切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9018阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 J+8T Ie  
    5I@2UvV8  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 0t}&32lL&  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Yc1ve  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear nK|WzUtp  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l050n9#9p  
    ,(CIcDJ2U_  
    %fid=fopen('e21.dat','w'); fmq9u(!R  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) . xdSUe  
    M1 =3000;              % Total number of space steps $v+t ~b  
    J =100;                % Steps between output of space :w 4Sba3  
    T =10;                  % length of time windows:T*T0 mGqT_   
    T0=0.1;                 % input pulse width a;e~D 9%1  
    MN1=0;                 % initial value for the space output location OO+QH 2j  
    dt = T/N;                      % time step ~!W{C_*N  
    n = [-N/2:1:N/2-1]';           % Index j]5bs*G  
    t = n.*dt;   ) %&~CW+  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 u@-x3%W  
    u20=u10.*0.0;                  % input to waveguide 2 )F) (Hg  
    u1=u10; u2=u20;                 4>W ov  
    U1 = u1;   `>cBR,)r  
    U2 = u2;                       % Compute initial condition; save it in U /__@a&9t  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. DJf!{:b)  
    w=2*pi*n./T; ];1Mg  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T :;]iUjiC8  
    L=4;                           % length of evoluation to compare with S. Trillo's paper =%V(n{7=  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 NJraol  
    for m1 = 1:1:M1                                    % Start space evolution 0? QTi(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS F"Y.'my8  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; .d>TU bR;  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform L) ]|\|  
       ca2 = fftshift(fft(u2)); 6vQCghI  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation h|j $Jy  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   I ;Sm<P7*  
       u2 = ifft(fftshift(c2));                        % Return to physical space nuip  
       u1 = ifft(fftshift(c1)); P6ztP$M(  
    if rem(m1,J) == 0                                 % Save output every J steps.  iFy_ D  
        U1 = [U1 u1];                                  % put solutions in U array ]hL `HP  
        U2=[U2 u2]; 89[5a  
        MN1=[MN1 m1]; yy%'9E ldc  
        z1=dz*MN1';                                    % output location sox0:9Oqnf  
      end M &g1'zv?/  
    end 0qj:v"~Q  
    hg=abs(U1').*abs(U1');                             % for data write to excel T!*lTzNHm  
    ha=[z1 hg];                                        % for data write to excel `i,l)X]  
    t1=[0 t']; r{T}pc>^  
    hh=[t1' ha'];                                      % for data write to excel file /RzL,~]  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format [Cx'a7KWL  
    figure(1) yIL6Sb  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn jLRh/pbz4  
    figure(2) fvDt_g9oI  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Hq*\,`b&  
    TUQ+?[  
    非线性超快脉冲耦合的数值方法的Matlab程序 "Vg1'd}f  
    dC7YVs_,#  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   1webk;IM  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \Y0o~JD  
    `H.~ # $  
    O#g'4 S  
    `EUufTYi  
    %  This Matlab script file solves the nonlinear Schrodinger equations ueyz@{On~  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +y$%S4>0tp  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Nj<}t/e  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 J .r^"K\  
     a9ko3L  
    C=1;                           :4f>S) m  
    M1=120,                       % integer for amplitude y\Z$8'E5W  
    M3=5000;                      % integer for length of coupler ?~vVSY  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Nm.H  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. iz&$q]P8  
    T =40;                        % length of time:T*T0. xV_,R'l  
    dt = T/N;                     % time step D+Ke)-/  
    n = [-N/2:1:N/2-1]';          % Index L|wD2iw  
    t = n.*dt;   UbD1h_b  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. rff=ud>Jf  
    w=2*pi*n./T; a5/6DK>  
    g1=-i*ww./2; Li jisE  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; #E?TE  
    g3=-i*ww./2; )AxgKBW  
    P1=0; !\ IgTt,  
    P2=0; Df\~ ZWs!  
    P3=1; WU wH W  
    P=0; "0Wi-52=V  
    for m1=1:M1                 eDh]uKg  
    p=0.032*m1;                %input amplitude ~$GRgOn  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Tq\S-K}4!  
    s1=s10; -VqZw&"  
    s20=0.*s10;                %input in waveguide 2 kK27hfsw  
    s30=0.*s10;                %input in waveguide 3 g>m)|o'  
    s2=s20; cmLGMlFT  
    s3=s30; )U?Tmh  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \(ygdZ{R  
    %energy in waveguide 1 ,cgFdOM.  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   t<)Cbple\  
    %energy in waveguide 2 ,N[N;Uoj  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   77FI&*q  
    %energy in waveguide 3 #JmVq-)  
    for m3 = 1:1:M3                                    % Start space evolution KT3W>/#E  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS >Mu I-^ 3  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; i++a^f  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; laR cEXj  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 7# ~v<M6  
       sca2 = fftshift(fft(s2)); F/ZB%;O9  
       sca3 = fftshift(fft(s3)); B6N/nCvHK  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   :~I^ni  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); U9<AL.  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Zj+S "`P  
       s3 = ifft(fftshift(sc3)); :y/1Jf'2f  
       s2 = ifft(fftshift(sc2));                       % Return to physical space |WiE`&?xP  
       s1 = ifft(fftshift(sc1)); DzfgPY_Py  
    end pyvH [  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 1V\tKDM  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~4 ~c+^PF  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); I~^t\iujs  
       P1=[P1 p1/p10]; jGg,)~)Y  
       P2=[P2 p2/p10]; }Y}f7 3-|  
       P3=[P3 p3/p10]; #?OJ9pyG'  
       P=[P p*p]; InO;DA\  
    end $?_/`S13  
    figure(1) /|<Pn!}J  
    plot(P,P1, P,P2, P,P3); CIxa" MW  
    Qm-I=Rh+  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~