非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /JmWiBQIn
function z = zernfun(n,m,r,theta,nflag) LEA^o"NW.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +?+iVLr!l}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )w0K2&)A
% and angular frequency M, evaluated at positions (R,THETA) on the @pV&{Vp
% unit circle. N is a vector of positive integers (including 0), and VV"1I R
% M is a vector with the same number of elements as N. Each element cWp5pGIzfp
% k of M must be a positive integer, with possible values M(k) = -N(k) 7vEZb.~4z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, a3^ ({;k!0
% and THETA is a vector of angles. R and THETA must have the same M3YC@(N% k
% length. The output Z is a matrix with one column for every (N,M) `.YMbj#T
% pair, and one row for every (R,THETA) pair. J"
U!j
% -bp7X{&
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0]2@T=*kTY
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vR'rYDtU@
% with delta(m,0) the Kronecker delta, is chosen so that the integral ZCDcf
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, AUPTtc`#Y
% and theta=0 to theta=2*pi) is unity. For the non-normalized g/OL^A
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 89[OaT_hs
% 7r$'2">K(
% The Zernike functions are an orthogonal basis on the unit circle. q[TW
% They are used in disciplines such as astronomy, optics, and .h\[7r
% optometry to describe functions on a circular domain. v:u=.by99
% ItwJL`
% The following table lists the first 15 Zernike functions. dPyZzMes=
% 7hl,dtn7
% n m Zernike function Normalization we2D!Ywr
% -------------------------------------------------- TbR!u:J
% 0 0 1 1 R%)7z)~
% 1 1 r * cos(theta) 2 -+&sPrQ
% 1 -1 r * sin(theta) 2 YE1X*'4
% 2 -2 r^2 * cos(2*theta) sqrt(6) <jtu/U]78|
% 2 0 (2*r^2 - 1) sqrt(3) %<;PEQQ|C
% 2 2 r^2 * sin(2*theta) sqrt(6) IW- BY =C
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~\[\S!"
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2[Vs@X
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jHBP:c
% 3 3 r^3 * sin(3*theta) sqrt(8) Z)RV6@(
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5Jm%*Wb
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WcKL=Z?(
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) VTwJtWnq
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +4m~D`fqt[
% 4 4 r^4 * sin(4*theta) sqrt(10) VVm8bl.q
% -------------------------------------------------- k)B]|,g7G0
% |-.r9;-b
% Example 1: qn#f:xltu
% -`} d@x
% % Display the Zernike function Z(n=5,m=1) J?84WS
% x = -1:0.01:1; 9zD^4j7
% [X,Y] = meshgrid(x,x); ad'C&^o5
% [theta,r] = cart2pol(X,Y); ~t.M!vk
% idx = r<=1; yfCdK-9+B
% z = nan(size(X)); [+z*&~'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $(ei<cAV
% figure _!?iiO
% pcolor(x,x,z), shading interp I,wgu:}P#
% axis square, colorbar >Mc,c(CvU
% title('Zernike function Z_5^1(r,\theta)') :igURr
% QzX|c&&>u2
% Example 2: B kWoK/f4
% Q
R<q[@)F
% % Display the first 10 Zernike functions .Pi8c[
% x = -1:0.01:1; YQ#o3sjs
% [X,Y] = meshgrid(x,x); %W:]OPURK
% [theta,r] = cart2pol(X,Y); x cA5
% idx = r<=1; Mo_(WSs
% z = nan(size(X)); mq*Efb)!
% n = [0 1 1 2 2 2 3 3 3 3]; =&xNdc
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; KG8Km
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^YwTO/Q|
% y = zernfun(n,m,r(idx),theta(idx)); *='J>z.]
% figure('Units','normalized') n#lZRwhq
% for k = 1:10 M5>cYVG
% z(idx) = y(:,k); =w <;tb
% subplot(4,7,Nplot(k)) qL?`l;+
% pcolor(x,x,z), shading interp )T26cT$
% set(gca,'XTick',[],'YTick',[]) N% W298
% axis square jX8,y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /3ty*LQT
% end ]E!b&
% jdWA)N}kDG
% See also ZERNPOL, ZERNFUN2. {, `)
(^4V]N&
% Paul Fricker 11/13/2006 ? <"H Io
_bm8m4Lk
OELh6R
% Check and prepare the inputs: c^ifHCt|
% ----------------------------- x%d\}%]
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !9ytZR*
error('zernfun:NMvectors','N and M must be vectors.') )ir*\<6Y=
end N=[# "4I
+P5\N,,7R
if length(n)~=length(m) mv;;0xH
error('zernfun:NMlength','N and M must be the same length.') ;:5Ahfo \
end eNEMyv5{w4
i,z^#b7JQ
n = n(:); 8n1<nS<
m = m(:); 6<
T@\E
if any(mod(n-m,2)) N&]GPl0
error('zernfun:NMmultiplesof2', ... V0ig#?]
