非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *]2LN$
function z = zernfun(n,m,r,theta,nflag) v-6"*EP
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. TJ(P TB;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Hj
]$
% and angular frequency M, evaluated at positions (R,THETA) on the l,uYp"F,ps
% unit circle. N is a vector of positive integers (including 0), and ~82[pY
% M is a vector with the same number of elements as N. Each element ]2G5ng' @
% k of M must be a positive integer, with possible values M(k) = -N(k) \~xI#S@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 8Ml&lfn_8
% and THETA is a vector of angles. R and THETA must have the same y e!Bfz>
% length. The output Z is a matrix with one column for every (N,M) <4jQbY;
% pair, and one row for every (R,THETA) pair. zb9^ii$g
% RAR0LKGX
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fs4pAB #F
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %VYQz)yW
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5zJkPki
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, HE&,?vioy
% and theta=0 to theta=2*pi) is unity. For the non-normalized T=cSTS!P;q
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ln.kEhQ3B
% GF~^-5
% The Zernike functions are an orthogonal basis on the unit circle. xO'I*)
% They are used in disciplines such as astronomy, optics, and (^GVy=
% optometry to describe functions on a circular domain. lJ]r%YlF
% '|^LNAx
% The following table lists the first 15 Zernike functions. N_<sCRd]9
% /^96|
% n m Zernike function Normalization -Hzn7L
% -------------------------------------------------- FzmCS@yA
% 0 0 1 1 >(z{1'f{
% 1 1 r * cos(theta) 2 8o8FL~&]
% 1 -1 r * sin(theta) 2 o;Ijv\Em
% 2 -2 r^2 * cos(2*theta) sqrt(6) RAKQ+Y"nl
% 2 0 (2*r^2 - 1) sqrt(3) A/N*Nc
% 2 2 r^2 * sin(2*theta) sqrt(6) XuJwZN!(
% 3 -3 r^3 * cos(3*theta) sqrt(8) %sC,;^wla'
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) sBuJK'
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) mOwgk7s[J
% 3 3 r^3 * sin(3*theta) sqrt(8) 1_:1cF{w
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]i*q*]x2u
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rh2pVDS
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) g$VcT\X
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .Pq8C
% 4 4 r^4 * sin(4*theta) sqrt(10) hM
E|=\
% -------------------------------------------------- ub6\m=Y7
% =f@O~nGm
% Example 1: ?97MW a
% dgssX9g37
% % Display the Zernike function Z(n=5,m=1) !mBsDn(J
% x = -1:0.01:1; 0kgK~\^,.O
% [X,Y] = meshgrid(x,x); LoHWkNZ5:
% [theta,r] = cart2pol(X,Y); |Ix6D
% idx = r<=1; Bir}X
% z = nan(size(X)); Y^LFJB|b4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); G_5sF|(mq
% figure d_J?i]AP|'
% pcolor(x,x,z), shading interp cNC\w%
% axis square, colorbar [2w3c4K
% title('Zernike function Z_5^1(r,\theta)') pALB[;9g
% L:YsAv
% Example 2: QOuy(GY
% GQqw(2Ub}
% % Display the first 10 Zernike functions 1E$Z]5C9
% x = -1:0.01:1; S "oUE_>
% [X,Y] = meshgrid(x,x); 2`5(XpYe
% [theta,r] = cart2pol(X,Y); $Br^c< y
% idx = r<=1; s
cR-|GuZ
% z = nan(size(X)); &o"Hb=k<
% n = [0 1 1 2 2 2 3 3 3 3]; .u7d
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?3SlvKI}H`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; +azPpGZ=
% y = zernfun(n,m,r(idx),theta(idx)); +^YV>;
% figure('Units','normalized') UQ|0Aqwq
% for k = 1:10 _zh}%#6L
% z(idx) = y(:,k); =@pm-rI|-
% subplot(4,7,Nplot(k)) e::5|6x
% pcolor(x,x,z), shading interp Y@eHp-[
% set(gca,'XTick',[],'YTick',[]) i?=3RdP/R1
% axis square };o R x)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {J})f>x<xM
% end O#O~A|
% w2]1ftY
% See also ZERNPOL, ZERNFUN2. ^'EEry
uNd ;;X
% Paul Fricker 11/13/2006 0IDHoNaT<
8YkP57Y%[Z
gEKJrAA
% Check and prepare the inputs: WY 2b
% ----------------------------- 5B'-&.Aj+
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )2S0OY.
