切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8436阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 @JB9qT  
    in}d(%3h  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of /e|vz^#+1,  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of N_jpCCG~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear P){b"`f  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^j~CYzmt  
    '" MT$MrT  
    %fid=fopen('e21.dat','w'); R( 2,1f=d  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) vndD#/lXq  
    M1 =3000;              % Total number of space steps ;iA6[uz  
    J =100;                % Steps between output of space 3|++2Z{},  
    T =10;                  % length of time windows:T*T0 >|j8j:S[  
    T0=0.1;                 % input pulse width vs=8x\W  
    MN1=0;                 % initial value for the space output location ~ 9Xs=S!  
    dt = T/N;                      % time step w3hG\2)[HS  
    n = [-N/2:1:N/2-1]';           % Index b}&2j3-n,  
    t = n.*dt;   LDX>S*cL  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Hs9; &C  
    u20=u10.*0.0;                  % input to waveguide 2 ||p>O  
    u1=u10; u2=u20;                 MSQz,nn  
    U1 = u1;   YCBp ]xuE  
    U2 = u2;                       % Compute initial condition; save it in U q>X30g  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. { $ a $m  
    w=2*pi*n./T; h7?uM^p  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T \US'tF)/  
    L=4;                           % length of evoluation to compare with S. Trillo's paper !+R_Z#gB  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 $3yzB9\a"  
    for m1 = 1:1:M1                                    % Start space evolution ve3-GWT{C  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 5xb1FH d:  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 77zfRSb+  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform cc0e(\  
       ca2 = fftshift(fft(u2)); GkU]>8E'"  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "pA24Ze  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Zqi;by%  
       u2 = ifft(fftshift(c2));                        % Return to physical space !3*:6  
       u1 = ifft(fftshift(c1)); 0&21'K)pW  
    if rem(m1,J) == 0                                 % Save output every J steps. \I-bZ|^  
        U1 = [U1 u1];                                  % put solutions in U array Uo]x6j<  
        U2=[U2 u2]; S+*%u/;l  
        MN1=[MN1 m1]; l|jb}9(J  
        z1=dz*MN1';                                    % output location A?zxF5rfp  
      end <>l!  
    end f.e4 C,  
    hg=abs(U1').*abs(U1');                             % for data write to excel rCH? R   
    ha=[z1 hg];                                        % for data write to excel Lb=4\ _  
    t1=[0 t']; RCC~#bb  
    hh=[t1' ha'];                                      % for data write to excel file ! <O,xI'  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format w~a_FGYX  
    figure(1) EJByYk   
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^2f2g>9j_C  
    figure(2) eVvDis  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn .9uw@ Eq  
    Yn>y1~  
    非线性超快脉冲耦合的数值方法的Matlab程序 @%[ dh@oY  
    6\5"36&/rQ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   -]Mbe2;  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K0 6 E:  
    +Rq7m]  
    6 _n~E e  
    u^X,ASkQ  
    %  This Matlab script file solves the nonlinear Schrodinger equations ,b${3*PPQ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of r1]DkX <6  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6Gj69Lr  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 gI5Fzk@:  
    *Q`y'6S  
    C=1;                           .>^iU}  
    M1=120,                       % integer for amplitude ;=i$0w9W  
    M3=5000;                      % integer for length of coupler ,!I'0x1OR  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) &{=`g+4n  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. \f-HfYG  
    T =40;                        % length of time:T*T0. oc0z1u  
    dt = T/N;                     % time step 41s[p56+@  
    n = [-N/2:1:N/2-1]';          % Index .NX>d@ Kc  
    t = n.*dt;   OE8H |?%  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Hphfqdh0`  
    w=2*pi*n./T; )K>2  
    g1=-i*ww./2; r$/.x6g//  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; S!{Kn ;@  
    g3=-i*ww./2; fs3jPHZJ#  
    P1=0; <pp<%~_Z  
    P2=0; 48W-Tf6v|  
    P3=1; ;sZHE &+  
    P=0; \+I+Lrj%  
    for m1=1:M1                 ?5Ub&{  
    p=0.032*m1;                %input amplitude >&DNxw  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 PTf.(B"z  
    s1=s10; SHt#%3EU  
    s20=0.*s10;                %input in waveguide 2 d_!l RQ^N  
    s30=0.*s10;                %input in waveguide 3 nv-_\M   
    s2=s20; KX$Q`lM   
    s3=s30; =2tl149m/z  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   `mo>~c7  
    %energy in waveguide 1 y|O)i I/g  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Ag@R60#  
    %energy in waveguide 2 nq3B(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   3^%sz!jK+  
    %energy in waveguide 3 F3,djZq  
    for m3 = 1:1:M3                                    % Start space evolution $0wF4$)  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS [R9!Tz  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 1u\kxlZ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; .!`v2_  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform eK_Yt~dj  
       sca2 = fftshift(fft(s2)); [-*8 S1  
       sca3 = fftshift(fft(s3)); OK1f Y`$z  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   7iM;X2=7}  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); TU,k( `tn<  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); C~([aH@-I  
       s3 = ifft(fftshift(sc3)); ,Z 1W3;O  
       s2 = ifft(fftshift(sc2));                       % Return to physical space }N}\<RG  
       s1 = ifft(fftshift(sc1)); /@~&zx&_  
    end AcCM W@e  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); cc|"^-j-7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 9CW8l0  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); RI2Or9.  
       P1=[P1 p1/p10]; ZPolE_P7  
       P2=[P2 p2/p10]; OcLFVD=  
       P3=[P3 p3/p10]; #Ies yNKZ  
       P=[P p*p]; d;c<" +  
    end my(yN|  
    figure(1) KJLK]lf}d  
    plot(P,P1, P,P2, P,P3); 4 fxD$%9  
    JHCV7$RS  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~