切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8699阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 iN0'/)ar  
    BVus3Y5IJQ  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of  ]sP  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %ib7)8Ki0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear XN\rq=  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 rkdA4'66w  
    ]TtID4qL  
    %fid=fopen('e21.dat','w'); y= 8SD7P'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Fwvc+ a  
    M1 =3000;              % Total number of space steps >@a7Zzl0H  
    J =100;                % Steps between output of space T^$`Z.  
    T =10;                  % length of time windows:T*T0 Wi\k&V.mE  
    T0=0.1;                 % input pulse width \j.l1O  
    MN1=0;                 % initial value for the space output location >lJTS t5{  
    dt = T/N;                      % time step K0I.3| 6C  
    n = [-N/2:1:N/2-1]';           % Index f\RTO63|O  
    t = n.*dt;   d mTZEO  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ?-0, x|ul  
    u20=u10.*0.0;                  % input to waveguide 2 96; gzG@1!  
    u1=u10; u2=u20;                 Cd6th F)  
    U1 = u1;   @S5HMJ2=  
    U2 = u2;                       % Compute initial condition; save it in U #l9sQ-1Q  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1.  Bw+ ?MdS  
    w=2*pi*n./T; tU!Yg"4Q  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T jWvi% I qi  
    L=4;                           % length of evoluation to compare with S. Trillo's paper vwa*'C  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 G%!i="/9  
    for m1 = 1:1:M1                                    % Start space evolution nLANWQk9  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 1BP/,d |+  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; U ){4W0  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform [P}mDX  
       ca2 = fftshift(fft(u2)); DV>;sCMJ %  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation H_| re  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $|[N3  
       u2 = ifft(fftshift(c2));                        % Return to physical space B o%Sl  
       u1 = ifft(fftshift(c1)); b53s@7/mq  
    if rem(m1,J) == 0                                 % Save output every J steps. w~=xO_%  
        U1 = [U1 u1];                                  % put solutions in U array |S<!'rY  
        U2=[U2 u2]; 3'0Jn6(  
        MN1=[MN1 m1]; Fs=)*6}&  
        z1=dz*MN1';                                    % output location \W=Z`w3  
      end x]R0zol  
    end %z.d;[Hs  
    hg=abs(U1').*abs(U1');                             % for data write to excel P)Oe?z;G?  
    ha=[z1 hg];                                        % for data write to excel ]HXHz(?;F  
    t1=[0 t']; +o0yx U 7t  
    hh=[t1' ha'];                                      % for data write to excel file TnKOr~@*  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format cBOt=vg,5  
    figure(1) Be^"sC  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn E]a;Ydf~  
    figure(2) xwHE,ykE  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn @~5Fcfmm  
    $S2 /*  
    非线性超快脉冲耦合的数值方法的Matlab程序 A9J{>f  
    0G Q8} r  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   -QBM^L  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 LN5q_ZvR  
    nYvkeT  
    d@b2XCh<K  
    Are0Nj&?  
    %  This Matlab script file solves the nonlinear Schrodinger equations &%(SkL_]  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of XgeUS;qtta  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear hKnV=Ha(  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7*WO9R/  
    tuY= )?  
    C=1;                           ip*^eS^  
    M1=120,                       % integer for amplitude Y~#F\v  
    M3=5000;                      % integer for length of coupler ^'+#BPo9@  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) DPmY_[OAE  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. #~qza ETv,  
    T =40;                        % length of time:T*T0. I1K%n'D  
    dt = T/N;                     % time step )!G 10  
    n = [-N/2:1:N/2-1]';          % Index WOeLn[  
    t = n.*dt;   J'WOqAnPZ  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. P"@^BQ4  
    w=2*pi*n./T; Z}SqiT  
    g1=-i*ww./2; X_Pbbx_j  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; WZTv  
    g3=-i*ww./2; G_ ~qk/7mF  
    P1=0; lKqFuLHwF  
    P2=0; YZ<5-C  
    P3=1; x[+bLlb  
    P=0; ~~t >;  
    for m1=1:M1                 xnw'&E  
    p=0.032*m1;                %input amplitude {aK3'-7  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 \DD4=XGA  
    s1=s10; :RBeq,QaO  
    s20=0.*s10;                %input in waveguide 2 43rV> W,  
    s30=0.*s10;                %input in waveguide 3 I\[z(CHg@  
    s2=s20; EW `WFBjj  
    s3=s30; aJ1{9 5ea  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   KO"+"1 .  
    %energy in waveguide 1 hm<:\(q  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Nm%#rZrN~Q  
    %energy in waveguide 2 +-5YmN'  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   + kF%>F]  
    %energy in waveguide 3 y T&#k1  
    for m3 = 1:1:M3                                    % Start space evolution %ca`v;].  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS LA/Qm/T  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 8"V1h72vcW  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 7lwFxP5QT  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Jv]$@>#  
       sca2 = fftshift(fft(s2)); N6%L4v8-}X  
       sca3 = fftshift(fft(s3)); ^L.'At  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   A.$P1zwC  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); %):pfM;b  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); dAM]ZR<  
       s3 = ifft(fftshift(sc3)); sEL0h4  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 'coY`B; 8  
       s1 = ifft(fftshift(sc1)); Y^8'P /A  
    end "Rtt~["%  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); :j/sTO=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); jL'R4z  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ;Uy}(  
       P1=[P1 p1/p10]; 'S&Zq:  
       P2=[P2 p2/p10]; :6o|6MC!  
       P3=[P3 p3/p10]; z;N`jqo   
       P=[P p*p]; 8 ~Pdr]5  
    end 6C ?,V3Z  
    figure(1) (eHTXk*V`  
    plot(P,P1, P,P2, P,P3); h1f 05  
    {yd(n_PqY  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~