切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11529阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ,g^Bu {?  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! x)V.^-  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  e HOm^.gd  
    u1<xt1K  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -Fl3m  
    6^ KDc  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ( /N`Wu  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. _c #P  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9(B)  
    %   order N and frequency M, evaluated at R.  N is a vector of =0v{+ #}  
    %   positive integers (including 0), and M is a vector with the [S9nF  
    %   same number of elements as N.  Each element k of M must be a s&tr84u|  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ?Ts Z_  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is =+"XV8Fi,  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix [hiOFmMJZ-  
    %   with one column for every (N,M) pair, and one row for every ___+5r21\  
    %   element in R. hpw;w}m  
    % dkVVvK  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- xbmOch}j6  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is R'80{  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to y\%4Dir  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5N[Y2  
    %   for all [n,m]. 1-b,X]i  
    % FEP\5d>  
    %   The radial Zernike polynomials are the radial portion of the a<HM|dcst  
    %   Zernike functions, which are an orthogonal basis on the unit y24 0 +;a  
    %   circle.  The series representation of the radial Zernike 3yZ@i<rfH  
    %   polynomials is dA_s7),  
    % /evh.S  
    %          (n-m)/2 oF3#]6`;/  
    %            __ %8$wod6  
    %    m      \       s                                          n-2s |Rab'9U^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r hz/5k%%UX  
    %    n      s=0 =!{dKz-&  
    % !}vz_6)  
    %   The following table shows the first 12 polynomials. i\ PN  
    % lOE bh  
    %       n    m    Zernike polynomial    Normalization ,qr)}s-  
    %       --------------------------------------------- Cf10 ud   
    %       0    0    1                        sqrt(2) |e pe;/  
    %       1    1    r                           2 T8RQM1D_s  
    %       2    0    2*r^2 - 1                sqrt(6) B)c.`cfr*\  
    %       2    2    r^2                      sqrt(6) VX- f~  
    %       3    1    3*r^3 - 2*r              sqrt(8) %b_zUFHPp  
    %       3    3    r^3                      sqrt(8) lvFHr}W  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) g:*yjj  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) /Ia#udkNMp  
    %       4    4    r^4                      sqrt(10) *F9uv)[kz  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) U}{r.MryFG  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) .rMGI "  
    %       5    5    r^5                      sqrt(12) +V0uH pm  
    %       --------------------------------------------- TRQva8d?  
    % +-{H T+W  
    %   Example: DLz~$TF^  
    % 0_j!t  
    %       % Display three example Zernike radial polynomials g;*~ xo  
    %       r = 0:0.01:1; c5]1aFKz  
    %       n = [3 2 5]; f"PApV9[  
    %       m = [1 2 1]; =izB :  
    %       z = zernpol(n,m,r); <2R=!n@b\  
    %       figure z?K+LTf8  
    %       plot(r,z) iKdC2m  
    %       grid on M9iu#6P  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') PgxU;N7Y  
    % Lu<'A4Q1  
    %   See also ZERNFUN, ZERNFUN2. B,A/ -B\  
    0/*z]2  
    % A note on the algorithm. 0phGn+"R  
    % ------------------------ . Bv;Zv  
    % The radial Zernike polynomials are computed using the series &yP9vp="  
    % representation shown in the Help section above. For many special |m?0h.O,  
    % functions, direct evaluation using the series representation can bS0LjvY9g  
    % produce poor numerical results (floating point errors), because rv\<Q-uQ8  
    % the summation often involves computing small differences between UyvFR@  
    % large successive terms in the series. (In such cases, the functions  _@HMk"A  
    % are often evaluated using alternative methods such as recurrence Q#vur o  
    % relations: see the Legendre functions, for example). For the Zernike he!e~5<@y  
    % polynomials, however, this problem does not arise, because the .m4K ]^m  
    % polynomials are evaluated over the finite domain r = (0,1), and 0BBWuNF.  
    % because the coefficients for a given polynomial are generally all ZOU$do>O  
    % of similar magnitude. {Ynr(J.  
    % z43H]  
    % ZERNPOL has been written using a vectorized implementation: multiple x2 tx{Z  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] WJhI6lu  
    % values can be passed as inputs) for a vector of points R.  To achieve 4sG^ bZ,  
    % this vectorization most efficiently, the algorithm in ZERNPOL qf'uXH  
    % involves pre-determining all the powers p of R that are required to O!;!amvz  
    % compute the outputs, and then compiling the {R^p} into a single ]ErAa"?  
