非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 5F~l;zT
function z = zernfun(n,m,r,theta,nflag) ZAgXz{!H(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. X>o9mW
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rvd$4l^
% and angular frequency M, evaluated at positions (R,THETA) on the E^F<"mL*
% unit circle. N is a vector of positive integers (including 0), and j
%gd:-tA
% M is a vector with the same number of elements as N. Each element tn'Jkwp
% k of M must be a positive integer, with possible values M(k) = -N(k) 0W*{ 1W
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, f<@!{y2Xe
% and THETA is a vector of angles. R and THETA must have the same BM,hcTr?
% length. The output Z is a matrix with one column for every (N,M) OY`B{jV-
% pair, and one row for every (R,THETA) pair. %DKFF4k
% 1}DA| !~
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 11yXI[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~#*C,4m
% with delta(m,0) the Kronecker delta, is chosen so that the integral hHE~/U
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B]"`}jn
% and theta=0 to theta=2*pi) is unity. For the non-normalized R}Lk$#S#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ( *+'k1Ea
% ^b+>r
% The Zernike functions are an orthogonal basis on the unit circle. nL:&G'd
% They are used in disciplines such as astronomy, optics, and LOx+?4|y
% optometry to describe functions on a circular domain. ~U&NY7.@
% eTS}-
% The following table lists the first 15 Zernike functions. MJ)lZ!KZ
% aDNB~CwZZ
% n m Zernike function Normalization vAUt~X"
% -------------------------------------------------- ljNwt
% 0 0 1 1 F(HfXY3
% 1 1 r * cos(theta) 2 (E0
% 1 -1 r * sin(theta) 2 pD$4nH4KST
% 2 -2 r^2 * cos(2*theta) sqrt(6) neI7VbH4
% 2 0 (2*r^2 - 1) sqrt(3) 9Lb96K?=>
% 2 2 r^2 * sin(2*theta) sqrt(6) ~:z.Xu5m
% 3 -3 r^3 * cos(3*theta) sqrt(8) !,[#,oy;
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \#9LwC"8;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) K?^;|m-
% 3 3 r^3 * sin(3*theta) sqrt(8) <xy@%
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4!Js="
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .zO2g8(VR
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) l/X_CM8y~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) AatSN@,~z
% 4 4 r^4 * sin(4*theta) sqrt(10) +NPL.b|
% -------------------------------------------------- Lj1l]OD
% S 5S\zTPIf
% Example 1: k6Kc{kY
% ^Pn|Q'{/p
% % Display the Zernike function Z(n=5,m=1) EMmgX*iu@
% x = -1:0.01:1; *DF3juf~
% [X,Y] = meshgrid(x,x); YP2VSK2Q
% [theta,r] = cart2pol(X,Y); lYx_8x2
% idx = r<=1; 03 @aG
% z = nan(size(X)); pr0X7 #_E5
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7]h %?W!
% figure y*i&p4Y*
% pcolor(x,x,z), shading interp t}q
e_c
% axis square, colorbar ;28d7e}
% title('Zernike function Z_5^1(r,\theta)') @k?vbq
% Xsq@E#@S
% Example 2: ob.<j
% ?Z#N9Z~\
% % Display the first 10 Zernike functions Y
[`+7w
% x = -1:0.01:1; /Y7^!3uM
% [X,Y] = meshgrid(x,x); /s\ mV
% [theta,r] = cart2pol(X,Y); +K4XMf
% idx = r<=1; bwsKdh
% z = nan(size(X)); hw
DxGiU
% n = [0 1 1 2 2 2 3 3 3 3]; |`T(:ZKXZ2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %~LY'cfPse
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ;.>*O
oe&
% y = zernfun(n,m,r(idx),theta(idx)); f@OH~4FG
% figure('Units','normalized') H5K
Fm#
% for k = 1:10 2@|`Ugjptl
% z(idx) = y(:,k); uC'-: t#
% subplot(4,7,Nplot(k)) gQ+]N*.
% pcolor(x,x,z), shading interp F5o8@ Ib]:
% set(gca,'XTick',[],'YTick',[]) ;vH2r~
% axis square C(N'=-;Kl
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V"/.An|
% end `a83RX_\
% yZleots1
% See also ZERNPOL, ZERNFUN2. |a(KVo
]>n{~4a
% Paul Fricker 11/13/2006 02J/=AC5
-$d?e%}#
O<m46mwM
% Check and prepare the inputs: 1WUSp;JMl
% ----------------------------- jBLTEb
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) TDh)}Ms
error('zernfun:NMvectors','N and M must be vectors.') 7)rQf{q7
end ng1E'c]0@
?WI v4
if length(n)~=length(m) q*hn5 K*
error('zernfun:NMlength','N and M must be the same length.') W5|{A])N
end t~+M>Fjm?d
=M\yh,s!
n = n(:); fv;Q*; oC&
m = m(:); V6g*"e/8
if any(mod(n-m,2)) QQJGqM3a2
error('zernfun:NMmultiplesof2', ... Aiq Kf=
'All N and M must differ by multiples of 2 (including 0).')
