切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8728阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 b,C aWg  
    o LvZ   
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of '_V2!?+RU+  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {~F4WjHJp  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;UxP Kpl  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 utIX  %0  
    l,kUhZ@W  
    %fid=fopen('e21.dat','w'); 0(S"{Ov  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 1PpyVf  
    M1 =3000;              % Total number of space steps Y./2Ely  
    J =100;                % Steps between output of space ~J P=T  
    T =10;                  % length of time windows:T*T0 m@^1JlH  
    T0=0.1;                 % input pulse width >(;{C<6|^  
    MN1=0;                 % initial value for the space output location /Z$&pqs!  
    dt = T/N;                      % time step ({q?d[q[  
    n = [-N/2:1:N/2-1]';           % Index %HL*c =  
    t = n.*dt;   Y*UA, <-  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Z:*76PP,  
    u20=u10.*0.0;                  % input to waveguide 2 (2=Zm@Zp f  
    u1=u10; u2=u20;                 1&- </G#  
    U1 = u1;   ( vca&wI!  
    U2 = u2;                       % Compute initial condition; save it in U 8|" XSN  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. v61[.oS  
    w=2*pi*n./T; 7Zh~lM  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1~PV[2a  
    L=4;                           % length of evoluation to compare with S. Trillo's paper THS.GvT9[  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 LbkF   
    for m1 = 1:1:M1                                    % Start space evolution ^pYxKU_O  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS & 9<+;*/  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ,]d,-)KX8  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Wr( y)D<y}  
       ca2 = fftshift(fft(u2)); 8@tPm$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation bdc&1I$  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   WS`qVL]^&  
       u2 = ifft(fftshift(c2));                        % Return to physical space q,+yqrt  
       u1 = ifft(fftshift(c1)); 3J5!oF{H  
    if rem(m1,J) == 0                                 % Save output every J steps. fP. 6HF_p_  
        U1 = [U1 u1];                                  % put solutions in U array HbxL:~:}J  
        U2=[U2 u2]; hK_LEwd;  
        MN1=[MN1 m1]; K|Di1)7=/  
        z1=dz*MN1';                                    % output location sPR1?:0:  
      end sn)3Z A  
    end {o>j6RS\  
    hg=abs(U1').*abs(U1');                             % for data write to excel fe9LEM8j  
    ha=[z1 hg];                                        % for data write to excel c|#8T*`C  
    t1=[0 t']; fyByz=pl  
    hh=[t1' ha'];                                      % for data write to excel file o/+13C  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format r_-_a(1R:  
    figure(1) o<|P9#(U"  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ekWePL;rR2  
    figure(2) b4QI)z  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn y$_eCmq  
    *exS6@N]  
    非线性超快脉冲耦合的数值方法的Matlab程序 o*o/q],C9-  
    HxIIO[h  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   E6pMT^{K  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JW3B'_0  
    rv|)n>m  
    s;6CExH  
    Qx+%"YO  
    %  This Matlab script file solves the nonlinear Schrodinger equations x;8A!8w  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of H{=21\a\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !lj| cT9  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <c2'0I >  
    Z7=`VNHc  
    C=1;                           #~<0t(3Q  
    M1=120,                       % integer for amplitude _t Yx~J2.Q  
    M3=5000;                      % integer for length of coupler 1*@'-mj  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) n:{qC{D-qS  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. U 15H2-`  
    T =40;                        % length of time:T*T0. ;n&t>pBM  
    dt = T/N;                     % time step @ < Q|5  
    n = [-N/2:1:N/2-1]';          % Index 5nKj )RH7M  
    t = n.*dt;   !Rhl f.x  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. XBp?w  
    w=2*pi*n./T; ]%IT|/;9Y  
    g1=-i*ww./2; U G~ba  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; v%iof1 T'  
    g3=-i*ww./2; p_${Nj  
    P1=0; [< &oF  
    P2=0; Ljp%CI[i  
    P3=1; C<m{*C-`a  
    P=0; V{:A3C41  
    for m1=1:M1                 pUV/ Ul]  
    p=0.032*m1;                %input amplitude 4*Hgv:0?kI  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 4\4FolsK  
    s1=s10; -UOj>{-  
    s20=0.*s10;                %input in waveguide 2 p(/dBt[3k  
    s30=0.*s10;                %input in waveguide 3 \cUC9/ b  
    s2=s20; )|DM~%$QM  
    s3=s30; E: $P=%b  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   mjKS{  
    %energy in waveguide 1 r}mbXvn  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   J /f  
    %energy in waveguide 2 .ZJRO>S  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   "saUai4z  
    %energy in waveguide 3 UHTvCc  
    for m3 = 1:1:M3                                    % Start space evolution &GB:|I'%7  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS L 8dc(Z%v  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Wb?8j M  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; >o7n+Rb:  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform <c qbUL  
       sca2 = fftshift(fft(s2)); P8*=Ls+-F  
       sca3 = fftshift(fft(s3)); 2gCX}4^3b  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   {ZI)nQ{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); *rIk:FehLB  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); S|]X'f  
       s3 = ifft(fftshift(sc3)); Zw ^kmSL"  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #]ypHVE  
       s1 = ifft(fftshift(sc1)); cM$P`{QrM  
    end _YLfL  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); to=y#$_  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); (?(zH3  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); :"xzj<(  
       P1=[P1 p1/p10]; "3)4vuX@;c  
       P2=[P2 p2/p10]; eFL=G%  
       P3=[P3 p3/p10]; /p+>NZ"b  
       P=[P p*p]; &iA?+kV  
    end 2IKnhBSV3  
    figure(1) ,z-}t& _t  
    plot(P,P1, P,P2, P,P3); s0k`p<q  
    "6us#T  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~