切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11606阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 P``hw=L  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! _I!Xr!!)a0  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 xo%iL  
    function z = zernfun(n,m,r,theta,nflag) t2:c@)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @b/2'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DG-vTr  
    %   and angular frequency M, evaluated at positions (R,THETA) on the N|j. @K  
    %   unit circle.  N is a vector of positive integers (including 0), and qh'BrYu*  
    %   M is a vector with the same number of elements as N.  Each element q!TbM"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =gn}_sKNE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, jysV%q 3  
    %   and THETA is a vector of angles.  R and THETA must have the same Id*^H:]C#  
    %   length.  The output Z is a matrix with one column for every (N,M) aC},h   
    %   pair, and one row for every (R,THETA) pair. n96gDH*  
    % ;?!rpj  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ob7_dWAG  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VqrMi *W6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ^;3rdBprm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Tc(R-Wi  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized vw]nqS~N  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D5>~'N3b  
    % <f6PULm  
    %   The Zernike functions are an orthogonal basis on the unit circle. Ak1)  
    %   They are used in disciplines such as astronomy, optics, and WK}+f4tdW[  
    %   optometry to describe functions on a circular domain. /RC!Yi  
    % {|h"/   
    %   The following table lists the first 15 Zernike functions. ?>8zU;Aj  
    % h6e$$-_  
    %       n    m    Zernike function           Normalization $te,\$&}  
    %       -------------------------------------------------- EAB+kY  
    %       0    0    1                                 1 lnWi E}F  
    %       1    1    r * cos(theta)                    2 F"H!CJJu&  
    %       1   -1    r * sin(theta)                    2 w2+]C&B*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) aTm.10{^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5ecz'eA%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) g)A0PvEu  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =.oWguzu  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N^]>R :Stu  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) KaE;4gwM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *`-29eR"8  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }?J5!X  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BznA)EK?@  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }hitU(5t0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :"^< aLj  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4 .B*B3  
    %       -------------------------------------------------- ;cn.s,  
    % ls\E%d  
    %   Example 1: t)Q @sKT6  
    % !#I/be]  
    %       % Display the Zernike function Z(n=5,m=1) U_;J.{n  
    %       x = -1:0.01:1; =k= 2~ j  
    %       [X,Y] = meshgrid(x,x); /VO@>Hoh  
    %       [theta,r] = cart2pol(X,Y); '?gI cWM  
    %       idx = r<=1; r)]CZ])  
    %       z = nan(size(X)); K=?F3tX^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); nj0AO0  
    %       figure 7B\(r~f`t  
    %       pcolor(x,x,z), shading interp %OW9cqL>l  
    %       axis square, colorbar %Dls36F  
    %       title('Zernike function Z_5^1(r,\theta)') z~e~K`S  
    % @n X2*j*u  
    %   Example 2: <lmJa#  
    % @1&;R  
    %       % Display the first 10 Zernike functions j4xr1y3^  
    %       x = -1:0.01:1; ;u};& sm  
    %       [X,Y] = meshgrid(x,x); 6a?$=y  
    %       [theta,r] = cart2pol(X,Y); Z)i1?#  
    %       idx = r<=1; u?3NBc$~A  
    %       z = nan(size(X)); T5jG IIa  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]|t.wr3AU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; AOx3QgC^NO  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; zO5u{  
    %       y = zernfun(n,m,r(idx),theta(idx)); fk7Cf"[w  
    %       figure('Units','normalized') LL[#b2CKa  
    %       for k = 1:10 .hlQ?\  
    %           z(idx) = y(:,k); n~ >h4=h  
    %           subplot(4,7,Nplot(k)) #G  +  
    %           pcolor(x,x,z), shading interp Ipz 1+ #s'  
    %           set(gca,'XTick',[],'YTick',[]) \_Kt6=  
    %           axis square BZ;}ROmqk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) EcU'*  
    %       end /1W7<']>xV  
    % ,J (5@8(>a  
    %   See also ZERNPOL, ZERNFUN2. NVc! g  
    7vpN 6YP  
    %   Paul Fricker 11/13/2006 u:uSsAn0$  
    *Qg5Z   
    y+";  
    % Check and prepare the inputs: i$JG^6,O  
    % ----------------------------- Q_kT}6#(J=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Vo 6y8@\  
        error('zernfun:NMvectors','N and M must be vectors.') -RH4y 2  
    end Cj !i)-  
    =,d* {m~A  
    if length(n)~=length(m) h*#2bS~nl-  
        error('zernfun:NMlength','N and M must be the same length.') !0OD(XT  
    end ~1=.?Ho  
    :q>oD-b$}  
    n = n(:); .:Bwa  
    m = m(:); rO(TG  
    if any(mod(n-m,2)) Z;fm;X%4  
        error('zernfun:NMmultiplesof2', ... B)"#/@!bHH  
              'All N and M must differ by multiples of 2 (including 0).') RO%tuU,-  
    end up &NCX  
    -4vHK!l  
    if any(m>n)  ^%5~ ;  
        error('zernfun:MlessthanN', ... 6MQs \J6.  
