切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11460阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 p\o=fcH%E  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! c'_-jdi`>_  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 %y33evX/B  
    function z = zernfun(n,m,r,theta,nflag) <CJua1l\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. I!.o& dk  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,FX;-nP%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1?"vKm  
    %   unit circle.  N is a vector of positive integers (including 0), and PygT_-3z{  
    %   M is a vector with the same number of elements as N.  Each element oD_je~b)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) o:_}=1nh  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, `pzp(\lc  
    %   and THETA is a vector of angles.  R and THETA must have the same aQwcPy|1R  
    %   length.  The output Z is a matrix with one column for every (N,M) _n_lO8mK  
    %   pair, and one row for every (R,THETA) pair. qSj2=dlW  
    %  ~%_$e/T  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?:Y{c#w>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), "K`B'/08^  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral O>xGH0H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O^hWG ~o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized B2VC:TG>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F{ J>=TC  
    % {gluK#Qm  
    %   The Zernike functions are an orthogonal basis on the unit circle. i4 KW  
    %   They are used in disciplines such as astronomy, optics, and g5R2a7  
    %   optometry to describe functions on a circular domain. r#*kx#"  
    % lDO9GNz$  
    %   The following table lists the first 15 Zernike functions. !7@IWz(, "  
    % tYiK#N7  
    %       n    m    Zernike function           Normalization 2V_C_5)1  
    %       -------------------------------------------------- -0PT(gx  
    %       0    0    1                                 1 U .hV1  
    %       1    1    r * cos(theta)                    2 ]K0<DO9  
    %       1   -1    r * sin(theta)                    2 |r1\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) U 9TEC)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Y8`4K*58%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 0G1?  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |E0>-\6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) v9INZ1# v  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |Y"q. n77  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) CL|t!+wU/  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) dON 4r2-yC  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !p4w 8  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 6+BR5Nr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) < i"U%Ds(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ,i#]&f`c;5  
    %       -------------------------------------------------- f:\jPkf'  
    % aB"W6[  
    %   Example 1: LGKkT?fcSC  
    % X|t?{.p  
    %       % Display the Zernike function Z(n=5,m=1) e~=fo#*2?@  
    %       x = -1:0.01:1; G+ PBV%gE[  
    %       [X,Y] = meshgrid(x,x); {o< 4 ^  
    %       [theta,r] = cart2pol(X,Y); 16)@<7b]J  
    %       idx = r<=1; 6c>t|=Ss(  
    %       z = nan(size(X)); vC[)/w  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); xi8RE@gm  
    %       figure !=--pb  
    %       pcolor(x,x,z), shading interp XWZ *{/u  
    %       axis square, colorbar } WY7!Y  
    %       title('Zernike function Z_5^1(r,\theta)') *O,\/aQ+  
    % KB <n-'  
    %   Example 2: |1X^@  
    % D`0II=  
    %       % Display the first 10 Zernike functions Um]>B`."wK  
    %       x = -1:0.01:1; ?Q;8D@   
    %       [X,Y] = meshgrid(x,x); {co(w 7  
    %       [theta,r] = cart2pol(X,Y); g #u1.|s&p  
    %       idx = r<=1; (o)nN8  
    %       z = nan(size(X)); @4Z>;  
    %       n = [0  1  1  2  2  2  3  3  3  3]; yd[}?  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #qT97NQ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; dbSIC[q  
    %       y = zernfun(n,m,r(idx),theta(idx)); 2+ F34  
    %       figure('Units','normalized') }MW*xtGV  
    %       for k = 1:10 P\KP)bkC  
    %           z(idx) = y(:,k); , fFB.q"  
    %           subplot(4,7,Nplot(k)) nzE4P3 C+  
    %           pcolor(x,x,z), shading interp 0vNEl3f'O  
    %           set(gca,'XTick',[],'YTick',[]) )(TaVHJR  
    %           axis square JVf8KHDj  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) qY`)W[  
    %       end Mz# &"WjF  
