切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11583阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 CGyw '0S  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! > nHaMj  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {P {h|+;  
    function z = zernfun(n,m,r,theta,nflag) wU}%]FqtZ=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5+DId7d'n  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <jAn~=Uq[,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the u7/]Go44  
    %   unit circle.  N is a vector of positive integers (including 0), and Fp&tJ]=B.  
    %   M is a vector with the same number of elements as N.  Each element {j8M78}3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) H`bS::JI-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _LSp \{Z  
    %   and THETA is a vector of angles.  R and THETA must have the same goqm6L^Cu  
    %   length.  The output Z is a matrix with one column for every (N,M) `B$rr4_  
    %   pair, and one row for every (R,THETA) pair. }vX iqT  
    % 11iV{ h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _C3O^/<n4V  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cj\?vX\V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3\ {?L  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, egmNX't6f5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized B#;6z%WK  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e>2KW5.  
    % 6Z l#$>P  
    %   The Zernike functions are an orthogonal basis on the unit circle. Q?2Gw N  
    %   They are used in disciplines such as astronomy, optics, and  3 GL,=q  
    %   optometry to describe functions on a circular domain. ]!X[[w)  
    % K>vi9,4/ks  
    %   The following table lists the first 15 Zernike functions. mUNAA[0 L  
    % ()Q#@?c~  
    %       n    m    Zernike function           Normalization nB;[;dC z  
    %       -------------------------------------------------- c6T[2Ig  
    %       0    0    1                                 1 az1#:Go  
    %       1    1    r * cos(theta)                    2 ]++,7Z\AU  
    %       1   -1    r * sin(theta)                    2 ~l8w]R3A  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) r"9hpZH  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [XhG7Ly  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Yosfk\D  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) YU`}T<;bg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u]*f^/6Q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =o:1Rc7J  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2~l+2..  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (?x R<]~g*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) USg,=YM  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) &`IJ55Z-)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &u!MI  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) rI OKCL?  
    %       -------------------------------------------------- -W{ !`<8D  
    % T#\=v(_NR  
    %   Example 1: !CdF,pd/)m  
    % 7~~suQ{F4  
    %       % Display the Zernike function Z(n=5,m=1) TkR#Kzv380  
    %       x = -1:0.01:1; QM'|k6  
    %       [X,Y] = meshgrid(x,x); j>?`N^  
    %       [theta,r] = cart2pol(X,Y); & }7+.^  
    %       idx = r<=1; vaLP_V  
    %       z = nan(size(X)); 0a2#36;_IK  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1QPz|3f@\  
    %       figure `MHixQ;j  
    %       pcolor(x,x,z), shading interp Kk,u{EA  
    %       axis square, colorbar 1k]L,CX  
    %       title('Zernike function Z_5^1(r,\theta)') CXBFR>"  
    % 5@J]#bp0M  
    %   Example 2: Rk-G| 52g  
    % o!lKP>  
    %       % Display the first 10 Zernike functions r~G  amjS  
    %       x = -1:0.01:1; D_?dy4\  
    %       [X,Y] = meshgrid(x,x); r PTfwhs  
    %       [theta,r] = cart2pol(X,Y); Ng2Z7k  
    %       idx = r<=1; <KJ|U0/jGd  
    %       z = nan(size(X)); |l-O e  
    %       n = [0  1  1  2  2  2  3  3  3  3]; D~FIv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; e8E'X  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oE_*hp+  
    %       y = zernfun(n,m,r(idx),theta(idx)); lcM  
    %       figure('Units','normalized') QnJLTBv  
    %       for k = 1:10 B@@tKn_CQ  
    %           z(idx) = y(:,k); (-],VB (+  
    %           subplot(4,7,Nplot(k)) ,vo]WIQ\:  
    %           pcolor(x,x,z), shading interp 86eaX+F  
    %           set(gca,'XTick',[],'YTick',[]) dV{mmHL  
    %           axis square AV4fN@BX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^ZIs>.'  
    %       end Rt7l`|g a+  
    % 1>/ iYf  
    %   See also ZERNPOL, ZERNFUN2. `Hq*l"8  
    III:j hh  
    %   Paul Fricker 11/13/2006 (! 8y~n 1  
    P @J)S ?  
