切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11006阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 x6;j<m5Mjx  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! C!&y   
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "TS  
    function z = zernfun(n,m,r,theta,nflag) +jP~s  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. IQH[Q9%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7~1IO|4t  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~9\zWRh  
    %   unit circle.  N is a vector of positive integers (including 0), and 89~ =eY  
    %   M is a vector with the same number of elements as N.  Each element Ysi  g T  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) a%vrt)Gx  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, en*d/>OVJ  
    %   and THETA is a vector of angles.  R and THETA must have the same E?)656F[  
    %   length.  The output Z is a matrix with one column for every (N,M) sJG5/w  
    %   pair, and one row for every (R,THETA) pair. 58V[mlW)O0  
    % 9`Q<Yy"du  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ts$@s^S]  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >[10H8~bI/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral MXD4|r(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,*I@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3oy~=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w5=tlb  
    % %A/_5;PZ/  
    %   The Zernike functions are an orthogonal basis on the unit circle. Q{g;J`Z)p  
    %   They are used in disciplines such as astronomy, optics, and h"+ `13  
    %   optometry to describe functions on a circular domain. tBATZ0nK`Q  
    % I=DxRgt  
    %   The following table lists the first 15 Zernike functions. zj{r^D$  
    % XT>.`, sv  
    %       n    m    Zernike function           Normalization qJ4T]FVN  
    %       -------------------------------------------------- Zw1U@5}A  
    %       0    0    1                                 1 rN)V[5R#M  
    %       1    1    r * cos(theta)                    2 J%H;%ROx  
    %       1   -1    r * sin(theta)                    2 [K/m  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _~u2: yl (  
    %       2    0    (2*r^2 - 1)                    sqrt(3) IiBD?}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Px FWJ?=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) bi4f]^hQz  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) aGZi9O7G}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b</9Ai=  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Vr[czfROz'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) cvd\/pG)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -_ C#wtC  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1BHG'y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `Z"Q^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :#~U<C@o  
    %       -------------------------------------------------- < 0M:"^f  
    % "XgmuSQ!  
    %   Example 1: !~]<$WZV  
    % 5q9s,r_  
    %       % Display the Zernike function Z(n=5,m=1) 7Z ;?b0W  
    %       x = -1:0.01:1; Fs_]RfG  
    %       [X,Y] = meshgrid(x,x); %UUH"  
    %       [theta,r] = cart2pol(X,Y); z!;1i[|x  
    %       idx = r<=1; 8mTM$#\  
    %       z = nan(size(X)); 66x?A0P  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ",aT WQgN  
    %       figure mrIh0B:`  
    %       pcolor(x,x,z), shading interp dovZ#D@Q  
    %       axis square, colorbar x<Vm5j  
    %       title('Zernike function Z_5^1(r,\theta)') M-)R Q-h  
    % <@wj7\pQ  
    %   Example 2: L(T12s  
    % =OIw*L8C"I  
    %       % Display the first 10 Zernike functions uiq^|5Z  
    %       x = -1:0.01:1; m7EcnQf  
    %       [X,Y] = meshgrid(x,x); ;Gx)Noo/>  
    %       [theta,r] = cart2pol(X,Y); /sM~U q?  
    %       idx = r<=1; xx{!3 F  
    %       z = nan(size(X)); J^R=dT!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0Wa}<]:^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; o<IAeH {+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )-*5v D  
    %       y = zernfun(n,m,r(idx),theta(idx)); cdqB,]"  
    %       figure('Units','normalized') dL7E<?l  
    %       for k = 1:10 bVP"(H]  
    %           z(idx) = y(:,k); !Z VU,b>  
    %           subplot(4,7,Nplot(k)) xGTP;NT_H  
    %           pcolor(x,x,z), shading interp kmzH'wktt  
    %           set(gca,'XTick',[],'YTick',[]) lj+u@Z<xA  
    %           axis square V%$/#sza  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pym!U@$t  
    %       end 4DZ-bt'  
    % 0TpK#OlI|c  
    %   See also ZERNPOL, ZERNFUN2. Z{&cuo.@<]  
    D}8EERb  
    %   Paul Fricker 11/13/2006 Eu"_MgD  
    |5Xq0nvCe  
    >pUtwIP  
    % Check and prepare the inputs: ODZ|bN0>  
    % ----------------------------- {(r6e  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UAoh`6vFF8  
        error('zernfun:NMvectors','N and M must be vectors.') &0f5:M{P  
    end ;WR,eI..  
