切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11133阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 cXcrb4IKD  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! p~v rr 5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 jV|j]m&t  
    function z = zernfun(n,m,r,theta,nflag) },]G +L;R  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. e> zv+9'Q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L2 ybL#dz  
    %   and angular frequency M, evaluated at positions (R,THETA) on the x$SxGc~4gb  
    %   unit circle.  N is a vector of positive integers (including 0), and uc~/l4~N  
    %   M is a vector with the same number of elements as N.  Each element  /# FU"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,P>xpfdK  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, n)<S5P?  
    %   and THETA is a vector of angles.  R and THETA must have the same If*+yr|  
    %   length.  The output Z is a matrix with one column for every (N,M) 7]8nW!h;  
    %   pair, and one row for every (R,THETA) pair. bb4 `s0  
    % #F^0uUjq  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -qJ%31Mr#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4Ou5Vp&y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >N bb0T  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \jpm   
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2{Johqf  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K*/X{3J;  
    % W2`/z)[*>  
    %   The Zernike functions are an orthogonal basis on the unit circle. G u4mP  
    %   They are used in disciplines such as astronomy, optics, and Sb|9U8h  
    %   optometry to describe functions on a circular domain. $sxm MP  
    % >^Z==1  
    %   The following table lists the first 15 Zernike functions. v<AFcY   
    % h>:eu#  
    %       n    m    Zernike function           Normalization k|r|*|8  
    %       -------------------------------------------------- />dH\KvN  
    %       0    0    1                                 1 f\vy5''  
    %       1    1    r * cos(theta)                    2 !7>~=n_,L.  
    %       1   -1    r * sin(theta)                    2 = }!4%.$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) + e3{J_  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $&ZN%o3  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) K\VL[HP-  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <tn6=IV  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) C[JGt 9{Y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1 k\~%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /l b"g_  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) w|G4c^KH  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [dIlt"2fV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0_f6Qrcj  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T*"*##c  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) W }  
    %       -------------------------------------------------- 3$n O@rOS  
    % 6mml96(  
    %   Example 1: Ls2g#+  
    % ]w5j?h"b  
    %       % Display the Zernike function Z(n=5,m=1) T$pBgS>  
    %       x = -1:0.01:1; p 02E:?  
    %       [X,Y] = meshgrid(x,x); "V3f"J?  
    %       [theta,r] = cart2pol(X,Y); ]m=2 $mK  
    %       idx = r<=1; 2_C&p6VGj  
    %       z = nan(size(X)); @\?QZX(H  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); M@a=|N~  
    %       figure OaF[t*]D3  
    %       pcolor(x,x,z), shading interp :YUQKy  
    %       axis square, colorbar :(TOtrK@  
    %       title('Zernike function Z_5^1(r,\theta)') LQ{z}Ay  
    % x*a^msY%  
    %   Example 2: HlgkW&}c^  
    % #,jw! HO]  
    %       % Display the first 10 Zernike functions @E !`:/k  
    %       x = -1:0.01:1; :p0<AU47  
    %       [X,Y] = meshgrid(x,x); 3cB=9Y{<  
    %       [theta,r] = cart2pol(X,Y); e"^n^_9  
    %       idx = r<=1; w(cl,W/w  
    %       z = nan(size(X)); u?V Tnsu  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Rdj/n :  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; $/|2d4O:{  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *U:0c ;h  
    %       y = zernfun(n,m,r(idx),theta(idx)); S&z8-D=8k  
    %       figure('Units','normalized') BW{&A&j  
    %       for k = 1:10 h/xV;oj  
    %           z(idx) = y(:,k); BWev(SF{Ny  
    %           subplot(4,7,Nplot(k)) b75en{aDi*  
    %           pcolor(x,x,z), shading interp z$b'y;k  
    %           set(gca,'XTick',[],'YTick',[]) +et)!2N  
    %           axis square iT,Ya-9"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4&}dA^F  
    %       end e;r?g67  
    % JL:\\JT.  
