切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10577阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @tH9$J*Y<  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! THYw_]K  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 kx"1 0Vw  
    function z = zernfun(n,m,r,theta,nflag) m~=~DMj  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^Co-!jM  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mB?x_6#d9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the V2MOD{Maat  
    %   unit circle.  N is a vector of positive integers (including 0), and 7u):J  
    %   M is a vector with the same number of elements as N.  Each element D Ez,u^   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) CD|[PkjW  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ahB qYA K9  
    %   and THETA is a vector of angles.  R and THETA must have the same >| R'dF}  
    %   length.  The output Z is a matrix with one column for every (N,M) }cKB)N BJb  
    %   pair, and one row for every (R,THETA) pair. ?^}30V:E  
    % U.%Kt,qB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {z#2gc'Q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *H>rvE.K?  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral K2   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i|YS>Pw~j  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized v9*m0|T0M  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x(_[D08/TT  
    % jlEz]@ i  
    %   The Zernike functions are an orthogonal basis on the unit circle. }f}.>B0#  
    %   They are used in disciplines such as astronomy, optics, and xmW~R*^  
    %   optometry to describe functions on a circular domain. v3tJtb^'!  
    % ?6#won  
    %   The following table lists the first 15 Zernike functions.  4M'>oa  
    % Tb/TP3N  
    %       n    m    Zernike function           Normalization 0XHQ 5+"8  
    %       -------------------------------------------------- Qzi?%&  
    %       0    0    1                                 1 eI #Gx_mg  
    %       1    1    r * cos(theta)                    2 P]E-Wp'p  
    %       1   -1    r * sin(theta)                    2 W U(_N*a  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) g?C;b>4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) AOf4y&B>q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) VFHd2Ea(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 39pG-otJ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) k9|5TLXq?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) cNs'GfD}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) G dgL}"*F  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :!ya&o  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iCt.rr~;V  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Xlo7enzY  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Bf_$BCyGW  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) " \$^j#o  
    %       -------------------------------------------------- >ZA=9v  
    % sE1cvAw9l  
    %   Example 1: 8a)AuAi?!  
    % enoj4g7em^  
    %       % Display the Zernike function Z(n=5,m=1) 7ubz7*  
    %       x = -1:0.01:1; YFKE>+  
    %       [X,Y] = meshgrid(x,x); Fe+ @;  
    %       [theta,r] = cart2pol(X,Y); 'j1e(wq  
    %       idx = r<=1; hy;VvAH 5  
    %       z = nan(size(X));  ao(T81  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _GOSqu!3Y  
    %       figure dWqn7+:  
    %       pcolor(x,x,z), shading interp |s|}u`(@9  
    %       axis square, colorbar X1L@ G  
    %       title('Zernike function Z_5^1(r,\theta)') ~z,o):q1 }  
    % L9x-90'q,  
    %   Example 2: 8fR(y~_gF  
    % (FuIOR  
    %       % Display the first 10 Zernike functions $YYWpeW '  
    %       x = -1:0.01:1; )?n'ZhsX  
    %       [X,Y] = meshgrid(x,x); XtF m5\U  
    %       [theta,r] = cart2pol(X,Y); lame/B&nc  
    %       idx = r<=1; U"oNJ8&%|  
    %       z = nan(size(X)); @hLkU4S  
    %       n = [0  1  1  2  2  2  3  3  3  3]; YJi%vQ*]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }D/+YG  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; jDzQw>T X  
    %       y = zernfun(n,m,r(idx),theta(idx)); voWH.[n^_  
    %       figure('Units','normalized') "kg`TJf=  
    %       for k = 1:10 #-hO\ QdC  
    %           z(idx) = y(:,k); gN&i &%*!  
