切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11348阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 2yc\A3ft#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! *~X\c Z  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 QBg'VV  
    function z = zernfun(n,m,r,theta,nflag) N0NMRU]zT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. n&lLC&dL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HH+XEMP/g  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?e*vvu33!  
    %   unit circle.  N is a vector of positive integers (including 0), and iFnM6O$(  
    %   M is a vector with the same number of elements as N.  Each element 2t%)d9r32  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) GfV9Ox   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3dfSu'  
    %   and THETA is a vector of angles.  R and THETA must have the same A2 r RYzN;  
    %   length.  The output Z is a matrix with one column for every (N,M) ,KWeW^z'7  
    %   pair, and one row for every (R,THETA) pair. O1PdM52  
    % 3/ D fsv  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e5Z\v0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,;g:qe3D$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral TzjZGs W[V  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OXo-(HLE  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Vj1AW<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z2r\aZ-d`  
    % AkF3F^  
    %   The Zernike functions are an orthogonal basis on the unit circle. wP'`!O[W  
    %   They are used in disciplines such as astronomy, optics, and uxBk7E%6  
    %   optometry to describe functions on a circular domain. e3.TGv7=  
    % XT\;2etVL  
    %   The following table lists the first 15 Zernike functions. H}X"yLog*  
    % ZWv$K0agu  
    %       n    m    Zernike function           Normalization xxYFWvi  
    %       -------------------------------------------------- ft5Bk'ZJ  
    %       0    0    1                                 1 pa7fTd  
    %       1    1    r * cos(theta)                    2 - >2ej4C  
    %       1   -1    r * sin(theta)                    2 #gq3 e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) fw5AZvE6$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gDH x+"?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /W;;7k  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) )+J?(&6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) YV9%^ZaN7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >2ct1_  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !eW<4jYB  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V&G_Bu~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @#p4QEQA  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1FuChd  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0x84 Ah)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) aLr^uce]  
    %       -------------------------------------------------- PO #FtG  
    % M30_b8[Y_  
    %   Example 1: Z`[j;=[  
    % kG E|17I  
    %       % Display the Zernike function Z(n=5,m=1) Jv5G:M5+~  
    %       x = -1:0.01:1; t]V)3Ww  
    %       [X,Y] = meshgrid(x,x); 7Sokn?~i  
    %       [theta,r] = cart2pol(X,Y); $>+-=XMVB  
    %       idx = r<=1; IBR;q[Dj}  
    %       z = nan(size(X)); /H)l\m +  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); T]+*} C  
    %       figure PUI.Un2C_  
    %       pcolor(x,x,z), shading interp i^=an?}/  
    %       axis square, colorbar m<j ^cU#J  
    %       title('Zernike function Z_5^1(r,\theta)') :]x)lP(3E  
    % pz(clTOD:  
    %   Example 2: b{sFN !  
    % o)NWsUXf  
    %       % Display the first 10 Zernike functions lps  
    %       x = -1:0.01:1; ]M_)f  
    %       [X,Y] = meshgrid(x,x); y jb.6  
    %       [theta,r] = cart2pol(X,Y); PRs[:we~~  
    %       idx = r<=1; ; qvZ*  
    %       z = nan(size(X)); 2)G ZU  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M 3^p,[9r#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; a-7nA  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Od"-w<'  
    %       y = zernfun(n,m,r(idx),theta(idx)); L&eO?I=,  
    %       figure('Units','normalized') Ros5]5=dP  
    %       for k = 1:10 :QN,T3i'/3  
    %           z(idx) = y(:,k); /wmJMX  
    %           subplot(4,7,Nplot(k)) vWow^g  
    %           pcolor(x,x,z), shading interp @NO&3m]  
    %           set(gca,'XTick',[],'YTick',[]) <>-UPRw qI  
    %           axis square ,TL~];J'  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K^Xg^9  
    %       end U9Y'eP.2  
    % Um%E/0j  
    %   See also ZERNPOL, ZERNFUN2. ,2u]rLxx;  
    $UKDXQF"  
    %   Paul Fricker 11/13/2006 ) m?oQ#`m  
    /+'@}u |  
    "|f;   
    % Check and prepare the inputs: bMgp  
    % ----------------------------- F|V?Z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~]N% {;F}  
        error('zernfun:NMvectors','N and M must be vectors.') eK]GyY/Y  
    end wd u>3Ch"y  
    K":- zS  
    if length(n)~=length(m) YV0e)bf  
        error('zernfun:NMlength','N and M must be the same length.') rsrv1A=t?  