    %   See also ZERNPOL, ZERNFUN2. Yu e#  
    4VI'd|Ed  
    %   Paul Fricker 11/13/2006 ~`!{5:v  
    Y8@TY?  
    jImw_Q  
    % Check and prepare the inputs: )^[PW&=W|x  
    % ----------------------------- cM;,nX%/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0s o27k  
        error('zernfun:NMvectors','N and M must be vectors.') bc%N !d  
    end p)YI8nW  
    tXW7G@  
    if length(n)~=length(m) TBu[3X%  
        error('zernfun:NMlength','N and M must be the same length.') nv}z%.rRUj  
    end +xojnv  
    2y#[uSqB  
    n = n(:); mj|TWDcj+  
    m = m(:); WEsX+okj  
    if any(mod(n-m,2)) +GFK!Pf  
        error('zernfun:NMmultiplesof2', ... {-.ZFUZmT  
              'All N and M must differ by multiples of 2 (including 0).') f;cY&GC  
    end pGT?=/=*  
    Rpou.RrXR7  
    if any(m>n) xt=ELzu$  
        error('zernfun:MlessthanN', ... 6sz:rv}  
              'Each M must be less than or equal to its corresponding N.') OTV$8{  
    end bO6LBSZx]  
    /A"UV\H`f  
    if any( r>1 | r<0 ) L)-1( e<x  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &eY&6I  
    end L/7YI\C2  
    lm\~_ 4l1  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %}1v-z  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?r/)s()ALf  
    end ]^BgSC  
    a~Nh6 x  
    r = r(:); VB&`g<  
    theta = theta(:); x) OJ?l  
    length_r = length(r); :~4 M9  
    if length_r~=length(theta) LY1dEZ-)A  
        error('zernfun:RTHlength', ... apw/nhQ.[  
              'The number of R- and THETA-values must be equal.') 4elA<<  
    end r"_SL!,^  
    Z?j4WJy-[  
    % Check normalization: Ew>lk9La(  
    % -------------------- >A ?{cbJ  
    if nargin==5 && ischar(nflag) U?&&yynK  
        isnorm = strcmpi(nflag,'norm'); .V.ga2+  
        if ~isnorm CaqqH`/E4  
            error('zernfun:normalization','Unrecognized normalization flag.') i2 7KuPjC  
        end LR Dj!{k{  
    else {~{</ g/  
        isnorm = false; _t.Ub:  
    end " 'TEBkj|u  
    ;'P<#hM[$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cd:VFjT  
    % Compute the Zernike Polynomials Vk?US&1q}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o7 1f<&1  
    E-"b":@:  
    % Determine the required powers of r: B~7]x;8h  
    % ----------------------------------- C*&FApG  
    m_abs = abs(m); bXRSKp[$  
    rpowers = []; SPo}!&p$~  
    for j = 1:length(n) 7kq6VS;p  
        rpowers = [rpowers m_abs(j):2:n(j)]; rO7[{<97m  
    end ,;~@t:!c  
    rpowers = unique(rpowers); ZDTp/5=?K/  
    `VD7VX,rp*  
    % Pre-compute the values of r raised to the required powers, *28:|blbL  
    % and compile them in a matrix: |jJ9dTD8/  
    % ----------------------------- CN!~(1v  
    if rpowers(1)==0 WN3]xw3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,@r 0-gL  
        rpowern = cat(2,rpowern{:}); t:yJ~En]=  
        rpowern = [ones(length_r,1) rpowern]; \oy8)o/Gb  
    else  YW'l),Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Dio9'&DtC  
        rpowern = cat(2,rpowern{:}); 3&"+)*/ m  
    end thrv_^A  
    *D:uFo,xn  
    % Compute the values of the polynomials: Lu9`(+  
    % -------------------------------------- {D7v[P+  
    y = zeros(length_r,length(n)); ZZJ<JdD  
    for j = 1:length(n) B f"L;L  
        s = 0:(n(j)-m_abs(j))/2; =q?sB]n  
        pows = n(j):-2:m_abs(j); tde&w=ec  
        for k = length(s):-1:1 EJaGz\\  
            p = (1-2*mod(s(k),2))* ... M:d} P  
                       prod(2:(n(j)-s(k)))/              ... #s3R4@{  
                       prod(2:s(k))/                     ... ~xU\%@I\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Bl/Z _@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); FN"Ye*d  
            idx = (pows(k)==rpowers); ^Q5advxuq  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }^]TUe@a  
        end *(CV OY~  
         NZ:KJ8ea"  
        if isnorm bguTWI8bk  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W'L  
        end R&FO-{S  
    end j+NsNIJq  
    % END: Compute the Zernike Polynomials f2G 3cg~H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yLEA bd%+  
    !]2`dp\!  
