切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11118阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 JSX-iHhW  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! :3WrRT,'L  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 xu9K\/{7  
    function z = zernfun(n,m,r,theta,nflag) v|Y:'5`V  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |uT|(:i84,  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _E0XUT!rA  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ^PDz"L<*  
    %   unit circle.  N is a vector of positive integers (including 0), and ?K]Cs&E4  
    %   M is a vector with the same number of elements as N.  Each element )U0`?kD  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) O ;,BzA-n  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]hY'A>4Uq  
    %   and THETA is a vector of angles.  R and THETA must have the same 4D(5WJ&  
    %   length.  The output Z is a matrix with one column for every (N,M) yn=BO`sgW  
    %   pair, and one row for every (R,THETA) pair. LbX>@2(&  
    % @H%)!f]zWt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike E`68Z/%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), JL0>-kg  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >*/\Pg6^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A2 'W  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized :u$nH9kwv  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ph*9,\c8  
    % Ni]V)wGE;  
    %   The Zernike functions are an orthogonal basis on the unit circle. aH7i$U&  
    %   They are used in disciplines such as astronomy, optics, and +o+e*B7Eh  
    %   optometry to describe functions on a circular domain. rN0G|  
    % nT.i|(xd.  
    %   The following table lists the first 15 Zernike functions. LLp/ SWe  
    % GZY8%.1{"a  
    %       n    m    Zernike function           Normalization cm`Jr#kl{  
    %       -------------------------------------------------- epw*Px  
    %       0    0    1                                 1 o@SL0H-6|  
    %       1    1    r * cos(theta)                    2 Q+L;k R  
    %       1   -1    r * sin(theta)                    2 CJ+/j=i;~c  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @Z9X^Y+u^h  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B",5"'id  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) CG@3z@*?.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) GQ=Zp3[  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) iveJh2!#<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &sh5|5EC  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6&jW.G8/  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) KVQ^-^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kn2s,%\`<p  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) )-yJKmV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @ \{L%y%a0  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Da.eVU;  
    %       -------------------------------------------------- fC6zDTis8A  
    % QH~;B[->  
    %   Example 1: S$O+p&!X  
    % tOUpK20q.@  
    %       % Display the Zernike function Z(n=5,m=1) QH z3  
    %       x = -1:0.01:1; %H)^k${  
    %       [X,Y] = meshgrid(x,x); Vf28R,~m  
    %       [theta,r] = cart2pol(X,Y); 7 'T3W c  
    %       idx = r<=1; DxuT23. (  
    %       z = nan(size(X)); Uk@du7P1k  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4oxAC; L  
    %       figure $7J9Yzp?L  
    %       pcolor(x,x,z), shading interp o[$~  
    %       axis square, colorbar jh7-Fl`  
    %       title('Zernike function Z_5^1(r,\theta)') A kMP)\Q  
    % 6z-ZJ|?  
    %   Example 2: gX29c  
    % ,|5|aVfh  
    %       % Display the first 10 Zernike functions @aQ};~  
    %       x = -1:0.01:1; (!cG*FrN  
    %       [X,Y] = meshgrid(x,x); =&%}p[ 3g  
    %       [theta,r] = cart2pol(X,Y); R y47Fze  
    %       idx = r<=1; &A/k{(.XP  
    %       z = nan(size(X));  %XF>k)  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "2l$}G  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H$D),s gv  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2Dc2uU@`r  
    %       y = zernfun(n,m,r(idx),theta(idx)); 38<Z=#S  
    %       figure('Units','normalized') azK7kM~  
    %       for k = 1:10 K_SURTys  
    %           z(idx) = y(:,k); -hd@<+;E  
    %           subplot(4,7,Nplot(k)) fBj-R~;0  
    %           pcolor(x,x,z), shading interp *'i9  
    %           set(gca,'XTick',[],'YTick',[]) RpmOg  
    %           axis square e]9Z]a2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $O'IbA  
    %       end 0|i3#G_~  
    % K*!qt(D&  
    %   See also ZERNPOL, ZERNFUN2. b((> ?=hh  
    I$0O4  
    %   Paul Fricker 11/13/2006 nrEG4X9  
    =Ch^;Wyt  
    2gasH11M  
    % Check and prepare the inputs: @PL.7FM<v  
    % ----------------------------- `erKHZ]S  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +nAbcBJAl  
        error('zernfun:NMvectors','N and M must be vectors.') f (Su  
    end @ajt D-_2  
    VY#nSF`  
    if length(n)~=length(m) ;2y4^  
        error('zernfun:NMlength','N and M must be the same length.') luWr.<1  
    end 7oy}<9  
    TSKT6_IJw  
    n = n(:); {D$5M/$  
    m = m(:); @sdHB ./  
    if any(mod(n-m,2)) dZWO6k9[H  
        error('zernfun:NMmultiplesof2', ... N^Hj%5  
              'All N and M must differ by multiples of 2 (including 0).') ''Y'ZsQ;  
    end v ^R:XdH  
    xqQLri}  
    if any(m>n) >vPv 4e7&3  
        error('zernfun:MlessthanN', ... yM2}J s C  
              'Each M must be less than or equal to its corresponding N.') #3knKBH  
    end 2MU$OI0|  
    C0gY  
    if any( r>1 | r<0 ) 91#rP|88;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') #E$*PAB  
    end 71+ bn  
    0-Ga2Go9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &cp `? k  
        error('zernfun:RTHvector','R and THETA must be vectors.') n&%0G2m:  
    end ^wIg|Gc  
    fW w+'xF!  
