计算脉冲在非线性耦合器中演化的Matlab 程序 Pl=] Srw $h[QQ- % This Matlab script file solves the coupled nonlinear Schrodinger equations of
?jQ](i& % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
X .F^$ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
p{)5k % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
/.Nov ?YM4b5!3T %fid=fopen('e21.dat','w');
G.'+-v=\] N = 128; % Number of Fourier modes (Time domain sampling points)
RF!a// M1 =3000; % Total number of space steps
,B<l J =100; % Steps between output of space
Qcjc, T =10; % length of time windows:T*T0
yqXH:757~ T0=0.1; % input pulse width
cV{%^0?D MN1=0; % initial value for the space output location
J/!cGr(B~ dt = T/N; % time step
h4pTq[4* n = [-N/2:1:N/2-1]'; % Index
}U w&Ny t = n.*dt;
l&YKD,H}; u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
I:V0Xxz5t u20=u10.*0.0; % input to waveguide 2
y7i %W4 u1=u10; u2=u20;
F(#rQ_z] U1 = u1;
x_!0.SU U2 = u2; % Compute initial condition; save it in U
g$:Xuw1 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
JPM))4YDR w=2*pi*n./T;
6C4'BCYW( g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
[[~w0G~1 L=4; % length of evoluation to compare with S. Trillo's paper
H y"x dz=L/M1; % space step, make sure nonlinear<0.05
XNMa0 for m1 = 1:1:M1 % Start space evolution
Do%-B1{ri u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
IL/Yc1 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
7`IpBm< ca1 = fftshift(fft(u1)); % Take Fourier transform
FOwDp0 ca2 = fftshift(fft(u2));
)Rat0$6 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
Z}A%=Z\/3 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
7?gFy- u2 = ifft(fftshift(c2)); % Return to physical space
|wEN`#.;b u1 = ifft(fftshift(c1));
@4(k( if rem(m1,J) == 0 % Save output every J steps.
U'UQ|%5f U1 = [U1 u1]; % put solutions in U array
I2$T"K:eo U2=[U2 u2];
dm"n% MN1=[MN1 m1];
1T_QX9 z1=dz*MN1'; % output location
I|-p3g8\ end
aq+Y7IR_ end
AB Xl hg=abs(U1').*abs(U1'); % for data write to excel
!|q<E0@w\ ha=[z1 hg]; % for data write to excel
zOEY6lAwI t1=[0 t'];
SjjIr ^ hh=[t1' ha']; % for data write to excel file
1pv}]&X %dlmwrite('aa',hh,'\t'); % save data in the excel format
H+}"q$ figure(1)
0,s$T2 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
'/Bidb? figure(2)
m]_FQWfet waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
_ ~RpGX .I VlEG0 非线性超快脉冲耦合的数值方法的Matlab程序 @\oz4^ ._wkj 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
H_!4>G@ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
to8X=80-3 yq_LW>|Z A`}yBSb KV|}# <dD % This Matlab script file solves the nonlinear Schrodinger equations
O9'x-A% % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
6~#Ih)K % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
PN~@ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
]Mj/&b>"e iyVB3:M C=1;
%dErnc$ M1=120, % integer for amplitude
G Ejd7s]C M3=5000; % integer for length of coupler
Sx*oo{Kk% N = 512; % Number of Fourier modes (Time domain sampling points)
Gc.P,K/hr dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
.t&R>9cZ^ T =40; % length of time:T*T0.
5!C_X5M dt = T/N; % time step
B,z<%DAE n = [-N/2:1:N/2-1]'; % Index
P3
c\S[F t = n.*dt;
wpA`(+J ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
mD:IO w=2*pi*n./T;
&2-L.Xb g1=-i*ww./2;
<?D[9Mk$ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
Q "oI])r g3=-i*ww./2;
^ yh'lh/ P1=0;
o!Ev;'D P2=0;
Cp^@zw*/ P3=1;
+,:^5{9{ P=0;
m`4R]L] for m1=1:M1
x#~ x;) p=0.032*m1; %input amplitude
oIGrA-T} s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
EzW)'Zzw~ s1=s10;
,1q_pep~?% s20=0.*s10; %input in waveguide 2
P+MA*: s30=0.*s10; %input in waveguide 3
m6eZ_&+u s2=s20;
UV}73Sp s3=s30;
Mcw4!{l` p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
l?Y_~Wuw %energy in waveguide 1
oHM
] p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
>Sa*`q3J %energy in waveguide 2
W$JebW<z( p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
kE.x+2 %energy in waveguide 3
. .QB~ for m3 = 1:1:M3 % Start space evolution
oRN-xng s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
}MR1^ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
DPrBFmHF s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Q|}aR:4 sca1 = fftshift(fft(s1)); % Take Fourier transform
gADmN8G= sca2 = fftshift(fft(s2));
H@X oqgI sca3 = fftshift(fft(s3));
U(&oj e sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
M-NV_W&M sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
C0.'_ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
-3Avs9`5 s3 = ifft(fftshift(sc3));
d{et8N s2 = ifft(fftshift(sc2)); % Return to physical space
?%Rw(E s1 = ifft(fftshift(sc1));
@RD+xYm end
0,*%vG?Q p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
;TQf5|R\K p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
*fO3]+)d+ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
uBg 8h{> P1=[P1 p1/p10];
6Dws,_UAZ4 P2=[P2 p2/p10];
`&M{cfp_ P3=[P3 p3/p10];
*y`%]Hy< P=[P p*p];
ZA~Z1Mro#" end
^IZ)#1U figure(1)
`\=Gp'&Q+ plot(P,P1, P,P2, P,P3);
1{pmKPu k.h`Cji@ 转自:
http://blog.163.com/opto_wang/