切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11286阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 1o)<23q`)  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! [y<s]C6E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 H#bu3*'  
    function z = zernfun(n,m,r,theta,nflag) Ej`G(  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. K%/g!t)  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N X`I=Z ysB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the HA0yX?f]  
    %   unit circle.  N is a vector of positive integers (including 0), and AgdU@&^  
    %   M is a vector with the same number of elements as N.  Each element y<y9'tx  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Btc[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;ZZmX]kz,M  
    %   and THETA is a vector of angles.  R and THETA must have the same S's I[?\x  
    %   length.  The output Z is a matrix with one column for every (N,M) ;i3C  
    %   pair, and one row for every (R,THETA) pair. QmsS,Zljo  
    % _%aT3C}k  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {|Fn<&G  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4{" v  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral o^BX:\}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PC)V".W 1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized q4u-mM7#7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ' PmBNT  
    % *0 ;|  
    %   The Zernike functions are an orthogonal basis on the unit circle. YMn=9EUp  
    %   They are used in disciplines such as astronomy, optics, and Km0P)Z  
    %   optometry to describe functions on a circular domain. r / L  
    % S,C/l1s  
    %   The following table lists the first 15 Zernike functions.  PO=A^b  
    % m] @o1J  
    %       n    m    Zernike function           Normalization 7L!q{%}  
    %       -------------------------------------------------- 'ExQG$t  
    %       0    0    1                                 1 vn96o] n  
    %       1    1    r * cos(theta)                    2 Wt! NLlN8  
    %       1   -1    r * sin(theta)                    2 &>hln<a>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Qexv_:C  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <U""CAE  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ?w@KF%D  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) L$f:D2Ei  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )`m/vYKWL  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) P/dT;YhL  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Za1VJ5-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) y~+U(-&.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) luO4ap]*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) h/#s\>)T  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ':T6m=yv  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) +*$@ K'VL  
    %       -------------------------------------------------- {`[u XH?3d  
    % z%L\EP;o}  
    %   Example 1: s|C4Jy_  
    % ww~gmz  
    %       % Display the Zernike function Z(n=5,m=1) 1;[ZkRbzL  
    %       x = -1:0.01:1; p87VJ}  
    %       [X,Y] = meshgrid(x,x); @{8SC~ha  
    %       [theta,r] = cart2pol(X,Y); I~7eu&QZ  
    %       idx = r<=1; %|By ?i  
    %       z = nan(size(X)); j;i7.B"[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); n6 AP6PK7  
    %       figure UmA'aq  
    %       pcolor(x,x,z), shading interp a(eUdGJ  
    %       axis square, colorbar 1V2"sE  
    %       title('Zernike function Z_5^1(r,\theta)') ;S^7Q5-  
    % sVT\e*4m}  
    %   Example 2: \g\,  
    % %!Ak]|[7  
    %       % Display the first 10 Zernike functions E3o J;E  
    %       x = -1:0.01:1; n4Eqm33  
    %       [X,Y] = meshgrid(x,x); -$_h]x* W  
    %       [theta,r] = cart2pol(X,Y); \Y}nehxG@  
    %       idx = r<=1;  Q ,)}t  
    %       z = nan(size(X)); 5y|/}D>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;/.XAxkFL  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; wr;8o*~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9WsGoZP n  
    %       y = zernfun(n,m,r(idx),theta(idx)); EX^j^#N  
    %       figure('Units','normalized') TZ%u;tBH:  
    %       for k = 1:10 iKuSk~  
    %           z(idx) = y(:,k); bcZ s+FOPd  
    %           subplot(4,7,Nplot(k)) BF>3CW7  
    %           pcolor(x,x,z), shading interp ^H UNq[sQ  
    %           set(gca,'XTick',[],'YTick',[]) B*j AD2  
    %           axis square l*C(FPw4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m>@ *-*8k  
    %       end (E(kw="  
    % gsp|?) ]x  
    %   See also ZERNPOL, ZERNFUN2. fo30f =^Gi  
    hM @F|t3  
    %   Paul Fricker 11/13/2006 4zM$I  
    .ahYj n  
    wWR9dsB.;  
    % Check and prepare the inputs: :TzHI    
    % ----------------------------- _4jRUsvjY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) hZ@Wl6FG;  
        error('zernfun:NMvectors','N and M must be vectors.') 5%n  
    end DU/WB  
    (lY< \l  
    if length(n)~=length(m) bl;C=n  
        error('zernfun:NMlength','N and M must be the same length.') 7+vyN^XJ"5  
    end e8"?Qm7 J  
    REvY`   
    n = n(:); ?`%)3gx|  
    m = m(:); H%:~&_D  
    if any(mod(n-m,2)) sOBy)vq?\  
        error('zernfun:NMmultiplesof2', ... Z@I.socA  
              'All N and M must differ by multiples of 2 (including 0).') A<zSh }eh6  
    end OK}+:Y  
    ;8 D31OT  
    if any(m>n) `_{^&W WS  
        error('zernfun:MlessthanN', ... 3,cZ*4('d  
              'Each M must be less than or equal to its corresponding N.') c`(]j w  
    end _pv<_ Sm  
    Htf|VpzMb  
    if any( r>1 | r<0 )  D|[~Py  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z?^~f}+  
    end BtN@P23>k.  
