切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11268阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 297X).  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! R7%' v Zk  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 z$#q'+$  
    function z = zernfun(n,m,r,theta,nflag) NX wthc3  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c3S}(8g5.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H&$L1CrdL  
    %   and angular frequency M, evaluated at positions (R,THETA) on the +qN}oyL  
    %   unit circle.  N is a vector of positive integers (including 0), and ~SKV%  
    %   M is a vector with the same number of elements as N.  Each element eBUexxBY  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0PfjD  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, c*>8VW>  
    %   and THETA is a vector of angles.  R and THETA must have the same 9]u=b\fzZ  
    %   length.  The output Z is a matrix with one column for every (N,M) =K#5I<x  
    %   pair, and one row for every (R,THETA) pair. 2HA-q),6  
    % =|}_ASbzw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zG IxmJ.  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c5 ^CWk K  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral HL8onNq  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <Z b~tYp  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ~PaEhj&8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Os)jfKn2  
    % 4gR;,%E\TO  
    %   The Zernike functions are an orthogonal basis on the unit circle. j p"hbV  
    %   They are used in disciplines such as astronomy, optics, and zx #HyO[a  
    %   optometry to describe functions on a circular domain. exW|c~|m{A  
    % G_ -8*.  
    %   The following table lists the first 15 Zernike functions. CG[2  
    % B3AWJ1o  
    %       n    m    Zernike function           Normalization 9w)W|9  
    %       -------------------------------------------------- sej$$m R  
    %       0    0    1                                 1 /)+V(Jlu  
    %       1    1    r * cos(theta)                    2 rXh*nC  
    %       1   -1    r * sin(theta)                    2 +aY]?]  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) d76nyQKK  
    %       2    0    (2*r^2 - 1)                    sqrt(3) RIm8PV;N  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -eE r|Gs)  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $U/|+*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %XC3V7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )6!ji]c N  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *F:)S"3_~e  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) T]_]{%z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4Tdp;n\F  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0<3->uK  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {s7 3(B"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) " ""k}M2A  
    %       -------------------------------------------------- c1Rn1M,2k  
    %  i)!2DXn  
    %   Example 1: qr@ <'wp/  
    % s~p(59  
    %       % Display the Zernike function Z(n=5,m=1) SSQB1c  
    %       x = -1:0.01:1; y2`},  
    %       [X,Y] = meshgrid(x,x); c0ue[tb  
    %       [theta,r] = cart2pol(X,Y); <5 )F9.$  
    %       idx = r<=1; &7J-m4BI  
    %       z = nan(size(X)); m7#v2:OD+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Of}dsav   
    %       figure 9$q35e  
    %       pcolor(x,x,z), shading interp #c%F pR4  
    %       axis square, colorbar fxQ4kiI  
    %       title('Zernike function Z_5^1(r,\theta)') VbI$#;:[7  
    % ~T^,5Tz1j  
    %   Example 2: koojF|H>  
    % 4JO[yN  
    %       % Display the first 10 Zernike functions 14pyHMOR  
    %       x = -1:0.01:1; xNd p]u  
    %       [X,Y] = meshgrid(x,x); gyz_$T@x  
    %       [theta,r] = cart2pol(X,Y); ;F;Vm$  
    %       idx = r<=1; 0-Ga2Go9  
    %       z = nan(size(X)); &cp `? k  
    %       n = [0  1  1  2  2  2  3  3  3  3]; p]eVby"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; LrH"d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Y@y"bjK \  
    %       y = zernfun(n,m,r(idx),theta(idx)); Di"Tv<RlQ  
    %       figure('Units','normalized') ucYweXsO3  
    %       for k = 1:10 Ie]k/qw+Y  
    %           z(idx) = y(:,k); 5AbY 59  
    %           subplot(4,7,Nplot(k)) r_hs_n!6  
    %           pcolor(x,x,z), shading interp B,fVNpqo  
    %           set(gca,'XTick',[],'YTick',[]) GIv l|  
    %           axis square 6r.#/' "  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) XI+GWNAmJ  
    %       end -A,UqEt  
    % oZ_,WwnE  
    %   See also ZERNPOL, ZERNFUN2. g#q7~#9  
    /!'Png0!  
