切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11384阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ri V/wN9C  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! z`7C)p:  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7QFEQ}  
    function z = zernfun(n,m,r,theta,nflag) je% 12DM  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1nmWL0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,"ZlY}!Gn  
    %   and angular frequency M, evaluated at positions (R,THETA) on the (k45k/PAP  
    %   unit circle.  N is a vector of positive integers (including 0), and 6*Qpq7Ml  
    %   M is a vector with the same number of elements as N.  Each element i i Y[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) = 0Sa  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @]4s&;  
    %   and THETA is a vector of angles.  R and THETA must have the same 'M/&bu r  
    %   length.  The output Z is a matrix with one column for every (N,M) s:H1v&t,<  
    %   pair, and one row for every (R,THETA) pair. + k:?;ZG  
    % WKML#U]5T  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike oc Uu  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SO"P3X  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @I:&ozy }=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (1vS)v $L  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "(GeW286k  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =G6@:h=  
    % nX'.'3  
    %   The Zernike functions are an orthogonal basis on the unit circle. !y.7"G*  
    %   They are used in disciplines such as astronomy, optics, and r>o6}Mx$  
    %   optometry to describe functions on a circular domain. :f:C*mYvu  
    % Z0KA4O$eL  
    %   The following table lists the first 15 Zernike functions. [j39A`t7 o  
    % Hy'&x?F6  
    %       n    m    Zernike function           Normalization "?-s Qn  
    %       -------------------------------------------------- Tr)[q>  
    %       0    0    1                                 1 ~~mQ  
    %       1    1    r * cos(theta)                    2 l:HuG!  
    %       1   -1    r * sin(theta)                    2 )-gyDA  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) M:E#}(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <D}k@M Z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j/&7L@Y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) XlPy(>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) T8LwDqio  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,H8P mn?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Dlp::U*N'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) p P&~S<[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Xo b##{P3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) bql6Z1l  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Sr IynO  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) m{|n.b  
    %       -------------------------------------------------- Zlhr0itf  
    % '1<QK  
    %   Example 1: ; V8 =B8w  
    % X@rAe37h+  
    %       % Display the Zernike function Z(n=5,m=1) lKcnM3n  
    %       x = -1:0.01:1; XT)@)c7j  
    %       [X,Y] = meshgrid(x,x); %o>1$f]  
    %       [theta,r] = cart2pol(X,Y); e!#:h4I  
    %       idx = r<=1; wB@A?&UY  
    %       z = nan(size(X)); u}$3.]-.?T  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $1YnQgpT  
    %       figure S3w? X  
    %       pcolor(x,x,z), shading interp +}]xuYzo  
    %       axis square, colorbar qW*)]s)z  
    %       title('Zernike function Z_5^1(r,\theta)') [/FIY!nC?  
    % PYGHN T  
    %   Example 2: oVdmgmT.Y  
    % zKv}J  
    %       % Display the first 10 Zernike functions wbTw\b=  
    %       x = -1:0.01:1; V.qB3 V$  
    %       [X,Y] = meshgrid(x,x); $|KbjpQ  
    %       [theta,r] = cart2pol(X,Y); J c*A\-qC.  
    %       idx = r<=1; 8I%1 `V  
    %       z = nan(size(X)); 4?`7XJ0a  
    %       n = [0  1  1  2  2  2  3  3  3  3]; q-'zZ#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; tP3Upw"U  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; raCxHY  
    %       y = zernfun(n,m,r(idx),theta(idx)); {8eNQ-4I  
    %       figure('Units','normalized') %VgR *  
    %       for k = 1:10 74_ji!  
    %           z(idx) = y(:,k); B4%W,F:@  
    %           subplot(4,7,Nplot(k)) ~_Aclm?  
