切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9067阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 *6NO-T; -  
    x$~3$E  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of l*$WX=h6n  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of bBA$}bv  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =Nw2;TkB[  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \M+MDT&  
    fr8Xoa%1=  
    %fid=fopen('e21.dat','w'); >NJjS8f5  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) `Ac:f5a  
    M1 =3000;              % Total number of space steps [:Be[pLC  
    J =100;                % Steps between output of space qpoquWZ  
    T =10;                  % length of time windows:T*T0 Hr(6TLNw  
    T0=0.1;                 % input pulse width DP|TIt,Rl  
    MN1=0;                 % initial value for the space output location $2Kau 1  
    dt = T/N;                      % time step 4S'[\ZJO  
    n = [-N/2:1:N/2-1]';           % Index =.DTR5(_h  
    t = n.*dt;   3voW  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 g4Y) Bz  
    u20=u10.*0.0;                  % input to waveguide 2 ])eOa%  
    u1=u10; u2=u20;                 /j11,O?72  
    U1 = u1;   PXa5g5 !  
    U2 = u2;                       % Compute initial condition; save it in U +-U@0&Y3M  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. w- r_H!-  
    w=2*pi*n./T; {W-5:~?"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T -<|Y1PQ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper nHnk#SAA u  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 w nWgy4:  
    for m1 = 1:1:M1                                    % Start space evolution yDzdE;  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ZOp^`c9~  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; o\&~CW~@~  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform C9o$9 l+B  
       ca2 = fftshift(fft(u2)); WPtMds4  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Og=[4?Kpk  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   {wcO[bN  
       u2 = ifft(fftshift(c2));                        % Return to physical space J6DnPaw-G  
       u1 = ifft(fftshift(c1)); FtN}]@F  
    if rem(m1,J) == 0                                 % Save output every J steps. :"VujvFX  
        U1 = [U1 u1];                                  % put solutions in U array 6eM6[  
        U2=[U2 u2]; z* RSMfRW  
        MN1=[MN1 m1]; `-o5&>'nf  
        z1=dz*MN1';                                    % output location F%Kp9I*  
      end 21 ViHV  
    end 8[oYZrg  
    hg=abs(U1').*abs(U1');                             % for data write to excel r?\|f:M3  
    ha=[z1 hg];                                        % for data write to excel $Y6 3!*  
    t1=[0 t']; 4\\.n  
    hh=[t1' ha'];                                      % for data write to excel file {$0&R$v3  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format NIaF5z  
    figure(1) 3B;}j/h2  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Cw%BZ  
    figure(2) 2yvVeo&3  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ka#K [qI  
    l~rb]6E  
    非线性超快脉冲耦合的数值方法的Matlab程序 x )3~il5  
    yQ'eu;+]  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   *!Y- !  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U_l7CCK +  
    BMpF02Y|4  
    )%qtE34`  
    wYjQ V?,  
    %  This Matlab script file solves the nonlinear Schrodinger equations qcYNtEs*c  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +qhnP$vIe  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7-X/>v  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +TF8WZZF.d  
    p0Gk j-  
    C=1;                           nS.2C>A  
    M1=120,                       % integer for amplitude )km7tA 0a  
    M3=5000;                      % integer for length of coupler 'PpZ/ry$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) N 'i,>  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. '#W_boN  
    T =40;                        % length of time:T*T0. wdwp9r  
    dt = T/N;                     % time step MxTmWsaW  
    n = [-N/2:1:N/2-1]';          % Index 0cFn{q'u  
    t = n.*dt;   ] IS;\~  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Ig9d#c  
    w=2*pi*n./T; #]y5z i  
    g1=-i*ww./2; DT\ym9  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; LWD#a~  
    g3=-i*ww./2; #9\THfb  
    P1=0; 4sIX O  
    P2=0; M&f#wQ  
    P3=1; `eC+% O  
    P=0; =Dk7RKoHF  
    for m1=1:M1                 '_ 0  
    p=0.032*m1;                %input amplitude hVM2/j  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Xk,>l6 vc  
    s1=s10; kYlg4 .~M  
    s20=0.*s10;                %input in waveguide 2 nP1GW6Pu  
    s30=0.*s10;                %input in waveguide 3 1"YpO"Rh  
    s2=s20; ^C7C$TZS  
    s3=s30; /H)Br~ l  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   6,+nRiZ  
    %energy in waveguide 1 gu<V (M\  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   %i"}x/CD[  
    %energy in waveguide 2 5g>wV  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   =|,A%ZGF$  
    %energy in waveguide 3 #\ #3r  
    for m3 = 1:1:M3                                    % Start space evolution Ri @`a  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ^A!$i$NON  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; OH6n^WKY  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; >f$NzJ}  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform hcyO97@r  
       sca2 = fftshift(fft(s2)); "Pj}E=!k  
       sca3 = fftshift(fft(s3)); ,Sg33N ?  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   X#ZgS!Mn  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 3=- })X ;  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ARWZ; GX  
       s3 = ifft(fftshift(sc3)); 6Dst;:  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 8r^ ~0nm  
       s1 = ifft(fftshift(sc1)); %K1")s  
    end QDE$E.a  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); K5`Rk" s  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); <2<87PU  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); QVtM.oi!Q  
       P1=[P1 p1/p10]; 9$RI H\*  
       P2=[P2 p2/p10]; 78]gt J  
       P3=[P3 p3/p10]; Im)EDTm$  
       P=[P p*p]; cp%ii'  
    end d#>y}H9  
    figure(1) 2|{V,!/cvG  
    plot(P,P1, P,P2, P,P3); h}&b+ 1{X  
    ;LMWNy4  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~