计算脉冲在非线性耦合器中演化的Matlab 程序 |iO2,99i NpH)K:$#% % This Matlab script file solves the coupled nonlinear Schrodinger equations of
?z
Ms; % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
rpDH>Hzq % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
mIl^ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
MEq
()}7P ^t9"!K %fid=fopen('e21.dat','w');
HYW+,ts' N = 128; % Number of Fourier modes (Time domain sampling points)
%<I0-o M1 =3000; % Total number of space steps
.\*\bvyCw J =100; % Steps between output of space
9Tjvc! 4_b T =10; % length of time windows:T*T0
r&Za*TD^ T0=0.1; % input pulse width
pS0-<-\R MN1=0; % initial value for the space output location
U:YT>U1Z dt = T/N; % time step
ke)3*.Y%C n = [-N/2:1:N/2-1]'; % Index
3#0nus|=S t = n.*dt;
'<4OA!,^) u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
D@O'8 u20=u10.*0.0; % input to waveguide 2
~mmI]
pC u1=u10; u2=u20;
WpSdukXY{ U1 = u1;
36&7J{MU U2 = u2; % Compute initial condition; save it in U
7m@pdq5Ub ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
%# J8cB w=2*pi*n./T;
.:_dS=ut g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
:jB(!XH L=4; % length of evoluation to compare with S. Trillo's paper
ROQk^ dz=L/M1; % space step, make sure nonlinear<0.05
X o{Ce%L for m1 = 1:1:M1 % Start space evolution
\=,+weGw@ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
|MTgKEsn u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
N#]f?6*R ca1 = fftshift(fft(u1)); % Take Fourier transform
bpKMQrwd ca2 = fftshift(fft(u2));
#r:J,D6* c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
NoZz3*j= c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
l|j&w[c[Q0 u2 = ifft(fftshift(c2)); % Return to physical space
*"j_3vAx u1 = ifft(fftshift(c1));
YgdoQBQ if rem(m1,J) == 0 % Save output every J steps.
C=%go1! $ U1 = [U1 u1]; % put solutions in U array
jVk|( U2=[U2 u2];
+z("'Cv MN1=[MN1 m1];
AvP*p{we z1=dz*MN1'; % output location
&&JI$x0; end
'HW(RC0dR end
~g>15b3 hg=abs(U1').*abs(U1'); % for data write to excel
q w|M~vdm ha=[z1 hg]; % for data write to excel
>\(Ma3S
t1=[0 t'];
bLSI\ hh=[t1' ha']; % for data write to excel file
P]r"E %dlmwrite('aa',hh,'\t'); % save data in the excel format
B:+}^= figure(1)
>JCSOI waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
,MOB+i(3*u figure(2)
JL;H :`x waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
>,hJ5-9 ( 9dV%#G\ 非线性超快脉冲耦合的数值方法的Matlab程序 e0>@Yp[Kd
CcAsJX~_ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
kDO6:sjR7 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
8q_3*++D }[ux4cd8Y wrGd40 eQ9{J9)? % This Matlab script file solves the nonlinear Schrodinger equations
$`_(%tl % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
UkXc7D^jwm % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
y%ER51+ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
t6-c{ZX>A hO{@!H$l C=1;
|[k6X=5 M1=120, % integer for amplitude
9OT2yCT M3=5000; % integer for length of coupler
V!"^6) N = 512; % Number of Fourier modes (Time domain sampling points)
t$Irr* dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
4B (*{ T =40; % length of time:T*T0.
YF&SH)Y7 dt = T/N; % time step
#J^p,6 n = [-N/2:1:N/2-1]'; % Index
\UtUP#Y{t t = n.*dt;
+u25>pX ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
pok,`yW\ w=2*pi*n./T;
ufEt"P-X. g1=-i*ww./2;
8 _`Lx_R g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
rhNdXYY> g3=-i*ww./2;
+".&A#wU P1=0;
Ie4*#N_ P2=0;
JBb}{fo~ P3=1;
vbwEX 6 P=0;
=bv8W <# for m1=1:M1
r\=p.cw< p=0.032*m1; %input amplitude
%qja:'k s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
36Wuc@<H s1=s10;
`yuD/-j s20=0.*s10; %input in waveguide 2
#Kn7
xn[ s30=0.*s10; %input in waveguide 3
?7a<V+V: s2=s20;
xW"J@OiKL s3=s30;
/_jApZz p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
/0SPRf}p %energy in waveguide 1
V !FzVl=G p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
E8NIH!dI %energy in waveguide 2
O]{H2&k@ p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
hih`: y %energy in waveguide 3
3t%uUkXl for m3 = 1:1:M3 % Start space evolution
s/ZOA[Yux s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Txoc s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
@ Cqg2 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
/!AdX0dx sca1 = fftshift(fft(s1)); % Take Fourier transform
`I
m;@_J sca2 = fftshift(fft(s2));
g08=D$P sca3 = fftshift(fft(s3));
JZP2NB_xt sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
!lu$WJ{M sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
JanLJe) sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
+[~\\X s3 = ifft(fftshift(sc3));
vO4
&ZQ>6 s2 = ifft(fftshift(sc2)); % Return to physical space
by8d18:it s1 = ifft(fftshift(sc1));
B8a!"AQ~5 end
EidIi"sr p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
@ju-cv+ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
o_\b{<^I p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Y`(I};MO P1=[P1 p1/p10];
Th,2gX9 P2=[P2 p2/p10];
@ZX{q~g! P3=[P3 p3/p10];
2ix_,yTO P=[P p*p];
jl:O~UL6i end
c#{<|
. figure(1)
d5zzQ]|L plot(P,P1, P,P2, P,P3);
GD< Afni CT"0"~~ 转自:
http://blog.163.com/opto_wang/