切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8751阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 faJ>,^V#  
    #ivN-WKCl  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of oD=6D9c?  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ~l=Jx*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >FRJvZ6  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z%uDz3I\Q"  
    ~=pAy>oV  
    %fid=fopen('e21.dat','w'); g\n0v~T+  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) s,2gd'  
    M1 =3000;              % Total number of space steps xr<.r4  
    J =100;                % Steps between output of space df$VC  
    T =10;                  % length of time windows:T*T0 jRv j:H9  
    T0=0.1;                 % input pulse width [Tq\K ^!^  
    MN1=0;                 % initial value for the space output location ;%V%6:5  
    dt = T/N;                      % time step +l,6}tV9  
    n = [-N/2:1:N/2-1]';           % Index UFED*al#  
    t = n.*dt;   fjh0Z i45  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ]mW)T0_  
    u20=u10.*0.0;                  % input to waveguide 2 ?R ;K`f9<  
    u1=u10; u2=u20;                 wB0zFlP  
    U1 = u1;   ^:yg,cS|Be  
    U2 = u2;                       % Compute initial condition; save it in U NIQX?|;b{  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Gw;[maM!%`  
    w=2*pi*n./T; /h!Y/\kI  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Owa]ax5  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 4GY:N6qe '  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Yiq8 >|  
    for m1 = 1:1:M1                                    % Start space evolution G\S>H  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 6a=Y_fma  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; %](H?'H  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ~D9VjXfL)  
       ca2 = fftshift(fft(u2)); t#p*{S 3u  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Yom,{;Bv  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   mO UIGlv  
       u2 = ifft(fftshift(c2));                        % Return to physical space >;;tX3(  
       u1 = ifft(fftshift(c1)); 8#S}.|"?F  
    if rem(m1,J) == 0                                 % Save output every J steps. qC%[J:RwF  
        U1 = [U1 u1];                                  % put solutions in U array P 3CzX48^  
        U2=[U2 u2]; ``:AF:  
        MN1=[MN1 m1]; ?xTh}Sky  
        z1=dz*MN1';                                    % output location R&Oqm hT!  
      end l5m5H,`  
    end --~m{qmy  
    hg=abs(U1').*abs(U1');                             % for data write to excel zP|y3`. 52  
    ha=[z1 hg];                                        % for data write to excel t!g9,xG<X  
    t1=[0 t']; Zy -&g:  
    hh=[t1' ha'];                                      % for data write to excel file ^lP_{ c  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format wM^_pah#Y5  
    figure(1) &y}nd 7o  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn :jFKTG  
    figure(2) 5G\CT&cQR  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn &dino  
    #()u=)  
    非线性超快脉冲耦合的数值方法的Matlab程序 ma\UJz  
    UI*^$7z1 +  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   WB=pRC@  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 sp0j2<$a  
    Z(8'ki  
    4<['%7U_[  
    fCMH<}w  
    %  This Matlab script file solves the nonlinear Schrodinger equations -bamNw>|  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of buXPeIo^VM  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear e$E~@{[1)  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 T/_JXK>W  
    @[qGoai  
    C=1;                           K$H>/*&'~  
    M1=120,                       % integer for amplitude _/W[=c   
    M3=5000;                      % integer for length of coupler lD8&*5tDmP  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) nC3U%*l  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. vu%:0p` K  
    T =40;                        % length of time:T*T0. [\ M=w7  
    dt = T/N;                     % time step .Z!!x  
    n = [-N/2:1:N/2-1]';          % Index r 3@Q(Rb  
    t = n.*dt;   j;tT SNF  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. QL>G-Rp  
    w=2*pi*n./T; G36}4  
    g1=-i*ww./2; 7-oH >OF^  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ZwLD7j*)  
    g3=-i*ww./2; (O N \-*  
    P1=0; Dj<]eG]  
    P2=0; >+[uV ^2[  
    P3=1; Ty"OJ  
    P=0; !9!kb  
    for m1=1:M1                 Y2 &N#~l*  
    p=0.032*m1;                %input amplitude 959i2z  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 1@nGD<,.  
    s1=s10; ~HwY?[}!m  
    s20=0.*s10;                %input in waveguide 2 w$9aTL7  
    s30=0.*s10;                %input in waveguide 3 oRM,_  
    s2=s20; LF'M!C9|  
    s3=s30; fq){?hk~O  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   jb' hqz  
    %energy in waveguide 1 y(K?mtQ   
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   .(Gq9m[~8H  
    %energy in waveguide 2 d9XX^nY.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   y)W.xR  
    %energy in waveguide 3 gY], (*v  
    for m3 = 1:1:M3                                    % Start space evolution !*:Zcg?7n  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS kU8V,5  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ;SzOa7  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 27-<q5q  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform  H}NW?  
       sca2 = fftshift(fft(s2)); rsP3?.E  
       sca3 = fftshift(fft(s3)); "hU'o&  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   eH2.,wY1  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )* @Oz  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); EO'[AU%~  
       s3 = ifft(fftshift(sc3)); V8>%$O sw  
       s2 = ifft(fftshift(sc2));                       % Return to physical space >Au]S `  
       s1 = ifft(fftshift(sc1)); '#SacJ\L7  
    end ]@op  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); .`!|^h%0  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); |X9YVZC  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 4WnB{9 i`I  
       P1=[P1 p1/p10]; "D7*en  
       P2=[P2 p2/p10]; v7O&9a;  
       P3=[P3 p3/p10]; uG\ +`[-{0  
       P=[P p*p]; "v-\nAu  
    end :K&   
    figure(1) w$H=GF?"  
    plot(P,P1, P,P2, P,P3); <CL0@?*i9  
    ]Au78Yom  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~