切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11523阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 l)KN5V  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 5M8   
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Dt]FmU  
    function z = zernfun(n,m,r,theta,nflag) HOPsp  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. I|mxyyf  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `\-MpNw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j!"NEh78H  
    %   unit circle.  N is a vector of positive integers (including 0), and ht5:kt`F  
    %   M is a vector with the same number of elements as N.  Each element r2Q) Q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~-(X\:z}  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^A;ec h7I  
    %   and THETA is a vector of angles.  R and THETA must have the same AqrK==0N  
    %   length.  The output Z is a matrix with one column for every (N,M) KEr?&e  
    %   pair, and one row for every (R,THETA) pair. NQvT4.*  
    % c$3ZEe  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]<O -  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lzZ=!dG  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral IG@@CH  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )4/UzR$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &-Z#+>=H(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7.v{=UP  
    % A'? W5~F  
    %   The Zernike functions are an orthogonal basis on the unit circle. OoAZ t  
    %   They are used in disciplines such as astronomy, optics, and l_=kW!l  
    %   optometry to describe functions on a circular domain. SYK?5_804  
    % RQ51xTOL4]  
    %   The following table lists the first 15 Zernike functions. "}UYsXg  
    % ]jJ4\O`  
    %       n    m    Zernike function           Normalization yz=6 V%  
    %       -------------------------------------------------- f]^ @z<FC  
    %       0    0    1                                 1 7)3cq}]O  
    %       1    1    r * cos(theta)                    2 i>rsq[l  
    %       1   -1    r * sin(theta)                    2 [k6,!e[/uG  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) C)s*1@af  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ["?WVXCF8|  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) a<V* )  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) v]KI=!Gs  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2HvzMo-4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) CW#$%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2$QuR~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >za=v  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~;Xkt G:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /B9jmvj`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ol8uV{:"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]r1 C  
    %       -------------------------------------------------- F30jr6F\  
    % ]z/  
    %   Example 1: &28n1  
    % FUTDR-q O  
    %       % Display the Zernike function Z(n=5,m=1) ()i!Uo  
    %       x = -1:0.01:1; su]ywVoRT  
    %       [X,Y] = meshgrid(x,x); (vf5qF^  
    %       [theta,r] = cart2pol(X,Y); 5B=Wnau  
    %       idx = r<=1; uv dx>5]  
    %       z = nan(size(X)); Aonq;} V e  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); -?<L"u  
    %       figure q&wXs/$a  
    %       pcolor(x,x,z), shading interp RJI*ZNb A  
    %       axis square, colorbar /2!"_?<L  
    %       title('Zernike function Z_5^1(r,\theta)') 4.mbW  
    % TS<uBX  
    %   Example 2: cB[.ET$  
    % 0#KB.2AP  
    %       % Display the first 10 Zernike functions EMejvPnZO  
    %       x = -1:0.01:1; #[#dc]D  
    %       [X,Y] = meshgrid(x,x); >taZw '  
    %       [theta,r] = cart2pol(X,Y); yo0?QRT  
    %       idx = r<=1; :O}<Q  
    %       z = nan(size(X)); I2=Kq{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {*C LWs4  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; f?C !Br}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; wbId}!  
    %       y = zernfun(n,m,r(idx),theta(idx)); MXhRnVz"W  
    %       figure('Units','normalized') Pjff%r^  
    %       for k = 1:10 $T0|zPK5  
    %           z(idx) = y(:,k); >KXT2+w  
    %           subplot(4,7,Nplot(k)) 5OUe |mS  
    %           pcolor(x,x,z), shading interp 2={ g'k(  
    %           set(gca,'XTick',[],'YTick',[]) Kn9 ,N@bU_  
    %           axis square a[8_ O-   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8)k.lPoo.  
