切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8908阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 0Da9,&D  
    g9 .b6}w!  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of feOX]g#  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Vf S&V*un  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear xij`Mr  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2y/|/IW=  
    4L(/Z}(  
    %fid=fopen('e21.dat','w'); 1m$:Rn^  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) m22FOjk\  
    M1 =3000;              % Total number of space steps ,Y|WSKY*  
    J =100;                % Steps between output of space dTN[E6#R  
    T =10;                  % length of time windows:T*T0 Gh3b*O_,  
    T0=0.1;                 % input pulse width s+{)K  
    MN1=0;                 % initial value for the space output location `w@8i[2J  
    dt = T/N;                      % time step %3B0s?,I  
    n = [-N/2:1:N/2-1]';           % Index pSM\(kVKa  
    t = n.*dt;   :77dl/d%  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 4-RzWSFbo`  
    u20=u10.*0.0;                  % input to waveguide 2 &jJj6 +P\  
    u1=u10; u2=u20;                 fUy:TCS  
    U1 = u1;   9$)I=Rpk =  
    U2 = u2;                       % Compute initial condition; save it in U qx,>j4y w  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. eEvE3=,hg  
    w=2*pi*n./T; k/MrNiC  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F Xbf7G)H  
    L=4;                           % length of evoluation to compare with S. Trillo's paper XcfvmlBoD-  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 [ +w=  
    for m1 = 1:1:M1                                    % Start space evolution WCc7 MK  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ~\;s}Fv.  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 9?8Yf(MC%u  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Gt >*y.]  
       ca2 = fftshift(fft(u2)); cB,O"-  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation HE>6A|rgDr  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Yyl(<,Yi  
       u2 = ifft(fftshift(c2));                        % Return to physical space sFh mp  
       u1 = ifft(fftshift(c1)); 1ztL._Td  
    if rem(m1,J) == 0                                 % Save output every J steps. QahM)Gb  
        U1 = [U1 u1];                                  % put solutions in U array rVo0H.+N)`  
        U2=[U2 u2]; ?)x"+[2  
        MN1=[MN1 m1]; ~.-o*  
        z1=dz*MN1';                                    % output location "UUzLa_  
      end 7OF6;@<  
    end ces|HPBa&6  
    hg=abs(U1').*abs(U1');                             % for data write to excel -_<rmR[:]  
    ha=[z1 hg];                                        % for data write to excel g<ZB9;FX %  
    t1=[0 t']; :xd)]Ns  
    hh=[t1' ha'];                                      % for data write to excel file {ek a xSR  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Y 6B7qp  
    figure(1) ;3~+M:{2  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn -M{.KqyW  
    figure(2) AXK6AZjX  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn uvbXsO"z]]  
    /XfE6SBz  
    非线性超快脉冲耦合的数值方法的Matlab程序 Jat|n97$  
    'JA<q-Gn  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   M$@Donx  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 t@hE}R  
    >M`ryM2=D  
    NT3Ti ?J,  
    X:3W9`s )*  
    %  This Matlab script file solves the nonlinear Schrodinger equations >ZX&2 {  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of  nIWZo ~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J0%e6{C1  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "9>.,nzt  
    j>D[iHrH  
    C=1;                           Z4@%0mFll  
    M1=120,                       % integer for amplitude vz{Z tE"  
    M3=5000;                      % integer for length of coupler -pb>=@Yq  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) x(r>iy  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. [PRQa[_  
    T =40;                        % length of time:T*T0. 8ux?K5_  
    dt = T/N;                     % time step 1/hk3m(C  
    n = [-N/2:1:N/2-1]';          % Index V~tZNR J-  
    t = n.*dt;   d5 U?*   
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. BRSOE U\=  
    w=2*pi*n./T; Aw7oyC!  
    g1=-i*ww./2; Hi V7  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; i'6>_,\(  
    g3=-i*ww./2; k|kn#X3X  
    P1=0; Py}] {?  
    P2=0; Ug2^cgL  
    P3=1; LBCat=d<  
    P=0; 5:" zs  
    for m1=1:M1                 -~PiPYX  
    p=0.032*m1;                %input amplitude "q<}#]u  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :h(r2?=7  
    s1=s10; ggQBQ/ L  
    s20=0.*s10;                %input in waveguide 2 E:!qnc L:  
    s30=0.*s10;                %input in waveguide 3 n#\ t_/\  
    s2=s20; 7ThGF  
    s3=s30; liU/O:Ap  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   R=/^5DZ}  
    %energy in waveguide 1 ZvSWIQ6  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   DrY5Q&S  
    %energy in waveguide 2 Zo12F**{  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   q>n0'`q   
    %energy in waveguide 3 s]lIDp}  
    for m3 = 1:1:M3                                    % Start space evolution K1*oYHB  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS \H6[6*JuB  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ug?])nO.C  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Lt<KRs  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform  + f+#W  
       sca2 = fftshift(fft(s2)); Iz^lED  
       sca3 = fftshift(fft(s3)); H.H$5(?O  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   $t1XoL  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); U"0Ts!CABA  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);  o(q][:,h  
       s3 = ifft(fftshift(sc3)); a ,EApUWw  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Bkq3-rX\  
       s1 = ifft(fftshift(sc1)); "i5Rh^  
    end cD!y d^QE  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); xklXV  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); M8,_E\*  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); .5ItH^  
       P1=[P1 p1/p10]; reU*apZ/  
       P2=[P2 p2/p10]; p,cw- lN  
       P3=[P3 p3/p10]; 8B|qNf `Yi  
       P=[P p*p]; Z'@a@Y+  
    end Y)7LkZO(y  
    figure(1) Y, ?- []  
    plot(P,P1, P,P2, P,P3); ophQdJM  
    HHZGu8tzt  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~