切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9403阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ZnRT$ l O  
    rR :ZTfJs"  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]"b:IWPeI  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {0w2K82  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :;.^r,QAI  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )~)l^0X  
    uxB)dS  
    %fid=fopen('e21.dat','w'); :ujpLIjvVG  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) (_"Zbw%cJy  
    M1 =3000;              % Total number of space steps ^)?Wm,{"w  
    J =100;                % Steps between output of space (;;ji!i  
    T =10;                  % length of time windows:T*T0 in/~' u  
    T0=0.1;                 % input pulse width {'tfU  
    MN1=0;                 % initial value for the space output location [U/h'A.j  
    dt = T/N;                      % time step \ c4jGJ  
    n = [-N/2:1:N/2-1]';           % Index E`I(x&_  
    t = n.*dt;   aqN{@|  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 \? )S {  
    u20=u10.*0.0;                  % input to waveguide 2 n|)((W  
    u1=u10; u2=u20;                 JR#4{P@A  
    U1 = u1;   J)Y`G4l2@  
    U2 = u2;                       % Compute initial condition; save it in U m9A%Z bQ^  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Rlk3AWl2u  
    w=2*pi*n./T; o=_7KWOA  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T (87| :{  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ioD8-  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 T2S_> #."l  
    for m1 = 1:1:M1                                    % Start space evolution p$9Aadi]  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 6T'UWh0S  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; O^`EuaL  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform A~PR  
       ca2 = fftshift(fft(u2)); G9^`cTvv'8  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation t&?{+?p: 9  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   zP%s]>hH  
       u2 = ifft(fftshift(c2));                        % Return to physical space !i~(h&z  
       u1 = ifft(fftshift(c1)); 17Cb{Q  
    if rem(m1,J) == 0                                 % Save output every J steps. wQUl!s7M;  
        U1 = [U1 u1];                                  % put solutions in U array :vb5J33U  
        U2=[U2 u2]; #4O4,F>e  
        MN1=[MN1 m1]; vvv'!\'#  
        z1=dz*MN1';                                    % output location u_$4xNmQ  
      end 1#6emMV.`  
    end m%`YAD@2z  
    hg=abs(U1').*abs(U1');                             % for data write to excel ]"Uzn  
    ha=[z1 hg];                                        % for data write to excel qIQ=OY=6  
    t1=[0 t']; ih".y3  
    hh=[t1' ha'];                                      % for data write to excel file xyL)'C  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format JE-*o"&  
    figure(1) mG\QF0h  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn (Of6Ij?  
    figure(2) H%@f ^  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn P-Y_$Nv0g  
    ]6^<VC`5D  
    非线性超快脉冲耦合的数值方法的Matlab程序 E+O{^C=  
    'c7nh{F  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   8l5>t  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Pj <U|\-?  
    uKP4ur@1  
    uL/wV~g  
    71R,R,  
    %  This Matlab script file solves the nonlinear Schrodinger equations ce\d35x!  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of qX-ptsQ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 4n1g4c-   
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b!@PS$BTxq  
    d#0:U Y%~  
    C=1;                           4tZ*%!I'  
    M1=120,                       % integer for amplitude adP  :{j  
    M3=5000;                      % integer for length of coupler UA8hYWRP  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Mqd'XU0L  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 60!%^O =  
    T =40;                        % length of time:T*T0. z)^|.  
    dt = T/N;                     % time step HJAiQ[m5s  
    n = [-N/2:1:N/2-1]';          % Index PK2;Ywk`  
    t = n.*dt;   fQa*>**j;  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. WT ;2aS:  
    w=2*pi*n./T; %, psUOY  
    g1=-i*ww./2; G(a5@9F  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; MT&aH~YB  
    g3=-i*ww./2; =tP9n;D  
    P1=0; T ?[28|  
    P2=0; rQimQ|+  
    P3=1; fwz:k]vk  
    P=0; =o##z5j K  
    for m1=1:M1                 &!CVF  
    p=0.032*m1;                %input amplitude t`H1]`c?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 9S|sTf  
    s1=s10; TF/NA\0c$  
    s20=0.*s10;                %input in waveguide 2 O%T?+1E  
    s30=0.*s10;                %input in waveguide 3 o%?)};o  
    s2=s20; .kBkYK8*t  
    s3=s30; *lSu=dk+  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   (+|+ELfqW  
    %energy in waveguide 1 V8M()7uJ  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   3@V?L:J  
    %energy in waveguide 2 27D*FItc  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ,- AF8BP  
    %energy in waveguide 3 dxs5woP  
    for m3 = 1:1:M3                                    % Start space evolution ez'NHodwk2  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS #<*.{"T  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; [ey# ,&T  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @A1f#Ed<  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform e3 v^j$  
       sca2 = fftshift(fft(s2)); "u^Erj# /  
       sca3 = fftshift(fft(s3));  :RnUNz  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   u8zL[] >  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); .|O T#"LP  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); G]ek-[-  
       s3 = ifft(fftshift(sc3)); I8gNg Z  
       s2 = ifft(fftshift(sc2));                       % Return to physical space vkE`T5??  
       s1 = ifft(fftshift(sc1)); "b hK %N;  
    end |0i{z(B  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); _c>ww<*3  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); F\D iT|?}  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); :01d9|#  
       P1=[P1 p1/p10]; yI: ;+K  
       P2=[P2 p2/p10]; zIrOMh  
       P3=[P3 p3/p10]; DJ"PP 5d  
       P=[P p*p]; iM<$ n2t  
    end hQ@k|3=Re  
    figure(1) w.x&3aG  
    plot(P,P1, P,P2, P,P3); Q-oDmjU  
    %/Wk+r9uu  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~