切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11242阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Q(P'4XCm  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! uXs.7+f  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h28")c.pH=  
    function z = zernfun(n,m,r,theta,nflag) rToZN!q\S  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. pmm?Fq!s=  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :%[=v (G[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 'H"wu /#  
    %   unit circle.  N is a vector of positive integers (including 0), and en"]u,!  
    %   M is a vector with the same number of elements as N.  Each element \8Mn[G9TL  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R+'$V$g\X  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1,  %+\ PN  
    %   and THETA is a vector of angles.  R and THETA must have the same hu?Q,[+o  
    %   length.  The output Z is a matrix with one column for every (N,M) tDWW 4H  
    %   pair, and one row for every (R,THETA) pair. &`#k 1t'  
    % S6k R o^2  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (0L7Ivg<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RrFq"  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral G,tJ\xMw8  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \Wdl1 =`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $uw[X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *&WkorByW  
    %  ]/l"  
    %   The Zernike functions are an orthogonal basis on the unit circle. PUt\^ke  
    %   They are used in disciplines such as astronomy, optics, and c$Vu/dgx  
    %   optometry to describe functions on a circular domain. 4*k>M+o/C4  
    % O$Wi=5  
    %   The following table lists the first 15 Zernike functions. ;yfKYN[  
    % bW"bkA80  
    %       n    m    Zernike function           Normalization bsfYz  
    %       -------------------------------------------------- Z XCq>  
    %       0    0    1                                 1 w_c)iJ  
    %       1    1    r * cos(theta)                    2 `pMI @"m  
    %       1   -1    r * sin(theta)                    2 ;^XF;zpg  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) t=,ZR}M1`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 26SXuFJ@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) xJG&vOf;?  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) UQ0Sf u  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) fL0dy[Ch@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) w}8 ,ICL  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) AcZ{B<  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) lk.]!K$}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0P{^aSxTP  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1NHiW v  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) noSkKqP  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^Rr!YnEN  
    %       -------------------------------------------------- <WXGDCj  
    % JD`IPQb~E  
    %   Example 1: qPI\Y3ZU  
    % d#-scv}s5  
    %       % Display the Zernike function Z(n=5,m=1) {Ad4H[]|]  
    %       x = -1:0.01:1; sj9j 47y  
    %       [X,Y] = meshgrid(x,x); l*r8.qp  
    %       [theta,r] = cart2pol(X,Y); _Y{8FN(4  
    %       idx = r<=1; /"(`oe<  
    %       z = nan(size(X));  Mi>!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ae%Bl[  
    %       figure 6o5NeKZ  
    %       pcolor(x,x,z), shading interp kM:Z(Z7$  
    %       axis square, colorbar x;^DlyyYU  
    %       title('Zernike function Z_5^1(r,\theta)') -yP|CZM  
    % { l E\y9  
    %   Example 2: /)%$xi  
    % C VXz>oM  
    %       % Display the first 10 Zernike functions gGaA;YW1  
    %       x = -1:0.01:1; _i3?;Fds  
    %       [X,Y] = meshgrid(x,x); |wxAdPe  
    %       [theta,r] = cart2pol(X,Y); H{)DI(,Y^P  
    %       idx = r<=1; c -sc*.&  
    %       z = nan(size(X)); 3_DwqZ 'O  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 8"'Z0 Ey  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; p*NKM} ]I  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Sg&0a$  
    %       y = zernfun(n,m,r(idx),theta(idx)); Y)O88C  
    %       figure('Units','normalized') 00 9[`Z  
    %       for k = 1:10 Ub,5~I+`  
    %           z(idx) = y(:,k); dguN<yS- E  
    %           subplot(4,7,Nplot(k)) T'ko =k  
    %           pcolor(x,x,z), shading interp mm dQ\\  
    %           set(gca,'XTick',[],'YTick',[]) rSgOQ  
    %           axis square ngt?9i;N  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V}Ok>6(~  
    %       end vE~>9  
    % 3>T2k }  
    %   See also ZERNPOL, ZERNFUN2. 3wYhDxY1  
    [g/ &%n0^  
    %   Paul Fricker 11/13/2006 5cF7w  
    H2jF=U"=  
    `o4%UkBpM  
    % Check and prepare the inputs: rq#\x{l  
    % ----------------------------- v:IpZ;^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qo*%S  
        error('zernfun:NMvectors','N and M must be vectors.') eqY8;/  
    end .)g7s? K  
    NiSybyR$  
    if length(n)~=length(m) @$7'{*  
        error('zernfun:NMlength','N and M must be the same length.') Z1~`S!(}  
    end cU|tG!Ij?  
