切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7427阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 g%1!YvS3v  
    `k^ i#Nc>  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 7$,["cJX  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of DtXXfp@;  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w v9s{I{P  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h7[VXE  
    1K0 9iB  
    %fid=fopen('e21.dat','w'); 1fViW^l_  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 7ABHgw~?8r  
    M1 =3000;              % Total number of space steps }1z= C<  
    J =100;                % Steps between output of space %jqBYn0q'  
    T =10;                  % length of time windows:T*T0 *z` {$hc  
    T0=0.1;                 % input pulse width :}UWy?F  
    MN1=0;                 % initial value for the space output location 5(u7b  
    dt = T/N;                      % time step QbxjfW"/+  
    n = [-N/2:1:N/2-1]';           % Index ;9=9D{-4+  
    t = n.*dt;   p Ic ;9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 1g2%f9G  
    u20=u10.*0.0;                  % input to waveguide 2 ;T-i+_  
    u1=u10; u2=u20;                 j3Cpo x  
    U1 = u1;   (<itE3P  
    U2 = u2;                       % Compute initial condition; save it in U \eI )(,A  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. T/)$}#w0i  
    w=2*pi*n./T; Y]&H U) u  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Q(oWaG  
    L=4;                           % length of evoluation to compare with S. Trillo's paper uhQ3  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 j%]i#iqF  
    for m1 = 1:1:M1                                    % Start space evolution $M$oNOT}Y  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Itj|0PGd  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; V6BCW;   
       ca1 = fftshift(fft(u1));                        % Take Fourier transform EG7ki0  
       ca2 = fftshift(fft(u2)); u9N?B* &{  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation i.0}qS?  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   h"#^0$f  
       u2 = ifft(fftshift(c2));                        % Return to physical space .7+_ubj&,  
       u1 = ifft(fftshift(c1)); pFGdm3pV  
    if rem(m1,J) == 0                                 % Save output every J steps. l OI(+74  
        U1 = [U1 u1];                                  % put solutions in U array \1aj!)  
        U2=[U2 u2]; O0WzDD  
        MN1=[MN1 m1]; 67/hhO  
        z1=dz*MN1';                                    % output location 75Jh(hd(  
      end GB^Ch YOb  
    end v|t^th,  
    hg=abs(U1').*abs(U1');                             % for data write to excel v;?t=}NwF  
    ha=[z1 hg];                                        % for data write to excel bveNd0hN  
    t1=[0 t']; 1,,o_e\nn3  
    hh=[t1' ha'];                                      % for data write to excel file 9);a0}*5  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 7{."Y@  
    figure(1) ; =F^G?p^  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn /LPSI^l!m  
    figure(2) g9GE0DbT`  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn qJ5Y}/r  
    S>*i^If  
    非线性超快脉冲耦合的数值方法的Matlab程序 9t7_7{Q+;  
    KB *[b  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   /_26D0}UuF  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )q&uvfQ1(  
    'u_'y  
    WASs'Gx  
    e u^z&R!um  
    %  This Matlab script file solves the nonlinear Schrodinger equations Q4CxtY  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of HQQc<7c ",  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .CQ IN]iD  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jP@H$$-=wH  
    v(h   
    C=1;                           f o4j^,`  
    M1=120,                       % integer for amplitude 2[qO;js  
    M3=5000;                      % integer for length of coupler nCGLuZn  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) BU<A+Pe>  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;u!>( QQ  
    T =40;                        % length of time:T*T0. i7cMe8  
    dt = T/N;                     % time step -'5:Cq   
    n = [-N/2:1:N/2-1]';          % Index t9Pu:B6  
    t = n.*dt;   "eZNci  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. BT`D|<  
    w=2*pi*n./T; 0K@s_C=n#  
    g1=-i*ww./2; }`h)+Im=  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Ol{)U;, `  
    g3=-i*ww./2; _Bb/~^  
    P1=0; h1FM)n[E7  
    P2=0; EAj2uV  
    P3=1; ?9OiF-:n  
    P=0; F>96]71 2  
    for m1=1:M1                 pWO,yxr:  
    p=0.032*m1;                %input amplitude T% Kj >-  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ! Hdg $,  
    s1=s10; HGh`O\f8  
    s20=0.*s10;                %input in waveguide 2 2/E3~X7  
    s30=0.*s10;                %input in waveguide 3 6EGh8H f  
    s2=s20; W*}q;ub;  
    s3=s30; _\"7  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ~BDVmQa  
    %energy in waveguide 1 1EyM,$On  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   u"?cmg<.1  
    %energy in waveguide 2 z )a8 ^]`  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   %_KNAuM  
    %energy in waveguide 3 CmY'[rI  
    for m3 = 1:1:M3                                    % Start space evolution "  F~uTo  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS -KCm#!  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; &owBmpz  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ?U cW@B{  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform tceQn ^|<  
       sca2 = fftshift(fft(s2)); PfF7*}P  
       sca3 = fftshift(fft(s3)); CsQ}eW8uEf  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Y \& 4`v'  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); b_W0tiyv%  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); )?K3nr  
       s3 = ifft(fftshift(sc3));  Ae <v  
       s2 = ifft(fftshift(sc2));                       % Return to physical space (`<l" @:_*  
       s1 = ifft(fftshift(sc1)); [NQ`S ~_:  
    end w`CGDF\Oo  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); O<)"k j 7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); BN|+2D+S  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [`6|~E"F  
       P1=[P1 p1/p10]; V`l.F"<L  
       P2=[P2 p2/p10]; vaxNF%^~yN  
       P3=[P3 p3/p10]; qCc'w8A  
       P=[P p*p]; N|h`}*:x=  
    end >(<OhS(  
    figure(1) f)({;,q  
    plot(P,P1, P,P2, P,P3); 1YTnOiYS1  
    (9*=d_=  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~