切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8857阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 [uie]*^  
    b2F1^]p  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of PK?}hz  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ZQz;EV!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <C"}OW8  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (#je0ES  
    +f]I7e:qp  
    %fid=fopen('e21.dat','w'); :1iXBG\  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %iV\nFal>  
    M1 =3000;              % Total number of space steps cEJ_z(\=hr  
    J =100;                % Steps between output of space mMhe,8E&  
    T =10;                  % length of time windows:T*T0 /KvpJ4  
    T0=0.1;                 % input pulse width ~|KMxY(:  
    MN1=0;                 % initial value for the space output location QBoX3w=  
    dt = T/N;                      % time step 8v;T_VN  
    n = [-N/2:1:N/2-1]';           % Index `~=Is.V[  
    t = n.*dt;   l%2B4d9"v  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 R<h0RKiM@  
    u20=u10.*0.0;                  % input to waveguide 2 8r\xQr'8h  
    u1=u10; u2=u20;                 Eh_[8:dK  
    U1 = u1;   -IV-"-6(  
    U2 = u2;                       % Compute initial condition; save it in U &E k\  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ^eYJ7&t  
    w=2*pi*n./T; r:^`005  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T yNx"Ey dk`  
    L=4;                           % length of evoluation to compare with S. Trillo's paper =(k0^ #++G  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 >W8PLo+i  
    for m1 = 1:1:M1                                    % Start space evolution hi]\M)l&x  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS KRcg  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Y50$ 2%kM  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform V|0UwS\n  
       ca2 = fftshift(fft(u2)); Ox/va]e7"  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation oWOH#w  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   p@znmn-  
       u2 = ifft(fftshift(c2));                        % Return to physical space C$B?|oUJc  
       u1 = ifft(fftshift(c1)); s3T 6"%S`  
    if rem(m1,J) == 0                                 % Save output every J steps. zwHTtE  
        U1 = [U1 u1];                                  % put solutions in U array 9Bmgz =8  
        U2=[U2 u2]; w@f_TG"Vt  
        MN1=[MN1 m1]; WHF:> 0B  
        z1=dz*MN1';                                    % output location `[1]wV5(5@  
      end ==j3 9  
    end PsD]gN5"  
    hg=abs(U1').*abs(U1');                             % for data write to excel &9g#Vq%   
    ha=[z1 hg];                                        % for data write to excel 3 ?/}  
    t1=[0 t']; & l|B>{4v  
    hh=[t1' ha'];                                      % for data write to excel file WI'csM;M#  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format |b7>kM}"  
    figure(1) *XzUqK  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1r w>gR  
    figure(2) 9p$q@Bc  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ;6)|'3.B9  
    ^jhHaN]G^  
    非线性超快脉冲耦合的数值方法的Matlab程序 bm7$DKp#  
    anV)$PT=  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   j({L6</x  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 gA) F  
    q C|re!K  
    %F/tbXy{  
    wy&*6>.  
    %  This Matlab script file solves the nonlinear Schrodinger equations ;[ zx'e?!  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of p0YTZS ]h  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear CC87<>V  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >\p}UPx  
    Ul@' z|  
    C=1;                           y! 1NS  
    M1=120,                       % integer for amplitude < ?nr"V  
    M3=5000;                      % integer for length of coupler 6<~y!\4;F  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) +yea}uUE  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. EX5kF  
    T =40;                        % length of time:T*T0. Tp6ysjao  
    dt = T/N;                     % time step F^~#D, \  
    n = [-N/2:1:N/2-1]';          % Index jKQP0 t-  
    t = n.*dt;   G`W+m*[U+M  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1-[{4{R  
    w=2*pi*n./T; &]c9}Ic  
    g1=-i*ww./2; ?3, *  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; LOYv%9$0*p  
    g3=-i*ww./2; (6+0U1[Iz  
    P1=0; Tuy*Df  
    P2=0; ~gDtj&F  
    P3=1; ]- `{kX  
    P=0; gddGl=rm  
    for m1=1:M1                 zj)[Sn tn?  
    p=0.032*m1;                %input amplitude O&0R ~<n  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Q& \k"X1  
    s1=s10; eK@Y] !lz  
    s20=0.*s10;                %input in waveguide 2 >) ^!gz8  
    s30=0.*s10;                %input in waveguide 3 zc(7p;w#p  
    s2=s20; Mt:(w;Y  
    s3=s30; \dMsv1\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   jHZ<G c  
    %energy in waveguide 1 8YJ({ Ou_  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   $_UF9 l0  
    %energy in waveguide 2 & Gt9a-ne  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ;g*6NzdA  
    %energy in waveguide 3 Vqr&)i"b$  
    for m3 = 1:1:M3                                    % Start space evolution j?(QieBH  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS w$!n8A qs  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; -|kDa1knA  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; f<'C<xnf  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform RPWYm  
       sca2 = fftshift(fft(s2)); ;vx9xs?6  
       sca3 = fftshift(fft(s3)); %"6IAt  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   G# C)]4[n  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); StVv"YY  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); s5dh]vNN  
       s3 = ifft(fftshift(sc3)); '37b[~k4  
       s2 = ifft(fftshift(sc2));                       % Return to physical space koU.`l.  
       s1 = ifft(fftshift(sc1)); b,W '0gl  
    end 8K/lpqw  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Kna'5L5"  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 5W48z%MN  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Z-?9F`}  
       P1=[P1 p1/p10]; )wRD  
       P2=[P2 p2/p10]; CAA~VEUL  
       P3=[P3 p3/p10]; !|/fVWH  
       P=[P p*p]; [`lAc V<  
    end BSY#xe V  
    figure(1) -iHhpD9"X  
    plot(P,P1, P,P2, P,P3); U{Z>y?V/  
    yN.D(ZwF:  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~