切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10968阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 .JBTU>1]_n  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! C;%1XFzM  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1--Ka& H  
    function z = zernfun(n,m,r,theta,nflag) gfKv$~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $EL:Jx2<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mNsd&Rk'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the EeGTBVms  
    %   unit circle.  N is a vector of positive integers (including 0), and {B4.G8%Z  
    %   M is a vector with the same number of elements as N.  Each element L4ZB0PmN'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $&&+2?cx0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DPkH:X  
    %   and THETA is a vector of angles.  R and THETA must have the same ?Iu=os>*  
    %   length.  The output Z is a matrix with one column for every (N,M) cdN=HM~I  
    %   pair, and one row for every (R,THETA) pair. G=LK irj(  
    % &A=c[pc  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ir=G\/A  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _T_} k:&X  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /!N=@z)  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F,V| In  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]0g p.R  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ko)f:=Qo  
    % n(i/jW~0w  
    %   The Zernike functions are an orthogonal basis on the unit circle. 13 %: 3W(  
    %   They are used in disciplines such as astronomy, optics, and ErgWsAw-  
    %   optometry to describe functions on a circular domain. p=\Q7<Z6d,  
    % }Syd*%BR[  
    %   The following table lists the first 15 Zernike functions. 0\, !  
    % nTD4^'  
    %       n    m    Zernike function           Normalization YABi`;R]'  
    %       -------------------------------------------------- =MvB9gx@r  
    %       0    0    1                                 1 qC5IV}9`  
    %       1    1    r * cos(theta)                    2 x[u6_6=q9  
    %       1   -1    r * sin(theta)                    2 C{+JrHV%h  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !,C8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) lPrAx0m13%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /} h"f5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) QKhGEW~G  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0M?zotv0#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) T^{=cx9x9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2H`>Kj  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) xu{VU^'Y  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,L C(Ax'.F  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) m/;fY>}3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) itg"dGDk  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !R@jbM  
    %       -------------------------------------------------- ML0_Uc3en  
    % 8n:N#4Dh^  
    %   Example 1: Q- w_ @~  
    % suYbD!`(  
    %       % Display the Zernike function Z(n=5,m=1) dk"@2%xJ2d  
    %       x = -1:0.01:1; `sg W0Uf  
    %       [X,Y] = meshgrid(x,x); IkG;j+=  
    %       [theta,r] = cart2pol(X,Y); Az-!X!O*f  
    %       idx = r<=1; ;/kmV~KG  
    %       z = nan(size(X)); IM,4Si2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <;uM/vS i  
    %       figure oX'@,(6)  
    %       pcolor(x,x,z), shading interp +zXcTT[V  
    %       axis square, colorbar ( uG; Q  
    %       title('Zernike function Z_5^1(r,\theta)') (;H% r &  
    % TKiYEh  
    %   Example 2: $*LBZcL  
    % &0H_W xKeB  
    %       % Display the first 10 Zernike functions V-E 77u6{0  
    %       x = -1:0.01:1; YK5(oKFN  
    %       [X,Y] = meshgrid(x,x); ZE= Yn~XM  
    %       [theta,r] = cart2pol(X,Y); /5Vv5d/Z4!  
    %       idx = r<=1; 5:#|Op N  
    %       z = nan(size(X)); (_6JQn  
    %       n = [0  1  1  2  2  2  3  3  3  3]; id" l"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~ Nf|,{[(5  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; JT=ax/%Mo  
    %       y = zernfun(n,m,r(idx),theta(idx)); l?YO!$  
    %       figure('Units','normalized') NciIqF  
    %       for k = 1:10 >yVp1Se  
    %           z(idx) = y(:,k); 2m} bddS  
    %           subplot(4,7,Nplot(k)) O%6D2d  
    %           pcolor(x,x,z), shading interp ?RW1%+[  
    %           set(gca,'XTick',[],'YTick',[]) h%NM%;"H/  
    %           axis square ,yvS c  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kbJ4CF}H  
    %       end ~B? Wg!  
