计算脉冲在非线性耦合器中演化的Matlab 程序 9n[ovX 7n!
b^]@8I[M
% This Matlab script file solves the coupled nonlinear Schrodinger equations of l TRQ/B
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Qcf5*]V
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J 4OgV?
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B)4>:j:{?W
COf>H0^%Q
%fid=fopen('e21.dat','w'); 4w5mn6 MxR
N = 128; % Number of Fourier modes (Time domain sampling points) {Jj
vF
M1 =3000; % Total number of space steps coQ>CbHg
J =100; % Steps between output of space K-b'jP\
T =10; % length of time windows:T*T0 9!sR}
T0=0.1; % input pulse width rVo?I
MN1=0; % initial value for the space output location Fb{kql=
dt = T/N; % time step MKN],l
N
n = [-N/2:1:N/2-1]'; % Index =^LX,!2zp{
t = n.*dt; eDPmUlC+-
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 )2jBhT
u20=u10.*0.0; % input to waveguide 2 {g(-C&
u1=u10; u2=u20; %VD>S
U1 = u1; oH|<(8efD
U2 = u2; % Compute initial condition; save it in U #c:b8rw
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. oj1,DU
w=2*pi*n./T; cc^ [u+
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T )W& $FU4JK
L=4; % length of evoluation to compare with S. Trillo's paper q|+`ihut
dz=L/M1; % space step, make sure nonlinear<0.05 4D-4BxN*
for m1 = 1:1:M1 % Start space evolution rpu{YC1C%
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS M'4$z^@Z
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 06#40-
ca1 = fftshift(fft(u1)); % Take Fourier transform ^1^muc[
ca2 = fftshift(fft(u2)); C`0;
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation 6X@$xe847[
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift `Mxi2Y{vp
u2 = ifft(fftshift(c2)); % Return to physical space S!;:7?mq
u1 = ifft(fftshift(c1)); eJ23$VM+9
if rem(m1,J) == 0 % Save output every J steps. q g+bh
U1 = [U1 u1]; % put solutions in U array <8Zm}-U
U2=[U2 u2]; \Y{^Q7!>:8
MN1=[MN1 m1]; =7U_ jDME
z1=dz*MN1'; % output location D!oELZ3
end ?{
0MF
end WI$MT6
hg=abs(U1').*abs(U1'); % for data write to excel *=X$j~#X
ha=[z1 hg]; % for data write to excel xC,;IS k,
t1=[0 t']; :nHa-N3
hh=[t1' ha']; % for data write to excel file nd[{DF?)/
%dlmwrite('aa',hh,'\t'); % save data in the excel format EhOy<f[4W
figure(1) eaxp(VX?oy
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn s@ ~Y!A
figure(2) O*ql!9}E{
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn _K?{DnTb
VkNg Vjg
非线性超快脉冲耦合的数值方法的Matlab程序 I,@f*o
1eZ759PoO
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 u,R;=DNl
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c9eLNVM
h!L/ZeRaV
9y~5@/32R
[Ie;Jd>gG
% This Matlab script file solves the nonlinear Schrodinger equations Z7X_U`Q
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [JY 1| N
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ; SS/bS|
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fgW>U*.ar
.ZB(!v/2
C=1; POtj6 ?a
M1=120, % integer for amplitude !4(X9}a
M3=5000; % integer for length of coupler /@<&{_sybp
N = 512; % Number of Fourier modes (Time domain sampling points) XRMYR97
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. &C.{7ZNt
T =40; % length of time:T*T0. />Z`?
dt = T/N; % time step z|o7k;raH
n = [-N/2:1:N/2-1]'; % Index 5VU
5kiCt
t = n.*dt; Ltx eT.
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. $X9`~Sv _
w=2*pi*n./T; f+/AD
g1=-i*ww./2; ;w/|5 ;{A;
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 3:XF7T
g3=-i*ww./2; fR&;E
P1=0; ]}wo$7pO
P2=0; z)RJUmY3B
P3=1; <Oi65O_X
P=0; e-Xr^@M*Q
for m1=1:M1 [=})^t?8
p=0.032*m1; %input amplitude &.zG?e.
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 fq@r6\TI
s1=s10; ,co~@a@9
s20=0.*s10; %input in waveguide 2 UC!?.
s30=0.*s10; %input in waveguide 3 #^+C
kHX
s2=s20; a,GOS:?O5
s3=s30; dOm@cs
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); R d?8LLz
%energy in waveguide 1 m+t<<5I[-
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); [O"9OW'2!B
%energy in waveguide 2 Md4hd#z
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); d-zNvbU"
%energy in waveguide 3 :6
, `M,
for m3 = 1:1:M3 % Start space evolution ;
S(KJV
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS *Vbf;=Mb
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; J<"=c
z$
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; A)2eo<ij4
sca1 = fftshift(fft(s1)); % Take Fourier transform ,G q?
sca2 = fftshift(fft(s2)); 0^H"eQO
sca3 = fftshift(fft(s3)); CNo'qlvF5N
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift (;9-8Y&_