切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11318阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 wlX K2D  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! `MMZR=LA  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sr,8Qd 0M  
    function z = zernfun(n,m,r,theta,nflag) `BZX\LPHm  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. lw 9 rf4RF  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C")NN s =  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Q |J$ R  
    %   unit circle.  N is a vector of positive integers (including 0), and XB-l[4?  
    %   M is a vector with the same number of elements as N.  Each element BnLE +X  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~C2[5r{So  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2(sq*!tX  
    %   and THETA is a vector of angles.  R and THETA must have the same Ni 5Su  
    %   length.  The output Z is a matrix with one column for every (N,M) J#& C&S 2  
    %   pair, and one row for every (R,THETA) pair. N,NEg4 q[  
    % S~LT Lv:>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0xg6  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ('.r_F  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral vy330SQPo  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, HGRH9W  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >T~d uwS  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O:,Fif?;  
    % ; X3bgA']  
    %   The Zernike functions are an orthogonal basis on the unit circle. /_*L8b  
    %   They are used in disciplines such as astronomy, optics, and zmMz6\ $  
    %   optometry to describe functions on a circular domain. oVSq#I4  
    % {n>W8sN<  
    %   The following table lists the first 15 Zernike functions. {$mj9?n=v  
    % FsYsQ_,R3  
    %       n    m    Zernike function           Normalization (Q09$  
    %       -------------------------------------------------- .)eX(2j\  
    %       0    0    1                                 1 j;']L}R  
    %       1    1    r * cos(theta)                    2 <+c6CM$#}V  
    %       1   -1    r * sin(theta)                    2 :X6A9jmd  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) e7.!=R{6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kdry a  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [8QE}TFic  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) jFBnP,WQ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,HQaS9vBQ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Mz sDDP+h  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &N! ;d E  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {r!X W  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `o~9a N  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -]h3s >t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h[O!kwE  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) SrVJ Q~ :>  
    %       -------------------------------------------------- _ %HyXd  
    % CL$mK5u  
    %   Example 1: -IB~lw  
    % W|FPj^*t  
    %       % Display the Zernike function Z(n=5,m=1) E}$K&<J'-  
    %       x = -1:0.01:1; &<P!o_+eb  
    %       [X,Y] = meshgrid(x,x); v&EHp{8Qd  
    %       [theta,r] = cart2pol(X,Y); @:s|X  
    %       idx = r<=1; _YH)E^If  
    %       z = nan(size(X)); i }5 #n  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |h,aV(Q  
    %       figure E30VKh |  
    %       pcolor(x,x,z), shading interp [yF4_UoF  
    %       axis square, colorbar ;?9u#FRtw  
    %       title('Zernike function Z_5^1(r,\theta)') r$*p  
    % WBA0! g98  
    %   Example 2: V}>0r+NL<  
    %  R9->.eE  
    %       % Display the first 10 Zernike functions ;,y9  
    %       x = -1:0.01:1; ~pqp`  
    %       [X,Y] = meshgrid(x,x); av1*i3  
    %       [theta,r] = cart2pol(X,Y); =B(zW .Gf  
    %       idx = r<=1; uL!{xuN  
    %       z = nan(size(X)); >4.{|0%ut  
    %       n = [0  1  1  2  2  2  3  3  3  3]; he/UvMu  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; S) [`Bm  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; a"{tqNc  
    %       y = zernfun(n,m,r(idx),theta(idx));  [;D4,@A  
    %       figure('Units','normalized') @^vVou_  
    %       for k = 1:10 JeJc(e  
    %           z(idx) = y(:,k); mb*L'y2r  
    %           subplot(4,7,Nplot(k)) rBP!RSl1  
    %           pcolor(x,x,z), shading interp ]OoqU-q  
