切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8448阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 .y lvJ$  
    ;]@Pm<f  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of i!gS]?*DH  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of RT${7=  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Wb[k2V  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 L|B! ]}  
    lB.n5G  
    %fid=fopen('e21.dat','w'); "Q{ l])N  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 3gnO)"$  
    M1 =3000;              % Total number of space steps J57; X=M  
    J =100;                % Steps between output of space nLCaik_,m  
    T =10;                  % length of time windows:T*T0 <@Vf:`a!P>  
    T0=0.1;                 % input pulse width nxNHf3   
    MN1=0;                 % initial value for the space output location =3!o _  
    dt = T/N;                      % time step =T\=,B  
    n = [-N/2:1:N/2-1]';           % Index _EJPI  
    t = n.*dt;   M8/:PmR<  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @C^wV  
    u20=u10.*0.0;                  % input to waveguide 2 G4&?O_\;  
    u1=u10; u2=u20;                 Cy)N hgz  
    U1 = u1;   ,HI% ym  
    U2 = u2;                       % Compute initial condition; save it in U *+nw%gZG  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. .rS. >d^n  
    w=2*pi*n./T; :wG )  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T :(wFNK/0{  
    L=4;                           % length of evoluation to compare with S. Trillo's paper t=9f:,I$  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 tY: Nq*@  
    for m1 = 1:1:M1                                    % Start space evolution \j5`6}zm  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS K:GEC-  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; lQBE q"7$  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform '#=0q  
       ca2 = fftshift(fft(u2)); `oH4"9&]k3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation QZIzddwp  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   r)OiiD"  
       u2 = ifft(fftshift(c2));                        % Return to physical space <XQwu*_\  
       u1 = ifft(fftshift(c1)); )WInPW  
    if rem(m1,J) == 0                                 % Save output every J steps.  .FC+  
        U1 = [U1 u1];                                  % put solutions in U array Z4rk$K'=1w  
        U2=[U2 u2]; *ra>Kl0   
        MN1=[MN1 m1]; +I3O/=)  
        z1=dz*MN1';                                    % output location ^9 ]iUx  
      end =,h'}(z_  
    end 4 Yv:\c  
    hg=abs(U1').*abs(U1');                             % for data write to excel T\g+w\N  
    ha=[z1 hg];                                        % for data write to excel 841y"@*BY  
    t1=[0 t']; XH@(V4J(.  
    hh=[t1' ha'];                                      % for data write to excel file |xg_z&dX  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 9[;da  
    figure(1) RV);^, b  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,B_c  
    figure(2) YB<nz<;JR  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn tfZ@4%'  
    P/.<sr=2  
    非线性超快脉冲耦合的数值方法的Matlab程序 t$wbwP  
    `-OzjbM  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ^L)TfI_n  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +L`}(yLJ)9  
    {-8Nq`w  
    E #B$.K  
    #QIY+muN  
    %  This Matlab script file solves the nonlinear Schrodinger equations C\~}ySQc.e  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 6h2keyod  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J?yasjjgP  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {it}\[3  
    rq4g~e!S  
    C=1;                           AvB=/p@]  
    M1=120,                       % integer for amplitude jC4>%!{m  
    M3=5000;                      % integer for length of coupler Nw$OJ9$L>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ..X_nF  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 7QNx*8p  
    T =40;                        % length of time:T*T0. =CJ`0yDQ>  
    dt = T/N;                     % time step CuvY^["  
    n = [-N/2:1:N/2-1]';          % Index ZTV)D  
    t = n.*dt;   |Z{#DOT  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. HY FMf3  
    w=2*pi*n./T; yn_f%^!G  
    g1=-i*ww./2; #qY gQ<TM!  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; vI0,6fOd6  
    g3=-i*ww./2; &1yJrj9y  
    P1=0; G<D8a2q  
    P2=0; GIH{tr1:<  
    P3=1; +pwTM]bV  
    P=0; tWTHyL  
    for m1=1:M1                 $rmxwxz&W:  
    p=0.032*m1;                %input amplitude WA~[) S0  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ye9GBAj /  
    s1=s10; C@eL9R;N1  
    s20=0.*s10;                %input in waveguide 2 t;6<k7h  
    s30=0.*s10;                %input in waveguide 3 b4-gNF]Yt  
    s2=s20; #e-K It  
    s3=s30; O- QT+]  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ?'+]d;UO&  
    %energy in waveguide 1 ">CRFee0  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   &qG/\  
    %energy in waveguide 2 T`":Q1n  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   F:T(-,  
    %energy in waveguide 3 g:ky;-G8b  
    for m3 = 1:1:M3                                    % Start space evolution j \jMN*dmV  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 1F,U^O  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; c-(RjQ~M5  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; :_6o|9J\t  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Os'E7;:1h  
       sca2 = fftshift(fft(s2)); iYgVSVNg  
       sca3 = fftshift(fft(s3)); cM'MgX9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   hdx_Tduue  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); t3Gy *B  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); hS8M|_  
       s3 = ifft(fftshift(sc3)); &uRT/+18W3  
       s2 = ifft(fftshift(sc2));                       % Return to physical space <q!HY~"V  
       s1 = ifft(fftshift(sc1)); 7HH@7vpJ^  
    end @i!+Z  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); syW[uXNLZ  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); N^$q;%  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); v77UE"4|c  
       P1=[P1 p1/p10]; yO7y`;Q(sF  
       P2=[P2 p2/p10]; "h_f- vP  
       P3=[P3 p3/p10]; ]pBEoktp  
       P=[P p*p]; k- 9i  
    end IC'+{3.m8  
    figure(1) 3WF]%P%  
    plot(P,P1, P,P2, P,P3); 4;J.$  
    \#]%S/_ A  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~