切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10627阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 \J^#2{d  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! tMl y*E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 88?bUA3]  
    function z = zernfun(n,m,r,theta,nflag) )\+Imn  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. y [Vd*8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h"[B zX  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $0Y`> 3  
    %   unit circle.  N is a vector of positive integers (including 0), and f`qy~M&  
    %   M is a vector with the same number of elements as N.  Each element S1=P-Ao  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) W2{w<<\$3}  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, S#ryEgc]  
    %   and THETA is a vector of angles.  R and THETA must have the same dgVGP_~  
    %   length.  The output Z is a matrix with one column for every (N,M) ~ 5}t;  
    %   pair, and one row for every (R,THETA) pair. D,IT>^[^7  
    % kff N0(MR  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike TuwP'g[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @5Tl84@Q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Pt"K+]Ym  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \Z5Wp5az},  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ANm@$xO*  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. . X!!dx1<  
    % b!H1 |7>  
    %   The Zernike functions are an orthogonal basis on the unit circle. j*3;G+  
    %   They are used in disciplines such as astronomy, optics, and INnd TF  
    %   optometry to describe functions on a circular domain. h2Q'5G  
    % A"*=K;u/|m  
    %   The following table lists the first 15 Zernike functions. Z}O]pm>=G  
    % z83v J*.  
    %       n    m    Zernike function           Normalization Jt$YSp=!!  
    %       -------------------------------------------------- ~~yng-3)1  
    %       0    0    1                                 1 +?\JQ|  
    %       1    1    r * cos(theta)                    2 ~W @dF~r  
    %       1   -1    r * sin(theta)                    2 !gI0"p?  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HxbzFu?h  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 21!X[) r  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) hNc8uV{r=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) wH"9N+82M  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %; &lVIU0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 4Uny.C]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /Am9w$_T[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) T#*,ME7|m  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S$b)X"h  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 59nRk}^$se  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !w7/G  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u-~ec{oBu  
    %       -------------------------------------------------- FH}?QebSR  
    % K qJE?caw  
    %   Example 1: (H:c8 0/V  
    % ") 8l'^Mq2  
    %       % Display the Zernike function Z(n=5,m=1) .qE  
    %       x = -1:0.01:1; :uYZ1O  
    %       [X,Y] = meshgrid(x,x); i?^L",[  
    %       [theta,r] = cart2pol(X,Y); -gGw_w?)(  
    %       idx = r<=1; J *LPv9)  
    %       z = nan(size(X)); Wl3S]4A  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); KaEaJ  
    %       figure <HnJD/g  
    %       pcolor(x,x,z), shading interp ; 8[VCU:  
    %       axis square, colorbar |2'WSAWG  
    %       title('Zernike function Z_5^1(r,\theta)') jA "}\^%3  
    % A^}#  
    %   Example 2: k*_Gg  
    % `N[@lV\xp!  
    %       % Display the first 10 Zernike functions ?[#w*Am7  
    %       x = -1:0.01:1; pbKmFweq  
    %       [X,Y] = meshgrid(x,x); i>S@C@~  
    %       [theta,r] = cart2pol(X,Y); DWtITO>  
    %       idx = r<=1; 38sLyoG=i  
    %       z = nan(size(X)); bF9.k  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5_y w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qBF|' .$^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6!i`\>I]  
    %       y = zernfun(n,m,r(idx),theta(idx)); 8}yrsF #  
    %       figure('Units','normalized') IS" [<  
    %       for k = 1:10 {zZ)JWM<w  
    %           z(idx) = y(:,k); (PE.v1T  
    %           subplot(4,7,Nplot(k)) <e! TF @  
    %           pcolor(x,x,z), shading interp nql1I<I  
    %           set(gca,'XTick',[],'YTick',[]) W7C1\'T  
    %           axis square p7AsNqEp  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ok6t| 7sq  
    %       end C'@I!m._i  
    % ~5Fx[q  
    %   See also ZERNPOL, ZERNFUN2. 6`-<N!  
