切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11211阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )l.uj  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! {qU;;`P]|  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !Ur.b @ke  
    function z = zernfun(n,m,r,theta,nflag) 5c(g7N  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. TwVkI<e0s?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }{j@q~w>$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the <[-{:dH,5  
    %   unit circle.  N is a vector of positive integers (including 0), and KdYR?rY  
    %   M is a vector with the same number of elements as N.  Each element oXqJypR 2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) SZLugyZ2Y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1 gcWw, /  
    %   and THETA is a vector of angles.  R and THETA must have the same _-TW-{7bh  
    %   length.  The output Z is a matrix with one column for every (N,M) maY.Z<lN  
    %   pair, and one row for every (R,THETA) pair. =nc;~u|]  
    % @ext6cFe3<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qyFeq])  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), AXte&l=M  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _&U#*g  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MffCk!]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized reArXmU<u  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9}a$0H h  
    % iAk.pH]a  
    %   The Zernike functions are an orthogonal basis on the unit circle. l0URJRK{*  
    %   They are used in disciplines such as astronomy, optics, and "S6";G^I  
    %   optometry to describe functions on a circular domain. :_:)S  
    % >5Lp;  
    %   The following table lists the first 15 Zernike functions. zv0sz])  
    % zh0T3U0D  
    %       n    m    Zernike function           Normalization = M4:nt  
    %       -------------------------------------------------- (ER9.k2  
    %       0    0    1                                 1 =)c-Xz  
    %       1    1    r * cos(theta)                    2 ti6X=@ P:  
    %       1   -1    r * sin(theta)                    2 [>pBz3fn,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) mD ZA\P_  
    %       2    0    (2*r^2 - 1)                    sqrt(3) hY%} x5ntU  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) >`a^E1)  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) G~bDl:k`A  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) iu*&Jz)D>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) H25Qx;(dTk  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3(|,:"9g  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) U{Oo@ztT  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /5"T46jD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wd<{%qK`{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [kqtkgK$j2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~Js kA5h|&  
    %       -------------------------------------------------- & fWC-|  
    % RPf<-J:t  
    %   Example 1: Y@#N_]oXj  
    % nh5=0{va|L  
    %       % Display the Zernike function Z(n=5,m=1) 1W\wIj.  
    %       x = -1:0.01:1; na8`V`77  
    %       [X,Y] = meshgrid(x,x); tJ6Q7 J;n  
    %       [theta,r] = cart2pol(X,Y); -P|claO0  
    %       idx = r<=1; 8q{|nH  
    %       z = nan(size(X)); %`T}%B  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); IvkYM`%  
    %       figure GiM-8y~  
    %       pcolor(x,x,z), shading interp M&29J  
    %       axis square, colorbar ];6955I!  
    %       title('Zernike function Z_5^1(r,\theta)') czu9a"M>X  
    % SJh~4R\  
    %   Example 2: _6,\;"it?8  
    % NQ[X=a8N  
    %       % Display the first 10 Zernike functions sF[gjeIb  
    %       x = -1:0.01:1; {'h&[f>zcQ  
    %       [X,Y] = meshgrid(x,x); >K4Nn(~ys  
    %       [theta,r] = cart2pol(X,Y); `o }+2Cb  
    %       idx = r<=1; .*9u_2<  
    %       z = nan(size(X)); [:gg3Qzx  
    %       n = [0  1  1  2  2  2  3  3  3  3]; lOeX5%$Z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; [?9 `x-Q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )$i,e`T   
    %       y = zernfun(n,m,r(idx),theta(idx)); r"{jrBK$  
    %       figure('Units','normalized') ]>Z9K@  
    %       for k = 1:10 uI?Z_  
