切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11312阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 I#GsEhi  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ul ag$ge  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _b1w<T `  
    function z = zernfun(n,m,r,theta,nflag) $l!+SLK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9t^Q_[hG  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q )b*; @  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~i)IY1m"  
    %   unit circle.  N is a vector of positive integers (including 0), and qOd*9AS'|M  
    %   M is a vector with the same number of elements as N.  Each element PgF7ug%,@C  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) om'DaG`A  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0(~,U!g[=  
    %   and THETA is a vector of angles.  R and THETA must have the same 2V 9vS  
    %   length.  The output Z is a matrix with one column for every (N,M) 7L\kna<  
    %   pair, and one row for every (R,THETA) pair. tZn=[X~Vw@  
    % %knPeo&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W2\ Q-4D  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qC?\i['`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ]$gBX=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `:fc*n,*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _laLTP*  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. . |g67PH=  
    % +8etCx  
    %   The Zernike functions are an orthogonal basis on the unit circle. 56R)631]p  
    %   They are used in disciplines such as astronomy, optics, and ;'x\L<b/)  
    %   optometry to describe functions on a circular domain.  j,c8_;X!  
    % dJ0qg_ U&  
    %   The following table lists the first 15 Zernike functions. j*aYh^  
    % A&~<qgBTp  
    %       n    m    Zernike function           Normalization ~J:"sUR  
    %       -------------------------------------------------- Ie%twc  
    %       0    0    1                                 1 Lp?JSMe  
    %       1    1    r * cos(theta)                    2 "|:I]ZB  
    %       1   -1    r * sin(theta)                    2 0^PI&7A?y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 47c` ) *Hc  
    %       2    0    (2*r^2 - 1)                    sqrt(3) rZBOWT  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) x>yeF,q1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]8i2'x  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) uBe1{Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) mVBF2F<4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Rr'^l ]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _(<D*V[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C/!c?$J  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :RnFRAcr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '"=Mw;p  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0bQm:J[(#  
    %       -------------------------------------------------- %hu] =  
    % \dL# PI3  
    %   Example 1:  j`9+pI  
    % Z=vzF0  
    %       % Display the Zernike function Z(n=5,m=1) gTp){  
    %       x = -1:0.01:1; u,6 'yB'u  
    %       [X,Y] = meshgrid(x,x); 8'(|1  
    %       [theta,r] = cart2pol(X,Y); '5mzlR  
    %       idx = r<=1; ;S FmbZ%~  
    %       z = nan(size(X)); D* oJz3[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); W_zAAIY_Y  
    %       figure vh~:{akR  
    %       pcolor(x,x,z), shading interp > qSaF  
    %       axis square, colorbar {bUd"Tu  
    %       title('Zernike function Z_5^1(r,\theta)') wb>>bV+U  
    % o9:GKc  
    %   Example 2: xCd9b:jG  
    % +C{ %pF  
    %       % Display the first 10 Zernike functions l|[8'*]r!  
    %       x = -1:0.01:1; OudD1( )W  
    %       [X,Y] = meshgrid(x,x); cN>z`x l  
    %       [theta,r] = cart2pol(X,Y); 7b2N'^z}  
    %       idx = r<=1; J@{yWgLg  
    %       z = nan(size(X)); q1nGj  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,'CDKzY  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; bm{L6D E  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; {GS7J  
    %       y = zernfun(n,m,r(idx),theta(idx)); `3$S^|v  
    %       figure('Units','normalized') HgwL~vG  
    %       for k = 1:10 ?^F#}>C  
    %           z(idx) = y(:,k); ~lR"3z_Z}  
    %           subplot(4,7,Nplot(k)) /#PEEN  
    %           pcolor(x,x,z), shading interp ]Qp0|45=  
    %           set(gca,'XTick',[],'YTick',[]) x0])&':!  
