切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10899阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ?xf~!D  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! aEZJNWv  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1Q3%!~<\s  
    function z = zernfun(n,m,r,theta,nflag) c M|af#o  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. (}~ 1{C@  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %pQdq[J={  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =#J 9  
    %   unit circle.  N is a vector of positive integers (including 0), and \=TWYj_Ah  
    %   M is a vector with the same number of elements as N.  Each element xy2eJJq  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) >!CH7wX  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ZzSJm+&'  
    %   and THETA is a vector of angles.  R and THETA must have the same )3d:S*ly  
    %   length.  The output Z is a matrix with one column for every (N,M) T749@!v`z  
    %   pair, and one row for every (R,THETA) pair. `V$cz88b  
    % c1=;W$T(s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =W97|BIW,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jCdZ}M($  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral C&qDvvk  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5k_Mj* {6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $Ykp8u,(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D<$j`r  
    % xQcMQ{&;  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]*t*/j;N  
    %   They are used in disciplines such as astronomy, optics, and [ 7CH(o1a&  
    %   optometry to describe functions on a circular domain. AF07KA#  
    % M]pel\{M  
    %   The following table lists the first 15 Zernike functions. oc,U4+T  
    % :5n"N5Go  
    %       n    m    Zernike function           Normalization _j|n}7a  
    %       -------------------------------------------------- ?.|wfBI  
    %       0    0    1                                 1 w2RESpi  
    %       1    1    r * cos(theta)                    2 =[O<.'aG-  
    %       1   -1    r * sin(theta)                    2 ACMpm~C8Gu  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) QB oZCLv  
    %       2    0    (2*r^2 - 1)                    sqrt(3) < '+R%6  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `"1{Sx.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P,+ 0   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) V9);kD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) P+D|_3j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) WL*W=(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6='_+{   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z.\[Va$@l  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Z{|.xgsY  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  K{7S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Jh/M}%@|  
    %       -------------------------------------------------- Vtc)/OH  
    % cC(ubUR  
    %   Example 1: Q?I"J$]&L  
    % "|~B};|MFF  
    %       % Display the Zernike function Z(n=5,m=1) 1&>nL`E[3  
    %       x = -1:0.01:1; Iu)(Huv  
    %       [X,Y] = meshgrid(x,x); {?kKpMNNn  
    %       [theta,r] = cart2pol(X,Y); WhVmycdv  
    %       idx = r<=1; R*c0NJF  
    %       z = nan(size(X)); M<|~MR  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); lpX p )r+  
    %       figure `U?H^,FVA  
    %       pcolor(x,x,z), shading interp |4 d{X@`&  
    %       axis square, colorbar  *<h  
    %       title('Zernike function Z_5^1(r,\theta)') E.Gh@i  
    % @a7(*<".  
    %   Example 2: SS<+fWXE  
    % `'tw5}  
    %       % Display the first 10 Zernike functions cB9KHqB  
    %       x = -1:0.01:1; s D8xH  
    %       [X,Y] = meshgrid(x,x); {D_4~heF  
    %       [theta,r] = cart2pol(X,Y); e&]`X HC9  
    %       idx = r<=1; b~jvmcr  
    %       z = nan(size(X)); 86) 3XE[ 5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; wW)&Px n  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 2w.9Q (Sn  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7 +W?Qo  
    %       y = zernfun(n,m,r(idx),theta(idx)); /x"pj3  
    %       figure('Units','normalized') }'M1(W  
    %       for k = 1:10 e|+;j}^C  
    %           z(idx) = y(:,k); \~1zAiSd>#  
