切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11140阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ev$:7}h=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0/su`  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 |SOLC  
    function z = zernfun(n,m,r,theta,nflag) Og1-LP|X  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. KZ%i&w#<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fbh,V%t7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the QCb D^  
    %   unit circle.  N is a vector of positive integers (including 0), and x-[ItJ% l  
    %   M is a vector with the same number of elements as N.  Each element Y1h)aQ5{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "Pwa}{  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, `6~0W5  
    %   and THETA is a vector of angles.  R and THETA must have the same ii?T:T@  
    %   length.  The output Z is a matrix with one column for every (N,M) HV~Fe!J_  
    %   pair, and one row for every (R,THETA) pair. M8~3 0L  
    % 3=d%WPgQ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike uN)c!='I  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4 . 7X*1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral O^cC+@l!4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s`$}xukT  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized S"&Gutu3o  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. KUJLx  
    % qx ki  
    %   The Zernike functions are an orthogonal basis on the unit circle. EnWv9I<  
    %   They are used in disciplines such as astronomy, optics, and EIRDH'[L  
    %   optometry to describe functions on a circular domain. J1G}l5N  
    % UQu6JkbLL  
    %   The following table lists the first 15 Zernike functions. t1hQ0B  
    % Vkg0C*L_  
    %       n    m    Zernike function           Normalization }<^mUG  
    %       -------------------------------------------------- Eiu/p&ct  
    %       0    0    1                                 1 tu}!:5xi  
    %       1    1    r * cos(theta)                    2 bny5e:= d  
    %       1   -1    r * sin(theta)                    2 _Q1p_sdg  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) k ;^$Pd?t  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 'W(u.  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P*6m~`"5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z^>4qf,k  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !Vyf2xS"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iE''>Z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 9qftMDLZJ\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) i M !`4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "s0,9; }  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) UDJjw  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9E ^!i  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 5!?5S$>  
    %       -------------------------------------------------- I(*3n"  
    % E4% -*n  
    %   Example 1: RHFRN&RU$  
    % gk|>E[.  
    %       % Display the Zernike function Z(n=5,m=1) q KD  
    %       x = -1:0.01:1; or*{P=m+R  
    %       [X,Y] = meshgrid(x,x); jc"sPrv5  
    %       [theta,r] = cart2pol(X,Y); 66& uK|  
    %       idx = r<=1; 2jyWkAP'  
    %       z = nan(size(X)); &<;T$Y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )c4tGT<  
    %       figure 56)!&MF  
    %       pcolor(x,x,z), shading interp B/;> v  
    %       axis square, colorbar [_JdV(]$  
    %       title('Zernike function Z_5^1(r,\theta)') `TPIc  
    % %4nf(|8n  
    %   Example 2: |N`0G.#  
    % *,z/q6  
    %       % Display the first 10 Zernike functions 4z(~)#'^  
    %       x = -1:0.01:1; b WNa6x  
    %       [X,Y] = meshgrid(x,x); K[icVT2v~  
    %       [theta,r] = cart2pol(X,Y); G*4I;'6  
    %       idx = r<=1; *F1TZ_GS  
    %       z = nan(size(X)); e8<}{N0,n  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Z4i))%or  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _]zX W  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; sMMOZ'bT  
    %       y = zernfun(n,m,r(idx),theta(idx)); kf'(u..G  
    %       figure('Units','normalized') v ;\cM/&5  
    %       for k = 1:10 "<=4]Z  
    %           z(idx) = y(:,k); Ef`'r))  
    %           subplot(4,7,Nplot(k)) W^8  
    %           pcolor(x,x,z), shading interp Da 7(jA+  
    %           set(gca,'XTick',[],'YTick',[]) TnN yth wZ  
    %           axis square KdkL_GSLT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) w(V%EEk  
    %       end 4*}&nmW  
    % S'!&,Dxq^  
    %   See also ZERNPOL, ZERNFUN2. oT\K P  
    /O:4u_  
    %   Paul Fricker 11/13/2006 #$Zx].[lc  
    L(yUS)O  
    u9 &$`N_G  
    % Check and prepare the inputs: "|X'qKS(H{  
    % ----------------------------- }B'-*)^|e{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W+a/>U  
        error('zernfun:NMvectors','N and M must be vectors.') O5r8Ghf )  
    end '! ^7 *@z  
    =Q<VU/  
    if length(n)~=length(m) vSHPN|*  
        error('zernfun:NMlength','N and M must be the same length.') H[hJUR+#  
    end 9>4#I3  
    znE1t%V  
    n = n(:); p(pfJ^/:(  
    m = m(:); |^-D&C(Eu  
    if any(mod(n-m,2)) y!1X3X,V  
        error('zernfun:NMmultiplesof2', ... MU$tX  
              'All N and M must differ by multiples of 2 (including 0).') ULt5Zi  
    end WkiT,(i  
    _]*YSeh=  
    if any(m>n) 4wSZ'RTSR  
        error('zernfun:MlessthanN', ... gfK_g)'2U  
              'Each M must be less than or equal to its corresponding N.') ow \EL  
    end U^KWRqt  
    _{`Z?lt  
    if any( r>1 | r<0 ) ;J|t-$Z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 48 wt  
    end h)Fc<,vwBE  
    {LjzkXs  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]<<,{IQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') DyqqY$ vH(  
    end ; +\h$  
    #Gi`s?  