    end 5o&L|7]  
    U; ev3  
    n = n(:); P||u{]vU  
    m = m(:); x`a@h\ n  
    if any(mod(n-m,2)) S7-?&[oeJ  
        error('zernfun:NMmultiplesof2', ...  d+=;sJ  
              'All N and M must differ by multiples of 2 (including 0).') iTD{  
    end 10*U2FY)]  
    \,~gA   
    if any(m>n) /K'Kx  
        error('zernfun:MlessthanN', ... >4bOM@[]  
              'Each M must be less than or equal to its corresponding N.') !1|f,9C  
    end yl|+D]  
    bvZmo zbD  
    if any( r>1 | r<0 ) t,+p!"MRY  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \}Hk`n)Aq  
    end 2_UH,n  
    UT"L5{c  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =n%?oLg^  
        error('zernfun:RTHvector','R and THETA must be vectors.') {?,:M  
    end ~d28"p.7  
    V5R``T p  
    r = r(:); D,]m7 yFT  
    theta = theta(:); 'M YqCfIK  
    length_r = length(r); ?zxKk(J  
    if length_r~=length(theta) Ii SO {  
        error('zernfun:RTHlength', ... g`\Vy4w  
              'The number of R- and THETA-values must be equal.') ==Ju2D?%  
    end ^k~{6S,  
    QTM+ WD  
    % Check normalization: L[ rJ7:  
    % -------------------- VAV@Qn  
    if nargin==5 && ischar(nflag) jt;68SA P  
        isnorm = strcmpi(nflag,'norm'); :'#B U:  
        if ~isnorm }?"f#bI  
            error('zernfun:normalization','Unrecognized normalization flag.') kf^Wzp  
        end UI |D?z<  
    else h|_G2p^J+"  
        isnorm = false; ?^0#:QevC  
    end -H{c@hl  
    m&b!\"0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l0Y(9(M@  
    % Compute the Zernike Polynomials 3K P6M=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -x5^>+Y4  
    7?b'"X"  
    % Determine the required powers of r: BB=%tz`B  
    % ----------------------------------- BwrMRMq"  
    m_abs = abs(m); l{vi{9n)  
    rpowers = []; =OTwP  
    for j = 1:length(n) ^25$=0  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4d[:{/+Q  
    end sLb[ZQ;j  
    rpowers = unique(rpowers); )";g*4R[  
    O3B\K <l  
    % Pre-compute the values of r raised to the required powers, Va?wG3w  
    % and compile them in a matrix: 8V.x%T  
    % ----------------------------- G,$RsP  
    if rpowers(1)==0 z_CBOJl#C!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GXJJOy1"!  
        rpowern = cat(2,rpowern{:}); <dh7*M  
        rpowern = [ones(length_r,1) rpowern]; w9l)=[s=  
    else wIL5-k,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cD]{ Nn  
        rpowern = cat(2,rpowern{:}); 5>"-lB &  
    end L)4TW6IUk  
    o=4d2V%m  
    % Compute the values of the polynomials: h5.u W8  
    % -------------------------------------- *}A J7]  
    y = zeros(length_r,length(n)); ^=FtF9v  
    for j = 1:length(n) M%sWtgw(  
        s = 0:(n(j)-m_abs(j))/2; jja9:$#  
        pows = n(j):-2:m_abs(j); :8jHN_u  
        for k = length(s):-1:1 o1-Zh!*a*  
            p = (1-2*mod(s(k),2))* ... 315Rk!{AJ  
                       prod(2:(n(j)-s(k)))/              ... 8iR%?5 >K  
                       prod(2:s(k))/                     ... a*KB'u6&  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... r4D6g>)h1q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); @va)j   
            idx = (pows(k)==rpowers); jW"C: {Ol;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); qP*$wKY,  
        end 2y v'DS  
         HmAA?J}  
        if isnorm /|P&{!  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %)u5A !"  