    %   Paul Fricker 11/13/2006 8ZF!}kb0F  
    Ea)=K'Pz  
    Cq -URih  
    % Check and prepare the inputs: 6DG%pF,  
    % ----------------------------- A<y]D.Z"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7 <ZGNxZ~  
        error('zernfun:NMvectors','N and M must be vectors.') cE^Ljk  
    end P0/Ctke;  
    MCAWn H  
    if length(n)~=length(m) D<g d)  
        error('zernfun:NMlength','N and M must be the same length.') 9H/C(Vo  
    end ^;sE)L6  
    H0f]Swh0a  
    n = n(:); . {vMn0c  
    m = m(:); ?PYZW5  
    if any(mod(n-m,2)) mX%T"_^  
        error('zernfun:NMmultiplesof2', ... TQtHU6  
              'All N and M must differ by multiples of 2 (including 0).') Iqci}G%r  
    end Nwo*tb:  
    rvacCwI  
    if any(m>n) ..R JHa6B  
        error('zernfun:MlessthanN', ... 3Rhoul[S  
              'Each M must be less than or equal to its corresponding N.') n/{ pQ&B  
    end ,e^~(ITaq  
    8,IQ6Or|-2  
    if any( r>1 | r<0 ) Ob/i_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +K s3  
    end cw,|,uXq 6  
    '0=mV"#H{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fR b  
        error('zernfun:RTHvector','R and THETA must be vectors.') o:B?hr'\  
    end v|KGzQx$.*  
    ;H3~r^>c  
    r = r(:); rd;E /:`5  
    theta = theta(:); Z2 Vri  
    length_r = length(r); :Q,~Nw>  
    if length_r~=length(theta)  au]W*;x  
        error('zernfun:RTHlength', ... azzG  
              'The number of R- and THETA-values must be equal.') ma xpR>7`j  
    end 5IA3\G}+  
    1gnLKfc  
    % Check normalization: P:WxhO/  
    % -------------------- RG=i74a  
    if nargin==5 && ischar(nflag) $o. ;}  
        isnorm = strcmpi(nflag,'norm'); )gD2wk(  
        if ~isnorm [Op^l%BC  
            error('zernfun:normalization','Unrecognized normalization flag.') 2*< PmKI  
        end G?,"AA;  
    else [&IcIZ  
        isnorm = false; hE E1i  
    end [%P[ x]-  
    A)gSOC{3F)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e _(';Lk  
    % Compute the Zernike Polynomials Qp7F3,/#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j"jQiL_*  
    LqXVi80  
    % Determine the required powers of r: iUFG!,+d  
    % ----------------------------------- Ljiw9*ZI  
    m_abs = abs(m); g{ ;OgS3>  
    rpowers = []; /6F\]JwU  
    for j = 1:length(n) )w5!'W4Z8  
        rpowers = [rpowers m_abs(j):2:n(j)]; NHQoP&OG  
    end &grvlK  
    rpowers = unique(rpowers); .2U3_1dX  
    0176  
    % Pre-compute the values of r raised to the required powers, Mnk-"d  
    % and compile them in a matrix: `e`DSl D>  
    % ----------------------------- `Z#':0Z  
    if rpowers(1)==0 .'.bokl/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zC*dJXt@  
        rpowern = cat(2,rpowern{:}); YNl".c  
        rpowern = [ones(length_r,1) rpowern]; K2\)9  
    else H DD)AM&p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K}M lC}oIt  
        rpowern = cat(2,rpowern{:}); `DE_<l  
    end CbXSJDs  
    x3( ->?)D  
    % Compute the values of the polynomials: L7nG5i  
    % -------------------------------------- tSnsjd<6.  