    %           pcolor(x,x,z), shading interp 0[^f9NZ>-  
    %           set(gca,'XTick',[],'YTick',[]) :0/I2:  
    %           axis square !U@[lBW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sNWj+T  
    %       end 0=NB[eG  
    % YIfbcR5  
    %   See also ZERNPOL, ZERNFUN2. B--`=@IRf"  
    \7RP6o  
    %   Paul Fricker 11/13/2006 wNn6".S   
    Xh5 z8  
    }0:=)e  
    % Check and prepare the inputs: j:g/[_0s  
    % ----------------------------- u?!p[y6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Gmc0yRN  
        error('zernfun:NMvectors','N and M must be vectors.') z' @F@k6  
    end =73wngw  
    7C=t19&R'  
    if length(n)~=length(m) HghNI  
        error('zernfun:NMlength','N and M must be the same length.') Hc71 .rqS  
    end JHcC}+H[  
    % %*t{0!H+  
    n = n(:); w1[F]|  
    m = m(:); rQU;?[y  
    if any(mod(n-m,2)) ^j@,N&W:lG  
        error('zernfun:NMmultiplesof2', ... > #SQDVFf  
              'All N and M must differ by multiples of 2 (including 0).') HA| YLj?|g  
    end vNP,c]:%  
    EI'(  
    if any(m>n) LbnR=B!  
        error('zernfun:MlessthanN', ... IL\#!|>  
              'Each M must be less than or equal to its corresponding N.') p tMysYT'  
    end .-{B  
    o@ }Jd0D4  
    if any( r>1 | r<0 ) P'[w9'B  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A>Js`s  
    end jlItPd C v  
    0EOpK%{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ZhW>H  
        error('zernfun:RTHvector','R and THETA must be vectors.') _&P![o)x  
    end 3eD#[jkAI;  
    %c):^;6p  
    r = r(:); |d K_^~;o  
    theta = theta(:); '6WaG hvO  
    length_r = length(r); n>{ >3?  
    if length_r~=length(theta) S Bs_rhe  
        error('zernfun:RTHlength', ... '~2;WF0h  
              'The number of R- and THETA-values must be equal.') Y6f0 ?lB  
    end z>~Hc8*]3  
    :`25@<*u  
    % Check normalization: \)pk/  
    % -------------------- 52=?! JM  
    if nargin==5 && ischar(nflag) ^8-CUH\  
        isnorm = strcmpi(nflag,'norm'); qlO(z5Ak  
        if ~isnorm Z3)1!|#Q  
            error('zernfun:normalization','Unrecognized normalization flag.') iXeywO2nP  
        end 4 QD.'+ L  
    else YvRMUT  
        isnorm = false; 1t6VS 3  
    end wpO-cJ!,  
    D3N\$D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gq!| 0  
    % Compute the Zernike Polynomials /aP4'U8ov  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% crG+BFi  
    Nw* >$v  
    % Determine the required powers of r: B[}#m'Lv  
    % ----------------------------------- C[z5& x2  
    m_abs = abs(m); ]25 xX  
    rpowers = []; U:"E:Bxz;m  
    for j = 1:length(n) NLf6}  
        rpowers = [rpowers m_abs(j):2:n(j)]; >d%;+2  
    end r$<[`L+6  
    rpowers = unique(rpowers); hKj"Lb9 ]  
    &N.D!7X  
    % Pre-compute the values of r raised to the required powers, w-LMV>+6|  
    % and compile them in a matrix: |5^tp  
    % ----------------------------- 9q(*'rAm  
    if rpowers(1)==0 -AWL :<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LR|LP)I  
        rpowern = cat(2,rpowern{:}); : A9G>qg  
        rpowern = [ones(length_r,1) rpowern]; hi^@969  
    else d ]R&mp|'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'tm%3` F  
        rpowern = cat(2,rpowern{:}); ~ (I'm[  
    end &;I=*B~kE$  
    ;Sl]8IZ  
    % Compute the values of the polynomials: Ev+m+  
    % -------------------------------------- ~`~mnlN  
    y = zeros(length_r,length(n)); FwKT_XkY  
    for j = 1:length(n) '7Q5"M'  
        s = 0:(n(j)-m_abs(j))/2; R-5EztmLae  
        pows = n(j):-2:m_abs(j); ] ;" blB  
        for k = length(s):-1:1 /Sy:/BQ  
            p = (1-2*mod(s(k),2))* ... J0K25w  
                       prod(2:(n(j)-s(k)))/              ... ;w--fqxVl  
                       prod(2:s(k))/                     ... ancs  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *c9/ I  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Kw_> X&GcJ  
            idx = (pows(k)==rpowers); _8]hn[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <_(UAv  
        end {kVhht]X  
         9=D09@A%e  