?8>a;0
end PR{ubMn
#7uH>\r
if any(m>n) 6{2y$'m8
error('zernfun:MlessthanN', ... ;z:Rj}l
'Each M must be less than or equal to its corresponding N.') >.?yz
end 1iT_mtXK$
/J`}o}
if any( r>1 | r<0 ) lu#a.41
error('zernfun:Rlessthan1','All R must be between 0 and 1.') CsR[@&n'
end )vtbA=RH?
-laH^<jm5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HSruue8
error('zernfun:RTHvector','R and THETA must be vectors.') {cdICWy(F3
end uLdHE5vr
l6'KIg
r = r(:); JsY,Q,D q
theta = theta(:); b_+o1Zy`
length_r = length(r); d6i}xnmC
if length_r~=length(theta) %NLd"SV
error('zernfun:RTHlength', ... hb[ThQ
'The number of R- and THETA-values must be equal.') u(9pRr
L
end }9OMXLbRv
!)M}(I}
% Check normalization: m(f`=+lqI`
% -------------------- "im5Fnu
if nargin==5 && ischar(nflag) H I9/
isnorm = strcmpi(nflag,'norm'); cW3'057
if ~isnorm XpAJP++
error('zernfun:normalization','Unrecognized normalization flag.') |!o C7!+0^
end l$u52e!7
else $QiMA,
isnorm = false; -jjB2xP
end %|jS`kj
a^_K@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d V%o:@Z
% Compute the Zernike Polynomials b: (+d"S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~<1s[Hu
-Mo4`bN
% Determine the required powers of r: 4~
x>]
% ----------------------------------- eC/{c1C
m_abs = abs(m); qO@vXuul,
rpowers = []; UP#@gxF
for j = 1:length(n) A!Tl
rpowers = [rpowers m_abs(j):2:n(j)]; BB}WfA
end / Xnq0hN
rpowers = unique(rpowers); veDv14
LJrH_h8C
% Pre-compute the values of r raised to the required powers, 60{G
4b)
% and compile them in a matrix: C6ql,hR^h`
% ----------------------------- Z|K HF"
if rpowers(1)==0 W=Syo&;F8
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gj;gl
="3
rpowern = cat(2,rpowern{:}); aG1Fj[,
rpowern = [ones(length_r,1) rpowern];
s(_z1
else C
b'|
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wPU5L*/*i
rpowern = cat(2,rpowern{:}); Rd8mn'A
end W2`3 p
fBX@
MedC
% Compute the values of the polynomials: #8jiz+1 _
% -------------------------------------- i,^-9
y = zeros(length_r,length(n)); 14&| (M
for j = 1:length(n) J@_M%eN
s = 0:(n(j)-m_abs(j))/2;
:%sG'_d
pows = n(j):-2:m_abs(j); g?v/u:v>W
for k = length(s):-1:1 Kmx4bp4
p = (1-2*mod(s(k),2))* ... ;)ay uS sQ
prod(2:(n(j)-s(k)))/ ... {X?Aj >l
prod(2:s(k))/ ... /Ey%aA4v
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... shB3[W{}!)
prod(2:((n(j)+m_abs(j))/2-s(k))); rk=/iD
idx = (pows(k)==rpowers); @o[ZJ4>*
y(:,j) = y(:,j) + p*rpowern(:,idx); LcLHX
end 6O?zi|J[:
$\/i t
if isnorm YUSrZ9Yg
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); aVr(*s;/
end U/FysN_N!
end ,'C*?mms
% END: Compute the Zernike Polynomials #2|biTJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *v#V%_ o
*X3wf`C?
% Compute the Zernike functions: OGEe8Z9Jt
% ------------------------------ `C_qqf
idx_pos = m>0; Na`>
pH
idx_neg = m<0; ~F@p}u8TV
L0VZ>!*o
z = y; q%d,E1
if any(idx_pos) cZ%tJ(&\7X
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;Q3[} ]su
end BZLIi
O
if any(idx_neg) I_#5gq
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %i7U+v(d
end Y'1
KH}sH
@|h9jx|
% EOF zernfun