切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8271阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 IiJZ5'{  
    -WJ?:?'  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of [?k8}B)mHB  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of k@dN$O%p  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ][&9]omB  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  :A1:  
    IkPN?N  
    %fid=fopen('e21.dat','w'); HKDID[d0  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) rl08 R  
    M1 =3000;              % Total number of space steps 2]cRXJ7h  
    J =100;                % Steps between output of space )h{ ]k=  
    T =10;                  % length of time windows:T*T0 4_/?:$KO  
    T0=0.1;                 % input pulse width /Ncm^b4  
    MN1=0;                 % initial value for the space output location m ci/'b Xt  
    dt = T/N;                      % time step n'1'!J; Q  
    n = [-N/2:1:N/2-1]';           % Index vy9 w$ls  
    t = n.*dt;   8s{?v &p  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 l{j~Q^U})  
    u20=u10.*0.0;                  % input to waveguide 2 v'!a\b`9  
    u1=u10; u2=u20;                 Ho;X4lo[j  
    U1 = u1;   PwB1]p=  
    U2 = u2;                       % Compute initial condition; save it in U t. ='/`!N  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 7!WA)@6  
    w=2*pi*n./T; 2-N 'ya  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T "VG+1r+]4  
    L=4;                           % length of evoluation to compare with S. Trillo's paper HlvuW(,x=  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ;!!n{l$r'  
    for m1 = 1:1:M1                                    % Start space evolution u&mS8i}  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ~Wo)?q8UY,  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 4%nE*H%  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform H,nec<Jp  
       ca2 = fftshift(fft(u2)); *!s;"U  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation y){ k3lm0  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   scLn=  
       u2 = ifft(fftshift(c2));                        % Return to physical space 9RN-suE[  
       u1 = ifft(fftshift(c1)); Od4E x;F  
    if rem(m1,J) == 0                                 % Save output every J steps. ?T9(Vw  
        U1 = [U1 u1];                                  % put solutions in U array #txE=e"&o  
        U2=[U2 u2]; jB{4\)  
        MN1=[MN1 m1]; Qham^  
        z1=dz*MN1';                                    % output location WmY``  
      end mGp.3{j  
    end s7Ub@  
    hg=abs(U1').*abs(U1');                             % for data write to excel ^?7`;/  
    ha=[z1 hg];                                        % for data write to excel y{dTp  
    t1=[0 t']; /x_o!<M  
    hh=[t1' ha'];                                      % for data write to excel file x8S7oO7  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format W`\R%>$H  
    figure(1)  1%4sHSN  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn x=ul&|^7D  
    figure(2) a}%#*J)!  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn At7>V-f}  
    ;;L[e]Z  
    非线性超快脉冲耦合的数值方法的Matlab程序 *s9C!w YMZ  
    0"CG7Vg,zh  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   +qh[N@F  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K+;e4_\  
    ,lZB96r0  
    xx[9~z=d  
    ZovW0Q)m  
    %  This Matlab script file solves the nonlinear Schrodinger equations O8B\{T1  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ne 4Q#P  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear +L7n<U3  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cSXwYZDx?  
    >-H {Z{VDd  
    C=1;                           S H!  
    M1=120,                       % integer for amplitude 0NS<?p~_S  
    M3=5000;                      % integer for length of coupler G6T_O  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) l c+g&f  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. b )B? F  
    T =40;                        % length of time:T*T0. eeyHy"@  
    dt = T/N;                     % time step !o:f$6EA~C  
    n = [-N/2:1:N/2-1]';          % Index {phNds%  
    t = n.*dt;   &*+'>UEe5  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 8C*c{(4  
    w=2*pi*n./T; 5H*\t 7  
    g1=-i*ww./2; _lamn }(x0  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~`aa5;Ab_  
    g3=-i*ww./2; |Y?H A&  
    P1=0; z6*X%6,8  
    P2=0; Zl^\Q=*s  
    P3=1; u6AA4(  
    P=0; -[cTx[Z,  
    for m1=1:M1                 '.:z&gSqx0  
    p=0.032*m1;                %input amplitude vEJWFoeEFm  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 uScMn/%  
    s1=s10; LDPUD'  
    s20=0.*s10;                %input in waveguide 2 3yVMXK  
    s30=0.*s10;                %input in waveguide 3 <sBbT `  
    s2=s20; G3Z)Z) N  
    s3=s30; k?+?v?I =  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   <g"{Wv: h  
    %energy in waveguide 1 e)d`pQ6  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   4 o Fel.o  
    %energy in waveguide 2 5>[u `  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   sB7# ~p A  
    %energy in waveguide 3 1*\o.  
    for m3 = 1:1:M3                                    % Start space evolution 'Gj3:-xqL  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS MN\HDKN  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; GPN]9  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; I>W=x'PkLn  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 2LF/H$] o5  
       sca2 = fftshift(fft(s2)); l3)} qu  
       sca3 = fftshift(fft(s3)); ]'&LGA`  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ;ub;l h3  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Z?h~{Mg  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Q'=x|K#xj  
       s3 = ifft(fftshift(sc3)); b,7k)ND1F  
       s2 = ifft(fftshift(sc2));                       % Return to physical space c2l@6<Ww  
       s1 = ifft(fftshift(sc1)); |fK1/<sz#  
    end ,Lr. 9I.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); NPy&OcRl  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); v[1aW v:  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); "~sW"n(F_  
       P1=[P1 p1/p10]; KcWN,!G  
       P2=[P2 p2/p10]; wW>A_{Y  
       P3=[P3 p3/p10]; zdB^S%cztS  
       P=[P p*p]; TM%| '^)  
    end "\: `/k3  
    figure(1) =$'6(aDH  
    plot(P,P1, P,P2, P,P3); ; ZA~p  
    e"{{ TcNk  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~