切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8322阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 "15mOW(!+  
    dWwh?{n  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of W! v8'T  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of dU+28  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J b Hn/$  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 P(8zJk6h),  
    8q{ %n   
    %fid=fopen('e21.dat','w'); @x3x/g U  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 'z0@|a  
    M1 =3000;              % Total number of space steps y)X1!3~(  
    J =100;                % Steps between output of space D|} y{~  
    T =10;                  % length of time windows:T*T0 O+A/thI%*S  
    T0=0.1;                 % input pulse width h1} x2  
    MN1=0;                 % initial value for the space output location c7.%Bn,  
    dt = T/N;                      % time step xG@zy4  
    n = [-N/2:1:N/2-1]';           % Index \^or l9  
    t = n.*dt;   3yn>9qt  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 H@GiHej  
    u20=u10.*0.0;                  % input to waveguide 2 q|0Lu  
    u1=u10; u2=u20;                 k;/U6,LQ*  
    U1 = u1;   P#]%C  
    U2 = u2;                       % Compute initial condition; save it in U :KGUO{_u  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. RZi]0l_A'  
    w=2*pi*n./T; WQv%57+  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T g+|1khS)  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ,E2Tw-%  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 DyIuM{Owj  
    for m1 = 1:1:M1                                    % Start space evolution #9uNJla  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS BR*,E~%  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; . S4Xw2MS  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform e$}x;&cQ  
       ca2 = fftshift(fft(u2)); &[ejxK"  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation NPF"_[RoeV  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   p3>p1tC  
       u2 = ifft(fftshift(c2));                        % Return to physical space s ki'I  
       u1 = ifft(fftshift(c1)); =S7Xj`/  
    if rem(m1,J) == 0                                 % Save output every J steps. 9;KQ3.Fa}q  
        U1 = [U1 u1];                                  % put solutions in U array E-\Wo3  
        U2=[U2 u2]; ^u`1W^>  
        MN1=[MN1 m1]; {Hg.ctam  
        z1=dz*MN1';                                    % output location yU]NgG=z:-  
      end qT}<D`\  
    end w6(E$:#d  
    hg=abs(U1').*abs(U1');                             % for data write to excel UPQ?vh2F2  
    ha=[z1 hg];                                        % for data write to excel xwoK#eC~ F  
    t1=[0 t']; 3.>M=K~09  
    hh=[t1' ha'];                                      % for data write to excel file tjYqdbA)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format =0!PnBGYn  
    figure(1) 6V)P4ao  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn <WhdQKFf-  
    figure(2) eK[8$1  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn n?'I&0>M  
    ;zk& 7P0  
    非线性超快脉冲耦合的数值方法的Matlab程序 C.`C T7  
    IJ >qs8  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ^ z!g3  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3 VNYDY`>  
    x{y}pH"H  
    =Ji+GJ <,9  
    s?r:McF`  
    %  This Matlab script file solves the nonlinear Schrodinger equations b?S,%  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of =UY)U-  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;pn*|Bsq  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jNRR=0  
    ,=!_7'm  
    C=1;                           Uj]Tdg  
    M1=120,                       % integer for amplitude 2ZUI~:U Z  
    M3=5000;                      % integer for length of coupler rD ^ b{]E3  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 2Iv&XxSo  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. zY_?$9l0  
    T =40;                        % length of time:T*T0. 5,Rxc=  
    dt = T/N;                     % time step C]/]ot0%t  
    n = [-N/2:1:N/2-1]';          % Index 39Nz>Nu:  
    t = n.*dt;   ]=Im0s  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $aIq>vJO9  
    w=2*pi*n./T; %a\!|/;6  
    g1=-i*ww./2; iN\m:m  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; *nZe|)m  
    g3=-i*ww./2; ol^uM .k%_  
    P1=0; B<^yT@Wc  
    P2=0; H{yUKZH*  
    P3=1; I$yFCdXr  
    P=0; e'"2yA8dh"  
    for m1=1:M1                 ">zK1t5=  
    p=0.032*m1;                %input amplitude ( x)}k&B;  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ::goqajV  
    s1=s10; X8m@xFW}  
    s20=0.*s10;                %input in waveguide 2 sn>2dRW{  
    s30=0.*s10;                %input in waveguide 3 U1oZ\Mh  
    s2=s20; GhlbYa  
    s3=s30; vMD%.tk  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   (*6kYkUK  
    %energy in waveguide 1 hD)'bd  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   {S l#z }@s  
    %energy in waveguide 2 7\;4 d4u  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   VK)vb.:  
    %energy in waveguide 3 +)J;4B  
    for m3 = 1:1:M3                                    % Start space evolution X%>n vp  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS A[7\!bq5  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; yzH(\ x  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; JCe%;U  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform /-FvC^Fj  
       sca2 = fftshift(fft(s2)); =qWcw7!"  
       sca3 = fftshift(fft(s3)); r$Gz  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^Kbq.4  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); [{&GMc   
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ?:$aX@r  
       s3 = ifft(fftshift(sc3)); $V/Hr/0  
       s2 = ifft(fftshift(sc2));                       % Return to physical space x^sSAI(  
       s1 = ifft(fftshift(sc1)); iNO}</7?  
    end . .5s 2  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); #B$r|rqamq  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); V7S[rI<<r  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); FN+x<VXo(  
       P1=[P1 p1/p10]; uge~*S  
       P2=[P2 p2/p10]; )(/Bw&$  
       P3=[P3 p3/p10]; /s~(? =qYH  
       P=[P p*p]; 4{v?<x8  
    end GEs5@EH  
    figure(1) XI5TVxo(q  
    plot(P,P1, P,P2, P,P3); Jc=~BT_G  
    j tH>&O  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~