计算脉冲在非线性耦合器中演化的Matlab 程序 6`0mta Q
qw7@(R'"
% This Matlab script file solves the coupled nonlinear Schrodinger equations of JCPUM*g8
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %&->%U|'
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !@x+q)2
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^ K7ic,{
{&P
FXJ
%fid=fopen('e21.dat','w'); R*oXmuOsYA
N = 128; % Number of Fourier modes (Time domain sampling points) I=7Y]w=
M1 =3000; % Total number of space steps @WQK>-=(3
J =100; % Steps between output of space [6)UhS8
T =10; % length of time windows:T*T0 ly4s"4v
T0=0.1; % input pulse width d{3@h+zL
MN1=0; % initial value for the space output location JXixYwm
dt = T/N; % time step I.Y['%8,5~
n = [-N/2:1:N/2-1]'; % Index ZT[3aXS
t = n.*dt; BnCKSg7V
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 R64!>o"nED
u20=u10.*0.0; % input to waveguide 2 Ul_M3"Z
u1=u10; u2=u20; ?9HhG?_x
U1 = u1; Qd_Y\PzS
U2 = u2; % Compute initial condition; save it in U gP-nluq
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. QDTBWM%
w=2*pi*n./T; osOVg0Gyj
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Io|X#\K
L=4; % length of evoluation to compare with S. Trillo's paper 5jgdbHog]
dz=L/M1; % space step, make sure nonlinear<0.05 C@Nv;;AlU
for m1 = 1:1:M1 % Start space evolution ^pS+/ZSi^
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS xy8#2
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6oinidB[l
ca1 = fftshift(fft(u1)); % Take Fourier transform *d(SI<j
ca2 = fftshift(fft(u2)); X; 5Jb
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation =?])['VaA
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift d'*]ns
u2 = ifft(fftshift(c2)); % Return to physical space lJzl6&
u1 = ifft(fftshift(c1)); X53mzs
if rem(m1,J) == 0 % Save output every J steps. ESg+n(R
U1 = [U1 u1]; % put solutions in U array [xfaj'j=@
U2=[U2 u2]; h6%[q x<
MN1=[MN1 m1]; 'q>2t}KG
z1=dz*MN1'; % output location ExSO|g]%
end >tG+?Y'{
end FG%j{_Ez
hg=abs(U1').*abs(U1'); % for data write to excel TZ;p0^(
ha=[z1 hg]; % for data write to excel 7
uMd
ZpD
t1=[0 t']; :s-o0$PlJ
hh=[t1' ha']; % for data write to excel file DY{cQb
%dlmwrite('aa',hh,'\t'); % save data in the excel format nRb^<cZf
figure(1) KECElK3uj
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn Nwc!r(
figure(2) v)f7};"z
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn /ahNnCtu?1
1|ZhPsD.}g
非线性超快脉冲耦合的数值方法的Matlab程序 3L_I[T$s
1/ZR*fa
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 #fs|BV
!
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o5Y2vmz?9
6al=Cwf
9p@C4oen
~AG$5!
% This Matlab script file solves the nonlinear Schrodinger equations pO~c<d}b
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of BHj\G7,S
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fd8!KO
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 kax\h
U@Tj B
C=1; JR9$.fGJ
M1=120, % integer for amplitude D H^T x
M3=5000; % integer for length of coupler Y-~~,Yl~
N = 512; % Number of Fourier modes (Time domain sampling points) td{O}\s7D
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. .5> 20\b2
T =40; % length of time:T*T0. wP"q<W
g
dt = T/N; % time step .wK1El{bf
n = [-N/2:1:N/2-1]'; % Index ?@R")$
t = n.*dt; u-DK_^v4M
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. HFo-4"
w=2*pi*n./T; LS.r%:$mb
g1=-i*ww./2; 0nW F
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; M R'o{?{e`
g3=-i*ww./2; XD-^w_
P1=0; mzD^Y<LTd
P2=0; zzZg$9PT[
P3=1; uH\kQ9f
P=0; *s)}Bj
for m1=1:M1 RbQ <