        if isnorm W(.q. Sx>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); a$-:F$z  
        end KVQ|l,E, /  
    end AM?62  
    % END: Compute the Zernike Polynomials <Wqk5mR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RHe'L36W  
    (nL''#Ka  
    % Compute the Zernike functions: fg}&=r  
    % ------------------------------ ` 9iB`<  
    idx_pos = m>0; ] /w: 5o#  
    idx_neg = m<0; b8o}bm{s  
    C5k\RS9  
    z = y; 33/aYy  
    if any(idx_pos) SY&)?~C  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,j^z];  
    end $w%n\t>B  
    if any(idx_neg) uv>T8(w  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); fZ8at  
    end ^6c=[N$aW  
    U5_1-wV  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ;}/@ar7s3  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Pi^5LI6JW  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated cU`sA_f  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &}N=a  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ?<7o\Xk#{  
    %   and THETA is a vector of angles.  R and THETA must have the same _DlkTi5(w  
    %   length.  The output Z is a matrix with one column for every P-value, 4&TTPcSt;  
    %   and one row for every (R,THETA) pair. +aa( YGL  
    %  ^##tk  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike OanHG  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) f[}N  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) MJxTzQE  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 RfM uWo:  
    %   for all p. <[N"W82p  
    % _4H}OGZI  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^&nC)T<w  
    %   Zernike functions (order N<=7).  In some disciplines it is y:\ ^[y IQ  
    %   traditional to label the first 36 functions using a single mode wTT_jyH)  
    %   number P instead of separate numbers for the order N and azimuthal s*blZdP  
    %   frequency M. +s(JutC  
    % P[|FK(l  
    %   Example: 7hQf T76h  
    % <M//zXa  
    %       % Display the first 16 Zernike functions O^tH43C  
    %       x = -1:0.01:1; Z33&FUU  
    %       [X,Y] = meshgrid(x,x); @I`X{oAA  
    %       [theta,r] = cart2pol(X,Y); OIT9.c0h  
    %       idx = r<=1; o\Ocu>:  
    %       p = 0:15; lP9XqQ(  
    %       z = nan(size(X)); z% ln}  
    %       y = zernfun2(p,r(idx),theta(idx)); 3M/iuu  
    %       figure('Units','normalized') -]!m4xvK  
    %       for k = 1:length(p) ]{` 8C  
    %           z(idx) = y(:,k); +Xa^3 =B  
    %           subplot(4,4,k) bC[TLsh7{2  
    %           pcolor(x,x,z), shading interp co <ATx  
    %           set(gca,'XTick',[],'YTick',[])  p^=>N9  
    %           axis square q(N2 #di  
    %           title(['Z_{' num2str(p(k)) '}']) je9eJUKE  
    %       end F4=+xd >0  
    % K2= `.  
    %   See also ZERNPOL, ZERNFUN. R`7v3{  
    )+' De  
    %   Paul Fricker 11/13/2006 OK=lp4X  
    $}{u6*u.,  
    HkGA$  
    % Check and prepare the inputs: .I6:iB  
    % ----------------------------- $]&0`F  
    if min(size(p))~=1 zvvF 9  
        error('zernfun2:Pvector','Input P must be vector.')  zw13Tu  
    end D4CN%^?  
    D)yCuw{M:  
    if any(p)>35 P>*g'OK^!G  
        error('zernfun2:P36', ... q T16th[D  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... w&A &BE^O/  
               '(P = 0 to 35).']) RoL5uha,l  
    end {I/|7b>@r  
    W%/lBkP  
    % Get the order and frequency corresonding to the function number: 2>Uy`B|f  
    % ---------------------------------------------------------------- yMdAe>@  
    p = p(:); F4!,8)}  
    n = ceil((-3+sqrt(9+8*p))/2); @B<B#  
    m = 2*p - n.*(n+2); 6$]p;}#  
    [dszz7/L  
    % Pass the inputs to the function ZERNFUN: (r&e|  
    % ---------------------------------------- %?o@YwBo^E  
    switch nargin mw^Di  
        case 3 (6jr}kP  
            z = zernfun(n,m,r,theta); RVlAWw(  
        case 4 -3YsrcJi  
            z = zernfun(n,m,r,theta,nflag); `(SWE+m1g  
        otherwise (-V=&F_  
            error('zernfun2:nargin','Incorrect number of inputs.') 6 (:^>@  
    end jU4*fzsZI  
