非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^|/<e?~I
function z = zernfun(n,m,r,theta,nflag) qJ" (:~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. zDg*ds\
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R/u0,
% and angular frequency M, evaluated at positions (R,THETA) on the 4n#u?)
% unit circle. N is a vector of positive integers (including 0), and mjOxmwo
% M is a vector with the same number of elements as N. Each element l(Y32]Z
% k of M must be a positive integer, with possible values M(k) = -N(k) $y;w@^
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, s-#@t
% and THETA is a vector of angles. R and THETA must have the same ImQ-kz?b
% length. The output Z is a matrix with one column for every (N,M) mR.j8pi
% pair, and one row for every (R,THETA) pair. n6[shXH
% ~ESw* 6s9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U["<f`z4\
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), iBWzxPv:z
% with delta(m,0) the Kronecker delta, is chosen so that the integral d{TcjZ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E[hSL#0
% and theta=0 to theta=2*pi) is unity. For the non-normalized M_O$]^I3w
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l>jrY1u
% )g=mv*9>
% The Zernike functions are an orthogonal basis on the unit circle. Fpo}UQQbc
% They are used in disciplines such as astronomy, optics, and v~RxtTu
% optometry to describe functions on a circular domain. BTsvL>Wy
% H28-;>'`
% The following table lists the first 15 Zernike functions. !/`AM<`o
% VK4UhN2
% n m Zernike function Normalization i<&z'A6&]*
% -------------------------------------------------- f$</BND
% 0 0 1 1 Sw$&E
% 1 1 r * cos(theta) 2 QVn2`hr
% 1 -1 r * sin(theta) 2 2 U%t
% 2 -2 r^2 * cos(2*theta) sqrt(6) +%CXc%
% 2 0 (2*r^2 - 1) sqrt(3) kW+>"3
% 2 2 r^2 * sin(2*theta) sqrt(6) ym
p*:lH(
% 3 -3 r^3 * cos(3*theta) sqrt(8) FoIK, MdJ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `?:{aOI
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) w2$ L;q
% 3 3 r^3 * sin(3*theta) sqrt(8) r:xg#&"*
% 4 -4 r^4 * cos(4*theta) sqrt(10) @"cnPLh&
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1`II%mf[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) zt((TD2
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mj9|q8v{+
% 4 4 r^4 * sin(4*theta) sqrt(10) 4o''C |ND
% -------------------------------------------------- (*26aMp
% `zs@W
% Example 1: ~+\A4BW
% 5m;pHgkb
% % Display the Zernike function Z(n=5,m=1) X:FyNUa
% x = -1:0.01:1; h1)+QLI
% [X,Y] = meshgrid(x,x); <-d-.
8
% [theta,r] = cart2pol(X,Y); X"8$,\wX,
% idx = r<=1; +=`w
% z = nan(size(X)); WOYZ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); F0m[ls$
% figure rI)&.5^
% pcolor(x,x,z), shading interp yl<=_Q
% axis square, colorbar YU87l
% title('Zernike function Z_5^1(r,\theta)') aF=;v*
% WUDXx %
% Example 2: 5W{|?l{
% _#<l -R`
% % Display the first 10 Zernike functions p<VW;1bt5
% x = -1:0.01:1; J(~xU0gd'
% [X,Y] = meshgrid(x,x); B^1jd!m
% [theta,r] = cart2pol(X,Y); 8Z@O%\1x6
% idx = r<=1; Rlr[uU_
% z = nan(size(X)); 3,+UsB%
% n = [0 1 1 2 2 2 3 3 3 3]; +SRM?av
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Mi!ak
% Nplot = [4 10 12 16 18 20 22 24 26 28]; I1ibrn
% y = zernfun(n,m,r(idx),theta(idx)); 'u[cT$
% figure('Units','normalized') jaTCRn3|<
% for k = 1:10 a0FU[*q
% z(idx) = y(:,k); OUHd@up@n
% subplot(4,7,Nplot(k)) GwD"j]
% pcolor(x,x,z), shading interp %MfT5*||f
% set(gca,'XTick',[],'YTick',[]) ^w
RD|
% axis square YkV-]%c
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @XF/hhGE_y
% end ,g)9ZP.F
% KrECAc
% See also ZERNPOL, ZERNFUN2. =2wy;@f
&kOb#\11u
% Paul Fricker 11/13/2006 FLlL0Gu
J0Y-e39 `
nYY' hjZ
% Check and prepare the inputs: V> eJ
% ----------------------------- A`1/g{Ha
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DB1Y`l
error('zernfun:NMvectors','N and M must be vectors.') y/?;s]>b
end *Oe;JqQkK
-E!V;Tgc%U
if length(n)~=length(m) #KSB%
error('zernfun:NMlength','N and M must be the same length.')
