切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9087阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 N#] ypl  
    y} '@R$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of TvM~y\s  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "tZe>>I  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear m'U0'}Ld};  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +t.b` U`-  
    IBGrt^$M  
    %fid=fopen('e21.dat','w'); cK@wsA^4  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 54,er$$V  
    M1 =3000;              % Total number of space steps xk5 ]^yDp  
    J =100;                % Steps between output of space bD^owa  
    T =10;                  % length of time windows:T*T0 }vuARZ>  
    T0=0.1;                 % input pulse width Y2TtY;  
    MN1=0;                 % initial value for the space output location :0/ 7,i  
    dt = T/N;                      % time step qK+5NF|  
    n = [-N/2:1:N/2-1]';           % Index b>W %t  
    t = n.*dt;   sKWfX Cd  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 i%/+5gq  
    u20=u10.*0.0;                  % input to waveguide 2 / FII07V  
    u1=u10; u2=u20;                 FmW(CGs  
    U1 = u1;   [^)g%|W  
    U2 = u2;                       % Compute initial condition; save it in U (:_$5&i7  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. NbobliC=  
    w=2*pi*n./T; v19-./H^ j  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 3Vwh|1?  
    L=4;                           % length of evoluation to compare with S. Trillo's paper (Z*!#}z`  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 #E?4E1bnB  
    for m1 = 1:1:M1                                    % Start space evolution s iaG'%@*r  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ' QG?nu  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; `uFdwO'DD  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform <%d>v-=B  
       ca2 = fftshift(fft(u2)); HQ g^ h  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ^~dWU>  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [ 3Gf2_  
       u2 = ifft(fftshift(c2));                        % Return to physical space b 6p|q_e  
       u1 = ifft(fftshift(c1)); ig!+2g  
    if rem(m1,J) == 0                                 % Save output every J steps.  g-A-kqo9  
        U1 = [U1 u1];                                  % put solutions in U array 0f/<7R  
        U2=[U2 u2]; KXy6Eno  
        MN1=[MN1 m1]; *hx  
        z1=dz*MN1';                                    % output location <} .$l  
      end D- c4EV  
    end ]lbuy7xj63  
    hg=abs(U1').*abs(U1');                             % for data write to excel 8y L Y  
    ha=[z1 hg];                                        % for data write to excel Z r8*et  
    t1=[0 t']; F847pyOJnf  
    hh=[t1' ha'];                                      % for data write to excel file &&+H+{_Q  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format s*[bFJwN  
    figure(1) 53D]3  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn x4 yR8n(  
    figure(2) \<' ?8ri#  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn *g%yRU{N  
    >j/w@Fj  
    非线性超快脉冲耦合的数值方法的Matlab程序 paK2 xX8E  
    o4X{L`m  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   'NmRR]Q9  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6'/ #+,d'  
    khe}*y  
    NOva'qk  
    gJXaPJA{  
    %  This Matlab script file solves the nonlinear Schrodinger equations DI>s-7  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 29Ki uP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;`&kZi60Hz  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ? k/`  
    py4 h(04u  
    C=1;                           WcAkCH!L  
    M1=120,                       % integer for amplitude b;n[mk  
    M3=5000;                      % integer for length of coupler xp t:BBo  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) CrLrw T  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. HtFDlvdy]  
    T =40;                        % length of time:T*T0. DVA:Cmh\  
    dt = T/N;                     % time step ;+%rw2Z,B  
    n = [-N/2:1:N/2-1]';          % Index icgfB-1|i  
    t = n.*dt;   O-^Ma- }  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. z_HdISy0  
    w=2*pi*n./T; HfVZ~PP  
    g1=-i*ww./2; CTb%(<r  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; L,\Iasv  
    g3=-i*ww./2; q m}@!z^  
    P1=0; A"]YM'.  
    P2=0; &Jj<h: *  
    P3=1; @C$]//;  
    P=0; >7|VR:U?B  
    for m1=1:M1                 -f .,tM=  
    p=0.032*m1;                %input amplitude 7dWS  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 K0~rN.C!0  
    s1=s10; Hs8>anVo[  
    s20=0.*s10;                %input in waveguide 2 j%kncGS  
    s30=0.*s10;                %input in waveguide 3 Nb\4 /;#  
    s2=s20; 8tL~FiHb"  
    s3=s30; By |4 m  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ]gOy(\B  
    %energy in waveguide 1 aN?zmkPpov  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   'L'R9&o<X  
    %energy in waveguide 2 <I?Zk80  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ]Ze1s02(  
    %energy in waveguide 3 zCZf%ATq  
    for m3 = 1:1:M3                                    % Start space evolution $FVNCFN%  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS I9Xuok!0>=  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; vsPu*[%  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @JMiO^  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform lA]8&+,ZM  
       sca2 = fftshift(fft(s2)); {) XTk &"  
       sca3 = fftshift(fft(s3)); ?s01@f#  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   afVT~Sf{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ';CNGv -  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); K+eM   
       s3 = ifft(fftshift(sc3)); L *wYx|  
       s2 = ifft(fftshift(sc2));                       % Return to physical space tQ)qCk07  
       s1 = ifft(fftshift(sc1)); ftb\0,-   
    end pi(m7Ci"  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); |Cv!,]9:r  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @d'j zs  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); pK*TE5]  
       P1=[P1 p1/p10]; r!v\"6:OM  
       P2=[P2 p2/p10]; (PL UFT  
       P3=[P3 p3/p10]; 6K^#?Bn;  
       P=[P p*p]; wk^B"+Uhy  
    end #a#F,ZT  
    figure(1) w )f#V s  
    plot(P,P1, P,P2, P,P3); Jy)/%p~  
    sJZ iI}Xc  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~