    F:x [  
    if length(n)~=length(m) dOa%9[  
        error('zernfun:NMlength','N and M must be the same length.')  : ]C~gc  
    end k)EX(T\  
    4apL4E"r  
    n = n(:); jLg9H/w{  
    m = m(:); ]_N|L|]M  
    if any(mod(n-m,2)) cnTaJ/o  
        error('zernfun:NMmultiplesof2', ... oudxm[/U  
              'All N and M must differ by multiples of 2 (including 0).') )GHq/:1W  
    end M4as  
     w@,zFV  
    if any(m>n) E>l~-PaZY  
        error('zernfun:MlessthanN', ... \rv<$d@L  
              'Each M must be less than or equal to its corresponding N.') H;RwO@v  
    end @S|XGf  
    |i++0BU  
    if any( r>1 | r<0 ) iLSr*` o  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') m*JaXa  
    end 4?B\O`sy.  
    |\pbir  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %c4Hse#Y  
        error('zernfun:RTHvector','R and THETA must be vectors.') 82l~G;.n3  
    end `V##Y  
    O%bEB g  
    r = r(:); gEjdN.  
    theta = theta(:); d3xmtG {i  
    length_r = length(r); J{Q|mD=  
    if length_r~=length(theta) #\=FO>  
        error('zernfun:RTHlength', ... ^0Mt*e{q  
              'The number of R- and THETA-values must be equal.') `nu''B H  
    end u?C#4  
    E>K!Vrh-L  
    % Check normalization: ov, hI>0!D  
    % -------------------- A}l3cP; `#  
    if nargin==5 && ischar(nflag) wpN=,&!  
        isnorm = strcmpi(nflag,'norm'); >7 ="8  
        if ~isnorm %^jMj2  
            error('zernfun:normalization','Unrecognized normalization flag.') LGn:c;  
        end 6Yln, rC  
    else RCpR3iC2  
        isnorm = false; ]9^sa-8  
    end %KLpig  
    PpzP7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {tWf  
    % Compute the Zernike Polynomials DA\2rLs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m^zUmrj[  
    K|epPGRr  
    % Determine the required powers of r: `x*Pof!Io  
    % ----------------------------------- YuO.yh_  
    m_abs = abs(m); z:wutqru  
    rpowers = []; wfH^<jY)E  
    for j = 1:length(n) iUN Ib  
        rpowers = [rpowers m_abs(j):2:n(j)]; F'21jy&  
    end ,0!}7;j_c  
    rpowers = unique(rpowers); lN Yt`xp  
    )?anOD[  
    % Pre-compute the values of r raised to the required powers, ;>Ib^ov  
    % and compile them in a matrix: xA$XT[D  
    % ----------------------------- 2fL;-\!y(  
    if rpowers(1)==0 dl.p\t(1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); , K~}\CR  
        rpowern = cat(2,rpowern{:}); 5j?3a1l0  
        rpowern = [ones(length_r,1) rpowern]; _z|65H  
    else >G25m'&,7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gi1^3R[  
        rpowern = cat(2,rpowern{:}); gtppv6<Mj4  
    end ;@oN s-  
    ZbdZ rE$  
    % Compute the values of the polynomials: m+]K;}.}R  
    % -------------------------------------- NXrJfp  
    y = zeros(length_r,length(n)); 3EPv"f^V  
    for j = 1:length(n) ?Lk)gO^C  
        s = 0:(n(j)-m_abs(j))/2; a .k.n<  
        pows = n(j):-2:m_abs(j); :74y!  
        for k = length(s):-1:1 u7>],<  
            p = (1-2*mod(s(k),2))* ... ig/xv  
                       prod(2:(n(j)-s(k)))/              ... m;GCc8  
                       prod(2:s(k))/                     ... zHM(!\8K  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #Lh;CSS  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8}O lL,fP  
            idx = (pows(k)==rpowers); +nFu|qM}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); nksLWfpG?B  
        end vdc\R?  
