切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8945阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 9n[ovX 7n!  
    b^]@8I[M  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of l TRQ/B  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Qcf5* ]V  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J  4OgV?  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B)4>:j:{?W  
    COf>H0^%Q  
    %fid=fopen('e21.dat','w'); 4w5mn6MxR  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) {Jj vF  
    M1 =3000;              % Total number of space steps coQ>CbHg  
    J =100;                % Steps between output of space K-b'jP\  
    T =10;                  % length of time windows:T*T0 9!sR}  
    T0=0.1;                 % input pulse width  rVo?I  
    MN1=0;                 % initial value for the space output location Fb{kql=  
    dt = T/N;                      % time step MKN],l N  
    n = [-N/2:1:N/2-1]';           % Index =^LX,!2zp{  
    t = n.*dt;   eDPmUlC+-  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 )2jBhT  
    u20=u10.*0.0;                  % input to waveguide 2 {g(-C&  
    u1=u10; u2=u20;                 %VD>S  
    U1 = u1;   oH|<(8efD  
    U2 = u2;                       % Compute initial condition; save it in U #c:b8rw  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. oj1,DU  
    w=2*pi*n./T; cc^[ u+  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T )W& $FU4JK  
    L=4;                           % length of evoluation to compare with S. Trillo's paper q|+`ihut  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 4D-4BxN*  
    for m1 = 1:1:M1                                    % Start space evolution rpu{YC1C%  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS M'4$z^@Z  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 06#40-   
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ^1^mu c[  
       ca2 = fftshift(fft(u2)); C`0;  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 6X@$xe847[  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   `Mxi2Y{vp  
       u2 = ifft(fftshift(c2));                        % Return to physical space S!;:7?mq  
       u1 = ifft(fftshift(c1)); eJ23$VM+9  
    if rem(m1,J) == 0                                 % Save output every J steps.  qg+bh  
        U1 = [U1 u1];                                  % put solutions in U array <8Zm}-U  
        U2=[U2 u2]; \Y{^Q7!>:8  
        MN1=[MN1 m1]; =7U_ jDME  
        z1=dz*MN1';                                    % output location D!oELZ3  
      end ?{ 0MF  
    end WI$MT6  
    hg=abs(U1').*abs(U1');                             % for data write to excel *=X$j~#X  
    ha=[z1 hg];                                        % for data write to excel xC,;IS k,  
    t1=[0 t'];  :nHa-N3  
    hh=[t1' ha'];                                      % for data write to excel file nd[{DF?)/  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format EhOy<f[4W  
    figure(1) eaxp(VX?oy  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn s@ ~Y!A  
    figure(2) O*ql!9}E{  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn _K?{DnTb  
    VkNg Vjg  
    非线性超快脉冲耦合的数值方法的Matlab程序 I,@f*o  
    1eZ759PoO  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   u,R;=DNl  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c9eLNVM  
    h!L/ZeRaV  
    9y~5@/3 2R  
    [Ie;Jd>gG  
    %  This Matlab script file solves the nonlinear Schrodinger equations Z7X_U` Q  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [JY1|N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ; SS/bS|  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fgW>U*.ar  
    .ZB(!v/2  
    C=1;                           POtj6 ?a  
    M1=120,                       % integer for amplitude !4(X9}a  
    M3=5000;                      % integer for length of coupler /@<&{_sybp  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) XRMYR97  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. &C.{7ZNt  
    T =40;                        % length of time:T*T0.  / >Z`?  
    dt = T/N;                     % time step z|o7k;raH  
    n = [-N/2:1:N/2-1]';          % Index 5VU 5kiCt  
    t = n.*dt;   LtxeT .  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $X9`~Sv _  
    w=2*pi*n./T; f+/AD  
    g1=-i*ww./2; ;w/|5 ;{A;  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 3:XF7T  
    g3=-i*ww./2; fR& ;E  
    P1=0; ]}wo$7pO  
    P2=0; z)RJUmY3B  
    P3=1; <Oi65O_X  
    P=0; e-Xr^@M*Q  
    for m1=1:M1                 [=})^t?8  
    p=0.032*m1;                %input amplitude &.zG?e.  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 fq@r6\TI  
    s1=s10; ,co~@a@9  
    s20=0.*s10;                %input in waveguide 2 UC!?.  
    s30=0.*s10;                %input in waveguide 3 #^+C k HX  
    s2=s20; a,GOS:?O5  
    s3=s30; dOm@cs  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Rd?8LLz  
    %energy in waveguide 1 m+t<<5I[-  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   [O"9OW'2!B  
    %energy in waveguide 2 Md4hd#z  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   d-zNvbU"  
    %energy in waveguide 3 :6 , `M,  
    for m3 = 1:1:M3                                    % Start space evolution ; S(KJV  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS *Vbf ;=Mb  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; J <"=c z$  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; A)2eo<ij4  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ,G q?  
       sca2 = fftshift(fft(s2)); 0^H"eQO  
       sca3 = fftshift(fft(s3)); CNo'qlvF5N  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   (;9-8Y&_d  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); LFzL{rny!U  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Yq6e=?-  
       s3 = ifft(fftshift(sc3));  b6`_;Z  
       s2 = ifft(fftshift(sc2));                       % Return to physical space gQ < >S  
       s1 = ifft(fftshift(sc1)); |6cz r  
    end ;qA(!`h+  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ;;^OKrzWW  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 8=GgTpO5  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Io|3zE*<  
       P1=[P1 p1/p10]; V<:)bG4;d  
       P2=[P2 p2/p10]; 9BZyCz  
       P3=[P3 p3/p10]; K1th>!JW'  
       P=[P p*p]; /IO<TF(X  
    end I@$cw3  
    figure(1) #~_ZG% u  
    plot(P,P1, P,P2, P,P3); GOKca%DT=  
    `X["Bgk$!T  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~