切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8765阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ZH;VEX  
    pZUckQ  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of :{bvCos<)  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Xd@  -  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear c+,F)i^`  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b^_#f:_j  
    AX,V* s  
    %fid=fopen('e21.dat','w'); Q^>"AhOiU  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) X|fl_4NC>  
    M1 =3000;              % Total number of space steps ?j9J6=2  
    J =100;                % Steps between output of space  yaza  
    T =10;                  % length of time windows:T*T0 ^0p y  
    T0=0.1;                 % input pulse width jU.z{(s  
    MN1=0;                 % initial value for the space output location `w';}sQA7  
    dt = T/N;                      % time step ?-%Q[W  
    n = [-N/2:1:N/2-1]';           % Index jI %v[]V  
    t = n.*dt;   #pO=\lJ,  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 k/o"E  
    u20=u10.*0.0;                  % input to waveguide 2 Ndq/n21j  
    u1=u10; u2=u20;                 L"{qF<@V7&  
    U1 = u1;   |fqYMhA U  
    U2 = u2;                       % Compute initial condition; save it in U kKL'rT6z  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1.  BC*62m  
    w=2*pi*n./T; 9"hH2jc  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Q46^i7=  
    L=4;                           % length of evoluation to compare with S. Trillo's paper CAg~K[  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Ey96XJV  
    for m1 = 1:1:M1                                    % Start space evolution G(gJt l  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS E#}OIZ\S  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; qg1s]c~0u  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform EZnXS"z  
       ca2 = fftshift(fft(u2)); =f0qih5.4  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation z,dh?%H>X  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   M|8vP53=q  
       u2 = ifft(fftshift(c2));                        % Return to physical space )N$T&  
       u1 = ifft(fftshift(c1)); E| eEAa  
    if rem(m1,J) == 0                                 % Save output every J steps. AB(WK9o  
        U1 = [U1 u1];                                  % put solutions in U array ~ +DPq|-O  
        U2=[U2 u2]; X)7_@,7  
        MN1=[MN1 m1]; EMy>X  
        z1=dz*MN1';                                    % output location #C^)W/dP  
      end 1%Hc/N-  
    end 3{c6)vR2  
    hg=abs(U1').*abs(U1');                             % for data write to excel ;B*im S10  
    ha=[z1 hg];                                        % for data write to excel r+ v?~m!  
    t1=[0 t']; D2}N6i  
    hh=[t1' ha'];                                      % for data write to excel file wr);+.T9R  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format }@6Tcn1  
    figure(1) ]q^6az(Ud  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn !UHWCJ< <w  
    figure(2) ((0nJJjz  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn PY81MTv0;  
    EPeKg{w  
    非线性超快脉冲耦合的数值方法的Matlab程序 9r2l~zE  
    $[f-{B{>*  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   {:=sCY!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ri.}G  
     T.d1?  
    [vv $"$z  
    LH}]& >F  
    %  This Matlab script file solves the nonlinear Schrodinger equations }ejZk bP  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of M'gGoH}B+q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear a+mrsyM  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6LRvl6ik  
    P;8nC:zL  
    C=1;                            'ug:ic  
    M1=120,                       % integer for amplitude c'|](vOd]  
    M3=5000;                      % integer for length of coupler WwDd62g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) q4MR9ig1E_  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. JjMa   
    T =40;                        % length of time:T*T0. [L m  
    dt = T/N;                     % time step [&(~{#}M:  
    n = [-N/2:1:N/2-1]';          % Index bW-sTGjRD  
    t = n.*dt;   i0}f@pCB?X  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ~a$h\F'6  
    w=2*pi*n./T; }G/!9Zq  
    g1=-i*ww./2; WuuF &0?8C  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Q{[l1:  
    g3=-i*ww./2; S( ^HIJK  
    P1=0; 5Z@0XI  
    P2=0; y5{Vx{V"Q  
    P3=1; AZ.$g?3w  
    P=0; 2A=q{7s  
    for m1=1:M1                 3N[Rrxe2  
    p=0.032*m1;                %input amplitude *fCmZ$U:{  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Gf=3h4  
    s1=s10; O!G!Gq&  
    s20=0.*s10;                %input in waveguide 2 (b;Kl1Ql]  
    s30=0.*s10;                %input in waveguide 3 @}\i`H1s  
    s2=s20; xyD2<?dGUb  
    s3=s30; 5>6:#.f%!e  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   E1j3c :2  
    %energy in waveguide 1 [H[L};%=j  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   [XE\2Qa8e  
    %energy in waveguide 2 4mHk,Dd9,  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   r;^%D(  
    %energy in waveguide 3 ,njlKkFw^Z  
    for m3 = 1:1:M3                                    % Start space evolution >[2;  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS A?bqDy  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; %Q]3`kxp  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; eDsB.^|l  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ZkJLq[:cM  
       sca2 = fftshift(fft(s2)); n$ rgJ  
       sca3 = fftshift(fft(s3)); @<.ei)cqb  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   xa'^:H $X  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); &\=Tm~  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #;[0:jU0  
       s3 = ifft(fftshift(sc3)); .?vHoNvo  
       s2 = ifft(fftshift(sc2));                       % Return to physical space O DEFs?%'  
       s1 = ifft(fftshift(sc1)); ",xTgB3?V  
    end ..kFn!5(g  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 5sANF9o!  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7B<,nKd  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); dS8ydG2  
       P1=[P1 p1/p10]; d#OAM;0}5  
       P2=[P2 p2/p10]; R< L =&I  
       P3=[P3 p3/p10]; ]$u C~b   
       P=[P p*p]; f^-ot@w  
    end mW$Oi++'d  
    figure(1) 7},oY"" 8  
    plot(P,P1, P,P2, P,P3); DcNp-X40I  
    ^RJ @9`P&t  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~