切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11417阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 _YUF /B'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! !Z)^c&  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7m:,-xp  
    function z = zernfun(n,m,r,theta,nflag) ],|B4\b;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. QeoDq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m6D4J=59  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *Y~64FM  
    %   unit circle.  N is a vector of positive integers (including 0), and 9~yuyv4$  
    %   M is a vector with the same number of elements as N.  Each element KMcP!N.I  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :Ib\v88WIv  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0b 'R5I.M  
    %   and THETA is a vector of angles.  R and THETA must have the same ":ycyN@g  
    %   length.  The output Z is a matrix with one column for every (N,M) EK_^#b  
    %   pair, and one row for every (R,THETA) pair. J;dFmZOk  
    % #4>F%_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike dGe  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yk/XfwQ5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "5K: "m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, r^)<Jy0|r  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized v},sWjv  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9`AQsZ2  
    % 1YxI q565  
    %   The Zernike functions are an orthogonal basis on the unit circle. M;R>]wP"V  
    %   They are used in disciplines such as astronomy, optics, and 2_Z6 0]  
    %   optometry to describe functions on a circular domain. _NFJm(X.  
    % Z/x~:u_  
    %   The following table lists the first 15 Zernike functions. 0'uj*Y{L  
    % FceT'  
    %       n    m    Zernike function           Normalization &0ra a  
    %       -------------------------------------------------- ,U}8(D~:  
    %       0    0    1                                 1 C'ZU .Y  
    %       1    1    r * cos(theta)                    2 Y i`.zm  
    %       1   -1    r * sin(theta)                    2 [Wc 73-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \N30SG ?o  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 4~4Hst#^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *O~D lf  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) uY,FugWbl  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) mwxJ#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vq}V0- <  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]CjODa  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) SW7%SX,xM  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ad`IgZ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .;'xm_Gw<  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tR3hbL$W  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Zh@\+1]  
    %       -------------------------------------------------- b~}}{fm&f  
    % 9YKEME+:  
    %   Example 1: "<n{/x(  
    % {<@~;iq  
    %       % Display the Zernike function Z(n=5,m=1) IF=rD-x  
    %       x = -1:0.01:1; IWkBq]Y  
    %       [X,Y] = meshgrid(x,x); ; OsN^   
    %       [theta,r] = cart2pol(X,Y); \ iFE,z  
    %       idx = r<=1; J0IK =Y  
    %       z = nan(size(X)); hY!G>d{J  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); dn Xc- <  
    %       figure aozk,{9-  
    %       pcolor(x,x,z), shading interp (&S v $L@  
    %       axis square, colorbar kQ +   
    %       title('Zernike function Z_5^1(r,\theta)') -}%zus5  
    % wZ^/-  
    %   Example 2: 0*q:p`OLw*  
    % UxW~yk  
    %       % Display the first 10 Zernike functions x K/`XY  
    %       x = -1:0.01:1; k(MQ:9'|  
    %       [X,Y] = meshgrid(x,x); m5S/T\,X  
    %       [theta,r] = cart2pol(X,Y); 2}NfR8 N  
    %       idx = r<=1; #xmUND`@  
    %       z = nan(size(X));  m ]\L1&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; bnlL-]]9z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ` F)Iv:;y,  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; IAfYlS#<yD  
    %       y = zernfun(n,m,r(idx),theta(idx)); Th8xh=F[  
    %       figure('Units','normalized') &5B+8>  
    %       for k = 1:10 7 ir T6O<.  