    % matrix.  This avoids any redundant computation of the R^p, and A}W&=m8!  
    % minimizes the sizes of certain intermediate variables. ;Cv x48  
    % ?}O\'Fa8  
    %   Paul Fricker 11/13/2006 o^lKM?t  
    i)eub`uMy  
    S=o Ab&  
    % Check and prepare the inputs: F_@PSA+  
    % ----------------------------- sl`\g1<{`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zg"<N  
        error('zernpol:NMvectors','N and M must be vectors.') Vw+U?  
    end 5B"j\TwQ  
    ( vgoG5  
    if length(n)~=length(m) #IgY'L  
        error('zernpol:NMlength','N and M must be the same length.') 9.>v ;:vL  
    end XN??^1{J}]  
    M$|^?U>cm  
    n = n(:); S_1R]n1/  
    m = m(:); ^e)KEkh  
    length_n = length(n); |wWBV{^  
    yn`H}@`k  
    if any(mod(n-m,2)) bluhiiATd  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ~6E `6;`  
    end #dU-*wmJ  
    3>c<E1   
    if any(m<0) Gi?"  
        error('zernpol:Mpositive','All M must be positive.') `WX @1]m  
    end tP7l ;EX4  
    0~)cAKus  
    if any(m>n) L%I@HB9-Q0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "1WwSh}Z  
    end c]#F^(-A`  
    \M<C6m5  
    if any( r>1 | r<0 ) e=Kf<ZQt  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 4E<iIA\x  
    end D&:,,Dp  
    {rf.sN~M  
    if ~any(size(r)==1) \"|E8A6/  
        error('zernpol:Rvector','R must be a vector.') -n+ =[M  
    end 4h|sbB"t  
    0LeR#l:I  
    r = r(:); Xw_AZ-|1D  
    length_r = length(r); &O7]e3Ej  
    Xu2:yf4No*  
    if nargin==4 hZ[,.  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); aF]4%E  
        if ~isnorm .\".}4qQ  
            error('zernpol:normalization','Unrecognized normalization flag.') *FmY4w  
        end ?45bvkCT  
    else nj]l'~Y0  
        isnorm = false; .T#h5[S2x  
    end }f?$QSF  
    sZxf.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h3[^uY e  
    % Compute the Zernike Polynomials :Z3Tyj}4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Xy5#wDRC  
    g\ilK:r}  
    % Determine the required powers of r: P uYAoKG  
    % -----------------------------------  dtTQY  
    rpowers = []; F-D9nI4{X  
    for j = 1:length(n) : M=0o<  
        rpowers = [rpowers m(j):2:n(j)]; p48m k  
    end 0go{gUI  
    rpowers = unique(rpowers); vz[oy|{F  
    `bY>f_5+  
    % Pre-compute the values of r raised to the required powers, leR-oeSO  
    % and compile them in a matrix: DP_ ]\V<sT  
    % ----------------------------- Z8I  Y!d  
    if rpowers(1)==0 # 3UrGom  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Dc-v`jZ@)  
        rpowern = cat(2,rpowern{:}); KW`^uoY$  
        rpowern = [ones(length_r,1) rpowern]; @{n"/6t  
    else e98f+,E/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b\^X1eo  
        rpowern = cat(2,rpowern{:}); ( y0  
    end Kg?(Ax4  
    5e1;m6  
    % Compute the values of the polynomials: v,, .2UR4  
    % -------------------------------------- icS% ])3LF  
    z = zeros(length_r,length_n); !p #m?|Km  
    for j = 1:length_n \USl 9*E  
        s = 0:(n(j)-m(j))/2; 2 8>  
        pows = n(j):-2:m(j); `X)y5*##wq  
        for k = length(s):-1:1 Z{XF!pS%H  
            p = (1-2*mod(s(k),2))* ... BRSI g]  
                       prod(2:(n(j)-s(k)))/          ... \D6 7J239E  
                       prod(2:s(k))/                 ... 5y^I~"_ i  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Z#uxa  
                       prod(2:((n(j)+m(j))/2-s(k))); e\)r"!?H`  
            idx = (pows(k)==rpowers); IX+!+XC"U  
            z(:,j) = z(:,j) + p*rpowern(:,idx); c`,'[Q5(O  
        end K4U_sCh#f  
         pz4lC=H%o  
        if isnorm +6~ut^YiM.  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ~  p~  
        end @3*S:;x  
    end {gT4Oq__  
    -8zdkm8k  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) >Py :9~g,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. u(W>HVEG  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated xYp-Y"a.  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive awB+B8^s  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Se}&2 R  
    %   and THETA is a vector of angles.  R and THETA must have the same x1`4hB  
    %   length.  The output Z is a matrix with one column for every P-value, e+~@"^|  
    %   and one row for every (R,THETA) pair. 4|/}~9/  
    % vJj}$AlI  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )ko[_OJj  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Xk] uXx:TN  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) H-iCaXT  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ()^tw5e'^  
    %   for all p. )tm%0z7R  
    % )">uI\bi  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Cu! S|Xj.  
