切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10603阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #_\~Vrf(#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! y@JYkp>I  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  /slML~$t<  
    ,R+u%bmn#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 T2{+fR v N  
    u+_#qk0NfK  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) L!5f*  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. .#n?^73  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of MWl@smRh  
    %   order N and frequency M, evaluated at R.  N is a vector of JI^w1I, T  
    %   positive integers (including 0), and M is a vector with the vZ08/!n  
    %   same number of elements as N.  Each element k of M must be a [V2l&ZUni  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) u7mj  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  lcr=^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix g@QpqrT  
    %   with one column for every (N,M) pair, and one row for every =4zsAa  
    %   element in R. MiC&av  
    % d|TIrlA  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- G > ,rf ]N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3EyN"Lvp{o  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to E8xXr>j>#  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0XYxMN)  
    %   for all [n,m]. v zn/waw  
    % C>+UZ  
    %   The radial Zernike polynomials are the radial portion of the gor6c3i  
    %   Zernike functions, which are an orthogonal basis on the unit .C #}g  
    %   circle.  The series representation of the radial Zernike 9xWrz;tzo  
    %   polynomials is !-QKh aY  
    % $*PyzLS  
    %          (n-m)/2 gFKQm(0g2  
    %            __ gQ?k}D  
    %    m      \       s                                          n-2s D,hl+P{^K  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r O^f@ g l  
    %    n      s=0 %$cwbh-{{  
    % DgdW.Kj|IL  
    %   The following table shows the first 12 polynomials. '1w<<?vX?  
    % !O5UE  
    %       n    m    Zernike polynomial    Normalization {<GsM  
    %       --------------------------------------------- 8ZN J}  
    %       0    0    1                        sqrt(2) PQfx0n,  
    %       1    1    r                           2 v}!,4,]:&  
    %       2    0    2*r^2 - 1                sqrt(6) 4QDW}5xB  
    %       2    2    r^2                      sqrt(6) H`y- "L8q  
    %       3    1    3*r^3 - 2*r              sqrt(8) #C+0m`  
    %       3    3    r^3                      sqrt(8) lj[Bd >  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) D\k);BU~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) T|E;U  
    %       4    4    r^4                      sqrt(10) }{lOsZA  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) i->sw#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) J@Li*Ypo  
    %       5    5    r^5                      sqrt(12) D^A_0@  
    %       --------------------------------------------- ht1 jrCe  
    % 9@h>_1RJz  
    %   Example: 6G( k{S  
    % v9<p@GY"\  
    %       % Display three example Zernike radial polynomials )QX9T  
    %       r = 0:0.01:1; Ad"::&&Wk  
    %       n = [3 2 5]; _|*j8v3  
    %       m = [1 2 1]; ^=tyf&"  
    %       z = zernpol(n,m,r); GxvVh71zP  
    %       figure tp1{)|pwY6  
    %       plot(r,z) |sI^_RdBv  
    %       grid on  V C.r  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') P017y&X  
    % c`iSe$eS  
    %   See also ZERNFUN, ZERNFUN2. o$Jk2 7  
    /aK },+  
    % A note on the algorithm. i P/I% D  
    % ------------------------ bk8IGhO|m!  
    % The radial Zernike polynomials are computed using the series [0 W^|=#K  
    % representation shown in the Help section above. For many special ]$z~;\T  
    % functions, direct evaluation using the series representation can ^lQej%  
    % produce poor numerical results (floating point errors), because sx/g5 ?zh  
    % the summation often involves computing small differences between ? 56Zw"89  
    % large successive terms in the series. (In such cases, the functions .M_;mhRI  
    % are often evaluated using alternative methods such as recurrence 's e 9|:  
    % relations: see the Legendre functions, for example). For the Zernike '- Z4GcL  
    % polynomials, however, this problem does not arise, because the QZDGk4GG  
    % polynomials are evaluated over the finite domain r = (0,1), and g'mkhF(  
    % because the coefficients for a given polynomial are generally all >8RIMW2  
    % of similar magnitude. \TKv3N  
    % N%^mR>.`  
    % ZERNPOL has been written using a vectorized implementation: multiple wo?C 7,-x  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 1XSqgr"3  
    % values can be passed as inputs) for a vector of points R.  To achieve R+^/(Ws'<  
    % this vectorization most efficiently, the algorithm in ZERNPOL @ #V31im"N  
    % involves pre-determining all the powers p of R that are required to p<jHUG4?'  
