切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9541阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ^;Sy. W&`  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! xY$iz)^0&  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 FVKW9"AyW  
    function z = zernfun(n,m,r,theta,nflag) T<I=%P)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. jM&r{^(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .)+h H y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 5o/&T"]@  
    %   unit circle.  N is a vector of positive integers (including 0), and gh>>Ibf  
    %   M is a vector with the same number of elements as N.  Each element  iL= m{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) zSE<"(a  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, /1 RAAa  
    %   and THETA is a vector of angles.  R and THETA must have the same 1RKW2RCaW_  
    %   length.  The output Z is a matrix with one column for every (N,M) TyKWy0x-3  
    %   pair, and one row for every (R,THETA) pair. ^T.E+2=>z  
    % g!i45-n3gt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike = 0- $W5E  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), i%{3W:!4t  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0A:n0[V:]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5VO;s1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @Eb2k!T  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $o+5/c?|  
    % !6G?zipB  
    %   The Zernike functions are an orthogonal basis on the unit circle. J>^\oAgpE  
    %   They are used in disciplines such as astronomy, optics, and TM8 =U-A  
    %   optometry to describe functions on a circular domain. }dxDt qb  
    % ^ZM0c>ev=l  
    %   The following table lists the first 15 Zernike functions. {T'GQz+R"  
    % JxjI]SF02  
    %       n    m    Zernike function           Normalization dDDGM:]  
    %       -------------------------------------------------- @R m-CWa  
    %       0    0    1                                 1 \*\R1_+  
    %       1    1    r * cos(theta)                    2 -B$~`2-  
    %       1   -1    r * sin(theta)                    2 @h?shW=^  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3M0+"l(X  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~Z ~v  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j$da8] !  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,&Wn [G<2  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Kd3?I5t  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) :y2p@#l#  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T<-=nX  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |BZDhd9<{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D^U: ih  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z^nvMTC  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Gq#~vr  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !'=15&5@  
    %       -------------------------------------------------- |KYEK|  
    % LwuF0\  
    %   Example 1: K={qU[_O  
    % g`k?AM\  
    %       % Display the Zernike function Z(n=5,m=1) (!5LW '3B  
    %       x = -1:0.01:1; >\<*4J$PZ  
    %       [X,Y] = meshgrid(x,x); O;HY%  
    %       [theta,r] = cart2pol(X,Y);  qW_u  
    %       idx = r<=1; S<nq8Ebmw  
    %       z = nan(size(X)); ^")F7`PF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); r$wZt  
    %       figure 2}vg U$a  
    %       pcolor(x,x,z), shading interp 1x~U*vbhQ  
    %       axis square, colorbar "tS'b+SJ-S  
    %       title('Zernike function Z_5^1(r,\theta)') ftk%EYT;  
    % M!M!Ni  
    %   Example 2: KyP)Qzp  
    % $!A:5jech  
    %       % Display the first 10 Zernike functions uk`8X`'  
    %       x = -1:0.01:1; s|bM%!$1  
    %       [X,Y] = meshgrid(x,x); I-NN29Sk  
    %       [theta,r] = cart2pol(X,Y); "()sb?&  
    %       idx = r<=1; P ,eH5w"  
    %       z = nan(size(X)); !SHj$Jwa'  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ']o od!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qu6DQ@ ~YC  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vOI[Z0Lq9h  
    %       y = zernfun(n,m,r(idx),theta(idx)); %qsvtc`  
    %       figure('Units','normalized') 9O,,m~B  
    %       for k = 1:10 ALd;$fd qf  
    %           z(idx) = y(:,k); smAC,-6 ]~  
    %           subplot(4,7,Nplot(k)) qBk``!|s]  
    %           pcolor(x,x,z), shading interp fvo<(c#Y#  
    %           set(gca,'XTick',[],'YTick',[]) +:jT=V"X  
    %           axis square P}3}ek1Ax  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1D([@)^  
    %       end dpN@#w  
    % a?cn9i)#  
    %   See also ZERNPOL, ZERNFUN2. Y^ve:Z  
    vC/[^  
    %   Paul Fricker 11/13/2006 X}4}&  
    \6j^k Y=  
    ://U^sFL  
    % Check and prepare the inputs: iy5R5L 2  
    % ----------------------------- @u4=e4eF`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6DSH`-;  
        error('zernfun:NMvectors','N and M must be vectors.') eQX`,9:5  
    end YwT-T,oD  
    W,hWOO  
    if length(n)~=length(m) Z&yaSB  
        error('zernfun:NMlength','N and M must be the same length.') wod/&!)]A  
    end s'a=_cN  
    T>]sQPg  
    n = n(:); ,qFA\cO*  
    m = m(:); f!GHEhQ9  
    if any(mod(n-m,2)) J0<p4%Cf  
        error('zernfun:NMmultiplesof2', ... jPu5nwvUV>  
              'All N and M must differ by multiples of 2 (including 0).') :pKG\A  
    end q7]>i!A  
    (RF>s.B<  
    if any(m>n) Zy]s`aa  
        error('zernfun:MlessthanN', ... ij)Cm]4(2  
              'Each M must be less than or equal to its corresponding N.') m^Lj+=Z"  
    end 7|D|4!i2Y  
    o$bUY7_  
    if any( r>1 | r<0 ) 99ASIC!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') D,W\ gP/h%  
    end mb\t/p  
    0'ZYO.y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) m3 IP7h'  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z^6#4Q]YC  
    end .;Y x*]  
    |+ 7f2C  
    r = r(:); !;}2F-  
    theta = theta(:); J1 tDO?  
