切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9164阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 K&|zWpb  
    ^;@Bz~Z  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of vMRKs#&8  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of =:"@YD^a4  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear KAsS= `  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 r456M-~  
    Q ;k_q3  
    %fid=fopen('e21.dat','w'); 82/iVm1  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |=%$7b\C  
    M1 =3000;              % Total number of space steps &OzJ^G\o  
    J =100;                % Steps between output of space 6@F Z,e  
    T =10;                  % length of time windows:T*T0 vN4X%^:(  
    T0=0.1;                 % input pulse width R*yB);p  
    MN1=0;                 % initial value for the space output location wkm SIN:  
    dt = T/N;                      % time step WLh_b)V|  
    n = [-N/2:1:N/2-1]';           % Index =u;q98r  
    t = n.*dt;   ;QE Gr|(  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 X4/r#<Da  
    u20=u10.*0.0;                  % input to waveguide 2 czZ-C +}%  
    u1=u10; u2=u20;                 Q  o=  
    U1 = u1;   ;N1FP*  
    U2 = u2;                       % Compute initial condition; save it in U I" j7  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. IS=)J( 0  
    w=2*pi*n./T; ,*lK4 ?v  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >XZq=q]E!  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Xif`gb6`  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 w^p2XlQ<  
    for m1 = 1:1:M1                                    % Start space evolution %##9.Xm6l  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 5j}@Of1pd  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ljf9L:L  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform S7SPc   
       ca2 = fftshift(fft(u2)); x)Th2es\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation U)l>#gf8  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ome>Jbdhe  
       u2 = ifft(fftshift(c2));                        % Return to physical space [X=eCHB?  
       u1 = ifft(fftshift(c1)); oNh .Zgg  
    if rem(m1,J) == 0                                 % Save output every J steps. ePY K^D  
        U1 = [U1 u1];                                  % put solutions in U array ?41| e+p  
        U2=[U2 u2]; g,W#3b6>j  
        MN1=[MN1 m1]; d z\b]H]  
        z1=dz*MN1';                                    % output location }`g*pp*  
      end 0yZw`|Zh[  
    end i*; V4zh  
    hg=abs(U1').*abs(U1');                             % for data write to excel D0]9 -h  
    ha=[z1 hg];                                        % for data write to excel $fn^i.  
    t1=[0 t']; $N ]P#g?Q  
    hh=[t1' ha'];                                      % for data write to excel file wGxLs>| 4  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;s!H  
    figure(1) EXi+pm  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn a&cV@~  
    figure(2) rLXn35O  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn [&4y@  
    i'u;"ot=  
    非线性超快脉冲耦合的数值方法的Matlab程序 VuR BJ2D  
    :Oj+Tc9A  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   GkO6r'MVE  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 wb?hfe  
    D|BN_ai9  
    Xg)yz~Ug  
    g[n8N{s  
    %  This Matlab script file solves the nonlinear Schrodinger equations IpP0|:}  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [/kO >  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear V:+bq`  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %2+]3h>g  
    iUKj:q:  
    C=1;                            (M=Br  
    M1=120,                       % integer for amplitude 2u:j6ic  
    M3=5000;                      % integer for length of coupler M#p,Z F  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) zhe5i;M  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]aR4U`  
    T =40;                        % length of time:T*T0. D0P% .r"v  
    dt = T/N;                     % time step lyPXlt  
    n = [-N/2:1:N/2-1]';          % Index i_@RWka<  
    t = n.*dt;   GwV FD%  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. %xruPWT:k  
    w=2*pi*n./T; vP2QAGk <  
    g1=-i*ww./2; P&YaJUq.u  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; izw}25SW  
    g3=-i*ww./2;  R pbl)  
    P1=0; _7;^od=C  
    P2=0; 2uTa}{/%  
    P3=1; qw/{o:ce]  
    P=0; K6U>Qums  
    for m1=1:M1                 xRUYJ=|oh  
    p=0.032*m1;                %input amplitude g}-Z]2(c#  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 D^{:UbN  
    s1=s10; SMFW]I2T/  
    s20=0.*s10;                %input in waveguide 2 v3"xJN_,[p  
    s30=0.*s10;                %input in waveguide 3 NZuFxJ-`  
    s2=s20; M&FuXG%  
    s3=s30; a*hThr+$M  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   rZv+K/6*M  
    %energy in waveguide 1 (AYS>8O&  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   /z5lxS@#  
    %energy in waveguide 2 abnd U,s  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   !;gke,fB  
    %energy in waveguide 3 o;mIu#u  
    for m3 = 1:1:M3                                    % Start space evolution g@k9w{_  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS w!RH*S  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; \gkajY-?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; G= cxc_9  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform a AM UJk  
       sca2 = fftshift(fft(s2)); 3c3Z"JV  
       sca3 = fftshift(fft(s3)); zTB9GrU  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   E'8Bw7Tz  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); f zO8by  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 0 l@P]_qq`  
       s3 = ifft(fftshift(sc3)); -/%jeDKp  
       s2 = ifft(fftshift(sc2));                       % Return to physical space `1@[uWl  
       s1 = ifft(fftshift(sc1)); [u80-x<  
    end zIFL?8!H9{  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ~P_kr'o  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~PnpYd<2  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); PNgMLQI6  
       P1=[P1 p1/p10]; \T9UbkR  
       P2=[P2 p2/p10]; 1,QZnF!.x  
       P3=[P3 p3/p10]; e9_+$Oo  
       P=[P p*p]; ]gksyxn3  
    end Ba0D"2CgY  
    figure(1) kVnyX@  
    plot(P,P1, P,P2, P,P3); |vz;bJG  
    "S`wwl  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~