切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8895阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `_e1LEH  
    [k +fkr]  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of U}`HN*Q.q  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of @h\u}Ee  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear mK7egAo  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l< |)LD q~  
    _Ai\XS Am  
    %fid=fopen('e21.dat','w'); _1Iw"K49Qx  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 0j~C6 vp  
    M1 =3000;              % Total number of space steps wvSaq+N  
    J =100;                % Steps between output of space s2+s1%^Ll  
    T =10;                  % length of time windows:T*T0 G5x%:,n  
    T0=0.1;                 % input pulse width cbA90 8@s  
    MN1=0;                 % initial value for the space output location ^$O,Gy)V  
    dt = T/N;                      % time step \\Huk*Jn{  
    n = [-N/2:1:N/2-1]';           % Index OGO4~Up  
    t = n.*dt;   &@D,|kHk  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 n|iO)L\9aB  
    u20=u10.*0.0;                  % input to waveguide 2 r(qU~re'  
    u1=u10; u2=u20;                 #$>m`r  
    U1 = u1;   Qjh @oWT  
    U2 = u2;                       % Compute initial condition; save it in U RnkrI~x  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ('p~h-9Vi  
    w=2*pi*n./T; SfwAMNCe  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T cz9T,  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ?g'? Ou  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 RV:%^=V-  
    for m1 = 1:1:M1                                    % Start space evolution |q\:3R_0  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS djcC m5m  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; UYb:q  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Hlq#X:DCn  
       ca2 = fftshift(fft(u2)); v iY&D  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation [& &9F};  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   f?A*g$v  
       u2 = ifft(fftshift(c2));                        % Return to physical space "h}miVArS  
       u1 = ifft(fftshift(c1)); {)0"?$C_H  
    if rem(m1,J) == 0                                 % Save output every J steps. j!P]xl0vOZ  
        U1 = [U1 u1];                                  % put solutions in U array /g!', r,  
        U2=[U2 u2]; t/aT  
        MN1=[MN1 m1]; <Cw)S8t  
        z1=dz*MN1';                                    % output location $/Q*@4t  
      end %<8lLRl  
    end 3Ga! )  
    hg=abs(U1').*abs(U1');                             % for data write to excel TM|ycS'  
    ha=[z1 hg];                                        % for data write to excel 8?O6IDeW  
    t1=[0 t']; 7,2bR  
    hh=[t1' ha'];                                      % for data write to excel file .pOTIRbA  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _ZfJfd~  
    figure(1) y++[:M  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Og`w~!\  
    figure(2) 7x^P74  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn  u m[nz  
    N?h=Zl|  
    非线性超快脉冲耦合的数值方法的Matlab程序 #yk m  
    Tn qspS2;R  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   C<\|4ERp  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 'lym^^MjL+  
    w#5^A(NR  
    G~I@'[ur  
    qqSf17sW  
    %  This Matlab script file solves the nonlinear Schrodinger equations !;^sIoRPV  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of /JfRy%31  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear c?{&=,u2  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 H1>}E5^?  
    mRw &^7r  
    C=1;                            T^ ^o  
    M1=120,                       % integer for amplitude :U>o;  
    M3=5000;                      % integer for length of coupler jLf.qf8qm  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) dw8Ce8W  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. hSq3LoHV  
    T =40;                        % length of time:T*T0. &oTUj'$  
    dt = T/N;                     % time step %W=S*"e-  
    n = [-N/2:1:N/2-1]';          % Index !52]'yub  
    t = n.*dt;   8=H!&+aGh  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. gh3XC.&  
    w=2*pi*n./T; Tt.wY=,K  
    g1=-i*ww./2; hGx)X64Mw  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; "]81+ D  
    g3=-i*ww./2; SXn1v.6  
    P1=0; PYYOC"$  
    P2=0; _ a|zvH  
    P3=1; t/\J  
    P=0; N246RV1W  
    for m1=1:M1                 @JS O=8  
    p=0.032*m1;                %input amplitude lz?F ,].  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 J)iy6{0"  
    s1=s10; C#`VVtei  
    s20=0.*s10;                %input in waveguide 2 NuKktQd  
    s30=0.*s10;                %input in waveguide 3 K%ltB&  
    s2=s20; , [xDNl[Y|  
    s3=s30; -9)<[>:  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   _ 6"!y ]Q  
    %energy in waveguide 1 j_VTa/  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   |T~C($9  
    %energy in waveguide 2 gN|[n.W4  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ;#G)([  
    %energy in waveguide 3 SyFO f  
    for m3 = 1:1:M3                                    % Start space evolution Bkvh]k;F8  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS q$Z.5EN  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; u;m[,  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; GU\}}j]  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 3zU!5t g  
       sca2 = fftshift(fft(s2)); <J4|FOz!=  
       sca3 = fftshift(fft(s3)); 8|uFW7Q  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   8_6\>hW&  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); s)ymm7?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); =^m,|j|d>4  
       s3 = ifft(fftshift(sc3)); c0.i  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 01VEz 8[\  
       s1 = ifft(fftshift(sc1)); Mvq5s+.  
    end ^| L@f  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 6vySOVMj  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); *6 oQW  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 3A'vq2beM  
       P1=[P1 p1/p10]; '`$z!rA  
       P2=[P2 p2/p10]; X(nbfh?n  
       P3=[P3 p3/p10]; 7yGc@kJ?  
       P=[P p*p]; N6Mo|  
    end Z<6XB{Nh\  
    figure(1) ?z>7&  
    plot(P,P1, P,P2, P,P3); Zi5d"V[}T  
    ;v0M ::  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~