切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11613阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 AIZs^ `_  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! y bWb'+x  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  t*<@>]k  
    J%|!KQl  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _g+^jR4  
    S\7-u\)  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [d="94Ab  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Z1j3F  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Gni<@;}  
    %   order N and frequency M, evaluated at R.  N is a vector of I f9t^T#  
    %   positive integers (including 0), and M is a vector with the +an.z3?w  
    %   same number of elements as N.  Each element k of M must be a 5c?1JH62o8  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \W5fcxf  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ZTV|rzE   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ml=tS,  
    %   with one column for every (N,M) pair, and one row for every s)HLFdis@  
    %   element in R. E"p;  
    % 5 rpX"(  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- z:B4  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is P !:LAb(  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to @ i $jyc  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =aM(r6 C  
    %   for all [n,m]. ~Rx:X4|H  
    % ^8p=g -U\  
    %   The radial Zernike polynomials are the radial portion of the qV^Z@N+,  
    %   Zernike functions, which are an orthogonal basis on the unit &S/@i|_  
    %   circle.  The series representation of the radial Zernike 9 06b=  
    %   polynomials is nCF1i2*6|"  
    % tOx)t$ix  
    %          (n-m)/2 tz #Fy?pe  
    %            __ 9sQ7wlK  
    %    m      \       s                                          n-2s 5;{Q >n  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r R pUq#Y:a  
    %    n      s=0 [=dK%7v  
    % G:'hT=8  
    %   The following table shows the first 12 polynomials. 9os>k*  
    % 9V5}%4k%+  
    %       n    m    Zernike polynomial    Normalization ,,_$r7H`  
    %       --------------------------------------------- R-Y07A  
    %       0    0    1                        sqrt(2) S>AM?  
    %       1    1    r                           2 EqW/Wxv7b  
    %       2    0    2*r^2 - 1                sqrt(6) b4o`eR  
    %       2    2    r^2                      sqrt(6) i,5mH$a&u:  
    %       3    1    3*r^3 - 2*r              sqrt(8) WCc7 MK  
    %       3    3    r^3                      sqrt(8) .xnJT2uu'  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 9?8Yf(MC%u  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Gt >*y.]  
    %       4    4    r^4                      sqrt(10) cB,O"-  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) HE>6A|rgDr  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) kzq3-NTV  
    %       5    5    r^5                      sqrt(12) Uy  $1X  
    %       --------------------------------------------- -:mT8'.F-  
    % WvV!F?uqZ  
    %   Example: |Nx7jGd:i  
    % KxZup\\:v  
    %       % Display three example Zernike radial polynomials 0$8iWL  
    %       r = 0:0.01:1; "UUzLa_  
    %       n = [3 2 5]; $\:;N]Cs~0  
    %       m = [1 2 1]; Fp3NWvu  
    %       z = zernpol(n,m,r); lOk'stLNa&  
    %       figure %kB84dE  
    %       plot(r,z) AmSrc.  
    %       grid on 2y"]rUS`  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') O7&6]/`  
    % QU&LC  
    %   See also ZERNFUN, ZERNFUN2. re\pE2&B  
    1|U8DK  
    % A note on the algorithm. F#<$yUf%  
    % ------------------------ ,E YB E  
    % The radial Zernike polynomials are computed using the series rd#O ]   
    % representation shown in the Help section above. For many special /*v} .fH%  
    % functions, direct evaluation using the series representation can ZboY]1L[j  
    % produce poor numerical results (floating point errors), because h^Bp^V5#  
    % the summation often involves computing small differences between .(D,CGtYb  
    % large successive terms in the series. (In such cases, the functions Cp[{| U-?G  
