计算脉冲在非线性耦合器中演化的Matlab 程序 jj,CBNo( `e`}dgf0S| % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Wtwo1pp % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
`w6*(t:T % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
X!b+Dk % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
t)kc`3i<A K N Y %fid=fopen('e21.dat','w');
{4n N = 128; % Number of Fourier modes (Time domain sampling points)
zAW+!C. M1 =3000; % Total number of space steps
C6?({
QB@ J =100; % Steps between output of space
m/e*P*\= T =10; % length of time windows:T*T0
AZ9;6Df T0=0.1; % input pulse width
QkFB\v MN1=0; % initial value for the space output location
0&~JC>S dt = T/N; % time step
~xa yGk n = [-N/2:1:N/2-1]'; % Index
7z2Q!0Sz t = n.*dt;
'^n,)oA/G u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
&ir|2"HV u20=u10.*0.0; % input to waveguide 2
~GLWhe-
u1=u10; u2=u20;
w4Uo-zr@ U1 = u1;
I!?)}d U2 = u2; % Compute initial condition; save it in U
n#l~B@ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
HJi
FlL3 w=2*pi*n./T;
Z<jC,r g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
Y|l&mK? L=4; % length of evoluation to compare with S. Trillo's paper
<.Dg3RH dz=L/M1; % space step, make sure nonlinear<0.05
?NVX# t' for m1 = 1:1:M1 % Start space evolution
R?3N><oh* u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
<Fi*wV u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
E5$Fhc ca1 = fftshift(fft(u1)); % Take Fourier transform
A-eRL` ca2 = fftshift(fft(u2));
{ v [ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
N79?s)l:K c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
H %Dcp#k u2 = ifft(fftshift(c2)); % Return to physical space
b}3t8?wG& u1 = ifft(fftshift(c1));
z',f'3+ if rem(m1,J) == 0 % Save output every J steps.
XxY wBc'pc U1 = [U1 u1]; % put solutions in U array
U]]ON6Y&F U2=[U2 u2];
o(gV;>I MN1=[MN1 m1];
!DM GAt\ z1=dz*MN1'; % output location
jK]An;l{Z end
xV0:K= end
M9QYYo@ hg=abs(U1').*abs(U1'); % for data write to excel
3s0I<cL ha=[z1 hg]; % for data write to excel
#Q1
|] t1=[0 t'];
<^w4+5sT/ hh=[t1' ha']; % for data write to excel file
aH&Efz^ %dlmwrite('aa',hh,'\t'); % save data in the excel format
;0 4< 9i figure(1)
[#SiwhF| waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
m++=FsiX= figure(2)
>|pN4FS waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
hRNnj 6u9? 非线性超快脉冲耦合的数值方法的Matlab程序 (]nX:t Y6`^E 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
P9o=G=i Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
(@Kc(>(: Y ^&lkh@Y1q 6IJH%qUx' z?t75#u9. % This Matlab script file solves the nonlinear Schrodinger equations
GP(ze-Yp % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
Yy{(XBJ~%t % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
[ <j4w % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
fCbd]X n}dLfg* C=1;
Db*&'32W M1=120, % integer for amplitude
6@VgLa, M3=5000; % integer for length of coupler
e0M'\'J N = 512; % Number of Fourier modes (Time domain sampling points)
y
q!{\@- dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
!-m 'diE T =40; % length of time:T*T0.
25;(`Td5 dt = T/N; % time step
FY)US> n = [-N/2:1:N/2-1]'; % Index
N<O<wtXIj t = n.*dt;
cEIs9; ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
k+zskfo w=2*pi*n./T;
X2E=2tXl`7 g1=-i*ww./2;
K@vU_x0Sl g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
2%/+r
g3=-i*ww./2;
f#\Nz>tOhE P1=0;
YH&q5W,KX P2=0;
^vJy< P3=1;
s &f\gp1 P=0;
BZ,{gy7g7X for m1=1:M1
:_h#A}8Xd p=0.032*m1; %input amplitude
2AW*PDncxP s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
? ph>:M s1=s10;
mRy0zN>? s20=0.*s10; %input in waveguide 2
xKkXr-yb`f s30=0.*s10; %input in waveguide 3
F#~*j s2=s20;
M }$Td_g s3=s30;
iikMz|:7U p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
?aguAqG$ %energy in waveguide 1
RWFvf p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
"-P z2QJY %energy in waveguide 2
_:%i6c*" p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
('2Z&5 %energy in waveguide 3
DUwms"I,% for m3 = 1:1:M3 % Start space evolution
>2ha6A[ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
KV! ( s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
pwRCfR)" X s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Bh&dV%' sca1 = fftshift(fft(s1)); % Take Fourier transform
VI-6t"l sca2 = fftshift(fft(s2));
nG-DtG^z sca3 = fftshift(fft(s3));
k\r^GB
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
C#B|^A_ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
F##xVmR~ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
V{fG~19
s3 = ifft(fftshift(sc3));
Hzz v 6k s2 = ifft(fftshift(sc2)); % Return to physical space
x.sC015Id s1 = ifft(fftshift(sc1));
j9X|c7| end
s{*bFA Z1F p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
L4ZB0PmN' p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
$&&+2?cx0 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
0lOR.}]q P1=[P1 p1/p10];
`fE'$2 P2=[P2 p2/p10];
{q^UWv?1 P3=[P3 p3/p10];
dK4w$~j{k P=[P p*p];
|D_4 iFC end
'hFL`F* figure(1)
`lrNH]B plot(P,P1, P,P2, P,P3);
h^,av^lg^ HBZ6 Pj 转自:
http://blog.163.com/opto_wang/