切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10947阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~gddcTp  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! E474l  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sX'nn   
    function z = zernfun(n,m,r,theta,nflag) ]^ 'ZiyJX  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0N5bPb  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m6MaX}&zv  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @L8;VSI  
    %   unit circle.  N is a vector of positive integers (including 0), and +c?ie4   
    %   M is a vector with the same number of elements as N.  Each element o#}mkE87  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]M\q0>HoJ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0b++ 17aV  
    %   and THETA is a vector of angles.  R and THETA must have the same |Puj7Ru  
    %   length.  The output Z is a matrix with one column for every (N,M) LyP`{_"CM  
    %   pair, and one row for every (R,THETA) pair. @C_ =*  
    %  XhA4:t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  MYx88y  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $W,zO|-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral x4 hO$3o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #Fzb8Yo  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]]y[t|6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :rmauKR  
    % QgZJ`G--  
    %   The Zernike functions are an orthogonal basis on the unit circle. s41adw>  
    %   They are used in disciplines such as astronomy, optics, and PWG;&ma  
    %   optometry to describe functions on a circular domain. Wr#~GFg  
    % G?ZC 9w]rA  
    %   The following table lists the first 15 Zernike functions. '!@A}&]  
    % Tk](eQsy.v  
    %       n    m    Zernike function           Normalization b9#m m  
    %       -------------------------------------------------- . s-5N\  
    %       0    0    1                                 1 xVTo4-[p  
    %       1    1    r * cos(theta)                    2 Hz?,#>{  
    %       1   -1    r * sin(theta)                    2 8]]@S"ZM,\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5L3{w+V  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Xi+n`T'i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) nl9kYE [  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) W0?JVtq0Z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ays L-sqR  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )f[C[Rd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) D!me%;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2-7Z(7G{ F  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Gw`/.0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3P`WPph  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZQ|gt*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Z9f/-|r5  
    %       -------------------------------------------------- Y{j7Q4{  
    % e# <4/FR  
    %   Example 1: g/B\ObY  
    % IywiCMjH  
    %       % Display the Zernike function Z(n=5,m=1) PJ;.31u  
    %       x = -1:0.01:1; c dDY]"k  
    %       [X,Y] = meshgrid(x,x); l.uN$B  
    %       [theta,r] = cart2pol(X,Y); )*W=GY*  
    %       idx = r<=1; bq: [Nj  
    %       z = nan(size(X)); p9Z ].5Pd"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $r):d  
    %       figure ?(>k,[n  
    %       pcolor(x,x,z), shading interp HoL~j({  
    %       axis square, colorbar z6 a,0&;-L  
    %       title('Zernike function Z_5^1(r,\theta)') WV@X@]U  
    % i0b.AA  
    %   Example 2: 1y~L8!: L  
    % 7|{ B#  
    %       % Display the first 10 Zernike functions uct=i1+ fE  
    %       x = -1:0.01:1; ?0uOR *y'  
    %       [X,Y] = meshgrid(x,x); T:6K?$y?  
    %       [theta,r] = cart2pol(X,Y); /Bh>  
    %       idx = r<=1;  M$F{N  
    %       z = nan(size(X)); Xout:dn  
    %       n = [0  1  1  2  2  2  3  3  3  3]; @]E]W#xAn  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; D/cg7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; dK`(BA{`3  
    %       y = zernfun(n,m,r(idx),theta(idx)); i`R(7Z  
    %       figure('Units','normalized') rykj2/O  
    %       for k = 1:10 %uj[`  
    %           z(idx) = y(:,k); hRa\1Jt>a  
    %           subplot(4,7,Nplot(k)) "~_$T@^k>  
    %           pcolor(x,x,z), shading interp 3Fgz)*Gu]  
    %           set(gca,'XTick',[],'YTick',[]) o>.AdZby  
    %           axis square > n1h^AW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \zBd<H4S:  