'All N and M must differ by multiples of 2 (including 0).') ft"t
end wYLi4jYm
nhZ^`mP
if any(m>n) Op2@En|d
error('zernfun:MlessthanN', ... z&a>cjt_;
'Each M must be less than or equal to its corresponding N.') xh) h#p.
end g&<3Kl
z:7
i@m
if any( r>1 | r<0 ) Y_SB3 $])
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &}q;,"
end rOyKugHe
[')C]YQb=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7i@vj7K
error('zernfun:RTHvector','R and THETA must be vectors.')
x $@Gp
end {/E_l
[]I_r=
r = r(:); 9iy3 dy^
theta = theta(:); Y:-O/X
length_r = length(r); X]T&kdQ6q
if length_r~=length(theta) N" =$S|Gs
error('zernfun:RTHlength', ... r]<?,xx[
'The number of R- and THETA-values must be equal.') dPmtU{E<M
end 1@"os[9
q0y#Y
% Check normalization: t 8,VR FV
% -------------------- lv=rL
if nargin==5 && ischar(nflag) 7(W"NF{r
isnorm = strcmpi(nflag,'norm'); r 1x2)
if ~isnorm A]_5O8<buW
error('zernfun:normalization','Unrecognized normalization flag.') (S)jV0
end Sz'H{?"
else XKQ\Ts2<k
isnorm = false; wk[4Qsk<
end OS]FGD3a
> %B7/l$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y4j%K~lsY
% Compute the Zernike Polynomials aP}30E*Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .wvgHi
r0L'
mf$
% Determine the required powers of r: f~-qjEWm
% ----------------------------------- Q@aDa 8Z
m_abs = abs(m); 4ynGXJmMlR
rpowers = []; ..a@9#D
for j = 1:length(n) t*dd/a
rpowers = [rpowers m_abs(j):2:n(j)]; <Dq7^,}#
end f C_H0h3
rpowers = unique(rpowers); c)B
<d#
dR@XwEpP
% Pre-compute the values of r raised to the required powers, \F5d
p
% and compile them in a matrix: ;/s##7qf
% ----------------------------- <R.Ipyt.
if rpowers(1)==0 FwaYp\z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); q2}6lf,J
K
rpowern = cat(2,rpowern{:}); <S@XK%
rpowern = [ones(length_r,1) rpowern]; @?CEi#-
else 5ji#rIAhxh
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {O"N2W
rpowern = cat(2,rpowern{:}); MNWuw;:v
end <4,LTB]9-
PGNH<E)
% Compute the values of the polynomials: <
s1
% -------------------------------------- f*E#E=j
y = zeros(length_r,length(n)); 8;GuJP\
for j = 1:length(n) d6vls7J/4
s = 0:(n(j)-m_abs(j))/2; ?f&O4H
pows = n(j):-2:m_abs(j); 8L _]_
for k = length(s):-1:1 qfS
]vc_N
p = (1-2*mod(s(k),2))* ... ]!'9Y}9a
prod(2:(n(j)-s(k)))/ ... )7;E,m<:tO
prod(2:s(k))/ ... r$<4_*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P`TJqJiY~
prod(2:((n(j)+m_abs(j))/2-s(k))); F$nc9x[S
idx = (pows(k)==rpowers); 2Mw^EjR
y(:,j) = y(:,j) + p*rpowern(:,idx); s^zX9IVnp
end i=AQ1X\s
JGG (mrvR
if isnorm >))K%\p
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F*J@OY8i
end y|2y!&o,!
end {No
Y`j5S
% END: Compute the Zernike Polynomials 'Fr"96C$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?CSv;:
^udl&>
% Compute the Zernike functions: " gQJeMU
% ------------------------------ {2=f,,|+f
idx_pos = m>0; y41,T&ja
idx_neg = m<0; r31)Ed$
}zyh!
z = y; =kDh: &u%
if any(idx_pos) HtAO9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rPUk%S
end wS @-EcCB
if any(idx_neg) :O/QgGZN$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H}PZJf_E
end N"-U)d-.
s~g0VNu Y
% EOF zernfun