切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8818阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 7-Rn{"5  
    OB3AZH$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of XboOvdt^|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of GN{\ccej  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear R@>R@V>c  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Faa:h#  
    T,(IdVlJ  
    %fid=fopen('e21.dat','w'); Kbx(^f12  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Wf_aEW&n  
    M1 =3000;              % Total number of space steps YU76(S9 0#  
    J =100;                % Steps between output of space &dvJg  
    T =10;                  % length of time windows:T*T0 S$%/9^\jF  
    T0=0.1;                 % input pulse width u]E%R&  
    MN1=0;                 % initial value for the space output location G%ycAm  
    dt = T/N;                      % time step =pWpHbB.  
    n = [-N/2:1:N/2-1]';           % Index P;KbS~ SlC  
    t = n.*dt;   h0n0Dc{4  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 W_8 FzXA  
    u20=u10.*0.0;                  % input to waveguide 2 `(;d+fof  
    u1=u10; u2=u20;                 8!>uC&bE8  
    U1 = u1;   [k-7Kq  
    U2 = u2;                       % Compute initial condition; save it in U &m8B%9w  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. D]y6*Ha  
    w=2*pi*n./T; _KmpC>J+  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T K *vNv 4  
    L=4;                           % length of evoluation to compare with S. Trillo's paper _1y|#o  
    dz=L/M1;                       % space step, make sure nonlinear<0.05  g/+M&k$  
    for m1 = 1:1:M1                                    % Start space evolution aC3\Hs  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS i BJ*6orz  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; /G[y 24 Q  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform xx;'WL,g  
       ca2 = fftshift(fft(u2)); B>X+eK  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation NL&g/4A[a  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift    +KFK..  
       u2 = ifft(fftshift(c2));                        % Return to physical space e/;Ui  
       u1 = ifft(fftshift(c1)); E\m?0]W|  
    if rem(m1,J) == 0                                 % Save output every J steps. w])~m1yW  
        U1 = [U1 u1];                                  % put solutions in U array }J`{g/  
        U2=[U2 u2]; ~R)w 9uq  
        MN1=[MN1 m1]; .[cT3l/t  
        z1=dz*MN1';                                    % output location 2SG|]=  
      end BqZLqGO Ku  
    end .E;6Xx_+r  
    hg=abs(U1').*abs(U1');                             % for data write to excel u.hnQsM  
    ha=[z1 hg];                                        % for data write to excel 8GlH)J+kq  
    t1=[0 t']; .v1rrH?  
    hh=[t1' ha'];                                      % for data write to excel file MiRH i<g0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format <S$y=>.9  
    figure(1) aE{b65'Dt  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn iUI,r*  
    figure(2) L6 _Sc-sU  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn D@ =.4z  
    jHz]  
    非线性超快脉冲耦合的数值方法的Matlab程序 KMbBow3o*~  
    *"zE,Bp"  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   (/*-M]>  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 t&r?O dc&m  
    vN4X%^:(  
    '.kbXw0}  
     %;W8;  
    %  This Matlab script file solves the nonlinear Schrodinger equations $^ >n@Q@&L  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of _R-#I  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 0]HK (,/h  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 T3?kabbF  
    i;dr(c/ft  
    C=1;                           UT{N ly8u  
    M1=120,                       % integer for amplitude &H+<uYV  
    M3=5000;                      % integer for length of coupler [e^i".  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) @ics  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. "t\9@nzdX  
    T =40;                        % length of time:T*T0. ihYf WG|  
    dt = T/N;                     % time step 0?`#ko7~d  
    n = [-N/2:1:N/2-1]';          % Index a9qZI  
    t = n.*dt;   #F{|G:\@[  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. s[s^z<4G  
    w=2*pi*n./T; pEaH^(I*  
    g1=-i*ww./2; 5 + Jy  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; l{pF^?K  
    g3=-i*ww./2; gTQ6B,`/8  
    P1=0; ix/uV)]k`  
    P2=0; fsmH];"GD  
    P3=1; ?t%5/  
    P=0; bFJn-g n  
    for m1=1:M1                 {MEU|9@ Y  
    p=0.032*m1;                %input amplitude >qgBu_  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :- 5Mn3*  
    s1=s10; Wex4>J<`/  
    s20=0.*s10;                %input in waveguide 2 Anm5Cvt;i  
    s30=0.*s10;                %input in waveguide 3 34l=U?  
    s2=s20; dJ;;l7":~  
    s3=s30; E nUo B<  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   *lTu-  
    %energy in waveguide 1 ;kFp)*i  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   J *B`C^i  
    %energy in waveguide 2 0y1t%C075  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   50Jr(OeU<  
    %energy in waveguide 3 o. _^  
    for m3 = 1:1:M3                                    % Start space evolution u}h'v&"e,  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS U!`'Qw;  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; DxD0iJ=W  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ZuhT \l  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform |% kK?!e+-  
       sca2 = fftshift(fft(s2)); df)1} /*L  
       sca3 = fftshift(fft(s3)); YS~x-5OE\  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   |UaI i^  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); N1$P6ZF  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); FP Mk&  
       s3 = ifft(fftshift(sc3)); Eg:p_F*lr  
       s2 = ifft(fftshift(sc2));                       % Return to physical space >*(>%E~H  
       s1 = ifft(fftshift(sc1)); %2+]3h>g  
    end LH8?0 N[  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));  (M=Br  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2u:j6ic  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); M#p,Z F  
       P1=[P1 p1/p10]; RAxz+1JT  
       P2=[P2 p2/p10]; ]aR4U`  
       P3=[P3 p3/p10]; C G7 LF  
       P=[P p*p]; X>4`{x`  
    end [4t KJ+v  
    figure(1) Z8@]e}n  
    plot(P,P1, P,P2, P,P3); R}VL UL$  
    D^~g q`/)  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~