切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11083阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 f=$w,^)M  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! OHEl.p]|  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?W27 h  
    zUQn*Cio e  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 O4+a[82  
    \me'B {aa  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 'VQ mK#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 4f-I,)qCBk  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of D&]dlY@*  
    %   order N and frequency M, evaluated at R.  N is a vector of }~bx==SF6!  
    %   positive integers (including 0), and M is a vector with the RHj<t");  
    %   same number of elements as N.  Each element k of M must be a LEgx"H=c  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) CY?19Ak-xd  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is fEYo<@5c]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix n B. u5  
    %   with one column for every (N,M) pair, and one row for every g+zfa.wQ  
    %   element in R. wF.S ,|  
    % N NTUl$  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (\A~SKEX  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is J69B1Yi  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to B.ar!*X  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 a(|,KWHn  
    %   for all [n,m]. ,enU`}9V*  
    % Lk8NjK6  
    %   The radial Zernike polynomials are the radial portion of the rd0[(-  
    %   Zernike functions, which are an orthogonal basis on the unit 7eP3pg#  
    %   circle.  The series representation of the radial Zernike 0'nY  
    %   polynomials is H]a@"gO  
    % q*pWx]Y  
    %          (n-m)/2 `ZLA=oD  
    %            __ %.mHV7c)%  
    %    m      \       s                                          n-2s T0F!0O `  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r e nw7?|(  
    %    n      s=0 iL\eMa  
    % JQde I+  
    %   The following table shows the first 12 polynomials. 863PVce",}  
    % OO  /Pc  
    %       n    m    Zernike polynomial    Normalization &LM ^,xx}  
    %       --------------------------------------------- snccDuS  
    %       0    0    1                        sqrt(2) z&W5@6")`  
    %       1    1    r                           2 mq!_/3  
    %       2    0    2*r^2 - 1                sqrt(6) n+94./Mh  
    %       2    2    r^2                      sqrt(6) f!D~aJ  
    %       3    1    3*r^3 - 2*r              sqrt(8) ]$xN`O4W{  
    %       3    3    r^3                      sqrt(8) pU)g93  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) r[votdFo  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) xJ[Xmre  
    %       4    4    r^4                      sqrt(10) ztG!NZL  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) o9 g0fC  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) )<8f3;qd  
    %       5    5    r^5                      sqrt(12)  %J?"ZSh  
    %       --------------------------------------------- ~K-_]*[x  
    %  aa10vV  
    %   Example: ?=^ M(TA;  
    % yw{;Qm2\7  
    %       % Display three example Zernike radial polynomials A"W}l)+X  
    %       r = 0:0.01:1; 0//B+.#  
    %       n = [3 2 5]; _5l3e7YN  
    %       m = [1 2 1]; yG%<LP2p@f  
    %       z = zernpol(n,m,r); & ~*qTojj  
    %       figure Rd|xw%R\mb  
    %       plot(r,z) g#b uy  
    %       grid on *]]C.t-cd  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /N?vVp  
    % S`v+rQjW  
    %   See also ZERNFUN, ZERNFUN2. I,0Z* rw  
    yD n8{uI  
    % A note on the algorithm. I nCo[ 8SI  
    % ------------------------ QZ:xG:qyk;  
    % The radial Zernike polynomials are computed using the series 8/16<yZ  
    % representation shown in the Help section above. For many special L^Q q[>  
    % functions, direct evaluation using the series representation can 5J0Sc  
    % produce poor numerical results (floating point errors), because mE+  
    % the summation often involves computing small differences between !/|^ )d^U  
    % large successive terms in the series. (In such cases, the functions Y#[>j4<T  
    % are often evaluated using alternative methods such as recurrence .)Af&+KT  
    % relations: see the Legendre functions, for example). For the Zernike Z.v2 !u  
    % polynomials, however, this problem does not arise, because the <z+b88D  
    % polynomials are evaluated over the finite domain r = (0,1), and g\O&gNq<)-  
    % because the coefficients for a given polynomial are generally all ^>H+#@R  
    % of similar magnitude. LG6k KG  
    % ;p U=>  
    % ZERNPOL has been written using a vectorized implementation: multiple 'CkN  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 60`4 _Uy]_  
    % values can be passed as inputs) for a vector of points R.  To achieve A0hfy|1#L  
    % this vectorization most efficiently, the algorithm in ZERNPOL F A#?+kd  
    % involves pre-determining all the powers p of R that are required to jh|4Y(  
    % compute the outputs, and then compiling the {R^p} into a single nL[ zXl  
    % matrix.  This avoids any redundant computation of the R^p, and 7=gv4arRwt  
    % minimizes the sizes of certain intermediate variables. K0bh;I  
    % 7vf?#^ RlV  
    %   Paul Fricker 11/13/2006 5f'<0D;K  
    ./ !6M  
    mhXSbo9w-  
    % Check and prepare the inputs: _ o-lNt+  
    % ----------------------------- 4EB&Zmg[K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *gxo! F}  
        error('zernpol:NMvectors','N and M must be vectors.') b5v6Y:f&fK  
    end buv*qPO  
    ED kxRfY2/  
    if length(n)~=length(m) =cN! h"C[  
        error('zernpol:NMlength','N and M must be the same length.') ag \d4y6  
    end /j0zb&  
    QV@NA@;XZ  
    n = n(:); V&>\U?q:  
    m = m(:); h)746T )  
    length_n = length(n); ZX Sl+k .  