    D d$ SQ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A9[ELD>p  
        error('zernfun:RTHvector','R and THETA must be vectors.') =gb.%a{R  
    end U`es n?m!  
    jHj*S9:`  
    r = r(:); \*0ow`|K  
    theta = theta(:); [p+6HF  
    length_r = length(r); =sk]/64h``  
    if length_r~=length(theta) N!}r(Dd*  
        error('zernfun:RTHlength', ... TrHz(no  
              'The number of R- and THETA-values must be equal.') n3t0Qc  
    end b[3K:ot+  
    pbe" w=<  
    % Check normalization: x7=5 ;gf/X  
    % -------------------- T _O|gU  
    if nargin==5 && ischar(nflag) 8%s_~Yc  
        isnorm = strcmpi(nflag,'norm'); -$#'  
        if ~isnorm u[_~ !y  
            error('zernfun:normalization','Unrecognized normalization flag.') 9I:H=5c  
        end {[ j+ y  
    else 4  |E`  
        isnorm = false; 4%TY` II  
    end  'mz _JM  
    TixXA:Mf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -o\r]24  
    % Compute the Zernike Polynomials 9WaKsdf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &n.7~C]R  
    piE9qXn  
    % Determine the required powers of r: tc%?{W\  
    % ----------------------------------- h[SuuW  
    m_abs = abs(m); |RBgJkS;8  
    rpowers = []; /XG4O  
    for j = 1:length(n) hVe@:1og#  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5fK#*(x  
    end d`U{-?N>  
    rpowers = unique(rpowers); >W= 0N (  
    2-9'zN0u  
    % Pre-compute the values of r raised to the required powers, ,[rh7 _  
    % and compile them in a matrix: ~G!>2 +L  
    % ----------------------------- $\xS~ w  
    if rpowers(1)==0 ]~:9b[G2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D=U"L-rRs  
        rpowern = cat(2,rpowern{:}); cNzn2-qv  
        rpowern = [ones(length_r,1) rpowern]; jFBLElE  
    else )6# i>c-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @<5?q: 9.8  
        rpowern = cat(2,rpowern{:}); Farcd!}  
    end $F!)S  
    rULrGoM  
    % Compute the values of the polynomials: io_4d2uBh  
    % -------------------------------------- K4Mv\!Q<8  
    y = zeros(length_r,length(n)); B1]dub9  
    for j = 1:length(n) Z[Gs/D  
        s = 0:(n(j)-m_abs(j))/2; zT[[WY4  
        pows = n(j):-2:m_abs(j); s7?Q[vN  
        for k = length(s):-1:1 fHek!Jv.  
            p = (1-2*mod(s(k),2))* ... Aen)r@Y:  
                       prod(2:(n(j)-s(k)))/              ... zmH8#  
                       prod(2:s(k))/                     ... H@$\SUc{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... i?uJ<BdU[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); O mkl|l9  
            idx = (pows(k)==rpowers); Z!Njfq5  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^lCys  
        end x4jn45]x@  
         "wi=aV9j  
        if isnorm Jrp{e("9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T!.6@g`x>  
        end (B@:0}>  
    end {FO>^~>l  
    % END: Compute the Zernike Polynomials iV5x-G`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _{z.Tu  
    irSdqa/  
    % Compute the Zernike functions: [,s{/OM  
    % ------------------------------ qk pnXQ  
    idx_pos = m>0; }~Z1C0 t  
    idx_neg = m<0; *Z*4L|zT  
    [U_S u,  
    z = y; Wpo:'?!(M^  
    if any(idx_pos) ,/n<Qg"`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "G\OKt'Z  
    end 8<}f:9/  
    if any(idx_neg) ;h> s=D,r  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5a1)`2V2M  
    end Ay'2! K,I  
    1?\ #hemL  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) NLHF3h=?1p  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. F;l*@y Tq  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated k 9 Xi|Yj  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive J1kG'cH05  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4:Adn?"  
