计算脉冲在非线性耦合器中演化的Matlab 程序 BD [<>Wm z8j7K'vV1 % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Y+gNi_dE % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
A#gy[.Bb % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
6('CB|ga % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
/k KVIlO GQYB2{e> %fid=fopen('e21.dat','w');
@xr}(. N = 128; % Number of Fourier modes (Time domain sampling points)
@[#)zO M1 =3000; % Total number of space steps
C8 y[B1Y J =100; % Steps between output of space
2p~G][ T =10; % length of time windows:T*T0
7
b{y T0=0.1; % input pulse width
nnTiu,2R MN1=0; % initial value for the space output location
;Q<2Y# dt = T/N; % time step
t\O#5mo n = [-N/2:1:N/2-1]'; % Index
f%yNq6l t = n.*dt;
QwLSL<. u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
Ej<`HbJ'Q u20=u10.*0.0; % input to waveguide 2
sW&h?jdf u1=u10; u2=u20;
MAD t$_ U1 = u1;
dB8 e U2 = u2; % Compute initial condition; save it in U
(Ft#6oK" ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
NYeL1h)l w=2*pi*n./T;
_pkmHj( g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
} a!HbH L=4; % length of evoluation to compare with S. Trillo's paper
ITZ}$=
dz=L/M1; % space step, make sure nonlinear<0.05
EME}G42KN for m1 = 1:1:M1 % Start space evolution
2>)::9e4 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
<1<0 odB u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
db.~^][k ca1 = fftshift(fft(u1)); % Take Fourier transform
yY!@FGsA ca2 = fftshift(fft(u2));
:/6u*HwZh c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
vV>=Uvm c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
q*}$1 zb u2 = ifft(fftshift(c2)); % Return to physical space
awSi0*d~ u1 = ifft(fftshift(c1));
b<BkI""b if rem(m1,J) == 0 % Save output every J steps.
cK75Chsu U1 = [U1 u1]; % put solutions in U array
$Zj3#l:rK U2=[U2 u2];
o`nJJ:Cxq- MN1=[MN1 m1];
G*g*+D[HM z1=dz*MN1'; % output location
1~S''[ end
rEjEz+wu end
HFX,EE hg=abs(U1').*abs(U1'); % for data write to excel
58]t iP" ha=[z1 hg]; % for data write to excel
Mlo:\ST| t1=[0 t'];
ooj^Z%9P hh=[t1' ha']; % for data write to excel file
E0eZal], %dlmwrite('aa',hh,'\t'); % save data in the excel format
1n#{c5T figure(1)
mzcxq:uZ5 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
Y r8gKhv W figure(2)
8O0]hz waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
c#a>> V 2,p= % 非线性超快脉冲耦合的数值方法的Matlab程序 |9mGX9q @1V?94T1 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
LG=_>:~t> Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
oP:/% *enT2Q ht*;,[ea >~uKkQ_p % This Matlab script file solves the nonlinear Schrodinger equations
tY60~@YO& % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
I9YMxf>nI % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
d V3R) % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
o:@A% *jg ]E1|^[y C=1;
J74kK#uF= M1=120, % integer for amplitude
T/q*k)IoR M3=5000; % integer for length of coupler
C+0BV~7J<< N = 512; % Number of Fourier modes (Time domain sampling points)
#^w8Y'{? dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
JiGS[tR T =40; % length of time:T*T0.
UC!"1)~mt` dt = T/N; % time step
=9A!5 n = [-N/2:1:N/2-1]'; % Index
qR^+K@*| t = n.*dt;
u9{Z*w3L7 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
(n2=.9k! w=2*pi*n./T;
1(/rg g1=-i*ww./2;
I} \`l+ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
u4Z
Accj g3=-i*ww./2;
YGZa##i P1=0;
C{YTHNn P2=0;
S>R40T=e P3=1;
muKjeg'b P=0;
$
3R5p for m1=1:M1
6g"qwWZp p=0.032*m1; %input amplitude
2l +t- s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
U-#vssJhk s1=s10;
v#9Uy}NJ9 s20=0.*s10; %input in waveguide 2
1fV\84m^ s30=0.*s10; %input in waveguide 3
`12Y2W 9 s2=s20;
=l%|W[OO s3=s30;
t=n@<1d p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
#$JY&!M %energy in waveguide 1
-V:7j8 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
8VMD304 %energy in waveguide 2
|w.5*]?H p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
8-)@q| %energy in waveguide 3
$lF\FC for m3 = 1:1:M3 % Start space evolution
!8o;~PPVl s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
8b $e) s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
$wqi^q*) s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
t8Giv89{ sca1 = fftshift(fft(s1)); % Take Fourier transform
0;" >. sca2 = fftshift(fft(s2));
K}Lu1:~ sca3 = fftshift(fft(s3));
}1YQ?:@ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
@&2#kO~= sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
NJ(H$tB@ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
]Waa7)}DM s3 = ifft(fftshift(sc3));
zC!Pb{IaH s2 = ifft(fftshift(sc2)); % Return to physical space
}?Tz=hP s1 = ifft(fftshift(sc1));
zmU> end
`YK#m4gc p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
O_&Km[ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
um$L;-2: p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
fUB+9G(Bx P1=[P1 p1/p10];
9S{0vc/2@ P2=[P2 p2/p10];
b+THn'2 P3=[P3 p3/p10];
0vcFX)]yW P=[P p*p];
zG~nRt{4 end
kDWvjT figure(1)
:SVWi}:Co1 plot(P,P1, P,P2, P,P3);
=T|m#*{.L 0zXF{5Up 转自:
http://blog.163.com/opto_wang/