    length_r = length(r); {/UhUG  
    if length_r~=length(theta) ,w\ wQn>]K  
        error('zernfun:RTHlength', ... 03E3cp"  
              'The number of R- and THETA-values must be equal.') wL eHQ]  
    end :I/  
    [yd6gH  
    % Check normalization: lCFU1 GHH  
    % -------------------- T^)plWw  
    if nargin==5 && ischar(nflag) IRB& j%LA  
        isnorm = strcmpi(nflag,'norm'); F3 f@9@b   
        if ~isnorm "a( 1s} ,  
            error('zernfun:normalization','Unrecognized normalization flag.') $N\+,?  
        end dq 8+m(7k  
    else ~zMKVM1Q.,  
        isnorm = false; O)5 #Fcp(  
    end 5#u.pu  
    eY3=|RR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {})y^L  
    % Compute the Zernike Polynomials f'_ S1\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8eww7k^R  
    1o#vhk/ "+  
    % Determine the required powers of r: V4?Oc2mS  
    % ----------------------------------- (5(fd.m+_  
    m_abs = abs(m); C={mi#G[/  
    rpowers = []; C"No5r'K3  
    for j = 1:length(n) @zs1>\J7  
        rpowers = [rpowers m_abs(j):2:n(j)]; q%.bnF/Yd  
    end 8nu> gA  
    rpowers = unique(rpowers); |uQ[W17^N  
    RUc\u93n  
    % Pre-compute the values of r raised to the required powers, 2fBYT4*P;  
    % and compile them in a matrix: ?z"YC&Tp  
    % ----------------------------- '?k' 6R$'\  
    if rpowers(1)==0 <,-,?   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =+(Q.LmhC  
        rpowern = cat(2,rpowern{:}); 6 5"uD7;  
        rpowern = [ones(length_r,1) rpowern]; -7 L  
    else '_E c_F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0%;M VMH  
        rpowern = cat(2,rpowern{:}); C,='3^Nc  
    end M\jB)@)  
    $P_x v  
    % Compute the values of the polynomials: LO}z)j~W  
    % -------------------------------------- 1w) fu  
    y = zeros(length_r,length(n)); r$?Vx_f`Q  
    for j = 1:length(n) u7 ~mn l  
        s = 0:(n(j)-m_abs(j))/2; QB9A-U <J  
        pows = n(j):-2:m_abs(j); .J:;_4x  
        for k = length(s):-1:1 |Ib.)  
            p = (1-2*mod(s(k),2))* ... ,N;v~D$Y  
                       prod(2:(n(j)-s(k)))/              ... U_}hfLILi  
                       prod(2:s(k))/                     ... -PXoMZx%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5])8qb/F  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ze$Y=<S  
            idx = (pows(k)==rpowers);  mc~`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "$Y(NFb  
        end q@w"yz>  
         6*V8k%H  
        if isnorm u:eW0Ows"  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -Fa98nV.WB  
        end *CT.G'bQX  
    end )ZeLaaP  
    % END: Compute the Zernike Polynomials ac3_L$X[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `_ 0)kdu  
    `+Xe'ey  
    % Compute the Zernike functions: :=Nb=&lst  
    % ------------------------------ CJ:uYXJJ:z  
    idx_pos = m>0; [}@n*D$  
    idx_neg = m<0; wU.'_SBfB  
    k|l5"&K~.  
