计算脉冲在非线性耦合器中演化的Matlab 程序 s4[PwD P$zhMnAAN % This Matlab script file solves the coupled nonlinear Schrodinger equations of
LDY3Ya`6m % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
%j/}e>$"Nk % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
WXQ+`OH7 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
O?t49=uB} +-:o+S`q~ %fid=fopen('e21.dat','w');
7d^ ~.F N = 128; % Number of Fourier modes (Time domain sampling points)
* /^} M1 =3000; % Total number of space steps
yVe<+Z\7 J =100; % Steps between output of space
Om(Ir&0 T =10; % length of time windows:T*T0
qH(HcsgD T0=0.1; % input pulse width
z#B(1uI MN1=0; % initial value for the space output location
%J8uVD.2 dt = T/N; % time step
tu' s]3RE n = [-N/2:1:N/2-1]'; % Index
8osP$"/o t = n.*dt;
v Q51-.g u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
@^.o8+Pp u20=u10.*0.0; % input to waveguide 2
ldnKV&N u1=u10; u2=u20;
bTMgEY U1 = u1;
TPn#cIPG U2 = u2; % Compute initial condition; save it in U
7$mB.\| ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
eig{~3 w=2*pi*n./T;
?4#UW7I g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
>U)>~SQf L=4; % length of evoluation to compare with S. Trillo's paper
Zi}jf25 dz=L/M1; % space step, make sure nonlinear<0.05
s6k(K>Pl for m1 = 1:1:M1 % Start space evolution
[)?yH3 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
2B"tT"f u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
io UO0 ca1 = fftshift(fft(u1)); % Take Fourier transform
X>%li$9J. ca2 = fftshift(fft(u2));
hi/Z>1ZOX c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
&88c@Ksn c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
J7HY(7Nx u2 = ifft(fftshift(c2)); % Return to physical space
LIll@2[ u1 = ifft(fftshift(c1));
-<:w{cV if rem(m1,J) == 0 % Save output every J steps.
v]#[bqB.b U1 = [U1 u1]; % put solutions in U array
F*_+k U2=[U2 u2];
qJE_4/<^! MN1=[MN1 m1];
rv c%[HfW; z1=dz*MN1'; % output location
49ehj1Se end
[X7gP4 end
A
b+qLh&? hg=abs(U1').*abs(U1'); % for data write to excel
-O\fy! ha=[z1 hg]; % for data write to excel
~UHjc0 t1=[0 t'];
Dutc#?bT hh=[t1' ha']; % for data write to excel file
@hwNM#>` %dlmwrite('aa',hh,'\t'); % save data in the excel format
0mNL!" figure(1)
Vjd(Z waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
mkq246<D~ figure(2)
Vha,rIi waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
4dy!2KZN Wt.['`c< 非线性超快脉冲耦合的数值方法的Matlab程序 bB)$=7\ p
W@Yr 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
L)qUBp@MW Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
qHvU4v cG&@PO]+. z<%dWz G#ELQ/Q % This Matlab script file solves the nonlinear Schrodinger equations
!ST7@D % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
(*kKfg4Wj % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
G'`^U}9V\ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
7yjun|Lt}X Sk-Q 4D^ C=1;
{yB0JL}n M1=120, % integer for amplitude
zN9#qlfv M3=5000; % integer for length of coupler
iRx `Nx<@ N = 512; % Number of Fourier modes (Time domain sampling points)
eJ6 #x$I, dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
hAsReZ? T =40; % length of time:T*T0.
/N#=Tol dt = T/N; % time step
,f@j4*) n = [-N/2:1:N/2-1]'; % Index
V`9*_8Dx2 t = n.*dt;
zG{jRth ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
$@l=FV_; w=2*pi*n./T;
.IM]B4m g1=-i*ww./2;
NwdrJw9 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
1CR\!? g3=-i*ww./2;
g W_E P1=0;
*sau['Ha P2=0;
!p76I=H% P3=1;
maa$kg8U*! P=0;
u8t|!pMF8 for m1=1:M1
zeq")A p=0.032*m1; %input amplitude
"G,,:H9v s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
T]/5aA4 s1=s10;
+
)z5ai0m s20=0.*s10; %input in waveguide 2
(P=WKZMPN s30=0.*s10; %input in waveguide 3
g7^|(!Y% s2=s20;
0FLCN!i1 s3=s30;
@eDs)mY p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
f96`n+>xi %energy in waveguide 1
9_4(}|"N| p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
6QJ.=.>b %energy in waveguide 2
=qbN?a/?2 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
L8H:,} 2 %energy in waveguide 3
FS=LpvOG) for m3 = 1:1:M3 % Start space evolution
n).*=YLN s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
IuA4eDr^Y% s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
s: iBl/N} s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
u+
hRaI;v sca1 = fftshift(fft(s1)); % Take Fourier transform
cNN0-<#c sca2 = fftshift(fft(s2));
Z9MR"!0 sca3 = fftshift(fft(s3));
]Yf^O @<<> sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
!@wUARQ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
U|{ 4=[ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
Jw#7b[a s3 = ifft(fftshift(sc3));
bBV03_* s2 = ifft(fftshift(sc2)); % Return to physical space
J}+N\V~ s1 = ifft(fftshift(sc1));
+0j{$MPZ end
Om;aE1sW p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
UbGnU_} p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
p Q!lY p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Lb?q5_ P1=[P1 p1/p10];
[La}h2gz P2=[P2 p2/p10];
US=K}B=g P3=[P3 p3/p10];
jl]3B P=[P p*p];
Q`NdsS2 end
jKo9y figure(1)
w c~s: plot(P,P1, P,P2, P,P3);
s$,G5Feub e igVT4 转自:
http://blog.163.com/opto_wang/