    %           axis square P^%.7C  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5@+8*Fdk  
    %       end 5Dy800.B2  
    % /:a~;i  
    %   See also ZERNPOL, ZERNFUN2. sa~.qmqu  
    >s E5zj|V  
    %   Paul Fricker 11/13/2006 Aa5IccR  
    /hue]ZaQq  
    vXnTPjbE  
    % Check and prepare the inputs: Ml)Xq-&wc  
    % ----------------------------- saH +C@_,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %aX<p{EY  
        error('zernfun:NMvectors','N and M must be vectors.') 7oPBe1P,K+  
    end T8.@ }a  
    $cev,OW6]  
    if length(n)~=length(m) BZqb o`9  
        error('zernfun:NMlength','N and M must be the same length.') 3<x_[0v`K1  
    end .cA[b  
    <3;/,>^ Pm  
    n = n(:); g]C+uj^  
    m = m(:); ?K7m:Dx  
    if any(mod(n-m,2)) c@{,&,vsj  
        error('zernfun:NMmultiplesof2', ... A+j~oR  
              'All N and M must differ by multiples of 2 (including 0).') SvH=P !`+  
    end (r,RwWYm  
    >RxZ-.,a  
    if any(m>n) :L9\`&}FS  
        error('zernfun:MlessthanN', ... u>(s .4]+  
              'Each M must be less than or equal to its corresponding N.') J#CF SG  
    end Mg95us  
    kTG}>I  
    if any( r>1 | r<0 ) EOV<|WF>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') uH]n/Kv1,  
    end \O?#gW\tR  
    &l%#OI}OE  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4qjY,QJ  
        error('zernfun:RTHvector','R and THETA must be vectors.') 6^['g-\2  
    end dL")E|\\k  
    8|7fd|6~  
    r = r(:); $cH'9W}3K  
    theta = theta(:); 4;|&}Ij  
    length_r = length(r); Y( /VW&K&:  
    if length_r~=length(theta) A0S6 4(  
        error('zernfun:RTHlength', ... lp?geav  
              'The number of R- and THETA-values must be equal.') NF0} eom  
    end Vm&fw".J  
    [HIg\N$I8C  
    % Check normalization: 33couAP#  
    % -------------------- 1O9V Ej5  
    if nargin==5 && ischar(nflag) a+*|P  
        isnorm = strcmpi(nflag,'norm'); =Ze~6vS,  
        if ~isnorm uZId.+Rk  
            error('zernfun:normalization','Unrecognized normalization flag.') O>w $  
        end @8 @cpm  
    else ~v9\4O  
        isnorm = false; 9ZG.%+l  
    end bQ0m=BzF  
    p=9G)VO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Old5E&  
    % Compute the Zernike Polynomials L<QqQ"`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LtH;#Q  
    34]f[jJ|  
    % Determine the required powers of r: [F+lVb  
    % ----------------------------------- G?=X!up(  
    m_abs = abs(m); 'fcJ]%-=  
    rpowers = []; |!I#T  
    for j = 1:length(n) :?jOts>uP  
        rpowers = [rpowers m_abs(j):2:n(j)]; X"8Jk 4y  
    end u-j$4\'  
    rpowers = unique(rpowers); sh}=#eb  
    PWLMux  
    % Pre-compute the values of r raised to the required powers, )F]E[sga  
    % and compile them in a matrix: D4n ~ 2]  
    % ----------------------------- R$(,~~MH  
    if rpowers(1)==0 6P?   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .'+Tnu(5q  
        rpowern = cat(2,rpowern{:}); ) #Y*]  
        rpowern = [ones(length_r,1) rpowern]; 5@Ot@o  
    else 2}I1z_dq~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $>5|TG 0i  
        rpowern = cat(2,rpowern{:}); 49_b)K.tB  
    end yZ6560(q  
    Y'bDEdeT  
    % Compute the values of the polynomials: K-k;`s#  
    % -------------------------------------- E n{vCN  
    y = zeros(length_r,length(n)); F7#   
    for j = 1:length(n) ~2V|]Y;s  
        s = 0:(n(j)-m_abs(j))/2; -`iZBC50  
        pows = n(j):-2:m_abs(j); (Pc:A! }  
        for k = length(s):-1:1 "-A@>*g  
            p = (1-2*mod(s(k),2))* ... uQ9P6w=Nt  
                       prod(2:(n(j)-s(k)))/              ... :%xiH%C>  
                       prod(2:s(k))/                     ... v~ZdMQvwt  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s+C&\$E  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %{&yXi:mS  
            idx = (pows(k)==rpowers); 9dJARSUuF  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~naL1o_FZ  
        end 8>6+]]O  
         ga6M8eOI  
        if isnorm cm6cW(x6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); V8`t7[r  
        end JQi)6A?J  
    end L!c7$M5xJ  
    % END: Compute the Zernike Polynomials t~Cul+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vUvIZa  
    ISa2|v;M  
    % Compute the Zernike functions: &JtK<g  
    % ------------------------------ ZnI_<iFR*  
    idx_pos = m>0; pDCQ?VW  
    idx_neg = m<0; ~H7m7  
    Z-*L[  
    z = y; w2YfFtgD,  
    if any(idx_pos) B;2os^*  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /b@8#px  
    end ~*- eL.  
