非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 H-KwkH`L4
function z = zernfun(n,m,r,theta,nflag) kDl4t]j
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. m&0BbyE.z
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yx w27~
% and angular frequency M, evaluated at positions (R,THETA) on the ;VlZd*M?
% unit circle. N is a vector of positive integers (including 0), and pQ^,. [[
% M is a vector with the same number of elements as N. Each element q&dRh
% k of M must be a positive integer, with possible values M(k) = -N(k) S*m`'
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, RR"WO
% and THETA is a vector of angles. R and THETA must have the same 8w8I:*
% length. The output Z is a matrix with one column for every (N,M) &}6ES{Nr8
% pair, and one row for every (R,THETA) pair. 2*q:
^
% !eAdm
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike avt>saR
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cov#Z
ux
% with delta(m,0) the Kronecker delta, is chosen so that the integral mn; 7o~4
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KWhM
% and theta=0 to theta=2*pi) is unity. For the non-normalized cv*Q]F1%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <\d|=>;
% QTjftcu
% The Zernike functions are an orthogonal basis on the unit circle. O? Gl4_y
% They are used in disciplines such as astronomy, optics, and 60aKT:KLC_
% optometry to describe functions on a circular domain. 3q|cZQK!1
% TcKvSdr'
% The following table lists the first 15 Zernike functions. h/X5w4
% P7wqZ?
% n m Zernike function Normalization U!\2K~
% -------------------------------------------------- c.8((h/
% 0 0 1 1 eN]>l
% 1 1 r * cos(theta) 2 q
M_/
% 1 -1 r * sin(theta) 2 x!C8?K=|
% 2 -2 r^2 * cos(2*theta) sqrt(6) .@i0U
% 2 0 (2*r^2 - 1) sqrt(3) 2 ]V>J
% 2 2 r^2 * sin(2*theta) sqrt(6) `*" H/QG
% 3 -3 r^3 * cos(3*theta) sqrt(8) YXX36
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) %kK
][2e
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \o:ELa HY
% 3 3 r^3 * sin(3*theta) sqrt(8) fou_/Nrue
% 4 -4 r^4 * cos(4*theta) sqrt(10) !EX?m }7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v@fe-T&0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) g|K6iY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #+K
Kvk
% 4 4 r^4 * sin(4*theta) sqrt(10) '?"t<$b
% -------------------------------------------------- [lNqT1%]
% "U%n0r2
% Example 1: PPoI>J
% %RQ C9!
% % Display the Zernike function Z(n=5,m=1) W\@?e32
% x = -1:0.01:1; [=F>#8=
% [X,Y] = meshgrid(x,x); 7?=43bZl
% [theta,r] = cart2pol(X,Y); w]>"'o{{
% idx = r<=1; `fBG~NDw
% z = nan(size(X)); Em e'Gk
% z(idx) = zernfun(5,1,r(idx),theta(idx)); E rop9T1
% figure )7&42>t
% pcolor(x,x,z), shading interp q>_vE{UB
% axis square, colorbar R K"&l!o
% title('Zernike function Z_5^1(r,\theta)') ,CJAzGBS
% $ A-+E\vQ@
% Example 2: $_Y/'IN`k
% }JRP,YNh
% % Display the first 10 Zernike functions bTZ>@~$
% x = -1:0.01:1; wL 4ZW8_
% [X,Y] = meshgrid(x,x); s%eyW _
% [theta,r] = cart2pol(X,Y); 16"#i
% idx = r<=1; >qR7'Q wP
% z = nan(size(X));
pv$mZi4i
% n = [0 1 1 2 2 2 3 3 3 3]; ]JOephX2R
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; >;
aCf#q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; J.#(gFBBl\
% y = zernfun(n,m,r(idx),theta(idx)); U1OFDXHG
% figure('Units','normalized') l0I}&,+
% for k = 1:10 =WC-Sj{I
% z(idx) = y(:,k); |+>uA[6#
% subplot(4,7,Nplot(k)) #Mh{<gk%ax
% pcolor(x,x,z), shading interp W+_ R hJ
% set(gca,'XTick',[],'YTick',[]) yQ9ZhdQS
% axis square 7W"/N#G
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r#A_RZ2~@
% end eqq`TT#Z
% Guh%eR'Wt
% See also ZERNPOL, ZERNFUN2. zrs<#8!Y_!
^(ScgoXva
% Paul Fricker 11/13/2006 J{`eLmTu
;imRh'-V6
Ur^j$B}
% Check and prepare the inputs: Wqra8u#
% ----------------------------- [*)Z!)