    %   Zernike functions (order N<=7).  In some disciplines it is ]P*H,&I`#  
    %   traditional to label the first 36 functions using a single mode j4wsDtmAU  
    %   number P instead of separate numbers for the order N and azimuthal @6kkt~>:  
    %   frequency M. mrQT:B\8  
    % M{t/B-'4  
    %   Example: IOddu2.(  
    % K%.t%)A_3  
    %       % Display the first 16 Zernike functions gq~K(Q<O<  
    %       x = -1:0.01:1; HDi_|{2^  
    %       [X,Y] = meshgrid(x,x); 'YB{W8bR  
    %       [theta,r] = cart2pol(X,Y); 8;d./!|'&g  
    %       idx = r<=1; /$d #9Uv  
    %       p = 0:15; 9 K>~9Za  
    %       z = nan(size(X)); Nd He::  
    %       y = zernfun2(p,r(idx),theta(idx)); cTja<*W^xv  
    %       figure('Units','normalized') LFAefl\  
    %       for k = 1:length(p) ~^/BAc  
    %           z(idx) = y(:,k); o'_eLp  
    %           subplot(4,4,k) Z|B`n SzH  
    %           pcolor(x,x,z), shading interp ;w;+<Rd  
    %           set(gca,'XTick',[],'YTick',[]) =4uO"o  
    %           axis square  p ~pl|  
    %           title(['Z_{' num2str(p(k)) '}']) 0 s@>e  
    %       end bE!z[j]  
    % JLGC'mbJ  
    %   See also ZERNPOL, ZERNFUN. -amNz.`[PR  
    JMfv|>=  
    %   Paul Fricker 11/13/2006 z s\N)LyM  
    pmiC|F83!8  
    !jR 1!i   
    % Check and prepare the inputs:  z $iI  
    % ----------------------------- _xM}*_<VP  
    if min(size(p))~=1 ]P2Wa   
        error('zernfun2:Pvector','Input P must be vector.') xB_7 8X1  
    end VVe^s|~Z  
    jA3xDbM  
    if any(p)>35 G[+{[W  
        error('zernfun2:P36', ... 5 Nt9'"  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 4|hfzCjMI  
               '(P = 0 to 35).']) b?-KC\}v  
    end o,qUf  
    U9XOs)^  
    % Get the order and frequency corresonding to the function number: Ny$N5/b!!  