    z = y; 9G+y.^/6  
    if any(idx_pos) m.Twgin  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bbO+%-(X  
    end uGM>C"  
    if any(idx_neg) `{%-*f^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3 ^pYC K%  
    end (A2U~j?Ry}  
    6G$/NW=L  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) G]at{(^Vz  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 3g^IXm:K$  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated d8D yv#gT  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive @h!U  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, |e~u!V\m  
    %   and THETA is a vector of angles.  R and THETA must have the same 2V 4`s'  
    %   length.  The output Z is a matrix with one column for every P-value, 33O)k*g  
    %   and one row for every (R,THETA) pair. MPqY?KF  
    % JN-D/s  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ;g&7*1E  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) yY'gx|\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) $#F;xys  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 N'I?fWN!;R  
    %   for all p. 7 FEzak'  
    % U`:lAG  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <.;@ksCPW{  
    %   Zernike functions (order N<=7).  In some disciplines it is 3D{82*&  
    %   traditional to label the first 36 functions using a single mode /DK*y S  
    %   number P instead of separate numbers for the order N and azimuthal \a\^(`3a[  
    %   frequency M. Hf;RIl2F  
    % "vv$%^  
    %   Example: M4R%Gr,La  
    % PY[S z=[  
    %       % Display the first 16 Zernike functions 2=i+L z^  
    %       x = -1:0.01:1; U+:S7z@j?  
    %       [X,Y] = meshgrid(x,x); Pw0{.W~r  
    %       [theta,r] = cart2pol(X,Y); }]uB? +c  
    %       idx = r<=1; @ARAX\F  
    %       p = 0:15; H Jnv'^yn  
    %       z = nan(size(X)); 'SsPx&)l  
    %       y = zernfun2(p,r(idx),theta(idx)); Ej-=y2j{g  
    %       figure('Units','normalized') &z7N\n  
    %       for k = 1:length(p) @hE7r-}]  
    %           z(idx) = y(:,k); B)_!F`9  
    %           subplot(4,4,k) l=Vowx.$2f  
    %           pcolor(x,x,z), shading interp  "Nk`RsW  
    %           set(gca,'XTick',[],'YTick',[]) ?FkQe~FN{  
    %           axis square Lr!L}y9T+  
    %           title(['Z_{' num2str(p(k)) '}']) WiPM <'  
    %       end BiVd ka  
    % gEcnn .(S  
    %   See also ZERNPOL, ZERNFUN. +OV%B .  
    6$xo# }8  
    %   Paul Fricker 11/13/2006 I^rZgp<'i  
    Fm-q=3  
    UXcH";*9b  
    % Check and prepare the inputs: FCS5@l,'<  
    % ----------------------------- `?Y_0Nh>  
    if min(size(p))~=1 oyi7YRvwd  
        error('zernfun2:Pvector','Input P must be vector.') p,_6jdz  
    end Oc^6u  
    %fex uy4  
    if any(p)>35 ]%vGC^  
        error('zernfun2:P36', ... ')Dp%"\?  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... p*(U*8Q  
               '(P = 0 to 35).']) 6KBzlj0T+  
    end .:#_5K  
    s[vPH8qb  
    % Get the order and frequency corresonding to the function number: W(]E04  
    % ---------------------------------------------------------------- RE(=! 8lGR  
    p = p(:); B.CH9M  
    n = ceil((-3+sqrt(9+8*p))/2); KoxGxHz^Y3  
    m = 2*p - n.*(n+2); yhJA;&}>  
    4{Yy05PFS  
    % Pass the inputs to the function ZERNFUN: oF 1W}DtA  
    % ---------------------------------------- R &1mo  
    switch nargin o|p;6  
        case 3 vUodp#s  
            z = zernfun(n,m,r,theta); ? bUpK  
        case 4 i+qLc6|S=2  
            z = zernfun(n,m,r,theta,nflag); S4aHce5PXA  
        otherwise Bsih<`KF^  
            error('zernfun2:nargin','Incorrect number of inputs.') 3<~2"@J  
    end 5;sQ@  
    Cnc\sMDJ\B  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) a|6x!p2X  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. n'&`9M['%d  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of |)72E[lL  
    %   order N and frequency M, evaluated at R.  N is a vector of 7S~9E2N  
    %   positive integers (including 0), and M is a vector with the h3;o!FF  
    %   same number of elements as N.  Each element k of M must be a DESViQM  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) D-b2E6 o6  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 5sh u76  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix A 4W  
    %   with one column for every (N,M) pair, and one row for every E;GR;i{t  
    %   element in R. PhI6dB`  
    % ZR01<V  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- |au qj2  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ,Dii?P  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to *|,ykb>  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 "jQe\  
    %   for all [n,m]. ;KZtW  
    % mJDKxgGK  
    %   The radial Zernike polynomials are the radial portion of the ^]lwd"$  
    %   Zernike functions, which are an orthogonal basis on the unit gt t$O  
    %   circle.  The series representation of the radial Zernike N;`[R>Z~  
    %   polynomials is g0:4zeL  
    % !qw=I(  
    %          (n-m)/2 ch,Zk )y:_  
    %            __ : ! iPn%  
    %    m      \       s                                          n-2s }fZ =T4r  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r PqJ*   
    %    n      s=0 c%LB|(@j{  
    % >eG&gc@$1$  
    %   The following table shows the first 12 polynomials. `j!2uRFe>  
    % yL3<X w|  
    %       n    m    Zernike polynomial    Normalization `F+x]<m!  
