切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11548阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 4^u wZ:  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Y2&hf6BE  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n^:Wc[[m  
    X0+M|8:   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 d`ESe'j:  
    ` 8OA:4).  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) u  teI[Q  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. {}TR'Y4  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 3#@ETt0X(  
    %   order N and frequency M, evaluated at R.  N is a vector of zXHCP.Rmg  
    %   positive integers (including 0), and M is a vector with the zFtRsa5 +  
    %   same number of elements as N.  Each element k of M must be a I 8 \Ka=w  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) aH1mW;,1u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4LBMhLy  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix BEv>?T 0  
    %   with one column for every (N,M) pair, and one row for every l'2a?1/q  
    %   element in R. f/:XIG  
    % 2nFSu9}+r  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9V%s1@K  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is j+c<0,Kj  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~Z'3(n*9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 PB :Lj  
    %   for all [n,m]. ~X/1%  
    % . d;XLS~  
    %   The radial Zernike polynomials are the radial portion of the IaU  
    %   Zernike functions, which are an orthogonal basis on the unit hl[!4#b]K  
    %   circle.  The series representation of the radial Zernike U&D"fM8  
    %   polynomials is YAIDSZ&l[  
    % Xh,{/5m  
    %          (n-m)/2 W:7oGZ>4  
    %            __ L.[ H   
    %    m      \       s                                          n-2s  wv2  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r SY` U]-h  
    %    n      s=0 }/yhwijg  
    % OgiElA.  
    %   The following table shows the first 12 polynomials. aIv>X@U}  
    % McgTTM;E  
    %       n    m    Zernike polynomial    Normalization 3+<}Hm+  
    %       --------------------------------------------- T<|B1jA  
    %       0    0    1                        sqrt(2) Wb] ha1$  
    %       1    1    r                           2 u6A ReL 'f  
    %       2    0    2*r^2 - 1                sqrt(6) jB*%nB*x  
    %       2    2    r^2                      sqrt(6) S=>54!{`x  
    %       3    1    3*r^3 - 2*r              sqrt(8) ;[]{O5TB  
    %       3    3    r^3                      sqrt(8) [<Wo7G1s  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) iw\RQ 0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) coHzbD~#H  
    %       4    4    r^4                      sqrt(10) +s:!\(BM  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "r!O9X6  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1f]04TI  
    %       5    5    r^5                      sqrt(12) Cg/L/0Ak  
    %       --------------------------------------------- !F*7Mif_E  
    % WHQg6r  
    %   Example: ca@0?q#  
    % *.0}3  
    %       % Display three example Zernike radial polynomials F$UvYy4O d  
    %       r = 0:0.01:1; /vi>@a  
    %       n = [3 2 5]; J#7\R':}zl  
    %       m = [1 2 1]; bwG2=  
    %       z = zernpol(n,m,r); :?s~,G_*l  
    %       figure _ cK"y2  
    %       plot(r,z) H3Y FbR  
    %       grid on 05mjV6j7m  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ?GPTJ#=j=]  
    % sr+* q6W  
    %   See also ZERNFUN, ZERNFUN2. s l|n]#)  
    5:%xuJD  
    % A note on the algorithm. C9[Jr)QX  
    % ------------------------ k/A8 |  
    % The radial Zernike polynomials are computed using the series @vdBA hXk  
    % representation shown in the Help section above. For many special =EI>@Y"  
    % functions, direct evaluation using the series representation can GsG.9nd  
    % produce poor numerical results (floating point errors), because Z,%^BAJ  
    % the summation often involves computing small differences between D<5;4Mb  
    % large successive terms in the series. (In such cases, the functions \jDD=ew  
    % are often evaluated using alternative methods such as recurrence I@a y&NNh  
    % relations: see the Legendre functions, for example). For the Zernike i>YD_#w  
    % polynomials, however, this problem does not arise, because the M=$ qus  
    % polynomials are evaluated over the finite domain r = (0,1), and +:3K?G -  
    % because the coefficients for a given polynomial are generally all o(GXv3L  
    % of similar magnitude. nFU'DZ  
    % JsohhkJNGi  
    % ZERNPOL has been written using a vectorized implementation: multiple 3-z; pk  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] {3F;:%$`c  
    % values can be passed as inputs) for a vector of points R.  To achieve 3 f=_F  
    % this vectorization most efficiently, the algorithm in ZERNPOL ?.d6!vA  
