非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 5+PBS)pJ]%
function z = zernfun(n,m,r,theta,nflag) MkIO0&0O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Kwmo)|7uPU
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1 jd=R7
% and angular frequency M, evaluated at positions (R,THETA) on the ,}$x'8v
% unit circle. N is a vector of positive integers (including 0), and eT
\Q
% M is a vector with the same number of elements as N. Each element !)1Zp*
% k of M must be a positive integer, with possible values M(k) = -N(k) 9(\N+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, h.0&)t\q"
% and THETA is a vector of angles. R and THETA must have the same dtXJ<1:
% length. The output Z is a matrix with one column for every (N,M) N1zrfn-VU
% pair, and one row for every (R,THETA) pair. fXR_)d
% GeR-k9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3).c[F^l
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x6mq['_
% with delta(m,0) the Kronecker delta, is chosen so that the integral 7o%|R2mL}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;-w PXXR
% and theta=0 to theta=2*pi) is unity. For the non-normalized >TVd*S
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;&:Et
% |L#r)$n{1
% The Zernike functions are an orthogonal basis on the unit circle. 3^Q U4
% They are used in disciplines such as astronomy, optics, and [WSIC *|;
% optometry to describe functions on a circular domain. gG?*Fi
% G(,~{N||
% The following table lists the first 15 Zernike functions. X Ow^"=Oa[
% im%3*bv-
% n m Zernike function Normalization `Y$5g~3.
% -------------------------------------------------- n ]g,)m
% 0 0 1 1 y^fU_L?p
% 1 1 r * cos(theta) 2 X64I~*
% 1 -1 r * sin(theta) 2 HBYpjxh
% 2 -2 r^2 * cos(2*theta) sqrt(6) Jm^jz
% 2 0 (2*r^2 - 1) sqrt(3) Z1}zf(JU
% 2 2 r^2 * sin(2*theta) sqrt(6) AMiFsgBj
% 3 -3 r^3 * cos(3*theta) sqrt(8) qOanu
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) F#R\Ot,hv
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) zIm!8a
% 3 3 r^3 * sin(3*theta) sqrt(8) +F6_P
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~&jCz4M
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3Q"+
#Ob
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) $+N^ s^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nWsz0v3'9
% 4 4 r^4 * sin(4*theta) sqrt(10) c3BL2>c
% -------------------------------------------------- 7l
EwQ
% Y3&ecEE
% Example 1: )eyxAg
% Kt0Tuj@CY
% % Display the Zernike function Z(n=5,m=1) *a.*Ha
% x = -1:0.01:1; +Ea XS
% [X,Y] = meshgrid(x,x); _YUF /B'
% [theta,r] = cart2pol(X,Y); n[-!Jp[
% idx = r<=1; !Z)^c&
% z = nan(size(X)); H!=BjU1Pmg
% z(idx) = zernfun(5,1,r(idx),theta(idx)); h0pr"]sO;$
% figure N#ObxOE6T"
% pcolor(x,x,z), shading interp `v
er "s;
% axis square, colorbar X"GQ^]$O
% title('Zernike function Z_5^1(r,\theta)') vGDo?X~#o
% ' qVa/GJ
% Example 2: !X_~|5.
% uwzT? C A6
% % Display the first 10 Zernike functions I-hhHm<@
% x = -1:0.01:1; U]$3NIe
% [X,Y] = meshgrid(x,x); M*uG`Eo&
% [theta,r] = cart2pol(X,Y); ?^Ux+mVE
% idx = r<=1; 8B9zo&
% z = nan(size(X)); rpWy 6oD
% n = [0 1 1 2 2 2 3 3 3 3]; _
RYZyw
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v\FD~
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ?8/h3xV;
% y = zernfun(n,m,r(idx),theta(idx)); [J
Xrj{
% figure('Units','normalized') g&wQ^
% for k = 1:10 2N]s}/l
% z(idx) = y(:,k); b5R*]
% subplot(4,7,Nplot(k)) q"oNB-bz
% pcolor(x,x,z), shading interp BD+?Ad?
