切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11544阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 L   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )"m!YuS Y  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NcAp_q? 4  
    function z = zernfun(n,m,r,theta,nflag) ~WpGf,  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. thqS*I'#g  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gXH[$guf  
    %   and angular frequency M, evaluated at positions (R,THETA) on the :~ A%#  
    %   unit circle.  N is a vector of positive integers (including 0), and 62>zt2=  
    %   M is a vector with the same number of elements as N.  Each element Zv_jy@k  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) p<v.Q   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~kCwJ<E  
    %   and THETA is a vector of angles.  R and THETA must have the same 0liR  
    %   length.  The output Z is a matrix with one column for every (N,M) U5]pi+r  
    %   pair, and one row for every (R,THETA) pair. m"9XT)N  
    % $) 5Bf3P0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zj|/ CxV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '>v^6i S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1,V`8 [  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ji;mHFZ*FU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2F8|I7R  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YUdxG/~'  
    % H\GkW6  
    %   The Zernike functions are an orthogonal basis on the unit circle. f2,1<^{  
    %   They are used in disciplines such as astronomy, optics, and Xm4CKuU@  
    %   optometry to describe functions on a circular domain. o."rxd  
    % Cj*-[ EL<  
    %   The following table lists the first 15 Zernike functions. !4rPv\   
    % Q#Y k?Kv~  
    %       n    m    Zernike function           Normalization v[lnw} =m9  
    %       -------------------------------------------------- Q8MS,7y/  
    %       0    0    1                                 1 XTDE53Js&  
    %       1    1    r * cos(theta)                    2 cMzkL%  
    %       1   -1    r * sin(theta)                    2 GyC/_ntn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) c[ht`!P  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ba3-t;S  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ?R5'#|EyX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]/T -t1D  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) GPWr>B.{:S  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) kHJ96G  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0"g@!gSrQ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1>r ,vD&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `Vq`z]}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5v^L9!`@%v  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t?^9HP1b_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) OSzjK7:  
    %       -------------------------------------------------- _B,_4}  
    % E-1"+p  
    %   Example 1: (}:C+p 'I  
    % X;!D};;M  
    %       % Display the Zernike function Z(n=5,m=1) &D#+6M&LK{  
    %       x = -1:0.01:1; Z v0C@r  
    %       [X,Y] = meshgrid(x,x); x "(9II*  
    %       [theta,r] = cart2pol(X,Y); K<v:-TjQZ:  
    %       idx = r<=1; /9Ilo\MdD  
    %       z = nan(size(X)); k:#6^!b1  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s T3p>8n  
    %       figure >m_v5K  
    %       pcolor(x,x,z), shading interp D{'#er  
    %       axis square, colorbar ^^(<c,NX#M  
    %       title('Zernike function Z_5^1(r,\theta)') *(cU]NUH_  
    % eFTX6XB:i  
    %   Example 2: V)D-pV V  
    % K%}}fw2RMN  
    %       % Display the first 10 Zernike functions `eRLc}aP2  
    %       x = -1:0.01:1; <E':[.zC  
    %       [X,Y] = meshgrid(x,x); uv4 _:   
    %       [theta,r] = cart2pol(X,Y); |)@N-f:E  
    %       idx = r<=1; i=v]:TOu  
    %       z = nan(size(X)); (OQ?<'Qa  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 1h"_[`L'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uC~g#[I QM  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v9}[$HWx  
    %       y = zernfun(n,m,r(idx),theta(idx)); #B\=Aa`*  
    %       figure('Units','normalized') .V%*{eHLL  
    %       for k = 1:10 =:h3w#_c  
    %           z(idx) = y(:,k); s0{ NsK>  
    %           subplot(4,7,Nplot(k)) DM3B]Yl  
    %           pcolor(x,x,z), shading interp U |F>W~%  
    %           set(gca,'XTick',[],'YTick',[]) .#^0pv!  