    % )heHERbJ  
    %   See also ZERNPOL, ZERNFUN2. qJ<l$Ig  
    n)z:C{  
    %   Paul Fricker 11/13/2006 b'z\|jY  
    SLUQFoz}  
    /Ahh6=qQY  
    % Check and prepare the inputs: p )]x,F  
    % ----------------------------- Hl'AnxE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N R 4\TU  
        error('zernfun:NMvectors','N and M must be vectors.') 7$t['2j3  
    end ]0[ot$Da6  
    Oamz>Hplu  
    if length(n)~=length(m) [7g-M/jvY  
        error('zernfun:NMlength','N and M must be the same length.') *OIBMx#qxn  
    end L6;'V5Mg72  
    [hk/Rp7{  
    n = n(:); TJ_6:;4,|_  
    m = m(:); {`T^&b k  
    if any(mod(n-m,2)) [tElt4uG  
        error('zernfun:NMmultiplesof2', ... ,A)Z .OWOq  
              'All N and M must differ by multiples of 2 (including 0).') 5tzO=gO[  
    end i[ws%GfEv  
    8OO[Le]1  
    if any(m>n) fO .=i1 E}  
        error('zernfun:MlessthanN', ... m6]6 !_  
              'Each M must be less than or equal to its corresponding N.') ll- KK`Ka  
    end }$r]\v  
    8xG"hJR  
    if any( r>1 | r<0 ) x5Fo?E  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') K5\l (BB  
    end 4x3 _8/=  
    N:S2X+}(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N 7Y X  
        error('zernfun:RTHvector','R and THETA must be vectors.') G007[|  
    end xU}J6 Tv  
    (/!@ -]1  
    r = r(:); qDz[=6BF  
    theta = theta(:); E*fa&G~s )  
    length_r = length(r); 7^mQfQv  
    if length_r~=length(theta) " vc4QH$  
        error('zernfun:RTHlength', ... 1oQbV`P  
              'The number of R- and THETA-values must be equal.') Zk>m!F>,p  
    end DUH_LnHw)  
    0>]&9'cn  
    % Check normalization: moh,aB#  
    % -------------------- {XUSw8W'  
    if nargin==5 && ischar(nflag) C>mFylN  
        isnorm = strcmpi(nflag,'norm'); W- nS{v(  
        if ~isnorm mFxt +\  
            error('zernfun:normalization','Unrecognized normalization flag.') Msfxce  
        end :}/\hz ,  
    else e"XolM0IM  
        isnorm = false; 1$6 u  
    end >!{8)ti  
    Ggst s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TXS`ey  
    % Compute the Zernike Polynomials 8 Gy*BpmJn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }d iE'  
    0Zo><=  
    % Determine the required powers of r: s{V&vRr  
    % ----------------------------------- .;.Zbhm  
    m_abs = abs(m); ~ Fl\c-  
    rpowers = []; \u(Gj]B#"  
    for j = 1:length(n) oIIi_yc  
        rpowers = [rpowers m_abs(j):2:n(j)]; `T ^0&#  
    end Gm=&[?}  
    rpowers = unique(rpowers); ggYi7Wzsd  
    |TkicgeS  
    % Pre-compute the values of r raised to the required powers, kM=&Tfpj  
    % and compile them in a matrix: Yl?s^]SFU  
    % ----------------------------- aG4 ^xOD  
    if rpowers(1)==0 61OlnmvE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  E<0Mluk  
        rpowern = cat(2,rpowern{:}); Cw kQhj?  
        rpowern = [ones(length_r,1) rpowern]; qe(C>qjMbG  
    else hN gT/y8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x_?K6[G&}  
        rpowern = cat(2,rpowern{:}); b&1hj[`)  
    end X.,R%>O}`P  
    _v,Wl/YAp  
    % Compute the values of the polynomials: ,H mGp  
    % -------------------------------------- R[fQ$` M  
    y = zeros(length_r,length(n)); },Grg~l  
    for j = 1:length(n) AeN:wOm  
        s = 0:(n(j)-m_abs(j))/2; nmE H/a  
        pows = n(j):-2:m_abs(j); T2)CiR-b  
        for k = length(s):-1:1 t7xJ "  
            p = (1-2*mod(s(k),2))* ... {)!ua7GF0H  
                       prod(2:(n(j)-s(k)))/              ... d7zZ~n  
                       prod(2:s(k))/                     ... tx`^'%GMA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \_(0V"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); xXmlHo<D  
            idx = (pows(k)==rpowers); o8%o68py  
            y(:,j) = y(:,j) + p*rpowern(:,idx); a\Gd;C ^`  
        end "[7'i<,AI  
         ;'Z"CbS+  
        if isnorm \9od*y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <@+L^Ps~z  
        end oY,{9H37b  
    end OPqhdqo  
    % END: Compute the Zernike Polynomials ",,.xLI7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;4/ n~  
    /~fu,2=7  
    % Compute the Zernike functions: ,nPnH1vb  
    % ------------------------------ FB>P39u  
    idx_pos = m>0; -O/[c  
    idx_neg = m<0; )-}<}< oO  
    UCFFF%  
    z = y; ,+gtr.  