    H]W'mm  
    % Check and prepare the inputs: >oN Wf  
    % ----------------------------- |&@`~OBa  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'BUfdb8d  
        error('zernfun:NMvectors','N and M must be vectors.') Nobu= Z  
    end *8+HQ[[#  
    DZ1.Bm0  
    if length(n)~=length(m) As5-@l`@  
        error('zernfun:NMlength','N and M must be the same length.') HRJ\H- V  
    end "%bU74>  
    Dc* H:x;  
    n = n(:); t&p I  
    m = m(:); Vc6 >i|"-O  
    if any(mod(n-m,2)) fq4uiFi<  
        error('zernfun:NMmultiplesof2', ... I5Ty@J#  
              'All N and M must differ by multiples of 2 (including 0).') :0ltq><?  
    end ,)N/2M\B-  
    o bN8+ j  
    if any(m>n) M]M>z>1*v  
        error('zernfun:MlessthanN', ... P_b!^sq9  
              'Each M must be less than or equal to its corresponding N.') %iME[| u&  
    end :P ]D`b6p  
    <CJy3<$u  
    if any( r>1 | r<0 ) )*R';/zaI  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') E!.&y4  
    end ?Q$a@)x#  
    [$ uKI,l  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LitdO>%#2  
        error('zernfun:RTHvector','R and THETA must be vectors.') W'=}2Y$]u  
    end jse!EtB:  
    a\ ~118 !  
    r = r(:); miTff[hsMa  
    theta = theta(:); Y@< j vH1  
    length_r = length(r); ]d~{8h!G  
    if length_r~=length(theta) 4;>HBCM4-  
        error('zernfun:RTHlength', ... ^7*7^<  
              'The number of R- and THETA-values must be equal.') G;J)[y  
    end 4\nG Wi{2  
    \YFM5l;IU  
    % Check normalization: LE)$_i8gX  
    % -------------------- C@[U:\  
    if nargin==5 && ischar(nflag) Jh<s '&FR  
        isnorm = strcmpi(nflag,'norm'); ?RIf0;G  
        if ~isnorm e2K9CE.O  
            error('zernfun:normalization','Unrecognized normalization flag.') L Ee{fc?{  
        end Ryygq,>VD.  
    else A|]#b?-  
        isnorm = false; _~D#?cFY6  
    end : bi(mX7t  
    k4!_(X%8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *W^a<Zm8>  
    % Compute the Zernike Polynomials w(z=xO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =F Y2O`%a  
    G<$8g-O;D  
    % Determine the required powers of r: 9:GP~oI j  
    % ----------------------------------- Qca3{|r`  
    m_abs = abs(m); -'L~Y~'.  
    rpowers = []; ^nNpT!o  
    for j = 1:length(n) Pa+_{9  
        rpowers = [rpowers m_abs(j):2:n(j)]; aG]^8`~>'  
    end Y"r728T`K  
    rpowers = unique(rpowers); IbJl/N%o  
    jN'h/\  
    % Pre-compute the values of r raised to the required powers, WC37=8mA  
    % and compile them in a matrix: $-~"G,;F  
    % ----------------------------- ,FH1yJ;Y&  
    if rpowers(1)==0 }@ktAt  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W}2!~ep!  
        rpowern = cat(2,rpowern{:}); f [.'V1  
        rpowern = [ones(length_r,1) rpowern]; -meY[!"X  
    else ^W9O_5\g4a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); diVg|Z3T  
        rpowern = cat(2,rpowern{:}); L;y BZLM  
    end _Y/*e<bU  
    $$W2{vr7+  
    % Compute the values of the polynomials: fH?A.JP=a  
    % -------------------------------------- I"x~ 7  
    y = zeros(length_r,length(n)); c0rU&+:Ry  
    for j = 1:length(n) osd oL  
        s = 0:(n(j)-m_abs(j))/2; oyY z3X  
        pows = n(j):-2:m_abs(j); ^OX}y~'  
        for k = length(s):-1:1 QtXiUx^ k<  
            p = (1-2*mod(s(k),2))* ... &Td)2Wt  
                       prod(2:(n(j)-s(k)))/              ... sf[|8}(  
                       prod(2:s(k))/                     ... *)`PY4zF  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tPN CdA  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); u*W! !(P/  
            idx = (pows(k)==rpowers); 9E8&~y  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Iz j-,a  
        end ]W4{|%@H"  
         S:`Gi>D  
        if isnorm X%&7-PO  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #gT"G18/!  
