计算脉冲在非线性耦合器中演化的Matlab 程序 m&fm<?|
*;Sj&O
% This Matlab script file solves the coupled nonlinear Schrodinger equations of @<;0h|
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of g&&5F>mF
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear B!6?+<J"
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /JJU-A(
%I?uO(
@
%fid=fopen('e21.dat','w'); U }xRvNz
N = 128; % Number of Fourier modes (Time domain sampling points) GXf"a3
M1 =3000; % Total number of space steps y 1z4qSeM
J =100; % Steps between output of space ]Z6==+mCP
T =10; % length of time windows:T*T0 jo/-'Lf{?
T0=0.1; % input pulse width kbiMqiPG
MN1=0; % initial value for the space output location jgbE@IA@!'
dt = T/N; % time step ~:v" TuuK
n = [-N/2:1:N/2-1]'; % Index !Yd7&#s
t = n.*dt; "/g/Lc
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 i#=s_v8
u20=u10.*0.0; % input to waveguide 2 83e{rcs
u1=u10; u2=u20; ,~>A>J
U1 = u1; 7ZqC1
U2 = u2; % Compute initial condition; save it in U CB:G4VqOT
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. .gzNdSE
w=2*pi*n./T; [ lW~v:W
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T gWL'Fl}H
L=4; % length of evoluation to compare with S. Trillo's paper C/U^8,6\n
dz=L/M1; % space step, make sure nonlinear<0.05 |aIY
for m1 = 1:1:M1 % Start space evolution *\L\Bzm
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 5Z@OgR
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; AQ7w5}g+V
ca1 = fftshift(fft(u1)); % Take Fourier transform ?@!dc6
ca2 = fftshift(fft(u2)); ^U)xQD"
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation AT+7!UGL
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift /p}^Tpu
u2 = ifft(fftshift(c2)); % Return to physical space rI23e[
u1 = ifft(fftshift(c1)); `2.[8%6
if rem(m1,J) == 0 % Save output every J steps. ^Q0%_V,
U1 = [U1 u1]; % put solutions in U array B}Qpqa=_c
U2=[U2 u2]; 76Ho\}-U">
MN1=[MN1 m1]; Ahv %Q%m%2
z1=dz*MN1'; % output location 86y)+h`
end sT
]JDC6
end nJC/yS|
hg=abs(U1').*abs(U1'); % for data write to excel +`'=K ;{U
ha=[z1 hg]; % for data write to excel {$5?[KD
t1=[0 t']; OTwIR<_B+
hh=[t1' ha']; % for data write to excel file ^}8qPBz
%dlmwrite('aa',hh,'\t'); % save data in the excel format dTcrJ|/Y
figure(1) =Kqb
V{!
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn =n7QL QU
figure(2) }M*yE]LL;Z
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn tX)l_?jVH
V'alzw7#
非线性超快脉冲耦合的数值方法的Matlab程序 JB[n]|
dX^ ^
@7
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 yUd>EnQna
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \%[sv@P9s
F/.nr
p$.m=+K~
oU"!"t
% This Matlab script file solves the nonlinear Schrodinger equations t`%Xxxu
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of K;)(fc
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;@/^hk{A
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #O<,
{Qv Whf
C=1; v%^"N_]
M1=120, % integer for amplitude Z8 eB5!$
M3=5000; % integer for length of coupler |YEq<wbQ
N = 512; % Number of Fourier modes (Time domain sampling points) wjEyU:
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. bSJ@
5qS
T =40; % length of time:T*T0. v_G1YC7TU
dt = T/N; % time step Fw.df<
n = [-N/2:1:N/2-1]'; % Index FqwH:Fcr:
t = n.*dt; X?f\j"v
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
}%)]b*3
w=2*pi*n./T; [8%R*}
g1=-i*ww./2; \k
9EimT}
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; dBRK6hFC
g3=-i*ww./2; ?2q4dx0
P1=0; dQ#$(<v[
P2=0; hlKM4JT\
P3=1; yX7P5c.
P=0; H;w8[ImK
for m1=1:M1 xky +"
p=0.032*m1; %input amplitude H"5=z7w
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 -}x( MZ
s1=s10; Lqa|9|!
s20=0.*s10; %input in waveguide 2 U,Q
s30=0.*s10; %input in waveguide 3 " i!Xiy~
s2=s20; 9Ib#A
s3=s30; dQljG.PiK
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); i U"2uLgb
%energy in waveguide 1 ;X;q8J^_K_
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); }t%2giJ
%energy in waveguide 2 BZP{{
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); [x[nTIg
%energy in waveguide 3 ;M<R
e
for m3 = 1:1:M3 % Start space evolution z{m%^,Cs,
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS Qo\+FkhYq
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; +d!"Zy2|B
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Bcl6n@{2f
sca1 = fftshift(fft(s1)); % Take Fourier transform [6cF#_)*
sca2 = fftshift(fft(s2)); r7FFZNs!
sca3 = fftshift(fft(s3)); JavSR1_
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift CpLLsp hy
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 2'U+QK@
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2%_UOEayU
s3 = ifft(fftshift(sc3)); FKWL{"y
s2 = ifft(fftshift(sc2)); % Return to physical space a8}!9kL
s1 = ifft(fftshift(sc1)); 1| XC$0
end 2A&Y