切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10869阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 c:.~%AJx  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! u4_QLf@I  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  #NW+t|E  
    `qc"JB  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 . vb##D  
    He(65ciT<O  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    854
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) z:-{Y2F  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. X%YZQc9  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of jA1S|gV  
    %   order N and frequency M, evaluated at R.  N is a vector of > SZ95@Oh  
    %   positive integers (including 0), and M is a vector with the { 4j<X5V  
    %   same number of elements as N.  Each element k of M must be a ?Z{/0X)]|  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) X"TL'"?fo  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is nk|(cyt)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix eQ'E`S_d  
    %   with one column for every (N,M) pair, and one row for every =8l' [  
    %   element in R. m~+.vk  
    % fz|*Plv  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- P'Y(f!%  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is X?haHM#]  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +PYV-@q  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 }@bp v  
    %   for all [n,m]. &b@_ah+f  
    % < dE7+w  
    %   The radial Zernike polynomials are the radial portion of the GG#-x$jK  
    %   Zernike functions, which are an orthogonal basis on the unit ^6 l5@#)w  
    %   circle.  The series representation of the radial Zernike MEI&]qI  
    %   polynomials is D\G 8p;  
    % $(62j0mS>  
    %          (n-m)/2 Ov(k:"N  
    %            __ 570ja7C:  
    %    m      \       s                                          n-2s Sqp91[,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1jx?zvE,  
    %    n      s=0 !*c%Dj  
    % 5i6Ji(  
    %   The following table shows the first 12 polynomials. CRo @+p10  
    % mCnl@  
    %       n    m    Zernike polynomial    Normalization 8;qOsV)UDT  
    %       --------------------------------------------- 2_Lu 0Yrg  
    %       0    0    1                        sqrt(2) :30daKo  
    %       1    1    r                           2 !IJ YaQ6z  
    %       2    0    2*r^2 - 1                sqrt(6) b|87=1^m[  
    %       2    2    r^2                      sqrt(6) D Z~036  
    %       3    1    3*r^3 - 2*r              sqrt(8) s3Bo'hGxG  
    %       3    3    r^3                      sqrt(8) eF;Jj>\R+i  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) F~v0CBcAL  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) pp|$y\ZzB  
    %       4    4    r^4                      sqrt(10) =>S[Dh  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) sB0]lj-[Un  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) R Q 8"vF#  
    %       5    5    r^5                      sqrt(12) VKPsg  
    %       --------------------------------------------- ;- i)}<  
    % {U9{*e$=  
    %   Example: 5#z7Hj&w  
    % k7JC~D E#  
    %       % Display three example Zernike radial polynomials <DMm [V{  
    %       r = 0:0.01:1; Zq{gp1WC  
    %       n = [3 2 5]; Cno[:iom  
    %       m = [1 2 1]; <DqFfrpc  
    %       z = zernpol(n,m,r); K z^.v`  
    %       figure QfjoHeG7  
    %       plot(r,z) Z{u]qI{l  
    %       grid on L]YJ#5  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') UJS vtD{g  
    % oVl:g:K40  
    %   See also ZERNFUN, ZERNFUN2. mb'{@  
    -R9{Ak  
    % A note on the algorithm. 2n"-~'3\  
    % ------------------------ nF-l4=  
    % The radial Zernike polynomials are computed using the series P/S,dhs(  
    % representation shown in the Help section above. For many special a{e1g93}  
    % functions, direct evaluation using the series representation can VaonG]Ues  
    % produce poor numerical results (floating point errors), because f !7fz~&Sh  
    % the summation often involves computing small differences between auB+g'l  
    % large successive terms in the series. (In such cases, the functions uEsF 8  
    % are often evaluated using alternative methods such as recurrence [$6YPM>Ee  
    % relations: see the Legendre functions, for example). For the Zernike fG?a"6~  
    % polynomials, however, this problem does not arise, because the KsTE)@ F:  
    % polynomials are evaluated over the finite domain r = (0,1), and /`qQWB5b  
    % because the coefficients for a given polynomial are generally all IM,d6lN6s  
    % of similar magnitude. _+Z;pt$C  
    % 6d5q<C_3t  
    % ZERNPOL has been written using a vectorized implementation: multiple OHY|< &*  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] {Zs EYUP  
    % values can be passed as inputs) for a vector of points R.  To achieve ,\T`gh  
    % this vectorization most efficiently, the algorithm in ZERNPOL sC f)#6mI  
    % involves pre-determining all the powers p of R that are required to RP^L.X(7^  
    % compute the outputs, and then compiling the {R^p} into a single tPk> hzW  
    % matrix.  This avoids any redundant computation of the R^p, and >y!R}`&0^t  
    % minimizes the sizes of certain intermediate variables. B%x?VOdBE  
    % n-?zH:]GG{  
    %   Paul Fricker 11/13/2006 5HB*  
    }Oe4wEYN)  
    Dl?:Mh  
    % Check and prepare the inputs: Wa!C2nB  
    % ----------------------------- .5~3D97X&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v/7^v}[<  
        error('zernpol:NMvectors','N and M must be vectors.') }_}LaEYAo  
    end ~1Ffu x  
    eOb)uIF  
    if length(n)~=length(m) M?m@o1\;W  
        error('zernpol:NMlength','N and M must be the same length.') 16ip:/5  
    end x=W5e ^0?  
