非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ZgO7W]Z4
function z = zernfun(n,m,r,theta,nflag) wL 5p0Xl
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ilv6A9/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Kb%j;y
% and angular frequency M, evaluated at positions (R,THETA) on the !F{ 5"$
% unit circle. N is a vector of positive integers (including 0), and fTM^:vkO
% M is a vector with the same number of elements as N. Each element tq9t(0EL
% k of M must be a positive integer, with possible values M(k) = -N(k) BY:
cSqAW
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
ZMJ\C|S:
% and THETA is a vector of angles. R and THETA must have the same vO" $Xw
% length. The output Z is a matrix with one column for every (N,M) F0Xv84:O
% pair, and one row for every (R,THETA) pair. d87pQ3e:&
% <wTkPErUG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <PkDfMx2
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), FK!9to>
% with delta(m,0) the Kronecker delta, is chosen so that the integral Ai iOs?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EAFKf*K=
% and theta=0 to theta=2*pi) is unity. For the non-normalized 57+^T}/>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. KM(U-<<R
% C<A82u;t%@
% The Zernike functions are an orthogonal basis on the unit circle. <u44YvLBm
% They are used in disciplines such as astronomy, optics, and D00rO4~6D%
% optometry to describe functions on a circular domain. o
<LA2q`T
% yoV"?W>!
% The following table lists the first 15 Zernike functions. 9!V<=0b/
% J8a4.prqI
% n m Zernike function Normalization 0t7yK
% -------------------------------------------------- ;BoeE3*
6
% 0 0 1 1 y)U8\
% 1 1 r * cos(theta) 2 R4}G@&Q
% 1 -1 r * sin(theta) 2 =}7wpTc,
% 2 -2 r^2 * cos(2*theta) sqrt(6) ik~hL/JD\
% 2 0 (2*r^2 - 1) sqrt(3) h bj^!0m
% 2 2 r^2 * sin(2*theta) sqrt(6) #.}Su+XF
% 3 -3 r^3 * cos(3*theta) sqrt(8) l;Zc[6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8%7H
F:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ^f!d8
V
% 3 3 r^3 * sin(3*theta) sqrt(8) J#@" Yb
% 4 -4 r^4 * cos(4*theta) sqrt(10) [sz#*IJ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D'O[0?N"g
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) C bG"8F|4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \{?v|%n=/i
% 4 4 r^4 * sin(4*theta) sqrt(10) 0e8)*2S
% -------------------------------------------------- x#dJH9NR[
% *GuCv3|
% Example 1: vWfC!k-)b
% 2~h)'n7Mw
% % Display the Zernike function Z(n=5,m=1) "_'9KBd!
% x = -1:0.01:1; xKsn);].`
% [X,Y] = meshgrid(x,x); \ox:/-[c\<
% [theta,r] = cart2pol(X,Y); uK(+WA
% idx = r<=1; 3{CGYd]_u
% z = nan(size(X)); wrsETB
c
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1[3"|
% figure WF-imI:EK
% pcolor(x,x,z), shading interp hPFIf>%}
% axis square, colorbar M~N'z/
% title('Zernike function Z_5^1(r,\theta)') lu-VBVwR
% r(vk2Qy
% Example 2: :Np&G4IM>
% ~n"V0!:'4
% % Display the first 10 Zernike functions ?WUE+(oH>
% x = -1:0.01:1; tGmyTBgx
% [X,Y] = meshgrid(x,x); J+DuQ;k;
% [theta,r] = cart2pol(X,Y); zCvR/
% idx = r<=1; m}Tu^dy
% z = nan(size(X)); %I Y-0\
% n = [0 1 1 2 2 2 3 3 3 3]; ,{z$M
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l`$f@'k
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %q>gwq
A
% y = zernfun(n,m,r(idx),theta(idx)); d2X#_(+d
% figure('Units','normalized') ,b{G(sF
% for k = 1:10 F>*w)6 4~
% z(idx) = y(:,k); (:T~*7/"
% subplot(4,7,Nplot(k)) o]Vx6
% pcolor(x,x,z), shading interp , PN?_N
% set(gca,'XTick',[],'YTick',[]) mg >oB/,'Z
% axis square s?%1/&.~
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l@#X]3h!
