切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11032阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 !M]_CPh]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! rw*#ta O  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ZgO7W]Z4  
    function z = zernfun(n,m,r,theta,nflag) wL 5p0Xl  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ilv6A9/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Kb%j;y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !F{5"$  
    %   unit circle.  N is a vector of positive integers (including 0), and fTM^:vkO  
    %   M is a vector with the same number of elements as N.  Each element tq9t(0EL  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) BY: cSqAW  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ZMJ\C|S:  
    %   and THETA is a vector of angles.  R and THETA must have the same vO" $Xw  
    %   length.  The output Z is a matrix with one column for every (N,M) F0Xv84:O  
    %   pair, and one row for every (R,THETA) pair. d87pQ3e:&  
    % <wTkPErUG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <PkDfMx2  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), FK!9to>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Ai iOs?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EAFKf*K=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 57+^T}/>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. KM (U-<<R  
    % C<A82u;t%@  
    %   The Zernike functions are an orthogonal basis on the unit circle. <u44YvLBm  
    %   They are used in disciplines such as astronomy, optics, and D00rO4~6D%  
    %   optometry to describe functions on a circular domain. o <LA2 q`T  
    % yo V"?W>!  
    %   The following table lists the first 15 Zernike functions. 9!V<=0b/  
    % J8a4.prqI  
    %       n    m    Zernike function           Normalization 0t 7yK  
    %       -------------------------------------------------- ;BoeE3* 6  
    %       0    0    1                                 1 y)U8\  
    %       1    1    r * cos(theta)                    2 R4}G@&Q  
    %       1   -1    r * sin(theta)                    2 =}7wpTc,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ik~hL/JD\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) h bj^!0m  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #.}Su+XF  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) l;Zc[6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 8%7H F:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^f!d8 V  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) J#@ "Yb  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) [ sz#*IJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D'O[0?N"g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) C bG"8F|4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \{?v|%n=/i  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0e8)*2S  
    %       -------------------------------------------------- x#dJH9NR[  
    % *Gu Cv3|  
    %   Example 1: vWfC!k-)b  
    % 2~h)'n7Mw  
    %       % Display the Zernike function Z(n=5,m=1) "_'9KBd!  
    %       x = -1:0.01:1; xKsn);].`  
    %       [X,Y] = meshgrid(x,x); \ox:/-[c\<  
    %       [theta,r] = cart2pol(X,Y); uK(+WA  
    %       idx = r<=1; 3{CGYd]_u  
    %       z = nan(size(X)); wrsETB c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1[3"|  
    %       figure WF-imI:EK  
    %       pcolor(x,x,z), shading interp hPFIf>%}  
    %       axis square, colorbar M~N'z /  
    %       title('Zernike function Z_5^1(r,\theta)') lu-VBVwR  
    % r(vk2Qy  
    %   Example 2: :Np&G4IM>  
    % ~n"V0!:'4  
    %       % Display the first 10 Zernike functions ?WUE+(oH>  
    %       x = -1:0.01:1; tGmyTBgx  
    %       [X,Y] = meshgrid(x,x); J+DuQ;k;  
    %       [theta,r] = cart2pol(X,Y); zCvR/  
    %       idx = r<=1; m}Tu^dy  
    %       z = nan(size(X)); %I Y-0\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; , {z$M  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l`$f@'k  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %q>gwq A  
    %       y = zernfun(n,m,r(idx),theta(idx)); d2X#_(+d  
    %       figure('Units','normalized') ,b{G(sF  
    %       for k = 1:10 F>*w)6 4~  
    %           z(idx) = y(:,k); (:T~*7/"  
    %           subplot(4,7,Nplot(k)) o ]Vx6  
    %           pcolor(x,x,z), shading interp ,  PN?_N  
    %           set(gca,'XTick',[],'YTick',[]) mg >oB/,'Z  
    %           axis square s?%1/&.~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l@#X]3h!  
