切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11343阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 L<Lu;KnY6  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )n0g6  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2{#quXN9  
    function z = zernfun(n,m,r,theta,nflag) !'[sV^ ds  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }%jb/@~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B2,! 0Re  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8KAyif@1::  
    %   unit circle.  N is a vector of positive integers (including 0), and Z-vzq;  
    %   M is a vector with the same number of elements as N.  Each element ;yUY|o  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) I O6i  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, sJ0y3)PQ  
    %   and THETA is a vector of angles.  R and THETA must have the same h+Z|s  
    %   length.  The output Z is a matrix with one column for every (N,M) f0^s*V+  
    %   pair, and one row for every (R,THETA) pair. :V_$?S  
    % s!+?) bB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YTGup]d  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uZQ)A,#n;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral JT:9"lmJz,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WQ*$y3%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized z_Qw's  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. p@Qzg /X  
    % Gu%`__   
    %   The Zernike functions are an orthogonal basis on the unit circle. @FbzKHdV/  
    %   They are used in disciplines such as astronomy, optics, and Nf;vUYP  
    %   optometry to describe functions on a circular domain.  6f{c  
    % [6-l6W  
    %   The following table lists the first 15 Zernike functions. E?FPxs  
    % U2bb|6j  
    %       n    m    Zernike function           Normalization EG1SIEo  
    %       -------------------------------------------------- Q% dpGI  
    %       0    0    1                                 1 Ik}*7D  
    %       1    1    r * cos(theta)                    2 |MBnRR  
    %       1   -1    r * sin(theta)                    2 #~#_) \l'F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ;nC+K z:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Xz5=fj&  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (te \!$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {$s:N&5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I5bi^!i  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6}|vfw  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) hwXp=not(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) <&x_e-;b'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F.\]Hqq  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) nTHP~]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4$|G$h  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 9Qkww&VEk  
    %       -------------------------------------------------- 0<s)xaN>Y  
    % =W4cWG?+  
    %   Example 1: Y8AU<M  
    % `V?{  
    %       % Display the Zernike function Z(n=5,m=1) J,q:  
    %       x = -1:0.01:1; fx}R7GN2  
    %       [X,Y] = meshgrid(x,x); SS`\,%aog  
    %       [theta,r] = cart2pol(X,Y); M P3E]T~:  
    %       idx = r<=1; ec3('}X  
    %       z = nan(size(X)); v\HGL56T  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Y]n^(V  
    %       figure i/$lO de  
    %       pcolor(x,x,z), shading interp =djzE`)0  
    %       axis square, colorbar A] F K\  
    %       title('Zernike function Z_5^1(r,\theta)') )q=1<V44d  
    % QUe.vb^O  
    %   Example 2: .oe,# 1Qh{  
    % C2b.([HE  
    %       % Display the first 10 Zernike functions {<]abO  
    %       x = -1:0.01:1; B;-oa;m:E=  
    %       [X,Y] = meshgrid(x,x); "7aFVf  
    %       [theta,r] = cart2pol(X,Y); V~+Unn  
    %       idx = r<=1; L8$7^muad  
    %       z = nan(size(X)); u_[Zu8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ktS0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {-E{.7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; T[7DJNdG6  
    %       y = zernfun(n,m,r(idx),theta(idx)); e@q[Dv'mu  
    %       figure('Units','normalized') Fj5^_2MU:  
    %       for k = 1:10 "TxXrt%>A  
    %           z(idx) = y(:,k); xp39TiXJ*  
    %           subplot(4,7,Nplot(k)) >?DrC/  
    %           pcolor(x,x,z), shading interp lS,Hr3Lz  
    %           set(gca,'XTick',[],'YTick',[]) "90}H0(+  
    %           axis square  r>G$u  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  /!9949XV  
    %       end 7'o?'He-.2  
    % /|\`NARI  
    %   See also ZERNPOL, ZERNFUN2. mDq0 1fU4  
    '}OrFN  
    %   Paul Fricker 11/13/2006 Uvuvr_IP  
    ~k J#IA  
    : i(h[0  
    % Check and prepare the inputs: LCdc7  
    % ----------------------------- p1&d@PF&&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F>}).qx  
        error('zernfun:NMvectors','N and M must be vectors.') oZ=e/\[K  
    end p"X\]g^jA>  
    ?ph"|LyL  
    if length(n)~=length(m) '6aH*B:}*;  
        error('zernfun:NMlength','N and M must be the same length.')  dxU[>m;  
    end _I -0[w  
    WL7:22nSHa  
    n = n(:); &zm5s*yNt  
    m = m(:); Y6CadC  
    if any(mod(n-m,2)) Fq{nc]L6  
        error('zernfun:NMmultiplesof2', ... 6^wiEnA  
              'All N and M must differ by multiples of 2 (including 0).') ;j(xrPNb  
    end 57oY]NT?  
