计算脉冲在非线性耦合器中演化的Matlab 程序 78&(>8@m w&<-pIa` % This Matlab script file solves the coupled nonlinear Schrodinger equations of
21i ?$ uU % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
fvnj:3RK % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
w6 0I;.hy % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
H:byCFN- at"-X ?`d %fid=fopen('e21.dat','w');
YLs%u=e($ N = 128; % Number of Fourier modes (Time domain sampling points)
T pXbJ]o9 M1 =3000; % Total number of space steps
uj#bK
7 J =100; % Steps between output of space
OXc!^2^ T =10; % length of time windows:T*T0
Ve\^(9n T0=0.1; % input pulse width
VBV y3fnj MN1=0; % initial value for the space output location
.:gZ*ks~ dt = T/N; % time step
6$]@}O^V n = [-N/2:1:N/2-1]'; % Index
nv>|,&; t = n.*dt;
B>sSl1opI u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
2\Bt~;EIx u20=u10.*0.0; % input to waveguide 2
1_$ybftS u1=u10; u2=u20;
CqHCJ ' U1 = u1;
trD-qi U2 = u2; % Compute initial condition; save it in U
S9BwCKH ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
AmYqrmJ w=2*pi*n./T;
rC
)pCC g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
5WJof`M L=4; % length of evoluation to compare with S. Trillo's paper
k~
Z9og dz=L/M1; % space step, make sure nonlinear<0.05
nGb%mlb for m1 = 1:1:M1 % Start space evolution
b
{fZU?o u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
n?uVq6c u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
;Z:zL^rvn ca1 = fftshift(fft(u1)); % Take Fourier transform
R%l6+Okr ca2 = fftshift(fft(u2));
"Z xM,kI c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
5-rG 8 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
!F]7q]g u2 = ifft(fftshift(c2)); % Return to physical space
|VC|@ Q u1 = ifft(fftshift(c1));
G&ZpQ) if rem(m1,J) == 0 % Save output every J steps.
m"3gTqG U1 = [U1 u1]; % put solutions in U array
2e~ud9, U2=[U2 u2];
2Lravb3 MN1=[MN1 m1];
up`.#GWm z1=dz*MN1'; % output location
rqa?A}' end
j;%RV)e end
)0F\[Jl} hg=abs(U1').*abs(U1'); % for data write to excel
MPSoRA: h ha=[z1 hg]; % for data write to excel
t<sy7e=' t1=[0 t'];
"p,TYjT?R hh=[t1' ha']; % for data write to excel file
lJZ-*"9V %dlmwrite('aa',hh,'\t'); % save data in the excel format
}~/u%vI@M5 figure(1)
}<G"w5.< waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
F"2rX&W figure(2)
oEfy{54 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
`2}H$D H_3-"m &3 非线性超快脉冲耦合的数值方法的Matlab程序 [+7 Nu $~ 6Y\O 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
Um4$. BKD Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
R^t
)~\d >b^|SL c:;m BS>~ c{7<z9U % This Matlab script file solves the nonlinear Schrodinger equations
SU.9;I
! % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
ur*a!U % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
wO\,?SI4 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
G3 h&nH,> e[5=?p@| C=1;
;4E(n M1=120, % integer for amplitude
<<Zt.!hS M3=5000; % integer for length of coupler
-s] N = 512; % Number of Fourier modes (Time domain sampling points)
>LqW;/&S< dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
">$.>sn{ T =40; % length of time:T*T0.
M{sn{ dt = T/N; % time step
L
p(6K n = [-N/2:1:N/2-1]'; % Index
(<.uvq61 t = n.*dt;
s>d /9 b ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
iEe<+Eyns w=2*pi*n./T;
;0R|#9oX_ g1=-i*ww./2;
BbCt_z' g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
:Ng4?
+@r g3=-i*ww./2;
ry99R|/d1 P1=0;
Z:TW{:lrI P2=0;
<OYy;s P3=1;
_6Ex}`fyJ
P=0;
l8O12 for m1=1:M1
gOk<pRcTb= p=0.032*m1; %input amplitude
K@0gBgN s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
ez2rCpA s1=s10;
.JkcCEe{G s20=0.*s10; %input in waveguide 2
PxqRb s30=0.*s10; %input in waveguide 3
~c;D@.e\ s2=s20;
u0&
aw s3=s30;
`#v(MK{9+V p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
$s[DT!8N %energy in waveguide 1
Muhq,>!U p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
SfHs,y6 %energy in waveguide 2
naQ0TN, p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
]yR0"<W^xO %energy in waveguide 3
J}c`\4gD for m3 = 1:1:M3 % Start space evolution
T3-8AUCK8? s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
{{3n">s}: s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
rXortK#\% s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
83^|a5 sca1 = fftshift(fft(s1)); % Take Fourier transform
l}#z#L2,` sca2 = fftshift(fft(s2));
Y~R['u, sca3 = fftshift(fft(s3));
n\U3f M>N sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
GpW5)a sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Obd};&6Q sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
U}r^M(
s! s3 = ifft(fftshift(sc3));
AX
{~A:B s2 = ifft(fftshift(sc2)); % Return to physical space
O@n1E'S/ s1 = ifft(fftshift(sc1));
y)5U*\b end
@A-*XJNS": p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
d;Uzl1; p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
=Wb!j18] p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
LTSoo.dE P1=[P1 p1/p10];
]+ \]2`? P2=[P2 p2/p10];
.:<-E% P3=[P3 p3/p10];
I eQF+Xz P=[P p*p];
;k<n}shD end
9`3%o9V9Y figure(1)
Cfz020u`g plot(P,P1, P,P2, P,P3);
319 &: K1vm
[Ne 转自:
http://blog.163.com/opto_wang/