切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10957阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #U7pT!F x  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 7&OJ8B/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 fA?v\'Qq/  
    function z = zernfun(n,m,r,theta,nflag) $pAVTz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. e8wPEDN*4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E i>GhvRM  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d!}oS<6  
    %   unit circle.  N is a vector of positive integers (including 0), and Jc}6kFgO6  
    %   M is a vector with the same number of elements as N.  Each element n-],!pL^  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]];pWlo!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, IbL'Z   
    %   and THETA is a vector of angles.  R and THETA must have the same Yb_HvP  
    %   length.  The output Z is a matrix with one column for every (N,M) h(~/JW[  
    %   pair, and one row for every (R,THETA) pair. njZ vi}m~  
    % 'UxI-L t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %#~wFW|]x  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), XqUQ{^;aI  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0'.z|Jg=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .-mIU.Nwi  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mCk_c  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |e+3d3T35  
    %  U#K4)(C  
    %   The Zernike functions are an orthogonal basis on the unit circle. <H-kR\HF  
    %   They are used in disciplines such as astronomy, optics, and DTM(SN8R+n  
    %   optometry to describe functions on a circular domain. oYA"8ei=  
    % 89GW!  
    %   The following table lists the first 15 Zernike functions. &!O?h/&X3  
    % 1#7|au%:)  
    %       n    m    Zernike function           Normalization WAR!#E#J7  
    %       -------------------------------------------------- mAGD qz>f  
    %       0    0    1                                 1 X=Ar"Dx}}s  
    %       1    1    r * cos(theta)                    2 pX*E(Q)@!  
    %       1   -1    r * sin(theta)                    2 Q&w_kz.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) DEhR\Z!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %e0X-tXcmX  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) UR=s=G|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ';8 ,RTe  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :p@jslD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) T,uF^%$@AQ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) fp\mBei  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :AFU5mR4&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s-'~t#h  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "DGap*=J  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9+@z:j  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &8Vh3QLEx  
    %       -------------------------------------------------- }`H{;A h  
    % C9MK3vtD.  
    %   Example 1: !jU{ }RCR  
    % B hx.q,X  
    %       % Display the Zernike function Z(n=5,m=1) ohyq/u+y~A  
    %       x = -1:0.01:1; ^>!&]@  
    %       [X,Y] = meshgrid(x,x); vO~w~u5  
    %       [theta,r] = cart2pol(X,Y); "nfi :A1  
    %       idx = r<=1; \o2l;1~  
    %       z = nan(size(X)); zA+0jhuG  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); lX2:8$?X  
    %       figure &=M4Z/Ao  
    %       pcolor(x,x,z), shading interp &Z!y>k%6  
    %       axis square, colorbar mbX'*up  
    %       title('Zernike function Z_5^1(r,\theta)') \),f?f-m  
    % dMsS OP0E  
    %   Example 2: iHc(e(CB<  
    % K;rgLj0m  
    %       % Display the first 10 Zernike functions >@cBDS<6R  
    %       x = -1:0.01:1; p^q/u  
    %       [X,Y] = meshgrid(x,x); }Rh%bf7,  
    %       [theta,r] = cart2pol(X,Y); CMbID1M3  
    %       idx = r<=1; st)v'ce,  
    %       z = nan(size(X)); O gQ8yKfDB  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 6'e^np  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -zJ V(`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *q,nALs  
    %       y = zernfun(n,m,r(idx),theta(idx)); m;rr7{7X  
    %       figure('Units','normalized') C@]D*k  
    %       for k = 1:10 B=%%3V)2  
    %           z(idx) = y(:,k); [bX ^_ Y  
    %           subplot(4,7,Nplot(k)) <& +jl($"  
    %           pcolor(x,x,z), shading interp B<-("P(q  
    %           set(gca,'XTick',[],'YTick',[]) NT5##XOB  
    %           axis square f_LXp$n  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !t~tIJ>6  
    %       end V9Mr&8{S4  
    % us1$  
    %   See also ZERNPOL, ZERNFUN2. W-|C K&1  
    LD NdHG6  
    %   Paul Fricker 11/13/2006 g{sp<w0  
    2^Im~p~ByE  
    4Y3@^8h&=  
    % Check and prepare the inputs: T95FoA  
    % ----------------------------- VB4V[jraCF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o$%KbfXO]  
        error('zernfun:NMvectors','N and M must be vectors.') hS &H*  
    end $0P16ZlPC  
    # c1LOz  
    if length(n)~=length(m) Tmu2G/yi  
        error('zernfun:NMlength','N and M must be the same length.') s 72yu}  
    end JBOU$A ~  
    k'&1,78[l  
    n = n(:); =N\$$3m?  
