切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9359阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 $g\&5sstE  
    ~~qWI>. 4  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Sycw %k  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of GjT#%GBF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !a-b6Aa  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 elO<a]hX  
    }DjYGMrTB  
    %fid=fopen('e21.dat','w'); ,.mBJ SE3  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 8l+H"M&|  
    M1 =3000;              % Total number of space steps p,!$/Q+l  
    J =100;                % Steps between output of space >fs2kha  
    T =10;                  % length of time windows:T*T0 B6M+mx"G  
    T0=0.1;                 % input pulse width 1{PG>W  
    MN1=0;                 % initial value for the space output location gS9>N/b|  
    dt = T/N;                      % time step Z~u9VYi!  
    n = [-N/2:1:N/2-1]';           % Index q31>uF  
    t = n.*dt;   4< S'  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 mY-hN|  
    u20=u10.*0.0;                  % input to waveguide 2 `!4,jd  
    u1=u10; u2=u20;                 Akk 3 Qx  
    U1 = u1;   "8<K'zeS8  
    U2 = u2;                       % Compute initial condition; save it in U M"Y0jQ(  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. UT]?;o"  
    w=2*pi*n./T; K`6z&*  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F:g=i}7  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 2xxB\J  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 0!GAk   
    for m1 = 1:1:M1                                    % Start space evolution nb, 2,H  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `'4)q}bB  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; N|Cs=-+  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform W<,F28jI3v  
       ca2 = fftshift(fft(u2)); w=_Jc8/.  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Lxe^v/LsT  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Oe!6){OG)  
       u2 = ifft(fftshift(c2));                        % Return to physical space @!%n$>p/V  
       u1 = ifft(fftshift(c1)); :1wrVU-?h  
    if rem(m1,J) == 0                                 % Save output every J steps.  HEF?mD3h  
        U1 = [U1 u1];                                  % put solutions in U array #/-_1H  
        U2=[U2 u2]; p3x?[ Ww  
        MN1=[MN1 m1]; 4Y ROB912  
        z1=dz*MN1';                                    % output location ?UZ?NY  
      end E5GJi  
    end p~jlx~1-]  
    hg=abs(U1').*abs(U1');                             % for data write to excel `C72sA{M.  
    ha=[z1 hg];                                        % for data write to excel 6[P-Ny{z  
    t1=[0 t']; `lpz-"EEV  
    hh=[t1' ha'];                                      % for data write to excel file 4ne5=YY *  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &Z^(y}jPr  
    figure(1) )}lRd#V  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn "MOpsb,  
    figure(2) "M H6fF  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn zqySm) o]  
    '-PC7"o  
    非线性超快脉冲耦合的数值方法的Matlab程序 7=}F{U  
    -_A$DM!^=w  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   lFG9=Wf  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /R8p]  
    > 0>  
    %5'6Tj  
    +Wn&,?3^  
    %  This Matlab script file solves the nonlinear Schrodinger equations '0aG N<c  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Ty4S~ClO#'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear _F(P*[[&  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c-1q2y  
    #?O &  
    C=1;                           NTs7KSgZ  
    M1=120,                       % integer for amplitude ]7GlO9  
    M3=5000;                      % integer for length of coupler  J m{  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Z=z%$l  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. nhT(P`6  
    T =40;                        % length of time:T*T0. ~Qj}ijWD  
    dt = T/N;                     % time step P }7zE3V  
    n = [-N/2:1:N/2-1]';          % Index |CD"*[j]  
    t = n.*dt;   UXr5aZ7y  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. #Z,E><t  
    w=2*pi*n./T; iAn'aW\TF  
    g1=-i*ww./2; kyYLP"oB=  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; m]Y;c_DO:  
    g3=-i*ww./2; ?;ukvD  
    P1=0; %/9;ZV  
    P2=0; v({N:ya  
    P3=1; #(;<-7M2  
    P=0; cD}Sf>  
    for m1=1:M1                 'o4p#`R:8  
    p=0.032*m1;                %input amplitude }M>r E  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1   WY  
    s1=s10; <E,%@  
    s20=0.*s10;                %input in waveguide 2 ?? qq:`s  
    s30=0.*s10;                %input in waveguide 3 jQs>`P-CM  
    s2=s20; X$?3U!  
    s3=s30; Zl/< w(f_  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   X* eW#|$\  
    %energy in waveguide 1 %ati7{2!  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   <v 0*]NiX  
    %energy in waveguide 2 kQ>^->w  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   GRqT-/n"  
    %energy in waveguide 3 pV[''  
    for m3 = 1:1:M3                                    % Start space evolution \fWW'  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 5r,r%{@K  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; vXj<  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; L5fuM]G`  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform IND]j72  
       sca2 = fftshift(fft(s2)); 1eS_ nLFw~  
       sca3 = fftshift(fft(s3)); ?knYY>Kzh1  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   I~* ? d  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ?*"srE,#JX  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); W !}{$  
       s3 = ifft(fftshift(sc3)); f2I6!_C!+  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 95W?{> @  
       s1 = ifft(fftshift(sc1)); l1=JrpCan  
    end +/{L#e>   
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); {D&9UZm  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); csZ c|kDI  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); -Sv"gLB  
       P1=[P1 p1/p10]; X|LxV]  
       P2=[P2 p2/p10]; wBk@F5\<  
       P3=[P3 p3/p10]; nR;D#"p%  
       P=[P p*p]; ZAKeEm2A  
    end tAu4haa4;  
    figure(1) ,,L2(N  
    plot(P,P1, P,P2, P,P3);  cgu~  
    7Cqcb>\X  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~