非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 BL@:!t
function z = zernfun(n,m,r,theta,nflag) F~ Lx|)0M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~>9_(L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N t6v/sZ{F
% and angular frequency M, evaluated at positions (R,THETA) on the KfF!{g f
% unit circle. N is a vector of positive integers (including 0), and U%0Ty|$Y
% M is a vector with the same number of elements as N. Each element )M2F4[vcb
% k of M must be a positive integer, with possible values M(k) = -N(k) z;@*r}H
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, y
qtKy
% and THETA is a vector of angles. R and THETA must have the same -i-? .:
% length. The output Z is a matrix with one column for every (N,M) V I%
6.6D
% pair, and one row for every (R,THETA) pair. Y^<bl2"y8
% !3T&4t
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mf'V)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), h gJ[LU| >
% with delta(m,0) the Kronecker delta, is chosen so that the integral f6$b
s+oP
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <w3!!+oK"
% and theta=0 to theta=2*pi) is unity. For the non-normalized \"hJCP?,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;c$ J=h]
% {v3P9s(
% The Zernike functions are an orthogonal basis on the unit circle. e%W$*f
% They are used in disciplines such as astronomy, optics, and QeF3qXI
% optometry to describe functions on a circular domain. Cu6%h>@K$
% 4&l10fR5
% The following table lists the first 15 Zernike functions. U*.0XNKp{
% X$/2[o#g
% n m Zernike function Normalization Haqm^Ky$
% -------------------------------------------------- m,fAeln
% 0 0 1 1 Jmx Ko+-
% 1 1 r * cos(theta) 2 s+>:,U<A
% 1 -1 r * sin(theta) 2 V59(Z
% 2 -2 r^2 * cos(2*theta) sqrt(6) -W>'^1cR
% 2 0 (2*r^2 - 1) sqrt(3) _V`DWR
*
% 2 2 r^2 * sin(2*theta) sqrt(6) (5\NB0
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z0l+1iMx
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ?6'rBH/w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [=~ pe|8:
% 3 3 r^3 * sin(3*theta) sqrt(8) $ImrOf^qt
% 4 -4 r^4 * cos(4*theta) sqrt(10) qe5feky
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V^;jJ']
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :6%Z]tt
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6-O_\Cq8
% 4 4 r^4 * sin(4*theta) sqrt(10) ?IpLf\n-
% -------------------------------------------------- DK}"b}Fvq
% 43=,yz2Ef
% Example 1: o=`C<}
% 2#k5+?-c61
% % Display the Zernike function Z(n=5,m=1) F:a ILx
% x = -1:0.01:1; Q|@4bz i)
% [X,Y] = meshgrid(x,x); z?35=%~w
% [theta,r] = cart2pol(X,Y); 6uR^%W8]
% idx = r<=1; +@r*}
% z = nan(size(X)); -lv)tHs<
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5 (A5Y-B
% figure JfPD}w
% pcolor(x,x,z), shading interp P9 Z}H(?C
% axis square, colorbar 0V?F'<qy
% title('Zernike function Z_5^1(r,\theta)') 6^DR0sO
% iTaWu p
% Example 2: *z7dl5xJ
% jmeRrnC}
% % Display the first 10 Zernike functions RD.V'`n"
% x = -1:0.01:1; c/uNM
% [X,Y] = meshgrid(x,x); 2PG [7u^
% [theta,r] = cart2pol(X,Y); 4f<$4d^md
% idx = r<=1; -
|gmQG
% z = nan(size(X)); rXHv`ky
% n = [0 1 1 2 2 2 3 3 3 3]; B/n[m@O
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $kQ~d8 O
% Nplot = [4 10 12 16 18 20 22 24 26 28]; )rixMl &[
% y = zernfun(n,m,r(idx),theta(idx)); .aflsUD
% figure('Units','normalized') CJhL)0Cs
% for k = 1:10 0Zg%+)iy@
% z(idx) = y(:,k); 9H%X2#:fH
% subplot(4,7,Nplot(k))
a`0=AQ
% pcolor(x,x,z), shading interp :Lz\yARpk
% set(gca,'XTick',[],'YTick',[]) )(@Hd
% axis square &