    ty5# a  
    %   Paul Fricker 11/13/2006 }bi hlyB&Q  
    4wv0~T$;x  
    J#:`'eEG  
    % Check and prepare the inputs: nt"\FZ*;3  
    % ----------------------------- cQ$[Ba  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e 6wevK\  
        error('zernfun:NMvectors','N and M must be vectors.') O-.G("  
    end sI6*.nR  
    h}|.#!C3  
    if length(n)~=length(m) 2iKteJ@h)  
        error('zernfun:NMlength','N and M must be the same length.') gb!0%*   
    end 0B[~j7EGO  
    1OvoW Nx  
    n = n(:); !pj&h0CR  
    m = m(:); j0"4X  
    if any(mod(n-m,2)) s5v}S'uO{  
        error('zernfun:NMmultiplesof2', ... LRw-I.z  
              'All N and M must differ by multiples of 2 (including 0).') Z;NaIJiL-  
    end i<$?rB!i<1  
    @r<2]RXlc  
    if any(m>n) .Erv\lv*  
        error('zernfun:MlessthanN', ... i{9.bpp/  
              'Each M must be less than or equal to its corresponding N.') `_.:O,^n^  
    end z(,j)".  
    -+i7T^@|  
    if any( r>1 | r<0 ) mS}.?[d"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "*HEXru#B  
    end $ r-rIW5\  
    6Ik v}q_j  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E3{kH 7_'\  
        error('zernfun:RTHvector','R and THETA must be vectors.') [T9]q8"  
    end 9s!R_R&W.  
    &hZ.K"@7{  
    r = r(:); >bI\pJ  
    theta = theta(:); ,Y| ;V  
    length_r = length(r); -1hCi !  
    if length_r~=length(theta) S.>fB7'(?=  
        error('zernfun:RTHlength', ... E|oOd<z  
              'The number of R- and THETA-values must be equal.') 'ahz@+l O  
    end |F\fdB}?S:  
    XxeP;}  
    % Check normalization: ~("bpS#ZgD  
    % -------------------- =oq=``%  
    if nargin==5 && ischar(nflag) PB*G#2W  
        isnorm = strcmpi(nflag,'norm'); J!|R1  
        if ~isnorm N/#x  
            error('zernfun:normalization','Unrecognized normalization flag.') @+ T33X)h%  
        end Myn51pczl  
    else 6uUzky  
        isnorm = false; ~-G_c=E?  
    end cb|hIn\>7  
    !K2QD[x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c M<08-:v  
    % Compute the Zernike Polynomials OrL4G `O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #N|JC d_  
    yK"HHdYTV  
    % Determine the required powers of r: UHk)!P>  
    % ----------------------------------- *q\>DE=7  
    m_abs = abs(m); s`G}MU  
    rpowers = []; ?MfwRWY  
    for j = 1:length(n) > Xij+tt{  
        rpowers = [rpowers m_abs(j):2:n(j)]; uT=5zu  
    end n``9H 91  
    rpowers = unique(rpowers); #}Xsi&:XU  
    SY:ISzB}  
    % Pre-compute the values of r raised to the required powers, ] X)~D!mA  
    % and compile them in a matrix: u] G  
    % ----------------------------- y\CxdTs  
    if rpowers(1)==0 CRiqY_gBf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !,Cbb }  
        rpowern = cat(2,rpowern{:}); 8$RiFD ,  
        rpowern = [ones(length_r,1) rpowern]; CQmozh-  
    else r}(mjC"o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $tc1 te  
        rpowern = cat(2,rpowern{:}); egr"og{  
    end P;K3T![  
    l+wfP76w  
    % Compute the values of the polynomials:  V_e  
    % -------------------------------------- b>#=7;  
    y = zeros(length_r,length(n)); nWK7*  
    for j = 1:length(n) TI2K_'  
        s = 0:(n(j)-m_abs(j))/2; {61Y;  
        pows = n(j):-2:m_abs(j); 2 p}I  
        for k = length(s):-1:1 O~?d;.b  
            p = (1-2*mod(s(k),2))* ... 9@mvG^  
                       prod(2:(n(j)-s(k)))/              ... o9C# 5%9  
                       prod(2:s(k))/                     ... c/j+aj0.v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .kkhW8:  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  !I&,!$  
            idx = (pows(k)==rpowers); 9&6P,ts%Q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); U 9Ea }aN  
        end QUZ+#*:s  
         'mm>E  
        if isnorm 1U^KN~!  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A>mk0P)~Q  
        end cF EO}  
    end Jf#-OlEQ  
    % END: Compute the Zernike Polynomials _ShWCU-~Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bva2f:)K|  
    q \fyp\z  
    % Compute the Zernike functions: Jp^#G2  
    % ------------------------------  T-+ uQ3  
    idx_pos = m>0; darbL_1  
    idx_neg = m<0; BG.sHI{  
    %]4=D)Om  
    z = y; u]`0QxvZ  
    if any(idx_pos) %BT]h3dcSS  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C(z 'oi:f  
