切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11103阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 nSmYa7  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0g~WM  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?so 3Kj6H  
    function z = zernfun(n,m,r,theta,nflag) '[{M"S  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  Xb&r|pR  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;_%61ZI?M<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )U`H7\*)  
    %   unit circle.  N is a vector of positive integers (including 0), and 72@8M  
    %   M is a vector with the same number of elements as N.  Each element ^kch]?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _Oh;._PS  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 4Q,HhqV'  
    %   and THETA is a vector of angles.  R and THETA must have the same plv"/KJM  
    %   length.  The output Z is a matrix with one column for every (N,M) zZ[SC  
    %   pair, and one row for every (R,THETA) pair. I^qk`5w  
    % r9yUye}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (uD(,3/Cw  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YEF%l'm( \  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral iS hB ^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V89!C?.[]1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized = K"F!}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eWhv X9 <  
    % T=A7f6`  
    %   The Zernike functions are an orthogonal basis on the unit circle. :nd }e  
    %   They are used in disciplines such as astronomy, optics, and P zzX Ds6  
    %   optometry to describe functions on a circular domain. I`5F& 8J{  
    % r%&hiobMYs  
    %   The following table lists the first 15 Zernike functions. v}M, M&?  
    % $xvEYK  
    %       n    m    Zernike function           Normalization H2zd@l:R  
    %       -------------------------------------------------- /#G^?2o M  
    %       0    0    1                                 1 mRW(]OFIai  
    %       1    1    r * cos(theta)                    2 "a?k #!E  
    %       1   -1    r * sin(theta)                    2 '_4u, \SG  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) qF%wl  
    %       2    0    (2*r^2 - 1)                    sqrt(3) a' .o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ni(D[?mZ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [t: =%&B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z5bmqhDo[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) :{E3H3  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) H*A)U'`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) s<sqO,!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <T+Pw7X   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) E"x 2jP  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7: J6 F  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) F'C]OMBE  
    %       -------------------------------------------------- =3a`NO5!  
    % /7h}_zs6  
    %   Example 1: Ipb 4{A&"\  
    % *O$kF.3q  
    %       % Display the Zernike function Z(n=5,m=1) O8[dPm W  
    %       x = -1:0.01:1; b0rC\^x  
    %       [X,Y] = meshgrid(x,x); BaR9X ?~O$  
    %       [theta,r] = cart2pol(X,Y); $*G]6s  
    %       idx = r<=1; cJ&l86/l1  
    %       z = nan(size(X)); "3Ag+>tuRW  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); wAVO%8u  
    %       figure pE^LQi  
    %       pcolor(x,x,z), shading interp 5u~Ik c~  
    %       axis square, colorbar t1n'Ecm(  
    %       title('Zernike function Z_5^1(r,\theta)') "P&|e|7  
    % x1|5q/I  
    %   Example 2: x*}(l%[  
    % [77]0V7  
    %       % Display the first 10 Zernike functions .^,fw=T|1  
    %       x = -1:0.01:1; j8hb  
    %       [X,Y] = meshgrid(x,x); P7 (&*=V  
    %       [theta,r] = cart2pol(X,Y); KynQ <I/  
    %       idx = r<=1; :>F:G%(DK  
    %       z = nan(size(X)); R)nhgp(~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [LjYLm%<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; yJ/m21f  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; QI0ARdS  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3543[W#a  
    %       figure('Units','normalized') ag:#82C  
    %       for k = 1:10 fR_)e:  
    %           z(idx) = y(:,k); zc*qmb  
    %           subplot(4,7,Nplot(k)) lU:z>gC  
    %           pcolor(x,x,z), shading interp *yiJw\DRN  
    %           set(gca,'XTick',[],'YTick',[]) m&Ms[X  
    %           axis square U5dJ=G  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o7DDL{iR/  