    % are often evaluated using alternative methods such as recurrence 9Tju+KcK  
    % relations: see the Legendre functions, for example). For the Zernike E@uxEF  
    % polynomials, however, this problem does not arise, because the H Pvs~`>V  
    % polynomials are evaluated over the finite domain r = (0,1), and 'fIBJ3s[o  
    % because the coefficients for a given polynomial are generally all g!<=NVhYt  
    % of similar magnitude. rV *`0hA1  
    % > St]MS  
    % ZERNPOL has been written using a vectorized implementation: multiple <G+IbUG:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ^)\z  
    % values can be passed as inputs) for a vector of points R.  To achieve -OvzEmI"  
    % this vectorization most efficiently, the algorithm in ZERNPOL \%=GM J^[p  
    % involves pre-determining all the powers p of R that are required to h3.6<vM  
    % compute the outputs, and then compiling the {R^p} into a single bUcq LV  
    % matrix.  This avoids any redundant computation of the R^p, and 5;:P^[cH9  
    % minimizes the sizes of certain intermediate variables. *3A`7usU  
    % 71)DLGL  
    %   Paul Fricker 11/13/2006 6qAs$[  
    Ms * `w5n  
    cN]e{|  
    % Check and prepare the inputs: 3G r:.V9=  
    % ----------------------------- kimqm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JZc"4qf@OT  
        error('zernpol:NMvectors','N and M must be vectors.') p bRU"   
    end e#R'_}\yj  
    5:" zs  
    if length(n)~=length(m) -~PiPYX  
        error('zernpol:NMlength','N and M must be the same length.') "q<}#]u  
    end :h(r2?=7  
    U/p|X)  
    n = n(:); x JXPtm  
    m = m(:); :4HZ >!i  
    length_n = length(n); ggP#2I\  
    A7eF.V&  
    if any(mod(n-m,2)) TmH'_t.*T~  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1I^uq>r  
    end MPS{MGVjbJ  
    C VyYV &U,  
    if any(m<0) O /S:S  
        error('zernpol:Mpositive','All M must be positive.') 8D)I~0\  
    end AbXaxt/[g?  
    QOfqW@g  
    if any(m>n) /a'cP  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') @0v%5@  
    end Y<h [5  
    ~WKcO&  
    if any( r>1 | r<0 ) &a/F"?9jL  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  ~[wh  
    end =o<iBbK#|  
    ue/GB+U  
    if ~any(size(r)==1) M~o\K'  
        error('zernpol:Rvector','R must be a vector.') vwc)d{ND  
    end ){_D  
    *  11|P  
    r = r(:); <D1>;C  
    length_r = length(r); Q+r8qnL'  
    Y +[Z,   
    if nargin==4 "&Y5Nh  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); |K7zN\ Wq  
        if ~isnorm F:vHbs `y  
            error('zernpol:normalization','Unrecognized normalization flag.') hU]Gv)B  
        end %XU V[L}  
    else /&T"w,D  
        isnorm = false; --t5jSS44  
    end Gl@-RLo  
    /8s+eHn&%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h^`!kp  
    % Compute the Zernike Polynomials S,'y L7s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PrZs@ Y  
    L'KgB=5K&i  
    % Determine the required powers of r: ;O Td<  
    % ----------------------------------- Fh3>y2 `/  
    rpowers = []; =ghN)[AZV  
    for j = 1:length(n) lY,dyNFHV  
        rpowers = [rpowers m(j):2:n(j)]; # $dk  
    end ar!`8"  
    rpowers = unique(rpowers); o`EL)K{  
    A=+ |&+? t  
    % Pre-compute the values of r raised to the required powers, QE b ^'y  
    % and compile them in a matrix: `'gadCTb=  
    % ----------------------------- K9@F1ccQ/  
    if rpowers(1)==0 ^Hplrwj}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /Ayo78Pi  
        rpowern = cat(2,rpowern{:}); 4|EV`t}EV  
        rpowern = [ones(length_r,1) rpowern]; n$}) }kj  
    else  q\xT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <,Z6=M`  
        rpowern = cat(2,rpowern{:}); ;t_'87h$y  
    end 4XCy>;4u  
    DNu^4#r  
    % Compute the values of the polynomials: :I)WSXP9h  
    % -------------------------------------- - wizUp  
    z = zeros(length_r,length_n); ]'%Z&1 w  
    for j = 1:length_n T*'?;u  
        s = 0:(n(j)-m(j))/2; [*jvvkAp  
        pows = n(j):-2:m(j); 7: cmBkXm  
