切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8604阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 x`dHJq`_g  
    GrAujc5|  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 45MLt5^|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of \u>"s   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear AG?dGj^  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3T}izG]  
    :9_L6  
    %fid=fopen('e21.dat','w'); 7e#?e+5+A  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ?hWwj6i&  
    M1 =3000;              % Total number of space steps \&iP`v`K  
    J =100;                % Steps between output of space .%Ta]!0  
    T =10;                  % length of time windows:T*T0 [vHv0"   
    T0=0.1;                 % input pulse width }c}| $h^Y  
    MN1=0;                 % initial value for the space output location ulkJR-""&  
    dt = T/N;                      % time step n>^Y$yy}!  
    n = [-N/2:1:N/2-1]';           % Index r.>].~}4  
    t = n.*dt;   r;Gi+Ca5  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 (s7;^)}zx  
    u20=u10.*0.0;                  % input to waveguide 2 R%qGPO5Z\c  
    u1=u10; u2=u20;                 [I$ BmGQ  
    U1 = u1;   6u`)QUmItg  
    U2 = u2;                       % Compute initial condition; save it in U 72Iy^Y[MX  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. |*'cF-lp6v  
    w=2*pi*n./T; !>e5z|1   
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ,>eMG=C;g  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 0DmMG  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 weE/TW\e  
    for m1 = 1:1:M1                                    % Start space evolution wm$}Pch  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS !2'jrJGc  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; x-AZ %)N9  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 8&3V#sn'  
       ca2 = fftshift(fft(u2)); 3`B6w$z>(  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation *IY*yR6  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   4)"n RjGg  
       u2 = ifft(fftshift(c2));                        % Return to physical space "E8zh|m o  
       u1 = ifft(fftshift(c1)); ?F6pEt4  
    if rem(m1,J) == 0                                 % Save output every J steps. C0 /g1;p(  
        U1 = [U1 u1];                                  % put solutions in U array `(f!*Ru@/z  
        U2=[U2 u2]; A Q+]|XYo_  
        MN1=[MN1 m1]; M5*{  
        z1=dz*MN1';                                    % output location 5K<5kHpvJ{  
      end q|v(Edt|_[  
    end @1 U&UH  
    hg=abs(U1').*abs(U1');                             % for data write to excel .Y3pS/VI  
    ha=[z1 hg];                                        % for data write to excel KA){''>8  
    t1=[0 t']; P~G1EK|4  
    hh=[t1' ha'];                                      % for data write to excel file -x'z XvWZ  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format =7C%P%yt  
    figure(1) Tjl:|F8  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 72X0Tq 4  
    figure(2) HE'2"t[a  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 8 XICF  
    Xy@7y[s]  
    非线性超快脉冲耦合的数值方法的Matlab程序 9$Xu,y  
    cu%C"  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   o4%y>d)  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 F6K4#t+9  
    MH{GR)ng:9  
    \uXcLhXN  
    e?Ho a$k  
    %  This Matlab script file solves the nonlinear Schrodinger equations ;w%*M}`5  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of rc/nFl 6#  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear QR Ei7@t  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qOUqs'7/]  
    e89Xb;;w  
    C=1;                           ]6{*^4kX  
    M1=120,                       % integer for amplitude ,daKC  
    M3=5000;                      % integer for length of coupler &3$z4df  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) KGWyJ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. FI<q@HF  
    T =40;                        % length of time:T*T0.  wAz&"rS  
    dt = T/N;                     % time step Oer^Rk  
    n = [-N/2:1:N/2-1]';          % Index RtCkVxaEx  
    t = n.*dt;   >TP7 }u|  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Ma\Gb+>  
    w=2*pi*n./T; 7yx$N n`(  
    g1=-i*ww./2; }Y*VAnY6;  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; i-'9AYyw  
    g3=-i*ww./2; ]_8qn'7  
    P1=0; L9@&2?k  
    P2=0; hBFP1u/E'  
    P3=1; ]b=P=  
    P=0; GG0R}',0  
    for m1=1:M1                 *0}3t <5  
    p=0.032*m1;                %input amplitude Cxcr/9  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 KMV=%o  
    s1=s10; +Ag!?T  
    s20=0.*s10;                %input in waveguide 2 Xu>r~^w=S  
    s30=0.*s10;                %input in waveguide 3 q~5 9F@  
    s2=s20; PmR~c,  
    s3=s30; Rt{B(L.?<  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   qt3PXqR7 :  
    %energy in waveguide 1 (lGaPMEU}  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   u@.>Z{h  
    %energy in waveguide 2 k~/>b~ .c  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   E^rbcGJ  
    %energy in waveguide 3 C:uz6i1  
    for m3 = 1:1:M3                                    % Start space evolution #_|sgS?1  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 0z[dl Hi  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; C-?%uF  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 9Li%KOY  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform |8.(XsN  
       sca2 = fftshift(fft(s2)); DwV4o^J:l  
       sca3 = fftshift(fft(s3)); <97d[/7i  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   U|5nNiJM  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ) gzR=9l  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); sT/c_^y  
       s3 = ifft(fftshift(sc3));  X!j{o  
       s2 = ifft(fftshift(sc2));                       % Return to physical space [ G e=kFB  
       s1 = ifft(fftshift(sc1)); ErT{(t7  
    end !{82D[5  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); s%!`kWVJ.  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); %&Fk4Z}M  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 'r@:Cz3e*I  
       P1=[P1 p1/p10]; qA:#iJ8w  
       P2=[P2 p2/p10]; Ic{F*nnM  
       P3=[P3 p3/p10]; p)=~% 7DV  
       P=[P p*p]; g!`3{ /4  
    end c=;:R0_'t  
    figure(1) -wv6s#"u  
    plot(P,P1, P,P2, P,P3); QeDQ o  
    NB7Y{) w  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~