切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11464阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ]*b}^PQM^  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! *j9{+yO{ZE  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  "YIrqk  
    Bvbv~7g (  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 R <kh3T  
    Vs>/q:I  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 5<-_"/_  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. j~+<~2%c  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of E\U6n""]  
    %   order N and frequency M, evaluated at R.  N is a vector of l V[d`%(  
    %   positive integers (including 0), and M is a vector with the "tu BfA+f  
    %   same number of elements as N.  Each element k of M must be a ?A|8J5E V  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Z P\A  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is - i``yf?P  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix wRwTN"Yg  
    %   with one column for every (N,M) pair, and one row for every p1B~:9y9X  
    %   element in R. L,Jl# S  
    % PCl@Ff  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- PZn[Yb:  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?`+46U%  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to N 3IF j  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 RhM]OJd'  
    %   for all [n,m]. `I$'Lp#5  
    % )+]8T6~ N  
    %   The radial Zernike polynomials are the radial portion of the 2#z6=M~A  
    %   Zernike functions, which are an orthogonal basis on the unit t#s?:  
    %   circle.  The series representation of the radial Zernike q'kZ3 G   
    %   polynomials is _= RA-qZ"  
    % x\qS|q\N  
    %          (n-m)/2 nZ?BC O  
    %            __ ,#G>&  
    %    m      \       s                                          n-2s as\6XW$;Q  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r v,t&t9}/  
    %    n      s=0 !,}W|(P)  
    % A^+G w\  
    %   The following table shows the first 12 polynomials. J[ 9yQ  
    % 2mS3gk  
    %       n    m    Zernike polynomial    Normalization fuM+{1}/E  
    %       --------------------------------------------- Uf^zA/33  
    %       0    0    1                        sqrt(2) 4am`X1YV#  
    %       1    1    r                           2 dI!x Ai  
    %       2    0    2*r^2 - 1                sqrt(6) X#9}|rT56  
    %       2    2    r^2                      sqrt(6) wT?.Mte  
    %       3    1    3*r^3 - 2*r              sqrt(8) 7Mxw0 J  
    %       3    3    r^3                      sqrt(8) Skgvnmk[U  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 5Z{h!}Y  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ~YO-GX(  
    %       4    4    r^4                      sqrt(10) XCU.tWR:  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) k|W=kt$P  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) mx@F^  
    %       5    5    r^5                      sqrt(12) uSSnr#i^j  
    %       --------------------------------------------- ~@ZdO+n?  
    % X E]YKJ?|k  
    %   Example: k 8^!5n  
    % jRN*W2]V  
    %       % Display three example Zernike radial polynomials srfFJX7*  
    %       r = 0:0.01:1; '| Enc"U  
    %       n = [3 2 5];  8U!;  
    %       m = [1 2 1]; 55xv+|k  
    %       z = zernpol(n,m,r); 8%s ^>.rG  
    %       figure WN9 <  
    %       plot(r,z) u9>zC QRO  
    %       grid on iTgGf  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ZbTU1Y/'   
    % a~YFJAkg9  
    %   See also ZERNFUN, ZERNFUN2. M0`nr}g  
    fII;t-(x  
    % A note on the algorithm. d=%:rLm$  
    % ------------------------ Y(IT#x?p  
    % The radial Zernike polynomials are computed using the series WrhC q6  
    % representation shown in the Help section above. For many special 6'y+Ev$9  
    % functions, direct evaluation using the series representation can zAEq)9Y"l'  
    % produce poor numerical results (floating point errors), because %Kd&A*  
    % the summation often involves computing small differences between dzDh V{  
    % large successive terms in the series. (In such cases, the functions i:`ur  
    % are often evaluated using alternative methods such as recurrence lcgT9 m#  
    % relations: see the Legendre functions, for example). For the Zernike MdK!Y  
    % polynomials, however, this problem does not arise, because the .+3= H@8h  
    % polynomials are evaluated over the finite domain r = (0,1), and GSg|Gz""J0  
    % because the coefficients for a given polynomial are generally all Z qX  U  
    % of similar magnitude. FUzIuz 6  
    % wsp&U .z  
    % ZERNPOL has been written using a vectorized implementation: multiple Izq]nR  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] rDkAeX0  
    % values can be passed as inputs) for a vector of points R.  To achieve vlCjh! x  
    % this vectorization most efficiently, the algorithm in ZERNPOL HM%n`1ZU  
    % involves pre-determining all the powers p of R that are required to $2E n^  
    % compute the outputs, and then compiling the {R^p} into a single DX.u"&Mm  
    % matrix.  This avoids any redundant computation of the R^p, and :kSA^w8  
    % minimizes the sizes of certain intermediate variables. ]bO {001y,  
    % rP.qCl+J  
    %   Paul Fricker 11/13/2006  mfOr+   
    xP 3_  
    y XZZ)i_  
    % Check and prepare the inputs: {\22C `9t  
    % ----------------------------- }h<\qvCcU  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kzr9-$eb  
        error('zernpol:NMvectors','N and M must be vectors.') DQW^;Ls  
    end :T3I"  
    R`ajll1  
    if length(n)~=length(m) 6N(Wv0b $  
        error('zernpol:NMlength','N and M must be the same length.') RC Fb&,51  
    end KquHc-fzqr  
    kXS_:f;M  
    n = n(:); j Efrxlj  
    m = m(:); pc&/'zb  
    length_n = length(n); aNb=gjLpt  
    Ixm< wKwW#  
    if any(mod(n-m,2)) qF=D,Dlz  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 5%kt;ODS  
    end \~:Kp Kq  
    jPYed@[+  
    if any(m<0) uRG0} >]|U  
        error('zernpol:