非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D!mx &O9
function z = zernfun(n,m,r,theta,nflag) \7G.anY
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~0rvrDDg
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MH=Ld=i
% and angular frequency M, evaluated at positions (R,THETA) on the 9yp'-RKjw
% unit circle. N is a vector of positive integers (including 0), and JZ/T:Hsh4
% M is a vector with the same number of elements as N. Each element 5C-XQS1
% k of M must be a positive integer, with possible values M(k) = -N(k) $V;0z~&!'
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, q^6l`JJ
% and THETA is a vector of angles. R and THETA must have the same x5b .^75p$
% length. The output Z is a matrix with one column for every (N,M) :XB^IyO-A
% pair, and one row for every (R,THETA) pair. aa}U87]k
% a~Yq0 d?`D
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~)*uJ wW/a
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?N&s.
% with delta(m,0) the Kronecker delta, is chosen so that the integral !ezy
v`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4jW <*jM
% and theta=0 to theta=2*pi) is unity. For the non-normalized
pzb`M'Z?C
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *RFBLCt
% =nv/
r
% The Zernike functions are an orthogonal basis on the unit circle. ne%(`XY{Q]
% They are used in disciplines such as astronomy, optics, and NtkZ\3
% optometry to describe functions on a circular domain. [0lO0ik>G
% 0P;\ :-&p
% The following table lists the first 15 Zernike functions. Wm/0Pi
% 7#C3E$gn?
% n m Zernike function Normalization av~kF
% -------------------------------------------------- ~R~eQ=8
% 0 0 1 1 o_&Qb^W
% 1 1 r * cos(theta) 2 WTu!/J<\
% 1 -1 r * sin(theta) 2 {}P~nP
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3\K;y>NK
% 2 0 (2*r^2 - 1) sqrt(3) D[`~=y(
% 2 2 r^2 * sin(2*theta) sqrt(6) vJe c+a
% 3 -3 r^3 * cos(3*theta) sqrt(8) } wx(P3BHD
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) )\J~KB4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) f&
Vx`oj
% 3 3 r^3 * sin(3*theta) sqrt(8) oG
c9
6B%
% 4 -4 r^4 * cos(4*theta) sqrt(10) eQ<GNvm
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nGxG!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) R,8Tt!n
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o0TB>DX$`
% 4 4 r^4 * sin(4*theta) sqrt(10) %`lLX/4~
% -------------------------------------------------- 3e1%G#fu
% w@H@[x
% Example 1: 6u xF<
% f{h2>nEj\
% % Display the Zernike function Z(n=5,m=1) e^UUR-K%
% x = -1:0.01:1; py6O\` \
% [X,Y] = meshgrid(x,x); 5m\)82s
% [theta,r] = cart2pol(X,Y); %2'Y@AX`
% idx = r<=1; i:H]Sb)<b
% z = nan(size(X)); X39%O'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ~Xc1y!"9*
% figure |Rz}bsrZ
% pcolor(x,x,z), shading interp {Rn*)D9
% axis square, colorbar `bWc<4T
% title('Zernike function Z_5^1(r,\theta)') er<_;"`1
% MHS|gR.c
% Example 2: 'N`x@(
% =)J)xH!N
% % Display the first 10 Zernike functions Ss:'HH4
% x = -1:0.01:1; N!<X%Ym
% [X,Y] = meshgrid(x,x); ,nJCqX~/G
% [theta,r] = cart2pol(X,Y); \W|ymV_Ki
% idx = r<=1; +pe\9F
% z = nan(size(X)); K6 ,d{n
% n = [0 1 1 2 2 2 3 3 3 3]; ;rl61d}NH#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; .e\PCf9v
% Nplot = [4 10 12 16 18 20 22 24 26 28]; WLH ;{
% y = zernfun(n,m,r(idx),theta(idx)); 57EL&V%j
% figure('Units','normalized') f'Rq#b@
% for k = 1:10 lYU?j|n
% z(idx) = y(:,k); XII',&
% subplot(4,7,Nplot(k)) 7wHd*{^9N
% pcolor(x,x,z), shading interp ~xcU6@/
% set(gca,'XTick',[],'YTick',[]) KBA&s
% axis square \"d\b><R
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) rr2^sQ;_
% end oo1h"[
% D8`SI21P
% See also ZERNPOL, ZERNFUN2. 4^!%>V"d/
%K0Wm#)
% Paul Fricker 11/13/2006 e@PY(#ru
h]}DMVV]
#;h>
x
% Check and prepare the inputs: bL|$\'S
% ----------------------------- .-1'#Z1T
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Gsy'':u
error('zernfun:NMvectors','N and M must be vectors.') c=re(
end lInf,Q7W
obGvd6\
if length(n)~=length(m) 9Z DbZc
error('zernfun:NMlength','N and M must be the same length.') azG"Mt|7Z
end J2k4k
gI/(hp3ob
n = n(:); ]Mvpec_B
m = m(:); Su<>UsdUC
if any(mod(n-m,2)) pz"}o#R"x
error('zernfun:NMmultiplesof2', ... 3teP6|K'g
'All N and M must differ by multiples of 2 (including 0).') $Qxy@vU
end <:!:7
uW4.Q_O!H
if any(m>n) 'Jd*r(2d
error('zernfun:MlessthanN', ... +mYK
'Each M must be less than or equal to its corresponding N.') /$9We8
end Q~` {^fo1
"oh;?gQ.
