切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11081阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 N,w;s-*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 7cn"@h rJ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'E0{zk  
    function z = zernfun(n,m,r,theta,nflag) 7 .+kcqX  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z8k O*LYv  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *E .{i   
    %   and angular frequency M, evaluated at positions (R,THETA) on the Lq LciD  
    %   unit circle.  N is a vector of positive integers (including 0), and m |,ocz  
    %   M is a vector with the same number of elements as N.  Each element I~"-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D}!U?]la&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e?L$RY,7  
    %   and THETA is a vector of angles.  R and THETA must have the same ,y2ur2  
    %   length.  The output Z is a matrix with one column for every (N,M) 3Du&KZ  
    %   pair, and one row for every (R,THETA) pair. X!,Ngmw.  
    % D2>EG~xWq  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g@nk0lQewj  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [fR<#1Z  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral LjXtOF  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <g,k[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Qkqn~>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f]5bAs  
    % QsDa b4  
    %   The Zernike functions are an orthogonal basis on the unit circle. V85a{OBm,8  
    %   They are used in disciplines such as astronomy, optics, and 3Luv$6  
    %   optometry to describe functions on a circular domain. Bh2m,=``  
    % ,X\z#B  
    %   The following table lists the first 15 Zernike functions. 4_t aCK  
    % EE&~D~yHUL  
    %       n    m    Zernike function           Normalization 6Om-[^  
    %       -------------------------------------------------- ?b8NEVjw  
    %       0    0    1                                 1 X^9_'T9  
    %       1    1    r * cos(theta)                    2 i>,5b1x~  
    %       1   -1    r * sin(theta)                    2 w ^`n  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 66)@4 3V  
    %       2    0    (2*r^2 - 1)                    sqrt(3) s/sH",  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Q6%m}R  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Ylt[Ks<2  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) a+weBF#Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) aQFYSl  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 9KXp0Q?-$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tk}qvW.Ii  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 51;(vf  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5/P?@`/ eT  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z^}T= $&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |nD2k,S<?  
    %       -------------------------------------------------- `r>WVPS|  
    % lrq !}\aX  
    %   Example 1: zq4mT;rqz  
    % T| 4c\  
    %       % Display the Zernike function Z(n=5,m=1) G0]q(.sOy  
    %       x = -1:0.01:1; S~Q7>oNm  
    %       [X,Y] = meshgrid(x,x); x:l`e:`y9  
    %       [theta,r] = cart2pol(X,Y); HNU[W8mg8  
    %       idx = r<=1; IUc!nxF#  
    %       z = nan(size(X)); Sk;IAp#X9  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >%[(C*Cks  
    %       figure OIewG5O  
    %       pcolor(x,x,z), shading interp 'd6hQ4Vw4  
    %       axis square, colorbar 8zVXQ!'  
    %       title('Zernike function Z_5^1(r,\theta)') v S%+  
    % f+I*aBQ  
    %   Example 2: *[yCcqN.  
    % 8<.KWr  
    %       % Display the first 10 Zernike functions )2^OBfl7  
    %       x = -1:0.01:1; k9R1E/;  
    %       [X,Y] = meshgrid(x,x); ZibHT:n  
    %       [theta,r] = cart2pol(X,Y); I}k!i+Yl  
    %       idx = r<=1; zo\Xu oZ  
    %       z = nan(size(X)); /;.M$}Z>`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g_n=vO('X  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; L</"m[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; `RmB{qgB  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~}ewna/2  
    %       figure('Units','normalized') JHO9d:{-  
    %       for k = 1:10 SxH}/I|W  
    %           z(idx) = y(:,k); W8":lpp  
    %           subplot(4,7,Nplot(k)) *$l8H[  
    %           pcolor(x,x,z), shading interp zNXk dw  
    %           set(gca,'XTick',[],'YTick',[]) **s:H'Mw_  
    %           axis square sgB3i`_M  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =e._b 7P  
    %       end #d|.BxH  
    % B:x4H}`vh  
    %   See also ZERNPOL, ZERNFUN2. {g )kT_  
    5.\!k8a  
    %   Paul Fricker 11/13/2006 /+IR^WG#C}  
    BAKfs/N  
    m]DjIs*@%h  
    % Check and prepare the inputs: 1m ![;Pg3  
    % ----------------------------- +[F9Q,bH@b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =lDmP |^  
        error('zernfun:NMvectors','N and M must be vectors.') 5 !NPqka}.  
    end +ubO-A?  
