非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1A)wbH)
function z = zernfun(n,m,r,theta,nflag) ^G7n#
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |2+F I<v4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N dH2j*G Ij
% and angular frequency M, evaluated at positions (R,THETA) on the Z7KB?1{G
% unit circle. N is a vector of positive integers (including 0), and ~,`\D7Z3
% M is a vector with the same number of elements as N. Each element 2S7H_qo$
% k of M must be a positive integer, with possible values M(k) = -N(k) 7Dx .;
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .LGkr@P
% and THETA is a vector of angles. R and THETA must have the same >gS5[`xRE
% length. The output Z is a matrix with one column for every (N,M) +i q+
% pair, and one row for every (R,THETA) pair. 4/mj"PBKL
% q)z1</B-
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9^C!,A{u4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~YT>:Np
% with delta(m,0) the Kronecker delta, is chosen so that the integral &a2V-|G',
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +gD)Yd
% and theta=0 to theta=2*pi) is unity. For the non-normalized -V<=`e
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _6QLnr&@j
% RL]lt0O{
% The Zernike functions are an orthogonal basis on the unit circle. ?SsRN jeL
% They are used in disciplines such as astronomy, optics, and oN1wrf}Sh
% optometry to describe functions on a circular domain. {ZBb.$}RC
% zvQ^f@lq2
% The following table lists the first 15 Zernike functions. d@q t%r3;
% 61eKGcjs:
% n m Zernike function Normalization |]2eGrGj4
% -------------------------------------------------- fi-&[llg
% 0 0 1 1 d= T9mj.@
% 1 1 r * cos(theta) 2 )lngef
/D_
% 1 -1 r * sin(theta) 2 >/OXC+=^4
% 2 -2 r^2 * cos(2*theta) sqrt(6) [#3Cg%V
% 2 0 (2*r^2 - 1) sqrt(3) Q+%m+ /Zq
% 2 2 r^2 * sin(2*theta) sqrt(6) Q,M/R6i-
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~M9n<kmE
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 5)SZd)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .o,51dn+ s
% 3 3 r^3 * sin(3*theta) sqrt(8) )1tnZ=&
% 4 -4 r^4 * cos(4*theta) sqrt(10) WY.\<$7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hz~CW-47
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) qNQ3(1xW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DHu jpZXQ
% 4 4 r^4 * sin(4*theta) sqrt(10) BoiIr[ (
% -------------------------------------------------- Xm:gD6;9
% 'm p{O
% Example 1: dW=D]
% 5KPPZmO
% % Display the Zernike function Z(n=5,m=1) da86Jj=k
% x = -1:0.01:1; 2O)Kn
q
% [X,Y] = meshgrid(x,x); O'sr[
% [theta,r] = cart2pol(X,Y); Uub%s`O
% idx = r<=1; %[bO\,
% z = nan(size(X)); bEXHB
% z(idx) = zernfun(5,1,r(idx),theta(idx)); p~zTRnm
% figure 0f#a_
% pcolor(x,x,z), shading interp HEfA c
% axis square, colorbar `\u),$
% title('Zernike function Z_5^1(r,\theta)') z1KC$~{O
% H/la'f#o%
% Example 2: a!J ow?(
% Kd[`mkmS
% % Display the first 10 Zernike functions 02c.;ka3
% x = -1:0.01:1; &+r
;>
% [X,Y] = meshgrid(x,x); Px?At5
% [theta,r] = cart2pol(X,Y); AYQh=$)(
% idx = r<=1; \S@=zII_
% z = nan(size(X)); `::(jW.KO
% n = [0 1 1 2 2 2 3 3 3 3]; KL\=:iWA
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; t:j07 ,1~
% Nplot = [4 10 12 16 18 20 22 24 26 28]; cS ;=_%~
% y = zernfun(n,m,r(idx),theta(idx)); <IkD=X
% figure('Units','normalized') D30Z9_^%:
% for k = 1:10 u9~V2>r\
% z(idx) = y(:,k); wTAEJ{p
% subplot(4,7,Nplot(k)) r
L|BkN
% pcolor(x,x,z), shading interp k49n9EX
% set(gca,'XTick',[],'YTick',[]) ZYt"=\_
% axis square .+~kJ0~Y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @_:?N(%(
% end D2*Q1n
% IhKas4
% See also ZERNPOL, ZERNFUN2. Fu$Gl$qV?%
K.L+;
nQ
% Paul Fricker 11/13/2006 L5|;VH
27i<6PAC[A
M
#RuI%
% Check and prepare the inputs: ia.B@u1/
% ----------------------------- +#"Ic:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yT9RNo/w
error('zernfun:NMvectors','N and M must be vectors.')
