非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 raU_Z[
function z = zernfun(n,m,r,theta,nflag) 'm-5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. \g)?7>M |
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R|wS*xd ,
% and angular frequency M, evaluated at positions (R,THETA) on the ,Z! I ^
% unit circle. N is a vector of positive integers (including 0), and p1mAoVxR
% M is a vector with the same number of elements as N. Each element h|lH`m^
% k of M must be a positive integer, with possible values M(k) = -N(k) /V#?d
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Cn5;h(r
% and THETA is a vector of angles. R and THETA must have the same E0DquVrz
% length. The output Z is a matrix with one column for every (N,M) UQ@szE
% pair, and one row for every (R,THETA) pair. <p2\;\?4z
% _g,_G
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike '- #QK'p
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2:e7'}\D.
% with delta(m,0) the Kronecker delta, is chosen so that the integral EV-# E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &yOl}?u
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7+hc?H[&'
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z/4bxO=m
% t3K9 |8<
% The Zernike functions are an orthogonal basis on the unit circle. *Gj`1#Z$
% They are used in disciplines such as astronomy, optics, and N3oa!PE
% optometry to describe functions on a circular domain. ZW@cw}
% :2:%
% The following table lists the first 15 Zernike functions. 9JJ6$cLF
% S?VKzVDB.S
% n m Zernike function Normalization ;z+}|>!
% -------------------------------------------------- :
Cli8#
% 0 0 1 1 Xf
mN/j2
% 1 1 r * cos(theta) 2 zTi
8 y<}
% 1 -1 r * sin(theta) 2 eW}-UeT
% 2 -2 r^2 * cos(2*theta) sqrt(6) '0&HkM{ D
% 2 0 (2*r^2 - 1) sqrt(3) 7| j
rk
% 2 2 r^2 * sin(2*theta) sqrt(6) SxcE@WM
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5~E{bW$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) N$.ls48a4-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3Ljj|5.q
% 3 3 r^3 * sin(3*theta) sqrt(8) !0):g/2h
% 4 -4 r^4 * cos(4*theta) sqrt(10) L6ypn)l
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >enP~uW[#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Kq+vAp).
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \nL@P6X
% 4 4 r^4 * sin(4*theta) sqrt(10) IMpL+W.
% -------------------------------------------------- QXEZ?gx
% #'RfwldD9
% Example 1: l Ttc#
% aQzmobleep
% % Display the Zernike function Z(n=5,m=1) G(t&(t`[
% x = -1:0.01:1; \{ C
~B;=
% [X,Y] = meshgrid(x,x); */$] kE
% [theta,r] = cart2pol(X,Y); Z1;+a+S=z
% idx = r<=1; ]g,j
% z = nan(size(X)); x`'s
% z(idx) = zernfun(5,1,r(idx),theta(idx)); BIg2`95F|
% figure VMNdC}
% pcolor(x,x,z), shading interp :?i,!0#"
% axis square, colorbar RK)ikLgp
% title('Zernike function Z_5^1(r,\theta)') l-Dg m
%
9C5F#(uY
% Example 2: .t{uzDM
% Z uP3/d
% % Display the first 10 Zernike functions zn|O)"C
% x = -1:0.01:1; 8&bNI@:@
% [X,Y] = meshgrid(x,x); ;$qc@)Uwp
% [theta,r] = cart2pol(X,Y);
;CV'
% idx = r<=1; 2+R]q35-
% z = nan(size(X)); !thFayq
% n = [0 1 1 2 2 2 3 3 3 3]; N~S#(.}[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; WM=)K1p0u
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 2_Cp}Pj
% y = zernfun(n,m,r(idx),theta(idx)); Vgy12dE
% figure('Units','normalized') +j$nbU0U
% for k = 1:10 zhyf}Ta'
% z(idx) = y(:,k); c]ga)A(
% subplot(4,7,Nplot(k)) <YCR^?hJSi
% pcolor(x,x,z), shading interp VwarU(*
% set(gca,'XTick',[],'YTick',[]) G,(Xz"`,
% axis square <N=ow"rD
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eq9qE^[Z&
% end &iy7It
% +]hc!s8
% See also ZERNPOL, ZERNFUN2. ^lK!tOeO