    %           subplot(4,7,Nplot(k)) c75vAKZ2  
    %           pcolor(x,x,z), shading interp >p+gx,N  
    %           set(gca,'XTick',[],'YTick',[]) *R~(:z>>  
    %           axis square |LGNoP}SA  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G cLp"  
    %       end ez<wEt S  
    % aPP<W|Cmo2  
    %   See also ZERNPOL, ZERNFUN2. :+V1682u  
    e4_aKuA  
    %   Paul Fricker 11/13/2006 0bQiUcg/  
    e hB1`%@  
    :DF4g=  
    % Check and prepare the inputs: nO7o7bc  
    % ----------------------------- }4ghT(C}$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D;8V{Hs  
        error('zernfun:NMvectors','N and M must be vectors.') n|`):sP  
    end {<{G 1y~  
    aFm]?75  
    if length(n)~=length(m) :?XHZ  
        error('zernfun:NMlength','N and M must be the same length.') m ?tnk?oX  
    end 0FR%<u  
    q,>F#A '  
    n = n(:); Z*Hxrw\!0  
    m = m(:); *9:6t6x  
    if any(mod(n-m,2)) %T*+t"\)  
        error('zernfun:NMmultiplesof2', ... HyYQQ  
              'All N and M must differ by multiples of 2 (including 0).') L$kAe1 V^m  
    end =y(YMWGS  
    Ch!Q?4  
    if any(m>n) KI QBY!N+  
        error('zernfun:MlessthanN', ... i&G`ah>  
              'Each M must be less than or equal to its corresponding N.') J?ZVzKTb>}  
    end h sw My  
    (cew:z H  
    if any( r>1 | r<0 ) (tz]!Aa{s  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') #CP, \G  
    end Wjk;"_"gd  
    F`}w0=-*(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) umrI4.1c  
        error('zernfun:RTHvector','R and THETA must be vectors.') s!!t  
    end p. ~jo  
    E4@fP] R+  
    r = r(:); )Ua2x@j'C@  
    theta = theta(:); |.8=gS5  
    length_r = length(r); !3v"7l{LF  
    if length_r~=length(theta) ;{7lc9uRj  
        error('zernfun:RTHlength', ... j/ IZm)\  
              'The number of R- and THETA-values must be equal.') zLK ~i>aW  
    end ;xH'%W9z  
    aJ_Eh(cF  
    % Check normalization: JNg5?V;.U  
    % -------------------- VCtiZ4  
    if nargin==5 && ischar(nflag) ~:b~f]lO  
        isnorm = strcmpi(nflag,'norm'); TB[2!ZW  
        if ~isnorm sO-R+G/^7  
            error('zernfun:normalization','Unrecognized normalization flag.') 5j 01Mx A  
        end RtM.}wv;  
    else IL"#TKKv  
        isnorm = false;  o%4+I>  
    end +!Ag n)  
    R~(.uV`#j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HON[{Oq  
    % Compute the Zernike Polynomials SLB iQd.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vta;ibdeqW  
    o=2`N2AL  
    % Determine the required powers of r: ({b/J0 <@D  
    % ----------------------------------- $iJ #%&D  
    m_abs = abs(m); 5h7DVr!  
    rpowers = []; "G)?  E|  
    for j = 1:length(n) sb5kexGxkc  
        rpowers = [rpowers m_abs(j):2:n(j)]; sgsMlZ3/  
    end ]F-6KeBc  
    rpowers = unique(rpowers); 2`eu3vA  
    ;.a)r  
    % Pre-compute the values of r raised to the required powers, Kg6 7cmj)f  
    % and compile them in a matrix: )pH{b]t  
    % ----------------------------- ;BvWU\!  
    if rpowers(1)==0 ? D'-{/<4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~WLsqP5Y~a  
        rpowern = cat(2,rpowern{:}); _erH]E| [  
        rpowern = [ones(length_r,1) rpowern]; 7si.]  
    else 'z5 ;o :T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H9[.#+ln  
        rpowern = cat(2,rpowern{:}); +y#979A,  
    end \MPy"uC  
    svgi!=  
    % Compute the values of the polynomials: v1rGq  
    % -------------------------------------- .{>-.&  
    y = zeros(length_r,length(n)); nTlrG6  
    for j = 1:length(n) PrxXL/6  
        s = 0:(n(j)-m_abs(j))/2; Rznr 9L  
        pows = n(j):-2:m_abs(j); [%q":Ig  
        for k = length(s):-1:1 a$A S?`L  
            p = (1-2*mod(s(k),2))* ... XA%?35v~  
                       prod(2:(n(j)-s(k)))/              ... "0mR*{nF  
                       prod(2:s(k))/                     ... b,`N;*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >cLZP#^\2E  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); J],BO\ECH  
            idx = (pows(k)==rpowers); ~8E rl3=5{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `R;XN-  
        end m0YDO 0  
         ~Q\[b%>J  
        if isnorm GM~jR-FZ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); L;<]wKs  
        end cl5:|)  
    end 5j %jhby?  
