切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11048阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 l<:\w.Gl  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 3<_=Vyf  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _gw paAJ  
    function z = zernfun(n,m,r,theta,nflag) i5gNk)D  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3sp-0tUE  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j<)`|?@e(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0cq<!{d  
    %   unit circle.  N is a vector of positive integers (including 0), and J3$@: S'  
    %   M is a vector with the same number of elements as N.  Each element Z9eP(ip  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -t: U4r(  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, F>eo.|'  
    %   and THETA is a vector of angles.  R and THETA must have the same A_crK`3  
    %   length.  The output Z is a matrix with one column for every (N,M) .-)kIFMi  
    %   pair, and one row for every (R,THETA) pair. ]K QQdr   
    % w-3Lw<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k; >Vh'=X  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), CZf38$6X  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @@cc /S  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~_ u3_d.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized jZ''0Lclpc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !|8"}ZF  
    % IyAD>Q^  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mbn;~tY>  
    %   They are used in disciplines such as astronomy, optics, and M0$E_*  
    %   optometry to describe functions on a circular domain. U$ ;UW3-  
    % t%StBq(q  
    %   The following table lists the first 15 Zernike functions. dWdD^>8Ef  
    % rU6A^p\,  
    %       n    m    Zernike function           Normalization !+]KxB   
    %       -------------------------------------------------- +.Xi7x+#O  
    %       0    0    1                                 1 u<4bOJn({  
    %       1    1    r * cos(theta)                    2 <v=s:^;C0  
    %       1   -1    r * sin(theta)                    2 ]^,!;do  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Hbn78,~ .  
    %       2    0    (2*r^2 - 1)                    sqrt(3) e;2A{VsD8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) s6'=4gM  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Qe-PW9C  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @8$z2  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) F x^X(!)~]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) M6GiohI_"P  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) -hc8IS  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i[:cG  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) zRbY]dW  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _3.rPS,s  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) cICf V,j  
    %       -------------------------------------------------- UZ#oaD8H6  
    % x2'pl (^  
    %   Example 1: lQEsa45  
    % Ubgn^+AI  
    %       % Display the Zernike function Z(n=5,m=1) z:Z-2WV2o  
    %       x = -1:0.01:1; ~@(C+3,  
    %       [X,Y] = meshgrid(x,x); xP/q[7>#Q  
    %       [theta,r] = cart2pol(X,Y); Y6Ux*vhK  
    %       idx = r<=1; aNA ]hl  
    %       z = nan(size(X)); e\O-5hp7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); XMdCQ=  
    %       figure _GrifGU\  
    %       pcolor(x,x,z), shading interp %ZX9YuXQ  
    %       axis square, colorbar 0a bQY  
    %       title('Zernike function Z_5^1(r,\theta)') PQa0m)H@  
    % OzwJ 52  
    %   Example 2: Hp>L}5 y[  
    % C!ch !E#  
    %       % Display the first 10 Zernike functions pb)kN%  
    %       x = -1:0.01:1; '.M4yif \g  
    %       [X,Y] = meshgrid(x,x); %M))Ak4 ~a  
    %       [theta,r] = cart2pol(X,Y); 3+(lKd  
    %       idx = r<=1; &AWrM{e  
    %       z = nan(size(X)); iQS,@6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ZhoV,/\+  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >oO]S]W  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3z u6#3^  
    %       y = zernfun(n,m,r(idx),theta(idx)); P+=m.  
