切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11018阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "DN,1Q lCp  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 08\w!!a:  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *zUK3&n~I  
    function z = zernfun(n,m,r,theta,nflag) *AV%=   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JDf>Qg{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3;buC|ky  
    %   and angular frequency M, evaluated at positions (R,THETA) on the W=HvMD  
    %   unit circle.  N is a vector of positive integers (including 0), and ^EiU>   
    %   M is a vector with the same number of elements as N.  Each element 'v^Vg  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $'KQP8M+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 7;+G)44  
    %   and THETA is a vector of angles.  R and THETA must have the same ^g4Gw6q 6  
    %   length.  The output Z is a matrix with one column for every (N,M) (Y'cxwj%  
    %   pair, and one row for every (R,THETA) pair. z&QfZs  
    % HW]?%9a  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Yuw:W:wY  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), MWme3u)D  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral WowT!0$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #czTX%+9(e  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized t Cb34Wpf  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (s&:D`e  
    % %|e)s_%XE  
    %   The Zernike functions are an orthogonal basis on the unit circle. /e"iY F  
    %   They are used in disciplines such as astronomy, optics, and ~1;M4K  
    %   optometry to describe functions on a circular domain. f I=G>[  
    % -TVwoK  
    %   The following table lists the first 15 Zernike functions. * EGzFXa  
    % G@/iK/>5|`  
    %       n    m    Zernike function           Normalization O*v&C Hd3  
    %       -------------------------------------------------- 7;|"1H:cmw  
    %       0    0    1                                 1 {@CQ (  
    %       1    1    r * cos(theta)                    2 MrzD ah9UG  
    %       1   -1    r * sin(theta)                    2 |kK5:\H  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sJKr%2nVV  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "a].v 8l!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) tx7 zG.,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) M?YNK]   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @\nQ{\^;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?PWg  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )T"Aji-hy  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h,FU5iK|  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zc8^#D2y&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) el`?:dY H  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0 aH&M4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2!0tD+B  
    %       -------------------------------------------------- Yw#fQFm  
    % rX)&U4#[m  
    %   Example 1: 0?$|F0U"J  
    % >=97~a+.  
    %       % Display the Zernike function Z(n=5,m=1) Hk;;+'-  
    %       x = -1:0.01:1; }xC2~  
    %       [X,Y] = meshgrid(x,x); ?|kbIZP(  
    %       [theta,r] = cart2pol(X,Y); MJ ch Z  
    %       idx = r<=1; Awa| (]  
    %       z = nan(size(X)); lS9S7`  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #1U>  
    %       figure \_O#M   
    %       pcolor(x,x,z), shading interp tkZUjQIX  
    %       axis square, colorbar 5@+?{Cl  
    %       title('Zernike function Z_5^1(r,\theta)') - (WH+  
    % ('J@GTe@xj  
    %   Example 2: -_nQn  
    % f$QkzWvr  
    %       % Display the first 10 Zernike functions V K6D  
    %       x = -1:0.01:1; xgMh@@e  
    %       [X,Y] = meshgrid(x,x); -9FGFBm4]  
    %       [theta,r] = cart2pol(X,Y); :0:Tl/))  
    %       idx = r<=1; =S{OzF  
    %       z = nan(size(X)); SI~jM:S}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; `2]0 X#R  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zEU[u7%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9[zxq`qT}+  
    %       y = zernfun(n,m,r(idx),theta(idx)); 2|^@=.4\  
    %       figure('Units','normalized') :.ZWYze  
    %       for k = 1:10 ,B'=$PO%  
    %           z(idx) = y(:,k); te( H6c#0  
    %           subplot(4,7,Nplot(k)) FA*$ dwp  
    %           pcolor(x,x,z), shading interp `sqr>QD  
    %           set(gca,'XTick',[],'YTick',[]) %<-OdyM  
    %           axis square [TOo 9W  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NH|I>vyN  
    %       end g8uqW1E^  
    % Qpv#&nfUi6  
    %   See also ZERNPOL, ZERNFUN2. enJ; #aA  
    5h/,*p6Nje  
    %   Paul Fricker 11/13/2006 7ivo Q  
    uX1;  
    FShjUl>mV  
    % Check and prepare the inputs: y#B=9Ri=z  
    % ----------------------------- `;Tf_6c  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 53{\H&q  
        error('zernfun:NMvectors','N and M must be vectors.') N\*oL*[j  
    end I`{*QU  
    :41Y  
    if length(n)~=length(m) w@^J.7h^  
        error('zernfun:NMlength','N and M must be the same length.') xH\\#4/  
    end N_K9H1 r  
    4& cQW)  
    n = n(:); pL1ABvBB  
    m = m(:); 9k ~8n9  
    if any(mod(n-m,2)) 5NZuaN  
        error('zernfun:NMmultiplesof2', ... c ^ds|7i]a  
              'All N and M must differ by multiples of 2 (including 0).') ^g*Sy, A  
    end < 8' b  
    /al56n  
    if any(m>n) l%2VA  
        error('zernfun:MlessthanN', ... pF8$83S  
              'Each M must be less than or equal to its corresponding N.') a6n@   
    end 5kw  K%  
    d[9{&YnH !  
