非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *zUK3&n~I
function z = zernfun(n,m,r,theta,nflag) *AV%=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. JDf>Qg{
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3;buC|ky
% and angular frequency M, evaluated at positions (R,THETA) on the W=HvMD
% unit circle. N is a vector of positive integers (including 0), and ^EiU>
% M is a vector with the same number of elements as N. Each element 'v^Vg
% k of M must be a positive integer, with possible values M(k) = -N(k) $'KQP8M+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7;+G)44
% and THETA is a vector of angles. R and THETA must have the same ^g4Gw6q6
% length. The output Z is a matrix with one column for every (N,M) (Y'cxwj%
% pair, and one row for every (R,THETA) pair. z&QfZs
% HW]?%9a
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Yuw:W:wY
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),
MWme3u)D
% with delta(m,0) the Kronecker delta, is chosen so that the integral WowT!0$
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #czTX%+9(e
% and theta=0 to theta=2*pi) is unity. For the non-normalized t Cb34Wpf
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (s&:D`e
% %|e)s_%XE
% The Zernike functions are an orthogonal basis on the unit circle. /e"iYF
% They are used in disciplines such as astronomy, optics, and ~ 1;M4K
% optometry to describe functions on a circular domain. f I=G>[
% -TVwoK
% The following table lists the first 15 Zernike functions. *EGzFXa
% G@/iK/>5|`
% n m Zernike function Normalization O*v&CHd3
% -------------------------------------------------- 7;|"1H:cmw
% 0 0 1 1 {@CQ
(
% 1 1 r * cos(theta) 2 MrzD
ah9UG
% 1 -1 r * sin(theta) 2 |kK5:\H
% 2 -2 r^2 * cos(2*theta) sqrt(6) sJKr%2nVV
% 2 0 (2*r^2 - 1) sqrt(3) "a].v 8l!
% 2 2 r^2 * sin(2*theta) sqrt(6) tx7 zG.,
% 3 -3 r^3 * cos(3*theta) sqrt(8) M?YNK]
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @\nQ{\^;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ?PWg
% 3 3 r^3 * sin(3*theta) sqrt(8) )T"Aji-hy
% 4 -4 r^4 * cos(4*theta) sqrt(10) h,FU5iK|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zc8^#D2y&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) el`?:dY H
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0 aH&M4
% 4 4 r^4 * sin(4*theta) sqrt(10) 2!0tD+B
% -------------------------------------------------- Yw#fQFm
% rX)&U4#[m
% Example 1: 0?$|F0U"J
%
>=97~a+.
% % Display the Zernike function Z(n=5,m=1) Hk;;+ '-
% x = -1:0.01:1; }xC2~
% [X,Y] = meshgrid(x,x); ?|kbIZP(
% [theta,r] = cart2pol(X,Y);
MJch
Z
% idx = r<=1; Awa| (]
% z = nan(size(X)); lS9S7`
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #1U>
% figure \_O#M
% pcolor(x,x,z), shading interp tkZUjQIX
% axis square, colorbar 5@+?{Cl
% title('Zernike function Z_5^1(r,\theta)') - (WH+
% ('J@GTe@xj
% Example 2: -_n Qn
% f$QkzWvr
% % Display the first 10 Zernike functions V K6D
% x = -1:0.01:1; xgMh@@e
% [X,Y] = meshgrid(x,x); -9FGFBm4]
% [theta,r] = cart2pol(X,Y); :0:Tl/))
% idx = r<=1; =S{OzF
% z = nan(size(X)); SI~jM:S}
% n = [0 1 1 2 2 2 3 3 3 3]; `2]0 X#R
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; zEU[u7%
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 9[zxq`qT}+
% y = zernfun(n,m,r(idx),theta(idx)); 2|^@=.4\
% figure('Units','normalized') :.ZWYze
% for k = 1:10 ,B'=$PO%
% z(idx) = y(:,k); te(H6c#0
% subplot(4,7,Nplot(k)) FA*$ dwp
% pcolor(x,x,z), shading interp `sqr>QD
% set(gca,'XTick',[],'YTick',[]) %<-OdyM
% axis square [TOo 9W
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NH|I>vyN
% end g8uqW1E^
% Qpv#&nfUi6
% See also ZERNPOL, ZERNFUN2. enJ;#aA
5h/,*p6Nje
% Paul Fricker 11/13/2006 7ivo Q
uX1;
FShjUl>mV
% Check and prepare the inputs: y#B=9Ri=z
% ----------------------------- `;Tf _6c
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 53{\H&q
error('zernfun:NMvectors','N and M must be vectors.') N\*oL*[j
end I`{*QU
:41Y
if length(n)~=length(m) w@^J.7h^
error('zernfun:NMlength','N and M must be the same length.') xH\\#4/
end N_K9H1r
4&cQW)
n = n(:); pL1ABvBB
m = m(:); 9k ~8n9
if any(mod(n-m,2)) 5NZuaN
error('zernfun:NMmultiplesof2', ... c ^ds|7i]a
'All N and M must differ by multiples of 2 (including 0).') ^g*Sy, A
end < 8'
b
/al56n
if any(m>n) l%2VA
error('zernfun:MlessthanN', ... pF8$83S
'Each M must be less than or equal to its corresponding N.') a6n@
end 5kw
K%
d[9{&YnH !