    %       end 4[&6yHJ^  
    % GS3ydN<v  
    %   See also ZERNPOL, ZERNFUN2. J=U7m@))Y#  
    $mOK|=tI_  
    %   Paul Fricker 11/13/2006 :r/rByd'  
    KXFa<^\o  
    k\}qCDs  
    % Check and prepare the inputs: Ja#idF[V  
    % -----------------------------  OkO"t  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g `B?bBg  
        error('zernfun:NMvectors','N and M must be vectors.') |T"{q  
    end &4DV]9+g  
    ,O(XNA(C  
    if length(n)~=length(m) \9/n~/{  
        error('zernfun:NMlength','N and M must be the same length.') Z y7@"C  
    end MU&5&)m  
    Ck.GN<#-^P  
    n = n(:); 9H3#8T] ;  
    m = m(:); Aq|LeH  
    if any(mod(n-m,2)) /HDX[R   
        error('zernfun:NMmultiplesof2', ... Rb~Kyy$  
              'All N and M must differ by multiples of 2 (including 0).') m x,X!}  
    end Qg _?..%  
    <ZrZSt+<  
    if any(m>n) Krq^|DY  
        error('zernfun:MlessthanN', ... Z?hBn`.  
              'Each M must be less than or equal to its corresponding N.') W3 8 =fyD  
    end xD1B50y U  
    8a)EL*LH`  
    if any( r>1 | r<0 ) $ 9DZ5"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') z4J-qK~2  
    end @3S2Xb{ra1  
    ?\#4`9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #G{T(0<F  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9Jk(ID'c  
    end y~S[0]y>  
    *} w.xt  
    r = r(:); {@ , L  
    theta = theta(:); iy: ;g  
    length_r = length(r); !Xj m h$F  
    if length_r~=length(theta) #t(?8!F  
        error('zernfun:RTHlength', ... LbYI{|_Js  
              'The number of R- and THETA-values must be equal.') BkqIfV%O  
    end 7\/O"Ot  
    dadMwe_l0  
    % Check normalization: Q#g s)2  
    % -------------------- W'0wTZG  
    if nargin==5 && ischar(nflag) Z*ZG5e  
        isnorm = strcmpi(nflag,'norm'); @e0 Q+t  
        if ~isnorm *,n7&  
            error('zernfun:normalization','Unrecognized normalization flag.') mifYk>J^9  
        end 2iG(v._x  
    else z!L0j +  
        isnorm = false; "+ Qh,fTt  
    end 7e=a D~f  
    wFd*6%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W>Rv  
    % Compute the Zernike Polynomials  vo(?[[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <m6I)}K  
    <?J7Z|  
    % Determine the required powers of r: G#*!)#M <  
    % ----------------------------------- ntkinbbD  
    m_abs = abs(m); PvB?57wkF  
    rpowers = []; ]Ns&`Yn{  
    for j = 1:length(n) *nC,= 2  
        rpowers = [rpowers m_abs(j):2:n(j)]; =91'.c<  
    end =}"hC`3e  
    rpowers = unique(rpowers); 1Ev+':%  
    RYhdf  
    % Pre-compute the values of r raised to the required powers, .BUl$RW|  
    % and compile them in a matrix: 8|tm`r`*Az  
    % ----------------------------- 88*RlxU  
    if rpowers(1)==0 mcXakWmi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FXSDN268  
        rpowern = cat(2,rpowern{:}); SmLYxH3F  
        rpowern = [ones(length_r,1) rpowern]; |zT0g]WH  
    else Yptsq@s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e S=k 48'U  
        rpowern = cat(2,rpowern{:}); :hr@>Y~r  
    end m{5$4v,[  
    g`6wj|@ =W  
    % Compute the values of the polynomials: 7w$R-Y/E  
    % -------------------------------------- /uc/x+(_  
    y = zeros(length_r,length(n)); Iw:("A&~  
    for j = 1:length(n) ,6bMf z  
        s = 0:(n(j)-m_abs(j))/2; %N  
        pows = n(j):-2:m_abs(j); g|HrhUT;  
        for k = length(s):-1:1 w +Z};C  
            p = (1-2*mod(s(k),2))* ... UKBMGzu2:  
                       prod(2:(n(j)-s(k)))/              ... ;E"mB4/)  
                       prod(2:s(k))/                     ... (KMobIP^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Om"3Q/&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9C 05  
            idx = (pows(k)==rpowers); =arsoCa  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Cr%r<*s  
        end U:|v(U$"?  
