切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8732阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 dVSQG947i:  
    ~;}uYJ  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,uPN\`.u8  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of p,BoiYdi  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >en\:pJn)'  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 biPj(Dd  
    [r1dgwh8  
    %fid=fopen('e21.dat','w'); P1^O0)  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 3e9UDN2  
    M1 =3000;              % Total number of space steps mFmxEv  
    J =100;                % Steps between output of space jLn|zK  
    T =10;                  % length of time windows:T*T0 $Lz!04  
    T0=0.1;                 % input pulse width mD%IHzbn H  
    MN1=0;                 % initial value for the space output location eV"s5X[$  
    dt = T/N;                      % time step Y+h ?HS  
    n = [-N/2:1:N/2-1]';           % Index 1\J9QZX0  
    t = n.*dt;   K >Q 6  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 qJE_4/<^!  
    u20=u10.*0.0;                  % input to waveguide 2 ux~=}{tz  
    u1=u10; u2=u20;                 49ehj1Se  
    U1 = u1;   [X7gP4  
    U2 = u2;                       % Compute initial condition; save it in U A b+qLh&?  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. mqbCa6>_S  
    w=2*pi*n./T; dL~^C I  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [?bq4u`  
    L=4;                           % length of evoluation to compare with S. Trillo's paper @hwNM#>`  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 5Z:T9F4  
    for m1 = 1:1:M1                                    % Start space evolution @Z5,j)  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ^<_rE-k  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; KquuM ]5S  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform yqH9*&KH{  
       ca2 = fftshift(fft(u2)); UW1i%u k  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 7\N }QP0"u  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   u$FL(m4  
       u2 = ifft(fftshift(c2));                        % Return to physical space p W@Yr  
       u1 = ifft(fftshift(c1)); L)qUBp@MW  
    if rem(m1,J) == 0                                 % Save output every J steps. qHvU4v  
        U1 = [U1 u1];                                  % put solutions in U array cG&@PO]+.  
        U2=[U2 u2]; z<%dWz  
        MN1=[MN1 m1]; G#ELQ/Q  
        z1=dz*MN1';                                    % output location !ST7@D  
      end (*kKfg4Wj  
    end JXHf$k  
    hg=abs(U1').*abs(U1');                             % for data write to excel jrpki<D  
    ha=[z1 hg];                                        % for data write to excel 4C )sjk?m  
    t1=[0 t']; 8@b`a]lgrd  
    hh=[t1' ha'];                                      % for data write to excel file hiv {A9a?  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format iRx`Nx<@  
    figure(1) ttls.~DG  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn -3 Sb%V\  
    figure(2) &DjA?0`J  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn U2LD_-HZ  
    ;GKL[ tI"  
    非线性超快脉冲耦合的数值方法的Matlab程序 O{\%{XrW  
    FzykC  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   vz)R84   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s>W :vV@  
    W)'*Dcd  
    e.^?hwl  
    #^yOW^  
    %  This Matlab script file solves the nonlinear Schrodinger equations =[zP  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of WX]O1Y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear e tL?UF$  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^ cE{Uv  
    ,N;2"$+E  
    C=1;                           JLz32 %-M  
    M1=120,                       % integer for amplitude YQyI{  
    M3=5000;                      % integer for length of coupler [#YzU^^Ib  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) YQtq?&0Ct  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. w`D$W&3>  
    T =40;                        % length of time:T*T0. io(!z-$  
    dt = T/N;                     % time step m#R"~ >  
    n = [-N/2:1:N/2-1]';          % Index .R#-u/6g(  
    t = n.*dt;   _q}Cnp5  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 'p78^4'PL  
    w=2*pi*n./T; ^>>9?  
    g1=-i*ww./2; F|VKrH.  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; )wXE\$  
    g3=-i*ww./2; mU  
    P1=0; m`):= ^nC  
    P2=0; 8TG|frS  
    P3=1; s5 {B1e  
    P=0; zbr^ulr  
    for m1=1:M1                 cK2;)&U7  
    p=0.032*m1;                %input amplitude :_]0 8  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 t: oQHhO?  
    s1=s10; .z=%3p8+  
    s20=0.*s10;                %input in waveguide 2 ;(jL`L F  
    s30=0.*s10;                %input in waveguide 3 fJ0V|o  
    s2=s20; 8aC=k@YE  
    s3=s30; V#|/\-@  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   >I<}:=   
    %energy in waveguide 1 IOF!Ra:w  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   8 R7w$3pp\  
    %energy in waveguide 2 _ker,;{9C  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ` AD}6O+x  
    %energy in waveguide 3 'rS\9T   
    for m3 = 1:1:M3                                    % Start space evolution /Oi(5?Jn  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ; yE.R[I  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Ihr[44#  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; wnK6jMjkSf  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ZHUW1:qs  
       sca2 = fftshift(fft(s2)); J#F HR/zV  
       sca3 = fftshift(fft(s3)); %#PWD7a\  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~7PiIky.  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); SS24@:"{  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Aqz $WTHW+  
       s3 = ifft(fftshift(sc3)); M2RkrW#  
       s2 = ifft(fftshift(sc2));                       % Return to physical space e@;'#t  
       s1 = ifft(fftshift(sc1)); + !" Y C  
    end ~c] q:pU2  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); !`4ie  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2VUN  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 8SL E*c^8  
       P1=[P1 p1/p10]; )f8;ze  
       P2=[P2 p2/p10]; N$v_z>6Z  
       P3=[P3 p3/p10]; "KS" [i!3j  
       P=[P p*p]; 08{^Ksg  
    end ;DhAw1  
    figure(1) B0A y  
    plot(P,P1, P,P2, P,P3); fAz4>_4  
    E.sZjo1  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~