非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D^yZ!}Kl
function z = zernfun(n,m,r,theta,nflag) /{vv n
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. t}>6"^}U
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `CA-s
% and angular frequency M, evaluated at positions (R,THETA) on the 6*8"?S'
% unit circle. N is a vector of positive integers (including 0), and |Wd]:ijJ
% M is a vector with the same number of elements as N. Each element _U( b
% k of M must be a positive integer, with possible values M(k) = -N(k) fDt#<f 4;
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 8!2NZOZOS
% and THETA is a vector of angles. R and THETA must have the same p \A ^kX^5
% length. The output Z is a matrix with one column for every (N,M) 43-mv1>.
% pair, and one row for every (R,THETA) pair. DXu#07\
% j&,,~AZm
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?$i`K|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uCO-f<b
% with delta(m,0) the Kronecker delta, is chosen so that the integral W+36"?*k3
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0h/gqlTK1
% and theta=0 to theta=2*pi) is unity. For the non-normalized `T7gfb%1-3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R_ymTB}<t(
% A:PQIcR;V
% The Zernike functions are an orthogonal basis on the unit circle. ^ZV1Ev8T6
% They are used in disciplines such as astronomy, optics, and H^z6.!$m
% optometry to describe functions on a circular domain. JJ`RF
% d2`m0U
% The following table lists the first 15 Zernike functions. Oya:{d&=
% piKYO+;W'
% n m Zernike function Normalization 4>eY/~odq]
% -------------------------------------------------- RnC96"";R.
% 0 0 1 1 z(b0U6)qQ
% 1 1 r * cos(theta) 2 0NrUB
% 1 -1 r * sin(theta) 2 2z+Vt_%
% 2 -2 r^2 * cos(2*theta) sqrt(6) *"Yz"PK
% 2 0 (2*r^2 - 1) sqrt(3) {:BAh5e|
% 2 2 r^2 * sin(2*theta) sqrt(6) XgL-t~_
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z BjyQ4h
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) e/hA>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |s[kY
% 3 3 r^3 * sin(3*theta) sqrt(8) Gu[G_^>
% 4 -4 r^4 * cos(4*theta) sqrt(10) &XAG|
#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;D.a |(Q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) h6J0b_3h4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ey<vvZ
% 4 4 r^4 * sin(4*theta) sqrt(10) ~,[-pZ<
% -------------------------------------------------- [Q+8Ku
% S. my" j
% Example 1: _RI`I}&9Z
% XTboFrf
% % Display the Zernike function Z(n=5,m=1) wJ#fmQXKJ5
% x = -1:0.01:1; Mh
[TZfV
% [X,Y] = meshgrid(x,x); u&{}hv&FY
% [theta,r] = cart2pol(X,Y); EGpN@
% idx = r<=1; (Z(O7X(/
% z = nan(size(X)); r:pS[f|4\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); XG_h\NIL
% figure |dNJx<-
% pcolor(x,x,z), shading interp c#o(y6
% axis square, colorbar Itq248+Ci
% title('Zernike function Z_5^1(r,\theta)') dJyf.VJ
% [R
V_{F:'
% Example 2: ,liFo.kT8%
% H'2&3v
% % Display the first 10 Zernike functions o[Ojl.r<
% x = -1:0.01:1; J)(KG dk
% [X,Y] = meshgrid(x,x); Rdb[{Ruxb
% [theta,r] = cart2pol(X,Y); 99W-sV
% idx = r<=1; 9vIqGz-o
% z = nan(size(X)); }U <T>0
% n = [0 1 1 2 2 2 3 3 3 3]; BG ]w2=
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
W)F<<B,
% Nplot = [4 10 12 16 18 20 22 24 26 28]; `zf,$67>1
% y = zernfun(n,m,r(idx),theta(idx)); $ZnLY uGb
% figure('Units','normalized') Dsq_}6l{
% for k = 1:10 ^G:}%4
% z(idx) = y(:,k); ^n! j"
% subplot(4,7,Nplot(k)) %DyukUJ
% pcolor(x,x,z), shading interp aqL#g18
% set(gca,'XTick',[],'YTick',[]) i/Zv@GF
% axis square Vyy;mEBg
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5:S=gARz
% end tc-pVw:TV
% o>Fc.$ngZ
% See also ZERNPOL, ZERNFUN2. bcx,Kb
</xz
V<Pi
% Paul Fricker 11/13/2006 n*(9:y=l1
RbOEXH*]
h"C7l#u
% Check and prepare the inputs: ~H<oqk:O-
% ----------------------------- =*paa
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d7,ZpHt
error('zernfun:NMvectors','N and M must be vectors.') *[VO03
end Myj5qh
j ?c"BF.
