切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10926阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 -GZ:}<W 6+  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! [13NhF3.P  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /JmWiBQIn  
    function z = zernfun(n,m,r,theta,nflag) LEA^o"NW.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +?+iVLr!l}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )w0K2&)A  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @pV&{Vp  
    %   unit circle.  N is a vector of positive integers (including 0), and VV"1IR  
    %   M is a vector with the same number of elements as N.  Each element cWp5pGIzfp  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 7vEZb.~4z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, a3^({;k!0  
    %   and THETA is a vector of angles.  R and THETA must have the same M3YC@(N% k  
    %   length.  The output Z is a matrix with one column for every (N,M) `.YMbj#T  
    %   pair, and one row for every (R,THETA) pair. J" U!j  
    % -bp7X{&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0]2@T=*kTY  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vR'rYDtU@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ZCDcf   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, AUPTtc`#Y  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g/OL ^A  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 89[OaT_hs  
    % 7r$'2">K(  
    %   The Zernike functions are an orthogonal basis on the unit circle. q[TW  
    %   They are used in disciplines such as astronomy, optics, and .h\[7r  
    %   optometry to describe functions on a circular domain. v:u=.by99  
    % ItwJL`  
    %   The following table lists the first 15 Zernike functions. dPyZzMes=  
    % 7hl,dtn7  
    %       n    m    Zernike function           Normalization we2D!Ywr  
    %       -------------------------------------------------- TbR!u:J  
    %       0    0    1                                 1 R% )7z)~  
    %       1    1    r * cos(theta)                    2 -+&sPrQ  
    %       1   -1    r * sin(theta)                    2 YE1X*'4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <jtu/U]78|  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %<;PEQQ|C  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) IW- BY =C  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~\[\S!"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2[Vs@X  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) jHBP:c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Z)RV6@(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5Jm %*Wb  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WcKL=Z?(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) VTwJtWnq  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +4m~D`fqt[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) VVm8bl.q  
    %       -------------------------------------------------- k)B]|,g7G0  
    % |-.r9;-b  
    %   Example 1: qn#f:xltu  
    % -`} d@x  
    %       % Display the Zernike function Z(n=5,m=1) J?84WS  
    %       x = -1:0.01:1; 9zD^4j7  
    %       [X,Y] = meshgrid(x,x); ad'C&^o5  
    %       [theta,r] = cart2pol(X,Y); ~t.M!vk  
    %       idx = r<=1; yfCdK-9+B  
    %       z = nan(size(X)); [+z*&~'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $(ei<cAV  
    %       figure _!?iiO  
    %       pcolor(x,x,z), shading interp I,wgu:}P#  
    %       axis square, colorbar >Mc,c(CvU  
    %       title('Zernike function Z_5^1(r,\theta)') :igURr  
    % QzX|c&&>u2  
    %   Example 2: B kWoK/f4  
    % Q R<q[@)F  
    %       % Display the first 10 Zernike functions .Pi8c[  
    %       x = -1:0.01:1; YQ#o3 sjs  
    %       [X,Y] = meshgrid(x,x); %W:]OPURK  
    %       [theta,r] = cart2pol(X,Y); xcA5  
    %       idx = r<=1; Mo_(WSs  
    %       z = nan(size(X)); mq*Efb)!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =&xN dc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; KG8Km  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^YwTO/Q|  
    %       y = zernfun(n,m,r(idx),theta(idx)); *='J>z.]  
    %       figure('Units','normalized') n#lZRwhq  
    %       for k = 1:10 M5>cYVG  
    %           z(idx) = y(:,k); =w <;tb  
    %           subplot(4,7,Nplot(k)) qL?`l;+  
    %           pcolor(x,x,z), shading interp )T26 cT$  
    %           set(gca,'XTick',[],'YTick',[]) N% W298  
    %           axis square jX8,y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /3ty*LQT  
    %       end ]E!b&  
    % jdWA)N}kDG  
    %   See also ZERNPOL, ZERNFUN2. {,`)  
    (^4V]N&  
    %   Paul Fricker 11/13/2006 ?<"H Io  
    _bm8m4Lk  
    O ELh6R  
    % Check and prepare the inputs: c^ifHCt|  
    % ----------------------------- x%d\}%]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !9ytZR*  
        error('zernfun:NMvectors','N and M must be vectors.') ) ir*\<6Y=  
    end N=[# "4I  
    +P5\N,,7R  
    if length(n)~=length(m) mv;;0xH  
        error('zernfun:NMlength','N and M must be the same length.') ;:5Ahfo \  
    end eNEMyv5{w4  
    i,z^#b7JQ  
    n = n(:); 8n1<nS<  
    m = m(:); 6< T@\E  
    if any(mod(n-m,2)) N&]GP l0  
        error('zernfun:NMmultiplesof2', ... V0ig#?]  
