切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8434阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 (qONeLf%  
    I%*Z j,>  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of kV%y%l(6  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of L`@&0Zk  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear s"F,=]HQ!G  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 EMH}VigR  
    { 3P!b|V>  
    %fid=fopen('e21.dat','w'); vKLG9ovlY  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 62'0)Cy^  
    M1 =3000;              % Total number of space steps Ec/+9H6g  
    J =100;                % Steps between output of space .%h_W\M<l  
    T =10;                  % length of time windows:T*T0 #^w 1!xXD  
    T0=0.1;                 % input pulse width }(O kl1  
    MN1=0;                 % initial value for the space output location  ]= D  
    dt = T/N;                      % time step ATewdq[C  
    n = [-N/2:1:N/2-1]';           % Index E0Xu9IW/A  
    t = n.*dt;   yf>,oNIAg  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 o%Q'<0d  
    u20=u10.*0.0;                  % input to waveguide 2 S%|' /cFo  
    u1=u10; u2=u20;                 NPq2C8:  
    U1 = u1;   uV\#J{'*  
    U2 = u2;                       % Compute initial condition; save it in U {lw ec"{  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Ek\Zi#f<  
    w=2*pi*n./T; dQ o$^?  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T |EU08b]P29  
    L=4;                           % length of evoluation to compare with S. Trillo's paper fP*C*4#X  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 O4URr  
    for m1 = 1:1:M1                                    % Start space evolution N.J:Qn`(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS j}Mpc;XOc  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Qd=/e pkm  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform :9>nY  
       ca2 = fftshift(fft(u2)); v3]M;Y\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation E_*T0&P.P  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   1O{67Pf  
       u2 = ifft(fftshift(c2));                        % Return to physical space 9$t@Gmn  
       u1 = ifft(fftshift(c1)); }Q*ec/^{f  
    if rem(m1,J) == 0                                 % Save output every J steps. !2,.C+,  
        U1 = [U1 u1];                                  % put solutions in U array of<OOh%3  
        U2=[U2 u2]; `Q[$R&\  
        MN1=[MN1 m1]; 4K,&Q/Vdd7  
        z1=dz*MN1';                                    % output location A]slssE+  
      end g:V6B/M&  
    end Va:jMN  
    hg=abs(U1').*abs(U1');                             % for data write to excel |1$X`|S  
    ha=[z1 hg];                                        % for data write to excel }:A kpm  
    t1=[0 t']; 7wiu%zfa:=  
    hh=[t1' ha'];                                      % for data write to excel file eLWzd_ln  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ,s<d"]<  
    figure(1) ttOsL')|  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Z r*ytbt  
    figure(2) >m46tfoM  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 83|/sWrvh  
    w}0PtzOe  
    非线性超快脉冲耦合的数值方法的Matlab程序 0_)\e  
    i;7jJ(#V  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   _TiF}b!hi  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 dv: &N  
    z5zm,Jw  
    WbF\=;$=7  
    nfR5W~%*:  
    %  This Matlab script file solves the nonlinear Schrodinger equations {M5IJt"{4b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of r>OE[C69  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear vOU -bF%u  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?J AzN  
    nfU}ECun4  
    C=1;                           37DvI&  
    M1=120,                       % integer for amplitude /vU31_eZt  
    M3=5000;                      % integer for length of coupler $1F9TfA  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) [\y>Gv%  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. rA7S1)Kq  
    T =40;                        % length of time:T*T0. NjLd-v"2  
    dt = T/N;                     % time step qx NV~aK  
    n = [-N/2:1:N/2-1]';          % Index bjZ?WZr  
    t = n.*dt;   RdjUw#\33b  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. [VH t#JuN,  
    w=2*pi*n./T; `,z{70  
    g1=-i*ww./2; 5,3h'\ "!  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Uk#1PcPd  
    g3=-i*ww./2; b(F`$N@7C  
    P1=0; [Pl$=[+  
    P2=0; `K.yE0^i  
    P3=1; Tbw8#[6AX  
    P=0; \ U_DTI  
    for m1=1:M1                 ~drNlt9jf  
    p=0.032*m1;                %input amplitude H3b`)k sFr  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ~V5jjx*  
    s1=s10; j yE+?4w;  
    s20=0.*s10;                %input in waveguide 2 v2^CBKZ+  
    s30=0.*s10;                %input in waveguide 3 >ZT3gp?E  
    s2=s20; TOs|f8ay  
    s3=s30; ~EymD *  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Cq=c'(cX  
    %energy in waveguide 1 kBkhuKd)V  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   n/-I7Q!;u  
    %energy in waveguide 2 TqC"lO>:Q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   E^G=  
    %energy in waveguide 3 ;%&@^;@k%  
    for m3 = 1:1:M3                                    % Start space evolution f#?R!pR  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS DuaOi1Gw  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; +Aq}BjD#  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ;NEHbLH#F  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 2zAS \Y  
       sca2 = fftshift(fft(s2)); QH eUpJ/^  
       sca3 = fftshift(fft(s3)); kE1u-EA  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    _~r>C  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 4f+Ke*^[RA  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); pAYuOk9n  
       s3 = ifft(fftshift(sc3)); 6N ^FJCs  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 4^ A\w  
       s1 = ifft(fftshift(sc1)); 6mZFsB  
    end y}8j_r  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); L))(g][;  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); S; >_9  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); e |!i1e!  
       P1=[P1 p1/p10]; Yd9y8Tq J  
       P2=[P2 p2/p10]; [>fE{ ~Y  
       P3=[P3 p3/p10]; 5u8 YHv  
       P=[P p*p]; rTcH~s D`  
    end SExd-=G  
    figure(1) }\B6d\k  
    plot(P,P1, P,P2, P,P3); q;U[f6JjE  
    }Q*8QV  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~