    % END: Compute the Zernike Polynomials c-{]H8$v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W X9BS$}0  
    *}=W wG  
    % Compute the Zernike functions: yR-.OF,c  
    % ------------------------------ 7IR n  
    idx_pos = m>0; 5@\<:Zmi  
    idx_neg = m<0; Zs)9O Ju  
    7EUaf;d^  
    z = y; )Q`<O  
    if any(idx_pos) DoA f,9|_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U6"50G~u  
    end 4`B:Mq&j  
    if any(idx_neg) u5,<.#EVY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -g9f3Be  
    end {Gy_QRsp,  
    ~$<@:z{*  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) mvnK)R_  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. *niQ*A  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated l"64w>,  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive sz5@=  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, t+ @F"[j  
    %   and THETA is a vector of angles.  R and THETA must have the same G(L*8U< UG  
    %   length.  The output Z is a matrix with one column for every P-value, \% (R~ H  
    %   and one row for every (R,THETA) pair. uPpP")  
    % pc #^ {-  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike G.;<?W  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Pj$a$C`Z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) NGxuwHIQ8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 3!I8J:GZ:  
    %   for all p. *| 'k  
    % tSjK=1"}  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 %rYt; 7B  
    %   Zernike functions (order N<=7).  In some disciplines it is iV%% VR8b  
    %   traditional to label the first 36 functions using a single mode a2zo_h2R  
    %   number P instead of separate numbers for the order N and azimuthal QH;aJ(>$  
    %   frequency M. n D?XP<9UU  
    % x&sF_<[  
    %   Example: !Lo{zTDW  
    % DwI)?a_+  
    %       % Display the first 16 Zernike functions M30_b8[Y_  
    %       x = -1:0.01:1; Z`[j;=[  
    %       [X,Y] = meshgrid(x,x); kG E|17I  
    %       [theta,r] = cart2pol(X,Y); Jv5G:M5+~  
    %       idx = r<=1; t]V)3Ww  
    %       p = 0:15; 7Sokn?~i  
    %       z = nan(size(X)); $>+-=XMVB  
    %       y = zernfun2(p,r(idx),theta(idx)); W[b/.u5z:  
    %       figure('Units','normalized') SL(Q;_  
    %       for k = 1:length(p) E:7vm@+  
    %           z(idx) = y(:,k); ]HRE-g  
    %           subplot(4,4,k) 0]T ;{  
    %           pcolor(x,x,z), shading interp R,(^fM  
    %           set(gca,'XTick',[],'YTick',[]) dK=BH=S2?X  
    %           axis square uzsR*x%s-  
    %           title(['Z_{' num2str(p(k)) '}']) Z"P{/~HG  
    %       end 7+ c?eH  
    % +_+_`q>]  
    %   See also ZERNPOL, ZERNFUN. wH<S0vl   
    P9c1NX\-  
    %   Paul Fricker 11/13/2006 zX3O_  
    Ih{~?(V$  
    8F%T Z M  
    % Check and prepare the inputs: E3`KO'v%  
    % ----------------------------- B]jh$@  
    if min(size(p))~=1 i+2J\.~U#G  
        error('zernfun2:Pvector','Input P must be vector.') gxJ(u{2  
    end thOCzGJ$  
    'oo]oeJ-  
    if any(p)>35 JjM^\LwKkL  
        error('zernfun2:P36', ... GU!|J71z  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... y`'Ly@s  
               '(P = 0 to 35).']) GSl\n"S]=  
    end 4((Z8@iX/  
    A:N!H_x  
    % Get the order and frequency corresonding to the function number: UF}fmDi  
    % ---------------------------------------------------------------- <F&S   
    p = p(:); &%^[2^H8"  
    n = ceil((-3+sqrt(9+8*p))/2); L/V3sSt  
    m = 2*p - n.*(n+2); e&E*$G@.7  
    qlSMg;"Ghw  
    % Pass the inputs to the function ZERNFUN: i2y?CI  
    % ---------------------------------------- e7<~[>g)  
    switch nargin :5;[Rg5 2  
        case 3 5^ pQ=Sgt  
            z = zernfun(n,m,r,theta); )Y)7p//  
        case 4 Oy z=|[^,W  
            z = zernfun(n,m,r,theta,nflag); c sYICLj  
        otherwise YV0e)bf  
            error('zernfun2:nargin','Incorrect number of inputs.') rsrv1A=t?  
    end 5o&L|7]  
    U; ev3  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }**^ g:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. T- JJc#  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of l~!#<=.  
