切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9201阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 p),* 4@2<  
    un!v1g9O  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of JW><&hY$"  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of P 0+@,kM  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2G-"HOG  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 yU/?4/G!  
    "|J6*s   
    %fid=fopen('e21.dat','w'); aY,Bt  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |uz<)  
    M1 =3000;              % Total number of space steps t oDi70o  
    J =100;                % Steps between output of space gfN=0Xj4  
    T =10;                  % length of time windows:T*T0 '{~[e**  
    T0=0.1;                 % input pulse width Kv1~,j6  
    MN1=0;                 % initial value for the space output location k ?6d\Q  
    dt = T/N;                      % time step Hc<@T_h+2  
    n = [-N/2:1:N/2-1]';           % Index IQC[ewk  
    t = n.*dt;   ^{IZpT3  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 'l!\2Wv2  
    u20=u10.*0.0;                  % input to waveguide 2 \WnTpl>B  
    u1=u10; u2=u20;                 S]%,g%6i  
    U1 = u1;   SX'NFdY  
    U2 = u2;                       % Compute initial condition; save it in U rxMo7px@}I  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. q$yg^:]2  
    w=2*pi*n./T; >Ho=L)u  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F~E)w5?\O  
    L=4;                           % length of evoluation to compare with S. Trillo's paper uSI@Cjp  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 PX^ k;  
    for m1 = 1:1:M1                                    % Start space evolution rxol7"2l  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 2uT6M%OC  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; t>%b[(a  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 3}phg  
       ca2 = fftshift(fft(u2)); z8S]FpM6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation HH6H4K3Zj  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   d)biMI}<5  
       u2 = ifft(fftshift(c2));                        % Return to physical space k0PwAt)65  
       u1 = ifft(fftshift(c1)); $$0 < &  
    if rem(m1,J) == 0                                 % Save output every J steps. wDoCc:  
        U1 = [U1 u1];                                  % put solutions in U array ]<YS7.pT  
        U2=[U2 u2]; _8K8Ai-~.>  
        MN1=[MN1 m1]; 8r[TM  
        z1=dz*MN1';                                    % output location aw lq/  
      end [];wP '*  
    end ,%x2SyA  
    hg=abs(U1').*abs(U1');                             % for data write to excel %nq<nfDT  
    ha=[z1 hg];                                        % for data write to excel ,Js_d  
    t1=[0 t']; %YF /=l  
    hh=[t1' ha'];                                      % for data write to excel file fk?!0M6d  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format @VOegf+N  
    figure(1) FdnLxw  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @V^.eVM\R  
    figure(2) O"TVxP:  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn =Oh$pZRymu  
    P%yL{  
    非线性超快脉冲耦合的数值方法的Matlab程序 Z|UVH  
    6=JJ!`"<2  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   q3/4l%"X  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {df;R|8 l  
    .i_ gE5  
    3HP { a  
    H*0g*(  
    %  This Matlab script file solves the nonlinear Schrodinger equations HES$. a  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Fq+Cr?-  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "N &ix*($  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ph(LsPT-  
    [-Y~g%M  
    C=1;                           ~MB)}!S:  
    M1=120,                       % integer for amplitude F:<+}{Av  
    M3=5000;                      % integer for length of coupler N`N=}&v ]  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ] X]!xvN@  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. /i@.Xg@:  
    T =40;                        % length of time:T*T0. hB\BFVUSn/  
    dt = T/N;                     % time step s/~[/2[bnf  
    n = [-N/2:1:N/2-1]';          % Index :&z!o"K  
    t = n.*dt;   Q2)5A& U\  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. s2N'Ip  
    w=2*pi*n./T; \&V[<]  
    g1=-i*ww./2; 8aRmHy"9l  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; BSSehe*  
    g3=-i*ww./2; @g#| srYD  
    P1=0; 3 Z SU^v  
    P2=0; *Z.{1  
    P3=1; cJwe4c6.m  
    P=0;  r?0w5I  
    for m1=1:M1                 d^IX(y*$  
    p=0.032*m1;                %input amplitude 5)k/ 4l '  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 y<`:I|y  
    s1=s10; ~KGE(o4p  
    s20=0.*s10;                %input in waveguide 2 u|ihUE!h  
    s30=0.*s10;                %input in waveguide 3 y}U'8*,  
    s2=s20; @c8RlW/A  
    s3=s30; q(s0dkrj  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   w\Q(wH'  
    %energy in waveguide 1 bfJ<~ss/  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   qB$QC  
    %energy in waveguide 2 &V &beq4)p  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   5>1c4u`x  
    %energy in waveguide 3 FRPdfo37  
    for m3 = 1:1:M3                                    % Start space evolution Ug gg!zA  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS =.m/ X>  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; k-s|gC4  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; oM#+Z qP  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform \:n<&<aVSr  
       sca2 = fftshift(fft(s2)); 2"Unk\Y  
       sca3 = fftshift(fft(s3)); 9*n?V;E  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   [["eK9 }0  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); LG("<CU  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); i}<fg*6@E  
       s3 = ifft(fftshift(sc3)); Pa|*Jcr  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ZL!5dT&@W  
       s1 = ifft(fftshift(sc1)); rO1N@kd/  
    end Iz#jR2:yn  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); vf?m6CMU !  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); rF?QI*`Y(  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); cZ.p  
       P1=[P1 p1/p10]; Ve"M8-{oKk  
       P2=[P2 p2/p10]; R >[G6LOG  
       P3=[P3 p3/p10]; 3ox|Mz<aZX  
       P=[P p*p]; [Q8vS;.  
    end li')U  
    figure(1) &)!N5Veb  
    plot(P,P1, P,P2, P,P3); 6k37RpgH  
    eVbT<9k  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~