    r = r(:); !(q@sw(  
    theta = theta(:); 8$~oiK%fw  
    length_r = length(r); _p8u &TZ  
    if length_r~=length(theta) ,+df=>$W  
        error('zernfun:RTHlength', ... !AXLoq$SY  
              'The number of R- and THETA-values must be equal.') xy:Mb =r  
    end b\JU%89  
    :oy2mi;  
    % Check normalization: r5xm7- `c  
    % -------------------- LC]0c)v#  
    if nargin==5 && ischar(nflag) BeFyx"NBg  
        isnorm = strcmpi(nflag,'norm'); J\@g3oGw  
        if ~isnorm bXJ(QXHd%  
            error('zernfun:normalization','Unrecognized normalization flag.') JL4E`  
        end bz>\n"'  
    else C')KZ|JIC  
        isnorm = false; ?<jWEz=  
    end lt-3OcC  
    Lx>[`QT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ez32k[eV!  
    % Compute the Zernike Polynomials ]0T*#U/P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _yAY5TIv  
    B](R(x>L  
    % Determine the required powers of r: 9]+zZP_#  
    % ----------------------------------- _LZ(HTX~  
    m_abs = abs(m); OB9E30  
    rpowers = []; tRI<K  
    for j = 1:length(n) mTsyVji8  
        rpowers = [rpowers m_abs(j):2:n(j)]; gOnZ#  
    end Fk49~z   
    rpowers = unique(rpowers); G0!6rDu2,  
    0V-jOc  
    % Pre-compute the values of r raised to the required powers, Khd A;bF  
    % and compile them in a matrix: }&+,y<>   
    % ----------------------------- #W8F_/!n|  
    if rpowers(1)==0  \xp0n  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !2Ompcr1  
        rpowern = cat(2,rpowern{:}); FR6 W-L  
        rpowern = [ones(length_r,1) rpowern]; .WKJ37od  
    else =c \(]xX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \},H\kK+^  
        rpowern = cat(2,rpowern{:}); s:l H4B  
    end ^U,iDK_  
    jY\z+lW6A  
    % Compute the values of the polynomials: g%= K rO  
    % -------------------------------------- ].d%R a:{  
    y = zeros(length_r,length(n)); q}p$S2`  
    for j = 1:length(n) ShL!7y*rT{  
        s = 0:(n(j)-m_abs(j))/2; H.|I|XRG/  
        pows = n(j):-2:m_abs(j); G^ k8Or2  
        for k = length(s):-1:1 <gi~:%T  
            p = (1-2*mod(s(k),2))* ... ZRYlm$C  
                       prod(2:(n(j)-s(k)))/              ... a$?d_BX  
                       prod(2:s(k))/                     ... hzk!H]>E  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .!<yTh  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9h+Hd&=  
            idx = (pows(k)==rpowers); ?J + jv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ::{\O\w  
        end ' *XIp:  
         OcMB)1uh\  
        if isnorm | eCVq(R  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); i 1w ]j  
        end zd2_k 9  
    end qJs_ahy(  
    % END: Compute the Zernike Polynomials @ NDcO,]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4Ia'Yr  
    C3^3<  
    % Compute the Zernike functions: p=UW ^95  
    % ------------------------------ m$W2E.-$'#  
    idx_pos = m>0; _,0.h*c  
    idx_neg = m<0; Y(`Bc8h  
    qF^P\cD  
    z = y; O7IYg;  
    if any(idx_pos) >QJDO ]~V  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k(tB+k!vH\  
    end hd9~Zw]V  
    if any(idx_neg) 3/usgw1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,F->*=  
    end 03)irq%l;  
    KM )MUPr  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) f%_$RdU  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. XFs7kTY  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated dk1q9Tx  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive B QUYT/$(  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Pl|I{l*o(`  
    %   and THETA is a vector of angles.  R and THETA must have the same `lm'_~=`&  
    %   length.  The output Z is a matrix with one column for every P-value, X`&Us  
    %   and one row for every (R,THETA) pair. 7}\AhQ, S  
    % &<#1G u_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike _"D J|j  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) YH%U$eS#g  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) %#4;'\'5  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 PDc4ok`)  
