切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11483阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 U#1 ,]a\  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! jwZBWt )5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 vMB`TpZ  
    function z = zernfun(n,m,r,theta,nflag) lboi\GP|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @?r[ $Ea1M  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3.?kxac  
    %   and angular frequency M, evaluated at positions (R,THETA) on the pZg}7F{$  
    %   unit circle.  N is a vector of positive integers (including 0), and HM(S}>  
    %   M is a vector with the same number of elements as N.  Each element r1)@ 7Nt  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) yMoV|U6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _rU%DL?  
    %   and THETA is a vector of angles.  R and THETA must have the same W dNOE;R  
    %   length.  The output Z is a matrix with one column for every (N,M) 3EN(Pz L  
    %   pair, and one row for every (R,THETA) pair. o6[aP[~F  
    % <yHa[c`L  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "bC1dl<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (7Q Fy  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~!& "b1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, kZ>Xl- LV  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized y:R!E *.L'  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J>XMaI})U  
    % jJK`+J,i}X  
    %   The Zernike functions are an orthogonal basis on the unit circle. TppuEC>  
    %   They are used in disciplines such as astronomy, optics, and Dxlpo! ?#  
    %   optometry to describe functions on a circular domain. JgmX=6N  
    % R@8pKCL.  
    %   The following table lists the first 15 Zernike functions. ZcLW8L  
    % c?0.>^,B Q  
    %       n    m    Zernike function           Normalization aF41?.s  
    %       -------------------------------------------------- ;0c -+,  
    %       0    0    1                                 1 -FGQn |h4  
    %       1    1    r * cos(theta)                    2 :K)7_]y  
    %       1   -1    r * sin(theta)                    2 (Iz$_(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 1\aJ[t  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 74p=uQ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 4fyds< f  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ym =7EY?o  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {%b*4x0?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) tvlrUp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) QU;bDNq,c  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ac%6eW0#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <n-}z[09  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `UK'IN.il  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8h%oJ4da   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %Y:"5fH  
    %       -------------------------------------------------- :+q d>;yf#  
    % &{uj3s&C   
    %   Example 1: Bgvv6(i  
    % !JGe .U5  
    %       % Display the Zernike function Z(n=5,m=1) -+ha4JOB  
    %       x = -1:0.01:1; =+z+`ot  
    %       [X,Y] = meshgrid(x,x); 8%ea(|Wjg  
    %       [theta,r] = cart2pol(X,Y); ~EL3I  
    %       idx = r<=1; x,% %^(  
    %       z = nan(size(X)); EQTJ=\WFF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Z)^1~!w0  
    %       figure "!w#E6gU  
    %       pcolor(x,x,z), shading interp Rl/5eE8  
    %       axis square, colorbar LGdM40  
    %       title('Zernike function Z_5^1(r,\theta)')  B8~JUGD  
    % {KGEv%  
    %   Example 2: Kt#_Ln_6  
    % [`4  
    %       % Display the first 10 Zernike functions rLpfybu  
    %       x = -1:0.01:1; SIridZ*%  
    %       [X,Y] = meshgrid(x,x); QHDR* tB:{  
    %       [theta,r] = cart2pol(X,Y); !y\r.fm!A  
    %       idx = r<=1; kfV}ta'^S  
    %       z = nan(size(X)); nmuzTFs=  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,` 64t'g  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !*1 $j7`tP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v8} vk]b  
    %       y = zernfun(n,m,r(idx),theta(idx)); @u @~gEt  
    %       figure('Units','normalized') [o"<DP6w  
    %       for k = 1:10 ('k9XcTPP  
    %           z(idx) = y(:,k); !sG# 3sUe[  
    %           subplot(4,7,Nplot(k)) Iz^vt#b  
    %           pcolor(x,x,z), shading interp "P9(k>  
    %           set(gca,'XTick',[],'YTick',[]) &"r /&7:  
    %           axis square yiw4<]{IX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2Onp{,'}  
    %       end ?Gl]O3@3  
    % 5MCnGg@  
    %   See also ZERNPOL, ZERNFUN2. Lc#GBaJ  
    " vka7r  
    %   Paul Fricker 11/13/2006 x:K~?c3  
    jQrj3*V  
    Yu$QL@  
    % Check and prepare the inputs: er8T:.Py  
    % ----------------------------- V1&qgAy~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?o6X_UxW!  
        error('zernfun:NMvectors','N and M must be vectors.') $<QrV,T  
    end 8c\\-{  
    F )Iz:  
    if length(n)~=length(m) 9Vru,7g  
        error('zernfun:NMlength','N and M must be the same length.') R4y]<8}  
    end J= [D'h  
    } J[Z)u  
    n = n(:); @ry/zG#  
    m = m(:); Mbp7%^E"A  
    if any(mod(n-m,2)) L^jjf8_  
        error('zernfun:NMmultiplesof2', ... *4ido?  
