切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8669阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 p.(8ekh  
    5F#Q1gP-  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 4/6?wX  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of :bJT2o[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear A 9 I5  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 05]y*I  
    $)UMRG  
    %fid=fopen('e21.dat','w'); >LvQ&fAo  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) M4MO)MYJ  
    M1 =3000;              % Total number of space steps L>4!@L5)  
    J =100;                % Steps between output of space tOQ2947zk  
    T =10;                  % length of time windows:T*T0 \UBTNY,  
    T0=0.1;                 % input pulse width oD0WHp  
    MN1=0;                 % initial value for the space output location {s]yP_  
    dt = T/N;                      % time step o>(I_3J[p  
    n = [-N/2:1:N/2-1]';           % Index l* ~".q;S  
    t = n.*dt;   P0 R8 f  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ,ALEfepo  
    u20=u10.*0.0;                  % input to waveguide 2 @|3PV  
    u1=u10; u2=u20;                 x4b.^5"`:  
    U1 = u1;   qnFi./  
    U2 = u2;                       % Compute initial condition; save it in U Wq5Nc  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. \^l273  
    w=2*pi*n./T; 8G GC)2  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T zk\YW'x|r  
    L=4;                           % length of evoluation to compare with S. Trillo's paper BKd03s=  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 :Nry |  
    for m1 = 1:1:M1                                    % Start space evolution PubO|Mf  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS J|$(O$hYy  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; oP[R?zN  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform [(*ObvEF  
       ca2 = fftshift(fft(u2)); I.C,y\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ]@Gw$  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   75>)1H)Xm  
       u2 = ifft(fftshift(c2));                        % Return to physical space -0pAj}_2}  
       u1 = ifft(fftshift(c1)); UEm~5,>$0  
    if rem(m1,J) == 0                                 % Save output every J steps. e}F1ZJz  
        U1 = [U1 u1];                                  % put solutions in U array ,CGq_>Z  
        U2=[U2 u2]; VLLE0W _]  
        MN1=[MN1 m1]; OI@;ffHSW  
        z1=dz*MN1';                                    % output location G@Jl4iHug"  
      end @;^7kt  
    end C rA7lu'  
    hg=abs(U1').*abs(U1');                             % for data write to excel Ub>Pl,~'  
    ha=[z1 hg];                                        % for data write to excel zO@7V>2  
    t1=[0 t']; &]d-R  
    hh=[t1' ha'];                                      % for data write to excel file **RW 9FU  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format F. N4Q'2Z  
    figure(1) oRp;9   
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ;+86q"&n  
    figure(2) #b^x!lR  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn rM|] }M=_V  
    5eP0W#  
    非线性超快脉冲耦合的数值方法的Matlab程序 P#gY-k&Nr  
    0j'H5>m"  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   8w 2$H  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ZUkrJ'  
    XIS.0]~  
    <@+>A$~0  
    Cp`>dtCd  
    %  This Matlab script file solves the nonlinear Schrodinger equations /o/0 9K  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ;!k{{Xndd  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear +Jf4 5[D   
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -GqMis}c  
    E0SP  
    C=1;                           |FR'?y1  
    M1=120,                       % integer for amplitude 7Ud  
    M3=5000;                      % integer for length of coupler 1cA4-,YO>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) @,=E[c 8  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. KS9 e V  
    T =40;                        % length of time:T*T0. Z'u:Em  
    dt = T/N;                     % time step {}Q A#:V  
    n = [-N/2:1:N/2-1]';          % Index }mhD2'E  
    t = n.*dt;   )`4g,W  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. "Z\^dR  
    w=2*pi*n./T; RD$"ft]Vc  
    g1=-i*ww./2; bOY<C%;C  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; >k\lE(  
    g3=-i*ww./2; D09/(%4j  
    P1=0; v?9  
    P2=0; _&]B  
    P3=1; ME9jN{ le  
    P=0; n)~9  
    for m1=1:M1                 2V-zmyJs5  
    p=0.032*m1;                %input amplitude t 7(#Cuv-  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 uyp|Xh,  
    s1=s10; Em(&cra  
    s20=0.*s10;                %input in waveguide 2 I_h8)W  
    s30=0.*s10;                %input in waveguide 3 Lwy9QZL  
    s2=s20; 1=9M@r~ ^  
    s3=s30; V~9s+>  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   C2Pw;iK_t  
    %energy in waveguide 1 _Di";fe?  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   2$Fy?08q  
    %energy in waveguide 2 m\Xgvpv rP  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Z^fkv  
    %energy in waveguide 3 +H'{!:e5  
    for m3 = 1:1:M3                                    % Start space evolution O6P{+xj$  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS `Dn"<-9:  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; &idPO{G  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; e*zt;SR  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ,[Bv\4Ah  
       sca2 = fftshift(fft(s2)); I Ceb2R  
       sca3 = fftshift(fft(s3)); V>Zw" #Q  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   T&/ ]|4  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 5y1:oiE/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); "< c,I=A  
       s3 = ifft(fftshift(sc3)); |KC!6<}T~9  
       s2 = ifft(fftshift(sc2));                       % Return to physical space G(;C~kHX  
       s1 = ifft(fftshift(sc1)); =Eh~ wm  
    end GJ3@".+6  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 1&wI*4  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); pow.@  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  $O)fHD'  
       P1=[P1 p1/p10]; 0fpxr`  
       P2=[P2 p2/p10]; I 'qIc ?  
       P3=[P3 p3/p10]; 2<  "-  
       P=[P p*p]; Q`ALyp,9b  
    end )6k([u%;B  
    figure(1) +im>|  
    plot(P,P1, P,P2, P,P3); ?FRuuAS  
    {cW%i:  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~