    % ---------------------------------------------------------------- qgxGq(6K  
    p = p(:); cS>xT cj  
    n = ceil((-3+sqrt(9+8*p))/2); ybcCq]cgt  
    m = 2*p - n.*(n+2); @=?#nB&  
    RijFN.s  
    % Pass the inputs to the function ZERNFUN: ^V"08  
    % ---------------------------------------- ;vUw_M{P=)  
    switch nargin Dc3bG@K*G  
        case 3 {3BWT  
            z = zernfun(n,m,r,theta); (r-PkfXvIf  
        case 4 |~+bbN|b  
            z = zernfun(n,m,r,theta,nflag); gb26Y!7%  
        otherwise ;Ouu+#s  
            error('zernfun2:nargin','Incorrect number of inputs.') vv D515i  
    end A<-3u  
    ^ x_+ &  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \; zix(N[5  
    function z = zernfun(n,m,r,theta,nflag) (o8?j^ -v  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cK t8e^P  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 51puR8AG>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the G}`Hu_ [\)  
    %   unit circle.  N is a vector of positive integers (including 0), and R-5e9vyS  
    %   M is a vector with the same number of elements as N.  Each element JjG>$z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &z"yls  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (oB9$Zz!t  
    %   and THETA is a vector of angles.  R and THETA must have the same jxZd =%7Q  
    %   length.  The output Z is a matrix with one column for every (N,M) *%QTv3{  
    %   pair, and one row for every (R,THETA) pair. Es+BV+x[.c  
    % G=>LW1E|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vUg o)C#<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Cc` )P>L  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral tSq`_[@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @W!cC#u  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mTZgvPJ!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z.*=3   
    % yQ+C}8r5  
    %   The Zernike functions are an orthogonal basis on the unit circle. "3VMjF\  
    %   They are used in disciplines such as astronomy, optics, and E" b" VB  
    %   optometry to describe functions on a circular domain. / Hexv#3  
    % 67dp)X  
    %   The following table lists the first 15 Zernike functions. 3o^  oq  
    % A@OSh6/{h  
    %       n    m    Zernike function           Normalization oW8 hC  
    %       -------------------------------------------------- }@jT-t]P  
    %       0    0    1                                 1 eX9H/&g  
    %       1    1    r * cos(theta)                    2 qjd8Q  
    %       1   -1    r * sin(theta)                    2 u9)<i]2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) QP4`r#,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .p(~/MnO  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) uM9RlI5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \S"YLRn"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Fd@:*ER  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 06vxsT@  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) hh"=|c  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "K-2y ^Dl  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yX;v   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) B$%7U><'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0Xw3h^%  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) r2 o-/$  
    %       -------------------------------------------------- K~aI Y0=<  
    % -( +/u .  
    %   Example 1: WjvD C"  
    % IBr|A  
    %       % Display the Zernike function Z(n=5,m=1) =o+))R4  
    %       x = -1:0.01:1; \%N | X  
    %       [X,Y] = meshgrid(x,x); 3re|=_ Hy  
    %       [theta,r] = cart2pol(X,Y); 5\$8"/H  
    %       idx = r<=1; o%\pI%  
    %       z = nan(size(X)); j{u! /FD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); kKR Z79"7s  
    %       figure -g]g  
    %       pcolor(x,x,z), shading interp M/mUY  
    %       axis square, colorbar 0`dMT>&I  
    %       title('Zernike function Z_5^1(r,\theta)') B?)=d,E  
    % GwaU7[6  
    %   Example 2: F,-S&d  
    % ghd*EXrF H  
    %       % Display the first 10 Zernike functions &r Lg/UEV-  
    %       x = -1:0.01:1; *eo<5YUHt  
    %       [X,Y] = meshgrid(x,x); jPf*qe>U  
    %       [theta,r] = cart2pol(X,Y); -w:F8k ~  
    %       idx = r<=1; s8]9OG3g  
    %       z = nan(size(X)); < l%3P6|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; aD:vNX  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -] .Y";  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \#; -C<[b  
    %       y = zernfun(n,m,r(idx),theta(idx)); "' hc)58y  
    %       figure('Units','normalized') $}G03G@  
    %       for k = 1:10 =?/RaK/ w  
    %           z(idx) = y(:,k); x\Det$3Kx  
    %           subplot(4,7,Nplot(k)) UR&Uwa&.  