              'All N and M must differ by multiples of 2 (including 0).') k2@]nW"S  
    end \%|Xf[AX  
    g<N;31:c\  
    if any(m>n) p0[+Zm{#l  
        error('zernfun:MlessthanN', ... /9e?uC6  
              'Each M must be less than or equal to its corresponding N.') Q5^ #:uZ  
    end  l*?_@  
    5a-x$Qb9  
    if any( r>1 | r<0 ) :sQ>oNnz  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') EE^x34&=  
    end P8(hHuO  
    ?<`oKBn  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o1vK2V  
        error('zernfun:RTHvector','R and THETA must be vectors.') c: r25  
    end $nb.[si\  
    D4b-Y[/"  
    r = r(:); &7i&"TNptP  
    theta = theta(:); Z5E; FGPb  
    length_r = length(r); P6&%`$  
    if length_r~=length(theta) 1uO2I&B  
        error('zernfun:RTHlength', ... ! ,bQ;p3g|  
              'The number of R- and THETA-values must be equal.') ftG3!}  
    end ;=7K*npT  
    &s(J:P$!  
    % Check normalization: |r*)U(c`  
    % -------------------- "M, 1ElQ  
    if nargin==5 && ischar(nflag) D#AqZS>B  
        isnorm = strcmpi(nflag,'norm'); S=0DQ19  
        if ~isnorm N+ak{3  
            error('zernfun:normalization','Unrecognized normalization flag.') W#%s0EN<_  
        end }jUsv8`}8R  
    else 9b&|'BBW  
        isnorm = false; XC5/$3'M&  
    end ESNI$[`  
    7o0zny3?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sO` oapy  
    % Compute the Zernike Polynomials >{N}UNZ$}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FpiTQC7d  
    d=n@#|3  
    % Determine the required powers of r: @AF<Xp{  
    % ----------------------------------- "(3u)o9  
    m_abs = abs(m); P`ou:M{8  
    rpowers = []; 8Z0x*Ssk  
    for j = 1:length(n) <:V~_j6P0  
        rpowers = [rpowers m_abs(j):2:n(j)]; Bb:C^CHIQm  
    end L;* s-j6y  
    rpowers = unique(rpowers); +ID\u <?  
    A*eVz]i,k&  
    % Pre-compute the values of r raised to the required powers, .07`nIs"  
    % and compile them in a matrix: 'Y/0:)  
    % ----------------------------- p"#\E0GM  
    if rpowers(1)==0 00.x*v  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ."H;bfcL_  
        rpowern = cat(2,rpowern{:}); dYwkP^KB  
        rpowern = [ones(length_r,1) rpowern]; odSPl{.>d  
    else  v&|65[<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8ix_<$%  
        rpowern = cat(2,rpowern{:}); 1vxRhS&FY  
    end J\r\_P@;c  
    ~g\~x  
    % Compute the values of the polynomials: 6,A|9UX=`  
    % -------------------------------------- ~PI2G 9  
    y = zeros(length_r,length(n)); 0eNdKE  
    for j = 1:length(n) W|7|XO  
        s = 0:(n(j)-m_abs(j))/2; bDM},(  
        pows = n(j):-2:m_abs(j); ts!tv6@  
        for k = length(s):-1:1 V6X )L>!xx  
            p = (1-2*mod(s(k),2))* ... RbX9PF"|+  
                       prod(2:(n(j)-s(k)))/              ... 1>OlBp  
                       prod(2:s(k))/                     ... !1G KpL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... uYMn VE"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); V9,<>  
            idx = (pows(k)==rpowers); ?1D!%jfi  
            y(:,j) = y(:,j) + p*rpowern(:,idx); u<Kowt<ci  
        end Tb$))O}  
         hO]F\0+  
        if isnorm Jv8:GgSg  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rXi&8R[  
        end 1EXT^2!D  
    end &em~+83  
    % END: Compute the Zernike Polynomials n@8Y6+7i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cgx:6TRS  
    d ItfR'$  
    % Compute the Zernike functions: oFj_o  
    % ------------------------------ [,;e ,ld  
    idx_pos = m>0; (dq_ ,LI  
    idx_neg = m<0; TP rq:"K  
    ,*J@ic7"  
    z = y; F:!6B b C  
    if any(idx_pos) Z*m^K%qJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); y>EW,%leC  
    end `(FjOd K  
    if any(idx_neg) ]SCHni_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); In1W/ ?  
