非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 OTYkJEC8\N
function z = zernfun(n,m,r,theta,nflag) _E9[4%f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /K2[`+-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "y8W5R5kL4
% and angular frequency M, evaluated at positions (R,THETA) on the ,tXI*R
% unit circle. N is a vector of positive integers (including 0), and %Ja0:e
% M is a vector with the same number of elements as N. Each element 2?qT,pN
% k of M must be a positive integer, with possible values M(k) = -N(k) 0=+feB1T
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 8A0a/
7Lj
% and THETA is a vector of angles. R and THETA must have the same 2(uh7#Q
% length. The output Z is a matrix with one column for every (N,M) sC"w{_D@*4
% pair, and one row for every (R,THETA) pair. 0`pCgF
% A#`$#CO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike WXo bh
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +L=Xc^
% with delta(m,0) the Kronecker delta, is chosen so that the integral \hBzQ%0
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a?ete9Q+
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]fDb|s48
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uNEl]Q]<e]
% aY4v'[
% The Zernike functions are an orthogonal basis on the unit circle. ;0|:.q
% They are used in disciplines such as astronomy, optics, and j 0LZ )V
% optometry to describe functions on a circular domain. ;eo}/-a_Xw
% {^Q,G x(
% The following table lists the first 15 Zernike functions. O:'qwJ#~
% N=U`BhL_
% n m Zernike function Normalization ~p'|A}9[/
% -------------------------------------------------- AP`1hz4].-
% 0 0 1 1 g3Q;]8Y&
% 1 1 r * cos(theta) 2 s3sD7 @
% 1 -1 r * sin(theta) 2 {ZdF6~+H(!
% 2 -2 r^2 * cos(2*theta) sqrt(6) +mft
% 2 0 (2*r^2 - 1) sqrt(3) k{{
Y2B?C
% 2 2 r^2 * sin(2*theta) sqrt(6) e1b?TF@lz
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0i5S=L`j
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) u)zv`m
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) `'3&tAy
% 3 3 r^3 * sin(3*theta) sqrt(8) xVYa-I[Z
% 4 -4 r^4 * cos(4*theta) sqrt(10) !ni
1 qM
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GwA\>qXw
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #I MaN%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $v_&jE
% 4 4 r^4 * sin(4*theta) sqrt(10) iDcYyNE
% -------------------------------------------------- com4@NK
% l['p^-I
% Example 1: Q(Yn8t
% O46v
% % Display the Zernike function Z(n=5,m=1) ;,uATd|
% x = -1:0.01:1; {2Ew^Li
% [X,Y] = meshgrid(x,x); -Ju;i<
% [theta,r] = cart2pol(X,Y); +BO kHXk1
% idx = r<=1; `t9k!y!GV
% z = nan(size(X)); hwvi tD!0
% z(idx) = zernfun(5,1,r(idx),theta(idx)); S~H>MtX(<
% figure y8C8~ -&OK
% pcolor(x,x,z), shading interp 86cnEj=
% axis square, colorbar QrFKjmD<
% title('Zernike function Z_5^1(r,\theta)') R'vNJDFY
% R-<8j`[0
% Example 2: ? [5>!
% "1XTgCu\
% % Display the first 10 Zernike functions ~xDu2-5
% x = -1:0.01:1; gH,Pz
% [X,Y] = meshgrid(x,x); 0Ntvd7"`}
% [theta,r] = cart2pol(X,Y); _OJfd
% idx = r<=1; m<k6oev$
% z = nan(size(X)); $;$vcV9*
% n = [0 1 1 2 2 2 3 3 3 3]; _iDVd2X"H
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9
!UNO
% Nplot = [4 10 12 16 18 20 22 24 26 28]; yJ]Va $M
% y = zernfun(n,m,r(idx),theta(idx)); >z/.8!#Q
% figure('Units','normalized') ]t&^o**
% for k = 1:10 ;ThFB
% z(idx) = y(:,k); ?F!c"+C
% subplot(4,7,Nplot(k)) N(yd<Mw
% pcolor(x,x,z), shading interp V?0IMc
% set(gca,'XTick',[],'YTick',[]) ~H
% axis square `:EhYj.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oclU)f.,
% end Fv)E:PnKC
% -F*vN'
% See also ZERNPOL, ZERNFUN2. 01&E.A
<s\ZqL$f
% Paul Fricker 11/13/2006 z%T|L[(6
$`%Om WW{
3OKs?i3A
% Check and prepare the inputs: zG/? wP"
% ----------------------------- G3]#Du
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h6?Z
error('zernfun:NMvectors','N and M must be vectors.') _emW#*V
end QY<5o;m`
.L;e:cvx
if length(n)~=length(m) nN-S5?X#
error('zernfun:NMlength','N and M must be the same length.') d+5~^\lV
end /NiD#s0t
RP+)sCh
n = n(:); YAeF*vP
m = m(:); E,K>V:P*
if any(mod(n-m,2)) Y6)o7t
error('zernfun:NMmultiplesof2', ... i'>5vU0?3
'All N and M must differ by multiples of 2 (including 0).') 4$ihnb`DQN
end e3p:lu
,d* hhe
if any(m>n) 3Z me?o*bY
error('zernfun:MlessthanN', ... *TI?tD
'Each M must be less than or equal to its corresponding N.') |</) 6r
end dT?3Q;>B?
