切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9363阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `[:f;2(@  
    !D6@\  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of GQ[\R&]q<  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of O^IpfS\/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear a]ftE\99  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 YHAy+S  
    S&QZ"4jq  
    %fid=fopen('e21.dat','w'); xUeLX`73  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) +q =/}|  
    M1 =3000;              % Total number of space steps 3-Ti'xM  
    J =100;                % Steps between output of space U~T/f-CT  
    T =10;                  % length of time windows:T*T0 w-\GrxlbX  
    T0=0.1;                 % input pulse width icnp^2P  
    MN1=0;                 % initial value for the space output location a"ht\v}1  
    dt = T/N;                      % time step 2} T" |56  
    n = [-N/2:1:N/2-1]';           % Index R_ Z H+@O  
    t = n.*dt;   D vK}UAj=  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ND I|;   
    u20=u10.*0.0;                  % input to waveguide 2 .IG(Y!cB  
    u1=u10; u2=u20;                 g@S"!9[;U  
    U1 = u1;   py,z7_Nuh  
    U2 = u2;                       % Compute initial condition; save it in U JM!o(zbt  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 9 s>JdAw?  
    w=2*pi*n./T; p~M^' k=d  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T p'_* >%4~  
    L=4;                           % length of evoluation to compare with S. Trillo's paper BGUP-_&  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 O-mP{  
    for m1 = 1:1:M1                                    % Start space evolution WAob"`8]  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,c7 8O8|  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; XRaq\a`=:  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ;zp0,[r  
       ca2 = fftshift(fft(u2)); ,H.q%!{h_  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation h"q`gj  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   >-]Y%O;}  
       u2 = ifft(fftshift(c2));                        % Return to physical space *,z__S$Q)  
       u1 = ifft(fftshift(c1)); ^Dd$8$?[  
    if rem(m1,J) == 0                                 % Save output every J steps. oU{m\r  
        U1 = [U1 u1];                                  % put solutions in U array /tV)8pEj  
        U2=[U2 u2]; yyBy|7QgO  
        MN1=[MN1 m1]; :}j{NM#  
        z1=dz*MN1';                                    % output location wLNO\JP'  
      end Q;`#ujxL  
    end 4GaF:/  
    hg=abs(U1').*abs(U1');                             % for data write to excel /(XtNtO*  
    ha=[z1 hg];                                        % for data write to excel ZG<<6y*.  
    t1=[0 t']; uZg Kex;c  
    hh=[t1' ha'];                                      % for data write to excel file \/'u(|G  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format mO]>(^c  
    figure(1) J6|5*|*^  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn &|55:Y87  
    figure(2) Rsqb<+7  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn }cMb0`oA  
    _kgw+NA&-H  
    非线性超快脉冲耦合的数值方法的Matlab程序 XG*Luc-v  
    8g&uCv/Uk  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   .3!=]=  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @e+QGd;}  
    p]IF=~b  
    vB KBMnSd  
    mmEr2\L  
    %  This Matlab script file solves the nonlinear Schrodinger equations @/XA*9]l  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Svy bP&i|  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear jsc1B  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  I=|b3-  
    leX&py  
    C=1;                           yp_:] RE  
    M1=120,                       % integer for amplitude i,Yv  
    M3=5000;                      % integer for length of coupler IIs'm!"Y>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) (*BQd1Z  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 05.^MU?^U  
    T =40;                        % length of time:T*T0. &+d>xy\^/  
    dt = T/N;                     % time step '$;S?6$eW  
    n = [-N/2:1:N/2-1]';          % Index "{j4?3f)  
    t = n.*dt;   9UZKL@KC  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 8( 7DW |\  
    w=2*pi*n./T; F3i+t+Jt  
    g1=-i*ww./2; 9 }jF]P*Q  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Y6 &w0~?!  
    g3=-i*ww./2; ; Sq_DP1W  
    P1=0; J9zSBsp_  
    P2=0; O| ) [j@7  
    P3=1; C /\)-^  
    P=0; -]\UFR  
    for m1=1:M1                 z*"zXL C  
    p=0.032*m1;                %input amplitude fOtL6/?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 u-$(TyDEl|  
    s1=s10; V*2uW2\}  
    s20=0.*s10;                %input in waveguide 2 a4Fe MCvV9  
    s30=0.*s10;                %input in waveguide 3 :B6hYx  
    s2=s20; db'Jl^  
    s3=s30; xJ:15eDC  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ,dLh`t<\  
    %energy in waveguide 1 nK)U.SZ  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   %l( qyH)*  
    %energy in waveguide 2 c-(,%0G0  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   *?VbN}g2  
    %energy in waveguide 3 !MOVv\@O  
    for m3 = 1:1:M3                                    % Start space evolution 3Gubq4r  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS nm_]2z O  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ,|<2wn#q  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 2Xys;Dwx  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform  pQKR  
       sca2 = fftshift(fft(s2)); 6*J`2U9Q  
       sca3 = fftshift(fft(s3)); 1>r7s*  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   s{4|eYR  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); imv[xBA(d  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); , `ST Va-  
       s3 = ifft(fftshift(sc3)); n*D-01v YP  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /'ccFm2  
       s1 = ifft(fftshift(sc1)); 7F!_gj p  
    end TL-sxED,,D  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); y0k*iS e  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); CkKr@.dV  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); tpwMy:<Ex  
       P1=[P1 p1/p10]; K[!OfP  
       P2=[P2 p2/p10]; * 7u~`  
       P3=[P3 p3/p10]; Ne!F  p  
       P=[P p*p]; s<Px au+A  
    end 3(0k!o0 "  
    figure(1) [p^N].K$  
    plot(P,P1, P,P2, P,P3); iZ}  w>1  
    D~E1hr&Vd>  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~