    %   and THETA is a vector of angles.  R and THETA must have the same "*O(3L.c-  
    %   length.  The output Z is a matrix with one column for every P-value, AL%H$I  
    %   and one row for every (R,THETA) pair. aW-'Jg=@H^  
    % 5}FPqyK"  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 1Wzm51RU  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) yD|He*$S  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) %lsk> V  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ^mbpt`@  
    %   for all p. O(BAw  
    % x}I'W?g  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ng $`<~=)\  
    %   Zernike functions (order N<=7).  In some disciplines it is Yoy}Zdu}h  
    %   traditional to label the first 36 functions using a single mode HY[eo/nM1d  
    %   number P instead of separate numbers for the order N and azimuthal U  JO  
    %   frequency M. N<V,5  
    % B\BxF6 y  
    %   Example: Ym~*5|  
    % I9GRSm;0<  
    %       % Display the first 16 Zernike functions 5(kRFb'31F  
    %       x = -1:0.01:1; hawE2k0p(  
    %       [X,Y] = meshgrid(x,x); w@U`@})r.  
    %       [theta,r] = cart2pol(X,Y); :_F$e  
    %       idx = r<=1; |,k,X}gP  
    %       p = 0:15; NsYeg&>`  
    %       z = nan(size(X)); jFYv4!\ju  
    %       y = zernfun2(p,r(idx),theta(idx)); -z%| Jk  
    %       figure('Units','normalized') )r _zM~jI  
    %       for k = 1:length(p) wIT0A-Por4  
    %           z(idx) = y(:,k); 9 z_9yT  
    %           subplot(4,4,k) i}mvKV?!|1  
    %           pcolor(x,x,z), shading interp ghq#-N/t  
    %           set(gca,'XTick',[],'YTick',[]) 7U_~_yb  
    %           axis square V4Yw"J  
    %           title(['Z_{' num2str(p(k)) '}']) ?rqU&my S  
    %       end yj!4L&A  
    % S`ms[^-q*  
    %   See also ZERNPOL, ZERNFUN. #SiOx/  
    KrNu7/H  
    %   Paul Fricker 11/13/2006 -DgJkyt+<  
    cY1d6P0  
    ?`%7Y~  
    % Check and prepare the inputs: J{Fu8  
    % ----------------------------- iYE:o{  
    if min(size(p))~=1 7I>@PV N  
        error('zernfun2:Pvector','Input P must be vector.') C FqteY"  
    end 9L+dN%C  
    ]AjDe]  
    if any(p)>35 M7rVH\:[-  
        error('zernfun2:P36', ... (h;4irfX  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... -A}U^-'a}  
               '(P = 0 to 35).'])  'Q\I@s }  
    end y#-mj,e  
    %<cfjo  
    % Get the order and frequency corresonding to the function number: *^cJn*QeL  
    % ---------------------------------------------------------------- G-?y;V 1  
    p = p(:); Z/nTI 0N{  
    n = ceil((-3+sqrt(9+8*p))/2); XD>(M{~  
    m = 2*p - n.*(n+2); 8RS=Xemds  
    jr$]kLY  
    % Pass the inputs to the function ZERNFUN: + D ,Nd=/  
    % ---------------------------------------- 9z)p*+r UK  
    switch nargin A1`y_ Aj  
        case 3 Hk)IV"[R  
            z = zernfun(n,m,r,theta); |fYr*8rH  
        case 4 %hcn|-" F  
            z = zernfun(n,m,r,theta,nflag); |7G +O+j  
        otherwise 4N&4TUIM  
            error('zernfun2:nargin','Incorrect number of inputs.') Dk$[b9b  
    end rv/O^aL`Y  
    W10=SM}  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) CF|c4oY82  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 3 K Y-+ k  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of NYS |fa  
    %   order N and frequency M, evaluated at R.  N is a vector of Y/\y"a  
    %   positive integers (including 0), and M is a vector with the &p>VTD  
    %   same number of elements as N.  Each element k of M must be a 7s#,.(s  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) d51.Tbt#%7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <w@ziUr  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix di^E8egR$  
