切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10494阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 +to9].O7y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! e]h'  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 H-KwkH`L4  
    function z = zernfun(n,m,r,theta,nflag) kDl4t]j  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. m&0BbyE.z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yx w27~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;VlZd*M?  
    %   unit circle.  N is a vector of positive integers (including 0), and pQ^,.[[  
    %   M is a vector with the same number of elements as N.  Each element q&d&#3Rh  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S*m`'  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, RR"W O  
    %   and THETA is a vector of angles.  R and THETA must have the same 8w8I:*  
    %   length.  The output Z is a matrix with one column for every (N,M) &}6ES{Nr8  
    %   pair, and one row for every (R,THETA) pair. 2*q: ^  
    % !eAdm  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike avt>saR  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cov#Z ux  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mn; 7o~4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KWh M  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized cv*Q]F1%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <\d|=>;  
    % QTjftcu  
    %   The Zernike functions are an orthogonal basis on the unit circle. O? Gl4_y  
    %   They are used in disciplines such as astronomy, optics, and 60aKT:KLC_  
    %   optometry to describe functions on a circular domain. 3q|cZQK!1  
    % TcKvSdr'  
    %   The following table lists the first 15 Zernike functions. h/ X5w4  
    % P7wqZ?  
    %       n    m    Zernike function           Normalization U!\2K~  
    %       -------------------------------------------------- c.8((h/  
    %       0    0    1                                 1 eN]>l  
    %       1    1    r * cos(theta)                    2 q M_/  
    %       1   -1    r * sin(theta)                    2 x!C8?K =|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .@i0U  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 2 ]V>J  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `*" H/QG  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) YXX36  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %kK ][2e  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \o:ELa HY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) fou_/Nrue  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ! EX?m }7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v@fe-T&0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) g|K6iY  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #+K Kvk  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) '?"t<$b  
    %       -------------------------------------------------- [lNqT1%]  
    % "U% n0r2  
    %   Example 1: PPoI>J  
    % %RQC9!  
    %       % Display the Zernike function Z(n=5,m=1) W\@?e32  
    %       x = -1:0.01:1; [=F>#8=  
    %       [X,Y] = meshgrid(x,x); 7?=43bZl  
    %       [theta,r] = cart2pol(X,Y); w]>"'o{{  
    %       idx = r<=1; `fBG~NDw  
    %       z = nan(size(X)); Em e'Gk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); E rop9T1  
    %       figure )7&42>t  
    %       pcolor(x,x,z), shading interp q>_vE{UB  
    %       axis square, colorbar R K"&l!o  
    %       title('Zernike function Z_5^1(r,\theta)') , CJAzGBS  
    % $ A-+E\vQ@  
    %   Example 2: $_Y/'IN`k  
    % }JRP,YNh  
    %       % Display the first 10 Zernike functions bTZ>@~$  
    %       x = -1:0.01:1; wL4Z W8_  
    %       [X,Y] = meshgrid(x,x); s %eyW _  
    %       [theta,r] = cart2pol(X,Y); 1 6"#i  
    %       idx = r<=1; >qR7'QwP  
    %       z = nan(size(X)); pv$mZi4i  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]JOephX2R  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >; aCf#q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; J.#(gFBBl\  
    %       y = zernfun(n,m,r(idx),theta(idx)); U1OFDXHG  
    %       figure('Units','normalized') l0I}&,+  
    %       for k = 1:10 =WC-Sj{I  
    %           z(idx) = y(:,k); |+>uA[6#  
    %           subplot(4,7,Nplot(k)) #Mh{<gk%ax  
    %           pcolor(x,x,z), shading interp W+_RhJ  
    %           set(gca,'XTick',[],'YTick',[]) yQ9ZhdQS  
    %           axis square 7W"/ N#G  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r#A_RZ2~@  
    %       end eqq`TT#Z  
    % Guh%eR'Wt  
    %   See also ZERNPOL, ZERNFUN2. zrs<#8!Y_!  
