切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10864阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 K&ZtRRDd  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Z/;(f L  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _AYK435>N  
    function z = zernfun(n,m,r,theta,nflag) Xy&A~F  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5\sd3<:+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N el<s8:lA  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 9J*\T(W  
    %   unit circle.  N is a vector of positive integers (including 0), and mpEK (p  
    %   M is a vector with the same number of elements as N.  Each element SSg8}m5)Q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Ae^~Cz1qz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, swoQ'  
    %   and THETA is a vector of angles.  R and THETA must have the same @=Uh',F  
    %   length.  The output Z is a matrix with one column for every (N,M) -.@r#d/  
    %   pair, and one row for every (R,THETA) pair. eRstD>r  
    % Z{Qu<vy_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }wjw:M  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), };bEU wGWf  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ' !cCMTj  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KKPh~ThC  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &yTqZ*Yuk  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |'8Nh  
    % '8. r-`l(  
    %   The Zernike functions are an orthogonal basis on the unit circle. eIEeb,#i  
    %   They are used in disciplines such as astronomy, optics, and :&rt)/I  
    %   optometry to describe functions on a circular domain. qI9z;_,gNz  
    % IH&|Tcf\  
    %   The following table lists the first 15 Zernike functions. >`mVY=H i  
    % _LUhZlw  
    %       n    m    Zernike function           Normalization =^f<v_L  
    %       -------------------------------------------------- gNrjo=  
    %       0    0    1                                 1 I-)+bV G  
    %       1    1    r * cos(theta)                    2 m@F`!qY~Y\  
    %       1   -1    r * sin(theta)                    2 EHIF>@TZ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Y%aCMP9j~9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Jr!JHC9i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) oUr66a/[U  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4JXeV&5Qk'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )Y0!~# `  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) x7w4[QYw  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0c]/bs{}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) z}9(x.I  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {n.PF8A5X  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) k[YS8g-Q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "1*:JVG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) r~8 $1"  
    %       -------------------------------------------------- EIAc@$4  
    % ^4hO  
    %   Example 1: t!X. |`h  
    % o#gWbAG;]b  
    %       % Display the Zernike function Z(n=5,m=1) rmm0/+jY  
    %       x = -1:0.01:1; 7wqK>Y1a  
    %       [X,Y] = meshgrid(x,x); 9(7-{,c  
    %       [theta,r] = cart2pol(X,Y); v`x.)S1  
    %       idx = r<=1; _pG-qK  
    %       z = nan(size(X)); t+ G#{n  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); mb3"U"ohs  
    %       figure IGQFtO/x  
    %       pcolor(x,x,z), shading interp 7#a-u<HF"  
    %       axis square, colorbar jo@6?( *4  
    %       title('Zernike function Z_5^1(r,\theta)') l0 m-$/  
    % D|p9qe5%  
    %   Example 2: I)[DTCJ~  
    % (@VMH !3  
    %       % Display the first 10 Zernike functions +Q)XH>jh   
    %       x = -1:0.01:1; ,HV(l+k {|  
    %       [X,Y] = meshgrid(x,x); vX"*4m>b?+  
    %       [theta,r] = cart2pol(X,Y); n\'4  
    %       idx = r<=1; H;LViP2K*  
    %       z = nan(size(X)); ?4&e;83_#y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; E_wCN&`[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; xml7Uarc  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %E>Aw>] v  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]^7@}Ce_  
    %       figure('Units','normalized') s`8= 3]w  
    %       for k = 1:10 UHkMn  
    %           z(idx) = y(:,k); q!7ANib6O  