    %       end <>VID E  
    % > CH  
    %   See also ZERNPOL, ZERNFUN2. /9P^{ OZ;y  
    xna7kA  
    %   Paul Fricker 11/13/2006 AjG)1  
    v: giZxR  
    JaA&eT|  
    % Check and prepare the inputs: tc"T}huypU  
    % ----------------------------- ' J2ewW5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y$>+U  
        error('zernfun:NMvectors','N and M must be vectors.') c!.=%QY  
    end 33*^($bE&  
    #]k0Z~Bl  
    if length(n)~=length(m) FMoJ"6Q  
        error('zernfun:NMlength','N and M must be the same length.') y2U/$%B)G  
    end fn3*2  
    L^6"' #  
    n = n(:); Ad^dF'SN  
    m = m(:); 92s4u3 L;  
    if any(mod(n-m,2)) 6euR'd^Qi  
        error('zernfun:NMmultiplesof2', ... rFf :A-#l  
              'All N and M must differ by multiples of 2 (including 0).')  o1 jk=  
    end [SK2x4  
    $[)6H7!U)  
    if any(m>n) )>ug{M%g  
        error('zernfun:MlessthanN', ... 7F,07\c  
              'Each M must be less than or equal to its corresponding N.') f$Gr`d  
    end d#E(~t(^  
    S4;wa6  
    if any( r>1 | r<0 ) lq;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >_rzT9gX&  
    end =9kj? u~  
    E%-Pyg*  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y2oB]^z&n  
        error('zernfun:RTHvector','R and THETA must be vectors.')  ` 2Wl  
    end <E D8"~_  
    29&sydu  
    r = r(:); t.3Ct@wK  
    theta = theta(:); 1_N~1Ik  
    length_r = length(r); ;M%oQ> ].[  
    if length_r~=length(theta) Q2JdO 6[96  
        error('zernfun:RTHlength', ... 5x:Ift *  
              'The number of R- and THETA-values must be equal.') j)g_*\tQ  
    end ^</65+OT+  
    9V|E1-")E  
    % Check normalization: | \ s2  
    % -------------------- yd7lcb [  
    if nargin==5 && ischar(nflag) nAQyxP%  
        isnorm = strcmpi(nflag,'norm'); fG:PdIJ7_  
        if ~isnorm y0/WA4,  
            error('zernfun:normalization','Unrecognized normalization flag.') FQ ;4'B^k]  
        end 08<k'Oi]  
    else !yoSMI-  
        isnorm = false; O"_erH\nk  
    end !^c:'I>~  
    d$2@,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &/b? I `  
    % Compute the Zernike Polynomials aukk|/3Ih  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \zk?$'d  
    RB S[*D  
    % Determine the required powers of r: -/ (DP x  
    % ----------------------------------- W0+gfg  
    m_abs = abs(m); eT7!a']x  
    rpowers = []; F&W0DaH  
    for j = 1:length(n) Tf&f`/  
        rpowers = [rpowers m_abs(j):2:n(j)]; O ,F]\  
    end 4kW 30Ma  
    rpowers = unique(rpowers); c,#~L7  
    nUI63?  
    % Pre-compute the values of r raised to the required powers, 9%p7B~}E  
    % and compile them in a matrix: ?D*Hl+iu  
    % ----------------------------- Bi9 N  
    if rpowers(1)==0 d-6sC@PB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _~X8/p/Qh  
        rpowern = cat(2,rpowern{:}); ^%K1R;  
        rpowern = [ones(length_r,1) rpowern]; TIK/%T  
    else 8{}Pj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F]K$u <U  
        rpowern = cat(2,rpowern{:}); ifJv~asp   
    end ~6@c]:  
    !#,-  
    % Compute the values of the polynomials: ,(@Y%UW:  
    % -------------------------------------- %KJ"rvi4K  
    y = zeros(length_r,length(n)); tMD^$E"C  
    for j = 1:length(n) j:rs+1bc  
        s = 0:(n(j)-m_abs(j))/2; 2 Ft0C2  
        pows = n(j):-2:m_abs(j); !^Z[z[  
        for k = length(s):-1:1 dU sJv  
            p = (1-2*mod(s(k),2))* ... mC{!8WC@k  
                       prod(2:(n(j)-s(k)))/              ... #K<=xP  
                       prod(2:s(k))/                     ... 3<KZ.hr  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... VV0EgfJ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); KV^:sxU  
            idx = (pows(k)==rpowers); nK?k<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); PK.h E{R  
        end /H\^l.|vk  
         J-eA,9J  
        if isnorm W[[YOK1T  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); GM9]>"#o\  
        end wa(Wit"-  
    end ;i-D~Np|  
    % END: Compute the Zernike Polynomials K*HVn2OV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .swgXiRvs  
    +e\:C~2f28  
    % Compute the Zernike functions: o3TBRn,  
    % ------------------------------ 0f=N3)  
    idx_pos = m>0; 4Rrw8Bw  
    idx_neg = m<0; r$3~bS$]  
    cOZajC<G  
    z = y; % Zl_{Q]h  
    if any(idx_pos) $:-= >  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }'w^<:RSy  
    end )K\k6HC.  