    if any(idx_pos) bu \(KR$s  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); HL>l.IG?  
    end een62-`  
    if any(idx_neg) <veypLi"R  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); HxL uJ  
    end ,lFzL3'_0x  
    mYXL  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "15frr?  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {%, 4P_m  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 9j5Z!Vsy  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive jC?l :m?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, BuC\Bd^0  
    %   and THETA is a vector of angles.  R and THETA must have the same N"~P$B1 X  
    %   length.  The output Z is a matrix with one column for every P-value, n}4q2x"  
    %   and one row for every (R,THETA) pair. As tuM]  
    % pB%oFWqK  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike j^f54Ky.  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 37M,Os1(  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) X .K*</(g  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8Vt'X2  
    %   for all p. RgM=g8}M  
    % u'Hh||La"  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 g^i\7'  
    %   Zernike functions (order N<=7).  In some disciplines it is {sq:vu@NC  
    %   traditional to label the first 36 functions using a single mode iT{[zLz>1  
    %   number P instead of separate numbers for the order N and azimuthal g(Oor6Pp  
    %   frequency M. b1."mT!p  
    % o{mVXidE  
    %   Example: k@[[vj|W  
    % @XcrHnH9  
    %       % Display the first 16 Zernike functions dWhqu68_  
    %       x = -1:0.01:1; O%&N6U  
    %       [X,Y] = meshgrid(x,x); aouYPxA`  
    %       [theta,r] = cart2pol(X,Y); I: MrX  
    %       idx = r<=1; UvqnNA  
    %       p = 0:15; "`Xbi/i  
    %       z = nan(size(X)); C!^;%VQ}d  
    %       y = zernfun2(p,r(idx),theta(idx)); 9u3P>a~b  
    %       figure('Units','normalized') N\CHIsVm>  
    %       for k = 1:length(p) sY]pszjT  
    %           z(idx) = y(:,k); KWi|7z(L=  
    %           subplot(4,4,k) m-cw5lW  
    %           pcolor(x,x,z), shading interp ~)ysEZl  
    %           set(gca,'XTick',[],'YTick',[]) rj1%IzaXU^  
    %           axis square M}=fdH  
    %           title(['Z_{' num2str(p(k)) '}']) @;S)j!m`  
    %       end {?3i^Q=V  
    % 6&2{V? W3  
    %   See also ZERNPOL, ZERNFUN. bp}]'NA  
    <0jM07\<  
    %   Paul Fricker 11/13/2006 yK_$d0ZGE~  
    |H 5$VSw  
    yv)-QIC3  
    % Check and prepare the inputs: 'P%&*%  
    % ----------------------------- vrvi] Y8  
    if min(size(p))~=1 0p\Kf(|E*6  
        error('zernfun2:Pvector','Input P must be vector.') m YhDi  
    end ?]TtUoY=)F  
    p DU+(A4>  
    if any(p)>35 lr -+|>M)  
        error('zernfun2:P36', ... _skE\7&>X  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... zYftgH_o  
               '(P = 0 to 35).']) i+I1h=  
    end J DOs.w  
    =#&+w[4?&.  
    % Get the order and frequency corresonding to the function number: 9.6ni1a'  
    % ---------------------------------------------------------------- d%p{l)Hd  
    p = p(:); 9h6siK(F  
    n = ceil((-3+sqrt(9+8*p))/2); /-=h|A#Kh  
    m = 2*p - n.*(n+2); w`zS`+4  
    xBqZ: BQ  
    % Pass the inputs to the function ZERNFUN: 8Qkwg]X  
    % ---------------------------------------- )cm^;(#pV  
    switch nargin T[J8zL O  
        case 3 K>-01AGHL  
            z = zernfun(n,m,r,theta); 8N`Rf; BM  
        case 4 F9q!Upr_+  
            z = zernfun(n,m,r,theta,nflag); 1Z_ H% (  
        otherwise 3i9~'j;F3  
            error('zernfun2:nargin','Incorrect number of inputs.')  SxX  
    end <anU#bEuQ  
    `t g=__D  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ]qEg5:yY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ~/2OK!M  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q 'uGB fE.  
