切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8853阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^xe+(83S2?  
    lDL&":t  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of C|ZPnm>f30  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of =RB {.%  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear VWft/2p~  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4l 67B]o  
    P%2v(  
    %fid=fopen('e21.dat','w'); TIGtX]`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ` -_!%m/  
    M1 =3000;              % Total number of space steps 'rB% a<  
    J =100;                % Steps between output of space NY7yk3  
    T =10;                  % length of time windows:T*T0 U WT%0t_T  
    T0=0.1;                 % input pulse width GD4S/fn3  
    MN1=0;                 % initial value for the space output location yd;e;Bb7*  
    dt = T/N;                      % time step ovKM;cRs/  
    n = [-N/2:1:N/2-1]';           % Index t6"%u3W8M  
    t = n.*dt;   |nNcV~%~  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 bWTf P8gT  
    u20=u10.*0.0;                  % input to waveguide 2 sh :$J[  
    u1=u10; u2=u20;                 v~mVf.j1  
    U1 = u1;   }zGx0Q  
    U2 = u2;                       % Compute initial condition; save it in U U}w'/:H  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. re*}a)iL  
    w=2*pi*n./T; Yc[umn^K  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T %jL^sA2;c+  
    L=4;                           % length of evoluation to compare with S. Trillo's paper yCxYFi  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 E0ED[d,  
    for m1 = 1:1:M1                                    % Start space evolution gGrVpOzBj  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 0he3[m}Nr  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; X.b8qbnq[  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Mq\=pxC@  
       ca2 = fftshift(fft(u2)); H$%MIBz>$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation f"s_dR  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ^L%_kL_7  
       u2 = ifft(fftshift(c2));                        % Return to physical space _ /1/{  
       u1 = ifft(fftshift(c1)); FJ3S  
    if rem(m1,J) == 0                                 % Save output every J steps. -`faXFW'  
        U1 = [U1 u1];                                  % put solutions in U array *D|a`R!Y  
        U2=[U2 u2]; oh{>nwH  
        MN1=[MN1 m1]; 9tHK_),9  
        z1=dz*MN1';                                    % output location PK+sGV  
      end RBQ8+^  
    end 6=f)3!=  
    hg=abs(U1').*abs(U1');                             % for data write to excel .lcp5D[(  
    ha=[z1 hg];                                        % for data write to excel @} Ig*@  
    t1=[0 t']; :-RB< Lj  
    hh=[t1' ha'];                                      % for data write to excel file cC-8.2  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Lap?L/NS  
    figure(1) &l+Qn'N  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn U<'N=#A J  
    figure(2) UyRy>:n  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn :qE.(k1@5  
    6 - 3?&+  
    非线性超快脉冲耦合的数值方法的Matlab程序 HTL6;87w+]  
    8"&!3_  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   m}l);P^  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Wep^He\:  
    72;'8  
    f\ P0%  
    =F@ +~)_  
    %  This Matlab script file solves the nonlinear Schrodinger equations :|bL2T@>[  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of uZl d9u  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear TnQ>v{Rx  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 i%o%bib#  
    H@(O{ 9Yl;  
    C=1;                           QATRrIj{e  
    M1=120,                       % integer for amplitude > 'R{,1# U  
    M3=5000;                      % integer for length of coupler j- 9)Sijj{  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) "1,*6(;:  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]he~KO[j<  
    T =40;                        % length of time:T*T0. HR-'8?)R.A  
    dt = T/N;                     % time step hNXZL>6  
    n = [-N/2:1:N/2-1]';          % Index ZS.=GjK  
    t = n.*dt;   |" }rdOV)  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ,NGHv?.N  
    w=2*pi*n./T; Ae7FtJO  
    g1=-i*ww./2; 54p{J  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; BvP\c_  
    g3=-i*ww./2; @1o X&#  
    P1=0; $z_yx `5  
    P2=0; 20}HTV{v  
    P3=1; 5M=U*BI  
    P=0; Ovx *  
    for m1=1:M1                 ~lV#- m*  
    p=0.032*m1;                %input amplitude 9Y3"V3EZ  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 k@7#8(3  
    s1=s10; uqcG3Pi  
    s20=0.*s10;                %input in waveguide 2 My>q%lF=fw  
    s30=0.*s10;                %input in waveguide 3 48 -j  
    s2=s20; %1 )c{7  
    s3=s30; 43k'96[2d  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   pEwo}NS*H  
    %energy in waveguide 1 2{j$1EdI@-  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   45 ^ Z5t  
    %energy in waveguide 2 vN(~}gOd\  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   >T;!Z5L1  
    %energy in waveguide 3 y^H5iB[SPL  
    for m3 = 1:1:M3                                    % Start space evolution ! \s}A7  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ?pIELezfK  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; _o9axBJs  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; +=/j+S`  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Dspvc  
       sca2 = fftshift(fft(s2)); F%V|Aa  
       sca3 = fftshift(fft(s3)); h2'6W)  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   6 5zx<  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 62ru%<x=  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 4 Y=0>FlY0  
       s3 = ifft(fftshift(sc3)); (EcP'F*;;y  
       s2 = ifft(fftshift(sc2));                       % Return to physical space , LwinjHA*  
       s1 = ifft(fftshift(sc1)); Osz=OO{  
    end "3VX9{'%@  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); fBh"  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2Rw<0.i|  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); z9 0JZA  
       P1=[P1 p1/p10]; J3y _JoS  
       P2=[P2 p2/p10]; oOprzxf"+Z  
       P3=[P3 p3/p10]; `]65&hWZL  
       P=[P p*p]; '|gsmO  
    end N/F_,>E  
    figure(1) fK:4jl-r  
    plot(P,P1, P,P2, P,P3); V06*qQ[  
    v FL$wr  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~