切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9272阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Hp fTuydU  
    ~1{~iB2G  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of lo >:S1  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of y+VR D  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @qsOWx`l$  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  & *&  
    _..5G7%#%  
    %fid=fopen('e21.dat','w'); `,wX&@sN  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) l)0yv2[h  
    M1 =3000;              % Total number of space steps {O[ !*+O  
    J =100;                % Steps between output of space fli7Ow?M~  
    T =10;                  % length of time windows:T*T0 t2%gS" [  
    T0=0.1;                 % input pulse width kZ 9n@($B  
    MN1=0;                 % initial value for the space output location 5YiBw|Z7 "  
    dt = T/N;                      % time step W!Rr_'yFe)  
    n = [-N/2:1:N/2-1]';           % Index 9**u\H)P6  
    t = n.*dt;   vf_pEkx*wD  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ]JHY(H2|  
    u20=u10.*0.0;                  % input to waveguide 2 xWty2/!h  
    u1=u10; u2=u20;                 /^Lo@672  
    U1 = u1;   xJ|Z]m=d   
    U2 = u2;                       % Compute initial condition; save it in U a% 82I::t  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. M$LzV}k  
    w=2*pi*n./T; IRDD   
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T nHF  
    L=4;                           % length of evoluation to compare with S. Trillo's paper gq?~*4H  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 }Qvoms<k  
    for m1 = 1:1:M1                                    % Start space evolution ; >>/}Jw\  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS x6*.zo5e  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; s!BZrVM%I`  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform < 'qtqUL\  
       ca2 = fftshift(fft(u2)); V-9z{  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation y/A<eHLy  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   QmB,~x{j>  
       u2 = ifft(fftshift(c2));                        % Return to physical space C}mWX7<Z.  
       u1 = ifft(fftshift(c1)); 9!6yo  
    if rem(m1,J) == 0                                 % Save output every J steps. K,GX5c5  
        U1 = [U1 u1];                                  % put solutions in U array b(gcnSzM2  
        U2=[U2 u2]; kPZ1OSX  
        MN1=[MN1 m1]; s=|&NlO$  
        z1=dz*MN1';                                    % output location \~q cYp  
      end i(>v~T,(  
    end ^-7{{/  
    hg=abs(U1').*abs(U1');                             % for data write to excel l{x?i00tAS  
    ha=[z1 hg];                                        % for data write to excel fYv{M;  
    t1=[0 t']; ! J@pox-t  
    hh=[t1' ha'];                                      % for data write to excel file pDx}~IB  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format /-)|dP  
    figure(1) kOuQR$9s  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn cYEe`?*  
    figure(2) 6<A3H$3b  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn _`Sz}Yk  
    h?:Y\DlU'  
    非线性超快脉冲耦合的数值方法的Matlab程序 0=J69Yd  
    ) N"gW*  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   TS<uBX  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cB[.ET$  
    0#KB.2AP  
    EMejvPnZO  
    #[#dc]D  
    %  This Matlab script file solves the nonlinear Schrodinger equations >taZw '  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of yo0?QRT  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear CSooJ1Ep~'  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 RsDI7v  
    -0doL ^A  
    C=1;                           SB[,}h<u1  
    M1=120,                       % integer for amplitude WH$ Ls('  
    M3=5000;                      % integer for length of coupler B1Iq:5nmoS  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) t`mLZ <X  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $rC`)"t  
    T =40;                        % length of time:T*T0. 8Lpy`He  
    dt = T/N;                     % time step ZvO:!u0+"  
    n = [-N/2:1:N/2-1]';          % Index 9?W38EF  
    t = n.*dt;   .*g;2.-qv&  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. yMa5?]J  
    w=2*pi*n./T; <cz~q=%v2&  
    g1=-i*ww./2; G:rM_q9\u  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~dwl7Qc  
    g3=-i*ww./2; m"vV=6m|\  
    P1=0; *WgP+"h  
    P2=0; _n{6/  
    P3=1; JhDjY8?86  
    P=0; Z@8amT;Y  
    for m1=1:M1                 qO9_ e  
    p=0.032*m1;                %input amplitude F<w/@ .&m  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -}juj;IVv  
    s1=s10; {w^flizY  
    s20=0.*s10;                %input in waveguide 2 [P{Xg:0  
    s30=0.*s10;                %input in waveguide 3 \9/n~/{  
    s2=s20; es(vWf'  
    s3=s30; +T^m  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   &/, BFx"  
    %energy in waveguide 1 aV(*BE/@F  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   q#Qr@Jf  
    %energy in waveguide 2 }%R6Su]y  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   CsR~qQ 5  
    %energy in waveguide 3 uj/le0  
    for m3 = 1:1:M3                                    % Start space evolution ]3QQ"HLcp  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 1^Zx-p3J  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 1ck2Gxn  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 6v1#i  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 5#f&WL*U@  
       sca2 = fftshift(fft(s2)); \aUbBa%!  
       sca3 = fftshift(fft(s3)); }u+R,@l/  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ]@?3,N  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); >k\*NW  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); km<~H w>Z  
       s3 = ifft(fftshift(sc3)); xHr  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ]-fZeyY$  
       s1 = ifft(fftshift(sc1)); xG}eiUbM`  
    end cdIy[ 1  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); !P92e1  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); u%[*;@;9+  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); T)Nis~  
       P1=[P1 p1/p10]; JrL/LGY  
       P2=[P2 p2/p10]; H[Pb Wy:  
       P3=[P3 p3/p10]; "a"[B'  
       P=[P p*p]; ;LrKXp  
    end nQ(#'9  
    figure(1) dF.T6b  
    plot(P,P1, P,P2, P,P3); VBCj.dw  
    4GHIRH C%[  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~