切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11105阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 B~_='0Gm[  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ;Ly(O'9  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  \o^M,yI  
    %d+:0.+`n  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 "h/{YjUS  
    -{>Nrx|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) eKpH|S!x U  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. I ms?^`N  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .x$+ 7$G  
    %   order N and frequency M, evaluated at R.  N is a vector of uk_?2?>-5  
    %   positive integers (including 0), and M is a vector with the qt+vmi+~  
    %   same number of elements as N.  Each element k of M must be a J%EbJ5p<QF  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) gOa'o<  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is M)6_Ta l  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix %MgQ.  
    %   with one column for every (N,M) pair, and one row for every h<i.@&  
    %   element in R. 3*64)Ol7t]  
    % YY]JjMkU  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- r ,|T@|{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is It!%/Y5  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to D0=D8P}H:  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 :*#AJV)  
    %   for all [n,m]. #b []-L!  
    % L.lmbxn  
    %   The radial Zernike polynomials are the radial portion of the ; P I=jp  
    %   Zernike functions, which are an orthogonal basis on the unit 4p&qH igG  
    %   circle.  The series representation of the radial Zernike }S3m wp<Y  
    %   polynomials is I-4csw<Qy  
    % vn~DtTp/  
    %          (n-m)/2 gSK (BP|  
    %            __ e{.2*>pH  
    %    m      \       s                                          n-2s nX<!n\J T  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r N%/Qc hu  
    %    n      s=0 l%.3hId-  
    % cnC&=6=a<  
    %   The following table shows the first 12 polynomials. /K<Xr[z~y  
    % m C_v!nL.  
    %       n    m    Zernike polynomial    Normalization 5 |{0|mP  
    %       --------------------------------------------- =El.uBz{  
    %       0    0    1                        sqrt(2) :gVz}/C.@  
    %       1    1    r                           2 Z<K[  
    %       2    0    2*r^2 - 1                sqrt(6) `4}zB#3  
    %       2    2    r^2                      sqrt(6) vLJ<_&6  
    %       3    1    3*r^3 - 2*r              sqrt(8) 8vz9o <I  
    %       3    3    r^3                      sqrt(8) 8 wQV^G  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) C78YHjy  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) `,tv&siSA  
    %       4    4    r^4                      sqrt(10) uu1-` !%  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <_8\}!  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) soA>&b !?  
    %       5    5    r^5                      sqrt(12) {>fvyF  
    %       --------------------------------------------- Wk$[;>NU3  
    % -7TT6+H)  
    %   Example: 1\{0z3P  
    % b\"JXfw  
    %       % Display three example Zernike radial polynomials yAG4W[  
    %       r = 0:0.01:1; D$;mur'  
    %       n = [3 2 5]; h|mh_T{+  
    %       m = [1 2 1]; Fl]$ql   
    %       z = zernpol(n,m,r); Yq4_ss'nB  
    %       figure M' "S:  
    %       plot(r,z) tx}{E<\>$  
    %       grid on k]`I 3>/L  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') .Gh-T{\V'  
    % $T tCVR  
    %   See also ZERNFUN, ZERNFUN2. GfD!Z3  
    ko@I]gi2  
    % A note on the algorithm. ~0 >g 4 D.  
    % ------------------------ XB UO  
    % The radial Zernike polynomials are computed using the series ;B o2$  
    % representation shown in the Help section above. For many special Hwklk9U  
    % functions, direct evaluation using the series representation can Q?L-6]pg  
    % produce poor numerical results (floating point errors), because Ui@Q&%b  
    % the summation often involves computing small differences between ;VeC(^-eh6  
    % large successive terms in the series. (In such cases, the functions |L.QIr,jCC  
    % are often evaluated using alternative methods such as recurrence *I(>[m!  
    % relations: see the Legendre functions, for example). For the Zernike @sav8 ]  
    % polynomials, however, this problem does not arise, because the {jcrTjmxe  
    % polynomials are evaluated over the finite domain r = (0,1), and UMpC2)5  
    % because the coefficients for a given polynomial are generally all YDyOhv  
    % of similar magnitude. ]MfT5#(6h  
    % eEb(TG~,Y  
    % ZERNPOL has been written using a vectorized implementation: multiple #n]js7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] NcZ6!wWdE  
    % values can be passed as inputs) for a vector of points R.  To achieve iyc}a6g  
    % this vectorization most efficiently, the algorithm in ZERNPOL -@Mr!!t?N  
    % involves pre-determining all the powers p of R that are required to fMlxtj+5   
    % compute the outputs, and then compiling the {R^p} into a single j5|PQOK  
    % matrix.  This avoids any redundant computation of the R^p, and ~zi6wu(3  
    % minimizes the sizes of certain intermediate variables. :-xp'_\L  
    % he8y  
    %   Paul Fricker 11/13/2006 fJn;|'H!  
