切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9054阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `m5iZxhw  
    W2RS G~|  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 43Q&<r$[T  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "<n{/x(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tyh%s"  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [>E0(S]  
    ?4_;9MkN  
    %fid=fopen('e21.dat','w'); -nW-I\d%  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) l< Y x  
    M1 =3000;              % Total number of space steps 4J  s>yP  
    J =100;                % Steps between output of space \xt!b^d0  
    T =10;                  % length of time windows:T*T0 {q^KlSjm  
    T0=0.1;                 % input pulse width [ LCi,  
    MN1=0;                 % initial value for the space output location @azS)4L  
    dt = T/N;                      % time step Rd2[xk  
    n = [-N/2:1:N/2-1]';           % Index 08Q:1 '  
    t = n.*dt;   {RK#W~h  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 wP%;9y2B  
    u20=u10.*0.0;                  % input to waveguide 2 ;(V=disU/  
    u1=u10; u2=u20;                 <YC{q>EMc  
    U1 = u1;   f: R h9  
    U2 = u2;                       % Compute initial condition; save it in U cMj<k8.{  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. MIgIt"M jz  
    w=2*pi*n./T; ^JTfRZ :a  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T -&c@c@dC  
    L=4;                           % length of evoluation to compare with S. Trillo's paper z"<PveVo  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 gVGq  
    for m1 = 1:1:M1                                    % Start space evolution =Zj9F1E[i  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS n}l Z  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; &HWH UWB  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform thh, V   
       ca2 = fftshift(fft(u2)); Y !`H_Qo  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation nJ,56}  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   e"v Eh  
       u2 = ifft(fftshift(c2));                        % Return to physical space G 5)?!  
       u1 = ifft(fftshift(c1)); vjHbg#0%  
    if rem(m1,J) == 0                                 % Save output every J steps. \R~Lf+q  
        U1 = [U1 u1];                                  % put solutions in U array \1tce`+  
        U2=[U2 u2]; txi m|)  
        MN1=[MN1 m1]; 8w{V[@QLn  
        z1=dz*MN1';                                    % output location k=LY 6  
      end ?B-aj  
    end {S|uQgs6j  
    hg=abs(U1').*abs(U1');                             % for data write to excel eN/Jb;W  
    ha=[z1 hg];                                        % for data write to excel m+o>`1>a  
    t1=[0 t']; lB-Njr  
    hh=[t1' ha'];                                      % for data write to excel file {vaq,2_w  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;>PV]0bOm>  
    figure(1) 3LEN~ N}  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0Vg8o @  
    figure(2) %hXa5}JL  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn e@6}?q;  
    IRpCbTIXK  
    非线性超快脉冲耦合的数值方法的Matlab程序 U8moVj8w1  
    R8ZW1  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   5~\W!|j/  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 =~R 0U  
    blLX ncyD  
    W7.]V)$wM  
    $Q?UyEi  
    %  This Matlab script file solves the nonlinear Schrodinger equations (j2]:B Vu  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of @.%ll n  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }@x0@sI9  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3iY`kf  
    _mcD*V  
    C=1;                           ]+J]}C]\d  
    M1=120,                       % integer for amplitude l!GAMK 6o  
    M3=5000;                      % integer for length of coupler 0n5N-b?G-@  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) HIF.;ImG^  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]E,  
    T =40;                        % length of time:T*T0. (Y-7B  
    dt = T/N;                     % time step 3uN;*f  
    n = [-N/2:1:N/2-1]';          % Index A H`6)v<f  
    t = n.*dt;   0Tq6\:  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. m,-:(82  
    w=2*pi*n./T;  M*%iMz  
    g1=-i*ww./2; SV-pS>#  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; RFqbwPX  
    g3=-i*ww./2; {AJs pLcG  
    P1=0; *ozeoX'5D  
    P2=0; ujHqw Rh  
    P3=1; ~]}7|VN.}  
    P=0; ptX;-'j(  
    for m1=1:M1                 `^RpT]S  
    p=0.032*m1;                %input amplitude )bqO}_B  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 M,NYF`;a  
    s1=s10; 7Qz Uw  
    s20=0.*s10;                %input in waveguide 2 'r3I/qg*m  
    s30=0.*s10;                %input in waveguide 3 -(~CZ  
    s2=s20; gR%fv  
    s3=s30; XD9lox  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Qb/qUUQO;0  
    %energy in waveguide 1 ![ Fb~Egc  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   9FK%"s`  
    %energy in waveguide 2 5_{C \S`T  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   g;vG6!;E\  
    %energy in waveguide 3 ?PLf+S  
    for m3 = 1:1:M3                                    % Start space evolution LY/K ,6^a  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Q!MS_ #O  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Q R;Xj3]v  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; $GEY*uIOa  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ,{7Z OzA  
       sca2 = fftshift(fft(s2)); v-EcJj%  
       sca3 = fftshift(fft(s3)); Ee d2`~  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   JuS#p5E #  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); c V=h 8F  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); E\5t&jZr  
       s3 = ifft(fftshift(sc3)); d_]zX;_  
       s2 = ifft(fftshift(sc2));                       % Return to physical space *e!0ZB3J  
       s1 = ifft(fftshift(sc1)); 2{% U\^-  
    end Q"S;r1 D  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); *ax$R6a#X  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); hr(E, TAe  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ?x=;?7  
       P1=[P1 p1/p10]; V'^Hn?1^  
       P2=[P2 p2/p10]; ~+7q.XL$$K  
       P3=[P3 p3/p10]; b+9M? k"  
       P=[P p*p]; D `c YQ-  
    end =Z2Cg{z  
    figure(1) rgJKXl;@s  
    plot(P,P1, P,P2, P,P3); {rBS52,Z#  
    Q!iM7C!8  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~