         hcsP2 0s  
        if isnorm rlOAo`hd  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B|C2lu  
        end _@ qjV~%Sy  
    end iP ->S\  
    % END: Compute the Zernike Polynomials w;4<h8Wn5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <L8'!q}  
    *k.G5>@  
    % Compute the Zernike functions: ;n*.W|Uph  
    % ------------------------------ S%Uutj\/W  
    idx_pos = m>0; aC8} d  
    idx_neg = m<0; -=)H{  
    f<d`B]$(  
    z = y; 2DrP"iGq5  
    if any(idx_pos) p>v$FiV2N  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $9_xGfx}  
    end *av<E  
    if any(idx_neg) B9jC?I |`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); h+g_rvIG*  
    end @=}0`bE  
    BYL)nCc  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +SR+gE\s0  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. [Kg+^N% +  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4yy>jXDG  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive /$Nsd  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, WUn]F~Lt  
    %   and THETA is a vector of angles.  R and THETA must have the same AUG#_HE]k  
    %   length.  The output Z is a matrix with one column for every P-value, [.7d<oY  
    %   and one row for every (R,THETA) pair. fgp]x&5Q  
    % w e//|fA<  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ^eY!U%.  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) cKca;SNql1  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) SaO}e  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 V(I8=rVH  
    %   for all p. :'X&bn  
    % y&$A+peJ1  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 :1QI8%L'$i  
    %   Zernike functions (order N<=7).  In some disciplines it is @1roe G  
    %   traditional to label the first 36 functions using a single mode ,wb:dj-  
    %   number P instead of separate numbers for the order N and azimuthal EHJ.T~X  
    %   frequency M. l ^0@86  
    % O3,jg |,  
    %   Example: Xx~Bp+  
    % hn G Z=  
    %       % Display the first 16 Zernike functions JX;<F~{.  
    %       x = -1:0.01:1; T4Uev*A  
    %       [X,Y] = meshgrid(x,x); lgL%u K)  
    %       [theta,r] = cart2pol(X,Y); {UI+$/v#  
    %       idx = r<=1; E4jNA }3k+  
    %       p = 0:15; sUO`uqZV  
    %       z = nan(size(X)); reu*53r]  
    %       y = zernfun2(p,r(idx),theta(idx)); UcHJR"M~c  
    %       figure('Units','normalized') -l*|M(N\  
    %       for k = 1:length(p) i>`%TW:g  
    %           z(idx) = y(:,k); rpha!h>w1%  
    %           subplot(4,4,k) Gx/Oi)&/  
    %           pcolor(x,x,z), shading interp 1v2 7;Q<+Q  
    %           set(gca,'XTick',[],'YTick',[]) Ty?cC**  
    %           axis square )D7m,Wi+  
    %           title(['Z_{' num2str(p(k)) '}']) eF$x1|  
    %       end D#C~pdp  
    % b{&)6M)zo  
    %   See also ZERNPOL, ZERNFUN. tXs\R(?T  
    cKI9#t_  
    %   Paul Fricker 11/13/2006 )qw&%sO +  
    Ynj,pl  
    &K#M*B ,*p  
    % Check and prepare the inputs: ~qKY) "gG  
    % ----------------------------- U?Zq6_M&  
    if min(size(p))~=1 (y~TL*B  
        error('zernfun2:Pvector','Input P must be vector.') $qnZl'O>  
    end &U#|uc!+  
    sY&IquK^  
    if any(p)>35 i-_mTY&M  
        error('zernfun2:P36', ... r q].UCj  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 83_h J  
               '(P = 0 to 35).']) X&`t{Id?6  
    end A?P_DA  
    f}P3O3Yv&  
    % Get the order and frequency corresonding to the function number: :g0zT[f  
    % ---------------------------------------------------------------- ]w8(&,PP  
    p = p(:); 2HA:"v8  
    n = ceil((-3+sqrt(9+8*p))/2); 14yv$,  
    m = 2*p - n.*(n+2); \Gvm9M  
    [RhO$c$[\  
    % Pass the inputs to the function ZERNFUN: LU%E:i|  
    % ---------------------------------------- Bj;'qB>3  
    switch nargin ;N0XFjdR  
        case 3 8cIKvHx  
            z = zernfun(n,m,r,theta); *.t 7G  
        case 4 @RKryY)  
            z = zernfun(n,m,r,theta,nflag); (uE!+2C  
        otherwise }S-O& Z  
            error('zernfun2:nargin','Incorrect number of inputs.') sDlO#  
    end YU'E@t5  
    8(~ h"]`!  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) zQd 2  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. (O3nL.  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of %* }(}~  
    %   order N and frequency M, evaluated at R.  N is a vector of EaN6^S=  
    %   positive integers (including 0), and M is a vector with the /PIcqg  
    %   same number of elements as N.  Each element k of M must be a zK@@p+n_#.  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 3 Za}b|  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [{,1=AB  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix l]8uk^E  