        for k = length(s):-1:1 GmJ4AYEP  
            p = (1-2*mod(s(k),2))* ... k>ERU]7[  
                       prod(2:(n(j)-s(k)))/          ... 8=!BtMd"  
                       prod(2:s(k))/                 ... Z_tK3kQa@&  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 10C,\  
                       prod(2:((n(j)+m(j))/2-s(k))); p3N/"t&>  
            idx = (pows(k)==rpowers); bV~z}V&  
            z(:,j) = z(:,j) + p*rpowern(:,idx); `RriVYc<  
        end b_p/ 1W:  
         kg@Okz N%  
        if isnorm (C=.&',P  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); O`pqS\H  
        end c-dOb.v0  
    end [RqL0EP  
    [;E~A  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) a*oqhOTQ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Bj-80d,  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated `o;E  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive fC\Cx;q-  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {[<o)k.A  
    %   and THETA is a vector of angles.  R and THETA must have the same 6~t;&)6J  
    %   length.  The output Z is a matrix with one column for every P-value, C1V@\mRi  
    %   and one row for every (R,THETA) pair. 4=T.rVS[  
    % ?aMV{H*Q*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike de&*#O5  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) WlJ $p$I`  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) -{^IT`  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Tgf#I*(^]  
    %   for all p. %O=U|tuc$  
    % d[p-zn.  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 49gm=XPm  
    %   Zernike functions (order N<=7).  In some disciplines it is Pa8E.<>  
    %   traditional to label the first 36 functions using a single mode $P{|^ou3a#  
    %   number P instead of separate numbers for the order N and azimuthal K ]  
    %   frequency M. mn>$K"_k  
    % #%=6DHsK  
    %   Example: D<DSK~  
    % ++HHUM  
    %       % Display the first 16 Zernike functions sghQ!ux  
    %       x = -1:0.01:1; sb]{05:  
    %       [X,Y] = meshgrid(x,x); $CXMeY{tOo  
    %       [theta,r] = cart2pol(X,Y); 4=Wtv/ 3  
    %       idx = r<=1; ]I+"";oQGB  
    %       p = 0:15; ^uDNArDmj5  
    %       z = nan(size(X)); %YH+=b:uW  
    %       y = zernfun2(p,r(idx),theta(idx)); MPtn$@  
    %       figure('Units','normalized') ['*{f(AI  
    %       for k = 1:length(p) ,"@Tm01os  
    %           z(idx) = y(:,k); 8 BHtN  
    %           subplot(4,4,k) Q7~9~  
    %           pcolor(x,x,z), shading interp -$; h+9BO  
    %           set(gca,'XTick',[],'YTick',[]) +i@r-OL   
    %           axis square Hju7gP=y}  
    %           title(['Z_{' num2str(p(k)) '}']) !bPsJbIo>  
    %       end {#Lj,o  
    % \h#,qTE  
    %   See also ZERNPOL, ZERNFUN. /F(wb_!  
    #TXN\YNP  
    %   Paul Fricker 11/13/2006 (F<VcB  
    kPt] [1jo  
    n0nvp@?7bJ  
    % Check and prepare the inputs: C0eqC u)Q  
    % ----------------------------- :c vZk|b%  
    if min(size(p))~=1 l\?HeVk^  
        error('zernfun2:Pvector','Input P must be vector.') ptCFW_UV  
    end ':mw(`  
    |SO?UIWp  
    if any(p)>35 0L ^WTq  
        error('zernfun2:P36', ... {hXIP`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 5Oa`1?C1  
               '(P = 0 to 35).']) (eG9b pqr  
    end "<#-#j  
    tR! !Q  
    % Get the order and frequency corresonding to the function number:  |>Q ] q  
    % ---------------------------------------------------------------- R>r@I_  
    p = p(:); 9i&(VzY[=  
    n = ceil((-3+sqrt(9+8*p))/2); |#&{`3$CG[  
    m = 2*p - n.*(n+2); qHGwD20 ~  
    \hm;p  
    % Pass the inputs to the function ZERNFUN: l@h|os  
    % ---------------------------------------- O!,WH?r  
    switch nargin 61XLL/=P  
        case 3 *FINNNARB  
            z = zernfun(n,m,r,theta); pd3=^ Zi  
        case 4  .IO_&^  
            z = zernfun(n,m,r,theta,nflag); C\Y%FTS:  
        otherwise ??'>kQ4  
            error('zernfun2:nargin','Incorrect number of inputs.') zq:+e5YT?T  
    end &gP/<!#  
    :c*_W /  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 by:"aDGK.  