    %       --------------------------------------------- iZq@W3GL C  
    %       0    0    1                        sqrt(2) kW2nrkF  
    %       1    1    r                           2 72`/xryY  
    %       2    0    2*r^2 - 1                sqrt(6) 3P^gP32  
    %       2    2    r^2                      sqrt(6) >pH775I=  
    %       3    1    3*r^3 - 2*r              sqrt(8) Z/05 wB  
    %       3    3    r^3                      sqrt(8) 2eR+dT  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) "O*W]e  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ~~:8Yv[(  
    %       4    4    r^4                      sqrt(10) C8W`Oly:]  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) |Q)w3\S$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) PSQ:'  
    %       5    5    r^5                      sqrt(12) Y\z\{JW  
    %       --------------------------------------------- `w=H'"Zv  
    % J_[[BJ&}x  
    %   Example: whm tEY  
    % ,S0~:c:)  
    %       % Display three example Zernike radial polynomials h. (;GJO  
    %       r = 0:0.01:1; d,rEEc Y  
    %       n = [3 2 5]; O"^a.`27  
    %       m = [1 2 1]; >'TD?@sr  
    %       z = zernpol(n,m,r); L,A-G"z0Z  
    %       figure Is6']bYh  
    %       plot(r,z) aq,)6P`  
    %       grid on u r.T YKF  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') n `T[eb~  
    % =O'%)Y&  
    %   See also ZERNFUN, ZERNFUN2. AUjTcu>i  
    'kg]|"M  
    % A note on the algorithm. #Xw[i  
    % ------------------------ m3xj5]#^$  
    % The radial Zernike polynomials are computed using the series gL}Y5U+s  
    % representation shown in the Help section above. For many special 8(/f!~  
    % functions, direct evaluation using the series representation can #M^Yh?~%w  
    % produce poor numerical results (floating point errors), because [O+^eE6h  
    % the summation often involves computing small differences between fQ.>G+0 I>  
    % large successive terms in the series. (In such cases, the functions "X(=  
    % are often evaluated using alternative methods such as recurrence B{UoNm@  
    % relations: see the Legendre functions, for example). For the Zernike I nK)O ';  
    % polynomials, however, this problem does not arise, because the ftU5 A@(T  
    % polynomials are evaluated over the finite domain r = (0,1), and %PdYv _5  
    % because the coefficients for a given polynomial are generally all r\ Yur  
    % of similar magnitude. f uN XY-;  
    % rHBjR_L.2  
    % ZERNPOL has been written using a vectorized implementation: multiple 27 TZ+?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] +M]8_kE=+l  
    % values can be passed as inputs) for a vector of points R.  To achieve v_h*:c  
    % this vectorization most efficiently, the algorithm in ZERNPOL 9w<Bm"G  
    % involves pre-determining all the powers p of R that are required to wBHDof xX  
    % compute the outputs, and then compiling the {R^p} into a single Ahbu >LPk  
    % matrix.  This avoids any redundant computation of the R^p, and LqsJHG  
    % minimizes the sizes of certain intermediate variables. !gew;Jz  
    % Jb.u^3R@  
    %   Paul Fricker 11/13/2006 |< FCt-U  
    ^QQ NJ  
    ?[B[ F  
    % Check and prepare the inputs: ~tuFjj^  
    % ----------------------------- "EhO )lR  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v ]U;5Uo  
        error('zernpol:NMvectors','N and M must be vectors.') 7<o;3gR7Kj  
    end vGHYB1=~  
    DMN H?6  
    if length(n)~=length(m) }/r%~cZ  
        error('zernpol:NMlength','N and M must be the same length.') 'R'a/ZR`B7  