    ^(ScgoXva  
    %   Paul Fricker 11/13/2006 J{`eLmTu  
    ;imRh'-V6  
    Ur^j$B}  
    % Check and prepare the inputs: Wqra8u#  
    % ----------------------------- [*)Z!)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i(*I@ku  
        error('zernfun:NMvectors','N and M must be vectors.') K$H <}e3  
    end %K(0W8&  
    ;#TaZN  
    if length(n)~=length(m) Gih[i\%Q  
        error('zernfun:NMlength','N and M must be the same length.') T$KF< =  
    end +R6a}d/K  
    dA_YL?o r  
    n = n(:); /- 4$7qd  
    m = m(:); Sw8kIC  
    if any(mod(n-m,2)) {fV}gR2  
        error('zernfun:NMmultiplesof2', ... ]"F5;p; y  
              'All N and M must differ by multiples of 2 (including 0).') dRI^@n  
    end +Llo81j&  
    b.F^vv"]]  
    if any(m>n) w~Ff%p@9  
        error('zernfun:MlessthanN', ... Xl_Uz8Hp  
              'Each M must be less than or equal to its corresponding N.') -?6MU~"GK  
    end la <npX  
    :q#K} /  
    if any( r>1 | r<0 ) ZH,4oF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') pV(lhDNoQ  
    end k(%QIJH  
    _:`!DIz~9}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ucdj4[/,h  
        error('zernfun:RTHvector','R and THETA must be vectors.') c+dg_*^  
    end xJs;v  
    vuQ%dDxI  
    r = r(:); &o3K%M;C?  
    theta = theta(:); qTQ!jN  
    length_r = length(r); F^k.is  
    if length_r~=length(theta) !0,Mp@ j/  
        error('zernfun:RTHlength', ... ;z~n.0'  
              'The number of R- and THETA-values must be equal.') CjIu[S1%  
    end -fI@])$9J  
    \C^;k%{LV  
    % Check normalization: qmy%J  
    % -------------------- 4*.K'(S5fx  
    if nargin==5 && ischar(nflag) evA/+F ,&  
        isnorm = strcmpi(nflag,'norm'); JwnQ0 e  
        if ~isnorm 6x)$Dl  
            error('zernfun:normalization','Unrecognized normalization flag.') <"D=6jqZ  
        end kql0J|P?  
    else Mb1t:Xf^g  
        isnorm = false; !HeSOzN  
    end l1U=f]  
    SUKxkc(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2QpHvsl_  
    % Compute the Zernike Polynomials sVk$x:k1M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +ISz?~8  
    ,#d? _?/:O  
    % Determine the required powers of r: ##Q/I|  
    % ----------------------------------- B+C);WQ,  
    m_abs = abs(m); ae"]\a\&1o  
    rpowers = []; 6 5y+Z  
    for j = 1:length(n) :l7U>~ o  
        rpowers = [rpowers m_abs(j):2:n(j)]; #_Z$2L"U  
    end / N) W2  
    rpowers = unique(rpowers); P&m\1W(  
    -/{ 4Jf Wf  
    % Pre-compute the values of r raised to the required powers, D`J6h,=2l/  
    % and compile them in a matrix: {u1V|q  
    % ----------------------------- Le<w R  
    if rpowers(1)==0 A;\ 7|'4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t#%R q  
        rpowern = cat(2,rpowern{:}); /kt2c[9  
        rpowern = [ones(length_r,1) rpowern]; 322jR4QGr  
    else Y6,Rj:8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >5s6u`\  
        rpowern = cat(2,rpowern{:}); `wF8k{Pb  
    end n,$IfC"  
    A)%A!  
    % Compute the values of the polynomials: ?4H i-  
    % -------------------------------------- 2I*;A5$N1  
    y = zeros(length_r,length(n)); Bs?7:kN(  
    for j = 1:length(n) .9md~j:o^s  
        s = 0:(n(j)-m_abs(j))/2; 3}|'0(hYL  
        pows = n(j):-2:m_abs(j); %IC73?  
        for k = length(s):-1:1 +f*OliMD  
            p = (1-2*mod(s(k),2))* ... f2,jh}4  
                       prod(2:(n(j)-s(k)))/              ... >^XBa*4;Y  
                       prod(2:s(k))/                     ... z]b>VpW:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #2r}?hP/m  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >#,G}xf  
            idx = (pows(k)==rpowers); Ag F,aZU  
            y(:,j) = y(:,j) + p*rpowern(:,idx); atXS-bg*  
        end s'kDk2r  
         1hcjSO  
        if isnorm <SI}lQ'i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f!O{%ev  
        end sdQkT#%y  
    end k)TSR5A  
    % END: Compute the Zernike Polynomials rvr-XGK36\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5/po2V9)  
    "M|zv  
    % Compute the Zernike functions: $Y5)(  
    % ------------------------------ :1Q!$  m  
    idx_pos = m>0; [o F|s-"9!  
