切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9309阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 /KLkrW  
    t4iD<{4  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of }u9#S  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of _01wRsm%2  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =oBlUE  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  nU4to  
    \q($8<  
    %fid=fopen('e21.dat','w'); beaSvhPU  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) W#)X@TlE  
    M1 =3000;              % Total number of space steps gw!d[{#  
    J =100;                % Steps between output of space cJMi`PQ;  
    T =10;                  % length of time windows:T*T0 IRGcE&m  
    T0=0.1;                 % input pulse width :8K}e]!c1  
    MN1=0;                 % initial value for the space output location y8_$YA/g  
    dt = T/N;                      % time step \TZSn1isZX  
    n = [-N/2:1:N/2-1]';           % Index @9eN\b%I^H  
    t = n.*dt;   2x>7>;>  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 U9ZuD40\  
    u20=u10.*0.0;                  % input to waveguide 2 fy]c=:EmD  
    u1=u10; u2=u20;                 2X<%BFsE  
    U1 = u1;   |kH.o=  
    U2 = u2;                       % Compute initial condition; save it in U SJ91(K  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 'W,*mfB  
    w=2*pi*n./T; a:8 MoH4  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T cZJ5L>ox  
    L=4;                           % length of evoluation to compare with S. Trillo's paper []v$QR&u#v  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 hq&|   
    for m1 = 1:1:M1                                    % Start space evolution lb$_$+@Vr  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS RL:B.Lv/W  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; )X;051Q  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform N>Ih2>8t  
       ca2 = fftshift(fft(u2)); &?1O D5  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 4Q/{lqG  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   l$1NI#&  
       u2 = ifft(fftshift(c2));                        % Return to physical space Nc &J%a  
       u1 = ifft(fftshift(c1)); ,]:Gn5~  
    if rem(m1,J) == 0                                 % Save output every J steps. P1AC2<H  
        U1 = [U1 u1];                                  % put solutions in U array X;H\u6-|>6  
        U2=[U2 u2]; DF_wMv:>^  
        MN1=[MN1 m1]; N8pV[\f  
        z1=dz*MN1';                                    % output location +%v1X&_\  
      end Unv'm5/L  
    end #|4G,!  
    hg=abs(U1').*abs(U1');                             % for data write to excel d#TA20`  
    ha=[z1 hg];                                        % for data write to excel n\)1Bz  
    t1=[0 t']; `LNhamp  
    hh=[t1' ha'];                                      % for data write to excel file CIz0Gjtx6m  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format u7^(?"x  
    figure(1) ~|9VVeE  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn B2oKvgw  
    figure(2) .dMdb7  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn {1Y @%e  
    d&CpaOSu  
    非线性超快脉冲耦合的数值方法的Matlab程序 `3 i<jZMG  
    %59uR}\  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )l$}plT4  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 y+T[="W  
    ;}iB9 Tl  
    "!D y[J  
    6F!B*lr  
    %  This Matlab script file solves the nonlinear Schrodinger equations 9Q^cE\j  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of l_/(J)|a  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear FLs$  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @J&korU  
    C+uW]]~I)  
    C=1;                           t))MZw&@  
    M1=120,                       % integer for amplitude m0 As t<u  
    M3=5000;                      % integer for length of coupler PWyf3  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ! ig& 8:  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. (T0MWp0  
    T =40;                        % length of time:T*T0. MW6z&+Z  
    dt = T/N;                     % time step 71\53Qr#U  
    n = [-N/2:1:N/2-1]';          % Index ? "r=08  
    t = n.*dt;   iX6>u4~(  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. &n )MGg1%  
    w=2*pi*n./T; Go)g}#.&  
    g1=-i*ww./2; >> "gb/x,  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; V0v,s^\H  
    g3=-i*ww./2; Kc?4q=7q  
    P1=0; 7M~sol[*  
    P2=0; w^ut,`yW R  
    P3=1; Jr( =Y@Z '  
    P=0; l>}f{az-T  
    for m1=1:M1                 n V7Vc;  
    p=0.032*m1;                %input amplitude _ Lb"yug  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 #'q7 x  
    s1=s10; VJqk0w+  
    s20=0.*s10;                %input in waveguide 2 oDV6[e  
    s30=0.*s10;                %input in waveguide 3 E{&MmrlL,  
    s2=s20; X0u,QSt' O  
    s3=s30; .Zczya  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   IGcq*mR=  
    %energy in waveguide 1 qEr?4h  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   N=BG0t$  
    %energy in waveguide 2 '1:)q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3{$7tck,  
    %energy in waveguide 3 M/quswn1  
    for m3 = 1:1:M3                                    % Start space evolution M&j|5UH%.  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS OQ&N]P2p  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; VFL^-tXnA^  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 9Q%lS  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform  >Ua'*  
       sca2 = fftshift(fft(s2)); 7Hr_ZwO/^  
       sca3 = fftshift(fft(s3)); u1$6:"2@5k  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   QM F   
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); m+hI3@j  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); GYfOwV!zB  
       s3 = ifft(fftshift(sc3)); ]alc%(=  
       s2 = ifft(fftshift(sc2));                       % Return to physical space b$ 7 ]cE  
       s1 = ifft(fftshift(sc1)); >MHlrSH2  
    end FKTF?4+\U  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Nv7-6C6<  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); :J`@@H  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); -!Myw&*\V  
       P1=[P1 p1/p10]; %hsCB .r>|  
       P2=[P2 p2/p10]; e4tIO   
       P3=[P3 p3/p10]; ;Z d_2CZ  
       P=[P p*p]; b$,Hlh,^  
    end }_]AQN$'G  
    figure(1) TC?B_;a  
    plot(P,P1, P,P2, P,P3); C7FQc {  
    sQa;l]O:NC  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~