    function z = zernfun(n,m,r,theta,nflag) w%3R[Kdzk  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Pl>BTo>p'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K5h2 ~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Q^B !^_M  
    %   unit circle.  N is a vector of positive integers (including 0), and c,v?2*<  
    %   M is a vector with the same number of elements as N.  Each element ;$VQRXq  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) L/YEW7M  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, k3 YDnMRA9  
    %   and THETA is a vector of angles.  R and THETA must have the same nn1T5;  
    %   length.  The output Z is a matrix with one column for every (N,M) ytWTJ>L  
    %   pair, and one row for every (R,THETA) pair. 7,.3'cCL^  
    % "-WEUz  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike pPa3byWf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cnm*&1EzV  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mmJ$+$JEk  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &&Uc%vIN  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l2&s4ERqSm  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c=^A3[AM  
    % %6%QE'D  
    %   The Zernike functions are an orthogonal basis on the unit circle. dYEsSFB m  
    %   They are used in disciplines such as astronomy, optics, and /^2&@P7  
    %   optometry to describe functions on a circular domain. vmY 88Kx&S  
    % MYmH?A  
    %   The following table lists the first 15 Zernike functions. )Rlh[Y& r  
    % ,sOdc!![  
    %       n    m    Zernike function           Normalization \qo}}I>e  
    %       -------------------------------------------------- kT=KxS{  
    %       0    0    1                                 1 #77p>zhY  
    %       1    1    r * cos(theta)                    2 :/.SrkN(A7  
    %       1   -1    r * sin(theta)                    2 qgk-[zW#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) k;fy8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) FxkxV GZ"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JM& :dzyIP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >k)zd-  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I?z*.yA*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wH<'*>/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Jn+k$'6 %#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /`2t$71)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ` 465 H  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) T2%{pcdV/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vhEXtjL  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) hd'JXKMy  
    %       -------------------------------------------------- 88}=VS  
    % "Q[rM1R  
    %   Example 1: 4(hHp6}b  
    % 5LF#w_x  
    %       % Display the Zernike function Z(n=5,m=1) g?mfpwZj  
    %       x = -1:0.01:1; `El)uTnuZ[  
    %       [X,Y] = meshgrid(x,x); F.DR Gi.i  
    %       [theta,r] = cart2pol(X,Y); E[nJ'h<h  
    %       idx = r<=1; v!~ ;Q O  
    %       z = nan(size(X)); Ln4zy*v{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "A>/m"c]*  
    %       figure L+]|-L`S  
    %       pcolor(x,x,z), shading interp 6z-&Zu7@  
    %       axis square, colorbar T 8. to  
    %       title('Zernike function Z_5^1(r,\theta)') .Jvy0B} B  
    % 5TB==Fj ?  
    %   Example 2: -!s?d5k")  
    % /ll2lyS+  
    %       % Display the first 10 Zernike functions $Rd]e C  
    %       x = -1:0.01:1; rmq^P;At  
    %       [X,Y] = meshgrid(x,x); {0ozpE*(  
    %       [theta,r] = cart2pol(X,Y); ?!{nNJ  
    %       idx = r<=1; RPh8n4&("  
    %       z = nan(size(X)); W3h{5\d!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Z4ZR]eD  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #n5D K{e  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; sZ7RiH +I  
    %       y = zernfun(n,m,r(idx),theta(idx)); $YPQi.  
    %       figure('Units','normalized') /5s,< 0Kz  
    %       for k = 1:10 "+BNas^rF  
    %           z(idx) = y(:,k); D$vP&7pOr4  
    %           subplot(4,7,Nplot(k)) yJMHm8OB7  
    %           pcolor(x,x,z), shading interp t)62_nu  
    %           set(gca,'XTick',[],'YTick',[]) B|zVq=l~  
    %           axis square yClbM5,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A:JW Ux  
    %       end mKh <M)Bz  
    % &# w~S~  
    %   See also ZERNPOL, ZERNFUN2. /Sn>{ &  
    3v:c".O2O  
    %   Paul Fricker 11/13/2006 4pw:O^v  
    .15^c+j  
    a+_F^   
    % Check and prepare the inputs: [h=[@jiB  
    % ----------------------------- D_(K{? KU  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ja Ot"iU.B  
        error('zernfun:NMvectors','N and M must be vectors.') ,iYKtS3  
    end L(ni6-  
    $At,D.mGkb  
    if length(n)~=length(m) 1(ud(8?|  
        error('zernfun:NMlength','N and M must be the same length.') 6Y-sc*5  
    end #2U4}#Mi  
    Z^?YTykH  
    n = n(:); |-'.\)7:  
    m = m(:); KJ]ejb$  
    if any(mod(n-m,2)) 45DR%cz  
        error('zernfun:NMmultiplesof2', ... UZ qQ|3  
              'All N and M must differ by multiples of 2 (including 0).') M,f|.p{,Y  
    end %J 'RO  
    $S(q;Y  
    if any(m>n) Ts~)0  
        error('zernfun:MlessthanN', ... VJ'bS9/T  
              'Each M must be less than or equal to its corresponding N.') G1`H H&  
    end (8?5REz  
    ZR|cZH1}C  
    if any( r>1 | r<0 ) rcyq+wY #  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') GA.4'W^&a  
    end HsQ\xQ"k!  