    idx_neg = m<0; 3e(ehLc4DJ  
    +-E~6^>  
    z = y; tK&' <tZh  
    if any(idx_pos) dnj}AVfQx  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _E@ :O+K  
    end vDH>H^9Y  
    if any(idx_neg) X/N0LU(q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4wrk2x[  
    end i\W/C  
    Z!U)I-x&  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 6 ~ >FYX  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 8>7& E-  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated /{|fyKo\?  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Zfyo-Wk  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, QcgfBsv96  
    %   and THETA is a vector of angles.  R and THETA must have the same .w]GWL  
    %   length.  The output Z is a matrix with one column for every P-value, < P`u}  
    %   and one row for every (R,THETA) pair. )KP5Wud X  
    % _)\c&.p]f  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike '3?\K3S4i  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) :H c0b=  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;X?mmv'  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 h(5P(`M  
    %   for all p. /c,(8{(O  
    % p ZZc:\fJ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 X=> =5'  
    %   Zernike functions (order N<=7).  In some disciplines it is a<@N-Exr  
    %   traditional to label the first 36 functions using a single mode mQY_`&Jq  
    %   number P instead of separate numbers for the order N and azimuthal d'Zqaaf k%  
    %   frequency M. 'D @-  
    % FXs*vg`  
    %   Example: SCz(5[MZJ  
    % ca>Z7qT!  
    %       % Display the first 16 Zernike functions &\Amn?Iq  
    %       x = -1:0.01:1; ;s52{>&F]  
    %       [X,Y] = meshgrid(x,x); ~ {Mn{  
    %       [theta,r] = cart2pol(X,Y); N&M~0iw  
    %       idx = r<=1; {6}eN|4~#  
    %       p = 0:15; ?yj6CL(,  
    %       z = nan(size(X)); P><o,s"v  
    %       y = zernfun2(p,r(idx),theta(idx)); PTEHP   
    %       figure('Units','normalized') _vZ"4L+Iw+  
    %       for k = 1:length(p) W16,Alf:  
    %           z(idx) = y(:,k); LU9A#  
    %           subplot(4,4,k) 'z$Q rFW  
    %           pcolor(x,x,z), shading interp HvVts\f  
    %           set(gca,'XTick',[],'YTick',[]) 39=1f6I1  
    %           axis square 65Cg]Dt71  
    %           title(['Z_{' num2str(p(k)) '}']) B` k\EL'  
    %       end X@f "-\  
    % x l#LrvxI  
    %   See also ZERNPOL, ZERNFUN. D#o}cC.  
    'z[Sp~I\  
    %   Paul Fricker 11/13/2006 3Oi nK['  
    ; k)@DX  
    cra+T+|>Kc  
    % Check and prepare the inputs: qcN'e.A  
    % ----------------------------- ,L`$09\  
    if min(size(p))~=1 WAS U0  
        error('zernfun2:Pvector','Input P must be vector.') u5Ftu?t  
    end IqD_GL)Ms  
    AqV7\gdOC  
    if any(p)>35 TqddOp  
        error('zernfun2:P36', ... ) lZp9O  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Zib)P&  
               '(P = 0 to 35).']) \xS&v7b  
    end ivW(*c  
    0eS)&GdR  
    % Get the order and frequency corresonding to the function number: mD/MJt5  
    % ---------------------------------------------------------------- yn/rW$  
    p = p(:); zBe8,, e  
    n = ceil((-3+sqrt(9+8*p))/2); }~Af/  
    m = 2*p - n.*(n+2); kVy\b E0o  
    T9879[ZU\  
    % Pass the inputs to the function ZERNFUN:  ,qYJioWX  
    % ---------------------------------------- ryFxn|4  
    switch nargin 4X *>H  
        case 3 mI>,.&eo  
            z = zernfun(n,m,r,theta); .({smN,B  
        case 4 n2I V2^ "  
            z = zernfun(n,m,r,theta,nflag); = hN !;7G  
        otherwise S*,rGCt'T  
            error('zernfun2:nargin','Incorrect number of inputs.') wW/7F;54  
    end T0]*{k(FR  
    Bdu&V*0g  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ;-Jb1"5  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ]]"jw{W}A  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of V._(q^  
    %   order N and frequency M, evaluated at R.  N is a vector of D3x/OyG(  
    %   positive integers (including 0), and M is a vector with the i>joT><B  
