切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8955阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 {Yq"%n'0  
    )@lZ~01~d  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 2XoFmV),F  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +c4-7/kE  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bm/pLC6%.  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 > mI1wV[  
    %C8p!)Hu  
    %fid=fopen('e21.dat','w'); *B<Ig^c  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) H}v.0R  
    M1 =3000;              % Total number of space steps hF m_`J&"  
    J =100;                % Steps between output of space z}Y23W&sX  
    T =10;                  % length of time windows:T*T0 hd+(M[C<9  
    T0=0.1;                 % input pulse width bogw/)1  
    MN1=0;                 % initial value for the space output location KmF" Ccc  
    dt = T/N;                      % time step >i&"{GZ  
    n = [-N/2:1:N/2-1]';           % Index Std?p{ i  
    t = n.*dt;   cD^`dn%$  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 =[A5qwyv  
    u20=u10.*0.0;                  % input to waveguide 2 RP!!6A6:  
    u1=u10; u2=u20;                 4Js2/s  
    U1 = u1;   8&[Lr o9  
    U2 = u2;                       % Compute initial condition; save it in U dyH<D5  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 9, A(|g  
    w=2*pi*n./T; 7Iz%Jty  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1P8XVI'  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 18`YY\u(  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 n8h1S lK08  
    for m1 = 1:1:M1                                    % Start space evolution +#* F"k(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS V]E# N  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; h=?V)WSM  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Rgstk/1  
       ca2 = fftshift(fft(u2)); Z<_"Tk;!',  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ]|H`?L  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   8|]r>L$Wk  
       u2 = ifft(fftshift(c2));                        % Return to physical space c> SFt tbU  
       u1 = ifft(fftshift(c1)); 4lM)ZDg  
    if rem(m1,J) == 0                                 % Save output every J steps. X667*L^  
        U1 = [U1 u1];                                  % put solutions in U array E&;[E  
        U2=[U2 u2]; [ADSGnw  
        MN1=[MN1 m1]; Np2I*l6W  
        z1=dz*MN1';                                    % output location a:q>7V|%$  
      end cj[a^ ZH  
    end g3V bP  
    hg=abs(U1').*abs(U1');                             % for data write to excel S['rfD>9  
    ha=[z1 hg];                                        % for data write to excel %-nYK3  
    t1=[0 t']; T<o^f n,H  
    hh=[t1' ha'];                                      % for data write to excel file i`nmA-Zj[  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format E =*82Y=B  
    figure(1) -RLY.@'d-M  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn V yOuw9  
    figure(2) w}20l F  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn `j#zwgUs  
    pA%}CmrMq  
    非线性超快脉冲耦合的数值方法的Matlab程序 l+ ,p=  
    v[7iWBqJ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   XBr-UjQ  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 mM[KT} A  
    :CeK 'A\  
    (^{tu89ab  
    B|f =hlY  
    %  This Matlab script file solves the nonlinear Schrodinger equations 3-=f@uH!  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Za110oF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear C {*' p+f  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $q$G  
     =8o$  
    C=1;                           ^@V; `jsll  
    M1=120,                       % integer for amplitude "^froQ{"T  
    M3=5000;                      % integer for length of coupler MQ#nP_i  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 7^oO N+=d  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 74wDf  
    T =40;                        % length of time:T*T0. ShIJ6LZ  
    dt = T/N;                     % time step n%S%a >IQj  
    n = [-N/2:1:N/2-1]';          % Index ,<CFjtelO  
    t = n.*dt;   _Xqa_6+/  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. G(3wI}  
    w=2*pi*n./T; "y9]>9:$-  
    g1=-i*ww./2; Vsj1!}X:  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; i8h^~d2"  
    g3=-i*ww./2; '=WPi_Z5:C  
    P1=0; Bs3M7z RG  
    P2=0; @zC p/fo3  
    P3=1; $eq*@5B  
    P=0; /ucS*m:<x  
    for m1=1:M1                 Oxp!G7qfo  
    p=0.032*m1;                %input amplitude cr`NHl/XF  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 @* <`*W  
    s1=s10; ]3\%i2NM  
    s20=0.*s10;                %input in waveguide 2 si,)!%b  
    s30=0.*s10;                %input in waveguide 3 }> ]`#s  
    s2=s20; FX  %(<M  
    s3=s30; ;Tec)Fl  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   U^;|as  
    %energy in waveguide 1 B'v~0Kau  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ~(;HkT  
    %energy in waveguide 2 uqsVq0H  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Y2TXWl,Jk  
    %energy in waveguide 3  8+,I(+  
    for m3 = 1:1:M3                                    % Start space evolution Qx_]oz]NY  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS XOoz.GSQ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; so>jz@!EE  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; xFzaVjjP  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 20 Z/Y\  
       sca2 = fftshift(fft(s2));  u*m|o8  
       sca3 = fftshift(fft(s3)); 0aqq*e'c  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   0O!A8FA0  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); E*vh<C  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ]^0mh["  
       s3 = ifft(fftshift(sc3)); iOB*K)U1  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ^ AJ_  
       s1 = ifft(fftshift(sc1)); WjsmLb:5  
    end *AG01# ZF  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); xqpq|U  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); %%T?LRv  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); {rzvZ0-j}  
       P1=[P1 p1/p10]; Sw.Kl 0M  
       P2=[P2 p2/p10]; GO UO  
       P3=[P3 p3/p10]; O& 1z-  
       P=[P p*p]; ~hb;kc3  
    end .^wBv 'Y  
    figure(1) r@c!M|m@  
    plot(P,P1, P,P2, P,P3); c{3P|O&.  
    cz1 m05E  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~