计算脉冲在非线性耦合器中演化的Matlab 程序 -@7?N6~qZx
t@X{qm:%Z
% This Matlab script file solves the coupled nonlinear Schrodinger equations of g'X{
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of K;8{qQ*
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 79&=MTM
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]S0=&x@,
uNKf!\Y
%fid=fopen('e21.dat','w'); @LSfP
N = 128; % Number of Fourier modes (Time domain sampling points) "+XF'ZO
M1 =3000; % Total number of space steps oU l0w~Xn
J =100; % Steps between output of space g)dKXsy(F
T =10; % length of time windows:T*T0 O0l1AX"
T0=0.1; % input pulse width q$7w?(Lk
MN1=0; % initial value for the space output location 953GmNZ7
dt = T/N; % time step !LR9}Xon
n = [-N/2:1:N/2-1]'; % Index >O]u4G!
t = n.*dt; *""iXi[
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 mX2X.ww(4
u20=u10.*0.0; % input to waveguide 2 Vp$<@Y
u1=u10; u2=u20; }A}cq!I^
U1 = u1; ^O.` P
U2 = u2; % Compute initial condition; save it in U VwN=AFk
Oj
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. U|
T}0
w=2*pi*n./T; "]T1DG"
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Z-j?N{3&
L=4; % length of evoluation to compare with S. Trillo's paper -e\OF3Td
dz=L/M1; % space step, make sure nonlinear<0.05 'QSj-
for m1 = 1:1:M1 % Start space evolution ~@#s<a,%;
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS GX+Gqj.
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; xLdkeuL[%
ca1 = fftshift(fft(u1)); % Take Fourier transform $~e55X'!+
ca2 = fftshift(fft(u2)); h[bC#(
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation g-pEt#
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift }wB!Bx2
u2 = ifft(fftshift(c2)); % Return to physical space '2qbIYanh
u1 = ifft(fftshift(c1)); r}:Dg
fn
if rem(m1,J) == 0 % Save output every J steps. vs^)=
U1 = [U1 u1]; % put solutions in U array !k<k]^Z\
U2=[U2 u2]; ZU$QwI8
MN1=[MN1 m1]; '/s/o]'sUd
z1=dz*MN1'; % output location |J"\~%8
end e/uLBZ
end CZ!gu Y=
hg=abs(U1').*abs(U1'); % for data write to excel _WGWU7h
ha=[z1 hg]; % for data write to excel !q~f;&rg
t1=[0 t']; c8N pk<
hh=[t1' ha']; % for data write to excel file :IO"' b
%dlmwrite('aa',hh,'\t'); % save data in the excel format ]n!oa
figure(1) \#v(f2jPF
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn +4n}H}9l
figure(2) $0cE iq?Hf
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn QYj*|p^x
tl
9`
非线性超快脉冲耦合的数值方法的Matlab程序 %+((F+[
hWiHKR]
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 >uo=0=9=
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -k
}LW4
l1.eAs5U
Z6zLL
bZ#KfR
% This Matlab script file solves the nonlinear Schrodinger equations |.b&\
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 610u!_-
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2uT@jfj:r
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |2GrOM&S
pxI[/vS
N
C=1; M96Nt&P`
M1=120, % integer for amplitude 24po}nrO
M3=5000; % integer for length of coupler P_P~c~o
N = 512; % Number of Fourier modes (Time domain sampling points) = Qn8Y`U
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. r3Kx
T =40; % length of time:T*T0. )h]tKYx
dt = T/N; % time step sZwa#CQK q
n = [-N/2:1:N/2-1]'; % Index VVEJE$
t = n.*dt; YkQ=rurE
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
)afH:
w=2*pi*n./T; S"fqE%
g1=-i*ww./2; E*yot[kj
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; _dc,}C
g3=-i*ww./2; 3t5WwrNh
P1=0; *l@T
9L[M'
P2=0; @.=2*e.z|b
P3=1; *c(J4
P=0; ^Ge|tBMoKE
for m1=1:M1 5>:p'zI
p=0.032*m1; %input amplitude P@<K&S+f
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ?'>[nm
s1=s10; Ko!a`I2M}
s20=0.*s10; %input in waveguide 2 !95Q4WH-@
s30=0.*s10; %input in waveguide 3 #bb$Icmtk
s2=s20; 'N&s$XB,
s3=s30; BA9;=orx
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); Qqd +=mgc
%energy in waveguide 1 }5d|y*
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); {;38&