        end B:0oT  
    end Oq,@{V@)9k  
    % END: Compute the Zernike Polynomials K|$ c#X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o|y_j4 9  
    d=8.cQL:E  
    % Compute the Zernike functions: <6Y;VH^_  
    % ------------------------------ ys>n%24qP  
    idx_pos = m>0; jAue+ tB  
    idx_neg = m<0; W2fcY;HZ  
    w0Ex}  
    z = y; i=]R1yP  
    if any(idx_pos) +F60_O `  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X am8h  
    end b]Kb ~y|  
    if any(idx_neg) Uf ]$I`T#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c}|.U  
    end =EM<LjO  
    G3+e5/0  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 7-n HPDp'  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. T,uF^%$@AQ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated -!qjBK,`X  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive AB,(%JT/2{  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, @NL<v-t  
    %   and THETA is a vector of angles.  R and THETA must have the same IDw`k[k  
    %   length.  The output Z is a matrix with one column for every P-value, 4g2`[<S  
    %   and one row for every (R,THETA) pair. Mt`LOdiC_  
    % qLb~^'<iD  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ~"vS$>+  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) &Ejhw3Nw  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) -AD` (b7q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 iHf):J?8 y  
    %   for all p. ^W%F?#ELN2  
    % J%xUO1  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 k}E_1_S(  
    %   Zernike functions (order N<=7).  In some disciplines it is ]+a~/  
    %   traditional to label the first 36 functions using a single mode SSla^,MHef  
    %   number P instead of separate numbers for the order N and azimuthal 4gev^/^^  
    %   frequency M. .>[l@x"  
    % xr@;w8X`^  
    %   Example: 7G;1n0m-T  
    % I0Allw[  
    %       % Display the first 16 Zernike functions >eo[)Y  
    %       x = -1:0.01:1; bx{njo1Mr  
    %       [X,Y] = meshgrid(x,x); I~YV&12  
    %       [theta,r] = cart2pol(X,Y); S#oBO%!  
    %       idx = r<=1; :k`Qj(7S  
    %       p = 0:15; [\<#iRcP  
    %       z = nan(size(X)); yi~]}M  
    %       y = zernfun2(p,r(idx),theta(idx)); X[$|I9  
    %       figure('Units','normalized') Zos.WS#  
    %       for k = 1:length(p) ;/wH/!b  
    %           z(idx) = y(:,k); TB&IB:4)R  
    %           subplot(4,4,k) RFFbS{U*  
    %           pcolor(x,x,z), shading interp &nVekE:!  
    %           set(gca,'XTick',[],'YTick',[]) ?f3R+4  
    %           axis square 8EdaqF  
    %           title(['Z_{' num2str(p(k)) '}']) 6bjZW ~  
    %       end W)D?8*  
    % [.xc`CF  
    %   See also ZERNPOL, ZERNFUN. /4+Q; P  
    YqWNp  
    %   Paul Fricker 11/13/2006 4ME$Z>eN  
    2_3os P\Z  
    UY({[?Se  
    % Check and prepare the inputs: yX{7<\x   
    % ----------------------------- M[O22wFs  
    if min(size(p))~=1 toPFkc6`  
        error('zernfun2:Pvector','Input P must be vector.') [:(O`#  
    end sUmpf4/  
    `W_&^>yl  
    if any(p)>35 VB4V[jraCF  
        error('zernfun2:P36', ... o$%KbfXO]  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... hS &H*  
               '(P = 0 to 35).']) $0P16ZlPC  
    end # c1LOz  
    Q<MxbHk9  
    % Get the order and frequency corresonding to the function number: s 72yu}  
    % ---------------------------------------------------------------- JBOU$A ~  
    p = p(:); k'&1,78[l  
    n = ceil((-3+sqrt(9+8*p))/2); =N\$$3m?  
    m = 2*p - n.*(n+2); VyYrL]OrA  
    TC'SDDX  
    % Pass the inputs to the function ZERNFUN: EXH,+3fQp  
    % ---------------------------------------- o%z^@Cq  
    switch nargin  lFcHE c  
        case 3 A/}[Z\C  
            z = zernfun(n,m,r,theta); WL'!M&h  
        case 4 N M),2%<  
            z = zernfun(n,m,r,theta,nflag); ;ZcwgsxTM  
        otherwise |9$C%@8  
            error('zernfun2:nargin','Incorrect number of inputs.') cw)J+Lyh  
    end r oG<2i F  
    *0L3#. i  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }z\t}lven  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1g,gilc  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of !{(crfXB  
    %   order N and frequency M, evaluated at R.  N is a vector of RhF< {U.  
