切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11552阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 l0r^LK$  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! KBDNK_7A  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 M1eM^m8U  
    function z = zernfun(n,m,r,theta,nflag) R=C+]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. POQ4&ChA  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G)gPL]C0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #TIlM]5%  
    %   unit circle.  N is a vector of positive integers (including 0), and dF^`6-K1  
    %   M is a vector with the same number of elements as N.  Each element *>T@3G.{Rm  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) o;v_vCLO  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2 U3WH.o  
    %   and THETA is a vector of angles.  R and THETA must have the same #;\tgUQ  
    %   length.  The output Z is a matrix with one column for every (N,M) SpM Hq_MLM  
    %   pair, and one row for every (R,THETA) pair. 0BN=>]V~j7  
    % -e.ygiK.`S  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,[u.5vC  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &ZJ$V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ]eI|_O^u  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Gdr7d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8ZNwo  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Qv@)WJ="-0  
    % [?n}?0  
    %   The Zernike functions are an orthogonal basis on the unit circle. fK4NmdTV  
    %   They are used in disciplines such as astronomy, optics, and J6J; !~>_  
    %   optometry to describe functions on a circular domain. 1ifPc5j}  
    % |Gt]V`4  
    %   The following table lists the first 15 Zernike functions. }^PdW3O*m,  
    % %`j2?rn  
    %       n    m    Zernike function           Normalization (y?`|=G-xT  
    %       -------------------------------------------------- vl5r~F  
    %       0    0    1                                 1 8cbgP$X  
    %       1    1    r * cos(theta)                    2 41o ~5:&  
    %       1   -1    r * sin(theta)                    2 lsOZ%p%fV  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) b$}@0  
    %       2    0    (2*r^2 - 1)                    sqrt(3) -l$-\(,M`#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #+;0=6+SM  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) #.<(/D+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ig?Tj4kD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1y.!x~Pi,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (C hL$!x  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) =mh)b]].4\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k^\>=JTq=  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) v H vwH  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bdr !|WZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8yCQWDE}  
    %       -------------------------------------------------- Zc*gRC  
    % {pEbi)CF,}  
    %   Example 1: oBzjEv  
    % E#,n.U>#)  
    %       % Display the Zernike function Z(n=5,m=1) zbP#y~[  
    %       x = -1:0.01:1; !S[7IBk%  
    %       [X,Y] = meshgrid(x,x); d=:&tOCg2  
    %       [theta,r] = cart2pol(X,Y); G8F43!<  
    %       idx = r<=1; )-d &XN7  
    %       z = nan(size(X)); N2`u ]*"0  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); M2y"M,k4  
    %       figure }P"JP[#E\  
    %       pcolor(x,x,z), shading interp -W XZOdUjs  
    %       axis square, colorbar AME6Zu3Y  
    %       title('Zernike function Z_5^1(r,\theta)') ;Z}V}B  
    % _z \PVTT  
    %   Example 2: oF#]<Z\  
    % 6IC/~Woghx  
    %       % Display the first 10 Zernike functions Ov9kD0S  
    %       x = -1:0.01:1; &B>YiA  
    %       [X,Y] = meshgrid(x,x); Q2ky|  
    %       [theta,r] = cart2pol(X,Y); |%-:qk4rG  
    %       idx = r<=1; s~Od(,K  
    %       z = nan(size(X)); 6"U)d7^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [)83X\CO  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; X8=s k  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7= x]p  
    %       y = zernfun(n,m,r(idx),theta(idx)); EcW$'>^  
    %       figure('Units','normalized') zq&,KZ  
    %       for k = 1:10 ~85Pgb<  
    %           z(idx) = y(:,k); p*Hbc|?{Q&  
    %           subplot(4,7,Nplot(k)) Z CS{D  
