非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 QigoRB!z#9
function z = zernfun(n,m,r,theta,nflag) rr07\;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. zP{<0o
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {d?4;Kd
% and angular frequency M, evaluated at positions (R,THETA) on the TQ 5MKqR$
% unit circle. N is a vector of positive integers (including 0), and !q=Q~ea
% M is a vector with the same number of elements as N. Each element ,/w852|ub
% k of M must be a positive integer, with possible values M(k) = -N(k) f@F^W YQm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Il&"=LooZ
% and THETA is a vector of angles. R and THETA must have the same Vlp*'2VO
% length. The output Z is a matrix with one column for every (N,M) R>e3@DQ~
% pair, and one row for every (R,THETA) pair. Sf4h!ly
% _ \v@9Q\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vS J<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -u3SsU)_%N
% with delta(m,0) the Kronecker delta, is chosen so that the integral [:R P9r}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]UCk_zWsn1
% and theta=0 to theta=2*pi) is unity. For the non-normalized T^(n+ lv
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \\R*V'e!
% %)6:eIS
% The Zernike functions are an orthogonal basis on the unit circle. YP\4XI
% They are used in disciplines such as astronomy, optics, and j$mt*z L
% optometry to describe functions on a circular domain. !s[j1=y
% *09\\
G
% The following table lists the first 15 Zernike functions. "13
:VTs[5
% vRb(eg
% n m Zernike function Normalization 'De'(I
% -------------------------------------------------- wJeqa
% 0 0 1 1 {HRxyAI!
% 1 1 r * cos(theta) 2 6ImV5^l
% 1 -1 r * sin(theta) 2 8|jX ~f
% 2 -2 r^2 * cos(2*theta) sqrt(6) l=-dK_I?
% 2 0 (2*r^2 - 1) sqrt(3) &PQ{e8w
% 2 2 r^2 * sin(2*theta) sqrt(6) c@o/Cv
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;aRWJG
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) vu.S>2Wv
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ]N(zom_0d
% 3 3 r^3 * sin(3*theta) sqrt(8) ">D(+ xr!)
% 4 -4 r^4 * cos(4*theta) sqrt(10) aIt
0;D
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,f/IG.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <>*''^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1:{O RX[;
% 4 4 r^4 * sin(4*theta) sqrt(10) /=U v
% -------------------------------------------------- _qzo):G.s
% qYu!:xa8
% Example 1: )r|zi
Z {F
% $hE'b9qx
% % Display the Zernike function Z(n=5,m=1) A$"$`)P!
% x = -1:0.01:1; LWb}) #E
% [X,Y] = meshgrid(x,x); Dgq[g_+l
% [theta,r] = cart2pol(X,Y); ,YMdXYu`s
% idx = r<=1; CIik@O*
% z = nan(size(X)); !{~7 )iq
% z(idx) = zernfun(5,1,r(idx),theta(idx)); = cI\OsV&?
% figure -ZoOX"N}
% pcolor(x,x,z), shading interp ah6F^Kpl{
% axis square, colorbar "6NNId|Y
% title('Zernike function Z_5^1(r,\theta)') l-h7ksRs
% q!oZ; $
% Example 2: DwrCysIK
% )RCqsFjK
% % Display the first 10 Zernike functions
@Kb|
% x = -1:0.01:1; k;:u| s8NS
% [X,Y] = meshgrid(x,x); kFa?q}47
% [theta,r] = cart2pol(X,Y); cV!/
% idx = r<=1; AO 7qs:+
% z = nan(size(X)); 0!'M#'m
% n = [0 1 1 2 2 2 3 3 3 3]; xo_k"'f+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 53&xTcv}x
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Pymh^i
% y = zernfun(n,m,r(idx),theta(idx)); -K'84 bZ
% figure('Units','normalized') n_Hnk4
% for k = 1:10 3^-)gK
% z(idx) = y(:,k); C<=p"pWw
% subplot(4,7,Nplot(k)) &fy8,}
% pcolor(x,x,z), shading interp vls> 6h
% set(gca,'XTick',[],'YTick',[]) WT
{Cjn
% axis square fu "z%h]
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @k #y-/~?