    %       figure('Units','normalized') GdY@$&z{i  
    %       for k = 1:10 LrT EF j  
    %           z(idx) = y(:,k); szb@2fK  
    %           subplot(4,7,Nplot(k)) >]_^iD]*t  
    %           pcolor(x,x,z), shading interp L`X5\D'X  
    %           set(gca,'XTick',[],'YTick',[]) SOn)'!g  
    %           axis square 3u&,3:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) e([>sAx!1  
    %       end 9 M%Gnz  
    % Pq8oK'z -  
    %   See also ZERNPOL, ZERNFUN2. aKWxLe  
    >3@3~F%xAX  
    %   Paul Fricker 11/13/2006 J7^ UQ  
    M=lU`Sm  
    :8hI3]9  
    % Check and prepare the inputs: GZ,MC?W  
    % ----------------------------- 8?Ju\W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4d cm)Xr  
        error('zernfun:NMvectors','N and M must be vectors.') m#Z&05^  
    end 2QM{e!9  
    {-8Nq`w  
    if length(n)~=length(m) %ut 8/T  
        error('zernfun:NMlength','N and M must be the same length.') #QIY+muN  
    end C\~}ySQc.e  
    6h2keyod  
    n = n(:); J?yasjjgP  
    m = m(:); {it}\[3  
    if any(mod(n-m,2)) rq4g~e!S  
        error('zernfun:NMmultiplesof2', ... )#cZ& O  
              'All N and M must differ by multiples of 2 (including 0).') u[Kz^ga<  
    end VsAJ2g9L  
    ybw\^t  
    if any(m>n) =gD)j&~}_  
        error('zernfun:MlessthanN', ... Q;w [o  
              'Each M must be less than or equal to its corresponding N.') \Ta5c31S+  
    end Z,e|L4&  
    v/9ZTd  
    if any( r>1 | r<0 ) KFwuz()7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') T3@2e0u )  
    end z!O;s ep?/  
    <%Nf"p{K  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _,)_(R ,h  
        error('zernfun:RTHvector','R and THETA must be vectors.') d"06 gp  
    end iD G&Muc  
    H-+U^@w  
    r = r(:); 'z AvQm  
    theta = theta(:); #UoFU{6tM  
    length_r = length(r); |+W{c`KL  
    if length_r~=length(theta) {?0'(D7.  
        error('zernfun:RTHlength', ... j?m(l,YD|*  
              'The number of R- and THETA-values must be equal.') S.~L[iLc  
    end SsTBjIX  
    nPdkvs   
    % Check normalization: ,v K%e>e&  
    % -------------------- 5L[imOM0  
    if nargin==5 && ischar(nflag) eyJWFJh  
        isnorm = strcmpi(nflag,'norm'); oI/_WY[t  
        if ~isnorm ''@Tke3IG6  
            error('zernfun:normalization','Unrecognized normalization flag.') w01[oU$x=  
        end I3Z?xsa@Z  
    else Qe>_\-f  
        isnorm = false; 2A; i  
    end S',h*e  
    U&1O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lv['/!DJ|  
    % Compute the Zernike Polynomials 5>.ATfAsV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eN.6l2-  
    7*+CX  
    % Determine the required powers of r: QUn!& 55  
    % ----------------------------------- LYECX  
    m_abs = abs(m); pNOE KiJ  
    rpowers = []; +;lDU}$  
    for j = 1:length(n) jH9PD8D\  
        rpowers = [rpowers m_abs(j):2:n(j)]; b4cTn 6  
    end XXum2eA  
    rpowers = unique(rpowers); @3KSoA"^  
    J FnE{  
    % Pre-compute the values of r raised to the required powers, s 0Uid&qE  
    % and compile them in a matrix: 9)v]jk  
    % ----------------------------- lf>d{zd5  
    if rpowers(1)==0 aOGoJCt C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3WF]%P%  
        rpowern = cat(2,rpowern{:}); 4;J.$  
        rpowern = [ones(length_r,1) rpowern]; H 4 ELIF#@  
    else Ve%ua]qA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~ Ze!F"  
        rpowern = cat(2,rpowern{:}); yZ,pH1  
    end S8dfe~|7:  
    .8^mA1fmX  
    % Compute the values of the polynomials: J{dO0!7y  
    % -------------------------------------- ]sb?lAxh{  
    y = zeros(length_r,length(n)); 1a(\F 7  
    for j = 1:length(n) #;a+)~3*O  
        s = 0:(n(j)-m_abs(j))/2; )jgz(\KZ  
        pows = n(j):-2:m_abs(j); -c?x5/@3  
        for k = length(s):-1:1 f|B\Y/*X  
            p = (1-2*mod(s(k),2))* ... qfl!>  
                       prod(2:(n(j)-s(k)))/              ... ,Ohhl`q(  
                       prod(2:s(k))/                     ... ]rj~3du\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yg'CL/P  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^UKY1Q .  
