切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8805阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^JVP2L>o*  
    &j@J<*k  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of +4nR&1z$  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of A.x}%v,E  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^?xJpr%)  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :;Rt#!  
    207oE O]  
    %fid=fopen('e21.dat','w'); % j{pz  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) e+ w  
    M1 =3000;              % Total number of space steps :k/U7 2  
    J =100;                % Steps between output of space "g1;TT:1~  
    T =10;                  % length of time windows:T*T0 !!O{ ppM  
    T0=0.1;                 % input pulse width 'nt,+`.y6  
    MN1=0;                 % initial value for the space output location b!~%a  
    dt = T/N;                      % time step `(suRp8!  
    n = [-N/2:1:N/2-1]';           % Index 0F'UFn>{  
    t = n.*dt;   d;:&3r|X  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 xKzFrP;/{  
    u20=u10.*0.0;                  % input to waveguide 2 yzR=:0J  
    u1=u10; u2=u20;                 Hf!4(\yN  
    U1 = u1;   Vzm+Ew _  
    U2 = u2;                       % Compute initial condition; save it in U D\*_ulc]  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 6="&K_Q7  
    w=2*pi*n./T; at]Q4  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T o(NyOC  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ?s} E<Kr  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 |aJ6363f.  
    for m1 = 1:1:M1                                    % Start space evolution Ic!83-  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Qf(e'e  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 0BE^qe  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform <OfzE5  
       ca2 = fftshift(fft(u2)); BXw,Rz }  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation )K3 vzX  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   <qY>d,+E'  
       u2 = ifft(fftshift(c2));                        % Return to physical space A@AGu#W  
       u1 = ifft(fftshift(c1)); o`! :Q!+  
    if rem(m1,J) == 0                                 % Save output every J steps. L([>yQZ  
        U1 = [U1 u1];                                  % put solutions in U array pAmI ](  
        U2=[U2 u2]; rL3Vogw'e  
        MN1=[MN1 m1]; 6mpUk.M"  
        z1=dz*MN1';                                    % output location e"mfJY  
      end 'X<uG x  
    end {;M/J  
    hg=abs(U1').*abs(U1');                             % for data write to excel J c^ozw  
    ha=[z1 hg];                                        % for data write to excel x99 Oq!  
    t1=[0 t']; Vn;] ''_  
    hh=[t1' ha'];                                      % for data write to excel file 0j MI)aY.  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format F|{?GV%hF  
    figure(1) )p9n|C  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 6WM_V9Tidq  
    figure(2) 7N=VVD~!b  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn j/|qge4  
    5D*V%v  
    非线性超快脉冲耦合的数值方法的Matlab程序 FWTl:LqFO  
    ]%hI-  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   (1]@ fCd +  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u Aa>6R  
    x[6Bc  
    8}T3Fig,q  
    x:lf=D lA  
    %  This Matlab script file solves the nonlinear Schrodinger equations RE$-{i  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of E |3aiC,5  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear dsuW4 ^ l  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Te#[+B?  
    yo6IY  
    C=1;                           _'a4I;  
    M1=120,                       % integer for amplitude \Da$bJ  
    M3=5000;                      % integer for length of coupler imQNfNm  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 6I![5j  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. O0YGjS|d  
    T =40;                        % length of time:T*T0. d^^>3L!h  
    dt = T/N;                     % time step 3$;v# P$%N  
    n = [-N/2:1:N/2-1]';          % Index *E_= 8OV  
    t = n.*dt;   T/5U lW|\  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. G[,VPC=  
    w=2*pi*n./T; DR8dJ#  
    g1=-i*ww./2; y&]D2"I  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; QLl44*@  
    g3=-i*ww./2; ,1L^#?Q~  
    P1=0; J1t?Qj;f3  
    P2=0; H/f= 2b  
    P3=1; S/jHyJ,  
    P=0; WU_Q 7%+QS  
    for m1=1:M1                 &>{L"{  
    p=0.032*m1;                %input amplitude 0AenDm@9  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 5w3'yA<vE  
    s1=s10; Mla,"~4D5  
    s20=0.*s10;                %input in waveguide 2 %SXqJW^:  
    s30=0.*s10;                %input in waveguide 3 "H@AT$Ny(  
    s2=s20; n\U6oJN  
    s3=s30; rD?o97  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   N@S;{uK  
    %energy in waveguide 1 enM 3  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   '"a8<7  
    %energy in waveguide 2 \g/E4U .+  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   v<4zcMv  
    %energy in waveguide 3 {S!~pn&^Y  
    for m3 = 1:1:M3                                    % Start space evolution p9J(,}  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Ycm1 _z  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5T`39[Fya  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; q~C6+  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform YQJ_t@0C  
       sca2 = fftshift(fft(s2)); FliN@RNo  
       sca3 = fftshift(fft(s3)); **"sru;@=  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   uIBV1Qz  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); S1JB]\  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); UPsh Y  
       s3 = ifft(fftshift(sc3)); ?##GY;#  
       s2 = ifft(fftshift(sc2));                       % Return to physical space FMiYZ1^r  
       s1 = ifft(fftshift(sc1)); hQO~9mQ+!  
    end 'yqp   
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); h/ic-iH(>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); '_8Vay~  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); +8"H%#~  
       P1=[P1 p1/p10]; {S c1!2q  
       P2=[P2 p2/p10]; 3%k+<ho(  
       P3=[P3 p3/p10]; Q_S fFsY  
       P=[P p*p]; 6O?O6Ub  
    end UHHe~L  
    figure(1) h fNBWN  
    plot(P,P1, P,P2, P,P3); <?eZ9eB  
    hLF@'ln  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~