非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 F#S^Q`
function z = zernfun(n,m,r,theta,nflag) J{8_4s!Xt>
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. zh7#[#>t
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]eA<
% and angular frequency M, evaluated at positions (R,THETA) on the IxC/X5Mp^q
% unit circle. N is a vector of positive integers (including 0), and Pk444_"=
% M is a vector with the same number of elements as N. Each element ^/`:o}7K7
% k of M must be a positive integer, with possible values M(k) = -N(k) <4s$$Uw}6%
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, m[&]#K6
% and THETA is a vector of angles. R and THETA must have the same A-gNfXP,D
% length. The output Z is a matrix with one column for every (N,M) 9hG)9X4
% pair, and one row for every (R,THETA) pair. WtF
% envu}4wU=e
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z7V74hRPX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Rfh#JO@%[
% with delta(m,0) the Kronecker delta, is chosen so that the integral \zA$|)
x
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N\b%+vR
% and theta=0 to theta=2*pi) is unity. For the non-normalized rq'Cj<=Zj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pQr `$:ga
% \.p{~Hv
% The Zernike functions are an orthogonal basis on the unit circle. "orZje9AC
% They are used in disciplines such as astronomy, optics, and F[/Bp>P7
% optometry to describe functions on a circular domain. l{wHu(1
% v{4K$o
% The following table lists the first 15 Zernike functions. 9Mo(3M
% oj*5m+:>a
% n m Zernike function Normalization TA;
% -------------------------------------------------- 1GB$;0 W),
% 0 0 1 1 !f\,xa|M
% 1 1 r * cos(theta) 2 sl^i%xJ|l'
% 1 -1 r * sin(theta) 2 g+8{{o=
% 2 -2 r^2 * cos(2*theta) sqrt(6) m#Rgelhk.
% 2 0 (2*r^2 - 1) sqrt(3) W j2]1A
% 2 2 r^2 * sin(2*theta) sqrt(6) p~1,[]k
% 3 -3 r^3 * cos(3*theta) sqrt(8) -+4:}
sD
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) S)Cd1`Gf
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) P6w!r>?6N
% 3 3 r^3 * sin(3*theta) sqrt(8) *IWO ,!
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3Gi#WV4$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) prE~GO7Z
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) VD+TJ` r
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [.;$6C/?
% 4 4 r^4 * sin(4*theta) sqrt(10) K FV&Dt}<
% -------------------------------------------------- +@D [%l|
% g(xuA^~J
% Example 1: {IEc{y7?gO
% A `\2]t$z
% % Display the Zernike function Z(n=5,m=1) }R5>ja0
% x = -1:0.01:1; tWL3F?wd
% [X,Y] = meshgrid(x,x); cA%70Y:AV
% [theta,r] = cart2pol(X,Y); +r[u4?
% idx = r<=1; zOA{S~>
% z = nan(size(X)); 2ILMf?}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0eq="|n^|
% figure
qk~ ni8
% pcolor(x,x,z), shading interp HV'xDy[)
% axis square, colorbar 9?<WRM3a>
% title('Zernike function Z_5^1(r,\theta)') wN/d
J
% v-2_#
% Example 2: TR3_!0
% KK"uSC
% % Display the first 10 Zernike functions jSVIO v:
% x = -1:0.01:1; |@KW~YlE
% [X,Y] = meshgrid(x,x); I3uS?c
% [theta,r] = cart2pol(X,Y); N{v
<z 6
% idx = r<=1; xI?%.Z;*+
% z = nan(size(X)); 6W&huIQ[
% n = [0 1 1 2 2 2 3 3 3 3]; 7J$
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; d
dB}mk6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; F VBuCi?W
% y = zernfun(n,m,r(idx),theta(idx)); UZsL0
% figure('Units','normalized') $%!'c#
F
% for k = 1:10 E5 "%-fAJ
% z(idx) = y(:,k); (+}H
ih
% subplot(4,7,Nplot(k)) dcUaZfON
% pcolor(x,x,z), shading interp l;^Id#N
% set(gca,'XTick',[],'YTick',[]) fT1/@
% axis square {HPKp&kl
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y]$%>N0vLX
% end gj{2"tE
% 1,,kU
% See also ZERNPOL, ZERNFUN2. !v(j#N< m
>Qg`Us#y
% Paul Fricker 11/13/2006 @q0\oG4L
(VeX[*}I
E0QrByr_
% Check and prepare the inputs: 9xL8 ];-
% ----------------------------- 0OLE/T<Xv
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Rn6;@Cw
error('zernfun:NMvectors','N and M must be vectors.') nxH+XHv
end k2{*WF
O>UG[ZgW
if length(n)~=length(m) ?,8|K B
error('zernfun:NMlength','N and M must be the same length.') ';"W 0
end !K:
WK;X6`
n = n(:); Do-~-d4
m = m(:); gZbC[L
if any(mod(n-m,2)) le1
error('zernfun:NMmultiplesof2', ... Ax &Z=
'All N and M must differ by multiples of 2 (including 0).') Tjba@^T
end V<&x+?>S
,e\'Y!'
