切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8516阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 pNc4o@-  
    Z4tc3e  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of D?r% Y  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of QykHB k  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear sW!MVv  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 A|BN >?.t  
    5!7vD|6  
    %fid=fopen('e21.dat','w'); (:|1h@K/R  
    N = 128;                       % Number of Fourier modes (Time domain sampling points)  fG|+ !  
    M1 =3000;              % Total number of space steps LH>h]OTQF  
    J =100;                % Steps between output of space *|)O  
    T =10;                  % length of time windows:T*T0 bs_rw+  
    T0=0.1;                 % input pulse width }r:8w*4 7  
    MN1=0;                 % initial value for the space output location "Kf4v|6;  
    dt = T/N;                      % time step D0 rqte  
    n = [-N/2:1:N/2-1]';           % Index {fu[&@XV  
    t = n.*dt;   09Y:(2Qri  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 anFl:=  
    u20=u10.*0.0;                  % input to waveguide 2 i|G /x  
    u1=u10; u2=u20;                 YPS,[F'B.  
    U1 = u1;   UQCond+K  
    U2 = u2;                       % Compute initial condition; save it in U vjYG>YhV  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. -|_io,eL;  
    w=2*pi*n./T; [ jgC`  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Ox+}JB [  
    L=4;                           % length of evoluation to compare with S. Trillo's paper J*]JH{  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ]8EkZC  
    for m1 = 1:1:M1                                    % Start space evolution |sV@j_TX  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ((tWgSZ3  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; q@iZo,Yk  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform *uMtl'  
       ca2 = fftshift(fft(u2)); [`=:uUf3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~Ec@hz]js  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Z n]e2  
       u2 = ifft(fftshift(c2));                        % Return to physical space a|@1RH>7H  
       u1 = ifft(fftshift(c1)); WvHy}1W  
    if rem(m1,J) == 0                                 % Save output every J steps. <^B!.zQ  
        U1 = [U1 u1];                                  % put solutions in U array JL&ni]m  
        U2=[U2 u2]; dF0:'y  
        MN1=[MN1 m1]; jX 6+~  
        z1=dz*MN1';                                    % output location $ iU~p  
      end "aeKrMgc6V  
    end ? p^':@=  
    hg=abs(U1').*abs(U1');                             % for data write to excel Y'M}lv$sa  
    ha=[z1 hg];                                        % for data write to excel |NaEXzo|qY  
    t1=[0 t']; S3_QOL  
    hh=[t1' ha'];                                      % for data write to excel file O<6!?1|KP  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;#6j9M0  
    figure(1) 9NcC.}#-5  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn SLI358]$<  
    figure(2) -vBk,;^>  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ru1FJ{n  
    9/LJ tM  
    非线性超快脉冲耦合的数值方法的Matlab程序 d)jX%Z$LC  
    !FJ_\UST0  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   / S)&dN`  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 aFwfF^\(|,  
    %dA7`7j  
    0Kenyn4?  
    p4I6oS`/.  
    %  This Matlab script file solves the nonlinear Schrodinger equations iC\t@BVS  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ^tFgkzXm  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Wy,Tf*[  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3 Ho<4_I,  
    Sh RkL<  
    C=1;                           h5R5FzY0&  
    M1=120,                       % integer for amplitude NuKx{y}P  
    M3=5000;                      % integer for length of coupler RBM4_L  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) vt-5 3fa|  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. &y=~:1&f  
    T =40;                        % length of time:T*T0. s7TV@Y)  
    dt = T/N;                     % time step IEJp!P,E  
    n = [-N/2:1:N/2-1]';          % Index >QM$ NIf@  
    t = n.*dt;   4>xv7  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. za@`,Yq  
    w=2*pi*n./T; H&zhYKw  
    g1=-i*ww./2; &`4v,l^Zi6  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7A[`%.!F6  
    g3=-i*ww./2; $N1UEvC%Q  
    P1=0; u6(>?r-  
    P2=0; L(!mm  
    P3=1; jNA^ (|:  
    P=0; E-q*u(IW  
    for m1=1:M1                 ="*8ja-K  
    p=0.032*m1;                %input amplitude ^zr]#`@G  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 7`f',ZK%  
    s1=s10; 4?{e?5)  
    s20=0.*s10;                %input in waveguide 2 E64d6z^7u  
    s30=0.*s10;                %input in waveguide 3 ~ -hH#5  
    s2=s20; W8 m*co  
    s3=s30; h^KLqPBt{  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   enGjom  
    %energy in waveguide 1 i@M^9|Gh  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   pZ4]oK\*  
    %energy in waveguide 2 X6dv+&=?  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   YSE6PG   
    %energy in waveguide 3 Zu/}TS9bi  
    for m3 = 1:1:M3                                    % Start space evolution e.|_=Gd2/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS } 6Uw4D61  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; H]7;O M/g  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ^L1#  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform D,rs)  
       sca2 = fftshift(fft(s2)); 2nRL;[L*.  
       sca3 = fftshift(fft(s3)); gqRwN p  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   &m6x*i-5\f  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); WwF4`kxT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); B^SD5  
       s3 = ifft(fftshift(sc3)); @ 0RB.-  
       s2 = ifft(fftshift(sc2));                       % Return to physical space uI I:Y{G  
       s1 = ifft(fftshift(sc1)); nVC:5ie  
    end =wW3Tr7~  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); B|Rnh;B-  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); x`vIY-DS  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); u9*}@{,  
       P1=[P1 p1/p10]; -PSI^%TR#  
       P2=[P2 p2/p10]; bt,^-gt@  
       P3=[P3 p3/p10]; j:9kJq>mv  
       P=[P p*p]; ^vjN$JB  
    end )k8=< =s  
    figure(1) |6pNe T[  
    plot(P,P1, P,P2, P,P3); 0pS|t/h0  
    c2z%|\q  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~