    %   order N and frequency M, evaluated at R.  N is a vector of g5*?2D}dqX  
    %   positive integers (including 0), and M is a vector with the 'GLpSWL+*  
    %   same number of elements as N.  Each element k of M must be a gMU%.%p2  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ZRFHs>0  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is d8p5a C+E  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /2 $d'e  
    %   with one column for every (N,M) pair, and one row for every !3z ;u8W  
    %   element in R. LeNSjxB  
    % )C rsm&  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- o ethO  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is IL"N_ux~w~  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to VaO[SW^  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 s&\krW &  
    %   for all [n,m]. qga?-oz,<6  
    % bfK4ps}m*  
    %   The radial Zernike polynomials are the radial portion of the lLU8eHf\  
    %   Zernike functions, which are an orthogonal basis on the unit S{,|Fa^PPO  
    %   circle.  The series representation of the radial Zernike @Z<Z//^k  
    %   polynomials is P4 #j;k4P  
    % 4Wa*Pcj  
    %          (n-m)/2 4"\%/kG  
    %            __ iMQ0Sq-%1  
    %    m      \       s                                          n-2s Xu|2@?l9  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r {~XnmBs  
    %    n      s=0 Epm8S}6K  
    % 6S0Gjekr  
    %   The following table shows the first 12 polynomials. 4Ofkagg  
    % C3(h j  
    %       n    m    Zernike polynomial    Normalization \(r$f!`  
    %       --------------------------------------------- Ms-)S7tMz  
    %       0    0    1                        sqrt(2) \[ 4y  
    %       1    1    r                           2 |n~,{=  
    %       2    0    2*r^2 - 1                sqrt(6) f{P?|8u  
    %       2    2    r^2                      sqrt(6) 4`") aM  
    %       3    1    3*r^3 - 2*r              sqrt(8) <*o V-A  
    %       3    3    r^3                      sqrt(8) NB-%Tp*d  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) (ki= s+W-  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) J :KU~`r  
    %       4    4    r^4                      sqrt(10) h,,B"vPS  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "|V}[ 2  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) K \.tR  
    %       5    5    r^5                      sqrt(12) Gz(l~!n~a  
    %       --------------------------------------------- eDvh3Y<D  
    % p+y"r4   
    %   Example: aP B4!3W  
    % #er% q:  
    %       % Display three example Zernike radial polynomials UKPr[  
    %       r = 0:0.01:1; n+nZ;GJ5d  
    %       n = [3 2 5]; {.J<^V  
    %       m = [1 2 1]; v7%}ey[  
    %       z = zernpol(n,m,r); '~1Zr uO  
    %       figure 6E.[F\u  
    %       plot(r,z) (*AJ6BQWa  
    %       grid on 6;;2e> e  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') U\M9sTqo  
    %  2IGU{&s  
    %   See also ZERNFUN, ZERNFUN2. w(K|0|t  
    }{Ra5-PY  
    % A note on the algorithm. aX Ie  
    % ------------------------ ?TI]0)  
    % The radial Zernike polynomials are computed using the series Tr;.O?@{t}  
    % representation shown in the Help section above. For many special B![:fiR`  
    % functions, direct evaluation using the series representation can 6?[SlPPE1  
    % produce poor numerical results (floating point errors), because %,zHS?)l  
    % the summation often involves computing small differences between Ge^,hAM'  
    % large successive terms in the series. (In such cases, the functions X-J85b_e  
    % are often evaluated using alternative methods such as recurrence zL'S5'<F|  
    % relations: see the Legendre functions, for example). For the Zernike $8SSu|O+x  
    % polynomials, however, this problem does not arise, because the y,w_x,m  
    % polynomials are evaluated over the finite domain r = (0,1), and 2<:dA >1  
    % because the coefficients for a given polynomial are generally all zS h9`F  
    % of similar magnitude. }}k*i0  
    % 0G2Y_A&e**  
    % ZERNPOL has been written using a vectorized implementation: multiple Oqq' r"S  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ?CcX>R-/  
    % values can be passed as inputs) for a vector of points R.  To achieve COmu.'%*  
    % this vectorization most efficiently, the algorithm in ZERNPOL 34nfL: y  
    % involves pre-determining all the powers p of R that are required to q- 0q:  
    % compute the outputs, and then compiling the {R^p} into a single ~$hR:I1  
    % matrix.  This avoids any redundant computation of the R^p, and iSg0X8J)  
    % minimizes the sizes of certain intermediate variables. q?@*  
    % >y(loMl  
    %   Paul Fricker 11/13/2006 tmoaa!yRnT  
    M9m~ck  
    CF@*ki3X  
    % Check and prepare the inputs: o wb+,Gk(  
    % ----------------------------- eZ-fy,E  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kk4+>mk  
        error('zernpol:NMvectors','N and M must be vectors.') ]E'?#z.t  
    end dDD5OnWmJ  
    4^ U%` 1  
    if length(n)~=length(m) PN:`SWP  
        error('zernpol:NMlength','N and M must be the same length.') b#R$P]dr=  
    end {TdxsE>  
    gGx(mX._L?  
