切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8443阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 KPa&P:R3  
    `_M&zN  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of N'8}5Kx5  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hle@= e/n  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ce PI{`&,  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]$A6krfh|  
    z4(Q.0x7  
    %fid=fopen('e21.dat','w'); lUHpGr|U%  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 1@Rl^ey  
    M1 =3000;              % Total number of space steps !^w}Sp  
    J =100;                % Steps between output of space It8@Cp.dU  
    T =10;                  % length of time windows:T*T0 AHTQF#U^  
    T0=0.1;                 % input pulse width /^Zgv-n  
    MN1=0;                 % initial value for the space output location \05 n$.  
    dt = T/N;                      % time step 9K#U<Q0b'  
    n = [-N/2:1:N/2-1]';           % Index vrXNa8,L  
    t = n.*dt;   lLuAgds`  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 C-VkXk  
    u20=u10.*0.0;                  % input to waveguide 2 `wLMJ,@f.  
    u1=u10; u2=u20;                 5~xv"S(E}  
    U1 = u1;   E XQ 3(:&  
    U2 = u2;                       % Compute initial condition; save it in U FdmoR;  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. S{)'1J_0  
    w=2*pi*n./T; 8MCSU'uQ  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T W sDFui  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 9 X87"  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 qF4pTQf  
    for m1 = 1:1:M1                                    % Start space evolution 6s&%~6J,  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ziD+% -  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Rm=[Sj84  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 1&JB@F9!  
       ca2 = fftshift(fft(u2)); qISzn04  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation `xu/|})KI  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Ec|5'Kz]  
       u2 = ifft(fftshift(c2));                        % Return to physical space __,}/|K2  
       u1 = ifft(fftshift(c1)); +FtL_7[v  
    if rem(m1,J) == 0                                 % Save output every J steps. qvN 5[rb  
        U1 = [U1 u1];                                  % put solutions in U array !8OUH6{2  
        U2=[U2 u2]; SR&'38UCe  
        MN1=[MN1 m1]; 4(}V$#^+  
        z1=dz*MN1';                                    % output location u[1'Ap  
      end 0D_{LBO6LU  
    end v/}h y$7  
    hg=abs(U1').*abs(U1');                             % for data write to excel h%(0|  
    ha=[z1 hg];                                        % for data write to excel jxA*Gg3cT5  
    t1=[0 t']; N^By#Z  
    hh=[t1' ha'];                                      % for data write to excel file >tVD[wVF0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format vhu5w#]u*  
    figure(1) Ke,$3Yx  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Lw #vHNf6  
    figure(2) Km,:7#aV  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn /km'#f)/  
    }TAHVcX*p  
    非线性超快脉冲耦合的数值方法的Matlab程序 X4:SH> U!  
    73'.TReK  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   wU bLw  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [[9XqD]  
    dFVm18  
    @;H1s4OZ  
    ys$X!Ep  
    %  This Matlab script file solves the nonlinear Schrodinger equations +UC-  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !JVpR]lWS  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear lhhp6-r  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @mrGG F  
    '9#h^.  
    C=1;                           z2.ZxL"*  
    M1=120,                       % integer for amplitude %.;`0}b  
    M3=5000;                      % integer for length of coupler G/5]0]SO  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 4GTB82V$  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. YkbZ 2J*-  
    T =40;                        % length of time:T*T0. [P?.( *  
    dt = T/N;                     % time step qT+:oMrTSm  
    n = [-N/2:1:N/2-1]';          % Index Um\_G@  
    t = n.*dt;   ImVHX~ qHJ  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ia}V8i  
    w=2*pi*n./T; $+.!(Js"K  
    g1=-i*ww./2; |Y\BI^  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; I4"U/iL51  
    g3=-i*ww./2; J`4{O:{4  
    P1=0; b".e6zev  
    P2=0; X[ up$<  
    P3=1; `jyBF  
    P=0; rq>Om MQ67  
    for m1=1:M1                 *ioVLt,:R  
    p=0.032*m1;                %input amplitude -v7O*xm"  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 }c~o3t(7`b  
    s1=s10; v&i,}p^M5  
    s20=0.*s10;                %input in waveguide 2 4Sxt<7[f  
    s30=0.*s10;                %input in waveguide 3 5Myp#!|x:  
    s2=s20; 51lN,VVD  
    s3=s30; )w3HC($g  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   %;{R o)03  
    %energy in waveguide 1 5U+a{oA  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   t&99ZdE  
    %energy in waveguide 2 !Cv:,q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   96$qH{]Ap  
    %energy in waveguide 3 p&~= rp`E  
    for m3 = 1:1:M3                                    % Start space evolution YKT=0   
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ai,Nx:r   
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;  M} {'kK  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; l /\n7:  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 4]$$ar)  
       sca2 = fftshift(fft(s2)); 8 k%!1dyMB  
       sca3 = fftshift(fft(s3)); 9s}y*Vp  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   1-M\K^F  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); & 0*=F%Fd  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); u4UQMj|q  
       s3 = ifft(fftshift(sc3)); {a `#O9  
       s2 = ifft(fftshift(sc2));                       % Return to physical space S=bdue  
       s1 = ifft(fftshift(sc1)); ) HN,Az"  
    end {KO +t7'Q  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ') -Rv]xe  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~Uz1()ftz  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); t$W~X~//  
       P1=[P1 p1/p10]; C_JDQByfL  
       P2=[P2 p2/p10]; *?GV(/Q  
       P3=[P3 p3/p10]; $WV N4fg  
       P=[P p*p]; fq2t^c|$  
    end L~])?d  
    figure(1) e:&(y){n(  
    plot(P,P1, P,P2, P,P3); pl{Pur ;i  
    7u9!:}Tu  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~