    %   order N and frequency M, evaluated at R.  N is a vector of {?,:M  
    %   positive integers (including 0), and M is a vector with the ~d28"p.7  
    %   same number of elements as N.  Each element k of M must be a V5R``T p  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) D,]m7 yFT  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 'M YqCfIK  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ?zxKk(J  
    %   with one column for every (N,M) pair, and one row for every 76xgExOU?C  
    %   element in R. ](^VEm}w;  
    %  RtK/bUa  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- N\mV+f3A@,  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is SrU,-mA W  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ?DM-C5$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 :N(L7&<  
    %   for all [n,m]. 3 nb3rHQ  
    % 0s= GM|y  
    %   The radial Zernike polynomials are the radial portion of the PE+N5n2Tl  
    %   Zernike functions, which are an orthogonal basis on the unit Z$Qlr:7  
    %   circle.  The series representation of the radial Zernike & 9IMZAo  
    %   polynomials is S =eP/  
    % W&6ye  
    %          (n-m)/2  k:R9wo  
    %            __ (Z sdj  
    %    m      \       s                                          n-2s !j [U  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r L2AZ0E"ub  
    %    n      s=0 [96|xe\s  
    % }Li24JK  
    %   The following table shows the first 12 polynomials. *COr^7Kf5  
    % E9QNx6 2  
    %       n    m    Zernike polynomial    Normalization /\h&t6B1  
    %       --------------------------------------------- lLo FM  
    %       0    0    1                        sqrt(2) Eo)n( Z9  
    %       1    1    r                           2 NcRY Ch  
    %       2    0    2*r^2 - 1                sqrt(6) KG)Y{-Ao  
    %       2    2    r^2                      sqrt(6) oQFpIX;\m  
    %       3    1    3*r^3 - 2*r              sqrt(8) j =[Td   
    %       3    3    r^3                      sqrt(8) ^P(HX  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) znX2W0V  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 4e1Zyi!  
    %       4    4    r^4                      sqrt(10) %;9wToyK>  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) %q(n'^#Z.y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Qq^>7OU>Co  
    %       5    5    r^5                      sqrt(12) 866n{lyL  
    %       --------------------------------------------- M {_`X  
    % : !J!l u  
    %   Example: e>y"V; Mj  
    % 7J7uHl`yq`  
    %       % Display three example Zernike radial polynomials fGY. +W_  
    %       r = 0:0.01:1; h,0mJj-ma  
    %       n = [3 2 5]; (H0nO7Bk  
    %       m = [1 2 1]; WZ;f3 "  
    %       z = zernpol(n,m,r); Jc:*X4-'  
    %       figure VI[ikNpX  
    %       plot(r,z) ?,TON5Fl-  
    %       grid on 4:5CnK  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') #Z(8 vA^@  
    % zr2%|YF  
    %   See also ZERNFUN, ZERNFUN2. GYyP+7K4l[  
    |'b=xeH.^<  
    % A note on the algorithm. [uW{Ap~2  
    % ------------------------ 0 B>{31)  
    % The radial Zernike polynomials are computed using the series jvCk+n[  
    % representation shown in the Help section above. For many special .pr-  ^  
    % functions, direct evaluation using the series representation can ?RA^Y N*9  
    % produce poor numerical results (floating point errors), because ,d@.@a] `  
    % the summation often involves computing small differences between f LxFF  
    % large successive terms in the series. (In such cases, the functions 2Cj?k.Zk  
    % are often evaluated using alternative methods such as recurrence b:Wl B[5  
    % relations: see the Legendre functions, for example). For the Zernike 00n6v;X  
    % polynomials, however, this problem does not arise, because the )9l5gZX'I  
    % polynomials are evaluated over the finite domain r = (0,1), and 83Bp_K2\  
    % because the coefficients for a given polynomial are generally all ;HgV(d#X  
    % of similar magnitude. r[JgCj+$&  
    % 5<Xq7|Jt  
    % ZERNPOL has been written using a vectorized implementation: multiple [D^KM|I%+  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] b_z;^y~  
    % values can be passed as inputs) for a vector of points R.  To achieve >jq~5HN  