    %           axis square LD+f'^>>Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MB:n~>ga  
    %       end Nm8w/Q5D`  
    % NcL =z o<  
    %   See also ZERNPOL, ZERNFUN2. 8.I9}_  
    'o\;x"YJ  
    %   Paul Fricker 11/13/2006 $<e +r$1  
    {e]NU<G ,  
    j$eCe< .3  
    % Check and prepare the inputs: +Z? [M1g  
    % ----------------------------- 9y"TDo  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ku3!*n_\  
        error('zernfun:NMvectors','N and M must be vectors.') ;.Zh,cU  
    end jXEGSn  
    ~4s-S3YzaM  
    if length(n)~=length(m) ) Ypz!  
        error('zernfun:NMlength','N and M must be the same length.') k)E;(  
    end K[ ?R[  
    tE!'dpG5)  
    n = n(:); \7E`QY4  
    m = m(:); ~eo^`4O{{  
    if any(mod(n-m,2)) |vy]8?Ak  
        error('zernfun:NMmultiplesof2', ... *1;23BiH-  
              'All N and M must differ by multiples of 2 (including 0).') `=!p$hg($  
    end PN\V[#nS  
    Qp&?L"U)2  
    if any(m>n) ida*]+ ~  
        error('zernfun:MlessthanN', ... ^\YQ_/\~L  
              'Each M must be less than or equal to its corresponding N.') N^@ \tg=  
    end ;4d.)-<No_  
    N&B>#:  
    if any( r>1 | r<0 ) ZA.fa0n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Cnur"?w@o  
    end y@9Y,ZR*  
    Kcn\g.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p#b{xK  
        error('zernfun:RTHvector','R and THETA must be vectors.') k E_ky)  
    end -HTL5  
    \|!gPc%s  
    r = r(:); /:6Q.onmLn  
    theta = theta(:); jI#z/a!j:  
    length_r = length(r); wU0K3qZL  
    if length_r~=length(theta) s1@@o#r  
        error('zernfun:RTHlength', ... 2$ VTu+  
              'The number of R- and THETA-values must be equal.') f)tc4iV  
    end ,'-?:`hP'  
    kt<@H11  
    % Check normalization: 7S2c|U4IM  
    % -------------------- Ge9}8  
    if nargin==5 && ischar(nflag) a&:>Ped"  
        isnorm = strcmpi(nflag,'norm'); 7h1"^}M&  
        if ~isnorm Lnx2xoNk  
            error('zernfun:normalization','Unrecognized normalization flag.') vUfO4yfdg  
        end oF&IC j0  
    else hE5G!@1F  
        isnorm = false; q5gP~*?  
    end lDU#7\5.  
    #]5)]LF1q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &O{t^D)F  
    % Compute the Zernike Polynomials &`sR){R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DD6'M U4  
    7?]!Ecr"  
    % Determine the required powers of r: HtS#_y%(  
    % ----------------------------------- @ YrGyq  
    m_abs = abs(m); 9>zDJx  
    rpowers = []; |Qq+8IeYG  
    for j = 1:length(n) j5A\y^Kv  
        rpowers = [rpowers m_abs(j):2:n(j)]; U*xxrt/On/  
    end 5z[6rT=a  
    rpowers = unique(rpowers); " V/k<HRw  
    tQ6|PV  
    % Pre-compute the values of r raised to the required powers, k#-[ M.i  
    % and compile them in a matrix: ;>'SV~F  
    % ----------------------------- wISzT^RS  
    if rpowers(1)==0 @s?oJpo  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SFOQM*H  
        rpowern = cat(2,rpowern{:}); tdb4?^.s  
        rpowern = [ones(length_r,1) rpowern]; 7Fc |  
    else t3M0La&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^zkd{ov  
        rpowern = cat(2,rpowern{:}); @+Pf[J41  
    end ur`V{9g  
    s!=!A  
    % Compute the values of the polynomials: %0Vc\M@"G  
    % -------------------------------------- 6vZt43"m?\  
    y = zeros(length_r,length(n)); "9.6\Y\*  
    for j = 1:length(n) ;?#i]Bh>S  
        s = 0:(n(j)-m_abs(j))/2;  MbM :3  
        pows = n(j):-2:m_abs(j); VN!^m]0  
        for k = length(s):-1:1 dfXV1B5  
            p = (1-2*mod(s(k),2))* ... ],!p p3U  
                       prod(2:(n(j)-s(k)))/              ... Ubpg92  
                       prod(2:s(k))/                     ... <,#rtVO$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~mW>_[RT;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); a#>t+.dd  
            idx = (pows(k)==rpowers); AZ}%MA; q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); rjt O`Mt`  
        end 6pS Rum  
         ~91uk3ST?  