    % involves pre-determining all the powers p of R that are required to w Q /IT}-  
    % compute the outputs, and then compiling the {R^p} into a single 1zwk0={x-%  
    % matrix.  This avoids any redundant computation of the R^p, and r>4HF"Nm  
    % minimizes the sizes of certain intermediate variables. YqhZndktX  
    % dWbSrl  
    %   Paul Fricker 11/13/2006 (_h<<`@B  
    DPCB=2E  
     J jRz<T;  
    % Check and prepare the inputs: qPeaSv]W  
    % ----------------------------- \vj<9ke&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -`nQa$N-  
        error('zernpol:NMvectors','N and M must be vectors.') .{[+d3+,  
    end (}ObX!,  
    .)L%ANf  
    if length(n)~=length(m) "mlVs/nsyG  
        error('zernpol:NMlength','N and M must be the same length.') ZbVo<p5* ]  
    end IE7%u 92  
    32nB9[l  
    n = n(:); S B2R  
    m = m(:); Ws%@SK  
    length_n = length(n); 28,Hd!{  
    -]$q8 Q(hM  
    if any(mod(n-m,2)) B:Y"X:Y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') KE>|,U r  
    end WWf#in  
    oYOR%'0*m+  
    if any(m<0) Qh*"B  
        error('zernpol:Mpositive','All M must be positive.') ]-ad\PI$  
    end }8 V/Cd9  
    /4Ud6gscf  
    if any(m>n) mX8k4$z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') .g/PWEr\I  
    end L@9@3?  
    M_ *KA  
    if any( r>1 | r<0 ) ykAZP[^'  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') zt&"K0X|  
    end &CP]+ at  
    gY!+x=cx0  
    if ~any(size(r)==1) %?<Y&t  
        error('zernpol:Rvector','R must be a vector.') `"@Pr,L   
    end <}Hfu-PLo  
    4FwtC"G3  
    r = r(:); i2bkgyzB.  
    length_r = length(r); }6S~"<Ym  
    h{xq  
    if nargin==4 :Vdo.uUa  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); PB[ Y^q  
        if ~isnorm iO$Z?Dyg9  
            error('zernpol:normalization','Unrecognized normalization flag.') Bs?B\k=  
        end 3m;*gOLk6  
    else "XKcbdr8-  
        isnorm = false; ||p>O  
    end MSQz,nn  
    YCBp ]xuE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]lQLA IQ  
    % Compute the Zernike Polynomials W20qn>{z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XC*!=h*  
    76IjM4&a  
    % Determine the required powers of r: IA6,P>}N  
    % ----------------------------------- 62s0$vw  
    rpowers = []; T:<mme3v  
    for j = 1:length(n) [hhPkJf|f  
        rpowers = [rpowers m(j):2:n(j)]; T)CEcz  
    end y)//u:l  
    rpowers = unique(rpowers); -F->l5  
    ta;q{3fe  
    % Pre-compute the values of r raised to the required powers, 0,{tBo  
    % and compile them in a matrix: OYYk[r  
    % ----------------------------- Ca]V%g(  
    if rpowers(1)==0 7Be\^%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [D$% LRX  
        rpowern = cat(2,rpowern{:}); (Ts#^qC  
        rpowern = [ones(length_r,1) rpowern]; Jxo#sV-  
    else "|,;~k1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A_pcv7=@  
        rpowern = cat(2,rpowern{:}); v)c[-:"z  
    end BN]{o(EB  
    >Hd Pcsl L  
    % Compute the values of the polynomials: AQ<2 "s  
    % -------------------------------------- *K#Ci1Q  
    z = zeros(length_r,length_n); gH u!~l  
    for j = 1:length_n -|cB7 P  
        s = 0:(n(j)-m(j))/2; 7g%.:H =  
        pows = n(j):-2:m(j); (@(rz/H  
        for k = length(s):-1:1 'Dx_n7&=  
            p = (1-2*mod(s(k),2))* ... h 0c&}kM  
                       prod(2:(n(j)-s(k)))/          ... `VL<pqPP  
                       prod(2:s(k))/                 ... TBU.%3dEyI  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 0}4FwcCr\  
                       prod(2:((n(j)+m(j))/2-s(k))); mo*ClU7  
            idx = (pows(k)==rpowers); KQu lz  
            z(:,j) = z(:,j) + p*rpowern(:,idx); UmNh0nS  
        end "k> ;K,:  
         1cdX0[sN  
        if isnorm -<Oy5N  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); w+Oo-AGNH  
        end gPf^dGi7t  
    end 8]2j*e0xV  
    ~i5t1  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \+I+Lrj%  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ?]Z EK8c  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated H'2Un(#Al  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive KX$Q`lM   
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, uJ_"gPO  
    %   and THETA is a vector of angles.  R and THETA must have the same YThFskRoO  
    %   length.  The output Z is a matrix with one column for every P-value, 63Dm{ 2i}F  
    %   and one row for every (R,THETA) pair. +ug[TV   
    % qcdENIy0b  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike {WYmO1  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) L |pJ\~  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) EC0M0qQ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 v>]^wH>/"  
    %   for all p. +E-f  
    % 5^GFN*poig  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 (g 9G!I   
    %   Zernike functions (order N<=7).  In some disciplines it is F?!  