              'All N and M must differ by multiples of 2 (including 0).') ft" t  
    end wYLi4jYm  
    nhZ^`mP  
    if any(m>n) Op2@En|d  
        error('zernfun:MlessthanN', ... z&a>cjt_;  
              'Each M must be less than or equal to its corresponding N.') xh) h#p.  
    end g&<3Kl  
    z:7 i@m  
    if any( r>1 | r<0 ) Y_SB3 $])  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &}q;,"  
    end rOyKugHe  
    [')C]YQb=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7i@vj7K  
        error('zernfun:RTHvector','R and THETA must be vectors.') x $@Gp  
    end {/E_l  
    []I _r=  
    r = r(:); 9iy3 dy^  
    theta = theta(:); Y :-O/X  
    length_r = length(r); X]T&kdQ6q  
    if length_r~=length(theta) N" =$S|Gs  
        error('zernfun:RTHlength', ... r]<?,xx [  
              'The number of R- and THETA-values must be equal.') dPmtU{E<M  
    end 1@"os[ 9  
    q0y#Y  
    % Check normalization: t 8,VRFV  
    % -------------------- lv=rL  
    if nargin==5 && ischar(nflag) 7(W"NF{r  
        isnorm = strcmpi(nflag,'norm'); r 1x2)  
        if ~isnorm A]_5O8<buW  
            error('zernfun:normalization','Unrecognized normalization flag.') (S)jV 0  
        end Sz'H{?"  
    else XKQ\Ts2<k  
        isnorm = false; wk[4Qsk<  
    end OS]FGD3a  
    > %B7/l$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y4j%K~ls Y  
    % Compute the Zernike Polynomials aP}30E*Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .wvgH i  
    r0L' mf$  
    % Determine the required powers of r: f~ -qjEWm  
    % ----------------------------------- Q@aDa8Z  
    m_abs = abs(m); 4ynGXJmMlR  
    rpowers = []; ..a@9#D  
    for j = 1:length(n) t*dd/a  
        rpowers = [rpowers m_abs(j):2:n(j)]; <Dq7^,}#  
    end f C_H0h3  
    rpowers = unique(rpowers); c)B <d#  
    dR@XwEpP  
    % Pre-compute the values of r raised to the required powers, \F5d p  
    % and compile them in a matrix: ;/s##7qf  
    % -----------------------------  <R.Ipyt.  
    if rpowers(1)==0 FwaYp\z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); q2}6lf,J K  
        rpowern = cat(2,rpowern{:}); <S@XK%  
        rpowern = [ones(length_r,1) rpowern]; @ ?CEi#-  
    else 5ji#rIAhxh  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {O"N2W  
        rpowern = cat(2,rpowern{:}); MNWuw;:v  
    end <4,LTB]9-  
    PGNH<E)  
    % Compute the values of the polynomials: < s1  
    % -------------------------------------- f*E#E=j  
    y = zeros(length_r,length(n)); 8;GuJP\  
    for j = 1:length(n) d6vls7J/4  
        s = 0:(n(j)-m_abs(j))/2; ?f&O4H  
        pows = n(j):-2:m_abs(j); 8L _]_  
        for k = length(s):-1:1 qfS ]vc_N  
            p = (1-2*mod(s(k),2))* ... ]!'9Y}9a  
                       prod(2:(n(j)-s(k)))/              ... )7;E,m<:tO  
                       prod(2:s(k))/                     ... r$<4_*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P`TJqJiY~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); F$nc9x[S  
            idx = (pows(k)==rpowers); 2Mw^EjR  
            y(:,j) = y(:,j) + p*rpowern(:,idx); s^zX9IVnp  
        end i=AQ1X\s  
         JGG(mrvR  
        if isnorm >))K%\p   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F*J@OY8i  
        end y|2y! &o,!  
    end {No Y`j5S  
    % END: Compute the Zernike Polynomials 'Fr"96C$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?CSv;:  
    ^udl&>  
    % Compute the Zernike functions: " gQJeMU  
    % ------------------------------ {2=f,,|+f  
    idx_pos = m>0; y41,T&ja  
    idx_neg = m<0; r31)Ed$  
    }zy h!  