    y = zeros(length_r,length(n)); cW_l|  
    for j = 1:length(n) (74y2U6  
        s = 0:(n(j)-m_abs(j))/2; GY %$7   
        pows = n(j):-2:m_abs(j); :>0,MO.^~K  
        for k = length(s):-1:1 .XkD2~;  
            p = (1-2*mod(s(k),2))* ... *wsZ aQ  
                       prod(2:(n(j)-s(k)))/              ... u.G aMl4 (  
                       prod(2:s(k))/                     ... p] N/]2rR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 4"3.7.<Q`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ir>S\VT4  
            idx = (pows(k)==rpowers); !G6h~`[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); s|:1z"q  
        end kma>'P`G  
         fFoZ! H  
        if isnorm 8^D1u`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); xX9snSGz  
        end n(|n=P:o  
    end OSLZ7B^  
    % END: Compute the Zernike Polynomials h@'CmIZc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &cd>.&1<2  
    3TZ:  
    % Compute the Zernike functions: )FmIL(vu  
    % ------------------------------ 'x<oILOG  
    idx_pos = m>0; #6~Bg)7AM  
    idx_neg = m<0; AlG5n'  
    |:Maa6(W  
    z = y; $TS97'$  
    if any(idx_pos) kj.9\  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ms!|a_H7 r  
    end `S5::U6E  
    if any(idx_neg) W'f"kM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "nb.!OG~(  
    end  ^u#iz  
    LXsZk|IhM  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) om9'A=ZU  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. >Yk|(!v  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated = &?&}pVF  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive #$W0%7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 7fO<=ei:  
    %   and THETA is a vector of angles.  R and THETA must have the same ?8?vBkz~  
    %   length.  The output Z is a matrix with one column for every P-value, EY3F9h3xM|  
    %   and one row for every (R,THETA) pair. [^bq?w  
    % DpQWh+WRy  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike *h=>*t?I2  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) U <q`f-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) vfvp#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 nf<I  
    %   for all p. }&v-<qC^  
    % f-|zh#L  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ]4V1]  
    %   Zernike functions (order N<=7).  In some disciplines it is (xWsyo(4  
    %   traditional to label the first 36 functions using a single mode 2<p@G#(  
    %   number P instead of separate numbers for the order N and azimuthal aaw[ia_EL  
    %   frequency M. Eu "8IM!%-  
    % {fHY[8su0  
    %   Example: x- ue1  
    % GG<0k\RN  
    %       % Display the first 16 Zernike functions 2kDv (".  
    %       x = -1:0.01:1; <y~Ba@1u  
    %       [X,Y] = meshgrid(x,x); +F8K%.Q_  
    %       [theta,r] = cart2pol(X,Y);  ;Ss!OFK  
    %       idx = r<=1; QRrAyRf[  
    %       p = 0:15; ={ -kQq  
    %       z = nan(size(X)); x{zZ%_F  
    %       y = zernfun2(p,r(idx),theta(idx)); 4b;*:C4?  
    %       figure('Units','normalized') ov H'_'  
    %       for k = 1:length(p) 5#N<~  
    %           z(idx) = y(:,k); #1\`!7TO3  
    %           subplot(4,4,k) Q _!tn*  
    %           pcolor(x,x,z), shading interp JhwHsx/  
    %           set(gca,'XTick',[],'YTick',[]) }!>\Ja<\  
    %           axis square ai1;v@1  
    %           title(['Z_{' num2str(p(k)) '}']) a#%*H  
    %       end Scm45"wB+  
    % |2n*Ds'  
    %   See also ZERNPOL, ZERNFUN. MN5}}@  
    y6-P6T  
    %   Paul Fricker 11/13/2006 *{j;LA.BR#  
    cn/&QA"  
    /wJ4hHY  
    % Check and prepare the inputs: pc@mQI  
    % ----------------------------- 4&%H;Q  
    if min(size(p))~=1 [g<gu~  
        error('zernfun2:Pvector','Input P must be vector.') UF6U5],`u  
    end ?I? ~BWu  
    l;A'^  
    if any(p)>35 #>\SK  
        error('zernfun2:P36', ... `Npo|.?=  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 8IWT;%  
               '(P = 0 to 35).']) 8v8-5N  
    end <YEKbnw$o  
    Lb<IEy77\  
    % Get the order and frequency corresonding to the function number: T ,!CDm$=  
    % ---------------------------------------------------------------- 4|I;z  
    p = p(:); ((#BU=0iK  
    n = ceil((-3+sqrt(9+8*p))/2); Pi |Z\j)  
    m = 2*p - n.*(n+2); lxgfi@@+h  
    ^E\n^D-RV  
    % Pass the inputs to the function ZERNFUN: 9I [:#,zdf  
    % ---------------------------------------- s5+;8u9K  
    switch nargin _Li.}g@Bd  
        case 3 )m8Gbkj<  
            z = zernfun(n,m,r,theta); ]+a~/  
        case 4 gg^iYTpt  
            z = zernfun(n,m,r,theta,nflag); O43"-  
        otherwise .o]I^3tf c  
            error('zernfun2:nargin','Incorrect number of inputs.') $uFvZ?w&  
    end ~}d\sQF .  