    %       end MR#jI  
    % [0m'a\YE9  
    %   See also ZERNPOL, ZERNFUN2. G?<L{J2"Q  
    iBV*GW  
    %   Paul Fricker 11/13/2006 feQ_dA q  
    87YT;Z;U&  
    ENA8o}n  
    % Check and prepare the inputs: Y^2Ma878  
    % ----------------------------- d0MX4bhZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A!Xn^U*p  
        error('zernfun:NMvectors','N and M must be vectors.') dbB2/RI  
    end h+R}O9BD  
    " &p\pR~  
    if length(n)~=length(m) iMk`t:!;#"  
        error('zernfun:NMlength','N and M must be the same length.') zw\"!=r^  
    end ]9R?2{"K  
    s^L\hr  
    n = n(:); 03$Ay_2  
    m = m(:); dWI/X  
    if any(mod(n-m,2)) $v-lG(  
        error('zernfun:NMmultiplesof2', ... &X}9D)\UJ  
              'All N and M must differ by multiples of 2 (including 0).') XLEA|#  
    end ]L}<Y9)t  
    j(va# f#  
    if any(m>n) 0:v7X)St  
        error('zernfun:MlessthanN', ... Y5c( U)R8  
              'Each M must be less than or equal to its corresponding N.') nUd(@@%m  
    end :3Ty%W&&  
    #uuwzE*M_  
    if any( r>1 | r<0 ) k(u W( 6  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +:/`&LOS-  
    end ndF Kw  
    C [=/40D  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5C#&vYnq  
        error('zernfun:RTHvector','R and THETA must be vectors.') IB(IiF5  
    end xV}|G   
    r[EN`AxDb  
    r = r(:); m[ifcDZ(e  
    theta = theta(:); U~Uxs\0:  
    length_r = length(r); BIw9@.99B-  
    if length_r~=length(theta) 6l:CDPhR  
        error('zernfun:RTHlength', ... KhXW5hS1  
              'The number of R- and THETA-values must be equal.') #<yR:3  
    end eHPGzN Xb  
    w`F}3zm  
    % Check normalization: ~Z.lvdA_5  
    % -------------------- 8Vl!&j0s^  
    if nargin==5 && ischar(nflag) R0oP##]  
        isnorm = strcmpi(nflag,'norm'); N{|N_}X`Y  
        if ~isnorm M={k4r_t  
            error('zernfun:normalization','Unrecognized normalization flag.') ]7h&ZF  
        end j%[|XfM  
    else V%o:Qa[a  
        isnorm = false; s x`C<c~u  
    end 4;w_o9o  
    ME0ivr*=:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ms{v;fT  
    % Compute the Zernike Polynomials 3o"~_l$z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0fi+tc 30  
    /SlCcozFL~  
    % Determine the required powers of r: r IS \#j  
    % ----------------------------------- (Q#A Br8  
    m_abs = abs(m); k9yA#  
    rpowers = []; {{@3r5K Gl  
    for j = 1:length(n) D?X97jNm  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5:^dyF&sm{  
    end K V  4>(  
    rpowers = unique(rpowers); :rk]o*  
    q SCt= eQ  
    % Pre-compute the values of r raised to the required powers, "b-6kM  
    % and compile them in a matrix: R6{%o:{  
    % ----------------------------- - bFz  
    if rpowers(1)==0 A g/z\kX  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EG<K[t  
        rpowern = cat(2,rpowern{:}); ug UV`5w   
        rpowern = [ones(length_r,1) rpowern]; )|Y"^K%Jm  
    else :tzCuK?e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2&Wc4,O!i  
        rpowern = cat(2,rpowern{:}); H^'*F->BA  
    end A/BL{ U}  
    W!GgtQw{F  
    % Compute the values of the polynomials: G ^r^" j  
    % -------------------------------------- T'f E4}rY  
    y = zeros(length_r,length(n)); ,+zLFQC0@  
    for j = 1:length(n) i1|-  
        s = 0:(n(j)-m_abs(j))/2; 0~an\4nh  
        pows = n(j):-2:m_abs(j); ~~'XY(\L@  
        for k = length(s):-1:1 r95$B6  
            p = (1-2*mod(s(k),2))* ... <(s+  
                       prod(2:(n(j)-s(k)))/              ... TxPP{6t  
                       prod(2:s(k))/                     ... X Uh)z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  BX+-KvT  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); U/0NN>V  
            idx = (pows(k)==rpowers); P%%Cd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); d~GT w:  
        end {9'"!fH  
         ]yCmGt+b  
        if isnorm o8Q(,P  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f[h=>O  
        end Q$V xm+  
    end M7!&gFv8  
    % END: Compute the Zernike Polynomials jf.ikxm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j0:F E  
    ^N0hc!$  
    % Compute the Zernike functions: !Y`nKC(=z  
    % ------------------------------ Y @pkfH  
    idx_pos = m>0; 4/Ok/I  
    idx_neg = m<0; iK=H9j  
    .+{nfmc,c  
    z = y; K6!`b( v#  
    if any(idx_pos) DRf~l9f  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0&-!v?6 )  
    end <[l2]"Q  
    if any(idx_neg) h/eKVRGs"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9OXrz}8C  
    end 1sn!!  