              'Each M must be less than or equal to its corresponding N.') ii_|)udz  
    end O2q=gYX>\  
    MvZ+n  
    if any( r>1 | r<0 ) 4+5OR&kxZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') N[,VSO&  
    end UH 47e  
    AB2mt:^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q7 uAf3  
        error('zernfun:RTHvector','R and THETA must be vectors.') &e-#|p#v  
    end nIyROhZ  
    O&#S4]Y   
    r = r(:); {=bg5I0|a  
    theta = theta(:); Q{AZ'XV  
    length_r = length(r); Y ]~ HAv '  
    if length_r~=length(theta) "Ju /[#VCJ  
        error('zernfun:RTHlength', ... s; B j7]  
              'The number of R- and THETA-values must be equal.') I|KY+k> /  
    end `26V`%bPkr  
    ;wJ7oj<  
    % Check normalization: z^gQ\\,4  
    % -------------------- {PODisl>\D  
    if nargin==5 && ischar(nflag) [$( sUc(%  
        isnorm = strcmpi(nflag,'norm'); &/ >;LgN  
        if ~isnorm r,2Xu  
            error('zernfun:normalization','Unrecognized normalization flag.') i?GfY C2q  
        end mL:m;>JJ n  
    else a=J@y K  
        isnorm = false; ; x:k-s2-  
    end +cz"`T`X 2  
    cWN d<=Jp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wr$cK'5ZL  
    % Compute the Zernike Polynomials @Jb@L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zwM"`z  
    r{t. c?/  
    % Determine the required powers of r: ,|T*|2Gm  
    % ----------------------------------- xwTijSj  
    m_abs = abs(m); S}oG.r 9  
    rpowers = []; pU?{0xZH  
    for j = 1:length(n) wGEWr2$  
        rpowers = [rpowers m_abs(j):2:n(j)]; %f3c7\=C  
    end w^06z,  
    rpowers = unique(rpowers); :/o C:z\h  
    L;/9L[s,  
    % Pre-compute the values of r raised to the required powers, J[ e}  
    % and compile them in a matrix: ![*:.CW  
    % ----------------------------- iYk':iv}S  
    if rpowers(1)==0 Uc_jQ4e_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [J a)<!]<  
        rpowern = cat(2,rpowern{:}); )Rjb/3*!  
        rpowern = [ones(length_r,1) rpowern]; E]?)FH<oP  
    else r_b8,I6{]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nd.57@*M  
        rpowern = cat(2,rpowern{:}); w Y8@1>ah  
    end <+V-k|  
    v1 LKU  
    % Compute the values of the polynomials: =WIE>*3[  
    % -------------------------------------- GwcI0~5  
    y = zeros(length_r,length(n)); Q;4}gUmI$  
    for j = 1:length(n) R<"2%oY  
        s = 0:(n(j)-m_abs(j))/2; ,"~WkLI~\t  
        pows = n(j):-2:m_abs(j); -glugVq  
        for k = length(s):-1:1 %b=Y <v  
            p = (1-2*mod(s(k),2))* ... $aB /+,  
                       prod(2:(n(j)-s(k)))/              ... {DU"]c/S  
                       prod(2:s(k))/                     ... 30D: ZmlY  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s(Z(e %  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *i@sUM?K  
            idx = (pows(k)==rpowers); M2}np  
            y(:,j) = y(:,j) + p*rpowern(:,idx); j7K5SS_]  
        end =v.{JV#  
         7; p4Wg7k}  
        if isnorm `,+#!)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >9ob*6q,  
        end TI}}1ScA'  
    end lK0s=4c{  
    % END: Compute the Zernike Polynomials +a|"{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <"<Mbbp  
    UcgG  
    % Compute the Zernike functions: !{;[xXK4M  
    % ------------------------------ hw;0t,1  
    idx_pos = m>0; N1%p"(  
    idx_neg = m<0; =4eUAeH {w  
    aYqm0HCT  
    z = y; S@x}QQ|.  
