计算脉冲在非线性耦合器中演化的Matlab 程序 \S2'3SDd/ >"nk}@ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
MDCf(LhEH % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
C,z]q$4 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
W]*wxzf!5z % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
FRF}V@~ rC*n Z* %fid=fopen('e21.dat','w');
4-n.4j| N = 128; % Number of Fourier modes (Time domain sampling points)
3 \WdA$Wx M1 =3000; % Total number of space steps
;~q)^.K3 J =100; % Steps between output of space
?%0i,p@< T =10; % length of time windows:T*T0
dX3>j{_ T0=0.1; % input pulse width
(c_hX( MN1=0; % initial value for the space output location
XF$C)id2p dt = T/N; % time step
XZT( :( n = [-N/2:1:N/2-1]'; % Index
1Q$ M/} t = n.*dt;
BZ T%+s;u9 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
hg>YOf&RG u20=u10.*0.0; % input to waveguide 2
e)bqE^JP u1=u10; u2=u20;
Ek.j@79 U1 = u1;
V7v,)a" L U2 = u2; % Compute initial condition; save it in U
FxT
[4 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
=f p(hX" w=2*pi*n./T;
Y{'G2)e g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
DpR%s",Q L=4; % length of evoluation to compare with S. Trillo's paper
[(K^x?\Y0' dz=L/M1; % space step, make sure nonlinear<0.05
\
a<Ye
T for m1 = 1:1:M1 % Start space evolution
p 5'\< gQ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
7I
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
xMh&C{q ca1 = fftshift(fft(u1)); % Take Fourier transform
`'QPe42 ca2 = fftshift(fft(u2));
n#fg7d% c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
5VcYdu3 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
={oO9.9 u2 = ifft(fftshift(c2)); % Return to physical space
lqs_7HhvRS u1 = ifft(fftshift(c1));
*]=)mM# if rem(m1,J) == 0 % Save output every J steps.
}bTMeCgI U1 = [U1 u1]; % put solutions in U array
#>V;ZV5" U2=[U2 u2];
uQNoIy J) MN1=[MN1 m1];
tpctz~ . z1=dz*MN1'; % output location
KKzvoc?Bt end
J.d `tiN end
`F@yZ4L3S hg=abs(U1').*abs(U1'); % for data write to excel
lb('r"*. ha=[z1 hg]; % for data write to excel
{Q"<q`c t1=[0 t'];
XDGZqkt hh=[t1' ha']; % for data write to excel file
-d~'tti %dlmwrite('aa',hh,'\t'); % save data in the excel format
WveFB%@`; figure(1)
/_|1,x-Kx waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
#]'xUgcE9 figure(2)
(qrT0D6 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
{m?x}, +1%6-g4" 非线性超快脉冲耦合的数值方法的Matlab程序 )qIK7; (!(bysi9 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
FRW.
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
S7vE[VF5 GwULtRa/ 4Ojw&ys@V 1DP)6{x % This Matlab script file solves the nonlinear Schrodinger equations
;z>YwRV % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
2vC=.1k % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
;<A/e % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
#u$z-M ! Ah`dt8t C=1;
ccSS au5N M1=120, % integer for amplitude
;=OH=+Rl M3=5000; % integer for length of coupler
_;{-w%Vf N = 512; % Number of Fourier modes (Time domain sampling points)
&?nF';& dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
kR]SxG9 T =40; % length of time:T*T0.
\YS?}! 0 dt = T/N; % time step
hz%IxI9 n = [-N/2:1:N/2-1]'; % Index
+q$|6? t = n.*dt;
as4NvZ@+r ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
*&]l w=2*pi*n./T;
?r<F\rBT7* g1=-i*ww./2;
!Xi>{nV g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
D,/9rH g3=-i*ww./2;
-wfV P1=0;
=*Xf(mh c P2=0;
pS;dvZ P3=1;
+IYSWR P=0;
MV}]i@V for m1=1:M1
)|x5#b-lz p=0.032*m1; %input amplitude
b*KZe[#M1 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
aw1J#5j`n s1=s10;
: 4WbDeR s20=0.*s10; %input in waveguide 2
G
m! ]
s30=0.*s10; %input in waveguide 3
ltR^IiA} s2=s20;
h :R)KM s3=s30;
1\0@?6`^ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
uw!|G> %energy in waveguide 1
(xed(uFEK p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
H)Ge#=;ckQ %energy in waveguide 2
:\_MA^< p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
6,1|y%(f %energy in waveguide 3
m9@n for m3 = 1:1:M3 % Start space evolution
59J9V3na s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
zQ}N
mlk s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
rgKn=8+a s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Y;Gm, sca1 = fftshift(fft(s1)); % Take Fourier transform
~*[4DQ[\ sca2 = fftshift(fft(s2));
`F 8;{`a sca3 = fftshift(fft(s3));
RfG$Px ' sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
C:MGi7f sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
+=Wdn)T sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
/H@")je s3 = ifft(fftshift(sc3));
ycD.:w p\' s2 = ifft(fftshift(sc2)); % Return to physical space
Els= :4 s1 = ifft(fftshift(sc1));
Q0\5j<'e end
QL18MbfqP p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
>:&p(eu)L0 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
`r(J6,O p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
$:II@= P1=[P1 p1/p10];
:0/o?'s P2=[P2 p2/p10];
+lJ]-U|P P3=[P3 p3/p10];
, vyx`wDd P=[P p*p];
.6o y>4 end
\|`Pul$ figure(1)
agT[y/gb plot(P,P1, P,P2, P,P3);
%nf=[f '<S:|$$ 转自:
http://blog.163.com/opto_wang/