        end ; Rt?&&W  
    end @ 4j#X  
    % END: Compute the Zernike Polynomials iVREkZ2SC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %dKUB4  
    TBvv(_  
    % Compute the Zernike functions: 7Oru{BQ">  
    % ------------------------------ mdtq-v  
    idx_pos = m>0; 0ppZ~}&  
    idx_neg = m<0;  J$v0  
    BoHMz/DB  
    z = y; Ik(TII_  
    if any(idx_pos) 0r.*7aXu  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); sn]8h2z  
    end =uIu0_v  
    if any(idx_neg) B}C"Xc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); W{?7Pn?1`  
    end *3s4JK  
    pEw &i  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 1ZOHyO  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. kViX FPW  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated %mAgE\y25  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive S=n,unn#t  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, }`{aeVHT  
    %   and THETA is a vector of angles.  R and THETA must have the same o2He}t2o  
    %   length.  The output Z is a matrix with one column for every P-value, "Rf8#\Y/<  
    %   and one row for every (R,THETA) pair. p%jl-CC1  
    % AVyqtztQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike !=V>DgmW  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) %}MZWf{  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) SYOND>E  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ?PO~$dUc]  
    %   for all p. Z}5 ;K"T/  
    % cP''  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 .nJErC##  
    %   Zernike functions (order N<=7).  In some disciplines it is )F,H(LblH  
    %   traditional to label the first 36 functions using a single mode )3V5P%Q  
    %   number P instead of separate numbers for the order N and azimuthal Ec y|l ;  
    %   frequency M. eva-?+n\q  
    % Bmm#5X@*  
    %   Example: Tar tV3;`  
    % l4I@6@  
    %       % Display the first 16 Zernike functions ;\DXRKR  
    %       x = -1:0.01:1; BSY2\AL p  
    %       [X,Y] = meshgrid(x,x); RXP0 4  
    %       [theta,r] = cart2pol(X,Y); A% 9TS/-p  
    %       idx = r<=1; j{?,nJdQ  
    %       p = 0:15; p6$ QTx  
    %       z = nan(size(X)); O['gp~P"  
    %       y = zernfun2(p,r(idx),theta(idx)); 6.kX~$K  
    %       figure('Units','normalized') Iw(deD  
    %       for k = 1:length(p) a;|C51GH  
    %           z(idx) = y(:,k); qPK3"fzH  
    %           subplot(4,4,k) :vz_f$=  
    %           pcolor(x,x,z), shading interp 8zP{Cmm  
    %           set(gca,'XTick',[],'YTick',[]) >wS52ng  
    %           axis square 2-Y%W(bEzs  
    %           title(['Z_{' num2str(p(k)) '}']) j(HC^\Hi  
    %       end T]l_B2.  
    % *A':^vgk  
    %   See also ZERNPOL, ZERNFUN. >:!TfuU^R  
    W'hE,  
    %   Paul Fricker 11/13/2006 /-TJtR4>  
    $`W .9  
    <i``#" /  
    % Check and prepare the inputs: @C{IgV  
    % ----------------------------- rlqn39  
    if min(size(p))~=1 L:"i,K#P  
        error('zernfun2:Pvector','Input P must be vector.') qcEiJ}-  
    end _I l/ i&  
    ))^rk 6  
    if any(p)>35 Pou-AzEP$  
        error('zernfun2:P36', ... .|}ogTEf  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... d?C8rkV'  
               '(P = 0 to 35).']) T%A45BE V  
    end 2siUpmX  
    D_ybgX?0:  
    % Get the order and frequency corresonding to the function number: ^o}!=aMr  
    % ---------------------------------------------------------------- ?}\aG3_4  
    p = p(:); h~)oiT2v  
    n = ceil((-3+sqrt(9+8*p))/2); NTS tk{s,  
    m = 2*p - n.*(n+2); u1s^AW8 y  
    ) E.KB6  
    % Pass the inputs to the function ZERNFUN: n0q5|ES  
    % ---------------------------------------- J;,6ydf8!  