    R-k~\vCW  
    n = n(:); wgQx.8 h>  
    m = m(:); -23sm~`  
    length_n = length(n); ihct~y-9W  
    eS%8WmCV9<  
    if any(mod(n-m,2)) HbCcROl(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') i\>?b)a>  
    end v# fny  
    $F/xv&t  
    if any(m<0) @E> rqI;`  
        error('zernpol:Mpositive','All M must be positive.') hBDmC_\~  
    end uesIkJ^Q[  
    a0k/R<4  
    if any(m>n) I 'ha=PeVn  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Rx@0EPV  
    end (V}?y:)  
    (F#2z\$;  
    if any( r>1 | r<0 ) ayg^js2,  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') gP!k[E ,Q8  
    end Jg&f.  
    5p7i9"tgn  
    if ~any(size(r)==1) :c:}_t{%  
        error('zernpol:Rvector','R must be a vector.') R,l*@3Q  
    end k]c$SzJ>/  
    ;|,*zD  
    r = r(:); Ih5CtcE1'd  
    length_r = length(r); I#(?xHx  
    SO`b+B  
    if nargin==4 MdnapxuS  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); _]< Tv3]RK  
        if ~isnorm <. V*]g/;  
            error('zernpol:normalization','Unrecognized normalization flag.') S:c d'68D  
        end S<I9`k G  
    else 0|mC k  
        isnorm = false; aC3Qmo6?m  
    end =|V#~p*  
    CSzu $Hnq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pWeD,!f  
    % Compute the Zernike Polynomials 1/=6s5vS}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jb|dpu/e  
    Z>.('  
    % Determine the required powers of r: o#-^Lg&  
    % ----------------------------------- F>k/;@d  
    rpowers = []; nKch:g  
    for j = 1:length(n) AD7&-=p&w  
        rpowers = [rpowers m(j):2:n(j)]; +@+*sVb  
    end o}L\b,])  
    rpowers = unique(rpowers); s[t?At->  
    G4EuW *~  
    % Pre-compute the values of r raised to the required powers, 6^,;^   
    % and compile them in a matrix: Nfd'|#  
    % ----------------------------- =]LAL w  
    if rpowers(1)==0 xE6hE'rh.O  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?V =#x.9  
        rpowern = cat(2,rpowern{:}); WFfn:WSWU  
        rpowern = [ones(length_r,1) rpowern]; M ~6 $kT  
    else T=[ /x=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !wo  
        rpowern = cat(2,rpowern{:}); 5?>ES*  
    end nCLEAe$W\=  
    WS\Ir-B  
    % Compute the values of the polynomials: I$ ?.9&.&  
    % -------------------------------------- ,a ":/ /[  
    z = zeros(length_r,length_n); "BC;zH:  
    for j = 1:length_n {Ok]$0L  
        s = 0:(n(j)-m(j))/2; "8\2w]"  
        pows = n(j):-2:m(j); CS;4ysNf  
        for k = length(s):-1:1 =DXN`]uN  
            p = (1-2*mod(s(k),2))* ... mv#*%St5  
                       prod(2:(n(j)-s(k)))/          ... rouaT  
                       prod(2:s(k))/                 ... Bh65qHQO  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... +EH"A  
                       prod(2:((n(j)+m(j))/2-s(k))); .i3_D??  