    j5:/Gl8  
    n = n(:); 1F' x$~ZI  
    m = m(:); T;M4NGmvd  
    if any(mod(n-m,2))  vWH)W?2  
        error('zernfun:NMmultiplesof2', ... :|HCUZ*H(T  
              'All N and M must differ by multiples of 2 (including 0).') :!QT ,  
    end X:>,3[hx|  
    jmBsPSGIC  
    if any(m>n) 0woLB#v9  
        error('zernfun:MlessthanN', ... J $^"cCMr  
              'Each M must be less than or equal to its corresponding N.') hnnVp_<]  
    end Ln$= 8x^T  
    adn2&7H  
    if any( r>1 | r<0 ) X|'[\v2ld  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Vv&GyqoO]  
    end 1>=]lMW  
    j,79G^/YG  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h:=W`(n5u  
        error('zernfun:RTHvector','R and THETA must be vectors.') M\A6;dz'  
    end ZK4d;oa",  
    L2Fi/UWM  
    r = r(:); sh/4ui{  
    theta = theta(:); Tg@:mw5  
    length_r = length(r); {nj`>  
    if length_r~=length(theta) C <d]0)  
        error('zernfun:RTHlength', ... @:/H)F^x  
              'The number of R- and THETA-values must be equal.') ++!'6! l  
    end Ou]!@s  
    ~,Kx"VK  
    % Check normalization: V` 4/oM`  
    % -------------------- &9ERlZ(A  
    if nargin==5 && ischar(nflag) {%D4%X<  
        isnorm = strcmpi(nflag,'norm'); G.:QA}FE'  
        if ~isnorm aeE~[m  
            error('zernfun:normalization','Unrecognized normalization flag.') ew&"n2r  
        end w\1K.j=>|N  
    else 6(/*E=bOKV  
        isnorm = false; 5 )z'=  
    end 6J<R;g23R]  
    gn:&akg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8^pu C  
    % Compute the Zernike Polynomials E/hO0Ox6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !8*7{7  
    C ~Doj  
    % Determine the required powers of r: avY<~-44B  
    % ----------------------------------- e3k58  
    m_abs = abs(m); &<EixDi4q  
    rpowers = []; /],9N  
    for j = 1:length(n) y`Zn{mQ@[  
        rpowers = [rpowers m_abs(j):2:n(j)]; mq+x=  
    end l^2m7 7)  
    rpowers = unique(rpowers); !>:]k?$b  
    *{(tg~2'(  
    % Pre-compute the values of r raised to the required powers, L5 wR4Ue)  
    % and compile them in a matrix: ZKJhmk  
    % ----------------------------- nP0rg  
    if rpowers(1)==0 ~{ucr#]C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @!*I mNMI  
        rpowern = cat(2,rpowern{:}); Z3f}'vr  
        rpowern = [ones(length_r,1) rpowern]; ZU;nXqjc  
    else [$@EQ]tt/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GO3KKuQ=  
        rpowern = cat(2,rpowern{:}); $lg{J$ h8  
    end qb$M.-\ne  
    h\4enu9[RL  
    % Compute the values of the polynomials: T%yGSk  
    % -------------------------------------- CQs,G8 \/  
    y = zeros(length_r,length(n)); Q[9W{l+  
    for j = 1:length(n)  = Atyy  
        s = 0:(n(j)-m_abs(j))/2; eMtQa;Lc9o  
        pows = n(j):-2:m_abs(j); x$z>.4  
        for k = length(s):-1:1 _adW>-wQ!d  
            p = (1-2*mod(s(k),2))* ... |Es,$  
                       prod(2:(n(j)-s(k)))/              ... y;f nC5Q  
                       prod(2:s(k))/                     ... ~En]sj  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $ve*j=p  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); -0+h&CO  
            idx = (pows(k)==rpowers); !`dMTW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); aWY#gI{  
        end $XcuU sG  
         Y+gNi_dE  
        if isnorm A#gy[.Bb  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6('CB|ga  
        end !O4)Y M  
    end fs2y$HN  
    % END: Compute the Zernike Polynomials kR <\iT0j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zd=N.  