    %   with one column for every (N,M) pair, and one row for every o[C,fh,$  
    %   element in R. #:E}Eby/6I  
    % ~";GH20  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- G$b*N4yR  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @f<q&K%FJ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ^HpUbZpat)  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 {9(#X]'  
    %   for all [n,m]. pwq a/Yi  
    % G&P[n8Z$  
    %   The radial Zernike polynomials are the radial portion of the n)]]g3y2  
    %   Zernike functions, which are an orthogonal basis on the unit !L..I2'  
    %   circle.  The series representation of the radial Zernike RzPqtN  
    %   polynomials is &j4 1<A  
    % >fCz,.L  
    %          (n-m)/2 N_AAhD  
    %            __ AcF6p)@_  
    %    m      \       s                                          n-2s /yRP>CX~  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 83rtQ ;L  
    %    n      s=0 E+>$@STv#  
    % K5; /  
    %   The following table shows the first 12 polynomials. ~zEBJgeyh  
    % QFn .<@  
    %       n    m    Zernike polynomial    Normalization lFHj]%Y  
    %       --------------------------------------------- I)@b#V=  
    %       0    0    1                        sqrt(2) zCOzBL/1q  
    %       1    1    r                           2 5v&mK 5zZ  
    %       2    0    2*r^2 - 1                sqrt(6) 1: cD\  
    %       2    2    r^2                      sqrt(6) 9 U6cM-p?  
    %       3    1    3*r^3 - 2*r              sqrt(8) Q};g~b3  
    %       3    3    r^3                      sqrt(8) !3Xu#^Xxj  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Qfx:}zk{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) xx^7  
    %       4    4    r^4                      sqrt(10) y[ikpp#ozY  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) xj/Iq<'R*O  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) #=>t6B4af  
    %       5    5    r^5                      sqrt(12) | Vl Q0{  
    %       --------------------------------------------- $JH_  
    % s,KE,$5F   
    %   Example: La$*)qD,  
    % ?f9@  
    %       % Display three example Zernike radial polynomials Xi^#F;@sU  
    %       r = 0:0.01:1; 58T<~u7  
    %       n = [3 2 5]; q|Oz   
    %       m = [1 2 1]; |2oCEb1  
    %       z = zernpol(n,m,r); =&kd|o/i  
    %       figure F(?A7  
    %       plot(r,z) e -sZ_<GH  
    %       grid on Yv}V =O%  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ryk(Am<  
    % ~,199K#'  
    %   See also ZERNFUN, ZERNFUN2. <{ Z$!]i1  
    r-Nv<oH;  
    % A note on the algorithm. IaDN[:SX  
    % ------------------------ Rd4 z+G  
    % The radial Zernike polynomials are computed using the series 5e> <i  
    % representation shown in the Help section above. For many special "mBX$t'gb  
    % functions, direct evaluation using the series representation can cjTV~(i'4A  
    % produce poor numerical results (floating point errors), because 6Dx^$=Sa$  
    % the summation often involves computing small differences between o;d><  
    % large successive terms in the series. (In such cases, the functions pA ,xDs@37  
    % are often evaluated using alternative methods such as recurrence C(t >ZR  
    % relations: see the Legendre functions, for example). For the Zernike (5-4`:1ux  
    % polynomials, however, this problem does not arise, because the 7hg)R @OC  
    % polynomials are evaluated over the finite domain r = (0,1), and *G]zN"Y  
    % because the coefficients for a given polynomial are generally all Sdk:-Zuv  
    % of similar magnitude. F;I %9-R  
    % 'a}<|Et.  