    m = m(:); 3*j1v:x`  
    if any(mod(n-m,2)) ThW9=kzQW  
        error('zernfun:NMmultiplesof2', ... L>WxAeyu1K  
              'All N and M must differ by multiples of 2 (including 0).') Q"eqql<h#  
    end L8'4d'N+ >  
    {6Nbar@3  
    if any(m>n) cp~6\F;c  
        error('zernfun:MlessthanN', ... l:u1P  
              'Each M must be less than or equal to its corresponding N.') $RF.LVc  
    end f>cUdEPBb  
    N M),2%<  
    if any( r>1 | r<0 ) :@E^oNKa0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :2NV;7Wke6  
    end %" mki>  
    + `'wY?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) | a i#rU  
        error('zernfun:RTHvector','R and THETA must be vectors.') d!Y%7LmSE@  
    end 3d1xL+  
    Zm++5b`W/[  
    r = r(:); l& sEdEA  
    theta = theta(:); &"T7KXx  
    length_r = length(r); GyxLzrp  
    if length_r~=length(theta) O tQ]\:p7  
        error('zernfun:RTHlength', ... o>d0R w4h  
              'The number of R- and THETA-values must be equal.') QKvaTy#  
    end %t1Z!xv_  
    Y:Lkh>S1Q  
    % Check normalization: ]w]BKpU=  
    % -------------------- H|j]uLZ  
    if nargin==5 && ischar(nflag) n4XkhY|  
        isnorm = strcmpi(nflag,'norm'); |pMP-  
        if ~isnorm P@5-3]m=  
            error('zernfun:normalization','Unrecognized normalization flag.') Y Kp@ n8A  
        end G\k&s F  
    else 3^q9ll7Op  
        isnorm = false; .),9a,  
    end 'h~IbP  
    eW3?3l`fvt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \7xc*v [  
    % Compute the Zernike Polynomials :U'n0\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nDckT+eJ  
    XknNb{. r  
    % Determine the required powers of r: QL2 LIs  
    % ----------------------------------- XPt>klf  
    m_abs = abs(m); }> C?Zx*  
    rpowers = []; D(TfW   
    for j = 1:length(n) efHCPj  
        rpowers = [rpowers m_abs(j):2:n(j)]; ,?%Y*?v  
    end MOB'rPIUI  
    rpowers = unique(rpowers); " ? V;C  
    gr.G']9lNq  
    % Pre-compute the values of r raised to the required powers, rXTdhw?+  
    % and compile them in a matrix: tN.BI1nB  
    % ----------------------------- CJ)u#PmkJ  
    if rpowers(1)==0 l_+q a6C*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r,vSDHb`j  
        rpowern = cat(2,rpowern{:}); h.- o$+Sa  
        rpowern = [ones(length_r,1) rpowern]; }I`o%GL  
    else =R9`to|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e(DuJ-  
        rpowern = cat(2,rpowern{:}); /9P7;1?  
    end 7Ot&]M  
    ?h#F& y  
    % Compute the values of the polynomials: Z~|%asjFE  
    % -------------------------------------- fG.6S"|M  
    y = zeros(length_r,length(n)); ~Z#\f5yv@  
    for j = 1:length(n) SwrzW'%A  
        s = 0:(n(j)-m_abs(j))/2;  _qt  
        pows = n(j):-2:m_abs(j); QT1oUP#*  
        for k = length(s):-1:1 q_>=| b  
            p = (1-2*mod(s(k),2))* ... 4m~p(r  
                       prod(2:(n(j)-s(k)))/              ... 7(LB}  
                       prod(2:s(k))/                     ... cauKG@:2F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %/s+-j@s:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pg<c vok  
            idx = (pows(k)==rpowers); EF 8rh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 'Q*lp!2>  
        end ~_-+Q=3  
         4}YHg&@\d%  
        if isnorm 8N#.@\'kz.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); jcxeXp|00  
        end poqNiOm4%  
    end sN1I+X  
    % END: Compute the Zernike Polynomials 2Aa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YQO9$g0% ~  
    *;T HD>  
    % Compute the Zernike functions: |hu9)0 P  
    % ------------------------------ s cd}{Y  
    idx_pos = m>0; =}SC .E\  
    idx_neg = m<0; L N'})CI8m  
    T^Xum2Ec  
    z = y; JVPLE*T  
    if any(idx_pos) <2I<Z'B,e  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); g9=O<u#  
    end  ~}K$z  
    if any(idx_neg) D r6u0rx8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); P&Hhq>@Z  
    end 79'N/:.  
