切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10493阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 aoy Be|H~=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Vh-8pF t  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  #*bmwb*i  
    yzN[%/  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 uZ6krI  
    +W4}&S  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) NQqw|3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5t:Zp\$+`  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .{ v$;g  
    %   order N and frequency M, evaluated at R.  N is a vector of wlNL;W@w  
    %   positive integers (including 0), and M is a vector with the t/[lA=0 )2  
    %   same number of elements as N.  Each element k of M must be a 5&8E{YXr  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) %DSr@IX  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is }T[ @G6#  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix |jIHgm  
    %   with one column for every (N,M) pair, and one row for every \9[vi +T  
    %   element in R. 2}&ERW  
    % Aits<0  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- b d 1^  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is `%Fp'`ZM$8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to <ww D*t  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ZSu.0|0#  
    %   for all [n,m]. ;VLDXvGd  
    % yx8G9SO?  
    %   The radial Zernike polynomials are the radial portion of the #R5\k-I  
    %   Zernike functions, which are an orthogonal basis on the unit Kxr{Nx  
    %   circle.  The series representation of the radial Zernike *}vvS^c0  
    %   polynomials is !` 1h *}  
    % +,spC`M6h  
    %          (n-m)/2 s* GZOz  
    %            __ wNi%u{T  
    %    m      \       s                                          n-2s S #GxKMO%  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r _&, A  
    %    n      s=0 Iynks,ikA  
    % k1,k 9BK  
    %   The following table shows the first 12 polynomials. jgE{JK\n4  
    % Lc~m`=B  
    %       n    m    Zernike polynomial    Normalization kZF]BPh.  
    %       --------------------------------------------- v:SHaUS  
    %       0    0    1                        sqrt(2) ) k/&,J3  
    %       1    1    r                           2 br=e+]C Y)  
    %       2    0    2*r^2 - 1                sqrt(6) i6paNHi*  
    %       2    2    r^2                      sqrt(6) ]-t )wGr  
    %       3    1    3*r^3 - 2*r              sqrt(8) +jE)kaV%  
    %       3    3    r^3                      sqrt(8) &m--}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 3}}/,pGSc  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) j#f/M3  
    %       4    4    r^4                      sqrt(10) )#AYb   
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) L9/'zhiZBx  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ZJ{DW4#t  
    %       5    5    r^5                      sqrt(12) "22./vWV|i  
    %       --------------------------------------------- <l1/lm<#  
    % ])?dqgwa  
    %   Example: "5eD >!  
    % k$v 7@|Aw  
    %       % Display three example Zernike radial polynomials F,_cci`p  
    %       r = 0:0.01:1; DAq H  
    %       n = [3 2 5]; |Kd6.Mx  
    %       m = [1 2 1]; ai?uJ}  
    %       z = zernpol(n,m,r); Q3>qT84  
    %       figure "dCIg{j   
    %       plot(r,z) 4AhF E@  
    %       grid on $MasYi  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') q<\r}1Dm  
    % @Xoh@:j\  
    %   See also ZERNFUN, ZERNFUN2. .U(6])%;@  
    -v9(43  
    % A note on the algorithm. >> cW0I/`  
    % ------------------------ xLIyh7$t  
    % The radial Zernike polynomials are computed using the series eQQVfEvS  
    % representation shown in the Help section above. For many special Oi?Q^ISxP  
    % functions, direct evaluation using the series representation can <@`K^g;W  
    % produce poor numerical results (floating point errors), because I&|8 qx#  
    % the summation often involves computing small differences between u&p8S#e  
    % large successive terms in the series. (In such cases, the functions =3,<(F5Y[  
    % are often evaluated using alternative methods such as recurrence _$*-?*V&  
    % relations: see the Legendre functions, for example). For the Zernike jEKa9rt  
