非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 k?2k'2dy
function z = zernfun(n,m,r,theta,nflag) 7"8hC
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. MNSbtT*^
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2(/g}
% and angular frequency M, evaluated at positions (R,THETA) on the 8T(e.I
% unit circle. N is a vector of positive integers (including 0), and LVJxn2x6
% M is a vector with the same number of elements as N. Each element /="~gq@
% k of M must be a positive integer, with possible values M(k) = -N(k) E*jP8 7g
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, JwJ7=P=c
% and THETA is a vector of angles. R and THETA must have the same d6W SL;$
% length. The output Z is a matrix with one column for every (N,M) <Qxh)@
N
% pair, and one row for every (R,THETA) pair. F^hBtfz
% ?(R]9.5S
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G#MdfKH
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =b/L?dR.-
% with delta(m,0) the Kronecker delta, is chosen so that the integral =+AS/Jq
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 92^w8Z.
% and theta=0 to theta=2*pi) is unity. For the non-normalized y.[Mnj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U^Xm)lL
% ij?
% The Zernike functions are an orthogonal basis on the unit circle. 9;veuX#(
% They are used in disciplines such as astronomy, optics, and P3oI2\)*i
% optometry to describe functions on a circular domain. 9Lr'YRl[W
% s+Q~~]HJM
% The following table lists the first 15 Zernike functions. Dgy]ae(Hb3
%
8stwg'
% n m Zernike function Normalization YX`7Hm,
% -------------------------------------------------- e@IA20
% 0 0 1 1 /Ml.}7&
% 1 1 r * cos(theta) 2 _U/!4A
% 1 -1 r * sin(theta) 2 /tUy3myJ
% 2 -2 r^2 * cos(2*theta) sqrt(6) ` \+@Fwfx
% 2 0 (2*r^2 - 1) sqrt(3) *V+j%^91}
% 2 2 r^2 * sin(2*theta) sqrt(6) Dq)j:f#QM
% 3 -3 r^3 * cos(3*theta) sqrt(8) 7^g&)P
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) &B|D;|7H
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {c
(!;U
% 3 3 r^3 * sin(3*theta) sqrt(8) A,`8#-AX
% 4 -4 r^4 * cos(4*theta) sqrt(10) DZ_lW
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V
=-WYu
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f aLtdQi
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -N"&/)
% 4 4 r^4 * sin(4*theta) sqrt(10) 2z|*xS'G
% -------------------------------------------------- ?.YOI.U^
% v{A
KEX*
% Example 1: H=\3Jj(4
% -Y='_4s
% % Display the Zernike function Z(n=5,m=1) 1CHeufQ
% x = -1:0.01:1; k2AJXw
% [X,Y] = meshgrid(x,x); LGl2$#x
% [theta,r] = cart2pol(X,Y); wR^ RM(1
% idx = r<=1; [w -l?
% z = nan(size(X)); t
89!Ihk
% z(idx) = zernfun(5,1,r(idx),theta(idx)); q=#}
yEG
% figure G8;w{-{m
% pcolor(x,x,z), shading interp bP^Je&nS*
% axis square, colorbar ;v$4$D]L
% title('Zernike function Z_5^1(r,\theta)') =dFv/F/RW
% [3@):8
% Example 2: 1n@8Kv
% \.3D~2cU
% % Display the first 10 Zernike functions n+PzA[
% x = -1:0.01:1; DS'n
% [X,Y] = meshgrid(x,x); qBCK40
% [theta,r] = cart2pol(X,Y); {\(L%\sV@
% idx = r<=1; ;vIrGZV<
% z = nan(size(X)); d`F&aC
% n = [0 1 1 2 2 2 3 3 3 3]; q5#J~n8Wr
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; et }T%~T
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,L`$09\
% y = zernfun(n,m,r(idx),theta(idx)); 1u6^z
% figure('Units','normalized') ;W^o@*i{>
% for k = 1:10 Oj^,m.R
% z(idx) = y(:,k); ^6_Cc
% subplot(4,7,Nplot(k)) 7bV{Q355P
% pcolor(x,x,z), shading interp M-giR:,
% set(gca,'XTick',[],'YTick',[]) 67VT\f
% axis square iURk=*Z=
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fF V!)Zj
% end )lZp9O
% YWxc-fPZ
% See also ZERNPOL, ZERNFUN2.