    %           pcolor(x,x,z), shading interp p;m2RHYF  
    %           set(gca,'XTick',[],'YTick',[]) x?MSHOia`P  
    %           axis square ckPI^0A!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _<1uO=km6  
    %       end . ;q 4<_  
    % 0`dMT>&I  
    %   See also ZERNPOL, ZERNFUN2. B?)=d,E  
    GwaU7[6  
    %   Paul Fricker 11/13/2006 F,-S&d  
    ghd*EXrF H  
    &r Lg/UEV-  
    % Check and prepare the inputs: |KxFi H  
    % ----------------------------- B!cg)Y?.bd  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uM<6][^`  
        error('zernfun:NMvectors','N and M must be vectors.') -O-qEQd  
    end X#*|_(^  
    Q1?G7g]N  
    if length(n)~=length(m) .OC{,f+  
        error('zernfun:NMlength','N and M must be the same length.') #]!0$z|Z  
    end &18CCp\3)c  
    XABI2Ex  
    n = n(:); -6KGQc}U  
    m = m(:); @fWmz,Ngl  
    if any(mod(n-m,2)) dT9!gNvQ  
        error('zernfun:NMmultiplesof2', ... ?E?dg#yk  
              'All N and M must differ by multiples of 2 (including 0).') Qpc+1{BQ  
    end G.} 3hd0  
    U{2UKD@PM  
    if any(m>n) -S7rOq2Li  
        error('zernfun:MlessthanN', ... zi*2>5g  
              'Each M must be less than or equal to its corresponding N.') e)~7pXYV)  
    end t<6`?\Gk  
    [fU2$(mT+  
    if any( r>1 | r<0 ) RqIic\aD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') yjbqby7  
    end \HB4ikl  
    |*im$[g=-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^p0BeSRiy;  
        error('zernfun:RTHvector','R and THETA must be vectors.') / ` 7p'i  
    end TB gD"i-  
    Et=N`k _gO  
    r = r(:); +Zx+DW cq  
    theta = theta(:); 0vs9# <&V  
    length_r = length(r); ]&3UF?  
    if length_r~=length(theta) J['paHSF  
        error('zernfun:RTHlength', ... r2T-=XWB  
              'The number of R- and THETA-values must be equal.')  >y&4gm  
    end i`^`^Ka  
    !S[8w9q  
    % Check normalization: %/:{x()G  
    % -------------------- J@y1L]:  
    if nargin==5 && ischar(nflag) T6|zT}cb  
        isnorm = strcmpi(nflag,'norm'); !TRJsL8  
        if ~isnorm Uu9\;f  
            error('zernfun:normalization','Unrecognized normalization flag.') V=}b>Jo2j  
        end ^3Ni  
    else PF-7AIxs"  
        isnorm = false; /! kKL$j  
    end fmvX;0O  
    pC2r{-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &WIiw$@  
    % Compute the Zernike Polynomials Z~t OR{q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ldo7}<s  
    5uK:f\y)l  
    % Determine the required powers of r: )g:\N8AZK  
    % ----------------------------------- n\}!'>d'  
    m_abs = abs(m); |\ j'Z0  
    rpowers = []; SLL%XF~/Sb  
    for j = 1:length(n) H'E >QT  
        rpowers = [rpowers m_abs(j):2:n(j)]; CUT D]:\  
    end a[:0<Ek  
    rpowers = unique(rpowers); Vt:]D?\3  
    LXaT_3 ;  
    % Pre-compute the values of r raised to the required powers, d_&R>GmR$  
    % and compile them in a matrix: A e&t#,)  
    % ----------------------------- E8WOXoP(  
    if rpowers(1)==0 yVm~5Y&Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s#ijpc>h  
        rpowern = cat(2,rpowern{:}); q28i9$Yqj\  
        rpowern = [ones(length_r,1) rpowern]; 0A@'w*=  
    else 3~\mP\/4v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2*-s3 >VK  
        rpowern = cat(2,rpowern{:}); /i$ mIj`  
    end ] 5lp.#EB  
    Y&aFAjj  
    % Compute the values of the polynomials: .N8AkQ(Ok  
    % -------------------------------------- "w0>  
    y = zeros(length_r,length(n)); bR@ e6.<i  
    for j = 1:length(n) `'[u%UE  
        s = 0:(n(j)-m_abs(j))/2; @^:R1c![s  
        pows = n(j):-2:m_abs(j); <J@Y=#G$2  
        for k = length(s):-1:1 [rv"tz=  
            p = (1-2*mod(s(k),2))* ... kC"<4U  
                       prod(2:(n(j)-s(k)))/              ... eOjoxnD-$  
                       prod(2:s(k))/                     ... a&~d,vC  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o`HZS|>K*  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~]DGf(   
            idx = (pows(k)==rpowers); TmG$Cjf84  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }.Ht=E]  
        end !@!,7te  
         '$W@I  
        if isnorm L5E.`^?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .oYUA}  
        end 0.C y4sH'  
    end S,m)yh.  
    % END: Compute the Zernike Polynomials (7q!Z!2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ppjd.  