            idx = (pows(k)==rpowers); G54`{V4&s  
            z(:,j) = z(:,j) + p*rpowern(:,idx); a-NicjV#  
        end Am"&ApK  
         8Q73h/3  
        if isnorm !WTL:dk  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Lv<vMIr  
        end SnY{|  
    end {vp*m :K  
    M AL;XcRR  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 0@Z}.k30  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. @DSKa`  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated rbrh;\<jM  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive zxeT{AFPr?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, f'TEua_`  
    %   and THETA is a vector of angles.  R and THETA must have the same sEi9<$~R@0  
    %   length.  The output Z is a matrix with one column for every P-value, xcH&B %;f  
    %   and one row for every (R,THETA) pair. [gj>ey8T  
    % U+&Eps&NI  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike [OR"9W&  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) bbT$$b-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) iWIq~t*,H]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 kq@~QI?9  
    %   for all p. Pk;YM}  
    % \jx3Fs:Q  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36  BO.Db``  
    %   Zernike functions (order N<=7).  In some disciplines it is 0B: v0 R  
    %   traditional to label the first 36 functions using a single mode - B?c F9  
    %   number P instead of separate numbers for the order N and azimuthal Z}.ZTEB  
    %   frequency M. #\\|:`YV  
    % 1:J+`mzpl  
    %   Example: Rx?ze(  
    % /O~Np|~v  
    %       % Display the first 16 Zernike functions ~ 7<M6F  
    %       x = -1:0.01:1; -F MonM  
    %       [X,Y] = meshgrid(x,x); ],Yy)<e.  
    %       [theta,r] = cart2pol(X,Y); 13+. >  
    %       idx = r<=1; JX{_,2*$  
    %       p = 0:15; ^9kx3Pw?8  
    %       z = nan(size(X)); uaZHM@D  
    %       y = zernfun2(p,r(idx),theta(idx)); n}c~+ 0`un  
    %       figure('Units','normalized') $=) Pky-~  
    %       for k = 1:length(p) mv^X{T  
    %           z(idx) = y(:,k); Eihn%Esa  
    %           subplot(4,4,k) }_5R9w]"  
    %           pcolor(x,x,z), shading interp n]i#&[*A(  
    %           set(gca,'XTick',[],'YTick',[]) [2E(3`-u  
    %           axis square n#@Qd!uzM  
    %           title(['Z_{' num2str(p(k)) '}']) [v\m)5  
    %       end ?:G 3U\M  
    % $tej~xZK  
    %   See also ZERNPOL, ZERNFUN. RGrQ>'RL  
    bF5"ab0  
    %   Paul Fricker 11/13/2006  :>U+HQll  
    &xUD (  
    Qxk& J  
    % Check and prepare the inputs: ~S\> F\v6'  
    % ----------------------------- W#=,FZT  
    if min(size(p))~=1 b'Km-'MtH  
        error('zernfun2:Pvector','Input P must be vector.') 3#Bb4\_v  
    end n>w<vM  
    P^tTg  
    if any(p)>35 w 5?D]u  
        error('zernfun2:P36', ... PcqS#!t  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 6q6xqr:W  
               '(P = 0 to 35).']) }1W@  
    end >H ?k0M`L  
    hS&l4 \I'Z  
    % Get the order and frequency corresonding to the function number: D~#%^a+Aq_  
    % ---------------------------------------------------------------- 2;0eW&e   
    p = p(:); I2Imb9k~B  
    n = ceil((-3+sqrt(9+8*p))/2); EC 1|$Co  
    m = 2*p - n.*(n+2); aYDo0?kF'  
    hidQOh  
    % Pass the inputs to the function ZERNFUN: : ^("L,AF  
    % ----------------------------------------  uxB`  
    switch nargin L9lJ4s  
        case 3 _{-[1-lN5_  
            z = zernfun(n,m,r,theta); 0^sY>N"  
        case 4 :mW< E  
            z = zernfun(n,m,r,theta,nflag); m(*rMO>_  
        otherwise 6uT*Fg-G  
            error('zernfun2:nargin','Incorrect number of inputs.') {/H<_  
    end ft$RF  
    zRou~Kxi  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 owQ,op #  
    function z = zernfun(n,m,r,theta,nflag) xcU!bDV  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &i(Ip'r  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _p*8ke  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *LU/3H|}  
    %   unit circle.  N is a vector of positive integers (including 0), and :C(/yg  
    %   M is a vector with the same number of elements as N.  Each element #Pp:H/b  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) b%%r`j,'JE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, h]s~w  