    if any(idx_pos) cgyp5\*>+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5L F/5`  
    end YydA6IK4  
    if any(idx_neg) ~8TF*3[}[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :Zza)>l  
    end .;9jdGBf  
    K}x_nW  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) !siWEzw  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. C ZJV_0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated &R,9+c  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive yY Y Nu`  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, m[spn@SF  
    %   and THETA is a vector of angles.  R and THETA must have the same 6g"C#&{@  
    %   length.  The output Z is a matrix with one column for every P-value, ?R|th Z  
    %   and one row for every (R,THETA) pair. PnA?+u2m  
    % ?1peF47Z  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 4J5pXlzV  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) } #Doy{T  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Zsj`F9*e  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ~EEs} i  
    %   for all p. :Xfn@>;3ui  
    % z}+i=cAN  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 L2fZ{bgy  
    %   Zernike functions (order N<=7).  In some disciplines it is %?9Ok  
    %   traditional to label the first 36 functions using a single mode ?iv=53<c#  
    %   number P instead of separate numbers for the order N and azimuthal io.]'">  
    %   frequency M. H=p`T+  
    % xr[Vp  
    %   Example: 1oty*c  
    % e"k/d<  
    %       % Display the first 16 Zernike functions <^8*<;PaG  
    %       x = -1:0.01:1; F}36IM9/:  
    %       [X,Y] = meshgrid(x,x); $'{=R 45Z  
    %       [theta,r] = cart2pol(X,Y); $ J1f.YE  
    %       idx = r<=1; SJk>Jt=  
    %       p = 0:15; t> xd]ti  
    %       z = nan(size(X)); ut_pHj@  
    %       y = zernfun2(p,r(idx),theta(idx)); _w!a`w*3  
    %       figure('Units','normalized') bMm3F%FFq&  
    %       for k = 1:length(p) <??umkV  
    %           z(idx) = y(:,k); mrM4RoO  
    %           subplot(4,4,k) 19t{|w<  
    %           pcolor(x,x,z), shading interp =sgdkAYwP  
    %           set(gca,'XTick',[],'YTick',[]) P`(Mk6gE  
    %           axis square 0fArF*  
    %           title(['Z_{' num2str(p(k)) '}']) eKG2*CV  
    %       end pK}=*y~$  
    % @MbVWiv  
    %   See also ZERNPOL, ZERNFUN. MsOs{2 )2  
    XRtD< jlA"  
    %   Paul Fricker 11/13/2006 8 lT{1ro  
    ]*N1t>fb  
    ^YlI>_3s  
    % Check and prepare the inputs: lG:kAtx4  
    % ----------------------------- .c+9P<VmC}  
    if min(size(p))~=1 -SCM:j%h  
        error('zernfun2:Pvector','Input P must be vector.') S,{tV=&m]  
    end $IX\O  
    l dqLM  
    if any(p)>35 C vDxq:x  
        error('zernfun2:P36', ... UvJ; A  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ny*i+4Mb  
               '(P = 0 to 35).']) vScjq5 "p  
    end -c*\o3)  
    -_N)E ))G  
    % Get the order and frequency corresonding to the function number: :"1|AJo)  
    % ---------------------------------------------------------------- =9wy/c$  
    p = p(:); vB0RKk}d5  
    n = ceil((-3+sqrt(9+8*p))/2); [?0d~Q(R#  
    m = 2*p - n.*(n+2); 646JDX[o  
    6.WceWBR  
    % Pass the inputs to the function ZERNFUN: viX +|A4gJ  
    % ---------------------------------------- P8Qyhc  
    switch nargin K> g[k_  
        case 3 =r2]uW9  
            z = zernfun(n,m,r,theta); L2UsqVU  
        case 4 x;s0j"`Jb  
            z = zernfun(n,m,r,theta,nflag); % Zjdl  
        otherwise j<<3Pr  
            error('zernfun2:nargin','Incorrect number of inputs.') q5DEw&UZJ  
    end tc+WWDP#"  
    w_tJ7pz8T  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 4<dcB@v  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H,unpZ(  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of FzQTDu9  
    %   order N and frequency M, evaluated at R.  N is a vector of W,5Hx1z R  
    %   positive integers (including 0), and M is a vector with the 8,P- 7^  
    %   same number of elements as N.  Each element k of M must be a l7H qo)  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) b?X.U}62_  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is HBS\<}  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix w'MGA  