    % ZERNPOL has been written using a vectorized implementation: multiple r`t|}m  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] vMDX  
    % values can be passed as inputs) for a vector of points R.  To achieve _trF/U<  
    % this vectorization most efficiently, the algorithm in ZERNPOL 4 w$f-   
    % involves pre-determining all the powers p of R that are required to Q db~I#}m'  
    % compute the outputs, and then compiling the {R^p} into a single dZS v=UY)  
    % matrix.  This avoids any redundant computation of the R^p, and R~=_,JUW  
    % minimizes the sizes of certain intermediate variables. =TTk5(m  
    % 38I.1p9  
    %   Paul Fricker 11/13/2006 /FP;Hsw%  
    dIQxU  
    "r:i  
    % Check and prepare the inputs: $i:wS= w'  
    % ----------------------------- b.Yl0Y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x/Nh9hh"  
        error('zernpol:NMvectors','N and M must be vectors.') :n@j"-HA  
    end `^mPq?f  
    =\t%U5  
    if length(n)~=length(m) i4',d#  
        error('zernpol:NMlength','N and M must be the same length.') n0/H2>I[  
    end ?1+JBl~/d  
    E{Gkq:  
    n = n(:); R:Pw@  
    m = m(:); LF2@qvwD  
    length_n = length(n);  k|Xxr  
    V>8)1)dF  
    if any(mod(n-m,2)) 51,RbADB  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -uE2h[X|  
    end *5kQ6#l  
    1$Jria5n  
    if any(m<0) W .B>"u  
        error('zernpol:Mpositive','All M must be positive.') P|:*OM p  
    end Aqc Cb[1r  
    GT -(r+u  
    if any(m>n) Ezvm5~<  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 'aq9]D_k  
    end CY"iP,nHl  
    j@j%)CCM  
    if any( r>1 | r<0 ) R')D~JJ<8a  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') dBB;dN  
    end efK3{   
    .e^AS~4pl  
    if ~any(size(r)==1) p1-bq:  
        error('zernpol:Rvector','R must be a vector.') )yHJc$OlMx  
    end V_>)m3zsL  
    st b)Tl^  
    r = r(:); gK`o ;` ^  
    length_r = length(r); Usa  
    d G}.T_l  
    if nargin==4 |GDf<\  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -T s8y  
        if ~isnorm Hy?+p{{G  
            error('zernpol:normalization','Unrecognized normalization flag.') L\:f#b~W  
        end 9PU9BYBG  
    else r35'U#VMk?  
        isnorm = false; /~4wM#Yi8  
    end N@oNg}D&:  
    8Wa&&YTB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3?}W0dZ$d  
    % Compute the Zernike Polynomials vlHE\%{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s+=JT+g  
    ZL0':7  
    % Determine the required powers of r: \z/_vzz4  
    % ----------------------------------- (>E}{{>2r  
    rpowers = []; 7 Q`'1oE?  
    for j = 1:length(n) __FhuP P  
        rpowers = [rpowers m(j):2:n(j)]; !Q`vOVSUD  
    end :3FJe  
    rpowers = unique(rpowers); f;Iaf#V_  
    R)%1GG4  
    % Pre-compute the values of r raised to the required powers, v,\2$q/  
    % and compile them in a matrix: DeMF<)#  
    % ----------------------------- R^fk :3  
    if rpowers(1)==0 _li\b-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E^RPK{zO  
        rpowern = cat(2,rpowern{:}); liYR8D |  
        rpowern = [ones(length_r,1) rpowern]; ;w^-3 U7:  
    else zF& >1y.$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a^9-9*  
        rpowern = cat(2,rpowern{:}); U?MKZL7  
    end 0 .& B  
    $U uSrX&  
    % Compute the values of the polynomials: /,>@+^1  
    % -------------------------------------- ,O9rL :?  
    z = zeros(length_r,length_n); LPg1G+e  
    for j = 1:length_n jslfq@5v  
        s = 0:(n(j)-m(j))/2; 5`ma#_zk|f  
        pows = n(j):-2:m(j); wU\3"!^h  
        for k = length(s):-1:1 W|go*+`W%  
            p = (1-2*mod(s(k),2))* ... Jb~nu  
                       prod(2:(n(j)-s(k)))/          ... %cWy0:F5VY  
                       prod(2:s(k))/                 ... $] js0 )>  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... STC'j1U  
                       prod(2:((n(j)+m(j))/2-s(k))); _` %z  
            idx = (pows(k)==rpowers); 7R$]BY=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); WsA(8Ck<  
        end .ZK|%VGW  
         ~}SOd<n)|  
        if isnorm :QSCky*i  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); e[3 rz%'Q  
        end nFVQOr;  
    end Iw ? M>'l  
    ++s=$D  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  fL7ym,?  
    1!RD kZw e  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 jP6;~[rl  
    CCJ!;d;&87  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)