    end ;R<V-gab  
    if any(idx_neg) gq4X(rsyD  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M)Z!W3  
    end C?W}/r[  
    O 9M?Wk :  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Di}M\!-[  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. JY;u<xl  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Q7d@+C  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive J6>tGKa+e  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~Je40vO[  
    %   and THETA is a vector of angles.  R and THETA must have the same x%[NK[^&  
    %   length.  The output Z is a matrix with one column for every P-value, /EegP@[  
    %   and one row for every (R,THETA) pair. W!Hn`T   
    % !#*#jixo  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike o61rTj  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) >El]5M7h7  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) j+q)  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 G-R83Orl  
    %   for all p. ]w$cqUhM  
    % 4sBvW  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 2dHsM'ze  
    %   Zernike functions (order N<=7).  In some disciplines it is K@*4=0  
    %   traditional to label the first 36 functions using a single mode ~t$ng l$  
    %   number P instead of separate numbers for the order N and azimuthal fOdqr  
    %   frequency M. dxH\H?NO  
    % .5s^a.e'O  
    %   Example: h;y}g/HZ  
    % C~"UOFX  
    %       % Display the first 16 Zernike functions V\e1NS  
    %       x = -1:0.01:1; ,S<) )  
    %       [X,Y] = meshgrid(x,x); )l! `k  
    %       [theta,r] = cart2pol(X,Y); iWFtb)3B  
    %       idx = r<=1; ' u;Zw%O(J  
    %       p = 0:15; ct OCj$$u  
    %       z = nan(size(X)); | WTWj  
    %       y = zernfun2(p,r(idx),theta(idx)); P>_9>k@;Q  
    %       figure('Units','normalized') [F;\NJp6?^  
    %       for k = 1:length(p) Oo FMOlb.Z  
    %           z(idx) = y(:,k); \7#w@3*  
    %           subplot(4,4,k) x2r.4  
    %           pcolor(x,x,z), shading interp 'Nuy/\[{\  
    %           set(gca,'XTick',[],'YTick',[]) .n4{xQo,EJ  
    %           axis square 3;wiwN'  
    %           title(['Z_{' num2str(p(k)) '}']) Q>9bKP  
    %       end  2+S+Y%~  
    % Doq}UWp  
    %   See also ZERNPOL, ZERNFUN. ^;9l3P{  
    !_~ /Y/M  
    %   Paul Fricker 11/13/2006 }aI>dHL  
    YktZXc?iI<  
    Sl'$w4s   
    % Check and prepare the inputs: v0=v1G*rvJ  
    % ----------------------------- gy~2LY!}  
    if min(size(p))~=1 v}D0t]  
        error('zernfun2:Pvector','Input P must be vector.') 9ZatlI,  
    end V[]Pya|s+  
    1LhZmv  
    if any(p)>35 .3VL  
        error('zernfun2:P36', ... *PB/I4>{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }bdoJ5  
               '(P = 0 to 35).']) LpSF*xm  
    end 0=t2|,}  
    yGrnzB6|  
    % Get the order and frequency corresonding to the function number: "L1LL iS  
    % ---------------------------------------------------------------- 5K682+^5  
    p = p(:); 'irwecd8  
    n = ceil((-3+sqrt(9+8*p))/2); #w\x-i|  
    m = 2*p - n.*(n+2); e 8oAGh"  
    pR=R{=}wV  
    % Pass the inputs to the function ZERNFUN: >,'guaa  
    % ---------------------------------------- ,Shzew+  
    switch nargin WS(m#WFQr  
        case 3 + @|u8+  
            z = zernfun(n,m,r,theta); Ruq>+ }4  
        case 4 + ZiYl[_|  
            z = zernfun(n,m,r,theta,nflag); So e2Gq  
        otherwise A-_M=\  
            error('zernfun2:nargin','Incorrect number of inputs.') 2_o\Wor#  
    end wgolgof  
    <Kr`R+Q$DN  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) u2$.EM/iae  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. u*uHdV5  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of nnE'zk<"  
    %   order N and frequency M, evaluated at R.  N is a vector of )+8r$ i  
    %   positive integers (including 0), and M is a vector with the `' EG7  
    %   same number of elements as N.  Each element k of M must be a B B'qbX3xK  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) V*(x@pF  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is "AKr;|m  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ht>/7.p]  
    %   with one column for every (N,M) pair, and one row for every }lhk;#r  
    %   element in R. P O0Od z  