    if any(idx_neg) u! x9O8y  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); : JD% =w_  
    end 2j Oh~-LU  
    I|n<B"Q6^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) w\:-lXw  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. c'vxT<8fWW  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7(QRG\G#  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive R/Mwq#xUb  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, "<Dn%r  
    %   and THETA is a vector of angles.  R and THETA must have the same e>#*$4tg  
    %   length.  The output Z is a matrix with one column for every P-value, &<_*yl p  
    %   and one row for every (R,THETA) pair. m$ NBGw  
    % |ITp$  _S  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike p&>*bF,  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) hJ (Q^Z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) N&]v\MjI62  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ug.mY=n '  
    %   for all p. E!8FZv8  
    % IgI*mDS&b  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 C},;M @xV  
    %   Zernike functions (order N<=7).  In some disciplines it is +?w 7Nm`  
    %   traditional to label the first 36 functions using a single mode &BY%<h0c  
    %   number P instead of separate numbers for the order N and azimuthal rr>QG<i;G  
    %   frequency M. X};m\Bz  
    % =;W"Pi;*  
    %   Example: w9rwuk  
    % GvF8S MO[x  
    %       % Display the first 16 Zernike functions J}c57$Z  
    %       x = -1:0.01:1; !hrXud=#"  
    %       [X,Y] = meshgrid(x,x); &=Gz[1 L  
    %       [theta,r] = cart2pol(X,Y); WS/^WxRY  
    %       idx = r<=1; 2?u>A3^R  
    %       p = 0:15; 5|my}.TR  
    %       z = nan(size(X)); X/ gIH/  
    %       y = zernfun2(p,r(idx),theta(idx)); DJ_,1F  
    %       figure('Units','normalized') :!Wijdq  
    %       for k = 1:length(p) "w9LQ=mW  
    %           z(idx) = y(:,k); K_{f6c<  
    %           subplot(4,4,k) w,bILv)  
    %           pcolor(x,x,z), shading interp F[<EXLQ  
    %           set(gca,'XTick',[],'YTick',[]) 6vbWe@#U/  
    %           axis square w<3}(1  
    %           title(['Z_{' num2str(p(k)) '}']) UCj4%y6t  
    %       end W$B&asO  
    % 1P#bR`I >  
    %   See also ZERNPOL, ZERNFUN. 8c(}*,O/  
    R7;SZo  
    %   Paul Fricker 11/13/2006 nd3=\.(P  
    lTY%,s  
    dIQ7u  
    % Check and prepare the inputs: "nPmQ  
    % ----------------------------- O#  .^}  
    if min(size(p))~=1 @kvgq 0ab  
        error('zernfun2:Pvector','Input P must be vector.') dB+x,+%u+  
    end kMWu%,s4  
    8 !Pk1P  
    if any(p)>35 q>/# P5V  
        error('zernfun2:P36', ... 2.u d P  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... (Z"QHfO'  
               '(P = 0 to 35).']) SweaE Rl  
    end _IuEa\>  
    )67_yHW  
    % Get the order and frequency corresonding to the function number: pJrc\`D  
    % ---------------------------------------------------------------- kq6S`~J^R  
    p = p(:); D M(WYL{  
    n = ceil((-3+sqrt(9+8*p))/2); .j:.?v  
    m = 2*p - n.*(n+2); .F:qJ6E  
    zWoPa,  
    % Pass the inputs to the function ZERNFUN: YLmzMD>  
    % ---------------------------------------- 34-QgE  
    switch nargin #P.jlpZk  
        case 3 `2c>M\c4U  
            z = zernfun(n,m,r,theta); }hrLM[  
        case 4 1|bu0d\]  
            z = zernfun(n,m,r,theta,nflag); 06"p ^#  
        otherwise k@JDG]R<{  
            error('zernfun2:nargin','Incorrect number of inputs.') qg#TE-Y`  
    end }M'h 5x  
    5W"nn  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &I: [ 'l!  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. LuY`mi  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of vA@Kb3 ,  
    %   order N and frequency M, evaluated at R.  N is a vector of T0s7aw[zm  
    %   positive integers (including 0), and M is a vector with the s|rlpd4y  
    %   same number of elements as N.  Each element k of M must be a e `zEsLs@  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) }1]/dCv  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is !|_b}/  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix vK6YU9W~J  
    %   with one column for every (N,M) pair, and one row for every >C y  
    %   element in R. 4@OnMj{M  
