非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 EdQ:8h
function z = zernfun(n,m,r,theta,nflag) S}=d74(/n
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. N[$bP)h7
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 25xpq^Zw
% and angular frequency M, evaluated at positions (R,THETA) on the WfbG }%&J
% unit circle. N is a vector of positive integers (including 0), and PoyY}Ra
% M is a vector with the same number of elements as N. Each element ]y*AA58;
% k of M must be a positive integer, with possible values M(k) = -N(k) F
Qtlo+3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, j=U
[V&T
% and THETA is a vector of angles. R and THETA must have the same 9f
,$JjX[
% length. The output Z is a matrix with one column for every (N,M) F,2)Udim
% pair, and one row for every (R,THETA) pair. 2qEm,x'S
% o(~QuHOp8>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sflH{!;p
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Wj2s+L7,
% with delta(m,0) the Kronecker delta, is chosen so that the integral \x JGR!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, BMlnzi
% and theta=0 to theta=2*pi) is unity. For the non-normalized O*MC"%T
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9NCo0!Fb
% X"V,3gDG
% The Zernike functions are an orthogonal basis on the unit circle. W5a)`%H
% They are used in disciplines such as astronomy, optics, and J!?hajw7N
% optometry to describe functions on a circular domain. 9IFK4>&O6
% $$E!u}
% The following table lists the first 15 Zernike functions. v-`RX;8
% )4oTA@wR
% n m Zernike function Normalization /[f9Z:>V
% -------------------------------------------------- c(@V
t&gE
% 0 0 1 1 Kyy CS>
% 1 1 r * cos(theta) 2 ]Lg$p
% 1 -1 r * sin(theta) 2 fp^!?u
% 2 -2 r^2 * cos(2*theta) sqrt(6) _jmkA meu
% 2 0 (2*r^2 - 1) sqrt(3) |2mm@):
% 2 2 r^2 * sin(2*theta) sqrt(6) Xy{\>}i]N
% 3 -3 r^3 * cos(3*theta) sqrt(8)
3Qt-%=b&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V+7x_>!&)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) N}0-L$@SL
% 3 3 r^3 * sin(3*theta) sqrt(8) _8$arjx=
% 4 -4 r^4 * cos(4*theta) sqrt(10)
LfD70r\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yLfb'Ba
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) {Lj]++`fB]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M7R.?nk
% 4 4 r^4 * sin(4*theta) sqrt(10) UR')) 1n
% -------------------------------------------------- 9!hiCqA&
% B%95M|
% Example 1: 0rbMT`Hy
% ?3ldHWa
% % Display the Zernike function Z(n=5,m=1)
6C6<,c
% x = -1:0.01:1; yyZV/
x~
% [X,Y] = meshgrid(x,x); [[(29|`]
% [theta,r] = cart2pol(X,Y); Bny3j~*U
% idx = r<=1; 2y6 e]D
% z = nan(size(X)); 0pT?qsM2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a6AD`| U8
% figure ^O_E
T$
% pcolor(x,x,z), shading interp %5|awWo_?
% axis square, colorbar d(u"^NH;
% title('Zernike function Z_5^1(r,\theta)') &6-udZB-
% m[~fT(NI
% Example 2: @1_M's;
% KiN8N=z
% % Display the first 10 Zernike functions "F
nH>g-
% x = -1:0.01:1; Y%AVC9(
% [X,Y] = meshgrid(x,x); ,DUD 4 [3
% [theta,r] = cart2pol(X,Y); fi*@m,-
% idx = r<=1; F91'5D,u0
% z = nan(size(X)); Wr.G9zq.+
% n = [0 1 1 2 2 2 3 3 3 3]; +C4UM9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; #*QnO\.
% Nplot = [4 10 12 16 18 20 22 24 26 28]; X 4\
% y = zernfun(n,m,r(idx),theta(idx)); b}DxD1*nsI
% figure('Units','normalized') `9IG//
% for k = 1:10 r(g:b
^S
% z(idx) = y(:,k);
"<f"r#
% subplot(4,7,Nplot(k)) >OP[qj
% pcolor(x,x,z), shading interp X
wvH
% set(gca,'XTick',[],'YTick',[]) @edx]H1~^
% axis square <Sm@ !yx
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) JHN{vB
% end O,m0Xb2s]~
% neN #Mo'A
% See also ZERNPOL, ZERNFUN2. G.CkceWRn
9F[k;Uw
% Paul Fricker 11/13/2006 koQ\]t'*As
{9>LF
cB,O"-
% Check and prepare the inputs: HE>6A|rgDr
% ----------------------------- UVND1XV^f
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =ELl86=CG
error('zernfun:NMvectors','N and M must be vectors.') 0E[&:6#Y
end Tw^b!74gq
4hRc,Vq
if length(n)~=length(m) |Nx7jGd:i
error('zernfun:NMlength','N and M must be the same length.') KxZup\\:v
end 0$8iWL
5Q$6~\
n = n(:); ;Mzy>*#$Q
m = m(:); N@Fof(T&
if any(mod(n-m,2)) OsQB`
D
error('zernfun:NMmultiplesof2', ... wGRMv1|lIu
'All N and M must differ by multiples of 2 (including 0).') 8RGU^&
end 6|h~pH
Rn(6Fk?
