切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11170阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "M}3T?0 O  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 3w&Z:<  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 XZ 4H(Cj  
    function z = zernfun(n,m,r,theta,nflag) \ccCrDz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Zr|\T7w 3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N es1'z.UJ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \tfhF#'  
    %   unit circle.  N is a vector of positive integers (including 0), and |?LUt@r;  
    %   M is a vector with the same number of elements as N.  Each element ]GiDfYs7%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) s;,ulME  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "|GX%> /  
    %   and THETA is a vector of angles.  R and THETA must have the same Bg}(Sy  
    %   length.  The output Z is a matrix with one column for every (N,M) `aM8L  
    %   pair, and one row for every (R,THETA) pair. w1)SuMFK_  
    % b/UjKNf@  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Lu[xoQ~I  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w/wU~~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral $+n5l@W  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +IM6 GeH  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $ItPUYi";  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. q;<Q-jr&O  
    % J1d|L|M  
    %   The Zernike functions are an orthogonal basis on the unit circle. *h~(LH"tN  
    %   They are used in disciplines such as astronomy, optics, and |"Fm<  
    %   optometry to describe functions on a circular domain. IWnyqt(k  
    % JT*Pm"}  
    %   The following table lists the first 15 Zernike functions. W4S]2P>T  
    % /i IWt\J  
    %       n    m    Zernike function           Normalization GI/4<J\  
    %       -------------------------------------------------- F <.} q|b  
    %       0    0    1                                 1 A5YS "i  
    %       1    1    r * cos(theta)                    2 hJGWa%`  
    %       1   -1    r * sin(theta)                    2 % ^&D,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =ve, !  
    %       2    0    (2*r^2 - 1)                    sqrt(3) du^r EMb%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _R;+}1G/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0@2pw2{Ru  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) &;@U54,wV  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Kvh6D"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) K9Bi2/N  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) uH8`ipX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mG+hLRTXP  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) OuU]A[r  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1a;&&!X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ppPzI,  
    %       -------------------------------------------------- 6| {uZNz  
    % g# <M/qn  
    %   Example 1: Gq^#.o]  
    % KDy:A>_ G"  
    %       % Display the Zernike function Z(n=5,m=1) Vr<ypyC  
    %       x = -1:0.01:1; 2s8(r8AI  
    %       [X,Y] = meshgrid(x,x); C 6wlRvWn  
    %       [theta,r] = cart2pol(X,Y); TkV$h(#!f&  
    %       idx = r<=1; l%9nA.M'  
    %       z = nan(size(X)); 8Zvh"Z?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `-)Fx<e  
    %       figure |cq%eN  
    %       pcolor(x,x,z), shading interp x_|:3I  
    %       axis square, colorbar e,Fe,5E&g  
    %       title('Zernike function Z_5^1(r,\theta)') ]<\; -i)  
    %  kn|z  
    %   Example 2: sTG e=}T8  
    % *oz=k  
    %       % Display the first 10 Zernike functions QTjOLK$e$  
    %       x = -1:0.01:1; i4oBi]$T  
    %       [X,Y] = meshgrid(x,x); rCO:39L-  
    %       [theta,r] = cart2pol(X,Y); d<l-Ldle  
    %       idx = r<=1; Y/w) VV  
    %       z = nan(size(X)); 2 -M]!x)  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 7c Gq.U  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; yy-\$<j  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Rd.[8#7VE  
    %       y = zernfun(n,m,r(idx),theta(idx)); )SYZ*=ezl.  
    %       figure('Units','normalized') y i/jZX  
    %       for k = 1:10 U[8Cg  
    %           z(idx) = y(:,k); ';?b99  
    %           subplot(4,7,Nplot(k)) u3H2\<  
    %           pcolor(x,x,z), shading interp n"{oj7E0a  
    %           set(gca,'XTick',[],'YTick',[]) eX>X=Ku  
    %           axis square 8M;G@ Q80  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) q3E_.{t  
    %       end !j.jvI%e;  
    % E5 0$y:  
    %   See also ZERNPOL, ZERNFUN2. P'6(HT>F?  