    % Compute the Zernike functions: R-OQ(]<*  
    % ------------------------------ f=T&$tZ<  
    idx_pos = m>0; cs7K^D;.V  
    idx_neg = m<0; Da&Brm   
    VX]Ud\(  
    z = y; k4`(7Z  
    if any(idx_pos) E<r<ObeRv`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); zr^"zcfz&  
    end %hN7K  
    if any(idx_neg) DQ9}( '^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [,Fu2j]  
    end Y?xc#'  
     LXf *  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) L&G5 kY`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 2}U:6w  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 8om)A0S  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive y@9ifFr  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, D),hSqJ"  
    %   and THETA is a vector of angles.  R and THETA must have the same gIY]hC.  
    %   length.  The output Z is a matrix with one column for every P-value, 2aJ_[3p/h]  
    %   and one row for every (R,THETA) pair. A}G>JL  
    % a}V<CBi  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike !a^'Jbb  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) $aDkZj  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) "HtaJVp//  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 BoP,MpF  
    %   for all p. Oj#/R?%,X  
    % /TY=ig1z  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 m(CAXq-t  
    %   Zernike functions (order N<=7).  In some disciplines it is BjV;/<bt  
    %   traditional to label the first 36 functions using a single mode G!E1N(%o  
    %   number P instead of separate numbers for the order N and azimuthal AQTV1f_  
    %   frequency M. Y3bZ&G)  
    % %OJq(}  
    %   Example: HiSNEp$-4$  
    % lD6PKZ\RIj  
    %       % Display the first 16 Zernike functions DsH#?h<-o  
    %       x = -1:0.01:1; `2,F!kCt  
    %       [X,Y] = meshgrid(x,x); cHX~-:KOr  
    %       [theta,r] = cart2pol(X,Y); +k\cmDcb  
    %       idx = r<=1; b_']S0$c\  
    %       p = 0:15; cXbQ  
    %       z = nan(size(X)); ?<U">8cP  
    %       y = zernfun2(p,r(idx),theta(idx)); L16">,5  
    %       figure('Units','normalized') 1ZO/R%[  
    %       for k = 1:length(p) 2 >/}-a  
    %           z(idx) = y(:,k); XvIY=~  
    %           subplot(4,4,k) qL~|bfN  
    %           pcolor(x,x,z), shading interp TnJJ& "~3b  
    %           set(gca,'XTick',[],'YTick',[]) 2q ~y\fe  
    %           axis square k;Ask#rs  
    %           title(['Z_{' num2str(p(k)) '}']) M?QX'fia  
    %       end G3j'A{  
    % Le*gdoW.  
    %   See also ZERNPOL, ZERNFUN. hE;BT>_dn  
    '1rO&F  
    %   Paul Fricker 11/13/2006 h I7ur  
    4ZtsLMwLD  
    Xp0S  
    % Check and prepare the inputs:  _:HQ4s@  
    % ----------------------------- PG@6*E  
    if min(size(p))~=1 ,P^4??' o  
        error('zernfun2:Pvector','Input P must be vector.') S^A+Km3VB  
    end B}^l'p_u  
    K[l5=)G0L  
    if any(p)>35  I}u&iV`  
        error('zernfun2:P36', ... BVu{To:g  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... N1Dr'aw*  
               '(P = 0 to 35).']) -ju}I  
    end B:#9   
    v0KJKrliGO  
    % Get the order and frequency corresonding to the function number: lQ#='Jqfp  
    % ---------------------------------------------------------------- |f2 bb  
    p = p(:); S#nW )=   
    n = ceil((-3+sqrt(9+8*p))/2); v$#l]A_D  
    m = 2*p - n.*(n+2); Ch73=V  
     }A&I@2d  
    % Pass the inputs to the function ZERNFUN: G$VE o8Blb  
    % ---------------------------------------- q``:[Sz  
    switch nargin _&aPF/  
        case 3  NR98]X  
            z = zernfun(n,m,r,theta); L u1pxL  
        case 4 /]-a 1  
            z = zernfun(n,m,r,theta,nflag);  bU$M)  
        otherwise nhRpb9f`1@  
            error('zernfun2:nargin','Incorrect number of inputs.') _2w8S\  
    end G rI<w.9X  
    F h+g@ u6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) lr]C'dD  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. +#9 4 X)*  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of J@+b_e*  
    %   order N and frequency M, evaluated at R.  N is a vector of 395`Wkv  
    %   positive integers (including 0), and M is a vector with the pj Md  
    %   same number of elements as N.  Each element k of M must be a CI=M0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \|CuTb;0  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ef2)k4)"  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (Ta(Y=!uq  
    %   with one column for every (N,M) pair, and one row for every !,R=6b$E5  
    %   element in R. +*wr=9>  
    % Ho1V)T>  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- kAq#cLprG  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is -PTfsQk  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to OO\$'% y`  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 N v6=[_D  
