切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9426阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 s4[PwD  
    P$zhMnAAN  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of LDY3Ya`6m  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %j/}e>$"Nk  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear WXQ+`OH7  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O?t49=uB}  
    +-:o+S`q~  
    %fid=fopen('e21.dat','w'); 7d^ ~.F  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) * /^}  
    M1 =3000;              % Total number of space steps yVe<+Z\7  
    J =100;                % Steps between output of space Om(Ir&0  
    T =10;                  % length of time windows:T*T0 qH(HcsgD  
    T0=0.1;                 % input pulse width z#B(1uI  
    MN1=0;                 % initial value for the space output location %J8uVD.2  
    dt = T/N;                      % time step tu's]3RE  
    n = [-N/2:1:N/2-1]';           % Index 8osP$"/o  
    t = n.*dt;   v Q51-.g  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @^.o8+Pp  
    u20=u10.*0.0;                  % input to waveguide 2 ldnKV&N  
    u1=u10; u2=u20;                 bT MgE Y  
    U1 = u1;   TPn#cIPG  
    U2 = u2;                       % Compute initial condition; save it in U 7$mB.\|  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. eig{~3  
    w=2*pi*n./T; ?4#UW7I  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >U)>~SQf  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Zi}j f25  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 s6k(K>Pl  
    for m1 = 1:1:M1                                    % Start space evolution [)?yH3  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 2B"tT"f  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ioUO 0  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform X>%li$9J.  
       ca2 = fftshift(fft(u2)); hi/Z>1ZOX  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation &88c@Ksn  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   J7HY(7Nx  
       u2 = ifft(fftshift(c2));                        % Return to physical space LIll@2[  
       u1 = ifft(fftshift(c1)); -<:w{cV  
    if rem(m1,J) == 0                                 % Save output every J steps. v]#[bqB.b  
        U1 = [U1 u1];                                  % put solutions in U array  F*_+k  
        U2=[U2 u2]; qJE_4/<^!  
        MN1=[MN1 m1]; rv c%[HfW;  
        z1=dz*MN1';                                    % output location 49ehj1Se  
      end [X7gP4  
    end A b+qLh&?  
    hg=abs(U1').*abs(U1');                             % for data write to excel -O\f y!  
    ha=[z1 hg];                                        % for data write to excel ~UHjc0  
    t1=[0 t']; Dutc#?bT  
    hh=[t1' ha'];                                      % for data write to excel file @hwNM#>`  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 0mNL!"  
    figure(1) Vjd(Z  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn mkq246<D~  
    figure(2) Vha,rIi  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 4dy!2KZN  
    Wt.['`c<  
    非线性超快脉冲耦合的数值方法的Matlab程序 bB)$=7\  
    p W@Yr  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   L)qUBp@MW  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qHvU4v  
    cG&@PO]+.  
    z<%dWz  
    G#ELQ/Q  
    %  This Matlab script file solves the nonlinear Schrodinger equations !ST7@D  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of (*kKfg4Wj  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G'`^U}9V\  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7yjun|Lt}X  
    Sk-Q 4D^  
    C=1;                           {y B0JL}n  
    M1=120,                       % integer for amplitude zN9#qlfv  
    M3=5000;                      % integer for length of coupler iRx`Nx<@  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) eJ6 #x$I,  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. hAs ReZ?  
    T =40;                        % length of time:T*T0. /N#=Tol  
    dt = T/N;                     % time step ,f@j4*)  
    n = [-N/2:1:N/2-1]';          % Index V`9*_8Dx2  
    t = n.*dt;   zG{jRth  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $@l=FV_;  
    w=2*pi*n./T; . IM]B4m  
    g1=-i*ww./2; NwdrJw9  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 1CR\!?  
    g3=-i*ww./2; g W_E  
    P1=0; *sau['Ha  
    P2=0; !p76I=H%  
    P3=1; maa$kg8U*!  
    P=0; u8t|!pMF8  
    for m1=1:M1                 zeq")A  
    p=0.032*m1;                %input amplitude "G,,:H9v  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 T]/5aA4  
    s1=s10; + )z5ai0m  
    s20=0.*s10;                %input in waveguide 2 ( P=WKZMPN  
    s30=0.*s10;                %input in waveguide 3 g7^|(!Y%  
    s2=s20; 0FLCN!i1  
    s3=s30; @eDs)mY  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   f96`n+>x i  
    %energy in waveguide 1 9_4(}|"N|  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6Q J.=.>b  
    %energy in waveguide 2 =qbN?a/?2  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   L8H:, } 2  
    %energy in waveguide 3 FS=LpvOG)  
    for m3 = 1:1:M3                                    % Start space evolution n).*=YLN  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS IuA4eDr^Y%  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; s:iBl/N}  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; u+ hRaI;v  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform cNN0-<#c  
       sca2 = fftshift(fft(s2)); Z9MR"!0  
       sca3 = fftshift(fft(s3)); ]Yf^O @<<>  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   !@wUAR Q  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); U|{4=[  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Jw#7b[a  
       s3 = ifft(fftshift(sc3)); bBV03_*  
       s2 = ifft(fftshift(sc2));                       % Return to physical space J}+N\V~  
       s1 = ifft(fftshift(sc1)); +0j{$MPZ  
    end Om;aE1sW  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); UbGnU_}  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); pQ!lY  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Lb?q5_  
       P1=[P1 p1/p10]; [La}h2gz  
       P2=[P2 p2/p10]; US=K}B=g  
       P3=[P3 p3/p10]; j l]3B  
       P=[P p*p]; Q`NdsS2  
    end jKo9y  
    figure(1) wc~s:  
    plot(P,P1, P,P2, P,P3); s$,G5Feub  
    e igVT4  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~