    %   for all p. X`v6gv5qj  
    % :-+][ [  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 gjK: a@{  
    %   Zernike functions (order N<=7).  In some disciplines it is HW_2!t_R  
    %   traditional to label the first 36 functions using a single mode -$%~EY}  
    %   number P instead of separate numbers for the order N and azimuthal D5@}L$ u  
    %   frequency M. O.Dz}[w  
    % K4NzI9@  
    %   Example: *S <I!7Q  
    % 2y$DTMu  
    %       % Display the first 16 Zernike functions b)XGr?  
    %       x = -1:0.01:1; #0*I|gfV  
    %       [X,Y] = meshgrid(x,x); nx`W!|g$`  
    %       [theta,r] = cart2pol(X,Y); {hO|{vz  
    %       idx = r<=1; 2&s(:=  
    %       p = 0:15; jMR9E@>~E  
    %       z = nan(size(X)); *x#5S.i1  
    %       y = zernfun2(p,r(idx),theta(idx)); )i39'0a  
    %       figure('Units','normalized') e6jdSn  
    %       for k = 1:length(p) 2"xhFxoD7  
    %           z(idx) = y(:,k); } -hH2  
    %           subplot(4,4,k) h9c7P@29  
    %           pcolor(x,x,z), shading interp e6gj'GmY  
    %           set(gca,'XTick',[],'YTick',[]) c7?|Tipc  
    %           axis square _mQ~[}y+?  
    %           title(['Z_{' num2str(p(k)) '}']) A-\n"}4  
    %       end S=w~bz, /  
    % z}VCiS0  
    %   See also ZERNPOL, ZERNFUN. =5pwNi_S  
    J{EK}'  
    %   Paul Fricker 11/13/2006 \FO 4A  
    uWXxK"J.  
    ^=cX L  
    % Check and prepare the inputs: /oM&29 jy  
    % ----------------------------- {;UBW7{  
    if min(size(p))~=1 ocp3JR_0  
        error('zernfun2:Pvector','Input P must be vector.') %HZ!s `w_  
    end b$Bq#vdg:  
    +(q r{G?  
    if any(p)>35 /KJWo0zo  
        error('zernfun2:P36', ... [S`Fm>,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... -cXVkH{  
               '(P = 0 to 35).']) Tkf4`Gxd  
    end =8qhK=&]  
    ]=0D~3o3  
    % Get the order and frequency corresonding to the function number: X.)1>zk  
    % ---------------------------------------------------------------- $/JnYkL{m  
    p = p(:); |TBKsx8  
    n = ceil((-3+sqrt(9+8*p))/2); LrV4^{9(  
    m = 2*p - n.*(n+2); {}PBYX R  
    uUpOa+t  
    % Pass the inputs to the function ZERNFUN: c*> SZ'T\  
    % ---------------------------------------- A56aOI=  
    switch nargin E[_-s  
        case 3 MES|iB  
            z = zernfun(n,m,r,theta); w\.z-6G  
        case 4 @2$iFZq~  
            z = zernfun(n,m,r,theta,nflag); vC5 (  
        otherwise Cd'SPaR  
            error('zernfun2:nargin','Incorrect number of inputs.') .Wci@5:3  
    end ZZ;V5o6E  
    :}w^-I"  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) b<rJ@1qtJ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 3UX})mW  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of s*pgR=dZZ  
    %   order N and frequency M, evaluated at R.  N is a vector of S)\%.~ n  
    %   positive integers (including 0), and M is a vector with the $lrq*Nf9c  
    %   same number of elements as N.  Each element k of M must be a 7_#i,|]58  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ]hkway  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is *[_>d.i  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix eqE%ofW  
    %   with one column for every (N,M) pair, and one row for every {utIaMb]&v  
    %   element in R. Z66@@?`  
    % 68LB745  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \uV;UH7qe  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is o93A:fc  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Z-+p+34ytq  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ztS'Dp}q<  
    %   for all [n,m]. d<v>C-nk%  
    % f)+fdc  
    %   The radial Zernike polynomials are the radial portion of the D~Y 3\KP  
    %   Zernike functions, which are an orthogonal basis on the unit m<;&B   
    %   circle.  The series representation of the radial Zernike vb.`rj6  
    %   polynomials is >m{)shBX  
    % 4RqOg1  
    %          (n-m)/2 WNPdym  
    %            __ x~tG[Y2F?  