    %       end SKRD{MRsux  
    % @Gn9x(?J  
    %   See also ZERNPOL, ZERNFUN2. I[t)V*L9  
    8a?V h^  
    %   Paul Fricker 11/13/2006 H`@x5RjS   
    (Z`Y   
    gn(n</\/O  
    % Check and prepare the inputs: >!WJ{M0  
    % ----------------------------- k, v.U8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X#eVw|  
        error('zernfun:NMvectors','N and M must be vectors.') yY_]YeeR  
    end QT%&vq  
    $/wr?  
    if length(n)~=length(m) dwx1 EdJ{  
        error('zernfun:NMlength','N and M must be the same length.') 3U:0,-j"  
    end R!$j_H  
    N pRC3^  
    n = n(:); 3*arW|Xm  
    m = m(:); U}Hmzb  
    if any(mod(n-m,2)) Q_uv.\*z_  
        error('zernfun:NMmultiplesof2', ... 89 (k<m  
              'All N and M must differ by multiples of 2 (including 0).') V l9\&EL  
    end ^u Z%d  
    Uc9Uj  
    if any(m>n) iwmXgsRa9}  
        error('zernfun:MlessthanN', ... \-sD RW  
              'Each M must be less than or equal to its corresponding N.') qvk?5#B  
    end q(uu;l[  
    4L5Wa~5\  
    if any( r>1 | r<0 ) ![Jxh,f  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Uw)K [T  
    end n!tCz<v  
    lXz<jt@5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R`$Odplh>  
        error('zernfun:RTHvector','R and THETA must be vectors.') )O7Mfr  
    end MCYrsgg}  
    $fh?(J  
    r = r(:); N$=<6eQm  
    theta = theta(:); C2`END;  
    length_r = length(r); p(x[zn+%Y  
    if length_r~=length(theta) pCg0xbc`  
        error('zernfun:RTHlength', ... E|^a7-}|  
              'The number of R- and THETA-values must be equal.') e94csTh=  
    end Y+G4:  
    2+?M(=4  
    % Check normalization: 8H{@0_M  
    % -------------------- LTa9' q0  
    if nargin==5 && ischar(nflag) v.Q)Obyn  
        isnorm = strcmpi(nflag,'norm'); ^rxXAc[  
        if ~isnorm 6SidH_&C  
            error('zernfun:normalization','Unrecognized normalization flag.') @7BH`b$)!  
        end @P@t/  
    else K, 35*  
        isnorm = false; ("9)=x*5  
    end )T2Sw z/  
    N:&Gv'`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H ($=k-+5  
    % Compute the Zernike Polynomials n$~RgCf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?.~@lE  
    ^,`yt^^A  
    % Determine the required powers of r: 8taaBM`:  
    % ----------------------------------- Mv ;7kC7]  
    m_abs = abs(m); pWQ?pTh  
    rpowers = []; 5B@&]-'~  
    for j = 1:length(n) duwZe+  
        rpowers = [rpowers m_abs(j):2:n(j)]; A>'o5+  
    end ixU1v~T  
    rpowers = unique(rpowers); jN B-FVaT  
    Xt$?Kx_,  
    % Pre-compute the values of r raised to the required powers, HF0J>Clq  
    % and compile them in a matrix: UHxXa*HyI  
    % ----------------------------- 2p'qp/  
    if rpowers(1)==0  /h   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jI y'mGaG  
        rpowern = cat(2,rpowern{:}); W}T$Z  
        rpowern = [ones(length_r,1) rpowern]; #&$4tTl  
    else *VL-b8'A<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7j@TW%FmV\  
        rpowern = cat(2,rpowern{:}); Qy9#(596  
    end X}S<MA`  
    |~uCLf>  
    % Compute the values of the polynomials: G `TO[p]q  
    % -------------------------------------- [Si`pPvl  
    y = zeros(length_r,length(n)); )C <sj   
    for j = 1:length(n) EpPKo  
        s = 0:(n(j)-m_abs(j))/2; [dUW3}APV  
        pows = n(j):-2:m_abs(j); kkh#VGh"  
        for k = length(s):-1:1 FVHEb\Z  
            p = (1-2*mod(s(k),2))* ... )2:d8J\  
                       prod(2:(n(j)-s(k)))/              ... /J5wwQ (:  
                       prod(2:s(k))/                     ... HhIa=,VY  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g9 g &]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); `@eQL[Z9x  
            idx = (pows(k)==rpowers); mGoUF$9 k  
            y(:,j) = y(:,j) + p*rpowern(:,idx); iao_w'tJ  
        end NO;+:0n  
         x.}iSE{  
        if isnorm DQwbr\xy\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >a]{q^0  
        end <sn^>5Ds  
    end 6J-tcL*4"%  
    % END: Compute the Zernike Polynomials !WAbO(l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o_jVtEP  
    91[(K'=&  
    % Compute the Zernike functions: _AK-AY  
    % ------------------------------ j].XVn,  
    idx_pos = m>0; &Q 3!ty  
    idx_neg = m<0; na>UFw7>*  
    !~PV\DQN  
    z = y; [&"`2n  
    if any(idx_pos) lP0'Zg(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); dd_n|x1  
    end FzW7MW>\x  
    if any(idx_neg) b m`x  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); a$"3T  
    end ,D;d#fJ  
    @ 2Z{en?  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^e1@o\]  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. }k~ih?E^s  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated !%?O`+r  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive /R!:ll2  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 58V`I5_  
    %   and THETA is a vector of angles.  R and THETA must have the same Kejp7 okb  
    %   length.  The output Z is a matrix with one column for every P-value, "A6m-xE~  
    %   and one row for every (R,THETA) pair. +Hgil  
    % of659~EIW  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike TD!--l*gL  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) <Z5-?wgf9  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) l|9' M'a  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <A^sg?s<'  
    %   for all p. %|AebxB'o  
    % @IhC:Yc  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 #oW" 3L{,  
    %   Zernike functions (order N<=7).  In some disciplines it is XXPn)kmWR  
    %   traditional to label the first 36 functions using a single mode 9sG]Q[:.]  
