切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9208阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 yk1syN_  
    =p9d4smbn  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of k23*F0Dv  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of R8a4F^{*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear gbOd(ugH  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R9X* R3nB  
    &D, gKT~  
    %fid=fopen('e21.dat','w'); "V!y"yQ  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) &?\ h[3  
    M1 =3000;              % Total number of space steps #wH<W5gSZ  
    J =100;                % Steps between output of space {8Jr.&Y2  
    T =10;                  % length of time windows:T*T0 &]gw[ `  
    T0=0.1;                 % input pulse width 7(<6+q2~  
    MN1=0;                 % initial value for the space output location *k:Sg*neVq  
    dt = T/N;                      % time step /an$4?":~  
    n = [-N/2:1:N/2-1]';           % Index ZSj^\JU  
    t = n.*dt;   SsiKuoxk  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 o:u *E  
    u20=u10.*0.0;                  % input to waveguide 2 Y_n^6 ;  
    u1=u10; u2=u20;                 g6:S"Em  
    U1 = u1;   0\f3La  
    U2 = u2;                       % Compute initial condition; save it in U qSh^|;2?R  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. gR)T(%W  
    w=2*pi*n./T; E"7 iU  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T z-*/jFE  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Nq|b$S[4  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 zj.;O#hW  
    for m1 = 1:1:M1                                    % Start space evolution 2 F3U,}  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS )h-Qi#{  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; swv 1>52{  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform mF\r]ovVm  
       ca2 = fftshift(fft(u2)); J%c4-'l  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation t(FI Bf3  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |T:' G  
       u2 = ifft(fftshift(c2));                        % Return to physical space o@6:|X)7  
       u1 = ifft(fftshift(c1)); Op^r}7  
    if rem(m1,J) == 0                                 % Save output every J steps. $Il?[4FF  
        U1 = [U1 u1];                                  % put solutions in U array 0U'g2F>{  
        U2=[U2 u2]; c` ^I% i  
        MN1=[MN1 m1]; ndEW$?W,  
        z1=dz*MN1';                                    % output location ;C,D1_20Z  
      end <igsO  
    end {R b|";  
    hg=abs(U1').*abs(U1');                             % for data write to excel QGE)Xn#_bN  
    ha=[z1 hg];                                        % for data write to excel 4 %do.D*  
    t1=[0 t']; NMYkEz(&R  
    hh=[t1' ha'];                                      % for data write to excel file 6j9P`#Lt  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Ht.0ug  
    figure(1) cTf/B=yMi  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,Q~C F;qe  
    figure(2) .iFd  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn yM(zc/?  
    :|i jCg+  
    非线性超快脉冲耦合的数值方法的Matlab程序 6A$ \I44  
    :_F$e  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   |,k,X}gP  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u`Kjs}F'  
    l n}2   
    0^htwec!  
    )r _zM~jI  
    %  This Matlab script file solves the nonlinear Schrodinger equations wIT0A-Por4  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9 z_9yT  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear i}mvKV?!|1  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ghq#-N/t  
    yj!4L&A  
    C=1;                           J}IHQZS  
    M1=120,                       % integer for amplitude dY>oj<9  
    M3=5000;                      % integer for length of coupler ^b-o  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) NbyVBl0=  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Vm NCknG  
    T =40;                        % length of time:T*T0. 871taL=  
    dt = T/N;                     % time step qF!oP  
    n = [-N/2:1:N/2-1]';          % Index 9(`d h  
    t = n.*dt;   x5/O.5>f  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ^VCgc>x;  
    w=2*pi*n./T; 78't"2>  
    g1=-i*ww./2; G2Zr (b')  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Ic_>[E?k  
    g3=-i*ww./2; QAiont ,!  
    P1=0; __Ei;%cV  
    P2=0; G[7Z5)2B  
    P3=1; /DPD,bA  
    P=0; .H,v7L,~88  
    for m1=1:M1                 VFLxxFJ  
    p=0.032*m1;                %input amplitude RGrra<  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Cnp\2Fu/  
    s1=s10; NEInro<  
    s20=0.*s10;                %input in waveguide 2 U#3Y3EdF<  
    s30=0.*s10;                %input in waveguide 3 sBozz#  
    s2=s20; NijvFT$V1  
    s3=s30; FOz7W  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   EMy Med_  
    %energy in waveguide 1 no_(J>p^&  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5c*kgj:x  
    %energy in waveguide 2 'urn5[i  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   dD _(MbTt  
    %energy in waveguide 3 uh`W} n  
    for m3 = 1:1:M3                                    % Start space evolution \bJ,8J1C  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS LIM cZh;  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 58FjzW  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; }[a  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform yEm[C(gZ  
       sca2 = fftshift(fft(s2)); 3\J-=U  
       sca3 = fftshift(fft(s3)); [gK (x%  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   c#l W ?  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); +k=BD s  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); i}C9  
       s3 = ifft(fftshift(sc3)); @I{v  
       s2 = ifft(fftshift(sc2));                       % Return to physical space FGzMbi<l#(  
       s1 = ifft(fftshift(sc1)); CF|c4oY82  
    end fI:j@Wug  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); L`v7|!X  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); .qBL.b_`  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); }cDw9;~D  
       P1=[P1 p1/p10]; m:EO}ws=  
       P2=[P2 p2/p10]; yQ5F'.m9e  
       P3=[P3 p3/p10]; * !4r}h`  
       P=[P p*p]; <w@ziUr  
    end j*uc$hC"  
    figure(1) wvH=4TT=w"  
    plot(P,P1, P,P2, P,P3); EA@p]+P  
    Jb. V4  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~