    if any(idx_neg) 8&2gM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yNWbI0a  
    end A\PV@w%A i  
    _!CvtUU0Vv  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag)  ~NW5+M(u  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :PjUl  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated I#6' NZ  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive j n&9<"W  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 7rDRu]  
    %   and THETA is a vector of angles.  R and THETA must have the same 1.d9{LO[-  
    %   length.  The output Z is a matrix with one column for every P-value, :;#}9g9  
    %   and one row for every (R,THETA) pair. Ef*.}gcU  
    % ^[\53\R~  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ) ImIPSL  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ` Ehgn?6'  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) K'rs9v"K|  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 PQ#-.K  
    %   for all p. 8Carg~T@  
    % ;@-5lCvC(+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 X1z0'gvh  
    %   Zernike functions (order N<=7).  In some disciplines it is te4"+[ $|  
    %   traditional to label the first 36 functions using a single mode %>:)4A  
    %   number P instead of separate numbers for the order N and azimuthal /ykxVCvAt  
    %   frequency M. LYT<o FE-  
    % Zu73x#pI  
    %   Example: o>rlrqr?_  
    % LUVJ218p  
    %       % Display the first 16 Zernike functions n[S*gX0  
    %       x = -1:0.01:1; ^aM/BS\  
    %       [X,Y] = meshgrid(x,x); <@ex})su  
    %       [theta,r] = cart2pol(X,Y); QMpA~x_m  
    %       idx = r<=1; -ddatc|  
    %       p = 0:15; en6AAr:U}  
    %       z = nan(size(X)); Vw@x  
    %       y = zernfun2(p,r(idx),theta(idx)); Pw{{+PBu R  
    %       figure('Units','normalized') X?xm1|\  
    %       for k = 1:length(p) ) G&3V  
    %           z(idx) = y(:,k); }nERQq&A  
    %           subplot(4,4,k) z#67rh {  
    %           pcolor(x,x,z), shading interp bGnJ4R3J  
    %           set(gca,'XTick',[],'YTick',[]) (&x\,19U$  
    %           axis square `,=p\g|D  
    %           title(['Z_{' num2str(p(k)) '}']) .f<,H+m^  
    %       end f3|=T8"t  
    % pl/$@K?L  
    %   See also ZERNPOL, ZERNFUN. Lh$ac-Ct  
    56aJE .?<  
    %   Paul Fricker 11/13/2006 "2j~3aWj  
    *M5C*}dl  
    ;8kfgp M_  
    % Check and prepare the inputs: ~/[N)RFD  
    % ----------------------------- QNBzc {XB  
    if min(size(p))~=1 1#RA+d(  
        error('zernfun2:Pvector','Input P must be vector.') o?8j *]  
    end +T;qvx6  
    ew~FN  
    if any(p)>35 ZS;kCdL   
        error('zernfun2:P36', ... m>:ig\  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... _CT|5wQF<  
               '(P = 0 to 35).']) y5 +&P  
    end >rGlj  
    >0$5H]1u  
    % Get the order and frequency corresonding to the function number: |a3b2x,  
    % ---------------------------------------------------------------- rbWFq|(_  
    p = p(:); 1Qkuxw  
    n = ceil((-3+sqrt(9+8*p))/2); Jl}7]cVq#  
    m = 2*p - n.*(n+2); _en8hi@Z  
    AS ul  
    % Pass the inputs to the function ZERNFUN: A O]e^Q  
    % ---------------------------------------- fA5# 2P{  
    switch nargin D':A-E  
        case 3 tL|Q{+i yE  
            z = zernfun(n,m,r,theta); \:S8mDI^s  
        case 4 q3t@)+l>*  
            z = zernfun(n,m,r,theta,nflag); r e2%e-F"  
        otherwise &v88x s  
            error('zernfun2:nargin','Incorrect number of inputs.') Nq8A vBwo4  
    end wz57.e!Me=  
    'rgV]Oy  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) :d;5Q\C`  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. OkM>  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of b< rM3P;  
    %   order N and frequency M, evaluated at R.  N is a vector of b]~M$y60q  
    %   positive integers (including 0), and M is a vector with the y\:2Re/*Jt  
    %   same number of elements as N.  Each element k of M must be a b({2|R  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) `@90b 4u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 6m]L{ buP  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix lZ|Ao0(  
    %   with one column for every (N,M) pair, and one row for every `i}\k  
    %   element in R. T"z!S0I  
    % >&TktQO_T  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- W{`;][  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ]Vubz54  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to tf,_4_7#$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 nD_g84us  
    %   for all [n,m]. %ug`dZ/  
    % 'K`)q6m  
    %   The radial Zernike polynomials are the radial portion of the lIf Our  
    %   Zernike functions, which are an orthogonal basis on the unit qIk6S6  
    %   circle.  The series representation of the radial Zernike {Hb _o)S  
    %   polynomials is jq[>PvR  
    % Deam%)bXM]  
    %          (n-m)/2 {kC]x2 U  
    %            __ @/9> /?JP  
    %    m      \       s                                          n-2s }b-?Dm_H  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r WN0^hDc-  
    %    n      s=0 sU`#d  
    % f_ ::?  