    %           z(idx) = y(:,k); fR@Cg sw  
    %           subplot(4,7,Nplot(k)) =fnBE`Uc  
    %           pcolor(x,x,z), shading interp 9D M,,h<`  
    %           set(gca,'XTick',[],'YTick',[]) 9{Etv w  
    %           axis square FNF`Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) S#8)N`  
    %       end Jh&DL8`  
    % & ck}3\sQ  
    %   See also ZERNPOL, ZERNFUN2. i\/'w]  
    =JfwHFHd#  
    %   Paul Fricker 11/13/2006 h0k?(O  
    V?G%-+^  
    T"za|Fo  
    % Check and prepare the inputs: V-go?b`  
    % ----------------------------- |X A0F\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R59iuHQ[  
        error('zernfun:NMvectors','N and M must be vectors.') K`9~#Zx$  
    end |k*bWuXgLs  
    )}N:t:rry  
    if length(n)~=length(m) G93V=Bk=  
        error('zernfun:NMlength','N and M must be the same length.') 0wVM% Dng  
    end d;gs1]E50  
    @M<qz\ [  
    n = n(:); DMch88W  
    m = m(:); FA{Q6fi:2  
    if any(mod(n-m,2)) \WC,iA%Y  
        error('zernfun:NMmultiplesof2', ... S g1[p#U  
              'All N and M must differ by multiples of 2 (including 0).') .4"BN<9  
    end IaSPwsvt'  
    :fL7"\ pf~  
    if any(m>n) \C>IVz<O  
        error('zernfun:MlessthanN', ... Yu)GV7\2  
              'Each M must be less than or equal to its corresponding N.') M_%KhK  
    end d@{12 hq  
    KyVzf(^  
    if any( r>1 | r<0 ) `Rt w'Uz  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %RtL4"M2j  
    end ."BXA8c;A  
    srN7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) [efU)O&  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~<K,P   
    end LFi* O&  
    U7n#TPet  
    r = r(:); q\i&E Rr  
    theta = theta(:); 7"aN7Q+EbI  
    length_r = length(r); g7hI9(8+  
    if length_r~=length(theta) ,|VLOY ^  
        error('zernfun:RTHlength', ... :^{KY(3  
              'The number of R- and THETA-values must be equal.') 0H4|}+e  
    end #V/{DPz  
    viYrPhH+z  
    % Check normalization: $#5 'c+0  
    % -------------------- S{e3aqT#N  
    if nargin==5 && ischar(nflag) wt9f2  
        isnorm = strcmpi(nflag,'norm'); M"s:*c_6  
        if ~isnorm 7Rtjm  
            error('zernfun:normalization','Unrecognized normalization flag.') ;Krs*3 s  
        end /P9fcNP{y  
    else PbvA~gm  
        isnorm = false; [c1Gq)ht  
    end yZp/P%y  
    l(Hz9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !})Y9oZc8  
    % Compute the Zernike Polynomials J?Y,3cc.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'Y ,2CN  
    !'# D~   
    % Determine the required powers of r: ' #=n>  
    % ----------------------------------- ZEDvY=@a   
    m_abs = abs(m); F?a 63,r  
    rpowers = []; jf;n*  
    for j = 1:length(n) ! a\v)R  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4,:I{P_>6B  
    end *^ G,  
    rpowers = unique(rpowers); X0j>g^b8  
    zq$L[ X  
    % Pre-compute the values of r raised to the required powers, PPG+~.7  
    % and compile them in a matrix: @ls/3`E/5E  
    % ----------------------------- G+2fmVB*X  
    if rpowers(1)==0 ~QUNR?h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aLW3Ub{h  
        rpowern = cat(2,rpowern{:}); f &NX~(  
        rpowern = [ones(length_r,1) rpowern];  ^ b5+A6?  
    else 9wf"5c  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .UX4p =  
        rpowern = cat(2,rpowern{:}); v8C($<3%  
    end G!C }ULq  
    7>MG8pf3a  
    % Compute the values of the polynomials: |/xA5_-N  
    % -------------------------------------- $i<+O,@-  
    y = zeros(length_r,length(n)); j7w9H/XF}  
    for j = 1:length(n) G,<d;:  
        s = 0:(n(j)-m_abs(j))/2; "v0bdaQH3  
        pows = n(j):-2:m_abs(j); l SKq  
        for k = length(s):-1:1 fH9"sBiO  
            p = (1-2*mod(s(k),2))* ... 1]0;2THx  
                       prod(2:(n(j)-s(k)))/              ... ;m.6 ~A  
                       prod(2:s(k))/                     ... 0'A"]6  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aYk: CYQ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); V,& OO  
            idx = (pows(k)==rpowers); 9vDOSwU*  
            y(:,j) = y(:,j) + p*rpowern(:,idx); qo \9,<  
        end rrgOp5aV"  
         $A,YQH+  
        if isnorm [h B$%i]\<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3jW&S  
        end Au)~"N~p?  
