切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9015阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 .GvZv>  
    |pE ~  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 7Kt i&T  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of #_zj5B38E  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~$YasFEz  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #y1M1Og  
    Rd|^C$6  
    %fid=fopen('e21.dat','w'); bs)Ro/7}  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ^ j<2s"S  
    M1 =3000;              % Total number of space steps m [BV{25  
    J =100;                % Steps between output of space h#u k-7  
    T =10;                  % length of time windows:T*T0 avUdv V-  
    T0=0.1;                 % input pulse width 'i 8`LPQ  
    MN1=0;                 % initial value for the space output location zvT8r(<n}  
    dt = T/N;                      % time step cd4HbSp  
    n = [-N/2:1:N/2-1]';           % Index % xBQX  
    t = n.*dt;   5E2T*EXSh  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10  xC2y/ ?  
    u20=u10.*0.0;                  % input to waveguide 2 3 op{h6  
    u1=u10; u2=u20;                 %/RT}CBBsW  
    U1 = u1;   %%lJyLq'Vk  
    U2 = u2;                       % Compute initial condition; save it in U `r0MQkk  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 8>DX :`  
    w=2*pi*n./T; 'fY29Xr^  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ePTxuCf>  
    L=4;                           % length of evoluation to compare with S. Trillo's paper s_U--y.2r(  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 K^%ONultv  
    for m1 = 1:1:M1                                    % Start space evolution B8zc#0!1  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS mh#_lbe'  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; HcHwvf6y  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform  r^,"OM]  
       ca2 = fftshift(fft(u2)); yRt7&,}zL  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation / &yc?Ui  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   `=2p6<#z  
       u2 = ifft(fftshift(c2));                        % Return to physical space %5j*e  
       u1 = ifft(fftshift(c1)); z!)@`?  
    if rem(m1,J) == 0                                 % Save output every J steps. [vxHsY3z  
        U1 = [U1 u1];                                  % put solutions in U array `Cz_^>]|=  
        U2=[U2 u2]; |^gnT`+  
        MN1=[MN1 m1]; 24 RD  
        z1=dz*MN1';                                    % output location 1/c+ug!y  
      end ]vH:@%3U  
    end _BG7 JvI  
    hg=abs(U1').*abs(U1');                             % for data write to excel seZb;0  
    ha=[z1 hg];                                        % for data write to excel ^(7Qz&q  
    t1=[0 t']; )-\qo#0l  
    hh=[t1' ha'];                                      % for data write to excel file :13u{5:th  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format o>HGfr,N  
    figure(1) E|_}?>{R  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn z]!w@:  
    figure(2) mnU8i=v0 A  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 2FR 5RG oD  
    fRp(&%8E  
    非线性超快脉冲耦合的数值方法的Matlab程序 1?,C d  
    fPG3$<Zr  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Kr+#)S  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q<4{&omUJ  
    i>(TPj|  
    Raf-I+  
    DDZnNSo<JQ  
    %  This Matlab script file solves the nonlinear Schrodinger equations &@'+h* b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Twk<<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear UtHloq(r  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >C`#4e?}  
    AL|3_+G  
    C=1;                            =sk#`,,:  
    M1=120,                       % integer for amplitude n'!x"O7  
    M3=5000;                      % integer for length of coupler =:\5*  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) I 1Yr{(ho  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. %{0F.  
    T =40;                        % length of time:T*T0. Us% _'}(/U  
    dt = T/N;                     % time step  I^G6aw  
    n = [-N/2:1:N/2-1]';          % Index %I@ vMs^  
    t = n.*dt;   ul!q)cPb{  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. \ !IEZ  
    w=2*pi*n./T; P[r$KGz  
    g1=-i*ww./2; aTs9lr:  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; xsU3c0wbr8  
    g3=-i*ww./2; N3w y][bo  
    P1=0; $ SZIJe"K  
    P2=0; NosOd*S  
    P3=1; 7yOBxb   
    P=0; w4l]rH  
    for m1=1:M1                 N[N4!k )!$  
    p=0.032*m1;                %input amplitude }$s QmR R  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :0Fc E,1  
    s1=s10; nIqF:6/  
    s20=0.*s10;                %input in waveguide 2 [C@ Ro,mI  
    s30=0.*s10;                %input in waveguide 3 a>k9& w  
    s2=s20; GK#D R/OM  
    s3=s30; -jVg {f!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   38%"#T3#  
    %energy in waveguide 1 n2Q ?sV;m  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   F1p|^hYDW  
    %energy in waveguide 2 \!*F:v0g^  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   juxAyds  
    %energy in waveguide 3 "tu*(>'~5  
    for m3 = 1:1:M3                                    % Start space evolution 5[~ C!t;  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Sp]ov:]%f  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ::@JL  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; #z}0]GJKj  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform #hXuGBZEI  
       sca2 = fftshift(fft(s2)); AG"iS<u  
       sca3 = fftshift(fft(s3)); {ea*dX872:  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   (@S 9>z4s  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); zR?1iV.]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);  _w FK+>  
       s3 = ifft(fftshift(sc3)); >E WK cocM  
       s2 = ifft(fftshift(sc2));                       % Return to physical space tZ:fOM  
       s1 = ifft(fftshift(sc1)); o%K1!'  
    end GE\({V.W  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ]NKz5[9D  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));  1 K]  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); m~F ~9&  
       P1=[P1 p1/p10]; \!k\%j 9  
       P2=[P2 p2/p10]; #q8/=,3EG  
       P3=[P3 p3/p10]; lE3&8~2   
       P=[P p*p]; nFwdW@E9  
    end ^$<:~qq !  
    figure(1) <f0yh"?6VH  
    plot(P,P1, P,P2, P,P3); :^]Fp UY  
    jI$7vmO  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~