计算脉冲在非线性耦合器中演化的Matlab 程序 @JB9qT in}d(%3h % This Matlab script file solves the coupled nonlinear Schrodinger equations of
/e|vz^#+1, % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
N_jpCCG~ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
P){b"`f % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
^j~CYzmt '" MT$MrT %fid=fopen('e21.dat','w');
R( 2,1f=d N = 128; % Number of Fourier modes (Time domain sampling points)
vndD#/lXq M1 =3000; % Total number of space steps
;iA6[uz J =100; % Steps between output of space
3|++2Z{}, T =10; % length of time windows:T*T0
>|j8j:S[ T0=0.1; % input pulse width
vs=8x\W MN1=0; % initial value for the space output location
~9Xs=S! dt = T/N; % time step
w3hG\2)[HS n = [-N/2:1:N/2-1]'; % Index
b}&2j3-n, t = n.*dt;
LDX>S*cL u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
Hs9; &C u20=u10.*0.0; % input to waveguide 2
|| p>O u1=u10; u2=u20;
MS Qz,nn U1 = u1;
YCBp]xuE U2 = u2; % Compute initial condition; save it in U
q>X30g ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
{$
a
$m w=2*pi*n./T;
h7?uM^p g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
\US'tF)/ L=4; % length of evoluation to compare with S. Trillo's paper
!+R_Z#gB dz=L/M1; % space step, make sure nonlinear<0.05
$3yzB9\a" for m1 = 1:1:M1 % Start space evolution
ve3-GWT{C u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
5xb1FH d: u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
77zfRSb+ ca1 = fftshift(fft(u1)); % Take Fourier transform
cc0e(\ ca2 = fftshift(fft(u2));
GkU]>8E'" c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
"pA24Ze c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
Zqi;by% u2 = ifft(fftshift(c2)); % Return to physical space
!3*:6 u1 = ifft(fftshift(c1));
0&21'K)pW if rem(m1,J) == 0 % Save output every J steps.
\I-bZ|^ U1 = [U1 u1]; % put solutions in U array
Uo]x6j< U2=[U2 u2];
S+*%u/;l MN1=[MN1 m1];
l|jb}9(J z1=dz*MN1'; % output location
A?zxF5rfp end
<>l! end
f.e4 C, hg=abs(U1').*abs(U1'); % for data write to excel
rCH? R ha=[z1 hg]; % for data write to excel
Lb=4\ _ t1=[0 t'];
RCC~#bb hh=[t1' ha']; % for data write to excel file
!
<O,xI' %dlmwrite('aa',hh,'\t'); % save data in the excel format
w~a_FGYX figure(1)
EJByYk
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
^2f2g>9j_C figure(2)
eVvDis waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
.9uw@Eq Yn>y1~ 非线性超快脉冲耦合的数值方法的Matlab程序 @%[ dh@oY 6\5"36&/rQ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
- ]Mbe2; Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
K0 6 E: +Rq7m] 6
_n~E e u^X,ASkQ % This Matlab script file solves the nonlinear Schrodinger equations
,b${3*PPQ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
r1]DkX <6 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
6Gj69Lr % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
gI5Fzk@: *Q`y'6S C=1;
.>^iU} M1=120, % integer for amplitude
;=i$0w9 W M3=5000; % integer for length of coupler
,!I'0x1OR N = 512; % Number of Fourier modes (Time domain sampling points)
&{=`g+4n dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
\f-HfYG T =40; % length of time:T*T0.
oc0z1u dt = T/N; % time step
41s [p56+@ n = [-N/2:1:N/2-1]'; % Index
.NX>d@
Kc t = n.*dt;
OE8H |?% ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Hphfqdh0` w=2*pi*n./T;
)K>2 g1=-i*ww./2;
r$/.x6g// g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
S!{Kn ;@ g3=-i*ww./2;
fs3jPHZJ# P1=0;
<pp<%~_Z P2=0;
48W-Tf6v| P3=1;
;sZHE&+ P=0;
\+I+Lrj% for m1=1:M1
?5Ub&{ p=0.032*m1; %input amplitude
>&DNxw s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
PTf.(B"z s1=s10;
SHt#%3EU s20=0.*s10; %input in waveguide 2
d_!lRQ^N s30=0.*s10; %input in waveguide 3
nv-_\M s2=s20;
KX $Q`lM
s3=s30;
=2tl149m/z p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
`mo>~c7 %energy in waveguide 1
y|O)i
I/g p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
Ag@R 60# %energy in waveguide 2
nq3B( p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
3^%sz!jK+ %energy in waveguide 3
F3,djZq for m3 = 1:1:M3 % Start space evolution
$0wF4$) s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
[R9!Tz s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
1u\kxlZ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
.!`v2_ sca1 = fftshift(fft(s1)); % Take Fourier transform
eK_Yt~dj sca2 = fftshift(fft(s2));
[-*8S1 sca3 = fftshift(fft(s3));
OK1f Y`$z sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
7iM;X2=7} sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
TU,k(
`tn< sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
C~([aH@-I s3 = ifft(fftshift(sc3));
,Z1W3;O s2 = ifft(fftshift(sc2)); % Return to physical space
}N}\<RG s1 = ifft(fftshift(sc1));
/@~&zx&_ end
AcCM
W@e p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
cc|"^-j-7 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
9CW8l0 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
RI2Or9. P1=[P1 p1/p10];
ZPolE_P7 P2=[P2 p2/p10];
OcLFVD= P3=[P3 p3/p10];
#Ies
yNKZ P=[P p*p];
d;c<" + end
my(yN| figure(1)
KJLK]lf}d plot(P,P1, P,P2, P,P3);
4 fxD$%9 JHCV7$RS 转自:
http://blog.163.com/opto_wang/