    #ErIot  
    if any(mod(n-m,2)) OSsxO(;g  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') hDf|9}/UQd  
    end l`}Ag8Q  
    cIIt ;q[  
    if any(m<0) k;?Oi?]  
        error('zernpol:Mpositive','All M must be positive.') dT9ekNQB  
    end 0B;cQSH!q  
    H"g$qSx  
    if any(m>n) q:9#Vcw  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') clwJ+kku@  
    end YsHZFF  
    i(k]}Di:  
    if any( r>1 | r<0 ) c T!L+z g  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') RRBokj)]  
    end v FL\O  
    i{$h]D_fD  
    if ~any(size(r)==1) =c>w  
        error('zernpol:Rvector','R must be a vector.') {D(_"  
    end bxS+ R\  
    3N ]  
    r = r(:); WLTraB[?  
    length_r = length(r); 71h?t`N  
    u*<G20~A  
    if nargin==4 0H6^2T<  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 0K&\5xXM  
        if ~isnorm A?q9(n|A"  
            error('zernpol:normalization','Unrecognized normalization flag.') +foyPj!%  
        end J"x M[c2  
    else  ThLnp@  
        isnorm = false; r9a?Y!(  
    end {Y%X  
    aFj)s?$4]K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 06&:X^  
    % Compute the Zernike Polynomials $:YJ<HvG<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \(C_t1  
    $1CAfSgKw  
    % Determine the required powers of r: t1)~J  
    % ----------------------------------- JERWz~n}  
    rpowers = []; "z^&>#F  
    for j = 1:length(n) W|PKcZ ]Uc  
        rpowers = [rpowers m(j):2:n(j)]; 4}~zVT0'~  
    end IkU:D"n7  
    rpowers = unique(rpowers); +;}XWV  
    6tE<`"P!  
    % Pre-compute the values of r raised to the required powers, ydNcbF%K  
    % and compile them in a matrix: % mhnd):  
    % ----------------------------- ' Vp6=,P  
    if rpowers(1)==0 l"\W]'T:r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?5%|YsJP_  
        rpowern = cat(2,rpowern{:}); z k[%YG&  
        rpowern = [ones(length_r,1) rpowern]; Daa2.*  
    else .Jt&6N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SOyE$GoOsx  
        rpowern = cat(2,rpowern{:}); 3zO'=gwJ  
    end *CA7 {2CX  
    );^] is~  
    % Compute the values of the polynomials: dnby&-+T  
    % -------------------------------------- FuZ7xM,  
    z = zeros(length_r,length_n); M~/%V NX  
    for j = 1:length_n HqW|  
        s = 0:(n(j)-m(j))/2; {-sy,EYcw  
        pows = n(j):-2:m(j); r$~w3yN)v  
        for k = length(s):-1:1 :eK;:pN  
            p = (1-2*mod(s(k),2))* ... b@OL !?JP  
                       prod(2:(n(j)-s(k)))/          ... ("t; 2Mw  
                       prod(2:s(k))/                 ... t} E 1NXW  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... R~,*W1G6sF  
                       prod(2:((n(j)+m(j))/2-s(k))); UQwLAXs  
            idx = (pows(k)==rpowers); ^AWM/aY  
            z(:,j) = z(:,j) + p*rpowern(:,idx); W*q[f!@  
        end !O=J8;oLk  
         X*2M Nx^K~  
        if isnorm eZ]4,,m  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); $18|@\Znj  
        end *pMgjr  
    end p;!'5 f  
    lE+v@Kb:  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) VJMn5v[V  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ~n#rATbxf  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated |IqQ%;H  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &L,zh{Mp  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, %,rUN+vW  
    %   and THETA is a vector of angles.  R and THETA must have the same 3QDz0ct  
    %   length.  The output Z is a matrix with one column for every P-value, 8>Hnv]p  
    %   and one row for every (R,THETA) pair. dZ&/Iz  
    % NZ `( d  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike U:eahK  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Qo{Ez^q@J  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5taYm'  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 iWu$$IV?-  