    %   number P instead of separate numbers for the order N and azimuthal VkdGGY  
    %   frequency M. "ngULpb{R  
    % f$ 9O0,}%O  
    %   Example: >mJH@,F:  
    % WX6}@mS.  
    %       % Display the first 16 Zernike functions EM QGP<[  
    %       x = -1:0.01:1; 0Q?)?8_  
    %       [X,Y] = meshgrid(x,x); B\S}*IE  
    %       [theta,r] = cart2pol(X,Y); @QteC@k  
    %       idx = r<=1; E@,m +  
    %       p = 0:15; 2[j(C  
    %       z = nan(size(X)); J/LsL k  
    %       y = zernfun2(p,r(idx),theta(idx)); d^MRu#]  
    %       figure('Units','normalized') ,_iq$I;  
    %       for k = 1:length(p) aKjP{Z0k$  
    %           z(idx) = y(:,k); mC2K &'[  
    %           subplot(4,4,k) }D>#AFs6#  
    %           pcolor(x,x,z), shading interp qYoB;gp  
    %           set(gca,'XTick',[],'YTick',[]) .V4-  
    %           axis square <aztbq?  
    %           title(['Z_{' num2str(p(k)) '}']) ;3x*pjLG:Q  
    %       end aD]! eP/)  
    % $vrkxn  
    %   See also ZERNPOL, ZERNFUN. v5>A1\  
    <qg4Rz\c]  
    %   Paul Fricker 11/13/2006 m8@&-,T   
    G/*;h,NbNr  
    pHT]2e#  
    % Check and prepare the inputs: hw$!LTB2  
    % ----------------------------- L!>nl4O>`  
    if min(size(p))~=1 m g,1*B'  
        error('zernfun2:Pvector','Input P must be vector.') i.k7qclL`  
    end b7XB l  
    {{jV!8wK  
    if any(p)>35 c {/J.  
        error('zernfun2:P36', ... G54J'*Z  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... z',Fa4@z  
               '(P = 0 to 35).']) v3#,Z!  
    end oNZ_7tU  
    +D@5zq:5  
    % Get the order and frequency corresonding to the function number: Cb1w8l0  
    % ---------------------------------------------------------------- 3pg=9*{  
    p = p(:); Fvf |m7  
    n = ceil((-3+sqrt(9+8*p))/2); f(Y_<%  
    m = 2*p - n.*(n+2); gVrQAcJj  
    DY -5(6X  
    % Pass the inputs to the function ZERNFUN: H1 I^Vij  
    % ---------------------------------------- T]ls&cW5  
    switch nargin Dn6U8s&  
        case 3 d2V X\  
            z = zernfun(n,m,r,theta); jMgXIK\  
        case 4 Hs*["zFc  
            z = zernfun(n,m,r,theta,nflag); ,Cb3R|L8  
        otherwise L8 L1_  
            error('zernfun2:nargin','Incorrect number of inputs.') =hkYQq`Q  
    end oQ 2$z8  
    _]-4d_&3(  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) v1TFzcHl<  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. X H-_tvB  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of H"#ITL  
    %   order N and frequency M, evaluated at R.  N is a vector of )h8}{*  
    %   positive integers (including 0), and M is a vector with the @1MnJP  
    %   same number of elements as N.  Each element k of M must be a 5o#JHD  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) >Icr4?zq  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 6qWUo3  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +(W1x C0  
    %   with one column for every (N,M) pair, and one row for every ilA45@  
    %   element in R. |A%9c.DG.  
