切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9174阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 S($Su7g%_  
    ZnW@YC#9  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 2;2}wM[  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Kibr ]w  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear d0'HDVd  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 LP];x3  
     ?K_ '@  
    %fid=fopen('e21.dat','w'); *\G)z|^yx  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) p{D4"Qn+P9  
    M1 =3000;              % Total number of space steps !bnyJA  
    J =100;                % Steps between output of space 1} %B%*N  
    T =10;                  % length of time windows:T*T0 aUU7{o_Z  
    T0=0.1;                 % input pulse width lIRlMLuG  
    MN1=0;                 % initial value for the space output location 0Ua%DyJ  
    dt = T/N;                      % time step ,%9df+5k  
    n = [-N/2:1:N/2-1]';           % Index K/=|8+IDL  
    t = n.*dt;   a<~77~"4wn  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ocz G|_  
    u20=u10.*0.0;                  % input to waveguide 2 "N?+VkZEv  
    u1=u10; u2=u20;                 %McE` 155  
    U1 = u1;   O@V%Cu  
    U2 = u2;                       % Compute initial condition; save it in U ml`8HXK0  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. dG7OqA:9  
    w=2*pi*n./T; 457\&  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 0Hxmm@X2  
    L=4;                           % length of evoluation to compare with S. Trillo's paper -G7TEq)  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 vw,rF`LjZ  
    for m1 = 1:1:M1                                    % Start space evolution |yEa5rd?W  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS T~0k"uTE  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }7E^ZZ]f  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform V w||!d  
       ca2 = fftshift(fft(u2)); @a:>$t  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation VHJM*&5  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   f y:,_#  
       u2 = ifft(fftshift(c2));                        % Return to physical space j)C,%Ol  
       u1 = ifft(fftshift(c1)); ,'xYlH3s  
    if rem(m1,J) == 0                                 % Save output every J steps. y*pUlts<  
        U1 = [U1 u1];                                  % put solutions in U array {!t7[Ctb  
        U2=[U2 u2]; x^4xq#Bb7  
        MN1=[MN1 m1]; *t[. =_v  
        z1=dz*MN1';                                    % output location D=m 'pL/pl  
      end FCi U  
    end J_x13EaV0  
    hg=abs(U1').*abs(U1');                             % for data write to excel 9l,a^@Y:  
    ha=[z1 hg];                                        % for data write to excel 3b'QLfU&#  
    t1=[0 t']; 1cS}J:0P  
    hh=[t1' ha'];                                      % for data write to excel file NS%WeAf  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format }by;F9&B  
    figure(1) 5[0 O'%$  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn h3LE>}6D  
    figure(2) $,+O9Et  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn r\qj!   
    V-<GT ?  
    非线性超快脉冲耦合的数值方法的Matlab程序 h$4Hw+Yxs]  
    Zjbc3 M5  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [<DZ*|+  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R" ;x vo*  
    P"B0_EuR<T  
    Ag{iq(X  
    3|.um_  
    %  This Matlab script file solves the nonlinear Schrodinger equations B2-V@06  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of yKYTi3_(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /"eey(X  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JSW^dw&  
    G:~k.1y[  
    C=1;                           =c/wplv*  
    M1=120,                       % integer for amplitude N[<\>Ps|u  
    M3=5000;                      % integer for length of coupler bGc~Wr|  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ma"3qGy  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. { ^cV lC_  
    T =40;                        % length of time:T*T0. >-H {Z{VDd  
    dt = T/N;                     % time step S H!  
    n = [-N/2:1:N/2-1]';          % Index 0NS<?p~_S  
    t = n.*dt;   G6T_O  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. l c+g&f  
    w=2*pi*n./T; b )B? F  
    g1=-i*ww./2; eeyHy"@  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; !o:f$6EA~C  
    g3=-i*ww./2; {phNds%  
    P1=0; 1v71rf&w  
    P2=0; vQ;Ex  
    P3=1; 9WyAb3d'  
    P=0; :]\([Q+a  
    for m1=1:M1                 |Y?H A&  
    p=0.032*m1;                %input amplitude d3D] k,  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 9I}-[|`u  
    s1=s10; M7pOLP_1jB  
    s20=0.*s10;                %input in waveguide 2 u6AA4(  
    s30=0.*s10;                %input in waveguide 3 $<}$DH_Y  
    s2=s20; \WxukYH  
    s3=s30; vEJWFoeEFm  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ZrsBm_Rx  
    %energy in waveguide 1 a{L d  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   I}1NB3>^  
    %energy in waveguide 2 #qK:J;Sn3  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   G3Z)Z) N  
    %energy in waveguide 3 &5yV xL:  
    for m3 = 1:1:M3                                    % Start space evolution KV(Q;~8"X  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS SLa>7`<Q  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; y*qVc E  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 17%Mw@+  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform nAv#?1cjz  
       sca2 = fftshift(fft(s2)); \W~ N  
       sca3 = fftshift(fft(s3)); Z&1\{PG3*  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   f4fvrL  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); h2G$@8t}I  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 32&;`]C  
       s3 = ifft(fftshift(sc3)); ]n6#VTz*  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Fld=5B^}  
       s1 = ifft(fftshift(sc1)); e"|efE  
    end hgPa6Kd  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); +S o4rA*9  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); h`^jyoF"(  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); b,7k)ND1F  
       P1=[P1 p1/p10]; b3=rG(0f  
       P2=[P2 p2/p10]; F3On?x)  
       P3=[P3 p3/p10]; l9{hq/V  
       P=[P p*p]; -|$@-fY;  
    end v[1aW v:  
    figure(1) H\ F :95  
    plot(P,P1, P,P2, P,P3); Cd#(X@n  
    wW>A_{Y  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~