    HT kce,dQ  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Tff7SEP  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. fIWQ+E  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated YN"102CK  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive p~Dm3^Y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, B:+}^=  
    %   and THETA is a vector of angles.  R and THETA must have the same My_fm?n  
    %   length.  The output Z is a matrix with one column for every P-value, @YWfq$23  
    %   and one row for every (R,THETA) pair. 9c#9KCmc  
    % 2tn%/gf'm  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  6~$ <  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) HRx#}hN?+  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) EX8]i,s|E  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Pgye{{  
    %   for all p. a[Txd=b  
    % C'7W50b  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 vaR0`F  
    %   Zernike functions (order N<=7).  In some disciplines it is as~.XWa  
    %   traditional to label the first 36 functions using a single mode $`_(%tl  
    %   number P instead of separate numbers for the order N and azimuthal UkXc7D^jwm  
    %   frequency M. y%E R51+  
    % t6-c{ZX>A  
    %   Example: hO{@!H$l  
    % z-$?.?d  
    %       % Display the first 16 Zernike functions pMa 3R3a  
    %       x = -1:0.01:1; gY*Cl1 Iz  
    %       [X,Y] = meshgrid(x,x); Ldir'FW  
    %       [theta,r] = cart2pol(X,Y); e/@udau  
    %       idx = r<=1; HzH_5kVW  
    %       p = 0:15;  LFGu|](  
    %       z = nan(size(X)); !v`q%JW(  
    %       y = zernfun2(p,r(idx),theta(idx)); 0Xk;X1Xl  
    %       figure('Units','normalized') ~R!(%j ]  
    %       for k = 1:length(p) *;"^b\f5_  
    %           z(idx) = y(:,k); ']+H P9i$  
    %           subplot(4,4,k) ?:n{GK  
    %           pcolor(x,x,z), shading interp K=`*cSU>  
    %           set(gca,'XTick',[],'YTick',[]) B;1wnKdj  
    %           axis square l\$_t2U  
    %           title(['Z_{' num2str(p(k)) '}']) {fIH9+v  
    %       end =7Tbu'O;  
    % ;CAB.aB~  
    %   See also ZERNPOL, ZERNFUN. mpr["C"l  
    >]C;sP  
    %   Paul Fricker 11/13/2006 n!HFHy2  
    -@^SiI:C  
     tEP^w  
    % Check and prepare the inputs: ]V.9jlXF  
    % ----------------------------- ;;l(  
    if min(size(p))~=1 a[9;Okm #  
        error('zernfun2:Pvector','Input P must be vector.') nR"k %$  
    end ;]n U->  
    E8NIH!dI  
    if any(p)>35 jX+LI  
        error('zernfun2:P36', ... 7Dm^49H  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... TU[f"!z^  
               '(P = 0 to 35).']) _DJ0 MR~3  
    end \?qXscq  
    8 LaZ5  
    % Get the order and frequency corresonding to the function number: -P'>~W,~  
    % ---------------------------------------------------------------- zq1&MXR)l  
    p = p(:); {-17;M $  
    n = ceil((-3+sqrt(9+8*p))/2); 6{+~B2Ef  
    m = 2*p - n.*(n+2); k"Sw,"e>+  
    - *yj[?6  
    % Pass the inputs to the function ZERNFUN: Z|wZyt$$  
    % ---------------------------------------- \N"K^kR4  
    switch nargin 4S"K%2'O  
        case 3 3_Oq4/  
            z = zernfun(n,m,r,theta); ?cg+RNI  
        case 4 U35}0NT _  
            z = zernfun(n,m,r,theta,nflag); deu+ i  
        otherwise cteHuRd  
            error('zernfun2:nargin','Incorrect number of inputs.') % qAhE TZ%  
    end N?87Bd  
    Ii[rM/sG  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) WtlIrdc  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. "_q5\]z\O  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of RKBjrSZg8  
    %   order N and frequency M, evaluated at R.  N is a vector of Q g"{F},4  
    %   positive integers (including 0), and M is a vector with the 3:=XU9p)x  
    %   same number of elements as N.  Each element k of M must be a sDbALAp +  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) v3]q2*`G#  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is y8<,>  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix rp1 u  
    %   with one column for every (N,M) pair, and one row for every MuO>O97  
    %   element in R. b#XS.e/uf  
    % t-E'foYfr`  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- eY&UFe  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is EG9S? $  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to vDBnWA  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 J-\b?R a  
    %   for all [n,m]. W}.4$f>  
    % Rj E,Wn  
    %   The radial Zernike polynomials are the radial portion of the W tzV|e,  
    %   Zernike functions, which are an orthogonal basis on the unit Fg,[=CqB[  
    %   circle.  The series representation of the radial Zernike ^kXDEKm  
    %   polynomials is <&+l;z  
    % OEAF.  
