非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NcAp_q?
4
function z = zernfun(n,m,r,theta,nflag) ~Wp Gf,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. thqS*I'#g
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gXH[$guf
% and angular frequency M, evaluated at positions (R,THETA) on the : ~ A%#
% unit circle. N is a vector of positive integers (including 0), and 62>zt2=
% M is a vector with the same number of elements as N. Each element Zv_jy@k
% k of M must be a positive integer, with possible values M(k) = -N(k) p<v.Q
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~kCwJ<E
% and THETA is a vector of angles. R and THETA must have the same 0liR
% length. The output Z is a matrix with one column for every (N,M) U5]pi+r
% pair, and one row for every (R,THETA) pair. m"9XT)N
% $) 5Bf3P0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zj|/ CxV
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '>v^6iS
% with delta(m,0) the Kronecker delta, is chosen so that the integral 1,V`8 [
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ji;mHFZ*FU
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2F8|I7R
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YUdxG/~'
% H\GkW6
% The Zernike functions are an orthogonal basis on the unit circle. f2,1<^{
% They are used in disciplines such as astronomy, optics, and
Xm4CKuU@
% optometry to describe functions on a circular domain. o."rxd
% Cj*-[EL<
% The following table lists the first 15 Zernike functions. !4rPv\
% Q#Y k?Kv~
% n m Zernike function Normalization v[lnw} =m9
% -------------------------------------------------- Q8MS,7y/
% 0 0 1 1 XTDE53Js&
% 1 1 r * cos(theta) 2 cMzkL%
% 1 -1 r * sin(theta) 2 GyC /_ntn
% 2 -2 r^2 * cos(2*theta) sqrt(6) c[ht`!P
% 2 0 (2*r^2 - 1) sqrt(3) ba3-t;S
% 2 2 r^2 * sin(2*theta) sqrt(6) ?R5'#|EyX
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]/T-t1D
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) GPWr>B.{:S
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) kHJ96G
% 3 3 r^3 * sin(3*theta) sqrt(8) 0"g@!gSrQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1>r ,vD&
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `Vq`z]}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 5v^L9!`@%v
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t?^9HP1b_
% 4 4 r^4 * sin(4*theta) sqrt(10) OSzjK7:
% -------------------------------------------------- _B,_4}
% E-1"+p
% Example 1: (}:C+p
'I
% X;!D};;M
% % Display the Zernike function Z(n=5,m=1) &D#+6M&LK{
% x = -1:0.01:1; Z v0C@r
% [X,Y] = meshgrid(x,x); x"(9II*
% [theta,r] = cart2pol(X,Y); K<v:-TjQZ:
% idx = r<=1; /9Ilo\MdD
% z = nan(size(X)); k:#6^!b1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); s T3p>8n
% figure >m_v5K
% pcolor(x,x,z), shading interp D{'#er
% axis square, colorbar ^^(<c,NX#M
% title('Zernike function Z_5^1(r,\theta)') *(cU]NUH_
% eFTX6XB:i
% Example 2: V)D-pV V
% K%}}fw2RMN
% % Display the first 10 Zernike functions `eRLc}aP2
% x = -1:0.01:1; <E':[.zC
% [X,Y] = meshgrid(x,x); uv4 _:
% [theta,r] = cart2pol(X,Y); |)@N-f:E
% idx = r<=1; i=v]:TOu
% z = nan(size(X)); (OQ?<'Qa
% n = [0 1 1 2 2 2 3 3 3 3]; 1h"_[`L'
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; uC~g#[I QM
% Nplot = [4 10 12 16 18 20 22 24 26 28]; v9}[$HWx
% y = zernfun(n,m,r(idx),theta(idx)); #B\=Aa`*
% figure('Units','normalized') .V%*{eHLL
% for k = 1:10 =:h3w#_c
% z(idx) = y(:,k); s0{
NsK>
% subplot(4,7,Nplot(k)) DM3B]Yl
% pcolor(x,x,z), shading interp U
|F>W~%
% set(gca,'XTick',[],'YTick',[]) .#^0pv!