X?"Ro`S
end r(=3yd/G$
"Zicac@N
n = n(:); K[|d7e
m = m(:); v3jx2Z
if any(mod(n-m,2)) -Kf'02
error('zernfun:NMmultiplesof2', ... Neb%D8/Kn
'All N and M must differ by multiples of 2 (including 0).') 4VL]v9
end kA:cz$)
5h(]S[Zf3
if any(m>n) Ib4 8`
error('zernfun:MlessthanN', ... uRNc9
'Each M must be less than or equal to its corresponding N.') k@R)_,2HH
end W,n0'";')
My'6yQL
if any( r>1 | r<0 ) ?3i-wpzMp
error('zernfun:Rlessthan1','All R must be between 0 and 1.') hAZ"M:f
end ]pA}h.R#-
k4-C*Gx$h
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {=d\t<p*n
error('zernfun:RTHvector','R and THETA must be vectors.') <BN)>NqM
end ~#~Kxh
86@@j*c(@k
r = r(:); p>p=nL K
theta = theta(:); f&>Q6 {*]
length_r = length(r); = %7:[#n
if length_r~=length(theta) 3' 6>zp
error('zernfun:RTHlength', ... ',*
6vbII
'The number of R- and THETA-values must be equal.') {4{ACp
end \*w*Q(&3
|3g:q
% Check normalization: 7QRtNYo#\
% -------------------- UkL'h&J~
if nargin==5 && ischar(nflag) Fx0<!_tY-
isnorm = strcmpi(nflag,'norm'); O@_)]z?jUc
if ~isnorm (#.)~poZ
error('zernfun:normalization','Unrecognized normalization flag.') m5LP~Gb
end _hLM\L
else ni]gS0/
isnorm = false; Tr}c]IP*
end S*CRVs
aARm nV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XH2g:$
% Compute the Zernike Polynomials HWGlC <
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !/$BXUrd
^fb4g+Au
% Determine the required powers of r: }qXi;u))
% ----------------------------------- PHD$E s
m_abs = abs(m); F:M3^I
rpowers = []; >UuLSF}
for j = 1:length(n) W#0pFofXw
rpowers = [rpowers m_abs(j):2:n(j)]; 5kJ>pb$/
end te'<xfG
rpowers = unique(rpowers); /gHRJ$2|Sx
Oy[t}*Ik
% Pre-compute the values of r raised to the required powers, +3t(kQ
% and compile them in a matrix: ./ib{ @A.
% ----------------------------- Fu m1w
if rpowers(1)==0 t L;;Yt
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K)0 6][,
rpowern = cat(2,rpowern{:}); Z!|nc.
rpowern = [ones(length_r,1) rpowern]; w];t ]q|
else L1"X`Pz[}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); lTdYPqMi
rpowern = cat(2,rpowern{:}); Mi'eViH
end )WEyB~'o
m.EWYO0XQ
% Compute the values of the polynomials: XUUS N
% -------------------------------------- v?h#Ym3e<
y = zeros(length_r,length(n)); fwxyZBr
for j = 1:length(n) %r~TMU2"
s = 0:(n(j)-m_abs(j))/2; *Xl&N- 04
pows = n(j):-2:m_abs(j); z6FG^
for k = length(s):-1:1 o *I-~k
p = (1-2*mod(s(k),2))* ... Vv=d*
prod(2:(n(j)-s(k)))/ ... 1/w['d4l!
prod(2:s(k))/ ... o&LNtl;
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S)$ES6]9/
prod(2:((n(j)+m_abs(j))/2-s(k))); |TEf? <"c
idx = (pows(k)==rpowers); ^X0<ZI
y(:,j) = y(:,j) + p*rpowern(:,idx); /2?GRwU~P
end &g@?{5FP
18ci-W#p
if isnorm R^_/iy
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {My/+{eS!?
end 6eK18*j%H
end 0Km{fZYq7;
% END: Compute the Zernike Polynomials Ty#L%k}-t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jr@<-.
a*S4rq@
% Compute the Zernike functions: WGVvBX7#
% ------------------------------ ga~rllm;i
idx_pos = m>0; &Cdk%@Tj]B
idx_neg = m<0; ]eP&r?B
S4`uNB#Ht
z = y; LfrS:g
if any(idx_pos) $N5}N\C:a
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M.!U;U<?
end xk.\IrB_
if any(idx_neg) @;d(>_n
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H-0A&oG
end ;9 XM
s)
*wyaBV?*K
% EOF zernfun