    %           z(idx) = y(:,k); 1xw},y6T2  
    %           subplot(4,7,Nplot(k)) 1yhx)m;f  
    %           pcolor(x,x,z), shading interp o` e~1  
    %           set(gca,'XTick',[],'YTick',[]) m'pihFR:f  
    %           axis square &rn,[w_F[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) q+K`+& @\  
    %       end 5+U~ZW0|+  
    % IflpM]  
    %   See also ZERNPOL, ZERNFUN2. `]%{0 Rx  
    dWI\VS9  
    %   Paul Fricker 11/13/2006 {S|uQgs6j  
    eN/Jb;W  
    m+o>`1>a  
    % Check and prepare the inputs: lB-Njr  
    % ----------------------------- {vaq,2_w  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 69_c,(M0  
        error('zernfun:NMvectors','N and M must be vectors.') MFC= oKD  
    end s#4 "f  
    ^!A{ 4NV  
    if length(n)~=length(m) b&LhydaJ  
        error('zernfun:NMlength','N and M must be the same length.') Va1|XQ<CL  
    end "MyYu}AD  
    4-m}W;igu  
    n = n(:); `aCcTs7~]p  
    m = m(:); QPBf++|  
    if any(mod(n-m,2)) C4b3ZcD2  
        error('zernfun:NMmultiplesof2', ... 1f}Dza9  
              'All N and M must differ by multiples of 2 (including 0).') V482V#BP  
    end er97&5  
    0py0zE6,,  
    if any(m>n) Cu0/TeEM  
        error('zernfun:MlessthanN', ... 9{+B l NZ  
              'Each M must be less than or equal to its corresponding N.') d@C93VYp  
    end RNm/&F1C$  
    /ZAEvdO*P  
    if any( r>1 | r<0 ) Orz Dr  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \wTW hr0  
    end ~V(WD;Mk  
    r=s7be  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zhFGMF1  
        error('zernfun:RTHvector','R and THETA must be vectors.') ll6~8PN  
    end A6-JV8^  
    IuRKj8J)o  
    r = r(:); e\\ I,  
    theta = theta(:); dD#A.C,Rz  
    length_r = length(r); w@hm>6j  
    if length_r~=length(theta)  M*%iMz  
        error('zernfun:RTHlength', ... qF>}"m  
              'The number of R- and THETA-values must be equal.') Cfa?LgSz  
    end {AJs pLcG  
    *ozeoX'5D  
    % Check normalization: ujHqw Rh  
    % -------------------- ~]}7|VN.}  
    if nargin==5 && ischar(nflag) ptX;-'j(  
        isnorm = strcmpi(nflag,'norm'); `^RpT]S  
        if ~isnorm 75gE>:f  
            error('zernfun:normalization','Unrecognized normalization flag.') M,NYF`;a  
        end ao Y "uT+  
    else 0&Zm3(}  
        isnorm = false; ]Rz]"JZ\S  
    end $n!saPpxS  
    =p$1v{L8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )fv0H&g  
    % Compute the Zernike Polynomials FhW\23OC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7n {uxE#U)  
    xoPpu  
    % Determine the required powers of r: @99@do |C  
    % ----------------------------------- {i3]3V"Xp  
    m_abs = abs(m); nT9B?P>  
    rpowers = []; ;ZB[g78%R%  
    for j = 1:length(n) 0zetOlFbO  
        rpowers = [rpowers m_abs(j):2:n(j)]; m%l\EE  
    end `9%@{Ryo  
    rpowers = unique(rpowers); zaa>]~g.  
    ?~hC.5  
    % Pre-compute the values of r raised to the required powers, c:M~!CXO  
    % and compile them in a matrix: o[0Cv*  
    % ----------------------------- Fd9ypZs  
    if rpowers(1)==0 Y0 Ta&TYZ0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?(4 =:o  
        rpowern = cat(2,rpowern{:}); #D&eov?  
        rpowern = [ones(length_r,1) rpowern]; NO8)XJ3s  
    else l>Z"y\l =  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c&J,O1){\  
        rpowern = cat(2,rpowern{:}); NvQN  
    end +.:- :  
    .sgP3Ah  
    % Compute the values of the polynomials: 5_9mA4gs@  
    % -------------------------------------- +\2{{~_z  
    y = zeros(length_r,length(n)); Wyd,7]'z)Z  
    for j = 1:length(n) 4DaLmQ2O  
        s = 0:(n(j)-m_abs(j))/2; f9?\Q'v8  
        pows = n(j):-2:m_abs(j); a^>0XXr}Y  
        for k = length(s):-1:1 1!~=8FTv  
            p = (1-2*mod(s(k),2))* ... |1uyJ?%B  
                       prod(2:(n(j)-s(k)))/              ... ?zM]p"M  
                       prod(2:s(k))/                     ... B ;@7  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k|'{$/ n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); M3!A?!BU  
            idx = (pows(k)==rpowers); by (xv0v;  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  v=R=K  
        end #41~`vq3  
         S=@.<gS  
        if isnorm 8m\* ~IX=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8GgZAu'X  
        end h(l4\)  
    end 5ro^<P0f**  
    % END: Compute the Zernike Polynomials W_8N?coM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FCgr  
    qwM71B!r  
    % Compute the Zernike functions: JTA65T{3  
    % ------------------------------ Nk*d=vj  
    idx_pos = m>0; -|YG**i/  
    idx_neg = m<0; L3/m}AH,  
    Fuq ;4UcbL  
    z = y; )O*\}6:S  
    if any(idx_pos) 4+"2K-]   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); GH[ATL  
    end eg!s[1[_  
    if any(idx_neg) lA>^k;+>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &c>%E%!"  
