计算脉冲在非线性耦合器中演化的Matlab 程序 u%'\UmE w
AiD[SR
% This Matlab script file solves the coupled nonlinear Schrodinger equations of XLMb=T~S
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of #:T-hRu
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S+TOSjfis
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4f(Kt,0
cYXM__
%fid=fopen('e21.dat','w'); pP(XIC
N = 128; % Number of Fourier modes (Time domain sampling points) FU=w(< R;
M1 =3000; % Total number of space steps >0p$(>N]
J =100; % Steps between output of space qfcYE=
T =10; % length of time windows:T*T0 GUsl PnG
T0=0.1; % input pulse width }|%eCVB
MN1=0; % initial value for the space output location 4v[~r1!V
dt = T/N; % time step [{C )LDN
n = [-N/2:1:N/2-1]'; % Index &3J@BMYp
t = n.*dt; =]3tUD
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 FKe, qTqa
u20=u10.*0.0; % input to waveguide 2 5NJ4
u1=u10; u2=u20; oD}uOC}FS{
U1 = u1; ]Qm]I1P
U2 = u2; % Compute initial condition; save it in U NBb6T
V}j
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. czlFr|O;
w=2*pi*n./T; eT2*W$
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T s+:=I
e
L=4; % length of evoluation to compare with S. Trillo's paper 5>AX*]c
dz=L/M1; % space step, make sure nonlinear<0.05 fwzb!"!.@
for m1 = 1:1:M1 % Start space evolution Y.^=]-n,
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS h*ZC*eV>
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =_YG#yS
ca1 = fftshift(fft(u1)); % Take Fourier transform t4?DpE
ca2 = fftshift(fft(u2)); +2 Af&~T
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation $ cj>2.
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift R *F l8
u2 = ifft(fftshift(c2)); % Return to physical space XD"_Iq!
u1 = ifft(fftshift(c1)); ^&g=u5
d0
if rem(m1,J) == 0 % Save output every J steps. ?WE
U1 = [U1 u1]; % put solutions in U array u^029sH6j
U2=[U2 u2]; B c2p(z4
MN1=[MN1 m1]; _HhbIU
z1=dz*MN1'; % output location Nan[<
end :x_'i_w
end IHRGw
hg=abs(U1').*abs(U1'); % for data write to excel OzC\9YeA
ha=[z1 hg]; % for data write to excel 'U'yC2BI n
t1=[0 t']; bTQNb!&
hh=[t1' ha']; % for data write to excel file <V>dM4Mkr
%dlmwrite('aa',hh,'\t'); % save data in the excel format B:7mpSnEQ
figure(1) }B~If}7
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn {\[5}nV
figure(2) ;2Q~0a|
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn ?)e37
%c[ V
非线性超快脉冲耦合的数值方法的Matlab程序 KN-avu_Ix
B7]MGXC
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Pb*5eXk
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "Ky; a?Y
Ks}Xgc\
2k<;R':
GRY2?'`
% This Matlab script file solves the nonlinear Schrodinger equations LY+|[qka
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of qTQBt}
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *{+G=d
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2h%z ("3/
~Ch+5A;
C=1; -kbg\,PW
M1=120, % integer for amplitude r [K5w
M3=5000; % integer for length of coupler `mN4_\]
N = 512; % Number of Fourier modes (Time domain sampling points) S]E.KLR?[;
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. IT$25ZF
T =40; % length of time:T*T0. (e"iO`H
dt = T/N; % time step t'ZWc\
n = [-N/2:1:N/2-1]'; % Index $ [yFsA6
t = n.*dt; xZV1k~C
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. VWO9=A*Y|
w=2*pi*n./T; VcoOeAKL
g1=-i*ww./2; Q?X>E3=U
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; MMj9{ou
g3=-i*ww./2; H8"@iE,
P1=0; }K3x
P2=0; ~/*MY
P3=1; GaSPJt
P=0; ~,*b }O
for m1=1:M1 <mAhr
p=0.032*m1; %input amplitude +5XpzZ{#Wa
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 2+X\}s1vN
s1=s10; MR}Agu#LG
s20=0.*s10; %input in waveguide 2 !>1@HH?I\/
s30=0.*s10; %input in waveguide 3 XU"~h64]
s2=s20; cH>%r^G\
s3=s30; |7zd%!
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); P@FHnh3}Z$
%energy in waveguide 1 ;amXY@RmH
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); l<);s
%energy in waveguide 2 ` Jdb ;
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); t]-5 ]oI
%energy in waveguide 3 k-}b{
for m3 = 1:1:M3 % Start space evolution 7.`fJf?
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS [Jv@J\
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; O?|gp<=d
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; &?(?vDFfZ
sca1 = fftshift(fft(s1)); % Take Fourier transform q`r**N+zn
sca2 = fftshift(fft(s2)); /E\%>wv
sca3 = fftshift(fft(s3)); Jkek-m
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift pa#IJ
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Hhh0T>gi
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); z[;z>8|c
s3 = ifft(fftshift(sc3)); f`Fi#EKT
s2 = ifft(fftshift(sc2)); % Return to physical space w`5xrqt@
s1 = ifft(fftshift(sc1)); 0L/n ?bf
end "
W|%~h
p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); vuYSVI2=H
p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); V 0rZz
p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); =&:Y6XP
P1=[P1 p1/p10]; R47\Y
P2=[P2 p2/p10]; 0vw4?>Jf@
P3=[P3 p3/p10]; @<