    3G>E>yJ  
    if length(n)~=length(m) Gu_s:cgB9F  
        error('zernfun:NMlength','N and M must be the same length.') T Z>z5YTv  
    end uox;PDK  
    7NXT.E~2  
    n = n(:); dG)A-qbV  
    m = m(:); O:Z|fDQ`  
    if any(mod(n-m,2)) ~O^_J)  
        error('zernfun:NMmultiplesof2', ... ~;`i&s  
              'All N and M must differ by multiples of 2 (including 0).') =8J\;h  
    end NKI&n]EO  
    94lmsE  
    if any(m>n) W&p-Z"=)  
        error('zernfun:MlessthanN', ... ^~Ar  
              'Each M must be less than or equal to its corresponding N.') `o*eLLk  
    end H+: $ 7;  
    QR8F'7S  
    if any( r>1 | r<0 ) 9g*~X;`2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') <]!IC]+  
    end 4a646jg)  
    f'.yM*  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  ipyO&v  
        error('zernfun:RTHvector','R and THETA must be vectors.') 67sb D<r  
    end *yX_dgC>[  
    y-Ol1R3:c#  
    r = r(:); {Rz`)qqE  
    theta = theta(:); TZ*ib~  
    length_r = length(r); lq9c2xK  
    if length_r~=length(theta) /JfXK$`  
        error('zernfun:RTHlength', ... gT+/CVj R  
              'The number of R- and THETA-values must be equal.') 1R:h$* -z  
    end fcBS s\\C~  
    :c.i Z  
    % Check normalization: *Js<VR  
    % -------------------- T-x`ut7c  
    if nargin==5 && ischar(nflag) -+4$W{OK*0  
        isnorm = strcmpi(nflag,'norm'); `}=Fw0  
        if ~isnorm sy#Gb#=#  
            error('zernfun:normalization','Unrecognized normalization flag.') L NE]#8ue  
        end +?L~fM69B  
    else onmO>q*  
        isnorm = false; vLC&C-f  
    end h FjW.~B  
    r94BEC 2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [AGm%o=)  
    % Compute the Zernike Polynomials ~KNxAxyVi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D0-e,)G}V,  
    p75w^  
    % Determine the required powers of r: UnMDdJ\  
    % ----------------------------------- Iq52rI}  
    m_abs = abs(m); gGX/p6"  
    rpowers = []; '- ~86Q  
    for j = 1:length(n) MdKZH\z/  
        rpowers = [rpowers m_abs(j):2:n(j)]; IaJ(T>" +  
    end TRiB|b]8Q#  
    rpowers = unique(rpowers); 0I&rZMpF&  
    M6I1`Lpf  
    % Pre-compute the values of r raised to the required powers, XNl!(2x'pb  
    % and compile them in a matrix: Kfr?sX  
    % ----------------------------- kP6r=HH@  
    if rpowers(1)==0 V]8fn MH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4 I~,B[|  
        rpowern = cat(2,rpowern{:}); ULJI` I|m  
        rpowern = [ones(length_r,1) rpowern]; 4EELaP|%  
    else S%4hv*_c  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FStfGN  
        rpowern = cat(2,rpowern{:}); ox*Ka]  
    end W=b5{ 6  
    zz9.OnZ~  
    % Compute the values of the polynomials: ?L $KlF Y  
    % -------------------------------------- ,yT4(cMBk?  
    y = zeros(length_r,length(n)); TwkzX|  
    for j = 1:length(n) HR}c9wy,q\  
        s = 0:(n(j)-m_abs(j))/2; *kIJv?%_}  
        pows = n(j):-2:m_abs(j); &sKYO<6K }  
        for k = length(s):-1:1 Ry(!< w,  
            p = (1-2*mod(s(k),2))* ... ~<eiWDf  
                       prod(2:(n(j)-s(k)))/              ... 1TVTP2&Rd  
                       prod(2:s(k))/                     ... QO,y/@Ph  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... );6zV_^!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); vKW%l  
            idx = (pows(k)==rpowers); -R8RAwsLG  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Vr^wesT\Hx  
        end 'D-imLV<<  
         %iGME%oXr  
        if isnorm $`Ou*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); JrQN-e!  