    %    m      \       s                                          n-2s i'%:z]hp9  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Y<S,Xr;J:  
    %    n      s=0 1vQj` F  
    % nNFZ77lg  
    %   The following table shows the first 12 polynomials. $u9y H Z  
    % eS jXaZh  
    %       n    m    Zernike polynomial    Normalization AjZ@hid  
    %       --------------------------------------------- `?VB)  
    %       0    0    1                        sqrt(2) %G$KahxV>  
    %       1    1    r                           2 "+ji`{  
    %       2    0    2*r^2 - 1                sqrt(6) vxo iPqo  
    %       2    2    r^2                      sqrt(6) q*<Df=+B  
    %       3    1    3*r^3 - 2*r              sqrt(8) T(^<sjOs  
    %       3    3    r^3                      sqrt(8) s3G3_&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 0Kjm:x9T  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) jn#  
    %       4    4    r^4                      sqrt(10) *r+i=i8{  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ds4)Nk4%O  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) !R WX1Z  
    %       5    5    r^5                      sqrt(12) 7b,u|F  
    %       --------------------------------------------- P~:W+!@5v  
    % :r[`bqC;\*  
    %   Example: Ov)rsi  
    % % ;2x.  
    %       % Display three example Zernike radial polynomials 3D k W  
    %       r = 0:0.01:1; INrUvD/*  
    %       n = [3 2 5]; 9frS!AQ  
    %       m = [1 2 1]; c)M_&?J!5  
    %       z = zernpol(n,m,r); g4I&3 M  
    %       figure xU^Flw,4  
    %       plot(r,z) y?M99Vo4?  
    %       grid on r 8,6qP[  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') d3(T=9;f2  
    % !\8j[QS!  
    %   See also ZERNFUN, ZERNFUN2. quU%9m \S`  
    Ajhrsa\~a  
    % A note on the algorithm. Db= iJ68  
    % ------------------------ 5_nkN`x  
    % The radial Zernike polynomials are computed using the series kO\(6f2|x  
    % representation shown in the Help section above. For many special . c+RFX@0  
    % functions, direct evaluation using the series representation can Vcl"qz@Fj  
    % produce poor numerical results (floating point errors), because Sg0 _l(  
    % the summation often involves computing small differences between Ne.W-,X^cL  
    % large successive terms in the series. (In such cases, the functions  OXzJ%&h  
    % are often evaluated using alternative methods such as recurrence \sF}NBNT@  
    % relations: see the Legendre functions, for example). For the Zernike z1F[okLA  
    % polynomials, however, this problem does not arise, because the h]c-x(+  
    % polynomials are evaluated over the finite domain r = (0,1), and yU*j{>%RsK  
    % because the coefficients for a given polynomial are generally all HlY4%M5q/  
    % of similar magnitude. Hi9;i/  
    % (9$/r/-a  
    % ZERNPOL has been written using a vectorized implementation: multiple q0w5ADd  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] gNzQ"W=  
    % values can be passed as inputs) for a vector of points R.  To achieve X1i6CEa<  
    % this vectorization most efficiently, the algorithm in ZERNPOL 6A/Nlk.  