error('zernfun:NMvectors','N and M must be vectors.') Xz]}cRQ[
end DDAqgx
fS#/-wugOB
if length(n)~=length(m) ^ Jnp\o>
error('zernfun:NMlength','N and M must be the same length.') .6O>P2m]a_
end m.K"IXD
Rp`}"x9
n = n(:); P]Gsc
m = m(:); 9k 7|B>LT
if any(mod(n-m,2)) 7h&xfrSrD
error('zernfun:NMmultiplesof2', ... 0?p_|X'_
'All N and M must differ by multiples of 2 (including 0).') ,6t0w|@-k
end Fg#*rzA
}$qy_Esl
if any(m>n) u x:,io
error('zernfun:MlessthanN', ... gFDP:I/`
'Each M must be less than or equal to its corresponding N.') |lJXI:GG
end (3]7[h7
1&jX~'
if any( r>1 | r<0 ) R63"j\0
error('zernfun:Rlessthan1','All R must be between 0 and 1.') G Q8I |E
end K?I@'B'
t:=Ui/!q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Nq*\{rb
error('zernfun:RTHvector','R and THETA must be vectors.') a*SJHBB
end *[.\S3K`
$%1[<}<
r = r(:); 2YwV}
theta = theta(:); SF.,sCk
length_r = length(r); {ReAl_Cm
if length_r~=length(theta) ORtl~V'
error('zernfun:RTHlength', ... TP^.]IO-
'The number of R- and THETA-values must be equal.') 8kMMQ ES
end + !_^MB kk
/o|@]SAe.
% Check normalization: 7FMHz.ZRE
% -------------------- 9MHb<~F
if nargin==5 && ischar(nflag) PFPfLxna
isnorm = strcmpi(nflag,'norm'); H[>_LYZ8
if ~isnorm x[(2}Qd
error('zernfun:normalization','Unrecognized normalization flag.') -q+Fj;El
end mD )Nh
else J=\Y 4- "
isnorm = false; *f4KmiQ~%
end :=i0$k<E/
8|d[45*q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vxqMo9T
% Compute the Zernike Polynomials <M$hj6.tn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q!AS}rV
-Q$$2QW!
% Determine the required powers of r: QGshc
% ----------------------------------- wV-cpJ,}
m_abs = abs(m); pg>P]a{
rpowers = []; CiMy_`H
for j = 1:length(n) iOJgZuP
rpowers = [rpowers m_abs(j):2:n(j)];
Tl=vgs1
end B]Zsn`n
rpowers = unique(rpowers); {X"X.`p
ax3:rl
% Pre-compute the values of r raised to the required powers, '6xn!dK
% and compile them in a matrix: QPFpGS{d
% ----------------------------- 0\h2&
if rpowers(1)==0 (O<lVz@8
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }XXE
hOO
rpowern = cat(2,rpowern{:}); 9s7B1Pf
rpowern = [ones(length_r,1) rpowern]; XkK16aLE
else J@Orrz2q#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [{ zekF~)@
rpowern = cat(2,rpowern{:}); qlgh$9
end <v2R6cj5
ED$gnFa3I
% Compute the values of the polynomials: `nizGg~1
% -------------------------------------- SU#|&_wtr!
y = zeros(length_r,length(n)); Br yMq !
for j = 1:length(n) }Ns_RS$
s = 0:(n(j)-m_abs(j))/2; ~(&xBtg:}
pows = n(j):-2:m_abs(j); f
a\cLC
for k = length(s):-1:1 /NkZ;<uxJ
p = (1-2*mod(s(k),2))* ... ]3I_H+hU
prod(2:(n(j)-s(k)))/ ... T4f:0r;^f*
prod(2:s(k))/ ... [2FXs52
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~cZ1=,P
prod(2:((n(j)+m_abs(j))/2-s(k))); []Fy[G.)H
idx = (pows(k)==rpowers); snK9']WXo
y(:,j) = y(:,j) + p*rpowern(:,idx); I+<; Dsp
end ##n\9ipD
Qy$QOtrv
if isnorm Z7f~|}
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t)m4"p7
end ?_^9e
end J`V6zGgW
% END: Compute the Zernike Polynomials V2y[IeSQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DMf9wB
]':C~-RV{
% Compute the Zernike functions: jxoEOEA
% ------------------------------ zeua`jQ
idx_pos = m>0; -Kc-eU-&q
idx_neg = m<0; x[?_F
eU12*(
z = y; /J6CSk
if any(idx_pos) EP8LJzd"
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1rKR=To
end I&vB\A
if any(idx_neg) m2}&5vD8-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *PI3L/*
end D H.ljGb
[Ytia#Vv
% EOF zernfun