非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !Ur.b
@ke
function z = zernfun(n,m,r,theta,nflag) 5c(g7N
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. TwVkI<e0s?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }{j@q~w>$
% and angular frequency M, evaluated at positions (R,THETA) on the <[-{:dH,5
% unit circle. N is a vector of positive integers (including 0), and KdYR?rY
% M is a vector with the same number of elements as N. Each element oXqJypR 2
% k of M must be a positive integer, with possible values M(k) = -N(k) SZLugyZ2Y
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1gcWw, /
% and THETA is a vector of angles. R and THETA must have the same _-TW-{7bh
% length. The output Z is a matrix with one column for every (N,M) maY.Z<lN
% pair, and one row for every (R,THETA) pair. =nc;~u|]
% @ext6cFe3<
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qyFeq])
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), AXte&l=M
% with delta(m,0) the Kronecker delta, is chosen so that the integral _&U#*g
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MffCk!]
% and theta=0 to theta=2*pi) is unity. For the non-normalized reArXmU<u
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9}a$0H
h
% iAk.pH]a
% The Zernike functions are an orthogonal basis on the unit circle. l0URJRK{*
% They are used in disciplines such as astronomy, optics, and "S6";G^I
% optometry to describe functions on a circular domain. : _:)S
% >5Lp;
% The following table lists the first 15 Zernike functions. zv0sz])
% zh0T3U0D
% n m Zernike function Normalization =M4:nt
% -------------------------------------------------- (ER9.k2
% 0 0 1 1 =)c-Xz
% 1 1 r * cos(theta) 2 ti6X=@ P:
% 1 -1 r * sin(theta) 2 [>pBz3fn,
% 2 -2 r^2 * cos(2*theta) sqrt(6) mDZA\P_
% 2 0 (2*r^2 - 1) sqrt(3) hY%} x5ntU
% 2 2 r^2 * sin(2*theta) sqrt(6) >`a^E1)
% 3 -3 r^3 * cos(3*theta) sqrt(8) G~bDl:k`A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) iu*&Jz)D>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) H25Qx;(dTk
% 3 3 r^3 * sin(3*theta) sqrt(8) 3(|,:"9g
% 4 -4 r^4 * cos(4*theta) sqrt(10) U{Oo@ztT
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /5"T46jD
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) wd<{%qK`{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [kqtkgK$j2
% 4 4 r^4 * sin(4*theta) sqrt(10) ~Js kA5h|&
% -------------------------------------------------- &fWC-|
% RPf <-J:t
% Example 1: Y@#N_]oXj
% nh5=0{va|L
% % Display the Zernike function Z(n=5,m=1) 1W\wIj.
% x = -1:0.01:1; na8`V`77
% [X,Y] = meshgrid(x,x); tJ6Q7
J;n
% [theta,r] = cart2pol(X,Y); -P|claO0
% idx = r<=1; 8q{|nH
% z = nan(size(X)); %`T}%B
% z(idx) = zernfun(5,1,r(idx),theta(idx)); IvkYM`%
% figure GiM-8y~
% pcolor(x,x,z), shading interp M&29J
% axis square, colorbar ];6955I!
% title('Zernike function Z_5^1(r,\theta)') czu9a"M>X
% SJh~4R\
% Example 2: _6,\;"it?8
% NQ[X=a8N
% % Display the first 10 Zernike functions sF[gjeIb
% x = -1:0.01:1; {'h&[f>zcQ
% [X,Y] = meshgrid(x,x); >K4Nn(~ys
% [theta,r] = cart2pol(X,Y); `o }+2Cb
% idx = r<=1; .*9u_2<
% z = nan(size(X)); [:gg3Qzx
% n = [0 1 1 2 2 2 3 3 3 3]; lOeX5%$Z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; [?9 `x-Q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; )$i,e`T
% y = zernfun(n,m,r(idx),theta(idx)); r"{jrBK$
% figure('Units','normalized') ]>Z9K@
% for k = 1:10 uI?Z_
% z(idx) = y(:,k); f R@Cg
sw
% subplot(4,7,Nplot(k)) =fnBE`Uc
% pcolor(x,x,z), shading interp 9DM,,h<`
% set(gca,'XTick',[],'YTick',[]) 9{Et v w
% axis square FNF `Z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) S#8)N`
% end Jh&DL8`
% &ck}3\sQ
% See also ZERNPOL, ZERNFUN2. i \/'w]