            idx = (pows(k)==rpowers); Q2ne]MI  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8iY.!.G#|  
        end f\cTd/?Ju  
         * cW%Q@lit  
        if isnorm '+/mt_re=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YU-wE';H6  
        end A+M4=  
    end Ur< (TM  
    % END: Compute the Zernike Polynomials #Y7iJPO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h SS9mQ  
    s3JzYDpy  
    % Compute the Zernike functions: :2c(.-[`  
    % ------------------------------ 6Zn[l,\  
    idx_pos = m>0; cI8\d 4/py  
    idx_neg = m<0; 8Gy]nD  
    P?>:YY53  
    z = y; 0qFO+nC  
    if any(idx_pos) Ne|CWUhO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A]0R?N9wb_  
    end N*Q*>q  
    if any(idx_neg) >g!$H}\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q[qX O5  
    end 3Y)z{o>P  
    $m5Iv_  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) nX7F<k4G2  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 8~,zv_Pl  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated j07A>G-=  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 63\ CE_p  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, sSKD"  
    %   and THETA is a vector of angles.  R and THETA must have the same <bW~!lv  
    %   length.  The output Z is a matrix with one column for every P-value,  ) 4t%?wT  
    %   and one row for every (R,THETA) pair. 30I-E ._F  
    % ? }ff O  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike *N ~'0"#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Da[#X`Kp$  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 9wfE^E1  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 gAEB  
    %   for all p. e`LvHU_0  
    % b (H J|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 y]R+/  
    %   Zernike functions (order N<=7).  In some disciplines it is e@O]c "  
    %   traditional to label the first 36 functions using a single mode au=@]n#<(  
    %   number P instead of separate numbers for the order N and azimuthal Zp{K_ec{  
    %   frequency M. &$T7eOiZ  
    % Xajt][  
    %   Example: KIY`3Fl09  
    % um/F:rp  
    %       % Display the first 16 Zernike functions VPO~veQ  
    %       x = -1:0.01:1; ^ux'-/  
    %       [X,Y] = meshgrid(x,x); N@X6Z!EO  
    %       [theta,r] = cart2pol(X,Y); zI ^:{]p  
    %       idx = r<=1; G 9 &,`  
    %       p = 0:15; 4yTgH0(T  
    %       z = nan(size(X)); dhP")@3K;p  
    %       y = zernfun2(p,r(idx),theta(idx)); g*_n|7pB  
    %       figure('Units','normalized') N8x&<H  
    %       for k = 1:length(p) ,V5fvHPH)8  
    %           z(idx) = y(:,k); t}}Ti$$>  
    %           subplot(4,4,k) ~S~+'V,d  
    %           pcolor(x,x,z), shading interp T%"wz3~  
    %           set(gca,'XTick',[],'YTick',[]) }3WP:Et  
    %           axis square _XT;   
    %           title(['Z_{' num2str(p(k)) '}']) #:Q\   
    %       end $mAyM+ ph[  
    % k]-Q3 V  
    %   See also ZERNPOL, ZERNFUN. 4;32 f`  
    /i_FA]Go  
    %   Paul Fricker 11/13/2006 ZjY?T)WE9  
    pIpdVKen  
    EcytNYn  
    % Check and prepare the inputs: `l70i2xcj  
    % ----------------------------- 3TV4|&W;  
    if min(size(p))~=1 Mg}/gO% o  
        error('zernfun2:Pvector','Input P must be vector.') /={N^8^=x  
    end l*CCnqE  
    rN.8-  
    if any(p)>35 icVB?M,m  
        error('zernfun2:P36', ... "Il) _Ui  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... O\=Zo9(NHF  
               '(P = 0 to 35).']) ^HuB40  
    end G<rAM+B*g  
    plr3&T~,&S  
    % Get the order and frequency corresonding to the function number: )Xt#coagS  
    % ---------------------------------------------------------------- l  LBzY`j  
    p = p(:); Zv mkb%8  
    n = ceil((-3+sqrt(9+8*p))/2); 'vq0Tw5  
    m = 2*p - n.*(n+2); 23ho uS   
    QAl4w)F  
    % Pass the inputs to the function ZERNFUN: Ms3GvPsgv  
    % ---------------------------------------- Ed_Fx'  
    switch nargin <dXeP/1w`  
        case 3 B=r+ m;(  
            z = zernfun(n,m,r,theta); ,|#biT-<T  
        case 4 |RXXj[z  
            z = zernfun(n,m,r,theta,nflag); $Dv5TUKw  
        otherwise 5w~J"P6jg  
            error('zernfun2:nargin','Incorrect number of inputs.') 8090+ ( U  
    end ^,f^YL;  
    _T805<aUW\  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) f1U8 b*F<  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 2o1WXE %$  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of v<(+ l)Ln  
    %   order N and frequency M, evaluated at R.  N is a vector of Q$k#q<+0  
    %   positive integers (including 0), and M is a vector with the +T,A^(&t  
    %   same number of elements as N.  Each element k of M must be a ])?h ~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  3U!=R-  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is _sL;E<)y(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7j#Ix$Ur  