    %          (n-m)/2 sO(Kpo9jq  
    %            __ {b#c0>.8-  
    %    m      \       s                                          n-2s  /?_{DMt  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r }xdI{E1 q)  
    %    n      s=0 H%%#^rb^  
    % M#|TQa N  
    %   The following table shows the first 12 polynomials. _<3:vyfdC  
    % Cch1"j<k$  
    %       n    m    Zernike polynomial    Normalization z5{I3 Y!1  
    %       --------------------------------------------- *#2`b%qh\M  
    %       0    0    1                        sqrt(2) k| jC c  
    %       1    1    r                           2 2"i<--Y  
    %       2    0    2*r^2 - 1                sqrt(6) )8Q|y  
    %       2    2    r^2                      sqrt(6) W)9KYI9u  
    %       3    1    3*r^3 - 2*r              sqrt(8) FlkAo]  
    %       3    3    r^3                      sqrt(8) o oS4F1ta  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) PGw"\-F  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0{B5C[PTG  
    %       4    4    r^4                      sqrt(10) <R !qOQI  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) b(XhwkGVq  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) gK%&VzG4  
    %       5    5    r^5                      sqrt(12) ,,G0}N@7s  
    %       --------------------------------------------- <`N\FM^vo  
    % s*!2oj  
    %   Example: # =322bnO  
    % -6H)GK14b  
    %       % Display three example Zernike radial polynomials c}{e,t  
    %       r = 0:0.01:1; c9'#G>&h~^  
    %       n = [3 2 5]; >2v_fw  
    %       m = [1 2 1]; | z('yy$  
    %       z = zernpol(n,m,r); ~w$8*2D  
    %       figure {{ wVM:1  
    %       plot(r,z) p jrA:;  
    %       grid on r^\^*FD |  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') c?opVbJB\  
    % dj]sr!q+  
    %   See also ZERNFUN, ZERNFUN2. ?]7ITF  
    I|`K;a  
    % A note on the algorithm. 6dinC <[}  
    % ------------------------ V K NCK  
    % The radial Zernike polynomials are computed using the series Lv_6Mf(  
    % representation shown in the Help section above. For many special 10 p+e_@  
    % functions, direct evaluation using the series representation can OOv"h\,  
    % produce poor numerical results (floating point errors), because {`3;Pd`  
    % the summation often involves computing small differences between {?j|]j  
    % large successive terms in the series. (In such cases, the functions qrdA?V V  
    % are often evaluated using alternative methods such as recurrence "`3H0il;<  
    % relations: see the Legendre functions, for example). For the Zernike Z4(2&t^  
    % polynomials, however, this problem does not arise, because the {$s:N&5  
    % polynomials are evaluated over the finite domain r = (0,1), and e~-D k .i  
    % because the coefficients for a given polynomial are generally all 1fC|_V(0  
    % of similar magnitude. 7C 4Njei"  
    % &bL1G(}  
    % ZERNPOL has been written using a vectorized implementation: multiple DL~LSh  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 2R5]UR S  
    % values can be passed as inputs) for a vector of points R.  To achieve 0<s)xaN>Y  
    % this vectorization most efficiently, the algorithm in ZERNPOL =W4cWG?+  
    % involves pre-determining all the powers p of R that are required to Y8AU<M  
    % compute the outputs, and then compiling the {R^p} into a single yx}:Sgv%  
    % matrix.  This avoids any redundant computation of the R^p, and ^Krkf4fO  
    % minimizes the sizes of certain intermediate variables. =T\pq8  
    % ~\oJrRYR`  
    %   Paul Fricker 11/13/2006 qM9GW`CKA  
    A2vOI8  
    j&&^PH9ZY  
    % Check and prepare the inputs: .*zQ\P  
    % ----------------------------- F_-yT[i  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :7`,dyIqT  
        error('zernpol:NMvectors','N and M must be vectors.') "Srp/g]a  
    end |Jq/kmn  
    cf j6I  
    if length(n)~=length(m) jAJkCCG  
        error('zernpol:NMlength','N and M must be the same length.') '@W72ML.  