=JfwHFHd#
% Paul Fricker 11/13/2006 h0k?(O
V?G%-+^
T"za|Fo
% Check and prepare the inputs: V-go?b`
% ----------------------------- |X A0F\
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R59iuHQ[
error('zernfun:NMvectors','N and M must be vectors.') K`9~#Zx$
end |k*bWuXgLs
)}N:t:rry
if length(n)~=length(m) G93V=Bk=
error('zernfun:NMlength','N and M must be the same length.') 0wVM%Dng
end d;gs1]E50
@M<qz\
[
n = n(:); DMch88W
m = m(:); FA{Q6fi:2
if any(mod(n-m,2)) \WC,iA%Y
error('zernfun:NMmultiplesof2', ... S g1[p#U
'All N and M must differ by multiples of 2 (including 0).') .4"BN<9
end IaSPwsvt'
:fL7"\
pf~
if any(m>n) \C>IVz<O
error('zernfun:MlessthanN', ... Yu)GV7\2
'Each M must be less than or equal to its corresponding N.') M_%KhK
end d@{12hq
KyVzf(^
if any( r>1 | r<0 ) `Rt w'Uz
error('zernfun:Rlessthan1','All R must be between 0 and 1.') %RtL4"M2j
end ."BXA8c;A
srN7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) [efU)O&
error('zernfun:RTHvector','R and THETA must be vectors.') ~ <K,P
end LFi* O&
U7n#TPet
r = r(:); q\i&ERr
theta = theta(:); 7"aN7Q+EbI
length_r = length(r); g7hI9(8+
if length_r~=length(theta) ,|VLOY^
error('zernfun:RTHlength', ... :^{KY(3
'The number of R- and THETA-values must be equal.') 0H4|}+e
end #V/{DPz
viYrPhH+z
% Check normalization: $#5'c+0
% -------------------- S{e3aqT#N
if nargin==5 && ischar(nflag) wt9f2
isnorm = strcmpi(nflag,'norm'); M"s:*c_6
if ~isnorm 7Rtjm
error('zernfun:normalization','Unrecognized normalization flag.') ;Krs*3
s
end /P9fcNP{y
else PbvA~gm
isnorm = false; [c1Gq)ht
end yZp/P %y
l(Hz9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! })Y9oZc8
% Compute the Zernike Polynomials
J?Y,3cc.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'Y
,2CN
!'#
D~
% Determine the required powers of r: '#=n>
% ----------------------------------- ZEDvY=@a
m_abs = abs(m); F?a
63,r
rpowers = []; jf;n*
for j = 1:length(n) !a\v)R
rpowers = [rpowers m_abs(j):2:n(j)]; 4,:I{P_>6B
end *^G,
rpowers = unique(rpowers); X0j> g^b8
zq$L[X
% Pre-compute the values of r raised to the required powers, PPG+~.7
% and compile them in a matrix: @ls/3`E/5E
% ----------------------------- G+2fmVB*X
if rpowers(1)==0 ~QUNR?h
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aLW3Ub{h
rpowern = cat(2,rpowern{:}); f &NX~(
rpowern = [ones(length_r,1) rpowern]; ^b5+A6?
else 9wf"5c
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .UX4p
=
rpowern = cat(2,rpowern{:}); v8C( $<3%
end G!C }ULq
7>MG8pf3a
% Compute the values of the polynomials: |/xA5_-N
% -------------------------------------- $i<+O,@-
y = zeros(length_r,length(n)); j7w9H/XF}
for j = 1:length(n) G,<d;:
s = 0:(n(j)-m_abs(j))/2; "v0bdaQH3
pows = n(j):-2:m_abs(j); l SKq
for k = length(s):-1:1 fH9"sBiO
p = (1-2*mod(s(k),2))* ... 1]0;2THx
prod(2:(n(j)-s(k)))/ ... ;m.6 ~A
prod(2:s(k))/ ... 0'A"]6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aYk: CYQ
prod(2:((n(j)+m_abs(j))/2-s(k))); V,& OO
idx = (pows(k)==rpowers); 9vDOSwU*
y(:,j) = y(:,j) + p*rpowern(:,idx); qo\9,<
end rrgOp5aV"
$A,YQH+
if isnorm [h
B$%i]\<
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3jW&S
end Au)~"N~p?
end vAop#V
% END: Compute the Zernike Polynomials YE*|KL^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pz
D30VA
FY)]yz
% Compute the Zernike functions: F}[!OYyg
% ------------------------------ zNo"P[J8
idx_pos = m>0; :}#)ipr
idx_neg = m<0; mb3aUFxA;
L|(U%$
z = y; SQ+r'g
if any(idx_pos) BL>~~
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); UB8n,+R
end |${ImP
if any(idx_neg) %52x:qGa
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `) ],FE*:
end .dxELSV
q6sb;?I
% EOF zernfun