    %           set(gca,'XTick',[],'YTick',[]) 1e;^Mz B"  
    %           axis square Zjt3U;Y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j"E_nV:Qc  
    %       end j0k"iv  
    % e/WR\B'1  
    %   See also ZERNPOL, ZERNFUN2. zb}:wUR  
    *N$#cz  
    %   Paul Fricker 11/13/2006 N"b>]Ab] ;  
    NwmO[pt+  
    'Z-jj2t}  
    % Check and prepare the inputs: o_<o8!]l"  
    % ----------------------------- EeKEw Sg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =@m|g )  
        error('zernfun:NMvectors','N and M must be vectors.') n-dO |3,  
    end cT8jG ,+"}  
    ] w FFGy  
    if length(n)~=length(m) ;h3uMUCml  
        error('zernfun:NMlength','N and M must be the same length.')  7[55  
    end lhx6+w  
    xv9Z~JwH  
    n = n(:); p~28?lYv  
    m = m(:); "j9,3yJT  
    if any(mod(n-m,2)) OFCOMM  
        error('zernfun:NMmultiplesof2', ... Warz"n]iC  
              'All N and M must differ by multiples of 2 (including 0).') VuFH >8n  
    end `I<*R0Qe  
    UGEC_  
    if any(m>n) 7vV3"uns  
        error('zernfun:MlessthanN', ... .8CR \-  
              'Each M must be less than or equal to its corresponding N.') JPgV7+{b[  
    end {3C~cK{  
    &?*M+q34  
    if any( r>1 | r<0 ) 5-bd1!o  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7,_N9Q]rB  
    end [[?:,6I  
    |J2R w f  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G7`7e@{  
        error('zernfun:RTHvector','R and THETA must be vectors.') #P- S.b  
    end rZ1${/6  
    0,nDyTS^  
    r = r(:); #OH-LWZh  
    theta = theta(:); xF5q=%n  
    length_r = length(r); c0u!V+V%  
    if length_r~=length(theta) by& #g  
        error('zernfun:RTHlength', ... GLt#]I"LY  
              'The number of R- and THETA-values must be equal.') Se* GR"Z+  
    end o8RagSIo8  
    <r,l  
    % Check normalization: 6.2_UN^<  
    % -------------------- J \1&3r|R  
    if nargin==5 && ischar(nflag) &?/h#oF@\  
        isnorm = strcmpi(nflag,'norm'); '6fMF#X4F  
        if ~isnorm "a;JQ:  
            error('zernfun:normalization','Unrecognized normalization flag.') "W|Sh#JF  
        end 7f'9Dm`  
    else yEy} PCJ&  
        isnorm = false; ~ DVAk|fc  
    end qp^O\>c  
    (J][(=s;a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F>)u<f,C  
    % Compute the Zernike Polynomials ^$24231^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MMD4b}p  
    ]6p?mBuQ  
    % Determine the required powers of r: \QstcsEt  
    % ----------------------------------- b|wCR%  
    m_abs = abs(m); W{At3Bfy  
    rpowers = []; ?z171X0  
    for j = 1:length(n) AIF?+i%H}  
        rpowers = [rpowers m_abs(j):2:n(j)]; N0sf V  
    end r@H<@Vuc  
    rpowers = unique(rpowers); (+38z)f  
    y1(smZU  
    % Pre-compute the values of r raised to the required powers, oJUVW"X6  
    % and compile them in a matrix: \D<rT)Tl  
    % ----------------------------- pcv(P  
    if rpowers(1)==0 +L!-JrYHS4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y>{K2#k  
        rpowern = cat(2,rpowern{:}); H jbC>*  
        rpowern = [ones(length_r,1) rpowern]; A /,7%bB1  
    else Ti!j  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^* ^te+N  
        rpowern = cat(2,rpowern{:}); ]ZelB,7q  
    end dOqn0Z  
    i))S%!/r~  
    % Compute the values of the polynomials: !%_Z>a  
    % -------------------------------------- H ZIJKk(  
    y = zeros(length_r,length(n)); z"u4t.KpL  
    for j = 1:length(n) &eG,CIT  
        s = 0:(n(j)-m_abs(j))/2; jmmm0,#D  
        pows = n(j):-2:m_abs(j); GNA:|x  
        for k = length(s):-1:1 d Ayof=  
            p = (1-2*mod(s(k),2))* ... 5u MP31  
                       prod(2:(n(j)-s(k)))/              ... 0R >M_|  
                       prod(2:s(k))/                     ... 3aQWzEnh  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -]~&Pi|  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); `$jc=ZLm  
            idx = (pows(k)==rpowers); b!J21cg<L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); a=&a)FR  
        end 13I 7ah  
         {v}f/ cu  
        if isnorm RRqHo~*0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n|Iy  
        end S " R]i  
    end 5*xk8*  
    % END: Compute the Zernike Polynomials V{p*N*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F``$}]9KHD  
    L"&j(|{  
    % Compute the Zernike functions: iv2did4  
    % ------------------------------ 9w^1/t&=04  
    idx_pos = m>0; AqZ{x9g!  
