计算脉冲在非线性耦合器中演化的Matlab 程序 Q{|_"sfJ !bIE%cq % This Matlab script file solves the coupled nonlinear Schrodinger equations of
704_ehrlE % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
d@%PTSX % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
cT5BBR % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
NTo[di\_ /_X`i[ %fid=fopen('e21.dat','w');
bcgXpP N = 128; % Number of Fourier modes (Time domain sampling points)
Zi?:< H} M1 =3000; % Total number of space steps
,8.$!Zia J =100; % Steps between output of space
"TI>_~ T =10; % length of time windows:T*T0
O\SH;y,N T0=0.1; % input pulse width
ix hF,F MN1=0; % initial value for the space output location
Y P,>vzW dt = T/N; % time step
hSz_e n = [-N/2:1:N/2-1]'; % Index
T>pyYF1Q t = n.*dt;
2bOl`{x u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
a!EW[|[Q u20=u10.*0.0; % input to waveguide 2
~.>8ww u1=u10; u2=u20;
yl&s!I U1 = u1;
j#Qnu0D U2 = u2; % Compute initial condition; save it in U
;|`<B7xf ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
~s
yWORiXm w=2*pi*n./T;
S5kD|kJ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
S17;;w0 L=4; % length of evoluation to compare with S. Trillo's paper
~Ajst!Y7= dz=L/M1; % space step, make sure nonlinear<0.05
Zoy)2E{ for m1 = 1:1:M1 % Start space evolution
+z[+kir u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
cm0$v8 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
&2Ef:RZF ca1 = fftshift(fft(u1)); % Take Fourier transform
yD Jy'Z_F{ ca2 = fftshift(fft(u2));
D|amKW7 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
v>HOz\F c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
I$ R1#s u2 = ifft(fftshift(c2)); % Return to physical space
.4ZOm'ko{ u1 = ifft(fftshift(c1));
(d/!M
n6L if rem(m1,J) == 0 % Save output every J steps.
/M JI^\CA U1 = [U1 u1]; % put solutions in U array
*\@RBJGF U2=[U2 u2];
ftKL#9,s( MN1=[MN1 m1];
Dlpmm2 z1=dz*MN1'; % output location
yh/JHo; end
^ir)z@P?V end
sH>`eqY hg=abs(U1').*abs(U1'); % for data write to excel
=~"X/>' ha=[z1 hg]; % for data write to excel
F2\&rC4v t1=[0 t'];
:T|9;2 hh=[t1' ha']; % for data write to excel file
6{{<+
o %dlmwrite('aa',hh,'\t'); % save data in the excel format
OwEu S#- figure(1)
+hKs waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
,
@!X!L figure(2)
I:HrBhI)wP waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
fs:yx'mxV #
E_S.. 非线性超快脉冲耦合的数值方法的Matlab程序 6O,:I =@pD>h/~ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
xXc>YTK' Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
&CcW(- [V>s]c<4`o m)LI|
v )t@9!V % This Matlab script file solves the nonlinear Schrodinger equations
*u:,@io7'G % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
G"m?2$^-A % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
OR*JWW[] % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
d3|/&gDBK Te[v+jgLY, C=1;
:8]8[ M1=120, % integer for amplitude
8{QCW{K M3=5000; % integer for length of coupler
-8Hc M\b N = 512; % Number of Fourier modes (Time domain sampling points)
`U b*rOMu dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
I`*5z;Q!%@ T =40; % length of time:T*T0.
4'=Q:o*w` dt = T/N; % time step
<i4]qO(0u n = [-N/2:1:N/2-1]'; % Index
Kc95yt t = n.*dt;
6PYm?i=p? ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
G0|}s&$yL w=2*pi*n./T;
FZO&r60$E g1=-i*ww./2;
6T|Z4f| g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
g1|Pyt{ g3=-i*ww./2;
^N[ Cip}8 P1=0;
;ne`ppz0 P2=0;
Pc =ei P3=1;
|(ab0b # P=0;
4sntSlz)~k for m1=1:M1
!'~L dl p=0.032*m1; %input amplitude
ZG2EOy s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
CQNMCYjg(R s1=s10;
ju'aUzn s20=0.*s10; %input in waveguide 2
2J{vfF s30=0.*s10; %input in waveguide 3
j~1K(=Ng s2=s20;
-3i(N.)<; s3=s30;
l`N4P p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
$ZGup"z) %energy in waveguide 1
MZ&.{SY7 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
tM;cvc`/ %energy in waveguide 2
pi~5}bF!a p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
l"A/6r!Dp %energy in waveguide 3
Wh..QVv for m3 = 1:1:M3 % Start space evolution
`,xO~_
e> s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
qqe"hruFJ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
?gUraSFU s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
,*U-o}{8C? sca1 = fftshift(fft(s1)); % Take Fourier transform
;akW i] sca2 = fftshift(fft(s2));
S*=^I2; sca3 = fftshift(fft(s3));
l^ay*H sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
O|+ZEBP sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
>qB`03> sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
$x`HmL3Sb s3 = ifft(fftshift(sc3));
i+mU(/l2{ s2 = ifft(fftshift(sc2)); % Return to physical space
JZ`SV}\` s1 = ifft(fftshift(sc1));
sZCK? end
>!@D^3PPA p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
2w3LK2`ZL p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
s|H7;.3gp p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
"i(f+N,) P1=[P1 p1/p10];
gk 6R# P2=[P2 p2/p10];
Zs79,*o+0M P3=[P3 p3/p10];
XJPIAN~l P=[P p*p];
XWAIW=. end
|Vqm1.1/Zv figure(1)
uP%VL}%0 plot(P,P1, P,P2, P,P3);
.z_nW1id &! h~UZ 转自:
http://blog.163.com/opto_wang/