切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9260阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 k2<VUeW5  
    ;'}1   
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of (IIOKx_  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of }v0oFY$u`H  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear GZXUB0W\@)  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 A37Z;/H~k  
    B:qZh$YN  
    %fid=fopen('e21.dat','w'); _ 97F  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) zJ3{!E}`v  
    M1 =3000;              % Total number of space steps /ta-jOcRH&  
    J =100;                % Steps between output of space hP`3Ao  
    T =10;                  % length of time windows:T*T0 b&HA_G4  
    T0=0.1;                 % input pulse width -g;iMqh#  
    MN1=0;                 % initial value for the space output location w;}P<K  
    dt = T/N;                      % time step [% |i  
    n = [-N/2:1:N/2-1]';           % Index ,U],Wu)  
    t = n.*dt;   3UslVj1u  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 RA>xol~xy  
    u20=u10.*0.0;                  % input to waveguide 2 E:&=A 4 %  
    u1=u10; u2=u20;                 ]*%0CDY6`N  
    U1 = u1;   7$Bq.Lc#z  
    U2 = u2;                       % Compute initial condition; save it in U k U*\Fa*E  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3PpycJ}  
    w=2*pi*n./T; %$`pD I)  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ~BrERUk  
    L=4;                           % length of evoluation to compare with S. Trillo's paper $khWu>b  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 HS="t3  
    for m1 = 1:1:M1                                    % Start space evolution Wl;F]_|*(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 'r(}7>~fC  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; xo6-Y=c8  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform S,n*1&ogj  
       ca2 = fftshift(fft(u2)); qI^6}PB  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation DFVaZN?~  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $;@^coz9U  
       u2 = ifft(fftshift(c2));                        % Return to physical space Dx4?6  
       u1 = ifft(fftshift(c1)); (](:0H  
    if rem(m1,J) == 0                                 % Save output every J steps. hG uRV|`  
        U1 = [U1 u1];                                  % put solutions in U array ~>k<I:BtrT  
        U2=[U2 u2]; &]ts*qCEL  
        MN1=[MN1 m1]; #=OKY@z/  
        z1=dz*MN1';                                    % output location  zy  
      end %g kR G66  
    end 1bYc^(z0  
    hg=abs(U1').*abs(U1');                             % for data write to excel ['tGc{4  
    ha=[z1 hg];                                        % for data write to excel ?`u Y*+u  
    t1=[0 t']; VI74{='=  
    hh=[t1' ha'];                                      % for data write to excel file rNO'0Ck=  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format QPg QM6  
    figure(1) eL0U5>#  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn vfK^^S  
    figure(2) SBzJQt@Hs  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ltwX-   
    #:3ca] k  
    非线性超快脉冲耦合的数值方法的Matlab程序 i!*w'[G->Y  
    g`d5OHvO o  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   <wW#Wnc]  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8uP,#D<wZ  
    #OqQD6  
    E<:XHjm  
    M`q>i B  
    %  This Matlab script file solves the nonlinear Schrodinger equations Dwj!B;AZ_  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9 ]c2ub7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &-:ZM0Fl  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Yev] Lp  
    2RFYnDN  
    C=1;                           T4]/w|?G  
    M1=120,                       % integer for amplitude :rk=(=@8`  
    M3=5000;                      % integer for length of coupler ='`z  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) a:r8Jzr  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. -+Axa[,5=  
    T =40;                        % length of time:T*T0. EeIV6ug  
    dt = T/N;                     % time step 9.{u2a\  
    n = [-N/2:1:N/2-1]';          % Index }3E@]"<cVR  
    t = n.*dt;   E/v.+m  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. E2 Q[  
    w=2*pi*n./T; q6bi{L@/R  
    g1=-i*ww./2; GbUw:I  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; R9A8)dDz  
    g3=-i*ww./2; IDQ@h`"B  
    P1=0; $sTbFY  
    P2=0; ;PCnEs  
    P3=1; \T `InBbf  
    P=0; eee77.@y-p  
    for m1=1:M1                 (OwAhjHE  
    p=0.032*m1;                %input amplitude wzVx16Rvc  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2&MIt(\-  
    s1=s10; Jr$,w7tQn@  
    s20=0.*s10;                %input in waveguide 2 ROlef;/A  
    s30=0.*s10;                %input in waveguide 3 ~b}a|K  
    s2=s20; NRN3*YGo  
    s3=s30; d[E~}Dq3#  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   c7UmR?m  
    %energy in waveguide 1 4[m})X2(  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   tS!Fn Qg4  
    %energy in waveguide 2 m5m}RWZ#  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Aslh}'$}-  
    %energy in waveguide 3 %sxLxx_x!  
    for m3 = 1:1:M3                                    % Start space evolution sU!h^N$  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS }(k#,&Fv`  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; d3-F?i 5d  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 1/X@~  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform =r"-Pm{  
       sca2 = fftshift(fft(s2)); ,cZhkXd  
       sca3 = fftshift(fft(s3)); C))5,aX  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    ,5!&}  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); _&V%idz!0  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2;Vss<hR4A  
       s3 = ifft(fftshift(sc3)); vUm#^/#I  
       s2 = ifft(fftshift(sc2));                       % Return to physical space vT/e&8w  
       s1 = ifft(fftshift(sc1)); Z/-9G  
    end rQmDpoy=  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); jz,Mm,Gi  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); =1Nz* c  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); j/.$ (E   
       P1=[P1 p1/p10]; p]h;M  
       P2=[P2 p2/p10]; -#<6  
       P3=[P3 p3/p10]; }L mhM  
       P=[P p*p]; f@S n1c,Mk  
    end Yc~(W ue  
    figure(1) %Ms"LoK  
    plot(P,P1, P,P2, P,P3); 5Ku=Xzvq  
    O2i7w1t  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~