    switch nargin 'L4@|c~x  
        case 3 1A"h!;0  
            z = zernfun(n,m,r,theta); KoZ" yD  
        case 4 [,e[~J`C  
            z = zernfun(n,m,r,theta,nflag); lp3 A B  
        otherwise 5<\&7P3y  
            error('zernfun2:nargin','Incorrect number of inputs.') 7Gd)=Q{uur  
    end 9kss) xy  
    2j&-3W$^  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) d%VG@./xq  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. roT$dL P)w  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ;Nf5,D.D  
    %   order N and frequency M, evaluated at R.  N is a vector of S'm&Ll2i@  
    %   positive integers (including 0), and M is a vector with the G&$+8 r  
    %   same number of elements as N.  Each element k of M must be a tn!z^W  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) N)|mA)S)  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  w=5D>]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix M7!>-P  
    %   with one column for every (N,M) pair, and one row for every pi7Fd\A  
    %   element in R. >ly`1t1  
    % T^.;yU_B?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ]Tk3@jw+b  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ka? |_(  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to }PdS?[R  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 /T&z :st0  
    %   for all [n,m]. Mqc"  
    % S\=j; Uem  
    %   The radial Zernike polynomials are the radial portion of the b@j**O>[q)  
    %   Zernike functions, which are an orthogonal basis on the unit O* `v1>  
    %   circle.  The series representation of the radial Zernike 9[K".VeT]  
    %   polynomials is S^0Po%d  
    % by; %k/  
    %          (n-m)/2 _V\rs{ 5  
    %            __ P @N7g`u3}  
    %    m      \       s                                          n-2s F0h`>{1%  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5VI c  
    %    n      s=0 R{Q*"sf  
    % `t_S uZ`V  
    %   The following table shows the first 12 polynomials. (#x <qi,T  
    % mOji\qia  
    %       n    m    Zernike polynomial    Normalization EUH&"8 L  
    %       --------------------------------------------- |hms'n0  
    %       0    0    1                        sqrt(2) ParOWs~W/  
    %       1    1    r                           2 88(h`RGMh  
    %       2    0    2*r^2 - 1                sqrt(6) c ;_ T  
    %       2    2    r^2                      sqrt(6) s&:LY"[`  
    %       3    1    3*r^3 - 2*r              sqrt(8) tSX<^VER7  
    %       3    3    r^3                      sqrt(8) Pqiw[+a$  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) L -z37kG^  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c"`o V! m  
    %       4    4    r^4                      sqrt(10) i}teY{pyc  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) l_bvwo  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) V|GH4DT=  
    %       5    5    r^5                      sqrt(12) 9}p>='  
    %       --------------------------------------------- n,D~ whZx  
    % ?blF6Kl$  
    %   Example: wG;#L7%  
    % 9qc<m'MZ  
    %       % Display three example Zernike radial polynomials a+A^njk  
    %       r = 0:0.01:1; #x-@ >{1k&  
    %       n = [3 2 5]; ?/ xk  
    %       m = [1 2 1]; VN!`@Ci/  
    %       z = zernpol(n,m,r); Hl`S\  
    %       figure PwP;+R};|  
    %       plot(r,z) '&/ 35d9|*  
    %       grid on 48;6C g  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }  IJ  
    % {A2EGUmF2  
    %   See also ZERNFUN, ZERNFUN2. $|+q9 o\  
    #ra"(/)  
    % A note on the algorithm. ]WlE9z7:8  
    % ------------------------ HKu? J  
    % The radial Zernike polynomials are computed using the series ]7<}EG  
    % representation shown in the Help section above. For many special _<tWy+.  
    % functions, direct evaluation using the series representation can )I7~ <$w  
    % produce poor numerical results (floating point errors), because 0>@D{_}s  
    % the summation often involves computing small differences between g/Q"%GN,  
    % large successive terms in the series. (In such cases, the functions B*=m%NXf  
    % are often evaluated using alternative methods such as recurrence DUBEh@  
    % relations: see the Legendre functions, for example). For the Zernike o,o,(sII  
    % polynomials, however, this problem does not arise, because the A+3,y<j\  
    % polynomials are evaluated over the finite domain r = (0,1), and ZlaU+Y(_[  
    % because the coefficients for a given polynomial are generally all *12,MO>go  
    % of similar magnitude. 4n6EkTa  
    % P<<?7_ ??  
