切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8808阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 $"MGu^0;1  
    &}\{qFD;  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of }nSu7)3$B  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of [&(~1C|C  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S>jOVWB  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PzustC|  
    3\cx(  
    %fid=fopen('e21.dat','w'); { _Y'%Ggh  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) cg9*+]rc  
    M1 =3000;              % Total number of space steps ^)h&s*  
    J =100;                % Steps between output of space KEf1GU6s  
    T =10;                  % length of time windows:T*T0 xc7Rrh]}  
    T0=0.1;                 % input pulse width [Mj5o<k;I  
    MN1=0;                 % initial value for the space output location ;Eh"]V,e  
    dt = T/N;                      % time step FtlJ3fB@  
    n = [-N/2:1:N/2-1]';           % Index U8@P/Z9  
    t = n.*dt;   Bj\Us$cZ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 "~Zdv}^xS  
    u20=u10.*0.0;                  % input to waveguide 2 AoK;6je`K^  
    u1=u10; u2=u20;                  `YO&  
    U1 = u1;   @q{.  
    U2 = u2;                       % Compute initial condition; save it in U O3pd5&^g  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. (!Xb8rV0_  
    w=2*pi*n./T; >ul&x!?@  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T J/PK #<  
    L=4;                           % length of evoluation to compare with S. Trillo's paper XinKG< 3!  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 dTte4lh  
    for m1 = 1:1:M1                                    % Start space evolution ft0tRv(s:  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS jc@= b:r=  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; nP|ah~ q  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 1[- `*Ph  
       ca2 = fftshift(fft(u2)); ,wy;7T>ODd  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation jHObWUX  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   @X=sfygk  
       u2 = ifft(fftshift(c2));                        % Return to physical space g4;|uK;  
       u1 = ifft(fftshift(c1)); $-<yX<.  
    if rem(m1,J) == 0                                 % Save output every J steps. ZT`" {#L  
        U1 = [U1 u1];                                  % put solutions in U array *z_`$Y  
        U2=[U2 u2]; =F dFLrx~l  
        MN1=[MN1 m1]; e-.(O8  
        z1=dz*MN1';                                    % output location h]IoH0/  
      end kV3LFPf>0  
    end A;f)`i0l,  
    hg=abs(U1').*abs(U1');                             % for data write to excel S&;)F|-q  
    ha=[z1 hg];                                        % for data write to excel $#wi2Ve=6b  
    t1=[0 t']; = \K/ulZo  
    hh=[t1' ha'];                                      % for data write to excel file Z&h:3;  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ::3[H$  
    figure(1) 4`7~~:W!M5  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn `V.tqZF  
    figure(2) ~bis!(}p-  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "j.Q*Hazg  
    )0Vj\>  
    非线性超快脉冲耦合的数值方法的Matlab程序 -x?|[ +%  
    %:dd#';g  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   TT){15T;"  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^{NN-  
    ]eTp?q%0  
    r\y\]AmF  
    $lJ!f  
    %  This Matlab script file solves the nonlinear Schrodinger equations e"Z,!Q^-L  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of -vt6n1A&b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [T,Df&  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9>_VU"T  
    `eGp.[ffT  
    C=1;                           ?pA_/wwp  
    M1=120,                       % integer for amplitude #X6=`Xe#  
    M3=5000;                      % integer for length of coupler j}8^gz]  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 7'`nTF-@v  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. [u-=<hnoa  
    T =40;                        % length of time:T*T0. E#kH>q@K`$  
    dt = T/N;                     % time step .&K?@T4l  
    n = [-N/2:1:N/2-1]';          % Index _sHeB7K  
    t = n.*dt;   c|4_nT 2  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ](IOn:MuDE  
    w=2*pi*n./T; *6v5JH&K  
    g1=-i*ww./2; F-$NoEL  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; p%OVl[^jp  
    g3=-i*ww./2; %,d+jBM  
    P1=0; ubsx NCqD  
    P2=0; 6\)u\m`7-l  
    P3=1; UG6\OgkL+  
    P=0; 0+A#k7c6p  
    for m1=1:M1                 LI"N^K'z  
    p=0.032*m1;                %input amplitude eE{ 2{C  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 qz!^< M  
    s1=s10; 26j-1c!NGd  
    s20=0.*s10;                %input in waveguide 2 ~Oi.bP<,  
    s30=0.*s10;                %input in waveguide 3 !Z;Nv  
    s2=s20; 1+tPd7U  
    s3=s30; / ]nrxT  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Mv7tK l  
    %energy in waveguide 1 0s.4]Zg>5  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   (k%r_O6  
    %energy in waveguide 2 fY|vq amA;  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   MOIVt) ZY  
    %energy in waveguide 3 4&~*;an7  
    for m3 = 1:1:M3                                    % Start space evolution 86o'3G9@  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 8JO(P0aT  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; d-]!aFj|U  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 4 @9cO)m  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform <*p  
       sca2 = fftshift(fft(s2)); [bN_0T.YI  
       sca3 = fftshift(fft(s3)); eBe5H =I@  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   RLDu5  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); vNU[K%U  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); &2W`dEv]?  
       s3 = ifft(fftshift(sc3)); U,aMv[ZB  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ulk yP  
       s1 = ifft(fftshift(sc1)); _Aw-{HE'  
    end "VAbUs  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));  <XnxAA  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ZXWm?9uw  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  1oG'm  
       P1=[P1 p1/p10]; r;fcBepO  
       P2=[P2 p2/p10]; N&u(9Fxn  
       P3=[P3 p3/p10]; 'EkjySZ]F{  
       P=[P p*p]; C7Hgzc|U  
    end Vb~;"WABo  
    figure(1) PS??wlp7  
    plot(P,P1, P,P2, P,P3); ) KYU[  
    77G4E ,]  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~