计算脉冲在非线性耦合器中演化的Matlab 程序 ePr&!Tz# N):tOD@B % This Matlab script file solves the coupled nonlinear Schrodinger equations of
d/ARm-D % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
]b\yg2 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
qHuZcht % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
JTr vnA zbk q %fid=fopen('e21.dat','w');
V#XppYU N = 128; % Number of Fourier modes (Time domain sampling points)
K%a%a6k` M1 =3000; % Total number of space steps
F$ #U5}Q J =100; % Steps between output of space
~rDZ?~% T =10; % length of time windows:T*T0
@ o3T T0=0.1; % input pulse width
rf>0H^r MN1=0; % initial value for the space output location
3on7~*
dt = T/N; % time step
iH/6M n = [-N/2:1:N/2-1]'; % Index
JBXrFC; t = n.*dt;
E7.2T^o;M u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
P!H_1RwXKC u20=u10.*0.0; % input to waveguide 2
x[$z({Yf u1=u10; u2=u20;
bmfI~8 U1 = u1;
[P&7i57 U2 = u2; % Compute initial condition; save it in U
1DE1.1 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
]L9s%]o w=2*pi*n./T;
MCS8y+QK g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
4kBaB L=4; % length of evoluation to compare with S. Trillo's paper
^G4Py<s dz=L/M1; % space step, make sure nonlinear<0.05
4)@mSSfn. for m1 = 1:1:M1 % Start space evolution
Q4+gAS9 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
iPd[l{85Z u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
7JEbH?lEN ca1 = fftshift(fft(u1)); % Take Fourier transform
-=~| ."O ca2 = fftshift(fft(u2));
n/Sw P c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
_a6[{_Pc c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
H@q?v+2 u2 = ifft(fftshift(c2)); % Return to physical space
Hea;?4Vg u1 = ifft(fftshift(c1));
^>jwh if rem(m1,J) == 0 % Save output every J steps.
\/: {)T~ U1 = [U1 u1]; % put solutions in U array
bYEy<7)x U2=[U2 u2];
jz
qyk^X MN1=[MN1 m1];
-I&m:A$4* z1=dz*MN1'; % output location
%Z):>' end
L3@82yPo! end
FFu9&8Y hg=abs(U1').*abs(U1'); % for data write to excel
j@SQ~AS ha=[z1 hg]; % for data write to excel
+y&Tf#.V/A t1=[0 t'];
>8k_n hh=[t1' ha']; % for data write to excel file
/atW8 `& %dlmwrite('aa',hh,'\t'); % save data in the excel format
VU&7P/\f% figure(1)
@\f^0^G waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
n ~shK<!C figure(2)
yXHUJgjl/ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
@cFJeOC| cc~O&?)i 非线性超快脉冲耦合的数值方法的Matlab程序 n)^i/ nXb' 5@+,Xh,H|t 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
I'uSp-Sfy Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
orWbU
UC "#{4d),r hRUhX[ 45,1-? -! % This Matlab script file solves the nonlinear Schrodinger equations
j)<IRD^ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
;<j0f~G` % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
`HZ;NRr % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
uBNn6j 8B\2Zfe C=1;
dep=& M1=120, % integer for amplitude
#~C]ZrK M3=5000; % integer for length of coupler
Qo;zHZ' N = 512; % Number of Fourier modes (Time domain sampling points)
Exc9`
7%. dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
v(ZYS']d2 T =40; % length of time:T*T0.
56zL"TF` dt = T/N; % time step
B9NWW6S n = [-N/2:1:N/2-1]'; % Index
ihIVUu-M t = n.*dt;
{L/ tst#C ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
|mGFts}0o' w=2*pi*n./T;
qI#;j%V g1=-i*ww./2;
0n;<
ge&~R g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
]6TATPIr g3=-i*ww./2;
i{`FmrPO~ P1=0;
!4XOy B P2=0;
amOnqH-( P3=1;
18+)`M-5o P=0;
a@@)6FM for m1=1:M1
Yu)NO\3& p=0.032*m1; %input amplitude
GP?M!C,/}k s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
wr$M$i: s1=s10;
bN]+_ mF s20=0.*s10; %input in waveguide 2
C8Qa$._ s30=0.*s10; %input in waveguide 3
$$Oey)* s2=s20;
bpH^:fyLU` s3=s30;
+nXK-g;)' p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
xv(9IEjt0 %energy in waveguide 1
"Zl5< p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
JBE!j-F %energy in waveguide 2
x:),P-~w p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
}<@b=_>S %energy in waveguide 3
S-
pV_Ff for m3 = 1:1:M3 % Start space evolution
~<_2WQ/$ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
ADDSCY=, s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
r'^Hg/Jzt s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
}1Gv)l7 sca1 = fftshift(fft(s1)); % Take Fourier transform
Z>)Bp/- sca2 = fftshift(fft(s2));
jQ2Ot < sca3 = fftshift(fft(s3));
PsnWWj?c sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
^p[rc@+ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
>O*IQ[r- sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
:=u?Fqqws s3 = ifft(fftshift(sc3));
/?@3.3sl_ s2 = ifft(fftshift(sc2)); % Return to physical space
^l9N48]|? s1 = ifft(fftshift(sc1));
_ba>19csq% end
2NC.Z; p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
M?Dfu
.t p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
X-6de>= p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
#gRM i)(F P1=[P1 p1/p10];
[DJ|`^eKD P2=[P2 p2/p10];
xF;kTBRi P3=[P3 p3/p10];
2% L LSa P=[P p*p];
g)#W>.Asd end
/|tJ6T1LrB figure(1)
1_9<3,7 plot(P,P1, P,P2, P,P3);
}& cu/o4 0AZ")<^~7 转自:
http://blog.163.com/opto_wang/