切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8620阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #H5*]"w6I  
    'jmcS0f -  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of v< ;, x  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of />+JK5  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Z., Pl  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `ORDN|s6  
    VsUEp_I  
    %fid=fopen('e21.dat','w'); M@csB.'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) !fz`O>-mZ  
    M1 =3000;              % Total number of space steps lt(,/  
    J =100;                % Steps between output of space Lu-owP7nB  
    T =10;                  % length of time windows:T*T0 V1j&>-]]9*  
    T0=0.1;                 % input pulse width |nocz]yU$  
    MN1=0;                 % initial value for the space output location ^S, "i V  
    dt = T/N;                      % time step \@I.K+hj$  
    n = [-N/2:1:N/2-1]';           % Index }S%a]  
    t = n.*dt;   6 *Q5.g  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 eW\_9E)cY  
    u20=u10.*0.0;                  % input to waveguide 2 O|av(F9  
    u1=u10; u2=u20;                 +Mg^u-(A  
    U1 = u1;   x6F\|nb  
    U2 = u2;                       % Compute initial condition; save it in U z RsA[F#  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. -6)ywq^{z  
    w=2*pi*n./T; G::6?+S  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 9E (>mN  
    L=4;                           % length of evoluation to compare with S. Trillo's paper u4Vc:n  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 PqvwM2}4  
    for m1 = 1:1:M1                                    % Start space evolution 9:@os0^O  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ?u8+F  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; _+^3<MT  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform n>iPA D  
       ca2 = fftshift(fft(u2)); +R*4`F:QJQ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation V&GFGds  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   *~fN^{B'!  
       u2 = ifft(fftshift(c2));                        % Return to physical space Up/1c:<J  
       u1 = ifft(fftshift(c1)); k&^Megcb  
    if rem(m1,J) == 0                                 % Save output every J steps. -3KB:K<  
        U1 = [U1 u1];                                  % put solutions in U array q^12Rj;H  
        U2=[U2 u2];  .# M 5L  
        MN1=[MN1 m1]; h8S%Q|-  
        z1=dz*MN1';                                    % output location So!1l7b  
      end E$Ge# M@dM  
    end SuuWrt}5  
    hg=abs(U1').*abs(U1');                             % for data write to excel -=g`7^qa>  
    ha=[z1 hg];                                        % for data write to excel Jl5<9x  
    t1=[0 t']; rJNf&x%6  
    hh=[t1' ha'];                                      % for data write to excel file c#G(7.0MU  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format l~f +h?cF  
    figure(1) vTB*J,6.  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 9|#h )*  
    figure(2) EBebyQcon  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn d2(eX\56Z  
    ]Q,RVEtKp  
    非线性超快脉冲耦合的数值方法的Matlab程序 cHR}`U$  
    a(}jn|  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   d$Mj5wN:q  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y,)9{T  
    ";>D0h^D  
    V=S`%1dLN  
    r#{lpF,3Ib  
    %  This Matlab script file solves the nonlinear Schrodinger equations /CZOO)n  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of dxASU|Yo9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [;X YT  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +)7NWR\  
    s&fU|Jk8  
    C=1;                           Q'\jm=k  
    M1=120,                       % integer for amplitude !`aodz*PO  
    M3=5000;                      % integer for length of coupler `|PxEif+J  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 4wNxn lP  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Wx XVL"  
    T =40;                        % length of time:T*T0. mCq*@1Lp9  
    dt = T/N;                     % time step 6 a$%  
    n = [-N/2:1:N/2-1]';          % Index +_`F@^R_   
    t = n.*dt;   2QBtwlQ?[  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. tG#F7%+E  
    w=2*pi*n./T; tv;3~Y0i  
    g1=-i*ww./2; )p!dql K  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7l:H~"9r  
    g3=-i*ww./2; ow`\7qr  
    P1=0; ^Jkj/n'  
    P2=0; 9xu&n%L=  
    P3=1; E+3~w?1  
    P=0; GZ4{<QG  
    for m1=1:M1                 ?2G^6>O `  
    p=0.032*m1;                %input amplitude rre;HJGEL  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 1 9)78kV{  
    s1=s10; C8{CKrVE  
    s20=0.*s10;                %input in waveguide 2 C6, Bqlio  
    s30=0.*s10;                %input in waveguide 3 ;M JM~\L0  
    s2=s20; K}$PIW  
    s3=s30; %%DK?{jo`  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ~S=hxKI  
    %energy in waveguide 1 Sa<R8X' J  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   LLU>c]a  
    %energy in waveguide 2 LpF6e9V\Wp  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   p]aIMF_  
    %energy in waveguide 3 ''WX  
    for m3 = 1:1:M3                                    % Start space evolution ?j OpW1  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Y#N'bvE|%  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; `[ne<F?e  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; v=W%|iZ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ~MQN&  
       sca2 = fftshift(fft(s2)); }M9'N%PU  
       sca3 = fftshift(fft(s3)); I~mw\K{.3M  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   %? iE3j!q  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); :Z+(H+lyZ  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); e%f8|3<6  
       s3 = ifft(fftshift(sc3)); iu:e>r  
       s2 = ifft(fftshift(sc2));                       % Return to physical space +~[19'GH  
       s1 = ifft(fftshift(sc1)); CiMN J  
    end eq/s8]uM  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); }u|0  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3Y r   
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); xt-;7  
       P1=[P1 p1/p10]; + 6}FUi!"e  
       P2=[P2 p2/p10]; Fm2t:,=  
       P3=[P3 p3/p10]; koie  
       P=[P p*p]; ,Y&kW'2  
    end ZERd#7@m+  
    figure(1) Dbtw>:=  
    plot(P,P1, P,P2, P,P3); lca.(3u   
    ]9x30UXLwD  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~