非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]CyWL6z
function z = zernfun(n,m,r,theta,nflag) SPKGbp&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?H8w/{J
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?2hoY
% and angular frequency M, evaluated at positions (R,THETA) on the HU]Yv+3
% unit circle. N is a vector of positive integers (including 0), and tWL3F?wd
% M is a vector with the same number of elements as N. Each element cA%70Y:AV
% k of M must be a positive integer, with possible values M(k) = -N(k) +r[u4?
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :9H=D^J
% and THETA is a vector of angles. R and THETA must have the same L?!*HS7m
% length. The output Z is a matrix with one column for every (N,M) t4)~A5s
% pair, and one row for every (R,THETA) pair. qPsf`nI7
% r@L19d)J
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HNN,1MN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^n#6CW*n
% with delta(m,0) the Kronecker delta, is chosen so that the integral {8D`A;KD
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uPbvN[~t
% and theta=0 to theta=2*pi) is unity. For the non-normalized 82#7TX4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mk?&`_X1
% 4Z>KrFO
% The Zernike functions are an orthogonal basis on the unit circle. ju#/ {V;D
% They are used in disciplines such as astronomy, optics, and ~oO>6
% optometry to describe functions on a circular domain. 8Z{&b,Y4L
% c6gRXp'ID
% The following table lists the first 15 Zernike functions. 9%aBW7@SK
% B-`d7c5
% n m Zernike function Normalization &Ji!*~sE
% -------------------------------------------------- d`9%:2qE
% 0 0 1 1 @,0W(
% 1 1 r * cos(theta) 2 _r+2o-ZR
% 1 -1 r * sin(theta) 2 \C;cs&\Q
% 2 -2 r^2 * cos(2*theta) sqrt(6) K#q1/2
% 2 0 (2*r^2 - 1) sqrt(3) <PL94
% 2 2 r^2 * sin(2*theta) sqrt(6) &rs+x<
% 3 -3 r^3 * cos(3*theta) sqrt(8) 7+wy`xi
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^g/
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3u +A/
% 3 3 r^3 * sin(3*theta) sqrt(8) 0NlC|5ma)
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2(V;OWY(@
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `l+{jrRb<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^hPREbD+f
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?,8|K B
% 4 4 r^4 * sin(4*theta) sqrt(10) aOZSX3;wg
% -------------------------------------------------- =\mAvVe
% l1*qDzb
% Example 1: _7df(+.{<A
% V<&x+?>S
% % Display the Zernike function Z(n=5,m=1) OxGKtnAjf
% x = -1:0.01:1; =+24jHs
% [X,Y] = meshgrid(x,x); -Lh\]
% [theta,r] = cart2pol(X,Y); aH7i$U&
% idx = r<=1; NN(ZH73
% z = nan(size(X)); i\E}!Rwl+
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 9K~0:c
% figure >2Z0XEe
% pcolor(x,x,z), shading interp 6lW\-h`NG
% axis square, colorbar iZsZSW \
% title('Zernike function Z_5^1(r,\theta)') MR$R#
% |C;8GSw>|F
% Example 2: 8:*
% qfJi[8".
% % Display the first 10 Zernike functions ]Rah,4?9f
% x = -1:0.01:1; aU&p7y4C@
% [X,Y] = meshgrid(x,x); l|WdJn
o
% [theta,r] = cart2pol(X,Y); X/< zxM
% idx = r<=1; awYnlE/Z1
% z = nan(size(X)); r7dwj
% n = [0 1 1 2 2 2 3 3 3 3]; %x}iEqk U
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; (<bYoWrK#
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <Wd#HKIG>l
% y = zernfun(n,m,r(idx),theta(idx)); 80(Olf@PE
% figure('Units','normalized') S($8_u$U
% for k = 1:10 ]iI2
% z(idx) = y(:,k); /\7E&n:)2
% subplot(4,7,Nplot(k)) nZ tMF%j'
% pcolor(x,x,z), shading interp q4y P\B
% set(gca,'XTick',[],'YTick',[]) "Zh3,
% axis square :mYVHLmea
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'dXGd.V7u
% end -hd@<+;E
% %P8*Az&]T
% See also ZERNPOL, ZERNFUN2. .ei5+?V<i
9~7s*3zI
% Paul Fricker 11/13/2006 [SKN}:D
_^%DfMP3i\
*J D-|mK
% Check and prepare the inputs: #fGI#]SG?