    7a:mZ[Vh  
    %   Paul Fricker 11/13/2006 GcPhT  
     <XxFR  
    >AW=N  
    % Check and prepare the inputs: 4GRmo"S  
    % ----------------------------- mckrR$>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :{tvAdMl7  
        error('zernfun:NMvectors','N and M must be vectors.') B1A5b=6G<  
    end -zVa[ &  
    2;`"B|-T  
    if length(n)~=length(m) ;pNHT*>u,  
        error('zernfun:NMlength','N and M must be the same length.') (UV+/[,  
    end [y T4n.f  
    Wwf#PcC]  
    n = n(:); ?%h JZm;  
    m = m(:); 8D:{05  
    if any(mod(n-m,2)) -$4%@Z  
        error('zernfun:NMmultiplesof2', ... E#FyL>:.h  
              'All N and M must differ by multiples of 2 (including 0).') [@= [< _r  
    end BKm$H! u  
    f6Wu+~|Y  
    if any(m>n) "/?*F\5  
        error('zernfun:MlessthanN', ... ${ ~UA 6  
              'Each M must be less than or equal to its corresponding N.') ?Ib/}JST  
    end puv*p %E  
    O.E   
    if any( r>1 | r<0 ) zY|]bP[NEH  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') K`FgU 7g{  
    end Sh]x`3 ).  
    kI3-G~2  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .so{ RI  
        error('zernfun:RTHvector','R and THETA must be vectors.') &hba{!`y  
    end Y(SgfWeK@1  
    ~]/X,Cf  
    r = r(:); N)h>Ie  
    theta = theta(:); XI\aZ\v  
    length_r = length(r); 7Yxy2[  
    if length_r~=length(theta) G6eC.vU]j  
        error('zernfun:RTHlength', ... Ik1,?A  
              'The number of R- and THETA-values must be equal.') 4T9hT~cT7  
    end S_:(I^  
    *4qsM,t  
    % Check normalization: uPV,-rm[F_  
    % -------------------- %i%Xi+{3  
    if nargin==5 && ischar(nflag) .tN)H1.:B  
        isnorm = strcmpi(nflag,'norm'); B:z-?u#B  
        if ~isnorm 4 _N)1u !  
            error('zernfun:normalization','Unrecognized normalization flag.') H]=3^g64  
        end 0 $e;#}  
    else <'~8mV1  
        isnorm = false; n/@/yJ<EFi  
    end B;;D(NH  
    0v0Y( Mo@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &F'v_9  
    % Compute the Zernike Polynomials U&3*c+B4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XU9=@y+|v  
    TKLy38  
    % Determine the required powers of r: q 8=u.T  
    % ----------------------------------- Uzb"$Ue4  
    m_abs = abs(m); [l#WS  
    rpowers = []; E}@8sY L  
    for j = 1:length(n) yekIw  
        rpowers = [rpowers m_abs(j):2:n(j)]; @?B=8VHR  
    end +H&_Z38n  
    rpowers = unique(rpowers); D?\K~U* >  
    d;<n [)@  
    % Pre-compute the values of r raised to the required powers, FYcMvY  
    % and compile them in a matrix:  29sgi"  
    % ----------------------------- pXFNK" jm  
    if rpowers(1)==0 qfSoF|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2hJ{+E.m  
        rpowern = cat(2,rpowern{:}); HnP;1Gi  
        rpowern = [ones(length_r,1) rpowern]; {yb\p9q{Yo  
    else NNl/'ge <\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7-o=E=  
        rpowern = cat(2,rpowern{:}); }=;>T)QmMO  
    end OaCL'!  
