切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8885阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 g[M]i6h2  
    tyB)HF  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ?4,@, ae&  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of dgXg kB'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2xDQ :=ec  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 rsWQHHkO  
    7R: WX:  
    %fid=fopen('e21.dat','w'); Yt{ji  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) h6g:(3t6m  
    M1 =3000;              % Total number of space steps 6#E7!-u(-  
    J =100;                % Steps between output of space ;d4 y{  
    T =10;                  % length of time windows:T*T0 d<#p %$A4  
    T0=0.1;                 % input pulse width D3y>iQd   
    MN1=0;                 % initial value for the space output location TFO74^  
    dt = T/N;                      % time step 3Y`>6A=  
    n = [-N/2:1:N/2-1]';           % Index Q\|18wkW  
    t = n.*dt;   SZ/(\kQ6  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 pw=F' Y@N  
    u20=u10.*0.0;                  % input to waveguide 2 #pX8{Tf[  
    u1=u10; u2=u20;                 glx2I_y  
    U1 = u1;   ! tGiTzzp  
    U2 = u2;                       % Compute initial condition; save it in U !3h{lE B  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. (-\]A|  
    w=2*pi*n./T; 8'KMxR  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T YZ< NP  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 'j}g  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 G]-%AO{K  
    for m1 = 1:1:M1                                    % Start space evolution 4`s)ue  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS : W~f;k  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 9\AS@SH{^T  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform (xL :;  
       ca2 = fftshift(fft(u2)); iT.|vr1HG  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation \ n_3Bwd~  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   jB!W2~Z  
       u2 = ifft(fftshift(c2));                        % Return to physical space EL7T'zJ$  
       u1 = ifft(fftshift(c1)); d@ZoV  
    if rem(m1,J) == 0                                 % Save output every J steps. HyEa_9  
        U1 = [U1 u1];                                  % put solutions in U array 3p_b8K_bG  
        U2=[U2 u2]; ^!}F%  
        MN1=[MN1 m1]; _s*! t  
        z1=dz*MN1';                                    % output location i:d`{kJ|[  
      end kon5+g9q  
    end .b,~f  
    hg=abs(U1').*abs(U1');                             % for data write to excel N<liS3>  
    ha=[z1 hg];                                        % for data write to excel '00J~j~  
    t1=[0 t']; e\r7BW\Y  
    hh=[t1' ha'];                                      % for data write to excel file &dRjqn^&X  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ^wJEfac  
    figure(1) -2 x E#r  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn y\#o2PVmY  
    figure(2) s`c?:  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn x%6hM |U  
    c4 5?St  
    非线性超快脉冲耦合的数值方法的Matlab程序 H* /&A9("  
    4gOgWBv  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   GJ`UO  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )[jy[[K(  
    IY)5.E _  
    JT)k  
    ~C| ,b"  
    %  This Matlab script file solves the nonlinear Schrodinger equations s@~/x5jwCs  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of /cfHYvnz  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear TEWAZVE*  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Vv4H:BK$  
    \Yq0 zVol  
    C=1;                           c&*l"  
    M1=120,                       % integer for amplitude kOipH |.x  
    M3=5000;                      % integer for length of coupler %ek"!A  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) TsD;Kl1  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. zQc"bcif5(  
    T =40;                        % length of time:T*T0. TatMf;?h&  
    dt = T/N;                     % time step ^f|<R8`  
    n = [-N/2:1:N/2-1]';          % Index B {aU;{1  
    t = n.*dt;   yp+F<5o  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. (6R4 \8z2  
    w=2*pi*n./T; ([KN*OF  
    g1=-i*ww./2; -:S IS`0s  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; TQJF+;%  
    g3=-i*ww./2; hnzNP\$U]  
    P1=0; $XGtS$  
    P2=0; 3dG4pl~  
    P3=1; jdM=SBy7q  
    P=0; Dm%%e o  
    for m1=1:M1                 GNU;jSh5  
    p=0.032*m1;                %input amplitude m7m \`;  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 E[?kGR[  
    s1=s10; |I^y0Q:K  
    s20=0.*s10;                %input in waveguide 2 a$m_D!b~_  
    s30=0.*s10;                %input in waveguide 3 _- %d9@x  
    s2=s20; %F J#uQXZ  
    s3=s30; Y<Q\d[3^F  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Ae49n4J  
    %energy in waveguide 1 {/ &B!zvl  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   :Jl Di>B  
    %energy in waveguide 2 UX_I6_&  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   uyT/Xzo3  
    %energy in waveguide 3 0H[LS  
    for m3 = 1:1:M3                                    % Start space evolution U$'y_}V  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS "}zda*z8  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; z-@ -O  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ?N>pZR  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform m r4b  
       sca2 = fftshift(fft(s2)); ~/|zlu*jpc  
       sca3 = fftshift(fft(s3)); r1Z<:}ZwK  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   [ H,u)8)  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); =i6:puf  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);  O<GF>  
       s3 = ifft(fftshift(sc3)); wiE]z  
       s2 = ifft(fftshift(sc2));                       % Return to physical space zZ,Yfd |W  
       s1 = ifft(fftshift(sc1)); io4aYB\  
    end p)/ p!d[T/  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); )N7n,_#T>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); <TxC!{<  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); A]?^ H<  
       P1=[P1 p1/p10]; 2OalAY6RS  
       P2=[P2 p2/p10]; :3? |VE F  
       P3=[P3 p3/p10]; p4wr`" Zz  
       P=[P p*p]; /2@["*^$  
    end ]MAT2$"le  
    figure(1) C4NRDwU|.  
    plot(P,P1, P,P2, P,P3); CgnXr/!L  
    Ro r2qDF  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~