切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9290阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 V(n7hpS  
    jC7`_;>=  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of n!e4"|4~z  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "HSAwe`5jU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3(l^{YC+[7  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~YO99PP  
    X8aNl"x  
    %fid=fopen('e21.dat','w'); *T0{ yI  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) }DiMt4!ZC!  
    M1 =3000;              % Total number of space steps n 5h4]u  
    J =100;                % Steps between output of space z/yNFY]i  
    T =10;                  % length of time windows:T*T0 W Z`u"t^2V  
    T0=0.1;                 % input pulse width ew8f7S[  
    MN1=0;                 % initial value for the space output location z)N8#Y~vn  
    dt = T/N;                      % time step :^7/+|}9p  
    n = [-N/2:1:N/2-1]';           % Index 53X H|Ap  
    t = n.*dt;   | wuUH  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Oo<L~7B  
    u20=u10.*0.0;                  % input to waveguide 2 #wn`choT'  
    u1=u10; u2=u20;                 j}~3m$  
    U1 = u1;   x`/"1]Nf  
    U2 = u2;                       % Compute initial condition; save it in U ,x#5.Koz  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 8V$pdz|[  
    w=2*pi*n./T; G`3/${ti  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @*kQZRGK7  
    L=4;                           % length of evoluation to compare with S. Trillo's paper :(gZ\q">k  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 t/xWJW2  
    for m1 = 1:1:M1                                    % Start space evolution C{7 j<O  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS NJ\ID=3l  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; M{:}.H<a  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform uR#aO''  
       ca2 = fftshift(fft(u2)); "i3wc&9!?W  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %DH2]B? 0  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [k qx%4q)  
       u2 = ifft(fftshift(c2));                        % Return to physical space fHK`u'  
       u1 = ifft(fftshift(c1)); O~Eju  
    if rem(m1,J) == 0                                 % Save output every J steps. GcXh V  
        U1 = [U1 u1];                                  % put solutions in U array S[g{ )p)  
        U2=[U2 u2]; %dA6vHI,  
        MN1=[MN1 m1]; >6xZF'4  
        z1=dz*MN1';                                    % output location ;la sk4|  
      end Fo  K!JX*  
    end  vV5dW  
    hg=abs(U1').*abs(U1');                             % for data write to excel M@\A_x(Mas  
    ha=[z1 hg];                                        % for data write to excel ;jC}.] _)w  
    t1=[0 t'];  {*!L[)  
    hh=[t1' ha'];                                      % for data write to excel file a B(_ZX'L  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format h+ixl#:  
    figure(1) RE~9L5i5  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Z{<&2*  
    figure(2) BllS3I}V  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn /{h@A~<96  
    )bCw~'h*  
    非线性超快脉冲耦合的数值方法的Matlab程序 @K{1O|V  
    {p -q&k&R|  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )?es3Ehqq  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 LHit9O[_/s  
    7Aj o9  
    1>5l(zK!9  
    fGK=lT$  
    %  This Matlab script file solves the nonlinear Schrodinger equations l-?B1gd,l  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of :2+,?#W  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !h\>[O  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 wrtJ8O(  
    S}QvG&c  
    C=1;                           @D$^- S6  
    M1=120,                       % integer for amplitude yDmNPk/  
    M3=5000;                      % integer for length of coupler O}$@|w(8;  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) hn-+]Y:  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $hND!T+;  
    T =40;                        % length of time:T*T0. {w/{)B nPG  
    dt = T/N;                     % time step &d5n_:^  
    n = [-N/2:1:N/2-1]';          % Index [w>T.b  
    t = n.*dt;   l~_] k  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. +MHsdeGU1W  
    w=2*pi*n./T; t(d$v_*y51  
    g1=-i*ww./2; ,gag_o{*a  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 'MF|(`  
    g3=-i*ww./2; {Y0Uln5u  
    P1=0; BC*)@=7fx  
    P2=0; H rMH  
    P3=1; 8\V  
    P=0; )1E[CIaXK  
    for m1=1:M1                 1W@ C]n4  
    p=0.032*m1;                %input amplitude :9nqQJ+~  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1  (TKn'2  
    s1=s10; aXOW +$,  
    s20=0.*s10;                %input in waveguide 2 I%4)%  
    s30=0.*s10;                %input in waveguide 3 i!AFXVX  
    s2=s20; }MW7,F  
    s3=s30; YTb/ LeuT  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Ln&'5D#  
    %energy in waveguide 1 |"gg2p  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   KM'*+.I  
    %energy in waveguide 2  ~OdE!!  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   rzl0*CR  
    %energy in waveguide 3 #Qir%\*V  
    for m3 = 1:1:M3                                    % Start space evolution  Rix|LKk{  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Y.7iKMp(  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; '3<AzR2  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; &>jSuvVT  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ( vO\h8  
       sca2 = fftshift(fft(s2)); /Soc,PjZ  
       sca3 = fftshift(fft(s3)); %1\MW+  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   lMn1e6~K  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Ne!0`^`~  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !@.9>"FU  
       s3 = ifft(fftshift(sc3)); cPx] :sC  
       s2 = ifft(fftshift(sc2));                       % Return to physical space G8sxg&bf{  
       s1 = ifft(fftshift(sc1)); 3zr95$Mt  
    end w# iezo. 0  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); @.D1_A  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); L lNd97Z  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 3?n2/p 7=  
       P1=[P1 p1/p10]; 2kXa  
       P2=[P2 p2/p10]; L\GjG&Y5  
       P3=[P3 p3/p10]; OrG1Mfx&2%  
       P=[P p*p]; 2:8p>^g=  
    end Oh&k{DWE$  
    figure(1) P5$L(x%~  
    plot(P,P1, P,P2, P,P3); ^KlW"2:  
    z\kiYQ6kA  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~