    %   same number of elements as N.  Each element k of M must be a |qoKO:B4-[  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) o'$jNciOW  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is kMsnW}Nu  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1=]kWp`i  
    %   with one column for every (N,M) pair, and one row for every !L95^g   
    %   element in R. sQ 8s7l0D  
    % l]]l  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0n/gd"M  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 1* ]Ev  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to q}FVzahv  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 P(a.iu5   
    %   for all [n,m]. x{&w?ng  
    % 8#D:H/`'  
    %   The radial Zernike polynomials are the radial portion of the ZY56\qcY  
    %   Zernike functions, which are an orthogonal basis on the unit nJbbzQ,e  
    %   circle.  The series representation of the radial Zernike ~RD+.A  
    %   polynomials is |G/7_+J6  
    % P%MfCpyj  
    %          (n-m)/2 Mzd[fR5a8  
    %            __ `.2h jO  
    %    m      \       s                                          n-2s Gc$gJnQio  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r J4YBqp  
    %    n      s=0 5ZY)nelc  
    % Ap$y%6  
    %   The following table shows the first 12 polynomials. /Ky__l!bu  
    % }Up.){.%  
    %       n    m    Zernike polynomial    Normalization R3X{:1{j  
    %       --------------------------------------------- [/_+>M  
    %       0    0    1                        sqrt(2) <*EZ@XoN>  
    %       1    1    r                           2 8by@iQ  
    %       2    0    2*r^2 - 1                sqrt(6) Bg8#qv  
    %       2    2    r^2                      sqrt(6) Hk7K`9  
    %       3    1    3*r^3 - 2*r              sqrt(8) 6/ `.(fL1  
    %       3    3    r^3                      sqrt(8) 0W^dhYO  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ; "3+YTtp  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) m%#`y\]I  
    %       4    4    r^4                      sqrt(10) ,1/}^f6  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) j 6ut}Uq  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 4@;-%H&7  
    %       5    5    r^5                      sqrt(12) [hRU&z;W  
    %       --------------------------------------------- smQVWs>  
    % Pgp {$ID  
    %   Example: #hw/^AaD-  
    % ->lu#; A5  
    %       % Display three example Zernike radial polynomials (ozb%a#B  
    %       r = 0:0.01:1; x6'^4y])  
    %       n = [3 2 5]; FnHi(S|A  
    %       m = [1 2 1]; PKq-@F%X  
    %       z = zernpol(n,m,r); 8n?kZY$,  
    %       figure `xKFqx:e  
    %       plot(r,z) R,@g7p  
    %       grid on 99 wc  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }lZ>  
    % bb=uF1  
    %   See also ZERNFUN, ZERNFUN2. /2NSZO  
    8)0 L2KL'  
    % A note on the algorithm. W$?e<@  
    % ------------------------ ?n'O Fpd  
    % The radial Zernike polynomials are computed using the series Q*O<@   
    % representation shown in the Help section above. For many special 3 EYiQ`  
    % functions, direct evaluation using the series representation can I+,SZ]n  
    % produce poor numerical results (floating point errors), because 0-2"FdeQU  
    % the summation often involves computing small differences between @%W]".*'}  
    % large successive terms in the series. (In such cases, the functions &:#m&,tQ  
    % are often evaluated using alternative methods such as recurrence xX@FWAj  
    % relations: see the Legendre functions, for example). For the Zernike 7!2 HNg  
    % polynomials, however, this problem does not arise, because the W8aU "_  
    % polynomials are evaluated over the finite domain r = (0,1), and KAb(NZK  
    % because the coefficients for a given polynomial are generally all F,v 7ifo#f  
    % of similar magnitude. p#H]\ P'  
    %  H+cNX\,  
    % ZERNPOL has been written using a vectorized implementation: multiple ^,7=X8Su  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] y(8d?]4:_  
    % values can be passed as inputs) for a vector of points R.  To achieve |Cf mcz(56  
    % this vectorization most efficiently, the algorithm in ZERNPOL 8B@J Fpg^  