    a)/ }T  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) /JP%gD"8  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. glNXamo  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated W -5wjc  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive .W0;Vhw"  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 1jj.oa]  
    %   and THETA is a vector of angles.  R and THETA must have the same G5zsId dS  
    %   length.  The output Z is a matrix with one column for every P-value, E uk[ @1  
    %   and one row for every (R,THETA) pair. Q$^Kf]pD  
    % J|WkPv2  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike f\vg<lca  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) "3uPK$  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 1Qo2Z;h@  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 u-X P `  
    %   for all p. /y5a~3  
    % rqi|8gKY  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 0BHSeO,  
    %   Zernike functions (order N<=7).  In some disciplines it is E&2mFg  
    %   traditional to label the first 36 functions using a single mode koOp:7r  
    %   number P instead of separate numbers for the order N and azimuthal (>gHfC>(lq  
    %   frequency M. .h>tef  
    % lRA!  
    %   Example: ':?MFkYC  
    % $3:O}X>  
    %       % Display the first 16 Zernike functions /AUXO]  
    %       x = -1:0.01:1; mMtX:  
    %       [X,Y] = meshgrid(x,x); lEiOE]  
    %       [theta,r] = cart2pol(X,Y); '0E^th#u-0  
    %       idx = r<=1; %0^taA  
    %       p = 0:15; >{w"aJ" F  
    %       z = nan(size(X)); vip& b}u  
    %       y = zernfun2(p,r(idx),theta(idx)); sT%^W  
    %       figure('Units','normalized') $@4(Lq1.  
    %       for k = 1:length(p)  Qf(mn8  
    %           z(idx) = y(:,k); Uz; pNWMk  
    %           subplot(4,4,k) K6; sxF  
    %           pcolor(x,x,z), shading interp _6&TCd<  
    %           set(gca,'XTick',[],'YTick',[]) DM)%=C6<  
    %           axis square HCVMqG!  
    %           title(['Z_{' num2str(p(k)) '}']) |a[Id  
    %       end u MM?s?q  
    % !TdbD56  
    %   See also ZERNPOL, ZERNFUN. xO` O$ie  
    {qjw  S1v  
    %   Paul Fricker 11/13/2006 bG[)r  
    J+20]jI  
    /?g:`NT  
    % Check and prepare the inputs: ;bxL$1  
    % ----------------------------- xr'gi(.o  
    if min(size(p))~=1 d (8X?k.S  
        error('zernfun2:Pvector','Input P must be vector.') $ -n?q w  
    end ]2o?Gnn@  
    I~P]_D mM  
    if any(p)>35 W_P&;)E  
        error('zernfun2:P36', ... s.uV,E*wu  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... c2fbqM~  
               '(P = 0 to 35).']) bQu1L>c,Uw  
    end &^!vi2$5}  
    nq"U`z@R  
    % Get the order and frequency corresonding to the function number: A5LTgGzaW  
    % ---------------------------------------------------------------- R#i{eE*WF  
    p = p(:); W|aFEY  
    n = ceil((-3+sqrt(9+8*p))/2); =]yzy:~ey  
    m = 2*p - n.*(n+2); !XJS"owr  
    wnoL<p  
    % Pass the inputs to the function ZERNFUN: gu~F(Fb'  
    % ---------------------------------------- ekx~svcC&A  
    switch nargin Gh#$[5&`  
        case 3 %RF9R"t$  
            z = zernfun(n,m,r,theta); 0qU Bt9rA  
        case 4 %Vp'^,&S  
            z = zernfun(n,m,r,theta,nflag); g1TMyIUt[  
        otherwise b/eJEL  
            error('zernfun2:nargin','Incorrect number of inputs.') M@b:~mI[sw  
    end [b<AQFh<c  
    20XN5dTFT  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) #M5R>&?Jqz  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. nr t3wqJ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of  KDODUohC  
    %   order N and frequency M, evaluated at R.  N is a vector of I Y='tw  
    %   positive integers (including 0), and M is a vector with the }c$@0x;YQ  
    %   same number of elements as N.  Each element k of M must be a bm+ #OI  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  @{|vW  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is dO{a!Ca  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix A*r6  
    %   with one column for every (N,M) pair, and one row for every "DniDA  
    %   element in R. SQ_w~'(  