    ml^=y~J[  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Whp`\E< <  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. W)D?8*  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of -:'%YHxX  
    %   order N and frequency M, evaluated at R.  N is a vector of Hf1b&8&:K  
    %   positive integers (including 0), and M is a vector with the I9aiAD0s  
    %   same number of elements as N.  Each element k of M must be a u9,dSR  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) .{?; #Cdn  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is PZ'|)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 5%QYe]D  
    %   with one column for every (N,M) pair, and one row for every K re*~ "  
    %   element in R. 0[<' ygu  
    % o$%KbfXO]  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- n{~&^Nby*I  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is |&-*&)iD|w  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Kf(Px%G6K  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Q<MxbHk9  
    %   for all [n,m]. )G, S7A  
    % }1V+8'D  
    %   The radial Zernike polynomials are the radial portion of the sGNHA( ;  
    %   Zernike functions, which are an orthogonal basis on the unit NJd4( P  
    %   circle.  The series representation of the radial Zernike Q7F4OS5b  
    %   polynomials is nSQ]qH&4d  
    % >c Tt2v  
    %          (n-m)/2 [okV[7  
    %            __ l:u1P  
    %    m      \       s                                          n-2s Iix:Y}  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r O0BDUpH  
    %    n      s=0 IN#/~[W  
    % ^2%)Nq;O  
    %   The following table shows the first 12 polynomials. fU%Ys9:wU  
    % d Efk~V\  
    %       n    m    Zernike polynomial    Normalization IQ~Anp^R  
    %       --------------------------------------------- sRcS-Yw[S  
    %       0    0    1                        sqrt(2) 5S&Qj7kr  
    %       1    1    r                           2 SJLs3iz_)  
    %       2    0    2*r^2 - 1                sqrt(6) Q;=4']hYU  
    %       2    2    r^2                      sqrt(6) A~k: m0MX  
    %       3    1    3*r^3 - 2*r              sqrt(8) #wvGS%  
    %       3    3    r^3                      sqrt(8) rP"Y.;s  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) iGj,B =35  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) =)i^E9  
    %       4    4    r^4                      sqrt(10) jY/(kA]}  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) mKV31wvK}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Td7Q%7p:  
    %       5    5    r^5                      sqrt(12) [ 4IqHe  
    %       --------------------------------------------- Sa.nUj{M=  
    % JW2f 6!b  
    %   Example: J?Q@f  
    % P$AHw;n[R  
    %       % Display three example Zernike radial polynomials I3x+pa^]2  
    %       r = 0:0.01:1; TI"Ki$jC  
    %       n = [3 2 5]; egfd=z=2un  
    %       m = [1 2 1]; PV=sqLM~  
    %       z = zernpol(n,m,r); _:Y| a>  
    %       figure :AuKQ`c  
    %       plot(r,z) .S=|ZP+  
    %       grid on m%"=sX7/9  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') #%OS=.V  
    % e9S*^2;  
    %   See also ZERNFUN, ZERNFUN2. wu{%gtx/;^  
    I7'v;*  
    % A note on the algorithm. l#+@!2z  
    % ------------------------ KiC,O7&<  
    % The radial Zernike polynomials are computed using the series ]:?hU^H]<  
    % representation shown in the Help section above. For many special 6BQq|:U  
    % functions, direct evaluation using the series representation can Dp} $q`F[  
    % produce poor numerical results (floating point errors), because [,~;n@jz  
    % the summation often involves computing small differences between tI9p2!  
