非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'E0{zk
function z = zernfun(n,m,r,theta,nflag) 7 .+kcqX
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z8kO*LYv
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *E.{i
% and angular frequency M, evaluated at positions (R,THETA) on the Lq
LciD
% unit circle. N is a vector of positive integers (including 0), and m
|,ocz
% M is a vector with the same number of elements as N. Each element I~"-
% k of M must be a positive integer, with possible values M(k) = -N(k) D}!U?]la&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, e?L$RY,7
% and THETA is a vector of angles. R and THETA must have the same ,y2ur 2
% length. The output Z is a matrix with one column for every (N,M) 3Du&KZ
% pair, and one row for every (R,THETA) pair. X!,Ngmw.
% D2>EG~xWq
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g@nk0lQewj
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [fR<#1Z
% with delta(m,0) the Kronecker delta, is chosen so that the integral LjXtOF
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <g,k[
% and theta=0 to theta=2*pi) is unity. For the non-normalized Qkqn~>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f]5bAs
% QsDab4
% The Zernike functions are an orthogonal basis on the unit circle. V85a{OBm,8
% They are used in disciplines such as astronomy, optics, and 3Luv$6
% optometry to describe functions on a circular domain. Bh2m,=``
% ,X\z#B
% The following table lists the first 15 Zernike functions. 4_t
aCK
% EE&~D~yHUL
% n m Zernike function Normalization 6Om-[^
% -------------------------------------------------- ?b8NEVjw
% 0 0 1 1 X^9_'T9
% 1 1 r * cos(theta) 2 i>,5b1x~
% 1 -1 r * sin(theta) 2 w^`n
% 2 -2 r^2 * cos(2*theta) sqrt(6) 66)@4 3V
% 2 0 (2*r^2 - 1) sqrt(3) s/sH",
% 2 2 r^2 * sin(2*theta) sqrt(6) Q6%m}R
% 3 -3 r^3 * cos(3*theta) sqrt(8) Ylt[Ks<2
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) a+weBF#Z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) aQFYSl
% 3 3 r^3 * sin(3*theta) sqrt(8) 9KXp0Q?-$
% 4 -4 r^4 * cos(4*theta) sqrt(10) tk}qvW.Ii
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 51;(vf
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 5/P?@`/eT
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z^}T=
$&
% 4 4 r^4 * sin(4*theta) sqrt(10) |nD2k,S<?
% -------------------------------------------------- `r>WVPS|
% lrq !}\aX
% Example 1: zq4mT;rqz
% T| 4c\
% % Display the Zernike function Z(n=5,m=1) G0]q(.sOy
% x = -1:0.01:1; S~Q7>oNm
% [X,Y] = meshgrid(x,x); x:l`e:`y9
% [theta,r] = cart2pol(X,Y); HNU[W8mg8
% idx = r<=1; IUc!nxF#
% z = nan(size(X)); Sk;IAp#X9
% z(idx) = zernfun(5,1,r(idx),theta(idx)); >%[(C*Cks
% figure O IewG5O
% pcolor(x,x,z), shading interp 'd6hQ4Vw4
% axis square, colorbar 8zVXQ!'
% title('Zernike function Z_5^1(r,\theta)') v S%+
% f+I*aBQ
% Example 2: *[yCcqN.
% 8<.KWr
% % Display the first 10 Zernike functions )2^OBfl7
% x = -1:0.01:1; k9R1E/;
% [X,Y] = meshgrid(x,x); ZibHT:n
% [theta,r] = cart2pol(X,Y); I}k!i+Yl
% idx = r<=1; zo\XuoZ
% z = nan(size(X)); /;.M$}Z>`
% n = [0 1 1 2 2 2 3 3 3 3]; g_n=vO('X
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; L</"m[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; `Rm B{qgB
% y = zernfun(n,m,r(idx),theta(idx)); ~}ewna/2
% figure('Units','normalized') JHO9d:{-
% for k = 1:10 SxH}/I|W
% z(idx) = y(:,k);
W8":lpp
% subplot(4,7,Nplot(k)) *$l8H[
% pcolor(x,x,z), shading interp zNXkdw
% set(gca,'XTick',[],'YTick',[]) **s:H'M w_
% axis square sgB3i`_M
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =e._b 7P
% end #d|.BxH
% B:x4H}`vh
% See also ZERNPOL, ZERNFUN2. {g
)kT_
5.\!k8a
% Paul Fricker 11/13/2006 /+IR^WG#C}
BAKfs/N
m]DjIs*@%h
% Check and prepare the inputs: 1m![;Pg3
% ----------------------------- +[F9Q,bH@b
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =lDmP|^
error('zernfun:NMvectors','N and M must be vectors.') 5 !NPqka}.
end +ubO-A?