    end WT'-.UX m  
    uu.X>agg  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^ Kz ?SO  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. F9 r5 Z  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated p(n0(}eVC'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive <=NnrZOF  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, klUV&O+=%  
    %   and THETA is a vector of angles.  R and THETA must have the same  Zi~.  
    %   length.  The output Z is a matrix with one column for every P-value, 5-X$"Z|@  
    %   and one row for every (R,THETA) pair. uOA/r@7I}S  
    % ,Vi_~b  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nK;d\DO  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) !, BJO3&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 6{I7)@>N   
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 G`!,>n 3  
    %   for all p. VZi1b0k1.  
    % ;0dH@b  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ';3>rv_  
    %   Zernike functions (order N<=7).  In some disciplines it is tg\Nm7I  
    %   traditional to label the first 36 functions using a single mode uVqc:Q"  
    %   number P instead of separate numbers for the order N and azimuthal {N2GRF~c-y  
    %   frequency M. B~I ]3f  
    % RnkV)ed(  
    %   Example: FEk9a^Xyx  
    % Yh1</C  
    %       % Display the first 16 Zernike functions ! V.]mI  
    %       x = -1:0.01:1; S%\5"uGa  
    %       [X,Y] = meshgrid(x,x); ! v![K  
    %       [theta,r] = cart2pol(X,Y); TB>_#+:  
    %       idx = r<=1; 7KlL%\  
    %       p = 0:15; k9 r49lb  
    %       z = nan(size(X)); >V^8<^?G  
    %       y = zernfun2(p,r(idx),theta(idx)); >GIQT ?O6  
    %       figure('Units','normalized') E <yQB39  
    %       for k = 1:length(p) a?y ucA  
    %           z(idx) = y(:,k); w~+*Vd~U  
    %           subplot(4,4,k) (]q ([e  
    %           pcolor(x,x,z), shading interp dEDhdF#f  
    %           set(gca,'XTick',[],'YTick',[]) $*{,Z<|2  
    %           axis square j0L%jz  
    %           title(['Z_{' num2str(p(k)) '}']) Vx!ZF+  
    %       end bSIY|/d+  
    % TIp\-  
    %   See also ZERNPOL, ZERNFUN. ~aotV1"D  
    XO;_F"H=  
    %   Paul Fricker 11/13/2006 {Vu=qNx  
    \*MZ 1Q*x  
    YHN6/k7H  
    % Check and prepare the inputs: UT@Qo}:  
    % ----------------------------- #b d=G(o~6  
    if min(size(p))~=1 l3u[  
        error('zernfun2:Pvector','Input P must be vector.') 7oE:]  
    end 3mo<O}}  
    QHv]7&^rlj  
    if any(p)>35 I]HYqI  
        error('zernfun2:P36', ... Ls2,+yo]>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Zdrniae ah  
               '(P = 0 to 35).']) #`@)lU+/  
    end yHY2 SXm  
    Wgf f+7k  
    % Get the order and frequency corresonding to the function number: /*g0M2+OZo  
    % ---------------------------------------------------------------- 3x(Y+ ymP  
    p = p(:); |$tF{\  
    n = ceil((-3+sqrt(9+8*p))/2); 9uxoMjR-  
    m = 2*p - n.*(n+2); tuH#Cy  
    HA c"&#pG  
    % Pass the inputs to the function ZERNFUN: ."Pn[$'.  
