切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9335阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 (bXCc  
    -wY6da*.W  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ct/I85c@P  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Tux~4W  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j@9A!5<CCk  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <{'':/tXI  
    HzW ZQ6o  
    %fid=fopen('e21.dat','w'); ==$Ox6.  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %bddR;c  
    M1 =3000;              % Total number of space steps KxY|:-"Tt  
    J =100;                % Steps between output of space fz:F*zT1  
    T =10;                  % length of time windows:T*T0 ek.L(n,J|  
    T0=0.1;                 % input pulse width r8@:Ko= a  
    MN1=0;                 % initial value for the space output location 2(UT;PSI  
    dt = T/N;                      % time step :qI myaGQ  
    n = [-N/2:1:N/2-1]';           % Index }O_6wi  
    t = n.*dt;   m(9E{;   
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 keX0br7u_  
    u20=u10.*0.0;                  % input to waveguide 2 ak<?Eu9rV  
    u1=u10; u2=u20;                 '?#e$<uS-  
    U1 = u1;   K~[/n<ks  
    U2 = u2;                       % Compute initial condition; save it in U SMnbI .0  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Hd4&"oeY  
    w=2*pi*n./T; 4H{L>e  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T o8bV z2E  
    L=4;                           % length of evoluation to compare with S. Trillo's paper +W-sb5)  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 B~z& "`  
    for m1 = 1:1:M1                                    % Start space evolution X^"95Ic  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS :I1bGa&I  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; r0_3`; H  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform o6'`W2P  
       ca2 = fftshift(fft(u2)); &bTadd%0  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ZQ@^(64  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   F+9|D  
       u2 = ifft(fftshift(c2));                        % Return to physical space $lUZm\R|k  
       u1 = ifft(fftshift(c1)); ,VbP$1t  
    if rem(m1,J) == 0                                 % Save output every J steps. Pf]L`haGN  
        U1 = [U1 u1];                                  % put solutions in U array KWM.b"WnXr  
        U2=[U2 u2]; eml(F  
        MN1=[MN1 m1]; `$Q $l  
        z1=dz*MN1';                                    % output location nAg|m,gA  
      end  8DyE  
    end M7UVL&_z%  
    hg=abs(U1').*abs(U1');                             % for data write to excel ,>e)8  
    ha=[z1 hg];                                        % for data write to excel S__+S7]Nr  
    t1=[0 t']; *|MPYxJ<  
    hh=[t1' ha'];                                      % for data write to excel file =U2`]50  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format vfmKYiLp  
    figure(1) v cqL  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn PJO +@+"{@  
    figure(2) v;irk<5  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn c!E+&5|n  
    R /iB  
    非线性超快脉冲耦合的数值方法的Matlab程序 =f?|f  
    *S`& X Pj  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   >|mmJ4T  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 J$@3,=L6V  
    <{:$ ]3  
    Ig*!0(v5$  
    [Nsv]Yz  
    %  This Matlab script file solves the nonlinear Schrodinger equations #*XuU8q?  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ]#KZ W)M  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J!~?}Fq/z  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 pv;}Sv$ ]-  
    D<C ZhYJ  
    C=1;                           (hs[B4nV  
    M1=120,                       % integer for amplitude (?;Fnq  
    M3=5000;                      % integer for length of coupler T^%$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 9Iy>oV  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. |'Z6M];8t  
    T =40;                        % length of time:T*T0. e\tcP  
    dt = T/N;                     % time step 44]/rP_m  
    n = [-N/2:1:N/2-1]';          % Index u6$fF=  
    t = n.*dt;   <Hig,(=`.  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 9!}&&]Q`  
    w=2*pi*n./T; V1,O7m+F2  
    g1=-i*ww./2; zH eqV  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; {H=DeQ  
    g3=-i*ww./2; Sc`W'q^X  
    P1=0; 1s"6  
    P2=0; #'_i6  
    P3=1; ]|@RWzA  
    P=0; "~> # ;x{  
    for m1=1:M1                 'OK)[\  
    p=0.032*m1;                %input amplitude v=RQ"iv8  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 #0zMPh /U}  
    s1=s10; a}c.]zm]  
    s20=0.*s10;                %input in waveguide 2 ? L|m:A`  
    s30=0.*s10;                %input in waveguide 3 LSs!U 3"  
    s2=s20; 7 &DhEI ^  
    s3=s30; Rbm"Qz  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   )u7y.o  
    %energy in waveguide 1 $2~I-[  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   t6W$t  
    %energy in waveguide 2  :RBp  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   p;,Cvw{.;%  
    %energy in waveguide 3 2zZ" }Zr#  
    for m3 = 1:1:M3                                    % Start space evolution ]_G!(`Udh  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS "d^hY}Xx  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 3){ /u$iH.  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /\q1,}M  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ]X ,f  
       sca2 = fftshift(fft(s2)); {=pRU_-^  
       sca3 = fftshift(fft(s3)); xxLD8?@e7  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   w)2X0ev"  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); (&npr96f  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); s G!SSRL@  
       s3 = ifft(fftshift(sc3)); xlg6cO  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Y_ b;1RN  
       s1 = ifft(fftshift(sc1)); EZ15  
    end ]>M{Q n*  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); fRS)YE@a:  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); XT~!dq5  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); F@~zVu3'  
       P1=[P1 p1/p10]; 38ChS.(  
       P2=[P2 p2/p10]; yj13>"nh  
       P3=[P3 p3/p10]; 2y s'q !  
       P=[P p*p]; (U#4j 6Q  
    end ;5urIYd  
    figure(1) v!{mpF  
    plot(P,P1, P,P2, P,P3); 35|F?Jx.r  
    U bUl]  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~