切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8743阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 y}R{A6X)  
    kzMCI)>"  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of T4F}MVK  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %e+hM $Q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear -"UK NB!  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !LVWggk1  
    pJ;J>7Gt  
    %fid=fopen('e21.dat','w'); '(7]jug  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |[)t4A"}  
    M1 =3000;              % Total number of space steps cO.U*UTmX  
    J =100;                % Steps between output of space ;@Alr?y  
    T =10;                  % length of time windows:T*T0 lc,{0$ 1<  
    T0=0.1;                 % input pulse width Kzb&aOw  
    MN1=0;                 % initial value for the space output location dw5.vXL`  
    dt = T/N;                      % time step qH: ` O%,  
    n = [-N/2:1:N/2-1]';           % Index N4}j,{#  
    t = n.*dt;   .DMeW i  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 s7A{<>:  
    u20=u10.*0.0;                  % input to waveguide 2 be|k"s|6)  
    u1=u10; u2=u20;                 MS)#S&  
    U1 = u1;   ! k)}p_e  
    U2 = u2;                       % Compute initial condition; save it in U BuCU_/H  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. rbHrG<+7zO  
    w=2*pi*n./T; vRpMZ)e  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T I3uaEv7OZc  
    L=4;                           % length of evoluation to compare with S. Trillo's paper %M2.h;9]*\  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 mnzamp  
    for m1 = 1:1:M1                                    % Start space evolution lbZ,?wm  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS "CapP`:  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ^/47 *vcN5  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform vvU;55-  
       ca2 = fftshift(fft(u2)); "WdGY*r  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ( \{9W  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   B$1e AwT9  
       u2 = ifft(fftshift(c2));                        % Return to physical space o3P`y:&  
       u1 = ifft(fftshift(c1)); d kHcG&)  
    if rem(m1,J) == 0                                 % Save output every J steps. >9'G>~P~I=  
        U1 = [U1 u1];                                  % put solutions in U array ]tA39JK-i  
        U2=[U2 u2]; o7i/~JkTP  
        MN1=[MN1 m1]; %*wJODtB|  
        z1=dz*MN1';                                    % output location qAUqlSP5  
      end @Ck6s  
    end GNS5v-"H  
    hg=abs(U1').*abs(U1');                             % for data write to excel }L^Yoq]  
    ha=[z1 hg];                                        % for data write to excel qL091P\F  
    t1=[0 t']; 0}2Uj>!i  
    hh=[t1' ha'];                                      % for data write to excel file j#S>8: G  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format c9/w-u~j  
    figure(1) ^n!{ vHz  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Q^$IlzG7i  
    figure(2) @C62%fU{5  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn R"Nvnpm  
    C '4u+raq  
    非线性超快脉冲耦合的数值方法的Matlab程序  TOdH  
    "aHY]E{  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   H0Qpc<Z4/  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5V!L~#  
    Z#BwJHh  
    %H75u 6  
    B(w k $2  
    %  This Matlab script file solves the nonlinear Schrodinger equations kbJ/7  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of C(Ujx=G+3  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @ +h2R  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 QDYS}{A:V  
    QMea2q|3$  
    C=1;                           8+{WH/}y8  
    M1=120,                       % integer for amplitude ^)<>5.%1''  
    M3=5000;                      % integer for length of coupler [X0Wfb}{  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ]`0(^)U &  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. B;XFPQ#b  
    T =40;                        % length of time:T*T0. (C*G)Aj7  
    dt = T/N;                     % time step BoYWx^VHx^  
    n = [-N/2:1:N/2-1]';          % Index V|zzj[c  
    t = n.*dt;   +Gqh  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. H$au02dpU  
    w=2*pi*n./T; &>\E >mJ  
    g1=-i*ww./2; 5|f[evQj<S  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 1,=U^W.G  
    g3=-i*ww./2; aF2 eGh  
    P1=0; sJg-FVe2  
    P2=0; y?GRxoCD"e  
    P3=1; ^Crl~~Gk`  
    P=0;  /s.sW l  
    for m1=1:M1                 dFD0l?0N  
    p=0.032*m1;                %input amplitude hPF9y@lh  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 $]|fjB#D  
    s1=s10; km,}7^?F0r  
    s20=0.*s10;                %input in waveguide 2 ~j}di^<{  
    s30=0.*s10;                %input in waveguide 3 ^$f} s,09  
    s2=s20; jCqs^`-  
    s3=s30; [_*%  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   J @C8;]  
    %energy in waveguide 1 XFeHkU`C  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   s`GwRH<#  
    %energy in waveguide 2 @;2,TY>Di  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   J7W]Str  
    %energy in waveguide 3 L3iY Z>]  
    for m3 = 1:1:M3                                    % Start space evolution GV#"2{t j  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS \_}Y4  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; z1wy@1o'  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; YbB8D-  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform b/cc\d<  
       sca2 = fftshift(fft(s2)); ~f0Bu:A)  
       sca3 = fftshift(fft(s3)); [U@#whEO  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   0][PL%3Z  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); m-S4"!bl  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); wG6>.`:  
       s3 = ifft(fftshift(sc3)); QyQ&xgS  
       s2 = ifft(fftshift(sc2));                       % Return to physical space x~C%Hp*#  
       s1 = ifft(fftshift(sc1)); \72(d  
    end jR`q  y<  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); }md[hiJ  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 0G ^73Z  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); JYA$_T  
       P1=[P1 p1/p10]; -:b0fKn  
       P2=[P2 p2/p10]; | YmQO#''  
       P3=[P3 p3/p10]; (@@t,\iF  
       P=[P p*p]; <o,]f E[  
    end C-' n4AY^  
    figure(1) QxG:NN;jW  
    plot(P,P1, P,P2, P,P3); H4p N+  
    ~6L\9B )  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~