    lE`ScYG  
    if any(m>n) aE;!mod  
        error('zernfun:MlessthanN', ... m\VJ=  
              'Each M must be less than or equal to its corresponding N.') w S;(u[W  
    end qS7*.E~j|]  
    sX=!o})0  
    if any( r>1 | r<0 ) crmnh4-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') SC!IQ80H#D  
    end 7IvCMb&%R  
    Pjx9@i  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) m t*v@'l.  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0W>O,%z&P#  
    end fZGKVxo"  
    *JDc1$H0  
    r = r(:); U} g%`<  
    theta = theta(:); ~PV>3c3l=  
    length_r = length(r); J=Jw"? f  
    if length_r~=length(theta) F:H76O`8  
        error('zernfun:RTHlength', ... |Rl|Th  
              'The number of R- and THETA-values must be equal.') 7'<4'BGzl]  
    end (* 2"dd  
    q2SkkY$_]y  
    % Check normalization: V*/))n?  
    % -------------------- Mc\lzq8\ 1  
    if nargin==5 && ischar(nflag) ]f-e/8$`@  
        isnorm = strcmpi(nflag,'norm'); CBvBBt*  
        if ~isnorm "=RB #  
            error('zernfun:normalization','Unrecognized normalization flag.') {=(4  
        end }x8fXdd  
    else z=u4&x|xA  
        isnorm = false; =CJs&Qa2  
    end ;1y\!f3#V~  
    q`{.2yV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )XNcy"   
    % Compute the Zernike Polynomials $iB(N ZV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BpK P]V  
    9R E;50h  
    % Determine the required powers of r: {vU '>pp  
    % ----------------------------------- 3b_#xr-  
    m_abs = abs(m); ROfmAc  
    rpowers = []; 1n5&PNu  
    for j = 1:length(n) jALo;PDJ  
        rpowers = [rpowers m_abs(j):2:n(j)]; kiECJ@5p  
    end kP|!!N  
    rpowers = unique(rpowers); y"]> Rr  
    n^A=ar.  
    % Pre-compute the values of r raised to the required powers, Pgo5&SQb  
    % and compile them in a matrix: kBT cN D|  
    % ----------------------------- H11Wb(6Wu  
    if rpowers(1)==0 Kzmgy14o  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -Wig k['v  
        rpowern = cat(2,rpowern{:}); Rp|:$5&nE  
        rpowern = [ones(length_r,1) rpowern]; vuK 5DG4  
    else 'z\F-Ttq  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Zdak))7  
        rpowern = cat(2,rpowern{:}); >Te{a*`"m:  
    end dxd}:L~z  
    %:/;R_  
    % Compute the values of the polynomials: jXdn4m/O  
    % -------------------------------------- 68d@By  
    y = zeros(length_r,length(n)); O-|3k$'\z  
    for j = 1:length(n) :Rq D0>1  
        s = 0:(n(j)-m_abs(j))/2; [C&c;YNp  
        pows = n(j):-2:m_abs(j); q8p 'bibY  
        for k = length(s):-1:1 =];FojC6I  
            p = (1-2*mod(s(k),2))* ... h0gT/x  
                       prod(2:(n(j)-s(k)))/              ... 7,jqA"9  
                       prod(2:s(k))/                     ... NfSe(rd  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XYn$yR\dj  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  $SDx) '!  
