计算脉冲在非线性耦合器中演化的Matlab 程序 {3V% BbCt_z' % This Matlab script file solves the coupled nonlinear Schrodinger equations of
<W$Ig@4[.d % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
c UJUZ@ol % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Y$tgz) % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
{'(1c)q> ^
W/,Z` %fid=fopen('e21.dat','w');
,B^NH7A: N = 128; % Number of Fourier modes (Time domain sampling points)
C3m](%? M1 =3000; % Total number of space steps
kaKV{;UM J =100; % Steps between output of space
\W^+aNbv=8 T =10; % length of time windows:T*T0
d5b \kR r T0=0.1; % input pulse width
Yh^~4S? MN1=0; % initial value for the space output location
y2XeD=_' dt = T/N; % time step
BkZmE, n = [-N/2:1:N/2-1]'; % Index
cwe@W PE2 t = n.*dt;
HizMjJ| u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
{9 PeBc u20=u10.*0.0; % input to waveguide 2
x+mfQcSD& u1=u10; u2=u20;
;JNI$DR U1 = u1;
k3:8T#N>!O U2 = u2; % Compute initial condition; save it in U
vocXk_ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
yP&SA+ w=2*pi*n./T;
a.oZ}R7'Y g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
QH?}uX'x)G L=4; % length of evoluation to compare with S. Trillo's paper
OJ2O?Te8 dz=L/M1; % space step, make sure nonlinear<0.05
Glt%%TJb for m1 = 1:1:M1 % Start space evolution
z3 zN^ZT u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
!'ylh8} u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
hM":?Rx ca1 = fftshift(fft(u1)); % Take Fourier transform
SI/@Bbd= ca2 = fftshift(fft(u2));
nWrknm c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
k1EAmA
l c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
Wa/&H$d\u@ u2 = ifft(fftshift(c2)); % Return to physical space
"q-,140_ u1 = ifft(fftshift(c1));
yUZ;keQ_Tw if rem(m1,J) == 0 % Save output every J steps.
'[XtARtY` U1 = [U1 u1]; % put solutions in U array
!W^b:qjJ U2=[U2 u2];
?2;gmZd7 MN1=[MN1 m1];
upD2vtU z1=dz*MN1'; % output location
=z=$S]qN end
(3H'!P7|~ end
3,7SGt
r hg=abs(U1').*abs(U1'); % for data write to excel
dc ]+1
A ha=[z1 hg]; % for data write to excel
8Z^9r/%*Z t1=[0 t'];
AbWnDqv hh=[t1' ha']; % for data write to excel file
(|(#W+l~
%dlmwrite('aa',hh,'\t'); % save data in the excel format
W~TT`%[ figure(1)
'dnTu@mUT waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
(l|:$%[0 figure(2)
.x
1& waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
c[/h7!/aH \~3g*V 非线性超快脉冲耦合的数值方法的Matlab程序 c4T8eTKU \xQ10\u 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
@0XqUcV Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
4h|48</ r306`)kX >
xc7Hr~ G=[=[o\ % This Matlab script file solves the nonlinear Schrodinger equations
q~3dbj % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
**zh>Y}6 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
8veYs` % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Jgf73IX[ {}vB#! C=1;
UuNcBzB2d M1=120, % integer for amplitude
%T.4Aj M3=5000; % integer for length of coupler
]cz*k/*0 N = 512; % Number of Fourier modes (Time domain sampling points)
n1X.]|6' dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
rv(Qz|K@ T =40; % length of time:T*T0.
7~t,Pt) dt = T/N; % time step
mP1EWh| n = [-N/2:1:N/2-1]'; % Index
t+R8{9L- t = n.*dt;
S{v [65 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
i.0}d5Y w=2*pi*n./T;
+) pO82 g1=-i*ww./2;
sC8C><y
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
rPK)=[MZ g3=-i*ww./2;
Z#-:zD7_ P1=0;
'?q \mi P2=0;
{=(GY@yU/ P3=1;
1LgzqRq P=0;
O23dtH for m1=1:M1
\6UK:'5{ p=0.032*m1; %input amplitude
e i L
; s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
rek89.p s1=s10;
rt\i@} s20=0.*s10; %input in waveguide 2
{Jv m * s30=0.*s10; %input in waveguide 3
[SluYmW s2=s20;
KL2 #Bm_ s3=s30;
.A: #l? p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
{x3"/sF %energy in waveguide 1
DE GEr- p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
D[.;-4"_ %energy in waveguide 2
*x^W`i
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
`@8QQB %energy in waveguide 3
";jj` for m3 = 1:1:M3 % Start space evolution
'USol< s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
3SRz14/W_R s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
-}l iG s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
5jj<sj!S sca1 = fftshift(fft(s1)); % Take Fourier transform
.%{3#\ sca2 = fftshift(fft(s2));
!n<vN@V*3d sca3 = fftshift(fft(s3));
V~V_+ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
9{gY|2R_ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
_z:7Dj# sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
;\N{z6 s3 = ifft(fftshift(sc3));
"3kIQsD|j s2 = ifft(fftshift(sc2)); % Return to physical space
{uO=Wkp~7 s1 = ifft(fftshift(sc1));
LwpO_/qV end
@M[t| p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
3BBw:)V p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
M.|@|If4? p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
nLn3kMl4 P1=[P1 p1/p10];
C_SJ4Sh P2=[P2 p2/p10];
HZp}<7NR(7 P3=[P3 p3/p10];
2}Ga P=[P p*p];
I]HrtI end
t'msgC6=>u figure(1)
c/fU0cA@ plot(P,P1, P,P2, P,P3);
n
H)6mOYp X.u&4SH 转自:
http://blog.163.com/opto_wang/