切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8781阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 'HC4Q{b`  
    m^ILcp!  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of {{O1C ~  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of V'9 k;SF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :!R+/5a  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z6Mh`:7  
    !rXyw`6N  
    %fid=fopen('e21.dat','w'); $`uL^ hlj]  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) OaEOk57%de  
    M1 =3000;              % Total number of space steps #bGt%*Re p  
    J =100;                % Steps between output of space lAoH@+dyA+  
    T =10;                  % length of time windows:T*T0 6l50IWj,T  
    T0=0.1;                 % input pulse width I|p(8 R!  
    MN1=0;                 % initial value for the space output location mtHw!*  
    dt = T/N;                      % time step 0iwx$u 7[  
    n = [-N/2:1:N/2-1]';           % Index !7_Q_h',  
    t = n.*dt;   M[X& Q  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 i |C'_gw`n  
    u20=u10.*0.0;                  % input to waveguide 2 S3 &L  
    u1=u10; u2=u20;                 3.8d"  
    U1 = u1;   wp} PQw:  
    U2 = u2;                       % Compute initial condition; save it in U chxO*G  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. (pAGS{{  
    w=2*pi*n./T; O)W1.]GMbf  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T B[8  
    L=4;                           % length of evoluation to compare with S. Trillo's paper H1N%uk=kV  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 kMK-E<g  
    for m1 = 1:1:M1                                    % Start space evolution h_H$+!Nzb  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,%Dn}mWu  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 2jA-y!(e  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform  d':c  
       ca2 = fftshift(fft(u2)); INi(G-!g  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation hv8V=Z'Q  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   *_@8v?  
       u2 = ifft(fftshift(c2));                        % Return to physical space ]M#_o]  
       u1 = ifft(fftshift(c1)); )p 2kx  
    if rem(m1,J) == 0                                 % Save output every J steps. HPT$)NeNc  
        U1 = [U1 u1];                                  % put solutions in U array ?9.SwIxU&  
        U2=[U2 u2]; R0 AVAUG  
        MN1=[MN1 m1]; .t$~>e .  
        z1=dz*MN1';                                    % output location :Fu.S1j$  
      end S}mqK|!  
    end g"^<LX-  
    hg=abs(U1').*abs(U1');                             % for data write to excel $SA8$!:  
    ha=[z1 hg];                                        % for data write to excel HvLvSy1U  
    t1=[0 t']; }GRZCX>  
    hh=[t1' ha'];                                      % for data write to excel file 6]1cy&SG  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format a;8q7nC  
    figure(1) CM|?;PBuv  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn dJ#mk5= "  
    figure(2) 5Z@OgR  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn GB&<+5t2  
    #+>8gq^5  
    非线性超快脉冲耦合的数值方法的Matlab程序 ===M/}r  
    unY+/p $  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   N D`?T &PK  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fq-e2MCX5  
    R9xhO!   
    g 67;O(3  
    P;G Rk6  
    %  This Matlab script file solves the nonlinear Schrodinger equations \jH^OXxb  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of u?,M`w0'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear mO%F {'  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z3>ldT  
    RE 6d&#N  
    C=1;                           HtFc+%=  
    M1=120,                       % integer for amplitude 3V2dN )\  
    M3=5000;                      % integer for length of coupler Okxuhzn>"  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) v!~tX*q  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. a/p} ?!\  
    T =40;                        % length of time:T*T0. qD!qSM  
    dt = T/N;                     % time step O1xK\ogv  
    n = [-N/2:1:N/2-1]';          % Index *5T^wZpj)  
    t = n.*dt;   7\.{O$Q  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. GP<PU  
    w=2*pi*n./T; :Q]P=-Y8  
    g1=-i*ww./2; N5K\h}'%  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; IPHZ~'M  
    g3=-i*ww./2; P]cC2L@Vbi  
    P1=0; '/O >#1  
    P2=0; VkW N1A  
    P3=1; ykMdH:  
    P=0; J> Z.2  
    for m1=1:M1                 o|`%>&jP  
    p=0.032*m1;                %input amplitude z}.Q~4 f0D  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 W!jg  
    s1=s10; e)BU6m%  
    s20=0.*s10;                %input in waveguide 2 y) .dw(  
    s30=0.*s10;                %input in waveguide 3 M1HGXdN*B  
    s2=s20; ^ L?2y/  
    s3=s30; &d sXK~9M>  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   SB x<-^  
    %energy in waveguide 1 (pv6V2i  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   qe[P'\]L  
    %energy in waveguide 2 ?Z(xu~^/  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   BZP{{  
    %energy in waveguide 3 P!xN]or]u  
    for m3 = 1:1:M3                                    % Start space evolution i&m t-  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 8{4SaT.-Rm  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; *G&3NSM-  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ]iezwz`'  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform \DMZ M  
       sca2 = fftshift(fft(s2)); _=Y HO.  
       sca3 = fftshift(fft(s3)); wGLSei-s  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   [cso$Tv  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); HRg< f= oz  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); AFdBf6/" i  
       s3 = ifft(fftshift(sc3)); n?mV(?N  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 4Ai#$SHLm  
       s1 = ifft(fftshift(sc1)); zvOSQxGQ  
    end ]@A31P4t|  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ~0V,B1a  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); jI!WE$dt  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Q@ghQGn#  
       P1=[P1 p1/p10]; w%?6s3   
       P2=[P2 p2/p10]; jM[]Uh  
       P3=[P3 p3/p10]; ?#gYu %7DN  
       P=[P p*p]; 5: vy_e&  
    end kWZ/O  
    figure(1) eh /QFm 4  
    plot(P,P1, P,P2, P,P3); d>hLnz1O  
    DAVgP7h'  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~