0gfA#|'
zNIsf"
% Paul Fricker 11/13/2006 u,w:SM@*(
ivW(*c
o!!yd8~*r
% Check and prepare the inputs: iV eC=^1
% ----------------------------- .Fa4shNV
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (owrdPT!
error('zernfun:NMvectors','N and M must be vectors.') P`e!Z:
end &w1P\4?G
0JJS2oY/
if length(n)~=length(m) nVI!@qW
error('zernfun:NMlength','N and M must be the same length.') |\g5+fv9
end !ki.t
$.[#0lCI
n = n(:); =%>oR
m = m(:);
3dRr/Ilc
if any(mod(n-m,2)) =F;.l@:
error('zernfun:NMmultiplesof2', ... f`&dQ,;
'All N and M must differ by multiples of 2 (including 0).') d:i;z9b@to
end Ix(><#P
f0BdXsV#g
if any(m>n) *Otg*,\
error('zernfun:MlessthanN', ... S!sqbLrBn
'Each M must be less than or equal to its corresponding N.') Vl2XDkhq
end \R3H+W
mb!9&&2-t
if any( r>1 | r<0 ) ;j)FnY=: -
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ._+J_ts
end PxfY&;4n!
w#g#8o>'
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) X 51Yfr
error('zernfun:RTHvector','R and THETA must be vectors.') q.()z(M7
end q=9`06
Bdu&V*0g
r = r(:); Nq@+'<@p$
theta = theta(:); &|`C)6[C
length_r = length(r); '_$uW&{NI
if length_r~=length(theta) VV9_`myN7
error('zernfun:RTHlength', ... nM0[P6p
'The number of R- and THETA-values must be equal.') ?K3(D;5
&i
end leQT-l2Bk
`3Uj{w/Q:L
% Check normalization: wW%4d
% -------------------- Bk+{RN(w
if nargin==5 && ischar(nflag) @_LN3zP
isnorm = strcmpi(nflag,'norm'); 2~t[RY
if ~isnorm YXI'gn2b#
error('zernfun:normalization','Unrecognized normalization flag.') PClMQL#
end \2vg{
else FEJ~k1z
isnorm = false; nYJTKU
end s|NjT
XyOl:>%L!P
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ku..aG`
% Compute the Zernike Polynomials cDI [PJ9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =2
*rA'im
1\r|g2Z
:
% Determine the required powers of r: yZWoN&
% ----------------------------------- f u9Cx
m_abs = abs(m); MW+b;0U`#
rpowers = []; ,do58i
K
for j = 1:length(n) ?SC[G-b
rpowers = [rpowers m_abs(j):2:n(j)]; 41_SRh7N
end RAp=s
rpowers = unique(rpowers); EFc-foN
1DA1N<'
% Pre-compute the values of r raised to the required powers, 3S&U!
% and compile them in a matrix: <u=4*:QE
% ----------------------------- mB\C?=_
if rpowers(1)==0 .%82P(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bUY>st'
rpowern = cat(2,rpowern{:}); jU5 }\oP@
rpowern = [ones(length_r,1) rpowern]; r
lKlpl
else -D^}S"'
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); raQ7.7
rpowern = cat(2,rpowern{:}); mB0l "# F
end .E@|D6$D
10#f`OPC
% Compute the values of the polynomials: ]@M5&
% -------------------------------------- Q*XE
h
y = zeros(length_r,length(n)); XhPe]P
for j = 1:length(n) bTSL<"(]N
s = 0:(n(j)-m_abs(j))/2; C8L'si
pows = n(j):-2:m_abs(j); GAc{l=vT'
for k = length(s):-1:1 w2xG_q
p = (1-2*mod(s(k),2))* ... | 0,vQv
prod(2:(n(j)-s(k)))/ ... ,Hgc-7g@Y
prod(2:s(k))/ ... GT J{h
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zY|klX})
prod(2:((n(j)+m_abs(j))/2-s(k))); M+!x}$&v
idx = (pows(k)==rpowers); !(t,FYeH
y(:,j) = y(:,j) + p*rpowern(:,idx); 1>Q'R
end p)~lL
^bLRVp1
if isnorm p\Lq}tk<
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); q-Qxbg[>e
end oW;6h.
end ~xIjF1Z
% END: Compute the Zernike Polynomials 1R.4:Dn_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9Ok9bC'?8@
9*:gr#(5
% Compute the Zernike functions: WGAXIQ
% ------------------------------ T,_(?YJW
idx_pos = m>0; X1vNF|o~
idx_neg = m<0; 1JEnnqu
5#E |R
z = y; 5%}wV,Y
if any(idx_pos) 6yy;JQAke
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }!i` 0p
end qSx(X!YS
if any(idx_neg) pZZf[p^s|
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p*l$Wj
end <*EZ@XoN>
4m-I5!=O
% EOF zernfun