非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {P{h|+;
function z = zernfun(n,m,r,theta,nflag) wU}%]FqtZ=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5+DId7d'n
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <jAn~=Uq[,
% and angular frequency M, evaluated at positions (R,THETA) on the u7/]Go44
% unit circle. N is a vector of positive integers (including 0), and Fp&tJ]=B.
% M is a vector with the same number of elements as N. Each element {j8M78 }3
% k of M must be a positive integer, with possible values M(k) = -N(k) H`bS::JI-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, _LSp \{Z
% and THETA is a vector of angles. R and THETA must have the same goqm6L^Cu
% length. The output Z is a matrix with one column for every (N,M) `B$rr4_
% pair, and one row for every (R,THETA) pair. }vXiq T
% 11iV{ h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _C3O^/<n4V
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cj\?vX\V
% with delta(m,0) the Kronecker delta, is chosen so that the integral 3\ {?L
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, egmNX't6f5
% and theta=0 to theta=2*pi) is unity. For the non-normalized B#;6z%WK
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e>2KW5.
% 6Z l#$>P
% The Zernike functions are an orthogonal basis on the unit circle. Q?2GwN
% They are used in disciplines such as astronomy, optics, and 3GL,=q
% optometry to describe functions on a circular domain. ]!X[[w)
% K>vi9,4/ks
% The following table lists the first 15 Zernike functions. mUNAA[0 L
% ()Q#@?c~
% n m Zernike function Normalization nB;[;dCz
% -------------------------------------------------- c6T[2Ig
% 0 0 1 1 az1#:Go
% 1 1 r * cos(theta) 2 ]++,7Z\AU
% 1 -1 r * sin(theta) 2 ~l8w]R3A
% 2 -2 r^2 * cos(2*theta) sqrt(6) r"9hpZH
% 2 0 (2*r^2 - 1) sqrt(3) [XhG7Ly
% 2 2 r^2 * sin(2*theta) sqrt(6) Yosfk\D
% 3 -3 r^3 * cos(3*theta) sqrt(8) YU`}T<;bg
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) u]*f^/6Q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) =o:1Rc7J
% 3 3 r^3 * sin(3*theta) sqrt(8) 2~l +2..
% 4 -4 r^4 * cos(4*theta) sqrt(10) (?xR<]~g*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) USg,=YM
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &`IJ55Z-)
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &u!MI
% 4 4 r^4 * sin(4*theta) sqrt(10) rI OKCL?
% -------------------------------------------------- -W{ !`<8D
% T#\=v(_NR
% Example 1: !CdF,pd/)m
% 7~~suQ{F4
% % Display the Zernike function Z(n=5,m=1) TkR#Kzv380
% x = -1:0.01:1; QM'|k6
% [X,Y] = meshgrid(x,x); j>?`N^
% [theta,r] = cart2pol(X,Y); &
}7+.^
% idx = r<=1; vaLP_V
% z = nan(size(X)); 0a2#36;_IK
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1QPz|3f@\
% figure `MHixQ;j
% pcolor(x,x,z), shading interp Kk,u{EA
% axis square, colorbar 1k]L ,CX
% title('Zernike function Z_5^1(r,\theta)') CXBFR>"
% 5@J]#bp0M
% Example 2: Rk-G|52g
% o!lKP>
% % Display the first 10 Zernike functions r~G amjS
% x = -1:0.01:1; D_?dy4\
% [X,Y] = meshgrid(x,x); r PTfwhs
% [theta,r] = cart2pol(X,Y); Ng2Z7k
% idx = r<=1; <KJ|U0/jGd
% z = nan(size(X)); |l-O e
% n = [0 1 1 2 2 2 3 3 3 3]; D~FIv
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; e8E' X
% Nplot = [4 10 12 16 18 20 22 24 26 28]; oE_*hp+
% y = zernfun(n,m,r(idx),theta(idx)); l cM
% figure('Units','normalized') QnJLTBv
% for k = 1:10 B@@tKn_CQ
% z(idx) = y(:,k); (-],VB
(+
% subplot(4,7,Nplot(k)) ,vo]WIQ\:
% pcolor(x,x,z), shading interp 86e aX+F
% set(gca,'XTick',[],'YTick',[]) dV{mmHL
% axis square AV4fN@BX
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^ZIs >.'
% end Rt7l`|g a+
% 1>/ iYf
% See also ZERNPOL, ZERNFUN2. `H q*l"8
III:jhh
% Paul Fricker 11/13/2006 (! 8y~n1
P @J)S ?