    %   with one column for every (N,M) pair, and one row for every 79o=HiOF99  
    %   element in R. 7>0/$i#'Vl  
    % /Ah'KN|EN  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- wQ9@ l  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is |]Hr"saO0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to v:w^$]4  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^LXsU] R  
    %   for all [n,m]. \PG_i'R  
    % *]Cyc<  
    %   The radial Zernike polynomials are the radial portion of the 0;OZ|;Z  
    %   Zernike functions, which are an orthogonal basis on the unit 0 xvSi9  
    %   circle.  The series representation of the radial Zernike { utnbtmu  
    %   polynomials is utn,`v   
    % 4L97UhLL  
    %          (n-m)/2 Z>X]'q03  
    %            __ z_A\\  
    %    m      \       s                                          n-2s zF? 6"  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6o(.zk`d  
    %    n      s=0 376z~  
    %  b=Ektq  
    %   The following table shows the first 12 polynomials. %503 <j  
    % [T/S/@IT  
    %       n    m    Zernike polynomial    Normalization q@ wX=  
    %       --------------------------------------------- *M>~$h7  
    %       0    0    1                        sqrt(2) +br' 2Pn  
    %       1    1    r                           2 cbzS7q<)  
    %       2    0    2*r^2 - 1                sqrt(6) 8$IUit h  
    %       2    2    r^2                      sqrt(6) OCCC' k  
    %       3    1    3*r^3 - 2*r              sqrt(8) Es\J%*\u  
    %       3    3    r^3                      sqrt(8) %t74*cX  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) j>.1RG  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) uFlf#t =  
    %       4    4    r^4                      sqrt(10) `/i/AZ{  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )U]q{0`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) PTXS8e4  
    %       5    5    r^5                      sqrt(12) 9.#")%_p  
    %       --------------------------------------------- 0r!F]Rm-^  
    % N_+D#Z.g  
    %   Example: 7,uD7R_  
    % '[_.mx|cd`  
    %       % Display three example Zernike radial polynomials E4.A$/s8[  
    %       r = 0:0.01:1; 4 &:|h  1  
    %       n = [3 2 5]; k!WeE#"(  
    %       m = [1 2 1]; Ruwp"T}mF  
    %       z = zernpol(n,m,r); ]xJ. OUJy  
    %       figure (VHPcoL  
    %       plot(r,z) )}_}D +2  
    %       grid on :gRVa=}=  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest')  >Af0S;S  
    % g~9b_PY9  
    %   See also ZERNFUN, ZERNFUN2. ^bdXzjf  
    qn}VW0!  
    % A note on the algorithm. h^14/L=|  
    % ------------------------ ;.R) uCd{=  
    % The radial Zernike polynomials are computed using the series mW,b#'hy  
    % representation shown in the Help section above. For many special I@#IXH?6  
    % functions, direct evaluation using the series representation can X V)ctF4  
    % produce poor numerical results (floating point errors), because [W3sveqj&  
    % the summation often involves computing small differences between =fB"T+  
    % large successive terms in the series. (In such cases, the functions $_\x}`c~.  
    % are often evaluated using alternative methods such as recurrence `v2Xp3o4f  
    % relations: see the Legendre functions, for example). For the Zernike "%_T7 A ![  
    % polynomials, however, this problem does not arise, because the XCXX(8To0=  
    % polynomials are evaluated over the finite domain r = (0,1), and Q;nC #cg  
    % because the coefficients for a given polynomial are generally all hC]:+.Q+  
    % of similar magnitude. )N\B C  
    % D& &71X '  
    % ZERNPOL has been written using a vectorized implementation: multiple (FGH t/!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] |fgh ryI,  
    % values can be passed as inputs) for a vector of points R.  To achieve 3RFU  
    % this vectorization most efficiently, the algorithm in ZERNPOL WU,b<PU &  
    % involves pre-determining all the powers p of R that are required to [.C P,Ly  
    % compute the outputs, and then compiling the {R^p} into a single (>lH=&%zj  
    % matrix.  This avoids any redundant computation of the R^p, and lWP]}Uy=5~  
    % minimizes the sizes of certain intermediate variables. r-]%R:U*  
    % {*  w _*  
    %   Paul Fricker 11/13/2006 7$IR^  
    # |OA>[  
    2{oQ  
    % Check and prepare the inputs: <R%TCVwC@  
    % ----------------------------- S&J5QZjC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E!L_"GW  
        error('zernpol:NMvectors','N and M must be vectors.') /o}i,i$  
    end y*=Ipdj  
    1/?K/gL  
    if length(n)~=length(m) BV}sN{  
        error('zernpol:NMlength','N and M must be the same length.') kcMg`pJ4<  
    end nm %7e!{m  
    .CW,Td3f!  
