计算脉冲在非线性耦合器中演化的Matlab 程序 ^JVP2L>o*
&j@J<*k
% This Matlab script file solves the coupled nonlinear Schrodinger equations of +4nR&1z$
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of A.x}%v,E
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^? xJpr%)
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :;Rt#!
207oEO]
%fid=fopen('e21.dat','w'); %
j{pz
N = 128; % Number of Fourier modes (Time domain sampling points) e+ w
M1 =3000; % Total number of space steps :k/U7 2
J =100; % Steps between output of space "g1;TT:1~
T =10; % length of time windows:T*T0 !!O{ ppM
T0=0.1; % input pulse width 'nt,+`.y6
MN1=0; % initial value for the space output location b!~%a
dt = T/N; % time step `(suRp8!
n = [-N/2:1:N/2-1]'; % Index 0F'UFn>{
t = n.*dt; d;:&3r|X
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 xKzFrP;/{
u20=u10.*0.0; % input to waveguide 2 yzR=:0J
u1=u10; u2=u20; Hf!4(\yN
U1 = u1; Vzm+Ew
_
U2 = u2; % Compute initial condition; save it in U D\*_ulc]
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 6="&K_Q7
w=2*pi*n./T; at]Q4
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T o (NyOC
L=4; % length of evoluation to compare with S. Trillo's paper ?s} E<Kr
dz=L/M1; % space step, make sure nonlinear<0.05 |aJ6363f.
for m1 = 1:1:M1 % Start space evolution Ic!83-
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS Qf(e'e
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 0BE^qe
ca1 = fftshift(fft(u1)); % Take Fourier transform <OfzE5
ca2 = fftshift(fft(u2)); BXw,Rz }
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation )K3
vzX
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift <qY>d,+E'
u2 = ifft(fftshift(c2)); % Return to physical space A@AGu#W
u1 = ifft(fftshift(c1)); o`! :Q!+
if rem(m1,J) == 0 % Save output every J steps. L([ >yQZ
U1 = [U1 u1]; % put solutions in U array pAmI ](
U2=[U2 u2]; rL3Vogw'e
MN1=[MN1 m1]; 6mpUk.M"
z1=dz*MN1'; % output location e"mfJY
end 'X<uG
x
end {;M/J
hg=abs(U1').*abs(U1'); % for data write to excel Jc^ozw
ha=[z1 hg]; % for data write to excel x99
Oq!
t1=[0 t']; Vn;]''_
hh=[t1' ha']; % for data write to excel file 0j MI)aY.
%dlmwrite('aa',hh,'\t'); % save data in the excel format F|{?GV%hF
figure(1) )p9n|C
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 6WM_V9Tidq
figure(2) 7N=VVD~!b
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn j/|qge4
5D*V%v
非线性超快脉冲耦合的数值方法的Matlab程序 FWTl:LqFO
]%hI-
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 (1]@ fCd +
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u Aa>6R
x[6Bc
8}T3Fig,q
x:lf=DlA
% This Matlab script file solves the nonlinear Schrodinger equations RE$-{i
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of E|3aiC,5
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear dsuW4^l
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Te#[+B?
yo6IY
C=1; _'a4I;
M1=120, % integer for amplitude \Da$bJ
M3=5000; % integer for length of coupler imQNfNm
N = 512; % Number of Fourier modes (Time domain sampling points) 6I![5j
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. O0YGjS|d
T =40; % length of time:T*T0. d^^>3L!h
dt = T/N; % time step 3$;v# P$%N
n = [-N/2:1:N/2-1]'; % Index *E_= 8OV
t = n.*dt; T/5UlW|\
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. G[,VPC=
w=2*pi*n./T; DR8dJ#
g1=-i*ww./2; y&]D2"I
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; QLl44*@
g3=-i*ww./2; ,1L^#?Q~
P1=0; J1t?Qj;f3
P2=0; H/f=
2b
P3=1; S/jHyJ,
P=0; WU_Q
7%+QS
for m1=1:M1 &>{L"{
p=0.032*m1; %input amplitude 0AenDm@9
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 5w3'yA<vE
s1=s10; Mla,"~4D5
s20=0.*s10; %input in waveguide 2 %SXqJW^:
s30=0.*s10; %input in waveguide 3 "H@AT$Ny(
s2=s20; n\U6oJN
s3=s30; rD?o97
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); N@S;{uK
%energy in waveguide 1 enM 3
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); '"a8<