    I{ ;s.2  
    I?lQN$A.E  
    % Check and prepare the inputs: aU<0<Dx  
    % ----------------------------- GQ[: vX`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j0>S)Q  
        error('zernpol:NMvectors','N and M must be vectors.') %g^dB M#  
    end |t1D8){!  
    J )oa:Q  
    if length(n)~=length(m) V?kJYf(<  
        error('zernpol:NMlength','N and M must be the same length.') J~V`"uo  
    end i{I'+%~R  
    XG@_Lcv*  
    n = n(:); }at8b ^  
    m = m(:); 7h<B:~(K  
    length_n = length(n); T12?'JL^r  
    U O YM   
    if any(mod(n-m,2)) B%6>2S=E  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') o )GNV  
    end oil s;*q  
    X<Rh-1$8F  
    if any(m<0) ELk$ lm&@  
        error('zernpol:Mpositive','All M must be positive.') Nj1vB;4Nx  
    end 0\qbJ  
    -A(] ",*J  
    if any(m>n) 8E H# IiP  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') cR 4xy26s  
    end _*0!6?c  
    <:-|>R".  
    if any( r>1 | r<0 ) F[ N{7C3  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') M}!7/8HUC  
    end $2A%y14  
    1`Cr1pH  
    if ~any(size(r)==1) !`hiXDk*2  
        error('zernpol:Rvector','R must be a vector.') ,}2M'DSWa  
    end b7E= u0  
    J_ ?;On5  
    r = r(:); 5u'"m<4  
    length_r = length(r); :O-Y67>&  
    J!3 X}@_N  
    if nargin==4 { xi$'r  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); sw6]Bc  
        if ~isnorm )}\jbh>RH  
            error('zernpol:normalization','Unrecognized normalization flag.') (NyS2 `  
        end 3o9`Ko0  
    else E)H: L-  
        isnorm = false; w 6+X{  
    end Lfx&DK !  
    X@:pys 8@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |y)Rlb# d  
    % Compute the Zernike Polynomials |lm   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W&q]bi@C  
    #WwQ^6ESc  
    % Determine the required powers of r: |!euty ::  
    % ----------------------------------- i64a]=  
    rpowers = []; kIWQ _2  
    for j = 1:length(n) AYeA)jk  
        rpowers = [rpowers m(j):2:n(j)]; a)^f`s^aa  
    end DlC`GZEtqh  
    rpowers = unique(rpowers); t%Vc1H2}  
    x[U/ 8#f&  
    % Pre-compute the values of r raised to the required powers, 6]^ShOX_Z  
    % and compile them in a matrix: ^8Tq0>n?  
    % ----------------------------- L,*2t JcC<  
    if rpowers(1)==0 9F845M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JaoRkl?F  
        rpowern = cat(2,rpowern{:}); !FX0Nx=oi  
        rpowern = [ones(length_r,1) rpowern]; d@#!,P5 `  
    else (zIP@ H  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); AWsO? |YT  
        rpowern = cat(2,rpowern{:}); !*HH5qh6  
    end *kY\,r&!P  
    v!27q*;8H  
    % Compute the values of the polynomials: +[:"$?J  
    % -------------------------------------- -D?T0>  
    z = zeros(length_r,length_n); J3KY?,g3O_  
    for j = 1:length_n TCYjj:/  
        s = 0:(n(j)-m(j))/2; B!0o6)u'  
        pows = n(j):-2:m(j); .0kltnB  
        for k = length(s):-1:1 Eo 5p-  
            p = (1-2*mod(s(k),2))* ... c"Kl@ [1\~  
                       prod(2:(n(j)-s(k)))/          ... /) sA{q 4  
                       prod(2:s(k))/                 ... "aIiW VQ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... A&*lb7X  
                       prod(2:((n(j)+m(j))/2-s(k))); |b7 v(Hx  
            idx = (pows(k)==rpowers); NNLZ38BV7  
            z(:,j) = z(:,j) + p*rpowern(:,idx); izy7. (.a  
        end /6jt 5N&,  
         U??P  
        if isnorm MlaViw  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); pp@Jndlg  
        end Cx2s5vJX4p  
    end c ]M!4.  