        if isnorm pvI&-D #}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w2s,  
        end "F04c|oR<X  
    end 9n-RXVL+  
    % END: Compute the Zernike Polynomials fdvi}SS8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]q@rGD85K  
    >2*6qx>V  
    % Compute the Zernike functions: N7%=K9  
    % ------------------------------ Pau&4h0  
    idx_pos = m>0; c M|af#o  
    idx_neg = m<0; Di]Iy  
    ZD iW72&Q  
    z = y; !<JG&9ODP  
    if any(idx_pos) O7E;W| ]  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^S>!kt7io  
    end ^2(";.m  
    if any(idx_neg) tauP1&%oH{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ZzSJm+&'  
    end )3d:S*ly  
    T749@!v`z  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) b3jU~L$  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. P<g|y4h  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated R;N>#_9HU  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive j.e`ip  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, S<)RVm,!e  
    %   and THETA is a vector of angles.  R and THETA must have the same A_8`YN"Xk  
    %   length.  The output Z is a matrix with one column for every P-value, bDcWb2 lqs  
    %   and one row for every (R,THETA) pair. S@l a.0HDA  
    % f^>lObvd  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike rmAP&Gw I  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) '{1W)X  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) gGceK^#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 >(YPkmH  
    %   for all p. &)/H?S;yN  
    % \^^hG5f  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 co(fGp#!  
    %   Zernike functions (order N<=7).  In some disciplines it is }*{\)7g  
    %   traditional to label the first 36 functions using a single mode U(=f5|-  
    %   number P instead of separate numbers for the order N and azimuthal r A&#>R`  
    %   frequency M. 0*'`%W+5  
    % p3'mJ3MA  
    %   Example: J,&`iL-  
    %  G$cq   
    %       % Display the first 16 Zernike functions HtS1N}@  
    %       x = -1:0.01:1; p'9 V. _h  
    %       [X,Y] = meshgrid(x,x); 9# .NPfMF  
    %       [theta,r] = cart2pol(X,Y); [ a65VR~J  
    %       idx = r<=1; !SD [6Z.R  
    %       p = 0:15; u"CIPc{Sr  
    %       z = nan(size(X)); :9O0?6:B|  
    %       y = zernfun2(p,r(idx),theta(idx)); E|6Z]6[  
    %       figure('Units','normalized') jwtXI\@MS  
    %       for k = 1:length(p) 9-e[S3ziM  
    %           z(idx) = y(:,k); kAKqW7,q"  
    %           subplot(4,4,k) It,n +A  
    %           pcolor(x,x,z), shading interp ?yd(er<_f  
    %           set(gca,'XTick',[],'YTick',[]) D aqy+:  
    %           axis square 9  lazo  
    %           title(['Z_{' num2str(p(k)) '}']) >?uH#%C5  
    %       end iTtAj~dfZ  
    % XiZ Zo  
    %   See also ZERNPOL, ZERNFUN. qS[p|*BL  
    cq+M *1;  
    %   Paul Fricker 11/13/2006 th>yi)m  
    7l|>  
    xF:poi  
    % Check and prepare the inputs: <LA`PbQa  
    % ----------------------------- =-B3vd:LF  
    if min(size(p))~=1 )Q pP1[  
        error('zernfun2:Pvector','Input P must be vector.') @|*Z0bn'  
    end ?p/kuv{\o#  
    qytGs@p_  
    if any(p)>35 F|3FvxA  
        error('zernfun2:P36', ... O|g!Y(  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... F|ML$  
               '(P = 0 to 35).']) {II7%\ya  
    end ?jM7C}  
    Exo`Z`m`U  
    % Get the order and frequency corresonding to the function number: }_D5, k  
    % ---------------------------------------------------------------- (NWN&  
    p = p(:); xo"4mbTV  
    n = ceil((-3+sqrt(9+8*p))/2); z E7ocul  
    m = 2*p - n.*(n+2); XU })3]/  
    NS/L! "g  
    % Pass the inputs to the function ZERNFUN: QvQf@o  
    % ---------------------------------------- QbKYB  
    switch nargin X52jqXjg  
        case 3 ,Vn]Ft?n  
            z = zernfun(n,m,r,theta); m$UT4,Ol  
        case 4 v'~nABYH  
            z = zernfun(n,m,r,theta,nflag); :phD?\!w8t  
        otherwise m ?tnk?oX  
            error('zernfun2:nargin','Incorrect number of inputs.') gm8Tm$fY  
    end q,>F#A '  
    Z*Hxrw\!0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) "RX5] eJc\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. fQA)r  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of qJzK8eW  
    %   order N and frequency M, evaluated at R.  N is a vector of c] 0  
    %   positive integers (including 0), and M is a vector with the Mz. &d:  
