计算脉冲在非线性耦合器中演化的Matlab 程序 V(n7hpS jC7`_;>= % This Matlab script file solves the coupled nonlinear Schrodinger equations of
n!e4"|4~z % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
"HSAwe`5jU % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
3(l^{YC+[7 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
~YO99PP X8aNl"x %fid=fopen('e21.dat','w');
*T0{ yI N = 128; % Number of Fourier modes (Time domain sampling points)
}DiMt4!ZC! M1 =3000; % Total number of space steps
n5h4]u J =100; % Steps between output of space
z/yNFY]i T =10; % length of time windows:T*T0
WZ`u"t^2V T0=0.1; % input pulse width
ew8f7S[ MN1=0; % initial value for the space output location
z)N8#Y~vn dt = T/N; % time step
:^7/+|}9p n = [-N/2:1:N/2-1]'; % Index
53X H|Ap t = n.*dt;
| wuUH u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
Oo<L~7B u20=u10.*0.0; % input to waveguide 2
#wn`choT' u1=u10; u2=u20;
j}~3m$ U1 = u1;
x`/"1]Nf U2 = u2; % Compute initial condition; save it in U
,x#5 .Koz ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
8V$pdz| [ w=2*pi*n./T;
G`3/${ti g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
@*kQZRGK7 L=4; % length of evoluation to compare with S. Trillo's paper
:(gZ\q">k dz=L/M1; % space step, make sure nonlinear<0.05
t/xWJW2 for m1 = 1:1:M1 % Start space evolution
C{7
j<O u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
NJ\ID=3l u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
M{:}.H<a ca1 = fftshift(fft(u1)); % Take Fourier transform
uR#aO'' ca2 = fftshift(fft(u2));
"i3wc&9!?W c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
%DH2]B? 0 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
[k qx%4q) u2 = ifft(fftshift(c2)); % Return to physical space
fHK`u' u1 = ifft(fftshift(c1));
O~Eju if rem(m1,J) == 0 % Save output every J steps.
GcXh
V U1 = [U1 u1]; % put solutions in U array
S[g{
)p) U2=[U2 u2];
%dA6vHI, MN1=[MN1 m1];
>6xZF'4 z1=dz*MN1'; % output location
;la sk4| end
Fo
K!JX* end
vV5dW hg=abs(U1').*abs(U1'); % for data write to excel
M@\A_x(Mas ha=[z1 hg]; % for data write to excel
;jC}.]
_)w t1=[0 t'];
{*!L[) hh=[t1' ha']; % for data write to excel file
a B(_ZX'L %dlmwrite('aa',hh,'\t'); % save data in the excel format
h+ixl#: figure(1)
RE~9L5i5 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
Z{<& 2* figure(2)
BllS3I}V waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
/{h@A~<96 )bCw~'h* 非线性超快脉冲耦合的数值方法的Matlab程序 @K{1O|V {p -q&k&R| 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
)?es3Ehqq Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
LHit9O[_/s 7Aj
o9 1>5l(zK!9 fGK=lT$ % This Matlab script file solves the nonlinear Schrodinger equations
l-?B1gd,l % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
:2+,?#W
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
!h\>[ O % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
wrtJ8O( S}QvG&c C=1;
@D$^-
S6 M1=120, % integer for amplitude
yDmNPk/ M3=5000; % integer for length of coupler
O}$@|w(8; N = 512; % Number of Fourier modes (Time domain sampling points)
hn-+]Y: dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
$hND!T+; T =40; % length of time:T*T0.
{w/{)BnPG dt = T/N; % time step
&d5n_:^
n = [-N/2:1:N/2-1]'; % Index
[w>T.b t = n.*dt;
l~_]k ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
+MHsdeGU1W w=2*pi*n./T;
t(d$v_*y51 g1=-i*ww./2;
,gag_o{*a g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
'MF|(` g3=-i*ww./2;
{Y0Uln5u P1=0;
BC*)@=7fx P2=0;
H rMH
P3=1;
8\V P=0;
)1E[CIaXK for m1=1:M1
1W@ C]n4 p=0.032*m1; %input amplitude
:9nqQJ+~ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
(TKn'2 s1=s10;
aXOW +$, s20=0.*s10; %input in waveguide 2
I%4)% s30=0.*s10; %input in waveguide 3
i!AFXVX s2=s20;
}MW7,F s3=s30;
YTb/ LeuT p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
Ln&'5D# %energy in waveguide 1
|"gg2p p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
KM'*+.I %energy in waveguide 2
~OdE!! p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
rzl0*CR %energy in waveguide 3
#Qir%\*V for m3 = 1:1:M3 % Start space evolution
Rix|LKk{ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Y.7iKMp( s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
'3<AzR2
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
&>jSuvVT sca1 = fftshift(fft(s1)); % Take Fourier transform
(vO\h8 sca2 = fftshift(fft(s2));
/Soc,PjZ sca3 = fftshift(fft(s3));
%1\MW+ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
lMn1e6~K sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Ne!0 `^`~ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
!@.9>"FU s3 = ifft(fftshift(sc3));
cPx]:sC s2 = ifft(fftshift(sc2)); % Return to physical space
G8sxg&bf{ s1 = ifft(fftshift(sc1));
3zr95$Mt end
w# iezo. 0 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
@.D1_A p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
L
lNd97Z p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
3?n2/p
7= P1=[P1 p1/p10];
2kXa P2=[P2 p2/p10];
L\GjG&Y5 P3=[P3 p3/p10];
OrG1Mfx&2% P=[P p*p];
2:8p>^g= end
Oh&k{DWE$ figure(1)
P5$L(x%~ plot(P,P1, P,P2, P,P3);
^KlW"2: z\kiYQ6kA 转自:
http://blog.163.com/opto_wang/