切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9137阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 PH4bM  
    I EsD=  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of =/'*(\C2  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^d $e^cU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8}`8lOE7  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K[;,/:Y  
    VKfHN_m*  
    %fid=fopen('e21.dat','w'); Hf]}OvT>Z  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) /Ta0}Y(y  
    M1 =3000;              % Total number of space steps Ecl7=-y  
    J =100;                % Steps between output of space Jz8#88cY  
    T =10;                  % length of time windows:T*T0 ZC-evy  
    T0=0.1;                 % input pulse width o>rlrqr?_  
    MN1=0;                 % initial value for the space output location 8uD%]k=#!  
    dt = T/N;                      % time step oW1olmpp=  
    n = [-N/2:1:N/2-1]';           % Index eS%6 h U b  
    t = n.*dt;   (>lqp%G~  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ZTz(NS EK  
    u20=u10.*0.0;                  % input to waveguide 2 ^p%+rB.j[  
    u1=u10; u2=u20;                 v&,VC~RN-J  
    U1 = u1;   mb6?$1j  
    U2 = u2;                       % Compute initial condition; save it in U K>JU/(  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ,ui'^8{gK  
    w=2*pi*n./T; MZMv.OeYt,  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T en6AAr:U}  
    L=4;                           % length of evoluation to compare with S. Trillo's paper NbMH@6%E  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 8r|  
    for m1 = 1:1:M1                                    % Start space evolution Pw{{+PBu R  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS t4W0~7   
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; |2` $g  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform YZu# 0)  
       ca2 = fftshift(fft(u2)); UHszOl  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Uy'ZL(2  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   XzFqQ- H  
       u2 = ifft(fftshift(c2));                        % Return to physical space d#,V^  
       u1 = ifft(fftshift(c1)); r<H^%##,w  
    if rem(m1,J) == 0                                 % Save output every J steps. dOgM9P  
        U1 = [U1 u1];                                  % put solutions in U array j`M<M[C*4N  
        U2=[U2 u2]; #yOY&W:N  
        MN1=[MN1 m1]; fBh|:2u  
        z1=dz*MN1';                                    % output location 3/<^R}w\  
      end j~> #{"C  
    end WZ-{K"56  
    hg=abs(U1').*abs(U1');                             % for data write to excel A+ *(Pds  
    ha=[z1 hg];                                        % for data write to excel *Z(C' )7r  
    t1=[0 t']; !Bbwl-e`  
    hh=[t1' ha'];                                      % for data write to excel file f3|=T8"t  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format jl29~^@}1i  
    figure(1) itMc!bUQ  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn } +Z;zm@/6  
    figure(2) QZP;k!"w  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn \:28z  
    UZ0O j5B.  
    非线性超快脉冲耦合的数值方法的Matlab程序 ,fL e%RP  
    G?(:Z=  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   {D.0_=y~2  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nrhpI d  
    Cagq0-:(p  
    Y0'^S<ox  
    A|nU _*  
    %  This Matlab script file solves the nonlinear Schrodinger equations k(^b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of }('QIvq2  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear GUZi }a|=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g-uFss  
    +T;qvx6  
    C=1;                           c67!OHumP  
    M1=120,                       % integer for amplitude >u[ln@ l  
    M3=5000;                      % integer for length of coupler JYU Ks~Qt  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ~kFRy{z  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 0']M,iC/  
    T =40;                        % length of time:T*T0. %"B$I>h  
    dt = T/N;                     % time step .6(i5K  
    n = [-N/2:1:N/2-1]';          % Index g}h0J%s  
    t = n.*dt;   NE nP3A  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. AIo;\35  
    w=2*pi*n./T; 3P>@ :  
    g1=-i*ww./2; {$.{VE+v5  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; m8`A~  
    g3=-i*ww./2; 0$ EJ4  
    P1=0; 94/}@<d-=  
    P2=0; ?!vW&KJZx  
    P3=1; XRin~wz|S  
    P=0; HX[#tT|m~  
    for m1=1:M1                 ?RyvM_(N6  
    p=0.032*m1;                %input amplitude Q5ao2-\   
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 {)xrg sB  
    s1=s10; _en8hi@Z  
    s20=0.*s10;                %input in waveguide 2 \NRRN eu|  
    s30=0.*s10;                %input in waveguide 3 o!&*4>tF  
    s2=s20; ?whp _  
    s3=s30; rkp0ej2-  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   N~YeAe~+  
    %energy in waveguide 1 @n3PCH6:Ao  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   O%{>Zo_<  
    %energy in waveguide 2 }zi6F.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   (~4AG \  
    %energy in waveguide 3 Ja2.1v|r .  
    for m3 = 1:1:M3                                    % Start space evolution B dUyI_Ks:  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS q3t@)+l>*  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; b87d'# .  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; `^x^= og'  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Pd?YS!+S  
       sca2 = fftshift(fft(s2)); 4|UIyDt8  
       sca3 = fftshift(fft(s3)); )LUl?  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   &aU+6'+QXB  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); v%w]Q B  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ,'}ZcN2)  
       s3 = ifft(fftshift(sc3)); 9EW 7,m{A  
       s2 = ifft(fftshift(sc2));                       % Return to physical space TY}?>t+  
       s1 = ifft(fftshift(sc1)); CJ>=odK[  
    end %8/$CR  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 9:WKG'E8a  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); zjS<e XLs[  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 5irOK9hK  
       P1=[P1 p1/p10]; aY~IS?! ;  
       P2=[P2 p2/p10]; +iR ;D$w  
       P3=[P3 p3/p10]; ]0O$2j_7  
       P=[P p*p]; X5=7DE]  
    end BN67o]*]<  
    figure(1) I&9B^fF6  
    plot(P,P1, P,P2, P,P3); g}7B0 yo  
    *9PQJeyR  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~