PXJ7Ek*/
if any( r>1 | r<0 ) pWv1XTs@t:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') %.$7-+:7A
end 5U+4vV/*
yf8kBT:&S
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SA=>9L,2
error('zernfun:RTHvector','R and THETA must be vectors.') 8 Zp^/43
end ~Fwbi
es x/{j;<u
r = r(:); 3/ }
theta = theta(:); Kr|.I2?"
length_r = length(r); ,5ZQPICF
if length_r~=length(theta) q-_!&kDK"
error('zernfun:RTHlength', ... NV9JMB{q
'The number of R- and THETA-values must be equal.') +DR$ >a
end \M._x"
b l+g7 g;
% Check normalization: y35~bz^2
% -------------------- 7 [u>#8
if nargin==5 && ischar(nflag) ^i!6z2/
isnorm = strcmpi(nflag,'norm'); u-4@[*^T$
if ~isnorm !3mt<i]a"
error('zernfun:normalization','Unrecognized normalization flag.') Myiv#rQ)
end A%$~
else S
>CKm:7
isnorm = false; w(
XZSE
end +0UBP7kn
G\;6n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x(eX.>o\
% Compute the Zernike Polynomials c-Yd> 4+1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Rq[d\BN0.d
~eoM
2XlW
% Determine the required powers of r: h !R=t
% ----------------------------------- 7X/t2Vih@
m_abs = abs(m); pe+h8
rpowers = []; fbOqxF"?we
for j = 1:length(n) lG94^|U
rpowers = [rpowers m_abs(j):2:n(j)]; emnT;kJ>
end }b&S3?ONt
rpowers = unique(rpowers); Q!U}
(uDd_@a9t
% Pre-compute the values of r raised to the required powers, q^EY?;Y
% and compile them in a matrix: !%('8-x%
% ----------------------------- 6:Z8d%Z
if rpowers(1)==0 PzNPwd
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~tW~%]bs2Q
rpowern = cat(2,rpowern{:}); %>i:C-l8
rpowern = [ones(length_r,1) rpowern]; [p`5$\e
else !@8i(!xb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :Z6j5V;s
rpowern = cat(2,rpowern{:}); VLkAsM5}%
end zN|k*}j1J
5Q"w{ n
% Compute the values of the polynomials: |.UY'B
% -------------------------------------- !+^'Ej)z
y = zeros(length_r,length(n)); /+SLq`'u)
for j = 1:length(n) ~S\L(B(
s = 0:(n(j)-m_abs(j))/2; =huV(THU
pows = n(j):-2:m_abs(j); +W*~=*h|
for k = length(s):-1:1 `;;l {8
p = (1-2*mod(s(k),2))* ... Hn(1_I%zF
prod(2:(n(j)-s(k)))/ ... 'Uf?-t*LT@
prod(2:s(k))/ ... k<^M >` $
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... R5 4[U
prod(2:((n(j)+m_abs(j))/2-s(k))); vb6EO[e%I
idx = (pows(k)==rpowers); ~!r;?38V`
y(:,j) = y(:,j) + p*rpowern(:,idx); #T^2=7 w
end t n5
crP2jF!
if isnorm &R_7]f+%)
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m3lz#Pm'0
end jBw)8~tYm
end $Xu3s~:S
% END: Compute the Zernike Polynomials - Fbp!*.
u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [c
8=b,EI
&S*~EM.l8
% Compute the Zernike functions: WxGD*%
% ------------------------------ hb5K"9Y
idx_pos = m>0; $El-pMq
idx_neg = m<0; :V)jm`)#+
([u|j
z = y; "[|b,fxR
if any(idx_pos) x [FLV8`b|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 'Be'!9K*d
end n_e'n|T
if any(idx_neg) UUJQc~=
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); L9D`hefz
end k k3^m1
sV
% EOF zernfun