    r = r(:); Y|!m  
    theta = theta(:); ucYweXsO3  
    length_r = length(r); hiKyU! )Hv  
    if length_r~=length(theta) 5AbY 59  
        error('zernfun:RTHlength', ... nw-%!}Ot"  
              'The number of R- and THETA-values must be equal.') at+Nd K  
    end ^M)+2@6  
    `iN H`:[w  
    % Check normalization: 0N87G}Xu  
    % -------------------- .% 79(r^  
    if nargin==5 && ischar(nflag) {)n@Rq\=v  
        isnorm = strcmpi(nflag,'norm'); X#>:9  
        if ~isnorm M?_7*o]!  
            error('zernfun:normalization','Unrecognized normalization flag.') >{)\GK0i 7  
        end U4N H9-U'  
    else r"9hpZH  
        isnorm = false; [XhG7Ly  
    end b]4\$rW7  
    YU`}T<;bg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f>iDq C4  
    % Compute the Zernike Polynomials 7?;ZE:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c'INmc I|  
    BJgHel+N  
    % Determine the required powers of r: `\r <3?  
    % ----------------------------------- fcTg/EXn  
    m_abs = abs(m); $|tk?Sps  
    rpowers = []; ,<BV5~T.|  
    for j = 1:length(n) Iw4[D#o  
        rpowers = [rpowers m_abs(j):2:n(j)]; A*~BkvPr  
    end 5\Rg%Ezl  
    rpowers = unique(rpowers); pr[V*C/  
    %O$=%"D6  
    % Pre-compute the values of r raised to the required powers, :*ZijN*{)$  
    % and compile them in a matrix: +|--}iE5n  
    % ----------------------------- P(UY}oU  
    if rpowers(1)==0 =q(?ALGc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H;seT XL  
        rpowern = cat(2,rpowern{:}); d`,z4 _  
        rpowern = [ones(length_r,1) rpowern];  Q@!XVQx4  
    else )3WUyD*UZN  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #w@FBFr@  
        rpowern = cat(2,rpowern{:});  }}Zg/(  
    end )KY4BBc  
    HB,?}S#TP  
    % Compute the values of the polynomials: EbeSl+iMx_  
    % -------------------------------------- v|KGzQx$.*  
    y = zeros(length_r,length(n)); ;H3~r^>c  
    for j = 1:length(n) rd;E /:`5  
        s = 0:(n(j)-m_abs(j))/2; f _Hh"Vh  
        pows = n(j):-2:m_abs(j); `oTV)J'~  
        for k = length(s):-1:1 P!SsMo6n  
            p = (1-2*mod(s(k),2))* ... "=ki_1/P  
                       prod(2:(n(j)-s(k)))/              ... CkRilS<  
                       prod(2:s(k))/                     ... 1(pv 3  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +k h Tl:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 29l bOi  
            idx = (pows(k)==rpowers); ^ E_chx-e}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _f~$iY  
        end JAM]neKiX  
         *&tTiv{^  
        if isnorm 3mHP=)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Vry*=X &Q  
        end njaKU?6%d2  
    end XSCcumde!  