    %   same number of elements as N.  Each element k of M must be a Gqc6).tn  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8GZjIW*0oq  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is jmzvp6N$8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix =F-^RnO%\  
    %   with one column for every (N,M) pair, and one row for every 4< >:]  
    %   element in R. ~u& O  
    % e Em0c]]9  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- %}5"5\Zz  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is "J:NW_U  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to % +"AF+c3r  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )g<qEyJR  
    %   for all [n,m]. !VTS $nJ4  
    % s H[34gCh;  
    %   The radial Zernike polynomials are the radial portion of the E1v<-UPbA  
    %   Zernike functions, which are an orthogonal basis on the unit DL!s)5!M  
    %   circle.  The series representation of the radial Zernike Elk$9 < <  
    %   polynomials is gUtbCqDS  
    % rAdcMFW  
    %          (n-m)/2 K'/x9.'%  
    %            __ `IQC\DSl/  
    %    m      \       s                                          n-2s VQ 3&  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r rzj'!~>U  
    %    n      s=0 3AL=*qq  
    % Y }d>%i+  
    %   The following table shows the first 12 polynomials. /7)G"qG~F~  
    % J(VZa_  
    %       n    m    Zernike polynomial    Normalization /VZU3p<~  
    %       --------------------------------------------- 9h=WWu',  
    %       0    0    1                        sqrt(2) ]F-6KeBc  
    %       1    1    r                           2 2`eu3vA  
    %       2    0    2*r^2 - 1                sqrt(6) ;.a)r  
    %       2    2    r^2                      sqrt(6) Z|wDM^Lf  
    %       3    1    3*r^3 - 2*r              sqrt(8) =#fvdj  
    %       3    3    r^3                      sqrt(8) MT gEq  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) %LW~oI.  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) rt;>pQ9,  
    %       4    4    r^4                      sqrt(10) `<Nc Y*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) @"2-tn@q_  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) t!N >0]:mo  
    %       5    5    r^5                      sqrt(12) u8=|{)yL  
    %       --------------------------------------------- h*%1Jkxu  
    % 2yc\A3ft#  
    %   Example: Y[,C1,  
    % 5toNEDN  
    %       % Display three example Zernike radial polynomials w$HC!  
    %       r = 0:0.01:1; qm_E/B  
    %       n = [3 2 5]; (<-0UR]%q;  
    %       m = [1 2 1]; % m$Mn x  
    %       z = zernpol(n,m,r); _<Tz 1>j=  
    %       figure 014!~c  
    %       plot(r,z) GMI >$$<  
    %       grid on |u=57II#xK  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') dGN*K}5  
    % `Y9@?s Q  
    %   See also ZERNFUN, ZERNFUN2. |Dli6KN  
    Jy$-)  
    % A note on the algorithm. v4^VYi,.-  
    % ------------------------ #=m5*}=  
    % The radial Zernike polynomials are computed using the series =p:6u_@XWj  
    % representation shown in the Help section above. For many special lPP7w`[PA  
    % functions, direct evaluation using the series representation can (Zkt2[E`  
    % produce poor numerical results (floating point errors), because y.OUn'^d4  
    % the summation often involves computing small differences between }=5(*Vg  
    % large successive terms in the series. (In such cases, the functions WOoVVjMM  
    % are often evaluated using alternative methods such as recurrence <#i'3TUR  
    % relations: see the Legendre functions, for example). For the Zernike vzPrG%Uu7g  
    % polynomials, however, this problem does not arise, because the u]-$]zIH  
    % polynomials are evaluated over the finite domain r = (0,1), and :PJjy6,1  
    % because the coefficients for a given polynomial are generally all )JON&~C  
    % of similar magnitude. nMqU6X>P!  
    % 'UCL?$  
    % ZERNPOL has been written using a vectorized implementation: multiple >~k Y{_  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] *2Kte'+q  
    % values can be passed as inputs) for a vector of points R.  To achieve b9Nw98`  
    % this vectorization most efficiently, the algorithm in ZERNPOL u)ItML  
    % involves pre-determining all the powers p of R that are required to 6|x<) Gc  
    % compute the outputs, and then compiling the {R^p} into a single n&lLC&dL  
    % matrix.  This avoids any redundant computation of the R^p, and HH+XEMP/g  
    % minimizes the sizes of certain intermediate variables. ?e*vvu33!  
