切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9128阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 j0j!oj)7I  
    xjSzQ| k-  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ~ g-(  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]Y-Y.&b7t  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear & Zn`2%  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Alo L+eN@  
    alB'l  
    %fid=fopen('e21.dat','w'); e(N},s:_  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) `N&*+!O%  
    M1 =3000;              % Total number of space steps wdAKU+tM  
    J =100;                % Steps between output of space (w{T[~6  
    T =10;                  % length of time windows:T*T0 E .28G2&  
    T0=0.1;                 % input pulse width ,Tu.cg  
    MN1=0;                 % initial value for the space output location ;c>"gW8  
    dt = T/N;                      % time step ks\q^ten  
    n = [-N/2:1:N/2-1]';           % Index 3y+~l H :  
    t = n.*dt;   x=IZ0@p  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 tjwn FqI  
    u20=u10.*0.0;                  % input to waveguide 2 ?wv^X`Q*~  
    u1=u10; u2=u20;                 wV iTMlq  
    U1 = u1;   z HvE_ -  
    U2 = u2;                       % Compute initial condition; save it in U <ch}]-_  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. *oeXmY  
    w=2*pi*n./T; t0jE\6r  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T LT Pr8^  
    L=4;                           % length of evoluation to compare with S. Trillo's paper m[^ )Q9o}  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Zs{7km  
    for m1 = 1:1:M1                                    % Start space evolution BC/5bA  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Il9xNVos#  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; FZn1$_Svr  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform &6C]| 13;  
       ca2 = fftshift(fft(u2)); vPGUE`!D+  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation >zDQt7+g;  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (oR~%2K  
       u2 = ifft(fftshift(c2));                        % Return to physical space OdZ/\_Z  
       u1 = ifft(fftshift(c1)); c+E\e]{  
    if rem(m1,J) == 0                                 % Save output every J steps. YPGzI]\  
        U1 = [U1 u1];                                  % put solutions in U array l?2  
        U2=[U2 u2]; QNINn>2  
        MN1=[MN1 m1]; P8}IDQ9  
        z1=dz*MN1';                                    % output location dQ7iieT  
      end 2oEuqHL  
    end K}cA%Y  
    hg=abs(U1').*abs(U1');                             % for data write to excel $u.rO7)  
    ha=[z1 hg];                                        % for data write to excel .%{B=_7  
    t1=[0 t']; [ i, [^  
    hh=[t1' ha'];                                      % for data write to excel file Ahl&2f\  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 3o[(pfcU  
    figure(1) R[v0T/  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn =oIt.`rf  
    figure(2) =DfI^$Lr:  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn MKvmzLh$)  
    {q`8+$Z;  
    非线性超快脉冲耦合的数值方法的Matlab程序 bR) P-9rs  
    #7Q9^rG  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   2,q*8=?{6P  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2F`#df  
    AC(qx:/6  
    D{Nd2G  
    Be]z @E1x  
    %  This Matlab script file solves the nonlinear Schrodinger equations ;$6L_C4B  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of }dzVwP=  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w-ald?`  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .tLRY  
    NZv8#  
    C=1;                           A r~/KRK  
    M1=120,                       % integer for amplitude P$Vh{]4i{  
    M3=5000;                      % integer for length of coupler APF`b  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) y>0 @.  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. DvQV_D  
    T =40;                        % length of time:T*T0. MYvz%7  
    dt = T/N;                     % time step ^i#0aq2}  
    n = [-N/2:1:N/2-1]';          % Index /klo),|&  
    t = n.*dt;   zA6C{L G3  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 0ZDm[#7z  
    w=2*pi*n./T; 0J'Cx&Rg  
    g1=-i*ww./2; kVM*[<k  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9&=%shOc+x  
    g3=-i*ww./2; g]HWaFjc5  
    P1=0; USN'-Ah  
    P2=0; \mGb|aF8  
    P3=1; .wd7^wI^S  
    P=0; ty~Sf-Pri  
    for m1=1:M1                 _ps4-<ugC  
    p=0.032*m1;                %input amplitude ";(m,i f-  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 A\rY~$Vr  
    s1=s10; flqr["czwK  
    s20=0.*s10;                %input in waveguide 2 V.u^;gr3  
    s30=0.*s10;                %input in waveguide 3 89D`!`Ah]  
    s2=s20; !gLJBp  
    s3=s30; Q+K]:c  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ,e1c,}  
    %energy in waveguide 1 P;25 F  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   hr.mzQd  
    %energy in waveguide 2 I:=!,4S;  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   p%>!1_'(  
    %energy in waveguide 3 "~=}&  
    for m3 = 1:1:M3                                    % Start space evolution U= n  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS  8q9 ^  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; cp8w _TPU  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /rD9)  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 4%nK0FAj  
       sca2 = fftshift(fft(s2)); 7YTO{E6]d\  
       sca3 = fftshift(fft(s3)); E5P.x^  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   t"%~r3{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); -M]/Xv]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); jzDPn<WQ  
       s3 = ifft(fftshift(sc3)); !?i9fYu  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ~8k`~t!  
       s1 = ifft(fftshift(sc1)); 5ip ZdQ^  
    end 7 8xiT  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); mL}Wan  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ',FVT4OMw  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); P!9-!+F"  
       P1=[P1 p1/p10]; `ZC -lAY  
       P2=[P2 p2/p10]; e jk?If 07  
       P3=[P3 p3/p10]; C;ha2UV0H  
       P=[P p*p]; }o GMF~  
    end p |;#frj  
    figure(1) p,8:(|(  
    plot(P,P1, P,P2, P,P3); mrE> o !  
    i0x[w>\-  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~