切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10985阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 lI&0 V5  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! IHB{US1G  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P$w0.XZa  
    function z = zernfun(n,m,r,theta,nflag) Jzfz y0$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. FK+jfr [  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O </<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~ZL}j+L/  
    %   unit circle.  N is a vector of positive integers (including 0), and J *^|ojX  
    %   M is a vector with the same number of elements as N.  Each element {{giSW'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) s8 3_Bd  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, r@iGM Jx$  
    %   and THETA is a vector of angles.  R and THETA must have the same dNbN]gHC  
    %   length.  The output Z is a matrix with one column for every (N,M) .F> c Z,  
    %   pair, and one row for every (R,THETA) pair. P 7gS M  
    % HO$s&}t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $s?q>Z)  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +#n[55d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral w^P4_Yr  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [N H[n#  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _DH,$evS%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &9TG&~(+  
    % syV &Ds)  
    %   The Zernike functions are an orthogonal basis on the unit circle. J6&;pCAi  
    %   They are used in disciplines such as astronomy, optics, and o6oZk0  
    %   optometry to describe functions on a circular domain. QT?fp >'  
    % 1Te: &d  
    %   The following table lists the first 15 Zernike functions. MW`q*J`Yo  
    % '7wWdq  
    %       n    m    Zernike function           Normalization -pcYhLIn  
    %       -------------------------------------------------- Z7OWpujCvN  
    %       0    0    1                                 1 {:'e H  
    %       1    1    r * cos(theta)                    2 iB[%5i-  
    %       1   -1    r * sin(theta)                    2 Wh 8fC(BE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) /sC$;l  
    %       2    0    (2*r^2 - 1)                    sqrt(3) F) < f8F  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) { \r{$<s  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) kG\+f>XQ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) &Zq43~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) k\1q Jr  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) n T\ W|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) D4;V8(w=#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [;#}BlbN  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) PNc^)|4^Q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QT^W00h  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?%B%[u  
    %       -------------------------------------------------- " c}pY^(  
    % 3 uhwoE  
    %   Example 1: YVqhX]/   
    % '$4o,GA8  
    %       % Display the Zernike function Z(n=5,m=1) [C/h{WPC-  
    %       x = -1:0.01:1; uppA`>  
    %       [X,Y] = meshgrid(x,x); VA.:'yQtJ  
    %       [theta,r] = cart2pol(X,Y); ~Ui<y=d  
    %       idx = r<=1; 9cX ~  
    %       z = nan(size(X)); >wz-p nD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); rhwY5FD?  
    %       figure xH e<TwkI  
    %       pcolor(x,x,z), shading interp `'.u$IBW  
    %       axis square, colorbar Gl`Yyw@84  
    %       title('Zernike function Z_5^1(r,\theta)') ;R 'OdQ$o  
    % d; V  
    %   Example 2: cm]8m_!  
    % P+,\x&Vr  
    %       % Display the first 10 Zernike functions Y7]N.G3,]  
    %       x = -1:0.01:1; Bk~WHg>@G  
    %       [X,Y] = meshgrid(x,x); Ah) _mxK  
    %       [theta,r] = cart2pol(X,Y); )m \}ITf  
    %       idx = r<=1; X=mzo\Aos  
    %       z = nan(size(X)); x gnt)&7T  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Xn9TQ"[4  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8%>  Ls  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _`*x}  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?VO*s-G:J  
    %       figure('Units','normalized') wp$C J09f*  
    %       for k = 1:10 \0'o*nlJ  
    %           z(idx) = y(:,k); #V*<G#B  
    %           subplot(4,7,Nplot(k)) eHm!  
