切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8275阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 A_|X54}w&  
    "!PN+gB  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of bN>|4hS  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of GbBz;ZV%z,  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear wf,w%n  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VP"C|j^I  
    XchVsA  
    %fid=fopen('e21.dat','w'); aq.Lnbi/X  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) C\1x3  
    M1 =3000;              % Total number of space steps x I(X+d``  
    J =100;                % Steps between output of space JS(%:  
    T =10;                  % length of time windows:T*T0 %OT?2-d  
    T0=0.1;                 % input pulse width <;zcz[~  
    MN1=0;                 % initial value for the space output location >8w=Vlp  
    dt = T/N;                      % time step [xl+/F7  
    n = [-N/2:1:N/2-1]';           % Index |OO2>(Fj  
    t = n.*dt;   ko`KAU<T_  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #Dl=K<I  
    u20=u10.*0.0;                  % input to waveguide 2 aHSl_[  
    u1=u10; u2=u20;                 N=TDywRI  
    U1 = u1;   |j!U/n.%w  
    U2 = u2;                       % Compute initial condition; save it in U t ;bU#THM  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &h;J_Ps  
    w=2*pi*n./T; hixG/%aO  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ge$p/  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 2NZC,znQ  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ,<]~/5-f  
    for m1 = 1:1:M1                                    % Start space evolution ?;CMsO*q  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ^<+V[ =X  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }+GIrEDId  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Bx ru7E"  
       ca2 = fftshift(fft(u2));  sf'+;  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation _{y4N0  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   _"S1>s)X?j  
       u2 = ifft(fftshift(c2));                        % Return to physical space nb #)$l  
       u1 = ifft(fftshift(c1)); :lp V  
    if rem(m1,J) == 0                                 % Save output every J steps. FYX" q-Z  
        U1 = [U1 u1];                                  % put solutions in U array {4HcecT  
        U2=[U2 u2]; XjU/7Q  
        MN1=[MN1 m1]; j@Y'>3  
        z1=dz*MN1';                                    % output location 7uxUqM  
      end \CZD.2p#&  
    end 50NLguE  
    hg=abs(U1').*abs(U1');                             % for data write to excel d\j[O9W>  
    ha=[z1 hg];                                        % for data write to excel Zo T8  
    t1=[0 t']; 2#xz,RM.  
    hh=[t1' ha'];                                      % for data write to excel file iJ!p9E*(  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format [IPXU9& Q  
    figure(1) ,*d<hBGbh  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ! ^TCe8  
    figure(2) 6~!l7HqO  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn H.*aVb$  
    XywsjeI4  
    非线性超快脉冲耦合的数值方法的Matlab程序 P,={ C6*  
    Y3?)*kz%  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   7s}E q~  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 L_Lhmtm}m  
    I9O%/^5^[w  
    -~WDv[ [  
    (Kb_/  
    %  This Matlab script file solves the nonlinear Schrodinger equations p{oc}dWin  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of }C<$q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V~"-\@  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O("13cU  
    n1;zml:7_  
    C=1;                           WADAp\&  
    M1=120,                       % integer for amplitude ^H~g7&f9?N  
    M3=5000;                      % integer for length of coupler 2dJP|T9H  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) (u-eL#@  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. l3HfaCP6:  
    T =40;                        % length of time:T*T0. NM0s*s42  
    dt = T/N;                     % time step y4j\y ? T8  
    n = [-N/2:1:N/2-1]';          % Index -X_dY>>s  
    t = n.*dt;   <7Ry"z6g;  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. >h{)7Hv  
    w=2*pi*n./T; /<T3^/ '  
    g1=-i*ww./2; wL~-k  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; u Xo?  
    g3=-i*ww./2; j kV9$W0  
    P1=0;  {B7${AE  
    P2=0; >Q[3t79^  
    P3=1; .njk^,N  
    P=0; 8M8Odz\3 q  
    for m1=1:M1                 lkJ"f{4f  
    p=0.032*m1;                %input amplitude i>%A0.9  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 yz^4TqJ  
    s1=s10; kV@?Oj.&I,  
    s20=0.*s10;                %input in waveguide 2 XWag+K  
    s30=0.*s10;                %input in waveguide 3 V2 >+s y  
    s2=s20; U%rq(`;  
    s3=s30; Fuy"JmeR  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   =[nuesP'  
    %energy in waveguide 1 c;.jo?RR2  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   m"GgaH3,  
    %energy in waveguide 2 r2T$ ;m.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   L'u*WHj|v  
    %energy in waveguide 3 ;.Y-e Q,  
    for m3 = 1:1:M3                                    % Start space evolution K8RV=3MBLD  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS i$lp8Y2ih  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; qFN`pe,  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; rVZlv3  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Q PrP3DK  
       sca2 = fftshift(fft(s2)); D-LQQ{!D5  
       sca3 = fftshift(fft(s3)); `APeS=< &  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   -8:/My  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); m,V"S(A  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Scfe6+\EW  
       s3 = ifft(fftshift(sc3)); {'sp8:$a  
       s2 = ifft(fftshift(sc2));                       % Return to physical space \hI|I!sDWy  
       s1 = ifft(fftshift(sc1)); aRy" _dZ2  
    end 1|:'jK#gE  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); TgA>(HcO  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ){*9$486  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); T'!p{Fbg;  
       P1=[P1 p1/p10]; lQ&J2H<w  
       P2=[P2 p2/p10]; p# JPLCs  
       P3=[P3 p3/p10]; ^Q9K]Vo  
       P=[P p*p]; Jw0I$W/  
    end  lofP$  
    figure(1) eh}|Wd7J  
    plot(P,P1, P,P2, P,P3); IO7cRg'-F  
    ( 'Ha$O72  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~