    bRT1~)  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) K>iM6Uv  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 2k;>nlVxX  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Q%)da)0:c  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive l/0"'o_0v#  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 2 Z K:S+c  
    %   and THETA is a vector of angles.  R and THETA must have the same lx _jy>$}r  
    %   length.  The output Z is a matrix with one column for every P-value, _^K)>  
    %   and one row for every (R,THETA) pair. 1><@$kVMm~  
    % lVF}G[B  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ]D_"tQ?i  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2)  2f>G   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]S;^QZ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 OXcQMVa 6  
    %   for all p. :EJ8^'0Q  
    % 29{Ep   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36  gP%S{<.?  
    %   Zernike functions (order N<=7).  In some disciplines it is I/4:SNha  
    %   traditional to label the first 36 functions using a single mode K"4m)B~@Y  
    %   number P instead of separate numbers for the order N and azimuthal ERD( qL.J  
    %   frequency M. eGcc'LBr;  
    %  h0}r#L  
    %   Example: '-C%?*ku  
    % !SRElb A;i  
    %       % Display the first 16 Zernike functions &Ui*w%  
    %       x = -1:0.01:1; wJ#fmQXKJ5  
    %       [X,Y] = meshgrid(x,x); Mh [TZfV  
    %       [theta,r] = cart2pol(X,Y); YZ>L\  
    %       idx = r<=1; (ndXz  
    %       p = 0:15; N3/G6wn  
    %       z = nan(size(X)); tg =ClZ-  
    %       y = zernfun2(p,r(idx),theta(idx)); fLkZ'~e!  
    %       figure('Units','normalized') ;Z>u]uK4+  
    %       for k = 1:length(p) r\nKJdh;ka  
    %           z(idx) = y(:,k); (=#[om( A  
    %           subplot(4,4,k) u@QP<[f  
    %           pcolor(x,x,z), shading interp -Pds7}F8  
    %           set(gca,'XTick',[],'YTick',[]) T%0vifoQ_$  
    %           axis square qyi5j0)W  
    %           title(['Z_{' num2str(p(k)) '}']) ;k1 \-  
    %       end MzUNk`T @  
    % \"r84@<  
    %   See also ZERNPOL, ZERNFUN. )}ygzKEa  
    t!}QG"ma  
    %   Paul Fricker 11/13/2006 2stBW5v3  
    8{DZew /  
    f3_-{<FZ  
    % Check and prepare the inputs: XS:W{tL!  
    % ----------------------------- 7b>FqW)%  
    if min(size(p))~=1 |#_IAN  
        error('zernfun2:Pvector','Input P must be vector.') kp F")0qr  
    end $glt%a  
    DJ&ni`  
    if any(p)>35 mEK0ID\  
        error('zernfun2:P36', ... GxH]  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... GM]" $  
               '(P = 0 to 35).']) w5/`_m!  
    end u7PtGN0r%  
    bcx,K b  
    % Get the order and frequency corresonding to the function number: </xz V<Pi  
    % ---------------------------------------------------------------- )w.+( v(  
    p = p(:); )y~FeKh  
    n = ceil((-3+sqrt(9+8*p))/2); RLy2d'DS  
    m = 2*p - n.*(n+2); "&$ [@c  
    <jt_<p +  
    % Pass the inputs to the function ZERNFUN: >WYiOXYv  
    % ---------------------------------------- q,Oj  
    switch nargin (RXOv"''=  
        case 3 ~rnbuIh  
            z = zernfun(n,m,r,theta); 8{0=tOXx{  
        case 4 5hxG\f#}?  