    idx_neg = m<0; ;"hED:z6%  
    -tAdA2?G  
    z = y; qYBoo]}a  
    if any(idx_pos) ^]3Y11sI  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BK]bSj  
    end !s06uh  
    if any(idx_neg) G4vXPx%a8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Wp`wIe6  
    end {1;j1|CI  
    X(U CN0#  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Lg0Vn&k  
    %ZERNFUN2 Single-index Zernike functions on the unit circle.  ^E*W B~  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Xp@8 vu  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive NBuibL  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, wWv")dk3i  
    %   and THETA is a vector of angles.  R and THETA must have the same R5c Ya  
    %   length.  The output Z is a matrix with one column for every P-value, ,f8<s-y4Sg  
    %   and one row for every (R,THETA) pair.  Veo:G{  
    % &Ed7|k]H  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike swJ3_WhbdT  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) m=<Tylv  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) &^3KF0\Q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ~s{yh-B  
    %   for all p. ifTMoC%  
    % i_Dv+^&zV  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 bwR_ uF  
    %   Zernike functions (order N<=7).  In some disciplines it is eR P mN  
    %   traditional to label the first 36 functions using a single mode 23 j{bK  
    %   number P instead of separate numbers for the order N and azimuthal PXqLK3AE  
    %   frequency M. jX}}^XwX  
    % .}n,  
    %   Example: 2?9 FFlX  
    % 2\h}6DGx2  
    %       % Display the first 16 Zernike functions mX3~rK>@~  
    %       x = -1:0.01:1; M3c!SXx\  
    %       [X,Y] = meshgrid(x,x); X]ow5{e  
    %       [theta,r] = cart2pol(X,Y); eIBHAdU+g/  
    %       idx = r<=1; 8.FBgZh*  
    %       p = 0:15; Pw i6Ly`  
    %       z = nan(size(X)); eSo/1D  
    %       y = zernfun2(p,r(idx),theta(idx)); ~CiVLS H=  
    %       figure('Units','normalized') D%GB2-j R  
    %       for k = 1:length(p) ivg:`$a[  
    %           z(idx) = y(:,k); }1E'a>^|  
    %           subplot(4,4,k) g"vg {Q  
    %           pcolor(x,x,z), shading interp 7OY<*ny  
    %           set(gca,'XTick',[],'YTick',[]) ^HYmi\`  
    %           axis square /z:pid,_0  
    %           title(['Z_{' num2str(p(k)) '}']) b* Ny  
    %       end K dY3  
    % ;AMbo`YK[  
    %   See also ZERNPOL, ZERNFUN. eAKK uML  
    :U)>um34e  
    %   Paul Fricker 11/13/2006 8Q&.S)hrN  
    zK`fX  
    Gh}k9-L  
    % Check and prepare the inputs: w:xLg.Eq6  
    % ----------------------------- 7KIOI,qb6  
    if min(size(p))~=1 WM$)T6M  
        error('zernfun2:Pvector','Input P must be vector.') ^% y<7>%  
    end )D\cm7WX^[  
    ^2Sa_.  
    if any(p)>35 ;AyE(|U+  
        error('zernfun2:P36', ... .2?tx OKh  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... BzBij^h  
               '(P = 0 to 35).']) 6v~` jS%3  
    end 8m,PsUp7  
    ]"bkB+I  
    % Get the order and frequency corresonding to the function number: `L p3snS  
    % ---------------------------------------------------------------- ~Wy&xs ZH  
    p = p(:); E^uau=F  
    n = ceil((-3+sqrt(9+8*p))/2); .w5#V|   
    m = 2*p - n.*(n+2); vzD3_ ?D  
    .Rt_j  
    % Pass the inputs to the function ZERNFUN: )6mx\t  
    % ---------------------------------------- '5xf?0@s.  
    switch nargin ?^]29p_  
        case 3 !z@QoD  
            z = zernfun(n,m,r,theta); o('W2Bs-o  
        case 4 8B ZTHlUB  
            z = zernfun(n,m,r,theta,nflag); )=VSERs  
        otherwise ghvF%-."1  
            error('zernfun2:nargin','Incorrect number of inputs.') MgJiJ0y  
    end |jB]5ciT  
    bg.f';C  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 0Yz &aH  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. V0hC[Ilr  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of -:9E+b  
    %   order N and frequency M, evaluated at R.  N is a vector of x17cMfCH%  
    %   positive integers (including 0), and M is a vector with the `>:ozN#)\  
    %   same number of elements as N.  Each element k of M must be a BNU]NcA#*,  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) B"N8NVn  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is \ZdV|23  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 9/Q_Jv-Q  
    %   with one column for every (N,M) pair, and one row for every S0.   