    if any( r>1 | r<0 ) &Tt7VYJfIV  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') YCiG~y/~  
    end cEu_p2(7!B  
    U!q2bF<@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (.P}>$M9  
        error('zernfun:RTHvector','R and THETA must be vectors.') (G> su  
    end \JM6zR^Ef  
    e2 c'Wab  
    r = r(:); ]|g2V a~-  
    theta = theta(:); 6d]4 %QT  
    length_r = length(r); k_]'?f7Z  
    if length_r~=length(theta) Pg T3E  
        error('zernfun:RTHlength', ... LSc^3=X  
              'The number of R- and THETA-values must be equal.') :bct+J}l~  
    end Eh8GqFEM  
    Bbs1U  
    % Check normalization: OU%"dmSDk  
    % -------------------- P?V+<c{  
    if nargin==5 && ischar(nflag) C{/U;Ie-b  
        isnorm = strcmpi(nflag,'norm'); TNqL ')f  
        if ~isnorm k*;U?C!  
            error('zernfun:normalization','Unrecognized normalization flag.') ;>Z+b#C[  
        end s U`#hL6;  
    else RL4|!HzR  
        isnorm = false; NW6;7nWb  
    end (E0WZ $f}  
    h>!h|Ma  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :;Z/$M16B  
    % Compute the Zernike Polynomials esTL3 l{[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ne+Rs+~4  
    d [l8qaD  
    % Determine the required powers of r: D Z*c.|W  
    % ----------------------------------- mH$`)i8  
    m_abs = abs(m); o=Z:0Ukl]  
    rpowers = []; <fHHrmZ#/.  
    for j = 1:length(n) xMk>r1Ud  
        rpowers = [rpowers m_abs(j):2:n(j)]; +!u9_?Tp  
    end [xM&Jdf8  
    rpowers = unique(rpowers); wp}Q4I  
    `/ T.u&QF  
    % Pre-compute the values of r raised to the required powers, fGV'l__\\  
    % and compile them in a matrix: #@ HlnF}T  
    % ----------------------------- )8^E{w^D}  
    if rpowers(1)==0 bJMsB|r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HR?T  
        rpowern = cat(2,rpowern{:}); Z#u{th  
        rpowern = [ones(length_r,1) rpowern]; Ec<33i]h*p  
    else vGsAM* vw6  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); | t:UpP  
        rpowern = cat(2,rpowern{:}); FFZ?-sE  
    end n#"G)+h3#  
    [@qjy*5p  
    % Compute the values of the polynomials: 0Md.3kY  
    % -------------------------------------- u^SInanw  
    y = zeros(length_r,length(n)); [gUD +  
    for j = 1:length(n) Sm {Sq  
        s = 0:(n(j)-m_abs(j))/2; [H\0 '  
        pows = n(j):-2:m_abs(j); 9 D.wW  
        for k = length(s):-1:1 w|G7h=  
            p = (1-2*mod(s(k),2))* ... /D9#v1b  
                       prod(2:(n(j)-s(k)))/              ... *Jcd_D\-(1  
                       prod(2:s(k))/                     ... 1^]IuPxq  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~c v|,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /Zs_G=\>  
            idx = (pows(k)==rpowers); pvsY 0a@4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 56YqYu.  