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i(*I@ku
error('zernfun:NMvectors','N and M must be vectors.') K$H
<}e3
end %K(0 W8&
;#TaZN
if length(n)~=length(m) Gih[i\%Q
error('zernfun:NMlength','N and M must be the same length.') T$KF<
=
end +R6a}d/K
dA_YL?or
n = n(:); /-4$7qd
m = m(:); Sw8kIC
if any(mod(n-m,2)) {fV}gR2
error('zernfun:NMmultiplesof2', ... ]"F5;p;y
'All N and M must differ by multiples of 2 (including 0).') dRI^@n
end +Llo81j&
b.F^vv"]]
if any(m>n) w~Ff%p@9
error('zernfun:MlessthanN', ... Xl_Uz8Hp
'Each M must be less than or equal to its corresponding N.') -?6MU~"GK
end la
<npX
:q#K} /
if any( r>1 | r<0 ) ZH ,4oF
error('zernfun:Rlessthan1','All R must be between 0 and 1.') pV(lhDNoQ
end k(%QIJH
_:`!DIz~9}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ucdj4[/,h
error('zernfun:RTHvector','R and THETA must be vectors.') c+dg_*^
end xJs;v
vuQ%dDxI
r = r(:); &o3K%M;C?
theta = theta(:); qTQ!jN
length_r = length(r); F^k.is
if length_r~=length(theta) !0,Mp@ j/
error('zernfun:RTHlength', ... ;z~n.0'
'The number of R- and THETA-values must be equal.') CjIu[S1%
end -fI@])$9J
\C^;k%{LV
% Check normalization: q my%J
% -------------------- 4*.K'(S5fx
if nargin==5 && ischar(nflag) evA/+F,&
isnorm = strcmpi(nflag,'norm'); JwnQ0
e
if ~isnorm 6x)$Dl
error('zernfun:normalization','Unrecognized normalization flag.') <"D=6jqZ
end kql0J|P?
else Mb1t:Xf^g
isnorm = false; !HeSOzN
end l1U=f]
SUKxkc(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2Qp Hvsl_
% Compute the Zernike Polynomials sVk$x:k1M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +ISz?~8
,#d? _?/:O
% Determine the required powers of r: ##Q/I|
% ----------------------------------- B+C);WQ,
m_abs = abs(m); ae"]\a\&1o
rpowers = []; 6
5y+Z
for j = 1:length(n) :l7U>~ o
rpowers = [rpowers m_abs(j):2:n(j)]; #_Z$2L"U
end / N)W2
rpowers = unique(rpowers); P&m\1W(
-/{4Jf Wf
% Pre-compute the values of r raised to the required powers, D`J6h,=2l/
% and compile them in a matrix: {u1V|q
% ----------------------------- Le<wR
if rpowers(1)==0 A;\7|'4
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);
t#%R
q
rpowern = cat(2,rpowern{:}); / kt2c[9
rpowern = [ones(length_r,1) rpowern]; 322jR4QGr
else Y6,Rj:8
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >5s6u`\
rpowern = cat(2,rpowern{:}); `wF8k{Pb
end n,$IfC"
A)%A!
% Compute the values of the polynomials: ?4H i-
% -------------------------------------- 2I*;A5$N1
y = zeros(length_r,length(n));
Bs?7:kN(
for j = 1:length(n) .9md~j:o^s
s = 0:(n(j)-m_abs(j))/2; 3}|'0(hYL
pows = n(j):-2:m_abs(j); %IC73?
for k = length(s):-1:1 +f*OliMD
p = (1-2*mod(s(k),2))* ... f2,jh}4
prod(2:(n(j)-s(k)))/ ... >^XBa*4;Y
prod(2:s(k))/ ... z]b>VpW:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #2r}?hP/m
prod(2:((n(j)+m_abs(j))/2-s(k))); >#,G}xf
idx = (pows(k)==rpowers); Ag F,aZU
y(:,j) = y(:,j) + p*rpowern(:,idx); atXS-bg*
end s'kDk2r
1hcjSO
if isnorm <SI}lQ'i
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f!O{%ev
end sdQkT# %y
end k)TSR5A
% END: Compute the Zernike Polynomials rvr-XGK36\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5/po2V9)
"M|zv
% Compute the Zernike functions: $Y5)(
% ------------------------------ :1Q!$ m
idx_pos = m>0; [oF|s-"9!
idx_neg = m<0; 3e(ehLc4DJ
+-E~6^>
z = y; tK&'<tZh
if any(idx_pos) dnj}AVfQx
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _E@:O+K
end vDH>H^9Y
if any(idx_neg) X/N0LU(q
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4wrk2x[
end i\W/C
Z!U)I-x&
% EOF zernfun