    x#mZSSd  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Ivw+U-Mz  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 2>s@2=Aq  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 'O#,;n  
    %   order N and frequency M, evaluated at R.  N is a vector of ?WD|a(  
    %   positive integers (including 0), and M is a vector with the $EHnlaG8r  
    %   same number of elements as N.  Each element k of M must be a NNWbbU3wjh  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8}Pd- .se  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is |+?ABPk"  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /]/3)@wT  
    %   with one column for every (N,M) pair, and one row for every 3@k;"pFa<  
    %   element in R. >R5qhVYFb  
    % :#M(,S"Qq  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- "HWl7c3q  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is P7IxN)b7  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 1dhp/Qh  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 SE0"25\_G  
    %   for all [n,m]. R/H ?/  
    % RI#C r+/  
    %   The radial Zernike polynomials are the radial portion of the gnS0$kCJ:  
    %   Zernike functions, which are an orthogonal basis on the unit 8aCa(Xu(H  
    %   circle.  The series representation of the radial Zernike H}}]Gh.T  
    %   polynomials is AJRfl%3  
    % F,CQAgx  
    %          (n-m)/2 3r=IO#  
    %            __ O,Xf.O1c  
    %    m      \       s                                          n-2s M5C}*c9  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 05 ".;(  
    %    n      s=0 =2VM(GtK>  
    % s'LY)_n  
    %   The following table shows the first 12 polynomials. ~%Y*2i f  
    % #]G$o?@Y=^  
    %       n    m    Zernike polynomial    Normalization jWb;Xk4  
    %       --------------------------------------------- !<"H73?fl  
    %       0    0    1                        sqrt(2) ArBgg[i  
    %       1    1    r                           2 YoD1\a|  
    %       2    0    2*r^2 - 1                sqrt(6)  D7%`hU  
    %       2    2    r^2                      sqrt(6) W,zlR5+Jk  
    %       3    1    3*r^3 - 2*r              sqrt(8) xbex6i"ZE  
    %       3    3    r^3                      sqrt(8) L+@RK6dq  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) $CaF"5}?Ke  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) W M/pP?||  
    %       4    4    r^4                      sqrt(10) `0+zF-  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) zosJ=$L  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =K#D^c~  
    %       5    5    r^5                      sqrt(12) CT6Ca,  
    %       --------------------------------------------- EEQW$W1@  
    % Pms"YhyZ7  
    %   Example: < C\snB  
    % mDmy637_  
    %       % Display three example Zernike radial polynomials "}PaMR]  
    %       r = 0:0.01:1; 4/S% eZB  
    %       n = [3 2 5]; clQN@1] M  
    %       m = [1 2 1]; 3_(fisvx  
    %       z = zernpol(n,m,r); tP2hU[7Z  
    %       figure 8W?/Sg`  
    %       plot(r,z) h?2qX  
    %       grid on Q4 Mp[  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') (3C6'Wt  
    % 8D eRs#  
    %   See also ZERNFUN, ZERNFUN2. 2<Pi2s'  
    9;u$a^R.  
    % A note on the algorithm. %s~MfK.k  
    % ------------------------ /jih;J|  
    % The radial Zernike polynomials are computed using the series 50Z$3T  
    % representation shown in the Help section above. For many special Ip]-OVg  
    % functions, direct evaluation using the series representation can pR2QS  
    % produce poor numerical results (floating point errors), because d?_Bll"  
    % the summation often involves computing small differences between #_{3W-35*  
    % large successive terms in the series. (In such cases, the functions ]Y;E In  
    % are often evaluated using alternative methods such as recurrence h^ ex?  
    % relations: see the Legendre functions, for example). For the Zernike ^- T!(P:  
    % polynomials, however, this problem does not arise, because the M xUj7ae  
    % polynomials are evaluated over the finite domain r = (0,1), and Ji  SJi?  
