切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9255阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 d#ld*\|  
    X?>S24I"9  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of #A:I|Q1$g  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of jJ55Az?t:  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear xg'0YZ\t  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JB+pd_>5  
    Nj#!L~^h,  
    %fid=fopen('e21.dat','w'); Zs+6Zd4f  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ^Xa-)Pu  
    M1 =3000;              % Total number of space steps hH"3Y}U@  
    J =100;                % Steps between output of space w$Dp m.0(  
    T =10;                  % length of time windows:T*T0 %=#&\ldPS  
    T0=0.1;                 % input pulse width *>_:E6)  
    MN1=0;                 % initial value for the space output location Ba`]Sm=  
    dt = T/N;                      % time step G9E?   
    n = [-N/2:1:N/2-1]';           % Index Q=e?G300#L  
    t = n.*dt;   WpTC,~-  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 p@cPm8L3  
    u20=u10.*0.0;                  % input to waveguide 2 @|-ydm0  
    u1=u10; u2=u20;                  M?}2  
    U1 = u1;   sB7DF<91  
    U2 = u2;                       % Compute initial condition; save it in U R0. `2=  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. kdxs{b"t  
    w=2*pi*n./T; jy&p_v1  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T qmxkmO+Qur  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 50_%Tl[  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 vf5[x!4  
    for m1 = 1:1:M1                                    % Start space evolution NKGo E/  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS &]#D`u  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; mT!~;] RrF  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform w?Q@"^IL  
       ca2 = fftshift(fft(u2)); SvI  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ^gb2=gWZ<  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ;y HA.}  
       u2 = ifft(fftshift(c2));                        % Return to physical space WqYl=%x"{V  
       u1 = ifft(fftshift(c1)); 2a? d:21 B  
    if rem(m1,J) == 0                                 % Save output every J steps. "G`)x+<~Z8  
        U1 = [U1 u1];                                  % put solutions in U array nHZ 4):`  
        U2=[U2 u2]; F+hsIsQ  
        MN1=[MN1 m1]; 6 _73  
        z1=dz*MN1';                                    % output location E(u[?  
      end l8^^ O   
    end YjHGdacs  
    hg=abs(U1').*abs(U1');                             % for data write to excel .Ta$@sPh}  
    ha=[z1 hg];                                        % for data write to excel zlSwKd(  
    t1=[0 t']; ]&}?J:+?0E  
    hh=[t1' ha'];                                      % for data write to excel file , / 4}CM  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 'BUdySng  
    figure(1) J3q}DDnEo  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn tM@TT@.t~  
    figure(2) oO= 6Kd+T  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 2H]&3kM3X  
    Zqx5I~  
    非线性超快脉冲耦合的数值方法的Matlab程序 j4G,Z4  
    >aa-ix &  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ky!'.3yoI  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [dt1%DD`M  
    /]+t$K\cBq  
    hP 9+|am%  
    :+[q `  
    %  This Matlab script file solves the nonlinear Schrodinger equations  \f  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of { 0Leua  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear gVZ~OcB!W  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )0UQy#r  
    $9hOWti  
    C=1;                           Cu/w><h)  
    M1=120,                       % integer for amplitude  Rl 6E  
    M3=5000;                      % integer for length of coupler  Gc SX5c  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) rJ<v1Yb  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. <Pf W  
    T =40;                        % length of time:T*T0. :L\@+}{(c  
    dt = T/N;                     % time step e%UFY-2  
    n = [-N/2:1:N/2-1]';          % Index {},G xrQm  
    t = n.*dt;   !JrVh$K  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 2abWIw4  
    w=2*pi*n./T; y;Dw%m  
    g1=-i*ww./2; >TtkG|/U-T  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; #kV= ;(lq  
    g3=-i*ww./2; jUjQ{eT  
    P1=0; K3\U'bRO  
    P2=0; ii~~xt1  
    P3=1; r!#a.  
    P=0; d3Y#_!)  
    for m1=1:M1                 m3,]j\  
    p=0.032*m1;                %input amplitude Kb4u)~S:  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 &LYU#$sj  
    s1=s10; Iy`Zh@"~  
    s20=0.*s10;                %input in waveguide 2 rGq~e|.O3  
    s30=0.*s10;                %input in waveguide 3 =\_MJ?A$  
    s2=s20; 8 Z#)Xb4  
    s3=s30; Vl'|l)b4W  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   30F&FTW  
    %energy in waveguide 1 e `_ [+y  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ^#"!uCq]gM  
    %energy in waveguide 2 ~W`upx)j  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   9~u1fk{  
    %energy in waveguide 3 x~Pv  
    for m3 = 1:1:M3                                    % Start space evolution 9~>;sjJk  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 6'?Y]K  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; BIX%Bu0'f  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; KZ<zsHX8H  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ZEHz/Y%  
       sca2 = fftshift(fft(s2));  H\)on"  
       sca3 = fftshift(fft(s3)); X"'}1o  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   9Y*6AaKE6  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); tQUp1i{j\  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); w{Dk,9>w)  
       s3 = ifft(fftshift(sc3)); Z mYp!B_~  
       s2 = ifft(fftshift(sc2));                       % Return to physical space >mh:OJH45  
       s1 = ifft(fftshift(sc1)); :IS]|3wD  
    end VN;Sz,1Z  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); .cle^P  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); #9p{Y}2#  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); w,JB`jS)/  
       P1=[P1 p1/p10]; Ok O;V6`  
       P2=[P2 p2/p10]; Ks!.$y:x  
       P3=[P3 p3/p10]; qb "H&)aHw  
       P=[P p*p]; 0y|}}92:  
    end l<^#@SH  
    figure(1) f'R^MX2  
    plot(P,P1, P,P2, P,P3); }U+gJkY2  
    GD.mB[f*  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~