    %   positive integers (including 0), and M is a vector with the v1}ijls  
    %   same number of elements as N.  Each element k of M must be a A>S7Ap4z>  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) F &5iA\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is %zEy.7Ux  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix {(F}SF{  
    %   with one column for every (N,M) pair, and one row for every yEJ3O^(F  
    %   element in R. VB8eGMo  
    % l$l6,OzS@  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- .Q@]+&`|}i  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &pz`gna  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to <.BY=z=H  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 /L! =##  
    %   for all [n,m]. C deV3  
    % 5OO XCtIKf  
    %   The radial Zernike polynomials are the radial portion of the RASk=B  
    %   Zernike functions, which are an orthogonal basis on the unit SnvT !ca  
    %   circle.  The series representation of the radial Zernike " ~6&rt  
    %   polynomials is ix?Z:pIS0  
    % M 0G`P1o  
    %          (n-m)/2 G$Fo*;Fl  
    %            __ -{d(~XIo  
    %    m      \       s                                          n-2s B"*PBJuOA  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Qch'C0u  
    %    n      s=0 6 9uDc  
    % #Ak9f-pf  
    %   The following table shows the first 12 polynomials. |r+hj<K  
    % PT&qys 2k  
    %       n    m    Zernike polynomial    Normalization XJS^{=/  
    %       --------------------------------------------- juM~X5b  
    %       0    0    1                        sqrt(2) Sv>CVp*  
    %       1    1    r                           2 !@ AnwV]  
    %       2    0    2*r^2 - 1                sqrt(6) t0:~BYXu  
    %       2    2    r^2                      sqrt(6) D`B*+  
    %       3    1    3*r^3 - 2*r              sqrt(8) UA0( cK  
    %       3    3    r^3                      sqrt(8) * "?,.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) QT1oUP#*  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) q_>=| b  
    %       4    4    r^4                      sqrt(10) 4m~p(r  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 7(LB}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) we*E}U4  
    %       5    5    r^5                      sqrt(12) lq  Av  
    %       --------------------------------------------- UK@hnQU8`  
    % irB}h!@  
    %   Example: 0PUSCka'6  
    % #xhl@=W;  
    %       % Display three example Zernike radial polynomials 8N#.@\'kz.  
    %       r = 0:0.01:1; iE{VmHp=  
    %       n = [3 2 5]; YsTF10  
    %       m = [1 2 1]; ._'.F'd  
    %       z = zernpol(n,m,r); 1x+w|h  
    %       figure '^2bC  
    %       plot(r,z) {;JFoe+  
    %       grid on _XI,z0(  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /KO2y0`  
    % Q b5vyV `  
    %   See also ZERNFUN, ZERNFUN2. H}1XK|K3#H  
    N{!@M_C^%R  
    % A note on the algorithm. Q 9JT6  
    % ------------------------ (|y@ ftr@  
    % The radial Zernike polynomials are computed using the series c&SSf_0O*  
    % representation shown in the Help section above. For many special :%zAX  
    % functions, direct evaluation using the series representation can reoCyP\!!  