    % q,vWu(.  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- D|N4X`T`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is n0xGIq  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to x HRSzYn$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 MUO<o  
    %   for all [n,m]. FSIiw#xzH  
    % $ik*!om5  
    %   The radial Zernike polynomials are the radial portion of the E TT46%Y  
    %   Zernike functions, which are an orthogonal basis on the unit K^Awf6%  
    %   circle.  The series representation of the radial Zernike Wg']a/m  
    %   polynomials is N3%X>*'  
    % CXa[%{[n  
    %          (n-m)/2 U2q6^z4l  
    %            __ >STtX6h  
    %    m      \       s                                          n-2s =]W i aF  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r {&  o^p!  
    %    n      s=0 p4`1^}f&Ie  
    % YuXJT*  
    %   The following table shows the first 12 polynomials. / ^.|m3  
    % }E'0vf /  
    %       n    m    Zernike polynomial    Normalization |=?#Xbxz  
    %       --------------------------------------------- fz&B$1;8  
    %       0    0    1                        sqrt(2) 8>Cr6m   
    %       1    1    r                           2 (]|h6aI'}  
    %       2    0    2*r^2 - 1                sqrt(6) uqMw-f/  
    %       2    2    r^2                      sqrt(6) E5k)~P`|  
    %       3    1    3*r^3 - 2*r              sqrt(8) ARk(\,h  
    %       3    3    r^3                      sqrt(8) q7R]!zk  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) NYm"I`5w  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) +>$]leqa  
    %       4    4    r^4                      sqrt(10) bO '\QtW9  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) jr6_|(0 i6  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) K_7pr~D]@r  
    %       5    5    r^5                      sqrt(12) gQ1 obT"|  
    %       --------------------------------------------- #6`5-5Ks;  
    % !Ok(mgV$/  
    %   Example: 80xr zv  
    % Gp"GTPT{  
    %       % Display three example Zernike radial polynomials 'ofj1%c  
    %       r = 0:0.01:1; i\R0+ O{  
    %       n = [3 2 5]; v2T2/y%  
    %       m = [1 2 1]; @"@a70WHk  
    %       z = zernpol(n,m,r); IqOg{#sm  
    %       figure Q7%4`_$!  
    %       plot(r,z) X{9^$/XsJ  
    %       grid on | ,8z" g  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') @[GV0*yz$  
    % TpjiKM  
    %   See also ZERNFUN, ZERNFUN2. KA3U W  
    "wUIsuG/p  
    % A note on the algorithm. "oP^2|${  
    % ------------------------ e UPa5{P  
    % The radial Zernike polynomials are computed using the series j=\h|^gA  
    % representation shown in the Help section above. For many special aDlp>p^E>  
    % functions, direct evaluation using the series representation can , X5.|9  
    % produce poor numerical results (floating point errors), because G0FzXtu)q  
    % the summation often involves computing small differences between xtV+Le%  
    % large successive terms in the series. (In such cases, the functions +UzQJt/>>  
    % are often evaluated using alternative methods such as recurrence ;vn0%g  
    % relations: see the Legendre functions, for example). For the Zernike XS<>0YM  
    % polynomials, however, this problem does not arise, because the Q|y }mC/  
    % polynomials are evaluated over the finite domain r = (0,1), and spK8^sh  
    % because the coefficients for a given polynomial are generally all uvys>]+  
    % of similar magnitude. z^Hc'oVXj:  
    % $l.*;h*  
    % ZERNPOL has been written using a vectorized implementation: multiple ?K1B^M=8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] GgO5=|  
    % values can be passed as inputs) for a vector of points R.  To achieve C@M-_Ud>Q  
    % this vectorization most efficiently, the algorithm in ZERNPOL ' jciX]g  
    % involves pre-determining all the powers p of R that are required to =SDex.ZK]  
    % compute the outputs, and then compiling the {R^p} into a single So%X(, |  
