切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9276阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Y P,>vzW  
    ~/qBOeU3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of |xF!3GGms  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of OZ33w-X<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear U[?f@.&  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 w^9< I]  
     {FX]1:  
    %fid=fopen('e21.dat','w'); erKi*GssZ  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) u#y#(1 =  
    M1 =3000;              % Total number of space steps <#wVQ\0C  
    J =100;                % Steps between output of space 8|(],NyEJ  
    T =10;                  % length of time windows:T*T0 i;atYltEJ2  
    T0=0.1;                 % input pulse width CZE!@1"<{  
    MN1=0;                 % initial value for the space output location 5Bt~tt  
    dt = T/N;                      % time step jgiS/oW  
    n = [-N/2:1:N/2-1]';           % Index gA`QV''/:  
    t = n.*dt;   T^F83Py<  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 +cbF$,M4  
    u20=u10.*0.0;                  % input to waveguide 2 t,n2N13  
    u1=u10; u2=u20;                 :dQRrmM  
    U1 = u1;   q6ZewuV.  
    U2 = u2;                       % Compute initial condition; save it in U +v~x_E5FP  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. qyAnq%B}  
    w=2*pi*n./T; a`8]TD  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ;%Px~g  
    L=4;                           % length of evoluation to compare with S. Trillo's paper G3 |x%/Fbp  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 UM`{V5NG#  
    for m1 = 1:1:M1                                    % Start space evolution O c.fvP^ZD  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS puLgc$?  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; B&7NF}CF2  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform -k@1# c+z  
       ca2 = fftshift(fft(u2)); L[Ot$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation A;^ iy]"  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   4*L* "vKa  
       u2 = ifft(fftshift(c2));                        % Return to physical space MsBm0r`a  
       u1 = ifft(fftshift(c1)); E[7E%^:Mg  
    if rem(m1,J) == 0                                 % Save output every J steps. fs:yx'mxV  
        U1 = [U1 u1];                                  % put solutions in U array # E_S..  
        U2=[U2 u2]; 6O,:I  
        MN1=[MN1 m1]; =@pD>h/~  
        z1=dz*MN1';                                    % output location 8;L;R ~Q  
      end (@qPyM6~}  
    end m"-kkH{I  
    hg=abs(U1').*abs(U1');                             % for data write to excel |N^"?bSt  
    ha=[z1 hg];                                        % for data write to excel o='A1P  
    t1=[0 t']; ^_i)XdPU  
    hh=[t1' ha'];                                      % for data write to excel file Aix6O=K6  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 97U OH  
    figure(1) $2,tT;50g  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn +q;{ %3C  
    figure(2) )iM( \=1ff  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1C<d^D_!p  
    YU"/p|!1  
    非线性超快脉冲耦合的数值方法的Matlab程序 SO.u0!  
    _5H~1G%q  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   M PDRMGR@i  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7#d:TXS  
    Q"B8l[  
    QeC\(4?  
    7y&6q`y E  
    %  This Matlab script file solves the nonlinear Schrodinger equations z HvE_ -  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of $,J0) ~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear h`n '{s  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *oeXmY  
    t0jE\6r  
    C=1;                           k*n~&y:O  
    M1=120,                       % integer for amplitude %#rtNDi  
    M3=5000;                      % integer for length of coupler Nf<f}`  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 5'eBeNxM  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. +uSp3gE"  
    T =40;                        % length of time:T*T0.  ?ueL'4Mm  
    dt = T/N;                     % time step tq~4W% p/  
    n = [-N/2:1:N/2-1]';          % Index _@y uaMoW=  
    t = n.*dt;   CuH4~6  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. xZ)K#\  
    w=2*pi*n./T; e"wz b< b  
    g1=-i*ww./2; !L8q]]'XM  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; W^h,O+vk  
    g3=-i*ww./2; #*/nUbsg  
    P1=0; A$N%deb  
    P2=0; qR!ZtJ5j  
    P3=1; BO4;S/ O  
    P=0; wM4{\  f\  
    for m1=1:M1                 C3Q #[  
    p=0.032*m1;                %input amplitude 2I}+AW!!=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 (*P`  
    s1=s10; ?4U4o<   
    s20=0.*s10;                %input in waveguide 2 z/`+jIB  
    s30=0.*s10;                %input in waveguide 3 OblHN*  
    s2=s20; oJ %Nt&q  
    s3=s30; Jk-WD"J6  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   >J3m ta3  
    %energy in waveguide 1 yna!L@ *@,  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   /KWdIP#  
    %energy in waveguide 2 HEbL'fw^s  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   y705  
    %energy in waveguide 3 %6 Av1cv  
    for m3 = 1:1:M3                                    % Start space evolution ]T'8O`  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS >oWPwXA  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S+~;PmN9qL  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; MymsDdQ]  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ]o]`X$n  
       sca2 = fftshift(fft(s2));  mjP  
       sca3 = fftshift(fft(s3)); 5I2 h(Td  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   z^`4n_(Ygu  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); &WBpd}|+Y  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); F?R6zvive  
       s3 = ifft(fftshift(sc3)); ;"0bVs`.^e  
       s2 = ifft(fftshift(sc2));                       % Return to physical space M&V4|D  
       s1 = ifft(fftshift(sc1)); EBW*v '  
    end d;p3cW"  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Yg '(  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); `Wjq$*  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); .eg'Z@o  
       P1=[P1 p1/p10]; _g/d/{-{Q  
       P2=[P2 p2/p10]; Bj2iYk_cLa  
       P3=[P3 p3/p10]; )cRHt:  
       P=[P p*p]; r3U7`P   
    end W|@SXO)DY  
    figure(1) O0z-jZ,])  
    plot(P,P1, P,P2, P,P3); { CR`~)v&  
    FT~c|ep.  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~