非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2{#quXN9
function z = zernfun(n,m,r,theta,nflag) !'[sV^ds
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }%jb/@~
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B2,!
0Re
% and angular frequency M, evaluated at positions (R,THETA) on the 8KAyif@1::
% unit circle. N is a vector of positive integers (including 0), and Z-vzq;
% M is a vector with the same number of elements as N. Each element ;yUY|o
% k of M must be a positive integer, with possible values M(k) = -N(k) IO6i
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, sJ0y3)PQ
% and THETA is a vector of angles. R and THETA must have the same h+Z|s
% length. The output Z is a matrix with one column for every (N,M) f0^s*V+
% pair, and one row for every (R,THETA) pair. :V_$?S
% s!+?)bB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YTGup]d
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uZQ)A,#n;
% with delta(m,0) the Kronecker delta, is chosen so that the integral JT:9"lmJz,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WQ*$y3%
% and theta=0 to theta=2*pi) is unity. For the non-normalized z_Qw's
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. p@Qzg
/X
% Gu%`__
% The Zernike functions are an orthogonal basis on the unit circle. @FbzKHdV/
% They are used in disciplines such as astronomy, optics, and Nf;vUYP
% optometry to describe functions on a circular domain. 6f{ c
% [6-l6W
% The following table lists the first 15 Zernike functions. E? FPxs
% U2bb|6j
% n m Zernike function Normalization EG 1SIEo
% -------------------------------------------------- Q%
dpGI
% 0 0 1 1 Ik}*7D
% 1 1 r * cos(theta) 2 |MBnRR
% 1 -1 r * sin(theta) 2 #~#_)\l'F
% 2 -2 r^2 * cos(2*theta) sqrt(6) ;nC+Kz:
% 2 0 (2*r^2 - 1) sqrt(3) Xz5=fj&
% 2 2 r^2 * sin(2*theta) sqrt(6) (te\!$
% 3 -3 r^3 * cos(3*theta) sqrt(8) {$s:N&5
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) I5bi^!i
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6}|vfw
% 3 3 r^3 * sin(3*theta) sqrt(8) hwXp=not(
% 4 -4 r^4 * cos(4*theta) sqrt(10) <&x_e-;b'
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F.\]Hqq
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) nTHP~]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4$|G$h
% 4 4 r^4 * sin(4*theta) sqrt(10) 9Qkww&VEk
% -------------------------------------------------- 0<s)xaN>Y
% =W4cWG?+
% Example 1: Y8AU<M
% `V?{
% % Display the Zernike function Z(n=5,m=1) J,q:
% x = -1:0.01:1; fx}R7GN2
% [X,Y] = meshgrid(x,x); SS`\,%aog
% [theta,r] = cart2pol(X,Y); MP3E]T~:
% idx = r<=1; ec3('}X
% z = nan(size(X)); v\HGL56T
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Y] n^(V
% figure i/$lOde
% pcolor(x,x,z), shading interp =djzE`)0
% axis square, colorbar A] F K\
% title('Zernike function Z_5^1(r,\theta)') )q=1<V44d
% QUe.vb^O
% Example 2: .oe,#1Qh{
% C2b.([HE
% % Display the first 10 Zernike functions {<]abO
% x = -1:0.01:1; B;-oa;m:E=
% [X,Y] = meshgrid(x,x); " 7aFVf
% [theta,r] = cart2pol(X,Y); V~+Unn
% idx = r<=1; L8$7^muad
% z = nan(size(X)); u_[Zu8
% n = [0 1 1 2 2 2 3 3 3 3]; kt S0
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {-E{.7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; T[7DJNdG6
% y = zernfun(n,m,r(idx),theta(idx)); e@q[Dv'mu
% figure('Units','normalized') Fj5^_2MU:
% for k = 1:10 "TxXrt%>A
% z(idx) = y(:,k); xp39TiXJ*
% subplot(4,7,Nplot(k)) >?DrC /
% pcolor(x,x,z), shading interp lS,Hr3Lz
% set(gca,'XTick',[],'YTick',[]) "90}H0(+
% axis square r>G$u
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
/!9949XV
% end 7'o?'He-.2
% /|\`NARI
% See also ZERNPOL, ZERNFUN2. mDq01fU4
'}OrFN
% Paul Fricker 11/13/2006 Uvuvr_IP
~k J#IA
: i(h[0
% Check and prepare the inputs: LCdc7
% ----------------------------- p1&d@PF&&
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F>}).qx
error('zernfun:NMvectors','N and M must be vectors.') oZ=e/\[K
end p"X\]g^jA>
?ph"|LyL
if length(n)~=length(m) '6aH*B:}*;
error('zernfun:NMlength','N and M must be the same length.') dxU[>m;
end _I-0[w
WL7:22nSHa
n = n(:); &zm5s*yNt
m = m(:); Y6CadC
if any(mod(n-m,2)) Fq{nc]L6
error('zernfun:NMmultiplesof2', ... 6^wiEnA
'All N and M must differ by multiples of 2 (including 0).') ;j(xrPNb
end 57oY]NT?
