切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8936阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 v<c@bDZ>  
    FqpUw<]6s  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 1hnw+T<<W  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of uy^vQ/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear u#uT|a.  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <qpDAz4k  
    Zn]njf1x  
    %fid=fopen('e21.dat','w'); -p\uW 0XA  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 38Bh9>c3  
    M1 =3000;              % Total number of space steps {D9m>B3"{  
    J =100;                % Steps between output of space 4W$ t28)  
    T =10;                  % length of time windows:T*T0 ="*:H)  
    T0=0.1;                 % input pulse width f R?Xq@c  
    MN1=0;                 % initial value for the space output location 7(oX 1hN  
    dt = T/N;                      % time step mqFo`Ee  
    n = [-N/2:1:N/2-1]';           % Index l[D5JnWxt  
    t = n.*dt;   C_~hX G  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 +^\TG>le  
    u20=u10.*0.0;                  % input to waveguide 2 1<ic 5kB  
    u1=u10; u2=u20;                 R<GnPN:c  
    U1 = u1;   Fw!TTH6l0  
    U2 = u2;                       % Compute initial condition; save it in U 9X-w5$<  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. $xl>YYEBMH  
    w=2*pi*n./T; cB ,l=/?  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [)E.T,fjMQ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 9< $n'g  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 l,n V*Z  
    for m1 = 1:1:M1                                    % Start space evolution 2l#c?]TA  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS #-*#? -  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; /\0 rRT  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform X/l{E4Ex  
       ca2 = fftshift(fft(u2)); 2iJ)K rw  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Gec?  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   <@puWm[p  
       u2 = ifft(fftshift(c2));                        % Return to physical space )* \N[zm  
       u1 = ifft(fftshift(c1)); jLZ^EM-  
    if rem(m1,J) == 0                                 % Save output every J steps. L~u@n24  
        U1 = [U1 u1];                                  % put solutions in U array #rkz:ir4  
        U2=[U2 u2]; X5hamkM*m  
        MN1=[MN1 m1]; bI_T\Eft  
        z1=dz*MN1';                                    % output location I \DH  
      end E1&9( L5  
    end k,mgiGrQ  
    hg=abs(U1').*abs(U1');                             % for data write to excel e M$NVpS3  
    ha=[z1 hg];                                        % for data write to excel C =6.~&(  
    t1=[0 t']; x&kM /z?/  
    hh=[t1' ha'];                                      % for data write to excel file ;`f14Fb  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 8w Xnc%  
    figure(1) VoTnm   
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn */7+pk(  
    figure(2) V4.&"0\n#  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Z Vin+z  
    d}Y\; '2,  
    非线性超快脉冲耦合的数值方法的Matlab程序 _,?<r&>v6  
    jrl'?`O  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   H`:2J8   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,@#))2<RK  
    Yi5^# G  
    fUg<+|v*  
    pp2,d`01[L  
    %  This Matlab script file solves the nonlinear Schrodinger equations nbMxQOD k  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of l 7XeZ} S  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2.>WR~ \  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~mR@L`"l  
    l[AQyR1+/  
    C=1;                           oE H""Bd  
    M1=120,                       % integer for amplitude s6k@WT?"^  
    M3=5000;                      % integer for length of coupler 5C|Y-G  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) I+VL~'VlS  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 5!b+^UR;z  
    T =40;                        % length of time:T*T0. ~fV\ X*  
    dt = T/N;                     % time step >OLKaghV.5  
    n = [-N/2:1:N/2-1]';          % Index P"%QFt,  
    t = n.*dt;   UK7pQt}9  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. hT0[O  
    w=2*pi*n./T; J dK' ~-L  
    g1=-i*ww./2; $\w<.)"#  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; EDA%qNd]j  
    g3=-i*ww./2; b5@sG^  
    P1=0; R_7[7 /a  
    P2=0; 3b d(.he2u  
    P3=1; RnaxRnXVR  
    P=0; F+m%PVW:  
    for m1=1:M1                 j TyR+#Wn  
    p=0.032*m1;                %input amplitude ev'` K=n8  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :]rb}1nLB  
    s1=s10; +I$,Y~&`>  
    s20=0.*s10;                %input in waveguide 2 vh/&KTe?:  
    s30=0.*s10;                %input in waveguide 3 e2><Y<  
    s2=s20; ;J>upI   
    s3=s30; ms]r1x"  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   )/y7Fh  
    %energy in waveguide 1 'xP&u<(F  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   lA/.4"nN  
    %energy in waveguide 2 F{*h~7D-|  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   (2J\o  
    %energy in waveguide 3 =.48^$LWx  
    for m3 = 1:1:M3                                    % Start space evolution x_+-TC4IXn  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS vH?rln  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; $SOFq+-T  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ixY[ HDPq  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ]J(BaX4  
       sca2 = fftshift(fft(s2)); lZr}F.7  
       sca3 = fftshift(fft(s3)); 3-PqUJT$   
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   0z =?}xr  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); !0Mx Bem  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); +L,V_z  
       s3 = ifft(fftshift(sc3)); GyZpdp!  
       s2 = ifft(fftshift(sc2));                       % Return to physical space yp!7^  
       s1 = ifft(fftshift(sc1)); GiK4LJ~cH)  
    end Q;xJ/4 Z"  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); }`~n$OVx  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Ht"?ajW{  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); x>bGxDtu*  
       P1=[P1 p1/p10]; *8I"7'xh  
       P2=[P2 p2/p10]; *yZ `aKfH  
       P3=[P3 p3/p10]; Xmm) z  
       P=[P p*p]; PrKH{nyJk  
    end 67g"8R#.V  
    figure(1) 0g`$Dap  
    plot(P,P1, P,P2, P,P3); FPE%h =sw  
    w$DHMpW'  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~