非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 IjRmpVcwN
function z = zernfun(n,m,r,theta,nflag) c+{4C3z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q{ 1U
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;$E[u)l
% and angular frequency M, evaluated at positions (R,THETA) on the #dt2'V- ,
% unit circle. N is a vector of positive integers (including 0), and o5@ jMU;
% M is a vector with the same number of elements as N. Each element Ft rw3OxN
% k of M must be a positive integer, with possible values M(k) = -N(k) 8'[wa
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, M!l5,ycF
% and THETA is a vector of angles. R and THETA must have the same r97[!y1gt
% length. The output Z is a matrix with one column for every (N,M) `4q}D-'TF8
% pair, and one row for every (R,THETA) pair. v`w?QIB]
% NXNon*"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;wxt<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), S:uEK
% with delta(m,0) the Kronecker delta, is chosen so that the integral a0.3$
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +"cyOC
% and theta=0 to theta=2*pi) is unity. For the non-normalized {wXN kq
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K@~#Gdnl
% EM/+1
_u
% The Zernike functions are an orthogonal basis on the unit circle. q$rA-`jw
% They are used in disciplines such as astronomy, optics, and rM=A"
% optometry to describe functions on a circular domain. K-C,+ eI
% PI \,`^)y
% The following table lists the first 15 Zernike functions. hF7mJ\
% <'_GQM`G
% n m Zernike function Normalization jGhg~-m
% -------------------------------------------------- 8#u_+;,p
% 0 0 1 1 Ux
T[
% 1 1 r * cos(theta) 2 4Z9 3g{
% 1 -1 r * sin(theta) 2 ZC*d^n]x.
% 2 -2 r^2 * cos(2*theta) sqrt(6) I=yj
% 2 0 (2*r^2 - 1) sqrt(3) Hk*cO;c
% 2 2 r^2 * sin(2*theta) sqrt(6) <&%1pZ/6.
% 3 -3 r^3 * cos(3*theta) sqrt(8) $#FlnM<=
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $
].k6,%{p
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) yN<fmi};c
% 3 3 r^3 * sin(3*theta) sqrt(8) %=8(B.I!
% 4 -4 r^4 * cos(4*theta) sqrt(10) XW Q0V
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xt,L* B
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /B\-DP3K
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?mR[A`J58
% 4 4 r^4 * sin(4*theta) sqrt(10) ]"g >> N
% -------------------------------------------------- vW-`=30
% sg"D;b:X
% Example 1: `$SEkYdt
% uEGPgYY (
% % Display the Zernike function Z(n=5,m=1) lO:{tV
% x = -1:0.01:1; *F*jA$aY
% [X,Y] = meshgrid(x,x); WriN]/yD
% [theta,r] = cart2pol(X,Y); ls7A5 <
% idx = r<=1; q;zf|'&*7C
% z = nan(size(X)); xqC<p`?4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); )c >B23D
% figure ~)a;59<$
% pcolor(x,x,z), shading interp n=o'ocdS)
% axis square, colorbar =&VXn{e
% title('Zernike function Z_5^1(r,\theta)') n_n|^4w
% mhLRi\[c )
% Example 2: d74g|`/
% 3!9 yuf
% % Display the first 10 Zernike functions }t%>_
% x = -1:0.01:1; T|s0qQi
% [X,Y] = meshgrid(x,x); CCh8? sM
% [theta,r] = cart2pol(X,Y); Ji:iKkI
% idx = r<=1; 8{<[fZyC
% z = nan(size(X)); .`&/QiD
% n = [0 1 1 2 2 2 3 3 3 3]; /Ej]X`F
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *Z]WaDw
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (5q%0|RzRs
% y = zernfun(n,m,r(idx),theta(idx)); sK%Hx`
% figure('Units','normalized') ^_KD&%M6
% for k = 1:10 l \^nC2
% z(idx) = y(:,k); )ozcr^
% subplot(4,7,Nplot(k)) _7#tgZyv
% pcolor(x,x,z), shading interp Ryq"\Q>+
% set(gca,'XTick',[],'YTick',[]) LJ(n?/z%
% axis square Lcs{OW,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y /:T(tk$
% end xOL)Pjo/m
% CC>fm1#i\
% See also ZERNPOL, ZERNFUN2. uB<F.!3
WTD49_px
% Paul Fricker 11/13/2006 KHlIK`r
.K@x4
/1
hygnC`|
% Check and prepare the inputs: xe6_RO%
% ----------------------------- 9S1Ti6A
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5':Gu}Vq
error('zernfun:NMvectors','N and M must be vectors.') .FKJyzL
end G?ugMl}
U$A7EFK'
if length(n)~=length(m) wVp4c?s
error('zernfun:NMlength','N and M must be the same length.') $,;S\JmWP
end P YF.#@":&
Aa`MK$29F
n = n(:); wt}%2x} x
m = m(:); q qe2,X?