    %           subplot(4,7,Nplot(k)) Y =I'czg  
    %           pcolor(x,x,z), shading interp OLGE!&!>  
    %           set(gca,'XTick',[],'YTick',[]) i$#;Kpb`^  
    %           axis square Pn1^NUMZJ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _8J.fT$${  
    %       end ((;!<5-`s  
    % -f^tE,-  
    %   See also ZERNPOL, ZERNFUN2. q`7PhA  
    &`r-.&Y  
    %   Paul Fricker 11/13/2006 9:|{6_Y  
    & h)yro  
     8q!]y6  
    % Check and prepare the inputs: lgy <?LI\  
    % ----------------------------- u4?L 67x  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _6hQ %hv8  
        error('zernfun:NMvectors','N and M must be vectors.') 1n8/r}q'H  
    end .! 3|&V'<  
     4e7-0}0  
    if length(n)~=length(m) Bm<`n;m  
        error('zernfun:NMlength','N and M must be the same length.') \?-<4Bc@  
    end JFmC\  
    lfgq=8d  
    n = n(:); gZXi]m&  
    m = m(:); 8kIksy  
    if any(mod(n-m,2)) ? :%@vM  
        error('zernfun:NMmultiplesof2', ... )2o?#8J  
              'All N and M must differ by multiples of 2 (including 0).') J]'zIOQ  
    end f'RX6$}\1X  
     |>^JRx  
    if any(m>n) | YWD8 +  
        error('zernfun:MlessthanN', ... Ic<2QknmP  
              'Each M must be less than or equal to its corresponding N.') Dx?,=~W9  
    end n( yn<  
    a58H9w"u)  
    if any( r>1 | r<0 ) 2l'6.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') vh%B[brUJ  
    end WpP}stam/  
    oZgjQM$YP  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H%td hu\e  
        error('zernfun:RTHvector','R and THETA must be vectors.') F/{!tx  
    end ="H`V V_  
    C{rcs'  
    r = r(:); 0#hlsfc]\  
    theta = theta(:); !f [_+CD  
    length_r = length(r); q?yVR3]M  
    if length_r~=length(theta) 8TKnL\aar  
        error('zernfun:RTHlength', ... >+1duAC  
              'The number of R- and THETA-values must be equal.') U7F!Z( 9  
    end tcI*a>  
    !e<^? r4  
    % Check normalization: 0s[Hkhls  
    % -------------------- !Ai@$tl[S  
    if nargin==5 && ischar(nflag) 2%m BK  
        isnorm = strcmpi(nflag,'norm'); 2/^3WY1U  
        if ~isnorm $s:aW^k  
            error('zernfun:normalization','Unrecognized normalization flag.') wn%A4-%{  
        end U8?mc  
    else g3y~bf  
        isnorm = false; TD0 B%  
    end 9Y9GwL]T  
    n-;`Cy`k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k4J+J.|  
    % Compute the Zernike Polynomials N4!O.POP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _`T_">9r  
    a;+9mDXx:  
    % Determine the required powers of r: ;A*]l' [-  
    % ----------------------------------- a1lh-2x X  
    m_abs = abs(m); d$!RZHo10V  
    rpowers = []; 73;GW4,  
    for j = 1:length(n) W${Ue#w77  
        rpowers = [rpowers m_abs(j):2:n(j)]; Svmy(w~m  
    end 99QU3c<.  
    rpowers = unique(rpowers); U5de@Y  
    WOap+  
    % Pre-compute the values of r raised to the required powers, 8l`*]1.W<  
    % and compile them in a matrix: (\x]YMLH  
    % -----------------------------  qX{+oy5  
    if rpowers(1)==0 F]&*o w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); } q8ASYNc  
        rpowern = cat(2,rpowern{:}); nNn :-  
        rpowern = [ones(length_r,1) rpowern]; NBGH_6DROw  
    else Wne@<+mX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6i/(5 nQ  
        rpowern = cat(2,rpowern{:}); }|=|s f  
    end |CyE5i0  
    [4f{w%~^  
    % Compute the values of the polynomials:  b>ySv  
    % -------------------------------------- ^1];S^nD  
    y = zeros(length_r,length(n)); Gd85kY@w7  
    for j = 1:length(n) Q~Wqy~tS  
        s = 0:(n(j)-m_abs(j))/2; NzvXN1_%  
        pows = n(j):-2:m_abs(j);  @q) d  
        for k = length(s):-1:1 K$=zi}J W  
            p = (1-2*mod(s(k),2))* ... wibNQ`4k  
                       prod(2:(n(j)-s(k)))/              ... SmO~,2=  
                       prod(2:s(k))/                     ... =I_'.b  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3bI9Zt#J%&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;$g?T~v7  
            idx = (pows(k)==rpowers); p`qgrI`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); kAUymds;O  
        end 8quaXVj^a  
         S_H+WfIHV'  
        if isnorm [nq@mc~<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); OjA,]Gv6  
        end 5b7RY V  
