切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9026阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Ul '~opf  
    s$f+/Hs  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Aivu%}_|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of cxtLy&C  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fl} rz  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u3Zzu\{  
    g0^~J2sDd  
    %fid=fopen('e21.dat','w'); *\=2KIF'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) wm); aWP  
    M1 =3000;              % Total number of space steps u~' m7  
    J =100;                % Steps between output of space d%}crM-KTL  
    T =10;                  % length of time windows:T*T0 DePV,.  
    T0=0.1;                 % input pulse width F,' ^se4&  
    MN1=0;                 % initial value for the space output location 1Pud,!\%q  
    dt = T/N;                      % time step LVPt*S=/  
    n = [-N/2:1:N/2-1]';           % Index ^tm++  
    t = n.*dt;   l(h;e&9x  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 L LYHr  
    u20=u10.*0.0;                  % input to waveguide 2 iYO wB'z  
    u1=u10; u2=u20;                 3R)cbwL  
    U1 = u1;   a<OCO0irJ  
    U2 = u2;                       % Compute initial condition; save it in U N oX_?  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. @D.R0uM  
    w=2*pi*n./T; v YRt2({}Z  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Z]mM  
    L=4;                           % length of evoluation to compare with S. Trillo's paper pRQ fx^ On  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 JVJ1Ay/be  
    for m1 = 1:1:M1                                    % Start space evolution |@o]X?^  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 6MLN>)t  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >>oASo  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform v$gMLu=  
       ca2 = fftshift(fft(u2)); TEaD-mY3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation es.\e.HK  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   "TBQNWZ  
       u2 = ifft(fftshift(c2));                        % Return to physical space l }2%?d  
       u1 = ifft(fftshift(c1)); ]wkSAi5z*  
    if rem(m1,J) == 0                                 % Save output every J steps. 9B!im\]O  
        U1 = [U1 u1];                                  % put solutions in U array >wg9YZ~8  
        U2=[U2 u2]; ^DW#  
        MN1=[MN1 m1]; <|KKv5[  
        z1=dz*MN1';                                    % output location &;6|nl9;  
      end r 85Xa'hh  
    end G1#Bb5q:  
    hg=abs(U1').*abs(U1');                             % for data write to excel %=NM_5a}]  
    ha=[z1 hg];                                        % for data write to excel |xsV(jK8  
    t1=[0 t']; )Dk0V!%N  
    hh=[t1' ha'];                                      % for data write to excel file Z ,|1G6f@  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format PBxK>a  
    figure(1) 3PvZ_!G  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn H y.3ccZ0  
    figure(2) jm#d7@~4  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn l6&v}M  
    .R$+#_  
    非线性超快脉冲耦合的数值方法的Matlab程序 APHtJoS  
    AhbT/  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   0p:ClM 2O  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *f0.=?  
    c:h.J4mv  
    6mI_Q2  
    Y2=Brtc[@  
    %  This Matlab script file solves the nonlinear Schrodinger equations m' Ekp  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9%3 r-U=  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }Ke}rM<  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [}9XHhY1O=  
    0TuOY%+  
    C=1;                           N#pl mPrZ  
    M1=120,                       % integer for amplitude b2}QoJ@`  
    M3=5000;                      % integer for length of coupler }l]3m=)  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) TzevC$m;z  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Ry8WNVO}R  
    T =40;                        % length of time:T*T0. PNxVW  
    dt = T/N;                     % time step yNLa3mW  
    n = [-N/2:1:N/2-1]';          % Index 8aZey_Hw;+  
    t = n.*dt;   MUCJ/GF*  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Z5*(W;;  
    w=2*pi*n./T; 7?Qt2tr  
    g1=-i*ww./2; U>L=.\\|  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 48~m=mI  
    g3=-i*ww./2; A5.'h<  
    P1=0; ZHiICh|et%  
    P2=0; 282+1X  
    P3=1; +]S;U&vQ  
    P=0; -h G 9  
    for m1=1:M1                 HjUw[Yz+6  
    p=0.032*m1;                %input amplitude j;AzkReb  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 <PfPh~  
    s1=s10; nIT^'  
    s20=0.*s10;                %input in waveguide 2 FQ9csUjpB  
    s30=0.*s10;                %input in waveguide 3 t'=~"?T/o  
    s2=s20; 8)-t91hkL  
    s3=s30; (1elF)  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   t5X^(@q4N  
    %energy in waveguide 1 ^+- L;XkeY  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   J++sTQ(!?  
    %energy in waveguide 2 q*RaX 4V  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   1(:=j Ofk  
    %energy in waveguide 3 DETajf/<F  
    for m3 = 1:1:M3                                    % Start space evolution j6R{  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS St7D.|  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; k9_VhR|!  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; (!>g8=`"  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform eX l%Qs#Y  
       sca2 = fftshift(fft(s2)); f<> YYeY  
       sca3 = fftshift(fft(s3)); {Jw<<<G  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   d'AviW>  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); g]iy-,e  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); :WfB!4%!  
       s3 = ifft(fftshift(sc3)); UwL"%0u  
       s2 = ifft(fftshift(sc2));                       % Return to physical space LHHDt<+B  
       s1 = ifft(fftshift(sc1)); E? m#S  
    end 3ciVjH>i  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); dnX`F5zd  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2p3u6\y  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); se n{f^U  
       P1=[P1 p1/p10]; wh7a|  
       P2=[P2 p2/p10]; tls6rto  
       P3=[P3 p3/p10]; S^Wqa:;  
       P=[P p*p]; Ji}IV  
    end bF Y)o Z  
    figure(1) [q>i  
    plot(P,P1, P,P2, P,P3); <R~~yW:H  
    AXU!-er$  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~