    % END: Compute the Zernike Polynomials ^ZIs>.'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P 'o]#Az  
    /'zXb_R,$  
    % Compute the Zernike functions: -Mf-8zw8G  
    % ------------------------------ =4sx(<  
    idx_pos = m>0; |S~$IFN4  
    idx_neg = m<0; 3ZN\F  
    d+vAm3.Dg  
    z = y; K%W;-W*'  
    if any(idx_pos) )H`V\ H[0P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \=P(?!v  
    end i8KoJY"  
    if any(idx_neg) &^w "  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,xR u74  
    end H )>3c1  
    t>OEzUd9  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :P ]D`b6p  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. cL!A,+S[_  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated GIT"J}b}  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $-|$4lrS  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, }I MV@z B  
    %   and THETA is a vector of angles.  R and THETA must have the same 9 ~$E+ m(  
    %   length.  The output Z is a matrix with one column for every P-value, :>0,MO.^~K  
    %   and one row for every (R,THETA) pair. .XkD2~;  
    % *wsZ aQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike u.G aMl4 (  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) p] N/]2rR  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 4"3.7.<Q`  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 '/9q7?[E!  
    %   for all p. KX3A|  
    % v,8Q9<=O  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 x%O6/rl  
    %   Zernike functions (order N<=7).  In some disciplines it is X&| R\v=}  
    %   traditional to label the first 36 functions using a single mode lFduX D  
    %   number P instead of separate numbers for the order N and azimuthal )Z|G6H`c3  
    %   frequency M. SjY|aW+wAL  
    % FC~%G&K/q^  
    %   Example: S{v]B_N[M  
    % KK5_;<  
    %       % Display the first 16 Zernike functions Ryygq,>VD.  
    %       x = -1:0.01:1; A|]#b?-  
    %       [X,Y] = meshgrid(x,x); _~D#?cFY6  
    %       [theta,r] = cart2pol(X,Y); -rjQ^ze  
    %       idx = r<=1; Jf0i$  
    %       p = 0:15; e ky1}  
    %       z = nan(size(X)); l!KPgRw  
    %       y = zernfun2(p,r(idx),theta(idx)); [k(b<'  
    %       figure('Units','normalized') B[6k [Vs  
    %       for k = 1:length(p) 6`G8UDK>F  
    %           z(idx) = y(:,k); h{H*k#>  
    %           subplot(4,4,k) #U7pT!F x  
    %           pcolor(x,x,z), shading interp 4eG\>#5  
    %           set(gca,'XTick',[],'YTick',[]) @$j u Qm  
    %           axis square Pa+_{9  
    %           title(['Z_{' num2str(p(k)) '}']) h:U#F )  
    %       end l(-"rE  
    % $uJc/  
    %   See also ZERNPOL, ZERNFUN. >T\@j\X4  
    D^V)$ME  
    %   Paul Fricker 11/13/2006 S("dU`T?  
    $+ N~Fa  
    { o5^nd  
    % Check and prepare the inputs: nHH FHnFf  
    % -----------------------------  +Mhk<A[s  
    if min(size(p))~=1 nT +ZSr  
        error('zernfun2:Pvector','Input P must be vector.') /#&jF:h  
    end Z h9D^ I  
    olA+B  
    if any(p)>35 S-ZN}N{,6  
        error('zernfun2:P36', ... JZ*.;}"  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... rly%+B `/  
               '(P = 0 to 35).']) 5XzsqeG|  
    end z*q+5p@~  
    L<3+D  
    % Get the order and frequency corresonding to the function number: rnQ_0d  
    % ---------------------------------------------------------------- CY{!BV'  
    p = p(:); VCiq'LOR,<  
    n = ceil((-3+sqrt(9+8*p))/2); .T ,HtHe  
    m = 2*p - n.*(n+2); c3ru4o*K  
    Lccy~2v>  
    % Pass the inputs to the function ZERNFUN: @Tq-3Um  
    % ---------------------------------------- HC1<zW[  
    switch nargin sLJ]N0t  
        case 3 afna7TlS  
            z = zernfun(n,m,r,theta); ~k?wnw  
        case 4 `Mbs6AJ  
            z = zernfun(n,m,r,theta,nflag); X%&7-PO  
        otherwise #gT"G18/!  
            error('zernfun2:nargin','Incorrect number of inputs.') B:0oT  
    end Oq,@{V@)9k  
    K|$ c#X  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }!>\Ja<\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Lk@+iHf  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :t9![y[=|  
    %   order N and frequency M, evaluated at R.  N is a vector of `w`N5 !  
