非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 M1eM^m8U
function z = zernfun(n,m,r,theta,nflag) R=C+]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. POQ4&ChA
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G)gPL]C0
% and angular frequency M, evaluated at positions (R,THETA) on the #TIlM]5%
% unit circle. N is a vector of positive integers (including 0), and dF^`6-K1
% M is a vector with the same number of elements as N. Each element *>T@3G.{Rm
% k of M must be a positive integer, with possible values M(k) = -N(k) o;v_vCLO
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 2U3WH.o
% and THETA is a vector of angles. R and THETA must have the same #;\tgUQ
% length. The output Z is a matrix with one column for every (N,M) SpMHq_MLM
% pair, and one row for every (R,THETA) pair. 0BN=>]V~j7
% -e.ygiK.`S
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,[u.5vC
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &ZJ$V
% with delta(m,0) the Kronecker delta, is chosen so that the integral ]eI|_O^u
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Gdr7d
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8ZNwo
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Qv@)WJ="-0
% [?n}?0
% The Zernike functions are an orthogonal basis on the unit circle. fK4NmdTV
% They are used in disciplines such as astronomy, optics, and J6J;
!~>_
% optometry to describe functions on a circular domain. 1ifPc5j}
% |Gt]V`4
% The following table lists the first 15 Zernike functions. }^PdW3O*m,
% %`j2?rn
% n m Zernike function Normalization (y?`|=G-xT
% -------------------------------------------------- vl5r~F
% 0 0 1 1 8cbgP$X
% 1 1 r * cos(theta) 2 41o~5:&
% 1 -1 r * sin(theta) 2 lsOZ%p%fV
% 2 -2 r^2 * cos(2*theta) sqrt(6) b$}@0
% 2 0 (2*r^2 - 1) sqrt(3) -l$-\(,M`#
% 2 2 r^2 * sin(2*theta) sqrt(6) #+;0=6+SM
% 3 -3 r^3 * cos(3*theta) sqrt(8) #.<(/D+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ig?Tj4kD
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 1y.!x~Pi,
% 3 3 r^3 * sin(3*theta) sqrt(8) (ChL$!x
% 4 -4 r^4 * cos(4*theta) sqrt(10) =mh)b]].4\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k^\>=JTq=
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) vH vwH
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bdr!|WZ
% 4 4 r^4 * sin(4*theta) sqrt(10) 8yCQWDE}
% -------------------------------------------------- Zc*gRC
% {pEbi)CF,}
% Example 1: oBzjEv
% E#,n.U>#)
% % Display the Zernike function Z(n=5,m=1) zbP#y~[
% x = -1:0.01:1; !S[7IBk%
% [X,Y] = meshgrid(x,x); d=:&tOCg2
% [theta,r] = cart2pol(X,Y); G 8F43!<
% idx = r<=1; )-d&XN7
% z = nan(size(X)); N2`u
]*"0
% z(idx) = zernfun(5,1,r(idx),theta(idx)); M2y"M ,k4
% figure }P"JP[#E\
% pcolor(x,x,z), shading interp -W XZOdUjs
% axis square, colorbar AME6Zu3Y
% title('Zernike function Z_5^1(r,\theta)') ;Z}V}B
% _z \PVTT
% Example 2: oF#]<Z\
% 6IC/~Woghx
% % Display the first 10 Zernike functions Ov9kD0S
% x = -1:0.01:1; &B>YiA
% [X,Y] = meshgrid(x,x); Q2ky|
% [theta,r] = cart2pol(X,Y); |%-:qk4rG
% idx = r<=1; s~Od(,K
% z = nan(size(X)); 6"U)d7^
% n = [0 1 1 2 2 2 3 3 3 3]; [)83X\CO
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; X8=sk
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7=x]p
% y = zernfun(n,m,r(idx),theta(idx)); E cW$'>^
% figure('Units','normalized') zq&,KZ
% for k = 1:10 ~85Pgb<
% z(idx) = y(:,k); p*Hbc|?{Q&
% subplot(4,7,Nplot(k)) ZCS{D
% pcolor(x,x,z), shading interp p;m2RHYF
% set(gca,'XTick',[],'YTick',[]) x?MSHOia`P
% axis square ckPI^0A!
