计算脉冲在非线性耦合器中演化的Matlab 程序 p),*4@2<
un!v1g9O
% This Matlab script file solves the coupled nonlinear Schrodinger equations of JW><&hY$"
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of P 0+@,kM
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2G-"HOG
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 yU/?4/G!
"|J6*s
%fid=fopen('e21.dat','w'); aY,Bt
N = 128; % Number of Fourier modes (Time domain sampling points) |uz<)
M1 =3000; % Total number of space steps toDi70o
J =100; % Steps between output of space gfN=0Xj4
T =10; % length of time windows:T*T0 '{~[e**
T0=0.1; % input pulse width Kv1~,j6
MN1=0; % initial value for the space output location k ?6d\Q
dt = T/N; % time step Hc<@T_h+2
n = [-N/2:1:N/2-1]'; % Index IQC[ewk
t = n.*dt; ^{IZpT3
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 'l!\2Wv2
u20=u10.*0.0; % input to waveguide 2 \WnTpl>B
u1=u10; u2=u20; S]%,g%6i
U1 = u1; SX'NFdY
U2 = u2; % Compute initial condition; save it in U rxMo7px@}I
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. q$yg^:]2
w=2*pi*n./T; >Ho=L)u
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F~E)w5?\O
L=4; % length of evoluation to compare with S. Trillo's paper u SI@Cjp
dz=L/M1; % space step, make sure nonlinear<0.05 PX^k;
for m1 = 1:1:M1 % Start space evolution rxol7"2l
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 2uT6M%OC
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; t>%b[(a
ca1 = fftshift(fft(u1)); % Take Fourier transform 3}phg
ca2 = fftshift(fft(u2)); z8S]FpM6
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation HH6H4K3Zj
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift d)biMI}<5
u2 = ifft(fftshift(c2)); % Return to physical space k0PwAt)65
u1 = ifft(fftshift(c1)); $$0<
&
if rem(m1,J) == 0 % Save output every J steps. wDoCc:
U1 = [U1 u1]; % put solutions in U array ]<YS7.pT
U2=[U2 u2]; _8K8Ai-~.>
MN1=[MN1 m1]; 8r[TM
z1=dz*MN1'; % output location aw lq/
end [];wP'*
end ,%x2SyA
hg=abs(U1').*abs(U1'); % for data write to excel %nq<nfDT
ha=[z1 hg]; % for data write to excel ,Js_d
t1=[0 t']; %YF
/=l
hh=[t1' ha']; % for data write to excel file fk?!0M6d
%dlmwrite('aa',hh,'\t'); % save data in the excel format @VOegf+N
figure(1) FdnLxw
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn @V^.eVM\R
figure(2) O"TVxP:
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn =Oh$pZRymu
P%yL{
非线性超快脉冲耦合的数值方法的Matlab程序 Z|UVH
6=JJ!`"<2
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 q3/4l%"X
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {df;R|8l
.i_ gE5
3HP
{
a
H*0g*(
% This Matlab script file solves the nonlinear Schrodinger equations HES$. a
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Fq+Cr?-
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "N&ix*($
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ph(LsPT-
[-Y~g%M
C=1; ~MB)}!S:
M1=120, % integer for amplitude F:<+}{Av
M3=5000; % integer for length of coupler N`N=}&v ]
N = 512; % Number of Fourier modes (Time domain sampling points) ]
X]!xvN@
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. /i@.Xg@:
T =40; % length of time:T*T0. hB\BFVUSn/
dt = T/N; % time step s/~[/2[bnf
n = [-N/2:1:N/2-1]'; % Index :&z!o"K
t = n.*dt; Q2)5A&U\
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. s2N'Ip
w=2*pi*n./T; \&