            z = zernfun(n,m,r,theta,nflag); MH wjJ  
        otherwise +/"Ws '5E  
            error('zernfun2:nargin','Incorrect number of inputs.') 0`WjM2So  
    end Go^a~Sf$  
    j 3/ I =  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 J\@ r ~x5G  
    function z = zernfun(n,m,r,theta,nflag) LqYP0%7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c[IT?6J4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N dnwTD\),  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Ym% $!#  
    %   unit circle.  N is a vector of positive integers (including 0), and 96(3ilAt  
    %   M is a vector with the same number of elements as N.  Each element sn!E$ls3O  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) zh.^> `   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "=0(a)01p:  
    %   and THETA is a vector of angles.  R and THETA must have the same AfAlDM'  
    %   length.  The output Z is a matrix with one column for every (N,M) .8 GX8[t  
    %   pair, and one row for every (R,THETA) pair. v3*y43  
    % OfE>8*RI4  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QLPb5{>KDS  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KD<smwXjG  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral S3?Bl'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N1',`L5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =~DQX\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L2sUh+'|  
    % *+ i1m `6Q  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3 P=I)q  
    %   They are used in disciplines such as astronomy, optics, and yv;KKQ   
    %   optometry to describe functions on a circular domain. JI3x^[(Z  
    % ?lPn{oB9"  
    %   The following table lists the first 15 Zernike functions. n%S%a >IQj  
    % ,<CFjtelO  
    %       n    m    Zernike function           Normalization /!i`K{  
    %       -------------------------------------------------- G(3wI}  
    %       0    0    1                                 1 "y9]>9:$-  
    %       1    1    r * cos(theta)                    2 69"4/n7B?  
    %       1   -1    r * sin(theta)                    2 L*8U.{NY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) i^SPNs=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) o*t4zF&n  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) c 98^~vR]]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) c%+_~iBUN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ymW? <\AD,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \[J\I  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5Ic'6AIz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) sd5)We  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W]W[oTJ5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +:_;K_h  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FKH_o  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) rJM/.;Ag  
    %       -------------------------------------------------- W%wc@.P  
    % vf@toYc[E  
    %   Example 1: "?M)2,:A  
    % Y6E0-bL@Fe  
    %       % Display the Zernike function Z(n=5,m=1) V<i_YLYmJe  
    %       x = -1:0.01:1; ]:r(U5 #  
    %       [X,Y] = meshgrid(x,x); wVmQE  
    %       [theta,r] = cart2pol(X,Y); nZX`y -AZ  
    %       idx = r<=1; s/0bXM$^  
    %       z = nan(size(X)); O>LqpZ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); re x MS  
    %       figure m7|S'{+!  
    %       pcolor(x,x,z), shading interp `uof\D<']  
    %       axis square, colorbar |Kq<}R  
    %       title('Zernike function Z_5^1(r,\theta)') ]p@q.P  
    % LL_@nvu}M  
    %   Example 2: { V$}qa{P  
    % A D%9;KQ8  
    %       % Display the first 10 Zernike functions Ms=N+e$n  
    %       x = -1:0.01:1; FvXpqlp  
    %       [X,Y] = meshgrid(x,x); tPb<*{eG  
    %       [theta,r] = cart2pol(X,Y); (XNd]G  
    %       idx = r<=1; B.4Or]  
    %       z = nan(size(X)); o&)v{q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; N5 b^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8xt8kf*k  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GQ0(lS  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^8=e8O  
    %       figure('Units','normalized') @;X#/dZe  
    %       for k = 1:10 0C4Os p  
    %           z(idx) = y(:,k); @ek8t2??x  
    %           subplot(4,7,Nplot(k)) Fu>;hx]s  
    %           pcolor(x,x,z), shading interp Rxq4Diq5k  
    %           set(gca,'XTick',[],'YTick',[]) re fAgS!=q  
    %           axis square @GWlo\rM6^  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +fN2%aC  
    %       end ge]Z5E(1  
    % -HvJ&O.V$  
