非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 L:j<c5
function z = zernfun(n,m,r,theta,nflag) O)*+="Rg
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. HGs $*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 85:=4N%
% and angular frequency M, evaluated at positions (R,THETA) on the DDP/DD;n}r
% unit circle. N is a vector of positive integers (including 0), and TH&U
j1
% M is a vector with the same number of elements as N. Each element u(>^3PJ+
% k of M must be a positive integer, with possible values M(k) = -N(k) rk2j#>l$4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, m@2QnA[4
% and THETA is a vector of angles. R and THETA must have the same '(f* 2eE:
% length. The output Z is a matrix with one column for every (N,M) ,+DG2u
% pair, and one row for every (R,THETA) pair. O7m(o:t x3
% ^R7lom.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QL&ZjSN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -`kW&I0
% with delta(m,0) the Kronecker delta, is chosen so that the integral X::JV7hu
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wedbx00o
% and theta=0 to theta=2*pi) is unity. For the non-normalized t7Iv?5]N
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RQ'9m^
% 3*"WG O5
% The Zernike functions are an orthogonal basis on the unit circle. w!-gJmX>
% They are used in disciplines such as astronomy, optics, and 2\MT;;ZTZ
% optometry to describe functions on a circular domain. rNWw?_H-H(
% %9F([K
% The following table lists the first 15 Zernike functions. |O\s|H
% (ylTp]~mR-
% n m Zernike function Normalization p
Z|V
3
% -------------------------------------------------- W.f/pu
% 0 0 1 1 30#s aGV
% 1 1 r * cos(theta) 2 #uG%j
% 1 -1 r * sin(theta) 2 XFHYQ2ME2
% 2 -2 r^2 * cos(2*theta) sqrt(6) %+W{iu[|
% 2 0 (2*r^2 - 1) sqrt(3) UT~4x|b:O
% 2 2 r^2 * sin(2*theta) sqrt(6) WdH$JTk1
% 3 -3 r^3 * cos(3*theta) sqrt(8) eCU:Q
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ifMRryN4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) S"bg9o
% 3 3 r^3 * sin(3*theta) sqrt(8) o4F2%0gJ
% 4 -4 r^4 * cos(4*theta) sqrt(10) &ZlVWK~v
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l|JE#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) NqazpB*
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u^+7hkk
% 4 4 r^4 * sin(4*theta) sqrt(10) 58tARL Dr
% -------------------------------------------------- Ha0M)0Anv
% S}m)OmrmA
% Example 1: taHJ u b
% %op**@4/t\
% % Display the Zernike function Z(n=5,m=1) }I+E\<
% x = -1:0.01:1; ;40/yl3r3[
% [X,Y] = meshgrid(x,x); Ct <udO
% [theta,r] = cart2pol(X,Y); >reU#j
% idx = r<=1; )np:lL$$
% z = nan(size(X)); c \J:![x
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #?U}&Bd
% figure sQHv%]s 0
% pcolor(x,x,z), shading interp F4-$~v@
% axis square, colorbar 8?#/o c
% title('Zernike function Z_5^1(r,\theta)') L2[($l
% YNyk1cE
% Example 2: I#Y22&G1
% hP%M?MKC
% % Display the first 10 Zernike functions ?|\ER#z
% x = -1:0.01:1; W dK #ZOR
% [X,Y] = meshgrid(x,x); Tj`,Z5vy
% [theta,r] = cart2pol(X,Y); .]Y$o^mf
% idx = r<=1; B?gOHG*vd>
% z = nan(size(X)); x*\Y)9Vgy
% n = [0 1 1 2 2 2 3 3 3 3]; k<nZ+! M
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ~|DUt
% Nplot = [4 10 12 16 18 20 22 24 26 28]; A7Cm5>Y_S
% y = zernfun(n,m,r(idx),theta(idx)); CAig]=2'
% figure('Units','normalized') Wa>}wA=v
% for k = 1:10 T@H^BGs
% z(idx) = y(:,k); \_VA50
% subplot(4,7,Nplot(k)) ~k-y &<UR
% pcolor(x,x,z), shading interp p}z<Fdu0
% set(gca,'XTick',[],'YTick',[]) b4%??"&<Y
% axis square Ws3)gvpPA
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L^/5ux
% end }1L4"}L.
% R3)~?X1n
% See also ZERNPOL, ZERNFUN2. 3)t.p>VgO
a_^\=&?'