    % |7]7~ 6l  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- WXu:mv,'e  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is y ,isK  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to J_YbeZ]  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 1MHP#X;|  
    %   for all [n,m]. \ }xK$$f2,  
    % fiz2544  
    %   The radial Zernike polynomials are the radial portion of the ;8/w'oe *j  
    %   Zernike functions, which are an orthogonal basis on the unit #P*%FgROl  
    %   circle.  The series representation of the radial Zernike *@o@>  
    %   polynomials is 26JP<&%L  
    % R~8gw^w![  
    %          (n-m)/2 B!GpD@U  
    %            __ z_R^n#A~r  
    %    m      \       s                                          n-2s <HM\ZDo@P  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Af1izS3  
    %    n      s=0 Pc >$[kT0  
    % $V-]DD%Y  
    %   The following table shows the first 12 polynomials. L0uvRge  
    % :zfnp,Gv  
    %       n    m    Zernike polynomial    Normalization E0[!jZ:c  
    %       --------------------------------------------- ~fw 6sY#  
    %       0    0    1                        sqrt(2) ^@ s!"c  
    %       1    1    r                           2 \eF5* {9  
    %       2    0    2*r^2 - 1                sqrt(6) (UDF^  
    %       2    2    r^2                      sqrt(6) 44FK%TmtF  
    %       3    1    3*r^3 - 2*r              sqrt(8) H|;6K`O_  
    %       3    3    r^3                      sqrt(8) },'hhj]O  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) - {<`Z  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 6la# 0U23  
    %       4    4    r^4                      sqrt(10) u\=gps/Z  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) /tRzb8`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) _?>!Bz m  
    %       5    5    r^5                      sqrt(12) mN +~fu h  
    %       --------------------------------------------- l=D E|:  
    % c_clpMx=  
    %   Example: kwNXKn/   
    % ^Dhj<_  
    %       % Display three example Zernike radial polynomials Ntr5Q IPd  
    %       r = 0:0.01:1; b9ysxuUdS  
    %       n = [3 2 5]; W!q 'wrIx(  
    %       m = [1 2 1]; ^4(CO[|c~  
    %       z = zernpol(n,m,r); pcXY6[#N  
    %       figure 3S1V^C-eBx  
    %       plot(r,z) {:m5<6?x)  
    %       grid on o/buU{)y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') LinARMPv  
    % 2+" =i/8  
    %   See also ZERNFUN, ZERNFUN2. :p@H  
    iKv`[k  
    % A note on the algorithm. _?<Y>B, E  
    % ------------------------ qY\zZ  
    % The radial Zernike polynomials are computed using the series YS=|y}Q|7d  
    % representation shown in the Help section above. For many special xP*9UXZ4P  
    % functions, direct evaluation using the series representation can &N1C"Eov?  
    % produce poor numerical results (floating point errors), because 9(lIz{  
    % the summation often involves computing small differences between SF+ ^dPwj  
    % large successive terms in the series. (In such cases, the functions ONJW*!(  
    % are often evaluated using alternative methods such as recurrence SFoF]U09  
    % relations: see the Legendre functions, for example). For the Zernike hKtOh  
    % polynomials, however, this problem does not arise, because the b0X*+q   
    % polynomials are evaluated over the finite domain r = (0,1), and :Q2\3  
    % because the coefficients for a given polynomial are generally all /- z_"G  
    % of similar magnitude. @iB**zR/  
    % Na: M1Uhb  
    % ZERNPOL has been written using a vectorized implementation: multiple ]_I<-}?;  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] /b6Y~YbgU  
    % values can be passed as inputs) for a vector of points R.  To achieve L`FsK64@  
    % this vectorization most efficiently, the algorithm in ZERNPOL \<|a>{`7]i  
    % involves pre-determining all the powers p of R that are required to  /Z! ,1  
    % compute the outputs, and then compiling the {R^p} into a single gXI_S9 z  
    % matrix.  This avoids any redundant computation of the R^p, and Djx9TBZ5  
    % minimizes the sizes of certain intermediate variables.  s=#IoNh  
    % @dX0gHU[c  
    %   Paul Fricker 11/13/2006 asP>(Li  
    RyD2LAf)J  
    WhE5u&`  
    % Check and prepare the inputs: j)Kk:BFFY  
    % ----------------------------- Dn$zwksSs  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %8`zaa  
        error('zernpol:NMvectors','N and M must be vectors.') ^q"p 8   
    end $>'}6?C.  