    end G<:_O-cPSv  
    K%iWUl;  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5argw+2s4$  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. *Cf5D6=Q  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 89n\$7Ff9  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive b$FK}D5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, !y_4.&C{  
    %   and THETA is a vector of angles.  R and THETA must have the same +guCTGD:  
    %   length.  The output Z is a matrix with one column for every P-value, v *icoj  
    %   and one row for every (R,THETA) pair. m-?hHd O  
    % <OgwA$abl%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Ql>bsr}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) P! cfe@;<4  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) /vgEDw  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 b:B+x6M  
    %   for all p. Uzh#z eZ`<  
    % a=_+8RyVQ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <tUl(q+ty  
    %   Zernike functions (order N<=7).  In some disciplines it is QrBb! .r  
    %   traditional to label the first 36 functions using a single mode Ob!NC&  
    %   number P instead of separate numbers for the order N and azimuthal OTe h8h  
    %   frequency M. t?Ku6Z'  
    % 65]>6D43  
    %   Example: ~aBf.  
    % @=<B8VPJd  
    %       % Display the first 16 Zernike functions d!57`bVOd  
    %       x = -1:0.01:1; Q&5s,)w-  
    %       [X,Y] = meshgrid(x,x); /aV;EkyO,  
    %       [theta,r] = cart2pol(X,Y); VEsIhjQ  
    %       idx = r<=1; ?i{/iH~Sf  
    %       p = 0:15; 4yK{(!&i+  
    %       z = nan(size(X)); s@ 02 ?+/  
    %       y = zernfun2(p,r(idx),theta(idx)); WU$l@:Yo  
    %       figure('Units','normalized') E4N/or  
    %       for k = 1:length(p) w`YN#G  
    %           z(idx) = y(:,k); M "\Iw'5$  
    %           subplot(4,4,k) q!;u4J  
    %           pcolor(x,x,z), shading interp :_8Nf1B+T  
    %           set(gca,'XTick',[],'YTick',[]) F:7 d}Jx  
    %           axis square jWL%*dJrN  
    %           title(['Z_{' num2str(p(k)) '}']) ]A&pX AM  
    %       end Y;)l  
    % icK>|   
    %   See also ZERNPOL, ZERNFUN. $sxRRe m{?  
    y g:&cIr,  
    %   Paul Fricker 11/13/2006 8AVtUU  
    T{So 2@_&  
    *$]50 \W  
    % Check and prepare the inputs: N&yr?b'!-*  
    % ----------------------------- "|Gr3sD  
    if min(size(p))~=1 1'B&e)  
        error('zernfun2:Pvector','Input P must be vector.') =f?vpKq40  
    end 7!F -.kG  
    D wfw|h  
    if any(p)>35 V_3K((P6  
        error('zernfun2:P36', ... 8,@0~2fz#  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... y[{}124  
               '(P = 0 to 35).']) CzDV^Iv;Q{  
    end @?JFqwq!  
