pi*n./T; 4 <&8`Q  
    g1=-i*ww./2; `B4Px|3  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; G|"`kAa  
    g3=-i*ww./2; c/g"/ICs  
    P1=0; cHG>iW9C  
    P2=0; @6~OQN  
    P3=1; ~Xf&<&5d T  
    P=0; !N:: 1c@C  
    for m1=1:M1                 u{@b_7 5Y  
    p=0.032*m1;                %input amplitude ~H0WHqcy  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 G#~6a%VW  
    s1=s10; o3mxtE]  
    s20=0.*s10;                %input in waveguide 2 luEP5l2&  
    s30=0.*s10;                %input in waveguide 3 KT5"/fv  
    s2=s20;  9kkYD  
    s3=s30; 09RJc3XE9  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ~ 3HI;  
    %energy in waveguide 1 sT^^#$ub  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   wJb\Q  
    %energy in waveguide 2 1HBdIWhHv.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   4/rd r80  
    %energy in waveguide 3 #&hu-gMV  
    for m3 = 1:1:M3                                    % Start space evolution m9Z3q ;  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS P]pVYX# m  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; gXR1nnK  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; j})6O!L.  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform `B^ HW8  
       sca2 = fftshift(fft(s2)); 54A ndyeA  
       sca3 = fftshift(fft(s3)); Ff\U]g  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~IB~>5U!  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); p:,(r{*?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); f"0{e9O]2  
       s3 = ifft(fftshift(sc3)); -6+&?f  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ^PCshb##  
       s1 = ifft(fftshift(sc1)); ye9-%~sjX  
    end JQ*CF(9  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 9tnW:Nw~  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Cu%|}xq  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); CVi3nS5Yl  
       P1=[P1 p1/p10]; @nJ#kd[  
       P2=[P2 p2/p10]; RyGce' q  
       P3=[P3 p3/p10]; XZaei\rUn)  
       P=[P p*p]; 27;t,Oq}  
    end !50Fue^JM  
    figure(1) S> f8j?n  
    plot(P,P1, P,P2, P,P3); C#5z!z/:%  
    ~6nq$(#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~