计算脉冲在非线性耦合器中演化的Matlab 程序 @"H+QVJ@ rK2*DuE % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Ov)rsi % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
% ;2x.
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
3D
k W % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
INrUvD/* 9 frS!AQ %fid=fopen('e21.dat','w');
c)M_&?J!5 N = 128; % Number of Fourier modes (Time domain sampling points)
SD6xi\8 M1 =3000; % Total number of space steps
J+LFzl07q J =100; % Steps between output of space
52>?l C T =10; % length of time windows:T*T0
'wX'}3_/g T0=0.1; % input pulse width
EpCUL@+ MN1=0; % initial value for the space output location
x1$tS#lS dt = T/N; % time step
G)?O!(_ n = [-N/2:1:N/2-1]'; % Index
F#Oqa^$( t = n.*dt;
8lt P)K4 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
3
$Uv u20=u10.*0.0; % input to waveguide 2
UPPDs " u1=u10; u2=u20;
5HioxHL U1 = u1;
N@^?J@#V U2 = u2; % Compute initial condition; save it in U
;EE*#"IJ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
5Y)!q?#H w=2*pi*n./T;
#T n~hnW g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
e4ajT L=4; % length of evoluation to compare with S. Trillo's paper
?PSm)
~Oa dz=L/M1; % space step, make sure nonlinear<0.05
]`y4n=L. for m1 = 1:1:M1 % Start space evolution
<Dt,FWWkv' u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
6pQ#Zg()vp u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
o_EXbS]C ca1 = fftshift(fft(u1)); % Take Fourier transform
|]]Xee] ca2 = fftshift(fft(u2));
>\$qF c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
abCcZ<=|b c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
t4UKG&[a u2 = ifft(fftshift(c2)); % Return to physical space
M>0=A u1 = ifft(fftshift(c1));
^C@uP9g if rem(m1,J) == 0 % Save output every J steps.
r+>E`GGQ U1 = [U1 u1]; % put solutions in U array
U^~K-!0 U2=[U2 u2];
W9Bl'e MN1=[MN1 m1];
ho@f}4jhQ3 z1=dz*MN1'; % output location
rGRxofi. end
vBQ5-00YY= end
~c :e0} hg=abs(U1').*abs(U1'); % for data write to excel
?U2ed)zzw ha=[z1 hg]; % for data write to excel
?Gj$$IAe t1=[0 t'];
gV!Eotq hh=[t1' ha']; % for data write to excel file
co<){5zOT %dlmwrite('aa',hh,'\t'); % save data in the excel format
#*
S0d1 figure(1)
M{:gc7% waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
< 7zyRm@S figure(2)
z(>{"t<C waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
QO7> XHn jfS?#;T) 非线性超快脉冲耦合的数值方法的Matlab程序 C_PXh>H]' q[1H=+ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
_$wWKJy9 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
m^O:k"+ ! KcfW+>W3 /[GOs*{zB CjOaw$s % This Matlab script file solves the nonlinear Schrodinger equations
#2I[F % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
V_~}7~
I % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
4G@vO{$ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
l`gRw4/$ Zo;@StN3}T C=1;
R?>a UFM M1=120, % integer for amplitude
)dJM M3=5000; % integer for length of coupler
+fAAkO*GP N = 512; % Number of Fourier modes (Time domain sampling points)
x7l)i!/$ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
vf~q%+UqK T =40; % length of time:T*T0.
C\.? 3 dt = T/N; % time step
FD#?pVyPn^ n = [-N/2:1:N/2-1]'; % Index
+sE8 1B t = n.*dt;
>?b/_O ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
=@binTC4 w=2*pi*n./T;
~0|~Fg g1=-i*ww./2;
eOD;@4lR g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
E[nW B"pxE g3=-i*ww./2;
mv SNKS P1=0;
X+P&
up06 P2=0;
1b;Aru~l P3=1;
5D-xm$8C P=0;
. ~G>vVb for m1=1:M1
_myam3[W p=0.032*m1; %input amplitude
|j^>6nE s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
REoFP;H~ s1=s10;
y= cBpC s20=0.*s10; %input in waveguide 2
@6
gA4h s30=0.*s10; %input in waveguide 3
>Bskw2 s2=s20;
Y$Js5K@F s3=s30;
X LA p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
5p94b*l %energy in waveguide 1
9:fVHynr p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
JF%+T yMe %energy in waveguide 2
E} Uy- p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
:8E(pq|1PB %energy in waveguide 3
+%?_1bGX> for m3 = 1:1:M3 % Start space evolution
0}PW?t76 s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
l0tMdsz s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
n|SsV
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
$62ospR^Y sca1 = fftshift(fft(s1)); % Take Fourier transform
26o68U8&y sca2 = fftshift(fft(s2));
(
y2%G=.j sca3 = fftshift(fft(s3));
H `),PY2 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
1-r1hZ- sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
b,KQG|k sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
sA3 4`ZAa s3 = ifft(fftshift(sc3));
G:c)e,pD s2 = ifft(fftshift(sc2)); % Return to physical space
2ztP' s1 = ifft(fftshift(sc1));
!(uyqplTk end
h+,zfVJu p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
lY.FmF}k p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
.9lx@6]+ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
PM7*@~. P1=[P1 p1/p10];
`Kpn@Xg P2=[P2 p2/p10];
ud'r?QDM P3=[P3 p3/p10];
]*%0CDY6`N P=[P p*p];
iZgv
VH end
k
U*\Fa*E figure(1)
3PpycJ} plot(P,P1, P,P2, P,P3);
%$`pD
I ) mAk)9`f/ 转自:
http://blog.163.com/opto_wang/