非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1Q3%!~<\s
function z = zernfun(n,m,r,theta,nflag) cM|af#o
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (}~ 1{C@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %pQdq[J={
% and angular frequency M, evaluated at positions (R,THETA) on the =#J9
% unit circle. N is a vector of positive integers (including 0), and \=TWYj_Ah
% M is a vector with the same number of elements as N. Each element xy2eJJq
% k of M must be a positive integer, with possible values M(k) = -N(k) >!CH7wX
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ZzSJm+&'
% and THETA is a vector of angles. R and THETA must have the same )3d:S*ly
% length. The output Z is a matrix with one column for every (N,M) T749@! v`z
% pair, and one row for every (R,THETA) pair. `V$cz88b
% c1=;W$T(s
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =W97|BIW,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jCdZ}M($
% with delta(m,0) the Kronecker delta, is chosen so that the integral C&qDvvk
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5k_Mj*{6
% and theta=0 to theta=2*pi) is unity. For the non-normalized $Ykp8u,(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D<$j`r
% xQcMQ{&;
% The Zernike functions are an orthogonal basis on the unit circle. ]*t*/j;N
% They are used in disciplines such as astronomy, optics, and [7CH(o1a&
% optometry to describe functions on a circular domain. AF07KA#
% M]pel\{M
% The following table lists the first 15 Zernike functions. oc,U4+T
% :5n"N5Go
% n m Zernike function Normalization _j|n}7a
% -------------------------------------------------- ?.|wfBI
% 0 0 1 1 w2RESpi
% 1 1 r * cos(theta) 2 =[O<.'aG-
% 1 -1 r * sin(theta) 2 ACMpm~C8Gu
% 2 -2 r^2 * cos(2*theta) sqrt(6) QB
oZCLv
% 2 0 (2*r^2 - 1) sqrt(3) <'+R%6
% 2 2 r^2 * sin(2*theta) sqrt(6) `"1{Sx.
% 3 -3 r^3 * cos(3*theta) sqrt(8) P,+0
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V9);kD
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) P+D|_3j
% 3 3 r^3 * sin(3*theta) sqrt(8) WL*W=(
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6='_+{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z.\[Va$@l
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Z{|.xg sY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K{7S
% 4 4 r^4 * sin(4*theta) sqrt(10) Jh/M}%@|
% -------------------------------------------------- Vtc)/OH
% cC(ubUR
% Example 1: Q?I"J$]&L
% "|~B};|MFF
% % Display the Zernike function Z(n=5,m=1) 1&>nL`E[3
% x = -1:0.01:1; Iu)(Huv
% [X,Y] = meshgrid(x,x); {?kKpMNNn
% [theta,r] = cart2pol(X,Y); WhVmycdv
% idx = r<=1; R*c0NJF
% z = nan(size(X)); M<|~MR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); lpX p)r+
% figure `U?H^,FVA
% pcolor(x,x,z), shading interp |4 d{X@`&
% axis square, colorbar *<h
% title('Zernike function Z_5^1(r,\theta)') E.G h@i
% @a7(*<".
% Example 2: SS<+fWXE
% `'tw5}
% % Display the first 10 Zernike functions cB9KHq B
% x = -1:0.01:1; sD8xH
% [X,Y] = meshgrid(x,x); {D_4~heF
% [theta,r] = cart2pol(X,Y); e&]`X HC9
% idx = r<=1; b~jvmcr
% z = nan(size(X)); 86)
3XE[5
% n = [0 1 1 2 2 2 3 3 3 3]; wW)&Px
n
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 2w.9Q
(Sn
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7 +W?Qo
% y = zernfun(n,m,r(idx),theta(idx)); /x"pj3
% figure('Units','normalized') }'M1(W
% for k = 1:10 e|+;j}^C
% z(idx) = y(:,k); \~1zAiSd>#
% subplot(4,7,Nplot(k)) c75vAKZ2
% pcolor(x,x,z), shading interp >p+gx,N
% set(gca,'XTick',[],'YTick',[]) *R~(:z>>
% axis square |LGNoP}SA
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G cLp"
% end ez<wEtS
% aPP<W|Cmo2
% See also ZERNPOL, ZERNFUN2. :+V1682u