    mOJ-M@ME  
    % Compute the Zernike functions: tlgg~MViS  
    % ------------------------------ #Eqx E o;  
    idx_pos = m>0; _sQhDi  
    idx_neg = m<0; ;Q<2Y#  
    t\O#5mo  
    z = y; f%yNq6l  
    if any(idx_pos) QwLSL<.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ej<`HbJ 'Q  
    end sW&h?jdf  
    if any(idx_neg) MADt$_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j2oU1' b  
    end (Ft#6oK"  
    n`D-?]*  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %1 rN6A!%  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {w ]L'0ES[  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated  dK]#..  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive !Hj 7|5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, " t,ZO  
    %   and THETA is a vector of angles.  R and THETA must have the same )!5"\eys  
    %   length.  The output Z is a matrix with one column for every P-value, <W/YC 2b  
    %   and one row for every (R,THETA) pair. *LQt=~  
    % UW&K\P  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )Mh5q&ow  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ]:Pkh./  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) !*}E  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 c@$W]o"A  
    %   for all p. *s?C\)x  
    % FLQ^J3A,I  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ?}No'E1!I  
    %   Zernike functions (order N<=7).  In some disciplines it is x) R4_ 3  
    %   traditional to label the first 36 functions using a single mode iThf\  
    %   number P instead of separate numbers for the order N and azimuthal pz]KUQ  
    %   frequency M. 33NzQb  
    % 6\x/Z=}L  
    %   Example: 72dd%  
    % Nk?L<'  
    %       % Display the first 16 Zernike functions ki8Jl}dr  
    %       x = -1:0.01:1; 8|Wl|@1(  
    %       [X,Y] = meshgrid(x,x); E#\'$@8j  
    %       [theta,r] = cart2pol(X,Y); O>IG7Ujl  
    %       idx = r<=1; O`.IE? h#  
    %       p = 0:15; ~(eD 4"  
    %       z = nan(size(X)); )_K:A(V>  
    %       y = zernfun2(p,r(idx),theta(idx)); XXb,*u 3  
    %       figure('Units','normalized') 6\m'MV`R!  
    %       for k = 1:length(p) L/,M@1@R  
    %           z(idx) = y(:,k); <H|]^An!H  
    %           subplot(4,4,k) >t4<2|!(M  
    %           pcolor(x,x,z), shading interp QPW+L*2  
    %           set(gca,'XTick',[],'YTick',[]) Kp[5"N8  
    %           axis square Q S<)*  
    %           title(['Z_{' num2str(p(k)) '}']) L]=LY  
    %       end -IL' (vx  
    % /?S,u,R  
    %   See also ZERNPOL, ZERNFUN. q ;e/gP2  
    @XH@i+ {B  
    %   Paul Fricker 11/13/2006 _J0(GuG=~  
    IDp2#qg_  
    VKy3tW/_&  
    % Check and prepare the inputs: i7`/"5I  
    % ----------------------------- (~^KXJ{->  
    if min(size(p))~=1 xS_tB)C  
        error('zernfun2:Pvector','Input P must be vector.') <4*)J9V^s=  
    end Xnxb.{C  
    RY~m Q  
    if any(p)>35 'L2[^iF9  
        error('zernfun2:P36', ... JgB"N/Oz  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... h[gKyxZ/t  
               '(P = 0 to 35).']) <^adt *m  
    end d4LH`@SUZ-  
    yXro6u?rC  
    % Get the order and frequency corresonding to the function number: ,772$7x  
    % ---------------------------------------------------------------- A~8-{F 31  
    p = p(:); #G("Oh  
    n = ceil((-3+sqrt(9+8*p))/2); j`-9.  
    m = 2*p - n.*(n+2); sDXQ{*6a  
    .;37 e  
    % Pass the inputs to the function ZERNFUN: +P=I4-?eX  
    % ---------------------------------------- l6 T5]$  
    switch nargin ?DC;Hk<  
        case 3 SOvo%L@  
            z = zernfun(n,m,r,theta); $WbfRyXi7'  
        case 4 % &i Wc_"  
            z = zernfun(n,m,r,theta,nflag); Ki%RSW(_`  
        otherwise dhi9=Co;  
            error('zernfun2:nargin','Incorrect number of inputs.') <#e!kWGR?  