    %           pcolor(x,x,z), shading interp j+w*Absh  
    %           set(gca,'XTick',[],'YTick',[]) D />REC^  
    %           axis square 3zGxe-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) UYD(++  
    %       end 1E=%:?d  
    % =-1d m+P  
    %   See also ZERNPOL, ZERNFUN2. <s)+V6 \E  
    M E4MZt:>  
    %   Paul Fricker 11/13/2006 Cd"O'<^Sb  
    -U'6fx) +  
    9)3ok#pQ/  
    % Check and prepare the inputs: G! L=W#{  
    % ----------------------------- DNq=|?qn]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /{\tkvv-Z  
        error('zernfun:NMvectors','N and M must be vectors.') bJmVq%>;  
    end w91{''sK  
    "ALR)s,1,  
    if length(n)~=length(m) 6 80i?=z  
        error('zernfun:NMlength','N and M must be the same length.')  9 k)?-  
    end !!%vs 6  
    \[% [`m  
    n = n(:); 6Z\[{S];  
    m = m(:); 4%aODr8  
    if any(mod(n-m,2)) #]q<fhJhr$  
        error('zernfun:NMmultiplesof2', ... 7-nwfp&|$  
              'All N and M must differ by multiples of 2 (including 0).') 593D/^}D  
    end @ {j'Pf'  
    d_-{-@  
    if any(m>n) ?9i 7w1`  
        error('zernfun:MlessthanN', ... {ckA  
              'Each M must be less than or equal to its corresponding N.') #Kyb9Qg  
    end w*eO9k  
    k?o(j/  
    if any( r>1 | r<0 ) g0 \c  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ZUVk~X3  
    end APsd^J  
    /9/=]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5YQ4]/h  
        error('zernfun:RTHvector','R and THETA must be vectors.') N^Xb_jg;J  
    end S6*3."Sk  
    = iB0ak  
    r = r(:); o;7!$v>uK  
    theta = theta(:); RM|<(kq  
    length_r = length(r); XwOj`N{!H  
    if length_r~=length(theta) N0,.cd]y`  
        error('zernfun:RTHlength', ... Mmq{]q~At  
              'The number of R- and THETA-values must be equal.') !ANvXPp  
    end SuMK=^>%  
    6! \a8q'z  
    % Check normalization: L0/0<d(K  
    % -------------------- ?dVF@  
    if nargin==5 && ischar(nflag) WJ9Jj69  
        isnorm = strcmpi(nflag,'norm'); x\)0+c~\}x  
        if ~isnorm Q|rrbxb  
            error('zernfun:normalization','Unrecognized normalization flag.') H5j~<@STC  
        end rQC{"hS1  
    else hub1rY|No  
        isnorm = false; ]d&6 ?7 !>  
    end cxFfAk\,en  
    />S=Y"a/7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~Y<x-)R  
    % Compute the Zernike Polynomials Q+*o-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9He>F7J:p'  
    a.L ?J  
    % Determine the required powers of r: Edj}\e*-J  
    % ----------------------------------- U{ gJn#e/.  
    m_abs = abs(m); w8:~LX.n  
    rpowers = []; dW Y0  
    for j = 1:length(n) M$dDExd~  
        rpowers = [rpowers m_abs(j):2:n(j)]; ( ?3 )l   
    end 'KMyaEh.u  
    rpowers = unique(rpowers); ~v$gk   
    i|0H {q  
    % Pre-compute the values of r raised to the required powers, m*tmmP4R  
    % and compile them in a matrix:  s de|t  
    % ----------------------------- @[D-2s  
    if rpowers(1)==0 ~rN~Ql%S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LGGC=;{}  
        rpowern = cat(2,rpowern{:}); &uI`Xq.  
        rpowern = [ones(length_r,1) rpowern]; dWwh?{n  
    else id8a#&t]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yf(VwU, x  
        rpowern = cat(2,rpowern{:}); ZP61T*n  
    end NdZv*  
    *D! $gfa  
    % Compute the values of the polynomials: tbrjTeC  
    % -------------------------------------- % zHsh  
    y = zeros(length_r,length(n)); ?u{y[pI6  
    for j = 1:length(n) fn>MOD!l  
        s = 0:(n(j)-m_abs(j))/2; zFmoo4P/  
        pows = n(j):-2:m_abs(j); /xj^TyWM  
        for k = length(s):-1:1 l 3bo  
            p = (1-2*mod(s(k),2))* ... T B~C4HK=  
                       prod(2:(n(j)-s(k)))/              ... )"s <hR ,  
                       prod(2:s(k))/                     ... U@ x5cw:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Xs$k6C3  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); s|.V:%9e  
            idx = (pows(k)==rpowers); H@GiHej  
            y(:,j) = y(:,j) + p*rpowern(:,idx); q|0Lu  
        end k;/U6,LQ*  
         P#]%C  
        if isnorm z)I.^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U@yn%k9  
        end Vi[* a  
