切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9377阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 TRSOO}  
    ;rNd701p"  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of :L]-'\y  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of =8O}t+U  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear i B%XBR  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !-KCFMvT  
    e-~hS6p(  
    %fid=fopen('e21.dat','w'); b+W)2rFO  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ; Zh9^0  
    M1 =3000;              % Total number of space steps `f%&<,i  
    J =100;                % Steps between output of space P`}$-#DF  
    T =10;                  % length of time windows:T*T0 S2Zx &D/_  
    T0=0.1;                 % input pulse width +VwV5iy[`  
    MN1=0;                 % initial value for the space output location ~GSpl24W<  
    dt = T/N;                      % time step w-J"zC  
    n = [-N/2:1:N/2-1]';           % Index a4%`"  
    t = n.*dt;   ,r@xPZPz:e  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 YQN.Ohtv*F  
    u20=u10.*0.0;                  % input to waveguide 2 }bZ 8-v  
    u1=u10; u2=u20;                 M#ZT2~+CT  
    U1 = u1;   >g=^,G}y  
    U2 = u2;                       % Compute initial condition; save it in U n.@#rBKZ  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. y*w"J3|29  
    w=2*pi*n./T; 8098y,mQe  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T jz|VF,l  
    L=4;                           % length of evoluation to compare with S. Trillo's paper FU[*8^Z  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 g&Z"_7L~  
    for m1 = 1:1:M1                                    % Start space evolution vxb@9 eb!H  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS x,w8r+~5  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; |4=ihB9+  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform SK?I.  
       ca2 = fftshift(fft(u2)); ? 'Cb-C_  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation H4W1\u  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Umij!=GPG^  
       u2 = ifft(fftshift(c2));                        % Return to physical space ?qy*s3 j'M  
       u1 = ifft(fftshift(c1)); Qr<AV:  
    if rem(m1,J) == 0                                 % Save output every J steps. $Tfm/=e  
        U1 = [U1 u1];                                  % put solutions in U array Qy/uB$q{A  
        U2=[U2 u2]; L,#^&9bHa#  
        MN1=[MN1 m1]; YDW|-HIF  
        z1=dz*MN1';                                    % output location ]7*kWc2  
      end VDG|>#[!  
    end 3eWJt\}?B  
    hg=abs(U1').*abs(U1');                             % for data write to excel lHcA j{6  
    ha=[z1 hg];                                        % for data write to excel su}&".e^  
    t1=[0 t']; f#1/}Hq/I  
    hh=[t1' ha'];                                      % for data write to excel file [8.-(-/;  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format V- /YNRV  
    figure(1) XJc ,uj7  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,}KwP*:Z  
    figure(2) pKq]X}[^c  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 9YAM#LBTWi  
    0',[J  
    非线性超快脉冲耦合的数值方法的Matlab程序 Cpe#[mE  
    QPX`l0V  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   z4bN)W )p  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 eIsT!V" 7  
    p=H3Q?HJ}  
    ~JLYhA^'+<  
    @cPflb  
    %  This Matlab script file solves the nonlinear Schrodinger equations a#$N%=j  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !W~QT}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 0t+])>  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 H$Kw=kMw  
    ~}K{e  
    C=1;                           _H8*ReFG  
    M1=120,                       % integer for amplitude S!`:E  
    M3=5000;                      % integer for length of coupler "-P/jk  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Ia#"/`||  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. _W}(!TKO  
    T =40;                        % length of time:T*T0. XC2FF&B&  
    dt = T/N;                     % time step +mLD/gK`  
    n = [-N/2:1:N/2-1]';          % Index zSKKr?{  
    t = n.*dt;   JYQ.EAsr!  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. >nK%^T  
    w=2*pi*n./T; Y[@0qc3UO  
    g1=-i*ww./2; O>%$q8x@i  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9n"V\e_R  
    g3=-i*ww./2; D#ZPq,f  
    P1=0; sBU_Ft  
    P2=0; V 9Hl1\j^  
    P3=1; t0.;nv@A0  
    P=0; e}e6r3faz  
    for m1=1:M1                 y6FKg)  
    p=0.032*m1;                %input amplitude _4v"")Xe  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 8ljuc5,J  
    s1=s10; yPN+W8}f  
    s20=0.*s10;                %input in waveguide 2 W~yLl%  
    s30=0.*s10;                %input in waveguide 3 zqf[Z3  
    s2=s20; !b63ik15O~  
    s3=s30; U <rI!!#9  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   '60//"9>k/  
    %energy in waveguide 1 xCq'[9oU  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   d8o ewkiR  
    %energy in waveguide 2 ^BiP LQ  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   G,|KL" H6  
    %energy in waveguide 3 -?z\5 z  
    for m3 = 1:1:M3                                    % Start space evolution /?P!.!W&  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS |z*>ixK  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; mf9hFy* <4  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; WqQU@sA  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Ha)np  
       sca2 = fftshift(fft(s2)); iD714+N(  
       sca3 = fftshift(fft(s3)); G?ig1PB"#  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   p/&HUQQk  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 96}eR,  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); uY]0dyI  
       s3 = ifft(fftshift(sc3)); V^sc1ak1Q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space !}t-j3bCs  
       s1 = ifft(fftshift(sc1)); n"Z |e tZ4  
    end ;A"\?i Q  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); *HeVACxo  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); kP^*h O!%  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); \=fh-c(J,  
       P1=[P1 p1/p10]; #c:kCZt#  
       P2=[P2 p2/p10]; ``4?a7!!  
       P3=[P3 p3/p10]; !i Jipe5  
       P=[P p*p]; P)hi||[  
    end w & P&7  
    figure(1) "V}qf3 qU  
    plot(P,P1, P,P2, P,P3); 9!#EwPD$#  
    kceyuD$3G  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~