切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9324阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 WIghP5%W  
    L_~G`Rb3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of n&fV3[m`2  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of n*1UNQp@]O  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear jDnh/k0{d  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7Av]f3Zr  
    \5Jv;gc\\  
    %fid=fopen('e21.dat','w'); Yem\`; *  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) pI`Ke"  
    M1 =3000;              % Total number of space steps oW_WW$+N  
    J =100;                % Steps between output of space *+AP}\p0F  
    T =10;                  % length of time windows:T*T0 L:<'TXsRA  
    T0=0.1;                 % input pulse width c>g%oE  
    MN1=0;                 % initial value for the space output location ".\(A f2  
    dt = T/N;                      % time step qha<.Ro  
    n = [-N/2:1:N/2-1]';           % Index 7Tbkti;  
    t = n.*dt;   D H^^$)  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 9V&LJhDQ  
    u20=u10.*0.0;                  % input to waveguide 2 RB"rx\u7K  
    u1=u10; u2=u20;                 !S:@x.n@iR  
    U1 = u1;   D4\I;M^  
    U2 = u2;                       % Compute initial condition; save it in U %c0;Bb-  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. UQFuEI<1-  
    w=2*pi*n./T; R4/@dA0  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 0TpA3K  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 2XtQ"`)  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 iCS/~[  
    for m1 = 1:1:M1                                    % Start space evolution =N c`hP  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 55,-1tWs  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 0 Yp;?p^  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform UU/|s>F  
       ca2 = fftshift(fft(u2)); ?<;<#JN  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation `9-Zg??8r  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   wOOPWwk  
       u2 = ifft(fftshift(c2));                        % Return to physical space b~gF,^w  
       u1 = ifft(fftshift(c1)); `Nn?G  
    if rem(m1,J) == 0                                 % Save output every J steps. wu')Q/v  
        U1 = [U1 u1];                                  % put solutions in U array Z ux2VepT  
        U2=[U2 u2]; s<b7/;w'  
        MN1=[MN1 m1]; #"_MY-  
        z1=dz*MN1';                                    % output location oB9m\o7$  
      end Q 1Ao65  
    end X\%3uPQ  
    hg=abs(U1').*abs(U1');                             % for data write to excel e?>suIB  
    ha=[z1 hg];                                        % for data write to excel WQx;tX  
    t1=[0 t']; H JiP:{  
    hh=[t1' ha'];                                      % for data write to excel file w.f [)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Vd4osBu{fY  
    figure(1) %*OJRL`  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn i"xDQ$0G6  
    figure(2) 7W"menw  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn bSLj-vp  
    6K}=K?3Z  
    非线性超快脉冲耦合的数值方法的Matlab程序 N3p3"4_]fy  
    &/9oi_r%r  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   K dm5O@tq  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vEGK{rMA  
    R`q!~8u  
     Dfia=1A  
    sLIP |i  
    %  This Matlab script file solves the nonlinear Schrodinger equations cmI#R1\  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of s`RJl V  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }c%y0)fL  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 aehMLl9cl  
    ".f:R9-  
    C=1;                           3G^Ed)JvE  
    M1=120,                       % integer for amplitude  t;Om9  
    M3=5000;                      % integer for length of coupler n~j[Pw  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) q;.]e#wvh  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. K8Zk{on  
    T =40;                        % length of time:T*T0. 6^;!9$G|D*  
    dt = T/N;                     % time step +`-a*U94  
    n = [-N/2:1:N/2-1]';          % Index mNoqs&UB  
    t = n.*dt;   ->=++  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. AW5g (  
    w=2*pi*n./T; b_ yXM  
    g1=-i*ww./2; +;;%Atgn  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 6/ipdi[ _  
    g3=-i*ww./2; oE1]vX  
    P1=0; KTt$Pt/.  
    P2=0; zD<9A6AB  
    P3=1; Q%Q?q)x  
    P=0; &Q>'U6"%  
    for m1=1:M1                 yXg1N N  
    p=0.032*m1;                %input amplitude rJp6d :M  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2j1v.%  
    s1=s10; ]xEE7H]\h  
    s20=0.*s10;                %input in waveguide 2 ^1=|(Z/  
    s30=0.*s10;                %input in waveguide 3 Tj5@OcA$  
    s2=s20; P1stL,  
    s3=s30; 4uAafQ`@H  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !!%[JR)cS  
    %energy in waveguide 1 IQe[ CcM  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   i0Q _f!j  
    %energy in waveguide 2 5KE%@,k k  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   O7'3}P;  
    %energy in waveguide 3 2_n*u^X:_  
    for m3 = 1:1:M3                                    % Start space evolution Z[u,1l.T  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Gj`Y2X2r  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; A5<Z&Y[  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; myOX:K*  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ^jjJM|a  
       sca2 = fftshift(fft(s2)); D*'M^k|1  
       sca3 = fftshift(fft(s3)); x9A ZS#e)[  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   O>M*mTM  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7u5\#|yL  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); zy6(S_j  
       s3 = ifft(fftshift(sc3)); 9w;J7jgOT!  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {JCz^0DV  
       s1 = ifft(fftshift(sc1)); p6*a1^lU6  
    end gzCMJ<3!D  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); "4uUI_E9F;  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); U4l*;od  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); =z1o}ga=EA  
       P1=[P1 p1/p10]; 9$V_=Bo  
       P2=[P2 p2/p10]; uf'P9MA}>  
       P3=[P3 p3/p10]; [j]J_S9jJ  
       P=[P p*p]; iz>y u[|  
    end y{Y+2}Dv/  
    figure(1) J:Y|O-S!  
    plot(P,P1, P,P2, P,P3); .4re0:V  
    \*!%YTZ~  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~