计算脉冲在非线性耦合器中演化的Matlab 程序 hSO(s U%7| iK % This Matlab script file solves the coupled nonlinear Schrodinger equations of
BDeX5/`U# % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
} +@H&}u % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
PyS~2)=B % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
epWO}@
b a '>}dqp{Wr %fid=fopen('e21.dat','w');
33{(IzL0 N = 128; % Number of Fourier modes (Time domain sampling points)
_m
*8f\ M1 =3000; % Total number of space steps
Q
UQ"2oC J =100; % Steps between output of space
(\Iz(N["G T =10; % length of time windows:T*T0
:< )"G& T0=0.1; % input pulse width
O%g%*9 MN1=0; % initial value for the space output location
M%3 \]& dt = T/N; % time step
DRBRs-D n = [-N/2:1:N/2-1]'; % Index
Vu%XoI)<KY t = n.*dt;
+EmT+$>J u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
>#q2KXh u20=u10.*0.0; % input to waveguide 2
j=%^CRum u1=u10; u2=u20;
C^o9::ER U1 = u1;
@wy&Z U2 = u2; % Compute initial condition; save it in U
b;N[_2 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
&?],uHB?d w=2*pi*n./T;
Ag>E%N g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
Xm|Uz`A; L=4; % length of evoluation to compare with S. Trillo's paper
nTJ-1A7EP dz=L/M1; % space step, make sure nonlinear<0.05
n9;z= for m1 = 1:1:M1 % Start space evolution
>d`XR"_e u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
=1JS6~CTLN u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
T,Bu5:@# ca1 = fftshift(fft(u1)); % Take Fourier transform
"funFvY ca2 = fftshift(fft(u2));
B]`!L/ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
Y7vTseq c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
&
*^FBJEa. u2 = ifft(fftshift(c2)); % Return to physical space
sG/mmZHYzr u1 = ifft(fftshift(c1));
"5KJ /7q! if rem(m1,J) == 0 % Save output every J steps.
U5 `h U1 = [U1 u1]; % put solutions in U array
$a.!X8sHB. U2=[U2 u2];
+s*OZ6i [ MN1=[MN1 m1];
OX"^a$ z1=dz*MN1'; % output location
ZfpV=DU end
NhI&wl end
,&DK*LT8U hg=abs(U1').*abs(U1'); % for data write to excel
+h64idM{U ha=[z1 hg]; % for data write to excel
UBmD
3|Zo t1=[0 t'];
jm-J_o;}z6 hh=[t1' ha']; % for data write to excel file
73-*|@6 %dlmwrite('aa',hh,'\t'); % save data in the excel format
)JO#Z( figure(1)
Q^&oXM'x/i waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
~*3obZ2>2 figure(2)
}~?B>vZS waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
#Ub"Ii uhyw?#f 非线性超快脉冲耦合的数值方法的Matlab程序 4(VVEe h>'9-j6B 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
u|!On Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
di@4'$5# 1]yOC)u"i 9`"o,wGX3 |H:JwxH % This Matlab script file solves the nonlinear Schrodinger equations
SIJ:[=5!7 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
=!axQ[)A % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
+E8Itb, % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
jV(\]g"/= egBjr? C=1;
56;(mbW M1=120, % integer for amplitude
0_}^IiG M3=5000; % integer for length of coupler
}(g`l)OX N = 512; % Number of Fourier modes (Time domain sampling points)
yIm@m[B;
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
&1O!guq% T =40; % length of time:T*T0.
RL|13CG OP dt = T/N; % time step
[DW}z n = [-N/2:1:N/2-1]'; % Index
/`M>3q[ t = n.*dt;
T;cyU9 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
]!u12^A{ w=2*pi*n./T;
hK!Z~
g1=-i*ww./2;
4?#0fK g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
_(CuuP$`I g3=-i*ww./2;
?'xTSAn P1=0;
@/S6P-4 P2=0;
N30w^W& P3=1;
v&6=(k{E@R P=0;
K!X>k for m1=1:M1
}E01B_T9z p=0.032*m1; %input amplitude
'~dE0ohWb s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
~c
e?xr| s1=s10;
R&z) s20=0.*s10; %input in waveguide 2
/UJ@e s30=0.*s10; %input in waveguide 3
<OKzb3e s2=s20;
PGT*4r21 s3=s30;
E$$pO.\ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
NDG3mCl %energy in waveguide 1
<O`yM2/pS p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
z3l=aAw8 %energy in waveguide 2
$rB20! p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
o8!gV/oy %energy in waveguide 3
aR }|^ex for m3 = 1:1:M3 % Start space evolution
cJEOwAN s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
_ n.2' s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
traJub s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
X(D$eV sca1 = fftshift(fft(s1)); % Take Fourier transform
F^5<o sca2 = fftshift(fft(s2));
Yp8~wdm sca3 = fftshift(fft(s3));
oB9t&yM sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
8\Y/?$on sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
cz8%p;F: sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
=AFTB<7-^ s3 = ifft(fftshift(sc3));
~Rzn =>a s2 = ifft(fftshift(sc2)); % Return to physical space
}$K2h* s1 = ifft(fftshift(sc1));
UWdPB2x[ end
\bt+46y@] p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
,hj5.;M p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
)I80Nq
p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
%G%##wv: P1=[P1 p1/p10];
U @Il:\I P2=[P2 p2/p10];
7wt2|$Qz P3=[P3 p3/p10];
cD-.thHO P=[P p*p];
Luxo,Ve end
9N9dQ}[:g figure(1)
\NYtxGV[Z plot(P,P1, P,P2, P,P3);
1Aq*|JSk( F+;{s(wx 转自:
http://blog.163.com/opto_wang/