    end PB*m D7"  
    % END: Compute the Zernike Polynomials `?{i dg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }a6tG  
    DS0c0lsx  
    % Compute the Zernike functions: eS{lr4-]  
    % ------------------------------ |pqc(B u  
    idx_pos = m>0; *}DCxv  
    idx_neg = m<0; //S/pCqED  
    cL}} ^  
    z = y; 8%q:lI  
    if any(idx_pos) i;>Yx#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6Ty;m>j  
    end H5j6$y|I|N  
    if any(idx_neg) E-\Wo3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D&KRJQ/  
    end *o <S{  
    ]JF>a_2wG  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =?hGa;/rb  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. r/o1a't;  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Q'D%?Vg'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "X<vgM^:  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, }n/6.%  
    %   and THETA is a vector of angles.  R and THETA must have the same Q{FK_Mv<  
    %   length.  The output Z is a matrix with one column for every P-value, tP/0_^m  
    %   and one row for every (R,THETA) pair. WrJgU&H{  
    % ;w0|ev 6|  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ypyqf55gK  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /,#HGu]q'  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .=@xTJh  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tbMf_-g  
    %   for all p. 2ZUI~:U Z  
    % rD ^ b{]E3  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 V?pqKQL0  
    %   Zernike functions (order N<=7).  In some disciplines it is zY_?$9l0  
    %   traditional to label the first 36 functions using a single mode 5,Rxc=  
    %   number P instead of separate numbers for the order N and azimuthal |qe[`x; %  
    %   frequency M. ePF)wl;m  
    % t @=*k9  
    %   Example: Xm#rkF[,  
    % !j8.JP}!)  
    %       % Display the first 16 Zernike functions (@wgNA-P  
    %       x = -1:0.01:1; DAYR=s  
    %       [X,Y] = meshgrid(x,x); .tRp  
    %       [theta,r] = cart2pol(X,Y); -;T!d  
    %       idx = r<=1; ITpo:"X g  
    %       p = 0:15; LdAWCBLS  
    %       z = nan(size(X)); I$yFCdXr  
    %       y = zernfun2(p,r(idx),theta(idx)); e'"2yA8dh"  
    %       figure('Units','normalized') ">zK1t5=  
    %       for k = 1:length(p) 8rZJvE#c  
    %           z(idx) = y(:,k); (^),G-]  
    %           subplot(4,4,k) jTSN`R9@  
    %           pcolor(x,x,z), shading interp mV~aZM0'  
    %           set(gca,'XTick',[],'YTick',[]) 0<ze'FbV]  
    %           axis square K;uO<{a)r  
    %           title(['Z_{' num2str(p(k)) '}']) R*S9[fqC[  
    %       end 3:H[S_q  
    % v*Dz4K#  
    %   See also ZERNPOL, ZERNFUN. `LroH>_  
    R_JB`HFy=  
    %   Paul Fricker 11/13/2006 $G UCVxs  
    2lb HUK  
    &7-ENg9 [  
    % Check and prepare the inputs: nr*nX  
    % ----------------------------- v,}Mn7:  
    if min(size(p))~=1 8D]&wBR:  
        error('zernfun2:Pvector','Input P must be vector.') )s-[d_g  
    end  ,>C`|  
    >_3P6-L>  
    if any(p)>35 e@j&c:p(Y  
        error('zernfun2:P36', ... s:O8dL /  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ?:$aX@r  
               '(P = 0 to 35).']) $V/Hr/0  
    end e9\eh? bPU  
    EOj.Jrs~  
    % Get the order and frequency corresonding to the function number: ;xXD2{q  
    % ---------------------------------------------------------------- UR{OrNg*  
    p = p(:); (=\))t8J  
    n = ceil((-3+sqrt(9+8*p))/2); *#y9P ve  
    m = 2*p - n.*(n+2); D*_Z"q_B  
    hD*83_S  
    % Pass the inputs to the function ZERNFUN: kq$0~lNI$  
    % ---------------------------------------- 6d;_}  
    switch nargin uUIjntSF(  
        case 3 |XrGf2P9u  
            z = zernfun(n,m,r,theta); w/49O;rV  
        case 4 >?L)+*^  
            z = zernfun(n,m,r,theta,nflag); 7QX p\<7  
        otherwise U,g)N[|  
            error('zernfun2:nargin','Incorrect number of inputs.') hJc^NU5  
    end dEu\}y|  
    R9q9cB i3  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) $5r1Si)  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Z,QSbw@,7  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of CBu$8]9=  
    %   order N and frequency M, evaluated at R.  N is a vector of )VM'^sV?  