    % compute the outputs, and then compiling the {R^p} into a single !{SEm"J^  
    % matrix.  This avoids any redundant computation of the R^p, and //WgK{Mt  
    % minimizes the sizes of certain intermediate variables. KYlWV<sR  
    % 7}nOF{RH]  
    %   Paul Fricker 11/13/2006 KKOu":b  
    ~M <4HC  
    MT0}MMr  
    % Check and prepare the inputs: .fZv H  
    % ----------------------------- 0m?ul%=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) * yt/ Dj  
        error('zernpol:NMvectors','N and M must be vectors.') |R+=Yk&u  
    end Muarryh}  
    ;  I=z  
    if length(n)~=length(m) ^P]: etld9  
        error('zernpol:NMlength','N and M must be the same length.') }3+q}_3  
    end ka]n+"~==\  
    ,PY<AI^59  
    n = n(:); {a>)VZw_#  
    m = m(:); PUa~Apj '  
    length_n = length(n); >;HXH^q  
    IPJs$PtKok  
    if any(mod(n-m,2)) >q]r)~8F^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') v}iJ :'  
    end oE5+   
    ~>{<r{H"S  
    if any(m<0) |px4a"  
        error('zernpol:Mpositive','All M must be positive.') R/P.m~?  
    end 3?fya8W<  
    #{N#yReh  
    if any(m>n) u D . 0?*_  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ==IL63  
    end 2wu 5`Z[E  
    mTcLocx  
    if any( r>1 | r<0 ) z.{y VQE  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') CNP?i(Rk  
    end SLBKXj|  
    %S@XY3jZY  
    if ~any(size(r)==1) {5*+  
        error('zernpol:Rvector','R must be a vector.') sX@e1*YE_  
    end gzw[^d  
    % 3FI>\3  
    r = r(:); B[y1RI|9  
    length_r = length(r); +K+ == mO&  
    ib& |271gG  
    if nargin==4 SqEO ] ~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); :?lSa6de  
        if ~isnorm `7'(U)x,F  
            error('zernpol:normalization','Unrecognized normalization flag.') O  89BN6p  
        end e _,_:|t  
    else j^LnHVHk1  
        isnorm = false; ;M}bQ88  
    end \QHM7C T  
    6g$+))g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ot v{#bB$  
    % Compute the Zernike Polynomials =#1/<q)L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i++ F&r[  
    aIkxN&  
    % Determine the required powers of r: # VR}6Jv  
    % ----------------------------------- ^QXUiXzl  
    rpowers = []; cbS8~Xmj  
    for j = 1:length(n) vn|X,1o  
        rpowers = [rpowers m(j):2:n(j)]; f *)t<1f  
    end 'd/A+W  
    rpowers = unique(rpowers); v3`J~,V<  
    viKN:n! Ev  
    % Pre-compute the values of r raised to the required powers, <$ '#@jW  
    % and compile them in a matrix: Xr':/Qjf  
    % ----------------------------- M~3(4,  
    if rpowers(1)==0 hWuq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @ /c{gD  
        rpowern = cat(2,rpowern{:}); AvH/Q_-b  
        rpowern = [ones(length_r,1) rpowern]; _*&<hAZj  
    else I /RvU,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |[xi"E\  
        rpowern = cat(2,rpowern{:}); GVFD_;j'  
    end HaLEQ73  
    1=#`&f5f&  
    % Compute the values of the polynomials: !74*APPHR  
    % -------------------------------------- ~*G I<n  
    z = zeros(length_r,length_n); V GM/ed5-  
    for j = 1:length_n M}us^t*  
        s = 0:(n(j)-m(j))/2; #Etz}:%W  
        pows = n(j):-2:m(j); drF"kTD"7  
        for k = length(s):-1:1 JCE364$$"  
            p = (1-2*mod(s(k),2))* ... <:/V`b3a  
                       prod(2:(n(j)-s(k)))/          ... arDY@o~  
                       prod(2:s(k))/                 ... A.y"R)G  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... l$PO!JRD  
                       prod(2:((n(j)+m(j))/2-s(k))); MQp1j:CK  
            idx = (pows(k)==rpowers); }p."7(  
            z(:,j) = z(:,j) + p*rpowern(:,idx); \b~zyt6-  
        end 7%L-;xcr]B  
         cjH ~H8  
        if isnorm x4fLe5xv  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); wxvt:= =  
        end CYG'WFvZZ  
    end uy7)9w  
    vzy/Rq  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Fx)]AJ~[t  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. F;`es%8  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Sd}fse  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 3^ wJ4=^  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /C_O/N  
    %   and THETA is a vector of angles.  R and THETA must have the same U{{RRK|  
    %   length.  The output Z is a matrix with one column for every P-value, (#7pGGp*E  
    %   and one row for every (R,THETA) pair. nn5S7!  
