切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8691阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 xD# I&.  
    mzB#O;3=  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 2w|u)ow )  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?ev G=S4>  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear IKDjatn  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |u;BAb  
    wmE,k1G  
    %fid=fopen('e21.dat','w'); [ |n-x3h  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) xqWrW)  
    M1 =3000;              % Total number of space steps ^3|$wB=  
    J =100;                % Steps between output of space 4sBoD=e  
    T =10;                  % length of time windows:T*T0 Kw0V4UF  
    T0=0.1;                 % input pulse width DD 5EHJR  
    MN1=0;                 % initial value for the space output location ]8>UII,US  
    dt = T/N;                      % time step MD4 j~q\ g  
    n = [-N/2:1:N/2-1]';           % Index DG*o w^  
    t = n.*dt;   +N$7=oGC  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Jf<yTAm  
    u20=u10.*0.0;                  % input to waveguide 2 $lAb6e$n  
    u1=u10; u2=u20;                 \G=R hx f  
    U1 = u1;   jfPJ5]Z  
    U2 = u2;                       % Compute initial condition; save it in U [RFK-E  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. qV8\/7'A0a  
    w=2*pi*n./T; NE2sD  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ilp;@O6  
    L=4;                           % length of evoluation to compare with S. Trillo's paper m2uML*&O5K  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 L +rySP  
    for m1 = 1:1:M1                                    % Start space evolution 0 ,Qj:  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS *<1x:PR  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 9=~H6(m>  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform w+9C/U;|s  
       ca2 = fftshift(fft(u2)); 3b)T}g  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation uM)9b*Vbo  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   0rJ\e  
       u2 = ifft(fftshift(c2));                        % Return to physical space W|rFl]~a  
       u1 = ifft(fftshift(c1)); #1dTM-  
    if rem(m1,J) == 0                                 % Save output every J steps. % r   
        U1 = [U1 u1];                                  % put solutions in U array _Kl{50}]  
        U2=[U2 u2]; EXW 6yXLV  
        MN1=[MN1 m1]; sJI -  
        z1=dz*MN1';                                    % output location .V 3X#t  
      end M |Q  
    end Q`p}X&^a  
    hg=abs(U1').*abs(U1');                             % for data write to excel h[je_^5  
    ha=[z1 hg];                                        % for data write to excel b|ksMB>)  
    t1=[0 t']; ?Y6la.bc{  
    hh=[t1' ha'];                                      % for data write to excel file 4R*<WdT(  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format JIbzh?$aD  
    figure(1) 95?5=T F  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn C+(Gg^ w  
    figure(2) t:"=]zUU  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn C*y6~AYN#  
    QV'3O|  
    非线性超快脉冲耦合的数值方法的Matlab程序 Y 6<0%  
    ~?`9i>3W~  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   G9'YgW+$7  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \B>[je-d  
    ??zABV  
    8~s-t  
    Fe& n,  
    %  This Matlab script file solves the nonlinear Schrodinger equations OZC/+"\,  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of X\p`pw$  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear JM+sHHs  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 uU[[[LQq  
    tU)r[2H2  
    C=1;                           *@G(3 n  
    M1=120,                       % integer for amplitude }lC64;yo  
    M3=5000;                      % integer for length of coupler K+ 7yUF8XP  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) g=oeS%>E  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. wwK~H  
    T =40;                        % length of time:T*T0. ndKvJH4  
    dt = T/N;                     % time step Ic{'H2~4,  
    n = [-N/2:1:N/2-1]';          % Index q]iKz%|Z/  
    t = n.*dt;   @wB'3q}(  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. m.HX2(&\3  
    w=2*pi*n./T; .sJys SA\  
    g1=-i*ww./2; *3F /Ft5  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; fV A=<:  
    g3=-i*ww./2; W p7@  
    P1=0; > G4HZE  
    P2=0; CFkW@\]  
    P3=1; 7SA-OFM  
    P=0; vSYun I  
    for m1=1:M1                 e}?1T7NPG]  
    p=0.032*m1;                %input amplitude @;m@Luk  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -VreBKn  
    s1=s10; J/]o WC`u  
    s20=0.*s10;                %input in waveguide 2 2sd ) w  
    s30=0.*s10;                %input in waveguide 3 EG(`E9DZ  
    s2=s20; 5Aa31"43n  
    s3=s30; 7}#*3*]  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   B~V<n&<  
    %energy in waveguide 1 "5o;z@(  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   &e HM#as  
    %energy in waveguide 2 ')P2O\YS  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   (^tr}?C  
    %energy in waveguide 3 je- , S>U  
    for m3 = 1:1:M3                                    % Start space evolution X ]pR,\B  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 8u:v:>D.'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; @pqY9_:P1  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; kO..~@ aY  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform To#E@Nw  
       sca2 = fftshift(fft(s2)); "q9~ C  
       sca3 = fftshift(fft(s3)); y"|K |QT  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   #uD)0zdw  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ]HJ{dcF  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ;1*m} uNz  
       s3 = ifft(fftshift(sc3)); P<cMP)+K  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Xb(CH#*{z  
       s1 = ifft(fftshift(sc1)); HQ|o%9~  
    end F.~n  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 2d5}`>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); (aDb^(]>  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [|:QE~U@  
       P1=[P1 p1/p10]; 5 4ak<&?  
       P2=[P2 p2/p10]; zmy4tsmX  
       P3=[P3 p3/p10]; _" ?c9  
       P=[P p*p]; p|&ZJ@3  
    end ? -v  
    figure(1) 1&X}1  
    plot(P,P1, P,P2, P,P3); blRY7  
    _L&n&y1+%  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~