    %   for all p. m'$]lf;*  
    % O $uXQ.r  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ~S)o ('  
    %   Zernike functions (order N<=7).  In some disciplines it is iIwMDlQ "  
    %   traditional to label the first 36 functions using a single mode :] Jwcp  
    %   number P instead of separate numbers for the order N and azimuthal Z 4uft  
    %   frequency M. B98&JoS  
    % A-vK0l+  
    %   Example: 95;q ] =U  
    % ~xqRCf{8  
    %       % Display the first 16 Zernike functions 5V\\w~&/  
    %       x = -1:0.01:1; Z |uII#lq  
    %       [X,Y] = meshgrid(x,x); '{j.5~4y  
    %       [theta,r] = cart2pol(X,Y); w{3 B  
    %       idx = r<=1; IiV:bHUE}0  
    %       p = 0:15; *p{wC r  
    %       z = nan(size(X)); RSG\3(  
    %       y = zernfun2(p,r(idx),theta(idx)); g4<w6eB  
    %       figure('Units','normalized') DG&14c>g  
    %       for k = 1:length(p) P ?dE\Po7  
    %           z(idx) = y(:,k); ~p{.4n2:  
    %           subplot(4,4,k) oJy]n9  
    %           pcolor(x,x,z), shading interp b>AFhj:  
    %           set(gca,'XTick',[],'YTick',[]) *upl*zFf0  
    %           axis square {w.rcObIw+  
    %           title(['Z_{' num2str(p(k)) '}']) bNR}Mk]?  
    %       end |a#4  
    % , KF>PoySA  
    %   See also ZERNPOL, ZERNFUN. EoqUFa,  
    E ~xK1x"  
    %   Paul Fricker 11/13/2006 ,{A-<=6t  
    .WA(X5  
    LUv>0G#L[  
    % Check and prepare the inputs: G<,@|6"w  
    % ----------------------------- nmp(%;<exN  
    if min(size(p))~=1 VL"!.^'c  
        error('zernfun2:Pvector','Input P must be vector.') #*;(%\q}  
    end Er?Wg09  
     L3P_  
    if any(p)>35 k6-Q3W[+a  
        error('zernfun2:P36', ... g?!vR id@S  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... C)/uX5  
               '(P = 0 to 35).']) WK]SHiHD  
    end RG-pN()  
    DoAK]zyJA  
    % Get the order and frequency corresonding to the function number: PhF3' ">  
    % ---------------------------------------------------------------- S/& _  
    p = p(:); |i5A F\w  
    n = ceil((-3+sqrt(9+8*p))/2); d paZ6g  
    m = 2*p - n.*(n+2); ?as)vYP  
    P9v N5|"M  
    % Pass the inputs to the function ZERNFUN: P 0,) Gw  
    % ---------------------------------------- i/R8Gb  
    switch nargin nY"9"R\.=  
        case 3 {.O Bcx  
            z = zernfun(n,m,r,theta); utKtxLX"  
        case 4 $+)2CXQe5  
            z = zernfun(n,m,r,theta,nflag); z-K?Ak B1  
        otherwise }OgzSnR  
            error('zernfun2:nargin','Incorrect number of inputs.') )e|Cd} 2  
    end ~M`QFF  
    \2)a.2mAz  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {@1.2AWg  
    function z = zernfun(n,m,r,theta,nflag) ,$@nbS{Q]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. EU.vw0}u8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z W` Ur>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the zd AqGQfc  
    %   unit circle.  N is a vector of positive integers (including 0), and #=UEx  
    %   M is a vector with the same number of elements as N.  Each element p"f=[awp  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3/mVdU?U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, mz;S*ONlV  
    %   and THETA is a vector of angles.  R and THETA must have the same uhvmh  
    %   length.  The output Z is a matrix with one column for every (N,M) (-Rh%ZHH  
    %   pair, and one row for every (R,THETA) pair. rMAH YH9  
    % [,)yc/{*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1$oVcDLl  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w-\U;&8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Bt4 X  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =A&x d"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized j$<uE{c  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &n+3^JNl  
    % FDM&rQ  
    %   The Zernike functions are an orthogonal basis on the unit circle. }c(".v#  