            idx = (pows(k)==rpowers); 9hq7:  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +I')>6  
        end 4bKZ@r%  
         O=mJ8W@  
        if isnorm 7j]@3D9[:p  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~:0h o  
        end t2E_y6  
    end N0XGW_f  
    % END: Compute the Zernike Polynomials z C``G<TB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D/)xe:  
    %AJdtJ@0H  
    % Compute the Zernike functions: @!Pq"/  
    % ------------------------------ H@6  
    idx_pos = m>0; EEaFi 8  
    idx_neg = m<0; B>'\g O\2  
    ]l\J"*"aB  
    z = y; +uH1rF_&@  
    if any(idx_pos) g,1\Gj%y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <;Xj4 J  
    end oo qNPLa  
    if any(idx_neg) vbWX`skU  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >sP;B5S  
    end Z2ZS5a  
    `zvYuKQ.}  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) {:"bX~<^  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Ms$kL'/  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated yNqrL?i  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 1M+mH#?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, avT>0b:  
    %   and THETA is a vector of angles.  R and THETA must have the same U"ZDt  
    %   length.  The output Z is a matrix with one column for every P-value, h  qxe  
    %   and one row for every (R,THETA) pair. D,R/abYZH  
    % 6g!t1%Kb  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ge E7<"m%  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ed617J  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5ecqJ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U>{z*D  
    %   for all p. t[X'OK0W%3  
    % Bp b_y;E  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 GB{%4)%6  
    %   Zernike functions (order N<=7).  In some disciplines it is ~< k'{  
    %   traditional to label the first 36 functions using a single mode @NNN&%  
    %   number P instead of separate numbers for the order N and azimuthal [WB8X,  
    %   frequency M. t<Og ?m}(  
    % Q!@" Y/  
    %   Example: |i|>-|`!  
    % (llg!1  
    %       % Display the first 16 Zernike functions :lcoSJ  
    %       x = -1:0.01:1; n0cqM}P@;!  
    %       [X,Y] = meshgrid(x,x); w 5,-+&;  
    %       [theta,r] = cart2pol(X,Y); ;8ugI  
    %       idx = r<=1; 05w_/l+  
    %       p = 0:15; m. XLpD  
    %       z = nan(size(X)); f>Ij:b`Z2  
    %       y = zernfun2(p,r(idx),theta(idx)); z;Kyg}  
    %       figure('Units','normalized') TT>;!nb  
    %       for k = 1:length(p) r% qgLP{v  
    %           z(idx) = y(:,k); zHyM@*Gf(  
    %           subplot(4,4,k) ] @IzJz"R  
    %           pcolor(x,x,z), shading interp Of-l<Ks\  
    %           set(gca,'XTick',[],'YTick',[]) \# #~Tq  
    %           axis square _57i[U r  
    %           title(['Z_{' num2str(p(k)) '}']) {6RT&w  
    %       end 4D0"Y #&G  
    % 2'N%KKmJL  
    %   See also ZERNPOL, ZERNFUN. aLG6yVtu  
    l].dOso$`  
    %   Paul Fricker 11/13/2006 dMYDB  
    mhVSZhx|  
    S\mh{#Lpk  
    % Check and prepare the inputs: j]YS(Y@AY  
    % ----------------------------- l+RBe<Mq  
    if min(size(p))~=1 f7\$rx  
        error('zernfun2:Pvector','Input P must be vector.') pYH#Vh  
    end `n$pR8TZ_  
    (Y:5u}*Y  
    if any(p)>35 6>zO"9  
        error('zernfun2:P36', ... oS, %L  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 4y:yFTp  
               '(P = 0 to 35).']) C#+Gkzq  
    end L`tr7EEr  
    e![n$/E3R  
    % Get the order and frequency corresonding to the function number: RYy_Ppn96f  
    % ---------------------------------------------------------------- #T&''a  
    p = p(:); ]~GwZB'M  
    n = ceil((-3+sqrt(9+8*p))/2); `gx_+m^  
    m = 2*p - n.*(n+2); ~CQsv `  
    7$Jb"s  
    % Pass the inputs to the function ZERNFUN: 1o V\QK&  
    % ---------------------------------------- %?^IS&]Z  
    switch nargin VPet1hAy  
        case 3 ;&oS=6$  
            z = zernfun(n,m,r,theta); 0p)#!$  
        case 4 Jt  ^a  
            z = zernfun(n,m,r,theta,nflag); Mnc9l ^  
        otherwise 4v_<<l  
            error('zernfun2:nargin','Incorrect number of inputs.') r ".*l?=  
    end .]JGCTB3  
    krFuEaO  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9J+ p.N  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. TF R8  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of NwP!.  
