切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9212阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 M'X,7hZ  
    V4Qy^nn1  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of /`#JM  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of vqoK9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear h{\S'8  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 aS>cXJ;=  
    >bmdu \j5R  
    %fid=fopen('e21.dat','w'); ;2 ?fz@KZ  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) GKUjtPu  
    M1 =3000;              % Total number of space steps 4kV$JV.l  
    J =100;                % Steps between output of space [\fwnS_1  
    T =10;                  % length of time windows:T*T0 7#Fcn  
    T0=0.1;                 % input pulse width BSr#;;\  
    MN1=0;                 % initial value for the space output location e*I92  
    dt = T/N;                      % time step c*R\fQd  
    n = [-N/2:1:N/2-1]';           % Index 23ho uS   
    t = n.*dt;   QAl4w)F  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ZcHIk{|  
    u20=u10.*0.0;                  % input to waveguide 2 !"E/6z2&(k  
    u1=u10; u2=u20;                 77+3CME{'  
    U1 = u1;   W"t^t|H'~  
    U2 = u2;                       % Compute initial condition; save it in U \fvm6$ rZ^  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 5w~J"P6jg  
    w=2*pi*n./T; 8090+ ( U  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ^,f^YL;  
    L=4;                           % length of evoluation to compare with S. Trillo's paper +l]> (k.2  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @a=jSB#B  
    for m1 = 1:1:M1                                    % Start space evolution 96; gzG@1!  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Cd6th F)  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; @S5HMJ2=  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform {od@S l  
       ca2 = fftshift(fft(u2)); ]j*uD317  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation  -V"W  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   rAqS;@]0  
       u2 = ifft(fftshift(c2));                        % Return to physical space 9`^(M^|c  
       u1 = ifft(fftshift(c1)); =jxy4`oF  
    if rem(m1,J) == 0                                 % Save output every J steps. +RiI5.$=Z  
        U1 = [U1 u1];                                  % put solutions in U array  VS7  
        U2=[U2 u2]; ru1^. (W2  
        MN1=[MN1 m1]; u35"oLV6}#  
        z1=dz*MN1';                                    % output location [yc7F0Aw  
      end el2<W=^M  
    end '9Q#%E!*  
    hg=abs(U1').*abs(U1');                             % for data write to excel oe<@mz/  
    ha=[z1 hg];                                        % for data write to excel BT$Oh4y4  
    t1=[0 t']; zyP/'X_~:  
    hh=[t1' ha'];                                      % for data write to excel file *L Y6hph"  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format DH i@ujr  
    figure(1) +nB0O/m'U  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 23'{{@30  
    figure(2) Gfy9YH~  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn {(t R<z)  
    /+ais 3  
    非线性超快脉冲耦合的数值方法的Matlab程序 MpJ\4D5G  
    \;Q!}_ K  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   5'`DrTOA  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2\#$::B9  
    -Oz! GX  
    !\Cu J5U  
    z/p^C~|}  
    %  This Matlab script file solves the nonlinear Schrodinger equations ZnuRy:  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of MJH>rsTQ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7A$mZPKh  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q['3M<q  
    <y7Hy&&y-  
    C=1;                           nYvkeT  
    M1=120,                       % integer for amplitude d@b2XCh<K  
    M3=5000;                      % integer for length of coupler B| M@o^Tf  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Dk2Zl  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 4N3O<)C)@  
    T =40;                        % length of time:T*T0. m*i,|{UZ  
    dt = T/N;                     % time step &t!f dti  
    n = [-N/2:1:N/2-1]';          % Index RjrQDh|((  
    t = n.*dt;   $GhL-sqm  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. @$%.iQ7A;  
    w=2*pi*n./T; ;'[?H0Jw'  
    g1=-i*ww./2; %@ q2  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; .vi0DuD6  
    g3=-i*ww./2; fwUF5Y  
    P1=0; F/:%YR;  
    P2=0; yB{1&S5 C  
    P3=1; _c:th{*  
    P=0; ;/IX w>O(/  
    for m1=1:M1                 m?8o\|i,  
    p=0.032*m1;                %input amplitude X_Pbbx_j  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1  s%5XBI  
    s1=s10; CkV -L4Jq  
    s20=0.*s10;                %input in waveguide 2 `@u9 fx.  
    s30=0.*s10;                %input in waveguide 3 "W9z>ezp  
    s2=s20; * {p:C  
    s3=s30; [`bK {Dq2  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   I9#l2<DYlX  
    %energy in waveguide 1 :eevc7  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   q$ j  
    %energy in waveguide 2 Tn\{*A  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   OKu~Nb*  
    %energy in waveguide 3 k!6m'}v  
    for m3 = 1:1:M3                                    % Start space evolution i`iR7UmHeR  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS iVmy|ewd  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; qc3,/JO1  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ?T|0"|\"'  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 66_=bd(9  
       sca2 = fftshift(fft(s2)); I@#IXH?6  
       sca3 = fftshift(fft(s3)); X V)ctF4  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   [W3sveqj&  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); =fB"T+  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !>kg:xV  
       s3 = ifft(fftshift(sc3)); #2Iw%H2q&  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Jv]$@>#  
       s1 = ifft(fftshift(sc1)); #nZPnc:  
    end @s,kx.S  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); $ma@z0%8}  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); P1$D[aF9$  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); )%8st'  
       P1=[P1 p1/p10]; qHd7C3  
       P2=[P2 p2/p10]; S5UQ   
       P3=[P3 p3/p10]; +u&3pK>f  
       P=[P p*p]; giesof  
    end C!6D /S  
    figure(1) 3&+nV1  
    plot(P,P1, P,P2, P,P3); @zLyG#kHY  
    n5tsaU;  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~