    %   traditional to label the first 36 functions using a single mode HZ.Jc"+M  
    %   number P instead of separate numbers for the order N and azimuthal ja|XFs~  
    %   frequency M. ?ybX &V  
    % #{L !o5  
    %   Example: Xy'qgK?  
    % g"&e*fF  
    %       % Display the first 16 Zernike functions 4}t&AW4  
    %       x = -1:0.01:1; t 9Dr%#  
    %       [X,Y] = meshgrid(x,x); y+ ZCuX  
    %       [theta,r] = cart2pol(X,Y); z,#3YC{'  
    %       idx = r<=1; dtT2h>h9  
    %       p = 0:15; 8OW504AD  
    %       z = nan(size(X)); KJLK]lf}d  
    %       y = zernfun2(p,r(idx),theta(idx)); q7'[II;  
    %       figure('Units','normalized') ( O>oN~  
    %       for k = 1:length(p) c(y~,hN&p  
    %           z(idx) = y(:,k); fqgm`4>  
    %           subplot(4,4,k) oL 69w1  
    %           pcolor(x,x,z), shading interp :.,3Zw{l  
    %           set(gca,'XTick',[],'YTick',[]) T1}9^3T?{  
    %           axis square _-.~>C  
    %           title(['Z_{' num2str(p(k)) '}']) wcI4Y0+J  
    %       end \p&a c&]  
    % bk#t+tuk  
    %   See also ZERNPOL, ZERNFUN. 8;r7ksE~  
    {=Ku9\  
    %   Paul Fricker 11/13/2006 At#'q>Dn  
    nPj/C7j  
    :i24 @V~){  
    % Check and prepare the inputs: |UO&18Y7-  
    % ----------------------------- &3;yho8v@  
    if min(size(p))~=1 ?-e'gC  
        error('zernfun2:Pvector','Input P must be vector.') _Di}={1[.  
    end vs )1Rm  
    2\,vq R  
    if any(p)>35 G2x5%`   
        error('zernfun2:P36', ... \I4*|6kA  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... # Y*cLN`Y7  
               '(P = 0 to 35).']) @e/40l|X  
    end L,F )l2  
    "w\Iz]  
    % Get the order and frequency corresonding to the function number: zFtwAa=r  
    % ---------------------------------------------------------------- Wo^r#iRko  
    p = p(:); #^bkM)pc  
    n = ceil((-3+sqrt(9+8*p))/2); v$`AN4)}  
    m = 2*p - n.*(n+2); sDH|k@K  
    Z`l97$\  
    % Pass the inputs to the function ZERNFUN: "16-K%}  
    % ---------------------------------------- L|3wG Y9E  
    switch nargin 8'2lc  
        case 3 ~!,Q<?  
            z = zernfun(n,m,r,theta); O_p:`h:;M  
        case 4 BlV k?n  
            z = zernfun(n,m,r,theta,nflag); f(O`t}Ed  
        otherwise Rp2~d  
            error('zernfun2:nargin','Incorrect number of inputs.') .+H8c.  
    end _`JY A  
    !S/hH%C  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 vO1P%)  
    function z = zernfun(n,m,r,theta,nflag) lHpo/ R :  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q~4o{"3.'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N,w;s-*  
    %   and angular frequency M, evaluated at positions (R,THETA) on the icF -`m  
    %   unit circle.  N is a vector of positive integers (including 0), and XHO}(!l\  
    %   M is a vector with the same number of elements as N.  Each element /FiFtAbb  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3:a}<^DuCS  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, oy'Q#!  
