切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10979阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 i8A{DMc,U  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! .ky((  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 F#S^Q`  
    function z = zernfun(n,m,r,theta,nflag) J{8_4s!Xt>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. zh7#[#>t  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]eA<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the IxC/X5Mp^q  
    %   unit circle.  N is a vector of positive integers (including 0), and Pk444_"=  
    %   M is a vector with the same number of elements as N.  Each element ^/`:o}7K7  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) <4s$$Uw}6%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, m[&]#K6  
    %   and THETA is a vector of angles.  R and THETA must have the same A-gNfXP,D  
    %   length.  The output Z is a matrix with one column for every (N,M) 9hG)9X4  
    %   pair, and one row for every (R,THETA) pair. W tF  
    % envu}4wU=e  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z7V74hRPX  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Rfh#JO@%[  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \zA$|) x  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N\b%+vR  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized rq'Cj<=Zj  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pQr `$:ga  
    % \.p{~ Hv  
    %   The Zernike functions are an orthogonal basis on the unit circle. "orZje9AC  
    %   They are used in disciplines such as astronomy, optics, and F[/Bp>P7  
    %   optometry to describe functions on a circular domain. l{wHu(1  
    % v{4K$o  
    %   The following table lists the first 15 Zernike functions. 9Mo(3M  
    % oj*5m+:>a  
    %       n    m    Zernike function           Normalization  TA;  
    %       -------------------------------------------------- 1GB$;0 W),  
    %       0    0    1                                 1 !f\,xa|M  
    %       1    1    r * cos(theta)                    2 sl^i%xJ|l'  
    %       1   -1    r * sin(theta)                    2 g+8{{o=  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) m#Rgelhk.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Wj2]1A  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) p~1,[]k  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -+4:} sD  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S)Cd1`Gf  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) P6w!r>?6N  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *IWO ,!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3Gi#WV4$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) prE~GO7Z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) V D+TJ` r  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [.;$6C/?  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) K FV&Dt}<  
    %       -------------------------------------------------- +@D [%l|  
    % g(xuA^~J  
    %   Example 1: {IEc{y7?gO  
    % A `\2]t$z  
    %       % Display the Zernike function Z(n=5,m=1) }R5>ja0  
    %       x = -1:0.01:1; tWL3F?wd  
    %       [X,Y] = meshgrid(x,x); cA%70Y:AV  
    %       [theta,r] = cart2pol(X,Y); +r[u4?  
    %       idx = r<=1; zOA{S~>  
    %       z = nan(size(X)); 2ILMf?}  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0eq="|n^|  
    %       figure qk~ni8  
    %       pcolor(x,x,z), shading interp HV'xDy[)  
    %       axis square, colorbar 9?<WRM3a>  
    %       title('Zernike function Z_5^1(r,\theta)') wN/d J  
    % v-2_#  
    %   Example 2: TR3_!0  
    % KK" uSC  
    %       % Display the first 10 Zernike functions jSVIO v:  
    %       x = -1:0.01:1; |@KW~YlE  
    %       [X,Y] = meshgrid(x,x); I3uS?c  
    %       [theta,r] = cart2pol(X,Y); N{v <z 6  
    %       idx = r<=1; xI?%.Z;*+  
    %       z = nan(size(X)); 6W&huIQ[  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 7 J$  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; d dB}mk6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; F VBuCi?W  
    %       y = zernfun(n,m,r(idx),theta(idx)); UZsL0  
    %       figure('Units','normalized') $%!'c# F  
    %       for k = 1:10 E5"%-fAJ  
    %           z(idx) = y(:,k); (+}H ih  
    %           subplot(4,7,Nplot(k)) dc UaZfON  
    %           pcolor(x,x,z), shading interp l;^Id#N  
    %           set(gca,'XTick',[],'YTick',[]) fT1/@  
    %           axis square {HPKp&kl  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y]$%>N0vLX  
    %       end gj{2" tE  
    % 1,,kU  
    %   See also ZERNPOL, ZERNFUN2. !v(j#N< m  
    >Qg`Us#y  
    %   Paul Fricker 11/13/2006 @q0\oG4L  
    (VeX[*}I  
    E0QrByr_  
    % Check and prepare the inputs: 9xL8 ];-  
    % ----------------------------- 0OLE/T<Xv  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Rn6;@Cw  
        error('zernfun:NMvectors','N and M must be vectors.') nxH+XHv  
    end k2{*WF  
    O>UG[ZgW  
    if length(n)~=length(m) ?,8|K B  
        error('zernfun:NMlength','N and M must be the same length.') ';"W0  
    end  ! K:  
     WK;X6`  
    n = n(:); Do-~-d4  
    m = m(:); gZbC[L  
    if any(mod(n-m,2)) le1  
        error('zernfun:NMmultiplesof2', ... Ax &Z=  
              'All N and M must differ by multiples of 2 (including 0).') Tjba @^T  
    end V<&x+?>S  
    ,e\'Y!'  
