切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8911阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 , 'pYR]3  
    DsdM:u*s  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of EavBUX$O  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ;As~TGiT  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear v `S5[{6  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .}dLqw  
    7Jb&~{DVk  
    %fid=fopen('e21.dat','w'); [+[ W\6  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) yX&# rI  
    M1 =3000;              % Total number of space steps :w^:Z$-hf  
    J =100;                % Steps between output of space \]x`f3F  
    T =10;                  % length of time windows:T*T0 q`e0%^U  
    T0=0.1;                 % input pulse width $xu2ZBK  
    MN1=0;                 % initial value for the space output location : /5+p>Ep}  
    dt = T/N;                      % time step t #(NfzN  
    n = [-N/2:1:N/2-1]';           % Index 2"6L\8hd2  
    t = n.*dt;   @fd<  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Z!v,;MW  
    u20=u10.*0.0;                  % input to waveguide 2 #]Vw$X_S  
    u1=u10; u2=u20;                 WA n@8!9  
    U1 = u1;   !{ &r|6  
    U2 = u2;                       % Compute initial condition; save it in U "@x( 2(Y&  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. !WyJ@pFU^  
    w=2*pi*n./T; D4$b-?y  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 48p3m) 5  
    L=4;                           % length of evoluation to compare with S. Trillo's paper >\JP X  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ]D6<6OB  
    for m1 = 1:1:M1                                    % Start space evolution H VM %B{(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,88B@a  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ~D5 -G?%$"  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform  *RY}e  
       ca2 = fftshift(fft(u2)); RY5e%/bg~U  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation k7Nx#%xx  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   M.g2y&8  
       u2 = ifft(fftshift(c2));                        % Return to physical space 4f j}d.?  
       u1 = ifft(fftshift(c1)); H [+'>Id:  
    if rem(m1,J) == 0                                 % Save output every J steps. 8i6iynR  
        U1 = [U1 u1];                                  % put solutions in U array 3n2^;b/]  
        U2=[U2 u2]; caEIE0H~  
        MN1=[MN1 m1]; wo9R :kQ  
        z1=dz*MN1';                                    % output location frbd{o  
      end &wNr2PHd#  
    end zZ}. 2He8  
    hg=abs(U1').*abs(U1');                             % for data write to excel m#h`iW  
    ha=[z1 hg];                                        % for data write to excel 6UIS4 _   
    t1=[0 t']; jHq+/\  
    hh=[t1' ha'];                                      % for data write to excel file 2K~v`c*4  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format CQ!D{o=  
    figure(1) PCCE+wC6  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn y95  #t  
    figure(2) Z@q1&}D!  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn xEG:KSH  
    H8HH) ^  
    非线性超快脉冲耦合的数值方法的Matlab程序 @!$xSH  
    *r>Y]VG;S  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ZZi 9<g1  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d Np%=gIj  
    "4XjABJ4'  
    5!Er ;e  
    pTAm}  
    %  This Matlab script file solves the nonlinear Schrodinger equations 2 zo>`;l  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of \1R*M  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8?~>FLWTXZ  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ''2:ZXX  
    i% 0 qN  
    C=1;                           ca &zYXy  
    M1=120,                       % integer for amplitude C4E*q3[Y  
    M3=5000;                      % integer for length of coupler QP%AJ[3ea%  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) .yDR2 sW  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. h<IAH Cz;(  
    T =40;                        % length of time:T*T0. u}'m7|)8  
    dt = T/N;                     % time step dnANlNMk?  
    n = [-N/2:1:N/2-1]';          % Index >>=zkPy  
    t = n.*dt;   ,9OER!$y  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. T&dc)t`o  
    w=2*pi*n./T; 6\h*SBI?(  
    g1=-i*ww./2; *"|f!t  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ;&b=>kPlZ  
    g3=-i*ww./2; Y}vV.q  
    P1=0; =)#XZ[#F  
    P2=0; kH06Cb  
    P3=1; Kj"n Id)  
    P=0; %i&am=  
    for m1=1:M1                 f`}u9!jVR  
    p=0.032*m1;                %input amplitude ?zo7.R-Vac  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 |r*y63\T  
    s1=s10; GWx?RIKF  
    s20=0.*s10;                %input in waveguide 2  LWo)x  
    s30=0.*s10;                %input in waveguide 3 45+kwo0  
    s2=s20; Mt4`~`6  
    s3=s30; &Ai +t2  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   j%!xb><  
    %energy in waveguide 1 s_u! RrC  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   *eAt'  
    %energy in waveguide 2 TIV|7nKL  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   %z1hXh#+  
    %energy in waveguide 3 ~N2 [j  
    for m3 = 1:1:M3                                    % Start space evolution AWZ4h,as{  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 'pAq;2AA  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; *@ \LS!N  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; m7,"M~\pX  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ?AQR\)P  
       sca2 = fftshift(fft(s2)); ++kVq$9@y  
       sca3 = fftshift(fft(s3)); \a:-xwUu<  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   uN&49o  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7r3EMX\#Qm  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); P+p:Ed 80  
       s3 = ifft(fftshift(sc3)); N[=R$1\Z  
       s2 = ifft(fftshift(sc2));                       % Return to physical space X)Rh&ui  
       s1 = ifft(fftshift(sc1)); cMUmJH  
    end R*"zLJP  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); E-rGOm" m  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ?cr^.LV|h^  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); $+ \JT/eG9  
       P1=[P1 p1/p10]; c}7Rt|`c  
       P2=[P2 p2/p10]; Nrp1`qY  
       P3=[P3 p3/p10]; ]gb?3a}A  
       P=[P p*p]; B?XqH_=0L  
    end -1F+,+m  
    figure(1) j&?@:Zg v  
    plot(P,P1, P,P2, P,P3); w##$SaTI  
    ~<_P jV  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~