    % nR@mm j  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Q*1'k%7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 4${3e Sg_  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 0+SZ-]  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 x5pu+-h  
    %   for all [n,m]. Lp@Al#X55  
    % 5M #',(X  
    %   The radial Zernike polynomials are the radial portion of the :"Tkl$@,  
    %   Zernike functions, which are an orthogonal basis on the unit V51kX{S  
    %   circle.  The series representation of the radial Zernike -b8SaLak  
    %   polynomials is }U5$~, *p  
    % $ve$Sq  
    %          (n-m)/2 @(E6P;+{  
    %            __ F`(;@LO  
    %    m      \       s                                          n-2s 9,\AAISi  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r t]]Ig  
    %    n      s=0 a MFUj+^  
    % )dEcKH<#  
    %   The following table shows the first 12 polynomials. D8 PC;@m  
    % v3t<rv  
    %       n    m    Zernike polynomial    Normalization O\Z!7UQ$  
    %       --------------------------------------------- 4!xRA''  
    %       0    0    1                        sqrt(2) fZsw+PSy  
    %       1    1    r                           2 kjdIk9 Y  
    %       2    0    2*r^2 - 1                sqrt(6) Fn4yx~0  
    %       2    2    r^2                      sqrt(6) T3"'`Sd9;  
    %       3    1    3*r^3 - 2*r              sqrt(8) B~qo^ppVU  
    %       3    3    r^3                      sqrt(8) 8f)pf$v`   
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) H_x} -  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) r)Zk-!1  
    %       4    4    r^4                      sqrt(10) '/0e!x/8  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) }|[0FP]v  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) h <$%y(lP  
    %       5    5    r^5                      sqrt(12) xt "-Jmox  
    %       --------------------------------------------- =ONM#DxH  
    % <n~.X<6V'  
    %   Example: ~OxFgKn23&  
    % {r|RH"|?Z(  
    %       % Display three example Zernike radial polynomials w,R6:*p5  
    %       r = 0:0.01:1; 6|3 X*Orn  
    %       n = [3 2 5]; '|5o(6u'  
    %       m = [1 2 1]; `ZM$\Q=:  
    %       z = zernpol(n,m,r); 6w m-uu  
    %       figure !?+0O]`}  
    %       plot(r,z) OQ 4h8,  
    %       grid on $XMpC{  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') h>cjRH?e  
    % |F<iu2\  
    %   See also ZERNFUN, ZERNFUN2. /z`tI  
    L;{{P7  
    % A note on the algorithm. ]F>#0Rdc  
    % ------------------------ H`URJ8k$Q  
    % The radial Zernike polynomials are computed using the series VGxab;#,:3  
    % representation shown in the Help section above. For many special F!/-2u5gF  
    % functions, direct evaluation using the series representation can whP5 u/857  
    % produce poor numerical results (floating point errors), because `l.bU3C  
    % the summation often involves computing small differences between o.Y6(o  
    % large successive terms in the series. (In such cases, the functions D2gyn-]\  
    % are often evaluated using alternative methods such as recurrence jA^Dk$  
    % relations: see the Legendre functions, for example). For the Zernike Jq?zr]"A  
    % polynomials, however, this problem does not arise, because the 6d/v%-3  
    % polynomials are evaluated over the finite domain r = (0,1), and r#& JfAo  
    % because the coefficients for a given polynomial are generally all Ej6ho0_  
    % of similar magnitude. jAy2C&aP  
    % "XLtrAu{  
    % ZERNPOL has been written using a vectorized implementation: multiple >b5 ;I1o=y  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] PN<Vqt W  
    % values can be passed as inputs) for a vector of points R.  To achieve y^nT G  
    % this vectorization most efficiently, the algorithm in ZERNPOL BtKor6ba  
    % involves pre-determining all the powers p of R that are required to *o:J 4'  
    % compute the outputs, and then compiling the {R^p} into a single LayK&RwL  
    % matrix.  This avoids any redundant computation of the R^p, and aot2F60J,  
    % minimizes the sizes of certain intermediate variables. 5VQ-D`kE+  
    % -%%Xx5D  
    %   Paul Fricker 11/13/2006 Iu`S0#+  
    }gt)cOaY  
    .oTS7rYw  
    % Check and prepare the inputs: P?n4B \!  