    9;dP7o  
    if length(n)~=length(m) C fQj7{  
        error('zernpol:NMlength','N and M must be the same length.') %s$_KG!&  
    end Xn.zN>mB  
    e;x`C  
    n = n(:); L6BHh_*E  
    m = m(:); "V~U{(Z  
    length_n = length(n); +;#hED; 8  
    o]n5pZ\\W<  
    if any(mod(n-m,2)) }^G'oR1LF  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') t(lTXG  
    end Bx E1Ky8@A  
    lO%Z4V_Mj  
    if any(m<0) [=e61Z  
        error('zernpol:Mpositive','All M must be positive.') ^]'p927  
    end ,qiS;2(  
    rd]HoFE  
    if any(m>n) $f>WR_F  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') sC ]&Qr_  
    end j='Ne5X1  
    \_@u"+,$W  
    if any( r>1 | r<0 ) @`}'P115@  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') qTqvEa^X`  
    end mwbkXy;8  
    0J$wX yh  
    if ~any(size(r)==1) BxZ}YS:  
        error('zernpol:Rvector','R must be a vector.') dyWWgC%A  
    end -2> L*"^  
    p: sn>Y  
    r = r(:); b_V)]>v+  
    length_r = length(r); FD|R4 V*3  
    LU?#{dZ  
    if nargin==4 rorzxp{  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); dq:M!F  
        if ~isnorm ~l6e&J  
            error('zernpol:normalization','Unrecognized normalization flag.') \nkqp   
        end 5 F^,7A4I0  
    else 2yq.<Wz<  
        isnorm = false; 4 CX*,7LZ  
    end XF^c(*5  
    EXa6"D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8>pFpS  
    % Compute the Zernike Polynomials z@~1e]%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KN}[N+V>  
    ;i:Uoyi  
    % Determine the required powers of r: ip>dHj z  
    % ----------------------------------- 9%zR ? u  
    rpowers = []; P]y2W#Rs  
    for j = 1:length(n) Q7=J[,V:2  
        rpowers = [rpowers m(j):2:n(j)]; DT9i<kl  
    end !\awT  
    rpowers = unique(rpowers); Pv1psKu  
    -v jjcyTt  
    % Pre-compute the values of r raised to the required powers, ~PlwPvWo  
    % and compile them in a matrix: MIR17%G  
    % ----------------------------- }ZYK3F  
    if rpowers(1)==0 E\V>3rse  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ew`R=<mZ,7  
        rpowern = cat(2,rpowern{:}); 6_XX[.%  
        rpowern = [ones(length_r,1) rpowern]; zLxWyPM0;  
    else W_sDF; JP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +IS$Un  
        rpowern = cat(2,rpowern{:}); VwC, +B  
    end 8L=QfKr  
    yaX,s 4p  
    % Compute the values of the polynomials: =<e#  2  
    % -------------------------------------- ' > \*  
    z = zeros(length_r,length_n); ,E>VYkoA  
    for j = 1:length_n l^Lg"m2  
        s = 0:(n(j)-m(j))/2; *JpEBtTv=5  
        pows = n(j):-2:m(j); Fa/i./V2  
        for k = length(s):-1:1 P@5^`b|  
            p = (1-2*mod(s(k),2))* ... ;<&s _C3  
                       prod(2:(n(j)-s(k)))/          ... x_@ev-  
                       prod(2:s(k))/                 ... zP9 HYS  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 6@I7UL >  
                       prod(2:((n(j)+m(j))/2-s(k))); uWfse19  
            idx = (pows(k)==rpowers); -y/?w*Cx  
            z(:,j) = z(:,j) + p*rpowern(:,idx); |f>y"T+1  
        end Y7{|EI+@  
         sdO;vp^:b  
        if isnorm C*78ZwZ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); yRgo1ow]  
        end h h8UKEM-  
    end M?\)&2f[Z  
    ($cu!$lY~  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ],YYFU}  
    $.N~AA~0  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 UvZ@"El  
    4 ufLP DH  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)