切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8647阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 CxJ3u  
    .QZjJ9pvK  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of M eep  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of >$- YNZA   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *x]*%  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 GbZ~e I`,2  
    /je $+  
    %fid=fopen('e21.dat','w'); JR15y3 F  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Xy!NBh7I  
    M1 =3000;              % Total number of space steps ~OR^  
    J =100;                % Steps between output of space 3#dz6+  
    T =10;                  % length of time windows:T*T0 k0ai#3iJ  
    T0=0.1;                 % input pulse width + WMXd.iN,  
    MN1=0;                 % initial value for the space output location \f(zMP  
    dt = T/N;                      % time step -LUZ7,!/>o  
    n = [-N/2:1:N/2-1]';           % Index i$6rnS&C  
    t = n.*dt;   oA7DhU5n  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 1i~q~ O,  
    u20=u10.*0.0;                  % input to waveguide 2 pOn&D  
    u1=u10; u2=u20;                 _Y]Oloo('  
    U1 = u1;   _Z9 d.-  
    U2 = u2;                       % Compute initial condition; save it in U *>mjUT}cP  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. hi/d%lNZ  
    w=2*pi*n./T; %*npLDi  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T K?! W9lUq  
    L=4;                           % length of evoluation to compare with S. Trillo's paper GK1nGdT]  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Q3&D A1b`  
    for m1 = 1:1:M1                                    % Start space evolution y {Bajil  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS m;>G]Sbe  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ~|O;Sdo=  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform !uIY,  
       ca2 = fftshift(fft(u2)); Xa#.GrH6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation N"G\ H<n  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   A[7H-1-  
       u2 = ifft(fftshift(c2));                        % Return to physical space !m9hL>5vR  
       u1 = ifft(fftshift(c1)); Bt,'g* Cs  
    if rem(m1,J) == 0                                 % Save output every J steps. qpCaW0]7  
        U1 = [U1 u1];                                  % put solutions in U array 4;AQ12<[1  
        U2=[U2 u2]; ,tg]Gt  
        MN1=[MN1 m1]; rXMc0SPk  
        z1=dz*MN1';                                    % output location p_&B+ <z  
      end *n&Sd~Mg  
    end phf{b+'#X  
    hg=abs(U1').*abs(U1');                             % for data write to excel 0|j44e }  
    ha=[z1 hg];                                        % for data write to excel Qb>("j~Z  
    t1=[0 t']; w6X:39d  
    hh=[t1' ha'];                                      % for data write to excel file YsVKdh  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Xxd D)I  
    figure(1) 4[]*=  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn {^N,$,Ab.  
    figure(2) B; NK\5>  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn .$W}  
    $/g`{O I]K  
    非线性超快脉冲耦合的数值方法的Matlab程序 O-W[^r2e  
    ocK4Nxs  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   LiQH!yHW  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [hg9 0Q6  
    lemV&$WN|  
    " j?xgV  
    ILH[q>  
    %  This Matlab script file solves the nonlinear Schrodinger equations 3gVU#T [[  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of j?]+~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear SC4jKm2  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _xi &%F/  
    uuF~+=.|  
    C=1;                           .|07IH/Di{  
    M1=120,                       % integer for amplitude +4T.3Njjn  
    M3=5000;                      % integer for length of coupler &K9RV4M5  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Cu24xP`  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^q/^.Gf  
    T =40;                        % length of time:T*T0. OGJrwl  
    dt = T/N;                     % time step G9QvIXRi  
    n = [-N/2:1:N/2-1]';          % Index BCz4 s{F  
    t = n.*dt;   Et-|[ eL  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. *?uUP  
    w=2*pi*n./T; k{F6WQ7  
    g1=-i*ww./2; Viw,YkC  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; >!" Sr3,L  
    g3=-i*ww./2; rDoMz3[w  
    P1=0; iiJT%Zq`#  
    P2=0; 8,vP']4r%  
    P3=1; Oe@w$?  
    P=0; /c-k{5mH%  
    for m1=1:M1                 r1RM7y  
    p=0.032*m1;                %input amplitude A&v Qtd  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 yY49JZ  
    s1=s10; o_Y?s+~i[/  
    s20=0.*s10;                %input in waveguide 2 +N+117m  
    s30=0.*s10;                %input in waveguide 3 Zj ` ;IYFG  
    s2=s20; g5Io=e@s  
    s3=s30; <6+B;brh  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   V3VTbgF  
    %energy in waveguide 1 t4:/qy  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5? Y(FhnIC  
    %energy in waveguide 2 l,b,U/3R.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   /=9dX; #  
    %energy in waveguide 3 s%Ph  
    for m3 = 1:1:M3                                    % Start space evolution )t-P o'RW  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS r]D>p&4  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; BOM0QskLf  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 1)ij*L8k  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform \vV]fX   
       sca2 = fftshift(fft(s2)); 9yTkZ`M28  
       sca3 = fftshift(fft(s3)); 3y2L! &'z  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   0~W XA=XG  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); BLqK5~  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); >>C S8  
       s3 = ifft(fftshift(sc3)); tK*y/S  
       s2 = ifft(fftshift(sc2));                       % Return to physical space P()W\+",n  
       s1 = ifft(fftshift(sc1)); T9r6,yY  
    end N:+EGmp  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ls9Y?  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3jJV5J'"  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); p*YV*Arv  
       P1=[P1 p1/p10]; b{-|q6  
       P2=[P2 p2/p10]; ]qq2VO<b  
       P3=[P3 p3/p10]; MuzQ z.C  
       P=[P p*p]; S-Vxlku]  
    end Qu8=zI>t  
    figure(1) ~Cynw(  
    plot(P,P1, P,P2, P,P3); XA.1Y)  
    FrLv%tK|  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~