        end s2$R2,  
    end 7OZ s~6(  
    % END: Compute the Zernike Polynomials w_-{$8|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bZi>   
    k-89(  
    % Compute the Zernike functions: QVP $e`4  
    % ------------------------------ I?PKc'b  
    idx_pos = m>0; *7R3EUUk  
    idx_neg = m<0; 5GY%ZRHh  
    G ;z2}Ei  
    z = y; ecF I"g  
    if any(idx_pos) h8h4)>:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]EK"AuEz`  
    end @#V{@@3$  
    if any(idx_neg) o1Xk\R{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +F/'+  
    end -0kwS4Hx2  
    V^0*S=N  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) XGUF9arN  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 2`lit@u&u  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated `@ `CZg  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ['c:n?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, U{;i864:}  
    %   and THETA is a vector of angles.  R and THETA must have the same Og,,s{\  
    %   length.  The output Z is a matrix with one column for every P-value, ML R3 A s  
    %   and one row for every (R,THETA) pair. 3QF!fll^  
    % H7{ 6t(0j  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike /,;9hx  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) QQ?` 1W  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) s=6w-'; V  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 >2wjV"W?  
    %   for all p. }&!rIU  
    % 6 o+zhi;E  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 eF2<L[9  
    %   Zernike functions (order N<=7).  In some disciplines it is p<![JeV  
    %   traditional to label the first 36 functions using a single mode } FFW,x  
    %   number P instead of separate numbers for the order N and azimuthal Ii"cDH9  
    %   frequency M. d8x$NW-s  
    % 2V  
    %   Example: W0?yPP=.  
    % o30PI  
    %       % Display the first 16 Zernike functions EatpORq  
    %       x = -1:0.01:1; YZoH{p9f  
    %       [X,Y] = meshgrid(x,x); }R J2\CP  
    %       [theta,r] = cart2pol(X,Y); ,+q5e^P  
    %       idx = r<=1; ufm#H#n)#X  
    %       p = 0:15; 7lh%\  
    %       z = nan(size(X)); Bz24U wcZ  
    %       y = zernfun2(p,r(idx),theta(idx)); 3)T5}_  
    %       figure('Units','normalized') )ei+ewVZ  
    %       for k = 1:length(p) pY:xxnE  
    %           z(idx) = y(:,k); i %z}8GIt'  
    %           subplot(4,4,k) 3w0m:~KS6V  
    %           pcolor(x,x,z), shading interp Dm5UQe  
    %           set(gca,'XTick',[],'YTick',[]) #!5GGe{I  
    %           axis square B[Tw0rQ  
    %           title(['Z_{' num2str(p(k)) '}']) 3FS:]|oC  
    %       end Mk^o*L{ H  
    % 9,9( mbWJv  
    %   See also ZERNPOL, ZERNFUN. m=n V$H   
    #S1)n[  
    %   Paul Fricker 11/13/2006 k1%Ek#5  
    }b0qrr  
    Oo#wPT;1^(  
    % Check and prepare the inputs: eR3!P8t  
    % ----------------------------- Ds-%\@p  
    if min(size(p))~=1 ah}aL7dgO  
        error('zernfun2:Pvector','Input P must be vector.') jOe %_R  
    end myXp]=Sb?  
    CqF< BE  
    if any(p)>35 1W-!f%  
        error('zernfun2:P36', ... .Oim7JQ8  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... nhy3E  
               '(P = 0 to 35).']) +]AE}UXZoh  
    end i1scoxX3\  
    q!FJP9x  
    % Get the order and frequency corresonding to the function number: Qs4Jl;Y_  
    % ---------------------------------------------------------------- yJgnw6>r2  
    p = p(:); zZA I"\;W  
    n = ceil((-3+sqrt(9+8*p))/2); J|K~a?&vN  
    m = 2*p - n.*(n+2); Q}1PPi,  
    !IT']kA  
    % Pass the inputs to the function ZERNFUN: n[{o~VN  
    % ---------------------------------------- #$#{QEh0}  
    switch nargin MenI>gd?  
        case 3 rb9 x||  
            z = zernfun(n,m,r,theta); ZL@7Mr!e  
        case 4 fXL$CgXG\x  
            z = zernfun(n,m,r,theta,nflag); &hZcj dB  
        otherwise ,g/UPK8K=  
            error('zernfun2:nargin','Incorrect number of inputs.') $3FFb#r  
    end cU*7E39  
    }G-qOt  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 0;V2>!  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ah~7T~  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of V_0e/7}Ya  
    %   order N and frequency M, evaluated at R.  N is a vector of "bC8/^  
    %   positive integers (including 0), and M is a vector with the Kf(% aDYq  
    %   same number of elements as N.  Each element k of M must be a Oq|pd7fcgm  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) }Z2Y>raA\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is g pO@xk$  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix |f`!{=?  