    % ----------------------------- ~jHuJ` ]DF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &ynAB)  
        error('zernpol:NMvectors','N and M must be vectors.') $_TS]~y4}  
    end oz,.gP%  
    !]D`|HoW  
    if length(n)~=length(m) 3T,[  
        error('zernpol:NMlength','N and M must be the same length.') =_m3 ~=Z  
    end ST?Rl@4  
    WvfM.D!  
    n = n(:); PeqW+Q.  
    m = m(:); Wq5}LO)  
    length_n = length(n); v'Ehr**]+  
    2QAP$f0Ln  
    if any(mod(n-m,2)) CnZEBAU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') J` gG`?  
    end xDH#K0-#L  
    _-543B}  
    if any(m<0) /EP zT7  
        error('zernpol:Mpositive','All M must be positive.') zF>;7'\x  
    end Is<XMR|{  
    UA2KY}pz5  
    if any(m>n) -\;0gnf{J  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') EU|IzUjFj|  
    end n=F rv*"Z  
     |:x,|>/  
    if any( r>1 | r<0 ) 1y wdcg  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') p=E#!cn3  
    end Ev7v,7`z  
    @H4]Gp ]  
    if ~any(size(r)==1) i|AWaG)  
        error('zernpol:Rvector','R must be a vector.') t1J3'lS  
    end ` V [4  
    n^hkH1vY  
    r = r(:); OPjNmdeS  
    length_r = length(r); G/(,,T}eG  
    _(8#  
    if nargin==4 "M[&4'OM  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); t^zE^:06  
        if ~isnorm D& o\q68W  
            error('zernpol:normalization','Unrecognized normalization flag.') d4^x,hzV  
        end |%ZJN{!R  
    else _E'}8.#{  
        isnorm = false; 7qUg~GJX  
    end 9s[   
    DC1.f(cdR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% esBv,b?*  
    % Compute the Zernike Polynomials "U eq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Xa#.GrH6  
    N"G\ H<n  
    % Determine the required powers of r: ty"L&$bf  
    % ----------------------------------- jXALL8[c  
    rpowers = []; &S 66M2  
    for j = 1:length(n) 4;AQ12<[1  
        rpowers = [rpowers m(j):2:n(j)]; ,tg]Gt  
    end rXMc0SPk  
    rpowers = unique(rpowers); IO 0nT  
    p_&B+ <z  
    % Pre-compute the values of r raised to the required powers, *n&Sd~Mg  
    % and compile them in a matrix: phf{b+'#X  
    % ----------------------------- \mJR^t  
    if rpowers(1)==0 Qb>("j~Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ED79a:  
        rpowern = cat(2,rpowern{:}); (}>)X]  
        rpowern = [ones(length_r,1) rpowern]; <\Y(+?+uZ  
    else JeNX5bXW  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %$Py@g  
        rpowern = cat(2,rpowern{:}); S hy.:XI  
    end Fv %@k{  
    =>3,]hnep  
    % Compute the values of the polynomials: C R?}*  
    % -------------------------------------- $b{8 $<;9  
    z = zeros(length_r,length_n); Ij.mLO]  
    for j = 1:length_n Kg>B$fBx)  
        s = 0:(n(j)-m(j))/2; Z]TQ+9t  
        pows = n(j):-2:m(j); &-Wt!X 3  
        for k = length(s):-1:1 O|=?!|`o  
            p = (1-2*mod(s(k),2))* ... j?]+~  
                       prod(2:(n(j)-s(k)))/          ... SC4jKm2  
                       prod(2:s(k))/                 ... _xi &%F/  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... C6a-  
                       prod(2:((n(j)+m(j))/2-s(k))); *!BQ1 ] G  
            idx = (pows(k)==rpowers); c U(z5th  
            z(:,j) = z(:,j) + p*rpowern(:,idx); dz/fSA  
        end ^OIo  
         SnXM`v,  
        if isnorm `fX\pOk~e  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); SIR2 Kc0  
        end Ax~ i`  
    end z(^dwMw}  
    " a'I^B/  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Up_"qD6  
    -'*<;]P+.  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 WW^+X~Y  
    m$pRA0s2`  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)