    z = y; =kDh:&u%  
    if any(idx_pos) H tAO9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rPUk%S  
    end wS @-EcCB  
    if any(idx_neg) :O/QgGZN$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H}PZJf_E  
    end N"-U)d-.  
    s~g0VNu Y  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) P&5kO;ia  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. rq![a};~  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,?(U4pzX  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive vu|-}v?:  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, BXa.XZ<n(  
    %   and THETA is a vector of angles.  R and THETA must have the same x9i^ _3Z  
    %   length.  The output Z is a matrix with one column for every P-value, h%8C_m A  
    %   and one row for every (R,THETA) pair. H{ I,m-  
    % ?L+|b5RS  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike IXC2w *'m  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 6oy[0hj  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) %6cbHH  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tJ9gwx7Pg  
    %   for all p. :@#6]W  
    % wOn*QO[  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 3='Kii=LA  
    %   Zernike functions (order N<=7).  In some disciplines it is K8 Hj)$E61  
    %   traditional to label the first 36 functions using a single mode SdNxSD$Q  
    %   number P instead of separate numbers for the order N and azimuthal ~'VVCtA  
    %   frequency M. {+jO/ZQu5  
    % @Zw[LIQ*  
    %   Example: X]c>clk,  
    % m_h$fT8 _  
    %       % Display the first 16 Zernike functions >Y=qSg>Ik  
    %       x = -1:0.01:1; 9T%b#~?3P  
    %       [X,Y] = meshgrid(x,x); tOxTiaa=  
    %       [theta,r] = cart2pol(X,Y); r;@"s g  
    %       idx = r<=1; 0S&C[I o6  
    %       p = 0:15; 9=.7[-6i9  
    %       z = nan(size(X)); =?[:Nj636  
    %       y = zernfun2(p,r(idx),theta(idx)); Ib2n Bg>j  
    %       figure('Units','normalized') C=8IQl[^e  
    %       for k = 1:length(p) 3v>w$6  
    %           z(idx) = y(:,k); ,jdTe?[*^  
    %           subplot(4,4,k) 7}puj%JS /  
    %           pcolor(x,x,z), shading interp l`r O)7  
    %           set(gca,'XTick',[],'YTick',[]) ~mC>G 4y$a  
    %           axis square 9;fs'R  
    %           title(['Z_{' num2str(p(k)) '}']) 3*#$:waGd  
    %       end g4&f2D5  
    % <{IeCir  
    %   See also ZERNPOL, ZERNFUN. 0y3C />a  
    cS(=wC  
    %   Paul Fricker 11/13/2006 F0ylJ /E  
    yi*EE%  
    bJ^Jmb  
    % Check and prepare the inputs: K&BaGrR  
    % ----------------------------- aEn*vun  
    if min(size(p))~=1 5#mHWBGd7  
        error('zernfun2:Pvector','Input P must be vector.') OlX#1W]  
    end p<c1$O*  
    IAMtMO^L  
    if any(p)>35 V(;c#%I2  
        error('zernfun2:P36', ... aj]pN,g@N  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... uLr-!T  
               '(P = 0 to 35).']) z[l_<`J$9  
    end ?I"FmJ;  
    ce7 $# #f  
    % Get the order and frequency corresonding to the function number: >OKc\m2%Q  
    % ---------------------------------------------------------------- TGuCIc0B{  
    p = p(:); wU-Cb<^  
    n = ceil((-3+sqrt(9+8*p))/2); )!=fy']  
    m = 2*p - n.*(n+2); th}&|Y)T2  
    \ESNfL5  
    % Pass the inputs to the function ZERNFUN: H/l,;/q]b  
    % ---------------------------------------- IwR=@Ne8  
    switch nargin ='6@^6y  
        case 3 N`O0jH{  
            z = zernfun(n,m,r,theta); Kh{_BdN  
        case 4 Y8for'  
            z = zernfun(n,m,r,theta,nflag); vHN/~k#  
        otherwise ~!6 I.u  
            error('zernfun2:nargin','Incorrect number of inputs.') {7.uwIW.1  
    end #>2cfZ`6'J  
    rge s`&0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 2[Xe:)d  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 0>:`|IGnT2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of uzL|yxt  
    %   order N and frequency M, evaluated at R.  N is a vector of \wV ?QH  
    %   positive integers (including 0), and M is a vector with the $E^*^({  
    %   same number of elements as N.  Each element k of M must be a 4"eeEs h  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) EGj zjuJu{  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is :<uCi\9(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix H%;pPkIi  
    %   with one column for every (N,M) pair, and one row for every 1pT/`x  
    %   element in R. *}Rd%'  
    % :AyZe7:(D  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- rLcXo %w  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is \3whM6tK  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Fl++rUT  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 |`Be(  
    %   for all [n,m]. S9 @*g3  
    % #!4`t]E<  
    %   The radial Zernike polynomials are the radial portion of the e r"gPW  
