非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D t]FmU
function z = zernfun(n,m,r,theta,nflag) HOPsp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I|mxyyf
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `\-MpNw
% and angular frequency M, evaluated at positions (R,THETA) on the j!"N Eh78H
% unit circle. N is a vector of positive integers (including 0), and ht5:kt`F
% M is a vector with the same number of elements as N. Each element r2Q) Q
% k of M must be a positive integer, with possible values M(k) = -N(k) ~-(X\:z}
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^A;ec
h7I
% and THETA is a vector of angles. R and THETA must have the same AqrK==0N
% length. The output Z is a matrix with one column for every (N,M) KEr?&e
% pair, and one row for every (R,THETA) pair. NQvT4.*
% c$3ZEe
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike
]<O-
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lzZ=!dG
% with delta(m,0) the Kronecker delta, is chosen so that the integral IG@@CH
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )4/UzR$
% and theta=0 to theta=2*pi) is unity. For the non-normalized &-Z#+>=H(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7.v{ =UP
% A'? W5~F
% The Zernike functions are an orthogonal basis on the unit circle. OoAZ t
% They are used in disciplines such as astronomy, optics, and l_=kW!l
% optometry to describe functions on a circular domain. SYK?5_804
% RQ51xTOL4]
% The following table lists the first 15 Zernike functions. "}UYsXg
% ]jJ4\O`
% n m Zernike function Normalization yz=6 V%
% -------------------------------------------------- f]^ @z<FC
% 0 0 1 1 7)3cq}]O
% 1 1 r * cos(theta) 2 i>rsq[l
% 1 -1 r * sin(theta) 2 [k6,!e[/uG
% 2 -2 r^2 * cos(2*theta) sqrt(6) C)s*1@af
% 2 0 (2*r^2 - 1) sqrt(3) ["?WVXCF8|
% 2 2 r^2 * sin(2*theta) sqrt(6) a<V* )
% 3 -3 r^3 * cos(3*theta) sqrt(8) v]KI=!Gs
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2HvzMo-4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) CW#$%
% 3 3 r^3 * sin(3*theta) sqrt(8) 2$QuR~
% 4 -4 r^4 * cos(4*theta) sqrt(10) >z a= v
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~;Xkt G:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /B9jmvj`
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ol8uV{:"
% 4 4 r^4 * sin(4*theta) sqrt(10) ]r1C
% -------------------------------------------------- F30jr6F\
% ]z /
% Example 1: &28n1
% FUTDR-q O
% % Display the Zernike function Z(n=5,m=1) ()i!Uo
% x = -1:0.01:1; su]ywVoRT
% [X,Y] = meshgrid(x,x); (vf5qF^
% [theta,r] = cart2pol(X,Y); 5B=Wnau
% idx = r<=1; uv
dx>5]
% z = nan(size(X)); Aonq;} V e
% z(idx) = zernfun(5,1,r(idx),theta(idx)); -?<L"u
% figure q&wXs