% end SKRD{MRsux
% @Gn9x(?J
% See also ZERNPOL, ZERNFUN2. I[t)V*L9
8a?V h^
% Paul Fricker 11/13/2006 H`@x5RjS
(Z `Y
gn(n</\/O
% Check and prepare the inputs: >!WJ{M0
% ----------------------------- k,v.U8
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X#eVw|
error('zernfun:NMvectors','N and M must be vectors.') yY_]YeeR
end QT%&vq
$ /wr?
if length(n)~=length(m) dwx1EdJ{
error('zernfun:NMlength','N and M must be the same length.') 3U:0 ,-j"
end R!$j_H
NpRC3^
n = n(:); 3*arW|Xm
m = m(:); U}Hmzb
if any(mod(n-m,2)) Q_uv.\*z_
error('zernfun:NMmultiplesof2', ... 89 (k<m
'All N and M must differ by multiples of 2 (including 0).') Vl9\&EL
end ^uZ%d
Uc9Uj
if any(m>n) iwmXgsRa9}
error('zernfun:MlessthanN', ... \-sDRW
'Each M must be less than or equal to its corresponding N.') qvk?5#B
end q(uu;l[
4L5Wa~5\
if any( r>1 | r<0 ) ![Jxh,f
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Uw)K[T
end n!tC z<v
lXz<jt@5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R`$Odplh>
error('zernfun:RTHvector','R and THETA must be vectors.') )O7 Mfr
end MCYrsgg}
$fh?(J
r = r(:); N$=<6eQm
theta = theta(:); C2`END;
length_r = length(r); p(x[zn+%Y
if length_r~=length(theta) pCg0xbc`
error('zernfun:RTHlength', ... E|^a7-}|
'The number of R- and THETA-values must be equal.') e94csTh=
end Y+G4:
2+?M(=4
% Check normalization: 8H{@0_M
% -------------------- LTa9'
q0
if nargin==5 && ischar(nflag) v.Q)Obyn
isnorm = strcmpi(nflag,'norm'); ^rxXAc[
if ~isnorm 6SidH_&C
error('zernfun:normalization','Unrecognized normalization flag.') @7BH`b$)!
end @P@t/
else K, 35*
isnorm = false; ("9)=x *5
end )T2Sw z/
N:&Gv'`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H ($=k-+5
% Compute the Zernike Polynomials n$~RgCf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?. ~@ lE
^,`yt^^A
% Determine the required powers of r: 8taaBM`:
% ----------------------------------- Mv;7kC7]
m_abs = abs(m); pWQ?pTh
rpowers = []; 5B@&]-'~
for j = 1:length(n) duwZe+
rpowers = [rpowers m_abs(j):2:n(j)]; A>'o5+
end ixU1v~T
rpowers = unique(rpowers); jNB-FVaT
Xt$?Kx_,
% Pre-compute the values of r raised to the required powers, HF0J>Clq
% and compile them in a matrix: UHxXa*HyI
% ----------------------------- 2p'qp/
if rpowers(1)==0 /h
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jI y'mGaG
rpowern = cat(2,rpowern{:}); W}T$ Z
rpowern = [ones(length_r,1) rpowern]; #&$4tTl
else *VL-b8'A<
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7j@TW%FmV\
rpowern = cat(2,rpowern{:}); Qy9#(596
end X}S<MA`
|~uCLf>
% Compute the values of the polynomials: G`TO[p]q
% -------------------------------------- [Si`pPvl
y = zeros(length_r,length(n)); )C <sj
for j = 1:length(n) EpPKo
s = 0:(n(j)-m_abs(j))/2; [dUW3}APV
pows = n(j):-2:m_abs(j); kkh#VGh"
for k = length(s):-1:1 FVHEb\Z
p = (1-2*mod(s(k),2))* ... )2:d8J\
prod(2:(n(j)-s(k)))/ ... /J5wwQ
(:
prod(2:s(k))/ ... HhIa=,VY
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g9
g
&]
prod(2:((n(j)+m_abs(j))/2-s(k))); `@eQL[Z9x
idx = (pows(k)==rpowers); mGoUF$9 k
y(:,j) = y(:,j) + p*rpowern(:,idx); iao_w'tJ
end NO;+:0n
x.}iSE{
if isnorm DQwbr\xy\
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >a]{q^0
end <sn^>5Ds
end 6J-tcL*4"%
% END: Compute the Zernike Polynomials !WAbO(l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o_jVtEP
91[(K'=&
% Compute the Zernike functions: _AK-AY
% ------------------------------ j].XVn,
idx_pos = m>0; &Q 3!ty
idx_neg = m<0; na>UFw7>*
!~PV\DQN
z = y; [&"`2n
if any(idx_pos) lP0'Zg(
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); dd_n|x1
end FzW7MW>\x
if any(idx_neg) bm`x
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); a$"3T
end ,D;d#fJ
@2Z{en?
% EOF zernfun