切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8641阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 '97)c7E  
    -Hh$3U v  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Q&(?D  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of vxUJ4|Qz  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Vyj>&"28  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C@pDX>~2=b  
    *0i   
    %fid=fopen('e21.dat','w'); idGkX ?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 4en&EWUr  
    M1 =3000;              % Total number of space steps $%;NX[>j  
    J =100;                % Steps between output of space 4S  2I]d  
    T =10;                  % length of time windows:T*T0 }CsUZ&*&  
    T0=0.1;                 % input pulse width VPys  
    MN1=0;                 % initial value for the space output location + h`:qB  
    dt = T/N;                      % time step [aO"9  
    n = [-N/2:1:N/2-1]';           % Index T=VVK6Lc:  
    t = n.*dt;   EYGJDv(S  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 sa#=#0yg  
    u20=u10.*0.0;                  % input to waveguide 2 9Vzk:zOT  
    u1=u10; u2=u20;                 :KgLjhj|)  
    U1 = u1;   q]<Xx{_  
    U2 = u2;                       % Compute initial condition; save it in U XT{1!I(  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 9Lk.\.  
    w=2*pi*n./T; eQcy'GA06  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >G' NI?$  
    L=4;                           % length of evoluation to compare with S. Trillo's paper PHfGl  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 hrZ~7 0r  
    for m1 = 1:1:M1                                    % Start space evolution da\K>An>  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS LN?T$H  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ;Zj Qy,H%  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 2s-f?WetbP  
       ca2 = fftshift(fft(u2)); R{!s%K&  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation > m}.}g8  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   8f,jC+(  
       u2 = ifft(fftshift(c2));                        % Return to physical space >+u5%5-wr  
       u1 = ifft(fftshift(c1)); Bf1GHn Xv  
    if rem(m1,J) == 0                                 % Save output every J steps. v6s8 p  
        U1 = [U1 u1];                                  % put solutions in U array =_%:9FnQ0  
        U2=[U2 u2]; BTjF^&`  
        MN1=[MN1 m1]; w#Nn(!VR  
        z1=dz*MN1';                                    % output location A6lf-8ncx  
      end Yr-,0${m  
    end N g'f u|  
    hg=abs(U1').*abs(U1');                             % for data write to excel lqX]'gu]\  
    ha=[z1 hg];                                        % for data write to excel 7X|&:V.s|  
    t1=[0 t']; wH|\;M{0V1  
    hh=[t1' ha'];                                      % for data write to excel file X?>S24I"9  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format {nryAXK  
    figure(1) }y=7r!{@  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn rRT9)wDa  
    figure(2) S31 :}   
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 'G-VhvM v  
    )KXLL;]  
    非线性超快脉冲耦合的数值方法的Matlab程序 k B2+ Tr  
    B'yN &3  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   OMKEn!Wq  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .4_ ~ku  
    VrF]X#\)  
    jq.@<<j|$  
    YI%7#L7C  
    %  This Matlab script file solves the nonlinear Schrodinger equations JFYeOmR+l  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ~p'/Z@Atu  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear . s? ''/(  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ik&loM_  
    3XL0Pm  
    C=1;                           cB -XmX/  
    M1=120,                       % integer for amplitude Qx.E+n\  
    M3=5000;                      % integer for length of coupler >#!n"i;  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Fi7pq2  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. c?q#?K aF  
    T =40;                        % length of time:T*T0. 1-w1k ^e  
    dt = T/N;                     % time step !m_'<=)B4~  
    n = [-N/2:1:N/2-1]';          % Index }E?s*iP  
    t = n.*dt;   (6 0,0|s  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. OEB_LI'  
    w=2*pi*n./T; L?al2aopF  
    g1=-i*ww./2; 4+v~{  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; L x9`y t6  
    g3=-i*ww./2; O~ qB  
    P1=0;  zKT \i  
    P2=0; 3c9v~5og4  
    P3=1; s?0r\cc|:  
    P=0; xg3G  
    for m1=1:M1                 0Fbq/63  
    p=0.032*m1;                %input amplitude ?\c*DNM'  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 $#KSvo{otI  
    s1=s10; h!d#=.R  
    s20=0.*s10;                %input in waveguide 2 T*YdGIFO  
    s30=0.*s10;                %input in waveguide 3 YjHGdacs  
    s2=s20; RCxqqUS\C  
    s3=s30; bZ3CJ f&mE  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   W >B:W0A  
    %energy in waveguide 1 Ui?t@.  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   )Xg#x:  
    %energy in waveguide 2 7Kh+m@q.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Qz<v. _  
    %energy in waveguide 3 ](T*f'LN  
    for m3 = 1:1:M3                                    % Start space evolution q=96Ci_a  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS A`OU} 'v?L  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 4[Oy3.-c  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; `^_.E:f  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform &,e@pvc3  
       sca2 = fftshift(fft(s2)); D}3E1`)W  
       sca3 = fftshift(fft(s3)); Cs*u{O  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ]^ j)4us  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); zH|!O!3"4  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); > ]6Eb`v  
       s3 = ifft(fftshift(sc3)); ^[qmELW#7  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Mb$&~!  
       s1 = ifft(fftshift(sc1)); hV=)T^Q  
    end 66z1_ lA  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));  p&ZD1qa  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ,Hj=]e2?  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  Gc SX5c  
       P1=[P1 p1/p10]; rJ<v1Yb  
       P2=[P2 p2/p10]; L#NPt4Sz+  
       P3=[P3 p3/p10]; uV%7|/fD  
       P=[P p*p]; $e<3z6  
    end r--"JO%2  
    figure(1) U)c,ZxE  
    plot(P,P1, P,P2, P,P3); #]:nQ (  
    L0uN|?}  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~