if any( r>1 | r<0 ) s\Ln
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &,* ILz
end 2_TFc2d
N l^uA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xRZ/[1f!
error('zernfun:RTHvector','R and THETA must be vectors.') rx@2Dmt6
end 7@&kPh}PG
&d]@$4u$;
r = r(:); 'f8'|o)
theta = theta(:); gOMy8w4>
length_r = length(r); `chD*@76I
if length_r~=length(theta) At&kW3(
error('zernfun:RTHlength', ... D$VRE^k
'The number of R- and THETA-values must be equal.') *DvQnj
end r(rT.D&
H;#C NB<e
% Check normalization: 2I7|hZ,
% -------------------- %q6I-
if nargin==5 && ischar(nflag) U#{(*)qr
isnorm = strcmpi(nflag,'norm'); g*!1S
if ~isnorm ,o}CBB! k
error('zernfun:normalization','Unrecognized normalization flag.') TgKSE1
end 2SlI5+u
else o
^ 08<
isnorm = false; V5gr-^E
end 4~2 9,
M^G9t*I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )_}xK={
% Compute the Zernike Polynomials 5uJ!)Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .R^ R|<x
"*:?m{w5
% Determine the required powers of r: l
nJ
% ----------------------------------- 0qm CIcg
m_abs = abs(m); c= aZ[
rpowers = []; iDdR-T|
for j = 1:length(n) Y Azj>c&
rpowers = [rpowers m_abs(j):2:n(j)]; y2 R\SL,
end l< H nP R/
rpowers = unique(rpowers); OHv9|&Tpl
gUYTVp Vf
% Pre-compute the values of r raised to the required powers, 8t|?b
% and compile them in a matrix: Pfd%[C/vdm
% ----------------------------- >)k[085t
if rpowers(1)==0 D`U,T&@
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X.ZG-TC
rpowern = cat(2,rpowern{:}); n6 wx/:
rpowern = [ones(length_r,1) rpowern]; s.a @uR^
else ->Fsmb+R
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5?|y%YH;R\
rpowern = cat(2,rpowern{:}); mRN[lj
end w}8=sw
t{`uN
% Compute the values of the polynomials: rl-#Ez
% -------------------------------------- j$4lyDfD
y = zeros(length_r,length(n)); !j3Xzn9
for j = 1:length(n) "V5_B^Gzb]
s = 0:(n(j)-m_abs(j))/2; UG]x CkDS
pows = n(j):-2:m_abs(j); ZgmK~iJ
for k = length(s):-1:1 Q |hBGH9:B
p = (1-2*mod(s(k),2))* ... b#n
prod(2:(n(j)-s(k)))/ ... Z%
]LZ/O8
prod(2:s(k))/ ... {mLv?"M]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %VE FruM
prod(2:((n(j)+m_abs(j))/2-s(k))); QBA{*@ A-
idx = (pows(k)==rpowers); +e#(p<
y(:,j) = y(:,j) + p*rpowern(:,idx); OaY]}4tI$
end Z1p%6f`
L!fIAd`
if isnorm nYO$ |/e
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Fxn=+Xgg
end I<"UQ\)
end ^ '_Fd
% END: Compute the Zernike Polynomials h]4qJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %D7 '7E8.
ob/HO(h3
% Compute the Zernike functions: ;KG}Yr72
% ------------------------------ d
<zD@ z
idx_pos = m>0; .tsXQf
idx_neg = m<0; DLO#_t^v.
fT=ZiHJ3Gu
z = y; AP9\]qZ(7
if any(idx_pos) $?9u;+jIR
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); H~:g=Zw
end ;a[3RqmKW
if any(idx_neg) swMR+F#u*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ncpA\E;ff^
end )}k"7"
Vkqfs4 t
% EOF zernfun