    %   and THETA is a vector of angles.  R and THETA must have the same E0c5c  
    %   length.  The output Z is a matrix with one column for every (N,M) '[p~| mX  
    %   pair, and one row for every (R,THETA) pair. ??rx\*,C</  
    % >R?EJ;h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x#e(&OjN7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lC6#EU;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral d8g3hyI5\  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #kX=$Bzk  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized k 6~k  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !&C8y  
    % `^s(r>2  
    %   The Zernike functions are an orthogonal basis on the unit circle. P _t8=d  
    %   They are used in disciplines such as astronomy, optics, and J%xp1/= 2  
    %   optometry to describe functions on a circular domain. 9 il!w g?  
    % F5%-6@=  
    %   The following table lists the first 15 Zernike functions.  'TV^0D"  
    % `4Z#/g  
    %       n    m    Zernike function           Normalization -(>x@];r0  
    %       -------------------------------------------------- r{kV*^\E  
    %       0    0    1                                 1 5JI+42S \  
    %       1    1    r * cos(theta)                    2 C4Q ^WU+$j  
    %       1   -1    r * sin(theta)                    2 N7Z&_$Bx  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) LaJc;Jt$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L]#J?lE&  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *ZGQ`#1.X6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9L?EhDcDV  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'E0{zk  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @P"q`*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0(3t#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Y_%\kM?7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X8bo?0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;oC85I  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {Y'DUt5j  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) +F 6KGK[  
    %       -------------------------------------------------- 8&ZUkDGkJ  
    % s Xl7  
    %   Example 1: Q-}oe Q  
    % t2+m7*76  
    %       % Display the Zernike function Z(n=5,m=1) 4ej$)AdW3  
    %       x = -1:0.01:1; UNYU2ze'  
    %       [X,Y] = meshgrid(x,x); h&yaug,.  
    %       [theta,r] = cart2pol(X,Y); u[s+YGS  
    %       idx = r<=1; jzEimKDE's  
    %       z = nan(size(X)); \I,<G7!0  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); d2.eDEOsC  
    %       figure 5jy>)WqK  
    %       pcolor(x,x,z), shading interp h+.^8fPR   
    %       axis square, colorbar /R k5n  
    %       title('Zernike function Z_5^1(r,\theta)') IQScsqM  
    % wGISb\rr  
    %   Example 2: 3=dGz^Zdv:  
    % %)l2dK&9"j  
    %       % Display the first 10 Zernike functions :n'QN Gj  
    %       x = -1:0.01:1; Cj5M  
    %       [X,Y] = meshgrid(x,x); 15U=2j*.b  
    %       [theta,r] = cart2pol(X,Y); pPh_p @3I  
    %       idx = r<=1; ?e]4HHgU]  
    %       z = nan(size(X)); |}q0 G~l  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _BtlO(0&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; LC[, K  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; D9H|]W~   
    %       y = zernfun(n,m,r(idx),theta(idx)); gMI%z2]'-  
    %       figure('Units','normalized') ^n]tf9{I  
    %       for k = 1:10 6/@ cP/  
    %           z(idx) = y(:,k); !h&hPY1  
    %           subplot(4,7,Nplot(k)) tk}qvW.Ii  
    %           pcolor(x,x,z), shading interp 51;(vf  
    %           set(gca,'XTick',[],'YTick',[]) 5/P?@`/ eT  
    %           axis square z^}T= $&  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |nD2k,S<?  
    %       end `r>WVPS|  
    % *A,=Y/  
    %   See also ZERNPOL, ZERNFUN2. mW8CqW\Q5  
    KD Qux  
    %   Paul Fricker 11/13/2006 %Si3t2W/  
    tinN$o Xy  
    A%+~   
    % Check and prepare the inputs: \=yg@K?"AJ  
    % ----------------------------- &,$A7:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i7fpl  
        error('zernfun:NMvectors','N and M must be vectors.') U}Xc@- \ ?  
    end /~ V"v"7E  
    yuI5# VUS  
    if length(n)~=length(m) -Qn:6M>w^  
        error('zernfun:NMlength','N and M must be the same length.') JxD@y}ZYE  
    end RE"}+D  
    ZQ20IY|,  
    n = n(:); L9r 3jz  
    m = m(:); $yCj80m\  
    if any(mod(n-m,2)) jjl4A} *0  
        error('zernfun:NMmultiplesof2', ... pd7FU~-  
              'All N and M must differ by multiples of 2 (including 0).') 4,<~t>M1  
    end o~iL aN\+  
    o Y.JK  
    if any(m>n) 3tLh{S?uJ  
        error('zernfun:MlessthanN', ... t1ZZru'r  
              'Each M must be less than or equal to its corresponding N.') AQ0L9?   