    %   with one column for every (N,M) pair, and one row for every t_^X$pL  
    %   element in R. aT!'}GjL  
    % OJ|r6  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- x+8_4>,>Y7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is yZr M.%V  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to "5R~(+~<@  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 D"(L5jR8m@  
    %   for all [n,m]. ^D eERB  
    % ^hNgm.I  
    %   The radial Zernike polynomials are the radial portion of the ULrr=5&8  
    %   Zernike functions, which are an orthogonal basis on the unit  xw^R@H  
    %   circle.  The series representation of the radial Zernike (.w Ie/  
    %   polynomials is -i0(2*<  
    % hI%bjuq  
    %          (n-m)/2 (wIzat  
    %            __ #} ~qqJ G2  
    %    m      \       s                                          n-2s (wDm*bZ*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r JWvjWY2+P  
    %    n      s=0 ('wY9kvL&  
    % lO&3{dOYE  
    %   The following table shows the first 12 polynomials. poGc a1  
    % Nkxm m/Z  
    %       n    m    Zernike polynomial    Normalization ::Ke ^dp  
    %       --------------------------------------------- @k[R/,#'[t  
    %       0    0    1                        sqrt(2) FuI73  
    %       1    1    r                           2 .+7;)K   
    %       2    0    2*r^2 - 1                sqrt(6) B`*ZsS=R-  
    %       2    2    r^2                      sqrt(6) S}APQ  
    %       3    1    3*r^3 - 2*r              sqrt(8) Dd;Nz  
    %       3    3    r^3                      sqrt(8) kt`nbm|aw  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +fvaUV_-  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) J)P$2#  
    %       4    4    r^4                      sqrt(10) t`*!w|}(1  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) * #jsgj[  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) m_?d=o  
    %       5    5    r^5                      sqrt(12) R|O8RlH  
    %       --------------------------------------------- ,'[<bP'%_  
    % }*.0N;;C  
    %   Example: JkW9D)6  
    % @u==x *{ |  
    %       % Display three example Zernike radial polynomials fP.F`V_Y  
    %       r = 0:0.01:1; I%- " |]$  
    %       n = [3 2 5]; T,| 1g6  
    %       m = [1 2 1]; i4^o59}8  
    %       z = zernpol(n,m,r); (Qa/EkE^*w  
    %       figure V&-~x^JK  
    %       plot(r,z) /pF `8$  
    %       grid on sR/b$j>i3  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') =Umw$+fJr  
    % c478P=g=5  
    %   See also ZERNFUN, ZERNFUN2. ZPbpp@,  
    jqPkc28  
    % A note on the algorithm. 8\{^|y9-  
    % ------------------------ <n]x#0p  
    % The radial Zernike polynomials are computed using the series ^]{R.(#z  
    % representation shown in the Help section above. For many special |V<h=D5W  
    % functions, direct evaluation using the series representation can =[F<7pvE  
    % produce poor numerical results (floating point errors), because 31/Edd"]  
    % the summation often involves computing small differences between Me 5_4H&Sg  
    % large successive terms in the series. (In such cases, the functions H$I =W>;  
    % are often evaluated using alternative methods such as recurrence %-d]X{J:  
    % relations: see the Legendre functions, for example). For the Zernike 'fW6 .0fXa  
    % polynomials, however, this problem does not arise, because the 5nsq[Q`  
    % polynomials are evaluated over the finite domain r = (0,1), and kF/9-[]$g,  
    % because the coefficients for a given polynomial are generally all ,"B+r6}EF  
    % of similar magnitude. mEG#>Gg$  
    % &hRvol\J  
    % ZERNPOL has been written using a vectorized implementation: multiple +nJUFc  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] OKoan$#sn  
    % values can be passed as inputs) for a vector of points R.  To achieve m=YU2!Mb  
    % this vectorization most efficiently, the algorithm in ZERNPOL 1Tu *79A  