         F)5Aq H/p  
        if isnorm >z -(4Z  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )89jP088V  
        end ~b[4'm@  
    end 7 tpZE+OX  
    % END: Compute the Zernike Polynomials xwxjj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !dH&IEP~  
    gWo~o]f  
    % Compute the Zernike functions: PPO<{  
    % ------------------------------ Lp WEu^j  
    idx_pos = m>0; HXHPz 4  
    idx_neg = m<0; $I36>  
    x=#5\t9  
    z = y; zn!  
    if any(idx_pos) kAliCD)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |Z^g\l.j{  
    end G0> Wk#or  
    if any(idx_neg) 4Z<l>!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); z=_{jjs  
    end piotd,  
    ]e~^YZOs  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) cEjdImAzU  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. .l5" X>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ~+ wamX3  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 6CmFmc,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, }a1Sfl@`3  
    %   and THETA is a vector of angles.  R and THETA must have the same @h$0S+?:  
    %   length.  The output Z is a matrix with one column for every P-value, z\8yB`8b^  
    %   and one row for every (R,THETA) pair. %*q0+_  
    % N pND/  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike b N e\{k  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) `A _8nW)  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) "HfU,$[  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U"Hquo  
    %   for all p. #*$@_  
    % $,,>R[;w  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 WTYFtZD[yH  
    %   Zernike functions (order N<=7).  In some disciplines it is ?EQ^n3U$  
    %   traditional to label the first 36 functions using a single mode )B$P#dP)i  
    %   number P instead of separate numbers for the order N and azimuthal x0h3jw+6  
    %   frequency M. wy- C~b'Qd  
    % u<shhb-  
    %   Example: UZ\*]mxT  
    % =&VXn{e  
    %       % Display the first 16 Zernike functions `s> =Sn&UP  
    %       x = -1:0.01:1; Gb|}Su  
    %       [X,Y] = meshgrid(x,x); J-\?,4mcP  
    %       [theta,r] = cart2pol(X,Y); #"8[8jyV  
    %       idx = r<=1; UnWGMo?JEi  
    %       p = 0:15; s P4 ,S(+e  
    %       z = nan(size(X)); u 1{ym_  
    %       y = zernfun2(p,r(idx),theta(idx)); wV[V#KpX8-  
    %       figure('Units','normalized') 8Cs$NUU  
    %       for k = 1:length(p) 9N D+w6"  
    %           z(idx) = y(:,k); /Ej]X`F  
    %           subplot(4,4,k) *Z]WaDw  
    %           pcolor(x,x,z), shading interp (5q%0|RzRs  
    %           set(gca,'XTick',[],'YTick',[]) sK%Hx`  
    %           axis square ^_KD&%M6  
    %           title(['Z_{' num2str(p(k)) '}']) l \^nC2  
    %       end )ozcr^  
    %  _7#tgZyv  
    %   See also ZERNPOL, ZERNFUN. Ryq"\Q>+  
    LJ(n?/z%  
    %   Paul Fricker 11/13/2006 Lcs{OW,  
    y /:T(tk$  
    ;\.JV '  
    % Check and prepare the inputs: '#N5i  
    % ----------------------------- !b]2q%XM  
    if min(size(p))~=1 [+l  
        error('zernfun2:Pvector','Input P must be vector.') p + l_MB  
    end \_*MJ)h)X  
    F%#*U82  
    if any(p)>35 XJ h:U0  
        error('zernfun2:P36', ... N8XC~Dh{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... mheU#&|  
               '(P = 0 to 35).']) xEiX<lguyN  
    end %7]XW2u  
    <m>l-]  
    % Get the order and frequency corresonding to the function number: }PFt  
    % ---------------------------------------------------------------- m@Ip^]9ry  
    p = p(:); A }-&C  
    n = ceil((-3+sqrt(9+8*p))/2); .'S^&M/$  
    m = 2*p - n.*(n+2); .IH@_iX  
    1O9p YW5J  
    % Pass the inputs to the function ZERNFUN: +qdIj] v  
    % ---------------------------------------- [{@zb-h  
    switch nargin =F'M~3M   
        case 3 G;Wkm|  
            z = zernfun(n,m,r,theta); ]<q}WjXD'  
        case 4 ;wbUk5Tf/  
            z = zernfun(n,m,r,theta,nflag); !eR-Kor  
        otherwise 8jjFC9Cbn0  
            error('zernfun2:nargin','Incorrect number of inputs.') "brRME3  
    end /esVuz  
    x[vBK8  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) sTtX$&Qu  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. x6^l6N  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ^sifEgG*d  
    %   order N and frequency M, evaluated at R.  N is a vector of yuHZ&e  
    %   positive integers (including 0), and M is a vector with the %kh#{*q$  
    %   same number of elements as N.  Each element k of M must be a ]cm6 |`pz  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) V#0 dGP-Z  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <vB<`   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix `KpFH.k.K  
