计算脉冲在非线性耦合器中演化的Matlab 程序 i6)7)^nG "DWw]\xO]( % This Matlab script file solves the coupled nonlinear Schrodinger equations of
h%2;B;p] % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
8Jnl!4 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
g>g]qQ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
WX2:c,%: HfQZRDH %fid=fopen('e21.dat','w');
d46PAA{' N = 128; % Number of Fourier modes (Time domain sampling points)
2@&|/O6_\h M1 =3000; % Total number of space steps
A:{PPjs%LA J =100; % Steps between output of space
{\HEUIa]w T =10; % length of time windows:T*T0
w4 R!aWLd T0=0.1; % input pulse width
UJhmhI MN1=0; % initial value for the space output location
OC(S"&D dt = T/N; % time step
?zFeP6C n = [-N/2:1:N/2-1]'; % Index
&nJH23h^ t = n.*dt;
Etv!:\\[ u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
6p;G~,bd~ u20=u10.*0.0; % input to waveguide 2
xbZx&`( u1=u10; u2=u20;
M|HW$8V3_2 U1 = u1;
&Nzq/~uqP U2 = u2; % Compute initial condition; save it in U
U/9i'D[|{ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
l y!vbpE_ w=2*pi*n./T;
4V2}'/|[ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
H]^hEQ3DT L=4; % length of evoluation to compare with S. Trillo's paper
7FQ&LF46 dz=L/M1; % space step, make sure nonlinear<0.05
UaW,#P for m1 = 1:1:M1 % Start space evolution
>v
sy P u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
j<BW/ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
>h!>Ll ca1 = fftshift(fft(u1)); % Take Fourier transform
ef
!@|2 ca2 = fftshift(fft(u2));
.mr&zq c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
{Kbb4%P+h c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
9FGe(t< u2 = ifft(fftshift(c2)); % Return to physical space
1=*QMEv1G
u1 = ifft(fftshift(c1));
q?&Ap* if rem(m1,J) == 0 % Save output every J steps.
o#p{0y U1 = [U1 u1]; % put solutions in U array
bSG}I| U2=[U2 u2];
8Uv2p{ <# MN1=[MN1 m1];
iZ^tLnc z1=dz*MN1'; % output location
fu=GgD* end
R]LRgfi9 end
b8QQS#q)V hg=abs(U1').*abs(U1'); % for data write to excel
()Tl\ ha=[z1 hg]; % for data write to excel
1" k_l.\,0 t1=[0 t'];
YI877T9> hh=[t1' ha']; % for data write to excel file
=hw&2c %dlmwrite('aa',hh,'\t'); % save data in the excel format
){D6E9 figure(1)
jV}tjwq waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
sf7~hN*
figure(2)
PUU
"k:{ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
xE.yh#?.k %oee x1`= 非线性超快脉冲耦合的数值方法的Matlab程序 Q+i zp4aiMn1F 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
aa-{,X"MF Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
5]c\{G /i[1$/* pW
y+oZ b{~64/YJ % This Matlab script file solves the nonlinear Schrodinger equations
B_kjy=]O. % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
l?f%2:}m % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
6bE~m<B\` % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
{E 'go] 2#i*'. C=1;
uQ(C,f[6p M1=120, % integer for amplitude
O
,9,=2j M3=5000; % integer for length of coupler
VR'R7 N = 512; % Number of Fourier modes (Time domain sampling points)
t.s;dlx[@ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
l KdY!j" T =40; % length of time:T*T0.
_nn\O3TB dt = T/N; % time step
z1AYXW6F n = [-N/2:1:N/2-1]'; % Index
2HX#:y{\l t = n.*dt;
*XCgl*% * ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
;YfKG8(0 w=2*pi*n./T;
,E._A(Z g1=-i*ww./2;
iXgy/>qgT g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
lTR/o g3=-i*ww./2;
+";<Kd - P1=0;
J#/L}h;qH P2=0;
~43T$^<w; P3=1;
'gaa@ !bg P=0;
qQ{i2D%)?f for m1=1:M1
_rN1(=J p=0.032*m1; %input amplitude
F7"v}K]X s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
ES>iM)M s1=s10;
_u]S/X- s20=0.*s10; %input in waveguide 2
fZ6-ap,u s30=0.*s10; %input in waveguide 3
OL2 b s2=s20;
&tjv.t s3=s30;
y@'~fI!E4 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
E*W|>2nx] %energy in waveguide 1
'CfM'f3uu p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
&F 3'tf? %energy in waveguide 2
( +x!wX( x p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
L7rEMq %energy in waveguide 3
-qDM(zR for m3 = 1:1:M3 % Start space evolution
!iHJ! s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
;,2;J3,pA s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
0]u=GD% s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
z]V%&f sca1 = fftshift(fft(s1)); % Take Fourier transform
>39\u&) sca2 = fftshift(fft(s2));
hLo>jE
sca3 = fftshift(fft(s3));
v-MrurQ4 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
U 6`E\?d` sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
P-LdzVt(^ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
gwQk
M4 s3 = ifft(fftshift(sc3));
p+y2w{{ s2 = ifft(fftshift(sc2)); % Return to physical space
h+ggrwg' s1 = ifft(fftshift(sc1));
!C>'a: end
8j^3_lD p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
wc~k4B9" p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
lDf:~ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
-udKGrT+ P1=[P1 p1/p10];
|WUm;o4E`U P2=[P2 p2/p10];
?E|be
) P3=[P3 p3/p10];
wQR0R~|M P=[P p*p];
^;DbIo\6H end
bmd3fJb`r figure(1)
WvVf+|Km plot(P,P1, P,P2, P,P3);
E!6 Nf[ K."h}f95 转自:
http://blog.163.com/opto_wang/