切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9039阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 e*H$c?7NL  
    GK&Dd"v  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of CV"Y40  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Z- (HDn  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >,3 3Jx  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (Lnh> '2  
    n]Y _C^  
    %fid=fopen('e21.dat','w'); Q@n kT1o  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) dZmq  
    M1 =3000;              % Total number of space steps O]lfs >>x  
    J =100;                % Steps between output of space {eUfwPAa3  
    T =10;                  % length of time windows:T*T0 +)S X  
    T0=0.1;                 % input pulse width }}_l@5  
    MN1=0;                 % initial value for the space output location [dMxr9M  
    dt = T/N;                      % time step rI/KrBM  
    n = [-N/2:1:N/2-1]';           % Index ]U%Tm>s.  
    t = n.*dt;   zhE7+``g  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 MzD0F#Y  
    u20=u10.*0.0;                  % input to waveguide 2 K>y+3HN[6  
    u1=u10; u2=u20;                 pdSyx>rJ  
    U1 = u1;   ^h=kJR9  
    U2 = u2;                       % Compute initial condition; save it in U e$=|-J z  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. kZQ;\QL1}  
    w=2*pi*n./T; M.xEiHz  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T :xCobMs_/  
    L=4;                           % length of evoluation to compare with S. Trillo's paper r$5!KO  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 d%bL_I)  
    for m1 = 1:1:M1                                    % Start space evolution x}d\%* B  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS RMK U5A7  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 9"S3AEI  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform fp0Va!T(V  
       ca2 = fftshift(fft(u2)); .Ko`DH~!,C  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation :%{7Q$Xv<  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   uk,f}Xc  
       u2 = ifft(fftshift(c2));                        % Return to physical space M_K&x-H0  
       u1 = ifft(fftshift(c1)); zdCt#=QV?R  
    if rem(m1,J) == 0                                 % Save output every J steps.  t2iFd?  
        U1 = [U1 u1];                                  % put solutions in U array n :P}K?lg  
        U2=[U2 u2]; 2dfA}i>k  
        MN1=[MN1 m1]; r DuG["  
        z1=dz*MN1';                                    % output location STe;Sr&p  
      end <FE O6YP  
    end ^-ZqS  
    hg=abs(U1').*abs(U1');                             % for data write to excel /hQ!dU.+  
    ha=[z1 hg];                                        % for data write to excel <vs.Ucxx  
    t1=[0 t']; I/g]9 y  
    hh=[t1' ha'];                                      % for data write to excel file Lst5  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _wBPn6gg`  
    figure(1) ^d,d<Uc  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn J3=jC5=J4  
    figure(2) w]_a0{Uh  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?=/l@d  
    %:lQ ~yn  
    非线性超快脉冲耦合的数值方法的Matlab程序 Sc&_6} K  
    \T0`GpE  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   'PZJ{8=  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 tBrVg<]t  
    Eq t61O$x  
    SPBXI[[-  
    Z_%>yqDC  
    %  This Matlab script file solves the nonlinear Schrodinger equations /-T%yuU  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of P+[R0QS  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear U/>5C:  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~0L>l J  
    #]rw@c  
    C=1;                           VuGSP]$q  
    M1=120,                       % integer for amplitude @ o]F~x  
    M3=5000;                      % integer for length of coupler l<5!R;?$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Y3?kj@T`i  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ; ?!sU  
    T =40;                        % length of time:T*T0. ||qW'kNWM  
    dt = T/N;                     % time step gb-n~m[y  
    n = [-N/2:1:N/2-1]';          % Index nN[,$`JD,  
    t = n.*dt;   ,Fb#%r%  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. rie1F,  
    w=2*pi*n./T; rVLA"x 9u  
    g1=-i*ww./2; $/Mk.(3'P  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @Z)&3ss  
    g3=-i*ww./2; >Q YxX<W  
    P1=0; !)GPI?{^5  
    P2=0; di"*K*~y  
    P3=1; {+!_; zzZ  
    P=0; B$)KZR(u  
    for m1=1:M1                 k,2% %m  
    p=0.032*m1;                %input amplitude t^q/'9Ai&J  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 YPN|qn(  
    s1=s10; S5j#&i  
    s20=0.*s10;                %input in waveguide 2 &kP>qTI^p~  
    s30=0.*s10;                %input in waveguide 3 @^%# ]x,:  
    s2=s20; M:ttzsd  
    s3=s30; uy$o%NL-7  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ~! @a  
    %energy in waveguide 1 Rc u/ @j{O  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   o;t{YfK  
    %energy in waveguide 2 cng 1k  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   NS\'o )J  
    %energy in waveguide 3 1_A< nt?'R  
    for m3 = 1:1:M3                                    % Start space evolution }RXm=ArN  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS o^Ms(?K%t  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; |KuH2, n0  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; m$]?Jq  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 8E D6C"6  
       sca2 = fftshift(fft(s2)); !aLL|}S  
       sca3 = fftshift(fft(s3)); YS/4<QA[  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   %#= 1?1s  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); (|W@p\Q  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); s+aeP  
       s3 = ifft(fftshift(sc3)); ALhu\x>AY  
       s2 = ifft(fftshift(sc2));                       % Return to physical space )AnX[:y  
       s1 = ifft(fftshift(sc1)); 3iDRt&y=.  
    end }nkX-PG9  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); < d?O#(  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); vuHqOAFNs  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); hW(Mf  
       P1=[P1 p1/p10];  0N md*r  
       P2=[P2 p2/p10]; 7Kfh:0Ihhy  
       P3=[P3 p3/p10]; u\50,N9Wp{  
       P=[P p*p]; %|UCs8EFm  
    end *f1MgP*GKF  
    figure(1) b*7OIN5h  
    plot(P,P1, P,P2, P,P3); ZZ#S\*  
    ;as B@Q  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~