非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?so3Kj6H
function z = zernfun(n,m,r,theta,nflag) '[{M"S
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xb&r|pR
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;_%61ZI?M<
% and angular frequency M, evaluated at positions (R,THETA) on the )U`H7\*)
% unit circle. N is a vector of positive integers (including 0), and 72@8M
% M is a vector with the same number of elements as N. Each element ^kch]?
% k of M must be a positive integer, with possible values M(k) = -N(k) _Oh;._PS
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 4Q,HhqV'
% and THETA is a vector of angles. R and THETA must have the same plv"/K JM
% length. The output Z is a matrix with one column for every (N,M) zZ[SC
% pair, and one row for every (R,THETA) pair. I^qk` 5w
% r9yUye}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (uD(,3/Cw
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YEF%l'm(\
% with delta(m,0) the Kronecker delta, is chosen so that the integral iShB^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V89!C?.[]1
% and theta=0 to theta=2*pi) is unity. For the non-normalized = K"F!}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eWhv X9
<
% T=A7f6`
% The Zernike functions are an orthogonal basis on the unit circle. :nd
}e
% They are used in disciplines such as astronomy, optics, and P zzX Ds6
% optometry to describe functions on a circular domain. I`5F&8J{
% r%&hiobMYs
% The following table lists the first 15 Zernike functions. v}M, M&?
% $xvEYK
% n m Zernike function Normalization H2zd@l:R
% -------------------------------------------------- /#G^?2oM
% 0 0 1 1 mRW(]OFIai
% 1 1 r * cos(theta) 2 "a?k #!E
% 1 -1 r * sin(theta) 2 '_4u,
\SG
% 2 -2 r^2 * cos(2*theta) sqrt(6) qF%wl
% 2 0 (2*r^2 - 1) sqrt(3) a'
.o
% 2 2 r^2 * sin(2*theta) sqrt(6) Ni(D[?mZ
% 3 -3 r^3 * cos(3*theta) sqrt(8) [t: =%&B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z5bmqhDo[
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) :{E3H3
% 3 3 r^3 * sin(3*theta) sqrt(8) H*A)U'`
% 4 -4 r^4 * cos(4*theta) sqrt(10) s<sqO,!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <T+Pw7X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) E"x 2 jP
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7: J6 F
% 4 4 r^4 * sin(4*theta) sqrt(10) F'C]OMBE
% -------------------------------------------------- =3a`NO5!
% /7h}_zs6
% Example 1: Ipb4{A&"\
% *O$kF.3q
% % Display the Zernike function Z(n=5,m=1) O8[dPmW
% x = -1:0.01:1; b0rC\^x
% [X,Y] = meshgrid(x,x); BaR9X ?~O$
% [theta,r] = cart2pol(X,Y); $*G]6s
% idx = r<=1; cJ&l86/l1
% z = nan(size(X)); "3Ag+>tuRW
% z(idx) = zernfun(5,1,r(idx),theta(idx)); wAVO%8u
% figure pE^L Qi
% pcolor(x,x,z), shading interp 5u~Ik c~
% axis square, colorbar t1n'Ecm(
% title('Zernike function Z_5^1(r,\theta)') "P&|e|7
% x1|5q/I
% Example 2: x*}(l%[
% [77]0V7
% % Display the first 10 Zernike functions .^,fw=T|1
% x = -1:0.01:1; j8hb
% [X,Y] = meshgrid(x,x); P7 (&*=V
% [theta,r] = cart2pol(X,Y); KynQ<I/
% idx = r<=1; :>F:G%(DK
% z = nan(size(X)); R)nhgp(~
% n = [0 1 1 2 2 2 3 3 3 3]; [LjYLm%<
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; yJ/m21f
% Nplot = [4 10 12 16 18 20 22 24 26 28]; QI0ARdS
% y = zernfun(n,m,r(idx),theta(idx)); 3543[W#a
% figure('Units','normalized') ag:#82C
% for k = 1:10 fR_)e:
% z(idx) = y(:,k); zc*qmb
% subplot(4,7,Nplot(k))
lU:z>gC
% pcolor(x,x,z), shading interp *yiJw\DRN
% set(gca,'XTick',[],'YTick',[]) m&Ms[X
% axis square U5dJ=G
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o7DDL{iR/
% end MR#jI
% [0m'a\YE9
% See also ZERNPOL, ZERNFUN2. G?<L{J2"Q
iBV*GW
