非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =eyPo(B
function z = zernfun(n,m,r,theta,nflag) JI[{n~bhGD
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. -xVZm8y
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -A^o5s
% and angular frequency M, evaluated at positions (R,THETA) on the ;Sl%I+?
% unit circle. N is a vector of positive integers (including 0), and W+I""I*mV
% M is a vector with the same number of elements as N. Each element @+7CfvM
% k of M must be a positive integer, with possible values M(k) = -N(k) e81+as
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, adWH';Q:
% and THETA is a vector of angles. R and THETA must have the same GDQQ4-|O
% length. The output Z is a matrix with one column for every (N,M) lFN|)(X
% pair, and one row for every (R,THETA) pair. `d}t?qWS;F
% rtdEIk
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gE9x+g
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jct'B}@X(
% with delta(m,0) the Kronecker delta, is chosen so that the integral t\WU}aKML
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )4R[C={
% and theta=0 to theta=2*pi) is unity. For the non-normalized :?j]W2+kR
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. UCo`l~K)qg
% }Ud'j'QMy
% The Zernike functions are an orthogonal basis on the unit circle. .aQ8I1~
% They are used in disciplines such as astronomy, optics, and *Ksk1T+>
% optometry to describe functions on a circular domain. c"diNbm[
% v,!`A!{D
% The following table lists the first 15 Zernike functions. ](^FGz
% uhU'm@JZ
% n m Zernike function Normalization 73l,PJ
% -------------------------------------------------- AO,^v+$
% 0 0 1 1 d*dPi^JjC
% 1 1 r * cos(theta) 2 #y
f
% 1 -1 r * sin(theta) 2 T m2+/qO,
% 2 -2 r^2 * cos(2*theta) sqrt(6) uT>"(wnJ|
% 2 0 (2*r^2 - 1) sqrt(3) D
`av9I
% 2 2 r^2 * sin(2*theta) sqrt(6) QYEGiT
% 3 -3 r^3 * cos(3*theta) sqrt(8) E
BSjU8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 7ufTmz#j<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) bPIo9clq
% 3 3 r^3 * sin(3*theta) sqrt(8) $ I
J^
% 4 -4 r^4 * cos(4*theta) sqrt(10) 40O@a:q*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7-
|N&u
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6OR) 97
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]:}7-;$V
% 4 4 r^4 * sin(4*theta) sqrt(10) sJMpF8
% -------------------------------------------------- IEe;ygL#
% 1'H!S%fS
% Example 1: R5xV_;wD
% '$[a-)4
% % Display the Zernike function Z(n=5,m=1) IP^1ca#<
% x = -1:0.01:1; P?@o?
% [X,Y] = meshgrid(x,x); h0C>z2iH
% [theta,r] = cart2pol(X,Y); )<$<9!L4x
% idx = r<=1; Mp(;PbVD
% z = nan(size(X)); +F~B"a
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !+DhH2;)F
% figure o1k+dJUd
% pcolor(x,x,z), shading interp })j N
8px
% axis square, colorbar >`<qa!9
% title('Zernike function Z_5^1(r,\theta)') 0./Rdf=-1j
% 2J (nJT"
% Example 2: c9djBUAk&
% bc;?O`I<
% % Display the first 10 Zernike functions 2Z ?l,M~
% x = -1:0.01:1; fOdX2{7m
% [X,Y] = meshgrid(x,x); $RYOj{1
% [theta,r] = cart2pol(X,Y); gYloY=.Z$'
% idx = r<=1; qfRrX"
% z = nan(size(X)); g9Ty%|Q7(
% n = [0 1 1 2 2 2 3 3 3 3]; Fzt7@VNxc
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; qC3PKlhv6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 4ves|pLET
% y = zernfun(n,m,r(idx),theta(idx)); 39d$B'"<1
% figure('Units','normalized') xIH= gK
% for k = 1:10 Ap 3B'
% z(idx) = y(:,k); Zy|u5J
% subplot(4,7,Nplot(k)) ND/oKM+?