    % polynomials, however, this problem does not arise, because the 07^.Z[(pCt  
    % polynomials are evaluated over the finite domain r = (0,1), and T\wOGaCW  
    % because the coefficients for a given polynomial are generally all _x5-!gK  
    % of similar magnitude. B#."cg4VR  
    % (a!E3y5,  
    % ZERNPOL has been written using a vectorized implementation: multiple F@/syX;bb5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 8;=?F>]xn  
    % values can be passed as inputs) for a vector of points R.  To achieve &h[)nD  
    % this vectorization most efficiently, the algorithm in ZERNPOL Ew}GPJ  
    % involves pre-determining all the powers p of R that are required to |QzJHP @  
    % compute the outputs, and then compiling the {R^p} into a single aJm5`az)  
    % matrix.  This avoids any redundant computation of the R^p, and sUF5Y q:9  
    % minimizes the sizes of certain intermediate variables. _BG `!3U+  
    % _6FDuCVD-  
    %   Paul Fricker 11/13/2006 dY?l oFz  
    &\?{%xj  
    jM*wm~4>@  
    % Check and prepare the inputs: Ct /6<  
    % ----------------------------- @W+8z#xr'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^?%ThPo_  
        error('zernpol:NMvectors','N and M must be vectors.') JK md'ZGw  
    end "~C \Z} ;  
    a[^dK-  
    if length(n)~=length(m) ?{Xp'D\z  
        error('zernpol:NMlength','N and M must be the same length.') unL1/JY z  
    end \i~5H]?d  
    9LQy 0Gx  
    n = n(:); gKU*@`6G  
    m = m(:); g 'L$m|  
    length_n = length(n); #tPy0Q H  
    'iYaA-9j  
    if any(mod(n-m,2)) K6<1&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') r'}#usB(  
    end b(ryk./ogx  
    [-[|4|CnOm  
    if any(m<0) `).;W  
        error('zernpol:Mpositive','All M must be positive.') $AFiPH9  
    end (K"t</]  
    '9wD+'c=A  
    if any(m>n) qfY=!|O  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') _ )^n[_E  
    end Qe/=(P<  
    ;+qPV7Z  
    if any( r>1 | r<0 ) Dc> )js|"  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') I(WND/&  
    end A%M&{S'+|X  
    qpc2;3*7  
    if ~any(size(r)==1) P3XP=G`E  
        error('zernpol:Rvector','R must be a vector.') ~w%Z Bp  
    end Q^V`%+  
    y+iuA@WCv  
    r = r(:); **YNR:#Y  
    length_r = length(r); w1A&p  
     K[TMTn  
    if nargin==4 aEZn6k1  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); e;}5~dSi  
        if ~isnorm d0Kg,HB  
            error('zernpol:normalization','Unrecognized normalization flag.') zT+yZA.L  
        end Zr 2QeLQC(  
    else zck |jhJ6  
        isnorm = false; W%Zyt:H`  
    end <^ )0M  
    -+I! (?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vDOeBw=  
    % Compute the Zernike Polynomials dl$l5z\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &akMj@4;R  
    U14dQ=~b/  
    % Determine the required powers of r: VZlvmN  
    % ----------------------------------- 2Nl("e^kJr  
    rpowers = []; S(-=I!.G{  
    for j = 1:length(n) ^lMnwqx<  
        rpowers = [rpowers m(j):2:n(j)]; +#H8d1^5  
    end 01q7n`o#zf  
    rpowers = unique(rpowers); J2[QHr&tn  
    +[ }]a3)  
    % Pre-compute the values of r raised to the required powers, .y2<2eW  
    % and compile them in a matrix: >qUO_>  
    % ----------------------------- '}YXpB  
    if rpowers(1)==0 (1} Ndo^;w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); YL=k&Q G  
        rpowern = cat(2,rpowern{:}); /tv;W  
        rpowern = [ones(length_r,1) rpowern]; hA\8&pI;  
    else $xZk{ rK  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); QBn>@jq  
        rpowern = cat(2,rpowern{:}); =nL*/  
    end _0j}(Q>|H#  
    Zz&i0 r  
    % Compute the values of the polynomials: ]D-48o0  
    % -------------------------------------- O}D8  
    z = zeros(length_r,length_n); CC-:dNb  
    for j = 1:length_n =K>Z{% i  
        s = 0:(n(j)-m(j))/2; -5 W0K}  
        pows = n(j):-2:m(j); TgB;R5  
        for k = length(s):-1:1 \j;uN#)28  
            p = (1-2*mod(s(k),2))* ... c_a$g  
                       prod(2:(n(j)-s(k)))/          ... Y-c~"#  
                       prod(2:s(k))/                 ... ;VFr5.*x  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... o%QQ7S3 P  
                       prod(2:((n(j)+m(j))/2-s(k))); yK7>^p}V  
            idx = (pows(k)==rpowers); *f#4S_ws`  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {n{}Y.  