    %   for all [n,m]. 5,?^SK|'x  
    % Q9i[?=F:z  
    %   The radial Zernike polynomials are the radial portion of the b-RuUfUn0  
    %   Zernike functions, which are an orthogonal basis on the unit 1p8hn!V  
    %   circle.  The series representation of the radial Zernike Z1{>"o:@  
    %   polynomials is t \-|J SZ  
    % *W2o$_Hs  
    %          (n-m)/2 mDO! o  
    %            __ U:bnX51D4  
    %    m      \       s                                          n-2s 9I(00t_  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~SS3gLv  
    %    n      s=0 9 dK`  
    % E] rBq_S  
    %   The following table shows the first 12 polynomials. A Wd,qldv  
    % +[}<u--  
    %       n    m    Zernike polynomial    Normalization  3Hi8=*  
    %       --------------------------------------------- @@cc /S  
    %       0    0    1                        sqrt(2) ~_ u3_d.  
    %       1    1    r                           2 jZ''0Lclpc  
    %       2    0    2*r^2 - 1                sqrt(6) Nh\o39=  
    %       2    2    r^2                      sqrt(6) ;9LOeH?  
    %       3    1    3*r^3 - 2*r              sqrt(8) e'->Sg  
    %       3    3    r^3                      sqrt(8) J~C=o(r  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) i8S=uJ]n  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) )y{:Uc\4!  
    %       4    4    r^4                      sqrt(10) J$lfI^^  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) W}#n.c4+  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) :6]qr86  
    %       5    5    r^5                      sqrt(12) ]E6r )C  
    %       --------------------------------------------- 0 {  
    % _fSBb<  
    %   Example: j4u ["O3  
    % .y lvJ$  
    %       % Display three example Zernike radial polynomials qae|?z  
    %       r = 0:0.01:1; MGY0^6yK5  
    %       n = [3 2 5]; '_5|9 }  
    %       m = [1 2 1]; VfozqUf  
    %       z = zernpol(n,m,r); Wg20H23XW  
    %       figure U uC-R)  
    %       plot(r,z) }F"98s W  
    %       grid on SM8_C!h:  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 20}w . V  
    % )j\_*SoH  
    %   See also ZERNFUN, ZERNFUN2. J4@-?xj=\q  
    ;e< TEs  
    % A note on the algorithm. p$uPj*  
    % ------------------------ }kP<zvAaw  
    % The radial Zernike polynomials are computed using the series D c;k)z=  
    % representation shown in the Help section above. For many special +bT[lJ2O>G  
    % functions, direct evaluation using the series representation can g@T}h[  
    % produce poor numerical results (floating point errors), because (4Nj3x o  
    % the summation often involves computing small differences between E^Q J50  
    % large successive terms in the series. (In such cases, the functions *+nw%gZG  
    % are often evaluated using alternative methods such as recurrence .rS. >d^n  
    % relations: see the Legendre functions, for example). For the Zernike [P6m8%Y|s  
    % polynomials, however, this problem does not arise, because the w*&vH/D  
    % polynomials are evaluated over the finite domain r = (0,1), and `WnsM; 1Y"  
    % because the coefficients for a given polynomial are generally all xaVn.&Wl  
    % of similar magnitude. n$v4$_qS  
    % K?r  
    % ZERNPOL has been written using a vectorized implementation: multiple pb)kN%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] '.M4yif \g  
    % values can be passed as inputs) for a vector of points R.  To achieve %M))Ak4 ~a  
    % this vectorization most efficiently, the algorithm in ZERNPOL w`=O '0d  
    % involves pre-determining all the powers p of R that are required to Sc/$ 2gSG  
    % compute the outputs, and then compiling the {R^p} into a single paLPC&G  
    % matrix.  This avoids any redundant computation of the R^p, and e<*qaUI  
    % minimizes the sizes of certain intermediate variables. _ Yc"{d3S  
    % Y}: 4y$<  
    %   Paul Fricker 11/13/2006 EW1,&H  
    cpALs1j:  
    {+nf&5E 6  
    % Check and prepare the inputs: |:.Uw\z5'  
    % ----------------------------- `*BV@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^;rjs|`K#  
        error('zernpol:NMvectors','N and M must be vectors.') t 7o4 aBl"  
    end ,.}%\GhY  
    wc. =`Me  
    if length(n)~=length(m) 9[;da  
        error('zernpol:NMlength','N and M must be the same length.') p$qk\efv*4  
    end N-_APWA  
    {L ~d ER  
    n = n(:); )Jdku}Pf  
    m = m(:); ZWo~!Z[Y  
    length_n = length(n); gPT_}#_GxM  
    =&,T@5&-=  
    if any(mod(n-m,2)) 74MxU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') DBL@Mp[<  
    end X^K^az&L  
    ~J&-~<%P}  
    if any(m<0) Z"%.  
