切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9348阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 !~9ASpqvPy  
    hRX9Du`$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of m`-:j"]b$  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of |.$B,cEd  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear \#]%S/_ A  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l+F29_o#  
    -%MXt  
    %fid=fopen('e21.dat','w'); !9PAfi?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %C,zR&]F  
    M1 =3000;              % Total number of space steps "[~yu* S  
    J =100;                % Steps between output of space k1xx>=md|C  
    T =10;                  % length of time windows:T*T0 .:}<4;Qz94  
    T0=0.1;                 % input pulse width &?bsBqpN  
    MN1=0;                 % initial value for the space output location /kG?I_z  
    dt = T/N;                      % time step iXo; e  
    n = [-N/2:1:N/2-1]';           % Index pP":,8Q{  
    t = n.*dt;   i /[{xRXiR  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 i*N2@Z[  
    u20=u10.*0.0;                  % input to waveguide 2 'uL$j=vB  
    u1=u10; u2=u20;                 i4D]>  
    U1 = u1;   {U_ ,y(V  
    U2 = u2;                       % Compute initial condition; save it in U gPB=Z!  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. e8 ]CB  
    w=2*pi*n./T; m<3. X"-  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 13/,^?  
    L=4;                           % length of evoluation to compare with S. Trillo's paper C('D]u$Hdk  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 eC"e v5v  
    for m1 = 1:1:M1                                    % Start space evolution ,jC~U s<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS J&~I4ko]  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ASoBa&vX  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform rhPv{6Z|7  
       ca2 = fftshift(fft(u2)); 98R/ ^\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 02;'"EmP$  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   _VdJFjY?zc  
       u2 = ifft(fftshift(c2));                        % Return to physical space jRC{8^98  
       u1 = ifft(fftshift(c1)); u->[ y1JY  
    if rem(m1,J) == 0                                 % Save output every J steps. 7=fN vES2  
        U1 = [U1 u1];                                  % put solutions in U array *(yw6(9%  
        U2=[U2 u2]; [DjlkA/Zg  
        MN1=[MN1 m1]; |+ Rx)  
        z1=dz*MN1';                                    % output location 2Xv}JPS2As  
      end yO7H!}y_  
    end %IVM1  
    hg=abs(U1').*abs(U1');                             % for data write to excel l H_pG~  
    ha=[z1 hg];                                        % for data write to excel jG `PyIgw  
    t1=[0 t']; .jP|b~  
    hh=[t1' ha'];                                      % for data write to excel file 1VFCK&  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format +sn0bi/rG  
    figure(1) Szu @{lpP@  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn W#g!Usf:/  
    figure(2) ',[AKXJ  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 5Xxdm-0  
    ?E!M%c@,  
    非线性超快脉冲耦合的数值方法的Matlab程序 >wqWIw.w>  
    uaP5(hUI  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   $bMmyDw  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 V_$<^z|  
    bvB7d` wx  
    Mj>Q V(L8t  
    x4kQGe(  
    %  This Matlab script file solves the nonlinear Schrodinger equations '@KH@~OzRS  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of aO inD  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear #s\yO~F-  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qm_r~j  
    ux^rF  
    C=1;                           =jm\8sl~~  
    M1=120,                       % integer for amplitude Y]6d Yq{k  
    M3=5000;                      % integer for length of coupler &k*oG: J3  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 8v/,< eARJ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. mnZfk  
    T =40;                        % length of time:T*T0. b (H J|  
    dt = T/N;                     % time step bydI+pVMo  
    n = [-N/2:1:N/2-1]';          % Index GJU(1%-  
    t = n.*dt;   au=@]n#<(  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Zp{K_ec{  
    w=2*pi*n./T; &$T7eOiZ  
    g1=-i*ww./2; Xajt][  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; KIY`3Fl09  
    g3=-i*ww./2; um/F:rp  
    P1=0; mBye)q$  
    P2=0; fS'` 9  
    P3=1; W +GBSl  
    P=0; %b_0l<+  
    for m1=1:M1                 2H8\P+  
    p=0.032*m1;                %input amplitude } @3q;u)  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 G,WLca[  
    s1=s10; *@@dO_%6  
    s20=0.*s10;                %input in waveguide 2 `N}V i6FG  
    s30=0.*s10;                %input in waveguide 3 H^o_B1  
    s2=s20; #t Pc<p6m  
    s3=s30; FnOa hLS  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   6,1oLvU  
    %energy in waveguide 1 x3 ( _fS  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   wLI1qoDM  
    %energy in waveguide 2 2Gj)fMK38  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   QS4~":D/C  
    %energy in waveguide 3 hDg"?{  
    for m3 = 1:1:M3                                    % Start space evolution \AI-x$5R*  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS c*<BU6y  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; qM3NQ8Rm  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; A ^hafBa  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform )iC@n8f7o  
       sca2 = fftshift(fft(s2)); k=p[Mlic/  
       sca3 = fftshift(fft(s3)); b ~]v'|5[  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   D\J.6W  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); D8*6h)~  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); vqoK9  
       s3 = ifft(fftshift(sc3)); Z{ 9Io/  
       s2 = ifft(fftshift(sc2));                       % Return to physical space -#4QY70H t  
       s1 = ifft(fftshift(sc1)); G"L`9E<0V  
    end LtUw  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &Vpr[S@:{  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); :YX5%6  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ;ioF'ov  
       P1=[P1 p1/p10]; E}0g  
       P2=[P2 p2/p10]; e=# D1  
       P3=[P3 p3/p10]; eMn'z]M&]  
       P=[P p*p]; 64"DT3:  
    end \v{HjqVkC  
    figure(1) I;?PDhDb  
    plot(P,P1, P,P2, P,P3); =l] lwA -  
    kQ2WdpZ/  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~