if any(mod(n-m,2)) N2tkCkl^x9
error('zernfun:NMmultiplesof2', ... [X }@Ct6
'All N and M must differ by multiples of 2 (including 0).') Jh\:X<q
end G*(K UG>
=a9etF%B
if any(m>n) g %\$ !b
error('zernfun:MlessthanN', ... *"5N>F[L
'Each M must be less than or equal to its corresponding N.') t$K@%yU2
end AbF(MK=i
~ThVap[*
if any( r>1 | r<0 ) ;v1NL@w*
error('zernfun:Rlessthan1','All R must be between 0 and 1.') o9ctJf=qn
end oQ%\[s$
+mc[S
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5pM&h~M
error('zernfun:RTHvector','R and THETA must be vectors.') \L ]
end ^XBzZ!h|
PUP"ky^q"
r = r(:); KZF0rW
theta = theta(:); [0&'cu>
length_r = length(r); %AG1oWWc>.
if length_r~=length(theta) i*S|qX7``
error('zernfun:RTHlength', ... dI^IK
'The number of R- and THETA-values must be equal.') E.J0fwyT
end !/j,hO4Z4
}!%JYG^!D
% Check normalization: S9G+#[.|
% -------------------- Tm)GC_
if nargin==5 && ischar(nflag) GIm
" )}W
isnorm = strcmpi(nflag,'norm'); (#6AKr9K
if ~isnorm MzQ\rg_B7
error('zernfun:normalization','Unrecognized normalization flag.') 22`oFXb'
end bVoU|`c
else N0Efw$u
isnorm = false; r{\BbUnf)
end TN35CaSmq
IKi{Xh]\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M{?.hq
% Compute the Zernike Polynomials ~x|aoozL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *u>lx!g
90/vJN
% Determine the required powers of r: "z^(dF|
% ----------------------------------- KD% TxK
m_abs = abs(m); i;o}o*=
rpowers = []; _eJXi,
for j = 1:length(n) J
I<3\=:+
rpowers = [rpowers m_abs(j):2:n(j)]; ,~4H{{<j
end n/QfdAg
rpowers = unique(rpowers); Y1{B c<tC
^GMJ~[]
% Pre-compute the values of r raised to the required powers, |3}5:k
% and compile them in a matrix: <B6[i*&
% ----------------------------- 01udlW.
if rpowers(1)==0 "8 N"Udu
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]3*P:$Rq
rpowern = cat(2,rpowern{:}); iF!mV5#
rpowern = [ones(length_r,1) rpowern]; i S%
else } h[>U
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M`GP^Ta
rpowern = cat(2,rpowern{:}); *'D=1{WZ!
end ''IoC j
3VmI0gsm.>
% Compute the values of the polynomials: LVnHt}
% -------------------------------------- s]U4B<q
y = zeros(length_r,length(n)); h#i\iK&A
for j = 1:length(n) !(Krf
s = 0:(n(j)-m_abs(j))/2; IU@_)I+6
pows = n(j):-2:m_abs(j); 9UwLF`XM
for k = length(s):-1:1 W9Nmx3ve
p = (1-2*mod(s(k),2))* ... z3a-+NjD m
prod(2:(n(j)-s(k)))/ ... Bv$UFTz
prod(2:s(k))/ ... 6v to++
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bAf,aV/C&|
prod(2:((n(j)+m_abs(j))/2-s(k))); <I;5wv
idx = (pows(k)==rpowers); #~^btL'dHF
y(:,j) = y(:,j) + p*rpowern(:,idx); UVz/n68\k7
end +$47v$p
"PMQyzl
if isnorm fN-Gk(Ic
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 38~PWKt
end n@!wp/J,
end Z%}4bJ
% END: Compute the Zernike Polynomials &