    %   They are used in disciplines such as astronomy, optics, and vAi NOpz#  
    %   optometry to describe functions on a circular domain. HubSmbS1  
    % ei'=%r8~  
    %   The following table lists the first 15 Zernike functions. %:oyHlz%  
    % QIQ }ia  
    %       n    m    Zernike function           Normalization }7YDe'5V  
    %       -------------------------------------------------- e_s9E{(  
    %       0    0    1                                 1 |E$Jt-'  
    %       1    1    r * cos(theta)                    2 6T{Zee  
    %       1   -1    r * sin(theta)                    2 +N1oOcPC>C  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4} uX[~e&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) g{w IdV  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {Buoo~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  ^! /7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) MVHj?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |g]TWKc*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +RS>#zd/=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) un0t zz  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dgh|,LqUB  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Q#P=t83  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %\PnsnJ9Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) rhY>aj  
    %       -------------------------------------------------- Gb+cT  
    % GczGW4\P'  
    %   Example 1: Ai\"w0  
    % xExy?5H7  
    %       % Display the Zernike function Z(n=5,m=1) 33x3zEUt6  
    %       x = -1:0.01:1; %||}WT-wv  
    %       [X,Y] = meshgrid(x,x); B%!z7AT  
    %       [theta,r] = cart2pol(X,Y); Z0T{1YEJ  
    %       idx = r<=1; |,M&ks  
    %       z = nan(size(X)); 3;=nQ{0b  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f 'aQ T  
    %       figure ;;'b;,/  
    %       pcolor(x,x,z), shading interp CBdS gHA3>  
    %       axis square, colorbar tdg.vYMDPC  
    %       title('Zernike function Z_5^1(r,\theta)') O-B~~$g  
    % Jhu<^pjs  
    %   Example 2: ,?i^i#Wqzg  
    % c 2j?<F1  
    %       % Display the first 10 Zernike functions )BNm~sP  
    %       x = -1:0.01:1; 3n9$qr= '  
    %       [X,Y] = meshgrid(x,x); .CFaBwj  
    %       [theta,r] = cart2pol(X,Y); eCdx(4(\a  
    %       idx = r<=1; 0 z{S@  
    %       z = nan(size(X)); *9e T#dH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; UN_f2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =BJ/ZM  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vc o/h  
    %       y = zernfun(n,m,r(idx),theta(idx)); 8}h ^Frh  
    %       figure('Units','normalized') ;SkC[;`J  
    %       for k = 1:10 adtK$@Yeg  
    %           z(idx) = y(:,k); WmLl.Vv=  
    %           subplot(4,7,Nplot(k)) Rt~Aud[  
    %           pcolor(x,x,z), shading interp _H@s^g  
    %           set(gca,'XTick',[],'YTick',[]) Ga~N7  
    %           axis square +kTAOf M  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Mp; t?C4  
    %       end pW O-YZ#+  
    % '"QC^Joz  
    %   See also ZERNPOL, ZERNFUN2. {"8\~r&b  
    d}tn/Eu?B  
    %   Paul Fricker 11/13/2006 =" K;3a`GI  
    OO_{ o  
    >1:s.[&  
    % Check and prepare the inputs: AC3K*)`E  
    % ----------------------------- R[ S*ON  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >bxT_qEm  
        error('zernfun:NMvectors','N and M must be vectors.')  w_G/[R3  
    end m s\:^a  
    evsH>hE^  
    if length(n)~=length(m) I^/Ugu  
        error('zernfun:NMlength','N and M must be the same length.') D2|-\vJ>  
    end $1oU^V Y  
    OTd=(dwh  
    n = n(:); o*97Nbjn  
    m = m(:); ;+K:^*oJ  
    if any(mod(n-m,2)) LfyycC2E  
        error('zernfun:NMmultiplesof2', ... !JUXq  
              'All N and M must differ by multiples of 2 (including 0).') \*6%o0c  