    Zf |%t  
    % Compute the Zernike functions: ~`c?&YixU  
    % ------------------------------ xSZgQF~  
    idx_pos = m>0; v!T%xUb0  
    idx_neg = m<0; quHq?oXV,  
    D\]gIXg  
    z = y; `3^ *K/K\  
    if any(idx_pos) D)XF@z;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); EA9`-xs|  
    end >6Y\CixN  
    if any(idx_neg) y^tuybpZY<  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @FKNB.>  
    end %geiJ z  
    ";yCo0*  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) nIJ2*QJ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. lN#W  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ya3A^&:  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive H=[eO  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, w~hO)1c],:  
    %   and THETA is a vector of angles.  R and THETA must have the same js)M c*]&  
    %   length.  The output Z is a matrix with one column for every P-value, m07= _4  
    %   and one row for every (R,THETA) pair. `z%f@/:fG  
    % 0]=|3-n  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike wl H6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) =#dW^ ?p  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Ecp]fUQK  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 M_*"g>Z  
    %   for all p. GZ,`?  
    %  u)PB@  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 YKKZRlQo  
    %   Zernike functions (order N<=7).  In some disciplines it is 0(A`Ia  
    %   traditional to label the first 36 functions using a single mode 5xe} ljo  
    %   number P instead of separate numbers for the order N and azimuthal -/rP0h5#  
    %   frequency M. F7lhLly  
    %  P_6oMR  
    %   Example: Ya{$:90(4  
    % d\dh"/_$  
    %       % Display the first 16 Zernike functions _SdO}AiG  
    %       x = -1:0.01:1; TeaP\a  
    %       [X,Y] = meshgrid(x,x); 5H#f;L\k  
    %       [theta,r] = cart2pol(X,Y); ;"46H'>!  
    %       idx = r<=1; 2\80S[f  
    %       p = 0:15; 7{>mm$^|V  
    %       z = nan(size(X)); @ -CZa^g  
    %       y = zernfun2(p,r(idx),theta(idx)); X c~yr\%]  
    %       figure('Units','normalized') H <41H;m  
    %       for k = 1:length(p) TG 9 a1q  
    %           z(idx) = y(:,k); =vJ:R[Ilw  
    %           subplot(4,4,k) Hy=';Ccn}  
    %           pcolor(x,x,z), shading interp !m8MyZ}%  
    %           set(gca,'XTick',[],'YTick',[]) OP0KK^#  
    %           axis square 5r)ndW,aN  
    %           title(['Z_{' num2str(p(k)) '}']) I^S gWC  
    %       end tb36c<U-  
    % c-1,((p  
    %   See also ZERNPOL, ZERNFUN. 6BK-(>c(6  
    $P'Y  
    %   Paul Fricker 11/13/2006 vOIK6-   
    J=?`~?Vbo  
    :}(Aq;}X  
    % Check and prepare the inputs: R5OP=Q8  
    % ----------------------------- D! TFb E  
    if min(size(p))~=1 N?7MYP  
        error('zernfun2:Pvector','Input P must be vector.') ;PM(q<@\  
    end \Gm$hTvB&  
    sZ,xbfZby  
    if any(p)>35 mQ(6ahD U  
        error('zernfun2:P36', ... xVYy`_|  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... \cJ?2^Eq  
               '(P = 0 to 35).']) #o`y<1rN  
    end KA~eOEj M  
    pY@$N&+W  
    % Get the order and frequency corresonding to the function number: IBfLb(I  
    % ---------------------------------------------------------------- ws}cMX]*  
    p = p(:); k*XI/k5Vc  
    n = ceil((-3+sqrt(9+8*p))/2); \tR](, /  
    m = 2*p - n.*(n+2); u}_,4J  
    /`6Y-8e2  
    % Pass the inputs to the function ZERNFUN: 2S%[YR>>  
    % ---------------------------------------- >Sc)?[H  
    switch nargin b0X<)1O  
        case 3 'k^d-Mh>h  
            z = zernfun(n,m,r,theta); U'4j+vUc  
        case 4 1,Ams  
            z = zernfun(n,m,r,theta,nflag); a ]~Rp  
        otherwise >- S?rXO  
            error('zernfun2:nargin','Incorrect number of inputs.') jGm`Qg{<  
    end  SXqWq  
    P}"=67$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) gm^j8  B  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ;- 0 d2Z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of gWk?g^KJL  
    %   order N and frequency M, evaluated at R.  N is a vector of |.#G G7F^S  
    %   positive integers (including 0), and M is a vector with the 4 H<.  
