切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9060阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 a,r B7aD  
    l@ (:Q!Sk  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 1aCpeD4|)  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ww #kc!'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V Ew| N)  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W|y;Kxy  
    f8`dJ5i  
    %fid=fopen('e21.dat','w');  WjCxTBI  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) EdkIT|c{  
    M1 =3000;              % Total number of space steps ;47z.i&T  
    J =100;                % Steps between output of space 3dSC`K  
    T =10;                  % length of time windows:T*T0 SvrUXf  
    T0=0.1;                 % input pulse width c*\;!dbP  
    MN1=0;                 % initial value for the space output location x*=1C,C  
    dt = T/N;                      % time step +C[g>c}d  
    n = [-N/2:1:N/2-1]';           % Index w~ON861  
    t = n.*dt;   m^=El7+  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 '4Fwh]Ee  
    u20=u10.*0.0;                  % input to waveguide 2 ,>8w|951'  
    u1=u10; u2=u20;                  1X&jlD?  
    U1 = u1;   _A] )q  
    U2 = u2;                       % Compute initial condition; save it in U &/WE{W  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 1j:aGj>{  
    w=2*pi*n./T; VxuV`Plf  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T P.QF9%  
    L=4;                           % length of evoluation to compare with S. Trillo's paper -6~.;M 5  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 NzTF2ve(  
    for m1 = 1:1:M1                                    % Start space evolution  Ip:54  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS V; CPn  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; C/'w  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Kf*Dy:e  
       ca2 = fftshift(fft(u2));  bLAHVi<.  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation  bI8uw|c  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   rNTLP m  
       u2 = ifft(fftshift(c2));                        % Return to physical space _53~D=  
       u1 = ifft(fftshift(c1)); :O$bsw:3w<  
    if rem(m1,J) == 0                                 % Save output every J steps. Wpi35JrC  
        U1 = [U1 u1];                                  % put solutions in U array |_>^vW1f  
        U2=[U2 u2]; U+@U/s%8  
        MN1=[MN1 m1]; y&-QLX L  
        z1=dz*MN1';                                    % output location "WUS?Q  
      end zsJermF,O  
    end _B&Lyg !J  
    hg=abs(U1').*abs(U1');                             % for data write to excel ]JV'z<  
    ha=[z1 hg];                                        % for data write to excel nSC2wTH!1  
    t1=[0 t']; "aCAA#$J  
    hh=[t1' ha'];                                      % for data write to excel file H;l_;c`  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format d Rnf  
    figure(1) q$mc{F($D  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn stBe ^C  
    figure(2) fe,6YXUf  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn pDSNI2  
    2wHbhW[  
    非线性超快脉冲耦合的数值方法的Matlab程序 ;}"Eqq:  
    {svo!pN:  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )<:TpMdUk  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y`Io}h G$  
    G0Qw& mqF  
    IhYR4?e  
    ZcQu9XDIt  
    %  This Matlab script file solves the nonlinear Schrodinger equations <7`zc7c]#  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of $i5J}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $ VP1(C  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >[,eK=  
    I4{xQI  
    C=1;                           `+"(GaZ  
    M1=120,                       % integer for amplitude X["xC3 i  
    M3=5000;                      % integer for length of coupler #c>GjUJ.w  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) $?G@ijk,  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ng"=vmu  
    T =40;                        % length of time:T*T0. hN &?x5aC>  
    dt = T/N;                     % time step }: HG)V  
    n = [-N/2:1:N/2-1]';          % Index kzDN(_<1  
    t = n.*dt;   )J}v.8   
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Oo}h:3?  
    w=2*pi*n./T; O'mcN*  
    g1=-i*ww./2; bYnq,JRA  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; J-5>+E,nZ  
    g3=-i*ww./2; K+F"VW*?  
    P1=0; C; N6",s!  
    P2=0; dD=$$( je  
    P3=1; L ,dh$F  
    P=0; .4)oZ  
    for m1=1:M1                 {;c'@U  
    p=0.032*m1;                %input amplitude 0lg$zi x(  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ~\jP+[>M'  
    s1=s10; VP~2F E  
    s20=0.*s10;                %input in waveguide 2 6FA+q YSV  
    s30=0.*s10;                %input in waveguide 3 >|E]??v  
    s2=s20; QL WnP-  
    s3=s30; a (~Y:v  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   f +{=##'0  
    %energy in waveguide 1  D}98ZKi  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Q=`yPK>{$N  
    %energy in waveguide 2 H@=oVyn/  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ctZ,qg*N  
    %energy in waveguide 3 /I=|;FGq  
    for m3 = 1:1:M3                                    % Start space evolution Zj2 si  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS * 9^8NY]  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; si]VM_w6  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @MES.g  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ` kT\V'  
       sca2 = fftshift(fft(s2)); #1DEZ4]jjY  
       sca3 = fftshift(fft(s3)); tDX& ~1s  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   zjQ746<&)i  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); &Q883A J  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ](w)e p~;3  
       s3 = ifft(fftshift(sc3)); )S g6B;CJ  
       s2 = ifft(fftshift(sc2));                       % Return to physical space nF<K84  
       s1 = ifft(fftshift(sc1)); hv|a8=U!R  
    end u}[ a  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ]#)(D-i  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); $r/$aq=K  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); u 2 s  
       P1=[P1 p1/p10]; Zv;nY7B  
       P2=[P2 p2/p10]; 4v\HaOk  
       P3=[P3 p3/p10]; l{{,D57J  
       P=[P p*p]; .SD-6GVD  
    end >GGM76vB=,  
    figure(1) A@}5'LzL  
    plot(P,P1, P,P2, P,P3);  '"B  
    $oBs%.Jp  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~