        end j9c:SP5  
         Y*9vR~#H  
        if isnorm Fp?M@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E2}X[EoBF  
        end yD \Kn{  
    end !lg_zAV  
    % END: Compute the Zernike Polynomials 9?sY!gXc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OD[=fR|cp  
    Y/UvNb<lK  
    % Compute the Zernike functions: x Y$x= )  
    % ------------------------------ 93Gj#Mk  
    idx_pos = m>0; [H!do$[>  
    idx_neg = m<0; "PTEt{qn  
    $27OrXQ|  
    z = y; &to~#.qc  
    if any(idx_pos) GNHXtu6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V&j]*)  
    end KgYQxEbIW  
    if any(idx_neg) PfYeV/M|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q@S \R 7R  
    end _~1O#*|4  
    1k"t[^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <aF B&Fm  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. qMVuBv  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 8:I-?z;S  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive t#f-3zd9  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, yN[i6oe  
    %   and THETA is a vector of angles.  R and THETA must have the same wmbG$T%k  
    %   length.  The output Z is a matrix with one column for every P-value, mbhh  
    %   and one row for every (R,THETA) pair. !6taOT>v  
    % b~ig$!N]  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike wE9z@\z]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) RK&RMN8@  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) T|$tQgY^  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 {J)gS  
    %   for all p. rx#GrV*y  
    % P"Q6wdm  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 F6DVq8f9  
    %   Zernike functions (order N<=7).  In some disciplines it is @GweNo`p7  
    %   traditional to label the first 36 functions using a single mode ze8MFz'm  
    %   number P instead of separate numbers for the order N and azimuthal |P9MhfN  
    %   frequency M. btC<>(kl&  
    % ER!s  
    %   Example: %dd B$(  
    % _jCu=l_  
    %       % Display the first 16 Zernike functions #8vl2qWbi  
    %       x = -1:0.01:1; L Do~  
    %       [X,Y] = meshgrid(x,x); g_Y$5ft`  
    %       [theta,r] = cart2pol(X,Y); oO &%&;[/A  
    %       idx = r<=1; './qBJ  
    %       p = 0:15; Z_jV0[\v0P  
    %       z = nan(size(X)); @v6{U?  
    %       y = zernfun2(p,r(idx),theta(idx)); >A L^y( G  
    %       figure('Units','normalized') ZI :wJU:f  
    %       for k = 1:length(p) 6h[fk.W_  
    %           z(idx) = y(:,k); F&+_z&n)  
    %           subplot(4,4,k) dqt}:^L*0g  
    %           pcolor(x,x,z), shading interp zLS?: yq  
    %           set(gca,'XTick',[],'YTick',[]) h!Fh@%  
    %           axis square TuwSJS7  
    %           title(['Z_{' num2str(p(k)) '}']) k^UrFl  
    %       end *$t=Lh  
    % @-1VN;N  
    %   See also ZERNPOL, ZERNFUN. cKwmtmwB  
    y>J6)F =  
    %   Paul Fricker 11/13/2006 >O1u![9K|w  
    M~saYJio  
    w*Ze5j4@ \  
    % Check and prepare the inputs: eg"!.ol  
    % ----------------------------- S U P  
    if min(size(p))~=1 lz#@_F|.*  
        error('zernfun2:Pvector','Input P must be vector.') 51s3hX$  
    end kkT=g^D9j  
    RL"hAUs_1  
    if any(p)>35 G>2: WQ/  
        error('zernfun2:P36', ... `g}en%5b\  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ]4_)WUS.c  
               '(P = 0 to 35).']) *U,W4>(B  
    end K;g6V!U  
    fdKTj =4  
    % Get the order and frequency corresonding to the function number: <5c^DA  
    % ---------------------------------------------------------------- l2 #^}-  
    p = p(:); \T`iq[+6  
    n = ceil((-3+sqrt(9+8*p))/2); ^12}#I  
    m = 2*p - n.*(n+2); `v Ebm Xb  
    u |ru$cIo  
    % Pass the inputs to the function ZERNFUN: AT^MQvn  
    % ---------------------------------------- ]<o^Q[OL  
    switch nargin v kW2&  
        case 3 N!af1zj  
            z = zernfun(n,m,r,theta); l\=He  
        case 4 <;E>1*K}8  
            z = zernfun(n,m,r,theta,nflag);  {0} Q5  
        otherwise Z9I ?j1K|!  