    end Ny/MJ#Lq  
    % END: Compute the Zernike Polynomials z F;K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iy.\=Cs$N  
    %WS+(0*1  
    % Compute the Zernike functions: @H8EWTZ  
    % ------------------------------ I&5!=kR  
    idx_pos = m>0; JucY[`|JV  
    idx_neg = m<0; mt.))#1  
    8z\xrY  
    z = y; Aos+dP5h,8  
    if any(idx_pos) owv[M6lbD  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,V}WM%Km  
    end lyhiFkO iH  
    if any(idx_neg) WNc0W>*NE1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); a 1*p*dM#  
    end oXgcc*j  
    6Kz,{F@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) hE-M$LmN@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0{SL&<&  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \l3h0R  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 32 =z)]FZ  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9N3eN  
    %   and THETA is a vector of angles.  R and THETA must have the same _SkLYL!=9  
    %   length.  The output Z is a matrix with one column for every P-value, kG*~ |ma  
    %   and one row for every (R,THETA) pair. +"@ .8m  
    % RG`1en  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike v &+R^iLE  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) bZV/l4TU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) !|>"o7  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ? =+WRjF  
    %   for all p. B>.qd  
    % T[j,UkgGo  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 dgePPhj  
    %   Zernike functions (order N<=7).  In some disciplines it is ?bu>r=oIO]  
    %   traditional to label the first 36 functions using a single mode [0 e_*  
    %   number P instead of separate numbers for the order N and azimuthal {l >hMxij  
    %   frequency M. >o,TZc\  
    % GPkpXVm  
    %   Example: cN9t{.m  
    % %~S&AE-  
    %       % Display the first 16 Zernike functions ReeH@.74  
    %       x = -1:0.01:1; ~PNub E  
    %       [X,Y] = meshgrid(x,x); ;A!BVq  
    %       [theta,r] = cart2pol(X,Y); @s^-.z  
    %       idx = r<=1; |zE'd!7E  
    %       p = 0:15; >&k-'`Nw  
    %       z = nan(size(X)); pD]OT-8  
    %       y = zernfun2(p,r(idx),theta(idx)); -Y;3I00(  
    %       figure('Units','normalized') Xn\jO>[Ef  
    %       for k = 1:length(p) G*v,GR  
    %           z(idx) = y(:,k); jF*j0PkNdb  
    %           subplot(4,4,k) lb1Xsgm{  
    %           pcolor(x,x,z), shading interp 1ZRT:N<-  
    %           set(gca,'XTick',[],'YTick',[]) dC4'{ n|7  
    %           axis square Ecx<OTo  
    %           title(['Z_{' num2str(p(k)) '}']) >-{Hyx  
    %       end >@AB<$ A  
    % B?o7e<l[  
    %   See also ZERNPOL, ZERNFUN. q"_QQ~  
    61 ~upQaR  
    %   Paul Fricker 11/13/2006 wH6aAV~1  
    jlg(drTo  
    $u6 3]rypm  
    % Check and prepare the inputs: !5?<% *  
    % ----------------------------- ^/=KK:n~  
    if min(size(p))~=1 6\S~P/PkE  
        error('zernfun2:Pvector','Input P must be vector.') &YeA:i?  
    end W+1^4::+  
    *4_Bd=5(U  
    if any(p)>35 /|#fejPh  
        error('zernfun2:P36', ... D7qOZlX16  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :p6M=  
               '(P = 0 to 35).']) G9vpt M  
    end IdxzE_@  
    o,3a4nH;  
    % Get the order and frequency corresonding to the function number: !$>R j  
    % ---------------------------------------------------------------- ji,kkipY?w  
    p = p(:); bK-N:8Z  
    n = ceil((-3+sqrt(9+8*p))/2); i(+p0:< 0  
    m = 2*p - n.*(n+2); _t}WsEQ+P  
    gbagi+8s`%  
    % Pass the inputs to the function ZERNFUN: Jqi%|,/]N  
    % ---------------------------------------- [;sRV<  
    switch nargin t<?,F  
        case 3 @!d{bQd,  
            z = zernfun(n,m,r,theta); eGbG w  
        case 4 S`m]f5u|  
            z = zernfun(n,m,r,theta,nflag); XHGFf_kW_N  
        otherwise R_S.tT!  
            error('zernfun2:nargin','Incorrect number of inputs.') w^0nqh  
    end ib791  
    zs#@jv$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 1D!<'`)AY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. =[jXe  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }|5Pr(I  
    %   order N and frequency M, evaluated at R.  N is a vector of J`1rJ  
    %   positive integers (including 0), and M is a vector with the D*|Bb?  