    %   with one column for every (N,M) pair, and one row for every ]*N:;J  
    %   element in R. SyK9Is{8  
    % {~bIA!kAFI  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- y?pD(u  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is J7BFk ?=  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to BXg!zW%+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 G'f9N^w  
    %   for all [n,m]. "l@A[@R  
    % #:J: YMv  
    %   The radial Zernike polynomials are the radial portion of the /O|:{LQ  
    %   Zernike functions, which are an orthogonal basis on the unit B<|VeU  
    %   circle.  The series representation of the radial Zernike e>l,(ql  
    %   polynomials is Eh\ 1O(a(  
    % l|YT[LR7  
    %          (n-m)/2 &{%MjKJ._  
    %            __ 7}be>(  
    %    m      \       s                                          n-2s Rj[ hhSx 2  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r &]P"48NT  
    %    n      s=0 HA6G)x  
    % KRYcCn  
    %   The following table shows the first 12 polynomials. &E bI Op  
    % 0YzsA#yv  
    %       n    m    Zernike polynomial    Normalization VeZey)Q  
    %       --------------------------------------------- R?cUy8?'S  
    %       0    0    1                        sqrt(2) kdp% !S%2  
    %       1    1    r                           2 /X4yB"J>  
    %       2    0    2*r^2 - 1                sqrt(6) <lMg\T?K  
    %       2    2    r^2                      sqrt(6) s%~L4Wmcq  
    %       3    1    3*r^3 - 2*r              sqrt(8) q-3]jHChh  
    %       3    3    r^3                      sqrt(8) 3VmI0gsm.>  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ><;Q@u5~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [oV{83f  
    %       4    4    r^4                      sqrt(10) Q1Ux!$_  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) R A:jzht  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) \PpXL*.  
    %       5    5    r^5                      sqrt(12) '>@4(=I  
    %       --------------------------------------------- _%Bz,C8  
    % ?O??cjiA@  
    %   Example: x(8n 9Q>  
    % -G9|n#zCU  
    %       % Display three example Zernike radial polynomials ;DuXS y!g  
    %       r = 0:0.01:1; W>B^S  
    %       n = [3 2 5]; n~tqO!q  
    %       m = [1 2 1]; 79ckLd9  
    %       z = zernpol(n,m,r); =SAV|  
    %       figure B'-I{~'/  
    %       plot(r,z) $I@GUtzjp  
    %       grid on #'@i lk/.  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest')  1,,|MW  
    % z8HsYf(!  
    %   See also ZERNFUN, ZERNFUN2. X7aYpt;  
    xCWz\-;  
    % A note on the algorithm. y4@gGC=  
    % ------------------------ 8eluO ?p  
    % The radial Zernike polynomials are computed using the series jin db#)bz  
    % representation shown in the Help section above. For many special +2RNZEc  
    % functions, direct evaluation using the series representation can q"akrI38  
    % produce poor numerical results (floating point errors), because ["y6b*;x  
    % the summation often involves computing small differences between 5 L/x-i  
    % large successive terms in the series. (In such cases, the functions 6;o3sf@Tf  
    % are often evaluated using alternative methods such as recurrence hN   
    % relations: see the Legendre functions, for example). For the Zernike F8<"AI  
    % polynomials, however, this problem does not arise, because the R(k}y,eh.`  
    % polynomials are evaluated over the finite domain r = (0,1), and u%u&F^y  
    % because the coefficients for a given polynomial are generally all Fj1NN  
    % of similar magnitude. |;+qld[4z  
    % ExVDkt0  
    % ZERNPOL has been written using a vectorized implementation: multiple gZO&r#   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _X4!xbP  
    % values can be passed as inputs) for a vector of points R.  To achieve mdW~~-@H  
    % this vectorization most efficiently, the algorithm in ZERNPOL j8++R&1f]  
    % involves pre-determining all the powers p of R that are required to gl{B=NN  
    % compute the outputs, and then compiling the {R^p} into a single .2W"w)$nuq  
    % matrix.  This avoids any redundant computation of the R^p, and wpXgPVZT  
    % minimizes the sizes of certain intermediate variables.  fRB5U'  
    % 4zjs!AK%  
    %   Paul Fricker 11/13/2006 p[9s<lEh  
    $A2n{  
    mM_ k ^4:  
    % Check and prepare the inputs: irbw'^;y  
    % ----------------------------- |4;UyHh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fE]XWA4U  
        error('zernpol:NMvectors','N and M must be vectors.') "?3`  
    end edipA P~!  