    %   The following table shows the first 12 polynomials.  E$G8-  
    % 4-TM3Cw`d&  
    %       n    m    Zernike polynomial    Normalization qn<~ LxQ  
    %       --------------------------------------------- =.uE(L`]NA  
    %       0    0    1                        sqrt(2) 0uZHH  
    %       1    1    r                           2 ;xb:{?  
    %       2    0    2*r^2 - 1                sqrt(6) $GcVC (]  
    %       2    2    r^2                      sqrt(6) 2nw P-i  
    %       3    1    3*r^3 - 2*r              sqrt(8) 4WNWn#M  
    %       3    3    r^3                      sqrt(8) <AB]FBo(  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) t]Oxo`h=  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) |=SaI%%Be  
    %       4    4    r^4                      sqrt(10) 3 D\I#g  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) TEY%OI zU+  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) D@!#79:)  
    %       5    5    r^5                      sqrt(12) pN?  
    %       --------------------------------------------- Q|;8\5  
    % fu33wz1$}B  
    %   Example:  snX5mD  
    % `,xKK+~YG-  
    %       % Display three example Zernike radial polynomials Uc6P@O*,  
    %       r = 0:0.01:1; wVp  
    %       n = [3 2 5]; @q|I$'K]x  
    %       m = [1 2 1]; |o6B:NH,rg  
    %       z = zernpol(n,m,r); 2b2/jzO}J  
    %       figure dZ_Hj X7  
    %       plot(r,z)  z7>  
    %       grid on }ufH![|[r  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;jS~0R  
    % ~Sh8. ++}  
    %   See also ZERNFUN, ZERNFUN2. E{|j  
    ~^ Q`dJL  
    % A note on the algorithm. .r$d 8J  
    % ------------------------ ?o?~Df&  
    % The radial Zernike polynomials are computed using the series !3E33  
    % representation shown in the Help section above. For many special !-)Hog5\  
    % functions, direct evaluation using the series representation can ;(5b5PA  
    % produce poor numerical results (floating point errors), because r< sx On  
    % the summation often involves computing small differences between %9C_p]P*  
    % large successive terms in the series. (In such cases, the functions #Fm,mO$v  
    % are often evaluated using alternative methods such as recurrence :VGvL"Kro  
    % relations: see the Legendre functions, for example). For the Zernike ===M/}r  
    % polynomials, however, this problem does not arise, because the ;%{REa  
    % polynomials are evaluated over the finite domain r = (0,1), and tY'fFz^Ho  
    % because the coefficients for a given polynomial are generally all iK%%  
    % of similar magnitude. %a$ l%8j&  
    % P;G Rk6  
    % ZERNPOL has been written using a vectorized implementation: multiple Po_y7 8ZD  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] mO%F {'  
    % values can be passed as inputs) for a vector of points R.  To achieve Ti:PKpc  
    % this vectorization most efficiently, the algorithm in ZERNPOL bh V.uBH  
    % involves pre-determining all the powers p of R that are required to r~ N:|ip=  
    % compute the outputs, and then compiling the {R^p} into a single % s&l^&ux  
    % matrix.  This avoids any redundant computation of the R^p, and X2\1OWR0  
    % minimizes the sizes of certain intermediate variables. OpWTw&B"+  
    % ,E ]vM&  
    %   Paul Fricker 11/13/2006 v{tw;Z#  
    `-yo-59E[  
    xw2dNJL  
    % Check and prepare the inputs: ' m^nKG$"  
    % ----------------------------- wX/0.aZ|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Qze.1h  