    % #P=rP=  
    %   See also ZERNPOL, ZERNFUN2. <iunDL0  
    Fx 2 KRxk  
    %   Paul Fricker 11/13/2006 C%t~?jEK~^  
    Q ,30  
    7kx)/Rw\B  
    % Check and prepare the inputs: yjvzA|(YC  
    % ----------------------------- >'wl)j$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8hba3L_Z  
        error('zernfun:NMvectors','N and M must be vectors.') &!]$#  
    end xCF k1%qf  
    ))|Wm}  
    if length(n)~=length(m) K#H}=Y A  
        error('zernfun:NMlength','N and M must be the same length.') _O2},9L n  
    end 5p}Y6Lc\j  
    I]bqle0M  
    n = n(:); )n}Wb+2I  
    m = m(:); nx`!BNL'V  
    if any(mod(n-m,2)) fs+l  
        error('zernfun:NMmultiplesof2', ... Rnt&<|8G  
              'All N and M must differ by multiples of 2 (including 0).') W76K/A<h>  
    end ^5j|   
    IlG)=?8XZ  
    if any(m>n) -;&aU;k  
        error('zernfun:MlessthanN', ... }GJIM|7^  
              'Each M must be less than or equal to its corresponding N.') U*`7   
    end 0b+OB pqN  
    iM+K&\{_h  
    if any( r>1 | r<0 ) H|k!5W^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]4-lrI1#  
    end ,S E5W2a]  
    {j@ S<PD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) a_XM2dc%  
        error('zernfun:RTHvector','R and THETA must be vectors.') p0~=   
    end NH$%g\GPs  
    'uS!rKkQlu  
    r = r(:); *`OgwMr)M  
    theta = theta(:); #\KSv Z  
    length_r = length(r); W.TZU'%  
    if length_r~=length(theta) BlUl5mP}>  
        error('zernfun:RTHlength', ... ps=jGh[  
              'The number of R- and THETA-values must be equal.') j9Ptd$Uj  
    end =G3O7\KmH  
    7;RhA5M  
    % Check normalization: Xd/gvg{??0  
    % -------------------- 9~98v;Z1  
    if nargin==5 && ischar(nflag) RQ}(}|1+\  
        isnorm = strcmpi(nflag,'norm'); #Ki(9oWd  
        if ~isnorm w|:UTJ>@  
            error('zernfun:normalization','Unrecognized normalization flag.') La9v97H:  
        end r2H \B,_  
    else ;cd{+0  
        isnorm = false; a)=WDRk  
    end |6w.m<p  
    :W(3<D7\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  /B)ZB})z  
    % Compute the Zernike Polynomials P/snzm|@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FJKW=1 =,  
    7|LJwXQ-  
    % Determine the required powers of r: hNs970i  
    % ----------------------------------- =xcA4"k  
    m_abs = abs(m); P.Pw .[:3  
    rpowers = []; *5Upb,* *  
    for j = 1:length(n) Ry>c]\a]  
        rpowers = [rpowers m_abs(j):2:n(j)]; P5/K?I~/So  
    end 48dIh\TH"  
    rpowers = unique(rpowers); wJ@8-H 8}  
    wEL$QOu$  
    % Pre-compute the values of r raised to the required powers, WqP>cl2Lm  
    % and compile them in a matrix: e@'rY#:u  
    % ----------------------------- @Aa$k:_  
    if rpowers(1)==0 Z&FC:4!!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %Z~, F?  
        rpowern = cat(2,rpowern{:}); k%-_z}:3V  
        rpowern = [ones(length_r,1) rpowern]; Au jvKQ(  
    else %"^$$$6%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vWY}+#  
        rpowern = cat(2,rpowern{:}); j~,7JJ (y  
    end 9k8ftxB^  
    IPmSkK  
    % Compute the values of the polynomials: EeGP E  
    % -------------------------------------- hNBv|&D#  
    y = zeros(length_r,length(n)); 4GWt.+{J$  
    for j = 1:length(n) 'W>Bz,M6yo  
        s = 0:(n(j)-m_abs(j))/2; (+7gS_c  
        pows = n(j):-2:m_abs(j); @w&VI6  
        for k = length(s):-1:1 hZ2!UW4'  
            p = (1-2*mod(s(k),2))* ... "&?F 6Pi  
                       prod(2:(n(j)-s(k)))/              ... `&$"oW{HW  
                       prod(2:s(k))/                     ... !GI*R2<W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wy6>^_z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); N),bhYS]  
            idx = (pows(k)==rpowers); ~$XbYR-  
            y(:,j) = y(:,j) + p*rpowern(:,idx); fP>_P# gZ  
        end |_L\^T|6  
         $3>k/*=  
        if isnorm xLX<. z!r  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cPA-EH  
        end >Ia{ZbQV  
    end '9^+J7iO(+  
    % END: Compute the Zernike Polynomials <>/0 ;J1<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j<H`<S  
    ]oB-qfbH  
    % Compute the Zernike functions: nEu,1  
    % ------------------------------ ?B ; +,  
    idx_pos = m>0; %UZ_wsY\  
    idx_neg = m<0; ']1\nJP[=X  
    )6U&^9=  
    z = y; *i zPLM}+  
    if any(idx_pos) =H&{*Ja  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); K{)N:|y%!$  
    end .),ql_sXr  
    if any(idx_neg) HqNM31)  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >qh8em  
    end SA_5..  