if length(n)~=length(m) qKt*<KGeY
error('zernfun:NMlength','N and M must be the same length.') d6(R-k#B
end g+(Cs
{@1;kG
n = n(:); uGXN ciEp`
m = m(:); -4 *94<
if any(mod(n-m,2)) XK*55W&og
error('zernfun:NMmultiplesof2', ... c#)!-5E~H
'All N and M must differ by multiples of 2 (including 0).') J \06j%d,
end u92);1R
qu8!fFQjYL
if any(m>n) J#1-Le8@
error('zernfun:MlessthanN', ... ot%^FvQ[c
'Each M must be less than or equal to its corresponding N.') "+0Yhr ?
end ON,sN
vJ
+sdG
if any( r>1 | r<0 ) S['rfD>9
error('zernfun:Rlessthan1','All R must be between 0 and 1.') yT$CImP73
end d#tqa`@~
\*a7o GyH>
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) QD8.C=2R
error('zernfun:RTHvector','R and THETA must be vectors.') %yyvB5Y^
end w}20l F
`j#zwgUs
r = r(:); pA%}CmrMq
theta = theta(:); TTDcVG_}
length_r = length(r); Pv#Oea?
if length_r~=length(theta) l1 M
%
error('zernfun:RTHlength', ... I ~U1vtgp
'The number of R- and THETA-values must be equal.') R^p'gQc$
end k^H&IS!
#oYPe:8|m
% Check normalization: 'VMov
% -------------------- c 5%uiv]
if nargin==5 && ischar(nflag) (yJY/|
isnorm = strcmpi(nflag,'norm'); N1',`L5
if ~isnorm =~D QX\
error('zernfun:normalization','Unrecognized normalization flag.') L2sUh+'|
end "^froQ{"T
else MQ#nP_i
isnorm = false; yv;KKQ
end JI3x^[(Z
?lPn{oB9"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7Mj:bm&9
% Compute the Zernike Polynomials P
Nf_{4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /!i`K{
YAdk3y~pL
% Determine the required powers of r: k4E2OyCFoJ
% ----------------------------------- 3>'TYXs-
m_abs = abs(m); ?~:4O}5Ax
rpowers = []; mG*ER^Y@D
for j = 1:length(n) IDY2X+C#U
rpowers = [rpowers m_abs(j):2:n(j)]; 6(1S_b=a
end $eq*@5B
rpowers = unique(rpowers); /ucS*m:<x
Oxp!G7qfo
% Pre-compute the values of r raised to the required powers, cr`NHl/XF
% and compile them in a matrix: @ *<`*W
% ----------------------------- ]3\%i2NM
if rpowers(1)==0 si,)!%b
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zl3GWj|?\7
rpowern = cat(2,rpowern{:}); $~,J8?)(z
rpowern = [ones(length_r,1) rpowern]; h}U>K4BJ
else \zT{zO&!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u9*7Buou^
rpowern = cat(2,rpowern{:}); fq[1 |Q
end -`A+Qp)
R*`=Bk0+
% Compute the values of the polynomials: /8? u2
q
% -------------------------------------- 6QYHPz
y = zeros(length_r,length(n)); 96d&vm~m1
for j = 1:length(n) Djr/!j
s = 0:(n(j)-m_abs(j))/2; $vLGX>H
pows = n(j):-2:m_abs(j); ,@]*Xgt=
for k = length(s):-1:1 KIGMWS^^
p = (1-2*mod(s(k),2))* ... d6XdN
prod(2:(n(j)-s(k)))/ ... YD,<]q%
prod(2:s(k))/ ... D=jtXQF
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
<dKHZ4
prod(2:((n(j)+m_abs(j))/2-s(k))); 7NMy1'-q
idx = (pows(k)==rpowers); s}<i[hY>
y(:,j) = y(:,j) + p*rpowern(:,idx); 2w;Cw~<=d
end Y_FQB K U
UZ;FrQ(l{
if isnorm tPb<*{eG
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (XNd]G
end B.4Or]
end o&)v{q
% END: Compute the Zernike Polynomials N5b^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #OwxxUeZ
_/NPXDL
% Compute the Zernike functions: ?BRZ){)
% ------------------------------ .1f!w!ltVR
idx_pos = m>0; ?P;=_~X
idx_neg = m<0; @ek8t2??x
m>^vr7
z = y; ()ww9L2
if any(idx_pos) pD]2.O
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pN{XGkX.
end .umN>/o[
if any(idx_neg) ?!u9=??
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tP89gN^PA|
end i8!err._
tN;^{O-(V
% EOF zernfun