计算脉冲在非线性耦合器中演化的Matlab 程序 +X}i%F'
*H>rvE.K?
% This Matlab script file solves the coupled nonlinear Schrodinger equations of {@Mr7*u
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {$*N1$(%
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &p0e)o~Ux
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vF$i"^;tJ;
N;7/C
%fid=fopen('e21.dat','w'); wp[Ug2;G
N = 128; % Number of Fourier modes (Time domain sampling points) Vz{+3vfra6
M1 =3000; % Total number of space steps 6cQgp]%
J =100; % Steps between output of space <n"BPXF~
T =10; % length of time windows:T*T0 [6/QUD8
T0=0.1; % input pulse width QTV*m>D
MN1=0; % initial value for the space output location cr7MvXF-
dt = T/N; % time step XYE|=Tr]
n = [-N/2:1:N/2-1]'; % Index %u -x9
t = n.*dt; G#M)5'Q]U
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 EE/mxN(<
u20=u10.*0.0; % input to waveguide 2 ; *
[:~5Wc
u1=u10; u2=u20; o5<<vvdA
U1 = u1; l'@-?p(Vuw
U2 = u2; % Compute initial condition; save it in U k;WD[SV
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. GK(CuwJe
w=2*pi*n./T; P&-o>mM
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 92+8zX
L=4; % length of evoluation to compare with S. Trillo's paper
{pzj@b 1S
dz=L/M1; % space step, make sure nonlinear<0.05 p{FI_6db
for m1 = 1:1:M1 % Start space evolution KWTV!Wxb=K
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS ]BQYVx/
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; t>"%exdoZ
ca1 = fftshift(fft(u1)); % Take Fourier transform x-^6U
ca2 = fftshift(fft(u2)); gT+/nSrLV
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation xNP_>Qa~
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift D7Q+w
u2 = ifft(fftshift(c2)); % Return to physical space gr=h!'m
u1 = ifft(fftshift(c1)); p7h#.m~Qu
if rem(m1,J) == 0 % Save output every J steps. 1+o]+Jz|
U1 = [U1 u1]; % put solutions in U array +^)v"@,VP
U2=[U2 u2]; P T"}2sR)
MN1=[MN1 m1]; _KT!OYH
z1=dz*MN1'; % output location ,pNx(a
end R[WiW RfD
end }`"`VLh
hg=abs(U1').*abs(U1'); % for data write to excel 4
1_gak;
ha=[z1 hg]; % for data write to excel jm_-f
t1=[0 t']; 7>JYwU{
hh=[t1' ha']; % for data write to excel file
&)eg3P)7
%dlmwrite('aa',hh,'\t'); % save data in the excel format +)]YvZ6%[,
figure(1) p!.~hw9
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn g(7-3q8eq
figure(2) J~YT~D2L
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn GK?ual1
'U@o!\=a
非线性超快脉冲耦合的数值方法的Matlab程序 h}bfZL
KKeMi@N
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 QYJ
EUC@
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 i`,FXF)
?Ua,ba*
49$P
Zg;$vIhn
% This Matlab script file solves the nonlinear Schrodinger equations UHBXq;?&q
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of pO]gf$
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^aFm6HS1
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *Cy54Z#
&&ioGy}1
C=1; ^xo<$zn
M1=120, % integer for amplitude UA[`{rf
M3=5000; % integer for length of coupler 5*0zI\
N = 512; % Number of Fourier modes (Time domain sampling points) ,'#TdLe
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. qsj{0 Go
T =40; % length of time:T*T0. F_-Lu]*
dt = T/N; % time step f~IJ4T2#N
n = [-N/2:1:N/2-1]'; % Index b*|~F
t = n.*dt; ^:nc'C gP
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. XTol|a=
w=2*pi*n./T; f%Q)_F[0D4
g1=-i*ww./2; R!nf^*~
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; A|A~$v("R
g3=-i*ww./2; /-=fWtA
P1=0; {>&~kM@
P2=0; De $AJl
P3=1; ju~$FNt8R
P=0; b0P3S!E
for m1=1:M1 dBWny&
p=0.032*m1; %input amplitude Z9{~t
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 A=|XlP$6
s1=s10; _\!]MV
s20=0.*s10; %input in waveguide 2 MJn-] E
s30=0.*s10; %input in waveguide 3 }nx)|J*p
s2=s20; 0.GFg${v`
s3=s30; ,0l
Od<
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); \Lx=iKs<
%energy in waveguide 1 4vhf!!1
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); =C %)(|
%energy in waveguide 2 <'y<8gpM
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); q?,PFvs"
%energy in waveguide 3 ;\MWxh,K
for m3 = 1:1:M3 % Start space evolution Pz4#>tP
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS 1ni+)p>]
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; K;K0D@>]HR
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ;Iu _*U9)
sca1 = fftshift(fft(s1)); % Take Fourier transform 0b&