    % because the coefficients for a given polynomial are generally all ,qJ/Jt$A  
    % of similar magnitude. O3#4B!J$E  
    % I,D24W4l  
    % ZERNPOL has been written using a vectorized implementation: multiple w> `3{MTQ  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] A?8f 6  
    % values can be passed as inputs) for a vector of points R.  To achieve >6 [{\uPK  
    % this vectorization most efficiently, the algorithm in ZERNPOL l)`bm/k]V  
    % involves pre-determining all the powers p of R that are required to O-6848iCX  
    % compute the outputs, and then compiling the {R^p} into a single P6* IR|  
    % matrix.  This avoids any redundant computation of the R^p, and ),5^bl/  
    % minimizes the sizes of certain intermediate variables. ?:OL8&0  
    % Sf[ZGY)  
    %   Paul Fricker 11/13/2006 LBT{I)-K  
    T1?fC)  
    %"V Y)  
    % Check and prepare the inputs: tG(?PmQ  
    % ----------------------------- 0EfM~u  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Da5Zz(  
        error('zernpol:NMvectors','N and M must be vectors.') 1Qui.],c  
    end QbqEe/*$_  
    }s{RW<A  
    if length(n)~=length(m) GQ ZEMy7  
        error('zernpol:NMlength','N and M must be the same length.') QkUq%}_0  
    end y/rmxQtP  
    4AB7uw  
    n = n(:); !'(bwbd  
    m = m(:); =7ul,  
    length_n = length(n); =ZjF5,@  
    `s(T (l  
    if any(mod(n-m,2)) !vHUe*1a{  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') DSad[>Uj],  
    end ^il'Q_-{  
    x|n2,3%  
    if any(m<0) w;}pebL:  
        error('zernpol:Mpositive','All M must be positive.') J_]?.V*A  
    end gJ cf~@s  
    Y s[JxP  
    if any(m>n) $J&ww P[  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^yg`U(  
    end =8[4gM+  
    :Lqz`  
    if any( r>1 | r<0 ) :VC#\/f  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Wfgs[  
    end Au,xIe!t  
    5hak'#2  
    if ~any(size(r)==1) +xMK.*H]W  
        error('zernpol:Rvector','R must be a vector.') 6f/>o$  
    end hX(:xc  
    CsG1HR@  
    r = r(:); V6Ie\+@.\  
    length_r = length(r); IT]D;  
    )?RR1P-ID  
    if nargin==4 1\t}pGSOeh  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Lw<?e;  
        if ~isnorm 2i`N26On  
            error('zernpol:normalization','Unrecognized normalization flag.') 4^(u6tX5|+  
        end Dz;^'   
    else DZKVZ_q  
        isnorm = false; H/'tSb  
    end ^XEX"E  
    ~.7r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `G> 6  
    % Compute the Zernike Polynomials vUh.ev0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H~JPsS;  
    pfsRV]  
    % Determine the required powers of r: % FW__SN$c  
    % ----------------------------------- :J` *@cDn  
    rpowers = []; 3OTq  
    for j = 1:length(n) HV ab14}E  
        rpowers = [rpowers m(j):2:n(j)]; j*aN_UTr3  
    end F }l_=  
    rpowers = unique(rpowers); T ) T0.c  
    \hv1"WaJ  
    % Pre-compute the values of r raised to the required powers, 3D70`u  
    % and compile them in a matrix: 9^l_\:4  
    % ----------------------------- pv8"E?9,k  
    if rpowers(1)==0 Ag QR"Nu6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;Q>(%"z};  
        rpowern = cat(2,rpowern{:}); i2`i5&*  
        rpowern = [ones(length_r,1) rpowern]; L9[? qFp  
    else z 3)pvX5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M6U/. n  
        rpowern = cat(2,rpowern{:}); |9. `qv  
    end N}Ozm6Mc  
    m@  b~  
    % Compute the values of the polynomials: 6N[XWyS  
    % -------------------------------------- P [-2^1P"  
    z = zeros(length_r,length_n); rf1Us2vp  
    for j = 1:length_n Wo=Q7~  
        s = 0:(n(j)-m(j))/2; yEL^Y'x?  
        pows = n(j):-2:m(j); *+TIF"|1  
        for k = length(s):-1:1 1HK5OT&  
            p = (1-2*mod(s(k),2))* ... @*jd.a`  
                       prod(2:(n(j)-s(k)))/          ... 6?OH"!b2-}  
                       prod(2:s(k))/                 ... KIO{6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... "Wd?U[[  
                       prod(2:((n(j)+m(j))/2-s(k))); \:ntqj&A|  
            idx = (pows(k)==rpowers); NidG|Yg~Z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Un\h[m  
        end K| #%u2C  
         6'd=% V  
        if isnorm -ZqN~5>j)  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 4{H>V_9zs  
        end fwB+f` w`  
    end )P>Cxzs  
    l9 RjxO.~U  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  zq ;YE  
    .{,PC  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 UuDs  
    sp%EA=: E  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)