    % ---------------------------------------- VnN(lJ  
    switch nargin Mprn7=I{Tg  
        case 3 ~I")-2"B  
            z = zernfun(n,m,r,theta); 7IUJHc?  
        case 4 #F/W_G7v  
            z = zernfun(n,m,r,theta,nflag); [ !~8TF  
        otherwise 0]ai*\,W7~  
            error('zernfun2:nargin','Incorrect number of inputs.') "vYjL&4h  
    end Zp/P/97p  
    Uv k:  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) p>U= Jg  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. *"jlsI  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #m{F*(%  
    %   order N and frequency M, evaluated at R.  N is a vector of {#=o4~u%;H  
    %   positive integers (including 0), and M is a vector with the 'Q* .[aJt  
    %   same number of elements as N.  Each element k of M must be a &/Gf@[  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) c*w0Jz>@.7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is CT\rx>[J.6  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _+Z;pt$C  
    %   with one column for every (N,M) pair, and one row for every 6d5q<C_3t  
    %   element in R. OHY|< &*  
    % Ga^:y=m  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 1Uah IePf  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is p;%5o0{1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to E.B6u, Te  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ?J|  
    %   for all [n,m]. O*F= xG  
    % M)v='O<H8  
    %   The radial Zernike polynomials are the radial portion of the 5IgO4<B  
    %   Zernike functions, which are an orthogonal basis on the unit N5MWMN[6aP  
    %   circle.  The series representation of the radial Zernike X~*/ ~f  
    %   polynomials is >kuu\  
    % |]HA@7B  
    %          (n-m)/2 ?:5/4YC  
    %            __ WK#c* rsij  
    %    m      \       s                                          n-2s .*?-j?U.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r V2yX;u  
    %    n      s=0 &?j\=%  
    % &[ |Z2}  
    %   The following table shows the first 12 polynomials. uowdzJ7  
    % : t D`e<  
    %       n    m    Zernike polynomial    Normalization *\0h^^|@  
    %       --------------------------------------------- :VR% I;g;  
    %       0    0    1                        sqrt(2) dM -<aq  
    %       1    1    r                           2 ?5[$d{ Gjl  
    %       2    0    2*r^2 - 1                sqrt(6) 6 ZXRb  
    %       2    2    r^2                      sqrt(6) 1O2V!?P  
    %       3    1    3*r^3 - 2*r              sqrt(8) v# fny  
    %       3    3    r^3                      sqrt(8) $F/xv&t  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) @E> rqI;`  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) hBDmC_\~  
    %       4    4    r^4                      sqrt(10) 7$Cv=8  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) DRVvC~M-,  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) d|sf2   
    %       5    5    r^5                      sqrt(12) /mn'9=ks  
    %       --------------------------------------------- 7a4Z~r27/  
    % Wq25,M'  
    %   Example: e\ZV^h}TQ  
    % |lIgvHgg  
    %       % Display three example Zernike radial polynomials kb\\F:w(W  
    %       r = 0:0.01:1; <`BDN  
    %       n = [3 2 5]; R,l*@3Q  
    %       m = [1 2 1]; k]c$SzJ>/  
    %       z = zernpol(n,m,r); ;|,*zD  
    %       figure =+4om*  
    %       plot(r,z) ; Yt'$D*CP  
    %       grid on _Q*,~ z~  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ) '/xNR  
    % *"V) h I5  
    %   See also ZERNFUN, ZERNFUN2. +WCV"m  
    <. V*]g/;  
    % A note on the algorithm. S:c d'68D  
    % ------------------------ S<I9`k G  
    % The radial Zernike polynomials are computed using the series wk2Ff*&  
    % representation shown in the Help section above. For many special aC3Qmo6?m  
    % functions, direct evaluation using the series representation can 8wCB}qC  
    % produce poor numerical results (floating point errors), because ddlF4L_  
    % the summation often involves computing small differences between pWeD,!f  
    % large successive terms in the series. (In such cases, the functions m&- -$sr  
    % are often evaluated using alternative methods such as recurrence q^}iXE~  
    % relations: see the Legendre functions, for example). For the Zernike 5_rx$avm  
    % polynomials, however, this problem does not arise, because the !3ji]q;uF  
    % polynomials are evaluated over the finite domain r = (0,1), and h\|T(597.  
