计算脉冲在非线性耦合器中演化的Matlab 程序 j#rjYiYKy 8>%:MS" % This Matlab script file solves the coupled nonlinear Schrodinger equations of
hOG9 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
OrNi<TY> % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
2r4owB? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
u_shC"X: jvv3;lWDL. %fid=fopen('e21.dat','w');
F
jsnFX; N = 128; % Number of Fourier modes (Time domain sampling points)
@i U@JE`C M1 =3000; % Total number of space steps
YMb\v4 J =100; % Steps between output of space
rl"$6{Z} T =10; % length of time windows:T*T0
p~Di\AQ/ T0=0.1; % input pulse width
yhxen MN1=0; % initial value for the space output location
I&%{%*y dt = T/N; % time step
4>x]v!d n = [-N/2:1:N/2-1]'; % Index
;6P#V`u t = n.*dt;
}86&?
0j. u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
l+`f\ }, u20=u10.*0.0; % input to waveguide 2
o."k7fLB u1=u10; u2=u20;
Z<jio U1 = u1;
]zK'aod U2 = u2; % Compute initial condition; save it in U
Y>W$n9d&G2 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
>zx]%
W w=2*pi*n./T;
4LO4SYW7 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
u_ou,RF L=4; % length of evoluation to compare with S. Trillo's paper
O<}3\O )G( dz=L/M1; % space step, make sure nonlinear<0.05
5G
@ for m1 = 1:1:M1 % Start space evolution
~QzUQYG* u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
RrB)u? u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
])Rs.Y{Q5 ca1 = fftshift(fft(u1)); % Take Fourier transform
Z1Y/2MVSb ca2 = fftshift(fft(u2));
4
JC*c c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
7m='-_w)?w c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
"u^%~ 2 u2 = ifft(fftshift(c2)); % Return to physical space
tjLp;%6e u1 = ifft(fftshift(c1));
d^b(Uo=$ if rem(m1,J) == 0 % Save output every J steps.
cC@.& U1 = [U1 u1]; % put solutions in U array
k%2woHSu& U2=[U2 u2];
V;}kgWc1 MN1=[MN1 m1];
}Rl^7h<! z1=dz*MN1'; % output location
Q5Yy
\M end
[=/Yo1:v end
FVY$A=G hg=abs(U1').*abs(U1'); % for data write to excel
H[oCI|k ha=[z1 hg]; % for data write to excel
^<u9I5? t1=[0 t'];
"$P|!k45( hh=[t1' ha']; % for data write to excel file
xAlyik
%dlmwrite('aa',hh,'\t'); % save data in the excel format
Tx)!qpZ figure(1)
(S<Z@y+d waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
j`H5S figure(2)
sVzU> waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
3jR> ;&iZ{ 非线性超快脉冲耦合的数值方法的Matlab程序 ={'*C7K)oK Ei$?]~
& 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
M( euwy Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
H| UGR~& `3wzOMgJ WC0gJy A8|DB@Bi % This Matlab script file solves the nonlinear Schrodinger equations
MawWgd* % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
[- Xz: % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Wb)>APL % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
[l`_2{: @$:T]N3m C=1;
6(M^`&fl M1=120, % integer for amplitude
8VWkUsOoI M3=5000; % integer for length of coupler
J~jxmh N = 512; % Number of Fourier modes (Time domain sampling points)
&Hl*Eg
f dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
4k7
LM] T =40; % length of time:T*T0.
E8gbm&x* dt = T/N; % time step
fC4#b?Q n = [-N/2:1:N/2-1]'; % Index
&<Iyb}tA? t = n.*dt;
LA +BH_t& ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
pYxdE|2j w=2*pi*n./T;
:NCY6?
[Dz g1=-i*ww./2;
=P}BAJ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
hwD;1n g3=-i*ww./2;
xY_<D+OV P1=0;
At t~NTL P2=0;
Q85Y6', P3=1;
%jBI*WzR P=0;
N'5AU ( for m1=1:M1
a ](Jc) p=0.032*m1; %input amplitude
I38j[Xk s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
{.HFB:<!} s1=s10;
F]qX} s20=0.*s10; %input in waveguide 2
<i1.W!% s30=0.*s10; %input in waveguide 3
dRhsnT+KX s2=s20;
g %ZKn s3=s30;
xPcH]Gs^b p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
{e/6iSpT %energy in waveguide 1
HxE`"/~.7k p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
$ap6Vxjr %energy in waveguide 2
Sd9%tO9mf p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
g %e"K nU %energy in waveguide 3
bdxmJ9a:R for m3 = 1:1:M3 % Start space evolution
3Yb2p!o s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
R3dt-v s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
hQFF%xl s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
*LA2@9l sca1 = fftshift(fft(s1)); % Take Fourier transform
E0lro+'lS sca2 = fftshift(fft(s2));
bMCy=5 sca3 = fftshift(fft(s3));
<H]1 6 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
_+0QQ{'N sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
8am/5o sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
sI,S(VWor s3 = ifft(fftshift(sc3));
{=Y3[ s2 = ifft(fftshift(sc2)); % Return to physical space
/4xp?Lo: s1 = ifft(fftshift(sc1));
6xC$R q end
sM _m p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
.ou#BWav/ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
",Ge:\TR= p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
4k6,pt" P1=[P1 p1/p10];
lYq/
n&@_1 P2=[P2 p2/p10];
Vmb `%k20' P3=[P3 p3/p10];
S!J wF&EW P=[P p*p];
wJ}9(>id* end
CHGV1X, figure(1)
y]YUuJ9a plot(P,P1, P,P2, P,P3);
%fzZpd]v=, Pkq?tm$# 转自:
http://blog.163.com/opto_wang/