切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9230阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 lN7YU-ygz  
    9w-;d=(Q  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of tY60~@YO&  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of &7KX`%K"D  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear uC?/p1  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $Q`\-  
    G4"n`89LK  
    %fid=fopen('e21.dat','w'); Hm_&``='  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Rc}#4pM8  
    M1 =3000;              % Total number of space steps %Z yt;p2  
    J =100;                % Steps between output of space .19_EQ>+  
    T =10;                  % length of time windows:T*T0 UM. Se(kS  
    T0=0.1;                 % input pulse width o 'Z W  
    MN1=0;                 % initial value for the space output location D\  P-|}  
    dt = T/N;                      % time step -_f-j  
    n = [-N/2:1:N/2-1]';           % Index 2K2_-  
    t = n.*dt;   >n5Kz]]%  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 7/bF0 4~%  
    u20=u10.*0.0;                  % input to waveguide 2 '3B7F5uLx"  
    u1=u10; u2=u20;                 1+Bj` ACP  
    U1 = u1;   g?>   
    U2 = u2;                       % Compute initial condition; save it in U #3YYE5cB  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. o6 8;-b'n  
    w=2*pi*n./T; Cil1wFBb  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ZU5;w  
    L=4;                           % length of evoluation to compare with S. Trillo's paper n0w0]dJ&lc  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 nDXy$f8  
    for m1 = 1:1:M1                                    % Start space evolution WU6F-{M"?  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS uC"Gm;0  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; dEfP272M  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform |qb-iXW=  
       ca2 = fftshift(fft(u2)); ]GzfU'fOn|  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 9iGp0_J  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   BsYJIKfW  
       u2 = ifft(fftshift(c2));                        % Return to physical space -V:7j8  
       u1 = ifft(fftshift(c1)); UL3u2g;d  
    if rem(m1,J) == 0                                 % Save output every J steps. |w.5*]?H  
        U1 = [U1 u1];                                  % put solutions in U array 0~ cbB  
        U2=[U2 u2]; y9 K'(/  
        MN1=[MN1 m1]; kQ.3J.Q5  
        z1=dz*MN1';                                    % output location B{NGrC`5)  
      end \5F {MBx !  
    end /z4n?&tM  
    hg=abs(U1').*abs(U1');                             % for data write to excel @eRv`O"  
    ha=[z1 hg];                                        % for data write to excel I_ na^s h*  
    t1=[0 t']; l6-%)6u>  
    hh=[t1' ha'];                                      % for data write to excel file u@kr;^m  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !3Q^oR  
    figure(1) Edl .R}&1  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn +  $/mh  
    figure(2) =Ka :i>  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 8LlWXeD9  
    :Q>{Y  
    非线性超快脉冲耦合的数值方法的Matlab程序 (&qjY I  
    )IGx3+I ,  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   %F]:nk`  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z5t"o !  
    3Oe\l[?$;  
    "= *   
    Wq*W+7=.  
    %  This Matlab script file solves the nonlinear Schrodinger equations qZX\riR  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of v;IuB  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear %~qY\>  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _Zbgmasb  
    c 4L++ u#  
    C=1;                           MW)=l | G  
    M1=120,                       % integer for amplitude "ax"k0  
    M3=5000;                      % integer for length of coupler E=l^&[dIl  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) eed!SmP  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05.  ),f d,  
    T =40;                        % length of time:T*T0. qr?RU .W  
    dt = T/N;                     % time step vkW]?::Cfd  
    n = [-N/2:1:N/2-1]';          % Index q#.+P1"U  
    t = n.*dt;   0/zgjT|fe  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. RTeG\U  
    w=2*pi*n./T; Y!AQ7F  
    g1=-i*ww./2; axdRV1+s  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; KgEfhO$W  
    g3=-i*ww./2; r<-@.$lf  
    P1=0; 6q~*\KRk  
    P2=0; f=nVK4DuZ  
    P3=1; be~'}`>  
    P=0; yx/.4DW1Ua  
    for m1=1:M1                 w&LL-~KI+  
    p=0.032*m1;                %input amplitude M}`G}*  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _u8d`7$*%  
    s1=s10; S{c;n*xf  
    s20=0.*s10;                %input in waveguide 2 C9E@$4*  
    s30=0.*s10;                %input in waveguide 3 A@JZK+WB}  
    s2=s20; ph=U<D4  
    s3=s30; G:{\-R'  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   kB ;!EuL  
    %energy in waveguide 1 l*n4d[0J  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   firiYL"=44  
    %energy in waveguide 2 `i3fC&?C  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   7|q _JdKoU  
    %energy in waveguide 3 u YJL^I8M'  
    for m3 = 1:1:M3                                    % Start space evolution )` 90*  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS w}``2djR'W  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; '@eH)wh@m)  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; !gFUC<4bu  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform </Ry4x^A  
       sca2 = fftshift(fft(s2)); 73kL>u  
       sca3 = fftshift(fft(s3)); pN7 v7rs  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   2V=bE-  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); R%^AW2   
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); [;hCwj#  
       s3 = ifft(fftshift(sc3)); FK.Qj P:  
       s2 = ifft(fftshift(sc2));                       % Return to physical space t+Hx&_pMj  
       s1 = ifft(fftshift(sc1)); VNWa3`w  
    end g'1ASMuR  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); x>~.cey  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); A0 1 D-)  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); (Y$48@x  
       P1=[P1 p1/p10]; q. NvwJ  
       P2=[P2 p2/p10]; ouR(l;  
       P3=[P3 p3/p10]; rty&\u@}  
       P=[P p*p]; odC}RdN  
    end 9aZ^m$tAt  
    figure(1) 6`;+|H<$  
    plot(P,P1, P,P2, P,P3); :Y2J7p[+  
    T&~7*j(|e  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~