切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9082阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 pzaU'y#PM  
    2,^ > lY  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of H=w):kL|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 2`j{n \/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear N%ccy?B  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <&gs)BY  
    ru6M9\h*  
    %fid=fopen('e21.dat','w'); nK)1.KVN  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) uPapINj  
    M1 =3000;              % Total number of space steps Dsn=fht  
    J =100;                % Steps between output of space uqU&k@  
    T =10;                  % length of time windows:T*T0 *SIYZE'  
    T0=0.1;                 % input pulse width DVMdRfA  
    MN1=0;                 % initial value for the space output location e+F $fQt>  
    dt = T/N;                      % time step i$`o,m#  
    n = [-N/2:1:N/2-1]';           % Index *wY+yoj  
    t = n.*dt;   *po o.Zz  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 e|5@7~Vi  
    u20=u10.*0.0;                  % input to waveguide 2 B~| ]gd  
    u1=u10; u2=u20;                 "A&A?%  
    U1 = u1;   f F)M'C  
    U2 = u2;                       % Compute initial condition; save it in U >;R`Q9s7  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. <2L,+  
    w=2*pi*n./T; ?1c7wEk  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T )UpVGT)  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Bha("kG  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 c q[nqjC=  
    for m1 = 1:1:M1                                    % Start space evolution aG#d41O  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS e$WAf`*  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 8 hhMuh  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform J\w4N",  
       ca2 = fftshift(fft(u2)); BfCnyL%  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation :uB?h1|  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   6R^32VeK($  
       u2 = ifft(fftshift(c2));                        % Return to physical space -mGG:#yP  
       u1 = ifft(fftshift(c1)); /5z,G r  
    if rem(m1,J) == 0                                 % Save output every J steps. :T?WN+3  
        U1 = [U1 u1];                                  % put solutions in U array <66%(J>  
        U2=[U2 u2]; Lwx J:Kz.  
        MN1=[MN1 m1]; esE!i0%  
        z1=dz*MN1';                                    % output location &-p~UZy  
      end /; /:>c  
    end ],[<^=|  
    hg=abs(U1').*abs(U1');                             % for data write to excel MRK=\qjD  
    ha=[z1 hg];                                        % for data write to excel Y\WVkd(+G  
    t1=[0 t']; 8~t8^eBg  
    hh=[t1' ha'];                                      % for data write to excel file HeO&p@  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format n7G`b'  
    figure(1) 3c7i8b$  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn O cPgw/ I  
    figure(2) S)wP];]`K  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn GnUD<P=I  
    1aV32oK  
    非线性超快脉冲耦合的数值方法的Matlab程序 cYe2 a "  
    2Xk;]-T!  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   CLe{9-o  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 On~KTt3Mp  
    [7~AWZU3  
    +9|0\Q  
    G4P*U3&p  
    %  This Matlab script file solves the nonlinear Schrodinger equations 3**t'iWQ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of y!}XlllV  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1 I.P7_/  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8#tuB8>  
    ^b`-zFL7  
    C=1;                           r-L& ee   
    M1=120,                       % integer for amplitude oqysfLJ  
    M3=5000;                      % integer for length of coupler lF.kAEC  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) kZ)}tA7j  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ?PTXgIC  
    T =40;                        % length of time:T*T0. /SS~IhUX  
    dt = T/N;                     % time step xP9h$!  
    n = [-N/2:1:N/2-1]';          % Index ,ayJgAD  
    t = n.*dt;   $N}t)iA  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. YEaT_zWG0  
    w=2*pi*n./T; d0ht*b  
    g1=-i*ww./2; g[t paQ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; [q3zs_nz  
    g3=-i*ww./2; mVYfyLZ,(  
    P1=0; i^iu #WC  
    P2=0; Oso**WUOZ&  
    P3=1; trrK6(p  
    P=0; _izjvg  
    for m1=1:M1                 ^VG].6  
    p=0.032*m1;                %input amplitude IzUpkwN  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ~8mz.ZdY  
    s1=s10; W^xO/xu1 /  
    s20=0.*s10;                %input in waveguide 2 i/'bpGrQ(  
    s30=0.*s10;                %input in waveguide 3 TI l 'Z7  
    s2=s20; yhbU;qEG9  
    s3=s30; r,Xyb`  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Ug546Bz  
    %energy in waveguide 1 +^esL9RG:  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   U_izKvEh  
    %energy in waveguide 2 y9R%%i  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   :;+_<pk  
    %energy in waveguide 3 @MTv4eC}e  
    for m3 = 1:1:M3                                    % Start space evolution |94o P>d  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS +_pfBJ_$%  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; U?{oxy_[2  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ;zo|. YD  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform o@.{|j  
       sca2 = fftshift(fft(s2)); 'NCqI  
       sca3 = fftshift(fft(s3)); j\bp# +  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   6s~B2t:Y  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); :2==7u7v?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); N*$GP3]  
       s3 = ifft(fftshift(sc3)); ys`oHS f  
       s2 = ifft(fftshift(sc2));                       % Return to physical space hF@%k ;I  
       s1 = ifft(fftshift(sc1)); :*|Ua%L_  
    end hbvcIGaT  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); FNF`Z  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); S#8)N`  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); % PB{jo  
       P1=[P1 p1/p10]; & ck}3\sQ  
       P2=[P2 p2/p10]; = <Sn&uL  
       P3=[P3 p3/p10]; =JfwHFHd#  
       P=[P p*p]; h0k?(O  
    end }}]Lf3;  
    figure(1) =:w,wI.  
    plot(P,P1, P,P2, P,P3); (2> q  
    pKq[F*Lut  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~