切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9070阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 u%'\UmE w  
    Ai D[SR  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of XLMb=T~S  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of # :T-hRu  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S+TOSjfis  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4f(Kt,0  
    cYXM__  
    %fid=fopen('e21.dat','w'); pP(XIC  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) FU=w(< R;  
    M1 =3000;              % Total number of space steps >0p$(>N]  
    J =100;                % Steps between output of space qfcYE=  
    T =10;                  % length of time windows:T*T0 GUslPnG  
    T0=0.1;                 % input pulse width }|%eCVB  
    MN1=0;                 % initial value for the space output location 4v[~r1!V  
    dt = T/N;                      % time step [{C )LDN  
    n = [-N/2:1:N/2-1]';           % Index &3J@BMYp  
    t = n.*dt;   =] 3tUD  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 FKe,qTqa  
    u20=u10.*0.0;                  % input to waveguide 2 5NJ4  
    u1=u10; u2=u20;                 oD}uOC}FS{  
    U1 = u1;   ]Qm]I1P  
    U2 = u2;                       % Compute initial condition; save it in U NBb6T V}j  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. czlFr|O;  
    w=2*pi*n./T; eT2*W$  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T s+:=I e  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 5>AX*]c  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 fwzb!"!.@  
    for m1 = 1:1:M1                                    % Start space evolution Y.^=]-n,  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS h*ZC*eV>  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =_YG#yS  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform t4?DpE  
       ca2 = fftshift(fft(u2)); +2 Af&~T  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $ cj>2.   
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   R *F l8   
       u2 = ifft(fftshift(c2));                        % Return to physical space XD"_Iq!  
       u1 = ifft(fftshift(c1)); ^&g=u5 d0  
    if rem(m1,J) == 0                                 % Save output every J steps. ?W E  
        U1 = [U1 u1];                                  % put solutions in U array u^029sH6j  
        U2=[U2 u2]; B c2p(z4  
        MN1=[MN1 m1]; _HhbIU  
        z1=dz*MN1';                                    % output location Nan[<  
      end :x_'i_w  
    end IHRGw  
    hg=abs(U1').*abs(U1');                             % for data write to excel OzC\9YeA  
    ha=[z1 hg];                                        % for data write to excel 'U'yC2BI n  
    t1=[0 t']; bTQNb!&  
    hh=[t1' ha'];                                      % for data write to excel file <V>dM4Mkr  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format B:7mpSnEQ  
    figure(1) }B~If}7  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn {\[5}nV  
    figure(2) ;2Q~0a|  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?)e37  
    %c[V  
    非线性超快脉冲耦合的数值方法的Matlab程序 KN-avu_Ix  
    B7]MGXC  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Pb*5eXk  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "Ky; a?Y  
    Ks}Xgc\  
    2k<;R':  
    GRY2?'`  
    %  This Matlab script file solves the nonlinear Schrodinger equations LY+|[qka  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of qTQBt}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *{+G=d  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2h%z ("3/  
    ~Ch+5A;  
    C=1;                           -kbg\,PW  
    M1=120,                       % integer for amplitude r [ K5w  
    M3=5000;                      % integer for length of coupler `mN4_\]  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) S]E.KLR?[;  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. IT$25ZF  
    T =40;                        % length of time:T*T0. (e"iO`H  
    dt = T/N;                     % time step t'ZWc\  
    n = [-N/2:1:N/2-1]';          % Index $[yFsA6  
    t = n.*dt;   xZV1k~C  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. VWO9=A*Y|  
    w=2*pi*n./T; VcoOeAKL  
    g1=-i*ww./2; Q?X>E3=U  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; MMj9{ou  
    g3=-i*ww./2; H8"@iE,  
    P1=0;  }K3x  
    P2=0; ~/*MY  
    P3=1; GaSPJt   
    P=0; ~,*b }O  
    for m1=1:M1                 <mAhr  
    p=0.032*m1;                %input amplitude +5XpzZ{#Wa  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2+X\}s1vN  
    s1=s10; MR}Agu#LG  
    s20=0.*s10;                %input in waveguide 2 !>1@HH?I\/  
    s30=0.*s10;                %input in waveguide 3 XU"~h64]  
    s2=s20; cH>%r^G\  
    s3=s30; |7zd%!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   P@FHnh3}Z$  
    %energy in waveguide 1 ;amXY@RmH  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   l<);s  
    %energy in waveguide 2 ` Jdb;  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   t]-5 ]oI  
    %energy in waveguide 3 k-}b{  
    for m3 = 1:1:M3                                    % Start space evolution 7.`fJf?  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS [Jv@J\  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; O?|gp<=d  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; &?(?vDFfZ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform q`r**N+zn  
       sca2 = fftshift(fft(s2)); /E\%>wv  
       sca3 = fftshift(fft(s3)); Jkek-m  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   pa# IJ  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Hhh0T>gi  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); z[;z>8|c  
       s3 = ifft(fftshift(sc3)); f`Fi#EKT  
       s2 = ifft(fftshift(sc2));                       % Return to physical space w`5xrqt@  
       s1 = ifft(fftshift(sc1)); 0L/n?bf  
    end " W|%~h  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); vuYSVI2=H  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); V 0rZz  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); =&:Y6XP  
       P1=[P1 p1/p10]; R47\Y  
       P2=[P2 p2/p10]; 0vw4?>Jf@  
       P3=[P3 p3/p10]; @<x*.8  
       P=[P p*p]; &c,kQo+pA  
    end =y-@AU8  
    figure(1) J Px~VnE%%  
    plot(P,P1, P,P2, P,P3); GI1  
    1 .6:#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~