% Paul Fricker 11/13/2006 feQ_dA q
87YT;Z;U&
ENA8o}n
% Check and prepare the inputs: Y^2Ma878
% ----------------------------- d0MX4bhZ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A!Xn^U*p
error('zernfun:NMvectors','N and M must be vectors.') dbB2/RI
end h+R}O9BD
" &p\pR~
if length(n)~=length(m) iMk`t:!;#"
error('zernfun:NMlength','N and M must be the same length.') zw\"!=r^
end ]9R?2{"K
s^L\hr
n = n(:); 03$Ay_2
m = m(:); dWI/X
if any(mod(n-m,2)) $v-lG(
error('zernfun:NMmultiplesof2', ... &X}9D)\UJ
'All N and M must differ by multiples of 2 (including 0).') XL EA|#
end ]L}<Y9)t
j(va#f#
if any(m>n) 0:v7X)St
error('zernfun:MlessthanN', ... Y5c( U)R8
'Each M must be less than or equal to its corresponding N.') nUd(@@%m
end :3Ty%W&&
#uu wzE*M_
if any( r>1 | r<0 ) k(u W( 6
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +:/`&LOS-
end ndF
Kw
C
[=/40D
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5C#&vYnq
error('zernfun:RTHvector','R and THETA must be vectors.') IB(IiF5
end xV}|G
r[EN`AxDb
r = r(:); m[ifcDZ(e
theta = theta(:); U~Uxs\0:
length_r = length(r); BIw9@.99B-
if length_r~=length(theta) 6l:CDPhR
error('zernfun:RTHlength', ... KhXW5hS1
'The number of R- and THETA-values must be equal.') #<yR:3
end eHPGzNXb
w`F}3zm
% Check normalization: ~Z.lvdA_5
% -------------------- 8Vl!&j0s^
if nargin==5 && ischar(nflag) R0oP##]
isnorm = strcmpi(nflag,'norm'); N{|N_}X`Y
if ~isnorm M={k4r_t
error('zernfun:normalization','Unrecognized normalization flag.') ]7h&ZF
end j%[|XfM
else V%o:Qa[a
isnorm = false; sx`C<c~u
end 4;w_o9o
ME0ivr*=:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ms{v;fT
% Compute the Zernike Polynomials 3o"~_l$z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0fi+tc30
/SlCcozFL~
% Determine the required powers of r: rIS \#j
% ----------------------------------- (Q#A Br8
m_abs = abs(m); k9yA#
rpowers = []; {{@3r5KGl
for j = 1:length(n) D?X97jNm
rpowers = [rpowers m_abs(j):2:n(j)]; 5:^dyF&sm{
end K
V 4>(
rpowers = unique(rpowers); :rk]o*
q SCt=eQ
% Pre-compute the values of r raised to the required powers, "b-6kM
% and compile them in a matrix: R6{%o:{
% ----------------------------- - bFz
if rpowers(1)==0 A
g/z\kX
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EG<K[t
rpowern = cat(2,rpowern{:}); ugUV`5w
rpowern = [ones(length_r,1) rpowern]; )|Y"^K%Jm
else :tzCuK?e
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2&Wc4,O!i
rpowern = cat(2,rpowern{:}); H^'*F->BA
end A/BL{ U}
W!GgtQw{F
% Compute the values of the polynomials: G^r^" j
% -------------------------------------- T'fE4}rY
y = zeros(length_r,length(n)); ,+zLFQC0@
for j = 1:length(n) i1|-
s = 0:(n(j)-m_abs(j))/2; 0~an\4nh
pows = n(j):-2:m_abs(j); ~~'XY( \L@
for k = length(s):-1:1 r95$B6
p = (1-2*mod(s(k),2))* ... <(s+
prod(2:(n(j)-s(k)))/ ... TxPP{6t
prod(2:s(k))/ ... X Uh)z
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
BX+-KvT
prod(2:((n(j)+m_abs(j))/2-s(k))); U/0NN>V
idx = (pows(k)==rpowers); P%%Cd
y(:,j) = y(:,j) + p*rpowern(:,idx); d~GT w:
end {9'"!fH
]yCmGt+b
if isnorm o8Q(,P
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f[h=>O
end Q$Vxm+
end M7!&gFv8
% END: Compute the Zernike Polynomials jf .ikxm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j0:F E
^N0hc!$
% Compute the Zernike functions: !Y`nKC(=z
% ------------------------------ Y @pkfH
idx_pos = m>0; 4/Ok/I
idx_neg = m<0; iK=H9j
.+{nfmc,c
z = y; K6!`b(
v#
if any(idx_pos) DRf~l9f
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0&-!v?6)
end <[l2 ]"Q
if any(idx_neg) h/eKVRGs"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9OXrz}8C
end 1sn!!
HTkce,dQ
% EOF zernfun