    %   Zernike functions, which are an orthogonal basis on the unit wV'_{ /WM  
    %   circle.  The series representation of the radial Zernike F8B:P7I  
    %   polynomials is 1wW4bg 5  
    % Z$S0X $q}  
    %          (n-m)/2 D1EHT}  
    %            __ :KsBJ>2ck  
    %    m      \       s                                          n-2s 6+Y@dJnPT  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r I bE Nq  
    %    n      s=0 :U-yO 9!j  
    % )T@+"Pw8t  
    %   The following table shows the first 12 polynomials. Q#Xa]A-  
    % uU1q?|4  
    %       n    m    Zernike polynomial    Normalization WiFZY*iu5  
    %       --------------------------------------------- _RX*Ps=  
    %       0    0    1                        sqrt(2) _? u} Jy_  
    %       1    1    r                           2 I2C1mV  
    %       2    0    2*r^2 - 1                sqrt(6) #M92=IH  
    %       2    2    r^2                      sqrt(6) [bd?$q i  
    %       3    1    3*r^3 - 2*r              sqrt(8) 7` t,   
    %       3    3    r^3                      sqrt(8) }:+P{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) #b{;)C fL  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0vM,2:kf*  
    %       4    4    r^4                      sqrt(10) !}HT&N8[r  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) l%7^'nDn  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) c1StA  
    %       5    5    r^5                      sqrt(12) < !]7Gt  
    %       --------------------------------------------- ~T&X#i  
    % KQ.cd]6  
    %   Example: rE\.[mFI  
    % IeBb#Qedz  
    %       % Display three example Zernike radial polynomials Xj21:IMR  
    %       r = 0:0.01:1; n/IDq$/P  
    %       n = [3 2 5]; I)4NCjcCw  
    %       m = [1 2 1]; 9R4q^tGR\  
    %       z = zernpol(n,m,r); 7,3v,N|  
    %       figure n:YA4t7S  
    %       plot(r,z) )F:UkS  
    %       grid on RQ[6svfP  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ,YmTx  
    % sg,9{R ^  
    %   See also ZERNFUN, ZERNFUN2. S;S_<GX  
    ys |} ;*  
    % A note on the algorithm. |C;*GeyS;J  
    % ------------------------ q.PXO3T  
    % The radial Zernike polynomials are computed using the series F6)/Iiv  
    % representation shown in the Help section above. For many special $ -f(.S  
    % functions, direct evaluation using the series representation can xsXf_gGu  
    % produce poor numerical results (floating point errors), because }L|XZL_Jo#  
    % the summation often involves computing small differences between vm"dE4W=  
    % large successive terms in the series. (In such cases, the functions -Tr*G4  
    % are often evaluated using alternative methods such as recurrence !6d`e"\K  
    % relations: see the Legendre functions, for example). For the Zernike S31+ j:"  
    % polynomials, however, this problem does not arise, because the JU0|pstf  
    % polynomials are evaluated over the finite domain r = (0,1), and !u|s| 6{\  
    % because the coefficients for a given polynomial are generally all ]}dAm S/  
    % of similar magnitude. -j"2rIl4#  
    % pJ]i)$M  
    % ZERNPOL has been written using a vectorized implementation: multiple 0"$'1g^]7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] CT#N9  
    % values can be passed as inputs) for a vector of points R.  To achieve =k22f`8ew  
    % this vectorization most efficiently, the algorithm in ZERNPOL z c, Q  
    % involves pre-determining all the powers p of R that are required to OAtn.LU  
    % compute the outputs, and then compiling the {R^p} into a single #me'1/z  
    % matrix.  This avoids any redundant computation of the R^p, and W=T,hOyh<W  
    % minimizes the sizes of certain intermediate variables. qW:\6aEG  
    % /|{~GD +A&  
    %   Paul Fricker 11/13/2006 `1"Xj ^ YM  
    Md,KW#  
    3L(vZ2&  
    % Check and prepare the inputs: XvspE}~y  
    % ----------------------------- .\+%Q)?h:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &c1zEgl  
        error('zernpol:NMvectors','N and M must be vectors.') ;?0r,0l2$  
    end }F4   
    Vt D:'L-  
    if length(n)~=length(m) "#a,R ^J  
        error('zernpol:NMlength','N and M must be the same length.') %{M&"Mv  
    end xiG_l-2l  
    SV96eYT<  
    n = n(:); ?_7^MP>  
    m = m(:); VCUEzR0  
    length_n = length(n); o2M4?}TpIV  
    )YP 9  
    if any(mod(n-m,2)) o>Jr6: D(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 7cJh^M   
    end <:UP  
    -Lbi eS%  
    if any(m<0) gT~Yn~~b  
        error('zernpol:Mpositive','All M must be positive.') /DBldL7yi  
    end \z PcnDB  
    BTu_$5F  
    if any(m>n) 3A.T_mGCs  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') OJF41Z  
    end c*#*8R9.y  
    Td6"o&0A!  
