切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8634阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 w]{NaNIeq1  
    ?=]*r>a3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of h|!F'F{  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of R":nG7o  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear cXJtNW@  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q1Jkt  
    "5-S:+  
    %fid=fopen('e21.dat','w'); Y.Er!(pz  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ='7n  
    M1 =3000;              % Total number of space steps U?6YY` A8  
    J =100;                % Steps between output of space hr<E%J1k%  
    T =10;                  % length of time windows:T*T0 #@m*yJg<  
    T0=0.1;                 % input pulse width S"iQQV{)Z  
    MN1=0;                 % initial value for the space output location NAj1ORy4pX  
    dt = T/N;                      % time step X^#.4:>.  
    n = [-N/2:1:N/2-1]';           % Index )y7SkH|  
    t = n.*dt;   TXi$Q%0W  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 {V!Jj6n  
    u20=u10.*0.0;                  % input to waveguide 2 eXaa'bTx  
    u1=u10; u2=u20;                 / 4K*iq  
    U1 = u1;   nFl=D=50-  
    U2 = u2;                       % Compute initial condition; save it in U 6/9h=-w&  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. g#V3u=I8~  
    w=2*pi*n./T; W?"Z>tgp  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T n ?%3=~9  
    L=4;                           % length of evoluation to compare with S. Trillo's paper (WK $ )f  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 lHpo/ R :  
    for m1 = 1:1:M1                                    % Start space evolution HRx%m1H  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS -K`0`n}  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;  -> -  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Y962rZ  
       ca2 = fftshift(fft(u2)); =L$};ko  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ] t|KFk!)  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   )S$!36Ni[  
       u2 = ifft(fftshift(c2));                        % Return to physical space xXK7i\ny  
       u1 = ifft(fftshift(c1)); kRgyvA,*;  
    if rem(m1,J) == 0                                 % Save output every J steps. .ukP)rGe  
        U1 = [U1 u1];                                  % put solutions in U array =VlO53Hy{  
        U2=[U2 u2]; {MKq Yl{  
        MN1=[MN1 m1]; YtNoYOB  
        z1=dz*MN1';                                    % output location {=7W;uL  
      end L_jwM ^8  
    end (J): >\a]  
    hg=abs(U1').*abs(U1');                             % for data write to excel =MG  
    ha=[z1 hg];                                        % for data write to excel dCcV$BX,K  
    t1=[0 t']; WjGv%^?  
    hh=[t1' ha'];                                      % for data write to excel file bK%go  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format  UJoWTx  
    figure(1) gtz!T2%  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn O#7fkL  
    figure(2) )^)VyI`O  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn %|Vo Zx ^  
    0i$jtCCL(  
    非线性超快脉冲耦合的数值方法的Matlab程序 U;KHF{Vm  
    2s EdN$O  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   @l&5 |Cia  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -nO('(t  
    oC U8;z  
    ]k{cPK  
    3OFv_<6  
    %  This Matlab script file solves the nonlinear Schrodinger equations E[LXZh  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 2Z,;#t  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear AY0o0\6cw  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X8bo?0  
    YFLWkdqAY  
    C=1;                           {Y'DUt5j  
    M1=120,                       % integer for amplitude itD1r?O{pV  
    M3=5000;                      % integer for length of coupler 8&ZUkDGkJ  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) |82V` CV  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. v{=-#9-4 &  
    T =40;                        % length of time:T*T0. >Z|4/PF  
    dt = T/N;                     % time step I_#)>%H  
    n = [-N/2:1:N/2-1]';          % Index #>~$`Sg  
    t = n.*dt;   7z=Ss'O]  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. yN~=3b>  
    w=2*pi*n./T; c.&vWmLSGE  
    g1=-i*ww./2; Y!o@"Ct  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; V* fDvr0  
    g3=-i*ww./2; ;'ts dsu}  
    P1=0; I|9e4EX{y  
    P2=0; C(iA G  
    P3=1; :":W(O  
    P=0; PpU : 4;en  
    for m1=1:M1                 \s<iM2]Kl  
    p=0.032*m1;                %input amplitude X/i8$yqv  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 o|alL-  
    s1=s10; ?b8NEVjw  
    s20=0.*s10;                %input in waveguide 2 X^9_'T9  
    s30=0.*s10;                %input in waveguide 3 i>,5b1x~  
    s2=s20; )KBv[|  
    s3=s30; +#Ov9b  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   N4fuV?E`  
    %energy in waveguide 1 ZQl[h7c/N  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   0<v~J9i  
    %energy in waveguide 2 c!Pi)  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   7GK| A{r  
    %energy in waveguide 3 {%S1x{U}W-  
    for m3 = 1:1:M3                                    % Start space evolution [(ty{  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS g-}Vu1w0{6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Q:-H U bB  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; .D4 D!!  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 0yAvAx  
       sca2 = fftshift(fft(s2)); {,s:vPoiA  
       sca3 = fftshift(fft(s3)); 3O#7OL68v  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   2[M:WZ.1  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); mL6/NSSz  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); =nid #<X  
       s3 = ifft(fftshift(sc3)); eX_}KH-Q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space x:l`e:`y9  
       s1 = ifft(fftshift(sc1)); HNU[W8mg8  
    end IUc!nxF#  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 5QS d$J  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); U}Xc@- \ ?  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); z+-k4  
       P1=[P1 p1/p10]; k,?Y`s  
       P2=[P2 p2/p10]; &]vd7Q.t  
       P3=[P3 p3/p10]; },i?3dSvl  
       P=[P p*p]; ZQ20IY|,  
    end 5>A3;P  
    figure(1) 79x^zqLb  
    plot(P,P1, P,P2, P,P3); 'R=o,=  
    f4g(hjETbu  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~