切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8788阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 %MZP)k,&U  
    ^s&W>hTX:  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of VfSj E.|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^C/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5G[x}4U  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |mhKIis U  
    &<3&'*ueW  
    %fid=fopen('e21.dat','w'); " .4,."  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Apj;  
    M1 =3000;              % Total number of space steps +bA%  
    J =100;                % Steps between output of space j.m(ltGh  
    T =10;                  % length of time windows:T*T0 aJhxc<"e  
    T0=0.1;                 % input pulse width }rq9I"/L  
    MN1=0;                 % initial value for the space output location B(_WZa!  
    dt = T/N;                      % time step AiP!hw/V$  
    n = [-N/2:1:N/2-1]';           % Index tGjhHp8}c  
    t = n.*dt;   r^0F"9eOL  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Ag9?C*  
    u20=u10.*0.0;                  % input to waveguide 2 > Lft9e   
    u1=u10; u2=u20;                 ),(V6@Z?  
    U1 = u1;   }!p`1]gem  
    U2 = u2;                       % Compute initial condition; save it in U t~``md4  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. IgIYguQ   
    w=2*pi*n./T; XJ1=m   
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T cA)[XpQ:+W  
    L=4;                           % length of evoluation to compare with S. Trillo's paper nhT-Ido  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 H1/?+N}(  
    for m1 = 1:1:M1                                    % Start space evolution UAn&\8g_  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS E{E0Z9t7&  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; k^\pU\J  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform i#/]KsSp  
       ca2 = fftshift(fft(u2)); - +> 1r  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation :|+Qe e  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   S >yLqPp  
       u2 = ifft(fftshift(c2));                        % Return to physical space $q$7^ r@  
       u1 = ifft(fftshift(c1)); JH8}Ru%Z  
    if rem(m1,J) == 0                                 % Save output every J steps. `=UWqb(K_  
        U1 = [U1 u1];                                  % put solutions in U array GZip\S4Y  
        U2=[U2 u2]; _oG&OJ@  
        MN1=[MN1 m1]; FAsFjRS  
        z1=dz*MN1';                                    % output location W,XTF  
      end Fv74bC %  
    end q_kdCO{:df  
    hg=abs(U1').*abs(U1');                             % for data write to excel ZfrVjUB  
    ha=[z1 hg];                                        % for data write to excel "ZwKk G  
    t1=[0 t']; n_?tN\M  
    hh=[t1' ha'];                                      % for data write to excel file vi.w8 >CE  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ?W>qUrZ  
    figure(1) w[tmCn+  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn F+m }#p  
    figure(2) x'<K\qp{{  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn +{<#(}  
    Dre2J<QL  
    非线性超快脉冲耦合的数值方法的Matlab程序 YNwp/Y  
    b~=0[Rv  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   _g%TSumvq<  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 yAL[[  
     ]^'@ [<  
    gzoEUp =s  
    @+3kb.P%7  
    %  This Matlab script file solves the nonlinear Schrodinger equations h/?l4iR*  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of *Kdda} J+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;AO#xv+#  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8NyJc"T<.  
    I:K"'R^  
    C=1;                           ^[:p|U2mA  
    M1=120,                       % integer for amplitude !;?+>R)h  
    M3=5000;                      % integer for length of coupler cufH?Xg<  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) M5gWD==uP  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. sMu] /'7  
    T =40;                        % length of time:T*T0. C74a(Bk}H  
    dt = T/N;                     % time step :oJ=iB'Zc  
    n = [-N/2:1:N/2-1]';          % Index 0lhVqy}:}o  
    t = n.*dt;   : q#Xq;Wp  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. "[y-+)WTG  
    w=2*pi*n./T; ZK>WW  
    g1=-i*ww./2; ` ,SiA-3*  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;  }Y;K~J  
    g3=-i*ww./2; /!c${W!sY  
    P1=0; X5 j1`t,  
    P2=0; yUpgoX(6  
    P3=1; Q ]}Hd-  
    P=0; M5 <@~V/[  
    for m1=1:M1                 +E{|63~q  
    p=0.032*m1;                %input amplitude C.FI~Z  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 gLOEh6  
    s1=s10; 4O35 "1  
    s20=0.*s10;                %input in waveguide 2 v%q0OX>9X"  
    s30=0.*s10;                %input in waveguide 3 gHo?[pS%y  
    s2=s20; gP;&e:/3  
    s3=s30; "1%5,  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Evedc*z~P  
    %energy in waveguide 1 'Iw NTM  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   dw*_(ys  
    %energy in waveguide 2 ~{jcH  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   "thdPZ  
    %energy in waveguide 3 Dy:|g1>  
    for m3 = 1:1:M3                                    % Start space evolution |a Vn&qK  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (jAg_$6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ?vbvBu{a  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; `Tv[DIVW  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform njputEGX  
       sca2 = fftshift(fft(s2)); T(U_  
       sca3 = fftshift(fft(s3)); vkri+:S3  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ++`0rY%  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 5:KQg  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 'F9jq  
       s3 = ifft(fftshift(sc3)); @X#F3;  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 'Wm x)0)  
       s1 = ifft(fftshift(sc1)); ?gt l)q  
    end VgZsB$Ori  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 9,:l8  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); X:nN0p #  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]1#e#M]#  
       P1=[P1 p1/p10]; D$I5z.a  
       P2=[P2 p2/p10]; JehrDC2N  
       P3=[P3 p3/p10]; rWR}Stc@]  
       P=[P p*p]; >JFO@O5  
    end :LW4E9O=H  
    figure(1)  +|n*b  
    plot(P,P1, P,P2, P,P3); ?kbiMs1;u  
    KUlp"{a`,K  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~