        error('zernpol:NMvectors','N and M must be vectors.') rHngYcjR  
    end Z/G`8|A  
    9:9gam  
    if length(n)~=length(m) !pT i.3  
        error('zernpol:NMlength','N and M must be the same length.') {#U 3A_y  
    end {f1iys'Om  
    X iW~? *Z  
    n = n(:); a*2JLK  
    m = m(:); yor6h@F1  
    length_n = length(n); K&'Vd@  
    \0fS;Q^{j  
    if any(mod(n-m,2)) [%LIW%t|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Gov]^?^D-  
    end u; G-46  
    nVyV]'-z  
    if any(m<0) IoKN.#;^  
        error('zernpol:Mpositive','All M must be positive.')  -^ceTzW+  
    end \DMZ M  
    vw2yOL RX  
    if any(m>n) Fa+#bX7  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') X+KQ%Efo  
    end D}T+X ;u)K  
    ?s]+2Tq  
    if any( r>1 | r<0 ) $+WMKv@<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') <wTD}.n  
    end E}lNb  
    }AG dWt@  
    if ~any(size(r)==1) #`qP7E w  
        error('zernpol:Rvector','R must be a vector.') |R3A$r#-  
    end hZtJ LY  
    St|B9V?eEB  
    r = r(:); pxV@fH+`  
    length_r = length(r); 9{&oVt~Y$  
    DAVgP7h'  
    if nargin==4 |PutTcjQ  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $.KD nl^  
        if ~isnorm }%Vx2Q  
            error('zernpol:normalization','Unrecognized normalization flag.') ZIp"X  
        end \(;X3h  
    else S*'  
        isnorm = false; `3'4_@7s9  
    end LWIPq"  
    EL:Az~]V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L@x#:s=  
    % Compute the Zernike Polynomials 56!/E5qgW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k*k 9hv?  
    %dDwus  
    % Determine the required powers of r: +&qj`hA-b  
    % ----------------------------------- &\ \)x.!  
    rpowers = [];  o\-:  
    for j = 1:length(n) zOT(>1'  
        rpowers = [rpowers m(j):2:n(j)]; *c' hmA s  
    end +?y9EZB%  
    rpowers = unique(rpowers); FWl'='5L  
    99u9L)  
    % Pre-compute the values of r raised to the required powers, xAJuIR1Hi  
    % and compile them in a matrix: HN~  
    % ----------------------------- sFa5#w*>  
    if rpowers(1)==0 ?0hEd9TU  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Oq4J$/%  
        rpowern = cat(2,rpowern{:}); pipqXe  
        rpowern = [ones(length_r,1) rpowern]; L_QJS2  
    else ~"8)9&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tp?< e  
        rpowern = cat(2,rpowern{:}); L6f$ID:  
    end 6ujePi <U  
    ;.|).y1/`  
    % Compute the values of the polynomials: %:vMD  
    % -------------------------------------- w//L2.  
    z = zeros(length_r,length_n); j/PNi@  
    for j = 1:length_n EH~XN9b  
        s = 0:(n(j)-m(j))/2; _7Rp.)[&  
        pows = n(j):-2:m(j);  b@m\ca  
        for k = length(s):-1:1  k.("<)  
            p = (1-2*mod(s(k),2))* ... 8nQjD<-  
                       prod(2:(n(j)-s(k)))/          ... <yz&> +9,  
                       prod(2:s(k))/                 ... "*N=aHsj  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... }J-+^  
                       prod(2:((n(j)+m(j))/2-s(k))); & U6bOH%P  
            idx = (pows(k)==rpowers); o:8*WCiqrN  
            z(:,j) = z(:,j) + p*rpowern(:,idx); U f <hzP  
        end MPI=^rc2  
         @$ggPrs  
        if isnorm w\QMA3  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 5y%-K=d  
        end ]> 36{k]&  
    end GfMCHs   
    .,$<waGD  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  W_ubgCB  
    ?OdJ t  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 N}7tjk   
    T^.W'  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)