?|rw=%
end -+2xdLa63
BCDf9]X
if length(n)~=length(m) 0J,d9a [1
error('zernfun:NMlength','N and M must be the same length.') !F s)"?
end 0JL6EL>_
hQLx"R$
n = n(:); #Lt+6sa]2@
m = m(:); sEi.f(WA
if any(mod(n-m,2)) X1QZEl
error('zernfun:NMmultiplesof2', ... cx%9UK*c
'All N and M must differ by multiples of 2 (including 0).') k yA(m;r
end _[Wrd?Z
3T^dgWXEG
if any(m>n) >!.lr9(l
error('zernfun:MlessthanN', ... !x /Z"
'Each M must be less than or equal to its corresponding N.') +GtGyp
end gG> ^h1_o~
N28?JQha
if any( r>1 | r<0 ) _@?Jx/`;bk
error('zernfun:Rlessthan1','All R must be between 0 and 1.') yFtf~8s3
end n&&U9sf?
nk.Eq[08
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &=O1Qg=K
error('zernfun:RTHvector','R and THETA must be vectors.') ]* Ki7h|B
end gxtbu$
7n]%`Yb
r = r(:); l'8wPmy%N
theta = theta(:); JT_B@TO\
length_r = length(r); ~TIZumGB
if length_r~=length(theta) 'UCx^-
error('zernfun:RTHlength', ... 9 9BK/>R
'The number of R- and THETA-values must be equal.') l+qtA~V&2
end Pu*UZcXY
VQ}3r)ch
% Check normalization: md
LJ,w?{
% -------------------- f=Y9a$.:M
if nargin==5 && ischar(nflag) y{P9k8v!z
isnorm = strcmpi(nflag,'norm'); HBGA
lZ
if ~isnorm UHHKI)(
error('zernfun:normalization','Unrecognized normalization flag.') 70(?X/5#
end =xP{f<`
else %E_{L
isnorm = false; 4'|:SyOm
end 6;V1PK>9
IcA~f@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HKw4}FC*
% Compute the Zernike Polynomials BVeNK=7m%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xGk4KcxKs
h(up1(x
% Determine the required powers of r: DMW:%h{
% ----------------------------------- GQWTQIl]
m_abs = abs(m); a}hM}U!
rpowers = []; b;ZAz
for j = 1:length(n) =_3qUcOP
rpowers = [rpowers m_abs(j):2:n(j)]; ~[6|VpGc:
end cNvcpv
rpowers = unique(rpowers);
p$ v +L
H.K`#W&
% Pre-compute the values of r raised to the required powers, oPZ4}>uV
% and compile them in a matrix: ?!-im*~w
% ----------------------------- -2d&Aq4m)
if rpowers(1)==0 ZK*aVYnu
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >Sah\u`
rpowern = cat(2,rpowern{:}); !7?wd^C'f
rpowern = [ones(length_r,1) rpowern]; NQ=YTRU
else G"wQ(6J@
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `^{P,N>X
rpowern = cat(2,rpowern{:}); ZeV)/g,w
end 6>J#M
4f,x@:Jw
% Compute the values of the polynomials: L,L7WObA
% -------------------------------------- F
tjm@:X
y = zeros(length_r,length(n)); GrC")Z|3u
for j = 1:length(n) net9KX4\
s = 0:(n(j)-m_abs(j))/2; rfpxE>_|G
pows = n(j):-2:m_abs(j); `$- Ib^
for k = length(s):-1:1 b*fflJ
p = (1-2*mod(s(k),2))* ... iq-o$6Pg
prod(2:(n(j)-s(k)))/ ... k=_@1b-
prod(2:s(k))/ ... ,iUx'U
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U 7?ez
prod(2:((n(j)+m_abs(j))/2-s(k))); xM\ApN~W
idx = (pows(k)==rpowers); 3}Qh`+Yj]
y(:,j) = y(:,j) + p*rpowern(:,idx); #w6CL
end pT tX[CE
~yN,F pD
if isnorm \f#ao<vQm
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Jmx}r,j
end W9"I++~f
end ")
D!OW]
% END: Compute the Zernike Polynomials 6Tnzg`0I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O6]~5&8U.
[DwB7l)O(
% Compute the Zernike functions:
V;jz0B
% ------------------------------ g!ww;_
idx_pos = m>0; -&}E:zoe
idx_neg = m<0; ZbUf|#GTB
KHtY
+93
z = y; K-3 _4As
if any(idx_pos) RSC-+c6 1
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .<dmdqk]
end ~JpUO~i/
if any(idx_neg) KG$2u:n
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3I+pe;
end .>n|#XK
6*7&X#gG
% EOF zernfun