切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8996阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &QQ6F>'T  
    UT{`'#iT  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ;=P!fvHk  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of G,WLca[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *@@dO_%6  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `N}V i6FG  
    H^o_B1  
    %fid=fopen('e21.dat','w'); #t Pc<p6m  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) LrdED[Z  
    M1 =3000;              % Total number of space steps 1)97AkN(O  
    J =100;                % Steps between output of space e+#k\x   
    T =10;                  % length of time windows:T*T0 By[M|4a  
    T0=0.1;                 % input pulse width /ioBc}]  
    MN1=0;                 % initial value for the space output location W4P\HM>2  
    dt = T/N;                      % time step +,7vbs3  
    n = [-N/2:1:N/2-1]';           % Index Fku<|1}&y  
    t = n.*dt;   NyC&j`d  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 uTO%O}D N  
    u20=u10.*0.0;                  % input to waveguide 2 !%(kMN  
    u1=u10; u2=u20;                 XLYGhM  
    U1 = u1;   X<W${L$G  
    U2 = u2;                       % Compute initial condition; save it in U 3TV4|&W;  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. CO, {/  
    w=2*pi*n./T; e1V1Ae  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 7z\ #"~(.  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Y HS/|-  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ' qT\I8%  
    for m1 = 1:1:M1                                    % Start space evolution ][//G|9  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS iM1E**WCtv  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 805oV(-  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform &>Z;>6J,  
       ca2 = fftshift(fft(u2)); hZo  f  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation e`JWY9%  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ~-sG&u>  
       u2 = ifft(fftshift(c2));                        % Return to physical space p,(W?.ZDN?  
       u1 = ifft(fftshift(c1)); 64"DT3:  
    if rem(m1,J) == 0                                 % Save output every J steps. 5L7 nEia'  
        U1 = [U1 u1];                                  % put solutions in U array  Ks^wX  
        U2=[U2 u2]; y= 8SD7P'  
        MN1=[MN1 m1]; Fwvc+ a  
        z1=dz*MN1';                                    % output location 5V/]7>b1  
      end e:N;Jx#  
    end m9 c`"!  
    hg=abs(U1').*abs(U1');                             % for data write to excel P,G :9x"e  
    ha=[z1 hg];                                        % for data write to excel Y>8JHoV  
    t1=[0 t']; ]70ZerQ~L  
    hh=[t1' ha'];                                      % for data write to excel file oxnI/Z  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format |,H 2ge  
    figure(1) .Tw:Y,G  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn p7izy$Wc  
    figure(2) /#t::b+>x  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn #tw_`yh  
    Jko=E   
    非线性超快脉冲耦合的数值方法的Matlab程序 5vS[{;<&  
    R S>qP;V*-  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   qf@P9M  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @1bl<27  
    BT3yrq9  
    (?GW/pLK]  
     VS7  
    %  This Matlab script file solves the nonlinear Schrodinger equations ru1^. (W2  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ![I|hB  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [yc7F0Aw  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 v<(+ l)Ln  
    Q$k#q<+0  
    C=1;                           +T,A^(&t  
    M1=120,                       % integer for amplitude p)m5|GH24  
    M3=5000;                      % integer for length of coupler E1w8d4P,G  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 7.)_H   
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. OOABn*  
    T =40;                        % length of time:T*T0. 79o=HiOF99  
    dt = T/N;                     % time step 7>0/$i#'Vl  
    n = [-N/2:1:N/2-1]';          % Index FKhgUnw  
    t = n.*dt;   CeUXGa|C  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 0$=U\[og  
    w=2*pi*n./T; 6V6Mo}QF s  
    g1=-i*ww./2; X1[zkb  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; TnKOr~@*  
    g3=-i*ww./2; cBOt=vg,5  
    P1=0; Be^"sC  
    P2=0; 0 xvSi9  
    P3=1; { utnbtmu  
    P=0; utn,`v   
    for m1=1:M1                 4L97UhLL  
    p=0.032*m1;                %input amplitude Z>X]'q03  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 S<i. O  
    s1=s10; V|awbff:  
    s20=0.*s10;                %input in waveguide 2 LN5q_ZvR  
    s30=0.*s10;                %input in waveguide 3 nYvkeT  
    s2=s20; d@b2XCh<K  
    s3=s30; VpY,@qh  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   n!Y}D:6c6  
    %energy in waveguide 1 $ )2zz>4  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   )"2eN3H/  
    %energy in waveguide 2 mjk<FXW  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   b+f '  
    %energy in waveguide 3 C}L2'l,  
    for m3 = 1:1:M3                                    % Start space evolution Y~#F\v  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS KilN`?EJ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; a^[s[j#^,  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; M[-/&;`f@  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform vI48*&]wTf  
       sca2 = fftshift(fft(s2)); :C0)[L  
       sca3 = fftshift(fft(s3)); ^AXH}g  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   D)S_ p&  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); :w4N*lV-  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); J^PFhu  
       s3 = ifft(fftshift(sc3)); p`52  
       s2 = ifft(fftshift(sc2));                       % Return to physical space INCD5dihJ  
       s1 = ifft(fftshift(sc1)); Q+_z*  
    end r5$!41   
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); n%02,pC6,  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); zx+}>(U\U  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); i!(5y>I_  
       P1=[P1 p1/p10]; E2`9H-6e  
       P2=[P2 p2/p10]; <'hoN/g  
       P3=[P3 p3/p10]; I,]q;lEMt  
       P=[P p*p]; (b"q(:5oX  
    end #%#N.tB 5  
    figure(1) *#?9@0b@  
    plot(P,P1, P,P2, P,P3); ^i3!1cS  
    B=}QgXg  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~