    %   with one column for every (N,M) pair, and one row for every T_4/C2  
    %   element in R. wnC81$1l~  
    % *$g-:ILRuZ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 4^:=xL  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is C~/a-  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to v.qrz"98-  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 vEJbA  
    %   for all [n,m]. 8$}<, c(  
    % Ysv" 6b}  
    %   The radial Zernike polynomials are the radial portion of the Y76gJ[y jn  
    %   Zernike functions, which are an orthogonal basis on the unit 5=ryDrx  
    %   circle.  The series representation of the radial Zernike ZJiG!+-j  
    %   polynomials is PEZ!n.'S  
    % w\O;!1iU  
    %          (n-m)/2 Cw&KVw*  
    %            __ utV_W&  
    %    m      \       s                                          n-2s EADqC>  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0o&5 ]lEe  
    %    n      s=0 nqUV  
    % PCtzl )  
    %   The following table shows the first 12 polynomials. RZTiw^  
    % )9]PMA?u  
    %       n    m    Zernike polynomial    Normalization {+>-7 9b  
    %       --------------------------------------------- 3!_XEN[  
    %       0    0    1                        sqrt(2) f3y=Wxk[  
    %       1    1    r                           2 N"ST@/j.A  
    %       2    0    2*r^2 - 1                sqrt(6) TB31- ()  
    %       2    2    r^2                      sqrt(6) } 0y"F  
    %       3    1    3*r^3 - 2*r              sqrt(8) do'GlU oMC  
    %       3    3    r^3                      sqrt(8) FGzwhgy  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) G 01ON0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) A@#E@ ;lm  
    %       4    4    r^4                      sqrt(10) pd$[8Rmj_  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 5)X=*I  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 2GG2jky{/  
    %       5    5    r^5                      sqrt(12) S3J^,*'  
    %       --------------------------------------------- ~a2}(]  
    % ftSW (og  
    %   Example: #GFr`o0$^  
    % iWR)ke  
    %       % Display three example Zernike radial polynomials #KvlYZ+1  
    %       r = 0:0.01:1; r<$y= B  
    %       n = [3 2 5]; gjlx~.0d  
    %       m = [1 2 1]; CTmT@A{  
    %       z = zernpol(n,m,r); Dw"\/p:-3  
    %       figure r9XZ(0/p  
    %       plot(r,z) |DwZ{(R"W  
    %       grid on +b 6v!7_  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Q,Eo mt  
    % [nh>vqum  
    %   See also ZERNFUN, ZERNFUN2. (cO:`W6.  
    7d\QB (~  
    % A note on the algorithm. -Lg Ei3m  
    % ------------------------ 4skD(au8  
    % The radial Zernike polynomials are computed using the series 7t3!) a|lI  
    % representation shown in the Help section above. For many special -nwypu  
    % functions, direct evaluation using the series representation can B#R|*g:x  
    % produce poor numerical results (floating point errors), because vP,n(reM  
    % the summation often involves computing small differences between 5bb(/YtFy  
    % large successive terms in the series. (In such cases, the functions  ~$J2g  
    % are often evaluated using alternative methods such as recurrence "r2 r   
    % relations: see the Legendre functions, for example). For the Zernike fV~[;e;U.  
    % polynomials, however, this problem does not arise, because the 6L~n.5B~o  
    % polynomials are evaluated over the finite domain r = (0,1), and ?q [T  
    % because the coefficients for a given polynomial are generally all TcoB,Kdce  
    % of similar magnitude. cz$2R  
    % 8 FhdN  
    % ZERNPOL has been written using a vectorized implementation: multiple 2Khv>#l  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] W@esITr  
    % values can be passed as inputs) for a vector of points R.  To achieve xyxy`qRA  
    % this vectorization most efficiently, the algorithm in ZERNPOL _e2=ado  
    % involves pre-determining all the powers p of R that are required to d_P` qA  
    % compute the outputs, and then compiling the {R^p} into a single _u Il  
    % matrix.  This avoids any redundant computation of the R^p, and !n%j)`0M  
    % minimizes the sizes of certain intermediate variables. & 5R&k0i r  
    % K)P%;X  
    %   Paul Fricker 11/13/2006 rT>wg1:  
    Vt ohL+  
    V VCZ9MVJ  
    % Check and prepare the inputs: "Y.y:Vv;  
    % ----------------------------- jiC>d@~y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]_$[8#kg  
        error('zernpol:NMvectors','N and M must be vectors.') (-co.  