    if any(m>n) ( <~  
        error('zernfun:MlessthanN', ... f5p>oXo4b  
              'Each M must be less than or equal to its corresponding N.') :^~I@)"ov  
    end ~)Z{ Yj9)S  
    <1i:Z*l.  
    if any( r>1 | r<0 ) tQz=_;jy  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3ZRi@=kWz  
    end j >f  
    GG0l\! 2)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R+vago:  
        error('zernfun:RTHvector','R and THETA must be vectors.') jI})\5<R  
    end h/`]=kCl  
    }6zo1"  
    r = r(:); 9eOP:/'}w  
    theta = theta(:); ~*aPeJ  
    length_r = length(r); O  |45r   
    if length_r~=length(theta) \*] l'>x1  
        error('zernfun:RTHlength', ... L9(mY `d>"  
              'The number of R- and THETA-values must be equal.') G i 1Jl"  
    end |C;8GSw>|F  
    !h\.w9o[  
    % Check normalization: byALM  
    % -------------------- nymF`0HYe1  
    if nargin==5 && ischar(nflag) kg0X2^#b  
        isnorm = strcmpi(nflag,'norm'); P`ZzrN  
        if ~isnorm ./SDZ:5/  
            error('zernfun:normalization','Unrecognized normalization flag.') 4^4<Le-G  
        end \<k5c-8Hb  
    else lG[@s 'j  
        isnorm = false; %t&   
    end 7X+SK&PX  
    m/ D ~D~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mab921-n  
    % Compute the Zernike Polynomials b)+nNqY|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% awYnlE/Z1  
    rw:z|-r  
    % Determine the required powers of r: ;U+4!N  
    % ----------------------------------- XPJsnu  
    m_abs = abs(m); EI+RF{IKh  
    rpowers = []; uJxT)m!/  
    for j = 1:length(n) =|}_ASbzw  
        rpowers = [rpowers m_abs(j):2:n(j)]; I8ZBs0sfF{  
    end }57s  
    rpowers = unique(rpowers); NUSb7<s,&Y  
    EKQ\MC1  
    % Pre-compute the values of r raised to the required powers, Ez()W,6]g  
    % and compile them in a matrix: .D X  
    % ----------------------------- (!cG*FrN  
    if rpowers(1)==0 =&%}p[ 3g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R y47Fze  
        rpowern = cat(2,rpowern{:}); &A/k{(.XP  
        rpowern = [ones(length_r,1) rpowern];  %XF>k)  
    else "2l$}G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H$D),s gv  
        rpowern = cat(2,rpowern{:}); 2Dc2uU@`r  
    end 38<Z=#S  
    pW[KC!  