    end N)X51;+  
    A )xfO-  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) kSO:xS0 _N  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Bk~%  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of $%5!CD1)  
    %   order N and frequency M, evaluated at R.  N is a vector of E=l^&[dIl  
    %   positive integers (including 0), and M is a vector with the eed!SmP  
    %   same number of elements as N.  Each element k of M must be a  ),f d,  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) pv,I_"  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I=}R Z9  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix q#.+P1"U  
    %   with one column for every (N,M) pair, and one row for every 0/zgjT|fe  
    %   element in R. RTeG\U  
    % Y!AQ7F  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \rmge4`4  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is yUu+68Z6  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to jLreN#:9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 %o#|zaK  
    %   for all [n,m]. Y>PC>  
    % cy#N(S[ 1  
    %   The radial Zernike polynomials are the radial portion of the mf)E%qo  
    %   Zernike functions, which are an orthogonal basis on the unit K?acRi  
    %   circle.  The series representation of the radial Zernike 9d&}CZr  
    %   polynomials is NU!B|l  
    % ]nQ(|$rW  
    %          (n-m)/2 C9E@$4*  
    %            __ ri1:q.:I]  
    %    m      \       s                                          n-2s 6#1:2ZHKG  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r H?j!f$sw  
    %    n      s=0 pc/]t^]p  
    % .l~g`._  
    %   The following table shows the first 12 polynomials. (Kaunp5_`  
    % W&Kjh|[1QZ  
    %       n    m    Zernike polynomial    Normalization 5gY9D!;:0D  
    %       --------------------------------------------- VHTr;(]hk  
    %       0    0    1                        sqrt(2) 'A9U[|  
    %       1    1    r                           2 is}Y+^j.  
    %       2    0    2*r^2 - 1                sqrt(6) v6+<F;G3y>  
    %       2    2    r^2                      sqrt(6) f`8mES'gc8  
    %       3    1    3*r^3 - 2*r              sqrt(8) =bB7$#al  
    %       3    3    r^3                      sqrt(8) $nW^Gqwj]1  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) D^\2a;[AxA  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ,SSq4  
    %       4    4    r^4                      sqrt(10)  g=x1}nm  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) f)!7/+9>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) W1p5F\ wt  
    %       5    5    r^5                      sqrt(12) {Aq:Kh`&  
    %       --------------------------------------------- ajALca4  
    % Zywx.@!  
    %   Example: \o{rw0w0  
    % 6T{SRN{  
    %       % Display three example Zernike radial polynomials UvM_~qo  
    %       r = 0:0.01:1; (TFo]c  
    %       n = [3 2 5]; nV&v@g4Tt  
    %       m = [1 2 1]; ~F=,)GE  
    %       z = zernpol(n,m,r); # dxS QmG  
    %       figure hXz@ (cF  
    %       plot(r,z) oY0`igH  
    %       grid on Blnc y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :pPn)j$  
    % 9!|+GIjn  
    %   See also ZERNFUN, ZERNFUN2. ?tFsSU  
    "4e{Cq  
    % A note on the algorithm. 6$6Qk !%  
    % ------------------------ R3Ka^l8R|  
    % The radial Zernike polynomials are computed using the series ?br4 wl  
    % representation shown in the Help section above. For many special R SqO$~  
    % functions, direct evaluation using the series representation can zV"oB9\9O  
    % produce poor numerical results (floating point errors), because x$Tf IFy  
    % the summation often involves computing small differences between 'ai!6[|SD  
    % large successive terms in the series. (In such cases, the functions om}jQJ]KH  
    % are often evaluated using alternative methods such as recurrence ;m cu(J  
    % relations: see the Legendre functions, for example). For the Zernike f!aE/e\  
    % polynomials, however, this problem does not arise, because the !E|k#c9  
    % polynomials are evaluated over the finite domain r = (0,1), and >gLLr1L\  
    % because the coefficients for a given polynomial are generally all ;IX*4E'4s  
    % of similar magnitude. [W2GLd]  
    % AV*eGzz`  
    % ZERNPOL has been written using a vectorized implementation: multiple }g|)+V\A  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 7O.{g  
    % values can be passed as inputs) for a vector of points R.  To achieve  _F9O4Q4  
    % this vectorization most efficiently, the algorithm in ZERNPOL +qzCy/_gd  
    % involves pre-determining all the powers p of R that are required to FkJX)  
    % compute the outputs, and then compiling the {R^p} into a single BbdJR]N/!h  
    % matrix.  This avoids any redundant computation of the R^p, and  V_-{TGKX  
    % minimizes the sizes of certain intermediate variables. aj)?P  
    % njN]0l{p  
    %   Paul Fricker 11/13/2006 #cD20t  
    fK{[=xMr@  
    CiSl 0  
    % Check and prepare the inputs: #J<IHNRt  
    % ----------------------------- .&Ok53]b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -L%2*`-L$  
        error('zernpol:NMvectors','N and M must be vectors.') {IpIQ-@l  
    end l`A4)8Y@  
    T11;LSD  
    if length(n)~=length(m) ?Ok@1  
        error('zernpol:NMlength','N and M must be the same length.') XU19+mW=P  
    end |U4t 8  
    wu2C!gyBo  
    n = n(:); bR;Zc  
    m = m(:); Hz6yy*  
    length_n = length(n); ~8 w(M  
    Pqm)OZE?  