    end Rs[]i;  
    l'%R^  
    n = n(:); $cU/Im`  
    m = m(:); V(uRKu x  
    length_n = length(n); 10IPq#Jj  
    []!r|R3  
    if any(mod(n-m,2)) 5m?$\h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') F/>Pv q]  
    end * .VZ(wX  
    +M&S  
    if any(m<0) oz-I/g3go  
        error('zernpol:Mpositive','All M must be positive.') O~'yP @&`  
    end swL|Ff`$  
    (+ anTA=  
    if any(m>n) $-fY8V3[  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "q/M8  
    end B&N&eRAE  
    r['C.S6  
    if any( r>1 | r<0 ) <XrGr5=BV  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') aW$nNUVD  
    end lB~'7r`  
    l8Qi^<i/  
    if ~any(size(r)==1) q#3X*!)  
        error('zernpol:Rvector','R must be a vector.') 1^^D :tt  
    end ta., 4R&K  
    M)^9e?  
    r = r(:); 1u+ (rVQN  
    length_r = length(r); H5 hUY'O  
    %pQ o%<d  
    if nargin==4 gjLgeyyWC  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); &:K?-ac  
        if ~isnorm !PIdw~YC  
            error('zernpol:normalization','Unrecognized normalization flag.') 53 05N!  
        end ye2Oh7  
    else y<d#sv(s  
        isnorm = false; w/6@R 4)p  
    end p,Hk"DSs%  
    ~"Ki2'j)^]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L]<4{8H.  
    % Compute the Zernike Polynomials rapca'&#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0|;=mYa4M  
    #K w\r50  
    % Determine the required powers of r: 5V bNWrw  
    % ----------------------------------- ]t;5kj/  
    rpowers = []; q Db}b d5  
    for j = 1:length(n) hz<J8'U  
        rpowers = [rpowers m(j):2:n(j)]; ? d\8Q't*  
    end ?='9YM  
    rpowers = unique(rpowers); BG=_i#V  
    >K%x44|  
    % Pre-compute the values of r raised to the required powers, ),,vu  
    % and compile them in a matrix: ayp}TYh*  
    % ----------------------------- Y&:i^k  
    if rpowers(1)==0 }L9j`17  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @CF4:NNHw  
        rpowern = cat(2,rpowern{:}); _AYF'o-Cm  
        rpowern = [ones(length_r,1) rpowern]; GK&Dd"v  
    else BUyA]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P\e%8&_U/  
        rpowern = cat(2,rpowern{:}); 0aWb s$FyU  
    end KL4/"$l]  
    1[^d8!U  
    % Compute the values of the polynomials: y>8?RX8  
    % -------------------------------------- *cIXae^Y7  
    z = zeros(length_r,length_n); Dy!fwYPA/{  
    for j = 1:length_n e AjtWqg  
        s = 0:(n(j)-m(j))/2; q?&&:.H"?5  
        pows = n(j):-2:m(j); BYU.ptiJJ  
        for k = length(s):-1:1 /$(D>KU  
            p = (1-2*mod(s(k),2))* ... zn|}YovY+  
                       prod(2:(n(j)-s(k)))/          ... (.o'1 '  
                       prod(2:s(k))/                 ... 7ow1=%Q  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... +$5^+C\6A  
                       prod(2:((n(j)+m(j))/2-s(k))); {wI0 =U  
            idx = (pows(k)==rpowers);  E"=$p $k  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Di*>PE@  
        end cDg27xOUi  
         plfB} p  
        if isnorm d%bL_I)  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); kx[8#+P  
        end v*3:8Y,  
    end Bx F  
    \`C3;}o:"P  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    846
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4345
    光币
    8973
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  &P rx=L`  
    9mr99 tA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 (R{W Jjj  
    pbJs3uIR  
    07年就写过这方面的计算程序了。
    提供免费光学设计培训,请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)