lE`ScYG
if any(m>n) aE;!mod
error('zernfun:MlessthanN', ... m\VJ=
'Each M must be less than or equal to its corresponding N.') w
S;(u[W
end qS7*.E~j|]
sX=!o})0
if any( r>1 | r<0 ) crmnh4-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') SC!IQ80H#D
end 7IvCMb&%R
Pjx9@i
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) m t*v@'l.
error('zernfun:RTHvector','R and THETA must be vectors.') 0W>O,%z&P#
end fZGKVxo"
*JDc1$H0
r = r(:); U}
g%`<
theta = theta(:); ~PV>3c3l=
length_r = length(r); J=Jw"? f
if length_r~=length(theta) F:H76O` 8
error('zernfun:RTHlength', ... |Rl|Th
'The number of R- and THETA-values must be equal.') 7'<4'BGzl]
end (*2"dd
q2SkkY$_]y
% Check normalization: V*/))n?
% -------------------- Mc\lzq8\ 1
if nargin==5 && ischar(nflag) ]f-e/8$`@
isnorm = strcmpi(nflag,'norm'); CBvBBt*
if ~isnorm "=RB
#
error('zernfun:normalization','Unrecognized normalization flag.') {=(4
end }x8fXdd
else z=u4&x|xA
isnorm = false; =CJs&Qa2
end ;1y\!f3#V~
q`{.2yV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )XNcy"
% Compute the Zernike Polynomials $iB(N ZV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BpKP]V
9R E;50h
% Determine the required powers of r: {vU '>pp
% ----------------------------------- 3b_#xr-
m_abs = abs(m); ROfmAc
rpowers = []; 1n5&PNu
for j = 1:length(n) jALo;PDJ
rpowers = [rpowers m_abs(j):2:n(j)]; kiECJ@5p
end kP| !!N
rpowers = unique(rpowers); y"]> Rr
n^A=ar.
% Pre-compute the values of r raised to the required powers, Pgo5&SQb
% and compile them in a matrix: kBT cND|
% ----------------------------- H11Wb(6Wu
if rpowers(1)==0 Kzmgy14o
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -Wig k['v
rpowern = cat(2,rpowern{:}); Rp|:$5&nE
rpowern = [ones(length_r,1) rpowern]; vuK 5DG4
else 'z\F-Ttq
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Zdak))7
rpowern = cat(2,rpowern{:}); >Te{a*`"m:
end dxd}:L~z
%:/;R_
% Compute the values of the polynomials: jXdn4m/O
% -------------------------------------- 68d @By
y = zeros(length_r,length(n)); O-|3k$'\z
for j = 1:length(n) :Rq D0>1
s = 0:(n(j)-m_abs(j))/2; [C&c;YNp
pows = n(j):-2:m_abs(j); q8p 'bibY
for k = length(s):-1:1 =];FojC6I
p = (1-2*mod(s(k),2))* ... h0gT/x
prod(2:(n(j)-s(k)))/ ... 7,jqA"9
prod(2:s(k))/ ... NfSe(rd
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XYn$yR\dj
prod(2:((n(j)+m_abs(j))/2-s(k)));
$SDx)
'!
idx = (pows(k)==rpowers); 9hq 7:
y(:,j) = y(:,j) + p*rpowern(:,idx); +I')>6
end 4bKZ@r%
O=mJ8W@
if isnorm 7j]@3D9[:p
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~:0h o
end t2E_y6
end N0XGW_f
% END: Compute the Zernike Polynomials z C``G<TB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D/)xe:
%AJdtJ@0H
% Compute the Zernike functions: @!Pq"/
% ------------------------------ H@6
idx_pos = m>0; EEaFi8
idx_neg = m<0; B>'\g
O\2
]l\J"*"aB
z = y; +uH1rF_&@
if any(idx_pos) g,1\Gj%y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <;Xj4
J
end oo qNPLa
if any(idx_neg) vbWX`skU
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >sP;B5S
end Z2ZS5a
`zvYuKQ.}
% EOF zernfun