计算脉冲在非线性耦合器中演化的Matlab 程序 )X@Obg ;
Xrx>( n % This Matlab script file solves the coupled nonlinear Schrodinger equations of
!8yw!hA % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
/ZqBO*] % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
e48`cX\E % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
%;yDiQ !+ #DApdD9M %fid=fopen('e21.dat','w');
-ZFeE[Z N = 128; % Number of Fourier modes (Time domain sampling points)
gYVk5d|8@4 M1 =3000; % Total number of space steps
sP$bp Z} J =100; % Steps between output of space
}ddwL T =10; % length of time windows:T*T0
AWHB^}!} T0=0.1; % input pulse width
|-4C[5rM MN1=0; % initial value for the space output location
4r;!b;3 dt = T/N; % time step
4o8uWS{` n = [-N/2:1:N/2-1]'; % Index
;F9<Yv t = n.*dt;
%ANo^~8 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
u.*@lGVW u20=u10.*0.0; % input to waveguide 2
g9|B-1[ u1=u10; u2=u20;
+5H9mk U1 = u1;
K-IXAdx U2 = u2; % Compute initial condition; save it in U
^8$CpAK]M ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
*(YtO w=2*pi*n./T;
jXvGL g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
Y$b4Ga9j L=4; % length of evoluation to compare with S. Trillo's paper
:LBG6J dz=L/M1; % space step, make sure nonlinear<0.05
drP2%u for m1 = 1:1:M1 % Start space evolution
1{4d)z UB u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
@iK=1\-2 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
s:lar4>kM ca1 = fftshift(fft(u1)); % Take Fourier transform
_
vVw2HH ca2 = fftshift(fft(u2));
:' ?%%P c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
vzJ69%E_ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
e`k6YO u2 = ifft(fftshift(c2)); % Return to physical space
tt%Zwf u1 = ifft(fftshift(c1));
TU$PAwn= if rem(m1,J) == 0 % Save output every J steps.
c[E{9wp v U1 = [U1 u1]; % put solutions in U array
RR!(,j^M U2=[U2 u2];
y
,isK MN1=[MN1 m1];
J_YbeZ] z1=dz*MN1'; % output location
1MHP#X;| end
\}xK$$f2, end
fiz2544 hg=abs(U1').*abs(U1'); % for data write to excel
;8/w'oe*j ha=[z1 hg]; % for data write to excel
#P *%FgROl t1=[0 t'];
*@o@> hh=[t1' ha']; % for data write to excel file
26JP<&%L %dlmwrite('aa',hh,'\t'); % save data in the excel format
R~8gw^w![ figure(1)
B!GpD@U waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
z_R^n#A~r figure(2)
6TJ5G8z_ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
Y(GH/jw E@TX>M-& 非线性超快脉冲耦合的数值方法的Matlab程序 4O_z|K_k| _F>1b16:/P 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
vF"<r,pg Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
E0[!jZ:c ~fw 6sY# '<~rV d=V4,:=S % This Matlab script file solves the nonlinear Schrodinger equations
jUtrFl % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
.z&V!2zp % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
E9pKR+P % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
KK4>8zGR (q`Jef C=1;
~r;da 9 M1=120, % integer for amplitude
{dvrj<? M3=5000; % integer for length of coupler
^;+lsEW N = 512; % Number of Fourier modes (Time domain sampling points)
~K% ]9
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
z1}YoCj1 T =40; % length of time:T*T0.
[0.>:wT dt = T/N; % time step
uXq?Z@af|f n = [-N/2:1:N/2-1]'; % Index
fl _k5Q'&p t = n.*dt;
J0zudbP ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
yveyAsN`B w=2*pi*n./T;
hPr*<2mp g1=-i*ww./2;
N[X%tf\L]F g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
9qD/q?Hh$ g3=-i*ww./2;
hj64ES#x P1=0;
aGVzg$
P2=0;
>"?HbR9 P3=1;
8+Al+6d|! P=0;
;5^grr@,4 for m1=1:M1
`%;nHQ" p=0.032*m1; %input amplitude
F7a &- s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
W=M&U s1=s10;
vLR)B@O,2 s20=0.*s10; %input in waveguide 2
f/Km$#xOr s30=0.*s10; %input in waveguide 3
@z"Zj 3ti s2=s20;
;OQ-T+(T s3=s30;
lz\{ X p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
1 Uz'=a %energy in waveguide 1
vM~/|)^0sW p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
*E0+! %energy in waveguide 2
fOiLb.BW p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
C&D]!ZvF %energy in waveguide 3
!_E E|#`n for m3 = 1:1:M3 % Start space evolution
L]B]~Tw s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
-cyJjLL* s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
_/ j44q s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
TFbCJ@X sca1 = fftshift(fft(s1)); % Take Fourier transform
^!k^=ST1J sca2 = fftshift(fft(s2));
'j#oMA{0 sca3 = fftshift(fft(s3));
dgd&ymRm
: sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
v}A] R9TY sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
OP
|{R7uC sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
R<LW*8 s3 = ifft(fftshift(sc3));
z/ T| s2 = ifft(fftshift(sc2)); % Return to physical space
a8M.EFa: s1 = ifft(fftshift(sc1));
0K>rc1dy end
Dn$zwksSs p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
OQ#gQ6;?0 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
.Y'kDuUu p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
!Y=s_)X P1=[P1 p1/p10];
q9pBS1Ej P2=[P2 p2/p10];
;w4rwL P3=[P3 p3/p10];
\F,?ptu P=[P p*p];
o"[P++qd end
z%ljEI"<C figure(1)
Gcg`Knr plot(P,P1, P,P2, P,P3);
7qon:]b4 \s&w0V`Y 转自:
http://blog.163.com/opto_wang/