    if any(mod(n-m,2)) 3!V$fl0  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Udh!%QP%[w  
    end Y?>us  
    OK^0,0kS3  
    if any(m<0) 2og8VI  
        error('zernpol:Mpositive','All M must be positive.') bG6<=^  
    end IAJYD/Y&?  
    7berkU0P  
    if any(m>n) ^sjL@.'m$N  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6b8@6;&LI  
    end 0fd\R_"d.  
    Jqt&TqX@s  
    if any( r>1 | r<0 ) ToB^/ n[  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') mzX <!  
    end V ^U1o[`  
    23;e/Qr  
    if ~any(size(r)==1) U5z}i^8a  
        error('zernpol:Rvector','R must be a vector.') 0y3<Ho,+$  
    end H~P"uYKIZ  
    EdPN=  
    r = r(:); 8uO@S*)0  
    length_r = length(r); G2,r %|7ta  
    h1 D#,  
    if nargin==4 ;|Z;YK@20  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); @-ma_0cZQ  
        if ~isnorm `=0J:  
            error('zernpol:normalization','Unrecognized normalization flag.') Z{w{bf1&A  
        end [?$|   
    else B !(t<W8cu  
        isnorm = false; cc%O35o  
    end f~.w2Cna  
    _0rHxh7}q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N&0MA  
    % Compute the Zernike Polynomials QxGQF|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 3`qT#p{  
    YW}1iT/H  
    % Determine the required powers of r: x\Y%/C[Kc  
    % ----------------------------------- ~Lc>~!!t  
    rpowers = []; V+dfV`*k  
    for j = 1:length(n) a* pZcv<  
        rpowers = [rpowers m(j):2:n(j)]; ItTIU  
    end a9E!2o+,  
    rpowers = unique(rpowers); ZHs hg`I`  
    X'&$wQ6,K  
    % Pre-compute the values of r raised to the required powers, k"P2J}4eO  
    % and compile them in a matrix: MGO.dRy_  
    % ----------------------------- _e.b #{=9  
    if rpowers(1)==0 .'SXRrn&:C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t#y   
        rpowern = cat(2,rpowern{:});  afEp4(X~  
        rpowern = [ones(length_r,1) rpowern]; xrT_ro8  
    else |<.b:e\4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1q!JpC^  
        rpowern = cat(2,rpowern{:}); \ooqa<_  
    end |zu>G9m  
    xae rMr  
    % Compute the values of the polynomials: NEO~|B*oDU  
    % -------------------------------------- 'D-#,X C  
    z = zeros(length_r,length_n); K]bS:[34 R  
    for j = 1:length_n LoG@(g&)  
        s = 0:(n(j)-m(j))/2; zJMKgw,i*  
        pows = n(j):-2:m(j); KrkZv$u,  
        for k = length(s):-1:1 Yf:utCvv  
            p = (1-2*mod(s(k),2))* ... (nrrzOax  
                       prod(2:(n(j)-s(k)))/          ... 9ok|]d P  
                       prod(2:s(k))/                 ... HHZ!mYr  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Vk_*]wU  
                       prod(2:((n(j)+m(j))/2-s(k))); K74oRKv  
            idx = (pows(k)==rpowers); ,l<-*yMD  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &Jj> jCg  
        end P:k(=CzZ@J  
         e #^|NQ<'A  
        if isnorm 6\,^MI  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Jb-wvNJu  
        end ud:?~?j&w  
    end U8-9^}DBA  
    l1cBY{3QD  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  W*<]`U_.  
    cBI )?  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -"zu"H~t4  
    i4I0oRp  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)