非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 xo%iL
function z = zernfun(n,m,r,theta,nflag) t2:c@)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle.
@b/2'
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DG-vTr
% and angular frequency M, evaluated at positions (R,THETA) on the N|j.@K
% unit circle. N is a vector of positive integers (including 0), and qh'BrYu*
% M is a vector with the same number of elements as N. Each element q!TbM"
% k of M must be a positive integer, with possible values M(k) = -N(k) =gn}_sKNE
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, jysV%q 3
% and THETA is a vector of angles. R and THETA must have the same Id*^H:]C#
% length. The output Z is a matrix with one column for every (N,M) aC},h
% pair, and one row for every (R,THETA) pair. n96gDH*
% ;?!rpj
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ob7_dWAG
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VqrMi *W6
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^;3rdBprm
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Tc(R-Wi
% and theta=0 to theta=2*pi) is unity. For the non-normalized vw]nqS~N
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D5>~'N3b
% <f6PULm
% The Zernike functions are an orthogonal basis on the unit circle. Ak1)
% They are used in disciplines such as astronomy, optics, and WK}+f4tdW[
% optometry to describe functions on a circular domain. /RC!Yi
% {|h"/
% The following table lists the first 15 Zernike functions. ?>8zU;Aj
% h6e$$-_
% n m Zernike function Normalization $te,\$&}
% -------------------------------------------------- EAB+kY
% 0 0 1 1 lnWiE}F
% 1 1 r * cos(theta) 2 F"H!CJJu&
% 1 -1 r * sin(theta) 2 w2+]C&B*
% 2 -2 r^2 * cos(2*theta) sqrt(6) aTm.10{^
% 2 0 (2*r^2 - 1) sqrt(3) 5ecz'eA%
% 2 2 r^2 * sin(2*theta) sqrt(6) g)A0PvEu
% 3 -3 r^3 * cos(3*theta) sqrt(8) =.oWg uzu
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) N^]>R:Stu
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) KaE;4gwM
% 3 3 r^3 * sin(3*theta) sqrt(8) *`-29eR"8
% 4 -4 r^4 * cos(4*theta) sqrt(10) }?J5!X
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BznA)EK?@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }hitU(5t0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :"^<
aLj
% 4 4 r^4 * sin(4*theta) sqrt(10) 4.B*B3
% -------------------------------------------------- ;cn.s,
% ls\E%d
% Example 1: t)Q@sKT6
% !#I/be]
% % Display the Zernike function Z(n=5,m=1) U_;J.{n
% x = -1:0.01:1; =k=2~
j
% [X,Y] = meshgrid(x,x); /VO@>Hoh
% [theta,r] = cart2pol(X,Y); '?gIcWM
% idx = r<=1; r)]CZ])
% z = nan(size(X)); K=?F3tX^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); nj0AO0
% figure 7B\(r~f`t
% pcolor(x,x,z), shading interp %OW9cqL>l
% axis square, colorbar %Dls36F
% title('Zernike function Z_5^1(r,\theta)')
z~e~K`S
% @nX2*j*u
% Example 2: <lmJa#
% @1&;R
% % Display the first 10 Zernike functions j4xr1y3^
% x = -1:0.01:1; ;u};&sm
% [X,Y] = meshgrid(x,x); 6a?$=y
% [theta,r] = cart2pol(X,Y); Z) i1?#
% idx = r<=1; u?3NBc$~A
% z = nan(size(X)); T5jG IIa
% n = [0 1 1 2 2 2 3 3 3 3]; ]|t.wr3AU
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; AOx3QgC^NO
% Nplot = [4 10 12 16 18 20 22 24 26 28]; zO5u{
% y = zernfun(n,m,r(idx),theta(idx)); fk7Cf"[w
% figure('Units','normalized') LL[#b2CKa
% for k = 1:10 .hlQ?\
% z(idx) = y(:,k); n~ >h4=h
% subplot(4,7,Nplot(k)) #G+
% pcolor(x,x,z), shading interp Ipz
1+
#s'
% set(gca,'XTick',[],'YTick',[]) \_Kt6=
% axis square BZ;}ROmqk
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) EcU'*
% end /1W7<']>xV
% ,J(5@8(>a
% See also ZERNPOL, ZERNFUN2. NVc!g
7vpN6YP
% Paul Fricker 11/13/2006 u:uSsAn0$
*Qg5Z
y+";
% Check and prepare the inputs: i$JG^6,O
% ----------------------------- Q_kT}6#(J=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Vo 6y8@\
error('zernfun:NMvectors','N and M must be vectors.') -RH4y 2
end Cj !i)-
=,d* {m~A
if length(n)~=length(m) h*#2bS~nl-
error('zernfun:NMlength','N and M must be the same length.') !0OD(XT
end ~1=.?Ho
:q>oD-b$}
n = n(:); .:Bwa
m = m(:); rO(TG
if any(mod(n-m,2)) Z;fm;X%4
error('zernfun:NMmultiplesof2', ... B)"#/@!bHH
'All N and M must differ by multiples of 2 (including 0).') RO%tuU,-
end up&N CX
-4vHK!l
if any(m>n) ^%5~;
error('zernfun:MlessthanN', ... 6MQs \ J6.
