切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8877阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 2bLc57j{`9  
    @%2crJnkS  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of p>\[[Md  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of A^6z.MdYZ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear {d'B._#i  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;<[!;8  
    c^'bf_~-W  
    %fid=fopen('e21.dat','w'); )quQI)Ym  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) r}e(MT:R'  
    M1 =3000;              % Total number of space steps \Gk}Fer  
    J =100;                % Steps between output of space N#jUqm  
    T =10;                  % length of time windows:T*T0 "Dk@-Ac  
    T0=0.1;                 % input pulse width :|S[i('  
    MN1=0;                 % initial value for the space output location 1|-C(UW>  
    dt = T/N;                      % time step frm[<-~w0  
    n = [-N/2:1:N/2-1]';           % Index bZgo}`o%  
    t = n.*dt;   lul  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ^`dMjeF  
    u20=u10.*0.0;                  % input to waveguide 2 .pe.K3G &  
    u1=u10; u2=u20;                 !Sy9v  
    U1 = u1;   tj0 0xYY  
    U2 = u2;                       % Compute initial condition; save it in U ;nbEV2Y<  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 7Dl^5q.|  
    w=2*pi*n./T; %rnRy<9  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ~H?v L c;>  
    L=4;                           % length of evoluation to compare with S. Trillo's paper n#WOIweInf  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 9 ;vES^  
    for m1 = 1:1:M1                                    % Start space evolution :jkPV%!~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS | B$JX'_  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >wb*kyO7(#  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform il{x?#Wrb  
       ca2 = fftshift(fft(u2)); rfQs 7S;G  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 5N6R%2,A  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   d^$cx(2$D  
       u2 = ifft(fftshift(c2));                        % Return to physical space Q2]7|C  
       u1 = ifft(fftshift(c1)); rk&oKd_&i  
    if rem(m1,J) == 0                                 % Save output every J steps. $^ir3f+  
        U1 = [U1 u1];                                  % put solutions in U array J32{#\By  
        U2=[U2 u2]; w""u]b%:r  
        MN1=[MN1 m1]; XAF]B,h=  
        z1=dz*MN1';                                    % output location -gC%*S5&  
      end H3d|eO4+W  
    end SJj_e-  
    hg=abs(U1').*abs(U1');                             % for data write to excel d3?gh[$  
    ha=[z1 hg];                                        % for data write to excel d/3&3>/  
    t1=[0 t']; 2fc+PE  
    hh=[t1' ha'];                                      % for data write to excel file _f "I%QTL  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format v [x 5@$  
    figure(1) n31nORx50  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn F{7 BY~d  
    figure(2) e*( _Cvxp  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn d3T7$'l$  
    1uA-!T*e>  
    非线性超快脉冲耦合的数值方法的Matlab程序 CnY dj~  
    >[T6/#M  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Kb5}M/8  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /Z#AHfKF  
    n],cs  
    B@\0b|  
    [vY)y\W{  
    %  This Matlab script file solves the nonlinear Schrodinger equations SFsT^f<  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ^H<VH  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5y0LkuRR:  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6w{""K.{  
    ahM? ;p  
    C=1;                           [ CU8%%7  
    M1=120,                       % integer for amplitude c No)LF  
    M3=5000;                      % integer for length of coupler N;m62N  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) b_~KtMO  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ={190=\9  
    T =40;                        % length of time:T*T0. 5KYR"-jY  
    dt = T/N;                     % time step =<= [E:B  
    n = [-N/2:1:N/2-1]';          % Index zCwb>v  
    t = n.*dt;   -M[BC~!0;  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. j=>WWlZ  
    w=2*pi*n./T; &.0wPyw  
    g1=-i*ww./2; a5@lWpQsV  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; SnO,-Rg  
    g3=-i*ww./2; _@|_`5W  
    P1=0; 0b,{4DOD  
    P2=0; Z>@\!$Mc  
    P3=1; 1BzU-Ma  
    P=0; Gh'{O/F4*  
    for m1=1:M1                 zq#gf  
    p=0.032*m1;                %input amplitude 2fUz}w (  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 H{d/%}7[v  
    s1=s10; a9nXh6  
    s20=0.*s10;                %input in waveguide 2 d k|X&)xTJ  
    s30=0.*s10;                %input in waveguide 3 5hiuBf<  
    s2=s20; h&{>4{  
    s3=s30; 3_ =:^Z  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   JlH5 <:#PN  
    %energy in waveguide 1 rf&nTDaWI  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   a>nV!b\n5  
    %energy in waveguide 2 MP8s}  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   V3\} ]5  
    %energy in waveguide 3 =1F F2#zS  
    for m3 = 1:1:M3                                    % Start space evolution q]*:RI?wGT  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ><;.vP  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; gi\UNT9x  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; EmcwX4|  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform zhwajc  
       sca2 = fftshift(fft(s2)); X@B,w_b  
       sca3 = fftshift(fft(s3)); MWc{7,  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   @/?$ZX/e[  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); U C9w T  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 0`e- ;  
       s3 = ifft(fftshift(sc3)); ';x5 $5k'  
       s2 = ifft(fftshift(sc2));                       % Return to physical space W&a<Q)o*I  
       s1 = ifft(fftshift(sc1)); s|8_R;  
    end &$NVEmW-J  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 9hs7B!3pc>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7R om#Kl:  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~E7=c3:"  
       P1=[P1 p1/p10]; `\S~;O  
       P2=[P2 p2/p10]; F (:] lM|  
       P3=[P3 p3/p10]; UBy:W^\g  
       P=[P p*p]; o"A%dC_  
    end /F @a@m|  
    figure(1) D&&11Iz&  
    plot(P,P1, P,P2, P,P3); R:DW>LB  
    6~Xe$fP(  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~