    i9!Urq-  
    % Compute the values of the polynomials: 5&X  
    % -------------------------------------- n/,7ryu  
    y = zeros(length_r,length(n)); 3K?0PRg  
    for j = 1:length(n) n~&R_"mv(  
        s = 0:(n(j)-m_abs(j))/2; rd,mbH[<C  
        pows = n(j):-2:m_abs(j); / a$+EQ$  
        for k = length(s):-1:1 Tc88U8Gc  
            p = (1-2*mod(s(k),2))* ... ,\IqKRcYU  
                       prod(2:(n(j)-s(k)))/              ... pz&=5F  
                       prod(2:s(k))/                     ... ?Nh%!2n  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F7;xf{n<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,K9UT#h  
            idx = (pows(k)==rpowers); /hX"O ?^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 40#KcbMa|  
        end -8tA~;p  
         xapkhIW2\  
        if isnorm @zJI0_Bp  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =O;SXzgE  
        end \OU+Kl<  
    end 7&At _l_  
    % END: Compute the Zernike Polynomials w@: ]]R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^X&9"x)4  
    X#3<hN*v  
    % Compute the Zernike functions: z$Nk\9wm  
    % ------------------------------ pt4xUu{  
    idx_pos = m>0; *cf"l  
    idx_neg = m<0; vfv5ex(  
    r6$=|Yto  
    z = y; %7d"()L  
    if any(idx_pos) 20moX7L  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7k\7G=  
    end Q jBCkx]g  
    if any(idx_neg) ltrSTH,kL  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `{wku@  
    end 1}BNG,n  
    pMB=iS<E  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) O<h#|g1  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. cx,A.Lc  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Zd(d]M_x  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive S1zw'!O5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, :'dc=C  
    %   and THETA is a vector of angles.  R and THETA must have the same M([H\^\:  
    %   length.  The output Z is a matrix with one column for every P-value, 7S2F^,w  
    %   and one row for every (R,THETA) pair. YgiGI <U  
    % lkZC?--H  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike oPy zk7{  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8@aS9 th$  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 4) 3pa*  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 | q16%6q  
    %   for all p. #(IMRdUf  
    % BNCJT$t YX  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 SU'1#$69F  
    %   Zernike functions (order N<=7).  In some disciplines it is ;0!Wd  
    %   traditional to label the first 36 functions using a single mode tTFoS[V  
    %   number P instead of separate numbers for the order N and azimuthal x#0@ $  
    %   frequency M. 4)iEj  
    % &{/>Sv!6#  
    %   Example: H27Oq8  
    % OZ;E&IL  
    %       % Display the first 16 Zernike functions JX)z<Dz$  
    %       x = -1:0.01:1; otSPi7|k  
    %       [X,Y] = meshgrid(x,x); _Af4ct;ng  
    %       [theta,r] = cart2pol(X,Y); ,A!e"=HF  
    %       idx = r<=1; pmyM&'#Id  
    %       p = 0:15; 4<g72| y  
    %       z = nan(size(X)); ~9 WJrRWB  
    %       y = zernfun2(p,r(idx),theta(idx)); &&nO]p`  
    %       figure('Units','normalized') fJw=7t-t  
    %       for k = 1:length(p) D Ok^ON  
    %           z(idx) = y(:,k); }PIB b  
    %           subplot(4,4,k) V&oT':%q  
    %           pcolor(x,x,z), shading interp  "$Iw Q  
    %           set(gca,'XTick',[],'YTick',[]) K^vp(2  
    %           axis square !-RpRRR[Co  
    %           title(['Z_{' num2str(p(k)) '}']) O 4Pd N?  
    %       end DVoV:pk  
    % K}=8:BaUL  
    %   See also ZERNPOL, ZERNFUN. y [9}[NMZ  
    \Tf{ui  
    %   Paul Fricker 11/13/2006 eAYW%a  
    Zc3:9   
    Px7g\[]  
    % Check and prepare the inputs: xFm{oJ!]&  
    % ----------------------------- ar qLp|  
    if min(size(p))~=1 lcT+$4zk.  
        error('zernfun2:Pvector','Input P must be vector.') ROt0<^<  
    end .-u k   
    _{`'{u  
    if any(p)>35 YeExjC  
        error('zernfun2:P36', ... DET!br'z5  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 'Tf#S@o  
               '(P = 0 to 35).']) 5-5(`OZ{'  
    end 9poEUjBI  
    LYy:IBI7_  
    % Get the order and frequency corresonding to the function number: ,6orB}w?z  
    % ---------------------------------------------------------------- B mBzOk^  
    p = p(:); mf;^b.mKh  
    n = ceil((-3+sqrt(9+8*p))/2); FSwgPIO>  
    m = 2*p - n.*(n+2); [OoH5dD  
    G E~(N N  
    % Pass the inputs to the function ZERNFUN: So\|Ye  
    % ---------------------------------------- UGC|C F2K  
    switch nargin jdg ~!<C  
        case 3 &^ 3~=$  
            z = zernfun(n,m,r,theta); .f !]@"\  
        case 4 @Wx`l) b  
            z = zernfun(n,m,r,theta,nflag); G\:psx/  
        otherwise 3n84YX{  
            error('zernfun2:nargin','Incorrect number of inputs.') L >Ez-  
    end rGn5Q V  
