切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9264阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 p mv6m  
    r6 k/QZT  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of _v~c3y).  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Q-A:0F&{t  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear xJCMxt2Y  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W 7xh  
    R _#x  
    %fid=fopen('e21.dat','w'); .3xpDVW^e  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) x`7Ch3`4}  
    M1 =3000;              % Total number of space steps 3y&N}'R(F  
    J =100;                % Steps between output of space X`-7: !+  
    T =10;                  % length of time windows:T*T0 R]dN-'U  
    T0=0.1;                 % input pulse width Ck`-<)uN  
    MN1=0;                 % initial value for the space output location w'Y(doY ,  
    dt = T/N;                      % time step K1`Z}k_p.  
    n = [-N/2:1:N/2-1]';           % Index \X3Q,\H @  
    t = n.*dt;   U;SReWqU  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 P X9GiJN"  
    u20=u10.*0.0;                  % input to waveguide 2 pe}mA}9U  
    u1=u10; u2=u20;                 UA>3,|gV1  
    U1 = u1;   ibzcO,c  
    U2 = u2;                       % Compute initial condition; save it in U b/#SkxW#S  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _*&I[%I5  
    w=2*pi*n./T; p\;\hHai  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T #}M\ J0QG  
    L=4;                           % length of evoluation to compare with S. Trillo's paper }%8 :8_Ke  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 u{| Q[hf[  
    for m1 = 1:1:M1                                    % Start space evolution F~bDA~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS pm2-F]  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; HgGwV;W  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ? <F=*eS  
       ca2 = fftshift(fft(u2)); I{bDa'rX  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $,Eb(j  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ^$FNu~|K  
       u2 = ifft(fftshift(c2));                        % Return to physical space 0H$6_YX4 A  
       u1 = ifft(fftshift(c1)); 7Shau%2C  
    if rem(m1,J) == 0                                 % Save output every J steps. PpXzWWU":  
        U1 = [U1 u1];                                  % put solutions in U array %fbV\@jDCX  
        U2=[U2 u2]; `!Z0; qk  
        MN1=[MN1 m1]; P}`|8b1W  
        z1=dz*MN1';                                    % output location `i!BXOOV{  
      end /D d.C<F  
    end #}PQ !gZ  
    hg=abs(U1').*abs(U1');                             % for data write to excel A&?8 rc  
    ha=[z1 hg];                                        % for data write to excel 5taR[ukM  
    t1=[0 t']; R"wBDWs  
    hh=[t1' ha'];                                      % for data write to excel file 0sMNp  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format bA_/ 6r)u  
    figure(1) kC,=E9)O  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn J# >)+  
    figure(2) O'Mo/ u1-  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn %fT%,( w}t  
    jo-2D[Q{  
    非线性超快脉冲耦合的数值方法的Matlab程序 !Y8+ Z&^2  
    T }}T`Ce  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   V jdu9Ez  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ._E 6?  
    | 2Vhj<6  
    3 as~yF0  
    m&P B5s\=  
    %  This Matlab script file solves the nonlinear Schrodinger equations 'iM#iA8  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of %nS(>X<B  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear JpRn)e'Z  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m/e*P*\ =  
    {g C?kp  
    C=1;                           ybC0Ee@  
    M1=120,                       % integer for amplitude ~|lEi1|  
    M3=5000;                      % integer for length of coupler <~ Dq8If  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) A_!N,< -  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. &lCOhP#  
    T =40;                        % length of time:T*T0. >]L\Bw  
    dt = T/N;                     % time step I[6ft_*  
    n = [-N/2:1:N/2-1]';          % Index A'tv[T d8,  
    t = n.*dt;   } =p e;l  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. UVd ^tg  
    w=2*pi*n./T; -k?K|w*X  
    g1=-i*ww./2; SHc?C&^S  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 4<j7F4  
    g3=-i*ww./2; D03QisH=  
    P1=0; B:>>D/O  
    P2=0; s||c#+j"8  
    P3=1; mz2v2ma  
    P=0; O:]e4r,'  
    for m1=1:M1                 yMz dM&a!*  
    p=0.032*m1;                %input amplitude [t6Y,yo&h4  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 oO3X>y{gN  
    s1=s10; Ueu~803~  
    s20=0.*s10;                %input in waveguide 2 qOTo p-  
    s30=0.*s10;                %input in waveguide 3 !gm@QO cF  
    s2=s20; i*]$_\yl"  
    s3=s30; DO 0  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   /u&7!>,  
    %energy in waveguide 1 hz+O.k],?  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   vn+~P9SHQ  
    %energy in waveguide 2 [ KDNKK  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   }*P?KV (  
    %energy in waveguide 3 wpI"kk_@@  
    for m3 = 1:1:M3                                    % Start space evolution YfstE3BV  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS m;JB=MZ=m  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; UL.YDU)  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; JA$RY  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform qoP /` Y6  
       sca2 = fftshift(fft(s2)); 5^97#;Q;J"  
       sca3 = fftshift(fft(s3)); kxLWk%V  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   |\U5m6q  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); !{?<(6;t  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); l[6lXR&|  
       s3 = ifft(fftshift(sc3)); Sc?q}tt^C  
       s2 = ifft(fftshift(sc2));                       % Return to physical space &u4;A[- R  
       s1 = ifft(fftshift(sc1)); >rYkVlv  
    end ;LC?3.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); U;=1v:~d  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); _7;D0l  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Eq=j+ch7  
       P1=[P1 p1/p10]; Ie[DTy  
       P2=[P2 p2/p10]; z+K1[1SM  
       P3=[P3 p3/p10]; /?1^&a  
       P=[P p*p]; _/J`v`}G  
    end Ltk-1zhI  
    figure(1) 6@;sOiN+  
    plot(P,P1, P,P2, P,P3); vO)]~AiB  
    ! mZWd'  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~