    end vAop#V  
    % END: Compute the Zernike Polynomials YE*|KL^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pz D30VA  
    FY)]yz  
    % Compute the Zernike functions: F}[!OYyg  
    % ------------------------------ zNo"P[J8  
    idx_pos = m>0; :}#)ipr  
    idx_neg = m<0; mb3aUFxA;  
    L|(U%$  
    z = y; SQ+r'g  
    if any(idx_pos) BL>~~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); UB8n,+R  
    end |${ImP  
    if any(idx_neg) %52x:qGa  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `) ],FE*:  
    end .dxELSV  
    q6sb;?I  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) !vK0|eV3  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,|z zq@fk  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated hG<[F@d  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive SE i\H$ !  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, (OwGp3g  
    %   and THETA is a vector of angles.  R and THETA must have the same XMP4YWuVc  
    %   length.  The output Z is a matrix with one column for every P-value, 69:-c@ L0  
    %   and one row for every (R,THETA) pair. Xj30bt  
    % .tHc*Eh  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike }?6;;d#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) S fY9PNck\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {<}Hut:a  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 } C/+zF6q  
    %   for all p. #< :`:@2  
    % +`mI\+y,  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 *h).V&::O  
    %   Zernike functions (order N<=7).  In some disciplines it is !5[SNr3^  
    %   traditional to label the first 36 functions using a single mode Sj/v:  
    %   number P instead of separate numbers for the order N and azimuthal Z1$U[Tsd  
    %   frequency M. o.zP1n|G~r  
    % Bzt:9hr6BO  
    %   Example: ywyg(8>zE  
    % EASmB  
    %       % Display the first 16 Zernike functions }[@Q**j(  
    %       x = -1:0.01:1; b"trg {e  
    %       [X,Y] = meshgrid(x,x); 3q@JhB  
    %       [theta,r] = cart2pol(X,Y); ^k^?>h  
    %       idx = r<=1; {=gJGP/}_  
    %       p = 0:15; .EjR<UU  
    %       z = nan(size(X)); SGy2&{\Z  
    %       y = zernfun2(p,r(idx),theta(idx)); rHOhi|+  
    %       figure('Units','normalized') fsnZHL}=n  
    %       for k = 1:length(p) HKO]_; :(  
    %           z(idx) = y(:,k); kou7_4oS  
    %           subplot(4,4,k) '+g[n  
    %           pcolor(x,x,z), shading interp v&]y zl  
    %           set(gca,'XTick',[],'YTick',[]) ug;\`.nT^  
    %           axis square bBo>Y7%  
    %           title(['Z_{' num2str(p(k)) '}']) w"QZ7EyJ  
    %       end 7D'D7=Z.  
    % k w   
    %   See also ZERNPOL, ZERNFUN. ` ` Yk  
    DYgB_Iak  
    %   Paul Fricker 11/13/2006 R(P(G;#j  
    Z8Vof~  
    }'>mT,ytgk  
    % Check and prepare the inputs: yn<J>e  
    % ----------------------------- aiE\r/k8s  
    if min(size(p))~=1 [)0^*A2  
        error('zernfun2:Pvector','Input P must be vector.') nf&5oE^  
    end 7ju38@+  
    \>n[x; $  
    if any(p)>35 4"!kCUB  
        error('zernfun2:P36', ... IQ-l%x[fue  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... )z4eRs F|  
               '(P = 0 to 35).']) w5/6+@}  
    end b9-3  
    R1%J6wZq  
    % Get the order and frequency corresonding to the function number: \"Z\Af<  
    % ---------------------------------------------------------------- :!?Fq/!  
    p = p(:); GY0OVAW6'c  
    n = ceil((-3+sqrt(9+8*p))/2); aXZi2  
    m = 2*p - n.*(n+2); uf (_<~  
    Z d@B6R  
    % Pass the inputs to the function ZERNFUN: bF+j%=  
    % ---------------------------------------- Pv\8 \,B9  
    switch nargin \6"=`H0}  
        case 3 oEFo7X`t  
            z = zernfun(n,m,r,theta); & 2q<#b  
        case 4 J}#2Wy^{  
            z = zernfun(n,m,r,theta,nflag); Iij$ce`nx  
        otherwise @qx$b~%  
            error('zernfun2:nargin','Incorrect number of inputs.') XAtRA1.  
    end QF*cdc<  
    )"6"g9A  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) C-h?#/#?y  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Sl<1Rme=w  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @v&s|X '  
    %   order N and frequency M, evaluated at R.  N is a vector of _p'@.P  
    %   positive integers (including 0), and M is a vector with the +o"CMI  
    %   same number of elements as N.  Each element k of M must be a ,\aL v  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) +*Uv+oC|  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is unbIfl=  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Y"yrc0'&T  
    %   with one column for every (N,M) pair, and one row for every Ck"db30.  
