切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8846阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 j^"Z^TEBT  
    b-@6w(j  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ;KWR/?ec  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of d /+sR@\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w t? 8-_  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 N9r02c  
    6K5KZZG  
    %fid=fopen('e21.dat','w'); $oHlfV/!  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) c_)vWU  
    M1 =3000;              % Total number of space steps Y]0oF_ :7  
    J =100;                % Steps between output of space l&dHH_m3  
    T =10;                  % length of time windows:T*T0 Jb#*QJ=  
    T0=0.1;                 % input pulse width MP-A^QT  
    MN1=0;                 % initial value for the space output location M6jP>fbV*  
    dt = T/N;                      % time step cH.T6u_%  
    n = [-N/2:1:N/2-1]';           % Index _~d C>`K  
    t = n.*dt;   P)XkqOGpT9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 G0^WQQ4  
    u20=u10.*0.0;                  % input to waveguide 2 4~53%=+  
    u1=u10; u2=u20;                 VTa?y  
    U1 = u1;   @`t)ly#N  
    U2 = u2;                       % Compute initial condition; save it in U \_#0Z+pX  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. KM*sLC#  
    w=2*pi*n./T; U#gHc:$  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _Z~wpO}/  
    L=4;                           % length of evoluation to compare with S. Trillo's paper &kB[jz_[A  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 T?I&n[Y|  
    for m1 = 1:1:M1                                    % Start space evolution U59uP 7n  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS p4\%*ovQt  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; mR,p?[P  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform /tikLJ  
       ca2 = fftshift(fft(u2)); if9I7@  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation dJ"3F(X  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   X4>c(1e  
       u2 = ifft(fftshift(c2));                        % Return to physical space |{k;p fPV  
       u1 = ifft(fftshift(c1)); l!ltgj  
    if rem(m1,J) == 0                                 % Save output every J steps. LDN'o1$qo  
        U1 = [U1 u1];                                  % put solutions in U array 7 6~x|6)  
        U2=[U2 u2]; L}ud+Wfox  
        MN1=[MN1 m1]; z%Ywjfn'  
        z1=dz*MN1';                                    % output location .L0pS.=LT  
      end T {a%:=`  
    end B08q/ qi  
    hg=abs(U1').*abs(U1');                             % for data write to excel [CGvM {  
    ha=[z1 hg];                                        % for data write to excel LyhLPU0^q  
    t1=[0 t']; %L+/GtxK  
    hh=[t1' ha'];                                      % for data write to excel file 8RbtI4  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !s/ij' T  
    figure(1) wb 2N$Ew=  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn L`cc2.F  
    figure(2) WZ&/l 65J  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn yL^1s\<ddW  
    BP6;dF5 E  
    非线性超快脉冲耦合的数值方法的Matlab程序 EB)j&y_  
    -N(y+~wN  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   , d ?4"8_  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `W e M  
    F'lG=c3N  
    G'q7@d {'  
    ?d%+85  
    %  This Matlab script file solves the nonlinear Schrodinger equations Mc oHV]x  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of i)Vqvb0Q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear m1a0uEA G  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 EMU~gwPR  
    m{`O.6#O  
    C=1;                           di]z  
    M1=120,                       % integer for amplitude q]=. Aik  
    M3=5000;                      % integer for length of coupler UTc$zc7  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) X0^gj>GI|  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. I! {AWfp0  
    T =40;                        % length of time:T*T0. MI0'ou8l  
    dt = T/N;                     % time step $]:I1I  
    n = [-N/2:1:N/2-1]';          % Index  T/p}Us  
    t = n.*dt;   N*$<Kjw  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. aCcBmc  
    w=2*pi*n./T; g2^7PtJg  
    g1=-i*ww./2; {6^c3R[  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; FSoL|lH  
    g3=-i*ww./2; @y[Zr6\z  
    P1=0; l %=yT6  
    P2=0; 9~I\WjB "  
    P3=1; Ij(S"P@  
    P=0; -20o%t  
    for m1=1:M1                 I7r{&X) D  
    p=0.032*m1;                %input amplitude "B*a| 'n!  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 n9]^v-]K  
    s1=s10; AT}}RE@vq  
    s20=0.*s10;                %input in waveguide 2 TDBWYppM  
    s30=0.*s10;                %input in waveguide 3 k:4 Z c3  
    s2=s20; MB" uJUk  
    s3=s30; fs&J%ku\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   )|@b GEk  
    %energy in waveguide 1 %/>\`d?  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   LO[1xE9  
    %energy in waveguide 2 yc|C}oQF  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   l " pCxA  
    %energy in waveguide 3  ^ 'FC.  
    for m3 = 1:1:M3                                    % Start space evolution %E?:9. :NJ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 7s; <5xc  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; m(q6Xe:Vc  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; hhlQ!WV2  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform q -M&f@Il  
       sca2 = fftshift(fft(s2)); OOQf a#~k  
       sca3 = fftshift(fft(s3)); {S%)GvrT  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Ziu f<X{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); /_@S*=T5  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); q~p,A>K  
       s3 = ifft(fftshift(sc3)); sSd  
       s2 = ifft(fftshift(sc2));                       % Return to physical space !H{)L@f  
       s1 = ifft(fftshift(sc1)); 2`+?s  
    end >9a%"<(2#  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); N#@xo)-H  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); \3n{%\_  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Kv:UQdnU[  
       P1=[P1 p1/p10]; z{d],M  
       P2=[P2 p2/p10]; OHssUt  
       P3=[P3 p3/p10]; 6#T?g7\pyR  
       P=[P p*p]; kuu9'Sqc'b  
    end (aVs p*E  
    figure(1) kMKI=>s+  
    plot(P,P1, P,P2, P,P3); )wP0U{7?v  
    Odxq]HlbO  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~