        end G\p; bUF  
         +r!h*4  
        if isnorm l9ihW^  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ">QY'r  
        end (}}8DB  
    end r"[T9  
    )IhY&?jk?  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) _D4}[`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. L>b,}w  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated %$x FnGb  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive `@D4?8_  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, (B-9M)  
    %   and THETA is a vector of angles.  R and THETA must have the same R4(8]oUW  
    %   length.  The output Z is a matrix with one column for every P-value, 9p4U\hx  
    %   and one row for every (R,THETA) pair. Z :+#3.4$3  
    % 1F,_L}=o1s  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike B^?XE(.  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ( `+Z'Y  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ACYn87tq  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 1W[(+TZ&s  
    %   for all p. w0Y%}7  
    % ;/T-rVND  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 5,ahKB8  
    %   Zernike functions (order N<=7).  In some disciplines it is  vB*oI~<  
    %   traditional to label the first 36 functions using a single mode K:@=W1  
    %   number P instead of separate numbers for the order N and azimuthal Rk[ * p  
    %   frequency M. 3raA^d3!?  
    % >NA7,Z2.  
    %   Example: [1^wy#  
    %  Vb 9N~v  
    %       % Display the first 16 Zernike functions Ds_ "m,  
    %       x = -1:0.01:1; G9inNz*Cx  
    %       [X,Y] = meshgrid(x,x); ji -1yX  
    %       [theta,r] = cart2pol(X,Y); # :w2Hf6Q  
    %       idx = r<=1; =+S3S{\CK  
    %       p = 0:15; 9lJj/  
    %       z = nan(size(X)); ]/Qy1,  
    %       y = zernfun2(p,r(idx),theta(idx)); xN8JrZE&  
    %       figure('Units','normalized') )N 6[rw<  
    %       for k = 1:length(p) D#1~]d  
    %           z(idx) = y(:,k); QS*cd|7J;  
    %           subplot(4,4,k) Wb )l8[=  
    %           pcolor(x,x,z), shading interp i(iP}: 3  
    %           set(gca,'XTick',[],'YTick',[]) c@7hLUaE2  
    %           axis square jsd]7C  
    %           title(['Z_{' num2str(p(k)) '}']) p30&JJ!~"  
    %       end Z[S+L"0  
    % B~z g"  
    %   See also ZERNPOL, ZERNFUN. cCGXB|9fYR  
    *;E+9^:V  
    %   Paul Fricker 11/13/2006 @[lc0_ b  
    ]NV ]@*`tO  
    +JS/Z5dl+}  
    % Check and prepare the inputs: |;m`874  
    % ----------------------------- &MZy;Sq  
    if min(size(p))~=1 EvQwGt1)P  
        error('zernfun2:Pvector','Input P must be vector.') D8AIV K]  
    end `{lAhZ5  
    QsJW"4d  
    if any(p)>35 DE\bYxJ  
        error('zernfun2:P36', ... q,+kPhHEgy  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... xTFrrmxOf  
               '(P = 0 to 35).']) D>b5Uwt  
    end (2bZ]  
    6y,P4O*q  
    % Get the order and frequency corresonding to the function number: w1@b5-  
    % ---------------------------------------------------------------- S50x0$%<W  
    p = p(:); /dJ)TW(Ir  
    n = ceil((-3+sqrt(9+8*p))/2); F0'A/T'ht  
    m = 2*p - n.*(n+2); 66@3$P%1p  
    !_-sTZ  
    % Pass the inputs to the function ZERNFUN: I,4-  
    % ---------------------------------------- R=9~*9  
    switch nargin ~J>gVg%66  
        case 3 ?t0zsq  
            z = zernfun(n,m,r,theta); ~@uY?jr  
        case 4 !H|82:`t+  
            z = zernfun(n,m,r,theta,nflag); H]$=*(aje  
        otherwise AOlt,MNpQ  
            error('zernfun2:nargin','Incorrect number of inputs.') ]ZKt1@4AY  
    end =PFR{=F  
    C nSX  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ~S^X"8(U  
    function z = zernfun(n,m,r,theta,nflag) +-aU+7tu  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Y0PGT5].@'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N UROj9CO v  
    %   and angular frequency M, evaluated at positions (R,THETA) on the wAu[pWD'6;  
    %   unit circle.  N is a vector of positive integers (including 0), and 6i]Nr@1C  
    %   M is a vector with the same number of elements as N.  Each element oT|P1t.  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 'z-;*!A}j  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (~ ]g,*+  
