切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9234阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 6`0mta Q  
    qw7@(R'"  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of JCPUM *g8  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %&->%U|'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !@x+q)2  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^K7ic,{  
    {&P FXJ  
    %fid=fopen('e21.dat','w'); R*oXmuOsYA  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) I=7Y]w=  
    M1 =3000;              % Total number of space steps @WQK>-=(3  
    J =100;                % Steps between output of space [6)UhS8  
    T =10;                  % length of time windows:T*T0 ly4s"4v  
    T0=0.1;                 % input pulse width d{3@h+zL  
    MN1=0;                 % initial value for the space output location JXixYwm  
    dt = T/N;                      % time step I.Y['%8,5~  
    n = [-N/2:1:N/2-1]';           % Index ZT[3aXS  
    t = n.*dt;   BnCKSg7V  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 R64!>o"nED  
    u20=u10.*0.0;                  % input to waveguide 2 Ul_M3"Z  
    u1=u10; u2=u20;                 ?9HhG?_x  
    U1 = u1;   Qd_Y\PzS  
    U2 = u2;                       % Compute initial condition; save it in U gP-nluq  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. QDTBWM%  
    w=2*pi*n./T; osOVg0Gyj  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Io|X#\K  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 5jgdbHog]  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 C@Nv;;AlU  
    for m1 = 1:1:M1                                    % Start space evolution ^pS+/ZSi^  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS xy8#2  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6oinidB[l  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform *d(SI<j  
       ca2 = fftshift(fft(u2)); X; 5Jb  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation =?])['VaA  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   d'*]ns  
       u2 = ifft(fftshift(c2));                        % Return to physical space lJzl6&  
       u1 = ifft(fftshift(c1)); X53mzs  
    if rem(m1,J) == 0                                 % Save output every J steps. ESg+n(R  
        U1 = [U1 u1];                                  % put solutions in U array [xfaj'j=@  
        U2=[U2 u2]; h 6%[q x<  
        MN1=[MN1 m1]; 'q>2t}KG  
        z1=dz*MN1';                                    % output location ExSO|g]%  
      end >tG+?Y'{  
    end FG%j {_Ez  
    hg=abs(U1').*abs(U1');                             % for data write to excel TZ;p0^(  
    ha=[z1 hg];                                        % for data write to excel 7 uMd ZpD  
    t1=[0 t']; :s-o0$PlJ  
    hh=[t1' ha'];                                      % for data write to excel file DY{cQb  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format nRb^<cZf  
    figure(1) KECElK3uj  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Nwc!r (  
    figure(2) v)f7};"z   
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn /ahNnCtu?1  
    1|ZhPsD.}g  
    非线性超快脉冲耦合的数值方法的Matlab程序 3L _I[T$s  
    1/ZR*f a  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   #fs|BV !  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o5Y2vmz?9  
    6al=Cwf  
    9p@C4oen  
    ~AG$5!  
    %  This Matlab script file solves the nonlinear Schrodinger equations pO~c<d}b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of BHj\G7,S  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fd8!KO  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 kax\h  
    U@Tj B  
    C=1;                           JR9$. fGJ  
    M1=120,                       % integer for amplitude D H^T x  
    M3=5000;                      % integer for length of coupler Y-~~,Yl~  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) td{O}\s7D  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .5> 20\b2  
    T =40;                        % length of time:T*T0. wP"q<W g  
    dt = T/N;                     % time step .wK1El{bf  
    n = [-N/2:1:N/2-1]';          % Index ?@R")$  
    t = n.*dt;   u-DK_^v4M  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. HFo-4"  
    w=2*pi*n./T; LS.r%:$mb  
    g1=-i*ww./2; 0 nW F  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; MR'o{?{e`  
    g3=-i*ww./2; XD-^w_  
    P1=0; mzD^ Y<LTd  
    P2=0; zzZg$9PT[  
    P3=1; uH\kQ9f  
    P=0; *s)}Bj  
    for m1=1:M1                 RbQ <m!A  
    p=0.032*m1;                %input amplitude +`bC%\T8?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ad n|N  
    s1=s10; >O]s&34  
    s20=0.*s10;                %input in waveguide 2 z,*:x4}F  
    s30=0.*s10;                %input in waveguide 3 7;LO2<|1  
    s2=s20; ~fzuwz  
    s3=s30; Y:x/!-  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   H5nS%D  
    %energy in waveguide 1 vz`@x45K  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   N dR ]  
    %energy in waveguide 2 lQ*eH10H  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ?\H.S9CZ^  
    %energy in waveguide 3 rOl6lQW  
    for m3 = 1:1:M3                                    % Start space evolution A8?[6^%O|  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ;RN8\re  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; =^h~!ovj:  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; o;`!kIQ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Jp;k+ "<q  
       sca2 = fftshift(fft(s2)); 8&}~'4[b[$  
       sca3 = fftshift(fft(s3)); 'pP-rdx  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   @?&Wm3x9  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); $W!]fcZlB  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); hSqMaX%G  
       s3 = ifft(fftshift(sc3)); P#G.lft"O  
       s2 = ifft(fftshift(sc2));                       % Return to physical space zp=!8Av  
       s1 = ifft(fftshift(sc1)); o;J;*~g  
    end X<MpN5%|Wo  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); f\ "`7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~v: #zU  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 8?jxDW a  
       P1=[P1 p1/p10]; p/|(,)'+jx  
       P2=[P2 p2/p10]; : d'65KMi  
       P3=[P3 p3/p10]; x3p9GAd#  
       P=[P p*p]; T$b\Q  
    end 9NIy#  
    figure(1) 4nX(:K}>  
    plot(P,P1, P,P2, P,P3); Uh6mGL z*&  
    c%<2z  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~