    % involves pre-determining all the powers p of R that are required to ID5?x8o#k  
    % compute the outputs, and then compiling the {R^p} into a single S0g5Ym ia  
    % matrix.  This avoids any redundant computation of the R^p, and Lqbu]  
    % minimizes the sizes of certain intermediate variables. 3`k 1  
    % 7##nY3",^  
    %   Paul Fricker 11/13/2006 "a6 wd  
    ZQnJTS+Rd  
    M:nXn7)+  
    % Check and prepare the inputs: pH?VM&x  
    % ----------------------------- bUp%87<*X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o'%F*>#v  
        error('zernpol:NMvectors','N and M must be vectors.') 7vcYI#(2 Y  
    end f| 3`8JU  
    /%rbXrR4w  
    if length(n)~=length(m) ]ODC+q1  
        error('zernpol:NMlength','N and M must be the same length.') EUe2<G  
    end `t:7&$>T  
    }vxb, [#  
    n = n(:); <Ky\ ^  
    m = m(:); _$wWKJy9  
    length_n = length(n); m^O:k"+!  
    KcfW+> W3  
    if any(mod(n-m,2)) 23y7l=.b/  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,u{d@U^)3@  
    end [={pF q`  
    WMZa6cH  
    if any(m<0) ()(@Qcc  
        error('zernpol:Mpositive','All M must be positive.') <=cj)  
    end "(/|[7D)  
    H[<"DP  
    if any(m>n) {j,bV6X  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') dj?.Hc7od  
    end /!JpmI  
    RXt`y62yK  
    if any( r>1 | r<0 ) ?;|$R   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') CTR|b}!  
    end Vs8os+  
     t\{q,4  
    if ~any(size(r)==1) EFf<| v  
        error('zernpol:Rvector','R must be a vector.') )(\5Wk9(  
    end WaN0$66[:  
    ePIBg(  
    r = r(:); aAu upPu  
    length_r = length(r); `wB(J%w  
    68Wm=j.m  
    if nargin==4 b\][ x6zJp  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7SXi#{  
        if ~isnorm w^p 'D{{  
            error('zernpol:normalization','Unrecognized normalization flag.') o&;+!Si@T  
        end #TZYe4#f  
    else RX=C)q2c  
        isnorm = false; >B skw2  
    end =^q:h<  
    f&8&UL>e`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N~\1yQT  
    % Compute the Zernike Polynomials Nh]eZ3O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z:RwCd1\  
    2y ~]Uo  
    % Determine the required powers of r: rA8neO)  
    % ----------------------------------- xlgN}M  
    rpowers = []; *FK!^Y  
    for j = 1:length(n) o*f7/ZP1o  
        rpowers = [rpowers m(j):2:n(j)]; lx U}HM  
    end Cg}cD.  
    rpowers = unique(rpowers); k-Jj k3  
    exTpy  
    % Pre-compute the values of r raised to the required powers, O#Xq0o  
    % and compile them in a matrix: UG&/0{j5XV  
    % ----------------------------- Z\(+awv  
    if rpowers(1)==0 ut& RKr3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H:,rNaz7D^  
        rpowern = cat(2,rpowern{:}); T"in   
        rpowern = [ones(length_r,1) rpowern]; e]uk}#4  
    else o8 q@rwu3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '<>pz<c  
        rpowern = cat(2,rpowern{:}); Rc0OEs%7P  
    end HR\yJt  
    6}n_r}kNR  
    % Compute the values of the polynomials: =6ZZ/+6b  
    % -------------------------------------- vs7Hg )F  
    z = zeros(length_r,length_n); 9N5 &N3  
    for j = 1:length_n asj^K|.z  
        s = 0:(n(j)-m(j))/2; b0 PF7PEEQ  
        pows = n(j):-2:m(j); a&.8*|w3  
        for k = length(s):-1:1 4@/[aFH  
            p = (1-2*mod(s(k),2))* ... EXS 1.3>  
                       prod(2:(n(j)-s(k)))/          ... $w)yQ %  
                       prod(2:s(k))/                 ... "CT'^d+  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... +QtK "5M  
                       prod(2:((n(j)+m(j))/2-s(k))); jGb+bN5U7  
            idx = (pows(k)==rpowers); K>lA6i7?  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Y71io^td~j  
        end u~bk~ 3.I  
         F.c,FR2  
        if isnorm Zh{Pzyp  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 9p+DA s{i  
        end (pREo/T  
    end %%G2w6 3M  
    owmV7E1  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  3y^PKIIrt  
    < z':_,  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 O2i7w1t  
     N>ncv  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)