    % this vectorization most efficiently, the algorithm in ZERNPOL $:t;WXc.<  
    % involves pre-determining all the powers p of R that are required to V2V^*9(wu@  
    % compute the outputs, and then compiling the {R^p} into a single 4JT9EKo  
    % matrix.  This avoids any redundant computation of the R^p, and w-"o?;)a  
    % minimizes the sizes of certain intermediate variables. q;InFV3rv  
    % GNT1FR  
    %   Paul Fricker 11/13/2006 Ud\Jc:DG  
    $ GL$ iA  
    "fL:scq@0  
    % Check and prepare the inputs: AJI,>I,}}  
    % ----------------------------- oost}%WxN  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Wx;:_F7'\  
        error('zernpol:NMvectors','N and M must be vectors.') 7fgA)dU:K  
    end .UU BAyjm  
    tz6d}$  
    if length(n)~=length(m) MrXhVZ"d*  
        error('zernpol:NMlength','N and M must be the same length.') U(3{6^>Gc  
    end >s1'I:8  
    r ~si:?6:  
    n = n(:); ??CtmH  
    m = m(:); wh<+.Zp  
    length_n = length(n); u0Fu_Rtr  
    oL2|@WNj,  
    if any(mod(n-m,2)) k z@@/DD/9  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ZYos.ay  
    end ^EPM~cEY\  
    KE]!7+8-  
    if any(m<0) f|cd_?|  
        error('zernpol:Mpositive','All M must be positive.') Wt"fn&R}  
    end H$9--p  
    [u[F6Wst  
    if any(m>n) Ayadvi(@P  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') s"*zyLUUo  
    end 6HW<E~G'6  
    h1^q};3!W\  
    if any( r>1 | r<0 ) ?a+tL'D[  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') QU2\gAM  
    end ;3s_#L  
    DK}k||-  
    if ~any(size(r)==1) )Fe-C  
        error('zernpol:Rvector','R must be a vector.') %fGS< W;  
    end %K@D{ )r_^  
    cE '`W7&A  
    r = r(:); @kK${  
    length_r = length(r); n4h@{Xg  
    0C#1/o)o  
    if nargin==4 ,[7 1,zs  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); %=xR$<D  
        if ~isnorm q g?q|W  
            error('zernpol:normalization','Unrecognized normalization flag.') TL ;2,@H`  
        end [cv7s=U%  
    else 7hqa|  
        isnorm = false; rhO ]4A  
    end $?YRy_SI  
    vz</|s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L1D{LzlBti  
    % Compute the Zernike Polynomials -9Wx;u4]o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O,>1GKw"\  
    I2hX;pk,  
    % Determine the required powers of r: H[#s&Fk2  
    % ----------------------------------- JEL =,0J  
    rpowers = []; zM%ILv4  
    for j = 1:length(n) ,i lVt  
        rpowers = [rpowers m(j):2:n(j)]; JhRXfIK>{  
    end m=b~Wf39  
    rpowers = unique(rpowers); (.-3q;)6  
    =/&ob%J)9]  
    % Pre-compute the values of r raised to the required powers, J?&lpsB3_l  
    % and compile them in a matrix: Y0:y72mK  
    % ----------------------------- 4h\MSTF*  
    if rpowers(1)==0 oqH811  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F2WUG  
        rpowern = cat(2,rpowern{:}); cVv+,l4 V0  
        rpowern = [ones(length_r,1) rpowern]; b&f;p}C24  
    else !Sx }~XB<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H)(@A W+-  
        rpowern = cat(2,rpowern{:}); *Nloa/a&9  
    end NWd%Za5K;  
    S/Pffal  
    % Compute the values of the polynomials: P*_!^2  
    % -------------------------------------- e;\g[^U  
    z = zeros(length_r,length_n); -&I%=0q  
    for j = 1:length_n /~)vma1<  
        s = 0:(n(j)-m(j))/2; {|= 8wB  
        pows = n(j):-2:m(j); {Hm0Q  
        for k = length(s):-1:1 _IBI x\F  
            p = (1-2*mod(s(k),2))* ... ?W-J2tgss{  
                       prod(2:(n(j)-s(k)))/          ... C8>zr6)1  
                       prod(2:s(k))/                 ... ,rVm81-2  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... D[U[ D  
                       prod(2:((n(j)+m(j))/2-s(k))); vU0j!XqE  
            idx = (pows(k)==rpowers); O3WhO@`6)  
            z(:,j) = z(:,j) + p*rpowern(:,idx); rK )aR  
        end ~n9BN'@x  
         /( %Q  
        if isnorm e0Cr>I5/e  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); *jM~VTXwt  
        end p!BZTwP  
    end :M)B#@ c=  
    Mk9'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  B*=m%NXf  
    vv='.R, D  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 DmDsn  
    1aEM&=h_W  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)