计算脉冲在非线性耦合器中演化的Matlab 程序 KPa&P:R3
`_M&zN
% This Matlab script file solves the coupled nonlinear Schrodinger equations of N'8}5Kx5
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hle@= e/n
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear CePI{`&,
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]$A6krfh|
z4(Q.0x7
%fid=fopen('e21.dat','w'); lUHpGr|U%
N = 128; % Number of Fourier modes (Time domain sampling points) 1@Rl^ey
M1 =3000; % Total number of space steps !^w}Sp
J =100; % Steps between output of space It8@Cp.dU
T =10; % length of time windows:T*T0 AHTQF#U^
T0=0.1; % input pulse width /^Zgv-n
MN1=0; % initial value for the space output location \05 n$.
dt = T/N; % time step 9K#U<Q0b'
n = [-N/2:1:N/2-1]'; % Index vrXNa8,L
t = n.*dt; lLuAg ds`
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 C-VkXk
u20=u10.*0.0; % input to waveguide 2 `wLMJ,@f.
u1=u10; u2=u20; 5~xv"S(E}
U1 = u1; E XQ3(:&
U2 = u2; % Compute initial condition; save it in U FdmoR;
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. S{)'1J_0
w=2*pi*n./T; 8MCSU'uQ
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T W
sDFui
L=4; % length of evoluation to compare with S. Trillo's paper 9X87"
dz=L/M1; % space step, make sure nonlinear<0.05 qF4pTQf
for m1 = 1:1:M1 % Start space evolution 6s&%~6J,
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS ziD+% -
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Rm=[Sj84
ca1 = fftshift(fft(u1)); % Take Fourier transform 1&JB@F9!
ca2 = fftshift(fft(u2)); qISzn04
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation `xu/|})KI
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Ec|5'Kz]
u2 = ifft(fftshift(c2)); % Return to physical space __,}/|K2
u1 = ifft(fftshift(c1)); +FtL_7[v
if rem(m1,J) == 0 % Save output every J steps. qvN 5[rb
U1 = [U1 u1]; % put solutions in U array !8OUH6{2
U2=[U2 u2]; SR&'38UCe
MN1=[MN1 m1]; 4(}V$#^+
z1=dz*MN1'; % output location u[1'Ap
end 0D_{LBO6LU
end v/}hy$7
hg=abs(U1').*abs(U1'); % for data write to excel h%(0|
ha=[z1 hg]; % for data write to excel jxA*Gg3cT5
t1=[0 t']; N^By#Z
hh=[t1' ha']; % for data write to excel file >tVD[wVF0
%dlmwrite('aa',hh,'\t'); % save data in the excel format vhu5w#]u*
figure(1) Ke,$3Yx
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn Lw #vHNf6
figure(2) Km,:7#aV
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn /km'#f)/
}TAHVcX*p
非线性超快脉冲耦合的数值方法的Matlab程序 X4:SH>U!
73'.TReK
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 wUbLw
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [[9XqD]
dFVm18
@;H1s4OZ
ys$X!Ep
% This Matlab script file solves the nonlinear Schrodinger equations +UC-
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !JVpR]lWS
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear lhhp6-r
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @mrGG F
'9#h^.
C=1; z2.Z xL"*
M1=120, % integer for amplitude %.;`0}b
M3=5000; % integer for length of coupler G/5]0]SO
N = 512; % Number of Fourier modes (Time domain sampling points) 4GTB82V$
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. YkbZ 2J*-
T =40; % length of time:T*T0. [P?.(*
dt = T/N; % time step qT+:oMrTSm
n = [-N/2:1:N/2-1]'; % Index Um\_G@
t = n.*dt; ImVHX~qHJ
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ia}V8i
w=2*pi*n./T; $+.!(Js"K
g1=-i*ww./2; |Y\BI^
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; I4"U/iL51
g3=-i*ww./2; J`4{O:{4
P1=0; b".e6zev
P2=0; X[up$<