切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8442阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 +X}i%F'  
    *H>rvE.K?  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of {@Mr7*u  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {$*N1$(%  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &p0e)o~Ux  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vF$i"^;tJ;  
     N;7/C  
    %fid=fopen('e21.dat','w'); wp[Ug2;G  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Vz{+3vfra6  
    M1 =3000;              % Total number of space steps 6cQgp]%  
    J =100;                % Steps between output of space <n"BPXF~  
    T =10;                  % length of time windows:T*T0 [6/ QUD8  
    T0=0.1;                 % input pulse width QTV*m>D  
    MN1=0;                 % initial value for the space output location cr7MvXF-  
    dt = T/N;                      % time step XYE|=Tr]  
    n = [-N/2:1:N/2-1]';           % Index %u -x9  
    t = n.*dt;   G#M)5'Q]U  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 EE/mxN(<  
    u20=u10.*0.0;                  % input to waveguide 2 ; * [:~5Wc  
    u1=u10; u2=u20;                 o5<<vvdA  
    U1 = u1;   l'@-?p(Vuw  
    U2 = u2;                       % Compute initial condition; save it in U k ;WD[SV  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. GK(CuwJe  
    w=2*pi*n./T; P&-o>mM  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 92+8zX  
    L=4;                           % length of evoluation to compare with S. Trillo's paper {pzj@b 1S  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 p{FI_6db  
    for m1 = 1:1:M1                                    % Start space evolution KWTV!Wxb=K  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ]BQYVx/  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; t>"%exdoZ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform x-^6U  
       ca2 = fftshift(fft(u2)); gT+/nSrLV  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation xNP_>Qa~  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   D7Q+w  
       u2 = ifft(fftshift(c2));                        % Return to physical space gr=h!'m  
       u1 = ifft(fftshift(c1)); p7h#.m~Qu  
    if rem(m1,J) == 0                                 % Save output every J steps. 1+o]+Jz|  
        U1 = [U1 u1];                                  % put solutions in U array +^)v"@,VP  
        U2=[U2 u2]; PT"}2sR)  
        MN1=[MN1 m1]; _KT!OYH  
        z1=dz*MN1';                                    % output location ,pNx(a  
      end R[WiW RfD  
    end }`"`VLh  
    hg=abs(U1').*abs(U1');                             % for data write to excel 4 1_gak;  
    ha=[z1 hg];                                        % for data write to excel jm_-f  
    t1=[0 t']; 7>JYwU{  
    hh=[t1' ha'];                                      % for data write to excel file &)eg3P)7  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format +)]YvZ6%[,  
    figure(1) p!.~hw9  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn g(7 -3q8eq  
    figure(2) J~YT~D 2L  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn GK?ual1  
    'U@o!\=a  
    非线性超快脉冲耦合的数值方法的Matlab程序 h}bfZL  
    KKeMi@N  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Q YJ EUC@  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 i`,FXF)  
    ?Ua,ba*  
    49$P  
    Zg;$vIhn  
    %  This Matlab script file solves the nonlinear Schrodinger equations UHBXq;?&q  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of pO]gf$  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^aFm6HS1  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *Cy54Z#  
    &&ioGy}1  
    C=1;                           ^xo<$zn  
    M1=120,                       % integer for amplitude UA[`{rf  
    M3=5000;                      % integer for length of coupler 5*0zI\  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ,'#TdLe  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. qsj{0Go  
    T =40;                        % length of time:T*T0. F_-Lu]*  
    dt = T/N;                     % time step f~IJ4T2#N  
    n = [-N/2:1:N/2-1]';          % Index b*|~F  
    t = n.*dt;   ^:nc'C gP  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. XTol|a=  
    w=2*pi*n./T; f%Q)_F[0D4  
    g1=-i*ww./2; R!nf^*~  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; A|A~$v("R  
    g3=-i*ww./2; /-=fWtA  
    P1=0; {>&~kM@  
    P2=0; De$AJl  
    P3=1; ju~$FNt8R  
    P=0; b0P3S!E  
    for m1=1:M1                 dBWny&  
    p=0.032*m1;                %input amplitude Z9{~t  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 A=|XlP$6  
    s1=s10; _\!]MV  
    s20=0.*s10;                %input in waveguide 2 MJn-] E  
    s30=0.*s10;                %input in waveguide 3 }nx)|J*p  
    s2=s20; 0.GFg${v`  
    s3=s30; ,0l Od<  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \Lx=iKs<  
    %energy in waveguide 1 4vhf!!1  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   =C %)(|  
    %energy in waveguide 2 <'y<8gpM  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   q? ,PFvs"  
    %energy in waveguide 3 ;\MWxh,K  
    for m3 = 1:1:M3                                    % Start space evolution Pz4#>tP  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 1ni+)p>]  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; K;K0D@>]HR  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ;Iu _*U9)  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 0b&# w  
       sca2 = fftshift(fft(s2)); Pwh}hG1s a  
       sca3 = fftshift(fft(s3)); dwj?;  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   U S^% $Z:  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )>a~%~:  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); xATx2*@X2  
       s3 = ifft(fftshift(sc3)); EOPx 4+o  
       s2 = ifft(fftshift(sc2));                       % Return to physical space .jrNi=BP*  
       s1 = ifft(fftshift(sc1)); FW]tDGJOw  
    end /A_:`MAZ  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); R >xd*A  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); )e(<YST  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); m^X51,+<  
       P1=[P1 p1/p10]; *&U~Io"U  
       P2=[P2 p2/p10]; aNbS0R>l  
       P3=[P3 p3/p10]; dPUe5k)G_  
       P=[P p*p]; D(b01EQ;d  
    end :e<jD_.X  
    figure(1) NAYLlW}A  
    plot(P,P1, P,P2, P,P3); 3(YvqPp&  
     ?kjQ_K  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~