    end u:,B"!  
    y/i"o-}}~|  
    if any( r>1 | r<0 ) ,#WXAA mm  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8o{ SU6pH  
    end r2sog{R  
    3`e1:`Hu  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,vN#U&RS  
        error('zernfun:RTHvector','R and THETA must be vectors.') O^:Pr8|{J  
    end &kO4^ A  
    |}mBW@ah  
    r = r(:); slQKkx \Dn  
    theta = theta(:);  g| r  
    length_r = length(r); 9d2$F9]:o  
    if length_r~=length(theta) 9MXauTKI  
        error('zernfun:RTHlength', ... s{iYf :  
              'The number of R- and THETA-values must be equal.') eq4<   
    end 'QW 0K]il  
    ekAGzu  
    % Check normalization: vNtbb]')m  
    % -------------------- %pg*oX1VK6  
    if nargin==5 && ischar(nflag) ?xG #4P<C=  
        isnorm = strcmpi(nflag,'norm'); T+.wJ W:jh  
        if ~isnorm 3IJIeG>  
            error('zernfun:normalization','Unrecognized normalization flag.') $x2<D :  
        end  "= UP&=  
    else  UNhD  
        isnorm = false; -#Wc@\;  
    end zzW^ AvR  
    9X*q^u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 75v*&-  
    % Compute the Zernike Polynomials [R Ch7FE23  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nwkhGQ  
    .#Sd|C]R7  
    % Determine the required powers of r: U 9 k}y  
    % ----------------------------------- qBwqxxTc  
    m_abs = abs(m); 0 /H1INve  
    rpowers = []; /aPq9B@  
    for j = 1:length(n) j`tUx# h  
        rpowers = [rpowers m_abs(j):2:n(j)]; d5],O48A  
    end T!*7G:\f"  
    rpowers = unique(rpowers); [%h^qJ  
    0<Pe~i_=  
    % Pre-compute the values of r raised to the required powers, j5HOdy2  
    % and compile them in a matrix: $YSOkyC?  
    % ----------------------------- y-Ol1R3:c#  
    if rpowers(1)==0 {Rz`)qqE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); TZ*ib~  
        rpowern = cat(2,rpowern{:}); C<7J5  
        rpowern = [ones(length_r,1) rpowern]; X:!%"K%}  
    else +5HOT{wj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I7Eg$J&  
        rpowern = cat(2,rpowern{:}); }0!\%7-Q  
    end @a3<fmJ  
    >H%8~ Oek  
    % Compute the values of the polynomials: nv8,O=#s  
    % -------------------------------------- }Jtaq[y\r  
    y = zeros(length_r,length(n)); odhgIl&u  
    for j = 1:length(n) 1ii.nt1 u  
        s = 0:(n(j)-m_abs(j))/2; i&KbzOY  
        pows = n(j):-2:m_abs(j); =kCpCpET  
        for k = length(s):-1:1 Q^ F-8  
            p = (1-2*mod(s(k),2))* ... 6D+k[oHZm  
                       prod(2:(n(j)-s(k)))/              ... 0- #ct1-  
                       prod(2:s(k))/                     ... v>e4a/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... u9&p/qMx2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); FUOvH 85f  
            idx = (pows(k)==rpowers); <l6CtK@  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b"Ulc}$/&  
        end LTCjw_<7  
         iN)@Cu7  
        if isnorm -`gC?yff:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {B}0LJIpL  
        end IaJ(T>" +  
    end TRiB|b]8Q#  
    % END: Compute the Zernike Polynomials 0I&rZMpF&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M6I1`Lpf  
    K~E]Fkw!;  
    % Compute the Zernike functions: !bY{T#i)k  
    % ------------------------------ uI%[1`2N-  
    idx_pos = m>0; fXqe7[  
    idx_neg = m<0; L\B+j+~  
    bH.">IV  
    z = y; `=>Bop)  
    if any(idx_pos) PNG'"7O  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #}gc6T~0  
    end msCAC*;,  
    if any(idx_neg) i a|F  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); r*$"]{m}  
    end fvx0]of  
    y^XwJX-f  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的