切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9392阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Z}6^ve  
    dl]#  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of :$3oFN*g  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of LRb, VD:/Y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~.g3ukt  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B 9dt=j3j2  
    [5d2D,)  
    %fid=fopen('e21.dat','w'); clO,}Ph>  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) MjL)IgT  
    M1 =3000;              % Total number of space steps c,\i"=!$  
    J =100;                % Steps between output of space &"Ux6mF-"  
    T =10;                  % length of time windows:T*T0 bCv{1]RC2  
    T0=0.1;                 % input pulse width 2h=%K/hhY  
    MN1=0;                 % initial value for the space output location oA-:zz> wL  
    dt = T/N;                      % time step !0VfbY9C  
    n = [-N/2:1:N/2-1]';           % Index ]2SI!Ai7  
    t = n.*dt;   S::=85[>z  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 QCOo  
    u20=u10.*0.0;                  % input to waveguide 2 +a@GHx 4-  
    u1=u10; u2=u20;                 i^`9syD  
    U1 = u1;   A#wEuX=[  
    U2 = u2;                       % Compute initial condition; save it in U sY SLmUZ{  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 7E$&2U^Js  
    w=2*pi*n./T; K,ej%Vtz  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T #s-iy+/1oN  
    L=4;                           % length of evoluation to compare with S. Trillo's paper )$%Z:  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 _u0$,Y?&|  
    for m1 = 1:1:M1                                    % Start space evolution Ka!I`Yf  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS cR7wx 0Aj  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; El_Qk[X|A  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform c7uG9  
       ca2 = fftshift(fft(u2)); X@N$Z{  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation IIFMYl gF  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   j V3)2C}  
       u2 = ifft(fftshift(c2));                        % Return to physical space -Yi,_#3{  
       u1 = ifft(fftshift(c1)); zt24qTKL  
    if rem(m1,J) == 0                                 % Save output every J steps. g\fhp{gWB  
        U1 = [U1 u1];                                  % put solutions in U array $RX'(/  
        U2=[U2 u2]; Z3KO90O!8  
        MN1=[MN1 m1]; +FG$x/\*0  
        z1=dz*MN1';                                    % output location :fcM:w&  
      end .1 )RW5|c  
    end Rg&- 0b  
    hg=abs(U1').*abs(U1');                             % for data write to excel LwqC ~N  
    ha=[z1 hg];                                        % for data write to excel B:TR2G9UT  
    t1=[0 t']; +!t}  
    hh=[t1' ha'];                                      % for data write to excel file IE~%=/|  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format <~U4*  
    figure(1) l(W[_ D  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn K]oM8H1  
    figure(2) q}|U4MJm  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn #U7_a{cn"M  
    &$FvWFRh#  
    非线性超快脉冲耦合的数值方法的Matlab程序 6(&Y(/  
    Lz9#A.  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   l*aj#%ha  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z [Xa%~5>5  
    FVsj;  
    <~emx'F|  
    ZM#=`k9  
    %  This Matlab script file solves the nonlinear Schrodinger equations }l0&a!C  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of \kIMDg3}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Et2JxbD  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 w?vVVA  
    9-1#( Y6S  
    C=1;                           8kL4~(hY  
    M1=120,                       % integer for amplitude *V^ #ga#A  
    M3=5000;                      % integer for length of coupler 7v}x?I  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) \{\MxXW  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. !eR3@%4  
    T =40;                        % length of time:T*T0. m4w ') r~  
    dt = T/N;                     % time step &a)eJF]:!  
    n = [-N/2:1:N/2-1]';          % Index P,pnga3Wu  
    t = n.*dt;   ~,6b_W p/  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. u0)7i.!M  
    w=2*pi*n./T; [dX`K`k  
    g1=-i*ww./2; *4Fr&^M\  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; mABe'"8  
    g3=-i*ww./2;  l]!9$  
    P1=0; EpPf _ \o  
    P2=0; `s#Hq\C  
    P3=1; /?-7Fg+,  
    P=0; \,UZX&ip  
    for m1=1:M1                 zdun,`6  
    p=0.032*m1;                %input amplitude (P|~>k  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 !<@J6??a}s  
    s1=s10; hqSJ(gs{  
    s20=0.*s10;                %input in waveguide 2 |aToUi.Q%  
    s30=0.*s10;                %input in waveguide 3 Y$8JM  
    s2=s20; R>@uY( >dJ  
    s3=s30; U!5)5c}G  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   dj6*6qX0'^  
    %energy in waveguide 1 S]3Ev#>  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   )U<Y0bZA!  
    %energy in waveguide 2 a?5[k}\  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   u'A#%}3  
    %energy in waveguide 3 ._:nw=Y0<}  
    for m3 = 1:1:M3                                    % Start space evolution OK|qv[  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS `em9T oJV  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; .3pbuU  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; \a^,sV  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform hv$yV%.`  
       sca2 = fftshift(fft(s2)); YA(@5CZ  
       sca3 = fftshift(fft(s3)); #<7O08 :  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   AF,BwLN  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); n";02?@F  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ;(6g\'m  
       s3 = ifft(fftshift(sc3)); {Z;t ^:s#  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #1-xw~_  
       s1 = ifft(fftshift(sc1)); BfTcI)  
    end [|`U6 8}u  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &:*q_$]Oz  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3*S{;p  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); _1Z=q.sC  
       P1=[P1 p1/p10]; ]LPQYL  
       P2=[P2 p2/p10]; v0*N)eqDGd  
       P3=[P3 p3/p10]; O!1TthI  
       P=[P p*p]; (LAXM x  
    end bBxw#_3A?E  
    figure(1) a)-FG P^  
    plot(P,P1, P,P2, P,P3); 2Nc>6  
    1[nG}  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~