if any(m>n) ( <~
error('zernfun:MlessthanN', ... f5p>oXo4b
'Each M must be less than or equal to its corresponding N.') :^~I@)"ov
end ~)Z{ Yj9)S
<1i:Z*l.
if any( r>1 | r<0 ) tQz =_;jy
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3ZRi@=kWz
end j>f
GG0l\!2)
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R+vago:
error('zernfun:RTHvector','R and THETA must be vectors.') jI})\5<R
end h/`]=kCl
}6zo1"
r = r(:); 9eOP:/'}w
theta = theta(:); ~*aPeJ
length_r = length(r); O |45r
if length_r~=length(theta) \*] l'>x1
error('zernfun:RTHlength', ... L9(mY `d>"
'The number of R- and THETA-values must be equal.') G i1Jl"
end |C;8GSw>|F
!h\.w9o[
% Check normalization: byALM
% -------------------- nymF`0HYe1
if nargin==5 && ischar(nflag) kg0X2^#b
isnorm = strcmpi(nflag,'norm'); P`ZzrN
if ~isnorm ./SDZ:5/
error('zernfun:normalization','Unrecognized normalization flag.') 4^4<Le-G
end \<k5c-8Hb
else lG[@s 'j
isnorm = false; %t&
end 7X+SK&PX
m/
D ~D~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mab921-n
% Compute the Zernike Polynomials b)+nNqY|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% awYnlE/Z1
rw:z|-r
% Determine the required powers of r: ;U+4!N
% ----------------------------------- XPJsnu
m_abs = abs(m); EI+RF{IKh
rpowers = []; uJxT)m!/
for j = 1:length(n) =|}_ASbzw
rpowers = [rpowers m_abs(j):2:n(j)]; I8ZBs0sfF{
end }57s
rpowers = unique(rpowers); NUSb7<s,&Y
EKQ\MC1
% Pre-compute the values of r raised to the required powers, Ez()W,6]g
% and compile them in a matrix: .DX
% ----------------------------- (!cG*FrN
if rpowers(1)==0 =&%}p[
3g
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ry47Fze
rpowern = cat(2,rpowern{:}); &A/k{(.XP
rpowern = [ones(length_r,1) rpowern]; %XF>k)
else "2l$}G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H$D),s
gv
rpowern = cat(2,rpowern{:}); 2Dc2uU@`r
end 38<Z=#S
pW[KC!
% Compute the values of the polynomials: k7L-J
% -------------------------------------- #uRj9|E7
y = zeros(length_r,length(n)); (5rfeSA^
for j = 1:length(n) G 6r2
"
s = 0:(n(j)-m_abs(j))/2; U#
+$ N3%
pows = n(j):-2:m_abs(j); &\Ze<u
for k = length(s):-1:1 LE@<)}Au^
p = (1-2*mod(s(k),2))* ... 1 eP`
prod(2:(n(j)-s(k)))/ ... 19h@fA[:
prod(2:s(k))/ ... \\R$C
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I$0O4
prod(2:((n(j)+m_abs(j))/2-s(k))); nrEG4X9
idx = (pows(k)==rpowers); =Ch^;Wyt
y(:,j) = y(:,j) + p*rpowern(:,idx); 2gasH11M
end @PL.7FM<v
&~Hx!]uc
if isnorm mz>GbImVD~
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o=]\Jy
end !VDNqW
end Be$v%4
% END: Compute the Zernike Polynomials `1`Qu!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k_?Z6RE>
f>CJ1;][{
% Compute the Zernike functions: >%\&tS'
% ------------------------------ -I0J-~#
idx_pos = m>0; ]&;K:#J
idx_neg = m<0; 4 (c{%%
{*PbD;/f
z = y; xYd]|y
if any(idx_pos) (=-6'23q)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *)Us
end YB}m1g`
if any(idx_neg) ?hmuAgOtbh
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <B&vfKO^h
end 1w!O&kn
C~-.zQ$
% EOF zernfun