    %   positive integers (including 0), and M is a vector with the ~<O.Gu&"R  
    %   same number of elements as N.  Each element k of M must be a TOKt{`2}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) U<=d@knH  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is X=Ar"Dx}}s  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix DNqV]N_W  
    %   with one column for every (N,M) pair, and one row for every Q&w_kz.  
    %   element in R. DEhR\Z!  
    % %e0X-tXcmX  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- UR=s=G|  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ';8 ,RTe  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to W94u7a  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =T26vu   
    %   for all [n,m]. eq8faC5  
    % bma.RCyY<  
    %   The radial Zernike polynomials are the radial portion of the 1@ &J"*  
    %   Zernike functions, which are an orthogonal basis on the unit mwsBj)  
    %   circle.  The series representation of the radial Zernike RMpiwO^  
    %   polynomials is AB,(%JT/2{  
    % @NL<v-t  
    %          (n-m)/2 <T)0I1S  
    %            __ 4g2`[<S  
    %    m      \       s                                          n-2s Mt`LOdiC_  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1y6<gptx  
    %    n      s=0 | Z2_W/  
    % z;e@m2.IM  
    %   The following table shows the first 12 polynomials. 2Q]W  
    % ~vA8I#.  
    %       n    m    Zernike polynomial    Normalization (jhi<eV  
    %       --------------------------------------------- 0-{E% k  
    %       0    0    1                        sqrt(2) zDtC]y'  
    %       1    1    r                           2 _z%~ m2SP  
    %       2    0    2*r^2 - 1                sqrt(6) 4guR8 elM  
    %       2    2    r^2                      sqrt(6) .E+O,@?<  
    %       3    1    3*r^3 - 2*r              sqrt(8) C@t,oDU#  
    %       3    3    r^3                      sqrt(8) qN' 3{jiPL  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /F"eqMN  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Opg_-Bf  
    %       4    4    r^4                      sqrt(10) a3w6&e`  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "q=ss:(  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) bc~WJ+  
    %       5    5    r^5                      sqrt(12) }Rh%bf7,  
    %       --------------------------------------------- CMbID1M3  
    % 1,$"'lKwt  
    %   Example: [_3&  
    % nsXG@CS:  
    %       % Display three example Zernike radial polynomials 8rlf9m  
    %       r = 0:0.01:1; DCLu^:|C"  
    %       n = [3 2 5]; 4VeT]`C^h  
    %       m = [1 2 1]; %O#zE-H"  
    %       z = zernpol(n,m,r); OvwoU=u  
    %       figure FNOsw\Bo  
    %       plot(r,z) /=AFle2(  
    %       grid on oH v.EO  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ik)u/r DW  
    % 1i.3P$F  
    %   See also ZERNFUN, ZERNFUN2.  >Z3>  
    nVgvn2N/  
    % A note on the algorithm. kb"Fw:0  
    % ------------------------ &J|I&p   
    % The radial Zernike polynomials are computed using the series S *J{  
    % representation shown in the Help section above. For many special "[fPzIP9  
    % functions, direct evaluation using the series representation can R<Mp$K^b  
    % produce poor numerical results (floating point errors), because p$x>I3C(\  
    % the summation often involves computing small differences between No[9m_  
    % large successive terms in the series. (In such cases, the functions NKB["+S<  
    % are often evaluated using alternative methods such as recurrence h`O$L_Z  
    % relations: see the Legendre functions, for example). For the Zernike TNN@G~@cm  
    % polynomials, however, this problem does not arise, because the g@M5_I(W  
    % polynomials are evaluated over the finite domain r = (0,1), and D$H&^,?N  
    % because the coefficients for a given polynomial are generally all U,T#{  
    % of similar magnitude. "M2WK6?O5  
    % &FOq c  
    % ZERNPOL has been written using a vectorized implementation: multiple Lk$Mfm5"M  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] mC\<fo-u  
    % values can be passed as inputs) for a vector of points R.  To achieve gp 11/ .  
