计算脉冲在非线性耦合器中演化的Matlab 程序 QJ&]4*>a #_eXybUV % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Z`_x|cU?J % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
s"@}^
)*} % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
ku4Gc6f#gG % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
qt(4?_J Xdi<V_!BC- %fid=fopen('e21.dat','w');
+BeA4d8b N = 128; % Number of Fourier modes (Time domain sampling points)
-T}r$A M1 =3000; % Total number of space steps
/qKA1-R}4
J =100; % Steps between output of space
Wv|CJN;4 T =10; % length of time windows:T*T0
mqHcD8X T0=0.1; % input pulse width
{#st>%i MN1=0; % initial value for the space output location
-AD@wn!wCJ dt = T/N; % time step
svx7 n = [-N/2:1:N/2-1]'; % Index
c2t`i t = n.*dt;
~s-bA#0S u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
^&D5J\][ u20=u10.*0.0; % input to waveguide 2
A!,c@Kv
3 u1=u10; u2=u20;
0BNH~,0u U1 = u1;
x <a}*8" U2 = u2; % Compute initial condition; save it in U
,4S[<(T" ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
h/oun2C w=2*pi*n./T;
j,Mbl"P g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
k-H6c L=4; % length of evoluation to compare with S. Trillo's paper
*^%+PQ dz=L/M1; % space step, make sure nonlinear<0.05
(/2rj[F& for m1 = 1:1:M1 % Start space evolution
cRH(@b
Xr u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
B`.aQ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
DXG`% <ZMn ca1 = fftshift(fft(u1)); % Take Fourier transform
X{Fr ca2 = fftshift(fft(u2));
~n8UN< c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
whYk"N c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
xT+#K5 u2 = ifft(fftshift(c2)); % Return to physical space
v-N4&9)%9 u1 = ifft(fftshift(c1));
/lbj!\~ if rem(m1,J) == 0 % Save output every J steps.
e`co:HO`# U1 = [U1 u1]; % put solutions in U array
8o[gzW:Q)U U2=[U2 u2];
V@]SKbK}wN MN1=[MN1 m1];
TFG?
EO z1=dz*MN1'; % output location
"f8,9@ end
Fm=jgt3wv8 end
!zt>& t hg=abs(U1').*abs(U1'); % for data write to excel
;e*okYM ha=[z1 hg]; % for data write to excel
i9Beap/t$ t1=[0 t'];
e,{k!BXU#' hh=[t1' ha']; % for data write to excel file
Dt<MEpbur %dlmwrite('aa',hh,'\t'); % save data in the excel format
'%4fQ%ID} figure(1)
VH4wsEH] waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
L*dGo,oN figure(2)
KB^8Z@(+ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
%f'=9pit p6NPWaBR
非线性超快脉冲耦合的数值方法的Matlab程序 tH&eKM4G 0ETT@/)]z 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
FAL#p$y} Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
.rG~\Ws [Rub ]zVQL_%, P>u2""c % This Matlab script file solves the nonlinear Schrodinger equations
>]anTF`d % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
p2Gd6v.t % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
NC!B-3?x % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
qLN\>Z,3; H>D sAHS C=1;
;~DrsQb M1=120, % integer for amplitude
eI:x4K,# M3=5000; % integer for length of coupler
%TR J N = 512; % Number of Fourier modes (Time domain sampling points)
[T4{K& dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
WMnSkO T =40; % length of time:T*T0.
x1Y/^ks@2 dt = T/N; % time step
@GD $KR9 n = [-N/2:1:N/2-1]'; % Index
9(qoME}>= t = n.*dt;
ZQym8iV/ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
OM^`P w=2*pi*n./T;
p#Po? g1=-i*ww./2;
X.>~DT%0Lm g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
%z.V$2 g3=-i*ww./2;
y`8U0TE3R P1=0;
*z6A ~U P2=0;
$[b}r#P P3=1;
Z2@e~&L P=0;
*;Mc X for m1=1:M1
FWU>WHX p=0.032*m1; %input amplitude
Gh.?6kuh s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
^7ID |uMr s1=s10;
kCEo */, s20=0.*s10; %input in waveguide 2
o/
51RH s30=0.*s10; %input in waveguide 3
}"nm3\Df s2=s20;
?/1LueC: s3=s30;
V1Ojr~iM p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
F'>yBDm*OM %energy in waveguide 1
bf=\ED ^ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
H" A@Q.' %energy in waveguide 2
~3Pp}eO~V p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
6iXV %energy in waveguide 3
'5*& for m3 = 1:1:M3 % Start space evolution
O"|d~VQ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
9015PEO s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
R\X;`ptT s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
>);M\,1\I sca1 = fftshift(fft(s1)); % Take Fourier transform
p5OoDo sca2 = fftshift(fft(s2));
ns~bz-n sca3 = fftshift(fft(s3));
)g?jHm-p\ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
zt9A-%
\R sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
~N}Zr$D sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
v!DK.PZbi s3 = ifft(fftshift(sc3));
=bP<cC=3b s2 = ifft(fftshift(sc2)); % Return to physical space
A' uaR? s1 = ifft(fftshift(sc1));
mJd8?d end
THX% z
` p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
5M9o(Z\AF p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
YahW%mv`d p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
h+!R)q8M P1=[P1 p1/p10];
M6quPj P2=[P2 p2/p10];
6 <`e]PT P3=[P3 p3/p10];
k,'MmAz P=[P p*p];
yxT}hMa end
p ^TCr<= figure(1)
J#j3?qrxu plot(P,P1, P,P2, P,P3);
^V9|uHOJoq v9,cL.0& 转自:
http://blog.163.com/opto_wang/