    % Compute the values of the polynomials: k7L-J  
    % -------------------------------------- #uRj9|E7  
    y = zeros(length_r,length(n)); (5rfeSA^  
    for j = 1:length(n) G 6r2 "  
        s = 0:(n(j)-m_abs(j))/2; U# +$N3%  
        pows = n(j):-2:m_abs(j); &\Ze<u  
        for k = length(s):-1:1 LE@<)}Au^  
            p = (1-2*mod(s(k),2))* ... 1eP`  
                       prod(2:(n(j)-s(k)))/              ... 19h@fA[:  
                       prod(2:s(k))/                     ... \\R$C  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I$0O4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nrEG4X9  
            idx = (pows(k)==rpowers); =Ch^;Wyt  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2gasH11M  
        end @PL.7FM<v  
         &~Hx!]uc  
        if isnorm mz>GbImVD~  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o=]\Jy  
        end !VDNqW  
    end Be$v%4  
    % END: Compute the Zernike Polynomials  `1`Qu!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k_?Z6RE>  
    f>CJ1 ;][{  
    % Compute the Zernike functions: >%\&tS'  
    % ------------------------------ -I0J-~#  
    idx_pos = m>0; ]&;K:#J  
    idx_neg = m<0; 4 (c{%%  
    {*PbD;/f  
    z = y; xY d]|y  
    if any(idx_pos) (=-6'23q)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *)Us   
    end YB}m1 g`  
    if any(idx_neg) ?hmuAgOtbh  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <B&vfKO^h  
    end 1w!O&kn  
    C~-.zQ$  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Qv W vS9]  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ZOBcV,K  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated KvH t`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $%6.lQ  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, _)S['[  
    %   and THETA is a vector of angles.  R and THETA must have the same ^WkqRs  
    %   length.  The output Z is a matrix with one column for every P-value, Ge`PVwn  
    %   and one row for every (R,THETA) pair. /.WIED}>  
    % ?,`g h}>  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike -V&nlP  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) zRMz8IC.  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 9|WV28PK:  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Ye|(5f  
    %   for all p. Lz&FywF-l  
    % `t"7[Zk  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <{T5}"e  
    %   Zernike functions (order N<=7).  In some disciplines it is 4:= VHd  
    %   traditional to label the first 36 functions using a single mode l* z "wA-  
    %   number P instead of separate numbers for the order N and azimuthal ;4QE.&s`  
    %   frequency M. 0|DyYu  
    % 9H/C(Vo  
    %   Example: ^;sE)L6  
    % H0f]Swh0a  
    %       % Display the first 16 Zernike functions . {vMn0c  
    %       x = -1:0.01:1; ?PYZW5  
    %       [X,Y] = meshgrid(x,x); S6<#] 6 Z  
    %       [theta,r] = cart2pol(X,Y); T/PmT:Qg `  
    %       idx = r<=1; ]$BC f4:  
    %       p = 0:15; ^WrL   
    %       z = nan(size(X)); AqAL)`#K  
    %       y = zernfun2(p,r(idx),theta(idx)); S.Q:O{]  
    %       figure('Units','normalized') vScEQS$>  
    %       for k = 1:length(p) j 8)*'T  
    %           z(idx) = y(:,k); Ga_Pt8L6  
    %           subplot(4,4,k) Q@uWh:  
    %           pcolor(x,x,z), shading interp R=3|(R+kA  
    %           set(gca,'XTick',[],'YTick',[]) _^g4/G#13c  
    %           axis square ]K'OH&  
    %           title(['Z_{' num2str(p(k)) '}']) Mh2Zj  
    %       end A34O(fE  
    % 5,pEJ>dDD3  
    %   See also ZERNPOL, ZERNFUN. ;H3~r^>c  
    rd;E /:`5  
    %   Paul Fricker 11/13/2006 Z2 Vri  
    :Q,~Nw>  
     au]W*;x  
    % Check and prepare the inputs: azzG  
    % ----------------------------- CkRilS<  
    if min(size(p))~=1 v 8EI   
        error('zernfun2:Pvector','Input P must be vector.') DL#y_;#3_  
    end 29l bOi  
    9C8 G(r  
    if any(p)>35 OnH3Ss$  
        error('zernfun2:P36', ... &7,:: $cu  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,rjl|F* T  
               '(P = 0 to 35).']) 3mHP=)  
    end Vry*=X &Q  
    njaKU?6%d2  
    % Get the order and frequency corresonding to the function number: GO.7IL{ {  
    % ---------------------------------------------------------------- Z^BZH/I?  
    p = p(:); P 'o]#Az  
    n = ceil((-3+sqrt(9+8*p))/2); /'zXb_R,$  
    m = 2*p - n.*(n+2); liqVfB%  
    YCVT0d  
    % Pass the inputs to the function ZERNFUN: xLb=^Xjec  
    % ---------------------------------------- 3<l}gB'S[  
    switch nargin x:Q$1&3N  
        case 3 >xA( *7  
            z = zernfun(n,m,r,theta);  7|yEf  
        case 4 (J?_~(,`"  
            z = zernfun(n,m,r,theta,nflag); &'`ki0Xh;  
        otherwise yVQW|D0,j  
            error('zernfun2:nargin','Incorrect number of inputs.') ~Q#! oh'i  
    end j;qV+Rq]t  
    Ly/  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Sb?Ua*(L:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. L7nG5i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of tSnsjd<6.  
