非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 kx"10Vw
function z = zernfun(n,m,r,theta,nflag) m~=~DMj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^Co-!jM
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mB?x_6#d9
% and angular frequency M, evaluated at positions (R,THETA) on the V2MOD{Maat
% unit circle. N is a vector of positive integers (including 0), and 7u):J
% M is a vector with the same number of elements as N. Each element D Ez,u^
% k of M must be a positive integer, with possible values M(k) = -N(k) CD|[PkjW
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ahBqYAK9
% and THETA is a vector of angles. R and THETA must have the same >| R'dF}
% length. The output Z is a matrix with one column for every (N,M) }cKB)N
BJb
% pair, and one row for every (R,THETA) pair. ?^}30V:E
% U.%Kt,qB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {z#2gc'Q
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *H>rvE.K?
% with delta(m,0) the Kronecker delta, is chosen so that the integral K2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i|YS>Pw~j
% and theta=0 to theta=2*pi) is unity. For the non-normalized v9*m0|T0M
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x(_[D08/TT
% jlEz]@
i
% The Zernike functions are an orthogonal basis on the unit circle. }f}. >B0#
% They are used in disciplines such as astronomy, optics, and
xmW~R*^
% optometry to describe functions on a circular domain. v3tJtb^'!
% ?6#won
% The following table lists the first 15 Zernike functions. 4M'>oa
% Tb/TP3N
% n m Zernike function Normalization 0XHQ5+"8
% -------------------------------------------------- Qzi?%&
% 0 0 1 1 eI
#Gx_mg
% 1 1 r * cos(theta) 2 P]E-Wp'p
% 1 -1 r * sin(theta) 2 W
U(_N*a
% 2 -2 r^2 * cos(2*theta) sqrt(6) g?C;b>4
% 2 0 (2*r^2 - 1) sqrt(3) AOf4y&B>q
% 2 2 r^2 * sin(2*theta) sqrt(6) VFHd2Ea(
% 3 -3 r^3 * cos(3*theta) sqrt(8) 39pG-otJ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) k9|5TLXq?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) cNs'GfD}
% 3 3 r^3 * sin(3*theta) sqrt(8) G
dgL}"*F
% 4 -4 r^4 * cos(4*theta) sqrt(10) :!ya&o
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iCt.rr~;V
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Xlo7enzY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Bf_$BCyGW
% 4 4 r^4 * sin(4*theta) sqrt(10) "
\$^j#o
% -------------------------------------------------- >ZA=9v
% sE1cvAw9l
% Example 1: 8a)AuAi?!
% enoj4g7em^
% % Display the Zernike function Z(n=5,m=1) 7ubz7*
% x = -1:0.01:1; YFKE>+
% [X,Y] = meshgrid(x,x); Fe+
@;
% [theta,r] = cart2pol(X,Y); 'j1e(wq
% idx = r<=1; hy;VvAH5
% z = nan(size(X)); ao(T81
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _GOSqu!3Y
% figure dWqn7+:
% pcolor(x,x,z), shading interp |s| }u`(@9
% axis square, colorbar X1L@
G
% title('Zernike function Z_5^1(r,\theta)') ~z,o):q1}
% L9x-90'q,
% Example 2: 8fR(y~_gF
% (FuIOR
% % Display the first 10 Zernike functions $YYWpeW
'
% x = -1:0.01:1; )?n'ZhsX
% [X,Y] = meshgrid(x,x); XtF
m5\U
% [theta,r] = cart2pol(X,Y); lame/B&nc
% idx = r<=1; U"oNJ8&%|
% z = nan(size(X)); @hLkU4S
% n = [0 1 1 2 2 2 3 3 3 3]; YJi%vQ*]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }D/+YG
% Nplot = [4 10 12 16 18 20 22 24 26 28]; jDzQw>TX
% y = zernfun(n,m,r(idx),theta(idx)); voWH.[n^_
% figure('Units','normalized') "kg`TJf=
% for k = 1:10 #-hO\
QdC
% z(idx) = y(:,k); gN&i&%*!