    % CuU"s)  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike hF!yp7l;  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 0+M1,?+GfF  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) W:hR8 1ci  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 S\GG(#b!  
    %   for all p. \fh.D/@  
    % a]$KI$)e  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 cXtL3T+  
    %   Zernike functions (order N<=7).  In some disciplines it is 2>?GD@GE  
    %   traditional to label the first 36 functions using a single mode Hm%[d;Z7  
    %   number P instead of separate numbers for the order N and azimuthal r'w5i1C+  
    %   frequency M. <)y'Ot0 y  
    % ,_P(!7Z8  
    %   Example: Y~gpiL3u  
    % rDm>Rm=  
    %       % Display the first 16 Zernike functions o %Pi;8  
    %       x = -1:0.01:1; u[fQvdl  
    %       [X,Y] = meshgrid(x,x);  LlnIn{C  
    %       [theta,r] = cart2pol(X,Y); j@2-^q:`  
    %       idx = r<=1; S &cH1QZ  
    %       p = 0:15; Y==# yNwM  
    %       z = nan(size(X)); P4Wd=Xoz6  
    %       y = zernfun2(p,r(idx),theta(idx)); _/ P"ulNb  
    %       figure('Units','normalized') RhX 2qsva-  
    %       for k = 1:length(p) )QFT$rmX  
    %           z(idx) = y(:,k); !W n'Ae9  
    %           subplot(4,4,k) &Lk@Xq1  
    %           pcolor(x,x,z), shading interp L.ndLd  
    %           set(gca,'XTick',[],'YTick',[]) >p2v"XX  
    %           axis square 3l<)|!f]g  
    %           title(['Z_{' num2str(p(k)) '}']) ,Lox?}t  
    %       end _17c}o#`5w  
    % nolTvqMT  
    %   See also ZERNPOL, ZERNFUN. ]N2'L!4|;  
    AY,6Ddw  
    %   Paul Fricker 11/13/2006 &=@ R,  
    V>4 !fD=  
    Y13IrCA2  
    % Check and prepare the inputs: efZdtrKgy  
    % ----------------------------- SS(jjpe&,  
    if min(size(p))~=1 YWd:Ok0  
        error('zernfun2:Pvector','Input P must be vector.') B=|yjA'Fg  
    end u\s mQhQGE  
    q2&&n6PYW  
    if any(p)>35 z8vF QO\I"  
        error('zernfun2:P36', ... \`|,wLgH  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... I{B8'n{cN  
               '(P = 0 to 35).']) "c1vW<;  
    end WNlWigwYl  
    T*|?]k 8@*  
    % Get the order and frequency corresonding to the function number: }yS"C fM  
    % ---------------------------------------------------------------- ^=.|\ YM  
    p = p(:); kZPj{^c:  
    n = ceil((-3+sqrt(9+8*p))/2); Eu1s  
    m = 2*p - n.*(n+2); r{p?aG  
    ] M_[*OAb  
    % Pass the inputs to the function ZERNFUN: B~LB^ n(>@  
    % ---------------------------------------- |44CD3A%  
    switch nargin j%~UU0(J  
        case 3 ^Q2K0'm5  
            z = zernfun(n,m,r,theta); 7-6_`Q2}Y  
        case 4 @2kt6 W  
            z = zernfun(n,m,r,theta,nflag); {lx^57v  
        otherwise Ca?pK_Y  
            error('zernfun2:nargin','Incorrect number of inputs.') B6OggJ9Iq  
    end ;y4 "wBX  
    O:p~L`o>>  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 3u+~!yz  
    function z = zernfun(n,m,r,theta,nflag) n8R{LjJ2@  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c_HYB/'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (fY(-  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 'DRyOJnr  
    %   unit circle.  N is a vector of positive integers (including 0), and .VTHZvyn  
    %   M is a vector with the same number of elements as N.  Each element 1 9;\:tN  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) B>|@XfPM  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, V&)-u(s_S/  
    %   and THETA is a vector of angles.  R and THETA must have the same 1w1(FpQO.  
