切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8317阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 H!*ypJ  
    Oj-\  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of l%}q&_  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of F]M-r{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =rymd3/  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x8aOXN#w}  
    ?OW!D?  
    %fid=fopen('e21.dat','w'); ]Ea-MeH  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) CUJq [  
    M1 =3000;              % Total number of space steps XQ~Xls%]   
    J =100;                % Steps between output of space A+^okT37r  
    T =10;                  % length of time windows:T*T0 M|c_P)7ym  
    T0=0.1;                 % input pulse width NzAh3k  
    MN1=0;                 % initial value for the space output location o2dO\$'  
    dt = T/N;                      % time step k.C&6*l!5;  
    n = [-N/2:1:N/2-1]';           % Index nA0%M1a  
    t = n.*dt;   %%ouf06.|  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 xO_>%F^?  
    u20=u10.*0.0;                  % input to waveguide 2 ='jT 5Mg  
    u1=u10; u2=u20;                 &|Wqzdo?#  
    U1 = u1;   %}(` ?  
    U2 = u2;                       % Compute initial condition; save it in U $y6 <2w%b  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. hDi~{rbmc  
    w=2*pi*n./T; /a*){JQ5j  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ,c"J[$i$  
    L=4;                           % length of evoluation to compare with S. Trillo's paper inh:b .,B  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 s! 2[zJ19p  
    for m1 = 1:1:M1                                    % Start space evolution I;Mm+5A  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS |&"aZ!Kn  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; \dCGu~bT  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform vyDxX  
       ca2 = fftshift(fft(u2)); keC'/\e  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation {@CQ (  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   MrzD ah9UG  
       u2 = ifft(fftshift(c2));                        % Return to physical space Tr_gc~  
       u1 = ifft(fftshift(c1)); e_e\Ie/pDc  
    if rem(m1,J) == 0                                 % Save output every J steps. M~\dvJ$cH  
        U1 = [U1 u1];                                  % put solutions in U array #w.0Cc  
        U2=[U2 u2]; 7LU^Xm8  
        MN1=[MN1 m1]; KANR=G   
        z1=dz*MN1';                                    % output location A:ts_*  
      end pMT7/y-  
    end ~-Kx^3(#  
    hg=abs(U1').*abs(U1');                             % for data write to excel FB wG3x  
    ha=[z1 hg];                                        % for data write to excel lIS`_H}  
    t1=[0 t']; 3F]Dh^IR9  
    hh=[t1' ha'];                                      % for data write to excel file 8!|vp7/  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format IQU1 JVk Z  
    figure(1) v4hrS\M  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn r'Wf4p^Xd  
    figure(2) ke8g tbm  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ( 0/M?YQF  
    Pw<'rN8''  
    非线性超快脉冲耦合的数值方法的Matlab程序 Dx1(}D  
    ~\(c;J*Ir  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   7YD+zd:  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o)XrC   
    nE u:& 4  
    qK7:[\T|?T  
    %d];h  
    %  This Matlab script file solves the nonlinear Schrodinger equations Z@1kx3Wx$  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of UB5H8&Rf!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear joskKik^  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 f$QkzWvr  
    <&Xl b0  
    C=1;                           n[0u&m8  
    M1=120,                       % integer for amplitude xgMh@@e  
    M3=5000;                      % integer for length of coupler rmzzbLTu  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) `$Rgn3  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. :0:Tl/))  
    T =40;                        % length of time:T*T0. ,2$<Pt;  
    dt = T/N;                     % time step 'UhHcMh:  
    n = [-N/2:1:N/2-1]';          % Index QNOdt2NN  
    t = n.*dt;    .x%w#  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. lS,Jo/T@  
    w=2*pi*n./T; 'y; Kj  
    g1=-i*ww./2; N<i5X.X  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @\w}p E  
    g3=-i*ww./2; pDlrK&;\z  
    P1=0; h"+7cc@  
    P2=0; y:98}gW`n  
    P3=1; uCr& `  
    P=0; rs?Dn6:;B  
    for m1=1:M1                 >\[]z^J  
    p=0.032*m1;                %input amplitude .2c/V  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 sR1_L/.  
    s1=s10; ]uox ^HC  
    s20=0.*s10;                %input in waveguide 2 vcdVck@  
    s30=0.*s10;                %input in waveguide 3 KxK,en4)+  
    s2=s20; qZ^ PC-  
    s3=s30; =( |%%,3  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   H9)n<r  
    %energy in waveguide 1 Is4,QnY_[  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));    j5/pVXO  
    %energy in waveguide 2 #epbc K  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ':pDlUA  
    %energy in waveguide 3 ,Tr&`2w  
    for m3 = 1:1:M3                                    % Start space evolution #4mRMsW5"  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Xd%qebK  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ]S4"JcM  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 3[u- LYW  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform sMGo1pG(  
       sca2 = fftshift(fft(s2)); 7 2JwG7qh  
       sca3 = fftshift(fft(s3)); ^}Vc||S  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   +"-l~`+<es  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); FzX ;~CA  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); IOZw[9](+  
       s3 = ifft(fftshift(sc3)); G^t)^iI"'  
       s2 = ifft(fftshift(sc2));                       % Return to physical space T" {~mQ*  
       s1 = ifft(fftshift(sc1)); Ck )W=  
    end aC[G_ACwc  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 3XlQ4  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Qw2`@P8W  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ISC>]`  
       P1=[P1 p1/p10]; |1!fuB A  
       P2=[P2 p2/p10]; UDr 1t n  
       P3=[P3 p3/p10]; 9JP:wE~y  
       P=[P p*p]; 0a89<yX  
    end pRV.\*:c  
    figure(1) bK%F_v3'  
    plot(P,P1, P,P2, P,P3); dh`s^D6Q>  
    w>j5oz}  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~