    %   positive integers (including 0), and M is a vector with the 1i=p5,|  
    %   same number of elements as N.  Each element k of M must be a #I-qL/Lm  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 6DxT(VU}  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I AFj_VWC0  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "8R\!i.  
    %   with one column for every (N,M) pair, and one row for every 2tMa4L%@C  
    %   element in R. W5U;{5  
    % f1wwx|b%.  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- V }wh  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @"vTz8oY@  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to A4IPd  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 b|-7EI>l9  
    %   for all [n,m]. jlM %Y ZC  
    % rhH !-`m  
    %   The radial Zernike polynomials are the radial portion of the ApotRr$)  
    %   Zernike functions, which are an orthogonal basis on the unit r34 GO1d  
    %   circle.  The series representation of the radial Zernike +V,Ld&r  
    %   polynomials is }Zp5d7(@w  
    % V5up/6b,1  
    %          (n-m)/2 MngfXm  
    %            __ [W--%=Ou  
    %    m      \       s                                          n-2s hB1Gtc4n  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r J?[}h&otQ  
    %    n      s=0 be(p13&od  
    % G1S:hw%rp  
    %   The following table shows the first 12 polynomials. &aWY{ ?_  
    % qy,X#y'FuE  
    %       n    m    Zernike polynomial    Normalization Mw{skK>b  
    %       --------------------------------------------- *rmwTD"  
    %       0    0    1                        sqrt(2) .{Df"e>  
    %       1    1    r                           2 G}0fk]%\:  
    %       2    0    2*r^2 - 1                sqrt(6) nTH!_S>b(Y  
    %       2    2    r^2                      sqrt(6) 7p+uHm  
    %       3    1    3*r^3 - 2*r              sqrt(8) .9u,54t  
    %       3    3    r^3                      sqrt(8)  |7wiwdD"  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) od`:w[2\  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) h@D</2>  
    %       4    4    r^4                      sqrt(10) 2@+ MT z  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) I3D#wXW  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) xx EcmS#>  
    %       5    5    r^5                      sqrt(12) 1`@rAA>h'  
    %       --------------------------------------------- 1`I#4f  
    % jY8u1z  
    %   Example:  0ZpWfL  
    % o](nK5?  
    %       % Display three example Zernike radial polynomials K$Yc!4M  
    %       r = 0:0.01:1; '$5o5\  
    %       n = [3 2 5]; J6*B=PX=(  
    %       m = [1 2 1]; _.ELN/$-  
    %       z = zernpol(n,m,r); ]J6+nA6)  
    %       figure Xn:ac^  
    %       plot(r,z) A}Gj;vaw  
    %       grid on Mb[4G>-v=  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ICI8xP}a?  
    % lITZ|u  
    %   See also ZERNFUN, ZERNFUN2. MB] Y|Vee  
    *3We5  
    % A note on the algorithm. 4,g3 c  
    % ------------------------ d8T,33>T  
    % The radial Zernike polynomials are computed using the series l5d> YTK+5  
    % representation shown in the Help section above. For many special 2\1\Jn#q  
    % functions, direct evaluation using the series representation can QWWoj[d#  
    % produce poor numerical results (floating point errors), because ?G>#'T[  
    % the summation often involves computing small differences between 4uUR2J  
    % large successive terms in the series. (In such cases, the functions qnZ`]?  
    % are often evaluated using alternative methods such as recurrence gDJ@s    
    % relations: see the Legendre functions, for example). For the Zernike ,9;d"ce  
    % polynomials, however, this problem does not arise, because the w_ po47S4  
    % polynomials are evaluated over the finite domain r = (0,1), and |;B 'C#  
    % because the coefficients for a given polynomial are generally all tHo0q<.oX  
    % of similar magnitude. B(%bBhs  
    % D7Nz3.j  
    % ZERNPOL has been written using a vectorized implementation: multiple Pf]O'G&F  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] \w=7L- 8  
    % values can be passed as inputs) for a vector of points R.  To achieve > AV R3b  
    % this vectorization most efficiently, the algorithm in ZERNPOL Ev\kq>2 O  
    % involves pre-determining all the powers p of R that are required to L5*,l`lET  
    % compute the outputs, and then compiling the {R^p} into a single 6@ HY+RCx  
    % matrix.  This avoids any redundant computation of the R^p, and 4)3!n*I  
    % minimizes the sizes of certain intermediate variables. ^D0BGC&&  
    % NR)[,b\v  
    %   Paul Fricker 11/13/2006 :4D#hOI  
    XU#nqvS`.  