    % involves pre-determining all the powers p of R that are required to } \ZaE~  
    % compute the outputs, and then compiling the {R^p} into a single F&&$Qn_+  
    % matrix.  This avoids any redundant computation of the R^p, and \hB5@e4i2  
    % minimizes the sizes of certain intermediate variables. TY1I=8  
    % jYe'V#5S#  
    %   Paul Fricker 11/13/2006 mauI42  
    )b:7-}d  
    -{ H0g]  
    % Check and prepare the inputs: ~$~5qwl  
    % ----------------------------- B'fb^n<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K"r*M.P>  
        error('zernpol:NMvectors','N and M must be vectors.') @;'o2   
    end JYTP 2  
    x@*SEa  
    if length(n)~=length(m) "sG=wjcw^  
        error('zernpol:NMlength','N and M must be the same length.') 3\B>lKhQ  
    end yxH ( c  
    Sv +IS  
    n = n(:); 7x@A%2J  
    m = m(:); o#skR4lwe  
    length_n = length(n); 7k rUKYVo  
    `DC2gJKk%  
    if any(mod(n-m,2)) ,gS;m &!'J  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Xwhui4'w  
    end ypy68_xyW  
    CO`_^7o9(  
    if any(m<0) %T~ig[GstX  
        error('zernpol:Mpositive','All M must be positive.')  Y*14v~\'  
    end f\jLqZY  
    #E&80#Z5  
    if any(m>n) `b^Ru+(dM  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]bK=FIK2  
    end JhLgCnm  
    &sU?Ok6  
    if any( r>1 | r<0 ) g4l !xT  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 2* 2wY=  
    end =W"F[fD  
    pim!.=vN/U  
    if ~any(size(r)==1) 2n|K5FR()  
        error('zernpol:Rvector','R must be a vector.') i{`;R  
    end /\hzb/  
    D8xmE2%  
    r = r(:); 6E^.7%3  
    length_r = length(r); D/Mi^5H)  
    F 9@h|#an  
    if nargin==4 u4/kR  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $GTU$4u  
        if ~isnorm D`$hPYK|_  
            error('zernpol:normalization','Unrecognized normalization flag.') W`u[h0\c  
        end P9vA7[  
    else sL\L"rQN6  
        isnorm = false; ayfFVTy1d  
    end yp({>{u7  
    Y$?9Zkp>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iy%ZQ[Un  
    % Compute the Zernike Polynomials ;oc&Hb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {\:{[{qF  
    -$dXE+&   
    % Determine the required powers of r: ])nPPf  
    % ----------------------------------- E6pMT^{K  
    rpowers = []; JW3B'_0  
    for j = 1:length(n) rv|)n>m  
        rpowers = [rpowers m(j):2:n(j)]; L:i-BI`J  
    end Qx+%"YO  
    rpowers = unique(rpowers); x;8A!8w  
    H{=21\a\  
    % Pre-compute the values of r raised to the required powers, /!3@]xz*  
    % and compile them in a matrix: w.\&9]P3~  
    % ----------------------------- w.?:SD  
    if rpowers(1)==0 LILQ\I<<'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OUhqM VX9C  
        rpowern = cat(2,rpowern{:}); /J WGifH  
        rpowern = [ones(length_r,1) rpowern]; jbS\vyG  
    else 'coV^~qy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <|SRe6m  
        rpowern = cat(2,rpowern{:}); OHhsP}/  
    end `#;e)1  
    R5X.^u  
    % Compute the values of the polynomials: i}B2R$Z3  
    % -------------------------------------- a_'2V;  
    z = zeros(length_r,length_n); hMykf4  
    for j = 1:length_n d%V*|0c)  
        s = 0:(n(j)-m(j))/2; Z|lq b=  
        pows = n(j):-2:m(j); E.Jkf\  
        for k = length(s):-1:1 Ht&:-F+dm  
            p = (1-2*mod(s(k),2))* ... 4X+ifZO  
                       prod(2:(n(j)-s(k)))/          ... O vk_\On  
                       prod(2:s(k))/                 ... }x07^4$j  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... @T'i/}nl  
                       prod(2:((n(j)+m(j))/2-s(k))); RT.D"WvT  
            idx = (pows(k)==rpowers); .O0 +H+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); SV~cJ]F  
        end MM x9(`t*.  
         H\0~#(z?.  
        if isnorm 4}eepJOn  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); nv~%#|v_W  
        end 6er-{.L=  
    end B(n{e53 9f  
    CTZh0 x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  qQsku;C?i  
    S4h:|jLUF  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 mHBnC&-/  
    2m35R&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)