            error('zernfun2:nargin','Incorrect number of inputs.') rEs Gf+4  
    end S\11 8TpD  
    lJ4&kF=t  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) x;>~;vmi  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. qRA ,-N  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ]`n6H[6O  
    %   order N and frequency M, evaluated at R.  N is a vector of 'uV;)~  
    %   positive integers (including 0), and M is a vector with the VTJ,;p_UH  
    %   same number of elements as N.  Each element k of M must be a f5|Ew&1EP  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) vZ2/>}!Z=  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <-a6'g2y  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^U@E rc#d  
    %   with one column for every (N,M) pair, and one row for every j[YO1q*  
    %   element in R. b+ v!3|  
    % y@Ga9bI7  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- >_um-w#C  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ]$a,/Jt  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to r081.<  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ;AK@Kb  
    %   for all [n,m]. G~Mxh,aD$>  
    % g_t1(g*s  
    %   The radial Zernike polynomials are the radial portion of the sAU!u  
    %   Zernike functions, which are an orthogonal basis on the unit TYh_uox6  
    %   circle.  The series representation of the radial Zernike B[6y2+6$0  
    %   polynomials is aJ}Cq k  
    % H$n{|YO `  
    %          (n-m)/2 JRl`evTS  
    %            __ 3XomnL{  
    %    m      \       s                                          n-2s h\qM5Qx+Q  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r  MfNguh  
    %    n      s=0 J$Nc9 ?|ZZ  
    % ")ZsY9-P  
    %   The following table shows the first 12 polynomials. #}{1>g{sXt  
    % jZvQMW  
    %       n    m    Zernike polynomial    Normalization 8HymkL&F  
    %       --------------------------------------------- A#B6]j)  
    %       0    0    1                        sqrt(2) $s-HG[lX[  
    %       1    1    r                           2 L[FNr&  
    %       2    0    2*r^2 - 1                sqrt(6) kdHP v=/U  
    %       2    2    r^2                      sqrt(6) e^ygQ<6%  
    %       3    1    3*r^3 - 2*r              sqrt(8) #4<Rs|K  
    %       3    3    r^3                      sqrt(8) !F&Ss|(}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) AmmUoS\  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (qM(~4|`  
    %       4    4    r^4                      sqrt(10) QX j4cg  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) E _DSf  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) #RwqEZ  
    %       5    5    r^5                      sqrt(12) <MH| <hP  
    %       --------------------------------------------- =9ISsI\Y6  
    % )cX6o[oia  
    %   Example: 7VQk$im399  
    % \f7A j>  
    %       % Display three example Zernike radial polynomials :7+E fu  
    %       r = 0:0.01:1; h (`Erb  
    %       n = [3 2 5]; |P"p/iY  
    %       m = [1 2 1]; U0kEhMIIf  
    %       z = zernpol(n,m,r); Jj$N3UCg7  
    %       figure ua]>0\D  
    %       plot(r,z) b8@gv OB  
    %       grid on c_xo6+:l  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }.UE<>OX  
    % aI6fPQe  
    %   See also ZERNFUN, ZERNFUN2. T]%:+_,  
    mzl %h[9iI  
    % A note on the algorithm. aT %A<'O!  
    % ------------------------ l}$Pv?T,2  
    % The radial Zernike polynomials are computed using the series Ws;}D}+  
    % representation shown in the Help section above. For many special )`ZTu -|  
    % functions, direct evaluation using the series representation can 5`B ! 1  
    % produce poor numerical results (floating point errors), because mGmkeD'  
    % the summation often involves computing small differences between <d\Lvo[  
    % large successive terms in the series. (In such cases, the functions zl W 5$cC[  
    % are often evaluated using alternative methods such as recurrence "Oh(&N:U  
    % relations: see the Legendre functions, for example). For the Zernike 6-@ X  
    % polynomials, however, this problem does not arise, because the ;{e;6Hq  
    % polynomials are evaluated over the finite domain r = (0,1), and , LP |M:  
    % because the coefficients for a given polynomial are generally all 5Y\wXqlY  
    % of similar magnitude. XD 8MF)$9  
    % vbeYe2;(  