if any(m>n) kkvG=
error('zernfun:MlessthanN', ... [nL{n bli
'Each M must be less than or equal to its corresponding N.') EZICH&_
end ?]1_ 2\M
14U:.Q
if any( r>1 | r<0 ) FVi7gg.?
error('zernfun:Rlessthan1','All R must be between 0 and 1.') /)Ga<
end }q-* Ls~
NR </Jm*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d~ m,hCTe
error('zernfun:RTHvector','R and THETA must be vectors.') gK8E|f-z
end X:3W9`s)*
>P-{2
a,4
r = r(:); nIWZo ~
theta = theta(:); J0%e6{C1
length_r = length(r); "9>.,nzt
if length_r~=length(theta) j>D[iHrH
error('zernfun:RTHlength', ... D\"F ?>
'The number of R- and THETA-values must be equal.') ?+^vU5b1u
end ]Ak/:pu
YwYCXFQ|
% Check normalization: 3b9SyU2
% -------------------- qKL:#ny
if nargin==5 && ischar(nflag) 1$A7BP
isnorm = strcmpi(nflag,'norm'); |3ob1/)p0
if ~isnorm CAs8=N#H%
error('zernfun:normalization','Unrecognized normalization flag.') xna4W|-
end g`NJ
`
else /b
]Yya#
isnorm = false; -chk\75
end #.Q8q
BAy]&q|.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gk-g!v&
% Compute the Zernike Polynomials e\ Igc.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cV|u]ce%1
N,oN3mFF
% Determine the required powers of r: XkGS3EY
% ----------------------------------- @)iAV1r"
m_abs = abs(m); b ~5Q|3P 9
rpowers = []; 0vi)my;!
for j = 1:length(n) W.|r=
rpowers = [rpowers m_abs(j):2:n(j)]; xD|/98
end ;XUiV$
rpowers = unique(rpowers); |mHxkd
7QnQ=gu
% Pre-compute the values of r raised to the required powers, S(&]?!
% and compile them in a matrix: +?&|p0
% ----------------------------- n"Gow/-;
if rpowers(1)==0 =x QLf4>
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); nKR=/5a4Y
rpowern = cat(2,rpowern{:}); j1Ng[
rpowern = [ones(length_r,1) rpowern]; Hea76P5$P+
else
B#Q=Fo 6
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8dBG ZwyET
rpowern = cat(2,rpowern{:}); r=S6yq}
end .#BWu(EYV
Pl9Ky(Q`V
% Compute the values of the polynomials: 9hNHcl.
% -------------------------------------- JGZxNUr^
y = zeros(length_r,length(n)); -C
for j = 1:length(n) SniKCqmC]
s = 0:(n(j)-m_abs(j))/2; >}?4;:.=
pows = n(j):-2:m_abs(j); KeIk9T13O
for k = length(s):-1:1 |o5F%1o
p = (1-2*mod(s(k),2))* ... q%rfKHMA50
prod(2:(n(j)-s(k)))/ ... "&@v[O)!xu
prod(2:s(k))/ ... [WAnII
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (*X SrQ
prod(2:((n(j)+m_abs(j))/2-s(k))); DqQ+8 w
idx = (pows(k)==rpowers); KcW]"K>p!
y(:,j) = y(:,j) + p*rpowern(:,idx); Uiz#QGt
end
n}f*>Mn
p%?VW
if isnorm }}cS-p
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); uFXu9f+
end (mvzGXNz4
end l+V#`S*q
% END: Compute the Zernike Polynomials `g~T #U\>d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DjK
c!2j+ORz
% Compute the Zernike functions: Qgel^"t]i
% ------------------------------ ?F!='6D}b
idx_pos = m>0; =ghN)[AZV
idx_neg = m<0; #xlT,:_:)
f(}AdW}?
z = y; ar!`8"
if any(idx_pos) o`EL)K{
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A=+
|&+? t
end QEb
^'y
if any(idx_neg) `'gadCTb=
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K9@F1ccQ/
end ^Hplrwj}
/Ayo78Pi
% EOF zernfun