    -w nlJi1f  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) q#9JJWSs  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :SFcnYv0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $1<V'b[E  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive J6pQ){;6  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, [ySO  
    %   and THETA is a vector of angles.  R and THETA must have the same 1_JtD|Jy  
    %   length.  The output Z is a matrix with one column for every P-value, Pd-0u> k  
    %   and one row for every (R,THETA) pair. EfA*w/y  
    % m(Ghe2T:  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )IUeWR  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 0}:- t^P  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) o&45y&  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 DyeV uB  
    %   for all p. &w\E*$  
    % j8/rd  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 s}Y_og_c  
    %   Zernike functions (order N<=7).  In some disciplines it is ]BAM _  
    %   traditional to label the first 36 functions using a single mode g/H:`J  
    %   number P instead of separate numbers for the order N and azimuthal g+>$_s  
    %   frequency M. Fy1@B(V%  
    % L"|4 v  
    %   Example: 9MfBsp}c  
    % &"!s+_  
    %       % Display the first 16 Zernike functions 'r`#u@TTZ  
    %       x = -1:0.01:1; p H&Tb4  
    %       [X,Y] = meshgrid(x,x); Gvg)@VNr  
    %       [theta,r] = cart2pol(X,Y); W 2/`O?  
    %       idx = r<=1; m$nT#@l5bH  
    %       p = 0:15; OO)m{5r,{  
    %       z = nan(size(X)); kmHIU}Z  
    %       y = zernfun2(p,r(idx),theta(idx)); bvyX(^I[q  
    %       figure('Units','normalized') TI '(  
    %       for k = 1:length(p) E"LSM]^^<f  
    %           z(idx) = y(:,k); R5 O{;/w  
    %           subplot(4,4,k) r![RRa^  
    %           pcolor(x,x,z), shading interp rv`kP"I  
    %           set(gca,'XTick',[],'YTick',[]) pfd||Z  
    %           axis square kMD:~ V  
    %           title(['Z_{' num2str(p(k)) '}']) j ys1Ki  
    %       end aXi5~,Ks_  
    % + 3+^J?N  
    %   See also ZERNPOL, ZERNFUN. K/oC+Z;K  
    CKJ9YKu{W  
    %   Paul Fricker 11/13/2006 ?UD2}D[M  
    E]z Td$v6  
    V}?d ,.m`{  
    % Check and prepare the inputs: CXC,@T  
    % ----------------------------- `fw:   
    if min(size(p))~=1 C.SG m  
        error('zernfun2:Pvector','Input P must be vector.') ?.E ixGzI^  
    end  ByP  
    K9JW&5Q  
    if any(p)>35 r{DR$jD  
        error('zernfun2:P36', ... `[T|Ck5  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 3yNILj  
               '(P = 0 to 35).']) y+3< ] N  
    end pqaQ%|<  
    Vc}#Ok  
    % Get the order and frequency corresonding to the function number: g3B zi6$m  
    % ---------------------------------------------------------------- &(H;Bin'  
    p = p(:); ~G0\57;h  
    n = ceil((-3+sqrt(9+8*p))/2); R"Ol'y{  
    m = 2*p - n.*(n+2); 0Q@ &z  
    5|l&` fv`  
    % Pass the inputs to the function ZERNFUN: A`E7V}~  
    % ---------------------------------------- <]f ru1  
    switch nargin T /iKz  
        case 3 2&*r1NXBE  
            z = zernfun(n,m,r,theta); Tac7+=T  
        case 4 LKtug>Me  
            z = zernfun(n,m,r,theta,nflag); \^<eJf D  
        otherwise d*7nz=0&$  
            error('zernfun2:nargin','Incorrect number of inputs.') eKd F-;  
    end Y02 cX@K6  
     QW  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) fIOI  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. I[|5 DQ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of x1['+!01  
    %   order N and frequency M, evaluated at R.  N is a vector of #]nH$Kq  
    %   positive integers (including 0), and M is a vector with the 7P}&<;5zD  
    %   same number of elements as N.  Each element k of M must be a B+:'Ld](  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  /[f9Z:>V  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is $~M#msK9  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix H38ODWO3  
    %   with one column for every (N,M) pair, and one row for every ^l\U6$3  
    %   element in R. s&vREx(  
