非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 zF{z_c#3@
function z = zernfun(n,m,r,theta,nflag) ,$*IJeKx
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 54'z"S:W
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N W5yqnjK
$4
% and angular frequency M, evaluated at positions (R,THETA) on the `[:f;2(@
% unit circle. N is a vector of positive integers (including 0), and sxuYwQ
% M is a vector with the same number of elements as N. Each element ^(6.M\Q
% k of M must be a positive integer, with possible values M(k) = -N(k) P"xP%zqo
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :_?>3c}L
% and THETA is a vector of angles. R and THETA must have the same s\ ~r
8
% length. The output Z is a matrix with one column for every (N,M) N*$Q(K
% pair, and one row for every (R,THETA) pair. VTV-$Du[}
% h\20
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CF$^we
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )D#*Q~
% with delta(m,0) the Kronecker delta, is chosen so that the integral i4uUvZf
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f-23.]`v
% and theta=0 to theta=2*pi) is unity. For the non-normalized Qb SX'mx<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U9;AU]A
% aIm\tPbb
% The Zernike functions are an orthogonal basis on the unit circle. Put+<o
<
% They are used in disciplines such as astronomy, optics, and
zx\?cF
% optometry to describe functions on a circular domain. QU\|RX
% N2x\O~7
% The following table lists the first 15 Zernike functions. hx:x5L>
% gMgbqGF)
% n m Zernike function Normalization yCmiW
%L4
% -------------------------------------------------- IJs`3?
% 0 0 1 1 hsVWD,w
% 1 1 r * cos(theta) 2 G8<,\mg+
% 1 -1 r * sin(theta) 2 >S!QvyM(V
% 2 -2 r^2 * cos(2*theta) sqrt(6) PR.?"$!D{
% 2 0 (2*r^2 - 1) sqrt(3) 5$jKw\FF=
% 2 2 r^2 * sin(2*theta) sqrt(6) //AS44^IS
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;up89a-,9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) }b~ZpUL!
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) C9*'.~
% 3 3 r^3 * sin(3*theta) sqrt(8) Mb+cXdZb
% 4 -4 r^4 * cos(4*theta) sqrt(10) :PjHs Np;^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0A|.ch
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) -,p(PK
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QDyL0l{C
% 4 4 r^4 * sin(4*theta) sqrt(10) jMZ{>l.v
% -------------------------------------------------- a[t2TjB
% N|8TE7- F|
% Example 1: :,:r
% :~g=n&x
% % Display the Zernike function Z(n=5,m=1) 7]G3yt->
% x = -1:0.01:1; $7lI Dt
% [X,Y] = meshgrid(x,x); iGm[fxQ|
% [theta,r] = cart2pol(X,Y); qf+I2kyS
% idx = r<=1; gwT"o
% z = nan(size(X)); ,qt9S0QS
% z(idx) = zernfun(5,1,r(idx),theta(idx)); up`!r;5-
% figure Li iQ;x
% pcolor(x,x,z), shading interp ~u-mEdu3C
% axis square, colorbar @@_f''f$
% title('Zernike function Z_5^1(r,\theta)') KLlW\MF1
% >Ei_##
% Example 2: JZN'U<R
% R~;<}!Gtx
% % Display the first 10 Zernike functions %5a>@K]
% x = -1:0.01:1; HPm12&8,
% [X,Y] = meshgrid(x,x); =3l%ZL/
% [theta,r] = cart2pol(X,Y); ~x`OCii
% idx = r<=1; kcI3pmgj
% z = nan(size(X)); b6Dve]
% n = [0 1 1 2 2 2 3 3 3 3]; AEhh
6v
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; LbvnV~S
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0I& !a$:
% y = zernfun(n,m,r(idx),theta(idx)); b`fPP{mG
% figure('Units','normalized') _KC()OIeC
% for k = 1:10 (*BQd1Z
% z(idx) = y(:,k); 05.^MU?^U
% subplot(4,7,Nplot(k)) &+d>xy\^/
% pcolor(x,x,z), shading interp M-"%4^8_
% set(gca,'XTick',[],'YTick',[]) j8L!miv6
% axis square DNC2]kS<
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R/xeC [r
% end n<uF9N<
% f9F@G&&Ugg
% See also ZERNPOL, ZERNFUN2. 5fA<I _ D
JZ]4?_l
% Paul Fricker 11/13/2006 PW~+=,
E9YR *P4$
C/\)-^
% Check and prepare the inputs: -]\UFR
% ----------------------------- ^ ,d!K2`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u-$(TyDEl|
error('zernfun:NMvectors','N and M must be vectors.') V*2uW2\}
end a4Fe MCvV9
:B6hYx
if length(n)~=length(m) db'Jl^
error('zernfun:NMlength','N and M must be the same length.') xJ:15eDC
end ,dLh`t<\
nK)U.SZ
n = n(:); %l(qyH)*
m = m(:); -O:+?gG
if any(mod(n-m,2)) # 4L[8(+V
error('zernfun:NMmultiplesof2', ... )xy1DA
'All N and M must differ by multiples of 2 (including 0).') kG^DHEne
end nm_]2z O
,|<2wn#q
if any(m>n) 2Xys;Dwx
error('zernfun:MlessthanN', ...