    %           subplot(4,7,Nplot(k)) eH&F gmU  
    %           pcolor(x,x,z), shading interp yNu_>!Cp5  
    %           set(gca,'XTick',[],'YTick',[]) *zfgO pK  
    %           axis square P rt} 01$  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Cu"Cpt[  
    %       end !, 4ag1  
    % sFU< PgV  
    %   See also ZERNPOL, ZERNFUN2. tDByOml8Ix  
    4=PjS<Lu8  
    %   Paul Fricker 11/13/2006  Et>#&Nw8  
    3? {AGJ1  
    -(VJ,)8t2  
    % Check and prepare the inputs: .Po"qoGy  
    % -----------------------------  0^;2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |diI(2w  
        error('zernfun:NMvectors','N and M must be vectors.') L"_X W no  
    end =KRM`_QShg  
     7WJ \nK  
    if length(n)~=length(m) bMH~vR  
        error('zernfun:NMlength','N and M must be the same length.') ZsGvv]P  
    end O"m7r ds  
    'uPAG;)m  
    n = n(:); XN<SKW(H3  
    m = m(:); lH-VqkR\  
    if any(mod(n-m,2)) s.3"2waZ=T  
        error('zernfun:NMmultiplesof2', ... ?W/.'_  
              'All N and M must differ by multiples of 2 (including 0).') Z:4/lx7Bq  
    end A^U84kV=  
    &|>@K#V8-;  
    if any(m>n) |OQ]F  
        error('zernfun:MlessthanN', ... /qpSmRL  
              'Each M must be less than or equal to its corresponding N.') p8Vqy-:  
    end fv+]iK<{  
    1#vy# '  
    if any( r>1 | r<0 ) sqkWQ`Ur  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') FaHOutP  
    end (f/(q-7VWt  
    ^W |YE72Y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *D5 xbkH=.  
        error('zernfun:RTHvector','R and THETA must be vectors.') WP<L9A  
    end ;?h[WIy  
    {gMe<y  
    r = r(:); Mw[3711v  
    theta = theta(:); qpQ;,8X-"  
    length_r = length(r); $H:!3 -/  
    if length_r~=length(theta) y:G%p3h)[  
        error('zernfun:RTHlength', ... {QG.> lB  
              'The number of R- and THETA-values must be equal.') LIg1U  
    end os V6=  
    -FeXG#{)  
    % Check normalization: A#U! KX  
    % -------------------- #~0Nk6*u  
    if nargin==5 && ischar(nflag) *P mZqe  
        isnorm = strcmpi(nflag,'norm'); *&U~Io"U  
        if ~isnorm aNbS0R>l  
            error('zernfun:normalization','Unrecognized normalization flag.') dPUe5k)G_  
        end D(b01EQ;d  
    else z?/_b  
        isnorm = false; KsDS!O  
    end yC' y>f`H  
    osC?2.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z |$#  
    % Compute the Zernike Polynomials &/@V$'G=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [ATJ! O  
    6St=r)_  
    % Determine the required powers of r: 1tuvJ+`{  
    % ----------------------------------- mhbczVw  
    m_abs = abs(m); Q14zc0N  
    rpowers = []; q4ROuE|d  
    for j = 1:length(n) F5)`FM^R  
        rpowers = [rpowers m_abs(j):2:n(j)]; s$Vl">9#  
    end )&6gju7(  
    rpowers = unique(rpowers); dx%z9[8~{.  
    /wD f,Hduz  
    % Pre-compute the values of r raised to the required powers, -CPtYG[s  
    % and compile them in a matrix: 8Vu@awz{L  
    % ----------------------------- ]b- 2:M  
    if rpowers(1)==0 -^&=I3bp  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SYJO3cY  
        rpowern = cat(2,rpowern{:}); <Iw{fj|  
        rpowern = [ones(length_r,1) rpowern]; dT| XcVKg  
    else zt.k Nb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HxI6_>n^I  
        rpowern = cat(2,rpowern{:}); _i_='dsyW/  
    end Ft5A(P >  
    @SX%q&-  
    % Compute the values of the polynomials: ;"dX]":  
    % -------------------------------------- \`Hp/D1  
    y = zeros(length_r,length(n)); c^}G=Z1@  
    for j = 1:length(n) \Vc[/Qp7Bb  
        s = 0:(n(j)-m_abs(j))/2; c5]Xqq,  
        pows = n(j):-2:m_abs(j); ?Y"%BS+pt  
        for k = length(s):-1:1 0C4eer+D  
            p = (1-2*mod(s(k),2))* ... uq5?t  
                       prod(2:(n(j)-s(k)))/              ... TY8gB!^  
                       prod(2:s(k))/                     ... *6I$N>1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Zue3Z{31T  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5 -i,Tx&:  
            idx = (pows(k)==rpowers); G ;j1zs  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 'LgRdtO6  
        end s8-RXEPb  
         {Y~>&B5  
        if isnorm tN#C.M7.'7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r1!1u7dr t  
        end yr\ClIU  
    end B=A!hXNa  
    % END: Compute the Zernike Polynomials TdFU,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^0]0ss;##R  
    pg{VKrT`  
    % Compute the Zernike functions: l";Yw]:^  
    % ------------------------------ Q4XlYgIV2A  
    idx_pos = m>0; TV`1&ta  
    idx_neg = m<0; \$9C1@B@  
    yaz6?,)  
    z = y; Pe`mZCd^  
    if any(idx_pos) m6R/,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /2Izj/Q  
    end fcq8aW/z_  
    if any(idx_neg) ky2]%cw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); UL[,A+X8D  
    end SkuR~!  