    YMx zj  
    % Check and prepare the inputs: dsxaxbVj%  
    % ----------------------------- C4P7,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \..(!>,%F  
        error('zernpol:NMvectors','N and M must be vectors.') s=nE'/q1|  
    end q[3b i!Q  
    m&Mvb[  
    if length(n)~=length(m) ]41G!'E=  
        error('zernpol:NMlength','N and M must be the same length.') V8xv@G{;  
    end ka&-tGg  
    \g}FoN&  
    n = n(:); Hvq< _&2  
    m = m(:); NB&u^8b  
    length_n = length(n); 8&=+Mw  
    1LjYV  
    if any(mod(n-m,2)) H\3CvFm  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ~QsQ7SAs  
    end xy|-{  
    9CWUhS   
    if any(m<0) NoJo-vo*  
        error('zernpol:Mpositive','All M must be positive.') `q exEk@S  
    end lm&C!{K  
    A_%}kt (6  
    if any(m>n) uBks#Y*3$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3RRZVc* ^  
    end g-%uw[pf  
    +>OEp * j  
    if any( r>1 | r<0 ) )vS## -[_  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  j>s%q .  
    end &fj&UBA  
    @ec QVk  
    if ~any(size(r)==1) m`9)DsR N  
        error('zernpol:Rvector','R must be a vector.') |l ~BdP  
    end .#h ]_%  
    2+GF:[$  
    r = r(:); ){>;eky  
    length_r = length(r); (cYc03"  
    h3 p 3~xq  
    if nargin==4 >CPkL_@VZ=  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $Y,]D*|"K  
        if ~isnorm (7ew&u\Li  
            error('zernpol:normalization','Unrecognized normalization flag.') ~ilbW|s?=k  
        end  fV}\  
    else FZA8@J|Q4  
        isnorm = false; )hQNIt3o_  
    end xel&8 `  
    s !8]CV>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~:)$~g7>b  
    % Compute the Zernike Polynomials I/WnF"yP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w.l#Z} k  
    'KQu z)-  
    % Determine the required powers of r: Y+?bo9CES!  
    % ----------------------------------- $z mES tcm  
    rpowers = []; C [2tH2*#  
    for j = 1:length(n) /2HwK/RZ  
        rpowers = [rpowers m(j):2:n(j)]; Gcs+@7!b  
    end #zy,x  
    rpowers = unique(rpowers); RL&3 P@r  
    h'-TZXs0e1  
    % Pre-compute the values of r raised to the required powers, T>uLqd{hH  
    % and compile them in a matrix: D}"GrY 5  
    % ----------------------------- m'qMcCE  
    if rpowers(1)==0 yJp& A  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FxZ\)Y   
        rpowern = cat(2,rpowern{:}); (`!| Uf$  
        rpowern = [ones(length_r,1) rpowern]; v8%]^` '  
    else 2%8N<GW.F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c~RIl5j  
        rpowern = cat(2,rpowern{:}); u8 <=FV3  
    end %?wuKZLnc  
    _~cmR<  
    % Compute the values of the polynomials: 3mJHk<m8T  
    % -------------------------------------- e2*^;&|%  
    z = zeros(length_r,length_n); ,OasT!Sr  
    for j = 1:length_n Oy|9po  
        s = 0:(n(j)-m(j))/2; 2hu6  
        pows = n(j):-2:m(j); 2#!$f_  
        for k = length(s):-1:1 nlY ^  
            p = (1-2*mod(s(k),2))* ... B)-S@.u  
                       prod(2:(n(j)-s(k)))/          ... d=5D 9' +  
                       prod(2:s(k))/                 ... z{n=G  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... yQx>h6  
                       prod(2:((n(j)+m(j))/2-s(k))); 1QN]9R0`#7  
            idx = (pows(k)==rpowers); _&z>Id`w  
            z(:,j) = z(:,j) + p*rpowern(:,idx); f(_qcgXp  
        end %eah=e  
         8% |x)  
        if isnorm +'Ge?(E4_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7]v-2 *  
        end nK|";  
    end !c&^b@ yw  
    3Q]MT  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :dN35Y]a  
    A#X.c=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 :XSc#H4  
    aT#{t {gkA  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)