    %   and THETA is a vector of angles.  R and THETA must have the same S~k 0@  
    %   length.  The output Z is a matrix with one column for every (N,M) 9P7xoXJ@y  
    %   pair, and one row for every (R,THETA) pair. &N"'7bK6n  
    % Ns.3s7&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vQK n=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), BEXQTM3])I  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral #ox9&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, c{mKra  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2#AeN6\@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \6SMn6a4  
    % ,pyQP^u-  
    %   The Zernike functions are an orthogonal basis on the unit circle. b8N[."~:  
    %   They are used in disciplines such as astronomy, optics, and ~5r=FF6  
    %   optometry to describe functions on a circular domain. cQ(}^KO  
    % 6_R\l@a  
    %   The following table lists the first 15 Zernike functions. y@o9~?M  
    % W!/vm  
    %       n    m    Zernike function           Normalization t1e4H=d>  
    %       -------------------------------------------------- \}$*}gW[}  
    %       0    0    1                                 1 r]k*7PK  
    %       1    1    r * cos(theta)                    2 _m9~*  
    %       1   -1    r * sin(theta)                    2 Ky[bX  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5-8]N>/b!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (TEo_BW|+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F8{ldzh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) M!N` Orz  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N@Xg5huO  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 81g9ZV(4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) N9i}p^F<_  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #_.g2 Y  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >vlQ|/C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |x &Z~y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V~OUE]]Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0jR){G9+  
    %       -------------------------------------------------- sA/,+aM  
    % sS, zzx<  
    %   Example 1: {]&R8?%  
    % DpA\r_D  
    %       % Display the Zernike function Z(n=5,m=1) <fNGhmL  
    %       x = -1:0.01:1; DVObrL)znL  
    %       [X,Y] = meshgrid(x,x); U r^YG4(  
    %       [theta,r] = cart2pol(X,Y); L)q`D2|'  
    %       idx = r<=1; xME(B@j  
    %       z = nan(size(X)); 3PsxOb+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); a*Rz<08  
    %       figure -NAmu97V}  
    %       pcolor(x,x,z), shading interp ?E % +}P  
    %       axis square, colorbar saatU;V  
    %       title('Zernike function Z_5^1(r,\theta)') oG!6}5  
    % cX2$kIs;  
    %   Example 2: Q"A_bdg5  
    % ~\2;i]|  
    %       % Display the first 10 Zernike functions 1|W2s\  
    %       x = -1:0.01:1; vx'l> @]k  
    %       [X,Y] = meshgrid(x,x); _zdNLwE[  
    %       [theta,r] = cart2pol(X,Y); 1{^CfamF  
    %       idx = r<=1; s~L`53A  
    %       z = nan(size(X)); ZQ|5W6c  
    %       n = [0  1  1  2  2  2  3  3  3  3]; a;%I\w;2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;:P7}v fz!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8Bq-0=E  
    %       y = zernfun(n,m,r(idx),theta(idx)); iBucT"d]  
    %       figure('Units','normalized') ze&#i6S  
    %       for k = 1:10 ^Sw2xT$p{j  
    %           z(idx) = y(:,k); 8`}l\ Y  
    %           subplot(4,7,Nplot(k)) R6 ;jY/*#  
    %           pcolor(x,x,z), shading interp =tq1ogE  
    %           set(gca,'XTick',[],'YTick',[])  Q.yb4  
    %           axis square W;qP=DK2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jDkm:X}:  
    %       end y>`5Kyj3-@  
    % DacN {r"3  
    %   See also ZERNPOL, ZERNFUN2. OZ=Cp$  
    ]a M-p@  
    %   Paul Fricker 11/13/2006 a~,Kz\Tt  
    ?b56AE  
    8yn4}`Nc@  
    % Check and prepare the inputs: #*^e,FF<  
    % ----------------------------- n,CD  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +,z) #  
        error('zernfun:NMvectors','N and M must be vectors.') rS4%$p"  
    end "e@n:N!  
