计算脉冲在非线性耦合器中演化的Matlab 程序 PH4bM
IEsD=
% This Matlab script file solves the coupled nonlinear Schrodinger equations of =/'*(\C2
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^d$e^cU
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8}`8lOE7
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K[;,/:Y
VKfHN_m*
%fid=fopen('e21.dat','w'); Hf]}OvT>Z
N = 128; % Number of Fourier modes (Time domain sampling points) /Ta0}Y(y
M1 =3000; % Total number of space steps Ecl7=-y
J =100; % Steps between output of space Jz8#88cY
T =10; % length of time windows:T*T0 ZC-evy
T0=0.1; % input pulse width o>rlrqr?_
MN1=0; % initial value for the space output location 8uD%]k=#!
dt = T/N; % time step oW1olmpp=
n = [-N/2:1:N/2-1]'; % Index eS%6hUb
t = n.*dt; (>lqp%G~
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 ZTz(NS
EK
u20=u10.*0.0; % input to waveguide 2 ^p%+r B.j[
u1=u10; u2=u20; v&,VC~RN-J
U1 = u1; mb6?$1j
U2 = u2; % Compute initial condition; save it in U K>JU/(
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ,ui'^8{gK
w=2*pi*n./T; MZMv.OeYt,
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T en6AAr:U}
L=4; % length of evoluation to compare with S. Trillo's paper NbMH@6%E
dz=L/M1; % space step, make sure nonlinear<0.05 8r|
for m1 = 1:1:M1 % Start space evolution Pw{{+PBu R
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS t4W0~7
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; |2` $g
ca1 = fftshift(fft(u1)); % Take Fourier transform YZu#0)
ca2 = fftshift(fft(u2)); UHszOl
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation Uy'ZL(2
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift XzFqQ-H
u2 = ifft(fftshift(c2)); % Return to physical space d#,V^
u1 = ifft(fftshift(c1)); r<H^%##,w
if rem(m1,J) == 0 % Save output every J steps. dOgM9P
U1 = [U1 u1]; % put solutions in U array j`M<M[C*4N
U2=[U2 u2]; #yOY&W:N
MN1=[MN1 m1]; fBh|:2u
z1=dz*MN1'; % output location 3/<^R}w\
end j~>
#{"C
end WZ-{K"56
hg=abs(U1').*abs(U1'); % for data write to excel A+*(Pds
ha=[z1 hg]; % for data write to excel *Z(C')7r
t1=[0 t']; !Bbwl-e`
hh=[t1' ha']; % for data write to excel file f3|=T8"t
%dlmwrite('aa',hh,'\t'); % save data in the excel format jl29~^@}1i
figure(1) itMc!bUQ
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn }+Z;zm@/6
figure(2) QZP;k!"w
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn \:28z
UZ0O
j5B.
非线性超快脉冲耦合的数值方法的Matlab程序 ,fLe%RP
G?(:Z=
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 {D.0_=y~2
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nrhpId
Cagq0-:(p
Y0'^S<ox
A|nU
_*
% This Matlab script file solves the nonlinear Schrodinger equations k( ^ b
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of }('QIvq2
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear GUZi }a|=
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g-uFss
+T;qvx6
C=1; c67!OHu mP
M1=120, % integer for amplitude >u[ln@ l
M3=5000; % integer for length of coupler JYUKs~Qt
N = 512; % Number of Fourier modes (Time domain sampling points) ~kFRy {z
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 0 ']M,iC/
T =40; % length of time:T*T0. %"B$I>h
dt = T/N; % time step .6(i5K
n = [-N/2:1:N/2-1]'; % Index g}h0J%s
t = n.*dt; NE nP3A
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. AIo;\35
w=2*pi*n./T; 3P>@ :
g1=-i*ww./2; {$.{VE+v5
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; m8`A~
g3=-i*ww./2; 0$
EJ4
P1=0; 94/}@<d-=
P2=0; ?!vW&KJZx
P3=1; XRin~wz|S
P=0; HX[#tT|m~
for m1=1:M1 ?RyvM_(N6
p=0.032*m1; %input amplitude Q5ao2-\
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 {)xrg sB
s1=s10; _en 8hi@Z
s20=0.*s10; %input in waveguide 2 \NRRN eu|
s30=0.*s10; %input in waveguide 3 o!&*4>tF
s2=s20; ?whp_
s3=s30; rkp0ej2-
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); N~YeAe~+
%energy in waveguide 1 @n3PCH6:Ao
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); O%{>Zo_<