计算脉冲在非线性耦合器中演化的Matlab 程序 a,r
B7aD
l@ (:Q!Sk
% This Matlab script file solves the coupled nonlinear Schrodinger equations of 1aCpeD4|)
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ww #kc!'
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V Ew| N)
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W|y;Kxy
f8`dJ5i
%fid=fopen('e21.dat','w'); WjCxTBI
N = 128; % Number of Fourier modes (Time domain sampling points) EdkIT|c{
M1 =3000; % Total number of space steps ;47z.i&T
J =100; % Steps between output of space 3dSC`K
T =10; % length of time windows:T*T0
SvrUXf
T0=0.1; % input pulse width c*\;!dbP
MN1=0; % initial value for the space output location x*=1C,C
dt = T/N; % time step +C[g>c}d
n = [-N/2:1:N/2-1]'; % Index w~ON861
t = n.*dt; m^=El7+
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 '4Fwh]Ee
u20=u10.*0.0; % input to waveguide 2 ,>8w|951'
u1=u10; u2=u20; 1X&jlD?
U1 = u1; _A])q
U2 = u2; % Compute initial condition; save it in U &/WE{W
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 1j:aGj>{
w=2*pi*n./T; Vxu V`Plf
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T P.QF9%
L=4; % length of evoluation to compare with S. Trillo's paper -6~.;M 5
dz=L/M1; % space step, make sure nonlinear<0.05 NzTF2ve(
for m1 = 1:1:M1 % Start space evolution Ip:54
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS V; CPn
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; C/'w
ca1 = fftshift(fft(u1)); % Take Fourier transform Kf*Dy:e
ca2 = fftshift(fft(u2)); bLAHVi<.
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation bI8uw|c
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift rNTLP
m
u2 = ifft(fftshift(c2)); % Return to physical space _53~D=
u1 = ifft(fftshift(c1)); :O$bsw:3w<
if rem(m1,J) == 0 % Save output every J steps. Wpi35JrC
U1 = [U1 u1]; % put solutions in U array |_>^vW1f
U2=[U2 u2]; U+@U/s%8
MN1=[MN1 m1]; y&-QLX L
z1=dz*MN1'; % output location "WUS?Q
end zsJermF,O
end _B&Lyg!J
hg=abs(U1').*abs(U1'); % for data write to excel ]JV'z<
ha=[z1 hg]; % for data write to excel nSC2wTH!1
t1=[0 t']; " aCAA#$J
hh=[t1' ha']; % for data write to excel file H;l_;c`
%dlmwrite('aa',hh,'\t'); % save data in the excel format dRnf
figure(1) q$mc{F($D
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn stBe ^C
figure(2) fe,6YXUf
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn pDSNI2
2wHbhW[
非线性超快脉冲耦合的数值方法的Matlab程序 ;}"Eqq:
{svo!pN:
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 )<:TpMdUk
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y`Io}h G$
G0Qw&
mqF
IhYR4?e
ZcQu9XDIt
% This Matlab script file solves the nonlinear Schrodinger equations <7`zc7c]#
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of $i5J}
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $
VP1(C
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >[,eK=
I4{xQI
C=1; `+"(GaZ
M1=120, % integer for amplitude X["xC3 i
M3=5000; % integer for length of coupler #c>GjUJ.w
N = 512; % Number of Fourier modes (Time domain sampling points) $?G@ijk,
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. ng"=vmu
T =40; % length of time:T*T0. hN
&?x5aC>
dt = T/N; % time step }:
HG)V
n = [-N/2:1:N/2-1]'; % Index kzDN(_<1
t = n.*dt; )J}v.8
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Oo}h:3?
w=2*pi*n./T; O'mcN*
g1=-i*ww./2; bYnq,JRA
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; J-5>+E,nZ
g3=-i*ww./2; K+F"V W*?
P1=0; C;N6",s!
P2=0; dD=$$(
je
P3=1; L ,dh$F
P=0; .4)oZ
for m1=1:M1 {;c'@U
p=0.032*m1; %input amplitude 0lg$zi x(
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ~\jP+[>M'
s1=s10; VP~2F
E
s20=0.*s10; %input in waveguide 2 6FA+qYSV
s30=0.*s10; %input in waveguide 3 >|E]??v
s2=s20; QLWnP-
s3=s30; a(~Y:v
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); f
+{=##'0
%energy in waveguide 1
D}98ZKi
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); Q=`yPK>{$N
%energy in waveguide 2 H@=oVyn/
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); ctZ,qg*N
%energy in waveguide 3 /I=|;FGq
for m3 = 1:1:M3 % Start space evolution Zj2 si
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS *9^8NY]
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; si]VM_w6
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @MES.g
sca1 = fftshift(fft(s1)); % Take Fourier transform `
kT\V'
sca2 = fftshift(fft(s2)); #1DEZ4]jjY
sca3 = fftshift(fft(s3)); tDX&