% pcolor(x,x,z), shading interp -j@IDd7
% set(gca,'XTick',[],'YTick',[]) 3S1{r
)[j
% axis square ?X Rl\V
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J ~KygQ3%
% end pktnX-Slt
% )P,pW?h$
% See also ZERNPOL, ZERNFUN2. ce*?crOV
$LG.rJ/*
% Paul Fricker 11/13/2006 A-*MH#QUKh
$j\jT
B5+$VQ
% Check and prepare the inputs: 5=Y(.}6
% ----------------------------- aimf,(+
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "'XYW\bI
error('zernfun:NMvectors','N and M must be vectors.') ~qXwQ@
end *$3p3-
,c
0]r;u!
if length(n)~=length(m) H%Z;Yt8^gt
error('zernfun:NMlength','N and M must be the same length.') .EvP%A
m
end uJ8FzS>[V
;9q$eK%d
n = n(:); $.31<@T7
m = m(:); x=X&b%09
if any(mod(n-m,2)) J(A+mYr{:
error('zernfun:NMmultiplesof2', ... l<'}`
'All N and M must differ by multiples of 2 (including 0).') FC
end L0w2qF
Pn L?zae
if any(m>n) G&`5o*).bb
error('zernfun:MlessthanN', ... R^]a<g,
'Each M must be less than or equal to its corresponding N.') [{#n?BT
end )\kNufP
q^7=/d8
if any( r>1 | r<0 ) 19RbIG/X
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 02)Ybp6y
end GaV OMT
/||8j.Tm
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6WoFf
error('zernfun:RTHvector','R and THETA must be vectors.') !1@oZ(
end ;Wsl 'e/
O;T)u4Q&3
r = r(:); L(X}37
theta = theta(:); e@&2q{Gi=
length_r = length(r); y)TBg8Q
if length_r~=length(theta) 6zi
Mf
error('zernfun:RTHlength', ... ABL5T-*]
'The number of R- and THETA-values must be equal.') jpOcug`f
end JeAyT48!M
3$BO=hI/-
% Check normalization: (a~V<v"
% -------------------- ;&kZ7%
if nargin==5 && ischar(nflag) ]BTISaL-R
isnorm = strcmpi(nflag,'norm'); =/ \l=*
if ~isnorm ~q}]/0-m
error('zernfun:normalization','Unrecognized normalization flag.') T+FlN-iy)
end l1%*LyD
else 5d}bl{
isnorm = false; PWyFys
end 2P{! n#"
o =F!&]+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wy:euKB~
% Compute the Zernike Polynomials w( ic$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fSGaUBiq}
Eh[NKgYL
% Determine the required powers of r: C\|HN=2eh
% ----------------------------------- };*&;GFe
m_abs = abs(m); GkKoc v
rpowers = []; QqcAmp
for j = 1:length(n) W#wC
rpowers = [rpowers m_abs(j):2:n(j)]; ): r'IR
end +!G)N~o
rpowers = unique(rpowers); h(^[WSa
Lo"s12fr
% Pre-compute the values of r raised to the required powers, U]ZI_[\'U
% and compile them in a matrix: W=2]!%3#
% ----------------------------- #rp)Gc
if rpowers(1)==0 [.;8GMW
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L_!}R
rpowern = cat(2,rpowern{:}); qVds
2
rpowern = [ones(length_r,1) rpowern]; _cJ\A0h^
else t3!~=U
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ("=24R=a
rpowern = cat(2,rpowern{:}); 18y'#<X!
end lvUWs
"<"s&ws;k
% Compute the values of the polynomials: QR$m i1Vv\
% -------------------------------------- } OkK@8?0O
y = zeros(length_r,length(n)); V~t;
J
for j = 1:length(n) ={{q_G\WD
s = 0:(n(j)-m_abs(j))/2; =CaSd|
pows = n(j):-2:m_abs(j); SWNT}{x]
for k = length(s):-1:1 ^n\g,
p = (1-2*mod(s(k),2))* ... <V#]3$(S
prod(2:(n(j)-s(k)))/ ... vQ{mEaH
prod(2:s(k))/ ... 4c.!^EiV
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +.X3&|@k
prod(2:((n(j)+m_abs(j))/2-s(k))); vnX~OVz2
idx = (pows(k)==rpowers); 5g 2:o^
y(:,j) = y(:,j) + p*rpowern(:,idx); _ n4C~
end ]YB,K)WQ
*C^TCyBK;
if isnorm hr
g'Z5n
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (T",6 xBSG
end >~T2MlRux
end m\K1Ex
% END: Compute the Zernike Polynomials >}86#^F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :/;;|lGw
z~;@Mo"*f
% Compute the Zernike functions: Angt=q
% ------------------------------ Ystd[
idx_pos = m>0; KU_""T
idx_neg = m<0; {%X[Snv
Oq95zo
z = y; a!;K+wL
>
if any(idx_pos) >< Qp%yT
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U@)WTH6d
end =AeOkie
if any(idx_neg) \%.&$z3wz
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RNX>I,2sh
end [ _&z+
1xU)nXXb
% EOF zernfun