切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8509阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 }AfPBfgC1z  
    "RX5] eJc\  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of xR6IXF>*  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 64j 4P 7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear C>;8`6_!gU  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iiDkk  
    PC7.+;1  
    %fid=fopen('e21.dat','w'); B148wh#r  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) q9(}wvtr  
    M1 =3000;              % Total number of space steps v@s`l#  
    J =100;                % Steps between output of space 5BO!K$6  
    T =10;                  % length of time windows:T*T0 F"TI 9ib  
    T0=0.1;                 % input pulse width ~u& O  
    MN1=0;                 % initial value for the space output location {O oNhN9  
    dt = T/N;                      % time step ")gCA:1-  
    n = [-N/2:1:N/2-1]';           % Index q5?mP6   
    t = n.*dt;   [bVP2j  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 EUS]Se2  
    u20=u10.*0.0;                  % input to waveguide 2 RSeezP6#  
    u1=u10; u2=u20;                 >-+X;0&  
    U1 = u1;   M#2U'jy  
    U2 = u2;                       % Compute initial condition; save it in U LVtQ^ 5>8  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Sf:lN4  
    w=2*pi*n./T; _1%^ ibn  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T =YsTF T  
    L=4;                           % length of evoluation to compare with S. Trillo's paper d~$t{46  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 hs uJ;4}$q  
    for m1 = 1:1:M1                                    % Start space evolution s'=]a-l~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS >c>ar>4xF  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Q>*K/%KD  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform r+Cha%&D  
       ca2 = fftshift(fft(u2)); bu5)~|?{t  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation AG0x)  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   g<c^\WG  
       u2 = ifft(fftshift(c2));                        % Return to physical space <W^~Y31:0  
       u1 = ifft(fftshift(c1)); uCr  
    if rem(m1,J) == 0                                 % Save output every J steps. \Rt  
        U1 = [U1 u1];                                  % put solutions in U array UzwIV{  
        U2=[U2 u2]; IT33E%G  
        MN1=[MN1 m1]; tR/ JY;jn  
        z1=dz*MN1';                                    % output location }`]^LFU5  
      end 0evZg@JP`  
    end (ajX ;/  
    hg=abs(U1').*abs(U1');                             % for data write to excel x;aZ&  
    ha=[z1 hg];                                        % for data write to excel &!MKqJ@t  
    t1=[0 t'];  \hc9Rk  
    hh=[t1' ha'];                                      % for data write to excel file []^>QsS(X  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 2*FZ@?X@r  
    figure(1) _{);n$`  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Vi-@z;k  
    figure(2) 8Qy |;T}  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <[~M|OL9q,  
    9V!K. _Cb  
    非线性超快脉冲耦合的数值方法的Matlab程序 fE}}>  
    QKQy)g  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   G;+ 0V0K  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %"V,V3kw4  
    @@&;gWr;  
    H#akE\,  
    zqn*DbT  
    %  This Matlab script file solves the nonlinear Schrodinger equations )[.URp&  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of _JoA=< O!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear p]HtJt|]  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ibL;99#  
    `R;XN-  
    C=1;                           m0YDO 0  
    M1=120,                       % integer for amplitude ~Q\[b%>J  
    M3=5000;                      % integer for length of coupler GM~jR-FZ  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Pr'py  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. KDk^)zv%!  
    T =40;                        % length of time:T*T0. <#i'3TUR  
    dt = T/N;                     % time step -K4RQ{=>UZ  
    n = [-N/2:1:N/2-1]';          % Index ='azVw%_  
    t = n.*dt;   V#Eq74ic  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. [;+YO)  
    w=2*pi*n./T; 0jMrL\>C  
    g1=-i*ww./2; b9Nw98`  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; c$TBHK;c  
    g3=-i*ww./2; -#h \8Xl  
    P1=0; kS>j!U(%d  
    P2=0; A,@"(3  
    P3=1; &3M He$  
    P=0; j\<S6%p#R  
    for m1=1:M1                 +`xp+Q  
    p=0.032*m1;                %input amplitude Gl(,%~F9i  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 iZF{9@  
    s1=s10; +{&g|V  
    s20=0.*s10;                %input in waveguide 2 B _ >|Mo/  
    s30=0.*s10;                %input in waveguide 3 Fej$`2mRH  
    s2=s20; "wc $'7M  
    s3=s30; 7}MWmS^8j  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   =W?c1EPLCx  
    %energy in waveguide 1 l\)Q3.w  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   '=5N?)  
    %energy in waveguide 2 Q{l;8MCL  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   l }[ 4  
    %energy in waveguide 3 0nX5 $Kn  
    for m3 = 1:1:M3                                    % Start space evolution 5 ,HNb  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (s~hh  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; v%r!}s  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; D  UeT  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform /TdTo@  
       sca2 = fftshift(fft(s2)); S<44{ oH  
       sca3 = fftshift(fft(s3)); #HML=qK~  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   f>o@Y]/l  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); FM5$83Q  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Sq,x@  
       s3 = ifft(fftshift(sc3)); $%<gp@Gz  
       s2 = ifft(fftshift(sc2));                       % Return to physical space x:(e: I8x(  
       s1 = ifft(fftshift(sc1)); DN+iS  
    end &,+ZN A`P  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); "o`( kYSF  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ,b/0_Q  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 6%? NNEM  
       P1=[P1 p1/p10]; B}p/ ,4x6  
       P2=[P2 p2/p10]; Q{RHW@_/  
       P3=[P3 p3/p10]; m@~HHwj  
       P=[P p*p]; }-!$KR]:s  
    end a&&EjI  
    figure(1) d7 @ N~<n  
    plot(P,P1, P,P2, P,P3); $O[ut.   
     W* YfyM  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~