    end |l!aB(NW  
    yDh6KUK  
    if length(n)~=length(m) tl>7^hH  
        error('zernpol:NMlength','N and M must be the same length.') WY]s |2a  
    end Ea=P2:3*  
    yh=N@Z*zP  
    n = n(:); fB,_9K5i  
    m = m(:); *lb<$E]="!  
    length_n = length(n); :zR!/5  
    K> e7pu  
    if any(mod(n-m,2)) )pn3~t<e d  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') :E?V.  
    end |f##5fB  
    ?h2}#wg  
    if any(m<0) 'B}qZCy W  
        error('zernpol:Mpositive','All M must be positive.') WF"k[2  
    end A2Tw<&Tw(  
    wyG;8I  
    if any(m>n) ;wD)hNLAvR  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') I}Q2Vu<  
    end  .wr>]yN  
    rM "l@3hP  
    if any( r>1 | r<0 ) \`"ht  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') B erwI 7!=  
    end g=I})s:CTp  
    .|=\z9_7S8  
    if ~any(size(r)==1) 1 {)Q[#l  
        error('zernpol:Rvector','R must be a vector.') :Q q#Z  
    end w#J2 wS  
    O H7FkR  
    r = r(:); 8XbT`y  
    length_r = length(r); B-ESFATc  
    xLn%hxm?,  
    if nargin==4 9>$p  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); v8D C21pb  
        if ~isnorm /7LR;>Bj  
            error('zernpol:normalization','Unrecognized normalization flag.') O'~+_ykTl  
        end LHmZxi?  
    else {:W$LWET  
        isnorm = false; SY8C4vb'h  
    end 'm9` 12 H  
    L8n|m!MOD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "h ^Z  
    % Compute the Zernike Polynomials k_R"CKd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ze;KhUPRm  
    RT5T1K08I  
    % Determine the required powers of r: 1nOCQ\$l  
    % ----------------------------------- (I}v[W  
    rpowers = []; h.fq,em+H  
    for j = 1:length(n) L4f3X~8,b  
        rpowers = [rpowers m(j):2:n(j)]; Q3SS/eNP  
    end 6`-jPR  
    rpowers = unique(rpowers); *\q d  
    i 3SHg\~Z  
    % Pre-compute the values of r raised to the required powers, I2^8pTLh  
    % and compile them in a matrix: 9)=ctoZ'  
    % ----------------------------- VD\=`r)nT  
    if rpowers(1)==0 b_):MQ1{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wa3}SB  
        rpowern = cat(2,rpowern{:}); zv"Z DRW  
        rpowern = [ones(length_r,1) rpowern]; qyNyBr?  
    else \^%}M!tan  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u~-8d;+?y  
        rpowern = cat(2,rpowern{:}); !Rt>xD  
    end H7j0K~U0  
    !? gKqx'T$  
    % Compute the values of the polynomials: /H==Hm/  
    % -------------------------------------- GM<-&s!Uj  
    z = zeros(length_r,length_n); 6JQ'Ik;$wX  
    for j = 1:length_n tnG# IU *  
        s = 0:(n(j)-m(j))/2; )>- =R5ZV  
        pows = n(j):-2:m(j); K96<M);:g  
        for k = length(s):-1:1 r>U@3%0&  
            p = (1-2*mod(s(k),2))* ... m9Hit8f@Q  
                       prod(2:(n(j)-s(k)))/          ... ,4oo=&  
                       prod(2:s(k))/                 ... 3%ZOKb"D*  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... YUIi;  
                       prod(2:((n(j)+m(j))/2-s(k))); @|%2f@h  
            idx = (pows(k)==rpowers); D5HZ2cz|a  
            z(:,j) = z(:,j) + p*rpowern(:,idx); # Vha7  
        end }AH] th  
         6i~WcAs  
        if isnorm <A'$%`6m  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); >oe]$r  
        end ZJ[ ??=Gz  
    end :Z z '1C  
    h2""9aP !  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  6x[}g  
    ZC`wO%,  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]kRfB:4ED  
    {9;CNsd  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)