    %   with one column for every (N,M) pair, and one row for every e}aD <E G  
    %   element in R. m3.d!~U\  
    % I'J=I{p*  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- +dR$;!WB3  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is v!40>[?|p  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to O4( Z%YBe  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 v%B^\S3)  
    %   for all [n,m]. *bwLi h!}H  
    % {Uu7@1@n  
    %   The radial Zernike polynomials are the radial portion of the b) .@ xS  
    %   Zernike functions, which are an orthogonal basis on the unit <r9J+xh*p  
    %   circle.  The series representation of the radial Zernike 1jQz%^~  
    %   polynomials is p`XI(NI  
    % H@OYtPHGR  
    %          (n-m)/2 u:fiil$  
    %            __ 6ffrV  
    %    m      \       s                                          n-2s S1zV.]  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r UB?a-jGZ K  
    %    n      s=0 i7*4hYY  
    % m<r.sq&;  
    %   The following table shows the first 12 polynomials. Z'!jZF~4p  
    % <A+Yo3|7  
    %       n    m    Zernike polynomial    Normalization >|H=25N>;  
    %       --------------------------------------------- }1epn#O_4  
    %       0    0    1                        sqrt(2) =7#)8p[  
    %       1    1    r                           2 R '"J{oR  
    %       2    0    2*r^2 - 1                sqrt(6) |PTL!>ym2  
    %       2    2    r^2                      sqrt(6)  03_tt7  
    %       3    1    3*r^3 - 2*r              sqrt(8) 8h-6;x^^  
    %       3    3    r^3                      sqrt(8) 9 /q4]%`  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) A*E$_N  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Jg |/*Or  
    %       4    4    r^4                      sqrt(10) 5U%u S^%DP  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 0=7C-A1(D  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) eH79,!=2  
    %       5    5    r^5                      sqrt(12) &!Y^DR/  
    %       --------------------------------------------- Nqewtn9n  
    % a&4>xZU #  
    %   Example: ef Ra|7!HK  
    % naM4X@jl  
    %       % Display three example Zernike radial polynomials sj Yg  
    %       r = 0:0.01:1; A5B 5pJ  
    %       n = [3 2 5]; RG#  
    %       m = [1 2 1]; )7[>/2aGd  
    %       z = zernpol(n,m,r); 0M-Zp[w\-  
    %       figure x~A""*B~  
    %       plot(r,z) ) T 3y,*  
    %       grid on \MX>=  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') w/>k  
    %  /dBQ*f5  
    %   See also ZERNFUN, ZERNFUN2. NCl$vc;,  
    !f]F'h8  
    % A note on the algorithm. 44($a9oa2  
    % ------------------------ V=\&eS4^"  
    % The radial Zernike polynomials are computed using the series w%j 6zsTz  
    % representation shown in the Help section above. For many special e,|"9OK  
    % functions, direct evaluation using the series representation can X-6Se  
    % produce poor numerical results (floating point errors), because rsy'ZVLUj  
    % the summation often involves computing small differences between .\LWV=B  
    % large successive terms in the series. (In such cases, the functions V'\4sPt  
    % are often evaluated using alternative methods such as recurrence N{ ;{<C9Z  
    % relations: see the Legendre functions, for example). For the Zernike hH`yQGZ  
    % polynomials, however, this problem does not arise, because the 5|&Sg}_  
    % polynomials are evaluated over the finite domain r = (0,1), and HFvhrG  
    % because the coefficients for a given polynomial are generally all I?Eh 0fI  
    % of similar magnitude. )xlNj$(x5n  
    % '+Ts IJh  
    % ZERNPOL has been written using a vectorized implementation: multiple axonqSf  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Q->'e-\E<"  
    % values can be passed as inputs) for a vector of points R.  To achieve %nVnK6[sox  
    % this vectorization most efficiently, the algorithm in ZERNPOL E^T/Qu  
    % involves pre-determining all the powers p of R that are required to Q(E$;@   
