切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9048阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 iEe#aO"D!  
    Rw/Ciw2@?  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,|A{!j`  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Jlz9E|*qV  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }H5/3be  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Gj)uy jct  
    NfOp=X?Y  
    %fid=fopen('e21.dat','w'); b##1hm~+9  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) $ND90my  
    M1 =3000;              % Total number of space steps URLk9PI  
    J =100;                % Steps between output of space .ByU  
    T =10;                  % length of time windows:T*T0 +3)[> {~1Z  
    T0=0.1;                 % input pulse width X'jr|s^s  
    MN1=0;                 % initial value for the space output location Wy8,<K{  
    dt = T/N;                      % time step 9Eu #lV  
    n = [-N/2:1:N/2-1]';           % Index D@:"f?K>  
    t = n.*dt;   MJA~jjy4  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 w1c w1xX*  
    u20=u10.*0.0;                  % input to waveguide 2 {!MVc<G.  
    u1=u10; u2=u20;                 loBtd%wY  
    U1 = u1;   6W$rY] h!  
    U2 = u2;                       % Compute initial condition; save it in U BD4`eiu"  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. IKo;9|2U  
    w=2*pi*n./T; SYeE) mI  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Ox~ 9_d  
    L=4;                           % length of evoluation to compare with S. Trillo's paper W-ez[raY  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 1TIlINlJ  
    for m1 = 1:1:M1                                    % Start space evolution >gnF]<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Hv8H.^D>  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; b[yE~EQxr  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform >K5~:mx#3  
       ca2 = fftshift(fft(u2)); @UV{:]f~e  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation gJKKR]4*  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   >J@egIKzP  
       u2 = ifft(fftshift(c2));                        % Return to physical space F3Ap1-%z  
       u1 = ifft(fftshift(c1)); ^4 8\>-Q\  
    if rem(m1,J) == 0                                 % Save output every J steps. F3Dt7q  
        U1 = [U1 u1];                                  % put solutions in U array +aj^Cs1$  
        U2=[U2 u2]; P.h.M A]  
        MN1=[MN1 m1]; Je@kiE  
        z1=dz*MN1';                                    % output location 9ad6uTc  
      end [IMQIX  
    end {-h, ZdH^  
    hg=abs(U1').*abs(U1');                             % for data write to excel *i@T!O(1)M  
    ha=[z1 hg];                                        % for data write to excel v8~YR'T0`V  
    t1=[0 t']; .it2NS  
    hh=[t1' ha'];                                      % for data write to excel file Zih ?Bm  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format tt{`\1q  
    figure(1) E(;i>   
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn p[-{]!  
    figure(2) . ,R4WA,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn YZ**;"<G  
    r )8z#W>s  
    非线性超快脉冲耦合的数值方法的Matlab程序 yl/a:Q  
    0;<OYbm3<  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   fI]bzv;  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .8(%4ejJ(  
    *KJ7nRKx(w  
    I7zn>^0}  
    SX_4=^  
    %  This Matlab script file solves the nonlinear Schrodinger equations 5r7h=[N  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >)3VbO  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear lkwh'@s.  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 DEtf(lW_  
    `)tA YH  
    C=1;                           tl^m=(ZQ  
    M1=120,                       % integer for amplitude qd8pF!u|#  
    M3=5000;                      % integer for length of coupler TY6 rwU  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ?bI?GvSh  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. '\t7jQ  
    T =40;                        % length of time:T*T0. 0Cq!\nzz  
    dt = T/N;                     % time step P7r4ePtLk{  
    n = [-N/2:1:N/2-1]';          % Index Noz&noq  
    t = n.*dt;   -_|]N/v\  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. A{(T'/~"  
    w=2*pi*n./T; s.rT]  
    g1=-i*ww./2; }e2F{pQ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 1Is%]6  
    g3=-i*ww./2; G#lg|# -#  
    P1=0; RJPcn)@l  
    P2=0; @woC8X  
    P3=1; 9wMEvX70  
    P=0; )eq}MaW+j  
    for m1=1:M1                 l&|)O6N  
    p=0.032*m1;                %input amplitude  2d~LNy  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ohsH2]C  
    s1=s10; g ;LVECk  
    s20=0.*s10;                %input in waveguide 2 _+n;A46  
    s30=0.*s10;                %input in waveguide 3 Fr;lG  
    s2=s20; ^#w{/C/n  
    s3=s30; x.\XUJ4x  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   QkE,T0,/?h  
    %energy in waveguide 1 ZqP7@fO_%  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   k/bque  
    %energy in waveguide 2 o8tS  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   /{R3@,D[]  
    %energy in waveguide 3 GA ik;R  
    for m3 = 1:1:M3                                    % Start space evolution XN(tcdCG  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 1LyT7h  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; @>:i-5  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 6ZOAmH fs  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform AsAFUuI  
       sca2 = fftshift(fft(s2)); "*bk{)dz}  
       sca3 = fftshift(fft(s3)); Y-]YDXrPQ  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   iD`k"\>9  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); h>|u:]I>  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); L~ 2q1  
       s3 = ifft(fftshift(sc3)); ;Z4o{(/zU  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ~lk@6{`l|1  
       s1 = ifft(fftshift(sc1)); quRPg)  
    end B0"0_n7-  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); [-]A^?yBM  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); hb<k]-'!  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 5v3RVaqZ  
       P1=[P1 p1/p10]; 2/EK`S  
       P2=[P2 p2/p10]; FW5}oD( H  
       P3=[P3 p3/p10]; zv@bI~3~  
       P=[P p*p]; EIPnm%{1  
    end 6J"(xT  
    figure(1) KqK9X  
    plot(P,P1, P,P2, P,P3); NhCAv +  
    hMWo\qM  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~