    %   element in R. C+5X8  
    % WXDo`_{R  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- suGd&eP|  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <8Nr;96IA  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to k%kEW%I yG  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 qfxEo76'  
    %   for all [n,m]. rX>b R/  
    % a) P r&9I  
    %   The radial Zernike polynomials are the radial portion of the "zCT S  
    %   Zernike functions, which are an orthogonal basis on the unit P4eH:0=#  
    %   circle.  The series representation of the radial Zernike d"Wuu1tEY  
    %   polynomials is (uhE'IQ{(  
    % [/VpvQ'  
    %          (n-m)/2 1\Pjz Lj  
    %            __ 6%>'n?  
    %    m      \       s                                          n-2s Ht\2 IP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r tm2lxt  
    %    n      s=0 *p#@W-:9E  
    % k)X\z@I'  
    %   The following table shows the first 12 polynomials. >7~*j4g  
    % y;<suGl  
    %       n    m    Zernike polynomial    Normalization -/0\_zq7  
    %       --------------------------------------------- M*Ej*#  
    %       0    0    1                        sqrt(2) m.! M#x2!  
    %       1    1    r                           2 V3r)u\ o'  
    %       2    0    2*r^2 - 1                sqrt(6) h{$k%YJ?  
    %       2    2    r^2                      sqrt(6) =l${p*ABQ  
    %       3    1    3*r^3 - 2*r              sqrt(8) Q .h.d))  
    %       3    3    r^3                      sqrt(8) k.o8!aCm  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) mU?~s7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) S_OtY]gF  
    %       4    4    r^4                      sqrt(10) j6XHH&ZEb  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ?_A[E]/H  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /93z3o7D>  
    %       5    5    r^5                      sqrt(12) g;6/P2w  
    %       --------------------------------------------- tY!l}:E[  
    % 'd&d"E[  
    %   Example:  G +41D  
    % c_M[>#`  
    %       % Display three example Zernike radial polynomials Hs:zfvD  
    %       r = 0:0.01:1; |O oczYf  
    %       n = [3 2 5]; x|dP-E41\  
    %       m = [1 2 1];  (FaYagD  
    %       z = zernpol(n,m,r); ?CC.xE  
    %       figure WG,1%=M@  
    %       plot(r,z) vR2);ywX  
    %       grid on <*dcl2xS  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Qzo -Yw`=  
    % ~_N,zw{x  
    %   See also ZERNFUN, ZERNFUN2. XM w6b*O  
    !X~NL+  
    % A note on the algorithm. v {uq  
    % ------------------------ j%-Ems*H  
    % The radial Zernike polynomials are computed using the series pUF JQ*  
    % representation shown in the Help section above. For many special *i:8g(  
    % functions, direct evaluation using the series representation can 3\ Mt+!1{  
    % produce poor numerical results (floating point errors), because 8#Z)qQWi_t  
    % the summation often involves computing small differences between t&=bW<6  
    % large successive terms in the series. (In such cases, the functions Tj_K5uccU}  
    % are often evaluated using alternative methods such as recurrence S#B%[3@  
    % relations: see the Legendre functions, for example). For the Zernike +_cigxpTc  
    % polynomials, however, this problem does not arise, because the YI"!&a'yj  
    % polynomials are evaluated over the finite domain r = (0,1), and 0Ui_Trlc  
    % because the coefficients for a given polynomial are generally all ex1!7A!}g  
    % of similar magnitude. "5 ~{  
    % ]BbV\#  
    % ZERNPOL has been written using a vectorized implementation: multiple 26nwUNak  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Y9<[n)>+  
    % values can be passed as inputs) for a vector of points R.  To achieve FK~wr;[  
    % this vectorization most efficiently, the algorithm in ZERNPOL 8~R.iqLoX  
    % involves pre-determining all the powers p of R that are required to f:&JKB)N  
    % compute the outputs, and then compiling the {R^p} into a single r"h09suZBW  
