计算脉冲在非线性耦合器中演化的Matlab 程序 6nSk,yE'hE
@%cJjZ5y
% This Matlab script file solves the coupled nonlinear Schrodinger equations of N$,)vb<
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of @x J^JcE
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Tx_(^K
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 17Gdu[E
IKr7"`
%fid=fopen('e21.dat','w'); D3lYy>~d5;
N = 128; % Number of Fourier modes (Time domain sampling points) ;qk~>
M1 =3000; % Total number of space steps /+1Fa):
J =100; % Steps between output of space QBn>@jq
T =10; % length of time windows:T*T0 O}f(h5!k
T0=0.1; % input pulse width _0j}(Q>|H#
MN1=0; % initial value for the space output location Zz&i0r
dt = T/N; % time step
]D-48o0
n = [-N/2:1:N/2-1]'; % Index
O}D8
t = n.*dt; CC-:dNb
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 =K>Z{%i
u20=u10.*0.0; % input to waveguide 2 -5 W0 K}
u1=u10; u2=u20; x[^A9
U1 = u1; 835Upj>
U2 = u2; % Compute initial condition; save it in U #f~a\}$I
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Y-c~"#
w=2*pi*n./T; ;VFr5.*x
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T t5Mo'*j
=
L=4; % length of evoluation to compare with S. Trillo's paper W=\dsdnu*
dz=L/M1; % space step, make sure nonlinear<0.05 ,"VQ0Z1
for m1 = 1:1:M1 % Start space evolution _~(Xd@c(
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS .XB] X
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ZAH<!@qh
ca1 = fftshift(fft(u1)); % Take Fourier transform
n1/lE)
ca2 = fftshift(fft(u2)); G([vy#p
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation eztk$o
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift zB$6e!fc
u2 = ifft(fftshift(c2)); % Return to physical space rWs5s!l,
u1 = ifft(fftshift(c1)); `^_:
if rem(m1,J) == 0 % Save output every J steps. 66 Xt=US
U1 = [U1 u1]; % put solutions in U array _dBU6U:V
U2=[U2 u2]; ^Q,/C8qeb
MN1=[MN1 m1]; f,a %@WT
z1=dz*MN1'; % output location F`Y<(]+
end ?mAw"Rb!
end ?.4l1X6Ba
hg=abs(U1').*abs(U1'); % for data write to excel k0IU~y%
ha=[z1 hg]; % for data write to excel V$%K=[
t1=[0 t']; ,h._iO)I^
hh=[t1' ha']; % for data write to excel file :Y3?,
%dlmwrite('aa',hh,'\t'); % save data in the excel format g\)z!DQ]
figure(1) "'#Hh&Us
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn pzr-}>xrZ
figure(2) 7&)F;;H
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn L>b,}w
B~#@fIL
非线性超快脉冲耦合的数值方法的Matlab程序 W8NA.
.Cus t
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 j[`?`RyU
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~&:R\
3Q}Y?rkJ5
;LE
@Ezx
\^4$}@*]
% This Matlab script file solves the nonlinear Schrodinger equations &zcjU+n
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of o{LFXNcg[
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear SXz([Z{)
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FO=1P7
Y%l3SB,5L
C=1; B-|Zo_7
M1=120, % integer for amplitude rtx]dc1m
M3=5000; % integer for length of coupler 2oG|l!C
N = 512; % Number of Fourier modes (Time domain sampling points) |u;PU`^-z
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. KgWT&^t
T =40; % length of time:T*T0. l5ds`uR#
dt = T/N; % time step *KH@u
n = [-N/2:1:N/2-1]'; % Index 'e64%t
t = n.*dt; K>6k@okO
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. G9inNz*Cx
w=2*pi*n./T; ji
-1yX
g1=-i*ww./2; # :w2Hf6Q
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =+S3S{\CK
g3=-i*ww./2; 9 lJj/
P1=0; ]/Qy1,
P2=0; xN8JrZE&
P3=1; )N6[rw<