% end ]<_!@J6k
% hE#8_3 4%s
% See also ZERNPOL, ZERNFUN2. Z!i'Tbfn
PaeafL65=
% Paul Fricker 11/13/2006 -bu. *=
~t3?er& R
3Co>3d_
% Check and prepare the inputs: ]~M{@h!<
% ----------------------------- _,?H rL9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0m!ZJH e
error('zernfun:NMvectors','N and M must be vectors.') v;qL?_:=c
end hgr ,v"
4_:e+ ql
if length(n)~=length(m) p[VCt" j
error('zernfun:NMlength','N and M must be the same length.') l
YA+k5
end s ;Nu2aOp7
~9;mZi1-
n = n(:); *ik)>c_
m = m(:); 3:Egqw
if any(mod(n-m,2)) 5e8-?w%e
error('zernfun:NMmultiplesof2', ... M 6Z`Pwv];
'All N and M must differ by multiples of 2 (including 0).') GeTCN
end 7IW7'klkvD
4i&!V9@:
if any(m>n) CMjPp`rA
error('zernfun:MlessthanN', ... Y tj>U
'Each M must be less than or equal to its corresponding N.') {cHTg04
end l>P~M50D?{
Jpnp'
if any( r>1 | r<0 ) DYk->)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') TEyPlSGG
end \/%Q PE8
(8F?yBu
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cJ{P,K
error('zernfun:RTHvector','R and THETA must be vectors.') -*j;
end a2)*tbM9\
m,fr?d/;
r = r(:); m,_oX1h
theta = theta(:); .kDCcnm
length_r = length(r); X
KeK;+
if length_r~=length(theta) gz:c_HJ
error('zernfun:RTHlength', ... yG_.|%e
'The number of R- and THETA-values must be equal.') ;G&O"S><]c
end LYKm2C*d
Du4?n8 o
% Check normalization: ~%q e,
% -------------------- u-cC}DP
if nargin==5 && ischar(nflag) [qo*,CRz
isnorm = strcmpi(nflag,'norm'); ~$Yuxo
if ~isnorm p{u}t!`!d
error('zernfun:normalization','Unrecognized normalization flag.') ~_6rD`2cJ
end #jR?C9&!(
else ld0WZj
isnorm = false; /;[')RO`
end h<jIg$rA
I!%@|[ Ow
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8;bOw
% Compute the Zernike Polynomials hD=D5LYAZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |LhuZ_;1xo
{<Zqw]
% Determine the required powers of r: |1$X`|S
% ----------------------------------- d@~)Wlje
m_abs = abs(m); z#ET-[I
rpowers = []; eLWzd_ln
for j = 1:length(n) R``qQ;cc
rpowers = [rpowers m_abs(j):2:n(j)]; }\*|b@)]
end 8A=(,)`}9
rpowers = unique(rpowers); @bE?WXY
JaTW/~ TU
% Pre-compute the values of r raised to the required powers, /$Jh5Bv
% and compile them in a matrix: ~Y$1OA8
% ----------------------------- Q0A1N[
if rpowers(1)==0 e;v2`2z2
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uDUSR+E>
rpowern = cat(2,rpowern{:}); <aS1bQgaU
rpowern = [ones(length_r,1) rpowern]; $~l:l[Zs
else -A~<IyPt
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F.6SX (x
rpowern = cat(2,rpowern{:}); #YV;Gp(2h
end P^r8JhDJ
36z{TWF
% Compute the values of the polynomials: LNWp$"
% -------------------------------------- (n G
y = zeros(length_r,length(n)); \wP$"Z}j
for j = 1:length(n) -8:@xG2
s = 0:(n(j)-m_abs(j))/2; w\a#Bfcv
pows = n(j):-2:m_abs(j); 0Oq1ay^
for k = length(s):-1:1 xC]/i(+bA
p = (1-2*mod(s(k),2))* ... auU{Iy
prod(2:(n(j)-s(k)))/ ... nfEk ,(:
prod(2:s(k))/ ... s4\2lBU?
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... GWsFW[T?~
prod(2:((n(j)+m_abs(j))/2-s(k))); 9lwg`UWl,
idx = (pows(k)==rpowers); : nn'>
y(:,j) = y(:,j) + p*rpowern(:,idx); 2TO1i0
end Y-9F*8<
Ex{]<6UAu
if isnorm K, Vl.-4?
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _`_$UMK;
end y+_U6rv[
end A}o1I1+
% END: Compute the Zernike Polynomials \hVFK6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z(cgI5Pu
!`o=2b=N
% Compute the Zernike functions: ~PHG5?X
% ------------------------------ f3O'lc3
idx_pos = m>0; {[eY/)6H
idx_neg = m<0; CS
x
:s-\>RcA
z = y; )deuB5kz
if any(idx_pos) OmW|\d PU
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {Ffr l(*
end uQ}kq7gd
if any(idx_neg) (<