切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8835阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 zg.'  
    WQ\'z?P  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of YKJk)%;+w  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of T@U_;v|rf  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2Y(P hw2%  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 e=o<yf9>Q  
    6|V713\  
    %fid=fopen('e21.dat','w'); z[M LMf[c  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) K,&)\r kzD  
    M1 =3000;              % Total number of space steps 9jDV]!N4  
    J =100;                % Steps between output of space L Bb&av  
    T =10;                  % length of time windows:T*T0 s_hf,QH  
    T0=0.1;                 % input pulse width H~i+: X=I  
    MN1=0;                 % initial value for the space output location Op" \i   
    dt = T/N;                      % time step E b-?wzh  
    n = [-N/2:1:N/2-1]';           % Index c+f~>AaI  
    t = n.*dt;   xlp^XT6#  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 8Focs p2  
    u20=u10.*0.0;                  % input to waveguide 2 izebQVQO*  
    u1=u10; u2=u20;                 W#P)v{K  
    U1 = u1;   Ett%Y*D+J  
    U2 = u2;                       % Compute initial condition; save it in U T6=c9f?7  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. B[Fx2r`0  
    w=2*pi*n./T; zy(sekX;  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T gGxgU$`#c  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 4'Z=T\:  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 |#D3~au   
    for m1 = 1:1:M1                                    % Start space evolution +XLy Pj  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS \zR@FOl`q  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; BKPXXR  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform btkD<1{g  
       ca2 = fftshift(fft(u2)); \l?\%aqm  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation +;c)GNQ)6:  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   \sEq r)\k  
       u2 = ifft(fftshift(c2));                        % Return to physical space ^ b{0|:  
       u1 = ifft(fftshift(c1)); e[$=5U~c  
    if rem(m1,J) == 0                                 % Save output every J steps. 0.'$U}#b  
        U1 = [U1 u1];                                  % put solutions in U array <.HX_z3l  
        U2=[U2 u2]; (TM1(<j  
        MN1=[MN1 m1]; N\ChA]Ck  
        z1=dz*MN1';                                    % output location =H%c/Jty  
      end 12U1DEd>-  
    end =Bcwd7+  
    hg=abs(U1').*abs(U1');                             % for data write to excel #f0J.)M  
    ha=[z1 hg];                                        % for data write to excel %D< =6suW  
    t1=[0 t']; 5 < wIJ5t  
    hh=[t1' ha'];                                      % for data write to excel file y2;uG2IS_g  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Qh<_/X?  
    figure(1) }dQW -U  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn %JeT,{  
    figure(2) V|e9G,z~A  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn =+% QfuK  
    .aV#W@iyK  
    非线性超快脉冲耦合的数值方法的Matlab程序 H:Y?("k  
    "#\\p~D/<  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [`Seh$  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _CN5,mLNRk  
    pyhC%EZU  
    )ZC0/>R  
    ]&w8"q  
    %  This Matlab script file solves the nonlinear Schrodinger equations uDvZ]Q|.  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of -L%tiz`_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *`&4< >=n  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z`y%#B6x.  
    J5e  
    C=1;                           EVZuwbO)|  
    M1=120,                       % integer for amplitude |(G^3+5Uwm  
    M3=5000;                      % integer for length of coupler L lOUK2tZ  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) *WdnP.'Y  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. {_T?0L  
    T =40;                        % length of time:T*T0. )F*;7]f  
    dt = T/N;                     % time step , 7-@eZ  
    n = [-N/2:1:N/2-1]';          % Index D]X&Va  
    t = n.*dt;   $L%gQkz_  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. P7np -I*  
    w=2*pi*n./T; "I+71Ce  
    g1=-i*ww./2; }GI8p* ]o=  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; p?F%a;V3  
    g3=-i*ww./2; uvC ![j^~  
    P1=0; kEiWE|  
    P2=0; _]zm02|  
    P3=1; 6/e+=W2  
    P=0; ;U$Fz~rJ  
    for m1=1:M1                 3"afrA  
    p=0.032*m1;                %input amplitude U0>Uqk",  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Ot,eAiaX  
    s1=s10; o+Cd\D69S  
    s20=0.*s10;                %input in waveguide 2 Q #!|h:K  
    s30=0.*s10;                %input in waveguide 3 :+Ti^FF`w  
    s2=s20; bit@Kv1<C  
    s3=s30; [C_Dv-d  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   9?W!E_  
    %energy in waveguide 1 L WwWxerZ  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   0P)"_x_  
    %energy in waveguide 2 yvN;|R  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   e+416 ~X v  
    %energy in waveguide 3 F&pJ faig  
    for m3 = 1:1:M3                                    % Start space evolution Rf*cW&}%  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS h|m>JDxn  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; CjeAO 2  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =VXxQ\{  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform oY Y?`<N#  
       sca2 = fftshift(fft(s2)); Y243mq-  
       sca3 = fftshift(fft(s3)); [@K#BFA  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   1=NP=ZB  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Vm6 0aXm_  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ZDffR: An  
       s3 = ifft(fftshift(sc3)); D X|yL!4[  
       s2 = ifft(fftshift(sc2));                       % Return to physical space >2kjd  
       s1 = ifft(fftshift(sc1)); R8"qDj  
    end b@9>1d$  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); [&_c.ti  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ftr?@^  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 7Qoy~=E  
       P1=[P1 p1/p10]; w&U>w@H^  
       P2=[P2 p2/p10]; uPZ<hG#K  
       P3=[P3 p3/p10]; r*Iu6  
       P=[P p*p]; q,ur[ &<  
    end <Wz+f+HC  
    figure(1) Pgdv)i3  
    plot(P,P1, P,P2, P,P3); |-vc/t2k>T  
    H<YhO&D*u  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~