切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8870阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 !EB[Lut m  
    tl^![Z  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of .a7!*I#g  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of abkt&981K+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear HD153M,  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g @qrVQv  
    _ cm^Fi5  
    %fid=fopen('e21.dat','w'); !uSG 1j" y  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ;lc/FV[/  
    M1 =3000;              % Total number of space steps Q[MWzsx  
    J =100;                % Steps between output of space ;ji[ "b  
    T =10;                  % length of time windows:T*T0 S94S[j0D  
    T0=0.1;                 % input pulse width 1XJLGMW,  
    MN1=0;                 % initial value for the space output location DgODTxiX  
    dt = T/N;                      % time step  I6rB_~]h  
    n = [-N/2:1:N/2-1]';           % Index WFG`-8_e[I  
    t = n.*dt;   KYR64[1  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 YK)e  
    u20=u10.*0.0;                  % input to waveguide 2  r0,XR  
    u1=u10; u2=u20;                 =p>IP"HJ  
    U1 = u1;   1 i/&t[  
    U2 = u2;                       % Compute initial condition; save it in U V~fPp"F  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. wAF<_NG#  
    w=2*pi*n./T; ]h?p3T$h  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T uc]`^,`2/  
    L=4;                           % length of evoluation to compare with S. Trillo's paper f8S!FGiNc  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 [(m+Ejzi%  
    for m1 = 1:1:M1                                    % Start space evolution Z!2%{HQ=q  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS  |: ,i  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 4^_'LiX3[  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform x`JhNAO>  
       ca2 = fftshift(fft(u2)); ^]X\boWlI  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $u%7]]Y^\  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   # TPS?+(  
       u2 = ifft(fftshift(c2));                        % Return to physical space >o )v  
       u1 = ifft(fftshift(c1)); D]+]Br8  
    if rem(m1,J) == 0                                 % Save output every J steps. ~TYpq;rq  
        U1 = [U1 u1];                                  % put solutions in U array xP-\)d-.aN  
        U2=[U2 u2]; Mq52B_  
        MN1=[MN1 m1]; &*# Obv  
        z1=dz*MN1';                                    % output location +{L=cWA"  
      end 'J_`CS  
    end bPVQ-  
    hg=abs(U1').*abs(U1');                             % for data write to excel 5F$~ZDu  
    ha=[z1 hg];                                        % for data write to excel >!W H%J  
    t1=[0 t']; OQiyAyX  
    hh=[t1' ha'];                                      % for data write to excel file ):7mK03J  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format x&*2R#Ai  
    figure(1) x};sti R  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn h?P- :E  
    figure(2) W]I+Rlv)U  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ndHUQ$/(  
    {'z(  
    非线性超快脉冲耦合的数值方法的Matlab程序 q!AcM d\  
    JS^!XB' !  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   2Z+:^5  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ni>!b6 Z`[  
    ~_a$5Y  
    MJ<jF(_=  
    c]68$;Z7  
    %  This Matlab script file solves the nonlinear Schrodinger equations X=jHH=</  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of T&^b~T(y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear WB5M ![  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 dy3fZ(=q^  
    I R~szUY6  
    C=1;                           /a }` y  
    M1=120,                       % integer for amplitude E7  P'}  
    M3=5000;                      % integer for length of coupler n!&F%|o^^  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Z $Fm73  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. '$5Qdaj  
    T =40;                        % length of time:T*T0. Vp1Ff  
    dt = T/N;                     % time step Ud)2Mq1#M  
    n = [-N/2:1:N/2-1]';          % Index c7A]\1 ~  
    t = n.*dt;   6cX Z3;a  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ZoR6f\2M  
    w=2*pi*n./T; D[dI_|59a  
    g1=-i*ww./2; m1Xc3=Y  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; l7#2 e ORm  
    g3=-i*ww./2; jIck!  
    P1=0; MG vp6/Pd  
    P2=0; v(;n|=O  
    P3=1; `\yQn7 Oq  
    P=0; RMlx[nsq  
    for m1=1:M1                 .*&F  
    p=0.032*m1;                %input amplitude |O{kv}Y Z  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 3|BB#;  
    s1=s10; (BGflb  
    s20=0.*s10;                %input in waveguide 2 *g"X hk  
    s30=0.*s10;                %input in waveguide 3 soh9Oedml-  
    s2=s20; cUr5x8<W).  
    s3=s30; Lum5Va%0  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   #6@4c5{2=4  
    %energy in waveguide 1 4o<' fY  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   W1ql[DqE{  
    %energy in waveguide 2 t'[`"pp=  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Y%^qt]u.8  
    %energy in waveguide 3 w%$J<Z^-?  
    for m3 = 1:1:M3                                    % Start space evolution S3^(L   
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Bo0f`EC I  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ZhFlR*EQ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; >,x``-  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform \?vn0;R4  
       sca2 = fftshift(fft(s2)); f@0Km^aUc  
       sca3 = fftshift(fft(s3)); 5=Il2  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   XA\wZV |{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Bh;N:{&^Eu  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); C);I[H4Yfw  
       s3 = ifft(fftshift(sc3)); {J-Ojw|Y b  
       s2 = ifft(fftshift(sc2));                       % Return to physical space i93^E~q]  
       s1 = ifft(fftshift(sc1)); EZ[e  a<  
    end KebC$g@W  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); f1q0*)fk  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); _|7bpt9  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 0+NGFX \p  
       P1=[P1 p1/p10]; cUTG! P\R  
       P2=[P2 p2/p10]; {T3~js   
       P3=[P3 p3/p10]; {dwlW`{  
       P=[P p*p]; .9q`Tf  
    end B?9"Ztb  
    figure(1) )H+p6<  
    plot(P,P1, P,P2, P,P3); V`}u:t7r  
    3*N0oc^m  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~