非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 %y33evX/B
function z = zernfun(n,m,r,theta,nflag) <CJua1l\
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I!.o&dk
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,FX;-nP%
% and angular frequency M, evaluated at positions (R,THETA) on the 1?"vKm
% unit circle. N is a vector of positive integers (including 0), and PygT_-3z{
% M is a vector with the same number of elements as N. Each element oD_je~b)
% k of M must be a positive integer, with possible values M(k) = -N(k) o:_}=1nh
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `pzp(\lc
% and THETA is a vector of angles. R and THETA must have the same aQwc Py|1R
% length. The output Z is a matrix with one column for every (N,M) _n_lO8mK
% pair, and one row for every (R,THETA) pair. qSj2=dlW
%
~%_$e/T
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?:Y{c#w>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), "K`B'/08^
% with delta(m,0) the Kronecker delta, is chosen so that the integral O>xGH0H
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O^hWG ~o
% and theta=0 to theta=2*pi) is unity. For the non-normalized B2VC:TG>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F{ J>=TC
% {gluK#Qm
% The Zernike functions are an orthogonal basis on the unit circle. i 4
KW
% They are used in disciplines such as astronomy, optics, and g5R2a7
% optometry to describe functions on a circular domain. r#*kx# "
% lDO9GNz$
% The following table lists the first 15 Zernike functions. !7@IWz(,"
% tYiK#N7
% n m Zernike function Normalization 2V_C_5)1
% -------------------------------------------------- -0PT(gx
% 0 0 1 1 U .hV1
% 1 1 r * cos(theta) 2 ]K0<DO9
% 1 -1 r * sin(theta) 2 |r 1\
% 2 -2 r^2 * cos(2*theta) sqrt(6) U 9TEC)
% 2 0 (2*r^2 - 1) sqrt(3) Y8`4K* 58%
% 2 2 r^2 * sin(2*theta) sqrt(6) 0G1?
% 3 -3 r^3 * cos(3*theta) sqrt(8) |E0>-\6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) v9INZ1# v
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |Y"q. n77
% 3 3 r^3 * sin(3*theta) sqrt(8) CL|t!+wU/
% 4 -4 r^4 * cos(4*theta) sqrt(10) dON4r2-yC
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !p4w
8
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6+BR5Nr
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <i"U%Ds (
% 4 4 r^4 * sin(4*theta) sqrt(10) ,i#]&f`c;5
% -------------------------------------------------- f:\jPkf'
% aB"W6[
% Example 1: LGKkT?fcSC
% X|t?{.p
% % Display the Zernike function Z(n=5,m=1) e~=fo#*2?@
% x = -1:0.01:1; G+
PBV%gE[
% [X,Y] = meshgrid(x,x); {o<
4 ^
% [theta,r] = cart2pol(X,Y); 16)@<7b]J
% idx = r<=1; 6c>t|=Ss(
% z = nan(size(X)); vC[)/w
% z(idx) = zernfun(5,1,r(idx),theta(idx)); xi8RE@gm
% figure !=--pb
% pcolor(x,x,z), shading interp XWZ
*{/u
% axis square, colorbar } WY7!Y
% title('Zernike function Z_5^1(r,\theta)') *O,\/aQ+
% KB <n-'
% Example 2: |1X^@
% D`0II=
% % Display the first 10 Zernike functions Um]>B`."wK
% x = -1:0.01:1; ?Q;8D@
% [X,Y] = meshgrid(x,x); {co(w
7
% [theta,r] = cart2pol(X,Y); g
#u1.|s&p
% idx = r<=1; (o)nN8
% z = nan(size(X)); @4Z>;
% n = [0 1 1 2 2 2 3 3 3 3]; yd[}?
