切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8195阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 :+ Jt^ 6  
    #y 1Bx,  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of [Atc "X$  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of u5Up&QE!>q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >2b`\Q*<  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 e[1>(l}Ss  
    7 [d ?  
    %fid=fopen('e21.dat','w'); ^lj7(  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) w^q7n  
    M1 =3000;              % Total number of space steps B=n[)"5fBO  
    J =100;                % Steps between output of space <*(^{a. O  
    T =10;                  % length of time windows:T*T0 ST Z]8cw  
    T0=0.1;                 % input pulse width #HAC*n  
    MN1=0;                 % initial value for the space output location Pbn!KX~F~  
    dt = T/N;                      % time step UDEj[12S  
    n = [-N/2:1:N/2-1]';           % Index ]Gv!M?:  
    t = n.*dt;   h3!$r~T!a:  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 5o)Y$>T0  
    u20=u10.*0.0;                  % input to waveguide 2 m$wlflt  
    u1=u10; u2=u20;                 IP3E9z_ L  
    U1 = u1;   !GwL,)0@^  
    U2 = u2;                       % Compute initial condition; save it in U SeEw.;Xw  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. }Fa%%}  
    w=2*pi*n./T; ,Na^%A@TJ  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 8wK ~ i  
    L=4;                           % length of evoluation to compare with S. Trillo's paper S6xgiem  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ?o*I9[Z)  
    for m1 = 1:1:M1                                    % Start space evolution PuL<^aJ  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ;H'gT+t<c  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; J2VTo: In  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform x Q4%e[/  
       ca2 = fftshift(fft(u2)); o!c] (  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ;*2>ES  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   x/ *-P b-_  
       u2 = ifft(fftshift(c2));                        % Return to physical space x=q;O+7]  
       u1 = ifft(fftshift(c1)); ?r=jF)C<'  
    if rem(m1,J) == 0                                 % Save output every J steps. O|kOI?f  
        U1 = [U1 u1];                                  % put solutions in U array CGbwmPx  
        U2=[U2 u2]; 2]cRXJ7h  
        MN1=[MN1 m1]; _S}A=hK'  
        z1=dz*MN1';                                    % output location 4_/?:$KO  
      end /Ncm^b4  
    end c;2#,m^  
    hg=abs(U1').*abs(U1');                             % for data write to excel Wb}c=hZv  
    ha=[z1 hg];                                        % for data write to excel zfA GtT <  
    t1=[0 t']; z4X}O {  
    hh=[t1' ha'];                                      % for data write to excel file k,yZ[n|`  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format l{j~Q^U})  
    figure(1) v'!a\b`9  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Ho;X4lo[j  
    figure(2) PwB1]p=  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn t. ='/`!N  
    7!WA)@6  
    非线性超快脉冲耦合的数值方法的Matlab程序 v59dh (:`Z  
    )3Z ^h<"j  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   {X(:jAy  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~*A8+@ \R  
    :a ->0 l  
    aFz5leD  
    q@t0NvNSu  
    %  This Matlab script file solves the nonlinear Schrodinger equations H,nec<Jp  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of hCjR&ZA  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear i.D3'l  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,I1 RV  
    npJt3 Y_I  
    C=1;                           eIRLNxt+v  
    M1=120,                       % integer for amplitude .sC?7O =  
    M3=5000;                      % integer for length of coupler /+Lfrt  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) bef_rH@`  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. m< _S_c  
    T =40;                        % length of time:T*T0. 8>,jpAN}r  
    dt = T/N;                     % time step (bsXo q  
    n = [-N/2:1:N/2-1]';          % Index  ks$JP6  
    t = n.*dt;   ho##Z*O  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. +gtrt^:]l  
    w=2*pi*n./T; ),G=s Oo  
    g1=-i*ww./2; X/iT)R]b  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; g35DV6  
    g3=-i*ww./2; M`rl!Ci#  
    P1=0; %?e& WLS  
    P2=0; \b%kf99  
    P3=1; fF b_J`'ue  
    P=0; 8"sb;  
    for m1=1:M1                 z!l.:F  
    p=0.032*m1;                %input amplitude Vn*tp bz  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 yW$0\E6<r  
    s1=s10; ,lZB96r0  
    s20=0.*s10;                %input in waveguide 2 j@YU|-\qh  
    s30=0.*s10;                %input in waveguide 3 yE}}c{hSn  
    s2=s20;  GB$;n?  
    s3=s30; \"X!2  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   (h >-&.`&  
    %energy in waveguide 1 (p2K36,9m  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   bbrXgQ`s+w  
    %energy in waveguide 2 vI>>\ .ED  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -r-k_6QP  
    %energy in waveguide 3 {NHdyc$  
    for m3 = 1:1:M3                                    % Start space evolution |&RU/a  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS rg^'S1x|  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; `DV.+>O-1  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; <YdE1{fm  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 8_{X1bj  
       sca2 = fftshift(fft(s2)); /Mvf8v  
       sca3 = fftshift(fft(s3)); 0u;4%}pD  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   a!=D[Gz*5  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); .&DhN#EN0  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); rJGf .qJJ  
       s3 = ifft(fftshift(sc3)); KET2Ws[w  
       s2 = ifft(fftshift(sc2));                       % Return to physical space \O2Rhz  
       s1 = ifft(fftshift(sc1)); Mu+0<>   
    end '.:z&gSqx0  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); vEJWFoeEFm  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); uScMn/%  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); a{L d  
       P1=[P1 p1/p10]; I}1NB3>^  
       P2=[P2 p2/p10]; #qK:J;Sn3  
       P3=[P3 p3/p10]; G3Z)Z) N  
       P=[P p*p]; &5yV xL:  
    end A~)D[CV  
    figure(1) lhy*h_>  
    plot(P,P1, P,P2, P,P3); U|jSa,}  
    hb}+A=A=+  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~