计算脉冲在非线性耦合器中演化的Matlab 程序 /3]b!lFZZ _dg2i|yP< % This Matlab script file solves the coupled nonlinear Schrodinger equations of
RA5*QW
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
(C1@f!Z % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
NTj: +z0 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
r$=YhI/= Y(:.f-Du %fid=fopen('e21.dat','w');
O-5s}RT N = 128; % Number of Fourier modes (Time domain sampling points)
sg=mkkD!g M1 =3000; % Total number of space steps
\I3={ii0 J =100; % Steps between output of space
7mUpn:U T =10; % length of time windows:T*T0
J}c`\4gD T0=0.1; % input pulse width
?AL;m.X-@ MN1=0; % initial value for the space output location
fJjtrvNy) dt = T/N; % time step
HOEjLwH n = [-N/2:1:N/2-1]'; % Index
>_ )~"Ra t = n.*dt;
hqPpRSv' u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
FN-j@ u20=u10.*0.0; % input to waveguide 2
&HS6} u1=u10; u2=u20;
YLEk
M
U1 = u1;
:yLSLN U2 = u2; % Compute initial condition; save it in U
AX
{~A:B ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
uTSTBI4t w=2*pi*n./T;
y)5U*\b g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
@A-*XJNS": L=4; % length of evoluation to compare with S. Trillo's paper
=*ZQGM 3w dz=L/M1; % space step, make sure nonlinear<0.05
c5 jd
q[0 for m1 = 1:1:M1 % Start space evolution
d8Keyi8[ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
5LPyPL L u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
vCPiT2G ca1 = fftshift(fft(u1)); % Take Fourier transform
]w)*8
w.) ca2 = fftshift(fft(u2));
9}\{0;9 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
2N,<~L`FX' c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
.6@qU} u2 = ifft(fftshift(c2)); % Return to physical space
]i}3`e? u1 = ifft(fftshift(c1));
Do&em8i
z if rem(m1,J) == 0 % Save output every J steps.
6b-j U1 = [U1 u1]; % put solutions in U array
|.]:#)^X? U2=[U2 u2];
3L;GfYr0 MN1=[MN1 m1];
2J^jSgr50d z1=dz*MN1'; % output location
*1Q~/<W end
ywPFL/@ end
o0f{ePZ= hg=abs(U1').*abs(U1'); % for data write to excel
k8]uy2R6} ha=[z1 hg]; % for data write to excel
jz\LI t1=[0 t'];
E"E Bj7<s hh=[t1' ha']; % for data write to excel file
0K0[mC}ZwM %dlmwrite('aa',hh,'\t'); % save data in the excel format
[sM~B figure(1)
p6qza @ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
hQm"K~SW= figure(2)
'+!@c&d#%o waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
T8ga)BA (sngq{*%%z 非线性超快脉冲耦合的数值方法的Matlab程序 H*l2,0&W rUb`_ W@ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
U~,~ GU=X Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
/uTU*Oe r%*UU4xvB AWp{n GzJ("RE0)v % This Matlab script file solves the nonlinear Schrodinger equations
Bf&,ACOf % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
|j[=uS % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
FfDe&/,/ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
f}4bnu3 CC(At.dd C=1;
|@}Yady@C M1=120, % integer for amplitude
zi^T?<t M3=5000; % integer for length of coupler
6[-N}) N = 512; % Number of Fourier modes (Time domain sampling points)
L_>j
SP dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
sknta0^=2 T =40; % length of time:T*T0.
kc0YWW Q-: dt = T/N; % time step
;P` z
?>J: n = [-N/2:1:N/2-1]'; % Index
Vb=Oz t = n.*dt;
0?D`|x_ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
07zbx6:t w=2*pi*n./T;
g$++\%k& g1=-i*ww./2;
piZ0KA" g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
ebbC`eFD g3=-i*ww./2;
CM ; r\,o P1=0;
]Zfg~K( P2=0;
G~oGBq6Gz P3=1;
6cCC+*V{ P=0;
qOyg&]7 for m1=1:M1
{x3"/sF p=0.032*m1; %input amplitude
.t/XW++ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
D[.;-4"_ s1=s10;
*x^W`i
s20=0.*s10; %input in waveguide 2
`@8QQB s30=0.*s10; %input in waveguide 3
";jj` s2=s20;
;QT.|.t6 s3=s30;
Up61Xn p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
29]T:I1d[ %energy in waveguide 1
oW:p6d p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
u$7od$&S %energy in waveguide 2
k79"xyXX p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
*\?tW]8< %energy in waveguide 3
[B}$U|V0 for m3 = 1:1:M3 % Start space evolution
eq0&8/= s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
wnaT~r@U' s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
CJ*8x7-t s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
f'hrS}e sca1 = fftshift(fft(s1)); % Take Fourier transform
sN6R0YW sca2 = fftshift(fft(s2));
j@jaFsX| sca3 = fftshift(fft(s3));
gr\UI!]F sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
x|#R$^4CY sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
3`ov?T(H sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
PZVh)6f"c s3 = ifft(fftshift(sc3));
!J 3dlUFRO s2 = ifft(fftshift(sc2)); % Return to physical space
Tw:j}ERq s1 = ifft(fftshift(sc1));
BDW%cs end
wS*An4%G p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
xPFNH`O& p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
3I87|5V,Z p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
-L;sv0 P1=[P1 p1/p10];
5PY,}1` P2=[P2 p2/p10];
w8!S;~xKI P3=[P3 p3/p10];
oyQp"'|N P=[P p*p];
!f
7CN< end
Hw 7 figure(1)
+!dWQ=W plot(P,P1, P,P2, P,P3);
(vX+
Yw i:9f# 转自:
http://blog.163.com/opto_wang/