切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9387阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 M,9f}V)  
    }Ias7d?re  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of [[0u|`T/  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of d#3E'8  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear f>_' ]eM%  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 odpjEeQC  
    q vGkTE  
    %fid=fopen('e21.dat','w'); KP]{=~(  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ?,x3*'-(  
    M1 =3000;              % Total number of space steps 0=KyupwXC  
    J =100;                % Steps between output of space w+3-j  
    T =10;                  % length of time windows:T*T0 *U^7MU0  
    T0=0.1;                 % input pulse width s(Llz]E~ZX  
    MN1=0;                 % initial value for the space output location %FO# j6  
    dt = T/N;                      % time step /q>1X!Z  
    n = [-N/2:1:N/2-1]';           % Index *5|q_K Pt  
    t = n.*dt;   aRF}F E,u  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 z 7g=L@   
    u20=u10.*0.0;                  % input to waveguide 2 2i_k$-  
    u1=u10; u2=u20;                 S U$U  
    U1 = u1;   \$[S=&E  
    U2 = u2;                       % Compute initial condition; save it in U -mK;f$X  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. <C,lHt  
    w=2*pi*n./T; zU,Qph ,<  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T )>|x2q  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 6Z3L=j  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 o& "nF+,  
    for m1 = 1:1:M1                                    % Start space evolution f+ Ht  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS -9z!fCu3  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =Hwlo!  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform m<uBRI*I  
       ca2 = fftshift(fft(u2)); '9d] B^)F  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation w4e(p3  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   %ryYa  
       u2 = ifft(fftshift(c2));                        % Return to physical space aaODj>  
       u1 = ifft(fftshift(c1)); q t!0#z8  
    if rem(m1,J) == 0                                 % Save output every J steps. ]3iQpL  
        U1 = [U1 u1];                                  % put solutions in U array Zw<\^1  
        U2=[U2 u2]; E2~&GkU.UN  
        MN1=[MN1 m1]; %^CoWbU  
        z1=dz*MN1';                                    % output location XIJW$CY  
      end 9( "<NB0y  
    end RO+N>Wkt  
    hg=abs(U1').*abs(U1');                             % for data write to excel J}'a|a@bk  
    ha=[z1 hg];                                        % for data write to excel a08`h.dyN  
    t1=[0 t']; qmx4hs8sh  
    hh=[t1' ha'];                                      % for data write to excel file ic(`Ev  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;Wu6f"+Y#  
    figure(1) S)$iHBx{  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn &nyJ :?  
    figure(2) ~ '/Yp8 (  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn )eaEc9o>  
    51&K  
    非线性超快脉冲耦合的数值方法的Matlab程序 14 Toi  
    >q7/zl  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   +1o4l i  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $\A=J  
    \x9.[?;=e  
    -) LiL  
    sOUQd-!"  
    %  This Matlab script file solves the nonlinear Schrodinger equations VW/ICX~"d  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of @n Oj6b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ufr,6IX  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U8gf_R'  
    r#X6jU  
    C=1;                           P/XCaj3a[  
    M1=120,                       % integer for amplitude ]5Mq^@mD'  
    M3=5000;                      % integer for length of coupler +9!=pRq  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) j|Hyv{sM  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. FZ~^cK9g:  
    T =40;                        % length of time:T*T0. J':x]_;  
    dt = T/N;                     % time step 6k-  
    n = [-N/2:1:N/2-1]';          % Index Q^! x8oUF  
    t = n.*dt;   zD,K_HicI  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. O; #qG/b1  
    w=2*pi*n./T; WAqH*LB  
    g1=-i*ww./2; V|W[>/  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 64R~ $km  
    g3=-i*ww./2; sRkPXzK  
    P1=0; Yw_^]:~  
    P2=0; EwX:^1f  
    P3=1; |Jpi|'  
    P=0; aF]cEe  
    for m1=1:M1                 F9PXQD(  
    p=0.032*m1;                %input amplitude dlJc~|  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 # m;|QWW  
    s1=s10; 9T;DFUM  
    s20=0.*s10;                %input in waveguide 2 /=IBK`  
    s30=0.*s10;                %input in waveguide 3 %("WoBPH`  
    s2=s20; Q8  
    s3=s30; _k O<|ev  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   RoYwZX~  
    %energy in waveguide 1 }LTyXo  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Nm4 h  
    %energy in waveguide 2 6s(.u l  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   8RaRXnJ  
    %energy in waveguide 3 `m+o^!SGe  
    for m3 = 1:1:M3                                    % Start space evolution 'LW~_\  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ~A$y-Dt'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; m4~>n(  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /n-!dXi  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform +b_o2''  
       sca2 = fftshift(fft(s2)); _oAWj]~rO  
       sca3 = fftshift(fft(s3)); ~b;u1;ne  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   WinwPn+9  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); EaN1xb(DYa  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); =+ALh-  
       s3 = ifft(fftshift(sc3)); >&`;@ZOH  
       s2 = ifft(fftshift(sc2));                       % Return to physical space $*q^7ME  
       s1 = ifft(fftshift(sc1)); 9gQ ]!Oq  
    end :TkR]bhm  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 2C[xrZa^  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); /0z#0gNp  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &<oJw TC  
       P1=[P1 p1/p10]; kxWcWl8  
       P2=[P2 p2/p10]; S2<evs1d  
       P3=[P3 p3/p10]; `RHhc{  
       P=[P p*p]; <:ptNGR  
    end b`& :`  
    figure(1) zTS P8Q7  
    plot(P,P1, P,P2, P,P3); ":W$$w<  
    @5tGI U;1  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~