切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9071阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 NV:>a  
    +*n] tlk  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 63.( j P1;  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of .JNcY]V#  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 'n>K^rA  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?x:m;z/  
    9Kc0&?q@D  
    %fid=fopen('e21.dat','w'); {V.Wk  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) vZ:G8K)o(  
    M1 =3000;              % Total number of space steps +z+ F-  
    J =100;                % Steps between output of space 7Aqn[1{_O  
    T =10;                  % length of time windows:T*T0 XxhsPFv  
    T0=0.1;                 % input pulse width =\M)6"}y}  
    MN1=0;                 % initial value for the space output location :b"= KQ  
    dt = T/N;                      % time step I9;xzES  
    n = [-N/2:1:N/2-1]';           % Index VxNXd?  
    t = n.*dt;   U> W|(Y  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ]n~yp5Nbr  
    u20=u10.*0.0;                  % input to waveguide 2 $6W3EOl  
    u1=u10; u2=u20;                 5n:nZ_D  
    U1 = u1;   ]Fxku<z7|  
    U2 = u2;                       % Compute initial condition; save it in U >Q&CgGpW$  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 9p5= _  
    w=2*pi*n./T; wc"9A~  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T `q^(SM  
    L=4;                           % length of evoluation to compare with S. Trillo's paper  64SW  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Ys-^7 y_  
    for m1 = 1:1:M1                                    % Start space evolution V>6QPA^  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS D2{L=  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; cxgE\4_u"  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform  1y 7y0V  
       ca2 = fftshift(fft(u2)); TFo}\B7  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation S,XKW(5   
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   U4=]#=R~o  
       u2 = ifft(fftshift(c2));                        % Return to physical space 2bkJ /u`i  
       u1 = ifft(fftshift(c1)); k<!<<,Z  
    if rem(m1,J) == 0                                 % Save output every J steps. iZC>)&ax  
        U1 = [U1 u1];                                  % put solutions in U array F9%,MSt  
        U2=[U2 u2]; 7vw;Egd@@-  
        MN1=[MN1 m1]; E!uJ6\  
        z1=dz*MN1';                                    % output location /\d(c/,4  
      end [M`=HhJ4  
    end $_wo6/J5+D  
    hg=abs(U1').*abs(U1');                             % for data write to excel f`,-b  
    ha=[z1 hg];                                        % for data write to excel hv3;irK]&  
    t1=[0 t']; grc:Y  
    hh=[t1' ha'];                                      % for data write to excel file a%v>eXc  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format D'<$ g  
    figure(1) _p0)vT  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Zd$JW=KR]l  
    figure(2) GtC7^ Z&E  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn eIsT!V" 7  
    wE?CvL  
    非线性超快脉冲耦合的数值方法的Matlab程序 g@Ld"5$^2  
    #,TELzUVE  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   "w9`cz9a~J  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qIz}$%!A  
    7_KXD#  
    7|Xe&o<n  
    C!5I?z&  
    %  This Matlab script file solves the nonlinear Schrodinger equations f9a$$nb3`  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 0Q`&inwh  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Xo\S9,s{  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *Z; r B  
    Je 31".  
    C=1;                           *,0+RASvq  
    M1=120,                       % integer for amplitude ?,>5[Ha^?  
    M3=5000;                      % integer for length of coupler V:OiW"/  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) &sdx`,  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. bJwc1AJgH  
    T =40;                        % length of time:T*T0. ctHEEFWm  
    dt = T/N;                     % time step T{tn.sT  
    n = [-N/2:1:N/2-1]';          % Index Q(e{~ ]*  
    t = n.*dt;   tvGlp)?.  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. x}|+sS,g  
    w=2*pi*n./T; YQYX,b  
    g1=-i*ww./2; JCD?qeTg  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; IT18v[-G  
    g3=-i*ww./2; l#$TYJi  
    P1=0; >azEed<B  
    P2=0; t!:)L+$3  
    P3=1; 4gb'7'  
    P=0; AuXs B  
    for m1=1:M1                 ('JKN"3  
    p=0.032*m1;                %input amplitude H{%H^t>  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 WL1\y|  
    s1=s10; H99xZxHZ{  
    s20=0.*s10;                %input in waveguide 2 v%nP*i9  
    s30=0.*s10;                %input in waveguide 3 'g hys1H  
    s2=s20; b]i>Bv  
    s3=s30; n]iyFZ`9  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   CdL.?^  
    %energy in waveguide 1 @$c!/  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   K{2h9 ]VF  
    %energy in waveguide 2 #x)8f3I  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Mg\TH./Y:  
    %energy in waveguide 3 $UC{"0  
    for m3 = 1:1:M3                                    % Start space evolution $w/E9EJ)3A  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS #ouE r-=  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; PS}73Y#  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; d@ (vg  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ({ k7#1 h8  
       sca2 = fftshift(fft(s2)); >pdnCv_c  
       sca3 = fftshift(fft(s3)); ?oKL &I@  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   i/*,N&^  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ISBF\ wQY  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); *)D1!R<\,R  
       s3 = ifft(fftshift(sc3)); >f@ G>H)+  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ]2$x| #Gg}  
       s1 = ifft(fftshift(sc1)); `{o$F ::(  
    end OaaH$B  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); *|KVN&#  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); UP8{5fx'  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); bLlH//ZRH  
       P1=[P1 p1/p10];  :,~K]G  
       P2=[P2 p2/p10]; f3#X0.':  
       P3=[P3 p3/p10]; SiTeB)/  
       P=[P p*p]; :tbd,Uo  
    end c1#+Vse  
    figure(1) $>r5>6  
    plot(P,P1, P,P2, P,P3); V|: qow:F  
    U\bC0q   
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~