切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9196阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 |eoid?=  
    k<w(i k1bi  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of qZ@0]"h  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of yTE%hHH]&[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3>zN/ f  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 QYXx:nIrg  
    He0=-AR8  
    %fid=fopen('e21.dat','w'); aI zv  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ZA~Z1Mro#"  
    M1 =3000;              % Total number of space steps <0|9Tn2O  
    J =100;                % Steps between output of space nM=e]qH  
    T =10;                  % length of time windows:T*T0 M"q[p  
    T0=0.1;                 % input pulse width f#%JSV"7  
    MN1=0;                 % initial value for the space output location HQ!Xj .y  
    dt = T/N;                      % time step J MX6yV  
    n = [-N/2:1:N/2-1]';           % Index t<uYM  
    t = n.*dt;   SEQ%'E5-'  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 jD) {I  
    u20=u10.*0.0;                  % input to waveguide 2 DG(7|`(aY  
    u1=u10; u2=u20;                 #Z=tJ  
    U1 = u1;   kI*(V [i  
    U2 = u2;                       % Compute initial condition; save it in U J2GcBzRH  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. <Y 4:'L6  
    w=2*pi*n./T; g*\/N,"z  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T h*0S$p<[1  
    L=4;                           % length of evoluation to compare with S. Trillo's paper `|1MlRM9  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 I4H`YOD%  
    for m1 = 1:1:M1                                    % Start space evolution I9$c F)zk  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS I^*'.z!4Q  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; C`oa3B,z  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform oC*ees g_  
       ca2 = fftshift(fft(u2)); %k f>&b,Mi  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~>G]_H]?  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   WV;=@v  
       u2 = ifft(fftshift(c2));                        % Return to physical space O(2cWQ  
       u1 = ifft(fftshift(c1)); TGT$ >/w >  
    if rem(m1,J) == 0                                 % Save output every J steps. lw8"'0  
        U1 = [U1 u1];                                  % put solutions in U array -y) ,Y |  
        U2=[U2 u2]; '6Qy/R  
        MN1=[MN1 m1]; RR1A65B  
        z1=dz*MN1';                                    % output location Hyk'c't_O  
      end ~+D*:7Y_  
    end h>S[^ -,  
    hg=abs(U1').*abs(U1');                             % for data write to excel &'|B =7  
    ha=[z1 hg];                                        % for data write to excel *#>F.#9  
    t1=[0 t']; HCA{pR`  
    hh=[t1' ha'];                                      % for data write to excel file !Gs} tiMH  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 1.@vS&Y7OE  
    figure(1) wyc D>hc  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn !KS F3sz  
    figure(2) "yb WDWu  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 4Tzd; P6_  
    }m]q}r  
    非线性超快脉冲耦合的数值方法的Matlab程序 `T*U]/zQ  
    @ $cUNvI  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   YZ#V#[j'^  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "vF MSY  
    r2*<\ax  
    4Wel[]  
    dLh6:Gh8_I  
    %  This Matlab script file solves the nonlinear Schrodinger equations `qpc*enf0  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ";3*?/uM  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear UgHf*m  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4|J[Jdj  
    hP?fMW$V  
    C=1;                           rp! LP#*  
    M1=120,                       % integer for amplitude s}x>J8hK  
    M3=5000;                      % integer for length of coupler bPD)D'Hs  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) a^nAZ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. JXQPT  
    T =40;                        % length of time:T*T0. )-P!Ae_.v  
    dt = T/N;                     % time step Bl.u=I:Y4  
    n = [-N/2:1:N/2-1]';          % Index U)jUq_LX  
    t = n.*dt;   *3{J#Q6fk3  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. +`en{$%%  
    w=2*pi*n./T; 0Vv9BL{  
    g1=-i*ww./2; ~2 }Pl)  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;  <dR,'  
    g3=-i*ww./2; y%BX]~  
    P1=0; g#^|oYuH6  
    P2=0; 6k0^x Q  
    P3=1; r((Tavn  
    P=0; 0A$SYF$O+[  
    for m1=1:M1                 B+VuUt{S  
    p=0.032*m1;                %input amplitude z MdC  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 SBKeb|H8  
    s1=s10; ?qHF}k|  
    s20=0.*s10;                %input in waveguide 2 TYS\95<  
    s30=0.*s10;                %input in waveguide 3 E:A!wS`"  
    s2=s20; cf8-]G?tK  
    s3=s30; s3t!<9[m  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ;_JH:}j  
    %energy in waveguide 1 W|c.l{A5Q  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   =G>(~+EA  
    %energy in waveguide 2 d+2daKi  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   `7Ug/R<  
    %energy in waveguide 3 Agy <j   
    for m3 = 1:1:M3                                    % Start space evolution L/r{xS  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS xxX/y2\  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; x'`"iZO.t  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; r2eQ{u{nX  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform a8uYs DS  
       sca2 = fftshift(fft(s2)); Bku' H  
       sca3 = fftshift(fft(s3)); u}jrfKd E  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   SE`l(-tL  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); X-Ycz 5?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); (!zM\sF  
       s3 = ifft(fftshift(sc3)); 9;f|EGwZ  
       s2 = ifft(fftshift(sc2));                       % Return to physical space A3UQJ  
       s1 = ifft(fftshift(sc1)); _vrWj<wyf  
    end 'Ji+c  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); cH"@d^"+q|  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); C ?7X"~ ~  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); }B)jq`a?|\  
       P1=[P1 p1/p10]; }p'8w\C$  
       P2=[P2 p2/p10]; &4kM8Qh  
       P3=[P3 p3/p10]; -J$g(sikt  
       P=[P p*p]; Eb@MfL  
    end #)74X% 4(  
    figure(1) gue(C(~.k_  
    plot(P,P1, P,P2, P,P3); +WF.wP?y  
    B=zMYi  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~