计算脉冲在非线性耦合器中演化的Matlab 程序 J{XRltI+ :C0)[L % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Y$./!lVY % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
:DuEv:;v % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
/_8nZVu % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
K_.|FEV o>&pj %fid=fopen('e21.dat','w');
G$CSZrP. N = 128; % Number of Fourier modes (Time domain sampling points)
e~R_ bBQ0 M1 =3000; % Total number of space steps
j|p=JrCJ J =100; % Steps between output of space
?hURNlR_Q T =10; % length of time windows:T*T0
``{GU}n T0=0.1; % input pulse width
,&* BhUC MN1=0; % initial value for the space output location
"kIlxf3 dt = T/N; % time step
:ee vc7 n = [-N/2:1:N/2-1]'; % Index
q$ j t = n.*dt;
N\?__WlBK7 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
OKu~Nb* u20=u10.*0.0; % input to waveguide 2
k!6m'}v u1=u10; u2=u20;
i`iR7UmHeR U1 = u1;
[I<J6= U2 = u2; % Compute initial condition; save it in U
W58%Zz4a ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
?T|0"|\"' w=2*pi*n./T;
Aq>?G+ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
8&qtF.i-6 L=4; % length of evoluation to compare with S. Trillo's paper
cw0uLMqr` dz=L/M1; % space step, make sure nonlinear<0.05
nCA~=[&H for m1 = 1:1:M1 % Start space evolution
AOV{@b( u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
:vaVghN\ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
%`/F>` ca1 = fftshift(fft(u1)); % Take Fourier transform
aQ&K a ca2 = fftshift(fft(u2));
wMCgLh\wi c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
M}=>~TA@ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
3+iryW(\ u2 = ifft(fftshift(c2)); % Return to physical space
RfCu5Kn u1 = ifft(fftshift(c1));
l=$?#^^ / if rem(m1,J) == 0 % Save output every J steps.
yGX5\PSo U1 = [U1 u1]; % put solutions in U array
hb}Qt Q U2=[U2 u2];
G2P:|R MN1=[MN1 m1];
NJQy*~P z1=dz*MN1'; % output location
6%wlz%Fp end
-<" ;|v4 end
UDgX
A hg=abs(U1').*abs(U1'); % for data write to excel
l%2 gM7WMY ha=[z1 hg]; % for data write to excel
hyhm{RC?[ t1=[0 t'];
\uJ+~db= hh=[t1' ha']; % for data write to excel file
# |OA>[ %dlmwrite('aa',hh,'\t'); % save data in the excel format
2{oQ figure(1)
Q`-Xx waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
{qCFd figure(2)
HoeW6U V waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
D)Jac@,0 rA8{Q.L 非线性超快脉冲耦合的数值方法的Matlab程序 ::cI4D 2j]uB0 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
h$%h w+"4 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
QDb8W*&< g{K \ WQBV~.<Yv /`y^z"! % This Matlab script file solves the nonlinear Schrodinger equations
J
L1]auO* % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
/^X)>1)j % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
)FfS7 C\. % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
T?tZ?!6 {)Shc;Qh C=1;
BD]o+96qP M1=120, % integer for amplitude
{V8uk$ M3=5000; % integer for length of coupler
>Y|P+Z\7 N = 512; % Number of Fourier modes (Time domain sampling points)
j}fSz)`i dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
}n"gX>e~ T =40; % length of time:T*T0.
)Z\Zw~L dt = T/N; % time step
ln6=XDu n = [-N/2:1:N/2-1]'; % Index
QpS7nGev t = n.*dt;
$)6M@S ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
4sC)hAx&f w=2*pi*n./T;
\i<7Lk g1=-i*ww./2;
R+.kwq3CED g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
\vS >jB g3=-i*ww./2;
VM;vLUu!e P1=0;
Oa M~rze P2=0;
8CH9&N5W5t P3=1;
~4mRm!DP P=0;
@,LU!#y( for m1=1:M1
9eR";Wm]) p=0.032*m1; %input amplitude
N0 mhgEA s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
-av=5hm s1=s10;
>T{TE"XyO| s20=0.*s10; %input in waveguide 2
O2U}jHsd s30=0.*s10; %input in waveguide 3
~Qf\DTM& s2=s20;
d vo|9 > s3=s30;
^E~1%Md. p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
7c6-
o"A %energy in waveguide 1
^)a j,U[ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
0}'/3Q %energy in waveguide 2
Rh)%; p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
8m[o*E.4F %energy in waveguide 3
Rv.IHSQUo for m3 = 1:1:M3 % Start space evolution
9`KFJx6D s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
+HgyM0LFg s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
;3%Y@FS@ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
vTL/% SJ8 sca1 = fftshift(fft(s1)); % Take Fourier transform
p=|S% sca2 = fftshift(fft(s2));
sI{?4k sca3 = fftshift(fft(s3));
su\`E&0V+ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
o'Y/0hkh sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
SQ'%a-Mct sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
V0%a/Hi v
s3 = ifft(fftshift(sc3));
b~<:k\EE s2 = ifft(fftshift(sc2)); % Return to physical space
lAo4) s1 = ifft(fftshift(sc1));
7 ;2>kgf~ end
"_=t1UE p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
<)Y jVGG p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
['3E'q,4& p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
$Yw~v36`t/ P1=[P1 p1/p10];
VA %lJ!$ P2=[P2 p2/p10];
ZoCk]hk P3=[P3 p3/p10];
aN!,\D P=[P p*p];
NSq29# end
lwjA07i figure(1)
9hJ
a K plot(P,P1, P,P2, P,P3);
=F5zU5`i /_yAd,^-+ 转自:
http://blog.163.com/opto_wang/