切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8573阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 6xvyhg#B  
    x)5#*Q  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Q3'\Vj,S&  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of `pOiv&>  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S3A OT  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ="JLUq*]s  
    ldO6W7 G|h  
    %fid=fopen('e21.dat','w'); ~;9B\fE`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) H<Ed"-n$I<  
    M1 =3000;              % Total number of space steps u#ag|b/C:  
    J =100;                % Steps between output of space f@]4udc e  
    T =10;                  % length of time windows:T*T0 $x)C_WZj?  
    T0=0.1;                 % input pulse width -[^aWNqyJ  
    MN1=0;                 % initial value for the space output location uF/l,[0v  
    dt = T/N;                      % time step E0o=  
    n = [-N/2:1:N/2-1]';           % Index L?23Av0W  
    t = n.*dt;   %n SLe~b  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 YP5V~-O/  
    u20=u10.*0.0;                  % input to waveguide 2 ~L<q9B( @  
    u1=u10; u2=u20;                 ^~E?7{BL  
    U1 = u1;   \,+act"v  
    U2 = u2;                       % Compute initial condition; save it in U 4U( W~O  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. h}nceH0s3d  
    w=2*pi*n./T; 8F9sKRq|rO  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T PVC\&YF  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Z ^zUb  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 * _)xlpy  
    for m1 = 1:1:M1                                    % Start space evolution ou0(C `  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS F]:@?}8R  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; {R5Q{]dK3  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform mQ*:?\@  
       ca2 = fftshift(fft(u2)); o4^rE<vJ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation FZ)_WaqGf  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   / q*n*j  
       u2 = ifft(fftshift(c2));                        % Return to physical space Y &6vTU  
       u1 = ifft(fftshift(c1)); tF}Vs}  
    if rem(m1,J) == 0                                 % Save output every J steps. B{hP#bYK  
        U1 = [U1 u1];                                  % put solutions in U array !vH7vq  
        U2=[U2 u2]; X~(%Y#6  
        MN1=[MN1 m1]; ^rO3B?_  
        z1=dz*MN1';                                    % output location f| P%  
      end <x e=G]v  
    end T:p,!?kc7  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2K0HN  
    ha=[z1 hg];                                        % for data write to excel :FcYjw  
    t1=[0 t']; '85@U`e.  
    hh=[t1' ha'];                                      % for data write to excel file = Bz yI  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _BHR ?I[w  
    figure(1) Ou/JN+2A  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~M7 J{hK  
    figure(2) + KGZk?%  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn E2+x?Sc+  
    ~<!b}Hv  
    非线性超快脉冲耦合的数值方法的Matlab程序 ,1J+3ugp&  
    ;<i`6e  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   *.nC'$-2r  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y??8P  
    nK=-SQ  
    sq1Z;l31"  
    zX *+J"x  
    %  This Matlab script file solves the nonlinear Schrodinger equations XaOq&7  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of g b:)t }|  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear cyu)YxT  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .hd<,\nW  
    RKB--$ibj  
    C=1;                           $Pv;>fHu  
    M1=120,                       % integer for amplitude j{PuZ^v1  
    M3=5000;                      % integer for length of coupler & c a-  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ?|Y/&/;%I  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. K.'II9-{  
    T =40;                        % length of time:T*T0. J}a 8N.S  
    dt = T/N;                     % time step \@6P A  
    n = [-N/2:1:N/2-1]';          % Index I`"B<=zi  
    t = n.*dt;   2O}UVp>  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. rN* , U\q  
    w=2*pi*n./T; ?+EN.P[;3  
    g1=-i*ww./2; PO9<g% qTf  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 5[NF  
    g3=-i*ww./2; `uK_}Vy_  
    P1=0; (9R;a np  
    P2=0; qC<!!473?  
    P3=1; a:nMW'!  
    P=0; Hp`Mp)1s  
    for m1=1:M1                 DY]\@<ez  
    p=0.032*m1;                %input amplitude :{2exu  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 (KQAKEhD!  
    s1=s10; t<'-?B2g  
    s20=0.*s10;                %input in waveguide 2 m<]b]FQ  
    s30=0.*s10;                %input in waveguide 3 aDr46TB`J  
    s2=s20; j n[%@zD}  
    s3=s30; [;O 6)W  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   7/^`y')  
    %energy in waveguide 1 /Hxz@=LC1  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   GMD>Ih.k:9  
    %energy in waveguide 2 zyey5Z:7  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   D4jf%7X!Lu  
    %energy in waveguide 3 NY]`1yy  
    for m3 = 1:1:M3                                    % Start space evolution T^'NC8v  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 5G-)>  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; GWP;; x%  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; -8F~Tffx  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform OG}auM4  
       sca2 = fftshift(fft(s2)); X[pk9mha  
       sca3 = fftshift(fft(s3)); ){=2td$=$  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Nc4e,>$]&  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); z>_jC+  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); $'M:H_T  
       s3 = ifft(fftshift(sc3)); ("HT0 &#a  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {-X8MisI  
       s1 = ifft(fftshift(sc1)); e*[M*u  
    end 8p3pw=p  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 3PS( 1  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~c8Z9[QW  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Rx e sK  
       P1=[P1 p1/p10]; i7^_y3dG  
       P2=[P2 p2/p10]; ?V|t7^+:  
       P3=[P3 p3/p10]; j\t"4=,n  
       P=[P p*p]; S].=gR0:  
    end pfCNFF*"  
    figure(1) dL9QYIfP  
    plot(P,P1, P,P2, P,P3); gwFHp .mE  
    d9/YW#tm  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~