    % d/fg  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- cn~M: LW23  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is M' d ,TV[  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to XDWR ]  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 K~ 6[zJ4  
    %   for all [n,m]. uFzvb0O`O  
    % e{"r3*  
    %   The radial Zernike polynomials are the radial portion of the ;MH<T6b  
    %   Zernike functions, which are an orthogonal basis on the unit drr n&y  
    %   circle.  The series representation of the radial Zernike A+:X  
    %   polynomials is t69C48}15  
    % }?0At<(d  
    %          (n-m)/2 dF?:&oP]  
    %            __ YF]W<ZpY  
    %    m      \       s                                          n-2s *}hx9:9\B  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ^s_BY+#  
    %    n      s=0 {O4y Y=G  
    % rk$$gXg9/  
    %   The following table shows the first 12 polynomials. ZT \=:X*e  
    %  9z9EK'g  
    %       n    m    Zernike polynomial    Normalization 1I{^]]qw  
    %       --------------------------------------------- z)Is:LhS  
    %       0    0    1                        sqrt(2) jgfl|;I?pg  
    %       1    1    r                           2 xTy[X"sJ  
    %       2    0    2*r^2 - 1                sqrt(6) =%}++7#  
    %       2    2    r^2                      sqrt(6) )9.i'{{ 0  
    %       3    1    3*r^3 - 2*r              sqrt(8) 7 fE QD?C  
    %       3    3    r^3                      sqrt(8) ?-y!FD}m&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) nMniHB'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) a<W[???m/M  
    %       4    4    r^4                      sqrt(10) -W^jmwM   
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) y2>XLELy  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) rM sd)  
    %       5    5    r^5                      sqrt(12) AS} FRNIVx  
    %       --------------------------------------------- 1qR[& =/  
    % {iyO96YI[^  
    %   Example: `YZK$ -,  
    % 9{{|P=  
    %       % Display three example Zernike radial polynomials k3-'!dW<  
    %       r = 0:0.01:1; PWwz<AI+  
    %       n = [3 2 5]; i|@lUXBp  
    %       m = [1 2 1]; ^* xhbM;  
    %       z = zernpol(n,m,r); rj.]M6#  
    %       figure 1YGj^7V)|Z  
    %       plot(r,z) bVB_KE  
    %       grid on muAI$IRR   
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7rc6  
    % G lz0`z  
    %   See also ZERNFUN, ZERNFUN2. [<HU ~PP  
    QbF!V%+a's  
    % A note on the algorithm. B=>:w%<Ii  
    % ------------------------ ST#OO!  
    % The radial Zernike polynomials are computed using the series .,)C^hs@  
    % representation shown in the Help section above. For many special o3_dHbdI  
    % functions, direct evaluation using the series representation can FmRCTH  
    % produce poor numerical results (floating point errors), because ICJp-  
    % the summation often involves computing small differences between 4K_fN  
    % large successive terms in the series. (In such cases, the functions ;1S~'B&1Q  
    % are often evaluated using alternative methods such as recurrence @~4Q\^;NX  
    % relations: see the Legendre functions, for example). For the Zernike X1 A~#w>  
    % polynomials, however, this problem does not arise, because the QY]^^f  
    % polynomials are evaluated over the finite domain r = (0,1), and Orb('Z,-3  
    % because the coefficients for a given polynomial are generally all B.wRZDEvc  
    % of similar magnitude. YLr<^G-v  
    % So ?ScX\lG  
    % ZERNPOL has been written using a vectorized implementation: multiple x@-bY  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 6ty>0  
    % values can be passed as inputs) for a vector of points R.  To achieve 6`KAl rH  
    % this vectorization most efficiently, the algorithm in ZERNPOL >L\>Th{o  
    % involves pre-determining all the powers p of R that are required to 8"d0Su4r  
    % compute the outputs, and then compiling the {R^p} into a single eYQq@lrWv  
    % matrix.  This avoids any redundant computation of the R^p, and ^E)Kse.>  
    % minimizes the sizes of certain intermediate variables. s Zan.Kc#  
    %  _\H MF  
    %   Paul Fricker 11/13/2006 <<43 'N+  
    \DP*?D_}?  
