切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8194阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 2Q bCH}  
    zDK"Y{  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of  (zIWJJw  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 'tJb(X!]q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >~+qU&'2  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $0[t<4K`yn  
    rl/]Ym4j  
    %fid=fopen('e21.dat','w'); "+dByaY  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) bf4QW JZD  
    M1 =3000;              % Total number of space steps G!<-9HA5  
    J =100;                % Steps between output of space 6j 2mr6o  
    T =10;                  % length of time windows:T*T0 4CH/~b1 (  
    T0=0.1;                 % input pulse width PNgdWf3  
    MN1=0;                 % initial value for the space output location *@+E82D  
    dt = T/N;                      % time step m7 $t$/g  
    n = [-N/2:1:N/2-1]';           % Index V'iT>  
    t = n.*dt;   Q0j4 c  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ov$S   
    u20=u10.*0.0;                  % input to waveguide 2 #ULjK*)R  
    u1=u10; u2=u20;                 @sPuc.  
    U1 = u1;   _48@o^{  
    U2 = u2;                       % Compute initial condition; save it in U Kry^ 47"  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. #_pQS}$  
    w=2*pi*n./T; <>71;%e;'  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T H*KZZTKd  
    L=4;                           % length of evoluation to compare with S. Trillo's paper +"?O2PX  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 +{b3A@f|F  
    for m1 = 1:1:M1                                    % Start space evolution :iEIo7B  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ^l8&y;-T  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; dTTC6?yPXf  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform goje4;  
       ca2 = fftshift(fft(u2)); 0wE)1w<C~  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 1}/37\  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   -\I".8"YE  
       u2 = ifft(fftshift(c2));                        % Return to physical space 8M6wc394  
       u1 = ifft(fftshift(c1)); Sv>bU4LHf  
    if rem(m1,J) == 0                                 % Save output every J steps. )RCva3Ul  
        U1 = [U1 u1];                                  % put solutions in U array N~! G AaD  
        U2=[U2 u2]; XF Cwa  
        MN1=[MN1 m1]; {b,#l]v  
        z1=dz*MN1';                                    % output location #+ai G52+  
      end >c30kpGg  
    end Cj5=UUnO  
    hg=abs(U1').*abs(U1');                             % for data write to excel GOU>j "5}2  
    ha=[z1 hg];                                        % for data write to excel [}Z!hq  
    t1=[0 t']; @Wl2E.)K;  
    hh=[t1' ha'];                                      % for data write to excel file {8e4TD9E0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format V2oXg  
    figure(1) H[J5A2b  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn tO~o-R  
    figure(2) AAc*\K  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn w|[{xn^R  
    L7"B`oa(p  
    非线性超快脉冲耦合的数值方法的Matlab程序 .T*89cEu  
    q]rqFP0C  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   IfzW%UL  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;=lQMKx0  
    J`'wprSBb  
    2q}lSa7r  
    S]g`Ds<  
    %  This Matlab script file solves the nonlinear Schrodinger equations c.{t +OR  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of $*qQ/hi  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear HLb`'TC3r+  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W8N__  
    Wu@v%!0  
    C=1;                           KYM%U" jD  
    M1=120,                       % integer for amplitude XJ6=Hg4_O  
    M3=5000;                      % integer for length of coupler (_nU}<y_i  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 8T"8C  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. XF i!=|F  
    T =40;                        % length of time:T*T0. vT;~\,M  
    dt = T/N;                     % time step \}:;kO4f  
    n = [-N/2:1:N/2-1]';          % Index 'q7&MM'oS^  
    t = n.*dt;   tk66Ggi[K  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Q=?YY-*$  
    w=2*pi*n./T; <o: O<p@6  
    g1=-i*ww./2; /c!@ H(^)  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; JLh{>_Rr  
    g3=-i*ww./2; 2'-o'z<  
    P1=0; WKB K)=  
    P2=0; cIQ e^C  
    P3=1; I!u fw\[  
    P=0; It8s#oq8  
    for m1=1:M1                 `2a7y]?  
    p=0.032*m1;                %input amplitude O)D+u@RhH  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -:|t^RM;FT  
    s1=s10; D[Kq`  
    s20=0.*s10;                %input in waveguide 2 H|s,;1#  
    s30=0.*s10;                %input in waveguide 3 !~-@p?kW/  
    s2=s20; !CUX13/0  
    s3=s30; ( P\oLr9  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   gT#hF]c:  
    %energy in waveguide 1 @2/ xu  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ^-g-]?q  
    %energy in waveguide 2 |*JMCI@Mz  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   >slGicZ0  
    %energy in waveguide 3 m98w0D@Ee  
    for m3 = 1:1:M3                                    % Start space evolution !BEl6h  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS >"<<hjKJ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; @!,W]?{  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; T3In0LQ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform uU!}/mbo  
       sca2 = fftshift(fft(s2)); =S<E[D{V`  
       sca3 = fftshift(fft(s3)); @  Br?  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   C o,"  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); !w{(}n2Wq  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); [z r2\(  
       s3 = ifft(fftshift(sc3)); J9q[u[QZ9O  
       s2 = ifft(fftshift(sc2));                       % Return to physical space VL/KC-6  
       s1 = ifft(fftshift(sc1)); gi JjE  
    end {LqahO*  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); a n|bzG  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); f;]C8/W  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 0<u(!iL  
       P1=[P1 p1/p10]; #8i9@w  
       P2=[P2 p2/p10]; 0jMS!"k   
       P3=[P3 p3/p10]; bI+ TFOP  
       P=[P p*p]; 6a4-VX5  
    end MOIMW+n  
    figure(1) KpfQ=~'  
    plot(P,P1, P,P2, P,P3); ^-dhz88wV  
    df7 xpV  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~