    O70#lvsM;  
    % Get the order and frequency corresonding to the function number: !$NQF/Ol  
    % ---------------------------------------------------------------- ;w7s>(ITZ  
    p = p(:); &g"`J`  
    n = ceil((-3+sqrt(9+8*p))/2); }  fa  
    m = 2*p - n.*(n+2); <2af&-EG s  
    Q h{P>}  
    % Pass the inputs to the function ZERNFUN: o<gK"P  
    % ---------------------------------------- TKp2C5bX  
    switch nargin F'-,Ksn  
        case 3 $[g#P^  
            z = zernfun(n,m,r,theta); y?V^S;}&]  
        case 4 'gtcy  
            z = zernfun(n,m,r,theta,nflag); m[CyvcF*u  
        otherwise <0!<T+JQ  
            error('zernfun2:nargin','Incorrect number of inputs.') Wl7S<>hg4  
    end LAFxeo  
    ,8.$!Zia  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) g[*"LOw  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. LzxO=+=9!q  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Ob{Tn@  
    %   order N and frequency M, evaluated at R.  N is a vector of 6RG63+G  
    %   positive integers (including 0), and M is a vector with the vjzG H*  
    %   same number of elements as N.  Each element k of M must be a  `-JVz{z  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) W] WH4.y  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 9 p,O>I  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix AB{zkEuK  
    %   with one column for every (N,M) pair, and one row for every zwU1(?]I{  
    %   element in R.  Xr:s-L  
    % xs&xcR R"  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- dBwoAq`'  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is uq/Fapl  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to :`4F0  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ~MP |L?my  
    %   for all [n,m]. artn _  
    % FUf.3@}  
    %   The radial Zernike polynomials are the radial portion of the 4K\o2p?4  
    %   Zernike functions, which are an orthogonal basis on the unit 7n?yf_ je  
    %   circle.  The series representation of the radial Zernike KnKf8c  
    %   polynomials is 9Z }<H/q  
    % 7l ,f  
    %          (n-m)/2 EDuH+/:n  
    %            __ w5^k84vye  
    %    m      \       s                                          n-2s  +hKs  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r /M'd$k"0z  
    %    n      s=0 _Hd|y  
    % Dw.I<fns^B  
    %   The following table shows the first 12 polynomials. 9 *uK]/c  
    % *o38f>aJl  
    %       n    m    Zernike polynomial    Normalization %% /8B  
    %       --------------------------------------------- TtF+~K  
    %       0    0    1                        sqrt(2) yZ[=Y  
    %       1    1    r                           2 icX4n  
    %       2    0    2*r^2 - 1                sqrt(6) |N^"?bSt  
    %       2    2    r^2                      sqrt(6) o='A1P  
    %       3    1    3*r^3 - 2*r              sqrt(8) Faa>bc~E  
    %       3    3    r^3                      sqrt(8) 4U_+NC>b  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) BU4IN$d0Po  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ^{{a v?h  
    %       4    4    r^4                      sqrt(10) }O>4XFj  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) j!y9E~Zz  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1C<d^D_!p  
    %       5    5    r^5                      sqrt(12) YU"/p|!1  
    %       --------------------------------------------- SO.u0!  
    % _5H~1G%q  
    %   Example: M PDRMGR@i  
    % 7#d:TXS  
    %       % Display three example Zernike radial polynomials Q"B8l[  
    %       r = 0:0.01:1; QeC\(4?  
    %       n = [3 2 5]; 7y&6q`y E  
    %       m = [1 2 1]; z HvE_ -  
    %       z = zernpol(n,m,r); $,J0) ~  
    %       figure iCA-X\E  
    %       plot(r,z) ;Ce?f=4  
    %       grid on /Jc{aw  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') &A*E)T#>#  
    % m[^ )Q9o}  
    %   See also ZERNFUN, ZERNFUN2. Zs{7km  
    >{q+MWK  
    % A note on the algorithm. 1Ml<>  
    % ------------------------ FZn1$_Svr  
    % The radial Zernike polynomials are computed using the series &6C]| 13;  
    % representation shown in the Help section above. For many special vPGUE`!D+  
    % functions, direct evaluation using the series representation can >zDQt7+g;  
    % produce poor numerical results (floating point errors), because (oR~%2K  
    % the summation often involves computing small differences between ?P-O4  
    % large successive terms in the series. (In such cases, the functions u<uc"KY=  
    % are often evaluated using alternative methods such as recurrence YPGzI]\  
    % relations: see the Legendre functions, for example). For the Zernike k2$pcR,WM  
    % polynomials, however, this problem does not arise, because the u6F>o+Td)  
    % polynomials are evaluated over the finite domain r = (0,1), and bL`\l!qQx;  
    % because the coefficients for a given polynomial are generally all #^r-D[/m  
    % of similar magnitude. ;Z"MO@9:  
    % qqe"hruFJ  
    % ZERNPOL has been written using a vectorized implementation: multiple ?gU raSFU  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ,*U-o}{8C?  
