切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9316阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 FoE|Js  
    %lN2n,AK  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of /_]ltXD  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 5\okU"{d7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear b6 $,Xh  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?q\FLb%"7  
    ~mtTsZc  
    %fid=fopen('e21.dat','w'); EJ1Bq>u7  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ZB-QABn  
    M1 =3000;              % Total number of space steps ?#d6i$  
    J =100;                % Steps between output of space z8IPhE@  
    T =10;                  % length of time windows:T*T0 ZAMeqPt  
    T0=0.1;                 % input pulse width DhZ:#mM{  
    MN1=0;                 % initial value for the space output location n'T He|:I  
    dt = T/N;                      % time step +wipfL~&S  
    n = [-N/2:1:N/2-1]';           % Index m;dm|4L^  
    t = n.*dt;   G3G/ xC"  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 b3}Q#Y\G  
    u20=u10.*0.0;                  % input to waveguide 2 v2d<o[[C  
    u1=u10; u2=u20;                 Odm#wL~E  
    U1 = u1;   vB^uxdt|m  
    U2 = u2;                       % Compute initial condition; save it in U _}D%iJg#  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. .Y;b)]@f  
    w=2*pi*n./T; C@1CanL@3  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T |+98h&U~  
    L=4;                           % length of evoluation to compare with S. Trillo's paper tv0Ha A  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 X2qv^G,  
    for m1 = 1:1:M1                                    % Start space evolution g+/0DO_F3  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS aR _NyA  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Bz?l{4".  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform %;7.9%  
       ca2 = fftshift(fft(u2)); Pg`JQC|  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Ejv%,q/T(  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ]fZ<`w8u}  
       u2 = ifft(fftshift(c2));                        % Return to physical space t-WjL@$F/  
       u1 = ifft(fftshift(c1)); NetYg]8`  
    if rem(m1,J) == 0                                 % Save output every J steps. Av o|v>  
        U1 = [U1 u1];                                  % put solutions in U array PY?8 [A+  
        U2=[U2 u2]; k'Gw!p}  
        MN1=[MN1 m1]; C6|(ktt  
        z1=dz*MN1';                                    % output location pV7N byb4  
      end +Gow5-(  
    end F|Q H  
    hg=abs(U1').*abs(U1');                             % for data write to excel |m)kN2w  
    ha=[z1 hg];                                        % for data write to excel !siWEzw  
    t1=[0 t']; /%!~x[BeJ>  
    hh=[t1' ha'];                                      % for data write to excel file i\)3l%AK]T  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &iqw! ud  
    figure(1) V>Fesm"aq  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn  ;\qXbL7  
    figure(2) k^%2_H  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn {pWBwf>R C  
    }x:0os  
    非线性超快脉冲耦合的数值方法的Matlab程序 dy2rkV.z  
    JE hm1T  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   <C'Z H'p  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?sXG17~Bm  
    :lgi>^  
    "k:=Y7Dx  
    9cG<hX9`F  
    %  This Matlab script file solves the nonlinear Schrodinger equations Lu=O+{*8  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of )o{aeV  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )MSZ2)(  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _7"5wB?|+  
    2/B)O)#ls  
    C=1;                           gzf-)J  
    M1=120,                       % integer for amplitude X`:'i?(yj  
    M3=5000;                      % integer for length of coupler G>w+#{(  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) T_LLJ}6M  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. + BL{@,zr  
    T =40;                        % length of time:T*T0. eh(<m8I  
    dt = T/N;                     % time step $shp(T,q  
    n = [-N/2:1:N/2-1]';          % Index | kXm}K  
    t = n.*dt;   )&,{?$.  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. _Zc4=c,K  
    w=2*pi*n./T; 6ZOy&fd,Ty  
    g1=-i*ww./2; xq[Yg15d%  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; D."=k{r.  
    g3=-i*ww./2; ~Y7dH Dn  
    P1=0; })Yv9],6  
    P2=0; rjk( X|R*  
    P3=1; [=uIb._Wv  
    P=0; *jITOR!uF`  
    for m1=1:M1                 I4t*?  
    p=0.032*m1;                %input amplitude =-#G8L%Q  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 pf&ag#nr  
    s1=s10; p?# pT}1  
    s20=0.*s10;                %input in waveguide 2 hH>``gK  
    s30=0.*s10;                %input in waveguide 3 D-&a n@  
    s2=s20; 94/BG0  
    s3=s30; taWqSq!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   gb" 4B%Hm  
    %energy in waveguide 1 86 .`T l;  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ]Oeh=gq  
    %energy in waveguide 2 YcDe@Zuwn  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   4_^[=p/R  
    %energy in waveguide 3 Bp?  
    for m3 = 1:1:M3                                    % Start space evolution `yO'[2  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS O.QK"pKD\  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; r!GW= u'  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; swcd&~9r  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform (xpn`NA  
       sca2 = fftshift(fft(s2)); J G$Z.s  
       sca3 = fftshift(fft(s3)); Bc5+ss  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   "ju'UOcS/  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); wT,R0~V0  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !t#F/C  
       s3 = ifft(fftshift(sc3)); vB'>[jvA|  
       s2 = ifft(fftshift(sc2));                       % Return to physical space >jg0s)RA'  
       s1 = ifft(fftshift(sc1)); !&^gaUa{  
    end ;i<jhNA  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); kz} R[7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7[pBUDA  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ;C.S3}  
       P1=[P1 p1/p10]; bulS&dAX  
       P2=[P2 p2/p10]; i3$$,W!  
       P3=[P3 p3/p10]; r6Aneg7  
       P=[P p*p]; 5GzFoy)j>  
    end ~f\G68c  
    figure(1) 3uWkc3  
    plot(P,P1, P,P2, P,P3); Kn`M4 O  
    ~`ny @WD9  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~