切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9395阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 w%F~4|F  
    N\{Xhr7d  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of =REMSe j  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ))m\d*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear y(/"DUx  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 v&Xsyb0CaM  
    y,'M3GGl  
    %fid=fopen('e21.dat','w'); +*&bgGhT  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Z$ q{!aY  
    M1 =3000;              % Total number of space steps ?e( y/  
    J =100;                % Steps between output of space *YH5kX  
    T =10;                  % length of time windows:T*T0 mU@pRjq=  
    T0=0.1;                 % input pulse width _wMxKM  
    MN1=0;                 % initial value for the space output location A)6xEeyR  
    dt = T/N;                      % time step +l'l*<  
    n = [-N/2:1:N/2-1]';           % Index Kv(2x3("  
    t = n.*dt;   [Z~h!}  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 !YX$4_I  
    u20=u10.*0.0;                  % input to waveguide 2 mY6d+  
    u1=u10; u2=u20;                 WOBLgM,|  
    U1 = u1;   fNR2(8;}  
    U2 = u2;                       % Compute initial condition; save it in U Wk<heF  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. C:z+8wt  
    w=2*pi*n./T; wJc~AP)I%z  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Y$JGpeq8w  
    L=4;                           % length of evoluation to compare with S. Trillo's paper A#NJ8_  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 N8*6sK.  
    for m1 = 1:1:M1                                    % Start space evolution 9~3;upWu!  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS s4V-brCM$|  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6!F@?3qCyg  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform T($d3Nn1  
       ca2 = fftshift(fft(u2)); 0QJ :  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation h&5bMW  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   K|^PHe  
       u2 = ifft(fftshift(c2));                        % Return to physical space fv@mA--  
       u1 = ifft(fftshift(c1)); FTu6%~M/  
    if rem(m1,J) == 0                                 % Save output every J steps. 1,Ams  
        U1 = [U1 u1];                                  % put solutions in U array a ]~Rp  
        U2=[U2 u2]; >- S?rXO  
        MN1=[MN1 m1]; jGm`Qg{<  
        z1=dz*MN1';                                    % output location  SXqWq  
      end P}"=67$  
    end zEM  c)  
    hg=abs(U1').*abs(U1');                             % for data write to excel d `MTc  
    ha=[z1 hg];                                        % for data write to excel rF@njw@  
    t1=[0 t']; D;?cf+6$  
    hh=[t1' ha'];                                      % for data write to excel file '%Fg+cZN\  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format K Eda6zZH  
    figure(1) .4CCR[Het  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn y~ 2C2'7  
    figure(2) F#b^l}  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn c/Dk*.xy<  
    T'^ Do/  
    非线性超快脉冲耦合的数值方法的Matlab程序 x."R_>  
    8NF93tqD6  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ztS:1\  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |.#G G7F^S  
    4 H<.  
    EKgY  
    jm ORKX+)  
    %  This Matlab script file solves the nonlinear Schrodinger equations mV>l`&K=  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of W( 4Mvd  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear cMU"SO  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s78MXS?py  
    [,bra8f[C  
    C=1;                           @5RbMf{  
    M1=120,                       % integer for amplitude uqotVil,  
    M3=5000;                      % integer for length of coupler hr@kU x  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) #Vy8<Vy&w  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. AONEUSxJ  
    T =40;                        % length of time:T*T0. .#q]{j@Ot  
    dt = T/N;                     % time step `{KdmWhW  
    n = [-N/2:1:N/2-1]';          % Index 8NZQTRdH  
    t = n.*dt;   olv0w ;s  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Cg8s9qE?  
    w=2*pi*n./T; :kMF.9U:  
    g1=-i*ww./2; AAXlBY6Y-  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; \V(w=   
    g3=-i*ww./2; FG:t2ea  
    P1=0; IRknD3LX  
    P2=0; oNEjlV*  
    P3=1; +dG3/vV  
    P=0; +^<s'  
    for m1=1:M1                 { 1eW*9  
    p=0.032*m1;                %input amplitude <rihi:4K  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 \Ota~A  
    s1=s10; Z g.La<#  
    s20=0.*s10;                %input in waveguide 2 h`n) b  
    s30=0.*s10;                %input in waveguide 3 y9Q #%a8V  
    s2=s20; 9,?7mgZ p  
    s3=s30; rD;R9b"J  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ]*Cq'<h$  
    %energy in waveguide 1 ^qY?x7mx1  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   S[;d\Z]~  
    %energy in waveguide 2 XiL[1JM  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   G"F)t(iX  
    %energy in waveguide 3 6}cN7wnm j  
    for m3 = 1:1:M3                                    % Start space evolution uXouN$&  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS |}o6N5)  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; im3BQIPR  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ^)E# c  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 60R]Q  
       sca2 = fftshift(fft(s2)); +;ylld  
       sca3 = fftshift(fft(s3)); M <nH  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   w{WEYS  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); gX|We}H  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Y 8n*o3jM  
       s3 = ifft(fftshift(sc3)); $(]E$ek  
       s2 = ifft(fftshift(sc2));                       % Return to physical space :+_  
       s1 = ifft(fftshift(sc1)); ~f:"Q(f+  
    end  y 2C Jk~  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); h e[2,  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); iv ~<me0F  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); "-Yj~  
       P1=[P1 p1/p10]; 1)#dgsa  
       P2=[P2 p2/p10]; }60/5HNr  
       P3=[P3 p3/p10]; | Rj"}SC  
       P=[P p*p]; CjGQ  
    end /PKu",Azj  
    figure(1) F!<!)_8Q  
    plot(P,P1, P,P2, P,P3); /5Sd?pW;  
    !'#GdRstv  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~