切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8674阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 g&X X@I8+v  
    yH]w(z5Z  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of L6J.^tpO  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of  !qTP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear D'Uv7Mis  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;upYam"  
    q m"AatA  
    %fid=fopen('e21.dat','w'); I|_U|H!`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) spTIhZ  
    M1 =3000;              % Total number of space steps GSVLZF'+  
    J =100;                % Steps between output of space q1Ehl S  
    T =10;                  % length of time windows:T*T0 Y/qs\c+  
    T0=0.1;                 % input pulse width rvPmd%nk-  
    MN1=0;                 % initial value for the space output location QPKY9.Rvv  
    dt = T/N;                      % time step _7,4C?  
    n = [-N/2:1:N/2-1]';           % Index 6nW]Q^N}  
    t = n.*dt;   wSG!.Ejc7  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 bP7_QYQ6  
    u20=u10.*0.0;                  % input to waveguide 2 2bxW`.fa  
    u1=u10; u2=u20;                 9''x'E=|  
    U1 = u1;   nS]Ih0( K  
    U2 = u2;                       % Compute initial condition; save it in U a 9Kws[  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. T)MZ`dM  
    w=2*pi*n./T; `}~NZ  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T q=;U(,Y  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Em/? 4&  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 7&1 dr  
    for m1 = 1:1:M1                                    % Start space evolution E<77Tj  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS B X Et]+Q  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; /,JL \b  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform UGQH wz  
       ca2 = fftshift(fft(u2)); pW-aX)\DR  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation W&e}*  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   &o7"L;  
       u2 = ifft(fftshift(c2));                        % Return to physical space VIuzBmR|\  
       u1 = ifft(fftshift(c1)); wPr!.:MF  
    if rem(m1,J) == 0                                 % Save output every J steps. Og2G0sWRf  
        U1 = [U1 u1];                                  % put solutions in U array 2@:Ztt6~  
        U2=[U2 u2]; r~PVh?  
        MN1=[MN1 m1]; @Mf ZP~T+  
        z1=dz*MN1';                                    % output location 0t -=*7w%  
      end R'h.lX  
    end BZk0B ?  
    hg=abs(U1').*abs(U1');                             % for data write to excel &cT@MV5  
    ha=[z1 hg];                                        % for data write to excel no7Q%O9  
    t1=[0 t']; C@rIyBj1g  
    hh=[t1' ha'];                                      % for data write to excel file \)2~o N  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format sYd)r%%AU  
    figure(1) B=|m._OL]n  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn %D E_kwL  
    figure(2) A8j$c~  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 7t|011<  
    U2*kuP+n  
    非线性超快脉冲耦合的数值方法的Matlab程序 zS!+2/(  
    lnt}l  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   7-4S'rq+  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 P@8S|#LpZ  
    ;f9a0Vs  
    AO]1`b:  
    U_@Dn[/:  
    %  This Matlab script file solves the nonlinear Schrodinger equations 5.F/>?<  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of b}Wm-]|+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear z{A~d  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ""x>-j4  
    ^%}PRl9  
    C=1;                           -02.n}u>  
    M1=120,                       % integer for amplitude 9bu1Ax1M  
    M3=5000;                      % integer for length of coupler diD[/&k#kh  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) .t$1B5  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Z^%aXaf8  
    T =40;                        % length of time:T*T0. Fqg*H1I[  
    dt = T/N;                     % time step !_+ok$"d  
    n = [-N/2:1:N/2-1]';          % Index ]s}9-!{O  
    t = n.*dt;   {1[f9uPS  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. {{ +8oRzY  
    w=2*pi*n./T; Z>J3DH  
    g1=-i*ww./2; .pPtBqp  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7 MG<!U  
    g3=-i*ww./2; iB3C.wd-  
    P1=0; k5eTfaxl  
    P2=0; {lNG:o  
    P3=1; ~otV'=/my  
    P=0; _t@9WA;+\  
    for m1=1:M1                 :\"g}AX  
    p=0.032*m1;                %input amplitude :?H1h8wbCt  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 a_k~z3wG  
    s1=s10; ?xb2jZ/0X  
    s20=0.*s10;                %input in waveguide 2 V(3rTDg  
    s30=0.*s10;                %input in waveguide 3 z9ZS& =>  
    s2=s20; xH{V.n&v  
    s3=s30; Hw%lT}[O  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Fz^5cxmw  
    %energy in waveguide 1 T,5(JP(h3  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   e/F+Tf  
    %energy in waveguide 2 =[IKwmCX  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   `{'h+v`  
    %energy in waveguide 3 |#x]/AXa0/  
    for m3 = 1:1:M3                                    % Start space evolution 9[Xe|5?c  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS #gRtCoew  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; RgLkAHA  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; gutf[Ksu  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 0l~z0pvT  
       sca2 = fftshift(fft(s2)); PAs.T4Av^  
       sca3 = fftshift(fft(s3)); ~Ut?'}L( d  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ;-!O+c  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); y.?Q  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 1-?TjR  
       s3 = ifft(fftshift(sc3)); !-s6B  
       s2 = ifft(fftshift(sc2));                       % Return to physical space !=(M P:  
       s1 = ifft(fftshift(sc1)); z-;yDB:~t  
    end RbJbVFz8C  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));  4B'-tV  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); j$=MJN0  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ;N!W|G  
       P1=[P1 p1/p10]; 4/E>k <MA  
       P2=[P2 p2/p10]; bVYsPS  
       P3=[P3 p3/p10]; h SU|rVi  
       P=[P p*p]; !k=~a]  
    end <x\I*%(  
    figure(1)  b~Oc:  
    plot(P,P1, P,P2, P,P3); y\}<N6  
    #5mnSky+s  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~