计算脉冲在非线性耦合器中演化的Matlab 程序 #|PPkg%v<
J#.f%VJ
% This Matlab script file solves the coupled nonlinear Schrodinger equations of Cn"_x
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1.9bU/X
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear WC Tmf8f
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "Jahc.I
8H'ybfed
%fid=fopen('e21.dat','w'); w"`Zf7a{/
N = 128; % Number of Fourier modes (Time domain sampling points) mXY G^}
M1 =3000; % Total number of space steps FR9w0{o
J =100; % Steps between output of space
=oE(ur
T =10; % length of time windows:T*T0 p<
Y-b,&
T0=0.1; % input pulse width Ux,?\Vd
MN1=0; % initial value for the space output location eOoqH$
i
dt = T/N; % time step U[0x\~[$K
n = [-N/2:1:N/2-1]'; % Index ^4b;rLfk@
t = n.*dt; 6i+<0b}!/
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 Y#,&Tu
u20=u10.*0.0; % input to waveguide 2 z@g%9|U
u1=u10; u2=u20; (ZPl~ZO
U1 = u1; <ni_78
U2 = u2; % Compute initial condition; save it in U 0OXl`V`w
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. /Nc)bF%gX
w=2*pi*n./T; 0BwxPD#6bv
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T #<LJns\t
L=4; % length of evoluation to compare with S. Trillo's paper )/t&a$[
dz=L/M1; % space step, make sure nonlinear<0.05 ZveNe~D7C
for m1 = 1:1:M1 % Start space evolution bm*.*A]
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS {q/;G!ON.S
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; e#U@n
j6
ca1 = fftshift(fft(u1)); % Take Fourier transform r|63T%q!
ca2 = fftshift(fft(u2)); 4se6+oJe
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation gSa !zQN6
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift A`--*$ 8\
u2 = ifft(fftshift(c2)); % Return to physical space w%?Zb[!&
u1 = ifft(fftshift(c1)); V3%
>TNp
if rem(m1,J) == 0 % Save output every J steps. CnpQdI
U1 = [U1 u1]; % put solutions in U array {wDq*va
U2=[U2 u2]; *@ {
MN1=[MN1 m1]; qeW.~B!B
z1=dz*MN1'; % output location y6dQ4Whv&
end rB|1<jR
end =@nE:uto]
hg=abs(U1').*abs(U1'); % for data write to excel J-|&[-Z
ha=[z1 hg]; % for data write to excel )oALB vX
t1=[0 t']; O14\_eAu6
hh=[t1' ha']; % for data write to excel file cL<,]%SkE
%dlmwrite('aa',hh,'\t'); % save data in the excel format bv;.6C(T<
figure(1) ~?4BP%g-y
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn W
]$/qyc&J
figure(2) qSDn 0^y
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn S"VO@)d
**\?-*c=U
非线性超快脉冲耦合的数值方法的Matlab程序 &mW7FR'(
S
n<X
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Bq;GO
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +1a3^A\
QH,Fw$1
1:iB1TclP
<-mhz`^
% This Matlab script file solves the nonlinear Schrodinger equations ?@z/#3b
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !PA ><F
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !>"fDz<w`
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jo?[M
o[1#)&
C=1; Q 5hOVD%
M1=120, % integer for amplitude Z4X, D`s
M3=5000; % integer for length of coupler GKbbwT0T|
N = 512; % Number of Fourier modes (Time domain sampling points) fLpWTkr0
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. h56Kmxxk
T =40; % length of time:T*T0. kS35X)-
dt = T/N; % time step kdWUz(
n = [-N/2:1:N/2-1]'; % Index #1C]ZV] B
t = n.*dt; w=CzPNRHH!
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. U {Knjo S
w=2*pi*n./T; 1{5t.
g1=-i*ww./2; eh%{BXW[p
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; &qK:LHhj
g3=-i*ww./2; u|Oc+qA(
P1=0; n!.=05OtX
P2=0; c3Gy1#f:#2
P3=1; %Oo
f/q
P=0; D^2lb"3
for m1=1:M1 6uv~.-T<l
p=0.032*m1; %input amplitude IBvn
q8\
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 3;FV^V'
s1=s10; SuB8mPn
s20=0.*s10; %input in waveguide 2 ZPY&q&R
s30=0.*s10; %input in waveguide 3 ]kXWeY <
s2=s20; C=|8C70[%N
s3=s30; ]=%6n@z'
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); #s81k@#X
%energy in waveguide 1 _g
fmo
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); o
^ \+Ua
%energy in waveguide 2 Q-!gO
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); +zd/<
%energy in waveguide 3 qp)Wt6 k?
for m3 = 1:1:M3 % Start space evolution
)#8g<]q
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS O_ZYm{T[7
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; r{t6Vv2J
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; zd)QCq
sca1 = fftshift(fft(s1)); % Take Fourier transform
K,JK9)T
sca2 = fftshift(fft(s2)); \gkhSLq
sca3 = fftshift(fft(s3)); 6D[]Jf,9
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift w[\rS`J
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
BdiV
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); lz::6}
s3 = ifft(fftshift(sc3)); ^a`3)WBv8
s2 = ifft(fftshift(sc2)); % Return to physical space -Ci&h
s1 = ifft(fftshift(sc1)); fN&uat