% axis square LD+f'^>>Z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MB:n~>ga
% end Nm8w/Q5D`
% NcL
=zo<
% See also ZERNPOL, ZERNFUN2. 8.I9}_
'o\;x"YJ
% Paul Fricker 11/13/2006 $<e +r$1
{e]NU<G ,
j$eCe<.3
% Check and prepare the inputs: +Z?[M1g
% ----------------------------- 9y"TDo
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ku3!*n_\
error('zernfun:NMvectors','N and M must be vectors.') ;.Zh,cU
end jXEGSn
~4s-S3YzaM
if length(n)~=length(m) ) Ypz!
error('zernfun:NMlength','N and M must be the same length.') k)E ;(
end K[?R[
tE!'dpG5)
n = n(:); \7E`QY4
m = m(:); ~eo^`4O{{
if any(mod(n-m,2)) |vy]8?Ak
error('zernfun:NMmultiplesof2', ... *1;23BiH-
'All N and M must differ by multiples of 2 (including 0).') `=!p$hg($
end PN\V[#nS
Qp&?L"U)2
if any(m>n) ida*]+ ~
error('zernfun:MlessthanN', ... ^\YQ_/\~L
'Each M must be less than or equal to its corresponding N.') N^@
\tg=
end ;4d.)-<No_
N&B>#:
if any( r>1 | r<0 ) ZA.fa0n
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Cnur"?w@o
end y@9Y,ZR*
Kcn\g.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p#b{xK
error('zernfun:RTHvector','R and THETA must be vectors.') k
E_ky)
end
-HT L5
\|!gPc%s
r = r(:); /:6Q.onmLn
theta = theta(:); jI#z/a!j:
length_r = length(r); wU0K3qZL
if length_r~=length(theta) s1@@o#r
error('zernfun:RTHlength', ... 2$ VTu+
'The number of R- and THETA-values must be equal.') f)tc 4iV
end ,'-?:`hP'
kt<@H11
% Check normalization: 7S2c|U4IM
% -------------------- Ge9}8
if nargin==5 && ischar(nflag) a&:>Ped"
isnorm = strcmpi(nflag,'norm'); 7h1"^}M&
if ~isnorm Lnx2xoNk
error('zernfun:normalization','Unrecognized normalization flag.') vUfO4yfdg
end oF&IC
j0
else hE5G!@1F
isnorm = false; q5gP~*?
end lDU#7\5.
#]5)]LF1q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &O{t^D)F
% Compute the Zernike Polynomials &`sR){R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DD6 'M
U4
7?]!Ecr"
% Determine the required powers of r: HtS#_y%(
% ----------------------------------- @YrGyq
m_abs = abs(m); 9>zDJx
rpowers = []; |Qq+8IeYG
for j = 1:length(n) j5A\y^Kv
rpowers = [rpowers m_abs(j):2:n(j)]; U*xxrt/On/
end 5z[6rT=a
rpowers = unique(rpowers); " V/k<HRw
tQ6| PV
% Pre-compute the values of r raised to the required powers, k#-[ M.i
% and compile them in a matrix: ;>'SV~F
% ----------------------------- wISzT^RS
if rpowers(1)==0 @s?oJpo
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SFOQM*H
rpowern = cat(2,rpowern{:}); tdb4?^.s
rpowern = [ones(length_r,1) rpowern]; 7Fc |
else t3M0La&
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^zkd{ov
rpowern = cat(2,rpowern{:}); @+Pf[J41
end ur`V{9g
s!=!A
% Compute the values of the polynomials: %0Vc\M@"G
% -------------------------------------- 6vZt43"m?\
y = zeros(length_r,length(n)); "9.6\Y\*
for j = 1:length(n) ;?#i]Bh>S
s = 0:(n(j)-m_abs(j))/2; MbM:3
pows = n(j):-2:m_abs(j); VN!^m]0
for k = length(s):-1:1 dfXV1B5
p = (1-2*mod(s(k),2))* ... ],!pp3U
prod(2:(n(j)-s(k)))/ ... U bpg92
prod(2:s(k))/ ... <,#rtVO$
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~mW>_[RT;
prod(2:((n(j)+m_abs(j))/2-s(k))); a#>t+.dd
idx = (pows(k)==rpowers); AZ}%MA;q
y(:,j) = y(:,j) + p*rpowern(:,idx); rjt O`Mt`
end 6pSRum
~91uk3ST?
if isnorm pvI&-D #}
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w 2s,
end "F04c|oR<X
end 9n-RXVL+
% END: Compute the Zernike Polynomials fdvi}SS8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]q@rGD85K
>2*6qx>V
% Compute the Zernike functions: N7%=K9
% ------------------------------ Pau&4h0
idx_pos = m>0; cM|af#o
idx_neg = m<0; Di]Iy
ZD
iW72&Q
z = y; !<JG&9ODP
if any(idx_pos) O7E;W| ]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^S>!kt7io
end ^2(";.m
if any(idx_neg) tauP1&%oH{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ZzSJm+&'
end )3d:S*ly
T749@! v`z
% EOF zernfun