    %   and THETA is a vector of angles.  R and THETA must have the same & UOxS W  
    %   length.  The output Z is a matrix with one column for every (N,M) 0B7G:X0  
    %   pair, and one row for every (R,THETA) pair. Z )M "`2Ur  
    % f|FS%]fCxk  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^2nrA pF  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xdgAu  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,>h"~X  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ekL;SN  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized VMRfDaO9  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Y=O+d\_W  
    % T \uIXL?3  
    %   The Zernike functions are an orthogonal basis on the unit circle. abQ.N  
    %   They are used in disciplines such as astronomy, optics, and zMFTkDY  
    %   optometry to describe functions on a circular domain. {zvaZY|K"  
    % }7[]d7  
    %   The following table lists the first 15 Zernike functions. "TZY)\{L  
    % CTRUr"  
    %       n    m    Zernike function           Normalization g"1V ]  
    %       -------------------------------------------------- jez0 A  
    %       0    0    1                                 1 peO@ZKmM  
    %       1    1    r * cos(theta)                    2 A}(]J!rc  
    %       1   -1    r * sin(theta)                    2 $|-Lw!)D  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *k62Qz3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) dX cbS<  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) B[GC@]HE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,<t.Iz%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) z7bJV/f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9 A ?{}c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5 ix*wu`,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) EGUlLqP6e  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LJ/He[r|[  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .i RKuBM/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IDH~nMz  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) DOKe.k  
    %       -------------------------------------------------- r6Yd"~ n  
    % (4cdkL  
    %   Example 1: 6+IhI?lI=  
    % id1cZig  
    %       % Display the Zernike function Z(n=5,m=1) OR+qi*)  
    %       x = -1:0.01:1; TjTG+uQ  
    %       [X,Y] = meshgrid(x,x); ='o3<}  
    %       [theta,r] = cart2pol(X,Y); \mc0fY  
    %       idx = r<=1; ,SR7DiYg  
    %       z = nan(size(X)); 0vm>*M*p  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); V2Vr7v=Y"  
    %       figure KUUA>'=  
    %       pcolor(x,x,z), shading interp Kq3c Kp4  
    %       axis square, colorbar ca_mift  
    %       title('Zernike function Z_5^1(r,\theta)') iQgg[ )  
    % ][$I~ nRf  
    %   Example 2: 4=([v;fc  
    % "#r)NYq`"|  
    %       % Display the first 10 Zernike functions 3Tl<ST\  
    %       x = -1:0.01:1; #{q.s[g*+1  
    %       [X,Y] = meshgrid(x,x); .C% 28fH  
    %       [theta,r] = cart2pol(X,Y); E{|B&6$[}  
    %       idx = r<=1; *vD.\e~  
    %       z = nan(size(X)); \0b}Z#'0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 90<g=B  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; q*3OWr  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^z{szy?Fg  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~(^P(  
    %       figure('Units','normalized') xak)YOLRV  
    %       for k = 1:10 X/~uF 9a'<  
    %           z(idx) = y(:,k); +lx& $mr?  
    %           subplot(4,7,Nplot(k)) t@qf/1  
    %           pcolor(x,x,z), shading interp 1D*=ZkA)  
    %           set(gca,'XTick',[],'YTick',[]) LORcf1X/  
    %           axis square Z10Vx2B  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8z#Qp(he  
    %       end  z% wh|q  
    % 4nsJZo#S/  
    %   See also ZERNPOL, ZERNFUN2. ~5N}P>4 *  
    WA`A/`taT  
    %   Paul Fricker 11/13/2006  arYq$~U  
    ljKIxSvCFp  
    qiNVaV\wr|  
    % Check and prepare the inputs: JXB)'d0  
    % ----------------------------- =fcg4h5(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :>1nkm&Eg  
        error('zernfun:NMvectors','N and M must be vectors.') j7~FR{: j  
