非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;eL9{eF
function z = zernfun(n,m,r,theta,nflag) ememce,Np
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. p\p\q(S">
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q`%R[#
% and angular frequency M, evaluated at positions (R,THETA) on the S4CbyXW
% unit circle. N is a vector of positive integers (including 0), and Wg`AZ=t
% M is a vector with the same number of elements as N. Each element o>Er_r
% k of M must be a positive integer, with possible values M(k) = -N(k) &HW1mNF9
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, S6d`ioi-
% and THETA is a vector of angles. R and THETA must have the same 69K{+|
% length. The output Z is a matrix with one column for every (N,M) h#r^teui)
% pair, and one row for every (R,THETA) pair. "=. t
36#
% V'Kgdj
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;%C'FV e]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }x0- V8
% with delta(m,0) the Kronecker delta, is chosen so that the integral /93l74.w
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d[ >`")2)
% and theta=0 to theta=2*pi) is unity. For the non-normalized H9)m^*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }A=y=+4j
% ?>c=}I#Ui-
% The Zernike functions are an orthogonal basis on the unit circle. /cr}N%HZB
% They are used in disciplines such as astronomy, optics, and ltB.Q
% optometry to describe functions on a circular domain. M 3 '$[
% 6qWdd&1
% The following table lists the first 15 Zernike functions. 0MMEo~dih
% D4Al3fe
% n m Zernike function Normalization :<Y}l-x
% -------------------------------------------------- @`opDu!
% 0 0 1 1 o%{'UG
% 1 1 r * cos(theta) 2 Zn=T#o
% 1 -1 r * sin(theta) 2 %J:SO_6
% 2 -2 r^2 * cos(2*theta) sqrt(6) &6 s) X
% 2 0 (2*r^2 - 1) sqrt(3) Ho DVn/lr
% 2 2 r^2 * sin(2*theta) sqrt(6) ;8WZx
% 3 -3 r^3 * cos(3*theta) sqrt(8) (&|_quP7O
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Aa0b6?Jm
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) fkSO( C)
% 3 3 r^3 * sin(3*theta) sqrt(8) a,F&`Wg
% 4 -4 r^4 * cos(4*theta) sqrt(10) W?yd#j
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?Xdak|?i
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :@W.K5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g4`Kp;}&'
% 4 4 r^4 * sin(4*theta) sqrt(10) 2?m.45`
% -------------------------------------------------- }bN%u3mHws
% NK|? y
% Example 1: c_aZ{S
% )"f
N!9,F
% % Display the Zernike function Z(n=5,m=1) 7Dnp'*H
% x = -1:0.01:1; } VJfJ/
% [X,Y] = meshgrid(x,x); b'MSkEiQG
% [theta,r] = cart2pol(X,Y); o"wXIHUmV
% idx = r<=1; u2oKH{/z
% z = nan(size(X)); #HS]NA|e@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]E =Iu
% figure '$4O!YI9@
% pcolor(x,x,z), shading interp x21dku<6K[
% axis square, colorbar Z_\C*^
% title('Zernike function Z_5^1(r,\theta)') i)#:qAtP*
% E_KCNn-f
% Example 2: bjAnaya
% #%J5\+ua
% % Display the first 10 Zernike functions $$:ZX
% x = -1:0.01:1; ["\;kJ.
% [X,Y] = meshgrid(x,x); l5l>d62
% [theta,r] = cart2pol(X,Y); )54%HM_$k
% idx = r<=1; 7~#:>OjW
% z = nan(size(X)); Ax !+P\\2~
% n = [0 1 1 2 2 2 3 3 3 3]; ==i[w|
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; .]aF
1}AI
% Nplot = [4 10 12 16 18 20 22 24 26 28]; fgihy
% y = zernfun(n,m,r(idx),theta(idx)); iC
iZJ"
% figure('Units','normalized') qfcYE=
% for k = 1:10 Xl@cHO=i
% z(idx) = y(:,k); L
8{\r$
% subplot(4,7,Nplot(k)) ;n|^1S<[
% pcolor(x,x,z), shading interp P{Q=mEQ
% set(gca,'XTick',[],'YTick',[]) 5NJ4
% axis square r\nx=
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <F11m(
% end DcSnia62f
% Scv#zuv_
% See also ZERNPOL, ZERNFUN2. |yo\R{&6
j5@:a
% Paul Fricker 11/13/2006 ?f/n0U4w
g/13~UM\
dg4vc][
% Check and prepare the inputs: _G1gtu]
% ----------------------------- nC{%quwh{
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A)ipFB
6K
error('zernfun:NMvectors','N and M must be vectors.') 'l,V*5L
end =)|-?\[w
_HhbIU
if length(n)~=length(m) vFEQ7qI
error('zernfun:NMlength','N and M must be the same length.') TIvRhbu
end O{ /q-~_
3]?#he
n = n(:); s`>[F@N7.o
m = m(:); [
Bl c^C{f
if any(mod(n-m,2)) 7t.!lh5G%
error('zernfun:NMmultiplesof2', ... ;2Q~0a|
'All N and M must differ by multiples of 2 (including 0).') sUPz/Z.h
end ?.Pg\ur
S;]*) i,v
if any(m>n) D-N8<:cA
error('zernfun:MlessthanN', ... Ks}Xgc\
'Each M must be less than or equal to its corresponding N.') } (!EuLL
end U!Ek'
zRPeNdX
if any( r>1 | r<0 ) p<:!)kt
error('zernfun:Rlessthan1','All R must be between 0 and 1.') NzNA>[$[
end LiKxq=K
|\n_OS7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V\6]n2
error('zernfun:RTHvector','R and THETA must be vectors.') } CfqG?)