    4t*%(  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) b8K]>yDAh  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 9#9 UzKX#  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated jPSVVOG  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ^E^`"  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ///Lg{ ie  
    %   and THETA is a vector of angles.  R and THETA must have the same >YI Vi4''  
    %   length.  The output Z is a matrix with one column for every P-value, 3\W/VBJJ  
    %   and one row for every (R,THETA) pair. [9 MH"\  
    % 5W)ST&YPL*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike @43psq1  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3sr_V~cZ9  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) G*IP?c>=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1  G*z\ ^H  
    %   for all p. "pkdZ   
    % <WP@q&^k\  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 QIiy\E%  
    %   Zernike functions (order N<=7).  In some disciplines it is ??F* Z" x  
    %   traditional to label the first 36 functions using a single mode .D@J\<,+l  
    %   number P instead of separate numbers for the order N and azimuthal %`F;i)Zz  
    %   frequency M. Sf S3}Tn[  
    % sD3ZZcy|=  
    %   Example: _mSefPl  
    % #Hrzk!&9   
    %       % Display the first 16 Zernike functions m!7%5=Fc  
    %       x = -1:0.01:1; C*mVM!D);!  
    %       [X,Y] = meshgrid(x,x); uw\@~ ,d  
    %       [theta,r] = cart2pol(X,Y); 6]v}  
    %       idx = r<=1; d-b04Q7DQ  
    %       p = 0:15; l!*_[r   
    %       z = nan(size(X)); 0O"W0s"T#  
    %       y = zernfun2(p,r(idx),theta(idx)); 8m") )i-  
    %       figure('Units','normalized') tA#Pc6zBuC  
    %       for k = 1:length(p) 2 GRI<M  
    %           z(idx) = y(:,k); Jk*cuf `rq  
    %           subplot(4,4,k) , ;,B7g  
    %           pcolor(x,x,z), shading interp %)j&/QdzF&  
    %           set(gca,'XTick',[],'YTick',[]) o-6d$c}{f  
    %           axis square \D|IN'!D  
    %           title(['Z_{' num2str(p(k)) '}']) ! AwMD  
    %       end M!,H0( @G  
    % T#B#q1/  
    %   See also ZERNPOL, ZERNFUN. \:;MFG'  
    u ON(LavB  
    %   Paul Fricker 11/13/2006 VKttJok1  
    `=Ip>7T&  
    (H_dZL  
    % Check and prepare the inputs: B[Lm}B[  
    % ----------------------------- [[|#}D:L  
    if min(size(p))~=1 I/7!5Z*  
        error('zernfun2:Pvector','Input P must be vector.') G[KjK$.Ts?  
    end 2u$-(JfoS  
    rxyv+@~Nc  
    if any(p)>35 |<Ls;:5.  
        error('zernfun2:P36', ... Ic(qA{SM  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Um+_ S@h  
               '(P = 0 to 35).']) ]c>@RXY'  
    end P}4&J ^  
    ^xHKoOTj[  
    % Get the order and frequency corresonding to the function number: ZxvH1qx8  
    % ---------------------------------------------------------------- vx9!KWy}  
    p = p(:); G!j9D  
    n = ceil((-3+sqrt(9+8*p))/2); +RJ{)Nec  
    m = 2*p - n.*(n+2); S1$^ _S =  
    S# ]] h/  
    % Pass the inputs to the function ZERNFUN: ^BF}wQb :j  
    % ---------------------------------------- xJ3C^b%H  
    switch nargin jC&fnt,O  
        case 3 dWn6-es  
            z = zernfun(n,m,r,theta); yv-R<c!'  
        case 4 uq3pk3 )W9  
            z = zernfun(n,m,r,theta,nflag); k>ErD v8  
        otherwise ]({ -vG\m  
            error('zernfun2:nargin','Incorrect number of inputs.')  u 8o!  
