切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8190阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 n \G Ry'  
    8<#U9]  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of (Xx n\*S  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of pBJAaCGm  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K%g;NW  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -8Ti*:  
    E l&h;N   
    %fid=fopen('e21.dat','w'); e$/B_o7(  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 15H6:_+=0  
    M1 =3000;              % Total number of space steps Y:QD   
    J =100;                % Steps between output of space mxG]kqi  
    T =10;                  % length of time windows:T*T0 +C{p%`<  
    T0=0.1;                 % input pulse width UVu DQ  
    MN1=0;                 % initial value for the space output location d]v+mVAyE  
    dt = T/N;                      % time step r0dDHj~F  
    n = [-N/2:1:N/2-1]';           % Index <,%:   
    t = n.*dt;   ?pGkk=,KB  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 &*,:1=p  
    u20=u10.*0.0;                  % input to waveguide 2 o4^Fo p  
    u1=u10; u2=u20;                 Ubz"rCjq  
    U1 = u1;   %1U`@0  
    U2 = u2;                       % Compute initial condition; save it in U '3(l-nPiG^  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ) M<vAUF  
    w=2*pi*n./T; U]4pA#*{|  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T rP=sG;d  
    L=4;                           % length of evoluation to compare with S. Trillo's paper JiS5um=(.  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Cpl;vQ  
    for m1 = 1:1:M1                                    % Start space evolution p9ZXbAJ{  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS N=1JhjVk"  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 3 /6/G}s  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform mj,fp2D;%  
       ca2 = fftshift(fft(u2)); 3K0tC=  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation }-<zWI {p  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   IO$z%r7  
       u2 = ifft(fftshift(c2));                        % Return to physical space # '|'r+  
       u1 = ifft(fftshift(c1)); hsLzj\)6  
    if rem(m1,J) == 0                                 % Save output every J steps. !b|'Vp^U  
        U1 = [U1 u1];                                  % put solutions in U array H}0dd"  
        U2=[U2 u2]; jFG0`n}I  
        MN1=[MN1 m1]; [bQj,PZ&  
        z1=dz*MN1';                                    % output location f^Bc  
      end E_ucab-Fi  
    end ;GHvPQc_  
    hg=abs(U1').*abs(U1');                             % for data write to excel r4 dOK] 0  
    ha=[z1 hg];                                        % for data write to excel g=)J~1&p  
    t1=[0 t']; H^%.=kf  
    hh=[t1' ha'];                                      % for data write to excel file [THG4582oB  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format  $6>?;  
    figure(1) T)CzK<LbR  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn vq'c@yw;  
    figure(2) Bstk{&ew  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn V,7%1TZ:  
    ctmQWrk|B  
    非线性超快脉冲耦合的数值方法的Matlab程序 -\$`i c$"1  
    E">T*ao  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   bMoAD.}  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M~ h8Crz  
    ;DRTQn`m  
    !cEG}(|h  
    |I8Mk.Z=FA  
    %  This Matlab script file solves the nonlinear Schrodinger equations =(r* 5vd  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of N1EezC'^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pa .K-e)Mu  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "kW!{n  
    -f(/B9}  
    C=1;                           g<*jlM1r  
    M1=120,                       % integer for amplitude %kI} [6J_  
    M3=5000;                      % integer for length of coupler oUDVy_k  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) @)YY\l#  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^+70<#Xc  
    T =40;                        % length of time:T*T0. ")#<y@Rv  
    dt = T/N;                     % time step *tQk;'/A]  
    n = [-N/2:1:N/2-1]';          % Index p QE)p  
    t = n.*dt;   E;\M1(\u  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 7()?C}Ni-  
    w=2*pi*n./T; j#A%q"]8  
    g1=-i*ww./2; m7]hJ,0  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; >%b\yl%0  
    g3=-i*ww./2; >O9 sk  
    P1=0; ]L_w$ev'  
    P2=0; &wH:aD  
    P3=1; Xg<[fwW  
    P=0; VAQ)Hc]  
    for m1=1:M1                 &&8'0 .M{  
    p=0.032*m1;                %input amplitude !-]C;9 Zd  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 3-Bl  
    s1=s10; mS=r(3#  
    s20=0.*s10;                %input in waveguide 2 - Xupq/[,  
    s30=0.*s10;                %input in waveguide 3 !R{R??  
    s2=s20; *b(wVvz  
    s3=s30; 6Y*;{\Rd  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   [W,|kDK  
    %energy in waveguide 1 o3Ot.9L  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   )6oGF>o>  
    %energy in waveguide 2 pgc3jP!  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   a=}*mF[ug  
    %energy in waveguide 3 ~4#B'Gy[  
    for m3 = 1:1:M3                                    % Start space evolution lvSdY(8  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS *dE^-dm#  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ZXiRw)rM  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 0~A#>R'  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 3fS}:!sQ  
       sca2 = fftshift(fft(s2)); xN->cA$A  
       sca3 = fftshift(fft(s3)); <-C!;Ce{  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   B&KL2&Z~Pq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); S\C*iGeqJ  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); eQN.sl5  
       s3 = ifft(fftshift(sc3)); +Ghi}v  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /MTf0^9  
       s1 = ifft(fftshift(sc1)); Pe7e ?79  
    end J\co1kO9/  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ]?l{j  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); t%0?N<9YkU  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); :- +4:S  
       P1=[P1 p1/p10]; `aSM8C\  
       P2=[P2 p2/p10]; X T>('qy  
       P3=[P3 p3/p10]; ZW4aY}~)$  
       P=[P p*p]; 4iX-(ir,  
    end dSK 0h(8  
    figure(1) f?UzD#50D  
    plot(P,P1, P,P2, P,P3); Di(9]: +  
    440FhD Mj  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~