    end &jP1Q3  
    4@ PA+(kvS  
    if length(n)~=length(m) ^e.-Ji  
        error('zernfun:NMlength','N and M must be the same length.') ;77K&#1  
    end ` =>}*GS  
    dvB=Zk]m  
    n = n(:); $'J3 /C7  
    m = m(:); =>$)F 4LW  
    if any(mod(n-m,2)) 6X \g7bg  
        error('zernfun:NMmultiplesof2', ... n=.P46|  
              'All N and M must differ by multiples of 2 (including 0).') 928_e)V  
    end Fv$tl)p*  
    |bY@HpMp  
    if any(m>n) oW3"J6,S  
        error('zernfun:MlessthanN', ... w' 7sh5  
              'Each M must be less than or equal to its corresponding N.') |b   
    end Pxlc RF  
    xlI =)ak{  
    if any( r>1 | r<0 ) ]@{Lx>Oh"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') dHnCSOM<  
    end 'R 7 \  
    -> cL)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) FZHA19Kb  
        error('zernfun:RTHvector','R and THETA must be vectors.') JVc{vSa!rm  
    end #EPC]jFk  
    zPby+BP  
    r = r(:); 6mM9p)"$  
    theta = theta(:); \Vyys[MMY8  
    length_r = length(r); aFnel8  
    if length_r~=length(theta) t3;Zx+Br  
        error('zernfun:RTHlength', ... I1Q!3P  
              'The number of R- and THETA-values must be equal.') ]\(8d[ 4  
    end KdVKvs[  
    ~YYnn7)  
    % Check normalization: GJ ^c^`  
    % -------------------- > i/jqT/  
    if nargin==5 && ischar(nflag) cQU/z"?+  
        isnorm = strcmpi(nflag,'norm'); ^CkMk 1  
        if ~isnorm I?e5h@uE  
            error('zernfun:normalization','Unrecognized normalization flag.') zHJCXTM  
        end V1aP_G-:  
    else ^b8~X [1J_  
        isnorm = false; #HUn~r  
    end 5ya9VZ5#  
    vSgT36ZF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]VI^ hhf  
    % Compute the Zernike Polynomials 28MMH Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z vysLHj  
    GY~$<^AK  
    % Determine the required powers of r: wI%M3XaBws  
    % ----------------------------------- B~Sj#(WEa  
    m_abs = abs(m); cAWn*%  
    rpowers = []; nS+Rbhs  
    for j = 1:length(n) UC!mp?   
        rpowers = [rpowers m_abs(j):2:n(j)]; |L2>|4  
    end 3lP;=* m.  
    rpowers = unique(rpowers); '/d51  
    FQZ*i\G>>  
    % Pre-compute the values of r raised to the required powers, 7({)ou x  
    % and compile them in a matrix: aacy5E  
    % ----------------------------- qE)FQeN  
    if rpowers(1)==0 "5hk%T '  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =?i?-6M  
        rpowern = cat(2,rpowern{:}); ? x)^f+:9|  
        rpowern = [ones(length_r,1) rpowern]; gQnr.  
    else d ^bSV4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KOcB#UHJ  
        rpowern = cat(2,rpowern{:}); oRV}Nz7hr  
    end `|t,Uc|7!  
    ,.,8-In^  
    % Compute the values of the polynomials: 59E9K)c3  
    % -------------------------------------- h@,ja  
    y = zeros(length_r,length(n)); ^FVdA1~/  
    for j = 1:length(n) x YS81  
        s = 0:(n(j)-m_abs(j))/2; bZu'5+(@  
        pows = n(j):-2:m_abs(j); YI0 wr1N  
        for k = length(s):-1:1 X=)V<2WO  
            p = (1-2*mod(s(k),2))* ... R5HT EB  
                       prod(2:(n(j)-s(k)))/              ... sx,$W3zI'G  
                       prod(2:s(k))/                     ... oi #B7  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `4"8@>D  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 'HA{6v,y  
            idx = (pows(k)==rpowers); bWe2z~dP  
            y(:,j) = y(:,j) + p*rpowern(:,idx); THrLX;I  
        end E0Wc8m"  
         T.bFB+'E|  
        if isnorm At7!Pas#@g  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J)|3jbX"I]  
        end P\U<,f  
    end t@%w:*&  
    % END: Compute the Zernike Polynomials j7I=2xnTWu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @6 he!wW  
    <A3%1 82  
    % Compute the Zernike functions: 4I4m4^  
    % ------------------------------ 1XGg0SC  
    idx_pos = m>0; ~k*]Z8Z  
    idx_neg = m<0; iOfm:DTPr  
    = 0 ~4k#  
    z = y; %4~"$kE  
    if any(idx_pos) AL]gK)R  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^y5A\nz&  
    end LU3pCM{  
    if any(idx_neg) DV5hTw0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); , ZsZzZ#  
    end }">r0v!3  
    F`D$bE;|  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的