切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9204阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 )r?}P1J7  
    [85spub&}  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of O/(`S<iip  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of q9K)Xk$LF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Wis~$"  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 net@j#}j-  
    a.\:T,cP>  
    %fid=fopen('e21.dat','w'); G_8RK,H.  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) < NY^M!  
    M1 =3000;              % Total number of space steps !*&V- 4  
    J =100;                % Steps between output of space SHxNr(wJ<Q  
    T =10;                  % length of time windows:T*T0 Lg+Ac5y}`  
    T0=0.1;                 % input pulse width 1-uxC^u?|#  
    MN1=0;                 % initial value for the space output location pU}(@oy  
    dt = T/N;                      % time step 7F7 {)L  
    n = [-N/2:1:N/2-1]';           % Index s c,Hq\$&  
    t = n.*dt;   iuW[`ou X  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Rok7n1gW  
    u20=u10.*0.0;                  % input to waveguide 2 U}[d_f  
    u1=u10; u2=u20;                 ?3,:-"(@p  
    U1 = u1;   | j`@eF/"  
    U2 = u2;                       % Compute initial condition; save it in U HWrO"b*tO  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ZU4nc3__  
    w=2*pi*n./T; YlQ=5u^+  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T {4}yKjW%z  
    L=4;                           % length of evoluation to compare with S. Trillo's paper /Iy]DU8  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 IMFDM."s  
    for m1 = 1:1:M1                                    % Start space evolution bo>*fNqAIy  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 65P0,b6"OT  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; DJ k/{Z:  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ~H_/zK6e  
       ca2 = fftshift(fft(u2)); 2WL|wwA  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation )9G[dDeC  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   %N6A+5H  
       u2 = ifft(fftshift(c2));                        % Return to physical space k Z .gO  
       u1 = ifft(fftshift(c1)); l/ GGCnO/  
    if rem(m1,J) == 0                                 % Save output every J steps. , kGc]{'W  
        U1 = [U1 u1];                                  % put solutions in U array jD]~ AwRJ  
        U2=[U2 u2]; E0=)HTtS  
        MN1=[MN1 m1]; <?6|.\&  
        z1=dz*MN1';                                    % output location wu!59pL  
      end iN\4gQ!  
    end 34O `@j0-3  
    hg=abs(U1').*abs(U1');                             % for data write to excel 6 7.+ .2  
    ha=[z1 hg];                                        % for data write to excel 8 +/rlHp  
    t1=[0 t']; x,+{9  
    hh=[t1' ha'];                                      % for data write to excel file ~ "H,/m%2o  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _ QI\  
    figure(1) BLdvyVFx  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn l"T44CL;  
    figure(2) 'RR~7h  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn (O?.)jEW(.  
    W ]1)zO  
    非线性超快脉冲耦合的数值方法的Matlab程序 . B9iLI  
    Jb@V}Ul$  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   X*XZb F"=  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  .Wj;%|  
    Q#X8u-~  
    o Q2Fjj  
    NjScc%@y  
    %  This Matlab script file solves the nonlinear Schrodinger equations ,/%=sux  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +b<FO+E_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;>yxNGV`  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 gIa+5\qYY  
    HxV=F66"  
    C=1;                           =E4LRKn  
    M1=120,                       % integer for amplitude g" DG]/ev  
    M3=5000;                      % integer for length of coupler  a=9:[  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ay ;S4c/_  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. gMmaK0uhS  
    T =40;                        % length of time:T*T0. !4RWYMV "  
    dt = T/N;                     % time step  SI-qC  
    n = [-N/2:1:N/2-1]';          % Index 5h-SCB>P  
    t = n.*dt;   mbxZL<ua  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ci.+pF  
    w=2*pi*n./T; zuad~%D<I  
    g1=-i*ww./2; 9G#n 0&wRJ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ColV8oVnU  
    g3=-i*ww./2; 4y?n [/M/  
    P1=0; b9J_1Gl]  
    P2=0; 1>_8d"<Gd  
    P3=1; ,{u yG:  
    P=0; Oi'5ytsES  
    for m1=1:M1                 y<|7z99L  
    p=0.032*m1;                %input amplitude 3vN_p$  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 VU(v3^1"  
    s1=s10; }<v@01  
    s20=0.*s10;                %input in waveguide 2 Ys!82M$g  
    s30=0.*s10;                %input in waveguide 3 uM IIYS  
    s2=s20; eK?MKe  
    s3=s30; (AaoCa[  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   EzM ?Nft  
    %energy in waveguide 1 uK"=i8rs4  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   v\gLWq'  
    %energy in waveguide 2 l'-Bu(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   {OkV%Q<  
    %energy in waveguide 3 *xxx:*6rk;  
    for m3 = 1:1:M3                                    % Start space evolution Q:G4Z9Kt  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS kW Ml  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; |&+ o^  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; D rUO-  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform &tLgG4pd  
       sca2 = fftshift(fft(s2)); d9f C<Tp  
       sca3 = fftshift(fft(s3)); y| i,|  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   { M4gF8(M  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); mP~QWx![N  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); JxdDC^> 0  
       s3 = ifft(fftshift(sc3)); ~S"+S/z/k  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #4Rx]zW^%  
       s1 = ifft(fftshift(sc1)); BDW^7[n  
    end X; \+<LE  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); y1eW pPJa  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); r[`9uVT/  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); )hn6sXo+  
       P1=[P1 p1/p10]; *eTqVG.  
       P2=[P2 p2/p10]; D09Sg%w  
       P3=[P3 p3/p10]; ~?Qe?hB  
       P=[P p*p]; jjB~G^n  
    end OhQgF  
    figure(1) n`?aC|P2s  
    plot(P,P1, P,P2, P,P3); gZ3u=uME  
    ah4N|zJ>v  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~