% Paul Fricker 11/13/2006 TPQ%L@^L+
c)6m$5]
Gt8M&S-;
% Check and prepare the inputs: : %_LpZ
% ----------------------------- RtkEGxw*^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '2A)}uR
error('zernfun:NMvectors','N and M must be vectors.') G/y5H;<9M
end P[G)sA_"
"b~+;<}Q
if length(n)~=length(m) ^&9zw\x;z
error('zernfun:NMlength','N and M must be the same length.') #X+JHl
end IEL%!RFG
^lnK$i
n = n(:); 58}U^IW
m = m(:); XFVE>/H
if any(mod(n-m,2)) \S `:y?[Y
error('zernfun:NMmultiplesof2', ... /wGM#sFH
'All N and M must differ by multiples of 2 (including 0).') n K1Slg#U
end ANAVn@ [
XAD- 'i
if any(m>n) V@.Ior}w
error('zernfun:MlessthanN', ... gs^Xf;gvI
'Each M must be less than or equal to its corresponding N.') CCs%%U/=
end `f,/`''R
>4x(e\B
if any( r>1 | r<0 ) Y Vt% 0
error('zernfun:Rlessthan1','All R must be between 0 and 1.') (R,#a *CV
end B-RjMxX4>
"@^k)d$
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @Myo'{3vF
error('zernfun:RTHvector','R and THETA must be vectors.') JMCKcZ%N
end |MTnH/|
)rIwqUgp6\
r = r(:); rET\n(AJ
theta = theta(:); }`@vF|2L
length_r = length(r); L8@f-Kk
if length_r~=length(theta) ^x ]r`b
error('zernfun:RTHlength', ... C#.->\
'The number of R- and THETA-values must be equal.') ~p6 V,Q
end %_H<:uGO%
?d\N(s9F
% Check normalization: +zqn<<9
% -------------------- ]6,\r"
if nargin==5 && ischar(nflag) w?PkO p
isnorm = strcmpi(nflag,'norm'); J/`<!$<c
if ~isnorm L]|gZ&^
error('zernfun:normalization','Unrecognized normalization flag.') /aCc17>2V{
end )EPjAv
else u= *FI
isnorm = false; olB.*#gA
end ;$, U~ 0
G{~J|{t\yz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tn\yI!a
% Compute the Zernike Polynomials LG9+GszX 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oi7@s0@
*}qWj_RT
% Determine the required powers of r: b<[Or^X
]
% ----------------------------------- e-/&$Qq
m_abs = abs(m); LtF,kAIt7v
rpowers = []; 0@0w+&*"@
for j = 1:length(n) 6?gW-1mY
rpowers = [rpowers m_abs(j):2:n(j)]; d A}-]
end &GO}|W
rpowers = unique(rpowers); ]Jg&VXrH
_IHV7*u{;
% Pre-compute the values of r raised to the required powers, IxN9&xa
% and compile them in a matrix: qCC.^8
% ----------------------------- _#E0g'3
if rpowers(1)==0 un"Gozmt5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W&W5lArr
rpowern = cat(2,rpowern{:}); .bl/*s
rpowern = [ones(length_r,1) rpowern]; J9nX"Sb
else IJp-BTO{V
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #4NaL
rpowern = cat(2,rpowern{:}); 8mrUotjS
end [ZwjOi:)
VR 8-&N
% Compute the values of the polynomials: pZ{+c
% -------------------------------------- ha<[bu e
y = zeros(length_r,length(n)); e;q!6%
for j = 1:length(n) 2eS~/Pq5=i
s = 0:(n(j)-m_abs(j))/2; `:fZ)$sY
pows = n(j):-2:m_abs(j); %)8}X>xq
for k = length(s):-1:1 {%5eMyF#
p = (1-2*mod(s(k),2))* ... LKB$,pR~1l
prod(2:(n(j)-s(k)))/ ... 'W^YM@
prod(2:s(k))/ ... (UD@q>c
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... i v38p%Zm
prod(2:((n(j)+m_abs(j))/2-s(k))); epe)a
idx = (pows(k)==rpowers); l}|%5.5-
y(:,j) = y(:,j) + p*rpowern(:,idx); 3AtGy'NTp
end 1z4OI6$Af
Yx%Hs5}8
if isnorm K&]G3W%V
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); N0Lw}@p
end 9d659iC
end Xza(k
% END: Compute the Zernike Polynomials ifQ*,+@fxR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kd(8I_i@
ORw,)l
% Compute the Zernike functions: DU'`ewLL7
% ------------------------------ lIS-4QX1
idx_pos = m>0; H[$"+&q
idx_neg = m<0; !>&o01i
nPl?K:(
z = y; C`9+6T
if any(idx_pos) `p-cSxR_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 9wwqcx)3(
end s~g *@K >+
if any(idx_neg) u'DRN,h+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0RLg:SV
end }B+C~@j
lvz7#f L~
% EOF zernfun