    % compute the outputs, and then compiling the {R^p} into a single Vr`UF0_3q  
    % matrix.  This avoids any redundant computation of the R^p, and (a@cK,  
    % minimizes the sizes of certain intermediate variables. c[@>#7p`o  
    % 6D _4o&N  
    %   Paul Fricker 11/13/2006 SQWA{f  
    X NnsMl  
    9O~1o?ni  
    % Check and prepare the inputs: Z;SRW92@  
    % ----------------------------- DV]Kd 7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SL>>]A,E<`  
        error('zernpol:NMvectors','N and M must be vectors.') !V7VM_}@Y  
    end ~)Ny8Dh  
    GVCyVt[!-  
    if length(n)~=length(m) <@ (HQuL#  
        error('zernpol:NMlength','N and M must be the same length.') 5H""_uw  
    end Jel%1'Dc^  
    (;V]3CtU*  
    n = n(:); DZ(e^vq  
    m = m(:); ex&&7$CXc  
    length_n = length(n);  @X  
    #^%Rk'W  
    if any(mod(n-m,2)) d #y{eV$Q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =DG aK0n  
    end RkP7}ZA;  
    t.485L %  
    if any(m<0) d\'M ~VQ  
        error('zernpol:Mpositive','All M must be positive.') 0JKbp*H  
    end f+-w~cN  
    64h r| v  
    if any(m>n) :q0C$xF  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') /,c9&i t(M  
    end T->O5t c  
    !>  
    if any( r>1 | r<0 ) '?wv::t  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') /N{xFt/?  
    end ~KHp~Xs`  
    kG@1jMPtQ  
    if ~any(size(r)==1) kc1 *@<L6  
        error('zernpol:Rvector','R must be a vector.') !N?|[n1  
    end .#lQZo6$\|  
    \ bd? `."  
    r = r(:); hdfNXZ{A"  
    length_r = length(r); :X,1KR  
    Xp4pN{he  
    if nargin==4 52{jq18&  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ){L`hQ*=w  
        if ~isnorm LtXFGPQf  
            error('zernpol:normalization','Unrecognized normalization flag.') (B7M*e  
        end +8mfq\ Y1  
    else 7?Xfge%\  
        isnorm = false; qwiM .b5  
    end zA\DI]:+  
    .' 3;Z'%"g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -8#Of)W  
    % Compute the Zernike Polynomials Y]^[|e8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U3 ED3) D  
    US@ak4Y6Z  
    % Determine the required powers of r: QU8?/  
    % ----------------------------------- CdC&y}u  
    rpowers = []; $*`fn{2  
    for j = 1:length(n) \;$j "i&  
        rpowers = [rpowers m(j):2:n(j)]; CP["N(fF  
    end co yy T  
    rpowers = unique(rpowers); ^W3xw[{  
    eiJ $}\qJL  
    % Pre-compute the values of r raised to the required powers, _u]Wr%D@  
    % and compile them in a matrix: {CYFM[V  
    % ----------------------------- }+,1G!? z  
    if rpowers(1)==0 nhiCV>@y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  gX.4I;  
        rpowern = cat(2,rpowern{:}); +p>tO\mo  
        rpowern = [ones(length_r,1) rpowern]; n;/yo~RR  
    else Z_ak4C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); > ~J&i3  
        rpowern = cat(2,rpowern{:}); sMs 0*B-[  
    end : v<|y F  
    P9SyQbcK  
    % Compute the values of the polynomials: [Xg?sdQCI  
    % -------------------------------------- D-69/3PvP  
    z = zeros(length_r,length_n); [8l8 m6  
    for j = 1:length_n = 0Z}s  
        s = 0:(n(j)-m(j))/2; yI)~- E.  
        pows = n(j):-2:m(j); QUH USDT  
        for k = length(s):-1:1 @'7'3+ c  
            p = (1-2*mod(s(k),2))* ... (wo.OH  
                       prod(2:(n(j)-s(k)))/          ... !J3g,p*  
                       prod(2:s(k))/                 ... n B`pfg  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Jx.Jx~  
                       prod(2:((n(j)+m(j))/2-s(k))); E}b" qOV  
            idx = (pows(k)==rpowers); [(F.x6z)  
            z(:,j) = z(:,j) + p*rpowern(:,idx); [59_n{S 1  
        end tF O27z@  
         ApG_Gd.  
        if isnorm X8GIRL)lJ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ,1a6u3f,  
        end */u_RJ  
    end HX7"w   
    +YI/(ko=  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  K@%o$S?>z_  
    OSoIH`t A  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 TOT#l6yqdd  
    ncGt-l<9  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)