    %   order N and frequency M, evaluated at R.  N is a vector of B:J([@\'  
    %   positive integers (including 0), and M is a vector with the piULIZ0  
    %   same number of elements as N.  Each element k of M must be a H65><38X/  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 5$$Yce=k  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is l|R BO+}  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Y7vUdCj  
    %   with one column for every (N,M) pair, and one row for every T+1:[bqK  
    %   element in R. <N KmLAfX  
    % ZRHK?wg'#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 41Ga-0p  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is A{NKHn>%`  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 1 etl:gcEC  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 u a%@Ay1|  
    %   for all [n,m]. [J{\Ke0<e1  
    % Fj;];1nt  
    %   The radial Zernike polynomials are the radial portion of the G5A:C(r  
    %   Zernike functions, which are an orthogonal basis on the unit UI2TW)^2  
    %   circle.  The series representation of the radial Zernike KTtB!4by  
    %   polynomials is Bm"-X:='  
    % ?TWve)U  
    %          (n-m)/2 -+y lJo[D  
    %            __ OEi u,Y|@l  
    %    m      \       s                                          n-2s /~~A2.=.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r b'r</ncZ  
    %    n      s=0 p+7G  
    %  R.x^  
    %   The following table shows the first 12 polynomials. S3oyx#R('O  
    % Eqizx~eqq  
    %       n    m    Zernike polynomial    Normalization {#`O'F>  
    %       --------------------------------------------- *Ri\7CqU"6  
    %       0    0    1                        sqrt(2) c~``)N  
    %       1    1    r                           2 I-Q@v`  
    %       2    0    2*r^2 - 1                sqrt(6) aC90IJ8^  
    %       2    2    r^2                      sqrt(6) ~F"<Nq  
    %       3    1    3*r^3 - 2*r              sqrt(8) (fA>@5n  
    %       3    3    r^3                      sqrt(8) #)r^ZA&E  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Sy@)Q[A  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [g<Y,0,J  
    %       4    4    r^4                      sqrt(10) VdL*"i  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )d~{gPr.  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /Fk]>|*  
    %       5    5    r^5                      sqrt(12) o|kiwr}Y  
    %       --------------------------------------------- Y-?0!a=e.  
    % & zR\Rmpt  
    %   Example: / f5q9sp8  
    % g ?.y7!m  
    %       % Display three example Zernike radial polynomials 9epMw-)k  
    %       r = 0:0.01:1; ej,)< *  
    %       n = [3 2 5]; mO=A50_&,Q  
    %       m = [1 2 1]; q@Aw]Kh  
    %       z = zernpol(n,m,r); \E(^<Af  
    %       figure NiH =T  
    %       plot(r,z) ?kIyo  
    %       grid on )-\C{>  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') x{O) n  
    % FMOO  
    %   See also ZERNFUN, ZERNFUN2. 4aP 96  
    \wV^uS   
    % A note on the algorithm. dAWB.#  
    % ------------------------ $PstEL  
    % The radial Zernike polynomials are computed using the series [I?[N.v  
    % representation shown in the Help section above. For many special @cr/&  
    % functions, direct evaluation using the series representation can bN\;m^xfu  
    % produce poor numerical results (floating point errors), because )2 lB  
    % the summation often involves computing small differences between C547})  
    % large successive terms in the series. (In such cases, the functions v<@3&bot  
    % are often evaluated using alternative methods such as recurrence ^sKdN-{  
    % relations: see the Legendre functions, for example). For the Zernike %9 3R/bx  
    % polynomials, however, this problem does not arise, because the o:'@|(&<  
    % polynomials are evaluated over the finite domain r = (0,1), and KpBOmXE  
    % because the coefficients for a given polynomial are generally all w}]BJ<C  
    % of similar magnitude. ;E_Go&Vd  
    % ]]o?!NX  
    % ZERNPOL has been written using a vectorized implementation: multiple {'Y()p3kl  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ' 7Mz]@  
    % values can be passed as inputs) for a vector of points R.  To achieve tQ *?L  
    % this vectorization most efficiently, the algorithm in ZERNPOL c/7}5#Rs  
    % involves pre-determining all the powers p of R that are required to P{L S +.  