e4_aKuA
% Paul Fricker 11/13/2006 0b QiUcg/
e hB1`%@
:DF4g=
% Check and prepare the inputs: nO7o7bc
% ----------------------------- }4ghT(C}$
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D;8V{Hs
error('zernfun:NMvectors','N and M must be vectors.') n|`):sP
end {<{G 1y~
aFm]?75
if length(n)~=length(m) :?XHZ
error('zernfun:NMlength','N and M must be the same length.') m
?tnk?oX
end 0FR%<u
q,>F#A'
n = n(:); Z*Hxrw\!0
m = m(:); *9:6t6x
if any(mod(n-m,2)) %T*+t"\)
error('zernfun:NMmultiplesof2', ... HyYQQ
'All N and M must differ by multiples of 2 (including 0).') L$kAe1 V^m
end =y(YMWGS
Ch!Q? 4
if any(m>n) KI QBY!N+
error('zernfun:MlessthanN', ... i&G`ah>
'Each M must be less than or equal to its corresponding N.') J?ZVzKTb>}
end h
swMy
(cew:z
H
if any( r>1 | r<0 ) (tz]!Aa{s
error('zernfun:Rlessthan1','All R must be between 0 and 1.') #CP, \G
end Wjk;"_"gd
F`}w0=-*(
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) umrI4.1c
error('zernfun:RTHvector','R and THETA must be vectors.') s!!t
end p. ~jo
E4@fP]R+
r = r(:); )Ua2x@j'C@
theta = theta(:); |.8=gS5
length_r = length(r); !3v"7l{LF
if length_r~=length(theta) ;{7lc9uRj
error('zernfun:RTHlength', ... j/IZm)\
'The number of R- and THETA-values must be equal.') zLK
~i>aW
end ;xH'%W9z
aJ_Eh(cF
% Check normalization: JNg5?V;.U
% -------------------- VCtiZ4
if nargin==5 && ischar(nflag) ~:b~f]lO
isnorm = strcmpi(nflag,'norm'); TB[2!ZW
if ~isnorm sO-R+G/^7
error('zernfun:normalization','Unrecognized normalization flag.') 5j01Mx
A
end RtM.}wv;
else IL"#TKKv
isnorm = false; o%4+I>
end +!Ag n)
R~(.uV`#j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HON[{Oq
% Compute the Zernike Polynomials SLB iQd.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vta;ibdeqW
o=2`N2AL
% Determine the required powers of r: ({b/J0<@D
% ----------------------------------- $iJ
#%&D
m_abs = abs(m); 5h7DVr!
rpowers = []; "G)?
E|
for j = 1:length(n) sb5kexGxkc
rpowers = [rpowers m_abs(j):2:n(j)]; sgsMlZ3/
end ]F-6KeBc
rpowers = unique(rpowers); 2`eu3vA
;.a)r
% Pre-compute the values of r raised to the required powers, Kg67cmj)f
% and compile them in a matrix: )pH{b]t
% ----------------------------- ;BvWU\!
if rpowers(1)==0 ? D'-{/<4
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~WLsqP5Y~a
rpowern = cat(2,rpowern{:}); _erH]E| [
rpowern = [ones(length_r,1) rpowern]; 7si.]
else 'z5 ;o:T
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H9[.#+ln
rpowern = cat(2,rpowern{:}); +y#979A,
end \MPy"uC
svgi!=
% Compute the values of the polynomials: v1rGq
% -------------------------------------- .{>-.&
y = zeros(length_r,length(n)); nTlrG6
for j = 1:length(n) PrxXL/6
s = 0:(n(j)-m_abs(j))/2; Rznr9L
pows = n(j):-2:m_abs(j); [%q":Ig
for k = length(s):-1:1 a$A
S?`L
p = (1-2*mod(s(k),2))* ... XA%?35v~
prod(2:(n(j)-s(k)))/ ... "0mR*{nF
prod(2:s(k))/ ... b,`N;*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >cLZP#^\2E
prod(2:((n(j)+m_abs(j))/2-s(k))); J],BO\ECH
idx = (pows(k)==rpowers); ~8E
rl3=5{
y(:,j) = y(:,j) + p*rpowern(:,idx); `R;XN-
end m0YDO0
~Q\[b%>J
if isnorm GM~jR-FZ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); L;<]wKs
end cl5 :|)
end 5j%jhby?
% END: Compute the Zernike Polynomials c-{]H8$v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WX9BS$}0
*}=W wG
% Compute the Zernike functions: yR-.OF,c
% ------------------------------ 7IRn
idx_pos = m>0; 5@\<:Zmi
idx_neg = m<0; Zs)9OJu
7EUaf;d^
z = y; )Q`<O
if any(idx_pos) DoA f,9|_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U6"50G~u
end 4`B:Mq&j
if any(idx_neg) u5,<.#EVY
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -g9f3Be
end {Gy_QRsp,
~$<@:z{*
% EOF zernfun