计算脉冲在非线性耦合器中演化的Matlab 程序 N \Wd0b
=^D{ZZw{
% This Matlab script file solves the coupled nonlinear Schrodinger equations of $ix*xm. 4m
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of `ek On@T0
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;x~[om21;
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l0g`;BI_
/{7we$+,p
%fid=fopen('e21.dat','w'); y|0I3n]e
N = 128; % Number of Fourier modes (Time domain sampling points) 8~s-@3J
M1 =3000; % Total number of space steps @[] A&)B
J =100; % Steps between output of space PdNxuy
T =10; % length of time windows:T*T0 f8X/kz
T0=0.1; % input pulse width M~ ^ {S[o
MN1=0; % initial value for the space output location Zd]2>h
dt = T/N; % time step eV x
&S a
n = [-N/2:1:N/2-1]'; % Index 4t;m^Iv
t = n.*dt; J&jNONu?
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 !YJ^BI
u20=u10.*0.0; % input to waveguide 2 G*$a81dAX
u1=u10; u2=u20; !&=%#i
U1 = u1; 0Fi&7%
U2 = u2; % Compute initial condition; save it in U ( O>oN~
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. H%:u9DlEK/
w=2*pi*n./T; &ivPY
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T fX 41o#
L=4; % length of evoluation to compare with S. Trillo's paper FeM,$&G:
dz=L/M1; % space step, make sure nonlinear<0.05 05>xQx?"m4
for m1 = 1:1:M1 % Start space evolution ^"?b!=n!
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS J@I-tS
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; >RMp`HxDf
ca1 = fftshift(fft(u1)); % Take Fourier transform Fo1|O&>
ca2 = fftshift(fft(u2)); ;*8nd-\
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation :/
yR
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift >5|;8v-r
u2 = ifft(fftshift(c2)); % Return to physical space VSI.c`=,
u1 = ifft(fftshift(c1)); M+N7JpR
if rem(m1,J) == 0 % Save output every J steps. $CYB&|d
U1 = [U1 u1]; % put solutions in U array )5M9Ro7
U2=[U2 u2]; rLm:qu(F1
MN1=[MN1 m1]; [!v|
M
z1=dz*MN1'; % output location ?8LRd5LH
end yv!,iK9
end +J~q:b.
hg=abs(U1').*abs(U1'); % for data write to excel !"Q8KV
ha=[z1 hg]; % for data write to excel [Bz'c1
t1=[0 t']; u+RdC;_
hh=[t1' ha']; % for data write to excel file H#joc0?P
%dlmwrite('aa',hh,'\t'); % save data in the excel format 7
i|_PP_
figure(1) 9g*MBe:
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn &Z^,-Y
figure(2) ?+bDFM}
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn pSq3\#Twr
CbA2?( 1o1
非线性超快脉冲耦合的数值方法的Matlab程序 v$`AN4)}
sDH|k@K
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Z`l97$\
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "16-K%}
L|3wGY9E
8 '2lc
~!,Q<?
% This Matlab script file solves the nonlinear Schrodinger equations O_p:`h:;M
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of BlVk?n
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear f(O`t}Ed
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Rp 2~d
.+H8c.
C=1; _`JYA
M1=120, % integer for amplitude !S/hH% C
M3=5000; % integer for length of coupler =9
TAs? =
N = 512; % Number of Fourier modes (Time domain sampling points) #@m*yJg<