计算脉冲在非线性耦合器中演化的Matlab 程序 }QL 2#R $*`=sV!r % This Matlab script file solves the coupled nonlinear Schrodinger equations of
VY5/C;0^h % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
1c}
%_Z/ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
F#w=z/ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
|h; _r& IE-c^'W=}m %fid=fopen('e21.dat','w');
Sb&[V>!2^ N = 128; % Number of Fourier modes (Time domain sampling points)
?m?DAd~ZY M1 =3000; % Total number of space steps
Uva
b*9vX J =100; % Steps between output of space
Ty21-0F T =10; % length of time windows:T*T0
[BpIzhy&} T0=0.1; % input pulse width
&K_"5.7-56 MN1=0; % initial value for the space output location
i0%S6vmaS dt = T/N; % time step
s3*h=5bX= n = [-N/2:1:N/2-1]'; % Index
XJ|CC.]1u t = n.*dt;
q.l"Y#d
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
jcWv&u| u20=u10.*0.0; % input to waveguide 2
JEK6Ms;)A u1=u10; u2=u20;
w34&m U1 = u1;
%C!u/:.Kv U2 = u2; % Compute initial condition; save it in U
oc>ne]_' ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
H\\0V.}! w=2*pi*n./T;
i 5"g?Wa2N g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
5m`@ 4%)zp L=4; % length of evoluation to compare with S. Trillo's paper
.&AS-">Z dz=L/M1; % space step, make sure nonlinear<0.05
<303PPX^6 for m1 = 1:1:M1 % Start space evolution
J3oj}M* u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
ztNm,1pnQ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
LP8Stj JP ca1 = fftshift(fft(u1)); % Take Fourier transform
Z)6gh{B08 ca2 = fftshift(fft(u2));
G H
N c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
OA\2ja~+ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
SEn-8ZF u2 = ifft(fftshift(c2)); % Return to physical space
CF`tNA3fxm u1 = ifft(fftshift(c1));
/Ot=GhN] if rem(m1,J) == 0 % Save output every J steps.
MOuI;EF U1 = [U1 u1]; % put solutions in U array
L {6y]t7^ U2=[U2 u2];
_y q"F#,* MN1=[MN1 m1];
V=pg9KR!T z1=dz*MN1'; % output location
jJc?/1 jv end
H B+\2jEE end
tK3.HvD hg=abs(U1').*abs(U1'); % for data write to excel
VuDSjh ha=[z1 hg]; % for data write to excel
?8g[0/ t1=[0 t'];
`c^ _5:euX hh=[t1' ha']; % for data write to excel file
c]`}DH,TJ %dlmwrite('aa',hh,'\t'); % save data in the excel format
uUUj?% figure(1)
N:j"W,8 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
S{7*uK3$ figure(2)
}+KSZ, waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
^mLZT* NGD?.^ (G 非线性超快脉冲耦合的数值方法的Matlab程序 bE-{
U/; iV!o)WvG,F 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
_L mDF8Q( Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
/ c1=`OJ wf!?'* z116i?7EnV 7]t$t3I` % This Matlab script file solves the nonlinear Schrodinger equations
seh1(q?Va4 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
eeX^zaKl] % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
DGl_SMJb % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
ozZW7dveU !Pf_he C=1;
TFbMrIF
M1=120, % integer for amplitude
5CZii=@ M3=5000; % integer for length of coupler
}Yt/e-Yg%r N = 512; % Number of Fourier modes (Time domain sampling points)
*ip2|2G$ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
&?m|PK) I T =40; % length of time:T*T0.
p2N;- dt = T/N; % time step
X/ n = [-N/2:1:N/2-1]'; % Index
^2L\Y2 t = n.*dt;
d'~
k f# ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
v\>!J? w=2*pi*n./T;
{VBx;A3*I g1=-i*ww./2;
[A?Dx-R;( g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
1b:3'E.#w g3=-i*ww./2;
MA\"JAP/ P1=0;
~y.{WuUD P2=0;
5mwtlC':l? P3=1;
p\]Mf#B P=0;
JivkY"= F for m1=1:M1
z1t
YD p=0.032*m1; %input amplitude
TfaL5evio s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
uGIA4CUm s1=s10;
ZUJ! s20=0.*s10; %input in waveguide 2
gs)wQgJ [ s30=0.*s10; %input in waveguide 3
{&,9Zy]"S s2=s20;
iR;Sd >) s3=s30;
&kKopJH p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
X{A|{ u= %energy in waveguide 1
P;o6rQf p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
SoZ$1$o2 %energy in waveguide 2
|QwX p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Z?k4Kb %energy in waveguide 3
$]IX11.m for m3 = 1:1:M3 % Start space evolution
Kh<xQ:eMy s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
%n-:mSus s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
s`W\`w} s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
=e'b*KTL, sca1 = fftshift(fft(s1)); % Take Fourier transform
n82N@z<8] sca2 = fftshift(fft(s2));
*-~B{2b< sca3 = fftshift(fft(s3));
Pt~mpRlH sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
>S4klW=*I sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
M)t d%<_ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
&WN#HI."] s3 = ifft(fftshift(sc3));
[MfKBlA s2 = ifft(fftshift(sc2)); % Return to physical space
Q2sX7
cE s1 = ifft(fftshift(sc1));
N*6Y5[g!\ end
ea-NqdGs;m p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
<rd7<@>5D p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
\ .HX7v p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
VT1Nd P1=[P1 p1/p10];
t2Dx$vT*& P2=[P2 p2/p10];
`2 X~3im P3=[P3 p3/p10];
rYUhGmg` P=[P p*p];
`6:;*#jO, end
K7 >Z)21 figure(1)
<Z%iP{ plot(P,P1, P,P2, P,P3);
ZS51QB C2RR(n=N^ 转自:
http://blog.163.com/opto_wang/