    %   order N and frequency M, evaluated at R.  N is a vector of ,6#%+u}f  
    %   positive integers (including 0), and M is a vector with the , Y,^vzX6  
    %   same number of elements as N.  Each element k of M must be a sxS%1hp3  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) c<lEFk!g  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is jt(GXgm  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (`_fP.Ogb  
    %   with one column for every (N,M) pair, and one row for every yye5GVY$  
    %   element in R. 2#00<t\  
    % WMW=RgiW\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0rQ r#0`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is S>p0{:zM  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to sP}u  zS  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 4\nG Wi{2  
    %   for all [n,m]. \YFM5l;IU  
    % LE)$_i8gX  
    %   The radial Zernike polynomials are the radial portion of the C@[U:\  
    %   Zernike functions, which are an orthogonal basis on the unit )m[<lJ bw  
    %   circle.  The series representation of the radial Zernike h@'CmIZc  
    %   polynomials is &cd>.&1<2  
    % 3TZ:  
    %          (n-m)/2 )FmIL(vu  
    %            __ FzP1b_i  
    %    m      \       s                                          n-2s -j2y#aP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6|{&7=1t  
    %    n      s=0 *W^a<Zm8>  
    % w(z=xO  
    %   The following table shows the first 12 polynomials. =F Y2O`%a  
    % G<$8g-O;D  
    %       n    m    Zernike polynomial    Normalization e*}GQ  
    %       --------------------------------------------- 8h4]<T  
    %       0    0    1                        sqrt(2) }~NXiUe  
    %       1    1    r                           2 Ww\ WuaY  
    %       2    0    2*r^2 - 1                sqrt(6) <3/_'/C  
    %       2    2    r^2                      sqrt(6) Pa+_{9  
    %       3    1    3*r^3 - 2*r              sqrt(8) h:U#F )  
    %       3    3    r^3                      sqrt(8) l(-"rE  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) $uJc/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) >T\@j\X4  
    %       4    4    r^4                      sqrt(10) D^V)$ME  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) S("dU`T?  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) $+ N~Fa  
    %       5    5    r^5                      sqrt(12) { o5^nd  
    %       --------------------------------------------- nHH FHnFf  
    %  +Mhk<A[s  
    %   Example: nT +ZSr  
    % /#&jF:h  
    %       % Display three example Zernike radial polynomials Z h9D^ I  
    %       r = 0:0.01:1; Iu~<Y(8^q#  
    %       n = [3 2 5]; arRU`6?  
    %       m = [1 2 1]; 1E'PSq  
    %       z = zernpol(n,m,r); =J]EVD   
    %       figure 4zt:3bW U  
    %       plot(r,z) bd-iog(  
    %       grid on sKsMF:|OT  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 'Ha> >2M  
    % }p)Hw2  
    %   See also ZERNFUN, ZERNFUN2. aI ;$N|]u  
    U <q`f-  
    % A note on the algorithm. W[a"&,okqO  
    % ------------------------ W,[QK~  
    % The radial Zernike polynomials are computed using the series H?M:<q0|G  
    % representation shown in the Help section above. For many special f-|zh#L  
    % functions, direct evaluation using the series representation can ]4V1]  
    % produce poor numerical results (floating point errors), because O6 s3#iu  
    % the summation often involves computing small differences between `-{? !  
    % large successive terms in the series. (In such cases, the functions surNJ,)  
    % are often evaluated using alternative methods such as recurrence bu<d>XR  
    % relations: see the Legendre functions, for example). For the Zernike %n8CK->  
    % polynomials, however, this problem does not arise, because the %6rSLBw3  
    % polynomials are evaluated over the finite domain r = (0,1), and ?6nB=B)/  
    % because the coefficients for a given polynomial are generally all {^(uoB C/  
    % of similar magnitude. j}s/)}n|  
    % <?}pCX/O  
    % ZERNPOL has been written using a vectorized implementation: multiple C& XPn;f  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ceD6q~)  
    % values can be passed as inputs) for a vector of points R.  To achieve 2 'D,1F  
    % this vectorization most efficiently, the algorithm in ZERNPOL %eW7AO>  
    % involves pre-determining all the powers p of R that are required to =3A4.nW  
    % compute the outputs, and then compiling the {R^p} into a single ~Dz:n]Vk/  
    % matrix.  This avoids any redundant computation of the R^p, and 7CSz  
    % minimizes the sizes of certain intermediate variables. Im!b-1  
    % :4Nv6X61  
    %   Paul Fricker 11/13/2006 2#3`[+g<n  
    V_D wHq2  
    $d])>4eQ  
    % Check and prepare the inputs: g\8B;  
    % ----------------------------- S;gy:n!t  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ZWGX*F#}P  
        error('zernpol:NMvectors','N and M must be vectors.') OHj>ufwVq  
    end bc~$"  
    n'{jc 6&|  
    if length(n)~=length(m) b?Uk%Z]+v  
        error('zernpol:NMlength','N and M must be the same length.') 3D!7,@&>3  
    end 3)LS#=  
    vE8'B^h1  
    n = n(:); , %8)I("  
    m = m(:); +/eJ#Xw3u8  
    length_n = length(n); ; S$  
    7][fciZN  
    if any(mod(n-m,2)) tjB)-=j[  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') e!L5 v?  
