非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 lEpPi@2PK
function z = zernfun(n,m,r,theta,nflag) 7N0m7SC
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. zu1gP/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Pd(n|t3[8
% and angular frequency M, evaluated at positions (R,THETA) on the Si|8xq$E;
% unit circle. N is a vector of positive integers (including 0), and QzYaxNGv
% M is a vector with the same number of elements as N. Each element
K4^B ~0~
% k of M must be a positive integer, with possible values M(k) = -N(k) '=IuwCB|;
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^fM=|.?
% and THETA is a vector of angles. R and THETA must have the same N]|U-fN\
% length. The output Z is a matrix with one column for every (N,M) qt%/0
% pair, and one row for every (R,THETA) pair. &jDRRT3
% 1'5!")r
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +7K]5p;!~
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cr{dl\Na
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2aQ}|
`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vb2")+*:
% and theta=0 to theta=2*pi) is unity. For the non-normalized cH7D@p}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J1Y3>40
% GF
Rd:e
% The Zernike functions are an orthogonal basis on the unit circle. ,qlFk|A|
% They are used in disciplines such as astronomy, optics, and EtB56FU\
% optometry to describe functions on a circular domain. iainl@3Qj
% L^nS%lm
% The following table lists the first 15 Zernike functions. zdDJcdbGd1
% J~G"D-l<9/
% n m Zernike function Normalization .]Z,O>N
% -------------------------------------------------- fGLOXbsA
% 0 0 1 1 [g*]u3s
% 1 1 r * cos(theta) 2 bRAf!<3
% 1 -1 r * sin(theta) 2 )^'wcBod,
% 2 -2 r^2 * cos(2*theta) sqrt(6) 9$'Edi=6
% 2 0 (2*r^2 - 1) sqrt(3) iAWoKW
% 2 2 r^2 * sin(2*theta) sqrt(6) BcoE&I?[m|
% 3 -3 r^3 * cos(3*theta) sqrt(8) +<I1@C
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) /h%MWCZWm^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @)8C
% 3 3 r^3 * sin(3*theta) sqrt(8) Jh:-<xy)
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1')/ BM2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _'oy
C(:}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) dUJNr_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h Tn^:%(
% 4 4 r^4 * sin(4*theta) sqrt(10) @.iOFY
% -------------------------------------------------- rQ$A|GJ L
% f1>^kl3@P
% Example 1: w02HSQ
% ^ihXM]1{G
% % Display the Zernike function Z(n=5,m=1) `ionMTZY
% x = -1:0.01:1; osX23T~-
% [X,Y] = meshgrid(x,x); I_ .;nU1xA
% [theta,r] = cart2pol(X,Y); 7"JU)@ U]
% idx = r<=1; C5RDP~au
% z = nan(size(X)); =-pss 47
% z(idx) = zernfun(5,1,r(idx),theta(idx)); :7>Si%
% figure MgMLfgt"V
% pcolor(x,x,z), shading interp UmgLH Cz
% axis square, colorbar <p0$Q!^dK=
% title('Zernike function Z_5^1(r,\theta)') -{b1&
% p
go\(K0
% Example 2: L
kq>>?T=
% c8"I]Qc7
% % Display the first 10 Zernike functions Sc~kO4
% x = -1:0.01:1; |f?C*t',
% [X,Y] = meshgrid(x,x); *E)Y?9u"
% [theta,r] = cart2pol(X,Y); e<^4F%jSK
% idx = r<=1; T*T.\b
% z = nan(size(X)); M<~F>(wxA
% n = [0 1 1 2 2 2 3 3 3 3]; G[>-@9_b
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; hy )RV=X
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #=.h:_9
% y = zernfun(n,m,r(idx),theta(idx)); 'qd")
% figure('Units','normalized') l*m|b""].u
% for k = 1:10 t+(CAP|,
% z(idx) = y(:,k); tl^[MLQa
% subplot(4,7,Nplot(k)) 0\~Zg
% pcolor(x,x,z), shading interp +tN-X'u##
% set(gca,'XTick',[],'YTick',[]) `A^} X
% axis square YYvs~?bAy
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z"O-d<U5
% end M{4_BQ4$
% ]Ojt3)fB
% See also ZERNPOL, ZERNFUN2. x+TNF>%'D
hW+Dko(s
% Paul Fricker 11/13/2006 j5)qF1W,
Elq8WtS
)nk>*oE
% Check and prepare the inputs: >PJ-Z~O'
% ----------------------------- ,/ : )FV
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &L?Dogo
error('zernfun:NMvectors','N and M must be vectors.') t]o gn(
end n{yjH*\Z
M:SxAo-D2
if length(n)~=length(m)
]\e zES
error('zernfun:NMlength','N and M must be the same length.') U+i[r&{gb
end UiEB?X]-l'
XHg%X
n = n(:); #"M Pe4
m = m(:); t;1NzI$^
if any(mod(n-m,2)) e.GzGX
error('zernfun:NMmultiplesof2', ... Ja&%J:
'All N and M must differ by multiples of 2 (including 0).') {L eEnh-
end ]O\W<'+V
"%]dC{
if any(m>n) X m3t
xp#
error('zernfun:MlessthanN', ... ^Bb_NcU
'Each M must be less than or equal to its corresponding N.') GT.^u#r
end e`rY]X
FTfA\/tl(;
if any( r>1 | r<0 ) 7GUJ&U)J
error('zernfun:Rlessthan1','All R must be between 0 and 1.') !tdfTf$
end xVyUUzXs
%E\%nTV
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yBj)#m5!
