切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8631阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 - |mWi  
    [B9'/:  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of r]eeKV,{p  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of $ WAFr  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .$+]N[-=  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 OKfJ  
    (#* 7LdZ  
    %fid=fopen('e21.dat','w'); kVs'>H@FY  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) >{i/LC^S  
    M1 =3000;              % Total number of space steps b:.aZ7+4  
    J =100;                % Steps between output of space A87JPX#R?  
    T =10;                  % length of time windows:T*T0 n(.y_NEgV!  
    T0=0.1;                 % input pulse width I0 a,mO;m  
    MN1=0;                 % initial value for the space output location U'S}7gya  
    dt = T/N;                      % time step u2 a U0k:  
    n = [-N/2:1:N/2-1]';           % Index *6~ODiB  
    t = n.*dt;   FjIS:9^)t5  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 5Qhu5~,K  
    u20=u10.*0.0;                  % input to waveguide 2 ][- N<  
    u1=u10; u2=u20;                 FblwQ-D  
    U1 = u1;   Tl=cniy]  
    U2 = u2;                       % Compute initial condition; save it in U e Ll+F%@  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. `e]L.P_e?  
    w=2*pi*n./T; O(;K ]8  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Y - 6 ?x  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ?)x>GB(9ZN  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 6> v`6  
    for m1 = 1:1:M1                                    % Start space evolution /W'GX n  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS XnrOC|P$  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; @cdd~9w  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform naCPSsei  
       ca2 = fftshift(fft(u2)); `m?%{ \  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation IbC(/i#%`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Ed,`1+  
       u2 = ifft(fftshift(c2));                        % Return to physical space Tx?,]c,(u  
       u1 = ifft(fftshift(c1)); pfgFHNH:  
    if rem(m1,J) == 0                                 % Save output every J steps. \|nF55W [  
        U1 = [U1 u1];                                  % put solutions in U array *@=in7*c  
        U2=[U2 u2]; mh]'/C_*<w  
        MN1=[MN1 m1]; o^;$-O!/  
        z1=dz*MN1';                                    % output location -4`Wkkhu  
      end +[*VU2f t  
    end yC !`6$  
    hg=abs(U1').*abs(U1');                             % for data write to excel 1VK?Svnd  
    ha=[z1 hg];                                        % for data write to excel :#58m0YLA:  
    t1=[0 t']; Pcut#8?  
    hh=[t1' ha'];                                      % for data write to excel file 9@  [R>C  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format I&]d6,  
    figure(1) aYr?J Ol  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 3}=r.\]U  
    figure(2) {8UYu2t  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn b{<qt})  
    D_ xPa  
    非线性超快脉冲耦合的数值方法的Matlab程序 9{|JmgO!  
    GqumH/;  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   9Y!N\-x`  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1o)@{x/pd  
    Ov"]&e(I[  
    \#.,@g  
    LnIln[g:  
    %  This Matlab script file solves the nonlinear Schrodinger equations 8A}w}h  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of q65KxOf`  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6s\niro2  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 XJy~uks,  
    fyPpzA0  
    C=1;                           HQ~`ha.  
    M1=120,                       % integer for amplitude :8aa#bA  
    M3=5000;                      % integer for length of coupler gRv5l3k  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) e5KsKzu a  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 5ckL=q"+/  
    T =40;                        % length of time:T*T0. {'VP_ZS1v  
    dt = T/N;                     % time step bVmHUcR0  
    n = [-N/2:1:N/2-1]';          % Index "a))TV%N  
    t = n.*dt;   cHOtMPyQ  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. <+UEM~)  
    w=2*pi*n./T; xgHR;US H  
    g1=-i*ww./2; "V-k_d "  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Hs/ aU_  
    g3=-i*ww./2; uc!j`G*]  
    P1=0; k8H@0p  
    P2=0; vdw5T&Q{{C  
    P3=1; ^Gt&c_gH  
    P=0; i'9aQi"G  
    for m1=1:M1                 IvGQ7 VLr  
    p=0.032*m1;                %input amplitude wBZ=IMDu\  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 LVKvPi  
    s1=s10; -V0_%Smc  
    s20=0.*s10;                %input in waveguide 2 4-;"w;  
    s30=0.*s10;                %input in waveguide 3 Fw5|_@&k  
    s2=s20; |S.G#za  
    s3=s30; O 4zD >O  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   |U{9Yy6p  
    %energy in waveguide 1 li'h&!|]  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   G2 A#&86J{  
    %energy in waveguide 2 0$)s? \  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   FsQeyh>  
    %energy in waveguide 3 .j?`U[V%a  
    for m3 = 1:1:M3                                    % Start space evolution 873$EiyXR  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Cbu/7z   
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; O b'B?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; !/] F.0  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform su;u_rc,  
       sca2 = fftshift(fft(s2)); U-Ia$b-5!  
       sca3 = fftshift(fft(s3)); -^sW{s0Rc  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   X[/>{rK  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); d: D`rpcC  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);  gGF]Dq  
       s3 = ifft(fftshift(sc3)); "fK`F/  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {gh41G;n  
       s1 = ifft(fftshift(sc1)); Z9 X<W`  
    end Fp'qn'){:#  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); @>`+eg][?P  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); |dIP &9  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); \kSoDY`l&  
       P1=[P1 p1/p10]; $pW6a %7  
       P2=[P2 p2/p10]; ;pe1tp  
       P3=[P3 p3/p10]; Z] ?Tx2|7  
       P=[P p*p]; O/g|E47  
    end PWeCk2xH  
    figure(1) ZK:dhwer  
    plot(P,P1, P,P2, P,P3); iMG)zPj  
    od~^''/b  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~