    % involves pre-determining all the powers p of R that are required to ,k*F`.[  
    % compute the outputs, and then compiling the {R^p} into a single !A[S6-18%-  
    % matrix.  This avoids any redundant computation of the R^p, and /4C`k=>  
    % minimizes the sizes of certain intermediate variables. #%cR%Z  
    % o =9'  
    %   Paul Fricker 11/13/2006 %3,xaVN  
    R`Qp d3  
    c$#GM57V  
    % Check and prepare the inputs: ?L`ZKRD  
    % ----------------------------- od,tfLw4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #`j][F@N  
        error('zernpol:NMvectors','N and M must be vectors.') 46dc.Yi  
    end Uh\]?G[G  
    yqBa_XPV8  
    if length(n)~=length(m) ji##$xC  
        error('zernpol:NMlength','N and M must be the same length.') X2P``YFV{  
    end 6J;i,/ky  
    FF@`+T  
    n = n(:); .Qk{5=l6P  
    m = m(:); 0s!N@ ,T  
    length_n = length(n); DvJB59:_}  
    LJ l1v  
    if any(mod(n-m,2)) Z~R dFC  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1t%<5O;R  
    end +{Gw9h"5g*  
    <O bHf`Q  
    if any(m<0) i^/Di Wdyf  
        error('zernpol:Mpositive','All M must be positive.') X?kPi&ru  
    end 1:YAn  
    Pzptr%{  
    if any(m>n) J 5- rp|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') `~|DoSi^d  
    end @[0jFjK  
    excrXx  
    if any( r>1 | r<0 ) w. vY(s  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 9kUV1?  
    end 9g4QVo|  
    BM.-X7)  
    if ~any(size(r)==1) *seu&  
        error('zernpol:Rvector','R must be a vector.') Ef-a4Pi  
    end ?{n>EvLY  
    at=D&oy4"+  
    r = r(:); 0|GpZuGO9  
    length_r = length(r); oq243\?Y  
    $u&|[vcP0  
    if nargin==4 | [p68v>  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 4 ;^g MI9  
        if ~isnorm )2#vhMpdN  
            error('zernpol:normalization','Unrecognized normalization flag.') /AoVl'R  
        end \N4d_ fPj  
    else df!+T0  
        isnorm = false; Bmmb  
    end Ko]QCLL  
    xp~YIeSg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yW[L,N7d  
    % Compute the Zernike Polynomials tx gvVQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C0P*D,  
    u0wn=Dg  
    % Determine the required powers of r: S!u6dz^[$X  
    % ----------------------------------- ~v^%ze  
    rpowers = []; ZK%Kgk[\:~  
    for j = 1:length(n) Lf[G>0t&n  
        rpowers = [rpowers m(j):2:n(j)]; 4t,zHR6W  
    end kboizJp  
    rpowers = unique(rpowers); mu 2 A%"7  
    n9N#&Q"7m  
    % Pre-compute the values of r raised to the required powers, Gv!BB=ir(  
    % and compile them in a matrix: 83\ o (  
    % -----------------------------  Y>xi|TWN  
    if rpowers(1)==0 71JM [2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I93 ~8wQ  
        rpowern = cat(2,rpowern{:}); X!HDj<  
        rpowern = [ones(length_r,1) rpowern]; A Z]P+v  
    else &G0l&8pa  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vsu@PuqH  
        rpowern = cat(2,rpowern{:}); tniPEmeS  
    end  )GB3=@  
    fui4@  
    % Compute the values of the polynomials: 'bZMh9|  
    % -------------------------------------- pESB Il  
    z = zeros(length_r,length_n); -3C* P  
    for j = 1:length_n c-[Q,c  
        s = 0:(n(j)-m(j))/2; yjGGqz$  
        pows = n(j):-2:m(j); fO[Rf_  
        for k = length(s):-1:1 JZs|~@  
            p = (1-2*mod(s(k),2))* ... 73'U#@g6  
                       prod(2:(n(j)-s(k)))/          ... Qw3a"k-  
                       prod(2:s(k))/                 ... k7:GS,7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~C}(\8g  
                       prod(2:((n(j)+m(j))/2-s(k))); /Ki0+(4  
            idx = (pows(k)==rpowers); A8_\2'b  
            z(:,j) = z(:,j) + p*rpowern(:,idx); zF[3%qZE:T  
        end Paae-EmC  
         %Nwyx;>9^K  
        if isnorm ;J,,f1Vw  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 8L]gQ g  
        end ",MK'\E  
    end ""25ay  
    -IpV'%nX;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  FivaCNA  
    ?QIQ,?.  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 0JRB Nh  
    'nDT.i  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)