切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8739阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Y*oDO$6  
    g^Yl TB  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of `O?T.p)   
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of y m,H@~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 75T_Dx(H  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p/Sbt/R  
    Cs3^9m6;d  
    %fid=fopen('e21.dat','w'); ]va>ex$d  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) /wShUR{  
    M1 =3000;              % Total number of space steps .R*!aK  
    J =100;                % Steps between output of space `$LWmm#  
    T =10;                  % length of time windows:T*T0 Rgy- OA  
    T0=0.1;                 % input pulse width BAj-akc f  
    MN1=0;                 % initial value for the space output location T  VmH  
    dt = T/N;                      % time step INs!Ame2  
    n = [-N/2:1:N/2-1]';           % Index %q ;jVj[  
    t = n.*dt;   h5_G4J{1  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @Hb'8F  
    u20=u10.*0.0;                  % input to waveguide 2 1F8 W9b^D  
    u1=u10; u2=u20;                 &.13dq  
    U1 = u1;   `?g`bN`Vn  
    U2 = u2;                       % Compute initial condition; save it in U }TQ{`a@  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Y}*\[}l:&x  
    w=2*pi*n./T; wm{3&m  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T moj ]j`P5a  
    L=4;                           % length of evoluation to compare with S. Trillo's paper g>0XxjP4  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 W1Lr_z6  
    for m1 = 1:1:M1                                    % Start space evolution BcjP+$k4_  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS dC e4u<so\  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; XKA&XpF  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform )5j;KI%t  
       ca2 = fftshift(fft(u2)); yq-=],h  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %=AxJp!a  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Pz#7h*;cw.  
       u2 = ifft(fftshift(c2));                        % Return to physical space % }|cb7l  
       u1 = ifft(fftshift(c1)); nMfFH[I4  
    if rem(m1,J) == 0                                 % Save output every J steps. -4rDbDsr  
        U1 = [U1 u1];                                  % put solutions in U array 9//+Bh  
        U2=[U2 u2]; `!:q;i]}  
        MN1=[MN1 m1]; 3nZ9m  
        z1=dz*MN1';                                    % output location $mmup|;(  
      end 9j ]sD/L5q  
    end unJid8Lo  
    hg=abs(U1').*abs(U1');                             % for data write to excel .roqEasu8  
    ha=[z1 hg];                                        % for data write to excel G&xo1K]  
    t1=[0 t']; +x? #DH-  
    hh=[t1' ha'];                                      % for data write to excel file 4h!f/aF'  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 4H5pr  
    figure(1) Ut-B^x)gl  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Tu{&v'!j6  
    figure(2) 'bGX-C  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn $&s=68  
    XoL JL]+?  
    非线性超快脉冲耦合的数值方法的Matlab程序 E5el?=,i  
    zl-2$}<a  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   EV#MQM  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Xtz-\v#0o'  
    KIA 2"KbjG  
    JXG"M#{  
    zf4Ec-)  
    %  This Matlab script file solves the nonlinear Schrodinger equations )b<k#(i@#  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of _rV5E  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear F/m^?{==~*  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #j#_cImE  
    BR^7_q4q  
    C=1;                           cYx4~V^  
    M1=120,                       % integer for amplitude HkV1sT  
    M3=5000;                      % integer for length of coupler QB:i/9  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ;!91^Tl  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. nzjkX4KV  
    T =40;                        % length of time:T*T0. [S.ZJUns  
    dt = T/N;                     % time step 9jN)I(^D6  
    n = [-N/2:1:N/2-1]';          % Index ,\ 2a=Fp  
    t = n.*dt;   D'Z|}(d&  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ,*4p?|A  
    w=2*pi*n./T; {7!UQrm<  
    g1=-i*ww./2; Am8x74?  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Eh-n  
    g3=-i*ww./2; c`lJu_  
    P1=0; =ji1S}e~p  
    P2=0; 5Zmw} M  
    P3=1; N=:5eAza  
    P=0; KbL V' %D  
    for m1=1:M1                 cJM:  
    p=0.032*m1;                %input amplitude G*S|KH  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 hS[ yNwD  
    s1=s10; ) \Y7&  
    s20=0.*s10;                %input in waveguide 2 Xi?b]Z  
    s30=0.*s10;                %input in waveguide 3 uE[(cko  
    s2=s20; bifS 2>c  
    s3=s30; &U+ _ -Ph  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   9Rm/V5  
    %energy in waveguide 1 =fm]Dl9h*  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   )uv=S;+  
    %energy in waveguide 2 $Vc~/>  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   kc7lc|'z  
    %energy in waveguide 3 =#mTfJ   
    for m3 = 1:1:M3                                    % Start space evolution ]zO/A4  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS .nYUL>  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; awv De  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ZKg{0DY  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform )s1Ib4C  
       sca2 = fftshift(fft(s2)); 5XuT={o  
       sca3 = fftshift(fft(s3)); ]$U xCu  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ?ER-25S  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Ku&!?m@C  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); V\V)<BARe  
       s3 = ifft(fftshift(sc3)); K1V#cB WO  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 9]t[J_YM  
       s1 = ifft(fftshift(sc1)); A2}Rl%+X]6  
    end "NRDNqj(  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); #fj/~[Ajv  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); qQ!1t>j+H  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ;q0uE:^ S  
       P1=[P1 p1/p10]; b':|uu*/  
       P2=[P2 p2/p10]; ZoKcJA  
       P3=[P3 p3/p10]; xEuN   
       P=[P p*p]; P}.7Mehf  
    end '0$?h9"  
    figure(1) )2,eFNB#n  
    plot(P,P1, P,P2, P,P3); nhG J  
    IVr 2y8K  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~