    ngkeJ)M0$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Qw6KX#n  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. T[4[/n> i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of +J o 3rX'`  
    %   order N and frequency M, evaluated at R.  N is a vector of ezg^5o;  
    %   positive integers (including 0), and M is a vector with the 0?6 If+AC  
    %   same number of elements as N.  Each element k of M must be a {7K'<ti  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \=EY@ *=  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 3I;xU(rv  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix re ]Ste  
    %   with one column for every (N,M) pair, and one row for every ;o_V!< $  
    %   element in R. /Oq)3fU e  
    % ^EC)~HP@C  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- W? "2;](  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is h+B'_ `(  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to E~<(i':  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ~}7$uW0ol  
    %   for all [n,m]. '&.)T 2Kw  
    % Qc&-\kQ:$u  
    %   The radial Zernike polynomials are the radial portion of the +gbX}jF0%  
    %   Zernike functions, which are an orthogonal basis on the unit -TK|Y"  
    %   circle.  The series representation of the radial Zernike &O+sK4 P  
    %   polynomials is 55>" R{q  
    % (^DLCP#*  
    %          (n-m)/2 &J lpA<^s;  
    %            __ ,c,Xd  
    %    m      \       s                                          n-2s `N|U"s;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r _C< 6349w  
    %    n      s=0 .g/ARwM}  
    % Xq8uY/j  
    %   The following table shows the first 12 polynomials. 2YE;m&  
    % '!j #X_;  
    %       n    m    Zernike polynomial    Normalization 97qtJ(ESI  
    %       --------------------------------------------- J{Y6fHFi  
    %       0    0    1                        sqrt(2) F,p`- m[q  
    %       1    1    r                           2 e5qrQwU  
    %       2    0    2*r^2 - 1                sqrt(6) #D|! .I)  
    %       2    2    r^2                      sqrt(6) B\=SAi  
    %       3    1    3*r^3 - 2*r              sqrt(8) !G)mjvEe  
    %       3    3    r^3                      sqrt(8) 5+e>+$2  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /v}P)&  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (R4PD  
    %       4    4    r^4                      sqrt(10) /<3;0~#){  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ~w Zl2I  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) _'! aj +{  
    %       5    5    r^5                      sqrt(12) Lv `#zgo_f  
    %       --------------------------------------------- I! h(`  
    % 7ei>L]gm%  
    %   Example: ;;EDN45  
    % N3uMkH-<  
    %       % Display three example Zernike radial polynomials "rme~w Di  
    %       r = 0:0.01:1; 82j'MgGP  
    %       n = [3 2 5]; fH{9]TU_:  
    %       m = [1 2 1]; B<|:K\MA  
    %       z = zernpol(n,m,r); 5x*5|8  
    %       figure v-P8WFjca  
    %       plot(r,z) Q)x?B]b-  
    %       grid on L*zbike  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') <Vz<{W3t  
    % Ni+3b  
    %   See also ZERNFUN, ZERNFUN2. lhLnygUk  
    a{<p '_  
    % A note on the algorithm. BQyvj\uJ  
    % ------------------------ ?j1_ n,d  
    % The radial Zernike polynomials are computed using the series N=OS\pz  
    % representation shown in the Help section above. For many special t9G}Yd[T  
    % functions, direct evaluation using the series representation can OJv}kwV  
    % produce poor numerical results (floating point errors), because i LF^%!:X%  
    % the summation often involves computing small differences between ~R :<Bw  
    % large successive terms in the series. (In such cases, the functions c5X`_  
    % are often evaluated using alternative methods such as recurrence w- UKMW9"  
    % relations: see the Legendre functions, for example). For the Zernike VLf g[*k  
    % polynomials, however, this problem does not arise, because the ?k [%\jq{a  
    % polynomials are evaluated over the finite domain r = (0,1), and ;*y|8od B  
    % because the coefficients for a given polynomial are generally all X Y~;)<s_  
    % of similar magnitude. %4j&H!y-w;  
    % LYp'vZ!  
    % ZERNPOL has been written using a vectorized implementation: multiple %0vTA_W  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] cvKV95bn  
    % values can be passed as inputs) for a vector of points R.  To achieve aGpCNc{+  
    % this vectorization most efficiently, the algorithm in ZERNPOL o[o:A|n  
    % involves pre-determining all the powers p of R that are required to }0$mn)*k  
    % compute the outputs, and then compiling the {R^p} into a single PKi_Zh.D  
    % matrix.  This avoids any redundant computation of the R^p, and Xc\* 9XV:  
    % minimizes the sizes of certain intermediate variables. Yx6hA#7I  
    % >Z *iE"9"  
    %   Paul Fricker 11/13/2006 DKh}Y !Q=:  
    #;d)?  
