切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8982阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 "97sH_ ,  
    Kd}%%L  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of be6`Sv"H  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of GWx?RIKF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  LWo)x  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D<Z\6)|%I  
    MNfc1I_#  
    %fid=fopen('e21.dat','w'); Mt4`~`6  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) #;2kN &  
    M1 =3000;              % Total number of space steps 6_EfOD9  
    J =100;                % Steps between output of space IFSIQ q  
    T =10;                  % length of time windows:T*T0 gd)VL}k  
    T0=0.1;                 % input pulse width d.snD)X  
    MN1=0;                 % initial value for the space output location N,)rrBD  
    dt = T/N;                      % time step y_IF{%i  
    n = [-N/2:1:N/2-1]';           % Index i;2V   
    t = n.*dt;   4YMUkwh  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Ud-c+, xX  
    u20=u10.*0.0;                  % input to waveguide 2 Swv =gu  
    u1=u10; u2=u20;                 m,J9:S<5;  
    U1 = u1;   voN,u>U  
    U2 = u2;                       % Compute initial condition; save it in U -z/>W+k  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Dk~ JH9#  
    w=2*pi*n./T; `yXHb  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T K>+c2;t;  
    L=4;                           % length of evoluation to compare with S. Trillo's paper N8wA">u  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 o<S(ODOfi  
    for m1 = 1:1:M1                                    % Start space evolution Xp^71A?>  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Mc|UD*Z  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; :JxuaM8  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform A*{V%7hs&  
       ca2 = fftshift(fft(u2)); 7*&q"   
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ;;17 #T2  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ]T<RC\o  
       u2 = ifft(fftshift(c2));                        % Return to physical space 4!+IsT  
       u1 = ifft(fftshift(c1)); &-.2P!t  
    if rem(m1,J) == 0                                 % Save output every J steps. S#D6mg$Z,  
        U1 = [U1 u1];                                  % put solutions in U array jivGkIj!8  
        U2=[U2 u2]; y#{> tC  
        MN1=[MN1 m1]; yzCamm4~0  
        z1=dz*MN1';                                    % output location 5DeAH ;  
      end "CQ:<$|$  
    end p\|*ff0  
    hg=abs(U1').*abs(U1');                             % for data write to excel &C E){jC  
    ha=[z1 hg];                                        % for data write to excel bq}o#d5p-_  
    t1=[0 t']; tw]Q5:6  
    hh=[t1' ha'];                                      % for data write to excel file fH 5/  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _AVP1  
    figure(1) Pu]Pp`SP  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn H|!|fo-Tx  
    figure(2) o7@81QA!e  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn y}lqF8s  
    ?F%,d{^  
    非线性超快脉冲耦合的数值方法的Matlab程序 "M:0lUy  
    >^KO5N-:4  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   tsTCZ);(  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~d6zpQf7>  
    $]]|#}J  
    .37Jrh0Iv  
    *1b)Va8v*  
    %  This Matlab script file solves the nonlinear Schrodinger equations (f t$ R?  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [[0u|`T/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w'D=K_h  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fnO>v/&B  
    |`6*~ciUV  
    C=1;                           Ut^ {4_EC  
    M1=120,                       % integer for amplitude 9r hl2E  
    M3=5000;                      % integer for length of coupler KdtQJ:_`k  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) -]~vE fq+T  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. D~JrO]mi  
    T =40;                        % length of time:T*T0. m&8'O\$  
    dt = T/N;                     % time step EJ`"npU  
    n = [-N/2:1:N/2-1]';          % Index /aD3E"Op  
    t = n.*dt;   LYyOcb[x  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. OuF%!~V   
    w=2*pi*n./T; s8 0$   
    g1=-i*ww./2; q*4=sf,>  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; dJD8c 2G  
    g3=-i*ww./2; x.~AvJ  
    P1=0; hE>%LcP  
    P2=0; \$[S=&E  
    P3=1; -mK;f$X  
    P=0; CQm(N  
    for m1=1:M1                 jpek=4E  
    p=0.032*m1;                %input amplitude K.K=\ Y2  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 aqzIMOAf  
    s1=s10; u3ns-e  
    s20=0.*s10;                %input in waveguide 2 e2l!L*[g  
    s30=0.*s10;                %input in waveguide 3 W #kOcw  
    s2=s20; V t@]  
    s3=s30; S 7 *LV;  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   m_g2Cep  
    %energy in waveguide 1 tjTnFP/=  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   (7_}UT@w-  
    %energy in waveguide 2 NvqIYW  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   wXnluE  
    %energy in waveguide 3 $@(+" $  
    for m3 = 1:1:M3                                    % Start space evolution ij+)U`  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Q9h;`G 7t  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; I[v6Y^{q  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ny{Yr>:2  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform NhYce>  
       sca2 = fftshift(fft(s2)); .~t.B!rVSB  
       sca3 = fftshift(fft(s3)); U sS"WflB  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   %RS8zN  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); a08`h.dyN  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); soXIPf  
       s3 = ifft(fftshift(sc3)); VuWBWb?0Q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space <@z!kl  
       s1 = ifft(fftshift(sc1)); ^>ICycJ  
    end 85GU~.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); YZyV   
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Q=~ *oYR  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); q71~Y:7f  
       P1=[P1 p1/p10]; 3"HW{=  
       P2=[P2 p2/p10]; wYAi-gdOi  
       P3=[P3 p3/p10]; A, ;V|jv9  
       P=[P p*p]; 7uW=fkxT  
    end LW '3m5  
    figure(1) mW&hUP Rx  
    plot(P,P1, P,P2, P,P3); {oK4 u  
    \7U'p:h=U  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~