end H<1WbM:w
"le>_Ze_>|
r = r(:); 9Vf1Xz
theta = theta(:); ;,]P=Ey
length_r = length(r); ]KJj6xn
if length_r~=length(theta) xpOg8u5
error('zernfun:RTHlength', ... @]ao"ui@/
'The number of R- and THETA-values must be equal.') Bm]8m=p
end @'GGm#<
uIZWO.OdU
% Check normalization: ?@V[#.
% -------------------- %AQIGBcgL
if nargin==5 && ischar(nflag) :kGU,>BN
isnorm = strcmpi(nflag,'norm'); [}&Sxgv
if ~isnorm QV\eMuNy
error('zernfun:normalization','Unrecognized normalization flag.') 9V5-%Iv
end k-}b{
else 5L!y-3
isnorm = false; @*sWu_-Y%
end ~
yX2\i"
&%-73nYw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QqU!Najf
% Compute the Zernike Polynomials rEF0oJ.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V5rST +
r9dyA5oD
% Determine the required powers of r: K>{T_) {
% ----------------------------------- (P$H<FtH
m_abs = abs(m); q|),`.eh\
rpowers = []; }+sT4'Ah>
for j = 1:length(n) d N$Tf
rpowers = [rpowers m_abs(j):2:n(j)];
)KAEt.
end lg&t8FHa;
rpowers = unique(rpowers); m|G'K[8
q7E~+p(>(
% Pre-compute the values of r raised to the required powers, Z+=@<i''
% and compile them in a matrix: UNBH
% ----------------------------- pJtex^{!:
if rpowers(1)==0 1 9CK+;b
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^cuc.g)c$?
rpowern = cat(2,rpowern{:}); =z
/dcC$r
rpowern = [ones(length_r,1) rpowern]; &mx)~J^m
else .*)2SNH
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9_5ow
rpowern = cat(2,rpowern{:}); ;-qO'V:;
end aSnFKB
i ,/0/?)*_
% Compute the values of the polynomials: B]l)++~
% -------------------------------------- HKUn`ng
y = zeros(length_r,length(n)); (P:<t6;+
for j = 1:length(n) 3(,?S$>
s = 0:(n(j)-m_abs(j))/2; ^\S~?0^m
pows = n(j):-2:m_abs(j); Nb'''W-iu
for k = length(s):-1:1 *vwbgJG! *
p = (1-2*mod(s(k),2))* ... e(<str>
prod(2:(n(j)-s(k)))/ ... \}|o1Xh2
prod(2:s(k))/ ... \r+8qC[,
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 71t*%
prod(2:((n(j)+m_abs(j))/2-s(k))); D1=((`v
'
idx = (pows(k)==rpowers); pWJFz-
y(:,j) = y(:,j) + p*rpowern(:,idx); Rw0qcM\>|
end (O(}p~s
cHk)i
if isnorm lE(a%'36
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2|*JSU.I
end B e0ND2oo
end %#xaA'?
[
% END: Compute the Zernike Polynomials VL` z[|e @
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /k,-P
4?q<e*W
% Compute the Zernike functions: fO[+LR
'ax
% ------------------------------ _ =VqrK7T
idx_pos = m>0; 6"&6`f
idx_neg = m<0; }%{LJ}\Px
DrY:9[LP
z = y; 2Tp1n8FV
if any(idx_pos) ?Yth0O6?sb
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ay0U=#XP
end ,N]H dR
if any(idx_neg) r
w2arx
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sl`s_$J
end NRIG 1v>
%1xb,g KO
% EOF zernfun