    % (rfU=E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 'gYUyl  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is d! 0p^!3  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to jkd'2  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 +bwSu)k  
    %   for all [n,m]. Hm=!;xAFX  
    % 0pP;[7k\  
    %   The radial Zernike polynomials are the radial portion of the BElVkb  
    %   Zernike functions, which are an orthogonal basis on the unit #DMt<1#:  
    %   circle.  The series representation of the radial Zernike HorFQ?8  
    %   polynomials is =,B44:`r  
    % T;(k  
    %          (n-m)/2  M1>< K:  
    %            __ BbA7X  
    %    m      \       s                                          n-2s h WvQh  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Obd@#uab  
    %    n      s=0 #biI=S  
    % c]]OV7;)>  
    %   The following table shows the first 12 polynomials. T_}9b  
    % "F/%{0d  
    %       n    m    Zernike polynomial    Normalization  6C6<,c   
    %       --------------------------------------------- > %5<fK2  
    %       0    0    1                        sqrt(2) uW*)B_c  
    %       1    1    r                           2 8^26g 3  
    %       2    0    2*r^2 - 1                sqrt(6) 7MXi_V;p<  
    %       2    2    r^2                      sqrt(6) RJ/4T#b"+  
    %       3    1    3*r^3 - 2*r              sqrt(8) uveby:dh  
    %       3    3    r^3                      sqrt(8) 0Da9,&D  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) tHez S~t_  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) RY=B>398:  
    %       4    4    r^4                      sqrt(10) 2"`R_q  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) {j%'EJ5  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?Rlo<f:Mf  
    %       5    5    r^5                      sqrt(12) =aM(r6 C  
    %       --------------------------------------------- ~Rx:X4|H  
    % ^8p=g -U\  
    %   Example: qV^Z@N+,  
    % &S/@i|_  
    %       % Display three example Zernike radial polynomials 9 06b=  
    %       r = 0:0.01:1; nCF1i2*6|"  
    %       n = [3 2 5]; tOx)t$ix  
    %       m = [1 2 1]; tz #Fy?pe  
    %       z = zernpol(n,m,r); 9sQ7wlK  
    %       figure 5;{Q >n  
    %       plot(r,z) R pUq#Y:a  
    %       grid on [=dK%7v  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') G:'hT=8  
    % 1n+C'P"  
    %   See also ZERNFUN, ZERNFUN2. _]~`t+W'DJ  
    |X:"AH"S  
    % A note on the algorithm. d~NvS-u7  
    % ------------------------ iYwzdW1  
    % The radial Zernike polynomials are computed using the series Z(F`M;1>xI  
    % representation shown in the Help section above. For many special ygiZ~v4P/  
    % functions, direct evaluation using the series representation can 6\jhDP@`9  
    % produce poor numerical results (floating point errors), because Z_iVOctP  
    % the summation often involves computing small differences between < {1'cx  
    % large successive terms in the series. (In such cases, the functions #~(J J  
    % are often evaluated using alternative methods such as recurrence n o6q3<re  
    % relations: see the Legendre functions, for example). For the Zernike p%;n4*b2  
    % polynomials, however, this problem does not arise, because the b^WTX  
    % polynomials are evaluated over the finite domain r = (0,1), and `_`\jd@  
    % because the coefficients for a given polynomial are generally all mUFg(;ya  
    % of similar magnitude. sFh mp  
    % 1ztL._Td  
    % ZERNPOL has been written using a vectorized implementation: multiple QahM)Gb  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] =Kf]ZKj)  
    % values can be passed as inputs) for a vector of points R.  To achieve ^! ?wh  
    % this vectorization most efficiently, the algorithm in ZERNPOL 5Q $6~\  
    % involves pre-determining all the powers p of R that are required to ;Mzy>*#$Q  
    % compute the outputs, and then compiling the {R^p} into a single N@Fof(T&  
    % matrix.  This avoids any redundant computation of the R^p, and lOk'stLNa&  
    % minimizes the sizes of certain intermediate variables. %kB84dE  
    % AmSrc.  
