切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8790阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 N"zg)MsX  
    # 9@K  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of *K'_"2J  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +U^H`\EUr  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Q&?^eOI&#(  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4))5l9kc.  
    1Z_2s2`p  
    %fid=fopen('e21.dat','w'); 6Qx[W>I  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) !8@8  
    M1 =3000;              % Total number of space steps ~:xR0dqx  
    J =100;                % Steps between output of space h(4&!x  
    T =10;                  % length of time windows:T*T0 AK_,$'f  
    T0=0.1;                 % input pulse width 12 TX_0  
    MN1=0;                 % initial value for the space output location v"v-c!k  
    dt = T/N;                      % time step ?`+G0VT  
    n = [-N/2:1:N/2-1]';           % Index %Mxc"% w  
    t = n.*dt;   jiGXFM2  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 0/4"Jh$t  
    u20=u10.*0.0;                  % input to waveguide 2 k )=Gyv<  
    u1=u10; u2=u20;                 mJYG k_ua  
    U1 = u1;   14S_HwX  
    U2 = u2;                       % Compute initial condition; save it in U 'mm~+hp  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. :={rPj-nU  
    w=2*pi*n./T; k"pN  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T C lWxL#L6~  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Kj/{V  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 \<kQ::o1y  
    for m1 = 1:1:M1                                    % Start space evolution `Re{j{~s  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS x4Wu`-4^  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 3:mZ1+  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform y py  
       ca2 = fftshift(fft(u2)); ?C`&*+  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~LU$ no^  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ["~T)d'  
       u2 = ifft(fftshift(c2));                        % Return to physical space 4DV@-  
       u1 = ifft(fftshift(c1)); ,1e\}^  
    if rem(m1,J) == 0                                 % Save output every J steps. + :;6kyM6X  
        U1 = [U1 u1];                                  % put solutions in U array gaC [%M  
        U2=[U2 u2]; E(miQ   
        MN1=[MN1 m1]; y.,li<  
        z1=dz*MN1';                                    % output location k* e $_  
      end _(J4  
    end Y0;66bfh}  
    hg=abs(U1').*abs(U1');                             % for data write to excel m;oCi }fL  
    ha=[z1 hg];                                        % for data write to excel DPBWw[  
    t1=[0 t']; R^Y>v5jAe  
    hh=[t1' ha'];                                      % for data write to excel file w%uM=YmuT  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format rGgP9 (  
    figure(1) Mq Q'Kjo  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn f|NWn`#bY  
    figure(2) ,UATT]>  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Dwbt^{N ^  
    8\BYm|%aa  
    非线性超快脉冲耦合的数值方法的Matlab程序 G"|c_qX  
     BRF4 p:  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [+(fN  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X(qs]:  
    !vGJ 7  
    ?O.'_YS  
    >)8<d3m  
    %  This Matlab script file solves the nonlinear Schrodinger equations w1:%P36H  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !D~\uW1b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5]F4.sa  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5{\;7(  
    7$A=|/'nSA  
    C=1;                           7f]O /  
    M1=120,                       % integer for amplitude %~EOq\&  
    M3=5000;                      % integer for length of coupler P:k!dRb9{  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) |TRl >1rv  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. sL4+O P-  
    T =40;                        % length of time:T*T0. q?=_{oH9  
    dt = T/N;                     % time step jVInTR0f[  
    n = [-N/2:1:N/2-1]';          % Index Gi Max  
    t = n.*dt;   jUCDf-_ m  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. '~n=<Y  
    w=2*pi*n./T; h{.x:pPXy  
    g1=-i*ww./2; b.mWB`59  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ds:&{~7L<T  
    g3=-i*ww./2; nV>=n,+s"  
    P1=0; JVq`v#8  
    P2=0; i/aj;t  
    P3=1; B/gI~e0  
    P=0; 3 adF) mh  
    for m1=1:M1                 5@yBUwMSj  
    p=0.032*m1;                %input amplitude )vy_m_f&  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Wf>=^ ~`  
    s1=s10; #/o1D^  
    s20=0.*s10;                %input in waveguide 2 O_^ uLp  
    s30=0.*s10;                %input in waveguide 3 .v[!_bk8C  
    s2=s20; jM;?);Dd  
    s3=s30; )@E'yHYO>  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   g<s;uRA4O9  
    %energy in waveguide 1 7~2V5 @{<  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   y7-dae k  
    %energy in waveguide 2 $x;(C[  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   F:'>zB]-}  
    %energy in waveguide 3 +{[E Ow  
    for m3 = 1:1:M3                                    % Start space evolution Bt(U,nFB  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS -MuKeCgi  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; VNHt ]Ewj  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; `(VVb@:o  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform L]3gHq  
       sca2 = fftshift(fft(s2)); ]6;oS-4gu?  
       sca3 = fftshift(fft(s3)); x_OZdI  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   &n9 srs  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ^k4 n  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /A>1TPb09"  
       s3 = ifft(fftshift(sc3)); MUR Hv3  
       s2 = ifft(fftshift(sc2));                       % Return to physical space g{^(EZ,  
       s1 = ifft(fftshift(sc1)); z.0!FUd  
    end  "xp>Vj  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 8rM1kOCf  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 'OvyQ/T  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); %)PQomn?  
       P1=[P1 p1/p10]; DP=\FG"}x  
       P2=[P2 p2/p10]; L ]QBh\  
       P3=[P3 p3/p10];  H;Cv] -  
       P=[P p*p]; Q)ZbnR2Z8  
    end {z*`* O@  
    figure(1) % QI6`@Y"  
    plot(P,P1, P,P2, P,P3); d1hXzJs  
    'jjJ[16"d  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~