2t=&h|6EW
% Paul Fricker 11/13/2006 qi8AK(v
hIa,PZ/Q
zXwdU58
% Check and prepare the inputs: +hlR
% ----------------------------- Q
H>g-@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FE1En
error('zernfun:NMvectors','N and M must be vectors.') 'p%w_VbI
end *$mb~k^R
Ie8K[ >
if length(n)~=length(m) u =(.}
error('zernfun:NMlength','N and M must be the same length.') M?['HoRo
end x3jjtjf
CwO$EL:[`
n = n(:); %fh-x(4v
m = m(:); &G3$q,`H
if any(mod(n-m,2)) %@C$xM"
error('zernfun:NMmultiplesof2', ... D{4]c)>
'All N and M must differ by multiples of 2 (including 0).') z34+1d
end w7<4D,hk
&Mz.i,Gh
if any(m>n) P rv=f@
error('zernfun:MlessthanN', ... }MM:q R
'Each M must be less than or equal to its corresponding N.') \PmM856=ms
end dcE(uf
9HlM0qE5b
if any( r>1 | r<0 ) *kJa$3*r
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;*20b@
end Nk9w;
z&
J]Q-#g'Z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u:^9ZQ+
error('zernfun:RTHvector','R and THETA must be vectors.') @DAaCF8
end 4 %u\dTg/B
,JJ1sf2A
r = r(:); AJP-7PPD
theta = theta(:); of`WP
length_r = length(r); ,awkL
:
if length_r~=length(theta) u$ ^r(.EV
error('zernfun:RTHlength', ... ~y ?v
'The number of R- and THETA-values must be equal.') 8BnsYy)j
end sWP_fb1
rFto1m
% Check normalization: EDA6b]
% -------------------- ip*UujmNyR
if nargin==5 && ischar(nflag) !nF.whq
isnorm = strcmpi(nflag,'norm'); .B6mvb\
if ~isnorm `O?j -zR
error('zernfun:normalization','Unrecognized normalization flag.') pEb/ yIT"
end !@
)JqF.
else >V&GL{
isnorm = false; LO)QEUG
end ;^8X(R
m!Aw,*m+*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h;J%Z!Rjw
% Compute the Zernike Polynomials $rQi$w/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =jRC4]M})
QEY#U|
% Determine the required powers of r: YUlH5rO3
% ----------------------------------- biHZyUJ
m_abs = abs(m); -Z:nImqzc
rpowers = []; LT/*y=
for j = 1:length(n) Ys@\~?ym+
rpowers = [rpowers m_abs(j):2:n(j)]; )79F"ltzh
end kg$w<C@#"
rpowers = unique(rpowers); !LpFK0rw
HU-#xK
% Pre-compute the values of r raised to the required powers, j|y"Lcq
% and compile them in a matrix: 5>h#
hcL
% ----------------------------- en16hd>^W:
if rpowers(1)==0 H$)otDOE
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pA@BW:#
rpowern = cat(2,rpowern{:}); R^6^{q
rpowern = [ones(length_r,1) rpowern]; oX6()FR
else D(Q=EdlO
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b*cVC^{Dy
rpowern = cat(2,rpowern{:}); XC[bEp$
end {Ytqs(`
%r:Uff@
% Compute the values of the polynomials: WL<f!
% -------------------------------------- bm(.(0MI
y = zeros(length_r,length(n)); ZJ|&t
for j = 1:length(n) b!z=:
s = 0:(n(j)-m_abs(j))/2; h.aXW]]}(P
pows = n(j):-2:m_abs(j); ]hY4
MS
for k = length(s):-1:1 JE[J}-2
p = (1-2*mod(s(k),2))* ... ,<=_t{^
prod(2:(n(j)-s(k)))/ ... 3}i(i0+
prod(2:s(k))/ ... 3x
E^EXV
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gg
:{Xf*`
prod(2:((n(j)+m_abs(j))/2-s(k))); v`~egE17
idx = (pows(k)==rpowers); qk!,:T
y(:,j) = y(:,j) + p*rpowern(:,idx); 8Y~\:3&1<
end WL1$LLzN
:n$?wp
if isnorm A55F *d
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !F#^Peb
end #(r1b'jfP
end [J43]
% END: Compute the Zernike Polynomials pt9fOih[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ROr| <
EZ)GW%Bm2
% Compute the Zernike functions: vOBXAF
% ------------------------------ F ss@/-
idx_pos = m>0; v'u}%FC
idx_neg = m<0; wWB^m@:4
h2ou ]
z = y; )|L#i2?:
if any(idx_pos) Yq-7!
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); QPp>%iE@
end Cg%}=
if any(idx_neg) rJc=&'{&)N
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); lgh+\pj
end RJA#cv~f
Ip;;@o&D
% EOF zernfun