'Each M must be less than or equal to its corresponding N.') ii_|)udz
end O2q=gYX>\
MvZ+n
if any( r>1 | r<0 ) 4+5OR&kxZ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') N[,VSO&
end UH 47e
AB2mt:^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q 7uAf3
error('zernfun:RTHvector','R and THETA must be vectors.') &e-#|p#v
end nIyROhZ
OS4]Y
r = r(:); {=bg5I0|a
theta = theta(:); Q{AZ'XV
length_r = length(r); Y]~ HAv '
if length_r~=length(theta) "Ju/[#VCJ
error('zernfun:RTHlength', ... s;B
j7]
'The number of R- and THETA-values must be equal.') I|KY+k> /
end `26V`%bPkr
;wJ7oj<
% Check normalization: z^gQ\\,4
% -------------------- {PODisl>\D
if nargin==5 && ischar(nflag) [$( sUc(%
isnorm = strcmpi(nflag,'norm'); &/>;LgN
if ~isnorm r,2Xu
error('zernfun:normalization','Unrecognized normalization flag.') i?GfY
C2q
end mL:m;>JJ n
else a=J@yK
isnorm = false; ;x:k-s2-
end +cz"`T`X 2
cWN d<=Jp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wr$cK'5ZL
% Compute the Zernike Polynomials @Jb@L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zwM"`z
r{t.c?/
% Determine the required powers of r: ,|T*|2Gm
% ----------------------------------- xwTijSj
m_abs = abs(m); S}oG.r
9
rpowers = []; pU?{0xZH
for j = 1:length(n) wGEWr2$
rpowers = [rpowers m_abs(j):2:n(j)]; %f3c7\=C
end w^06z,
rpowers = unique(rpowers); :/o C:z\h
L;/9L[s,
% Pre-compute the values of r raised to the required powers, J[e}
% and compile them in a matrix: ![*:.CW
% ----------------------------- iYk':iv}S
if rpowers(1)==0 Uc_jQ4e_
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [Ja)<!]<
rpowern = cat(2,rpowern{:}); )R jb/3*!
rpowern = [ones(length_r,1) rpowern]; E]?)FH<oP
else r_b8,I6{]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nd.57@*M
rpowern = cat(2,rpowern{:}); w Y8@1>ah
end <+V-k|
v1LKU
% Compute the values of the polynomials: =WIE>*3[
% -------------------------------------- GwcI0~5
y = zeros(length_r,length(n)); Q;4}gUmI$
for j = 1:length(n) R<"2%oY
s = 0:(n(j)-m_abs(j))/2; ,"~WkLI~\t
pows = n(j):-2:m_abs(j); -glugVq
for k = length(s):-1:1
%b=Y
<v
p = (1-2*mod(s(k),2))* ... $aB/+,
prod(2:(n(j)-s(k)))/ ... {DU"]c/S
prod(2:s(k))/ ... 30D:ZmlY
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s(Z(e %
prod(2:((n(j)+m_abs(j))/2-s(k))); *i@sUM?K
idx = (pows(k)==rpowers); M2}np
y(:,j) = y(:,j) + p*rpowern(:,idx); j7K5SS_]
end =v.{JV#
7; p4Wg7k}
if isnorm `,+#! )
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >9ob *6q,
end TI}}1ScA'
end lK0s=4c{
% END: Compute the Zernike Polynomials +a|"{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <"<Mbbp
UcgG
% Compute the Zernike functions: !{;[xXK4M
% ------------------------------ hw;0t,1
idx_pos = m>0; N1%p"(
idx_neg = m<0; =4eUAeH {w
aYqm0HCT
z = y; S@x}QQ|.
if any(idx_pos) cgyp5\*>+
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5L F/5`
end YydA6IK4
if any(idx_neg) ~8TF*3[}[
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :Zza)>l
end .;9jdGBf
K}x_nW
% EOF zernfun