    %   same number of elements as N.  Each element k of M must be a x.R4% Z  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ~gRf:VXX=_  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is mBON$sF|  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix R]*K:~DM  
    %   with one column for every (N,M) pair, and one row for every OY@ %p}l  
    %   element in R. `%WU8Yv  
    % R<N ]B  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- }txX; "/  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is }U5yQ%N  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to W#3Q ^Z?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 gCY';\f!  
    %   for all [n,m]. C8i^P}y  
    % ]~hk6kS8Q  
    %   The radial Zernike polynomials are the radial portion of the I`4*+a'q&  
    %   Zernike functions, which are an orthogonal basis on the unit cDH^\-z  
    %   circle.  The series representation of the radial Zernike s.NGA.]$  
    %   polynomials is a-L;*  
    % G+|` 2an  
    %          (n-m)/2 hTi$.y!k  
    %            __ K:30_l<  
    %    m      \       s                                          n-2s e.V:)7Uc  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r q.`NtsW!\+  
    %    n      s=0  l"]}Ts#  
    % vn"{I&L+w0  
    %   The following table shows the first 12 polynomials. WbqWG^W  
    % d)f :)Ew  
    %       n    m    Zernike polynomial    Normalization hSyql  
    %       --------------------------------------------- P1' al  
    %       0    0    1                        sqrt(2) pr UM-u8  
    %       1    1    r                           2 y>e.~5;  
    %       2    0    2*r^2 - 1                sqrt(6) scLll,~  
    %       2    2    r^2                      sqrt(6) 3HY9\'t6  
    %       3    1    3*r^3 - 2*r              sqrt(8) HEc+;O1<  
    %       3    3    r^3                      sqrt(8) s( q_ o  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) t"/q]G5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) qR+!l(  
    %       4    4    r^4                      sqrt(10) >]5P 3\AQV  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) * *G9H  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ><HE;cVg?  
    %       5    5    r^5                      sqrt(12) AoL2@C.C%D  
    %       --------------------------------------------- +@iA;2&  
    % j Dv{/ )  
    %   Example: ?]Xpi3k  
    % naznayy  
    %       % Display three example Zernike radial polynomials ]G< Vg5  
    %       r = 0:0.01:1; G<rHkt@[  
    %       n = [3 2 5]; WKa~[j|-K  
    %       m = [1 2 1]; ly3\e_z:G  
    %       z = zernpol(n,m,r); |3yL&"  
    %       figure m:o<XK[>  
    %       plot(r,z) (|1A?@sJ#h  
    %       grid on mmRJ9OhS  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') V~;1IQd{  
    % 7X'u6$i  
    %   See also ZERNFUN, ZERNFUN2. i|*)I:SHU  
    Qtv&ijFC  
    % A note on the algorithm. `W/>XZl+t  
    % ------------------------ @eIJ]p  
    % The radial Zernike polynomials are computed using the series qfRH5)k  
    % representation shown in the Help section above. For many special d;9FB[MmOJ  
    % functions, direct evaluation using the series representation can RcU}}V  
    % produce poor numerical results (floating point errors), because (7=!+'T"  
    % the summation often involves computing small differences between =uYYsC\T  
    % large successive terms in the series. (In such cases, the functions s 3f-7f<  
    % are often evaluated using alternative methods such as recurrence /?F/9hL  
    % relations: see the Legendre functions, for example). For the Zernike vbe|hO""  
    % polynomials, however, this problem does not arise, because the /F'sb[  
    % polynomials are evaluated over the finite domain r = (0,1), and .j<]mUY  
    % because the coefficients for a given polynomial are generally all HqD^B[ jS  
    % of similar magnitude. ZO$m["|  
    % @x'"~"%7b  
    % ZERNPOL has been written using a vectorized implementation: multiple b:]V`uF?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] V"G*N<q  
    % values can be passed as inputs) for a vector of points R.  To achieve !1{e|p 7  
    % this vectorization most efficiently, the algorithm in ZERNPOL Y U5(g^<  
    % involves pre-determining all the powers p of R that are required to E3gh?6  
    % compute the outputs, and then compiling the {R^p} into a single ]B3=lc"  
    % matrix.  This avoids any redundant computation of the R^p, and [dIXR  
    % minimizes the sizes of certain intermediate variables. X1-'COQS%&  
    % -^h' >.  
