非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 yEIM58l
function z = zernfun(n,m,r,theta,nflag) )isz
}?Dj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. hu0z):>y
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n@ lf+
% and angular frequency M, evaluated at positions (R,THETA) on the .Nz2K[
% unit circle. N is a vector of positive integers (including 0), and 3:Q5dr+1_
% M is a vector with the same number of elements as N. Each element |;e K5(|
% k of M must be a positive integer, with possible values M(k) = -N(k) ~kPHf_B;z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, L#mf[a@pCn
% and THETA is a vector of angles. R and THETA must have the same <VI.A" Qk~
% length. The output Z is a matrix with one column for every (N,M) ^N#B(F
% pair, and one row for every (R,THETA) pair. 6U5L>sQ
% IHHL. gT
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike TELN4*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t=o2:p6&
% with delta(m,0) the Kronecker delta, is chosen so that the integral =]jc{Y%o
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -J*BY2LU3f
% and theta=0 to theta=2*pi) is unity. For the non-normalized ewHk
(ru
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '4k
l$I
% #v+2W
% The Zernike functions are an orthogonal basis on the unit circle. 7pf]h$2
% They are used in disciplines such as astronomy, optics, and 4H'\nsM
% optometry to describe functions on a circular domain. .anXsjD%W
% 3gtQS3$4s
% The following table lists the first 15 Zernike functions. DCr&%)Ll
% T1AD(r\W5
% n m Zernike function Normalization 0N.B=j|
% -------------------------------------------------- L!G]i;=:
% 0 0 1 1 ?e( y/
% 1 1 r * cos(theta) 2 [w*YH5kX
% 1 -1 r * sin(theta) 2 mU@pRjq=
% 2 -2 r^2 * cos(2*theta) sqrt(6) _wMx KM
% 2 0 (2*r^2 - 1) sqrt(3) A)6xEeyR
% 2 2 r^2 * sin(2*theta) sqrt(6) :Z)a&A9v
% 3 -3 r^3 * cos(3*theta) sqrt(8) %;ST7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ;PM(q<@\
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \Gm$hTvB&
% 3 3 r^3 * sin(3*theta) sqrt(8) iY@wg 8ry
% 4 -4 r^4 * cos(4*theta) sqrt(10) xVYy`_|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &%eWCe++
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) e=uElp'%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G*;?&;*
% 4 4 r^4 * sin(4*theta) sqrt(10) b)ytm=7ha
% -------------------------------------------------- 4z6i{n-k
% 96G8B62
% Example 1: WEy$SN+P
% v *'anw&Z
% % Display the Zernike function Z(n=5,m=1) yC#%fgQ r
% x = -1:0.01:1; DzZEn]+zt
% [X,Y] = meshgrid(x,x); xib?XzxGo
% [theta,r] = cart2pol(X,Y); Aw?i6d
% idx = r<=1; Yf1&"WW4
% z = nan(size(X)); E3..$x-/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 3an9Rb V
% figure X=C*PWa7
% pcolor(x,x,z), shading interp Qc4r?7S<
% axis square, colorbar ki|KtKAu_9
% title('Zernike function Z_5^1(r,\theta)') DA=#T2)p
% i28WgDG)5
% Example 2: FR*CiaD1
% hSAdD!
% % Display the first 10 Zernike functions {L6@d1u
% x = -1:0.01:1; J!{"^^*
% [X,Y] = meshgrid(x,x); 6ijL+5
% [theta,r] = cart2pol(X,Y); ht>C 6y
% idx = r<=1; -9PJ4"H
% z = nan(size(X)); 5;v_?M!UCK
% n = [0 1 1 2 2 2 3 3 3 3]; ^Pwtu
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; qStZW^lFeY
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Fh8 8DDJ
% y = zernfun(n,m,r(idx),theta(idx)); DsJ ikg(J
% figure('Units','normalized') nm#ISueh
% for k = 1:10 )wZ;}O
% z(idx) = y(:,k); ]u5B]ZQnA
% subplot(4,7,Nplot(k)) ?.{SYaS
% pcolor(x,x,z), shading interp Ow"e3]}Mt
% set(gca,'XTick',[],'YTick',[]) ZYS`M?Au
% axis square 7Gh+EJJ3I
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
}H5~@c$
% end 8n&Gn%DvX
% +DsdzR`Gx,
% See also ZERNPOL, ZERNFUN2. pH9xyN[:a
Fok%
% Paul Fricker 11/13/2006 7y?aw`Sw:
*VX"_C0Jy=
EjA3hHJ
% Check and prepare the inputs: CE5A^,EsB
% ----------------------------- ?d!*[Ke8
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !V^wq]D2
error('zernfun:NMvectors','N and M must be vectors.') 42oW]b%P{;
end XJZ\ss
M&[bb $00j
if length(n)~=length(m) !{1;wC(b
error('zernfun:NMlength','N and M must be the same length.') #}p@+rkg2
end | V:9 ][\
v:F_!Q
n = n(:); V?L8BRnV
m = m(:); wo+b":
if any(mod(n-m,2)) =?3b3PZn
error('zernfun:NMmultiplesof2', ... T)Y{>wT
'All N and M must differ by multiples of 2 (including 0).') eS: 8Pn
end H 8x66}
.vnQZ*6
if any(m>n) \<aR^Sj.