    %   element in R. u@d`$]/>F  
    % p)}iUU2N  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- q^}QwJw  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is AHsp:0Ma#  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to G=4Da~<ij  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Zw(*q?9\  
    %   for all [n,m]. j^A0[:2  
    % e6s-;  
    %   The radial Zernike polynomials are the radial portion of the `5}XmSJ?5  
    %   Zernike functions, which are an orthogonal basis on the unit q 4_&C&7  
    %   circle.  The series representation of the radial Zernike *yAC8\v  
    %   polynomials is 2!QS&i  
    % }N; c  
    %          (n-m)/2 c_b^t09  
    %            __ G hH0-g{-  
    %    m      \       s                                          n-2s yO Cv-zm  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r CL/8p;  
    %    n      s=0 u?[P@_i<  
    % xQs2 )  
    %   The following table shows the first 12 polynomials. .E:QZH'M  
    % v ?@Ys+V  
    %       n    m    Zernike polynomial    Normalization eK\ O>  
    %       --------------------------------------------- *LJN2;  
    %       0    0    1                        sqrt(2) )W9 $_<Z  
    %       1    1    r                           2 "dwx;E  
    %       2    0    2*r^2 - 1                sqrt(6) ~ ar8e  
    %       2    2    r^2                      sqrt(6) RW 23lRA6  
    %       3    1    3*r^3 - 2*r              sqrt(8) _$/(l4\T[  
    %       3    3    r^3                      sqrt(8) d#7 z N  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) xy`aR< L  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (1\!6  
    %       4    4    r^4                      sqrt(10) cw#p!mOi~  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Cec!{]DL&  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) X~abn7_  
    %       5    5    r^5                      sqrt(12) vW6Pf^yJ  
    %       --------------------------------------------- *1iJa  
    % @;x|+@r  
    %   Example: ==I:>+_ ^|  
    % o2?[*pa  
    %       % Display three example Zernike radial polynomials @V)k*h3r+  
    %       r = 0:0.01:1; V ea>T^  
    %       n = [3 2 5]; h &9Ld:p  
    %       m = [1 2 1]; R7cY$ K{j  
    %       z = zernpol(n,m,r); (A`/3Aq+  
    %       figure <x DD*u  
    %       plot(r,z) @TC_XU)&  
    %       grid on Sj{z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') %,%s09tO  
    % g':mM*j&  
    %   See also ZERNFUN, ZERNFUN2. hX\XNiCiK8  
    UzFd@W u#  
    % A note on the algorithm. ~Bn#A kL  
    % ------------------------ C)`ZI8  
    % The radial Zernike polynomials are computed using the series \Oh9)X:I  
    % representation shown in the Help section above. For many special T#?KY  
    % functions, direct evaluation using the series representation can k7)H %31;  
    % produce poor numerical results (floating point errors), because E,E:WuB  
    % the summation often involves computing small differences between Zeyhr\T  
    % large successive terms in the series. (In such cases, the functions mzTF2K  
    % are often evaluated using alternative methods such as recurrence P:t|'t  
    % relations: see the Legendre functions, for example). For the Zernike f33'2PYl  
    % polynomials, however, this problem does not arise, because the (.7_`T6QG  
    % polynomials are evaluated over the finite domain r = (0,1), and x-) D@dw<  
    % because the coefficients for a given polynomial are generally all ("o <D{A  
    % of similar magnitude. ?sDm~]Z  
    % -wlob`3  
    % ZERNPOL has been written using a vectorized implementation: multiple HH+NNSRO  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 34U/"+|z  
    % values can be passed as inputs) for a vector of points R.  To achieve K^?yD   
    % this vectorization most efficiently, the algorithm in ZERNPOL sl-LX)*N#  
    % involves pre-determining all the powers p of R that are required to MGX %U6  
    % compute the outputs, and then compiling the {R^p} into a single ya{vR* '~  