% subplot(4,7,Nplot(k)) eH&F gmU
% pcolor(x,x,z), shading interp yNu_>!Cp5
% set(gca,'XTick',[],'YTick',[]) *zfgO pK
% axis square P
rt}
01$
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Cu"Cpt[
% end !,4ag1
% sFU< PgV
% See also ZERNPOL, ZERNFUN2. tDByOml8Ix
4=PjS<Lu8
% Paul Fricker 11/13/2006 Et>#&Nw8
3? {AGJ1
-(VJ,)8t2
% Check and prepare the inputs: .Po"qoGy
% ----------------------------- 0^;2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |diI(2w
error('zernfun:NMvectors','N and M must be vectors.') L"_XWno
end =KRM`_QShg
7 WJ\nK
if length(n)~=length(m) bMH~vR
error('zernfun:NMlength','N and M must be the same length.') ZsGvv]P
end O"m7r ds
'uPAG;)m
n = n(:); XN<SKW(H3
m = m(:); lH-VqkR\
if any(mod(n-m,2)) s.3"2waZ=T
error('zernfun:NMmultiplesof2', ... ?W/.'_
'All N and M must differ by multiples of 2 (including 0).') Z:4/lx7Bq
end A^U84kV=
&|>@K#V8-;
if any(m>n) |OQ]F
error('zernfun:MlessthanN', ... /qpSmRL
'Each M must be less than or equal to its corresponding N.') p8Vqy-:
end fv+]iK<{
1#vy# '
if any( r>1 | r<0 ) sqkWQ`Ur
error('zernfun:Rlessthan1','All R must be between 0 and 1.') FaHOutP
end (f/(q-7VWt
^W |YE72Y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *D5 xbkH=.
error('zernfun:RTHvector','R and THETA must be vectors.') WP<L9A
end ;?h[WIy
{gMe<y
r = r(:); Mw[3711v
theta = theta(:); qpQ;,8X-"
length_r = length(r); $H:!3-/
if length_r~=length(theta) y:G%p3h)[
error('zernfun:RTHlength', ... {QG.> lB
'The number of R- and THETA-values must be equal.') LIg1U
end osV6=
-FeXG#{)
% Check normalization: A#U! KX
% -------------------- #~0Nk6*u
if nargin==5 && ischar(nflag) *PmZqe
isnorm = strcmpi(nflag,'norm'); *&U~Io"U
if ~isnorm aNbS0R>l
error('zernfun:normalization','Unrecognized normalization flag.') dPUe5k)G_
end D(b01EQ;d
else z?/_b
isnorm = false; KsDS!O
end yC'
y>f`H
osC?2.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z|$#
% Compute the Zernike Polynomials &/@V$'G=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [ATJ!
O
6St=r)_
% Determine the required powers of r: 1tuvJ+`{
% ----------------------------------- mhbczVw
m_abs = abs(m); Q14zc0N
rpowers = []; q4ROuE|d
for j = 1:length(n) F5)`FM^R
rpowers = [rpowers m_abs(j):2:n(j)]; s$Vl">9#
end )&6gju7(
rpowers = unique(rpowers); dx%z9[8~{.
/wDf,Hduz
% Pre-compute the values of r raised to the required powers, -CPtYG[s
% and compile them in a matrix: 8Vu@awz{L
% ----------------------------- ]b-2:M
if rpowers(1)==0 -^&=I3bp
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SYJO3cY
rpowern = cat(2,rpowern{:}); <Iw{fj|
rpowern = [ones(length_r,1) rpowern]; dT|XcVKg
else zt.kNb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HxI6_ >n^I
rpowern = cat(2,rpowern{:}); _i_='dsyW/
end Ft5A(P >
@SX%q&-
% Compute the values of the polynomials: ;"dX]":
% -------------------------------------- \ `Hp/D1
y = zeros(length_r,length(n)); c^}G=Z1@
for j = 1:length(n) \Vc[/Qp7Bb
s = 0:(n(j)-m_abs(j))/2; c5]Xqq,
pows = n(j):-2:m_abs(j); ?Y"%BS+pt
for k = length(s):-1:1 0 C4eer+D
p = (1-2*mod(s(k),2))* ... uq5?t
prod(2:(n(j)-s(k)))/ ... TY8gB!^
prod(2:s(k))/ ... *6I$N>1
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Zue3Z{31T
prod(2:((n(j)+m_abs(j))/2-s(k))); 5 -i,Tx&:
idx = (pows(k)==rpowers); G
;j1zs
y(:,j) = y(:,j) + p*rpowern(:,idx); 'LgRdtO6
end s8-RXEPb
{Y~>&B5
if isnorm tN#C.M7.'7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r1!1u7dr
t
end yr\ClIU
end B=A!hXNa
% END: Compute the Zernike Polynomials TdFU,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^0]0ss;##R
pg{VKrT`
% Compute the Zernike functions: l";Yw]:^
% ------------------------------ Q4XlYgIV2A
idx_pos = m>0; TV`1&ta
idx_neg = m<0; \$ 9C1@B@
yaz6?,)
z = y; Pe`mZCd^
if any(idx_pos) m6R/,
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /2Izj/Q
end fcq8aW/z_
if any(idx_neg) ky2]%cw
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); UL[,A+X8D
end SkuR~!
4t*%(
% EOF zernfun