    % this vectorization most efficiently, the algorithm in ZERNPOL ;@gI*i N"  
    % involves pre-determining all the powers p of R that are required to bJ"2|VNH(  
    % compute the outputs, and then compiling the {R^p} into a single |E$q S)y  
    % matrix.  This avoids any redundant computation of the R^p, and RL]$"  
    % minimizes the sizes of certain intermediate variables. BdU .;_K  
    % l*w'  O  
    %   Paul Fricker 11/13/2006 s m G?y~  
    5eF tcK  
    lFIaC}  
    % Check and prepare the inputs: i,Z-UA|f=T  
    % ----------------------------- #hs&)6S f  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G)b:UJa"  
        error('zernpol:NMvectors','N and M must be vectors.') hv>Xr=RE  
    end g[@0H=  
    UA6 C/  
    if length(n)~=length(m) A0;{$/  
        error('zernpol:NMlength','N and M must be the same length.') &dj/Dq@  
    end "d~<{(:N^  
    ^!k_"C)B  
    n = n(:); ']c;$wP  
    m = m(:); AA ~7"2e  
    length_n = length(n); sRcS-Yw[S  
    [J eq ?X9  
    if any(mod(n-m,2)) jw\4`NZ]  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Rc D5X{qS#  
    end P92pQ_W  
    [5-Ik T0  
    if any(m<0)  vmfFR  
        error('zernpol:Mpositive','All M must be positive.') ?;5/"/i  
    end }7{( o-  
    :nqDX  
    if any(m>n) |FlB#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') G\k&s F  
    end o@j!JI&  
    `-b{|a J  
    if any( r>1 | r<0 ) 'aD"v>  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') {(F}SF{  
    end Oo(xYy  
    gwg~4:W  
    if ~any(size(r)==1) .9g :-hv  
        error('zernpol:Rvector','R must be a vector.') .Q@]+&`|}i  
    end &pz`gna  
    <.BY=z=H  
    r = r(:); /L! =##  
    length_r = length(r); C deV3  
    5OO XCtIKf  
    if nargin==4 RASk=B  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); !&@t  
        if ~isnorm P&Xy6@%[Z  
            error('zernpol:normalization','Unrecognized normalization flag.') |@R/JGB^  
        end R&P^rrC@B5  
    else 9M|#X1r{%{  
        isnorm = false; 3y:),;|5  
    end [6.<#_~{  
    ) 54cG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7pep\  
    % Compute the Zernike Polynomials r"x}=# b!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7+[L6q/K  
    ]:?hU^H]<  
    % Determine the required powers of r: Sw[*1C8  
    % ----------------------------------- YxU->Wi]G  
    rpowers = []; [,~;n@jz  
    for j = 1:length(n) tI9p2!  
        rpowers = [rpowers m(j):2:n(j)]; yC|odX#  
    end =ty{ugM<  
    rpowers = unique(rpowers); <FZ*'F*M  
    o(3OChH  
    % Pre-compute the values of r raised to the required powers, v Oo^H  
    % and compile them in a matrix: MfFmJ7>Bg  
    % ----------------------------- d] E.F64{  
    if rpowers(1)==0 2U+Fa t@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W7~OU(}[`  
        rpowern = cat(2,rpowern{:}); }ri7@HCY4  
        rpowern = [ones(length_r,1) rpowern]; NcSi%]  
    else 6Ol)SQE,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j \ #y  
        rpowern = cat(2,rpowern{:}); n4+ ^f~Y  
    end =1O;,8`  
    +tYskx/  
    % Compute the values of the polynomials: Di$++T8"  
    % -------------------------------------- 4Xv."L  
    z = zeros(length_r,length_n); QNj6ETB-d  
    for j = 1:length_n ukD:4s v  
        s = 0:(n(j)-m(j))/2; 0? KvR``Aj  
        pows = n(j):-2:m(j); [>QzT"=  
        for k = length(s):-1:1  .^rs VNG  
            p = (1-2*mod(s(k),2))* ... }72+i  
                       prod(2:(n(j)-s(k)))/          ... 9Z3Y,`R,  
                       prod(2:s(k))/                 ... MP Q?Q]'  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... A_J!VXq  
                       prod(2:((n(j)+m(j))/2-s(k))); 8}Maj  
            idx = (pows(k)==rpowers); }~<9*M-P  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Y#U0g|UDn  
        end kH62#[J)yM  
         7V~ gqum  
        if isnorm \ERHnh  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); R}OjSiS\  
        end dW|S\S'&  
    end 8&#)}A}x  
    eGbjk~,f'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  {E+o+2L  
    Fj~,>   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^;]Q,*Q  
    y&$v@]t1  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)