    end m]?Z_*1  
    IRbyW?/Xv  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) w>2lG3H<  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 44e]sT.B  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ,g?ny<#o  
    %   order N and frequency M, evaluated at R.  N is a vector of =G}a%)?As\  
    %   positive integers (including 0), and M is a vector with the qlcd[Y*B  
    %   same number of elements as N.  Each element k of M must be a })O S2F  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) b%lB&}uw}  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I7vP*YE 7F  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Q+1ot,R  
    %   with one column for every (N,M) pair, and one row for every *z[vp2 TN  
    %   element in R. 8sj2@d  
    % 0se%|Z|8  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- K#A&  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Y @ v][Q  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to FJ84 'T\~  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 E6GubU  
    %   for all [n,m]. _-fLD  
    % | va@&;#wf  
    %   The radial Zernike polynomials are the radial portion of the !5dn7Wuj  
    %   Zernike functions, which are an orthogonal basis on the unit c^=q(V  
    %   circle.  The series representation of the radial Zernike :kHk'.V1(  
    %   polynomials is St?mq* ,  
    % `)a|Q  
    %          (n-m)/2 .!~ysy  
    %            __ aX.BaK6I  
    %    m      \       s                                          n-2s \!-]$&,j4  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r I~l_ky|a !  
    %    n      s=0 L@\t] ~  
    % q-t%spkl  
    %   The following table shows the first 12 polynomials. lSR\wz*Fk  
    % TU?n;h#TZ  
    %       n    m    Zernike polynomial    Normalization '\{ OQ H  
    %       --------------------------------------------- Sp[9vlo8  
    %       0    0    1                        sqrt(2) N,w6  
    %       1    1    r                           2 >*!T`P}p  
    %       2    0    2*r^2 - 1                sqrt(6) }F1Asn  
    %       2    2    r^2                      sqrt(6)  5V<6_o  
    %       3    1    3*r^3 - 2*r              sqrt(8) !$HuH6_[  
    %       3    3    r^3                      sqrt(8) s-*N_Dv  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) <@`K^g;W  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) m:Rx<E E  
    %       4    4    r^4                      sqrt(10) UP-2{zb |?  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) > X  AB#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) hak#Iz0[C  
    %       5    5    r^5                      sqrt(12) |g7)A?2J~  
    %       --------------------------------------------- +PYR  
    % Mxz X@GBX  
    %   Example: ,dba:D= l  
    % TPb&";4ROf  
    %       % Display three example Zernike radial polynomials 2;]tItd1  
    %       r = 0:0.01:1; ] Q^8 9?  
    %       n = [3 2 5]; [ 2@Lc3<  
    %       m = [1 2 1]; BfCib]V9C  
    %       z = zernpol(n,m,r); 0D:uM$ i]  
    %       figure VFV8ik)  
    %       plot(r,z) ZHen:  
    %       grid on &[\zs&[@y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') P9\y~W  
    % y~_x  
    %   See also ZERNFUN, ZERNFUN2. ~=wBF  
    XF{2'x_R  
    % A note on the algorithm. $_ $%L0)5  
    % ------------------------ .*k!Zl*  
    % The radial Zernike polynomials are computed using the series FIn)O-<  
    % representation shown in the Help section above. For many special >VjtKSN  
    % functions, direct evaluation using the series representation can \^F6)COy  
    % produce poor numerical results (floating point errors), because )P1NX"A  
    % the summation often involves computing small differences between >&<D.lx  
    % large successive terms in the series. (In such cases, the functions !4F@ !.GG!  
    % are often evaluated using alternative methods such as recurrence ICoZ<;p  
    % relations: see the Legendre functions, for example). For the Zernike tSDp>0yZ3  
    % polynomials, however, this problem does not arise, because the oi3Ix7  
    % polynomials are evaluated over the finite domain r = (0,1), and UL7%6v{'*  
    % because the coefficients for a given polynomial are generally all TuMZHB7h;  
    % of similar magnitude. kH=~2rwm  
    % uJ*|SSN~  
    % ZERNPOL has been written using a vectorized implementation: multiple !oV'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] jaThS!>v  
    % values can be passed as inputs) for a vector of points R.  To achieve _}Gs9sHr0K  
    % this vectorization most efficiently, the algorithm in ZERNPOL YS"76FJ  
    % involves pre-determining all the powers p of R that are required to :?%_JM5U  
    % compute the outputs, and then compiling the {R^p} into a single %4To@#c  
    % matrix.  This avoids any redundant computation of the R^p, and RmN\;G?}  
    % minimizes the sizes of certain intermediate variables. Q6Zh%\+h(  
    % '\m\$ {  
    %   Paul Fricker 11/13/2006 `0ju=FP'u5  
    XeBSHvO_  
    \No22Je6d  
    % Check and prepare the inputs: J! eVw\6  
    % ----------------------------- WY~}sE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6a`_i  
        error('zernpol:NMvectors','N and M must be vectors.') a-TsD}'X  
    end $0iN43WSQ  
    sEfGf.  
