切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8894阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 -@7?N6~qZx  
    t@X{qm:%Z  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of g'X{  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of K;8{qQ*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 79&=MTM  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]S0=&x@,  
    uNKf!\Y  
    %fid=fopen('e21.dat','w'); @LSfP  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) "+XF'ZO  
    M1 =3000;              % Total number of space steps oUl0w~Xn  
    J =100;                % Steps between output of space g)dKXsy(F  
    T =10;                  % length of time windows:T*T0 O0l1AX"  
    T0=0.1;                 % input pulse width q$7w?(Lk  
    MN1=0;                 % initial value for the space output location 953GmNZ7  
    dt = T/N;                      % time step !LR9}Xon  
    n = [-N/2:1:N/2-1]';           % Index >O]u4G!  
    t = n.*dt;   *""iXi[  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 mX2X.ww(4  
    u20=u10.*0.0;                  % input to waveguide 2 Vp$<@Y  
    u1=u10; u2=u20;                 }A}cq!I^  
    U1 = u1;   ^O.` P  
    U2 = u2;                       % Compute initial condition; save it in U VwN=AFk Oj  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. U| T}0  
    w=2*pi*n./T; "]T1DG"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Z-j?N{3&  
    L=4;                           % length of evoluation to compare with S. Trillo's paper -e\OF3 Td  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 'QSj-  
    for m1 = 1:1:M1                                    % Start space evolution ~@#s<a,%;  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS GX+Gqj.  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; xLdkeuL[%  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform $~e55X'!+  
       ca2 = fftshift(fft(u2)); h[bC#(  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation g-pEt#  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   }wB!Bx2  
       u2 = ifft(fftshift(c2));                        % Return to physical space '2qbIYanh  
       u1 = ifft(fftshift(c1)); r}:D g fn  
    if rem(m1,J) == 0                                 % Save output every J steps. vs^)=  
        U1 = [U1 u1];                                  % put solutions in U array !k<k]^Z\  
        U2=[U2 u2]; ZU$QwI8  
        MN1=[MN1 m1]; '/s/o]'sUd  
        z1=dz*MN1';                                    % output location |J"\~%8  
      end e/uLBZ  
    end CZ!gu Y=  
    hg=abs(U1').*abs(U1');                             % for data write to excel _WGWU7h  
    ha=[z1 hg];                                        % for data write to excel !q~f;&rg  
    t1=[0 t']; c8N pk<  
    hh=[t1' ha'];                                      % for data write to excel file :IO"' b  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ]n! oa  
    figure(1) \#v(f2jPF  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn +4n}H}9l  
    figure(2) $0cE iq?Hf  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn QYj*|p^x  
    tl 9`  
    非线性超快脉冲耦合的数值方法的Matlab程序 %+((F +[  
    hWiHKR]  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   >uo=0=9=  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -k  }LW4  
    l1.eAs5U  
    Z6zLL   
    bZ#KfR  
    %  This Matlab script file solves the nonlinear Schrodinger equations |.b&\  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 610u!_-  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2uT@jfj:r  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 | 2GrOM&S  
    pxI[/vS N  
    C=1;                           M96Nt&P`  
    M1=120,                       % integer for amplitude 24po}nrO  
    M3=5000;                      % integer for length of coupler P_P~c~o  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) =Qn8Y`U  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. r3Kx  
    T =40;                        % length of time:T*T0. )h]tKYx  
    dt = T/N;                     % time step sZwa#CQKq  
    n = [-N/2:1:N/2-1]';          % Index VVEJE$  
    t = n.*dt;   YkQ=rurE  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. )afH:  
    w=2*pi*n./T; S"fqE%  
    g1=-i*ww./2; E*yot[kj  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; _dc,}C  
    g3=-i*ww./2; 3t5W wrNh  
    P1=0; *l@T 9L[M'  
    P2=0; @.=2*e.z|b  
    P3=1; *c( J4  
    P=0; ^Ge|tBMoKE  
    for m1=1:M1                 5>:p'zI  
    p=0.032*m1;                %input amplitude P@<K&S+f  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ?'>[n m  
    s1=s10; Ko!a`I2M}  
    s20=0.*s10;                %input in waveguide 2 !95Q4WH-@  
    s30=0.*s10;                %input in waveguide 3 #bb$Icmtk  
    s2=s20; 'N&s$XB,  
    s3=s30; BA9;=orx  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Qqd+=mgc  
    %energy in waveguide 1 }5d|y*  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   {;38&Izwz  
    %energy in waveguide 2 Q@s G6 iz  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   m[w~h\FS  
    %energy in waveguide 3 'h> l_A  
    for m3 = 1:1:M3                                    % Start space evolution [C3wjYi  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS }]pOR&o  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; L(/wsw~y*  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; v){X&HbP  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform r3YfY \  
       sca2 = fftshift(fft(s2)); 2bf#L?5g/  
       sca3 = fftshift(fft(s3)); m.U&O=]5  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   `J}FSUn\  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ^Uldyv/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); L @8[.  
       s3 = ifft(fftshift(sc3)); .Pa6HA !  
       s2 = ifft(fftshift(sc2));                       % Return to physical space K14{c1  
       s1 = ifft(fftshift(sc1)); %"3tGi:/  
    end i;#AW($+a  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); VKr oikz@]  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2!a~YT  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); tY?evsVgz  
       P1=[P1 p1/p10]; {z# W-  
       P2=[P2 p2/p10]; Z-i$KF  
       P3=[P3 p3/p10]; >;X^+JH!)  
       P=[P p*p]; Bs-MoT!  
    end U}W7[f lc  
    figure(1) 8 =3$U+  
    plot(P,P1, P,P2, P,P3); n(\VP!u5r  
    (XQl2C  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~