% set(gca,'XTick',[],'YTick',[]) +3CMfYsr8
% axis square sxtGl^,mU:
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7a net
% end 1doqznO
% 470Pig>I8
% See also ZERNPOL, ZERNFUN2. IF1}}[Ht
^p/mJ1/s7
% Paul Fricker 11/13/2006 70eN]OY
R2@u[
>wwEa4
% Check and prepare the inputs: Q{60^vg
% ----------------------------- rg\w!L(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *Q?HaG|S
error('zernfun:NMvectors','N and M must be vectors.') [G*mQ@G9
end 1wt]J!hgV
%+~0+ev7r
if length(n)~=length(m) "?SnA +)
error('zernfun:NMlength','N and M must be the same length.') ix;8S=eP~{
end om6R/K
}=gGs
n = n(:); O/Vue
m = m(:); xmDwoLU
if any(mod(n-m,2)) .anL}OA_q
error('zernfun:NMmultiplesof2', ... Y|F);XXIl
'All N and M must differ by multiples of 2 (including 0).') 65v'/m!ys
end #A!0KN;GC2
G)Y!aX
if any(m>n) 566EMy|
error('zernfun:MlessthanN', ... O9Aooe4W=
'Each M must be less than or equal to its corresponding N.') x&
S >Mr
end S%2qB;uw
d<o
if any( r>1 | r<0 ) N<x5:f#+
error('zernfun:Rlessthan1','All R must be between 0 and 1.') J7ln6 Y
end XJ"9D#"a>
6c :$[owC
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -SQYr
error('zernfun:RTHvector','R and THETA must be vectors.') AO6;aT
end @u^Ib33
f+&yc'[
r = r(:); s6I]H
theta = theta(:); y3#\mBiw
length_r = length(r); $1e@3mzM
if length_r~=length(theta) 6x 0>E^~
error('zernfun:RTHlength', ... myXV~6R
3
'The number of R- and THETA-values must be equal.') 0^=S:~G
end \iFE,z
J0IK=Y
% Check normalization: hY!G>d{J
% -------------------- LBg#KQ@
if nargin==5 && ischar(nflag) zv41Yv!x}
isnorm = strcmpi(nflag,'norm'); m<E7cY3mX
if ~isnorm jVDNThm+
error('zernfun:normalization','Unrecognized normalization flag.') (<12&=WxE
end -?uwlpm#
else ^P[*yf
isnorm = false; N`M5`=.
end tc[PJH&P
]@xc9tlG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *M{1RMc
% Compute the Zernike Polynomials &IcDUr]L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XP'KgTF
-Jhf]
% Determine the required powers of r: {PU[MHZF
% ----------------------------------- $hL0/T-m
m_abs = abs(m); ;BqX=X+#
rpowers = []; 1||e!W
for j = 1:length(n) &5B+8>
rpowers = [rpowers m_abs(j):2:n(j)]; 7
ir T6O<.
end _u>+H#
rpowers = unique(rpowers); |k8;[+
7Qo*u;fr
% Pre-compute the values of r raised to the required powers, V#=N?p
% and compile them in a matrix: 9DIG K\
% ----------------------------- /F\7_
if rpowers(1)==0 W?@ ;(k
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `]%{0 Rx
rpowern = cat(2,rpowern{:}); rJAY7/u
rpowern = [ones(length_r,1) rpowern]; H:|yu
else +/ #J]v-
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); IcA]<}0!"v
rpowern = cat(2,rpowern{:}); LcF0: h'
end b^ v.FK46G
t<e?f{Q5
% Compute the values of the polynomials: l!oU9
% -------------------------------------- }Iu 6]?|'
y = zeros(length_r,length(n)); ;G w5gK^
for j = 1:length(n) 9<R:)Df
s = 0:(n(j)-m_abs(j))/2; 4-m}W;igu
pows = n(j):-2:m_abs(j); dZZHk
for k = length(s):-1:1 pM>.z9
p = (1-2*mod(s(k),2))* ... tvd/Y|bV=
prod(2:(n(j)-s(k)))/ ... oL<^m?-u
prod(2:s(k))/ ... cM55
vVd
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Qc6323/"
prod(2:((n(j)+m_abs(j))/2-s(k))); *`dGapd3
idx = (pows(k)==rpowers); le*pd+> j
y(:,j) = y(:,j) + p*rpowern(:,idx); }@x0@sI9
end towQoqv
M,l
Ib9
if isnorm `/0FXb
8h
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -1fT2e
end AR&u9Y)I
end ,#s}nJ4
% END: Compute the Zernike Polynomials yM>c**9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FQ );el'_V
:
G<