计算脉冲在非线性耦合器中演化的Matlab 程序 v"O5u%P I4c!m_sr % This Matlab script file solves the coupled nonlinear Schrodinger equations of
\>Zvev!s
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
zfI}Q}p % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
H9 tXSh % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
WF2-$`x [\e@_vY@OH %fid=fopen('e21.dat','w');
^{yk[tHpS N = 128; % Number of Fourier modes (Time domain sampling points)
EqB)sK/3 M1 =3000; % Total number of space steps
L
3XB"A# J =100; % Steps between output of space
L}k/9F.5 T =10; % length of time windows:T*T0
;;U:Jtn2 T0=0.1; % input pulse width
1KE:[YQ1 MN1=0; % initial value for the space output location
m`A%
p dt = T/N; % time step
aX6}6zubr n = [-N/2:1:N/2-1]'; % Index
+9A\HQ|22 t = n.*dt;
[]pN$]+c u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
$jzFc!rs u20=u10.*0.0; % input to waveguide 2
~$,qgf u1=u10; u2=u20;
,!QV>= U1 = u1;
j<yiNHC U2 = u2; % Compute initial condition; save it in U
F5T3E?_ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
gzn^#3 b w=2*pi*n./T;
^QXbJJ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
lS5ny L=4; % length of evoluation to compare with S. Trillo's paper
!cX[-}Q dz=L/M1; % space step, make sure nonlinear<0.05
~/#1G.H for m1 = 1:1:M1 % Start space evolution
D-p.kA3MJ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
Ctu?o+^;z u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
7<\C?`q" ca1 = fftshift(fft(u1)); % Take Fourier transform
B4H!5b ca2 = fftshift(fft(u2));
nHXX\i c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
+0$/y]k c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
FY3IUG u2 = ifft(fftshift(c2)); % Return to physical space
chI.{Rj u1 = ifft(fftshift(c1));
:l u5Uu~ if rem(m1,J) == 0 % Save output every J steps.
TLa]O1=Bf. U1 = [U1 u1]; % put solutions in U array
0Q9T3X U2=[U2 u2];
-G |a*^ MN1=[MN1 m1];
OjE`1h\ z1=dz*MN1'; % output location
sy5 Fn~\R end
",qU,0 end
z? ]G3$i( hg=abs(U1').*abs(U1'); % for data write to excel
ro~+j}* ha=[z1 hg]; % for data write to excel
_.)eL3OF t1=[0 t'];
rRFAD{5) hh=[t1' ha']; % for data write to excel file
=6nD sibf %dlmwrite('aa',hh,'\t'); % save data in the excel format
d l]# figure(1)
n~IVNB* waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
ed!>)Cb figure(2)
9)dfL?x8V{ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
UK[v6".^h aptY6lGv-| 非线性超快脉冲耦合的数值方法的Matlab程序 G=9d&N gXFWxT8S 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
}?@5W, Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
^eq</5q D :;]Oc E2wz(,@ y(jg#7) % This Matlab script file solves the nonlinear Schrodinger equations
~p1EF;4 # % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
f:JlZ& % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
/B3R1kNf| % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
\E1U@6a je,}_:7 C=1;
%q3$|> M1=120, % integer for amplitude
+C]&2zc. M3=5000; % integer for length of coupler
Av J4\ N = 512; % Number of Fourier modes (Time domain sampling points)
r),PtI0X dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
uq3{hB# T =40; % length of time:T*T0.
mB'3N;~ dt = T/N; % time step
%:v`EjRD0 n = [-N/2:1:N/2-1]'; % Index
*~XA'Vw! t = n.*dt;
uzOYVN$t ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
LaFZ?7@|} w=2*pi*n./T;
g2cVZ!GIj g1=-i*ww./2;
W~n.Xeu{C g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
R[tC^]ai g3=-i*ww./2;
-NGK@Yk22 P1=0;
k`KGB P2=0;
OR6ML-| P3=1;
w*7|dZk{ P=0;
ZfAzc6J?\ for m1=1:M1
vsB*rP= p=0.032*m1; %input amplitude
#Il_J\# s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
Xf'=+f2p s1=s10;
"Y:/=
Gx s20=0.*s10; %input in waveguide 2
q6#<[ 4? s30=0.*s10; %input in waveguide 3
6rti ' s2=s20;
\/`? s3=s30;
={2!c0s p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
R9vT[{!i %energy in waveguide 1
=HDI \LD< p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
imB# Eo4eY %energy in waveguide 2
^?"\?M1 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
RrrK*Fk8= %energy in waveguide 3
j-@kW'K for m3 = 1:1:M3 % Start space evolution
kK>X rj6 s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
5X.ebd;PT s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
-F/st s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
+ZsX*/TOn sca1 = fftshift(fft(s1)); % Take Fourier transform
F'8T;J7 sca2 = fftshift(fft(s2));
5FKBv
e@ sca3 = fftshift(fft(s3));
b}!3;: iD sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
5E\#%K[ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
od<b!4k~s sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
MZv]s s3 = ifft(fftshift(sc3));
b}9[s s2 = ifft(fftshift(sc2)); % Return to physical space
vE, 37 s1 = ifft(fftshift(sc1));
2/P"7A=< end
z$lF)r:Bc p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
>QE{O.Z p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
ihe(F7\U p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
.
v)mZp P1=[P1 p1/p10];
f|EUqu%E P2=[P2 p2/p10];
]
f>]n P3=[P3 p3/p10];
MhEw
_{? P=[P p*p];
t G.(flW, end
,<,:8B figure(1)
{QaNAR=) plot(P,P1, P,P2, P,P3);
-cF'2Sfr l3o#@sz: 转自:
http://blog.163.com/opto_wang/