    % ZERNPOL has been written using a vectorized implementation: multiple oU/CXz?H  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] )P&>Tc?;z  
    % values can be passed as inputs) for a vector of points R.  To achieve \XDc{c]  
    % this vectorization most efficiently, the algorithm in ZERNPOL "^sh:{  
    % involves pre-determining all the powers p of R that are required to SN w3xO!;&  
    % compute the outputs, and then compiling the {R^p} into a single U*Q1(C  
    % matrix.  This avoids any redundant computation of the R^p, and F3BWi[Xh  
    % minimizes the sizes of certain intermediate variables. Td!@i[6%H  
    % u,h,;'J  
    %   Paul Fricker 11/13/2006 fL^+Qb}  
    zadn`B#2  
    l!r2[T]I@7  
    % Check and prepare the inputs: 2R}9wDP  
    % ----------------------------- QuG=am?l`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =W+ h.?  
        error('zernpol:NMvectors','N and M must be vectors.') =Xwr*FTr  
    end s?qRy 2  
    i WCR 5c=  
    if length(n)~=length(m) Qs v3`c  
        error('zernpol:NMlength','N and M must be the same length.') 5R^e  
    end &8kc0Z@y  
    3&H#LGoV$  
    n = n(:); +Fn^@/?yC  
    m = m(:); ryhme\%l;f  
    length_n = length(n); Kob i!  
    j_=A)B?  
    if any(mod(n-m,2)) ii0{$}eoh  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') pwj?  
    end t9zPUR  
    1oD1ia#  
    if any(m<0) um/2.Sn>  
        error('zernpol:Mpositive','All M must be positive.') Z0o+&3a6  
    end wUU Dq?!k\  
    < 5 Ft3sd  
    if any(m>n) >j5,Z]  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') >F@qFP N]  
    end )SkJgzvC  
    XctSw  
    if any( r>1 | r<0 ) PKDzIA~T  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') PvmmyF  
    end T{9pNf-  
    , 7` /D  
    if ~any(size(r)==1) cJ CKxj  
        error('zernpol:Rvector','R must be a vector.') w$ zX.;s  
    end 'brt?oZ%  
    608}-J=3#  
    r = r(:); $-HP5Kj(k-  
    length_r = length(r); j@yK#==k  
    *$U+  
    if nargin==4 ,'FH[2  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ^,P# <,D,  
        if ~isnorm )<J|kC\r6c  
            error('zernpol:normalization','Unrecognized normalization flag.') CV9o,rL  
        end HR.^ y$IE  
    else :5Y yI.T  
        isnorm = false; 7(ni_|$|  
    end E5^P*6c(  
    )@vhqVv?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z%lu%   
    % Compute the Zernike Polynomials QNH-b9u>8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 79DzrLu  
    @D?KS;#  
    % Determine the required powers of r: U9?fUS  
    % ----------------------------------- 4rcNBmA,  
    rpowers = []; ~0;l\^  
    for j = 1:length(n) W^a-K  
        rpowers = [rpowers m(j):2:n(j)]; goE \C  
    end {6_M$"e.  
    rpowers = unique(rpowers); e(e_p#  
    F&tU^(7<  
    % Pre-compute the values of r raised to the required powers, + ESEAi91  
    % and compile them in a matrix: {;z{U;j  
    % ----------------------------- > whcZ.8  
    if rpowers(1)==0 UR3qzPm!0e  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r JvtE}x1  
        rpowern = cat(2,rpowern{:}); {D6p?TL+  
        rpowern = [ones(length_r,1) rpowern]; I_/E0qSJI  
    else d8)ps,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Aof)WKo  
        rpowern = cat(2,rpowern{:}); 3/aK#TjK  
    end mJ_ 5Vt=  
    qjcPJ  
    % Compute the values of the polynomials: ;\N )RZ  
    % -------------------------------------- wjq;9%eXk  
    z = zeros(length_r,length_n); u<g0oEs)  
    for j = 1:length_n }?\8%hK"a7  
        s = 0:(n(j)-m(j))/2; _/S qw  
        pows = n(j):-2:m(j); -qbx:Kk (  
        for k = length(s):-1:1 $wr B5m?  
            p = (1-2*mod(s(k),2))* ... Qkvg85  
                       prod(2:(n(j)-s(k)))/          ... d@0p<at>~  
                       prod(2:s(k))/                 ... f3>L/9[[<P  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 9wTN *y  
                       prod(2:((n(j)+m(j))/2-s(k))); A^2n i=b  
            idx = (pows(k)==rpowers); Q!91uNL  
            z(:,j) = z(:,j) + p*rpowern(:,idx); c\Z.V*o  
        end wV604eO(  
         X7bS{GT  
        if isnorm ?Z0NHy;5  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); rIh"MQvi[  
        end A_y]6~Mu?~  
    end 3)6TnY/u6{  
    ?rJe"TOIy  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @xeJ$ rlu  
    tu's]3RE  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 E1s~ +  
    # TZ`   
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)