切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8659阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 (Q @m;i>  
    N8KHNTb-M  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of {!-w|&bF  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of [0 W^|=#K  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]$z~;\T  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 P[Qr[74 )  
    sx/g5 ?zh  
    %fid=fopen('e21.dat','w'); ? 56Zw"89  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) .M_;mhRI  
    M1 =3000;              % Total number of space steps '8}\! i&  
    J =100;                % Steps between output of space < *XC`Ii  
    T =10;                  % length of time windows:T*T0 QZDGk4GG  
    T0=0.1;                 % input pulse width g'mkhF(  
    MN1=0;                 % initial value for the space output location >8RIMW2  
    dt = T/N;                      % time step \TKv3N  
    n = [-N/2:1:N/2-1]';           % Index *EotYT  
    t = n.*dt;   9 /9,[A  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 wngxVhu8Ld  
    u20=u10.*0.0;                  % input to waveguide 2 @ #V31im"N  
    u1=u10; u2=u20;                 )Dv"seH.  
    U1 = u1;   QJ$]~)w?H  
    U2 = u2;                       % Compute initial condition; save it in U |o+vpy  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. A?_2@6Y^  
    w=2*pi*n./T; /A_ IS`  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T GM@TWwG-B  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 7C&`i}/t  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 b?r0n]  
    for m1 = 1:1:M1                                    % Start space evolution bi,%QZZ  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS & ??)gMM[  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; I{M2nQi  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform F9d][ P@@  
       ca2 = fftshift(fft(u2)); ~)()PO  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation YrB-;R 1+  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   EK#w: "  
       u2 = ifft(fftshift(c2));                        % Return to physical space xE+Go  
       u1 = ifft(fftshift(c1)); ysL8w"t  
    if rem(m1,J) == 0                                 % Save output every J steps. 'dBzv>ngD  
        U1 = [U1 u1];                                  % put solutions in U array |=7%Edkd  
        U2=[U2 u2]; (/uL6W d0  
        MN1=[MN1 m1]; Cu!4ha.e`  
        z1=dz*MN1';                                    % output location ?lbX.+  
      end #ReW#?P%b/  
    end #?aR,@n  
    hg=abs(U1').*abs(U1');                             % for data write to excel Q>X ;7nt0  
    ha=[z1 hg];                                        % for data write to excel G"J6X e  
    t1=[0 t']; (spX3n%p  
    hh=[t1' ha'];                                      % for data write to excel file 5|AZ/!rb  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 'o5[ :=K  
    figure(1) gg6&Fzp  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn U~7.aZHPx3  
    figure(2) !vG._7lPp  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <nIU]}q  
    F@?QVdY1q7  
    非线性超快脉冲耦合的数值方法的Matlab程序 qHv W{0E  
    J_`.w  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   J\2F%kBej?  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 HI:E&20y  
     dedi6Brl  
    M`"2;  
    % 3FI>\3  
    %  This Matlab script file solves the nonlinear Schrodinger equations B[y1RI|9  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +K+ == mO&  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ib& |271gG  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SqEO ] ~  
    :?lSa6de  
    C=1;                           6Q\n<&,{  
    M1=120,                       % integer for amplitude hI/p9 `w  
    M3=5000;                      % integer for length of coupler e _,_:|t  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) j^LnHVHk1  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;M}bQ88  
    T =40;                        % length of time:T*T0. \QHM7C T  
    dt = T/N;                     % time step 6g$+))g  
    n = [-N/2:1:N/2-1]';          % Index Ot v{#bB$  
    t = n.*dt;   =#1/<q)L  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 64zO%F*  
    w=2*pi*n./T; :@Q_oyWE8  
    g1=-i*ww./2; .]8 Jeb  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; I |BLAm6j  
    g3=-i*ww./2; =. OW sFv  
    P1=0; c L84}1QD  
    P2=0; SR8[ 7MU  
    P3=1; qf ]ax!bK  
    P=0; GT'%HmQI  
    for m1=1:M1                 <$ '#@jW  
    p=0.032*m1;                %input amplitude bp5hS/A^1w  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 M~3(4,  
    s1=s10; t$s)S>  
    s20=0.*s10;                %input in waveguide 2 x37r{$2  
    s30=0.*s10;                %input in waveguide 3 J&h 3,  
    s2=s20; 8B\,*JGY2  
    s3=s30; x~KS;hA  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   {>5c,L$  
    %energy in waveguide 1 G.c s-f  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   r?H {Y3 ,  
    %energy in waveguide 2 b/E1v,/<  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   UlQ}   
    %energy in waveguide 3 m@"!=CTKd  
    for m3 = 1:1:M3                                    % Start space evolution JB* *z00;  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS o'R_kadN[T  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5MiWM2"X\  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; -@AGQ+e  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform @-Gf+*GZys  
       sca2 = fftshift(fft(s2)); yp!Xwq#n  
       sca3 = fftshift(fft(s3)); "BEU%,w  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   arDY@o~  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); !L>'g  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); |RHX2sso  
       s3 = ifft(fftshift(sc3)); 7dxY07 yu  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 3",6 E(  
       s1 = ifft(fftshift(sc1)); 92eS*x2@  
    end ]_5C5m  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \5X34'7   
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); I]TL#ywF   
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); E&]S No<  
       P1=[P1 p1/p10]; %_} #IS1  
       P2=[P2 p2/p10]; ?c(f6p?%  
       P3=[P3 p3/p10]; sE]eIN  
       P=[P p*p]; -3ha LdRk6  
    end b>;5#OQfn  
    figure(1) awMm&8cIM  
    plot(P,P1, P,P2, P,P3); 5wr0+Xo  
    TlAY=JwW  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~