error('zernfun:MlessthanN', ... P @Jo[J<
'Each M must be less than or equal to its corresponding N.') $ucDzf=o
end gbrn'NT
eKUP,y;[I
if any( r>1 | r<0 ) 41v#|%\w
error('zernfun:Rlessthan1','All R must be between 0 and 1.') <GWzdj?
end ]*Cq'<h$
^qY?x7mx1
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V8hmfV~=]P
error('zernfun:RTHvector','R and THETA must be vectors.') >Jk]=_%
end 'NNfzh
^'ws/(
r = r(:); rT|wZz9$@
theta = theta(:); \
z3>kvk
length_r = length(r); 8w$q4fg0
if length_r~=length(theta) J# DN2y<
error('zernfun:RTHlength', ... %<O0Yenu
'The number of R- and THETA-values must be equal.') 4 KX\'K
end (zX75QSKV
%M*2 j%6
% Check normalization: b%QcB[k[WB
% -------------------- Ya&\ b 6
if nargin==5 && ischar(nflag) Z8ds`KZM
isnorm = strcmpi(nflag,'norm'); *.6m,QqJ(
if ~isnorm +-!2nk`"a
error('zernfun:normalization','Unrecognized normalization flag.') `F$lO2 #k
end ]]NTvr
else l4>c
isnorm = false; m%cwhH_B
end S}P rgw/
hb<cynY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r+!29
% Compute the Zernike Polynomials W6s-epsRmT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3wMnTT"At
!C@+CZXLx
% Determine the required powers of r: mpNS}n6
% ----------------------------------- \4KV9wm
m_abs = abs(m); VfFbZds8f
rpowers = []; 6~-,.{Y
for j = 1:length(n) #}lWM%9Dy
rpowers = [rpowers m_abs(j):2:n(j)]; v?YxF}
end +!K*FU=).
rpowers = unique(rpowers); -%dBZW\u2
d"tR?j
% Pre-compute the values of r raised to the required powers, ]*hH.ZBY"^
% and compile them in a matrix: w$Z%RF'p
% ----------------------------- 3T/&T`T+c
if rpowers(1)==0 )x<BeD
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vSy[lB|)24
rpowern = cat(2,rpowern{:}); mqtYny'
rpowern = [ones(length_r,1) rpowern]; ?=im~
else w6h*dh$w
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SZUo RWx
rpowern = cat(2,rpowern{:}); ZfXgVTJ`
end V KxuK0{
q8!]x-5$6j
% Compute the values of the polynomials: Ae%AG@L
% -------------------------------------- [1mEdtqf*
y = zeros(length_r,length(n)); [tR b{JsUd
for j = 1:length(n) BV6B:=E0
s = 0:(n(j)-m_abs(j))/2; CQPq5/@Y4
pows = n(j):-2:m_abs(j); "A> _U<Y
for k = length(s):-1:1 e{H(
p = (1-2*mod(s(k),2))* ... 8F&Y;
prod(2:(n(j)-s(k)))/ ... \EXa 9X2
prod(2:s(k))/ ... k=cDPu -
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yJ="dEn>i"
prod(2:((n(j)+m_abs(j))/2-s(k))); y\})C-&
idx = (pows(k)==rpowers); +sV~#%%
y(:,j) = y(:,j) + p*rpowern(:,idx); "|Kag|(qB
end <I#M^}`
1xr2x;
if isnorm ExM VGe
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }>EWFE`
end 3~{0X-
end ]V)*WP#a
% END: Compute the Zernike Polynomials e<qfM&*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z6-ZAS(>m
=ym<yI<
% Compute the Zernike functions: !zsrORF{
% ------------------------------ FB:nkUR`
idx_pos = m>0; U^eos;:s8
idx_neg = m<0; |+KwyHE`9
'\GU(j
z = y; $fBj}\o
if any(idx_pos) UZs'H"K
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pSI8"GwQ
end K&,";9c
if any(idx_neg) *<[zG7+&[
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); J"Fp),
end Qm=iCZ|E^!
fZ&' _
% EOF zernfun