计算脉冲在非线性耦合器中演化的Matlab 程序 '97)c7E -Hh$3Uv % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Q&(?D % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
vxUJ4|Qz % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Vyj>&"28 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
C@pDX>~2=b *0 i %fid=fopen('e21.dat','w');
idGkX
? N = 128; % Number of Fourier modes (Time domain sampling points)
4en&EWUr M1 =3000; % Total number of space steps
$%;NX[>j J =100; % Steps between output of space
4S 2I]d T =10; % length of time windows:T*T0
}CsUZ&* & T0=0.1; % input pulse width
VPys MN1=0; % initial value for the space output location
+
h`:qB dt = T/N; % time step
[aO"9 n = [-N/2:1:N/2-1]'; % Index
T=VVK6Lc: t = n.*dt;
EYGJDv(S u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
sa#=#0yg u20=u10.*0.0; % input to waveguide 2
9V zk:zOT u1=u10; u2=u20;
:KgLjhj|) U1 = u1;
q]<Xx{_ U2 = u2; % Compute initial condition; save it in U
XT{1!I( ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
9Lk.\. w=2*pi*n./T;
eQcy'GA06 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
>G'
NI?$ L=4; % length of evoluation to compare with S. Trillo's paper
PHfGl dz=L/M1; % space step, make sure nonlinear<0.05
hrZ~7 0r for m1 = 1:1:M1 % Start space evolution
da\K>An> u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
LN?T$H u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
;ZjQy,H% ca1 = fftshift(fft(u1)); % Take Fourier transform
2s-f?WetbP ca2 = fftshift(fft(u2));
R{!s%K& c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
>m}.}g8 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
8f,jC+( u2 = ifft(fftshift(c2)); % Return to physical space
>+u5%5-wr u1 = ifft(fftshift(c1));
Bf1GHnXv if rem(m1,J) == 0 % Save output every J steps.
v6s8 p U1 = [U1 u1]; % put solutions in U array
=_%:9FnQ0 U2=[U2 u2];
BTjF^&` MN1=[MN1 m1];
w#Nn(!VR z1=dz*MN1'; % output location
A6lf-8ncx end
Yr-,0${m end
Ng'f u| hg=abs(U1').*abs(U1'); % for data write to excel
lqX]'gu]\ ha=[z1 hg]; % for data write to excel
7X|&:V.s| t1=[0 t'];
wH|\;M{0V1 hh=[t1' ha']; % for data write to excel file
X?>S24I"9 %dlmwrite('aa',hh,'\t'); % save data in the excel format
{nryAXK figure(1)
}y=7r!{@ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
rRT9)wDa figure(2)
S31:} waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
'G-VhvMv )KXLL;] 非线性超快脉冲耦合的数值方法的Matlab程序 k B2+ Tr B'yN &3 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
OMKEn!Wq Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
.4_~ku VrF]X#\) jq.@<<j|$ YI%7#L7C % This Matlab script file solves the nonlinear Schrodinger equations
JFYeOmR+l % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
~p'/Z@Atu % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
. s?
''/( % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
ik&loM_ 3XL0Pm C=1;
cB -XmX/ M1=120, % integer for amplitude
Qx.E+n\ M3=5000; % integer for length of coupler
>#!n"i; N = 512; % Number of Fourier modes (Time domain sampling points)
Fi7pq2 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
c?q#?K
aF T =40; % length of time:T*T0.
1-w1k^e dt = T/N; % time step
!m_'<=)B4~ n = [-N/2:1:N/2-1]'; % Index
}E?s*iP t = n.*dt;
(6 0,0|s ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
OEB_LI' w=2*pi*n./T;
L?al2aopF g1=-i*ww./2;
4+v~{ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
L x9`y t6 g3=-i*ww./2;
O~qB P1=0;
zKT \i P2=0;
3c9v~5og4 P3=1;
s?0r\ cc|: P=0;
xg3G for m1=1:M1
0Fbq/63 p=0.032*m1; %input amplitude
?\c*DNM' s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
$#KSvo{otI s1=s10;
h!d#=.R s20=0.*s10; %input in waveguide 2
T*YdGIFO s30=0.*s10; %input in waveguide 3
YjHGdacs s2=s20;
RCxqqUS\C s3=s30;
bZ3CJ f&mE p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
W>B:W 0A %energy in waveguide 1
Ui?t@. p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
)Xg#x: %energy in waveguide 2
7Kh+m@q. p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Qz<v. _ %energy in waveguide 3
](T*f'LN for m3 = 1:1:M3 % Start space evolution
q=96Ci _a s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
A`OU}'v?L s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
4[Oy3.-c s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
`^_.E:f sca1 = fftshift(fft(s1)); % Take Fourier transform
&,e@pv c3 sca2 = fftshift(fft(s2));
D}3E1`)W sca3 = fftshift(fft(s3));
Cs*u{O sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
]^j)4us sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
zH|!O!3"4 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
>
]6Eb`v s3 = ifft(fftshift(sc3));
^[qmELW#7 s2 = ifft(fftshift(sc2)); % Return to physical space
Mb$&~! s1 = ifft(fftshift(sc1));
h V=)T^Q end
66z1_lA p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
p&ZD1qa p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
,Hj=]e2? p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Gc
SX5c P1=[P1 p1/p10];
rJ<v1Yb P2=[P2 p2/p10];
L#NPt4Sz+ P3=[P3 p3/p10];
uV%7|/fD P=[P p*p];
$e<3z6 end
r--"JO%2 figure(1)
U)c,ZxE plot(P,P1, P,P2, P,P3);
#]:nQ( L0uN|?} 转自:
http://blog.163.com/opto_wang/