切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8301阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Pl=]Srw  
    $h[Q Q-  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ?jQ](i&  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of X.F^$  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear p{)5k  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /.Nov  
    ?YM4b5!3T  
    %fid=fopen('e21.dat','w'); G.'+-v=\]  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) RF!a//  
    M1 =3000;              % Total number of space steps  ,B<l  
    J =100;                % Steps between output of space Q cjc ,  
    T =10;                  % length of time windows:T*T0 yqXH:757~  
    T0=0.1;                 % input pulse width cV{%^0? D  
    MN1=0;                 % initial value for the space output location J/!cGr( B~  
    dt = T/N;                      % time step h4pTq[4*  
    n = [-N/2:1:N/2-1]';           % Index }U w&Ny  
    t = n.*dt;   l&YKD,H};  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 I:V0Xxz5t  
    u20=u10.*0.0;                  % input to waveguide 2 y7i%W4  
    u1=u10; u2=u20;                 F(#rQ_z]  
    U1 = u1;   x_!0.SU  
    U2 = u2;                       % Compute initial condition; save it in U g$:Xuw1  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. JPM))4YDR  
    w=2*pi*n./T; 6C4'BCYW(  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [[~w0G~1  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Hy"x  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 XNM a0  
    for m1 = 1:1:M1                                    % Start space evolution Do%-B1{ri  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS IL/Yc1  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 7`IpBm<  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform FOwDp0  
       ca2 = fftshift(fft(u2)); )Rat0$6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Z}A%=Z\/3  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   7?gFy-  
       u2 = ifft(fftshift(c2));                        % Return to physical space |wEN`#.;b  
       u1 = ifft(fftshift(c1)); @4(k(  
    if rem(m1,J) == 0                                 % Save output every J steps. U'UQ|%5f  
        U1 = [U1 u1];                                  % put solutions in U array I2$T"K:eo  
        U2=[U2 u2]; dm "n%  
        MN1=[MN1 m1]; 1T_QX9  
        z1=dz*MN1';                                    % output location I|-p3g8\  
      end aq+Y7IR_  
    end AB Xl  
    hg=abs(U1').*abs(U1');                             % for data write to excel !|q<E0@w\  
    ha=[z1 hg];                                        % for data write to excel zOEY6lAwI  
    t1=[0 t']; SjjIr ^  
    hh=[t1' ha'];                                      % for data write to excel file 1pv}]&X  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format H+}"q$  
    figure(1) 0,s$T2  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ' /Bidb?  
    figure(2) m]_FQWfet  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn _ ~RpGX  
    .I VlEG0  
    非线性超快脉冲耦合的数值方法的Matlab程序 @\oz4^  
    ._wkj  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   H_!4>G@  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 to8X=80-3  
    yq_LW>|Z  
    A`}yBSb  
    KV|}#<dD  
    %  This Matlab script file solves the nonlinear Schrodinger equations O9'x -A%  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 6~#Ih)K  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear PN~@  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]Mj/&b>"e  
    iyVB3:M  
    C=1;                            %d Ernc$  
    M1=120,                       % integer for amplitude GEjd7s]C  
    M3=5000;                      % integer for length of coupler Sx*oo{Kk%  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Gc.P,K/hr  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .t&R>9cZ^  
    T =40;                        % length of time:T*T0. 5!C_X5M  
    dt = T/N;                     % time step B,z<%DAE  
    n = [-N/2:1:N/2-1]';          % Index P3 c\S[F  
    t = n.*dt;   wpA`(+J  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. mD:IO  
    w=2*pi*n./T; &2-L. Xb  
    g1=-i*ww./2; <?D[9Mk$  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Q "oI])r  
    g3=-i*ww./2; ^ yh'lh/  
    P1=0; o!E v;' D  
    P2=0; Cp^@zw*/  
    P3=1; +,:^5{9{  
    P=0; m`4R]L]  
    for m1=1:M1                 x# ~ x;)  
    p=0.032*m1;                %input amplitude oIGrA-T}  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 EzW)'Zzw~  
    s1=s10; ,1q_pep~?%  
    s20=0.*s10;                %input in waveguide 2 P+MA*:  
    s30=0.*s10;                %input in waveguide 3 m6eZ_ &+u  
    s2=s20; UV}73Sp  
    s3=s30; Mcw4!{l`  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   l ?Y_~Wuw  
    %energy in waveguide 1 oHM ]  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   >Sa*`q3J  
    %energy in waveguide 2 W$JebW<z(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   kE.x+2  
    %energy in waveguide 3 . .QB~  
    for m3 = 1:1:M3                                    % Start space evolution oRN-xng  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS }MR1^  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; D PrBFmHF  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Q|}a R:4  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform gADmN8G=  
       sca2 = fftshift(fft(s2)); H@X oqgI  
       sca3 = fftshift(fft(s3)); U(&oj e  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   M-NV_W&M  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); C0.'_  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); -3Avs9`5  
       s3 = ifft(fftshift(sc3)); d{et8N  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ?%R w(E  
       s1 = ifft(fftshift(sc1)); @RD+xYm  
    end 0,*%vG?Q  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ;TQf5|R\K  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); *fO3]+)d+  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); uBg 8h{>  
       P1=[P1 p1/p10]; 6Dws,_UAZ4  
       P2=[P2 p2/p10]; `&M{cfp_  
       P3=[P3 p3/p10]; *y`%]Hy<  
       P=[P p*p]; ZA~Z1Mro#"  
    end ^IZ)#1U  
    figure(1) `\=Gp'&Q+  
    plot(P,P1, P,P2, P,P3); 1{pmKPu  
    k.h`Cji@  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~