    %   same number of elements as N.  Each element k of M must be a {UeS_O>(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  _BFDsQ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is mV>l`&K=  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Yamu"#  
    %   with one column for every (N,M) pair, and one row for every ~`Y!_'(x  
    %   element in R. s78MXS?py  
    % [,bra8f[C  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- @5RbMf{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is iY,Ffu E  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to hr@kU x  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 #Vy8<Vy&w  
    %   for all [n,m]. AONEUSxJ  
    % B}(r>8?dm  
    %   The radial Zernike polynomials are the radial portion of the ?td`*n~,  
    %   Zernike functions, which are an orthogonal basis on the unit 8NZQTRdH  
    %   circle.  The series representation of the radial Zernike olv0w ;s  
    %   polynomials is Cg8s9qE?  
    % :kMF.9U:  
    %          (n-m)/2 AAXlBY6Y-  
    %            __ b)+;=o%  
    %    m      \       s                                          n-2s )5[OG7/g  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r H*H~~yQ  
    %    n      s=0 \:BixBU7  
    % F$sDmk#  
    %   The following table shows the first 12 polynomials. )Fsc0_  
    % tE8aL{<R  
    %       n    m    Zernike polynomial    Normalization f&L3M)T  
    %       --------------------------------------------- sRI0;  
    %       0    0    1                        sqrt(2) 6!Q,X Hs  
    %       1    1    r                           2 JT p+&NS  
    %       2    0    2*r^2 - 1                sqrt(6) B"Ma<"HU  
    %       2    2    r^2                      sqrt(6) <GWzdj?  
    %       3    1    3*r^3 - 2*r              sqrt(8) |1pD n7  
    %       3    3    r^3                      sqrt(8) Ro@ =oyLE  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) S[;d\Z]~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) XiL[1JM  
    %       4    4    r^4                      sqrt(10) G"F)t(iX  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) p:NIRs  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) OQ&'3hv{  
    %       5    5    r^5                      sqrt(12) "h5.^5E6  
    %       --------------------------------------------- h'nXV{N0  
    % s'^sT=b  
    %   Example: 7_Op(C4,nC  
    % %a:>3! +  
    %       % Display three example Zernike radial polynomials _Rb>py  
    %       r = 0:0.01:1; 8|{d1dy  
    %       n = [3 2 5]; :V0sKg|sS  
    %       m = [1 2 1]; g)1`A 24  
    %       z = zernpol(n,m,r); N(l  
    %       figure /:d6I].  
    %       plot(r,z) /,,IM/(6^  
    %       grid on D0}r4eA  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') R $@$  
    % `]=0oDG:1!  
    %   See also ZERNFUN, ZERNFUN2. G3o`\4p  
    K|Xr~\=  
    % A note on the algorithm. OWc~=Cr  
    % ------------------------ [Y4Wm?  
    % The radial Zernike polynomials are computed using the series gW-mXb  
    % representation shown in the Help section above. For many special LP'wL6#  
    % functions, direct evaluation using the series representation can 050V-S>s  
    % produce poor numerical results (floating point errors), because ?_7iL?  