    Db5y";T  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -Z/'kYj?U  
        error('zernfun:RTHvector','R and THETA must be vectors.') :: 2pDtMS  
    end $sTvXf:g  
    ^9zFAY.|  
    r = r(:); RgQ;fYS  
    theta = theta(:); 9"TPAywd  
    length_r = length(r); 9}TQ u0  
    if length_r~=length(theta) HxXCxI3  
        error('zernfun:RTHlength', ... ;&9A Yh.  
              'The number of R- and THETA-values must be equal.') uSRvc0R\  
    end {q}#  Sq  
    8pQ:B/3=  
    % Check normalization: g\n0v~T+  
    % -------------------- s,2gd'  
    if nargin==5 && ischar(nflag) B,]:<1l~  
        isnorm = strcmpi(nflag,'norm'); lW8!_h"G`n  
        if ~isnorm e[ 8AdE  
            error('zernfun:normalization','Unrecognized normalization flag.') [Tq\K ^!^  
        end yN Bb(!u  
    else n~wNee  
        isnorm = false; V`7^v:  
    end =rrbS8To=  
    F|seBBu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5%5z@Ka  
    % Compute the Zernike Polynomials @A-^~LoP.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pOz4>R  
    YyZ>w2_MTi  
    % Determine the required powers of r: !83N. gN  
    % ----------------------------------- b3 ,&RUF  
    m_abs = abs(m); Y8fahQ#  
    rpowers = []; o.Jq1$)~y  
    for j = 1:length(n) %](H?'H  
        rpowers = [rpowers m_abs(j):2:n(j)]; )L%i"=<Bdy  
    end -'sn0 _q/e  
    rpowers = unique(rpowers); GG}(*pOr  
    _cW (R,i  
    % Pre-compute the values of r raised to the required powers, jC)lWD  
    % and compile them in a matrix: k$hNibpkt  
    % ----------------------------- $2M dxw5  
    if rpowers(1)==0 y.LJ 5K$&a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  VS:UVe  
        rpowern = cat(2,rpowern{:}); \*_@`1m  
        rpowern = [ones(length_r,1) rpowern]; --~m{qmy  
    else <Rl:=(]i~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8-wW?YTG  
        rpowern = cat(2,rpowern{:}); 2`o}neF{  
    end Ifc}=:nr  
    Y\qiYra  
    % Compute the values of the polynomials: {c3u!} mW  
    % -------------------------------------- QqC4g]  
    y = zeros(length_r,length(n)); DM-8azq $  
    for j = 1:length(n) n tfwR#j  
        s = 0:(n(j)-m_abs(j))/2; 4+V+SD  
        pows = n(j):-2:m_abs(j); S!<1C Fh  
        for k = length(s):-1:1 >}43xIRRCq  
            p = (1-2*mod(s(k),2))* ... tkG0xRH  
                       prod(2:(n(j)-s(k)))/              ... B~_='0Gm[  
                       prod(2:s(k))/                     ... ::xH C4tw  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F=29"1 ._  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); xz+Y1fYT  
            idx = (pows(k)==rpowers); buXPeIo^VM  
            y(:,j) = y(:,j) + p*rpowern(:,idx); e$E~@{[1)  
        end )m-l&UK  
         ;9{x""  
        if isnorm l @hXQ/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); s{-`y`JP  
        end l#FW#`f  
    end [3s p  
    % END: Compute the Zernike Polynomials Vs1j9P|G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #L{+V?  
    fC_dSM[{c  
    % Compute the Zernike functions: zs@#.OEH  
    % ------------------------------ 0 gyg  
    idx_pos = m>0; .oJs"=h:m  
    idx_neg = m<0; Sd3KY9,  
    m\h/D7zg  
    z = y; *aXZONym  
    if any(idx_pos) n.{+\M6k  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ? [?{X~uq  
    end >@yHa'*9S  
    if any(idx_neg) 'JBf*p".  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); EBY=ccGE{  
    end qNhQ2x\  
    C*}TY)8  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的