    % ZERNPOL has been written using a vectorized implementation: multiple q+/c+u?=^  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] NiwJ$Ah~X  
    % values can be passed as inputs) for a vector of points R.  To achieve oD]riA>jC  
    % this vectorization most efficiently, the algorithm in ZERNPOL 4q`$nI Bi  
    % involves pre-determining all the powers p of R that are required to `&"-|  
    % compute the outputs, and then compiling the {R^p} into a single ;c'9Xyl-  
    % matrix.  This avoids any redundant computation of the R^p, and 5 ap~;t  
    % minimizes the sizes of certain intermediate variables. TqM(I[J7\  
    % tnbtfG;z#  
    %   Paul Fricker 11/13/2006 V(%L}0[]  
    k{op,n#  
    _z<y]?q  
    % Check and prepare the inputs: c8cV{}7Kb  
    % ----------------------------- (1r.AG`g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tkFGGc}w\  
        error('zernpol:NMvectors','N and M must be vectors.') k:Iz>3O3]  
    end wj fk >  
    2[W1EQI  
    if length(n)~=length(m) $ePBw~yu  
        error('zernpol:NMlength','N and M must be the same length.') 3%<Uq%pJ  
    end KrhAObK  
    0k?ph$  
    n = n(:); 9Se7 1  
    m = m(:); vxxa,KR/y  
    length_n = length(n); R0R Xw  
    'Jb6CR n  
    if any(mod(n-m,2)) S+Aq0B<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') wL'tGAv  
    end [/}y!;3iXM  
    FF"6~  
    if any(m<0) smpz/1U  
        error('zernpol:Mpositive','All M must be positive.') s }]qlg  
    end y`?{ 2#1H  
    Hnv{sND[  
    if any(m>n) 18|i{fE;  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "x. |'  
    end ~:Jw2 P2z  
    a}Db9=  
    if any( r>1 | r<0 ) 7gR8Wr ^  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') }t tiL  
    end A4,tv#z  
    =X(8 [ e  
    if ~any(size(r)==1) D}SYv})Ti  
        error('zernpol:Rvector','R must be a vector.') 7q&//*%yF  
    end +?[ ,y  
    ffuV158a&  
    r = r(:); _c=[P@  
    length_r = length(r); &+?JY|u  
    oyGO!j  
    if nargin==4 pu(a&0  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); )P:r;a'  
        if ~isnorm lP>}9^7I!  
            error('zernpol:normalization','Unrecognized normalization flag.') +~O 0e-d  
        end [C PgfVz  
    else ;}!hgyq  
        isnorm = false; ?UC3ES  
    end IL?mt2IQ>  
    M+<xX)   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;$|[z<1RdW  
    % Compute the Zernike Polynomials ^goa$ uxU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% . z/M (  
    '-s Ai  
    % Determine the required powers of r: j)K[A%(  
    % ----------------------------------- =yv_i]9AN  
    rpowers = []; ~$1Zw&X  
    for j = 1:length(n) {{b&l!  
        rpowers = [rpowers m(j):2:n(j)]; L-}>;M$Y)  
    end cd36f26`"w  
    rpowers = unique(rpowers); G.2ij%Zz  
    W+3ZuAP\n  
    % Pre-compute the values of r raised to the required powers, 9Foo8e  
    % and compile them in a matrix: G3{t{XkV  
    % ----------------------------- SST1vzm!  
    if rpowers(1)==0 T:ye2yg  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W=v4dy]B  
        rpowern = cat(2,rpowern{:}); FNpMu3Q  
        rpowern = [ones(length_r,1) rpowern]; :3k&[W*  
    else q=bW!.#?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VvuwgJX  
        rpowern = cat(2,rpowern{:}); Mg H,"G  
    end z4f\0uQ  
    G=lcKtMdg  
    % Compute the values of the polynomials: Qp{gV Ys  
    % -------------------------------------- jk-hIl&  
    z = zeros(length_r,length_n); M)Iu'  
    for j = 1:length_n k!e \O>+  
        s = 0:(n(j)-m(j))/2; s#,~Zb=  
        pows = n(j):-2:m(j); wB6 ILTu1  
        for k = length(s):-1:1 X {,OP/  
            p = (1-2*mod(s(k),2))* ... "4c ?hH:C  
                       prod(2:(n(j)-s(k)))/          ... R:zPU   
                       prod(2:s(k))/                 ... shbPy   
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... rn^ 7B-V  
                       prod(2:((n(j)+m(j))/2-s(k))); oQgd]| v  
            idx = (pows(k)==rpowers); b#U nE  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Ri]7=.QI`  
        end  _6a+" p  
         I@VhxJh  
        if isnorm #s JE{Tb  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); L,*KgLG  
        end v?zA86d_  
    end 6X(Yv2X&4%  
    -%]O-'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  o+UCu`7e  
    <a9<rF =r  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 !cP2,l 'f  
    r)Q/YzXx*  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)