    % the summation often involves computing small differences between mndKUI}d  
    % large successive terms in the series. (In such cases, the functions $H`{wJ?2(  
    % are often evaluated using alternative methods such as recurrence N;v]ypak  
    % relations: see the Legendre functions, for example). For the Zernike {kghZur  
    % polynomials, however, this problem does not arise, because the |=:<[FU  
    % polynomials are evaluated over the finite domain r = (0,1), and w! PguP  
    % because the coefficients for a given polynomial are generally all ?IG[W+M8  
    % of similar magnitude. ,u=+%6b)A  
    % q?qH7={,eu  
    % ZERNPOL has been written using a vectorized implementation: multiple =gB8(1g8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ffMk.SqI  
    % values can be passed as inputs) for a vector of points R.  To achieve P  Ij  
    % this vectorization most efficiently, the algorithm in ZERNPOL r=/$}l4  
    % involves pre-determining all the powers p of R that are required to -zzoz x]S=  
    % compute the outputs, and then compiling the {R^p} into a single w6h*dh$w  
    % matrix.  This avoids any redundant computation of the R^p, and SZUo RWx  
    % minimizes the sizes of certain intermediate variables. ZfXgVTJ`  
    % V KxuK0{  
    %   Paul Fricker 11/13/2006 q8!]x-5$6j  
    Ae%AG@L  
    *L~?.9R  
    % Check and prepare the inputs: Tol"D2cyf  
    % ----------------------------- Q ZC\%X8j  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I+,CiJ|4  
        error('zernpol:NMvectors','N and M must be vectors.') q+} \ (|  
    end uvAJJIae'  
    P;eXUF+jn  
    if length(n)~=length(m) A&A{Thz  
        error('zernpol:NMlength','N and M must be the same length.') ~)VI` 36X  
    end pqTaN=R8  
    dZox;_b  
    n = n(:); gT(8.<h8  
    m = m(:); 1aZGt2;  
    length_n = length(n); .%!^L#g  
    pfs]pDjS:  
    if any(mod(n-m,2)) CDPu(,^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6Jq3l_  
    end ~6K.5t7  
    M?AKJE j5  
    if any(m<0) 1IlOU|4  
        error('zernpol:Mpositive','All M must be positive.') E3] 8(P%D-  
    end 7X)4ec9H\  
    =ym<yI<  
    if any(m>n) !zsrORF{  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') F B:nkUR`  
    end U^eos;:s8  
    |+KwyHE`9  
    if any( r>1 | r<0 ) '\GU(j  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $fB j}\o  
    end UZs'H"K  
    pSI8"GwQ  
    if ~any(size(r)==1) vvu $8n  
        error('zernpol:Rvector','R must be a vector.') f-634KuP  
    end Abi(1nXdQ  
    >_\[C?8  
    r = r(:); Zu<S<??Jf  
    length_r = length(r); #WJ*)$A@&  
    EqGpo_  
    if nargin==4 0yvp>{;p  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \ @[Q3.VX  
        if ~isnorm <s7cCpUFP  
            error('zernpol:normalization','Unrecognized normalization flag.') oh@Ha?  
        end !Qf*d;wxn(  
    else 6`vW4]zu  
        isnorm = false; X# /c7w-  
    end mYj)![  
    T--%UZD]W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hu1ZckIw?  
    % Compute the Zernike Polynomials x7Gf):,LK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `23][V  
    :5.F  
    % Determine the required powers of r: l^$'6q"  
    % ----------------------------------- }%-iJ\  
    rpowers = []; J3(E{w8Q  
    for j = 1:length(n) UG=]8YY!  
        rpowers = [rpowers m(j):2:n(j)]; N|Ag8/2A  
    end qE|syA9  
    rpowers = unique(rpowers); ^8A [ ^cgq  
    r/HCWs|  
    % Pre-compute the values of r raised to the required powers, `uUzBV.FR  
    % and compile them in a matrix: 3kk^hvB+f  
    % ----------------------------- "wuO[c&%/  
    if rpowers(1)==0 l^OflZC~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D,R',(3  
        rpowern = cat(2,rpowern{:}); +iFt)  
        rpowern = [ones(length_r,1) rpowern]; 9(nq 4 HvI  
    else &oq 0XV.M^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @K+gh#  
        rpowern = cat(2,rpowern{:}); T1*.3_wtP  
    end wwywiFj  
    zA8@'`Id  
    % Compute the values of the polynomials: -B9e&J {K  
    % -------------------------------------- K5|~iW'  
    z = zeros(length_r,length_n); fU?#^Lg  
    for j = 1:length_n 1+WVh7gF  
        s = 0:(n(j)-m(j))/2; jU7[z$GX  
        pows = n(j):-2:m(j); l_yF;5|?z  
        for k = length(s):-1:1 )dqNN tS  
            p = (1-2*mod(s(k),2))* ... (3lA0e`Y  
                       prod(2:(n(j)-s(k)))/          ... ]wdE :k,D  
                       prod(2:s(k))/                 ... ,ofE*Wt  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... <R;wa@a>  
                       prod(2:((n(j)+m(j))/2-s(k))); } `r.fD  
            idx = (pows(k)==rpowers); 5h`LWA B  
            z(:,j) = z(:,j) + p*rpowern(:,idx); @+H0D"  
        end k&%i+5X  
         9Dgs A`{$  
        if isnorm ~/9RSdv7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); `=P_ed%&'  
        end oKCy,Ot<  
    end r A(A$VR  
    lTP#6zqfv  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  OJa(Gds  
    jdJTOT  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 s,#We} bv  
    vO2WZ7E!  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)