pQKR
'Each M must be less than or equal to its corresponding N.') 6*J`2U9Q
end 1>r7s*
~k'KS
7c
if any( r>1 | r<0 ) I6,'o)l{_
error('zernfun:Rlessthan1','All R must be between 0 and 1.') */;[ -9
end m-dyvW+
PbvRh~n
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7F!_gj p
error('zernfun:RTHvector','R and THETA must be vectors.') TL-sxED,,D
end oi^2Pvauh
!`LaX!bmp
r = r(:); i<@6f'Kir
theta = theta(:); dbQUW#<Q
length_r = length(r); ]h3<r8D_#
if length_r~=length(theta) D6=Z%h\*
error('zernfun:RTHlength', ... !o1{. V9q
'The number of R- and THETA-values must be equal.') o{f|==<t3#
end G1=GzAd$5
B"rnSui
% Check normalization:
) jv]Oz
% -------------------- RB`Emp&T
if nargin==5 && ischar(nflag) {EE/3e@
isnorm = strcmpi(nflag,'norm'); z-$ bce9*
if ~isnorm DN3#W w2[r
error('zernfun:normalization','Unrecognized normalization flag.') RY3ANEu+
end uLX5khQ
else :8\!; !
isnorm = false; \
'G%%%;4
end ~w_4
nE
, 7&`V=C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?f<JwF<
% Compute the Zernike Polynomials 5 0uYU[W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +[Cdd{2
rH
Et]Xa
% Determine the required powers of r: (C>FM8$J
% ----------------------------------- Y /$`vgqs
m_abs = abs(m); <ZGEmQ
rpowers = []; `@1y|j:m
for j = 1:length(n) l$N
b1&
rpowers = [rpowers m_abs(j):2:n(j)]; ;T0F1
end D;VQoO
rpowers = unique(rpowers); *5?a%p
&D0suK#
% Pre-compute the values of r raised to the required powers, zO8`xrN!
% and compile them in a matrix: ~b;l08 <
% ----------------------------- &~gqEl6RF
if rpowers(1)==0 itClCEOA
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R1OC7q
rpowern = cat(2,rpowern{:}); {@, } M
rpowern = [ones(length_r,1) rpowern]; RP 'VEJ
else 3
r4QB
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hiO:VA
rpowern = cat(2,rpowern{:}); ^PA[fL"
end \9k$pC+l
DID&fj9m
% Compute the values of the polynomials: 8fA9yQ8
% -------------------------------------- &Uq++f6
y = zeros(length_r,length(n)); t9T3e
for j = 1:length(n) ;Yo9e~
s = 0:(n(j)-m_abs(j))/2; WvSh i=
pows = n(j):-2:m_abs(j); 5(e?,B }
for k = length(s):-1:1
Z)}q=NjA
p = (1-2*mod(s(k),2))* ... Xvu|ss
prod(2:(n(j)-s(k)))/ ... E)z[@Np
prod(2:s(k))/ ... Pl^-]~
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7LMad%
prod(2:((n(j)+m_abs(j))/2-s(k))); ;ELQIHnD"
idx = (pows(k)==rpowers); Y8!T4dkn
y(:,j) = y(:,j) + p*rpowern(:,idx); uMOm<kn
end Cx$C+
6&V4W"k
if isnorm AdBF$nn[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ]yu,YZ@7
end +W|MAJtg
end 3?|gBiX
% END: Compute the Zernike Polynomials .C=&`;Vs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0=Jf93D5
Cw;&{jY
% Compute the Zernike functions: St/<\Y,wr
% ------------------------------ &X0/7)*"v
idx_pos = m>0; a,X=!oJ
idx_neg = m<0; X&qRanOP;z
[P#^nyOh(
z = y; s)Sa KE*d
if any(idx_pos) Yc;cf%c1
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !g:UkU\J
end DDxNqVVt4
if any(idx_neg) ^pz3L'4n
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); z{T2!w~[
end N{Og; roGD
"h.} o DS
% EOF zernfun