        error('zernpol:Mpositive','All M must be positive.') ft1#f@b.  
    end GK!@|Kk8q7  
    xr7}@rq"U<  
    if any(m>n) M<d!j I9)  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ) $b F*  
    end u!5q)>Wt(  
    jC4>%!{m  
    if any( r>1 | r<0 ) Nw$OJ9$L>  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ybw\^t  
    end ;?tH8jf>  
    ",D!8>=s  
    if ~any(size(r)==1) PJ0~ymE1~G  
        error('zernpol:Rvector','R must be a vector.') jH!;}q  
    end lnHY?y7{  
    :PW"7|c!  
    r = r(:); -grmmE]/  
    length_r = length(r); pu]U_Ll@  
    B=L!WGl<!  
    if nargin==4 d"06 gp  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); iD G&Muc  
        if ~isnorm " nCK%w=  
            error('zernpol:normalization','Unrecognized normalization flag.') #~)A#~4O  
        end G}g;<,g~  
    else Um{) ?1  
        isnorm = false; GEF's#YWK  
    end Eu'E;*- f  
    b4-gNF]Yt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #e-K It  
    % Compute the Zernike Polynomials `G1"&q,i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vJ}WNvncVF  
    @n?"*B  
    % Determine the required powers of r: ch]Qz[d  
    % ----------------------------------- yuBRYy#E|%  
    rpowers = []; * 3fl}l  
    for j = 1:length(n) (ct1i>g  
        rpowers = [rpowers m(j):2:n(j)]; Mf#@8"l  
    end %W\NYSm  
    rpowers = unique(rpowers); \-pwA j?  
    'g)f5n a[  
    % Pre-compute the values of r raised to the required powers, tjwf;g}$  
    % and compile them in a matrix: x-k-Pd  
    % ----------------------------- x\8g ICf  
    if rpowers(1)==0 oSD=3DQ;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); M$%ON>K q  
        rpowern = cat(2,rpowern{:}); 6E-eD\?I&  
        rpowern = [ones(length_r,1) rpowern]; v#&;z_I+  
    else Gg9s.]W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~*/ >8R(Y  
        rpowern = cat(2,rpowern{:}); mMwV5\(  
    end XXum2eA  
    @3KSoA"^  
    % Compute the values of the polynomials: J FnE{  
    % -------------------------------------- Q4-d|  
    z = zeros(length_r,length_n); En9J7es_  
    for j = 1:length_n f}(4v1 T  
        s = 0:(n(j)-m(j))/2; Hq 5#.rZ#  
        pows = n(j):-2:m(j); Zt! $"N.,  
        for k = length(s):-1:1 #~nXAs]Q  
            p = (1-2*mod(s(k),2))* ... Ve%ua]qA  
                       prod(2:(n(j)-s(k)))/          ... j!i* &  
                       prod(2:s(k))/                 ... *sU,waX  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... !9PAfi?  
                       prod(2:((n(j)+m(j))/2-s(k))); x)dLY.'|  
            idx = (pows(k)==rpowers); 8QJr!#u  
            z(:,j) = z(:,j) + p*rpowern(:,idx); nc:/GxP  
        end aUZ?Ue9l>2  
         ,+`r2}N \/  
        if isnorm xIm2t~io  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); T90O.]S  
        end eUQmW^  
    end {AD-p!6G  
    X5/j8=G H`  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  OqH3. @eK  
    Z"Q9^;0%  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 "85)2*+  
    {ktwX\z  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)