    %   length.  The output Z is a matrix with one column for every (N,M) 6ZCt xs!  
    %   pair, and one row for every (R,THETA) pair. HQv#\Xi1  
    % %J2u+K  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !3?HpR/nV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a;([L8^7$l  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Q 4_j`q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ed_A#@V  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized OC"W=[Myl  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "mHSbG  
    % jJ|O]v$N  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9J0m  
    %   They are used in disciplines such as astronomy, optics, and M^k~w{   
    %   optometry to describe functions on a circular domain. kAf2g  
    % >qAQNX  
    %   The following table lists the first 15 Zernike functions. F9-xp7 T  
    % S%g` X   
    %       n    m    Zernike function           Normalization 6W#M[0  
    %       -------------------------------------------------- :2K0/@<x  
    %       0    0    1                                 1 :|N5fkhN  
    %       1    1    r * cos(theta)                    2 </qXKEu`_  
    %       1   -1    r * sin(theta)                    2 ks 3<zW(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  8(5}Jo+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) lE$X9yIt  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Hco [p+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ks:Z=%o   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #pE : !D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) cFD(Ap  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z/6eP`jj  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) co@Q   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @<AyCaU`.  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) W[w8@OCNf  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^5j9WV  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) fZT=q^26  
    %       -------------------------------------------------- Pou`PNvH  
    % T+N%KRl  
    %   Example 1: BWfsk/lej  
    % ZIkXy*<(  
    %       % Display the Zernike function Z(n=5,m=1) y`7BR?l  
    %       x = -1:0.01:1; (A/V(.!  
    %       [X,Y] = meshgrid(x,x); [p[Kpunr{l  
    %       [theta,r] = cart2pol(X,Y); ON] z-  
    %       idx = r<=1; MXSPD# gN  
    %       z = nan(size(X)); b2r@vZ]D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); {b= ]JPE  
    %       figure "4oY F:h  
    %       pcolor(x,x,z), shading interp IGOqV>;  
    %       axis square, colorbar :a[L-lr`e  
    %       title('Zernike function Z_5^1(r,\theta)') 3dQV5E.  
    % qZG "{8  
    %   Example 2: Qc Ia%lf  
    % Nt'(JAZ;  
    %       % Display the first 10 Zernike functions Xr6UN{_-  
    %       x = -1:0.01:1; v; &-]ka  
    %       [X,Y] = meshgrid(x,x); *";,HG?|Iz  
    %       [theta,r] = cart2pol(X,Y); Y(-4Agq  
    %       idx = r<=1; 8u!!a^F  
    %       z = nan(size(X)); &0*j nb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; bAGQ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,eF}`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ` SZ^~O  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]fnc.^{  
    %       figure('Units','normalized') [8(e`6xePb  
    %       for k = 1:10 `N]!-=o  
    %           z(idx) = y(:,k); <Gr{h>b  
    %           subplot(4,7,Nplot(k)) 8{(;s$H~  
    %           pcolor(x,x,z), shading interp Gt2NUGU  
    %           set(gca,'XTick',[],'YTick',[]) xQ-]Iw5  
    %           axis square oV&AJ=|\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @s b\0}  
    %       end sas;<yh  
    % #\GWYWkR  
    %   See also ZERNPOL, ZERNFUN2. 8^CL:8lI^\  
    ~(~fuDT~O  
    %   Paul Fricker 11/13/2006 jyb/aov  
    Z455g/=ye  
    Ma2sQW\  
    % Check and prepare the inputs: vxzh|uF  
    % ----------------------------- hdXdz aNS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +DY% Y `0  
        error('zernfun:NMvectors','N and M must be vectors.') 4 ac2^`  
    end 4'cdV0]  
    _%?}e|epy  
    if length(n)~=length(m) Rs$k3   