    % produce poor numerical results (floating point errors), because !JjNm*F[  
    % the summation often involves computing small differences between T(+*y  
    % large successive terms in the series. (In such cases, the functions I[LHJ4  
    % are often evaluated using alternative methods such as recurrence f+QDjJ?z  
    % relations: see the Legendre functions, for example). For the Zernike 5@i(pVWZ  
    % polynomials, however, this problem does not arise, because the 3J^'x  
    % polynomials are evaluated over the finite domain r = (0,1), and FJsg3D*@J  
    % because the coefficients for a given polynomial are generally all k]A$?C0Q<%  
    % of similar magnitude. !OR %AdxB  
    % [Ue"#w  
    % ZERNPOL has been written using a vectorized implementation: multiple *{e,< DV  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] `hU 2Ss~  
    % values can be passed as inputs) for a vector of points R.  To achieve +C=^,B!,  
    % this vectorization most efficiently, the algorithm in ZERNPOL QWwEfL  
    % involves pre-determining all the powers p of R that are required to _w9 :([_  
    % compute the outputs, and then compiling the {R^p} into a single 0VI[6t@  
    % matrix.  This avoids any redundant computation of the R^p, and FK,YVY  
    % minimizes the sizes of certain intermediate variables. r5!Sps3B  
    % =G1 5 eZW  
    %   Paul Fricker 11/13/2006 %h=cwT6  
    nrz2f7d$  
    .W0;Vhw"  
    % Check and prepare the inputs: 1jj.oa]  
    % ----------------------------- G5zsId dS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E uk[ @1  
        error('zernpol:NMvectors','N and M must be vectors.') Q$^Kf]pD  
    end J|WkPv2  
    f\vg<lca  
    if length(n)~=length(m) :c&F\Q=  
        error('zernpol:NMlength','N and M must be the same length.') t1]sv VX,w  
    end d@<~u,Mt&F  
    $4rMYEn08  
    n = n(:); )Yw m_f-N  
    m = m(:); Y:K1v:Knw  
    length_n = length(n); inv 5>OeG  
    xz vbjS W  
    if any(mod(n-m,2)) tc)4$"9)  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 0tah$;c e  
    end 7?~*F7F  
    83gp'W{|  
    if any(m<0) $3:O}X>  
        error('zernpol:Mpositive','All M must be positive.') H=>;M j  
    end c UHKE\F  
    sQr |3}I(  
    if any(m>n) pU5t,  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 2z=aP!9]  
    end ZHOh(  
    dW2Lvnh!>/  
    if any( r>1 | r<0 ) =%G<S'2'  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') a*KJjl?k  
    end H{fOAv1*  
    W .bJ.hO*  
    if ~any(size(r)==1) kX:d?*{KB  
        error('zernpol:Rvector','R must be a vector.') [n9X5qG~  
    end RS1c+]rr  
    C\C*'l6d  
    r = r(:); jM|-(Es. )  
    length_r = length(r); %oN5jt  
    "ll TVB  
    if nargin==4 aYPD4yX"/  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [%yCnt  
        if ~isnorm Ok6c E  
            error('zernpol:normalization','Unrecognized normalization flag.') p7d[)* L>C  
        end (cEjC`]  
    else T@,tlIM  
        isnorm = false; 8X2NEVH]  
    end j5qrM_Chg  
    Y1h)0_0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Wk&g!FR  
    % Compute the Zernike Polynomials zz~AoX7V6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BjyGk+A   
    ;Jq 7E  
    % Determine the required powers of r: @ wJ|vW_.  
    % ----------------------------------- 0]^ke:(#  
    rpowers = []; 6 P6Pl&  
    for j = 1:length(n) auV<=1<zJ  
        rpowers = [rpowers m(j):2:n(j)]; F8%.-.l)  
    end 7Eett)4  
    rpowers = unique(rpowers); @u}1 S1  
    ag\xwS#i5H  
    % Pre-compute the values of r raised to the required powers, 6YeEr!zt%  
    % and compile them in a matrix:  b"C1  
    % ----------------------------- \gjY h2>  
    if rpowers(1)==0 @z1Yj"^Pm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )"Vd8*e  
        rpowern = cat(2,rpowern{:}); 8@Kvh|  
        rpowern = [ones(length_r,1) rpowern]; uzpW0(_i3a  
    else lYt|C^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); n_X)6 s  
        rpowern = cat(2,rpowern{:}); {[%kn rRJ  
    end Q-M"+HO  
    x^ruPiH  
    % Compute the values of the polynomials: .W)%*~ O!;  
    % -------------------------------------- P,/=c(5\}  
    z = zeros(length_r,length_n); .Q^8 _'ZG  
    for j = 1:length_n {"x8 q  
        s = 0:(n(j)-m(j))/2; K_X10/#b&  
        pows = n(j):-2:m(j); chr^>%Q_  
        for k = length(s):-1:1 vw/L|b7G  
            p = (1-2*mod(s(k),2))* ... & NO:S  
                       prod(2:(n(j)-s(k)))/          ... G uLU7a  
                       prod(2:s(k))/                 ... FV->226o%  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... N4JJA+  
                       prod(2:((n(j)+m(j))/2-s(k))); WG0Ne;Ho  
            idx = (pows(k)==rpowers); ?UGA-^E1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); B5iVT<:a  
        end ;m[-yqX  
         [9S?  
        if isnorm  A/zZ%h  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); / .ddx<  
        end LyB &u( )  
    end 1D/9lR,  
    r(#]Z   
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  lw.4O^  
    D[m+= -  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 QbF!V%+a's  
    N W/RQ(  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)