error('zernfun:RTHvector','R and THETA must be vectors.') B# fzMaC
end D=>^m=?0
bH{aI:9Fb
r = r(:); ;^*!<F%t9R
theta = theta(:); h<.[U
$,
length_r = length(r); gNd
J=r4
if length_r~=length(theta) 8TPm[r]
error('zernfun:RTHlength', ... ^-!HbbVv
'The number of R- and THETA-values must be equal.') |7$h@KF=S
end ;"
*`
d"UW38K{
% Check normalization: ,]mwk~HeF
% -------------------- | dwxea
if nargin==5 && ischar(nflag) U;GoC$b}|
isnorm = strcmpi(nflag,'norm'); }$1;<
if ~isnorm 2>k)=hl:
error('zernfun:normalization','Unrecognized normalization flag.') eeZysCy+DY
end vWH>k+9&X
else Cpcd`y=IN
isnorm = false; ([-=NT}Aq
end `W n5
.V
u&XkbPZ%4c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q4iD59yd)S
% Compute the Zernike Polynomials QP%Fz#u`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )^Pvm
J\'5CG
% Determine the required powers of r: l%(`<a]VIB
% ----------------------------------- Xh"iP %
m_abs = abs(m); })lT fy
rpowers = []; %UQB?dkf$
for j = 1:length(n) }%ThnFFBw
rpowers = [rpowers m_abs(j):2:n(j)]; ON0+:`3\
end k)V%.Eobf
rpowers = unique(rpowers); 5]l7Z35
O + &
xb
% Pre-compute the values of r raised to the required powers, AsLjU#jn
% and compile them in a matrix: c/Yi0Rl)
% ----------------------------- '5/}MMT
if rpowers(1)==0 B kxhF
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); DS}rFU
rpowern = cat(2,rpowern{:}); u^zitW!X$
rpowern = [ones(length_r,1) rpowern]; V55J[s*6!
else
c dbSv=r
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N%A`rY}u
rpowern = cat(2,rpowern{:}); 7&1~O#
end aSkx#mV
Cw&D}
% Compute the values of the polynomials: i: M*L< +
% -------------------------------------- #pQ"+X
y = zeros(length_r,length(n)); FP'lEp
for j = 1:length(n) pEj^x[b`^
s = 0:(n(j)-m_abs(j))/2; Z/= %J3f
pows = n(j):-2:m_abs(j); rHgdvDc
for k = length(s):-1:1 .*~u
p = (1-2*mod(s(k),2))* ... }K80G~O2<
prod(2:(n(j)-s(k)))/ ... Y\e]2
prod(2:s(k))/ ... SWjQ.aM
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <yI,cM<c
prod(2:((n(j)+m_abs(j))/2-s(k))); r`R~{;oT
idx = (pows(k)==rpowers); &^n>ZY,
y(:,j) = y(:,j) + p*rpowern(:,idx); p?$G>nkdq
end PT#eXS9_
~]W[ {3 ;
if isnorm Dbdzb m7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cia-OVX
end Kq 4<l
end :~3{oZGX&
% END: Compute the Zernike Polynomials H<Kkj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EKeh>3;?
d&T6p&V$
% Compute the Zernike functions: n R\n\
% ------------------------------ dH2]ZE0V
idx_pos = m>0; fb"J Bc}X
idx_neg = m<0; ::OFW@dS
xR|eye R
z = y; 3> \fP#oQ
if any(idx_pos) >=~Fo)V!(V
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M_!u@\
end =Etwa
if any(idx_neg) 0^}'+t,lc
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); PM-PP8h
end XK%W^a*x
EARfbb"SG7
% EOF zernfun