    % matrix.  This avoids any redundant computation of the R^p, and 1+N'cB!y  
    % minimizes the sizes of certain intermediate variables. nAl \9#M  
    %  aY(s &  
    %   Paul Fricker 11/13/2006 R3lZ|rxv:  
    DzE^FY  
    V*Fy@  
    % Check and prepare the inputs: xW5`.^5  
    % ----------------------------- #-G@p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R=E4Sh  
        error('zernpol:NMvectors','N and M must be vectors.') iJOG"gI&  
    end zNrn|(Y%Y  
    XE<5(  
    if length(n)~=length(m) ?&eS}skL  
        error('zernpol:NMlength','N and M must be the same length.') JU^Y27  
    end n/Fxjf0W  
    OEjX(F3=  
    n = n(:); U2<q dknB  
    m = m(:); 3?"gfw W  
    length_n = length(n); #xu1 eX0<  
    *K$a;2WjzG  
    if any(mod(n-m,2)) S}U_uZ$b  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') x,10o   
    end gAsmPI.K  
    wdBB x\FP  
    if any(m<0) ojf6@p_  
        error('zernpol:Mpositive','All M must be positive.') ?zutU w/m  
    end mkyYs[  
    kJf0..J[#<  
    if any(m>n) e4Y+u8gT  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') > TCit1yD  
    end l9eTghLi  
    (n?f016*%d  
    if any( r>1 | r<0 ) XfVdYmii  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') .txtt?ZF2  
    end U9b[t  
    k`N*_/(|n  
    if ~any(size(r)==1) r^C(|Vx  
        error('zernpol:Rvector','R must be a vector.') T?!SEblP]  
    end WR#h~N 9c  
    OQ_< Vxz  
    r = r(:); Qfy_@w]  
    length_r = length(r); `V V >AA5  
    O^-QqCZE  
    if nargin==4 ?r&~(<^z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ll$mRC  
        if ~isnorm R+uZi~  
            error('zernpol:normalization','Unrecognized normalization flag.') T|S-?X,  
        end 7i xG{yu  
    else n5A|Zjk;  
        isnorm = false; v}t{*P  
    end F3!@|/<w  
    dS 4/spNq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k}<H  
    % Compute the Zernike Polynomials -YQS\@?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zFO0l).  
    yY UAH-  
    % Determine the required powers of r: -th.(eAx  
    % ----------------------------------- I$+=Fb'N0  
    rpowers = []; )#\3c,<Y  
    for j = 1:length(n) $=E4pb4Y  
        rpowers = [rpowers m(j):2:n(j)]; x2)WiO/As  
    end Gd\/n*j  
    rpowers = unique(rpowers); 8h|}Q_  
    ^znUf4N1  
    % Pre-compute the values of r raised to the required powers, $04lL/;  
    % and compile them in a matrix: }15&<s  
    % ----------------------------- b1IAp>*2l  
    if rpowers(1)==0 GOA dhh-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;7qzQ{Km  
        rpowern = cat(2,rpowern{:}); JP\jhkn  
        rpowern = [ones(length_r,1) rpowern]; 3 I%N4K4  
    else zB+e;x f|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [|*7"Q(  
        rpowern = cat(2,rpowern{:}); lW#2ox  
    end ceks~[rP  
    ~1*37w~  
    % Compute the values of the polynomials: ZyNgG9JL]  
    % -------------------------------------- .bp#YU,m  
    z = zeros(length_r,length_n); JiXE{(  
    for j = 1:length_n H*<E5^#dw  
        s = 0:(n(j)-m(j))/2; -b?M5P*:  
        pows = n(j):-2:m(j); ;2g.X(Ra  
        for k = length(s):-1:1 _8 K|2$X  
            p = (1-2*mod(s(k),2))* ... Nes|4Z<  
                       prod(2:(n(j)-s(k)))/          ... 4x+[?fw  
                       prod(2:s(k))/                 ... PuZzl%i P3  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... JleClB(2n/  
                       prod(2:((n(j)+m(j))/2-s(k))); o?M;f\Fy  
            idx = (pows(k)==rpowers); Kg<~Uf=1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K-Pcew^?  
        end AdDR<IW  
         *!`&+w  
        if isnorm "\;n t5L  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ;DZj.| Sj+  
        end &_;=]t s  
    end hUvA;E(qD  
    &DYC3*)Jih  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ~~ty9;KYL  
    xkaed  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 " M&zW&  
    W;,RU8\f  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)