    * **a2Z/(  
    if length(n)~=length(m) IXpc,l `  
        error('zernpol:NMlength','N and M must be the same length.') 8|@9{  
    end xb:&(6\F  
    rf.`h{!!  
    n = n(:); +1rkq\{l  
    m = m(:); OGOND,/R?/  
    length_n = length(n); 8`=v.   
    \?**2{9&)  
    if any(mod(n-m,2)) -]srp;=i  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') DF_X  
    end q_V0+qH  
    O hVs#^  
    if any(m<0) =>iA gp'#  
        error('zernpol:Mpositive','All M must be positive.') .fAv*pUzU  
    end 6gH{ R$7L=  
    0hY{<^"Y  
    if any(m>n) ^7^N}x@  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,ho3  
    end HCWNo  
    V5i*O3a~   
    if any( r>1 | r<0 ) E&`Nh5JfC  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') H[ m <RaG8  
    end CyDV r  
    jYRP8 Yi  
    if ~any(size(r)==1) ]bZ(HC?KZr  
        error('zernpol:Rvector','R must be a vector.') a u7.4ln>Y  
    end >UDd @  
    x3 >  
    r = r(:); 3]RyTQ  
    length_r = length(r); :,B7-kBw  
    -=`#fDvBn  
    if nargin==4 8NBT|N~N  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); CVNj- &vj  
        if ~isnorm #|[ M?3  
            error('zernpol:normalization','Unrecognized normalization flag.') vi.w8 >CE  
        end ?W>qUrZ  
    else w[tmCn+  
        isnorm = false; F+m }#p  
    end x'<K\qp{{  
    `h:34RC;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1y#D?R=E  
    % Compute the Zernike Polynomials 6;'dUGvH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gg Jf7ie4  
    #J (~_%Wi  
    % Determine the required powers of r: 8N&+7FK  
    % ----------------------------------- 21hv%CF\9  
    rpowers = []; ;oZ)Wt  
    for j = 1:length(n) fGhn+8VfX  
        rpowers = [rpowers m(j):2:n(j)]; %yBB?cp+_  
    end vM:cWat  
    rpowers = unique(rpowers); Ar*^ ;/  
    I[)%,jd  
    % Pre-compute the values of r raised to the required powers, Wbr+ KX8)  
    % and compile them in a matrix: CI353-`  
    % ----------------------------- Q></`QWpoB  
    if rpowers(1)==0 / 0 O=(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p sL?Y  
        rpowern = cat(2,rpowern{:}); )nL`H^  
        rpowern = [ones(length_r,1) rpowern]; ^8.]d~j  
    else >B]'fUt5a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I:K"'R^  
        rpowern = cat(2,rpowern{:}); ^[:p|U2mA  
    end fhL,aCS=  
    cufH?Xg<  
    % Compute the values of the polynomials: M5gWD==uP  
    % -------------------------------------- S<'[%ihx  
    z = zeros(length_r,length_n); ,) J~,^f6  
    for j = 1:length_n $Y69@s%f  
        s = 0:(n(j)-m(j))/2; ;>n,:355L  
        pows = n(j):-2:m(j); pe^u$YE  
        for k = length(s):-1:1 94B\5I}  
            p = (1-2*mod(s(k),2))* ... 0 a80 LAK  
                       prod(2:(n(j)-s(k)))/          ... 89r DyRJ;  
                       prod(2:s(k))/                 ... /p8dZ+X  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... "[y-+)WTG  
                       prod(2:((n(j)+m(j))/2-s(k))); ZK>WW  
            idx = (pows(k)==rpowers); ` ,SiA-3*  
            z(:,j) = z(:,j) + p*rpowern(:,idx);  }Y;K~J  
        end /!c${W!sY  
         d_IAs  
        if isnorm |JQQU! x  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); IiG6<|d8H  
        end : |>Gc39`t  
    end 7(pF[LCF  
    h5(4*$%  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  PUp6Q;AdQ  
    5F)C  jQ  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 '3 /4?wi  
    AG`L64B  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)