切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8582阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 1)u 3  
    (yE?)s  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of FG7}MUu  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?eT^gWX  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /-<S FT`  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `G\uTCpk  
    nBL7LocvR  
    %fid=fopen('e21.dat','w'); |")}p=   
    N = 128;                       % Number of Fourier modes (Time domain sampling points) i8I%}8  
    M1 =3000;              % Total number of space steps ^~0Mw;n&  
    J =100;                % Steps between output of space z 8M^TV  
    T =10;                  % length of time windows:T*T0 >2`)S{pBD  
    T0=0.1;                 % input pulse width S#qd#Zk|Y  
    MN1=0;                 % initial value for the space output location goi.'8M|/b  
    dt = T/N;                      % time step ,#&lNQ'I  
    n = [-N/2:1:N/2-1]';           % Index @(PYeXdV6&  
    t = n.*dt;   `h12  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $ud5bT{n  
    u20=u10.*0.0;                  % input to waveguide 2 S =q.Y  
    u1=u10; u2=u20;                 <OF7:f  
    U1 = u1;   ys:1%D,,_  
    U2 = u2;                       % Compute initial condition; save it in U Mn$TWhg'  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _{&znXf>?6  
    w=2*pi*n./T; ^AMcZ6!\  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >/1N#S#9  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 6}  !n0  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ZAzn-n  
    for m1 = 1:1:M1                                    % Start space evolution CJk$o K{Q  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `@ULG>   
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; |$#u~<r_ w  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 4H8vB^  
       ca2 = fftshift(fft(u2)); K+xiov-r?  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Wm4@+ }  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   T5NO}bz  
       u2 = ifft(fftshift(c2));                        % Return to physical space 7 2ux3D  
       u1 = ifft(fftshift(c1)); "JAYTatO7H  
    if rem(m1,J) == 0                                 % Save output every J steps. oabc=N!7r  
        U1 = [U1 u1];                                  % put solutions in U array  @jO3+  
        U2=[U2 u2]; !7@IWz(, "  
        MN1=[MN1 m1]; tYiK#N7  
        z1=dz*MN1';                                    % output location 2V_C_5)1  
      end -0PT(gx  
    end U .hV1  
    hg=abs(U1').*abs(U1');                             % for data write to excel +ZtqR  
    ha=[z1 hg];                                        % for data write to excel V(1Ldl'a  
    t1=[0 t']; vG O-a2Z  
    hh=[t1' ha'];                                      % for data write to excel file (;P)oB"`C  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format BKfcK>%g  
    figure(1) Bp 6jF2  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn jDI O,XuF  
    figure(2) 8s pGDg\g  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn !!4_x  
    VdQ}G!d  
    非线性超快脉冲耦合的数值方法的Matlab程序 ]p:x,%nm  
    br+{23&1R#  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   %)8`(9J*  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5#s?rA%u  
    (Mhj-0xf$  
    .2/(G{}U  
    g !w7Yv  
    %  This Matlab script file solves the nonlinear Schrodinger equations 5i7,s  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of G+ PBV%gE[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !YSAQi;I  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~F^=7oq  
    -}@3,G  
    C=1;                           048BQ  
    M1=120,                       % integer for amplitude E{sTxO I$  
    M3=5000;                      % integer for length of coupler F=yrqRS=  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) |Y|{9Osus  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. RS!~5nk5  
    T =40;                        % length of time:T*T0. AJ`b- $Q  
    dt = T/N;                     % time step lb5Y$ZC  
    n = [-N/2:1:N/2-1]';          % Index xz[a3In+  
    t = n.*dt;   e@*Gnh<&  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. w' K\}G~  
    w=2*pi*n./T; VS@o_fUx)  
    g1=-i*ww./2; {^>m3  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (o)nN8  
    g3=-i*ww./2; @4Z>;  
    P1=0; yd[}?  
    P2=0; #qT97NQ  
    P3=1; dbSIC[q  
    P=0; 2+ F34  
    for m1=1:M1                 }MW*xtGV  
    p=0.032*m1;                %input amplitude P\KP)bkC  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 , fFB.q"  
    s1=s10; nzE4P3 C+  
    s20=0.*s10;                %input in waveguide 2 o{pQDI {R  
    s30=0.*s10;                %input in waveguide 3 PF*<_p"j  
    s2=s20; .9+"rK}u  
    s3=s30; wQWokpP;T7  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   &F9BaJ  
    %energy in waveguide 1 01}az~&;35  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   DhV($&*M  
    %energy in waveguide 2 ))cL+ r  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ~V[pu  
    %energy in waveguide 3 :,%~rR  
    for m3 = 1:1:M3                                    % Start space evolution FFb`4.  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS YpoO:  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6 /gh_'&  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; eWS[|' dl  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform .pNWpWL.  
       sca2 = fftshift(fft(s2)); c-3AzB#[  
       sca3 = fftshift(fft(s3)); )Q9m,/F  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   h2ewYe<87`  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 4YM!SE-I  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Or= [2@Wg  
       s3 = ifft(fftshift(sc3)); 5p}Y6Lc\j  
       s2 = ifft(fftshift(sc2));                       % Return to physical space u$$@Hw  
       s1 = ifft(fftshift(sc1)); D% } ?l  
    end f@l$52f3D  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); m5Q,RwJ!xK  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); <8yzBp4gZ  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); >[B}eS>  
       P1=[P1 p1/p10]; v Ic 0V  
       P2=[P2 p2/p10]; asb-syqU  
       P3=[P3 p3/p10]; JO\Tf."a\  
       P=[P p*p]; oGx OJyD  
    end `G&W%CHB  
    figure(1) ]+;1)  
    plot(P,P1, P,P2, P,P3); .^j #gE&B  
    *gfx'$  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~