    % matrix.  This avoids any redundant computation of the R^p, and F.s$Y+c!6  
    % minimizes the sizes of certain intermediate variables. dQ:,pe7A  
    % )f8>kz(  
    %   Paul Fricker 11/13/2006 Cq5.gkS<  
    -t-f&`S||  
    VQ=  
    % Check and prepare the inputs: B|`?hw@g+  
    % ----------------------------- kc'$4 J4Tw  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?0qVyK_1  
        error('zernpol:NMvectors','N and M must be vectors.') 7?lz$.*Avp  
    end s{^98*  
    X$};K \I  
    if length(n)~=length(m) %G?@Hye3  
        error('zernpol:NMlength','N and M must be the same length.') @2(u=E:^  
    end Ku5||u.F4*  
    I| TNo-!$  
    n = n(:); >a3m!`lq  
    m = m(:); ~E}kwF  
    length_n = length(n); Ae5A@4  
    Y;w|Fvjj+  
    if any(mod(n-m,2)) G?4@[m  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') rFzNdiY  
    end 5SFr E`  
    If'q8G3]-  
    if any(m<0) :>-zT[Lcn  
        error('zernpol:Mpositive','All M must be positive.') ;@+ |]I  
    end #N{]  
    !Uiq3s`1T  
    if any(m>n) rrIyZ@_d9  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') @ZEBtM%.O  
    end 0 kJ8H!~u  
    Xj, %t}  
    if any( r>1 | r<0 ) #H$lBC WI  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ?K$&|w%{3  
    end # epP~J_f  
    he|Q (?  
    if ~any(size(r)==1) 3f =ZNJ>  
        error('zernpol:Rvector','R must be a vector.') #1dVp!?3T  
    end mG)5xD  
    u|KjoO   
    r = r(:); RvG=GJJ9  
    length_r = length(r); <NZPLo F  
    c0wLc,)G  
    if nargin==4 628iN%[-  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~vTwuc\(H  
        if ~isnorm Cm;cmPPl  
            error('zernpol:normalization','Unrecognized normalization flag.') Y" =8wNbr  
        end ,X!)zAmm  
    else ; gBR~W  
        isnorm = false; s AFn.W  
    end WIU]>_$.  
    "{8j!+]4i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "U^m~N9k{  
    % Compute the Zernike Polynomials }etdXO_^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pPa]@ z~O  
    DpggZ|J  
    % Determine the required powers of r: N]F RL\K  
    % ----------------------------------- ZK;/~9KU  
    rpowers = []; 6y!U68L;B  
    for j = 1:length(n) YE@yts  
        rpowers = [rpowers m(j):2:n(j)]; U!uPf:p2  
    end y pEMx'p  
    rpowers = unique(rpowers); e6MBy\*n  
    .Wt3|?\=nd  
    % Pre-compute the values of r raised to the required powers, dQT[pNp:  
    % and compile them in a matrix: ?98!2:'{9  
    % ----------------------------- [.4{s  
    if rpowers(1)==0 (zFqb,P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s,r|p@^  
        rpowern = cat(2,rpowern{:}); c\n_[r  
        rpowern = [ones(length_r,1) rpowern]; 2.WI".&y=  
    else 56 JQ h  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S3M!"l  
        rpowern = cat(2,rpowern{:}); VwH|ed$  
    end ,K[e?(RP  
    p-I J':W  
    % Compute the values of the polynomials:  dwk%!%  
    % -------------------------------------- I;Mm+5A  
    z = zeros(length_r,length_n); |&"aZ!Kn  
    for j = 1:length_n \dCGu~bT  
        s = 0:(n(j)-m(j))/2; vyDxX  
        pows = n(j):-2:m(j); 1J0gjO)AZ  
        for k = length(s):-1:1 \(Oc3+n6  
            p = (1-2*mod(s(k),2))* ... +YZo-tE  
                       prod(2:(n(j)-s(k)))/          ... .8W-,R4  
                       prod(2:s(k))/                 ... y?a71b8m  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... XA<h,ONE?  
                       prod(2:((n(j)+m(j))/2-s(k))); 6 eryf?  
            idx = (pows(k)==rpowers); |'-aR@xJ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ]+Lr'HF  
        end `E1G9BbU  
         QL8C!&=  
        if isnorm 2b7-=/[6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); q;bw }4  
        end Xr=BxBttp  
    end I'*,<BPG  
    C W#:'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?\,;KNQr  
    K>+ v" x  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 HjA~3l7  
    I%r7L  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)