    end fp\mBei  
    DO-M0L  
    if any(m<0) NIQ}+xpC  
        error('zernpol:Mpositive','All M must be positive.') =_iYT044p  
    end jPZ+~:m+  
    2)\MxvfOh  
    if any(m>n) E'D16Rhp  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') &8Vh3QLEx  
    end eN </H.bm]  
    \b"|p%CL8  
    if any( r>1 | r<0 ) 'nh2}  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') bpU> (j  
    end '%ZKvZ-  
    zjcSn7iu  
    if ~any(size(r)==1) fQU_:[ Uz  
        error('zernpol:Rvector','R must be a vector.') )B&`<1Oie  
    end SFtcO  
    O;V^Fk(  
    r = r(:); ^z{Xd|{"  
    length_r = length(r); .>[l@x"  
    Vj1V;dHv  
    if nargin==4 7G;1n0m-T  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); I0Allw[  
        if ~isnorm 5{+2#-  
            error('zernpol:normalization','Unrecognized normalization flag.') "q=ss:(  
        end oMLs22Do?  
    else e1JH N  
        isnorm = false;  "$J5cco  
    end N#RC;  
    XRQ1Uh6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pw]r&)I`y[  
    % Compute the Zernike Polynomials NvTK7? v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O`%F{&;29  
    nHDKe )V  
    % Determine the required powers of r: mS;WNlm\  
    % ----------------------------------- ^q/$a2<4  
    rpowers = []; Nl,iz_2]  
    for j = 1:length(n) +e*C`uP!  
        rpowers = [rpowers m(j):2:n(j)]; p< 0=. ~  
    end (;05=DsO  
    rpowers = unique(rpowers); 3]lq#p:  
    na9YlJ\  
    % Pre-compute the values of r raised to the required powers, 09P2<oFLn  
    % and compile them in a matrix: fH_l2b[-3@  
    % ----------------------------- v5pkP  
    if rpowers(1)==0 GhcH"D%-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LD NdHG6  
        rpowern = cat(2,rpowern{:}); g{sp<w0  
        rpowern = [ones(length_r,1) rpowern]; [:(O`#  
    else sUmpf4/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `W_&^>yl  
        rpowern = cat(2,rpowern{:}); [Y.JC'F#  
    end '-n Iy$>  
    AX6:*aZB  
    % Compute the values of the polynomials: j r .{M  
    % -------------------------------------- ZBx,'ph}4  
    z = zeros(length_r,length_n); 1R*;U8?  
    for j = 1:length_n zd- *UF i  
        s = 0:(n(j)-m(j))/2; ;=^J_2ls  
        pows = n(j):-2:m(j); 5W|wDy  
        for k = length(s):-1:1 KVEc:<|x  
            p = (1-2*mod(s(k),2))* ... $6 Hf[(/e  
                       prod(2:(n(j)-s(k)))/          ... mAW(j@5sp  
                       prod(2:s(k))/                 ... Bfdfw +  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... NRP) 'E  
                       prod(2:((n(j)+m(j))/2-s(k))); "%dENK  
            idx = (pows(k)==rpowers); l*w'  O  
            z(:,j) = z(:,j) + p*rpowern(:,idx); s m G?y~  
        end 5eF tcK  
         lFIaC}  
        if isnorm &YD+ s%OL  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \Wppl,"6c  
        end G)b:UJa"  
    end hv>Xr=RE  
    QqW N7y_9  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  5'(#Sf  
    3|/zlKZz  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 c^,8eb7c  
    0{Zwg0&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)