        error('zernfun:NMlength','N and M must be the same length.') `$ql>k-6C  
    end <w}YD @(f  
    3<88j&9  
    n = n(:); +ng8!k  
    m = m(:); b*+Od8r  
    if any(mod(n-m,2)) pd?3_yU  
        error('zernfun:NMmultiplesof2', ... )+'FTz` c  
              'All N and M must differ by multiples of 2 (including 0).') EC<g7_0F  
    end b%IRIi&,  
    "7(2m  
    if any(m>n) qL/4mM0  
        error('zernfun:MlessthanN', ... rwWs\~.H  
              'Each M must be less than or equal to its corresponding N.') F.<sKQ&A  
    end k1e0kxn  
    -NHA{?6r  
    if any( r>1 | r<0 ) s5F,*<  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') sOhQu>gN  
    end {*RyT.J  
    :G=N|3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -aK_  
        error('zernfun:RTHvector','R and THETA must be vectors.') h:\WW;s[B  
    end V^Z"FwWk  
    d~M;@<eD  
    r = r(:); pTT7#b(t  
    theta = theta(:); A>8"8=C  
    length_r = length(r); ;7Cb!v1  
    if length_r~=length(theta) kTZ`RW&0  
        error('zernfun:RTHlength', ... aKkL0 D  
              'The number of R- and THETA-values must be equal.') j qfxQ  
    end }pxMO? h$  
    KSe `G;{  
    % Check normalization: ZCsL%(  
    % -------------------- ZV=O oL t,  
    if nargin==5 && ischar(nflag) ca%s$' d  
        isnorm = strcmpi(nflag,'norm'); L 1iA ^ x  
        if ~isnorm `a2%U/U  
            error('zernfun:normalization','Unrecognized normalization flag.') ?:73O`sX:  
        end p_pI=_:  
    else 1AiqB Rs  
        isnorm = false; lO&TSPD^  
    end n]c6nX:'  
    Jn!-Wa,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7DQ{#Gf#G  
    % Compute the Zernike Polynomials US3rkkgDO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "& h;\hL  
    zg L0v5vk  
    % Determine the required powers of r: VUAW/  
    % ----------------------------------- GvQKFgO6h  
    m_abs = abs(m); N.R,[K  
    rpowers = []; X!#rw= Q  
    for j = 1:length(n) &Z3g$R 9  
        rpowers = [rpowers m_abs(j):2:n(j)]; j:ze5FA+  
    end D_mdX9-~  
    rpowers = unique(rpowers); Zt;3HY=y  
    I.#V/{J  
    % Pre-compute the values of r raised to the required powers, GF]V$5.ps  
    % and compile them in a matrix: LE$_qX`L  
    % ----------------------------- 2I DN?Mw  
    if rpowers(1)==0 9+><:(,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c%,@O&o  
        rpowern = cat(2,rpowern{:}); =qG%h5]n  
        rpowern = [ones(length_r,1) rpowern]; %N``EnF2  
    else ixc~DV+@[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \o}m]v i  
        rpowern = cat(2,rpowern{:}); B. '&[A  
    end ffDh 0mDN  
    )*6 ]m1  
    % Compute the values of the polynomials: -CePtq`  
    % -------------------------------------- gT3i{iU  
    y = zeros(length_r,length(n)); "%^T~Z(_j  
    for j = 1:length(n) /*Xr^X6  
        s = 0:(n(j)-m_abs(j))/2; ;QZ}$8D6Q  
        pows = n(j):-2:m_abs(j); ~\HGV+S!g}  
        for k = length(s):-1:1 LEu_RU?  
            p = (1-2*mod(s(k),2))* ... y8~/EyY|^  
                       prod(2:(n(j)-s(k)))/              ... pYXusS7S  
                       prod(2:s(k))/                     ... fviq}.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jNjm}8`t  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); N`o[iHUj \  
            idx = (pows(k)==rpowers); qRk<1.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +b O]9* g]  
        end S: b-+w|*  
         V!^5#A<  
        if isnorm   %4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /<"<N<X  
        end #>[BSgW  
    end Eu;f~ V  
    % END: Compute the Zernike Polynomials b# v+_7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OH+kN /Fd  
    acG4u+[ ]  
    % Compute the Zernike functions: 6sE%]u<V  
    % ------------------------------ PRTn~!Z0  
    idx_pos = m>0; kx3?'=0;5  
    idx_neg = m<0; 3y9R1/!  
    g$CWGB*%lm  
    z = y; q-tm `t*7  
    if any(idx_pos) 9| ('*  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jPum2U_  
    end 3n ~n-Jo  
    if any(idx_neg) ^/`W0kT  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ()cqax4  
    end w6cW7}ZD,  
    0<^!<i(%  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的