计算脉冲在非线性耦合器中演化的Matlab 程序 =3w;<1 ?'
cPNc$^Y % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Cd"{7<OyM4 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
]2qKc % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
BR@m*JGajz % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
ceJi|`F usD@4!PoA %fid=fopen('e21.dat','w');
-dBWpT N = 128; % Number of Fourier modes (Time domain sampling points)
SnQT1U% M1 =3000; % Total number of space steps
3cL
iZ%6^ J =100; % Steps between output of space
`w\P- q T =10; % length of time windows:T*T0
CCe>*tdf T0=0.1; % input pulse width
fM4B.45j MN1=0; % initial value for the space output location
@|c]) dt = T/N; % time step
)j>U4a n = [-N/2:1:N/2-1]'; % Index
y7fy9jQ
8. t = n.*dt;
xi(\=LbhY u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
#xw*;hW< u20=u10.*0.0; % input to waveguide 2
iI";m0Ny u1=u10; u2=u20;
~<n.5q%Z U1 = u1;
@|DQZt U2 = u2; % Compute initial condition; save it in U
e@ZM&iR ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
mA+:)?e5~ w=2*pi*n./T;
ud$-A g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
3>@VPMi L=4; % length of evoluation to compare with S. Trillo's paper
O.( 2 dz=L/M1; % space step, make sure nonlinear<0.05
SI+Uq(k for m1 = 1:1:M1 % Start space evolution
")STB8kQ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
jTcv&`fAz u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
-m%`Di!E ca1 = fftshift(fft(u1)); % Take Fourier transform
OpEH4X.Z ca2 = fftshift(fft(u2));
()?83Xj[c c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
'1gfXC c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
>9dD7FH u2 = ifft(fftshift(c2)); % Return to physical space
lt&(S) u1 = ifft(fftshift(c1));
P$#: $U@ if rem(m1,J) == 0 % Save output every J steps.
1d<Uwb> U1 = [U1 u1]; % put solutions in U array
4>>=TJ!M U2=[U2 u2];
d/&>
`[i MN1=[MN1 m1];
'6 F-% z1=dz*MN1'; % output location
gYc]z5` end
bH e'
U> end
4}uOut hg=abs(U1').*abs(U1'); % for data write to excel
{4G/HW28 ha=[z1 hg]; % for data write to excel
5?^L)) t1=[0 t'];
_V-K yK hh=[t1' ha']; % for data write to excel file
1^}I?PbqV %dlmwrite('aa',hh,'\t'); % save data in the excel format
LnI figure(1)
$ItjVc@U waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
wwB3m& figure(2)
dWvVK("Wj waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
gVOAB-nw Nhjq.& 非线性超快脉冲耦合的数值方法的Matlab程序 W8^m-B& "^n,(l*4x 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
E=p+z"Ui Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
\:WWrY8& Dp
](?Yr o3 fc - DVL-qt\;n % This Matlab script file solves the nonlinear Schrodinger equations
(?na|yd % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
lb-1z]YwQ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
5*pzL0,Y % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
3S:Lce'f m0"K^p C=1;
9Rnypzds M1=120, % integer for amplitude
K
-U}sW M3=5000; % integer for length of coupler
-)`_w^Ox N = 512; % Number of Fourier modes (Time domain sampling points)
YNEwX$)M,B dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
J~k9jeq9 T =40; % length of time:T*T0.
l<`> dt = T/N; % time step
X g6ezlW n = [-N/2:1:N/2-1]'; % Index
y>P+"Z.K%} t = n.*dt;
I+8n;I)]X ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
50^ux:Uv+N w=2*pi*n./T;
*j%x g1=-i*ww./2;
>X*tMhcb g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
>.iF,[.[F< g3=-i*ww./2;
M6)
G_- P1=0;
j~Aq-8R= P2=0;
h+FM?ct6} P3=1;
f2i:I1 p(" P=0;
sS>b}u+v#! for m1=1:M1
A9$x8x*Lt p=0.032*m1; %input amplitude
k {*QU( s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
zfeT>S+ s1=s10;
{{?g%mQ6 s20=0.*s10; %input in waveguide 2
ci~#G[_$S s30=0.*s10; %input in waveguide 3
o|kykxcq s2=s20;
,@`?I6nKy s3=s30;
#).$o~1ht! p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
{>f"&I<xw %energy in waveguide 1
cMw<3u\ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
H3A$YkK [ %energy in waveguide 2
h:
' |)O p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
f!9i6 %energy in waveguide 3
m@td[^O- for m3 = 1:1:M3 % Start space evolution
e8F]m`{_" s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
;w7 mr1 s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
] G&*HMtp s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
8>&@"j sca1 = fftshift(fft(s1)); % Take Fourier transform
95l)s], sca2 = fftshift(fft(s2));
!_S#8" sca3 = fftshift(fft(s3));
-50DGA,K6 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
m ptFd sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Re$h6sh sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
bdg6B7%Q s3 = ifft(fftshift(sc3));
PsC")JS s2 = ifft(fftshift(sc2)); % Return to physical space
L:$4o s1 = ifft(fftshift(sc1));
uU H4vUa end
U'fP p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
)9]a p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
M.W
X&;> p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
X3.zNHN5 P1=[P1 p1/p10];
wPlM=
.Hq? P2=[P2 p2/p10];
Hn|W3U P3=[P3 p3/p10];
cHjQwl P=[P p*p];
Pe`(9&iT. end
ON :t"z5 figure(1)
aZFpt/.d plot(P,P1, P,P2, P,P3);
o?`FjZ6;x 6_CP?X+T 转自:
http://blog.163.com/opto_wang/