    end |DfYH~@(  
    "[@-p  
    if any(m>n) xr!FDfM.K  
        error('zernfun:MlessthanN', ... 5R4h9D5  
              'Each M must be less than or equal to its corresponding N.') I%%\;Dy  
    end `ea;qWy  
    6k"Wy3/  
    if any( r>1 | r<0 ) 2N)=fBF%-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zb-TCS+3l  
    end sr x`" :  
    ttLC hL  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) a}`4BMi3  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0 sVCTJ@  
    end iKV;>gF,)v  
    2j-|.l c  
    r = r(:); aGNt?)8WPZ  
    theta = theta(:); h+zJ"\  
    length_r = length(r); R|{AIa{}  
    if length_r~=length(theta) `y0ZFh1>X  
        error('zernfun:RTHlength', ... Q`g0g)3w  
              'The number of R- and THETA-values must be equal.') m\U@L+L  
    end IvetQ+  
    aMuc]Wy#  
    % Check normalization: UBpYR> <\  
    % -------------------- QpS0iUG  
    if nargin==5 && ischar(nflag) zF<*h~  
        isnorm = strcmpi(nflag,'norm'); dTyTj|"x{  
        if ~isnorm e{Om W  
            error('zernfun:normalization','Unrecognized normalization flag.') cg7NtY  
        end W5$jIQ}Bw  
    else \%&QIe;:k  
        isnorm = false; ko im@B  
    end wGd8q xa  
    t?28s/?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~zRUJ2hD!  
    % Compute the Zernike Polynomials T#J]%IDd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INW8Q`[F  
    [:a;|t  
    % Determine the required powers of r: ?F*gFW_k  
    % ----------------------------------- 2{"Wa|o`  
    m_abs = abs(m); NeCTEe|V  
    rpowers = []; >2Al+m<w  
    for j = 1:length(n) ^qiTO`lg  
        rpowers = [rpowers m_abs(j):2:n(j)]; gTW(2?xYf  
    end T9{94Ra  
    rpowers = unique(rpowers); eN>=x40  
    -{pcb7.xuv  
    % Pre-compute the values of r raised to the required powers, 3RscuD&  
    % and compile them in a matrix: ub}t3#  
    % ----------------------------- p(Y'fd}  
    if rpowers(1)==0 mY(~94{d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $"J+3mO  
        rpowern = cat(2,rpowern{:}); |6`yE]3 -(  
        rpowern = [ones(length_r,1) rpowern]; GUmOK=D >  
    else `"I^nD^t>Y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2aW&d=!ZV  
        rpowern = cat(2,rpowern{:}); 3 _:yHwkD  
    end U;;vNzcn  
    nE Qw6q~je  
    % Compute the values of the polynomials: FlD !?  
    % -------------------------------------- JmWN/mx  
    y = zeros(length_r,length(n)); O9p8x2  
    for j = 1:length(n) }OI;M^5L  
        s = 0:(n(j)-m_abs(j))/2; B Gh%3"q  
        pows = n(j):-2:m_abs(j); vhTte |(  
        for k = length(s):-1:1 1`5d~>fV  
            p = (1-2*mod(s(k),2))* ... "^zxq5u  
                       prod(2:(n(j)-s(k)))/              ... n:`> QY  
                       prod(2:s(k))/                     ... ]^VC@$\)+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e}(ws~.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); `t {aN|3V[  
            idx = (pows(k)==rpowers); vov"60K  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b0tr)>d  
        end 'RTz*CSZ  
         6Ei>VcN4a  
        if isnorm n_)d4d zl  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4punJg~1  
        end '2/48j X5  
    end 4ZQX YwfC|  
    % END: Compute the Zernike Polynomials j*q]-$2E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #";(&|7  
    JdfjOlEb  
    % Compute the Zernike functions: v#(wc +[  
    % ------------------------------ M!,$i  
    idx_pos = m>0; Hl?\P6   
    idx_neg = m<0; )e4nKh],  
    or]8;eQ?  
    z = y; bMxzJRrNg  
    if any(idx_pos) hCc_+/j|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); EbY%:jR  
    end +[V?3Gdb  
    if any(idx_neg) ;5q=/  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i 0L)hkV  
    end :p=IZY  
    i.)k V B  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的