切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8758阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ;>uB$8<_7  
    wPEK5=\4Ob  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ?q7MbQw  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of xax[# Vl4  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear c2t`i  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~s-bA#0S  
    ^&D5J\][  
    %fid=fopen('e21.dat','w'); A!,c@Kv 3  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 0BNH~,0u  
    M1 =3000;              % Total number of space steps x <a}*8"  
    J =100;                % Steps between output of space Td ade+  
    T =10;                  % length of time windows:T*T0 w$IUm_~waa  
    T0=0.1;                 % input pulse width 0cSm^a  
    MN1=0;                 % initial value for the space output location XD?Lu _.  
    dt = T/N;                      % time step  V~VUl)  
    n = [-N/2:1:N/2-1]';           % Index ] )iP?2{  
    t = n.*dt;   gg.]\#3g  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @ <3E `j'p  
    u20=u10.*0.0;                  % input to waveguide 2 tA^+RO4  
    u1=u10; u2=u20;                 @  R[K8  
    U1 = u1;   O&MH5^I  
    U2 = u2;                       % Compute initial condition; save it in U 1d~d1Rd  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. A@Q6}ESD  
    w=2*pi*n./T; BYu(a  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T r95 ,X!  
    L=4;                           % length of evoluation to compare with S. Trillo's paper JNY?] |=  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 *v%gNq  
    for m1 = 1:1:M1                                    % Start space evolution HU'w[r 6a  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS gyq6LRb  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ~r?tFE* +  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform bfpeK>T  
       ca2 = fftshift(fft(u2)); Oe x   
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation r&Nh>6<&/  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (V&8 WN  
       u2 = ifft(fftshift(c2));                        % Return to physical space H#7=s{u  
       u1 = ifft(fftshift(c1)); '$Z@oCY#  
    if rem(m1,J) == 0                                 % Save output every J steps. YzQ(\._s  
        U1 = [U1 u1];                                  % put solutions in U array *+zFsu4l  
        U2=[U2 u2]; _YG@P1  
        MN1=[MN1 m1]; 7TEpjSuF  
        z1=dz*MN1';                                    % output location XlD=<$Nk7  
      end ,}\LC;31,  
    end jI'?7@32`  
    hg=abs(U1').*abs(U1');                             % for data write to excel q6N{N>-D  
    ha=[z1 hg];                                        % for data write to excel yZ 7)|j  
    t1=[0 t']; CVvl &on  
    hh=[t1' ha'];                                      % for data write to excel file B8eZ}9X  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format bl&9O  
    figure(1) @54$IhhT~  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn oQrfrA&=M  
    figure(2) \9@}0}%`  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Y[vP]7-  
    x${C[gxq9F  
    非线性超快脉冲耦合的数值方法的Matlab程序 0C.5Qx   
    xOPQ~J|z  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   T59FRX  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ppRA%mhZ  
    n-SO201[*  
    #'O9Hn({  
    ob8}v*s  
    %  This Matlab script file solves the nonlinear Schrodinger equations WY QVe_<z:  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of VRgckh m  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear q+4dHS)x  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7XT(n v  
    E.;Hm;  
    C=1;                           /s%-c!o^  
    M1=120,                       % integer for amplitude S"@6,  
    M3=5000;                      % integer for length of coupler @{{L1[~:0  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) I$S*elveG  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ={v(me0ZPb  
    T =40;                        % length of time:T*T0. }5n\us  
    dt = T/N;                     % time step ?$ov9U_  
    n = [-N/2:1:N/2-1]';          % Index m>48?%  
    t = n.*dt;   ,aD~7QX1:  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. <$hv{a  
    w=2*pi*n./T; _.R]K$U  
    g1=-i*ww./2; so1  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; \1&4wzT  
    g3=-i*ww./2; !( +M  
    P1=0; /2E Q:P  
    P2=0; 7Y-Q, ?1  
    P3=1; RhmkpboucC  
    P=0; l" ~ CAw;  
    for m1=1:M1                 a!4p$pR  
    p=0.032*m1;                %input amplitude wSCI?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 `KLr!<i()  
    s1=s10; .b`8 +  
    s20=0.*s10;                %input in waveguide 2 TD*AFR3Oz  
    s30=0.*s10;                %input in waveguide 3 \2[tM/+Bs  
    s2=s20; 1c @S[y  
    s3=s30; RTvOaZ  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   bC"h7$3  
    %energy in waveguide 1 pg!oi?Jn  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   }eA ) m  
    %energy in waveguide 2 z>0$SBQ-  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   tS\Db'C7  
    %energy in waveguide 3 pYm#iz  
    for m3 = 1:1:M3                                    % Start space evolution ReD]M@;  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS K:qc "Q=C  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; nv+miyvvm  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; jj;TS%  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Ake l.&  
       sca2 = fftshift(fft(s2)); OAFxf,b  
       sca3 = fftshift(fft(s3)); ZwY mR=  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Il>o60u1  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Y1>OhHuN  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); c;]^aaQ+>  
       s3 = ifft(fftshift(sc3)); b;*'j9ly  
       s2 = ifft(fftshift(sc2));                       % Return to physical space _<2{8>EVf  
       s1 = ifft(fftshift(sc1)); /*e<r6  
    end G\5Bdo1g  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); w(Tr ,BFF  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); eHKb`K7C.  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); /E{tNd^S  
       P1=[P1 p1/p10]; )mI>2<Z!  
       P2=[P2 p2/p10]; IY[qWs  
       P3=[P3 p3/p10]; v8'XchJ  
       P=[P p*p]; hyJ&~i0P{J  
    end (RrC<5"  
    figure(1) K0o${%'@7  
    plot(P,P1, P,P2, P,P3); m+7%]$  
    )+Z.J]$O-  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~