切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9027阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ~3k& =3d]  
    H:9Z.|{Gv  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of !<9sOvka{  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1 o<l;:  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear CNwYQe-i  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x1:#rb'  
    a^yBtb~,P  
    %fid=fopen('e21.dat','w'); Ki#({~  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) #hinb[fQ  
    M1 =3000;              % Total number of space steps J6x#c`Y  
    J =100;                % Steps between output of space dre@V(\;hQ  
    T =10;                  % length of time windows:T*T0 =%u\x=u|  
    T0=0.1;                 % input pulse width 8`bQ,E+2  
    MN1=0;                 % initial value for the space output location f8]Qn8  
    dt = T/N;                      % time step -TnvX(ok4  
    n = [-N/2:1:N/2-1]';           % Index uK6_HvHuy  
    t = n.*dt;   qyXx`'e  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 t;BvKH77  
    u20=u10.*0.0;                  % input to waveguide 2 q^{Z"ifL  
    u1=u10; u2=u20;                 ?f1PQ  
    U1 = u1;   BR8W8nRb  
    U2 = u2;                       % Compute initial condition; save it in U e">$[IhXtV  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. \BB(0Ah+t  
    w=2*pi*n./T; 4%l @   
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T O6rrv,+_L  
    L=4;                           % length of evoluation to compare with S. Trillo's paper *"rgK|CM$  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 1d4 9z9F  
    for m1 = 1:1:M1                                    % Start space evolution yX:A?U  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS "=~P&Mi_  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; .ZSGnbJ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform .<`W2*1  
       ca2 = fftshift(fft(u2)); -$pS {q;  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation &cj/8A5-  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   y/' ^r?  
       u2 = ifft(fftshift(c2));                        % Return to physical space a }6Fj&hj  
       u1 = ifft(fftshift(c1)); L||_Jsu  
    if rem(m1,J) == 0                                 % Save output every J steps. u3{gX{so  
        U1 = [U1 u1];                                  % put solutions in U array 1_JxDT,=>  
        U2=[U2 u2]; + -e8MvP  
        MN1=[MN1 m1]; 1$,t:/'-4  
        z1=dz*MN1';                                    % output location 5j(3pV`_  
      end ]:* 8 Mb#  
    end Qxds]5WB/  
    hg=abs(U1').*abs(U1');                             % for data write to excel aQax85  
    ha=[z1 hg];                                        % for data write to excel Q;O\tl  
    t1=[0 t']; F",]*> r  
    hh=[t1' ha'];                                      % for data write to excel file ,#^<0u+zrF  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format W":is"  
    figure(1) ,e"A9ik#  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn wv,,#P  
    figure(2) oo\0X  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn KMz\h2X  
    bH7[6#y$  
    非线性超快脉冲耦合的数值方法的Matlab程序 T-7'#uB.m  
    U\S%Jq*  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   1j*I`xZ  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s PNX)  
    %gd=d0vm  
    I\R5Cb<p  
    V43pZ]YZ>  
    %  This Matlab script file solves the nonlinear Schrodinger equations ld1t1'I'  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 7Dy\-9:v  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear +Ux)m4}j  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9IL#\:d1  
    S=O/W(ZB  
    C=1;                           &]~z-0`$!  
    M1=120,                       % integer for amplitude LV:oNK(  
    M3=5000;                      % integer for length of coupler .vRLK  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) STgl{#  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 8$avPD3jx  
    T =40;                        % length of time:T*T0. mwFI89J'  
    dt = T/N;                     % time step jY-i`rJN  
    n = [-N/2:1:N/2-1]';          % Index ZTG*|  
    t = n.*dt;   1Giy|;2/  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. fys@%PZq  
    w=2*pi*n./T; [KkLpZG  
    g1=-i*ww./2; 6G"AP~|0  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Egt;Bj#%  
    g3=-i*ww./2; c L*D_)?8  
    P1=0; /U<-N'|  
    P2=0; _<5o1  
    P3=1; (]0$^!YK  
    P=0; |0(Z)s,  
    for m1=1:M1                 F#_7mC   
    p=0.032*m1;                %input amplitude lj.z>  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 DLE|ctzj[7  
    s1=s10; aKaqi}IT  
    s20=0.*s10;                %input in waveguide 2 JGIN<J85e  
    s30=0.*s10;                %input in waveguide 3 NFGC.<  
    s2=s20; JnCY O^Qj  
    s3=s30; [(tgoh/  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   w5jH#ja  
    %energy in waveguide 1 UuxWP\~2  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   T3['6%  
    %energy in waveguide 2 ro37H2^Ty  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   s)yEVh  
    %energy in waveguide 3 1rC8] M.N  
    for m3 = 1:1:M3                                    % Start space evolution q /|<>s  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS n6WSTh  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; }jTEgog  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; WX 79V  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ltt%X].[  
       sca2 = fftshift(fft(s2)); mBc;^8I?23  
       sca3 = fftshift(fft(s3)); ?7G?uk]3,@  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   c[<lr  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ~=%eOoZP;c  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); $c0SWz  
       s3 = ifft(fftshift(sc3)); iAf, :g  
       s2 = ifft(fftshift(sc2));                       % Return to physical space oypq3V=5  
       s1 = ifft(fftshift(sc1)); T~Jl{(s9)  
    end <PW*vo9v  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); e`R*6^e  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); >;o^qi_$  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); EBw}/y{Kt  
       P1=[P1 p1/p10]; -'{ioHt&X/  
       P2=[P2 p2/p10]; .)})8csl.d  
       P3=[P3 p3/p10]; ({![  
       P=[P p*p]; 8nES=<rz  
    end |IH-a"  
    figure(1) )rhKWg  
    plot(P,P1, P,P2, P,P3); ?`\<t$M  
    +Qu~UK\   
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~