计算脉冲在非线性耦合器中演化的Matlab 程序 m0Z7N5v) !Mil?^ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
6UI>GQ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Ws>i)6[ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
bs:QG1*. % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
vXf:~G] i+RD]QL %fid=fopen('e21.dat','w');
^^
j/ N = 128; % Number of Fourier modes (Time domain sampling points)
fKYKW?g;)Z M1 =3000; % Total number of space steps
-eq=4N=s J =100; % Steps between output of space
xSOoIsL[ T =10; % length of time windows:T*T0
uTw|Q{ f T0=0.1; % input pulse width
s*+ZYPk MN1=0; % initial value for the space output location
Z^+a*^w~{ dt = T/N; % time step
tnL."^%A2I n = [-N/2:1:N/2-1]'; % Index
4ac1m,Jlt t = n.*dt;
)rbc;{. u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
i;avwP<0 u20=u10.*0.0; % input to waveguide 2
y&3TQ]f\ u1=u10; u2=u20;
:H3(w| T/ U1 = u1;
.h!9wGi` U2 = u2; % Compute initial condition; save it in U
^Yr|K ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
/KP_Vc:g2_ w=2*pi*n./T;
rr)9Y][l} g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
'ucGt L=4; % length of evoluation to compare with S. Trillo's paper
4)E|&)-fu8 dz=L/M1; % space step, make sure nonlinear<0.05
tgfM:kzw for m1 = 1:1:M1 % Start space evolution
iBS0rT_ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
L77EbP`P u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
}JH`'&3 ca1 = fftshift(fft(u1)); % Take Fourier transform
@[0jFjK ca2 = fftshift(fft(u2));
VlV)$z_ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
WRY~fM c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
gTuX *7w u2 = ifft(fftshift(c2)); % Return to physical space
6yp+h u1 = ifft(fftshift(c1));
v2(U(Tt if rem(m1,J) == 0 % Save output every J steps.
UXQb={ U1 = [U1 u1]; % put solutions in U array
9g4QVo| U2=[U2 u2];
UMv"7~ MN1=[MN1 m1];
l&$*}yCK z1=dz*MN1'; % output location
8`DO[Z end
KKV)DExv? end
=;g= GcVK hg=abs(U1').*abs(U1'); % for data write to excel
rEg+i@~ ha=[z1 hg]; % for data write to excel
`M,Nd'5&| t1=[0 t'];
V!H(;Tuuo hh=[t1' ha']; % for data write to excel file
phe"JNML %dlmwrite('aa',hh,'\t'); % save data in the excel format
ujow?$& figure(1)
n~9 i^ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
(
-xR7A figure(2)
\N4d_fPj waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
M,ppCHy/$ 5nY9Ls(e 非线性超快脉冲耦合的数值方法的Matlab程序 (}sDm~;s ::0aY;D2 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
kz$(V(k< Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
~.iA`${y% j,Pwket z( *]'Y M9h<}mh\ % This Matlab script file solves the nonlinear Schrodinger equations
4Fh&V{`W % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
nD(w @c? % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
<( cM*kV % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
@pTD{OW? F
[r|Y-c] C=1;
jGJ.Pvc>i M1=120, % integer for amplitude
Jk%'mEGE M3=5000; % integer for length of coupler
?VUgwP_= N = 512; % Number of Fourier modes (Time domain sampling points)
"^Y6ctw dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
:EYu 4Y T =40; % length of time:T*T0.
H\ {E%7^h- dt = T/N; % time step
;HR 6X n = [-N/2:1:N/2-1]'; % Index
|X,$?ZDap t = n.*dt;
+SO2M|ru& ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
vU ?b"n w=2*pi*n./T;
z7|
s%& g1=-i*ww./2;
f<'n5}{RO0 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
j
l}!T[5 g3=-i*ww./2;
G`9cd\^ P1=0;
'" ^ B&W P2=0;
=U=e?AOG2 P3=1;
|if~i;VKL P=0;
@X3 gBGY) for m1=1:M1
bELIRM9 p=0.032*m1; %input amplitude
'.=Wk^,Ua s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
aytq4Ts s1=s10;
UY1JB^J$ s20=0.*s10; %input in waveguide 2
sM#!Xl; s30=0.*s10; %input in waveguide 3
w906aV*s s2=s20;
Rrh<mo(yj# s3=s30;
AD~~e%
s= p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
3Gc ,I:\ %energy in waveguide 1
^fFtI?.6jI p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
mrK,Ql %energy in waveguide 2
Oqd"0Qt- p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
pESB Il %energy in waveguide 3
Uzan7A for m3 = 1:1:M3 % Start space evolution
z0\;m{TH s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
e} sc]MTM s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
EC^Ev|PB\u s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
7( yXsVq sca1 = fftshift(fft(s1)); % Take Fourier transform
L2[Ei|9_ sca2 = fftshift(fft(s2));
FE0qw1{qQ sca3 = fftshift(fft(s3));
)j{WeG7L sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
`G_(xN7O sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
sN6 0o 7. sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
IyrZez s3 = ifft(fftshift(sc3));
w{_e"N s2 = ifft(fftshift(sc2)); % Return to physical space
2$o2.$i81 s1 = ifft(fftshift(sc1));
_#/!s]$d#
end
ipx@pNW;" p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
8O"x;3I9 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
f28gE7Y\a p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
ZAI1p+ P1=[P1 p1/p10];
*,O
:>Z5I P2=[P2 p2/p10];
FBR$,j;Y P3=[P3 p3/p10];
zF[3%qZE:T P=[P p*p];
a)I=U[ end
WE+sFaKq- figure(1)
;FV~q{ plot(P,P1, P,P2, P,P3);
:6 Hxxh GVjv**U 转自:
http://blog.163.com/opto_wang/