H]W'mm
% Check and prepare the inputs: >oN Wf
% ----------------------------- |&@`~OBa
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'BUfdb8d
error('zernfun:NMvectors','N and M must be vectors.') Nobu=
Z
end *8+HQ[[#
DZ1.Bm0
if length(n)~=length(m) As5-@l`@
error('zernfun:NMlength','N and M must be the same length.') HRJ\H-
V
end "%bU74>
Dc*
H:x;
n = n(:); t&p I
m = m(:); Vc6
>i|"-O
if any(mod(n-m,2)) fq4uiFi<
error('zernfun:NMmultiplesof2', ... I5Ty@J#
'All N and M must differ by multiples of 2 (including 0).') :0ltq><?
end ,)N/2M\B-
obN8+ j
if any(m>n) M]M>z>1*v
error('zernfun:MlessthanN', ... P_b!^sq9
'Each M must be less than or equal to its corresponding N.') %iME[| u&
end :P
]D`b6p
<CJy3<$u
if any( r>1 | r<0 ) )*R';/zaI
error('zernfun:Rlessthan1','All R must be between 0 and 1.') E!.&y4
end ?Q$a@)x#
[$uKI,l
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LitdO>%#2
error('zernfun:RTHvector','R and THETA must be vectors.') W'=}2Y$]u
end jse!EtB:
a\~118 !
r = r(:); miTff[hsMa
theta = theta(:); Y@<jvH1
length_r = length(r); ]d~{8h!G
if length_r~=length(theta) 4;>HBCM4-
error('zernfun:RTHlength', ... ^7*7^<
'The number of R- and THETA-values must be equal.') G;J)[y
end 4\nGWi{2
\YFM5l;IU
% Check normalization: LE)$_i8gX
% -------------------- C@[U:\
if nargin==5 && ischar(nflag) Jh<s '&FR
isnorm = strcmpi(nflag,'norm'); ?RIf0;G
if ~isnorm e2K9CE.O
error('zernfun:normalization','Unrecognized normalization flag.') LEe{fc?{
end Ryygq,>VD.
else A|]#b?-
isnorm = false; _~D#?cFY6
end :bi(mX7t
k4!_(X%8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *W^a<Zm8>
% Compute the Zernike Polynomials w (z=xO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =F Y2O`%a
G<$8g-O;D
% Determine the required powers of r: 9:GP~oI j
% ----------------------------------- Qca3{|r`
m_abs = abs(m); -'L~Y~'.
rpowers = []; ^nNpT!o
for j = 1:length(n) Pa+_{9
rpowers = [rpowers m_abs(j):2:n(j)]; aG]^8`~>'
end Y"r728T`K
rpowers = unique(rpowers); IbJl/N%o
jN'h/\
% Pre-compute the values of r raised to the required powers, WC37=8mA
% and compile them in a matrix: $-~"G,;F
% ----------------------------- ,FH1yJ;Y&
if rpowers(1)==0 }@ktAt
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W}2!~ep!
rpowern = cat(2,rpowern{:}); f[.'V1
rpowern = [ones(length_r,1) rpowern]; -meY[!"X
else ^W9O_5\g4a
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); diVg|Z3T
rpowern = cat(2,rpowern{:}); L;y BZLM
end _Y/*e<bU
$$W2{vr7+
% Compute the values of the polynomials: fH?A.JP=a
% -------------------------------------- I"x~ 7
y = zeros(length_r,length(n)); c0rU&+:Ry
for j = 1:length(n) osdoL
s = 0:(n(j)-m_abs(j))/2; oyY
z3X
pows = n(j):-2:m_abs(j); ^OX}y~'
for k = length(s):-1:1 QtXiUx^ k<
p = (1-2*mod(s(k),2))* ... &Td)2Wt
prod(2:(n(j)-s(k)))/ ... sf[|8}(
prod(2:s(k))/ ... *)`PY4zF
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tPN CdA
prod(2:((n(j)+m_abs(j))/2-s(k))); u*W! !(P/
idx = (pows(k)==rpowers); 9E8&~y
y(:,j) = y(:,j) + p*rpowern(:,idx); Iz
j-,a
end ]W4{|%@H"
S:`Gi>D
if isnorm X%&7-PO
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #gT"G18/!
end B:0oT
end Oq,@{V@)9k
% END: Compute the Zernike Polynomials K|$c#X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o|y_j49
d=8.cQL:E
% Compute the Zernike functions: <6Y;VH^_
% ------------------------------ ys>n%24qP
idx_pos = m>0; jAue+tB
idx_neg = m<0; W2fcY;HZ
w0Ex}
z = y; i=]R1yP
if any(idx_pos) +F60_O
`
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X am8h
end b]Kb ~y|
if any(idx_neg) Uf]$I`T#
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c}|.U
end =EM<LjO
G3+e5/0
% EOF zernfun