计算脉冲在非线性耦合器中演化的Matlab 程序 ?@_dx=su _bX)fnUu % This Matlab script file solves the coupled nonlinear Schrodinger equations of
' vwBG=9C % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
ze-iDd_y % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
U^xFqJY6 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
t.cplJF&Ue ,O}zgf*H; %fid=fopen('e21.dat','w');
:O7J9K| N = 128; % Number of Fourier modes (Time domain sampling points)
)Ii=8etdv M1 =3000; % Total number of space steps
pPE4~g 05h J =100; % Steps between output of space
D)Zv T =10; % length of time windows:T*T0
DsoF4&>g[B T0=0.1; % input pulse width
mS0W@# |K MN1=0; % initial value for the space output location
`JRdOe dt = T/N; % time step
$Ix^Rm9c n = [-N/2:1:N/2-1]'; % Index
gisZmu0 t = n.*dt;
n#*cVB81 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
?g'l/xuRe u20=u10.*0.0; % input to waveguide 2
yZ`\.GgC^& u1=u10; u2=u20;
r*
U6govky U1 = u1;
jzQgDed ] U2 = u2; % Compute initial condition; save it in U
V|7 cdX#H ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
ZM" t. w=2*pi*n./T;
Vh&uSi1V g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
s[hD9$VB> L=4; % length of evoluation to compare with S. Trillo's paper
;/v^@ dz=L/M1; % space step, make sure nonlinear<0.05
r<U }lK for m1 = 1:1:M1 % Start space evolution
4h|vd.t u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
x-[l`k.V u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
,D8Tca\v ca1 = fftshift(fft(u1)); % Take Fourier transform
COap* ca2 = fftshift(fft(u2));
'>Z
Ou3> c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
%EuSP0 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
di|l?l^l u2 = ifft(fftshift(c2)); % Return to physical space
u7S7lR"lxW u1 = ifft(fftshift(c1));
=_5-z|< if rem(m1,J) == 0 % Save output every J steps.
-{dwLl_ U1 = [U1 u1]; % put solutions in U array
$3So`8Bm[$ U2=[U2 u2];
[8ih-k MN1=[MN1 m1];
HxjhP( z1=dz*MN1'; % output location
zQ6otDZx end
=vR>KE end
k{; 2*6b0 hg=abs(U1').*abs(U1'); % for data write to excel
%
74}H8q_z ha=[z1 hg]; % for data write to excel
dP82bk/e t1=[0 t'];
B{44|aq1 | hh=[t1' ha']; % for data write to excel file
gD-<^Q- %dlmwrite('aa',hh,'\t'); % save data in the excel format
ZPXxrmq% figure(1)
Hg]r5Fe/c waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
cG.4%Va@s_ figure(2)
'Ag?#vB waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
`,J\E<4J SJ<nAX 非线性超快脉冲耦合的数值方法的Matlab程序 O%OeYO69 E;yP.<PW 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
7a2uNt,X Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
%
_ N-:.S yovC~ [j):2 _di[PU=Vh % This Matlab script file solves the nonlinear Schrodinger equations
\]zHM.E1 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
$. Ih- % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
V
V<Zl % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
'Je;3"@ rAgb<D@,H C=1;
Wh,p$|vL M1=120, % integer for amplitude
H?PaN)_6-+ M3=5000; % integer for length of coupler
@,$>H7o N = 512; % Number of Fourier modes (Time domain sampling points)
opd^|xx0 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
->d3FR T =40; % length of time:T*T0.
Mp}U>+8 dt = T/N; % time step
ol-U%J n = [-N/2:1:N/2-1]'; % Index
_qr?v=,-A t = n.*dt;
'bTtdFvJ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
[&51m^ w=2*pi*n./T;
n}EH{k9# g1=-i*ww./2;
*4]}_ .rG# g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
nPE{Gp) } g3=-i*ww./2;
.^eajb`: P1=0;
#V@[<S2 P2=0;
A|7%j0T P3=1;
L\aG.\ P=0;
EjrK.|I0 for m1=1:M1
R10R,*6> p=0.032*m1; %input amplitude
0
*2^joUv s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
!#3v<_]#d s1=s10;
',P$m&z s20=0.*s10; %input in waveguide 2
G
.NGS%v s30=0.*s10; %input in waveguide 3
Cs))9'cD] s2=s20;
UyENzK<%u s3=s30;
Zcjh p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
,N93 H3( %energy in waveguide 1
;?4EVZ#o p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
"Doz~R\\ %energy in waveguide 2
-%,=%FBi~4 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
]jjHIFX %energy in waveguide 3
QWcQtM for m3 = 1:1:M3 % Start space evolution
3?5JY;}h>" s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
DHQS7%)f` s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
fN&@y$ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
JVydTvc sca1 = fftshift(fft(s1)); % Take Fourier transform
)V d^#p sca2 = fftshift(fft(s2));
a`I
\19p] sca3 = fftshift(fft(s3));
e>0gE`8A sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
- ({h @ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
cDS\=Bf sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
m~04I~8vk s3 = ifft(fftshift(sc3));
xu\s2x$ s2 = ifft(fftshift(sc2)); % Return to physical space
R"W5R- s1 = ifft(fftshift(sc1));
Q<0X80w> end
OYSq)!: p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
7cB/G:{
p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
s@zO`uBc p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
agt/;>q\~ P1=[P1 p1/p10];
gu|=uW K P2=[P2 p2/p10];
:CLWmMC_ P3=[P3 p3/p10];
iYD5~pK8 P=[P p*p];
uP G\1 end
`R;i1/ figure(1)
-U*J5Q plot(P,P1, P,P2, P,P3);
oz:"w
nX y4U|~\] 转自:
http://blog.163.com/opto_wang/