    +>!V ]S  
    if length(n)~=length(m) >zQOK-  
        error('zernfun:NMlength','N and M must be the same length.') f~q4{  
    end H;QA@tF>5  
    fH[Wkif  
    n = n(:); zZ: xEc  
    m = m(:); zd.'*Dj  
    if any(mod(n-m,2)) +Juh:1H  
        error('zernfun:NMmultiplesof2', ... ?pqU3-knH  
              'All N and M must differ by multiples of 2 (including 0).') FI$XSG  
    end a$}NW.  
    tF^g<)S;t  
    if any(m>n) W!91tzs:  
        error('zernfun:MlessthanN', ... [X<Pk  
              'Each M must be less than or equal to its corresponding N.') myIe_k,F  
    end QjJfE<h  
    0\Y1}C  
    if any( r>1 | r<0 ) ~@D/A/|  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') pw\P<9e=  
    end gqfDa cDJL  
    ^&Q< tN 7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <!F3s`7~  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,:UX<6l R  
    end )S*1C@  
    &?y7I Pp  
    r = r(:); x#r<,uNn,  
    theta = theta(:); h)cY])tGtK  
    length_r = length(r); R&*@@F-dx  
    if length_r~=length(theta) dxCPV6 XI  
        error('zernfun:RTHlength', ... n'M>xq_  
              'The number of R- and THETA-values must be equal.') JhP\u3 QE  
    end cDIBDC  
    '1-maM\r  
    % Check normalization: hF>u)%J/S  
    % -------------------- mlB~V3M'G  
    if nargin==5 && ischar(nflag) G?xJv`"9iC  
        isnorm = strcmpi(nflag,'norm'); 2.nE k  
        if ~isnorm !),t"Ae?>  
            error('zernfun:normalization','Unrecognized normalization flag.') {[W(a<%bXm  
        end 9->q|E4  
    else /8c&Axuv  
        isnorm = false; 6pp$-uS  
    end n Q-mmY>#  
    N=~~EtX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |>+uw|LtZ  
    % Compute the Zernike Polynomials y' [LNp V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w7 *V^B  
    qybxXK:  
    % Determine the required powers of r: z_&P?+"Df  
    % ----------------------------------- $FX,zC<=  
    m_abs = abs(m); 4TZ cc|B5  
    rpowers = []; o\!qcoE2W  
    for j = 1:length(n) tJ'iX>9I  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?lKhzH.T  
    end ?\y%]1  
    rpowers = unique(rpowers); Y3rt5\!  
    9]7u _  
    % Pre-compute the values of r raised to the required powers, D(\$i.,b2  
    % and compile them in a matrix: `q_<Im%I  
    % ----------------------------- gKi{Y1  
    if rpowers(1)==0 i=rH7k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,b|-rU\  
        rpowern = cat(2,rpowern{:}); zK;XF N#U^  
        rpowern = [ones(length_r,1) rpowern]; *eb-rhCVn  
    else yWb4Ify  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GLUUY0  
        rpowern = cat(2,rpowern{:}); +@:L|uFU  
    end @ D[`Oj)  
    N`$!p9r  
    % Compute the values of the polynomials: ZA820A>2!  
    % -------------------------------------- Apfnx7Fv  
    y = zeros(length_r,length(n)); K{=PQ XSU  
    for j = 1:length(n) 75NRCXh.  
        s = 0:(n(j)-m_abs(j))/2; 2?DRLF]  
        pows = n(j):-2:m_abs(j); OH'ea5x q  
        for k = length(s):-1:1 d%ME@6K)  
            p = (1-2*mod(s(k),2))* ... NX,-;v  
                       prod(2:(n(j)-s(k)))/              ... $k%Z$NSN=  
                       prod(2:s(k))/                     ... $[ z y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L:R<e#kgS  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \?lz&<  
            idx = (pows(k)==rpowers); rx!=q8=0R  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Yj3I5RG  
        end `JURQ:l)3^  
         46No%cSiG  
        if isnorm 5?u}#zO  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =RsXI&&vh  
        end f.xA_Y>  
    end "![L#)"s  
    % END: Compute the Zernike Polynomials .*5Z"Q['G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MesRa(  
    lpm JLH.F  
    % Compute the Zernike functions: \".^K5Pm  
    % ------------------------------ zm#nV Y`  
    idx_pos = m>0; #Dy?GB08  
    idx_neg = m<0; l#qv 5f  
    [V}, tO|  
    z = y; Da1aI]{I  
    if any(idx_pos) Xm!-~n@-m7  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Wf26  
    end '7 )"  
    if any(idx_neg) ^ c%N/V \  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \>Zvev!s  
    end zfI}Q}p  
    H9 tXSh  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的