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _<1uO=km6
% end . ;q4<_
% 0`dMT>&I
% See also ZERNPOL, ZERNFUN2. B?)=d,E
GwaU7[6
% Paul Fricker 11/13/2006 F,-S&d
ghd*EXrF
H
&r
Lg/UEV-
% Check and prepare the inputs: |KxFiH
% ----------------------------- B!cg)Y?.bd
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uM<6][^`
error('zernfun:NMvectors','N and M must be vectors.') -O-qEQd
end X#*|_(^
Q1?G7g]N
if length(n)~=length(m) .OC{,f+
error('zernfun:NMlength','N and M must be the same length.') #]!0$z|Z
end &18CCp\3)c
XABI2Ex
n = n(:); -6KGQc}U
m = m(:); @fWmz,Ngl
if any(mod(n-m,2)) dT9!gNvQ
error('zernfun:NMmultiplesof2', ... ?E?dg#yk
'All N and M must differ by multiples of 2 (including 0).')
Qpc+1{BQ
end G.}
3hd0
U{2UKD@PM
if any(m>n) -S7rOq2Li
error('zernfun:MlessthanN', ... zi*2>5g
'Each M must be less than or equal to its corresponding N.') e)~7pXYV)
end t<6`?\Gk
[fU2$(mT+
if any( r>1 | r<0 ) RqIic\aD
error('zernfun:Rlessthan1','All R must be between 0 and 1.') yjbqby7
end \HB4ikl
|*im$[g=-
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^p0BeSRiy;
error('zernfun:RTHvector','R and THETA must be vectors.') / ` 7p'i
end TB
gD"i-
Et=N`k_gO
r = r(:); +Zx+DW cq
theta = theta(:); 0vs9# <&V
length_r = length(r); ]&3UF?
if length_r~=length(theta) J['paHSF
error('zernfun:RTHlength', ... r2T-= XWB
'The number of R- and THETA-values must be equal.') >y&4gm
end i`^`^Ka
!S[8w9q
% Check normalization: %/:{x()G
% -------------------- J@y1L]:
if nargin==5 && ischar(nflag) T6|zT}cb
isnorm = strcmpi(nflag,'norm'); !TRJsL8
if ~isnorm Uu9\;f
error('zernfun:normalization','Unrecognized normalization flag.') V=}b>Jo2j
end ^3Ni
else PF-7AIxs"
isnorm = false; /!kKL$j
end fmvX;0O
pC2r{-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &WIiw$@
% Compute the Zernike Polynomials Z~tOR{q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ldo7}<s
5uK:f\y)l
% Determine the required powers of r: )g:\N8AZK
% ----------------------------------- n\}!'>d'
m_abs = abs(m); |\j'Z0
rpowers = []; SLL%XF~/Sb
for j = 1:length(n) H'E>QT
rpowers = [rpowers m_abs(j):2:n(j)]; CUT D]:\
end a[:0<Ek
rpowers = unique(rpowers); Vt:]D?\3
LXaT_3;
% Pre-compute the values of r raised to the required powers, d_&R>GmR$
% and compile them in a matrix: A
e&t#,)
% ----------------------------- E8WOXoP(
if rpowers(1)==0 yVm~5Y&Z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s#ijpc>h
rpowern = cat(2,rpowern{:}); q28i9$Yqj\
rpowern = [ones(length_r,1) rpowern]; 0A@'w*=
else 3~\mP\/4v
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2*-s3 >VK
rpowern = cat(2,rpowern{:}); /i$
mIj`
end ]5lp.#EB
Y&aFAjj
% Compute the values of the polynomials: .N8AkQ(Ok
% --------------------------------------
"w0>
y = zeros(length_r,length(n)); bR@ e6.<i
for j = 1:length(n) `'[u%U E
s = 0:(n(j)-m_abs(j))/2; @^:R1c![s
pows = n(j):-2:m_abs(j); <J@Y=#G$2
for k = length(s):-1:1 [rv"tz=
p = (1-2*mod(s(k),2))* ... kC"<4U
prod(2:(n(j)-s(k)))/ ... eOjoxnD-$
prod(2:s(k))/ ... a&~d,vC
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o`HZS|>K*
prod(2:((n(j)+m_abs(j))/2-s(k))); ~]DGf(
idx = (pows(k)==rpowers); TmG$Cjf84
y(:,j) = y(:,j) + p*rpowern(:,idx); }.Ht=E]
end !@!,7te
'$W@I
if isnorm L5E.`^?
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .oYUA}
end 0.C y4sH'
end S,m)yh.
% END: Compute the Zernike Polynomials (7q!Z!2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ppjd.
Zf |%t
% Compute the Zernike functions: ~`c?&YixU
% ------------------------------ xSZgQF~
idx_pos = m>0; v!T%xUb0
idx_neg = m<0; quHq?oXV,
D\ ]gIXg
z = y; `3^*K/K\
if any(idx_pos) D)XF@z;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); EA9`-xs|
end >6Y\CixN
if any(idx_neg) y^tuybpZY<
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @FKNB.>
end %geiJ z
";yCo0*
% EOF zernfun