切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8971阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 jWNF3\  
    cl1>S3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of l:- <CbG  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of m4~>n(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /n-!dXi  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +b_o2''  
    _Qd C V`  
    %fid=fopen('e21.dat','w'); ~b;u1;ne  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) WinwPn+9  
    M1 =3000;              % Total number of space steps L)yc_ d5  
    J =100;                % Steps between output of space 7Q>bJ Ek7  
    T =10;                  % length of time windows:T*T0 >&`;@ZOH  
    T0=0.1;                 % input pulse width #Pr w2u  
    MN1=0;                 % initial value for the space output location HyGu3  
    dt = T/N;                      % time step _Y _v&  
    n = [-N/2:1:N/2-1]';           % Index 2C[xrZa^  
    t = n.*dt;   X]+z:!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 w tSX(LN Y  
    u20=u10.*0.0;                  % input to waveguide 2 4D=^24f`0  
    u1=u10; u2=u20;                 !Y^3%B%  
    U1 = u1;   %Rm`+  
    U2 = u2;                       % Compute initial condition; save it in U uRCZGg&V?#  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 1 WUlBr/k  
    w=2*pi*n./T; hmp!|Q[)  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T x.kIzI5  
    L=4;                           % length of evoluation to compare with S. Trillo's paper WWjc.A$  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 XpIl-o&re  
    for m1 = 1:1:M1                                    % Start space evolution "(+p1  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS KybrSa  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; n@_aTY  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 05s{Z.aK  
       ca2 = fftshift(fft(u2)); Q/]t $  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $iMbtA5a Q  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   2#)z%K6T  
       u2 = ifft(fftshift(c2));                        % Return to physical space &ieb6@RO`Q  
       u1 = ifft(fftshift(c1)); R q9(<' F  
    if rem(m1,J) == 0                                 % Save output every J steps. SL 5QhP  
        U1 = [U1 u1];                                  % put solutions in U array J. $U_k  
        U2=[U2 u2]; Xv2Q8-}w  
        MN1=[MN1 m1]; +<rWYF(ii/  
        z1=dz*MN1';                                    % output location \V%l.P4>e  
      end pKkBA r,  
    end Ye]-RN/W  
    hg=abs(U1').*abs(U1');                             % for data write to excel ]US  
    ha=[z1 hg];                                        % for data write to excel JIU8~D  
    t1=[0 t']; s6(bTO.  
    hh=[t1' ha'];                                      % for data write to excel file sh)[|?7z  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format =58:e7(df  
    figure(1) _"h1#E  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn TrR=3_;.7  
    figure(2) ZW%;"5uVm)  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,d@FO|G#pt  
    ^8V8,C)  
    非线性超快脉冲耦合的数值方法的Matlab程序 2g HRfTF  
    w)Z-, J  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   "'*Qq@!3?  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s_ %LU:WC  
    9a$ 7$4m  
    w=kW~gg  
    @M!nAQ8hY  
    %  This Matlab script file solves the nonlinear Schrodinger equations iq<nuO  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of bY}:!aR<mK  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear |Ng}ZLBM  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &\e8c g  
    se*!OiOt  
    C=1;                           EI8KKo *  
    M1=120,                       % integer for amplitude l5FKw;=K}:  
    M3=5000;                      % integer for length of coupler s(pNg?R  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) N?v}\P U  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. {4>N2mP{M  
    T =40;                        % length of time:T*T0. Xk`'m[  
    dt = T/N;                     % time step tvcM< e20  
    n = [-N/2:1:N/2-1]';          % Index "R^0eNv$  
    t = n.*dt;   qCy SL lp0  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. I78Q8W(5  
    w=2*pi*n./T; W%@0Ym `7  
    g1=-i*ww./2; -0>s`ruor  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; JYrOE "!h  
    g3=-i*ww./2; pcNpr`  
    P1=0; ?wpl 88z  
    P2=0; TEQs9-Uy  
    P3=1; n8Rsle`a  
    P=0; q$kx/6=k  
    for m1=1:M1                  :X 9_~  
    p=0.032*m1;                %input amplitude Odr<fvV,>  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ODKHI\U  
    s1=s10; {r?+PQQ#  
    s20=0.*s10;                %input in waveguide 2 6r)B|~,OA  
    s30=0.*s10;                %input in waveguide 3 _Lgi5B%   
    s2=s20; i|!W;2KL5  
    s3=s30; sI`oz|$  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   `>u^Pm  
    %energy in waveguide 1 D2'J (  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   +6s6QeNS8  
    %energy in waveguide 2 thSXri?kl  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   d,E2l~s  
    %energy in waveguide 3 9a]JQ  
    for m3 = 1:1:M3                                    % Start space evolution ONMR2J(  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS DHVfb(H5e  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; eE" *c>I  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; l4AXjq2  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Z b:S IJ  
       sca2 = fftshift(fft(s2)); O'S9y  
       sca3 = fftshift(fft(s3)); ^%NjdZuDO  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ZM_-g4[H  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ;R7+6  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); grE'ySX0  
       s3 = ifft(fftshift(sc3)); d RHw]!.  
       s2 = ifft(fftshift(sc2));                       % Return to physical space  / !aVv  
       s1 = ifft(fftshift(sc1)); zO((FQ  
    end zcOG[-  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &W%fsy<  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); &IP`j~ b  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); #YK=e&da  
       P1=[P1 p1/p10]; G$t:#2  
       P2=[P2 p2/p10]; }b+$S'`Bv  
       P3=[P3 p3/p10]; Qn \=P*j  
       P=[P p*p]; 9>ML;$T&  
    end H,;9' *84  
    figure(1) WD|pG;Gq  
    plot(P,P1, P,P2, P,P3); uo3o[ H&#  
    QJ,~K&?  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~