    n = n(:); lNl.lI\t)y  
    m = m(:); .yFO] r1aL  
    length_n = length(n); \fuz`fK:  
    lnm@DWhf  
    if any(mod(n-m,2)) lP*=4Jh  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') `l/nAKg?W  
    end t%0c$c  
    F w t  
    if any(m<0) YMU""/(  
        error('zernpol:Mpositive','All M must be positive.') %[M0TE=J  
    end ^:}C,lIrG  
    # ,eC&X45  
    if any(m>n) *X ;ch55\  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') NffKK:HvBB  
    end *[*q#b$j  
    %Lb cwh(9  
    if any( r>1 | r<0 ) B([-GpZt[  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') F`2h,i-9  
    end ,2+d+Zuh  
    MNb9~kM  
    if ~any(size(r)==1) uXLZ!LJo  
        error('zernpol:Rvector','R must be a vector.') z;Fz3s7  
    end *'aouS/?<6  
    !$>b}w'  
    r = r(:); :]CL}n$*  
    length_r = length(r); svb7-.!  
     ;Q4,I[?%  
    if nargin==4 `~"'\Hw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [{Q$$aV1  
        if ~isnorm 0a#v}w^ *  
            error('zernpol:normalization','Unrecognized normalization flag.') (E&M[hH+  
        end UK1)U)*+  
    else .:B>xg~2  
        isnorm = false; DHx&%]r;D  
    end ZGsd cnz  
    V2M4g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m%>}T 75C^  
    % Compute the Zernike Polynomials O8_! !Qd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Nwp{["}]L  
    O>a1S*mxP  
    % Determine the required powers of r: 3S2Alx!6  
    % ----------------------------------- *" C9F/R  
    rpowers = []; -)3+/4Q(  
    for j = 1:length(n) ^FBu|e AkE  
        rpowers = [rpowers m(j):2:n(j)]; _)!*,\*`{  
    end Dj'?12Onu=  
    rpowers = unique(rpowers); &}7R\co3  
    SK^(7Ws~0  
    % Pre-compute the values of r raised to the required powers, W*#5Sk  
    % and compile them in a matrix: Ip=QtNW3\  
    % ----------------------------- y 5=r r3%v  
    if rpowers(1)==0 <eS/-W %n6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (_>Su QK  
        rpowern = cat(2,rpowern{:}); F;h^o!W7r  
        rpowern = [ones(length_r,1) rpowern]; (w5cp!qW9J  
    else gO "G/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5(hv|t/a  
        rpowern = cat(2,rpowern{:}); e@TwZ6l  
    end U`HY eJ  
    L?N-uocT  
    % Compute the values of the polynomials: x9a\~XL>a  
    % -------------------------------------- q*` m%3{  
    z = zeros(length_r,length_n); <OKc?[  
    for j = 1:length_n rxyeix  
        s = 0:(n(j)-m(j))/2; fDfph7[)  
        pows = n(j):-2:m(j); svl!"tMXl  
        for k = length(s):-1:1 "-dA\,G  
            p = (1-2*mod(s(k),2))* ... TNA7(<"fV|  
                       prod(2:(n(j)-s(k)))/          ... 3o?eUwI}  
                       prod(2:s(k))/                 ... 0H^*VUyW/  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... `67i1w`  
                       prod(2:((n(j)+m(j))/2-s(k))); PlLt^q.z[  
            idx = (pows(k)==rpowers); udA@9a^;  
            z(:,j) = z(:,j) + p*rpowern(:,idx); |m"Gr)Gm  
        end \y(3b#  
         $L6R,%c  
        if isnorm RJerx:]  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); g)r{LxT#+  
        end Hv^Bw{"/R  
    end sCrP+K0D  
    (PGw{_  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  p!:oT1U  
     ]aF;  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 BE@(| U  
    COHBju fmR  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)