if any( r>1 | r<0 ) &Tt7VYJfIV
error('zernfun:Rlessthan1','All R must be between 0 and 1.') YCiG~y/~
end cEu_p2(7!B
U!q2bF<@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (.P}>$M9
error('zernfun:RTHvector','R and THETA must be vectors.') (G>su
end \JM6zR^Ef
e2c'Wab
r = r(:); ]|g2V
a~-
theta = theta(:); 6d]4
%Q T
length_r = length(r); k_]'?f7Z
if length_r~=length(theta) Pg T3E
error('zernfun:RTHlength', ... LSc^3=X
'The number of R- and THETA-values must be equal.') :bct+J}l~
end Eh8GqFEM
Bbs1U
% Check normalization: OU%"dmSDk
% -------------------- P?V+<c{
if nargin==5 && ischar(nflag) C{/U;Ie-b
isnorm = strcmpi(nflag,'norm'); TNqL ')f
if ~isnorm k*;U?C!
error('zernfun:normalization','Unrecognized normalization flag.') ;>Z+b#C[
end s U`#hL6;
else RL4|!HzR
isnorm = false; NW6;7nWb
end (E0WZ$f}
h>!h|Ma
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :;Z/$M16B
% Compute the Zernike Polynomials esTL3 l{[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ne+Rs+~4
d[l8qaD
% Determine the required powers of r: D Z*c.|W
% ----------------------------------- mH$ `)i8
m_abs = abs(m); o=Z:0Ukl]
rpowers = []; <fHHrmZ#/.
for j = 1:length(n) xMk>r1Ud
rpowers = [rpowers m_abs(j):2:n(j)];
+!u9_?Tp
end [xM&Jdf8
rpowers = unique(rpowers); wp }Q4I
`/T.u&QF
% Pre-compute the values of r raised to the required powers, fGV'l__\\
% and compile them in a matrix: #@HlnF}T
% ----------------------------- )8^E{w^D}
if rpowers(1)==0 bJMsB|r
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HR?T
rpowern = cat(2,rpowern{:}); Z#u{th
rpowern = [ones(length_r,1) rpowern]; Ec<33i]h*p
else vGsAM*vw6
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); | t:UpP
rpowern = cat(2,rpowern{:}); FFZ?-sE
end n#"G)+h3#
[@qjy*5p
% Compute the values of the polynomials: 0Md.3kY
% -------------------------------------- u^SInanw
y = zeros(length_r,length(n)); [gUD +
for j = 1:length(n) Sm {Sq
s = 0:(n(j)-m_abs(j))/2; [H\0
'
pows = n(j):-2:m_abs(j); 9 D.wW
for k = length(s):-1:1 w|G7h=
p = (1-2*mod(s(k),2))* ... /D9#v1b
prod(2:(n(j)-s(k)))/ ... *Jcd_D\-(1
prod(2:s(k))/ ... 1^]IuPxq
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~c v|,
prod(2:((n(j)+m_abs(j))/2-s(k))); /Zs_G=\>
idx = (pows(k)==rpowers); pvsY
0a@4
y(:,j) = y(:,j) + p*rpowern(:,idx); 56YqYu.
end j9c:SP5
Y*9vR~#H
if isnorm Fp?M@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E2}X[EoBF
end yD\Kn{
end !lg_zAV
% END: Compute the Zernike Polynomials 9?sY!gXc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OD[=fR|cp
Y/UvNb<lK
% Compute the Zernike functions: x Y$x=)
% ------------------------------ 93Gj#Mk
idx_pos = m>0; [H!do$[>
idx_neg = m<0; "PTEt{qn
$27OrXQ|
z = y; &to~#.qc
if any(idx_pos) GNHXtu6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V&j]*)
end KgYQxEbIW
if any(idx_neg) PfYeV/M|
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q@S\R
7R
end _~1O #*|4
1k"t[^
% EOF zernfun