% ----------------------------- !B*l'OJw
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^-^ii3G`
error('zernfun:NMvectors','N and M must be vectors.') mb\"qD5
end =&K8~
7g7[a/Bts
if length(n)~=length(m) z7X,5[P
error('zernfun:NMlength','N and M must be the same length.') Of}dsav
end jLM}hwJ8
"@^^niSFl
n = n(:); GBY-WN4sc[
m = m(:); H$ZLtPv5
if any(mod(n-m,2)) 6 h%,%
error('zernfun:NMmultiplesof2', ... |!q,J
'All N and M must differ by multiples of 2 (including 0).') : Tcvj5
end fW
w+'xF!
G' '9eV$
if any(m>n) /O}lSXo6E
error('zernfun:MlessthanN', ... wnU-5r&!]
'Each M must be less than or equal to its corresponding N.') HcQ)XJPK
end Bra}HjHO
v[<x>?iD_
if any( r>1 | r<0 ) xj[v$HP
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5AK@e|G$w
end qi*Dd[OG
0j :u.x
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YU`}T<;bg
error('zernfun:RTHvector','R and THETA must be vectors.') cE^Ljk
end 2YQ;Kh"S
,R\e x =c
r = r(:); t"Bp#
U1
theta = theta(:); Iw4[D#o
length_r = length(r); j+PLtE
if length_r~=length(theta) t$&'mJ_-w
error('zernfun:RTHlength', ... \fsNI T/
'The number of R- and THETA-values must be equal.') S.Q:O{]
end B7wzF"
Zu*7t<W
% Check normalization: 'YJ~~o
% -------------------- YwS/O N
if nargin==5 && ischar(nflag) bcUSjG>
isnorm = strcmpi(nflag,'norm'); h$#PboLd
if ~isnorm rd;E /:`5
error('zernfun:normalization','Unrecognized normalization flag.') `An p;el
end }qJ`nN8
else Y4+]5;B8
isnorm = false; <J>k%,:B
end =te4p@
)gD2wk(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lvRTy|%[
% Compute the Zernike Polynomials Y_6v@SiO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4s9.")G
(Y*9[hm
% Determine the required powers of r: A<^X P-Nrp
% ----------------------------------- M?=I{}!@Q
m_abs = abs(m); >oN Wf
rpowers = []; r/@ Wn
for j = 1:length(n) &^w"
rpowers = [rpowers m_abs(j):2:n(j)]; RUq[HxF)
6
end E#3tkFF0Z[
rpowers = unique(rpowers); L]H'
]wpn=
bPif"dhHe
% Pre-compute the values of r raised to the required powers, #C'E'g0
% and compile them in a matrix: ^QjkZ^<dD
% ----------------------------- obN8+ j
if rpowers(1)==0 y\4/M6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); TyA1Qk\
rpowern = cat(2,rpowern{:}); XAi0lN{,
rpowern = [ones(length_r,1) rpowern]; ]jPP]Z:y
else ;y{(#X#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H |7XfM
rpowern = cat(2,rpowern{:}); }#;.b'`
end 2#00<t\
'/9q7?[E!
% Compute the values of the polynomials: uJlW$Oc:.
% -------------------------------------- pr1bsrMuL
y = zeros(length_r,length(n)); I<XYLe[_S
for j = 1:length(n) +S+=lu _
s = 0:(n(j)-m_abs(j))/2; e2K9CE.O
pows = n(j):-2:m_abs(j); 3TZ:
for k = length(s):-1:1 +V9xKhR;x
p = (1-2*mod(s(k),2))* ... : 2$*'{mM
prod(2:(n(j)-s(k)))/ ... q9PjQ%
prod(2:s(k))/ ... [k(b<'
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e*}GQ
prod(2:((n(j)+m_abs(j))/2-s(k))); Fq!_VF^r
idx = (pows(k)==rpowers); {IvA 5^
y(:,j) = y(:,j) + p*rpowern(:,idx); cH4PrMm&
end (;^>G[
g oyQ',+
if isnorm bBXLW}W
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
UBj&T^j
end Y)$%-'=b+
end ~Hv>^u
Mh
% END: Compute the Zernike Polynomials S-ZN}N{,6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,!GoFu
3&5b!Y
% Compute the Zernike functions: C2\WvE%!
% ------------------------------ [^bq?w
idx_pos = m>0; O^ui+44wp
idx_neg = m<0; ;m>/tD%
)G?\{n-
z = y; K/*"U*9Kv
if any(idx_pos) O6 s3#iu
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k~K;r8D/
end [hpkE lE
if any(idx_neg) )ZBNw{nh
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >;Vfs{Z(q
end cQ1Axs TO
)"hd"
% EOF zernfun