    if any( r>1 | r<0 ) 1WW`%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') THbV],RhJ  
    end -<tfbaA  
    O}IRM|r"  
    if ~any(size(r)==1) NYcF]K}[  
        error('zernpol:Rvector','R must be a vector.') I,xV&j+<  
    end >'X[*:Cx  
    <^(g<B`>  
    r = r(:); !3'&_vmG$  
    length_r = length(r); ir ^XZVR  
    =fr_` "?k  
    if nargin==4 `vPc&.-K  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); oH|<(8efD  
        if ~isnorm UI>?"b6 L  
            error('zernpol:normalization','Unrecognized normalization flag.') >1n[Y- r  
        end cc^[ u+  
    else )W& $FU4JK  
        isnorm = false; z3:tSjF  
    end 3r (i=ac0  
    b\O%gg\p%!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~Z#jIG<?g  
    % Compute the Zernike Polynomials b0_Ih6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^1^mu c[  
    C`0;  
    % Determine the required powers of r: 6X@$xe847[  
    % ----------------------------------- hh<Es|v  
    rpowers = []; ]wQ#8}zO  
    for j = 1:length(n) eJ23$VM+9  
        rpowers = [rpowers m(j):2:n(j)]; TE.O@:7Z  
    end VV1I2YcKt  
    rpowers = unique(rpowers); tM$w0Cj  
    FX#fh 2  
    % Pre-compute the values of r raised to the required powers, 71# ipZ  
    % and compile them in a matrix: Zh]FL8[ nc  
    % ----------------------------- hi30|^l-  
    if rpowers(1)==0 QIMoe'p  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9a*}&fL[  
        rpowern = cat(2,rpowern{:}); ?U`~,oI0  
        rpowern = [ones(length_r,1) rpowern]; c= }#8d.  
    else /bd1Bi  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +W6QtB6  
        rpowern = cat(2,rpowern{:}); j}CZ*  
    end rI E m  
    MZ{gU>K+  
    % Compute the values of the polynomials: *)jhhw=34  
    % -------------------------------------- -W:te7  
    z = zeros(length_r,length_n); `;9Z?]}`  
    for j = 1:length_n Nn_n@K  
        s = 0:(n(j)-m(j))/2; m*d {pX  
        pows = n(j):-2:m(j); x]Nk T  
        for k = length(s):-1:1 MyyNYZ  
            p = (1-2*mod(s(k),2))* ... 8a^E{x@HT  
                       prod(2:(n(j)-s(k)))/          ... EC4RA'Bg1k  
                       prod(2:s(k))/                 ... v{Rj,Ou  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... \NEXtr`Th  
                       prod(2:((n(j)+m(j))/2-s(k))); H7 xyK  
            idx = (pows(k)==rpowers); i'$V'x'k  
            z(:,j) = z(:,j) + p*rpowern(:,idx);  6tPgFa#N  
        end B3lP#ckh  
         Sl8A=Ez  
        if isnorm Me HlxI  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); E8Jy!8/X9T  
        end vt`V<3  
    end bk-veJR  
    _i=431Z40  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  &^I2NpT  
    $q%l)]+  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  ds#om2)  
    uto E}U7]  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)