切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8737阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ]5QXiF8`  
    ]!sCWR  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of E"p _!!1  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of HLqN=vE6  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1 +-Go}I  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~ L%,9  
    kZG; \  
    %fid=fopen('e21.dat','w'); n=JV*h0  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ga\ s5  
    M1 =3000;              % Total number of space steps $rk=#;6]v;  
    J =100;                % Steps between output of space Q.eD:@%iE  
    T =10;                  % length of time windows:T*T0 3]9wfT%d  
    T0=0.1;                 % input pulse width qzORv  
    MN1=0;                 % initial value for the space output location qvo!nr7  
    dt = T/N;                      % time step w<THPFFF"  
    n = [-N/2:1:N/2-1]';           % Index 9#1?Pt^{<  
    t = n.*dt;   '[8w8,v(  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 /*fx`0mY)  
    u20=u10.*0.0;                  % input to waveguide 2 {aV,h@>  
    u1=u10; u2=u20;                 LNR1YC1c  
    U1 = u1;   (z)#}TC  
    U2 = u2;                       % Compute initial condition; save it in U > O?<?  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. zQ,M795@EA  
    w=2*pi*n./T; "{E%Y*  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T q] pHD})O  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Z]{=Jy !F  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Ws2?sn#x  
    for m1 = 1:1:M1                                    % Start space evolution PB"=\>]`N  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS |ITCw$T  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; V\L%*6O  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform H)Me!^@[D  
       ca2 = fftshift(fft(u2)); @N<h`vDa  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation A9]& w  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   KwaxNb5  
       u2 = ifft(fftshift(c2));                        % Return to physical space 'J0I$-QYk  
       u1 = ifft(fftshift(c1)); ws QuJrG  
    if rem(m1,J) == 0                                 % Save output every J steps. sl@>GbnS  
        U1 = [U1 u1];                                  % put solutions in U array o/a2n<4  
        U2=[U2 u2]; 7D>_<)%d=  
        MN1=[MN1 m1]; HbPn<x^7  
        z1=dz*MN1';                                    % output location ADOA&r[  
      end u' kG(<0Y  
    end %zY5'$v `  
    hg=abs(U1').*abs(U1');                             % for data write to excel \v=@'  
    ha=[z1 hg];                                        % for data write to excel Crj7n/mp]s  
    t1=[0 t']; bFL2NH5  
    hh=[t1' ha'];                                      % for data write to excel file vN_ 8qzWk  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ; }T+ImjA  
    figure(1) m}D;=>2$  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn =~W=}  
    figure(2) JJg;X :p  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Ylu\]pr9|C  
    nTtEv~a_n  
    非线性超快脉冲耦合的数值方法的Matlab程序 OJA_OqVp$K  
    !fe_w5S^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   #1*7eANfr  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0:I<TJ~P  
    P'}B5 I~  
    EBL-+%J8  
    3'i(wI~<[  
    %  This Matlab script file solves the nonlinear Schrodinger equations k$f2i,7'  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of E8nj_ ^Z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear O/#uQn}  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d)Z&_v<|  
    B1U!*yzG6  
    C=1;                           `x>6Wk1  
    M1=120,                       % integer for amplitude ue+{djz[4  
    M3=5000;                      % integer for length of coupler rx9y^E5T`;  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) {SXSQ'=  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. nnT#S  
    T =40;                        % length of time:T*T0. c1a$J`  
    dt = T/N;                     % time step Tjv'S <  
    n = [-N/2:1:N/2-1]';          % Index ]=i('|YG  
    t = n.*dt;   :O&jm.2m  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. BAvz @H  
    w=2*pi*n./T; PrfG  
    g1=-i*ww./2; i0+e3!QU  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; [kxOv7a  
    g3=-i*ww./2; R6;#+ 1D  
    P1=0; z'1%%.r;FM  
    P2=0; 0m> 8  
    P3=1; }hg2}g99  
    P=0; %-K5sIz  
    for m1=1:M1                 0&Ftx%6%  
    p=0.032*m1;                %input amplitude #6D>e~>n  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 KDP47A  
    s1=s10; ,:'JJZg@  
    s20=0.*s10;                %input in waveguide 2 b$*2bSdv0<  
    s30=0.*s10;                %input in waveguide 3 ]&D= *:c  
    s2=s20; 3}mg7KV&  
    s3=s30; Rmn{Vui9\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   H7Z`aQC  
    %energy in waveguide 1  qbS6#7D  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Rcw[`q3/  
    %energy in waveguide 2 4<E <sD  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   2.MUQ;OX  
    %energy in waveguide 3 -}!mi V  
    for m3 = 1:1:M3                                    % Start space evolution 52#6uBe  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ~&MDfpl  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; #l: 1R&F  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 6P>}7R}  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform &)||~  
       sca2 = fftshift(fft(s2)); ohe[rV>EX  
       sca3 = fftshift(fft(s3)); NR8`nc1~  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   6~W@$SP,F  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); !plu;w  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9xzow,mi  
       s3 = ifft(fftshift(sc3)); z9OpxW@Ou  
       s2 = ifft(fftshift(sc2));                       % Return to physical space `\;Z&jlpT  
       s1 = ifft(fftshift(sc1)); VEI ct{  
    end >D~8iuy]8.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); F$'u`  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); $>yfu=]?  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); X9FO"(J  
       P1=[P1 p1/p10]; sb8bCEm- \  
       P2=[P2 p2/p10]; > 3(,s^  
       P3=[P3 p3/p10]; 5%fWX'mS  
       P=[P p*p]; GU@#\3  
    end yx4pQL7  
    figure(1) N#e9w3Rli  
    plot(P,P1, P,P2, P,P3); 2@z.ory.  
    G![4K#~NM  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~