切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9240阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #|PPkg%v<  
    J#.f%VJ  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Cn"_x  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1.9bU/X  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear WCTmf8f  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "Jahc.I  
    8H'ybfed  
    %fid=fopen('e21.dat','w'); w"`Zf7a{/  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) mXYG^}  
    M1 =3000;              % Total number of space steps FR9w0{o  
    J =100;                % Steps between output of space  =oE(ur  
    T =10;                  % length of time windows:T*T0 p< Y-b,&  
    T0=0.1;                 % input pulse width Ux,?\Vd  
    MN1=0;                 % initial value for the space output location eOoqH$ i  
    dt = T/N;                      % time step U[0x\~[$K  
    n = [-N/2:1:N/2-1]';           % Index ^4b;rLfk@  
    t = n.*dt;   6i+<0b}!/  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Y#,&Tu  
    u20=u10.*0.0;                  % input to waveguide 2 z @g%9 |U  
    u1=u10; u2=u20;                 (ZPl~ZO  
    U1 = u1;   <ni_78  
    U2 = u2;                       % Compute initial condition; save it in U 0OXl`V`w  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. /Nc)bF%gX  
    w=2*pi*n./T; 0BwxPD#6bv  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T #<LJns\t   
    L=4;                           % length of evoluation to compare with S. Trillo's paper )/t&a$[  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ZveNe~D7C  
    for m1 = 1:1:M1                                    % Start space evolution bm*.*A]  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS {q/;G!ON.S  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; e# U@n j6  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform r|63T%q!  
       ca2 = fftshift(fft(u2)); 4s e6+oJe  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation gSa!zQN6  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   A`--*$8\  
       u2 = ifft(fftshift(c2));                        % Return to physical space w%?Zb[!&  
       u1 = ifft(fftshift(c1)); V3% >TNp  
    if rem(m1,J) == 0                                 % Save output every J steps. CnpQdI  
        U1 = [U1 u1];                                  % put solutions in U array {wDq*va  
        U2=[U2 u2]; *@{  
        MN1=[MN1 m1]; qeW.~B!B  
        z1=dz*MN1';                                    % output location y6dQ4Whv&  
      end rB|1<jR  
    end =@nE:uto]  
    hg=abs(U1').*abs(U1');                             % for data write to excel J-|&[-Z  
    ha=[z1 hg];                                        % for data write to excel )oALB vX  
    t1=[0 t']; O14\_eAu6  
    hh=[t1' ha'];                                      % for data write to excel file cL<,]%SkE  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format bv;. 6C(T<  
    figure(1) ~?4 BP%g-y  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn W ]$/qyc&J  
    figure(2) qSDn0^y  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn S"VO@)d  
    **\?-*c=U  
    非线性超快脉冲耦合的数值方法的Matlab程序 &mW7FR'(  
    S n<X   
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Bq;GO  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +1a3^A\  
    QH,Fw$1  
    1:iB1TclP  
    <-mhz`^  
    %  This Matlab script file solves the nonlinear Schrodinger equations ?@z/#3b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of !PA><F  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !>"fDz<w`  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jo?[M  
    o[1#)&  
    C=1;                           Q5hOVD%  
    M1=120,                       % integer for amplitude Z4X, D`s  
    M3=5000;                      % integer for length of coupler GKbbwT0T|  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) fLpWTkr0  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. h56Kmxxk  
    T =40;                        % length of time:T*T0. kS35X)-  
    dt = T/N;                     % time step k dWUz(  
    n = [-N/2:1:N/2-1]';          % Index #1C]ZV] B  
    t = n.*dt;   w=CzPNRHH!  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. U{KnjoS  
    w=2*pi*n./T; 1{5t.  
    g1=-i*ww./2; eh%{BXW[p  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; &qK:LHhj  
    g3=-i*ww./2; u|Oc+qA(  
    P1=0; n!.=05OtX  
    P2=0; c3Gy1#f:#2  
    P3=1; %Oo f/q  
    P=0; D^2lb"3  
    for m1=1:M1                 6uv~.-T<l  
    p=0.032*m1;                %input amplitude IBvn q8\  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 3;FV^V'  
    s1=s10; SuB8mPn  
    s20=0.*s10;                %input in waveguide 2 ZPY&q&R  
    s30=0.*s10;                %input in waveguide 3 ]kXW eY<  
    s2=s20; C=|8C70[%N  
    s3=s30; ]=%6n@z'  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   #s81 k@#X  
    %energy in waveguide 1 _g fmo  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   o ^ \+Ua  
    %energy in waveguide 2 Q-!gO  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   +zd/<  
    %energy in waveguide 3 qp)Wt6 k?  
    for m3 = 1:1:M3                                    % Start space evolution )#8g<]q  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS O_ZYm{T[7  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; r{t6Vv2J  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; zd)QCq  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform K,JK9)T  
       sca2 = fftshift(fft(s2)); \gkhSL q  
       sca3 = fftshift(fft(s3)); 6D[]Jf,9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   w[\rS`J  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);  BdiV  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); lz ::6}  
       s3 = ifft(fftshift(sc3)); ^a`3)WBv8  
       s2 = ifft(fftshift(sc2));                       % Return to physical space -Ci&h  
       s1 = ifft(fftshift(sc1)); fN&uat7  
    end AD^I1 ]2f  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 'e' p`*  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); GB^`A  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); P$0c{B4I  
       P1=[P1 p1/p10]; ;x 2o|#`b  
       P2=[P2 p2/p10]; YvcV801Go  
       P3=[P3 p3/p10]; F81EZ/  
       P=[P p*p]; R|'W#"{@  
    end $.kJBRgV*  
    figure(1) K6 >\4'q  
    plot(P,P1, P,P2, P,P3); 8Z_ 4%vUBg  
    0^dYu /i5  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~