切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8429阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #cR57=M}  
    HE9. k.sS  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Ua}g  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?exALv'B  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear * .oi3m  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Lqg7D\7j  
    x/pC%25  
    %fid=fopen('e21.dat','w'); VOD1xWrb  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 7l[t9ON  
    M1 =3000;              % Total number of space steps Uy:@,DW  
    J =100;                % Steps between output of space no eb f  
    T =10;                  % length of time windows:T*T0 ^.nwc#  
    T0=0.1;                 % input pulse width h\Z3yAYd  
    MN1=0;                 % initial value for the space output location =#7s+d-  
    dt = T/N;                      % time step .0 rJIO  
    n = [-N/2:1:N/2-1]';           % Index R9S7_u  
    t = n.*dt;   3xc:Y> *`  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~Ay  
    u20=u10.*0.0;                  % input to waveguide 2 ?U7&R%Lh`  
    u1=u10; u2=u20;                 Z`e$~n(Bh  
    U1 = u1;   f:)]FHPB1  
    U2 = u2;                       % Compute initial condition; save it in U F^4*|g  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 9 ?EY.}~  
    w=2*pi*n./T; |j\eBCnH3  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T =f/avGX  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 1Al=v  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 jJiCF,m  
    for m1 = 1:1:M1                                    % Start space evolution <h)deB+}  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS D7 8) 4>X  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; (\5<GCW-  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform cuJ / Vc  
       ca2 = fftshift(fft(u2)); 2n<qAl$t  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ZYpD8u6U  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   r>n8`W  
       u2 = ifft(fftshift(c2));                        % Return to physical space hg)!m\g  
       u1 = ifft(fftshift(c1)); XyN`BDFi  
    if rem(m1,J) == 0                                 % Save output every J steps. _Eet2;9  
        U1 = [U1 u1];                                  % put solutions in U array e!O &~#'h}  
        U2=[U2 u2]; 9 ayH:;  
        MN1=[MN1 m1]; O :5ldI  
        z1=dz*MN1';                                    % output location pZNlcB[Qn-  
      end C{lB/F/|!  
    end x`&P}4v0  
    hg=abs(U1').*abs(U1');                             % for data write to excel 6'3Ey'drH  
    ha=[z1 hg];                                        % for data write to excel CJ37:w{%*Y  
    t1=[0 t']; B$iMU?B3  
    hh=[t1' ha'];                                      % for data write to excel file zwF7DnW<<  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &k {t0>  
    figure(1) nJnO/~|  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^^U)WB  
    figure(2) pJ<)intcbE  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn qCv}+d)  
    zXA= se0U  
    非线性超快脉冲耦合的数值方法的Matlab程序 2l;ge>D J  
    lW@:q04Z$  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   IWSEssP  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &AkzSgP  
    `0-m`>1>  
    Xlgz.j7XR  
    HvL9;^!  
    %  This Matlab script file solves the nonlinear Schrodinger equations 6Wcn(h8%*  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of (rCPr,@0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ?j ;,q  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Lt ZWs0l0  
    zjhR9  
    C=1;                           `jl. f  
    M1=120,                       % integer for amplitude _'o^@v:  
    M3=5000;                      % integer for length of coupler rSzXa4m(  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ^!{ oAzy9  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. QyBK*uNdV  
    T =40;                        % length of time:T*T0. $(!D/bvJ  
    dt = T/N;                     % time step pNk,jeo  
    n = [-N/2:1:N/2-1]';          % Index _16 &K}<  
    t = n.*dt;   9fk\Ay1P  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. .,(uoK{  
    w=2*pi*n./T; kgib$t_7  
    g1=-i*ww./2; `XRb:d^  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7cQHRM+1  
    g3=-i*ww./2; _a:!U^4  
    P1=0; :D)&>{?  
    P2=0; ocuNrkZ  
    P3=1; >H]|A<9u(  
    P=0; ~P.-3  
    for m1=1:M1                 pR^Y|NG!  
    p=0.032*m1;                %input amplitude jmwQc&  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 =iQ`F$M  
    s1=s10; Toa#>Z*+Rb  
    s20=0.*s10;                %input in waveguide 2 DdA}A>47  
    s30=0.*s10;                %input in waveguide 3 0zk T8'v  
    s2=s20; WG!;,~f>o  
    s3=s30; 8aIq#v  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Ny&Fjzl  
    %energy in waveguide 1 9jJ/ RXp  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   t+Q|l&|0  
    %energy in waveguide 2 x%Y a*T  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   MsVI <+JZ  
    %energy in waveguide 3 APOU&Wd  
    for m3 = 1:1:M3                                    % Start space evolution 7Q4Pjc D  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS mk3e^,[A  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Z6 |'k:R8  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; qCFXaj   
       sca1 = fftshift(fft(s1));                       % Take Fourier transform d$C|hT  
       sca2 = fftshift(fft(s2)); ;),O*Z|"v  
       sca3 = fftshift(fft(s3)); 0jx~_zq-j  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^zs4tCW%  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); jn3|9x  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); vd X~E97  
       s3 = ifft(fftshift(sc3)); 1*Fvx-U'  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 8=_| qy}l/  
       s1 = ifft(fftshift(sc1)); kl<B*:RqH  
    end b "3T(#2<*  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); JnKbd~  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); }R] }@i~i  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~k< 31 ez  
       P1=[P1 p1/p10]; as47eZ0\  
       P2=[P2 p2/p10]; Bv|9{:1%X}  
       P3=[P3 p3/p10]; *,=+R$  
       P=[P p*p]; NCh(-E  
    end 9;WOqBD  
    figure(1) \:)o'-   
    plot(P,P1, P,P2, P,P3); }\qdow-  
    g|*eN{g]uE  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~