切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7426阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #JR$RH  
    er<_;"`1  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of S~M/!Xb  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of n(_wt##wE~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;8w CQ  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d}wE4(]b  
    \W|ymV_Ki  
    %fid=fopen('e21.dat','w'); +pe\9F  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) K6,d{n  
    M1 =3000;              % Total number of space steps IiV]lxiE]  
    J =100;                % Steps between output of space _~;K]  
    T =10;                  % length of time windows:T*T0 ? 8)k6:  
    T0=0.1;                 % input pulse width Gz2\&rmN  
    MN1=0;                 % initial value for the space output location :0p$r pJP  
    dt = T/N;                      % time step y2nT)nL  
    n = [-N/2:1:N/2-1]';           % Index Z>*a:|  
    t = n.*dt;   Wr+1e1[  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 uJa.]J~L=  
    u20=u10.*0.0;                  % input to waveguide 2 ;aH3{TS  
    u1=u10; u2=u20;                 =FQH5iSd  
    U1 = u1;   EmyE%$*T  
    U2 = u2;                       % Compute initial condition; save it in U =[0| qGzg  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. \)W Z D  
    w=2*pi*n./T; (W#^-*$R  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ycf)*0k  
    L=4;                           % length of evoluation to compare with S. Trillo's paper P.djR)YI  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 | NyANsI  
    for m1 = 1:1:M1                                    % Start space evolution gCbS$Pw  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS mNJCV8 <  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 34L1Gxf  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform QFFFxaeJg  
       ca2 = fftshift(fft(u2)); j%gle%_  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation +5GPU 9k  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   HT6$|j  
       u2 = ifft(fftshift(c2));                        % Return to physical space :g{ybTSEe  
       u1 = ifft(fftshift(c1)); biRkq c;  
    if rem(m1,J) == 0                                 % Save output every J steps. Us_1 #$p,  
        U1 = [U1 u1];                                  % put solutions in U array Yi <1z:\  
        U2=[U2 u2]; Ged} qXn  
        MN1=[MN1 m1]; 4r#4h4`y|  
        z1=dz*MN1';                                    % output location |{MXDx  
      end -*qoF(/U  
    end (~fv;}}v  
    hg=abs(U1').*abs(U1');                             % for data write to excel wGWv<<Qw"  
    ha=[z1 hg];                                        % for data write to excel |<%v`*  
    t1=[0 t']; s%G%s,d  
    hh=[t1' ha'];                                      % for data write to excel file 9zm2}6r4  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format { PS0.UZ  
    figure(1) CD4@0Z+  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn cI-@nV  
    figure(2) < Yc)F.:  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn li0)<("/  
    BE!l{  
    非线性超快脉冲耦合的数值方法的Matlab程序 6_K7!?YG7  
    o3:BH@@  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   v`U;.W  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Hx n#vAc  
    Bve',.xH  
    AuY*x;~  
    H#G3CD2&  
    %  This Matlab script file solves the nonlinear Schrodinger equations ,:0!+1  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of z`,dEGfh^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear lUw=YM  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h)s&Nqg1B  
    ^?|d< J:{  
    C=1;                           &ViK9  
    M1=120,                       % integer for amplitude g!Ui|]BI9  
    M3=5000;                      % integer for length of coupler WA.c.{w\  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) kV4L4yE  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. mZ.gS1Dq  
    T =40;                        % length of time:T*T0. KL"_h`UW  
    dt = T/N;                     % time step uH#X:Vne  
    n = [-N/2:1:N/2-1]';          % Index O\h%ZLjfO  
    t = n.*dt;   ux)Wh.5  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. VO /b&%  
    w=2*pi*n./T; GGU wS  
    g1=-i*ww./2; %g69kizoWi  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; @9l$j Z~x  
    g3=-i*ww./2; 6XnUs1O  
    P1=0; 2>f3n W  
    P2=0; gLlA'`!  
    P3=1; s.a@uR^  
    P=0; h?vny->uJ  
    for m1=1:M1                 \\{78WDA  
    p=0.032*m1;                %input amplitude t{`uN  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 yZb})4.  
    s1=s10; (%G>TV  
    s20=0.*s10;                %input in waveguide 2 h!tg+9%  
    s30=0.*s10;                %input in waveguide 3 - %?> 1n  
    s2=s20; Y oZd,} i  
    s3=s30; >y$*|V}k  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Q8_5g$X\  
    %energy in waveguide 1 Nh !U  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5i'KGL  
    %energy in waveguide 2 [8vqw(2Tm(  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   bNHs jx@  
    %energy in waveguide 3 ,+x\NY2d  
    for m3 = 1:1:M3                                    % Start space evolution Wxgs66   
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Q+'fTmT[,  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; hMgk+4*  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; X?]Mzcu  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Z=l2Po n  
       sca2 = fftshift(fft(s2)); CY"i|s  
       sca3 = fftshift(fft(s3)); Hi U/fi`  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   IvI;Q0E-3  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); `W7;-  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #IeG/t(  
       s3 = ifft(fftshift(sc3)); !:~C/B{  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Kr`.q:0GK  
       s1 = ifft(fftshift(sc1)); F5{GMn;j  
    end COd~H  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); '=d y =  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Y 2^y73&k  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9h<iw\ $'  
       P1=[P1 p1/p10]; PGb}Y {  
       P2=[P2 p2/p10]; >n1UK5QD  
       P3=[P3 p3/p10]; )P|/<>z  
       P=[P p*p]; C*Q x  
    end m-q O yt  
    figure(1) lxBcO/  
    plot(P,P1, P,P2, P,P3); @;[.#hK  
    7e{w,.ny!  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~