计算脉冲在非线性耦合器中演化的Matlab 程序 J9;fqQCt 'y>Y */ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
'aV'Am+: % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
H}_R `S % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
cGm?F,/` % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
xR$T/] / 569p/? %fid=fopen('e21.dat','w');
sMVk]Mb N = 128; % Number of Fourier modes (Time domain sampling points)
OqRRf M1 =3000; % Total number of space steps
-Op^3WWyY J =100; % Steps between output of space
+-),E. T =10; % length of time windows:T*T0
&N= vs T0=0.1; % input pulse width
tBJ4lb MN1=0; % initial value for the space output location
F#L1~\7 dt = T/N; % time step
o(DG 3qk n = [-N/2:1:N/2-1]'; % Index
,)dlL tUm t = n.*dt;
#Vmf
6 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
x%k@&d;z u20=u10.*0.0; % input to waveguide 2
NNr6~m)3v u1=u10; u2=u20;
pl[@U<8aw U1 = u1;
6&;GC<].(y U2 = u2; % Compute initial condition; save it in U
S,5>/'fy0 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
rZ n@i w=2*pi*n./T;
8oI|Z= g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
JvvN>bg L=4; % length of evoluation to compare with S. Trillo's paper
S[7^#O.) dz=L/M1; % space step, make sure nonlinear<0.05
SWhzcqp for m1 = 1:1:M1 % Start space evolution
$kN=45SR u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
<[
2?~s u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
MCEHv}W ca1 = fftshift(fft(u1)); % Take Fourier transform
5oCg&aT ca2 = fftshift(fft(u2));
}wp/,\_
> c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
aaKf4} c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
jDQ ?b\^ u2 = ifft(fftshift(c2)); % Return to physical space
KIv_
AMr u1 = ifft(fftshift(c1));
ZCZ@ZN if rem(m1,J) == 0 % Save output every J steps.
/W*Z. U1 = [U1 u1]; % put solutions in U array
k]$oir U2=[U2 u2];
z7sDaZL?_ MN1=[MN1 m1];
VJTO:}Q z1=dz*MN1'; % output location
7$g$p&,VX end
yZ[g2*1L end
^dk$6%0 hg=abs(U1').*abs(U1'); % for data write to excel
h/|p`MP\1 ha=[z1 hg]; % for data write to excel
"9c=kqkX t1=[0 t'];
573,b7Yf hh=[t1' ha']; % for data write to excel file
#|,cy,v4 %dlmwrite('aa',hh,'\t'); % save data in the excel format
=9 )k:S( figure(1)
R)*DkL! waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
N8Z z6{rp figure(2)
GrJLQO0$N waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
[|c%<|d2 6YNL4HE? 非线性超快脉冲耦合的数值方法的Matlab程序 a,S;JF)v M.s'~S7y 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
ti%RE:* Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
+e2:?d@ [(3s5)O g6lWc@]F sfr+W-7kx % This Matlab script file solves the nonlinear Schrodinger equations
8Vj'&UY % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
Kw?3joy % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
@>VVB{1@,] % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
>O24#!9XW /N_:npbJF C=1;
UsFn! !+ M1=120, % integer for amplitude
}]mxKz M3=5000; % integer for length of coupler
KfBT'6t N = 512; % Number of Fourier modes (Time domain sampling points)
s^eiym P dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
/QyKXg6)l T =40; % length of time:T*T0.
`q<W %'Tb$ dt = T/N; % time step
T#3@r0M n = [-N/2:1:N/2-1]'; % Index
xR3$sA2 t = n.*dt;
bz#]>RD ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
-c0ypz w=2*pi*n./T;
hF0,{v g1=-i*ww./2;
fM"*;LN!N g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
77)WNL/
x g3=-i*ww./2;
+Z|3[#W P1=0;
]'(D*4 P2=0;
\|{/.R P3=1;
m?<E >-bI P=0;
=8?Kn@nMN for m1=1:M1
S=mqxIo@m p=0.032*m1; %input amplitude
|0=UZK7%O s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
1\&j)3mC s1=s10;
m:?"|.] s20=0.*s10; %input in waveguide 2
kc^,V|Nbq6 s30=0.*s10; %input in waveguide 3
3)W zX s2=s20;
K$M+"#./ s3=s30;
={ms@/e/T p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
P7.bn %energy in waveguide 1
[rT.k5_ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
OA[e}Vn %energy in waveguide 2
DpgTm&}- p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
nlNk %energy in waveguide 3
.N
qXdari for m3 = 1:1:M3 % Start space evolution
vNv!fkl
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Y"MHs0O5> s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
ZKrLp8l\ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
a^p#M sca1 = fftshift(fft(s1)); % Take Fourier transform
@;bBc sca2 = fftshift(fft(s2));
A<X?1$ sca3 = fftshift(fft(s3));
22CET9iCe sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
z~ C8JY: sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
\c:$eF sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
"ntP92 8 s3 = ifft(fftshift(sc3));
c;$4}U4 s2 = ifft(fftshift(sc2)); % Return to physical space
LWF,w7v[L s1 = ifft(fftshift(sc1));
fu^W# "{ end
1g{Pe`G, p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
\x}\)m_7M< p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
2]5{Xmmo9 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
h= sNj P1=[P1 p1/p10];
E&P2E3P P2=[P2 p2/p10];
v4n< G- P3=[P3 p3/p10];
\EySKQ= P=[P p*p];
PW5]+ |# end
{rUg,y{v figure(1)
W[\6h Zv plot(P,P1, P,P2, P,P3);
VLez<Id9( pd|KIs%jl 转自:
http://blog.163.com/opto_wang/