非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sX'nn
function z = zernfun(n,m,r,theta,nflag) ]^'ZiyJX
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0N5bPb
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m6MaX}&zv
% and angular frequency M, evaluated at positions (R,THETA) on the @L8;VSI
% unit circle. N is a vector of positive integers (including 0), and +c?ie4
% M is a vector with the same number of elements as N. Each element o#}mkE87
% k of M must be a positive integer, with possible values M(k) = -N(k) ]M\q0>HoJ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 0b++17aV
% and THETA is a vector of angles. R and THETA must have the same |Puj7Ru
% length. The output Z is a matrix with one column for every (N,M) LyP`{_"CM
% pair, and one row for every (R,THETA) pair. @C_ =*
% XhA4:t
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MYx88y
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $W, zO|-
% with delta(m,0) the Kronecker delta, is chosen so that the integral x4 hO$3o
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #Fzb8Yo
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]]y[t|6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :rmauKR
% QgZJ`G--
% The Zernike functions are an orthogonal basis on the unit circle. s41adw>
% They are used in disciplines such as astronomy, optics, and PWG;&ma
% optometry to describe functions on a circular domain. Wr#~GFg
% G?ZC9w]rA
% The following table lists the first 15 Zernike functions. '!@A}&]
% Tk](eQsy.v
% n m Zernike function Normalization b9#m m
% -------------------------------------------------- . s-5N\
% 0 0 1 1 xVTo4-[p
% 1 1 r * cos(theta) 2 Hz? ,#>{
% 1 -1 r * sin(theta) 2 8]]@S"ZM,\
% 2 -2 r^2 * cos(2*theta) sqrt(6) 5L3{w+V
% 2 0 (2*r^2 - 1) sqrt(3) Xi+n`T'i
% 2 2 r^2 * sin(2*theta) sqrt(6) nl9kYE
[
% 3 -3 r^3 * cos(3*theta) sqrt(8) W0?JVtq0Z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) AysL-sqR
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )f[C[Rd
% 3 3 r^3 * sin(3*theta) sqrt(8) D!me%;
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2-7Z(7G{ F
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Gw`/.0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 3P`WPph
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZQ|gt*
% 4 4 r^4 * sin(4*theta) sqrt(10) Z9f/-|r5
% -------------------------------------------------- Y{j7Q4{
% e# <4/FR
% Example 1: g/B\ObY
% IywiCMjH
% % Display the Zernike function Z(n=5,m=1) PJ;.31u
% x = -1:0.01:1; cdDY]"k
% [X,Y] = meshgrid(x,x); l.uN$B
% [theta,r] = cart2pol(X,Y); )*W=GY*
% idx = r<=1; bq: [Nj
% z = nan(size(X)); p9Z].5Pd"
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $r):d
% figure ?(>k,[n
% pcolor(x,x,z), shading interp HoL~j( {
% axis square, colorbar z6 a,0&;-L
% title('Zernike function Z_5^1(r,\theta)') WV@X@]U
% i0b.AA
% Example 2: 1y~L8!:L
% 7|{ B#
% % Display the first 10 Zernike functions uct=i1+ fE
% x = -1:0.01:1; ?0uOR*y'
% [X,Y] = meshgrid(x,x); T:6K?$y?
% [theta,r] = cart2pol(X,Y); /Bh>
% idx = r<=1; M$F{N
% z = nan(size(X)); Xout:dn
% n = [0 1 1 2 2 2 3 3 3 3]; @]E]W#xAn
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; D/cg7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; dK`(BA{`3
% y = zernfun(n,m,r(idx),theta(idx)); i`R(7Z
% figure('Units','normalized') rykj2/O
% for k = 1:10 %uj[ `
% z(idx) = y(:,k); hRa\1Jt>a
% subplot(4,7,Nplot(k)) "~_$T@^k>
% pcolor(x,x,z), shading interp 3Fgz)*Gu]
% set(gca,'XTick',[],'YTick',[]) o>.AdZby
% axis square >n1h^AW
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \zBd<H4S:
% end <>VIDE
% >CH
% See also ZERNPOL, ZERNFUN2. /9P^{OZ;y
xna7kA
% Paul Fricker 11/13/2006 AjG)1
v: giZxR
JaA&eT|
% Check and prepare the inputs: tc"T}huypU
% ----------------------------- 'J2ewW5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y$>+U
error('zernfun:NMvectors','N and M must be vectors.') c!.=%QY
end 33*^($bE&
#]k0Z~Bl
if length(n)~=length(m) FMoJ"6Q
error('zernfun:NMlength','N and M must be the same length.') y2U/$%B)G
end fn3*2
L^6"'#
n = n(:); Ad^dF'SN
m = m(:); 92s4u3L;
if any(mod(n-m,2)) 6euR'd^Qi
error('zernfun:NMmultiplesof2', ... rFf:A-#l
'All N and M must differ by multiples of 2 (including 0).') o1
jk=
end [SK2 x4
$[)6H7!U)
if any(m>n) )>ug{M%g
error('zernfun:MlessthanN', ... 7F,07\c
'Each M must be less than or equal to its corresponding N.') f$Gr`d
end d#E(~t(^
S4;wa6
if any( r>1 | r<0 ) lq;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >_rzT9gX&
end =9kj?
u~
E%-Pyg*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y2oB]^z&n
error('zernfun:RTHvector','R and THETA must be vectors.') `2Wl
end <ED8"~_
2 9&sydu
r = r(:); t.3Ct@wK
theta = theta(:); 1_N~1Ik
length_r = length(r); ;M%oQ>].[
if length_r~=length(theta) Q2JdO 6[96
error('zernfun:RTHlength', ... 5x:Ift
*
'The number of R- and THETA-values must be equal.') j)g_*\tQ
end ^</65+OT+
9V|E1-")E
% Check normalization: |
\ s2
% -------------------- yd7lcb
[
if nargin==5 && ischar(nflag) nAQyxP%
isnorm = strcmpi(nflag,'norm'); fG:PdIJ7_
if ~isnorm y0/WA4,
error('zernfun:normalization','Unrecognized normalization flag.') FQ;4'B^k]
end 08<k'Oi]
else !yoSMI-
isnorm = false; O"_erH\nk
end !^c:'I>~
d$2@,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &