切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7429阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 s\d3u`G  
    s,_+5ukv  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ^(;x-d3  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of gclj:7U  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear iF`_-t/k  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1sXCu|\q  
    KGJSGvo+y  
    %fid=fopen('e21.dat','w'); z_'^=9m  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) WoXAOj%iW  
    M1 =3000;              % Total number of space steps rai'x/Ut}+  
    J =100;                % Steps between output of space j"jssbu}  
    T =10;                  % length of time windows:T*T0 B>i%:[-e  
    T0=0.1;                 % input pulse width 1XN%&VR>^D  
    MN1=0;                 % initial value for the space output location <);j5)/  
    dt = T/N;                      % time step `6rLd>=R  
    n = [-N/2:1:N/2-1]';           % Index )nHMXZ>Td  
    t = n.*dt;   }P2*MrkcHB  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 yl>^QMmo  
    u20=u10.*0.0;                  % input to waveguide 2 i<S \x  
    u1=u10; u2=u20;                 m !:F/?B  
    U1 = u1;   ta&z lZt  
    U2 = u2;                       % Compute initial condition; save it in U UW":&`i  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. k[mp(  
    w=2*pi*n./T; D?ic~-&  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 7UBW3{d/u5  
    L=4;                           % length of evoluation to compare with S. Trillo's paper nIH(2j  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @IL@|Srs8  
    for m1 = 1:1:M1                                    % Start space evolution k8E2?kbF  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,% yC4  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; J|xXo  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 9@t&jznt<  
       ca2 = fftshift(fft(u2)); T \34<+n1N  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation tLJ 7tnB  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   u9;3Xn8  
       u2 = ifft(fftshift(c2));                        % Return to physical space e`+  
       u1 = ifft(fftshift(c1)); GGHMpQ   
    if rem(m1,J) == 0                                 % Save output every J steps. ~a=]w#-KD  
        U1 = [U1 u1];                                  % put solutions in U array ';eAaDM  
        U2=[U2 u2]; n}NUe`E_h  
        MN1=[MN1 m1]; fCa lR7!  
        z1=dz*MN1';                                    % output location v2|zIZ  
      end wB8548C}-  
    end +2E~=xX  
    hg=abs(U1').*abs(U1');                             % for data write to excel CEk [&39"  
    ha=[z1 hg];                                        % for data write to excel #d8]cm=  
    t1=[0 t']; 34k(:]56|  
    hh=[t1' ha'];                                      % for data write to excel file Q]/g=Nn ^~  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _u-tRHh|A  
    figure(1) j.Y!E<e4]  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn >Dv=lgPF  
    figure(2) 7<jr0)  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn !OV+2suu1  
    7OZ0;fK  
    非线性超快脉冲耦合的数值方法的Matlab程序 7TX$  
    #\~m}O,  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    K0*er  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -b%' K}.C  
    U&kdR+dB  
    *[nS*D\:  
    :@~3wD[y  
    %  This Matlab script file solves the nonlinear Schrodinger equations -}qay@cDt  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of  mznE Cy  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 9MRe?  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Xa8_kv_  
    =aT8=ihP  
    C=1;                           i+-Y"vRi  
    M1=120,                       % integer for amplitude gO~>*q &  
    M3=5000;                      % integer for length of coupler -% B)+yq>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) .:['&; k  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. @ceL9#:uc  
    T =40;                        % length of time:T*T0. ^YPw'cZZ&  
    dt = T/N;                     % time step TGPdi5Eq  
    n = [-N/2:1:N/2-1]';          % Index P`hg*"<V  
    t = n.*dt;   q[Y* .%~  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. mpCKF=KL.  
    w=2*pi*n./T; K0^+2lx  
    g1=-i*ww./2; Rm.9`<Y  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; b|Ed@C  
    g3=-i*ww./2; 9hwn,=Vh)  
    P1=0; h1_KZ[X  
    P2=0; wCr+/" t  
    P3=1; e3&.RrA  
    P=0; $/i;UUd  
    for m1=1:M1                 'UCF2 L  
    p=0.032*m1;                %input amplitude =dC5q{  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +QrbW  
    s1=s10; .=b)Ae c  
    s20=0.*s10;                %input in waveguide 2 1lUY27MF  
    s30=0.*s10;                %input in waveguide 3 g|3FJA/  
    s2=s20; bO{wQ1)Z_  
    s3=s30; \h/aD1 &g  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Y'LIk Q\  
    %energy in waveguide 1 Ps MCs|*  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ;(Qm<JAa  
    %energy in waveguide 2 h "r)z6Q/  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   T xwZ3E  
    %energy in waveguide 3 `Axn  
    for m3 = 1:1:M3                                    % Start space evolution Yg7C"3;Vt  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (OK;*ZH+T@  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; oxm3R8 S  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Hb *&&  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform n|iO)L\9aB  
       sca2 = fftshift(fft(s2)); ;i&'va$  
       sca3 = fftshift(fft(s3)); g TP0:  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   G&*2h2,]  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); *FUbKr0  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); [<{+tAdn)  
       s3 = ifft(fftshift(sc3)); ny~~xQ"  
       s2 = ifft(fftshift(sc2));                       % Return to physical space AA,n.;zy<  
       s1 = ifft(fftshift(sc1)); }" 'l8t0?  
    end V`"A|Y  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Y;XEC;PXD  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); fL&bN[XA"$  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); %,*{hhfu  
       P1=[P1 p1/p10]; gg%OOvaj5  
       P2=[P2 p2/p10]; ;/Dp  
       P3=[P3 p3/p10]; Dx27s  
       P=[P p*p]; .qBf`T;  
    end HI30-$9  
    figure(1) 1e#}+i!a  
    plot(P,P1, P,P2, P,P3); t1YVE%`w  
    * 7 o(  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~