    % because the coefficients for a given polynomial are generally all 2t3)$\ylQp  
    % of similar magnitude. Dyj>dh-  
    % DNRWE1P2bg  
    % ZERNPOL has been written using a vectorized implementation: multiple 5"L.C32  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] G[zVGqk  
    % values can be passed as inputs) for a vector of points R.  To achieve iG{xDj{CKv  
    % this vectorization most efficiently, the algorithm in ZERNPOL i@ehD@.dH  
    % involves pre-determining all the powers p of R that are required to yh+.Yn=+  
    % compute the outputs, and then compiling the {R^p} into a single >B$B|g~  
    % matrix.  This avoids any redundant computation of the R^p, and I9sQPa  
    % minimizes the sizes of certain intermediate variables. |Syulus  
    % 5~RR _G  
    %   Paul Fricker 11/13/2006 wd2z=^S~  
    r rs0|=  
    `dgZ`#  
    % Check and prepare the inputs: }Rq{9j,%  
    % ----------------------------- Yo}QW;,g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x.q"FXu  
        error('zernpol:NMvectors','N and M must be vectors.') H6M G5f_  
    end *dx E (dP  
    Z1U@xQj  
    if length(n)~=length(m) To,*H OP  
        error('zernpol:NMlength','N and M must be the same length.') R-Gg= l5  
    end YN7JJJ/~T  
    ~Vf A  
    n = n(:); |0VZ1{=*  
    m = m(:); $AdBX}{  
    length_n = length(n); Z)<lPg!YAR  
    .i3_D??  
    if any(mod(n-m,2)) G54`{V4&s  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') a-NicjV#  
    end Am"&ApK  
    8Q73h/3  
    if any(m<0) !WTL:dk  
        error('zernpol:Mpositive','All M must be positive.') 2CV?cm  
    end ;e W\41w  
    |Zdl[|kX  
    if any(m>n) #l!nBY~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') *_K*GCy  
    end C~04#z_$  
    `r&]Ydu:  
    if any( r>1 | r<0 ) CsN^u H  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [-VIojs+u  
    end )h0b}HMW)  
    qTe@?j  
    if ~any(size(r)==1) D=}\]Krmay  
        error('zernpol:Rvector','R must be a vector.') c-ql  
    end v4, Dt  
    ur[^/lxx0  
    r = r(:); _[/#t|I}  
    length_r = length(r); (btm g<WT"  
    ;KT5qiqYH  
    if nargin==4 0xfF  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); gzN51B=D  
        if ~isnorm tN z(s)  
            error('zernpol:normalization','Unrecognized normalization flag.') Y;k iU  
        end $4BvDZDk`B  
    else #tA/)Jvi  
        isnorm = false; @]Lu"h#u=  
    end xL"O~jTS  
    6!wk5#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -! ^D8^s  
    % Compute the Zernike Polynomials ]AX3ov6z9;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~nApRC)0  
    S:1g(f*85  
    % Determine the required powers of r: #@F.wV0  
    % ----------------------------------- ?/8V%PL~$  
    rpowers = []; U_WO<uhC  
    for j = 1:length(n) N! I$Qtr,  
        rpowers = [rpowers m(j):2:n(j)]; #\\|:`YV  
    end .aR9ulS  
    rpowers = unique(rpowers); hw=~ %f;  
    /O~Np|~v  
    % Pre-compute the values of r raised to the required powers, ~ 7<M6F  
    % and compile them in a matrix: -F MonM  
    % ----------------------------- ],Yy)<e.  
    if rpowers(1)==0 13+. >  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qQ 8+gZG$R  
        rpowern = cat(2,rpowern{:}); 9dWz3b1[]  
        rpowern = [ones(length_r,1) rpowern]; 2+ywl}9  
    else w"C,oo3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Nnq1&j"m  
        rpowern = cat(2,rpowern{:}); ~0@fK<C)O  
    end qw{`?1[+  
    ]J@-,FFC  
    % Compute the values of the polynomials: cQm4q19  
    % -------------------------------------- 73Hm:"Eqd  
    z = zeros(length_r,length_n); h}kJ,n  
    for j = 1:length_n mhB2l/  
        s = 0:(n(j)-m(j))/2; QW tDZ>  
        pows = n(j):-2:m(j); ^b.#4i (v  
        for k = length(s):-1:1 aemi;61T\  
            p = (1-2*mod(s(k),2))* ... ck\W'Y*Q7  
                       prod(2:(n(j)-s(k)))/          ... `evF?t11X  
                       prod(2:s(k))/                 ... c94=>p6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... I&31jn_o /  
                       prod(2:((n(j)+m(j))/2-s(k))); wE}Wh5  
            idx = (pows(k)==rpowers); 216$,4i  
            z(:,j) = z(:,j) + p*rpowern(:,idx); mhy='AQJ  
        end EX#AJ>?V(  
         X-#&]^d  
        if isnorm ESYF4-d+  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); >Fs/Wet  
        end </u=<^ire  
    end Dp!91NgB p  
    5~j#Z (}u  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  $qQYxx@  
    M/=36{,w-  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I"88O4\@  
    p|t" 4HQ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)