    n = n(:);  &!wtH  
    m = m(:); y!q`o$nK  
    length_n = length(n); ;r.#|b  
    3'SN0VL  
    if any(mod(n-m,2))  um2}XI  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') D^f;X.Qm  
    end 7m:TY>{  
    u4 ~.[3E*  
    if any(m<0) b"OHXu  
        error('zernpol:Mpositive','All M must be positive.') .VohW=D3  
    end %D% Ok7s})  
     ?H_>?,^  
    if any(m>n) 8VC%4+.FF  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') <vxTfE@>bp  
    end Q6N?cQtOT  
    ,8!'jE[d  
    if any( r>1 | r<0 ) 9j5-/   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') O&VA79\UO  
    end 8CH9&N5W5t  
    ~4mRm!DP  
    if ~any(size(r)==1) @,LU!#y(  
        error('zernpol:Rvector','R must be a vector.') 9eR";Wm])  
    end >Qg-dJt[  
    )a%E $`   
    r = r(:); sG^{ cn  
    length_r = length(r); HLL=.: P  
    bwJluJ, E  
    if nargin==4 {j4&'=C:  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); |A+,M"F?  
        if ~isnorm O]@s` w  
            error('zernpol:normalization','Unrecognized normalization flag.') %:OX^ ^i;  
        end 5s>>] .%  
    else `f <w+u  
        isnorm = false; ]]y,FQ,r  
    end vV"I}L  
    b S'dXP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^SM5oK  
    % Compute the Zernike Polynomials UVW4KUxR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `_BmVms  
    BQs\!~Ux2  
    % Determine the required powers of r: :% +9y @%  
    % ----------------------------------- en6;I[\  
    rpowers = []; :u)Qs#'29  
    for j = 1:length(n) 9 aKU}y  
        rpowers = [rpowers m(j):2:n(j)]; J5z\e@?.0\  
    end f>&*%[fw  
    rpowers = unique(rpowers); {CFy %  
    j8^zE,Z  
    % Pre-compute the values of r raised to the required powers, ]K%d   
    % and compile them in a matrix: <Ynrw4[)t  
    % ----------------------------- #nmh=G?\Sm  
    if rpowers(1)==0 8>xd  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p Ohjq#}  
        rpowern = cat(2,rpowern{:}); +6^hp-G7  
        rpowern = [ones(length_r,1) rpowern]; ,kl``w|1M  
    else 'a:';hU3f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6uX,J(V,  
        rpowern = cat(2,rpowern{:}); ZkNet>9  
    end Tr;&bX5]H  
    h<n2pz}  
    % Compute the values of the polynomials: 6]4=8! J  
    % -------------------------------------- Jid_&\  
    z = zeros(length_r,length_n); 6}Rb-\N  
    for j = 1:length_n {!!8 *ix  
        s = 0:(n(j)-m(j))/2; `(6cRT`Wp  
        pows = n(j):-2:m(j); P0k.\8qz  
        for k = length(s):-1:1 .B'ws/%5\  
            p = (1-2*mod(s(k),2))* ... ih |&q  
                       prod(2:(n(j)-s(k)))/          ... @4Q /J$  
                       prod(2:s(k))/                 ... xqauSW  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... n;~'W*Ln0  
                       prod(2:((n(j)+m(j))/2-s(k))); kjt(OFh'Y+  
            idx = (pows(k)==rpowers); #vAqqAS`,  
            z(:,j) = z(:,j) + p*rpowern(:,idx); =Q6JXp  
        end ~D`  
         AKS. XW  
        if isnorm ( efxw  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); uC[F'\Y  
        end m\_v{1g  
    end p<y \ ^a  
    J0o,ZH9  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  +Edq4QYwR  
    +5%ncSJx  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 zXe]P(p<  
    rgEN~e'  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)