    % large successive terms in the series. (In such cases, the functions yC|odX#  
    % are often evaluated using alternative methods such as recurrence =ty{ugM<  
    % relations: see the Legendre functions, for example). For the Zernike <FZ*'F*M  
    % polynomials, however, this problem does not arise, because the i#4E*B_-  
    % polynomials are evaluated over the finite domain r = (0,1), and a~-k} G5  
    % because the coefficients for a given polynomial are generally all MfFmJ7>Bg  
    % of similar magnitude. d] E.F64{  
    % 2U+Fa t@  
    % ZERNPOL has been written using a vectorized implementation: multiple y=SpIbn{  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 7vGAuTfi/@  
    % values can be passed as inputs) for a vector of points R.  To achieve =G'J@[d{d  
    % this vectorization most efficiently, the algorithm in ZERNPOL =3 ;! 5P  
    % involves pre-determining all the powers p of R that are required to ~1,$  
    % compute the outputs, and then compiling the {R^p} into a single "zFTPL"  
    % matrix.  This avoids any redundant computation of the R^p, and iZ ;562Mo  
    % minimizes the sizes of certain intermediate variables. !g~u'r'1  
    % &oK&vgcj  
    %   Paul Fricker 11/13/2006 8<E U|/O  
    kO/;lrwC  
    2Aa  
    % Check and prepare the inputs: YQO9$g0% ~  
    % ----------------------------- V`feUFw3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) akgvV~5  
        error('zernpol:NMvectors','N and M must be vectors.')  {qH+S/  
    end 6?0QzSpfC#  
    }:b) =fs  
    if length(n)~=length(m) 7#26Smv  
        error('zernpol:NMlength','N and M must be the same length.') Et)j6xz/F  
    end #'y^@90R  
    q\fai^_  
    n = n(:); UX ?S#:h  
    m = m(:); *  }ZKQ  
    length_n = length(n); TP=#U^g*  
    8&#)}A}x  
    if any(mod(n-m,2)) r"KW\HN8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') jrYA5>=>#  
    end %w/:mH3FA  
    {r?Ly15  
    if any(m<0) 0'`#I  
        error('zernpol:Mpositive','All M must be positive.') :&O6Y-/B  
    end :YmFQ>e?  
    Iw</X}#\  
    if any(m>n) 1-pxM~Y  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') z'Fu} ho  
    end  }_?FmuU  
    E-$N!KY  
    if any( r>1 | r<0 ) 2wYY0=k2  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') FWpb5jc)3  
    end \ 3l3,VYH  
    - I j  
    if ~any(size(r)==1) ItQ3|-^  
        error('zernpol:Rvector','R must be a vector.') {,o =K4CD  
    end (V8lmp-F  
    hKQg:30<  
    r = r(:); !O/(._YB`  
    length_r = length(r); 9J f.Ls  
    }& e#b]&:*  
    if nargin==4 ,N2|P:x  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 53?B.\  
        if ~isnorm PZCOJK  
            error('zernpol:normalization','Unrecognized normalization flag.') h%%dRi  
        end Z E},x U%  
    else |z.Z='`  
        isnorm = false;  )9$>i5l  
    end vA@\V)s  
    VrZ6m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  DE14dU  
    % Compute the Zernike Polynomials 4-\gha  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2S_7!|j  
    |gJI}"T  
    % Determine the required powers of r: 7T9Mo .  
    % ----------------------------------- :|E-Dx4F6H  
    rpowers = []; (n~GKcA  
    for j = 1:length(n) WH0$v#8`v  
        rpowers = [rpowers m(j):2:n(j)]; WB>M7MI%  
    end >=3ay^(Y2D  
    rpowers = unique(rpowers); DTSK*a`  
    xrC b29{  
    % Pre-compute the values of r raised to the required powers, D7(kkr:r  
    % and compile them in a matrix: dfA4OZ&  
    % ----------------------------- ojy[<  
    if rpowers(1)==0 kX:d?*{KB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \y0uGnmCj  
        rpowern = cat(2,rpowern{:}); YWUCrnr  
        rpowern = [ones(length_r,1) rpowern]; a?X{k|;!7u  
    else lG!We'?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #~>ykuq  
        rpowern = cat(2,rpowern{:}); xO` O$ie  
    end 94xRKQ}  
    "yc_*R(pU  
    % Compute the values of the polynomials: n*GsM6Y&  
    % -------------------------------------- ;chz};zY  
    z = zeros(length_r,length_n); Z{J{6j  
    for j = 1:length_n uS,XQy2  
        s = 0:(n(j)-m(j))/2; 0!!z'm3  
        pows = n(j):-2:m(j); )M(-EDL>Qk  
        for k = length(s):-1:1 B&k"B?9mL  
            p = (1-2*mod(s(k),2))* ... j @+QwZL|  
                       prod(2:(n(j)-s(k)))/          ... BD (  
                       prod(2:s(k))/                 ... $bT<8:g  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... gls %<A{C  
                       prod(2:((n(j)+m(j))/2-s(k))); | ?])]F  
            idx = (pows(k)==rpowers); (*\*7dIo  
            z(:,j) = z(:,j) + p*rpowern(:,idx); WT9 k85hqj  
        end MZInS:Vj  
         57eA (uI  
        if isnorm ('7qJkV  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); GH!Lu\y\  
        end MehMhHY  
    end [#Y7iN&  
    ,8MUTXd@ V  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  rM sd)  
    0nh;0Z  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 %,l+?fF  
    8op,;Z7Y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)