计算脉冲在非线性耦合器中演化的Matlab 程序 x^]1m% g,cl|]/\d % This Matlab script file solves the coupled nonlinear Schrodinger equations of
+0O^!o % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
#oD*H:%* % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
5VPP 2;J % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
a0x/ ?)DO cc$+"7/J^c %fid=fopen('e21.dat','w');
;u: }rA) N = 128; % Number of Fourier modes (Time domain sampling points)
Fh$Xcz~i M1 =3000; % Total number of space steps
cX/["AM J =100; % Steps between output of space
^aO\WKkA T =10; % length of time windows:T*T0
WD5ulm?91| T0=0.1; % input pulse width
:S
|) MN1=0; % initial value for the space output location
>|So`C3:e dt = T/N; % time step
@VcSK` n = [-N/2:1:N/2-1]'; % Index
p![CH t = n.*dt;
[-Dl ,P= u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
$:MO/Suz{ u20=u10.*0.0; % input to waveguide 2
goV[C]| u1=u10; u2=u20;
y|@=j~}Zq U1 = u1;
- '5OX/Szq U2 = u2; % Compute initial condition; save it in U
Bx32pY ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
675x/0}GO w=2*pi*n./T;
bbU{ />yW g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
L3-tD67oa L=4; % length of evoluation to compare with S. Trillo's paper
oLp:Z= dz=L/M1; % space step, make sure nonlinear<0.05
Ka\%kB>*` for m1 = 1:1:M1 % Start space evolution
!(<Yc5 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
` `R;x u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
OVm
$ ca1 = fftshift(fft(u1)); % Take Fourier transform
eqze7EY ca2 = fftshift(fft(u2));
*xOrt)D= c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
L?n*b c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
Pc4FEH/ u2 = ifft(fftshift(c2)); % Return to physical space
[UHDN:y u1 = ifft(fftshift(c1));
JOIbxU{U_ if rem(m1,J) == 0 % Save output every J steps.
T+[N-"N U1 = [U1 u1]; % put solutions in U array
m,U`hPJ U2=[U2 u2];
(U |[C* MN1=[MN1 m1];
=/rIXReY z1=dz*MN1'; % output location
fH7o,U| end
81|Xg5g)b end
{>cO&eiCt hg=abs(U1').*abs(U1'); % for data write to excel
t>T |\WAAL ha=[z1 hg]; % for data write to excel
bG0t7~!{E t1=[0 t'];
_KkLH\1g$ hh=[t1' ha']; % for data write to excel file
A8R}W= %dlmwrite('aa',hh,'\t'); % save data in the excel format
,]'?Gd figure(1)
:,=no>mMx waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
]64mSB figure(2)
wKCHG/W waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
8]N+V: #U NTD4 非线性超快脉冲耦合的数值方法的Matlab程序 #is:6Z,OEU p_jDnb# 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
%jY/jp=R Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
<;.Zms${@ o~F @1 xh\{ dUPA OgfmyYMtc % This Matlab script file solves the nonlinear Schrodinger equations
2Ek6YNx % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
Eq9TJt'3y % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
F}A@H<? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
g@.RfX= u><gmp& C=1;
DLkNL?a M1=120, % integer for amplitude
~3.1.
'A M3=5000; % integer for length of coupler
*/n)_ N = 512; % Number of Fourier modes (Time domain sampling points)
EW{z?/ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
V$+xJ m T =40; % length of time:T*T0.
Mrp'wF
D dt = T/N; % time step
6v0^'} n = [-N/2:1:N/2-1]'; % Index
$LZf&q:\]* t = n.*dt;
]+W+8)f1M ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
;PJWd|3 w=2*pi*n./T;
$Tt@Xu g1=-i*ww./2;
DEaO=p| g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
ZN|DR|cUY g3=-i*ww./2;
Z
xLjh P1=0;
d(w
$! $"h P2=0;
t#~r'5va P3=1;
lkV%
k1w P=0;
tgDmHxB]0 for m1=1:M1
0iW]#O/ p=0.032*m1; %input amplitude
glh2CRUj s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
oq=D9 s1=s10;
O k_I}X s20=0.*s10; %input in waveguide 2
1<^"OjQ s30=0.*s10; %input in waveguide 3
8f% @ s2=s20;
SHPaSq'&N s3=s30;
'z2}qJJ) p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
-3X#$k8 %energy in waveguide 1
(j+C&*u p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
wYhWRgP %energy in waveguide 2
*~fZ9EkD p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
~ @Ib:M %energy in waveguide 3
*L/_ v for m3 = 1:1:M3 % Start space evolution
*"0Yr`)S s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
`pN"T?Pk s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
6z"fBF s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
BG"~yyKA sca1 = fftshift(fft(s1)); % Take Fourier transform
AL}c-#GG sca2 = fftshift(fft(s2));
&TSt/b/+W sca3 = fftshift(fft(s3));
Vf*!m~]Vqi sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
qJFBdJU (1 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
}3Pz{{B&+O sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
<dDGV>n4;
s3 = ifft(fftshift(sc3));
6!/e_a s2 = ifft(fftshift(sc2)); % Return to physical space
9'Y~! vY s1 = ifft(fftshift(sc1));
}+QgRGQ end
,>2ijk# p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
J& +s p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
B @UaaWh p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
FgNO# % P1=[P1 p1/p10];
R*E/E P2=[P2 p2/p10];
4>{q("r, P3=[P3 p3/p10];
PX[taDN P=[P p*p];
1fQvh/2 end
Et%s,zeA{2 figure(1)
oKz|hks[6 plot(P,P1, P,P2, P,P3);
=XJ
SE+ 7 Q<d\K(<3?: 转自:
http://blog.163.com/opto_wang/