    % values can be passed as inputs) for a vector of points R.  To achieve ;akW i]  
    % this vectorization most efficiently, the algorithm in ZERNPOL S*=^I2;  
    % involves pre-determining all the powers p of R that are required to 1HKA`]D"p  
    % compute the outputs, and then compiling the {R^p} into a single ;l _b.z0^6  
    % matrix.  This avoids any redundant computation of the R^p, and m3Wc};yE*Q  
    % minimizes the sizes of certain intermediate variables. 0RtZTCGO  
    % \Xmp lG:  
    %   Paul Fricker 11/13/2006 ,hu@V\SKv  
    Nwt[)\W `  
    ] 1pIIX}  
    % Check and prepare the inputs: u9|Eos i  
    % ----------------------------- vT0Op e6m  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G#e]J;   
        error('zernpol:NMvectors','N and M must be vectors.') 8^+|I,  
    end x%r$/=  
    nvf5a-C+q  
    if length(n)~=length(m) JyTETf,y  
        error('zernpol:NMlength','N and M must be the same length.') Ycm.qud ?  
    end '%t$m f!nV  
    @,e o*  
    n = n(:); 2<5LQr  
    m = m(:); 8)eRm{  
    length_n = length(n); |(*btdqy3  
    Z(c SM  
    if any(mod(n-m,2)) rhQ+ylt8I  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') #*.4Jv<R  
    end Z(tJd ,  
    Q2Ey RFT  
    if any(m<0) -s2)!Iko&  
        error('zernpol:Mpositive','All M must be positive.') -XL? n/M  
    end (^FMm1@T  
    ?m2FN< S  
    if any(m>n) d*Su c  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') [&*irk  
    end d+v| &yN  
    yN{**?b  
    if any( r>1 | r<0 ) *~6]IWN`  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') NAE |iyw  
    end 9 c9$cnQ  
    hfLe<,  
    if ~any(size(r)==1) g]HxPq+O  
        error('zernpol:Rvector','R must be a vector.') ~FYC'd  
    end flqr["czwK  
    D9NRM;v  
    r = r(:); 9NVtvBA  
    length_r = length(r); 89D`!`Ah]  
    !gLJBp  
    if nargin==4 /];N1  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); KYB3n85 1  
        if ~isnorm W`_Wi*z4  
            error('zernpol:normalization','Unrecognized normalization flag.') A@lM =   
        end (AZneK :*  
    else ?:60lCqj  
        isnorm = false; g~K-'Nw  
    end UV;I6]$}A7  
    ( zm!_~1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~oSA&v4V  
    % Compute the Zernike Polynomials i=b'_SZ '  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |AvsT{2  
     !vl1#@  
    % Determine the required powers of r: =r]_$r%gR  
    % ----------------------------------- aMydeTCHi  
    rpowers = []; 7eM6 B#rI  
    for j = 1:length(n) i`CNgScF>  
        rpowers = [rpowers m(j):2:n(j)]; 7SkW!5  
    end 6I=d0m.io  
    rpowers = unique(rpowers); kp[&SKU c  
    =u9e5n  
    % Pre-compute the values of r raised to the required powers, S?v;+3TG  
    % and compile them in a matrix: QrmGrRH  
    % ----------------------------- ]OKKR/:  
    if rpowers(1)==0 aF"PB h=  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U/U_q-z]  
        rpowern = cat(2,rpowern{:}); E]a,2{&8<  
        rpowern = [ones(length_r,1) rpowern]; su\Lxv  
    else O[1Q#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K~UT@,CS60  
        rpowern = cat(2,rpowern{:}); 7[kDc-  
    end 9Y# vKb{>  
    L-|7 &  
    % Compute the values of the polynomials: ^JIs:\ g<<  
    % -------------------------------------- !h1|B7N  
    z = zeros(length_r,length_n); P1TTaYu  
    for j = 1:length_n A#~CZQY^$  
        s = 0:(n(j)-m(j))/2; P6^\*xkMr  
        pows = n(j):-2:m(j); 9~f RYA*  
        for k = length(s):-1:1 V^G+_#@,,  
            p = (1-2*mod(s(k),2))* ... u`+kH8#  
                       prod(2:(n(j)-s(k)))/          ... ,5*<C'9  
                       prod(2:s(k))/                 ... %tkL<e  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... K^AIqL8  
                       prod(2:((n(j)+m(j))/2-s(k))); S|RUc}(  
            idx = (pows(k)==rpowers); 3=L5Y/  
            z(:,j) = z(:,j) + p*rpowern(:,idx); zBrqh9%8e  
        end EJ:2]!O  
         gavf$be  
        if isnorm }`$({\^w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); , YE+k`:  
        end +>mU4Fwp  
    end 1G,'  
    :,^x?'HK  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  \We\*7^E  
    ]%PQ3MT.  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 T~rPpi&  
    !5P\5WF~Y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)