    % iFnM6O$(  
    %   Paul Fricker 11/13/2006 DzMkeX  
    GfV9Ox   
    }z6HxB]$  
    % Check and prepare the inputs: QaV*}W  
    % ----------------------------- /V~(!S>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?Eed#pb_  
        error('zernpol:NMvectors','N and M must be vectors.') Z]dc%>  
    end 6 AY%o nY  
    ?*HlAVDcFT  
    if length(n)~=length(m) TM9>r :j'  
        error('zernpol:NMlength','N and M must be the same length.') ?Z"}RMM)8  
    end 6gn|WO=W f  
    6Z 7$ZQ~  
    n = n(:); dpS  
    m = m(:); OpfFF;"A'  
    length_n = length(n); #i? TCO  
    v%r!}s  
    if any(mod(n-m,2)) m`|+_{4[n  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Al?XJ C B@  
    end WO^h\#^n  
    6+>rf{5P7  
    if any(m<0) f>o@Y]/l  
        error('zernpol:Mpositive','All M must be positive.') FM5$83Q  
    end Sq,x@  
    $%<gp@Gz  
    if any(m>n) M&L"yQA  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') DN+iS  
    end &,+ZN A`P  
    "o`( kYSF  
    if any( r>1 | r<0 ) ,b/0_Q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 6%? NNEM  
    end iJcl0)|  
    Q{RHW@_/  
    if ~any(size(r)==1) ie)Qsw@  
        error('zernpol:Rvector','R must be a vector.') H 74hv`G9  
    end a&&EjI  
    d7 @ N~<n  
    r = r(:); $O[ut.   
    length_r = length(r); `7NgQ*g.d/  
    HHdc[pJ0D  
    if nargin==4 3Xy>kG}  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); >Kx l+F  
        if ~isnorm >?5`FC  
            error('zernpol:normalization','Unrecognized normalization flag.') Q x:+n`$/  
        end 8.@ yD^'  
    else ~"(1~7_  
        isnorm = false; wvfCj6}S &  
    end .! &YO/  
    )]>9\(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iS{)Tll}&  
    % Compute the Zernike Polynomials 3.>jagu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r`5;G4UI  
    s;A]GJ  
    % Determine the required powers of r: @9^kl$  
    % ----------------------------------- lps  
    rpowers = []; ]M_)f  
    for j = 1:length(n) y jb.6  
        rpowers = [rpowers m(j):2:n(j)]; PRs[:we~~  
    end ; qvZ*  
    rpowers = unique(rpowers); f+d{^-  
    371E S4  
    % Pre-compute the values of r raised to the required powers, xx%WIY:}  
    % and compile them in a matrix: ;$Wa=wHb  
    % ----------------------------- 9,,1\0-T*  
    if rpowers(1)==0 %o~zsIl  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c45Mv_  
        rpowern = cat(2,rpowern{:}); k (Ow.nkb  
        rpowern = [ones(length_r,1) rpowern]; 0<e7!M=U1  
    else seJc,2Ex  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z\fk?Tj<ro  
        rpowern = cat(2,rpowern{:}); l_DPlY  
    end ]J~5{srq:  
    &:Q""e!  
    % Compute the values of the polynomials: F M`pPx  
    % -------------------------------------- L/V3sSt  
    z = zeros(length_r,length_n); |>VHV} 4)<  
    for j = 1:length_n =uD2j9!"7  
        s = 0:(n(j)-m(j))/2; -5.>9+W8I  
        pows = n(j):-2:m(j); |GIT{_JE  
        for k = length(s):-1:1 LV`- eW  
            p = (1-2*mod(s(k),2))* ... t#kmtJC  
                       prod(2:(n(j)-s(k)))/          ... 3n X7$$X  
                       prod(2:s(k))/                 ... a29mVmi>  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... sW[42A  
                       prod(2:((n(j)+m(j))/2-s(k))); C}45ZI4  
            idx = (pows(k)==rpowers); 2 !{P<   
            z(:,j) = z(:,j) + p*rpowern(:,idx); enZW2o97c  
        end <&:3|2p  
         %R(j|a9z  
        if isnorm 3fpX  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }P^{\SDX  
        end IWTD>c).  
    end F/mD05{  
    WMrK8e'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  kce+aiv|u  
    E;9SsA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 \HV%579  
    b:Wl B[5  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)