    0eFb?Z0]  
    % Check and prepare the inputs: CE{z-_{ ^  
    % ----------------------------- f Gb7=Fk  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Xad*I ulj  
        error('zernpol:NMvectors','N and M must be vectors.') g]za"U|g  
    end `8,w[o oC2  
    x ;Gz6|  
    if length(n)~=length(m) "LOnDa7E^  
        error('zernpol:NMlength','N and M must be the same length.') 4RhR[  
    end z+jh ;!i  
    4GVNw!V  
    n = n(:); z/S,+!|z  
    m = m(:); h}avX*Lx_  
    length_n = length(n); DR6]-j!FK  
    K'NcTw#f  
    if any(mod(n-m,2)) o w2$o\hC  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') cqEHYJ;B  
    end Gfv(w=rr?  
    X:_<Y_JT  
    if any(m<0) /KAlK5<  
        error('zernpol:Mpositive','All M must be positive.') Uh.Sc:trA  
    end u yFn}y62  
    Te;gVG*  
    if any(m>n) z5 Bi=~=#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') }w@gj"\H  
    end h4Ia>^@  
    =O,JAR"ug  
    if any( r>1 | r<0 ) AliRpxxd  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ^/*KNnAWp  
    end k5@d! }#c  
    >dk 9f}7-  
    if ~any(size(r)==1) /&h+t^l_Qj  
        error('zernpol:Rvector','R must be a vector.') ZW*n /#GUC  
    end XvskB[\  
    t^.'>RwW|  
    r = r(:); |z~LzSJv  
    length_r = length(r); ^Gq5ig1rxy  
    5[4Z=RP  
    if nargin==4 gLIT;BK  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); :tM?%=Q  
        if ~isnorm =Y9\DeIZ  
            error('zernpol:normalization','Unrecognized normalization flag.') Zn&k[?;Al  
        end m"4B!S&Fc(  
    else Zhzy.u/>  
        isnorm = false; iITp**l  
    end Uki9/QiX>  
    Pr+~Kif  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )47MFNr~>  
    % Compute the Zernike Polynomials ]TSg!H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ( KTnJZ  
    %jEY 3q  
    % Determine the required powers of r: K;U39ofW  
    % ----------------------------------- 6z?gg3GV  
    rpowers = [];  i-W  
    for j = 1:length(n) m&IsDAn  
        rpowers = [rpowers m(j):2:n(j)]; W J+> e+  
    end z<pJYpxH  
    rpowers = unique(rpowers); e"Rm_t  
    @u) 'yS  
    % Pre-compute the values of r raised to the required powers, vG Vd  
    % and compile them in a matrix: F Z!J  
    % ----------------------------- Ftv8@l  
    if rpowers(1)==0 q* !3C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H9` f0(H  
        rpowern = cat(2,rpowern{:}); 9s`/~ a@  
        rpowern = [ones(length_r,1) rpowern]; M=y0PCD  
    else 4:mCXP,x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '<@=vGsye  
        rpowern = cat(2,rpowern{:}); ;;V\"7q'  
    end 47UO*oLS  
    +a|/l  
    % Compute the values of the polynomials: 7>i2OBkAhB  
    % -------------------------------------- F9H~k"_ZJR  
    z = zeros(length_r,length_n); YQgNv` l}  
    for j = 1:length_n b2 kWjg.4  
        s = 0:(n(j)-m(j))/2; tNnyue{p  
        pows = n(j):-2:m(j); ksWSMxm  
        for k = length(s):-1:1 6^#uLp>  
            p = (1-2*mod(s(k),2))* ... 4;KWG}~[o  
                       prod(2:(n(j)-s(k)))/          ... ZA\/{Fw  
                       prod(2:s(k))/                 ... 4nkE IZ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... R$m`Z+/@  
                       prod(2:((n(j)+m(j))/2-s(k))); 9"sDm}5%  
            idx = (pows(k)==rpowers); .Q&rfH3  
            z(:,j) = z(:,j) + p*rpowern(:,idx); LJQ J\bT?  
        end (j&A",^^S  
         E \{<;S  
        if isnorm N4UM82N  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); xh0xSqDM  
        end eW8[I'v_&  
    end |n6Eg9  
    bJ3(ckhq  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  v 1.*IV5Y  
    F]=B'ZI  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 x0+glQrNN  
    W{Q)-y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)