切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8863阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^gvTc+|  
    I{g.V|+ x  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of  )^{}ov  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 'Tjvq%ks   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear xt?-X%oY8  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?PMbbqa0  
    !9_(y~g{N  
    %fid=fopen('e21.dat','w'); 2wY|E<E  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) `hj,rF+4  
    M1 =3000;              % Total number of space steps b~,e(D9DG  
    J =100;                % Steps between output of space Mt-r`W3 q  
    T =10;                  % length of time windows:T*T0 +:;ddV  
    T0=0.1;                 % input pulse width lxL.ztL  
    MN1=0;                 % initial value for the space output location F5 ]<=i  
    dt = T/N;                      % time step H)D|lt5xy  
    n = [-N/2:1:N/2-1]';           % Index .A<Hk1(-)  
    t = n.*dt;   F&czD;F  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 0<\|D^m=&h  
    u20=u10.*0.0;                  % input to waveguide 2 3Vc}Q'&Y  
    u1=u10; u2=u20;                 0d_)C>gcF  
    U1 = u1;   6(`N!]e*L  
    U2 = u2;                       % Compute initial condition; save it in U FHr)xqo=~  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. `w:kY9  
    w=2*pi*n./T; vw2E$ya  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T G9Uc }z  
    L=4;                           % length of evoluation to compare with S. Trillo's paper xjo`u:BH  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 `-pwP  
    for m1 = 1:1:M1                                    % Start space evolution (O0Ry2u k  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS KM?4J6jH  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; wg?}c ;  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform V'XEz;Ze  
       ca2 = fftshift(fft(u2)); [Xu8~c X  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ,w#lUg p  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   "?3=FBp&  
       u2 = ifft(fftshift(c2));                        % Return to physical space UGO;5!  
       u1 = ifft(fftshift(c1)); _ f%s]  
    if rem(m1,J) == 0                                 % Save output every J steps. 4<#ItQ(  
        U1 = [U1 u1];                                  % put solutions in U array |})s0TU  
        U2=[U2 u2]; Hloe7+5UD  
        MN1=[MN1 m1]; ]H n:c'aT  
        z1=dz*MN1';                                    % output location kzRvLs4xM  
      end 7_1 Iadb  
    end y5j:+2|I  
    hg=abs(U1').*abs(U1');                             % for data write to excel OOSf<I*>  
    ha=[z1 hg];                                        % for data write to excel -iDs:J4Iq  
    t1=[0 t']; ZTzec zXpQ  
    hh=[t1' ha'];                                      % for data write to excel file 8/aJ4w[A  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;]-08lzO<4  
    figure(1) |KYl'"5\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn OCx'cSs-=  
    figure(2) ;\0|1Eem`  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn HqWWWCWal  
    );.$  `0  
    非线性超快脉冲耦合的数值方法的Matlab程序 ! *sXLlS  
    .Od:#(aq  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   k _V+;&:%  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 utZI'5i  
    }gv'r ";  
    qIZ+%ZOu  
    ,zoHmV1Wd+  
    %  This Matlab script file solves the nonlinear Schrodinger equations .z,-ThTH@\  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 'r!!W0-K  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear s5@BVD'}E  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cn} CI  
    7He"IJ  
    C=1;                           "rn  
    M1=120,                       % integer for amplitude 8UjIC4'  
    M3=5000;                      % integer for length of coupler w PR Ns9^  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) \XB,)XDB  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. fF0K].  
    T =40;                        % length of time:T*T0. HKJCiQ|k  
    dt = T/N;                     % time step 9Ad%~qciY  
    n = [-N/2:1:N/2-1]';          % Index \7LL neq  
    t = n.*dt;   Eg`~mE+a  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Gky*EY  
    w=2*pi*n./T; wMCMrv:  
    g1=-i*ww./2; ">Qxb.Y}  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; vX }iA|`#  
    g3=-i*ww./2; pqO3(2F9  
    P1=0; >k"O3Pc@  
    P2=0; i\IpS@/{-v  
    P3=1; bKS/T^UQ  
    P=0; */K[B(G  
    for m1=1:M1                 2@a'n@-  
    p=0.032*m1;                %input amplitude %.$!VTO"  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _K#7#qp2  
    s1=s10; _ooHB>sH  
    s20=0.*s10;                %input in waveguide 2 VzSkqWF/"  
    s30=0.*s10;                %input in waveguide 3 @TALZk'%  
    s2=s20; la{?&75]  
    s3=s30; [1(eSH  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   w~B1TfqNo  
    %energy in waveguide 1 _W(xO |,M  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ;b [>{Q;  
    %energy in waveguide 2 LE}`rW3  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   wBpt W2jA  
    %energy in waveguide 3 %@:>hQ2;  
    for m3 = 1:1:M3                                    % Start space evolution G%~V b  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS PNAvT$0LaZ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Q+Nnj(AQY  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ]CP5s5  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform rrU(>jA!  
       sca2 = fftshift(fft(s2)); RgoF4g+@  
       sca3 = fftshift(fft(s3)); i}LQ}35@  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   <T7@,_T  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); h:Gs9]Lvtv  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); l atm_\  
       s3 = ifft(fftshift(sc3)); TSFrv8L  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ,zZH>P  
       s1 = ifft(fftshift(sc1)); :gRrM)n  
    end `{YOl\d_  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ]Qe~|9I  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); AT t.}-  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); D7pQWlN\  
       P1=[P1 p1/p10]; > U3>I^Y  
       P2=[P2 p2/p10]; gs1  
       P3=[P3 p3/p10]; 5L6.7}B  
       P=[P p*p]; aEdMZ+P.  
    end Jy:@&c  
    figure(1) Q']'KU.  
    plot(P,P1, P,P2, P,P3); ){GJgk|P  
    fQ~~%#z1  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~