    % compute the outputs, and then compiling the {R^p} into a single /X]gm\x7s  
    % matrix.  This avoids any redundant computation of the R^p, and ) &DsRA7v  
    % minimizes the sizes of certain intermediate variables. w`DcnQK'  
    % :_,a%hb+8  
    %   Paul Fricker 11/13/2006 9u)p9)^-.v  
    fH@cC`  
     Q'ZZQ  
    % Check and prepare the inputs: ,.kmUd  
    % ----------------------------- H:EK&$sU  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s#'Vasu  
        error('zernpol:NMvectors','N and M must be vectors.') k8\ KCKql  
    end L@'2}7N1%  
    [+d~He  
    if length(n)~=length(m) |}2/:f#Iz*  
        error('zernpol:NMlength','N and M must be the same length.') Y<IuwS  
    end *LMzq9n3o  
    pIV |hb!G  
    n = n(:); /!JxiGn  
    m = m(:); T6b~uE  
    length_n = length(n); lN&+<>a  
    ,PoG=W  
    if any(mod(n-m,2)) EKO~\d  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;GE6S{~-  
    end )Tieef*Q~  
    KWxTN|>  
    if any(m<0) qzNXz_#+u  
        error('zernpol:Mpositive','All M must be positive.') WJxcJE  
    end S|xwYaoy%  
    T+x / J]A  
    if any(m>n) 7Vk9{x$z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') dWi< U4  
    end yZ!~m3Q  
    _k : BY  
    if any( r>1 | r<0 ) $vK,Gugcx  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') +1I 7K|M  
    end [ #ih o(/  
    7NT0]j(w-  
    if ~any(size(r)==1) 3-E-\5I  
        error('zernpol:Rvector','R must be a vector.') r;)31Tg  
    end |Eh2#K0x4G  
    AOkG.u-k  
    r = r(:); ~3-"1E>Rgy  
    length_r = length(r); @-L\c>rqT  
    W}N7jPO}  
    if nargin==4 *P5\T4!+d  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); k]C k%[d  
        if ~isnorm 8KN 3|)  
            error('zernpol:normalization','Unrecognized normalization flag.') s?s ,wdp  
        end .%dGSDru  
    else `\|@w@f|;  
        isnorm = false; l]~9BPsR  
    end  3Z`"k2k  
    S(U9Dlyarg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %sPze]  
    % Compute the Zernike Polynomials YD@Z}NE v"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WVsj  
    ~NPhVlT  
    % Determine the required powers of r: 00'SceL=`  
    % ----------------------------------- pouXt-%2X  
    rpowers = []; <KK.f9^o(  
    for j = 1:length(n) }Xk_ xQVt{  
        rpowers = [rpowers m(j):2:n(j)]; WtKKdL  
    end .I EHjy\+  
    rpowers = unique(rpowers); E%;$vj'2  
    gvc/Z <Y  
    % Pre-compute the values of r raised to the required powers, 9BpxbU+L;  
    % and compile them in a matrix: mA$86 X_  
    % ----------------------------- l53Q"ajG  
    if rpowers(1)==0 94et ]u%7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \2=I//YF  
        rpowern = cat(2,rpowern{:});  DAiS|x  
        rpowern = [ones(length_r,1) rpowern]; TQKcPVlE  
    else R2?s NlF  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); TBrw ir  
        rpowern = cat(2,rpowern{:}); _ yJz:pa  
    end Z*f%R\u  
    k0N>J8y  
    % Compute the values of the polynomials: [&4+ <Nl'  
    % -------------------------------------- [0105l5  
    z = zeros(length_r,length_n); i].E1},%  
    for j = 1:length_n V_ , `?>O  
        s = 0:(n(j)-m(j))/2; K?[Vz[-Fc  
        pows = n(j):-2:m(j); 2}XRqa.|  
        for k = length(s):-1:1 3uxf n=E  
            p = (1-2*mod(s(k),2))* ... BfCM\ij  
                       prod(2:(n(j)-s(k)))/          ... lw gwdB  
                       prod(2:s(k))/                 ... $Zo|t a^  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $M4Z_zle)  
                       prod(2:((n(j)+m(j))/2-s(k))); %7 yQ0'P  
            idx = (pows(k)==rpowers); 0G-obHe0  
            z(:,j) = z(:,j) + p*rpowern(:,idx); #]5KWXC'~  
        end jIr\.i  
         ~]RfOpq^w  
        if isnorm `p9N| V  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); n{<}<SVY  
        end WEX7=^k9  
    end <9 ^7r J  
    4)OOj14-V  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  GJQ>VI2cY  
    ]ke9ipj]:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 W*_c*  
    : KFK2yD  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)