切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9051阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #/& q  
    YQfZiz}Fv  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of RN cI]oJ  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of DI2S %N l  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear A61-AwvF8-  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qqO10~Xc  
    v]d?6g  
    %fid=fopen('e21.dat','w'); B<|q{D$N/  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) f6/\JVi)-  
    M1 =3000;              % Total number of space steps N?`GZ+5  
    J =100;                % Steps between output of space u:{. Hn`  
    T =10;                  % length of time windows:T*T0 NZi'eZ{^`  
    T0=0.1;                 % input pulse width 5BGv^Qb_2  
    MN1=0;                 % initial value for the space output location [\ w>{  
    dt = T/N;                      % time step +wPvQKVfI  
    n = [-N/2:1:N/2-1]';           % Index ej??j<]  
    t = n.*dt;   U 8 .0L  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 lzQ&)7`  
    u20=u10.*0.0;                  % input to waveguide 2 @N:3`[oB  
    u1=u10; u2=u20;                 QKL]O*  
    U1 = u1;   pqNoL* H  
    U2 = u2;                       % Compute initial condition; save it in U ua.6?W)  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. +$pO  
    w=2*pi*n./T; E!(`275s  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ' m# Ymp  
    L=4;                           % length of evoluation to compare with S. Trillo's paper `zvT5=*-#  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @?($j)9}  
    for m1 = 1:1:M1                                    % Start space evolution `(w kqa  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 0^-b}  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; f|HgLFx  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform OkO@BWL  
       ca2 = fftshift(fft(u2)); 36D,el In  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "}azC|:5  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   EzY scX.[  
       u2 = ifft(fftshift(c2));                        % Return to physical space T J"{nB  
       u1 = ifft(fftshift(c1)); B1AF4}~5  
    if rem(m1,J) == 0                                 % Save output every J steps. D-;43>yi<  
        U1 = [U1 u1];                                  % put solutions in U array [$Xu  
        U2=[U2 u2]; lf7H8k,-  
        MN1=[MN1 m1]; gs2&0rnOy\  
        z1=dz*MN1';                                    % output location 4 9+}OIX  
      end ;-P:$zw9c  
    end G#=b6DB  
    hg=abs(U1').*abs(U1');                             % for data write to excel :d/:Ga5v!  
    ha=[z1 hg];                                        % for data write to excel ^c:eXoU  
    t1=[0 t']; ,'@ISCK^  
    hh=[t1' ha'];                                      % for data write to excel file hc~#l#  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ?\ i,JJO  
    figure(1) ;:K?7wfXn  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn )-7(Hv1  
    figure(2) Ub-k<]yZ  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?eZ"UGZg'  
    bgx5{!A  
    非线性超快脉冲耦合的数值方法的Matlab程序 N6 Cc%,  
    085 ^!AZ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )Z`viT  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z_TbM^N  
    [+5SEr}  
    SZ1pf#w!  
    CX@HG)l  
    %  This Matlab script file solves the nonlinear Schrodinger equations yyYbB]D  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of <GU(/S!}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =dJEcC_J  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 'Y/V9;`)s  
    P<w>1 =  
    C=1;                           vmQ DcCw  
    M1=120,                       % integer for amplitude Vf* B1Zb  
    M3=5000;                      % integer for length of coupler pLFL6\{g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) K%~Kg9  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. `[R:L.H1  
    T =40;                        % length of time:T*T0. E?W!.hbA  
    dt = T/N;                     % time step y#SD-# I-  
    n = [-N/2:1:N/2-1]';          % Index '[M2Q"X  
    t = n.*dt;   Xwqf Wd_  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. fxCPGj  
    w=2*pi*n./T; F_ lj>;}a5  
    g1=-i*ww./2; J*kzJ{vwy*  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 3R96;d;  
    g3=-i*ww./2; )e$-B]>7z  
    P1=0; +=F);;!  
    P2=0; `E%d$  
    P3=1; oML K!]a  
    P=0; MhXm-<4  
    for m1=1:M1                 A&|(%  
    p=0.032*m1;                %input amplitude GAe_Z( T  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 rAi!'vIE  
    s1=s10; ;bu;t#  
    s20=0.*s10;                %input in waveguide 2 9U%}"uE  
    s30=0.*s10;                %input in waveguide 3 j;c ^pLUP  
    s2=s20; olW`.3f  
    s3=s30; >@\?\!Go  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   I;PO$T  
    %energy in waveguide 1 Ptxc9~k  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   v}t :}M<;  
    %energy in waveguide 2  E8V\J  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   v8M#%QoA  
    %energy in waveguide 3 U\plt%2m>  
    for m3 = 1:1:M3                                    % Start space evolution -"b3q  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS x6mq['_  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Qpu2RfP  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Wam?(!{mOf  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform iV$75Atk  
       sca2 = fftshift(fft(s2)); \^Q)`Lqp:g  
       sca3 = fftshift(fft(s3)); Fd=`9N9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   `SpS?mWA  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); eyp\h8!u_  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); bao5^t}  
       s3 = ifft(fftshift(sc3)); ]fmfX  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ?v*7!2;  
       s1 = ifft(fftshift(sc1)); 6>^k9cJp  
    end jtJ8r5j 1  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); FO3*[O   
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); "+C\f)  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); / 1@m#ZxA:  
       P1=[P1 p1/p10]; >dH*FZ:c  
       P2=[P2 p2/p10]; \?I wR]@y  
       P3=[P3 p3/p10]; gDBQ\vM8  
       P=[P p*p]; #GJh:#tt^  
    end f@X*Tlx^|  
    figure(1) qOanu  
    plot(P,P1, P,P2, P,P3); F#R\Ot,hv  
    ph+tk5k  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~