切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8698阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 yM`QVO!;  
    4Mr)~f rc  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of s^lm 81;  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "( NJ{J#A  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 032PR;]  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k>W}9^ cK  
    Cz)/Bq  
    %fid=fopen('e21.dat','w'); tFrNnbmlQ  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) KpF/g[m  
    M1 =3000;              % Total number of space steps !IAd.<,  
    J =100;                % Steps between output of space 1_MaaA;ow"  
    T =10;                  % length of time windows:T*T0 r(i!".Z  
    T0=0.1;                 % input pulse width d:GAa   
    MN1=0;                 % initial value for the space output location wNtPh&  
    dt = T/N;                      % time step YLkdT%  
    n = [-N/2:1:N/2-1]';           % Index !`qw" i  
    t = n.*dt;   K!A;C#b!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 {+  @M!  
    u20=u10.*0.0;                  % input to waveguide 2 ,Z aPY  
    u1=u10; u2=u20;                 ;: 4PT~\*  
    U1 = u1;   hY}.2  
    U2 = u2;                       % Compute initial condition; save it in U %5-   
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _]q%Hve  
    w=2*pi*n./T; F0 ^kUyF|  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T v#ERXIrf  
    L=4;                           % length of evoluation to compare with S. Trillo's paper c3X8Wi7m  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 VU ,tCTXz  
    for m1 = 1:1:M1                                    % Start space evolution  FtmI\,  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS =qy{8MsjA  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; -h1FrDBt  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Ua\<oD79]  
       ca2 = fftshift(fft(u2)); c,FhI~>R  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation vI1UFD D  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   LAcK%  
       u2 = ifft(fftshift(c2));                        % Return to physical space g'nN#O  
       u1 = ifft(fftshift(c1)); jdW#; ]7+y  
    if rem(m1,J) == 0                                 % Save output every J steps. 8B"my\  
        U1 = [U1 u1];                                  % put solutions in U array 03^?+[C  
        U2=[U2 u2]; _;8+L\  
        MN1=[MN1 m1]; "Qfw)!#  
        z1=dz*MN1';                                    % output location ; w+<yW}EL  
      end 0{zA6Xu  
    end X0+M|8:   
    hg=abs(U1').*abs(U1');                             % for data write to excel 1EcXvT=  
    ha=[z1 hg];                                        % for data write to excel e,rCutA)  
    t1=[0 t']; [ (eO_I5ep  
    hh=[t1' ha'];                                      % for data write to excel file ]YqeI*BX  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format A_xUP9g@?  
    figure(1) VSQxlAGk@  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~vv\A5O[|  
    figure(2) HS[N]'dc  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn xGVL|/?8  
    N%" /mcO  
    非线性超快脉冲耦合的数值方法的Matlab程序 & GM&,  
    }5{#f`Ca6  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ~ @Au<   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8"2X 8C8  
    2 }HS`) /  
    :"e,& %  
    =h/0k y  
    %  This Matlab script file solves the nonlinear Schrodinger equations +'fdAc:5',  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 'l`T(_zL\%  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =`y.L5  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :.%Hu9=GL  
    q"%;),@  
    C=1;                           "J(7fL$!  
    M1=120,                       % integer for amplitude ?iQA>P9B  
    M3=5000;                      % integer for length of coupler UB&)U\hn  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Y/aNrIK7  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. p/GYfa dU  
    T =40;                        % length of time:T*T0. Ls~F4ar$/  
    dt = T/N;                     % time step Gkq<?q({t  
    n = [-N/2:1:N/2-1]';          % Index ]&kzIxh  
    t = n.*dt;   Vg^@6zU  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. \JX.)&> -  
    w=2*pi*n./T; ob3Z I  
    g1=-i*ww./2; kH10z~(e  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; b6E,u*)"  
    g3=-i*ww./2; I%q&4L7pj  
    P1=0; cr_Q,*  
    P2=0; g,seqh%  
    P3=1; eE'2B."F  
    P=0; ?[K \X  
    for m1=1:M1                 sG~5O\,E  
    p=0.032*m1;                %input amplitude ]\Tcy[5  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 1]l m0bfs  
    s1=s10; Tfba3+V  
    s20=0.*s10;                %input in waveguide 2 &v#*  
    s30=0.*s10;                %input in waveguide 3 DMY?'Nts!  
    s2=s20; ua -cX3E  
    s3=s30; MxXu&.| _  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   <Hq|<^_K  
    %energy in waveguide 1 k_c8\::p#  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   i1#\S0jN  
    %energy in waveguide 2 8yDu(.Q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   I}aiy.l  
    %energy in waveguide 3 =Qcz:ng  
    for m3 = 1:1:M3                                    % Start space evolution XdDy0e4{%<  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS T"2D<7frbo  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; p^U:O&U(  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; PB :Lj  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform `<C/-Au  
       sca2 = fftshift(fft(s2)); IaU  
       sca3 = fftshift(fft(s3)); 7xOrG],E  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ci@U a}T  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); @ qfVt  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); yBPaGZ{f  
       s3 = ifft(fftshift(sc3)); 45hjN6   
       s2 = ifft(fftshift(sc2));                       % Return to physical space ~ZSP K;D[  
       s1 = ifft(fftshift(sc1)); $Qv+*%c  
    end 9W{=6D86e  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); )bqfj>%#c  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); mGXjSWsd  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ,4-)  e  
       P1=[P1 p1/p10]; Qn77ZpL:LJ  
       P2=[P2 p2/p10]; eoS8e$}  
       P3=[P3 p3/p10]; 5Z7<X2  
       P=[P p*p]; lglC1W-q  
    end 8/;q~:v  
    figure(1) L//Z\xr|  
    plot(P,P1, P,P2, P,P3); 7J]tc1-re  
    TvE M{  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~