    Ca: jN0  
    % Check and prepare the inputs: NWuJ&+gcO5  
    % ----------------------------- /H_,1Fu|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y*Egt`W  
        error('zernpol:NMvectors','N and M must be vectors.') bITc9Hqc  
    end < a g|#  
    k{*IR  
    if length(n)~=length(m) 0KW@j>=jK  
        error('zernpol:NMlength','N and M must be the same length.') WaU+ZgDrG  
    end 8PQn=k9  
    ]9xuLJ)  
    n = n(:); 'A0.(a5  
    m = m(:); 7j9:s>D  
    length_n = length(n); >900I4]I  
    P@ gVzx)M  
    if any(mod(n-m,2)) ^DL}J>F9G  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') w"s;R8  
    end )7U^&I,  
    OnNWci|7  
    if any(m<0) -WDU~VSU  
        error('zernpol:Mpositive','All M must be positive.') _ >)+ u  
    end (=v :@\r  
    <a)B5B>  
    if any(m>n) gWt}q-@nRR  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') r(ej=aR  
    end )ZxDfRjL  
    .A;e` cKb  
    if any( r>1 | r<0 ) AT){OQF8&  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') (w31W[V'#  
    end Kjw4,z%\94  
    X<\E 'v`~  
    if ~any(size(r)==1) rToZN!q\S  
        error('zernpol:Rvector','R must be a vector.') G ZxM44fP  
    end OE{{,HFa`G  
    z/IA @  
    r = r(:); \#LkzN8  
    length_r = length(r); _zAHN0d  
    MAhJ>qe8 p  
    if nargin==4 F`/-Q>Q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $XBn:0U  
        if ~isnorm grvm2`u  
            error('zernpol:normalization','Unrecognized normalization flag.') Y ^s_v_s  
        end ^/nj2"  
    else 81m3j`b  
        isnorm = false; G?:{9. (  
    end pkW }\r  
    D?+\"lI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uvN Lm]*  
    % Compute the Zernike Polynomials 7Hghn"ol  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $;kFuJF  
    ^?pf.E!F`  
    % Determine the required powers of r: !Tc jJ2T  
    % ----------------------------------- Y(aEp_kV  
    rpowers = []; 20 <$f  
    for j = 1:length(n) l@;UwnI  
        rpowers = [rpowers m(j):2:n(j)]; IM.sW'E  
    end KpHt(>NR  
    rpowers = unique(rpowers); ` Aa}q(}k  
    t)#8r,9c  
    % Pre-compute the values of r raised to the required powers, C5}c?=#bdf  
    % and compile them in a matrix: d:Y!!LV-@L  
    % ----------------------------- gMN>`Z`fV  
    if rpowers(1)==0 H1?t2\V4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #@ClhpLD  
        rpowern = cat(2,rpowern{:}); 4Zz%vY  
        rpowern = [ones(length_r,1) rpowern]; 8Zj=:;  
    else zD#$]?@ b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,;3bPjey  
        rpowern = cat(2,rpowern{:}); _?]0b7X  
    end 0P{^aSxTP  
    k#eH Q!  
    % Compute the values of the polynomials: u|;?FQ$M  
    % -------------------------------------- vbt0G-%Z  
    z = zeros(length_r,length_n); r6.`9  
    for j = 1:length_n d=` a-R0  
        s = 0:(n(j)-m(j))/2; ;rggO0Y  
        pows = n(j):-2:m(j); d#-scv}s5  
        for k = length(s):-1:1 / .wO<l=  
            p = (1-2*mod(s(k),2))* ... \ a#{Y/j3  
                       prod(2:(n(j)-s(k)))/          ... zd%n)jlwR  
                       prod(2:s(k))/                 ... _Y{8FN(4  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... /"(`oe<  
                       prod(2:((n(j)+m(j))/2-s(k))); 7aF'E1e'3  
            idx = (pows(k)==rpowers); s3(mkdXv  
            z(:,j) = z(:,j) + p*rpowern(:,idx); a&^HvXO(>(  
        end [b2KBww\  
         .<m${yU{3  
        if isnorm /M,C%.-  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); B$=oU   
        end ^}w@&Bje  
    end u%t/W0xi  
    AvmI<U  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  hz+c]K  
    "I QM4:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 r8>Qs RnU%  
    1Q7]1fRu  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)