    if length(n)~=length(m) ^_ZQf  
        error('zernpol:NMlength','N and M must be the same length.') q14A 'XW  
    end EZiGi[t7  
    .yj=*N.  
    n = n(:); o9HDxS$~^  
    m = m(:); NU/~E"^I.  
    length_n = length(n); o:Z*F0qm  
    7 -V_)FK2c  
    if any(mod(n-m,2)) [76mgj!K  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') :S7yM8 b`  
    end u= +  
    .'AHIR&>  
    if any(m<0) 7!N5uR  
        error('zernpol:Mpositive','All M must be positive.') VF==F_l  
    end lR^dT4  
    v:T` D  
    if any(m>n) *&2#;mf3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') lB\j>.c  
    end z06pX$Q.<  
    :* /``  
    if any( r>1 | r<0 ) :U[_V4? 7  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') yZ)ScB^  
    end RBgkC+2  
    5BCaE)J  
    if ~any(size(r)==1) $BBfsaJPT  
        error('zernpol:Rvector','R must be a vector.') |)JoxqR  
    end @x J^JcE  
    x}>tX  
    r = r(:); n _ez6{  
    length_r = length(r); ujWHO$uz!  
    /7"1\s0U  
    if nargin==4 tw3d>H`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ;qk~>  
        if ~isnorm /+1Fa):  
            error('zernpol:normalization','Unrecognized normalization flag.') 1k%ko?  
        end O}f(h5!k  
    else {4m"S 7O  
        isnorm = false; 1W!n"3#  
    end B# H  
    O.}gG6u5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tx1jBh:e=  
    % Compute the Zernike Polynomials tr/dd&(Y1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Voh5*$E`  
    I~qiF%?d  
    % Determine the required powers of r: imhq*f#A[  
    % ----------------------------------- 8k`zMT  
    rpowers = []; 6uXYZ.A  
    for j = 1:length(n) ?-84_i  
        rpowers = [rpowers m(j):2:n(j)]; jRkq^}  
    end v(7A=/W_  
    rpowers = unique(rpowers); omA*XXUx=8  
    0amz#VIB<u  
    % Pre-compute the values of r raised to the required powers, )|a9Z~#x  
    % and compile them in a matrix: Mqtp}<*@-  
    % ----------------------------- q5W'P>  
    if rpowers(1)==0 S7q &|nI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =GVhAzD3  
        rpowern = cat(2,rpowern{:}); Z =c@Gd  
        rpowern = [ones(length_r,1) rpowern]; QPcB_wUqu  
    else td&l T(7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D)sEAfvX  
        rpowern = cat(2,rpowern{:}); %UJ4wm  
    end .>'Z9.Xnk  
    e d*AU,^@v  
    % Compute the values of the polynomials: e,*[5xQ  
    % -------------------------------------- /a|NGh%  
    z = zeros(length_r,length_n); c6m,oS^  
    for j = 1:length_n Xh/av[Q  
        s = 0:(n(j)-m(j))/2; fx-*')  
        pows = n(j):-2:m(j); ">9CN$]J  
        for k = length(s):-1:1 `j![  
            p = (1-2*mod(s(k),2))* ... MX0B$yc$  
                       prod(2:(n(j)-s(k)))/          ... A,e^bM  
                       prod(2:s(k))/                 ... _D4}[`  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... R*0F)M  
                       prod(2:((n(j)+m(j))/2-s(k))); EG.C2]Fi  
            idx = (pows(k)==rpowers); 4"{wga~%/  
            z(:,j) = z(:,j) + p*rpowern(:,idx); :GYv9OG  
        end urB3  
         ~\G3 l,4  
        if isnorm ~m?~eJK#a  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); fdG.=7`  
        end @ 1A_eF  
    end @GtZK  
    uP]o39b;V  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5477
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  MzR1<W{ O  
    o\]: !#r{T  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /}nrF4S  
    \7t5U7v8U  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)