切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9007阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 \GN5Sy]r  
    8MdKH7  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of w>e OERZa  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ;-F#a+2]!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear , /pE*Yk  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~Hq 2'  
    r]yq #T`z  
    %fid=fopen('e21.dat','w'); XN Y(@  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ME(!xI//JZ  
    M1 =3000;              % Total number of space steps TFhj]r^ {  
    J =100;                % Steps between output of space H0S7k`.  
    T =10;                  % length of time windows:T*T0 cjL!$OE6  
    T0=0.1;                 % input pulse width Co M8  
    MN1=0;                 % initial value for the space output location h(fh |R<  
    dt = T/N;                      % time step JmK+#o  
    n = [-N/2:1:N/2-1]';           % Index ETIf x)B-  
    t = n.*dt;   mMR[(  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ;Mc}If*  
    u20=u10.*0.0;                  % input to waveguide 2 0-FbV,:;  
    u1=u10; u2=u20;                 *VpQ("  
    U1 = u1;   tPUQ"S  
    U2 = u2;                       % Compute initial condition; save it in U LTF%b AQ,  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. !(]|!F[m  
    w=2*pi*n./T; KNn E5f  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T j EX([J1  
    L=4;                           % length of evoluation to compare with S. Trillo's paper {>:2Ff]O:  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 TF'ssD  
    for m1 = 1:1:M1                                    % Start space evolution REJ}T:  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 3+Q6<MS q  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ~ M"[FYw[  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ;RrfE8mGj  
       ca2 = fftshift(fft(u2)); 5H79) n>  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Zqao4  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   E,;nx^`!l  
       u2 = ifft(fftshift(c2));                        % Return to physical space 1)%o:Xy o  
       u1 = ifft(fftshift(c1)); %l,Xt"nS#  
    if rem(m1,J) == 0                                 % Save output every J steps. \l:n  
        U1 = [U1 u1];                                  % put solutions in U array BdceINI  
        U2=[U2 u2]; 4]cOTXk9C  
        MN1=[MN1 m1]; lfhB2^ ^  
        z1=dz*MN1';                                    % output location cc>h=%s`  
      end k";;Snk  
    end 5rc<ibGh  
    hg=abs(U1').*abs(U1');                             % for data write to excel sU8D;ML7  
    ha=[z1 hg];                                        % for data write to excel h1BdASn_  
    t1=[0 t']; ev; &$Hc  
    hh=[t1' ha'];                                      % for data write to excel file BKIt,7j  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format UkdQ#b1  
    figure(1) P -Pt{:  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~6OdPD  
    figure(2) U{ Y)\hR-  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn r4-r z+x  
    X9P-fF?0  
    非线性超快脉冲耦合的数值方法的Matlab程序 (YR1ML3N  
    !,\]> c  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   0]Li "Wb  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 { d/k0H  
    <%!@cE+y  
    V7&L+]!  
    ]!f=b\-Av  
    %  This Matlab script file solves the nonlinear Schrodinger equations #):FXB$a  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 67#;.}4a  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rsP1?Hxq  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ut o4bs:  
    #R)$nv:h?^  
    C=1;                           2sXWeiJy;  
    M1=120,                       % integer for amplitude EZ$m4: {e  
    M3=5000;                      % integer for length of coupler SDot0`s>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) %9M_ * ]  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^@N@ gB  
    T =40;                        % length of time:T*T0. K(_nfE{  
    dt = T/N;                     % time step {RzlmDStV  
    n = [-N/2:1:N/2-1]';          % Index b[/-lNrc  
    t = n.*dt;   UCl,sn  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. `=FfzL  
    w=2*pi*n./T; $FD0MrB_+  
    g1=-i*ww./2; M[X& Q  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ua2SW(C@  
    g3=-i*ww./2; x1TB (^aX  
    P1=0; S3 &L  
    P2=0; E*CY/F I_  
    P3=1; \s,ZE6dQ  
    P=0; wp} PQw:  
    for m1=1:M1                 Fd3V5h  
    p=0.032*m1;                %input amplitude VPf=LSxJe  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 or0f%wAF  
    s1=s10; {| Tl3  
    s20=0.*s10;                %input in waveguide 2 R7vO,kZ6Q  
    s30=0.*s10;                %input in waveguide 3 O7E0{8  
    s2=s20; * c xYB  
    s3=s30; HogT#BMs  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   kMK-E<g  
    %energy in waveguide 1 @c5TSHSL.  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   'sJYt^  
    %energy in waveguide 2  Qq>M}  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   v\&Wb_;A  
    %energy in waveguide 3 X+iUT  
    for m3 = 1:1:M3                                    % Start space evolution mI}1si=$  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS m&fm<?|  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 3^C  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; hv8V=Z'Q  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform @<;0 h|  
       sca2 = fftshift(fft(s2));  w;)@2}  
       sca3 = fftshift(fft(s3)); .h{`e>d  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   06L/i,  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); SxH b76 ;  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); rtC.!].;%  
       s3 = ifft(fftshift(sc3)); .I<#i9Le  
       s2 = ifft(fftshift(sc2));                       % Return to physical space LLCMp3qBz  
       s1 = ifft(fftshift(sc1)); [$f  
    end Eqnc("m)  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <w<&,xM  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); kbiMqiPG  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); jgbE@IA@!'  
       P1=[P1 p1/p10]; ~:v" TuuK  
       P2=[P2 p2/p10]; {e,S}:$g4  
       P3=[P3 p3/p10]; X)x$h{ OE  
       P=[P p*p]; 6Xbo:#  
    end (@[c;+x  
    figure(1) p%ek)tT  
    plot(P,P1, P,P2, P,P3); CB\E@u,  
    Ar,B7-F!  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~