切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8886阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 .iFViVZC  
    {'NBp0i  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of :^ n*V6.4  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]k[x9,IU\y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Hi^35  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (Aorx #z  
    6DB0ni  
    %fid=fopen('e21.dat','w'); o&~dGG4J  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) zm> >} 5R  
    M1 =3000;              % Total number of space steps z. 'Fv7  
    J =100;                % Steps between output of space Us'Cs+5XcG  
    T =10;                  % length of time windows:T*T0 # Mu<8`T-  
    T0=0.1;                 % input pulse width kP@H G<~  
    MN1=0;                 % initial value for the space output location `%e|$pK  
    dt = T/N;                      % time step iC\%_5/ _  
    n = [-N/2:1:N/2-1]';           % Index eNtf#Rqym  
    t = n.*dt;   rWA6X DM7  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 IroPx#s:i  
    u20=u10.*0.0;                  % input to waveguide 2 )i;un.  
    u1=u10; u2=u20;                 V\0E=M*P  
    U1 = u1;   1I ""X]I_  
    U2 = u2;                       % Compute initial condition; save it in U d PsLZ"I  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 1B 5:s,Oyj  
    w=2*pi*n./T; W RF.[R"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 58::h. :  
    L=4;                           % length of evoluation to compare with S. Trillo's paper XIKvH-0&  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 =~&VdPZ  
    for m1 = 1:1:M1                                    % Start space evolution H9U .lb  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS @OzMiN  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =-w;z x  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform m^<p8KZ  
       ca2 = fftshift(fft(u2)); >%u@R3PH]  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation V^WU8x  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9YD\~v;x  
       u2 = ifft(fftshift(c2));                        % Return to physical space P;73Hr[E#  
       u1 = ifft(fftshift(c1)); M ,`w A  
    if rem(m1,J) == 0                                 % Save output every J steps. :|rPT)yT]  
        U1 = [U1 u1];                                  % put solutions in U array nq1 'F  
        U2=[U2 u2]; ;r.EC}>m  
        MN1=[MN1 m1]; ,[* ;UR  
        z1=dz*MN1';                                    % output location )qv2)a!H  
      end ziiwxx_  
    end \9`#]#1bx5  
    hg=abs(U1').*abs(U1');                             % for data write to excel E;9>ePd@  
    ha=[z1 hg];                                        % for data write to excel lNz]H iD  
    t1=[0 t']; x:fW~!Xc6  
    hh=[t1' ha'];                                      % for data write to excel file YHB9mZi  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 0OnV0SIL  
    figure(1) Ab2Q \+,  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn p $Hi[upy  
    figure(2) >&Y-u%}U  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn `XJm=/f  
    ?T!)X)A#  
    非线性超快脉冲耦合的数值方法的Matlab程序  cG{L jt  
    ^nNitF  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   6@V~0DG  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PX2c[CDE^  
    uOd& XW  
    l$XPIC~H  
    [%pRfjM  
    %  This Matlab script file solves the nonlinear Schrodinger equations ,6{iT,~@8  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of <CZgQ\Mt  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear sILSey5`  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [M%._u,  
    w!&~??&=}  
    C=1;                           Z6Fp\aI8@  
    M1=120,                       % integer for amplitude A&"%os  
    M3=5000;                      % integer for length of coupler vUesV%9hq  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) fQdK]rLj  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. -oP'4QVb  
    T =40;                        % length of time:T*T0. ,R2U`EO;  
    dt = T/N;                     % time step KC#/Z2A|<  
    n = [-N/2:1:N/2-1]';          % Index !RH.|}  
    t = n.*dt;   Y`BRh9Sa  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. %IY``r)j  
    w=2*pi*n./T; f0>!qt  
    g1=-i*ww./2; m@Rtlb  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =0    
    g3=-i*ww./2; ;j%BK(5  
    P1=0; C\*4q8(  
    P2=0; y*23$fj(  
    P3=1; gckI.[!b  
    P=0; `5~3G2T  
    for m1=1:M1                 %$5H!!~o  
    p=0.032*m1;                %input amplitude <RNJ>>0  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 =] C]=  
    s1=s10; ,Lr<)p  
    s20=0.*s10;                %input in waveguide 2 04U")-\O  
    s30=0.*s10;                %input in waveguide 3 7msAhz  
    s2=s20; T0zn,ej  
    s3=s30; ;j8 )KC  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   hr GH}CU"  
    %energy in waveguide 1 Tr0B[QF  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   $*R/tJ.  
    %energy in waveguide 2 TuDE@ gq(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   GH1"xR4!  
    %energy in waveguide 3 A:l@_*C..  
    for m3 = 1:1:M3                                    % Start space evolution &<RpWAk{  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS kOo~%kcQ'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 9ZXlR?GA  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ~{,X3-S_H  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform $(e#aHB  
       sca2 = fftshift(fft(s2)); mZz="ZLa:  
       sca3 = fftshift(fft(s3)); $-}e; VZb  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   /,=@8k!t?  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); >9e(.6&2XZ  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 7\FXz'hA  
       s3 = ifft(fftshift(sc3)); _BdE< !r  
       s2 = ifft(fftshift(sc2));                       % Return to physical space R218(8S  
       s1 = ifft(fftshift(sc1)); ~vlype3/EF  
    end 1$qh`<\  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); b2b?hA'k  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); l7#yZ*<v  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); HK|ynBAo  
       P1=[P1 p1/p10]; `Qr%+OD  
       P2=[P2 p2/p10]; MUfG?r\t  
       P3=[P3 p3/p10]; 2MZCw^s>  
       P=[P p*p]; l2N]a9bq@  
    end $/!{OU.t`  
    figure(1) ?v>ET2wD  
    plot(P,P1, P,P2, P,P3); `;%]'F0`  
    otggN:^Qw  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~