切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9077阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 cXx?MF5  
    @ !0@f'}e  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 6/ir("LK  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of TAbd[:2{F  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o}&TFhT  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 NIcPjo  
    {_0m0 8  
    %fid=fopen('e21.dat','w'); ^nu~q+:+#  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) i1]*5;q  
    M1 =3000;              % Total number of space steps T/DKT1P-  
    J =100;                % Steps between output of space p\]Mf#B  
    T =10;                  % length of time windows:T*T0 T8& kxp  
    T0=0.1;                 % input pulse width VG*Tdaua~  
    MN1=0;                 % initial value for the space output location $2Y'[Dto\  
    dt = T/N;                      % time step  -1Acprr  
    n = [-N/2:1:N/2-1]';           % Index RG [*:ReB9  
    t = n.*dt;   )UA$."~O  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 lP*_dt9  
    u20=u10.*0.0;                  % input to waveguide 2 %$/t`'&o-  
    u1=u10; u2=u20;                 7%C6hEP/*W  
    U1 = u1;   }J27Y ;Zp9  
    U2 = u2;                       % Compute initial condition; save it in U BsV2Q`(gT  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. }eUeADbC  
    w=2*pi*n./T; iHoQNog-!  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T S(kj"t*3  
    L=4;                           % length of evoluation to compare with S. Trillo's paper _-aQ.p ?T  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 iiS^xqSNCt  
    for m1 = 1:1:M1                                    % Start space evolution U)~?/s{v  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS uMl.}t2uYu  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; UR|UGldt_T  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform J-t5kU;L{  
       ca2 = fftshift(fft(u2)); =h,6/cs  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation fHTqLYd-  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   tZlz0BY!  
       u2 = ifft(fftshift(c2));                        % Return to physical space f/t1@d!  
       u1 = ifft(fftshift(c1)); <11pk  
    if rem(m1,J) == 0                                 % Save output every J steps. va \ 5  
        U1 = [U1 u1];                                  % put solutions in U array H Myw:?  
        U2=[U2 u2]; bF:]MB^VK  
        MN1=[MN1 m1]; .v<c_~y  
        z1=dz*MN1';                                    % output location Kbjt  CI7  
      end <}S1ZEZcQ  
    end J(+I`  
    hg=abs(U1').*abs(U1');                             % for data write to excel jE!<]   
    ha=[z1 hg];                                        % for data write to excel #g,JNJ}  
    t1=[0 t']; 5MsE oLg  
    hh=[t1' ha'];                                      % for data write to excel file |_Vi8Ly  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format x ;V7D5 q  
    figure(1) ]Igd<  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn B0Ql1x#x  
    figure(2) yi`Z(j;  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn eekp&H$'s  
    "Ka2jw,  
    非线性超快脉冲耦合的数值方法的Matlab程序 E- ,/@4k  
    @T53%v<5  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   j)IXe 0dMC  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4:\1S~WW  
    G0p|44_~t  
    '^f,H1oW  
    2Cd#~  
    %  This Matlab script file solves the nonlinear Schrodinger equations &6%%_Lw$  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 6.? Ke8iC  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear L}O_1+b  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <eRE;8C-  
    b e[KNrO  
    C=1;                           S;DqM;Q  
    M1=120,                       % integer for amplitude i=$##  
    M3=5000;                      % integer for length of coupler 2 O\p`,.  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) *:r@-=M3=  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. bDI#'F  
    T =40;                        % length of time:T*T0. +Bk d  
    dt = T/N;                     % time step Mx<V;GPm  
    n = [-N/2:1:N/2-1]';          % Index -V@vY42  
    t = n.*dt;   zbsdK  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ud]O'@G<  
    w=2*pi*n./T; ,f0|eu>  
    g1=-i*ww./2; g{K*EL <  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (jYHaTL6Y'  
    g3=-i*ww./2; }C1&}hZ  
    P1=0; Zcq'u jU  
    P2=0; R2k R   
    P3=1; 4DY\QvW5  
    P=0; lUWX[,  
    for m1=1:M1                 (. ~#bl  
    p=0.032*m1;                %input amplitude pyA;%vJn  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 {E *dDv  
    s1=s10; @[ {9B6NlV  
    s20=0.*s10;                %input in waveguide 2 b#;%TbDF  
    s30=0.*s10;                %input in waveguide 3 r\J"|{)e  
    s2=s20; 5~&9/ ALk5  
    s3=s30; ;Z]i$Vi_r  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   *?'nA{a)E  
    %energy in waveguide 1 XB  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   tU2 8l.  
    %energy in waveguide 2 -a:+ h\K  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3!_XFV  
    %energy in waveguide 3 5U)Ia>p  
    for m3 = 1:1:M3                                    % Start space evolution Fd@n#DR `  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (V2~txMh  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; dg[ &5D1Q  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; c#'t][Ii  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform  ismx evD  
       sca2 = fftshift(fft(s2)); 6Y4sv5G  
       sca3 = fftshift(fft(s3)); D:`b61sWi_  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~,[<R  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); f9FJ:?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); =6FA(R|QU  
       s3 = ifft(fftshift(sc3)); LWG%]m|C  
       s2 = ifft(fftshift(sc2));                       % Return to physical space WGwpryaya  
       s1 = ifft(fftshift(sc1)); ktlI(#\%  
    end o6LeC*  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); UIS\t^pJD  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]PWK^-4P  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); F+yu[Dh:  
       P1=[P1 p1/p10]; \\Ps*HN  
       P2=[P2 p2/p10]; {%g]Ym=  
       P3=[P3 p3/p10]; QWL$F:9:  
       P=[P p*p]; ;S Re`  
    end gaFOm9y.e  
    figure(1) \09m ?;^  
    plot(P,P1, P,P2, P,P3); Nl~'W  
    OV<'v%_&  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~