    %   Paul Fricker 11/13/2006 2y"]rUS`  
    O7&6]/`  
    QU&LC  
    % Check and prepare the inputs: re\pE2&B  
    % ----------------------------- 1|U8DK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F#<$yUf%  
        error('zernpol:NMvectors','N and M must be vectors.') PH6!T/2[  
    end rd#O ]   
    /*v} .fH%  
    if length(n)~=length(m) ZboY]1L[j  
        error('zernpol:NMlength','N and M must be the same length.') h^Bp^V5#  
    end .(D,CGtYb  
    Cp[{| U-?G  
    n = n(:); 9Tju+KcK  
    m = m(:); E@uxEF  
    length_n = length(n); H Pvs~`>V  
    'fIBJ3s[o  
    if any(mod(n-m,2)) g!<=NVhYt  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') El9D1],  
    end 2D`_!OG=  
    #`kLU:  
    if any(m<0) m :M=De  
        error('zernpol:Mpositive','All M must be positive.') )I/K-zj  
    end TOH!vQP  
    qKL :#ny  
    if any(m>n) 1$A7BP  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') tN-U,6c]  
    end NG)Xk[q4  
    xna4W|-  
    if any( r>1 | r<0 ) g`NJ `  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') hXF#KVqx  
    end qj$6/V|D  
    p`oSI}ZwB  
    if ~any(size(r)==1) @d/Wa=K  
        error('zernpol:Rvector','R must be a vector.') Qj:`[#3?2  
    end  ,m"0Bu2  
    -c_}^j  
    r = r(:); CVk.Ez6  
    length_r = length(r); O4l]Q  
    .YYLMI  
    if nargin==4 U&PwEh4uG  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); {y>o6OTITR  
        if ~isnorm j B.ZF7q  
            error('zernpol:normalization','Unrecognized normalization flag.') o?T01t=  
        end ,p3moD 3  
    else VH>?%aL  
        isnorm = false; PF6w'T 5  
    end ]&oQ6  
    =~|:93]k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B'@a36  
    % Compute the Zernike Polynomials n91@{U)QJ3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #z. QBG@  
    *'BA# /@  
    % Determine the required powers of r: v c r5  
    % ----------------------------------- M@ TXzn!&o  
    rpowers = []; _,G^#$pH  
    for j = 1:length(n) MhaoD5*9  
        rpowers = [rpowers m(j):2:n(j)]; #<4/ *< 5  
    end E <O:  
    rpowers = unique(rpowers); Ho_ 2zx:8b  
    >sfH[b  
    % Pre-compute the values of r raised to the required powers, AhNy+p{  
    % and compile them in a matrix: 2{`[<w  
    % ----------------------------- 0P%,1M3d  
    if rpowers(1)==0 |1rKGDc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8Ev,9  
        rpowern = cat(2,rpowern{:}); udjahI<{  
        rpowern = [ones(length_r,1) rpowern]; 0r|mg::'  
    else eG F{.]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qR X:e o  
        rpowern = cat(2,rpowern{:}); 8*-N@j8  
    end @An "ClDa  
    'IykIf  
    % Compute the values of the polynomials: 9^AfT>b~f  
    % -------------------------------------- 0=,vdT  
    z = zeros(length_r,length_n); gPA), NrN  
    for j = 1:length_n $%%K9Y  
        s = 0:(n(j)-m(j))/2; wv6rjg:7  
        pows = n(j):-2:m(j); ~AX@o-WU  
        for k = length(s):-1:1 doj$chy  
            p = (1-2*mod(s(k),2))* ... N8-!}\,  
                       prod(2:(n(j)-s(k)))/          ... jcY:a0[{D  
                       prod(2:s(k))/                 ... bVbh| AA  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *pZhwO !D  
                       prod(2:((n(j)+m(j))/2-s(k))); |J_kS90=  
            idx = (pows(k)==rpowers); "=/YPw^0  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ivi,/~L  
        end -$Ad#Eu]M  
         :VB{@ED  
        if isnorm ,[j'OyR  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); J8>8@m6  
        end 2rG;j52))a  
    end ~\ C.Nm  
    R{X@@t9@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  kzK4i!}  
    74h[YyVi  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =Fd!wkB'{  
    m,u5S=3A{!  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)