切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8941阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 6nSk,yE'hE  
    @%cJjZ5y  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of N$,)vb<  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of @x J^JcE  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Tx_(^K  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 17Gdu[E  
    IKr7"`  
    %fid=fopen('e21.dat','w'); D3lYy>~d5;  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ;qk~>  
    M1 =3000;              % Total number of space steps /+1Fa):  
    J =100;                % Steps between output of space QBn>@jq  
    T =10;                  % length of time windows:T*T0 O}f(h5!k  
    T0=0.1;                 % input pulse width _0j}(Q>|H#  
    MN1=0;                 % initial value for the space output location Zz&i0 r  
    dt = T/N;                      % time step ]D-48o0  
    n = [-N/2:1:N/2-1]';           % Index O}D8  
    t = n.*dt;   CC-:dNb  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 =K>Z{% i  
    u20=u10.*0.0;                  % input to waveguide 2 -5 W0K}  
    u1=u10; u2=u20;                 x[^A9  
    U1 = u1;   835Upj>  
    U2 = u2;                       % Compute initial condition; save it in U #f~a\}$I  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Y-c~"#  
    w=2*pi*n./T; ;VFr5.*x  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T t5Mo'*j =  
    L=4;                           % length of evoluation to compare with S. Trillo's paper W=\dsdnu*  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ,"VQ 0Z1  
    for m1 = 1:1:M1                                    % Start space evolution _~(Xd@c(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS .XB] X  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ZAH<!@qh  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform n1/lE)  
       ca2 = fftshift(fft(u2)); G([vy#p  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation eztk$o  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   zB$6e!fc  
       u2 = ifft(fftshift(c2));                        % Return to physical space rWs5s!l,  
       u1 = ifft(fftshift(c1)); `^ _:  
    if rem(m1,J) == 0                                 % Save output every J steps. 66Xt=US  
        U1 = [U1 u1];                                  % put solutions in U array _dBU6U:V  
        U2=[U2 u2]; ^Q,/C8qeb  
        MN1=[MN1 m1]; f,a %@WT  
        z1=dz*MN1';                                    % output location F`Y<(]+   
      end ?mAw"Rb!  
    end ?.4l1X6Ba  
    hg=abs(U1').*abs(U1');                             % for data write to excel k0IU~y%  
    ha=[z1 hg];                                        % for data write to excel V$%K=[  
    t1=[0 t']; ,h._iO)I^  
    hh=[t1' ha'];                                      % for data write to excel file  :Y3?,  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format g\)z!DQ]  
    figure(1) "'#Hh&Us  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn pzr-}>xrZ  
    figure(2) 7&)F;;H  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn L>b,}w  
    B~#@fIL  
    非线性超快脉冲耦合的数值方法的Matlab程序 W 8NA.  
    .Cus t  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   j[`?`RyU  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~&:R\  
    3Q}Y?rkJ5  
    ;LE @Ezx  
    \^4$}@*]  
    %  This Matlab script file solves the nonlinear Schrodinger equations &zcj U+n  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of o {LFXNcg[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear SXz([Z{)  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FO=1P7  
    Y%l3SB,5L  
    C=1;                           B-|Zo_7  
    M1=120,                       % integer for amplitude rtx]dc1m  
    M3=5000;                      % integer for length of coupler 2oG|l!C  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) |u;PU`^-z  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. KgWT&^t  
    T =40;                        % length of time:T*T0. l5ds`uR#  
    dt = T/N;                     % time step *KH@u  
    n = [-N/2:1:N/2-1]';          % Index 'e64%t  
    t = n.*dt;   K>6k@okO  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. G9inNz*Cx  
    w=2*pi*n./T; ji -1yX  
    g1=-i*ww./2; # :w2Hf6Q  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =+S3S{\CK  
    g3=-i*ww./2; 9lJj/  
    P1=0; ]/Qy1,  
    P2=0; xN8JrZE&  
    P3=1; )N 6[rw<  
    P=0; D#1~]d  
    for m1=1:M1                 QS*cd|7J;  
    p=0.032*m1;                %input amplitude Wb )l8[=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 C}'="g^=sl  
    s1=s10; Q5n : f+  
    s20=0.*s10;                %input in waveguide 2 >o#wP  
    s30=0.*s10;                %input in waveguide 3 {taVAcb  
    s2=s20; lkg*AAR?'  
    s3=s30; b|o!&9Yyr  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   %H@76NvEz  
    %energy in waveguide 1 p3FnYz-V  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   O:tX0<6  
    %energy in waveguide 2 UH-uU~  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ]=VS~azZ5  
    %energy in waveguide 3 /&as)  
    for m3 = 1:1:M3                                    % Start space evolution n o+tVm|  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS /8t+d.r;/  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; fR%1FXpK&  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; %`1CE\f  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 1 3 `0d  
       sca2 = fftshift(fft(s2));  0(/D|  
       sca3 = fftshift(fft(s3)); yPh2P5}H>  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   >04>rn#},,  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); L2.`1Aag  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); UW[{d/.wC  
       s3 = ifft(fftshift(sc3)); D *I;|.=u  
       s2 = ifft(fftshift(sc2));                       % Return to physical space T) tZU?  
       s1 = ifft(fftshift(sc1)); Df:7P>  
    end 56SS >b  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); )QCM2  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); l()MYuLNV  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); qJXsf M6  
       P1=[P1 p1/p10]; pNE\@U|4E  
       P2=[P2 p2/p10]; k7|z$=zY  
       P3=[P3 p3/p10]; [ 7Lxt  
       P=[P p*p]; @U3foL2\  
    end Oqpl2Y"/  
    figure(1) 6$fnQcpJ  
    plot(P,P1, P,P2, P,P3); O0wCb  
    o;4e)tK  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~