    %   See also ZERNPOL, ZERNFUN2. |*g\-2j{  
    u`"Y!*[ -  
    %   Paul Fricker 11/13/2006 ao"Z%#Jb~  
    ^[VEr"X  
    0v|qP  
    % Check and prepare the inputs: ]Na;b  
    % ----------------------------- N>w+YFM  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^ f[^.k$3d  
        error('zernfun:NMvectors','N and M must be vectors.') XCT3:db  
    end r_MP[]f|0  
    63'L58O  
    if length(n)~=length(m) 8:U0M'}u>  
        error('zernfun:NMlength','N and M must be the same length.') y]g5S-G  
    end U45-R -  
    .Ms$)1  
    n = n(:); @QDUz>_y  
    m = m(:); mr,G H x  
    if any(mod(n-m,2)) #n+sbx5~7  
        error('zernfun:NMmultiplesof2', ... a1x].{  
              'All N and M must differ by multiples of 2 (including 0).') 2RdpVNx\y  
    end 1 J[z ![Tf  
    >:OP+Vc  
    if any(m>n) "?6R"Vk?:  
        error('zernfun:MlessthanN', ... . |`)k  
              'Each M must be less than or equal to its corresponding N.') AD >/#Ul  
    end p7L6~IN  
    C't%e  
    if any( r>1 | r<0 ) (`<B#D;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]d*O>Pm  
    end *fSX3Dk  
    <bJ~Ol  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }Qh%Z)  
        error('zernfun:RTHvector','R and THETA must be vectors.') (L!u[e0[#  
    end /U>8vV+C  
    UMH~Q`"  
    r = r(:); 'i;ofJ[.c  
    theta = theta(:); ie/QSte  
    length_r = length(r); +A%zFF3  
    if length_r~=length(theta) a?)g>e HN  
        error('zernfun:RTHlength', ... D"K! ELGW  
              'The number of R- and THETA-values must be equal.') JEfhr  
    end mo]>Um'F  
    :I^4ILQCD  
    % Check normalization: @^`5;JiUk  
    % -------------------- NM1TFs2Y*  
    if nargin==5 && ischar(nflag) Lve$H(GHT  
        isnorm = strcmpi(nflag,'norm'); 1(kd3 qX  
        if ~isnorm w_YY~Af  
            error('zernfun:normalization','Unrecognized normalization flag.') ZRUAw,T*  
        end { h;i x  
    else Xg;q\GS/<i  
        isnorm = false; R!WeSgKCs  
    end t5QGXj  
    O>ZJOKe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U}{\qs-zt  
    % Compute the Zernike Polynomials z=LO$,JW`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `U;V-  
    d%Ku 'Jy  
    % Determine the required powers of r: l4OPzNc'  
    % ----------------------------------- vf`]  
    m_abs = abs(m); ~'):1}KN]  
    rpowers = []; l> >BeZ  
    for j = 1:length(n) %;`3I$  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5JZZvc$au  
    end 94XRf"^  
    rpowers = unique(rpowers); }Z`@Z'  
    C,u;l~zz  
    % Pre-compute the values of r raised to the required powers, p-/}@r3Z+  
    % and compile them in a matrix: 73M;-qnU  
    % ----------------------------- _"'-f l98*  
    if rpowers(1)==0 1xwq:vFC.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +Jc-9Ko\c;  
        rpowern = cat(2,rpowern{:}); J1Y3>40  
        rpowern = [ones(length_r,1) rpowern]; qj?I*peK)  
    else a[gN+DX%L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); OL[_2m*;9p  
        rpowern = cat(2,rpowern{:}); Rh7=,=u  
    end ;<`  
    N?Ss/by8Sg  
    % Compute the values of the polynomials: 7M9s}b%?  
    % -------------------------------------- Xg97[I8/  
    y = zeros(length_r,length(n)); 5xG/>f n  
    for j = 1:length(n) }Z\+Qc<<  
        s = 0:(n(j)-m_abs(j))/2; 5TdI  
        pows = n(j):-2:m_abs(j); i)e)FhEY6  
        for k = length(s):-1:1 fGLOXbsA  
            p = (1-2*mod(s(k),2))* ... ;Y16I#?;Kh  
                       prod(2:(n(j)-s(k)))/              ... '?!2h'  
                       prod(2:s(k))/                     ... ;D<rGkry  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wmPpE_ {  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); z~a]dMs"(P  
            idx = (pows(k)==rpowers); ?r~](l   
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9$'Edi=6  
        end F[OBPPQ3  
         kC[nY  
        if isnorm K#p&XIY,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YuDNm}r[  
        end uO-R:MC  
    end ?jzadCel  
    % END: Compute the Zernike Polynomials xE.=\UzJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BF6H_g  
    Web8"8eD  
    % Compute the Zernike functions: ? 5 V-D8k  
    % ------------------------------ l@YpgyqaL  
    idx_pos = m>0; ]t3 NA*mM  
    idx_neg = m<0; 'C*NyHc  
    IN]bAd8"  
    z = y; )O%lh 8fI  
    if any(idx_pos) )+9D$m=P;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 9P)<CD0  
    end s ^{j  
    if any(idx_neg) efP2 C\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); HI eMV,.QN  
    end OiY2l;68  
    D2Go,1  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的