    end JZc5U}i  
    <e=0J8V8,i  
    n = n(:);  t]vz+VQ  
    m = m(:); /qp`xJ  
    length_n = length(n); gr S,PKH  
    kPxEGuL'  
    if any(mod(n-m,2)) ktS0  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') GV2}K <s  
    end \(z)]D  
    Jz-f1mhQV  
    if any(m<0) Fj5^_2MU:  
        error('zernpol:Mpositive','All M must be positive.') %\^x3wP&o\  
    end *i\7dJ Dj  
    1XZ&X]  
    if any(m>n) U{R*WB b  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') )V>FU=  
    end D!-zQ`^  
    =X1$K_cN  
    if any( r>1 | r<0 ) 0}b8S48|?  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Y#Z&$&n  
    end I#mT#xs6  
    /!E /9[V  
    if ~any(size(r)==1) xL!05du  
        error('zernpol:Rvector','R must be a vector.') <W5F~K ;41  
    end &{ f5F7E@  
    XkNi 'GJf  
    r = r(:); ']dTW#i  
    length_r = length(r); 8+!$k!=X  
    }8FP5Z'Cf%  
    if nargin==4 Im Tq`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); '6aH*B:}*;  
        if ~isnorm X%gJ, c(4  
            error('zernpol:normalization','Unrecognized normalization flag.') ybB}|4d&   
        end G +YF  
    else [&39Yv.k,7  
        isnorm = false; 8"4`W~ 3  
    end :4 ;>).  
    ( {8Q=Gh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S=my;M-  
    % Compute the Zernike Polynomials zxj!ihs<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %d=-<EQ|&  
    g$:2c7uL  
    % Determine the required powers of r: c8yD-U/-  
    % ----------------------------------- 6znm?s@~  
    rpowers = []; 5]F9o9]T  
    for j = 1:length(n) CtE".UlCA  
        rpowers = [rpowers m(j):2:n(j)]; S^n:O  
    end ~svu0[Vx  
    rpowers = unique(rpowers); 0)84Z.k  
    K'71uW>  
    % Pre-compute the values of r raised to the required powers, l"vT@ g|  
    % and compile them in a matrix: 5}By2Tx  
    % ----------------------------- ).&$pXj  
    if rpowers(1)==0 Onk~1ks:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %+'&$  
        rpowern = cat(2,rpowern{:}); rKjQEO$yi  
        rpowern = [ones(length_r,1) rpowern]; }??q{B@v  
    else Jv7M[SJ#x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rc6Rk!^  
        rpowern = cat(2,rpowern{:}); =N3~2=g~A  
    end `&+ L/  
    P]y5E9 k  
    % Compute the values of the polynomials: ,= PDL  
    % -------------------------------------- lF#Kg !-l  
    z = zeros(length_r,length_n); mhs%b4'>  
    for j = 1:length_n ~ PPGU1  
        s = 0:(n(j)-m(j))/2; |e\:0O?  
        pows = n(j):-2:m(j); @emZwN"m  
        for k = length(s):-1:1 [Z[)hUXE?  
            p = (1-2*mod(s(k),2))* ... k20H|@g2  
                       prod(2:(n(j)-s(k)))/          ... sG}9l1  
                       prod(2:s(k))/                 ... m+!%+S1  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... bM!`C|,[s  
                       prod(2:((n(j)+m(j))/2-s(k))); q&wMp{  
            idx = (pows(k)==rpowers); k'\RS6M`L  
            z(:,j) = z(:,j) + p*rpowern(:,idx); WAQv4&xGM  
        end "5e]-u'  
         0(..]\p^d  
        if isnorm Wd%j;glG  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); B 51LZP  
        end _}\&;  
    end T<ua0;7  
     ,cB`j7p(  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  bclA+!1  
    7wZKK0;T  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 2AdV=n6Z  
    }?H|9OS  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)