    % matrix.  This avoids any redundant computation of the R^p, and zAt!jP0E  
    % minimizes the sizes of certain intermediate variables. cqr!*  
    % ^*'|(Cv  
    %   Paul Fricker 11/13/2006 h>$,97EU  
    ]"q[hF*PM  
    gt6*x=RCrQ  
    % Check and prepare the inputs: :^lyVQ%@  
    % ----------------------------- N:[m,U9a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) dz &| 3o  
        error('zernpol:NMvectors','N and M must be vectors.') yAR''>  
    end U*, 8 ,C  
    B`<(qPD  
    if length(n)~=length(m) DzO0V"+H}k  
        error('zernpol:NMlength','N and M must be the same length.') Xj"/6|X  
    end enlk)_btp  
    l/[@1(F  
    n = n(:); U2/H,D  
    m = m(:); -N^}1^gA  
    length_n = length(n); O\pqZ`E=s  
    Q[scmP^$^  
    if any(mod(n-m,2)) Tz+2g&+  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') \bqNjlu  
    end |M  `B  
    $1.iMHb  
    if any(m<0) FyJI@PZdI-  
        error('zernpol:Mpositive','All M must be positive.') REB8_H"  
    end j[m\;3Sp  
    W"AWhi{h  
    if any(m>n) KM< +9`  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !V$nU8p|  
    end jii2gtu'U  
    *ZyIbT  
    if any( r>1 | r<0 ) G{}E~jDi?  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  BqP:]  
    end [wRk )kl`  
    9z\q_ 0&i  
    if ~any(size(r)==1) ~YO')  
        error('zernpol:Rvector','R must be a vector.') .}kUD]pW  
    end }lML..((1  
    6g29!F`y  
    r = r(:); sn2SDHY  
    length_r = length(r); pK1P-!c  
    (' /S~  
    if nargin==4 ?+D_*'65D  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $@Zb]gavt?  
        if ~isnorm ~^$ONmI5  
            error('zernpol:normalization','Unrecognized normalization flag.') b:\I*WJ  
        end ]o$Kh$~5  
    else ly%$>BRU  
        isnorm = false; 6.~HbN  
    end  UB&ofO  
    bPC {4l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (k6=o';y  
    % Compute the Zernike Polynomials 4o9#B:N]J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 35) ]R`f  
    Hlp!6\gukp  
    % Determine the required powers of r: eT[ ,k[#q  
    % ----------------------------------- 6vro:`R ?  
    rpowers = []; # Fw<R'c  
    for j = 1:length(n) ~e{AgY)  
        rpowers = [rpowers m(j):2:n(j)];  7.CzS  
    end M7Cq)cT  
    rpowers = unique(rpowers); v+znKpE  
    k`Ab*M$@Xs  
    % Pre-compute the values of r raised to the required powers, 8xDS eXh;  
    % and compile them in a matrix: ^USj9HTK  
    % ----------------------------- xE;4#+_I  
    if rpowers(1)==0 ;T/W7=4CZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |iLeOztuE  
        rpowern = cat(2,rpowern{:}); 3F5r3T6j}  
        rpowern = [ones(length_r,1) rpowern]; ~ bL(mq  
    else =R:3J"ly0  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7SoxsT)  
        rpowern = cat(2,rpowern{:}); !ceuljd]  
    end [ 8N1tZ{`  
    r&A#h;EQX2  
    % Compute the values of the polynomials: &sR{3pC}  
    % -------------------------------------- .(VxeF(v_k  
    z = zeros(length_r,length_n); ^(V!vI*  
    for j = 1:length_n vpv PRwJ  
        s = 0:(n(j)-m(j))/2; & oZI. Qeo  
        pows = n(j):-2:m(j); W!4GL>9m}A  
        for k = length(s):-1:1 +I/7eIG?|  
            p = (1-2*mod(s(k),2))* ... Y gQ_P4B;  
                       prod(2:(n(j)-s(k)))/          ... dZ9[wkn  
                       prod(2:s(k))/                 ... E+dr\Xhv  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... W>wIcUP<<  
                       prod(2:((n(j)+m(j))/2-s(k))); ?q7V B  
            idx = (pows(k)==rpowers); }KCXo/y  
            z(:,j) = z(:,j) + p*rpowern(:,idx); +NxEx/{  
        end 64#~p)  
         BEg%u)"([  
        if isnorm W |G(x8  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ^.mQ~F  
        end lD6hL8[  
    end R5X<8(4p  
     L/%3_,  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  JF: QQ\  
    8Dhq_R'r  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 M (b'4  
    mC>7l7%  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)