3G>E>yJ
if length(n)~=length(m) Gu_s:cgB9F
error('zernfun:NMlength','N and M must be the same length.') T Z>z5YTv
end uox;PDK
7NXT.E~2
n = n(:); dG)A-qbV
m = m(:); O:Z|fDQ`
if any(mod(n-m,2)) ~O^_J)
error('zernfun:NMmultiplesof2', ... ~;`i&s
'All N and M must differ by multiples of 2 (including 0).') =8J\;h
end NKI&n]EO
94lmsE
if any(m>n) W&p-Z"=)
error('zernfun:MlessthanN', ... ^~Ar
'Each M must be less than or equal to its corresponding N.') `o*eL Lk
end H+: $ 7;
QR8F'7S
if any( r>1 | r<0 ) 9g*~X;`2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') <]!IC]+
end 4a646jg)
f'.yM*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ipyO&v
error('zernfun:RTHvector','R and THETA must be vectors.') 67sb
D<r
end *yX_dgC>[
y-Ol1R3:c#
r = r(:); {Rz`)qqE
theta = theta(:); TZ*ib~
length_r = length(r); lq9c2xK
if length_r~=length(theta) /JfXK$`
error('zernfun:RTHlength', ... gT+/CVj R
'The number of R- and THETA-values must be equal.') 1R:h$*-z
end fcBSs\\C~
:c.i Z
% Check normalization: *Js<VR
% -------------------- T-x`ut7c
if nargin==5 && ischar(nflag) -+4$W{OK*0
isnorm = strcmpi(nflag,'norm'); `}=Fw0
if ~isnorm sy#Gb#=#
error('zernfun:normalization','Unrecognized normalization flag.') L NE]#8ue
end +?L~fM69B
else onmO>q*
isnorm = false; vLC&C-f
end hFjW.~B
r94BEC 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [AGm%o=)
% Compute the Zernike Polynomials ~KNxAxyVi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D0-e,)G}V,
p75w^
% Determine the required powers of r: UnMDdJ\
% ----------------------------------- Iq52rI}
m_abs = abs(m); gGX/p6"
rpowers = []; '-~86Q
for j = 1:length(n) MdKZH\z/
rpowers = [rpowers m_abs(j):2:n(j)]; IaJ(T>"+
end TRiB|b]8Q#
rpowers = unique(rpowers); 0I&rZMpF&
M6I1`Lpf
% Pre-compute the values of r raised to the required powers, XNl!(2x'pb
% and compile them in a matrix: Kfr?sX
% ----------------------------- kP6r=HH@
if rpowers(1)==0 V]8fn MH
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4 I~,B[|
rpowern = cat(2,rpowern{:}); ULJI`I|m
rpowern = [ones(length_r,1) rpowern]; 4EELaP|%
else S%4hv*_c
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FStfGN
rpowern = cat(2,rpowern{:}); ox*Ka]
end W=b5{
6
zz9.OnZ~
% Compute the values of the polynomials: ?L
$KlF Y
% -------------------------------------- ,yT4(cMBk?
y = zeros(length_r,length(n)); Twk zX|
for j = 1:length(n) HR}c9wy,q\
s = 0:(n(j)-m_abs(j))/2; *kIJv?%_}
pows = n(j):-2:m_abs(j); &sKYO<6K}
for k = length(s):-1:1 Ry(!<w,
p = (1-2*mod(s(k),2))* ... ~<eiWDf
prod(2:(n(j)-s(k)))/ ... 1TVTP2&Rd
prod(2:s(k))/ ... QO,y/@Ph
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... );6zV_^!
prod(2:((n(j)+m_abs(j))/2-s(k))); vKW%l
idx = (pows(k)==rpowers); -R8RAwsLG
y(:,j) = y(:,j) + p*rpowern(:,idx); Vr^wesT\Hx
end 'D-imLV<<
%iGME%oXr
if isnorm $`Ou *
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); JrQN-e!
end s 2$R2,
end 7OZs~6(
% END: Compute the Zernike Polynomials w_-{$8|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bZi>
k-89(
% Compute the Zernike functions: QVP
$e`4
% ------------------------------ I?PKc'b
idx_pos = m>0; *7R3EUUk
idx_neg = m<0; 5GY%ZRHh
G ;z2}Ei
z = y; ecFI"g
if any(idx_pos) h8h4)>:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]EK"AuEz`
end @#V{@@3$
if any(idx_neg) o1Xk\R{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +F/ '+
end -0kwS4Hx2
V^0*S=N
% EOF zernfun