非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sr,8Qd0M
function z = zernfun(n,m,r,theta,nflag) `BZX\LPHm
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. lw 9rf4RF
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C")NNs=
% and angular frequency M, evaluated at positions (R,THETA) on the Q|J$R
% unit circle. N is a vector of positive integers (including 0), and XB-l[4?
% M is a vector with the same number of elements as N. Each element BnLE+X
% k of M must be a positive integer, with possible values M(k) = -N(k) ~C2[5r{So
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 2(sq*!tX
% and THETA is a vector of angles. R and THETA must have the same Ni 5Su
% length. The output Z is a matrix with one column for every (N,M) J#& C&S 2
% pair, and one row for every (R,THETA) pair. N,NEg4 q[
% S~LTLv:>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0xg6
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ('.r_F
% with delta(m,0) the Kronecker delta, is chosen so that the integral vy330SQPo
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, HGRH9W
% and theta=0 to theta=2*pi) is unity. For the non-normalized >T~duwS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O:,Fif?;
% ;X3bgA']
% The Zernike functions are an orthogonal basis on the unit circle. /_*L8b
% They are used in disciplines such as astronomy, optics, and zmMz6\ $
% optometry to describe functions on a circular domain. oVSq#I4
% {n>W8sN<
% The following table lists the first 15 Zernike functions. {$mj9?n=v
% FsYsQ_,R3
% n m Zernike function Normalization (Q09$
% -------------------------------------------------- .)eX(2j\
% 0 0 1 1 j;']L}R
% 1 1 r * cos(theta) 2 <+c6CM$#}V
% 1 -1 r * sin(theta) 2 :X6A9jmd
% 2 -2 r^2 * cos(2*theta) sqrt(6) e7.!=R{6
% 2 0 (2*r^2 - 1) sqrt(3) kdrya
% 2 2 r^2 * sin(2*theta) sqrt(6) [8QE}TFic
% 3 -3 r^3 * cos(3*theta) sqrt(8) jFBnP,WQ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,HQaS9vBQ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) MzsDDP+h
% 3 3 r^3 * sin(3*theta) sqrt(8) &