    %           pcolor(x,x,z), shading interp 6{r^3Hz  
    %           set(gca,'XTick',[],'YTick',[]) $G5;y>  
    %           axis square &S"o jbb  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) er?'o1M  
    %       end k~st;FO  
    % V_g9oR_  
    %   See also ZERNPOL, ZERNFUN2. `2@t) :  
    eSgCS*}0$z  
    %   Paul Fricker 11/13/2006 AZCbUkq  
    ^"h`U'YC  
    FV&&  
    % Check and prepare the inputs: t$z FsFTQ  
    % ----------------------------- jtk2>Ol   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {1y-*@yU(  
        error('zernfun:NMvectors','N and M must be vectors.') ^rc!X]C9  
    end nKJJ7 R L  
    G2%%$7Jj  
    if length(n)~=length(m) ~ YKBxt  
        error('zernfun:NMlength','N and M must be the same length.') n(gw%w+\7  
    end .1.Bf26}d  
    _tg&_P+kV  
    n = n(:); ?[\(i)]  
    m = m(:); &r6VF/  
    if any(mod(n-m,2)) 0.+"K}  
        error('zernfun:NMmultiplesof2', ... s wdW70  
              'All N and M must differ by multiples of 2 (including 0).') MEQ :[;1  
    end m>gok0{pm  
    Syn>;FX  
    if any(m>n) 05\A7.iy  
        error('zernfun:MlessthanN', ... p AzPi  
              'Each M must be less than or equal to its corresponding N.') r`|/qP:T[  
    end 9IKFrCO9,  
    )jK"\'cK  
    if any( r>1 | r<0 ) {ZH9W  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )POuH*j  
    end bGvALz'  
    0)V<)"i  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J(0.eD91v  
        error('zernfun:RTHvector','R and THETA must be vectors.') T1p A <6  
    end oXg KuR  
    l K%pxqx  
    r = r(:); ;$G.?r  
    theta = theta(:); |Ebwl]X2  
    length_r = length(r); j(!M  
    if length_r~=length(theta) J'O</o@e  
        error('zernfun:RTHlength', ... m9UI3fBX  
              'The number of R- and THETA-values must be equal.') zxtx~XO  
    end  = uZ[  
    m<wng2`NTv  
    % Check normalization: 31LXzQvFG  
    % -------------------- qWf7k+7G  
    if nargin==5 && ischar(nflag) E ?(  
        isnorm = strcmpi(nflag,'norm'); NamBJ\2E1[  
        if ~isnorm 5tg  
            error('zernfun:normalization','Unrecognized normalization flag.') 9cAb\5c|  
        end %_wX9Z T  
    else }+0{opY4R  
        isnorm = false; r>S?,qr  
    end |A0LYKni  
    ^zHBDRsb2F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k+2~=#  
    % Compute the Zernike Polynomials |b{XnD_g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TdI5{?sW  
    C`3}7qi|C  
    % Determine the required powers of r: 1@C0c%  
    % ----------------------------------- u=feR0|8  
    m_abs = abs(m); >[=q9k  
    rpowers = []; G}Cze Lw  
    for j = 1:length(n) ow*) 1eo  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4;_{*U-  
    end 716JnG>  
    rpowers = unique(rpowers); *z`_U]tP  
    "jzU`  
    % Pre-compute the values of r raised to the required powers, gk\IivPb  
    % and compile them in a matrix: 5Ya TE<G  
    % ----------------------------- DPJ#Y -0  
    if rpowers(1)==0 a|`Pg1j#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kJqgY|  
        rpowern = cat(2,rpowern{:}); u-3A6Q  
        rpowern = [ones(length_r,1) rpowern]; Fd-PjW/E8  
    else - *!R  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '<~l% q  
        rpowern = cat(2,rpowern{:}); _6&x$ *O  
    end [k.|iCD  
    9hEIf,\  
    % Compute the values of the polynomials: @Hj5ZJ 3  
    % -------------------------------------- v!T%xUb0  
    y = zeros(length_r,length(n)); 2e zQX2q  
    for j = 1:length(n) D\]gIXg  
        s = 0:(n(j)-m_abs(j))/2; `3^ *K/K\  
        pows = n(j):-2:m_abs(j); D)XF@z;  
        for k = length(s):-1:1 *{8K b>D  
            p = (1-2*mod(s(k),2))* ... QWv+J a  
                       prod(2:(n(j)-s(k)))/              ... Zf}]sW$H  
                       prod(2:s(k))/                     ... ,qV8(`y_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... T>s~bIzL*e  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Vo<V!G{  
            idx = (pows(k)==rpowers); WY#A9i5Ge  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W/9dT^1y4'  
        end * F%Wf  
         N"/jn_>+j  
        if isnorm l=U@j T  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5 G cdz  
        end u HqPb8  
    end = ;#?CAa:  
    % END: Compute the Zernike Polynomials $ 5ZBNGr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XRCiv  
    x?Doe`/6?  
    % Compute the Zernike functions: f/RzE  
    % ------------------------------ 72R|zR  
    idx_pos = m>0; yB\}e'J^  
    idx_neg = m<0; Tz3 L#0:j  
    ,\q9>cZ!  
    z = y; >&3M #s(w  
    if any(idx_pos) &{NN!X  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \\XvVi:B  
    end Yo3my>N&g  
    if any(idx_neg) 2{Nv&ZX?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); z^+f3-Z  
    end &p=Uus  
    a]-F,MJ  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的