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; #qT 97NQ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; dbSIC[q
% y = zernfun(n,m,r(idx),theta(idx)); 2+
F34
% figure('Units','normalized') }MW*xtGV
% for k = 1:10 P\KP )bkC
% z(idx) = y(:,k); , fFB.q"
% subplot(4,7,Nplot(k)) nzE4P3 C+
% pcolor(x,x,z), shading interp 0vNEl3f'O
% set(gca,'XTick',[],'YTick',[]) )(TaVHJR
% axis square JVf8KHDj
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) qY`)W[
% end Mz#
&"WjF
% #P=rP=
% See also ZERNPOL, ZERNFUN2. <iunDL0
Fx2
KRxk
% Paul Fricker 11/13/2006 C%t~?jEK~^
Q
,30
7kx)/Rw\B
% Check and prepare the inputs: yjvzA|(YC
% ----------------------------- >'wl)j$
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8hba3L_Z
error('zernfun:NMvectors','N and M must be vectors.') &!]$#
end xCFk1%qf
))|Wm}
if length(n)~=length(m) K#H}=Y A
error('zernfun:NMlength','N and M must be the same length.') _O2},9L n
end 5p}Y6Lc\j
I]bqle0M
n = n(:); )n}Wb+2I
m = m(:); nx`!BNL'V
if any(mod(n-m,2)) fs+l
error('zernfun:NMmultiplesof2', ... R nt&<|8G
'All N and M must differ by multiples of 2 (including 0).') W76K/A<h>
end ^5j|
IlG)=?8XZ
if any(m>n) -;&aU;k
error('zernfun:MlessthanN', ... }GJIM|7^
'Each M must be less than or equal to its corresponding N.') U*`7
end 0b+OB pqN
iM+K&\{_h
if any( r>1 | r<0 ) H|k!5W^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]4-lrI1#
end ,S
E5W2a]
{j@
S<PD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) a_XM2dc%
error('zernfun:RTHvector','R and THETA must be vectors.') p0~=
end NH$%g\GPs
'uS!rKkQlu
r = r(:); *`OgwMr)M
theta = theta(:); #\KSv
Z
length_r = length(r); W.TZU'%
if length_r~=length(theta) BlUl5mP}>
error('zernfun:RTHlength', ... p s=jGh[
'The number of R- and THETA-values must be equal.') j9Ptd$Uj
end =G3O7\KmH
7;RhA5M
% Check normalization: Xd/gvg{??0
% -------------------- 9~98v;Z1
if nargin==5 && ischar(nflag) RQ}(}|1+\
isnorm = strcmpi(nflag,'norm'); #Ki(9oWd
if ~isnorm w|:UTJ>@
error('zernfun:normalization','Unrecognized normalization flag.') La9v97H:
end r2H \B,_
else ;cd{+0
isnorm = false; a)=WDRk
end |6w.m<p
:W(3<D7\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/B)ZB})z
% Compute the Zernike Polynomials P/snzm|@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FJKW=1=,
7|LJwXQ-
% Determine the required powers of r: hNs970i
% ----------------------------------- =xcA4"k
m_abs = abs(m); P.Pw.[:3
rpowers = []; *5Upb,**
for j = 1:length(n) Ry>c]\a]
rpowers = [rpowers m_abs(j):2:n(j)]; P5/K?I~/So
end 48dIh\TH"
rpowers = unique(rpowers); wJ@8-H 8}
wEL$QOu$
% Pre-compute the values of r raised to the required powers, WqP>cl2Lm
% and compile them in a matrix: e@' rY#:u
% ----------------------------- @Aa$k:_
if rpowers(1)==0 Z&FC:4!!
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %Z~,F?
rpowern = cat(2,rpowern{:}); k%-_z}:3V
rpowern = [ones(length_r,1) rpowern]; AujvKQ(
else %"^$$$6%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vWY}+#
rpowern = cat(2,rpowern{:}); j~,7JJ
(y
end 9k8ftxB^
IPmSkK
% Compute the values of the polynomials: EeGP E
% -------------------------------------- hNBv|&D#
y = zeros(length_r,length(n)); 4GWt.+{J$
for j = 1:length(n) 'W>Bz,M6yo
s = 0:(n(j)-m_abs(j))/2; (+7gS_c
pows = n(j):-2:m_abs(j); @w&VI6
for k = length(s):-1:1 hZ2!UW4'
p = (1-2*mod(s(k),2))* ... "&?F6Pi
prod(2:(n(j)-s(k)))/ ... `&$"oW{HW
prod(2:s(k))/ ... !GI*R2<W
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wy6> ^_z
prod(2:((n(j)+m_abs(j))/2-s(k))); N),bhYS]
idx = (pows(k)==rpowers); ~$XbYR-
y(:,j) = y(:,j) + p*rpowern(:,idx); fP>_P#gZ
end |_L\^T|6
$3>k/*=
if isnorm xLX<