    %   Paul Fricker 11/13/2006 H0`]V6+<f  
    k" PayyAC  
    O5kz5b> Z  
    % Check and prepare the inputs: ZE=Sp=@)j  
    % ----------------------------- v)t:|Q{I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RA'M8:$  
        error('zernpol:NMvectors','N and M must be vectors.') Q&=w_Wc  
    end _zn.K&I-*k  
    Xi,CV[L\  
    if length(n)~=length(m) D"rK(  
        error('zernpol:NMlength','N and M must be the same length.') >\=3:gb:  
    end ?+W 9az]+  
    QoIT*!  
    n = n(:); 6GSI"M6s  
    m = m(:); mmEYup(l0;  
    length_n = length(n); 7k9G(i[-+  
    p#?7 w  
    if any(mod(n-m,2)) v}O30wE  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') kJzoFFWo$  
    end T;y>>_,  
    -$jEfi4I  
    if any(m<0) dDGgvi|[Mz  
        error('zernpol:Mpositive','All M must be positive.') vAh6+K.e  
    end B!_mC<*4`X  
    -vR5BMy=  
    if any(m>n) > BY&,4r  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') b8"?VS5-"  
    end }v*G_}^  
    uU <=d  
    if any( r>1 | r<0 ) Yu[ t\/  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') MVTMwwO\[  
    end X>(TrdK_9"  
    Dhw(#{N  
    if ~any(size(r)==1) m)v"3ib  
        error('zernpol:Rvector','R must be a vector.') 1V4s<m>#  
    end "UGY2skf;  
    ICs\ z  
    r = r(:); =2zJ3&9  
    length_r = length(r); I^UC&5dC  
    (-xS?8x$  
    if nargin==4 57zSu3v4Y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); v~V5`%  
        if ~isnorm -pa )K"z  
            error('zernpol:normalization','Unrecognized normalization flag.') + SFVv_n  
        end {fF3/tL  
    else FsV'Cu@!U  
        isnorm = false; c5l.B#-lY  
    end VsgE!/>1  
    ^xHTWg%9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u7\J\r4,+  
    % Compute the Zernike Polynomials +!z{5:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GCX G/k?w:  
    *4xat:@{{  
    % Determine the required powers of r: TRQF^P3o  
    % ----------------------------------- i;jw\ed  
    rpowers = []; ;04Ldb1{|3  
    for j = 1:length(n) KgOqbSJ  
        rpowers = [rpowers m(j):2:n(j)]; g[I b,la_a  
    end *x])Y~oQ  
    rpowers = unique(rpowers); NufLzg{  
    %K` % *D  
    % Pre-compute the values of r raised to the required powers, LbG_z =A  
    % and compile them in a matrix: Q/I! }C4  
    % ----------------------------- ? glSC$b  
    if rpowers(1)==0 \"^w'ng  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wX[8A/JPD  
        rpowern = cat(2,rpowern{:}); HA`@7I  
        rpowern = [ones(length_r,1) rpowern]; U,gti,IX^  
    else x2z;6)  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "D'B3; uWK  
        rpowern = cat(2,rpowern{:}); W4e5Rb4~f"  
    end 2 :mn</z  
    te !S09(  
    % Compute the values of the polynomials: I1\a[Xe8E  
    % -------------------------------------- !{ )tSipd  
    z = zeros(length_r,length_n); 8J~1-;  
    for j = 1:length_n Bj}^\Pc;}  
        s = 0:(n(j)-m(j))/2; }_;!hdY q  
        pows = n(j):-2:m(j); 1Q4}'0U4  
        for k = length(s):-1:1 t{FlB!jv  
            p = (1-2*mod(s(k),2))* ... (v|} \?L  
                       prod(2:(n(j)-s(k)))/          ... N:tY":Hi  
                       prod(2:s(k))/                 ... wUQw!%?>  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ?a8(a zn  
                       prod(2:((n(j)+m(j))/2-s(k))); m-DsY  
            idx = (pows(k)==rpowers); K+8-9$w6  
            z(:,j) = z(:,j) + p*rpowern(:,idx); .YnFH$;$  
        end Z]WnG'3N  
         \eb|eN0i  
        if isnorm MpqZH{:?G  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); iMFgmM|  
        end EV^~eTz  
    end Nl9I*x^e  
    )+"'oY$]}  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    854
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  *NSlo^R-[  
    rp :wQ H7  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 AzpV4(:an.  
    Y"e EkT\  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)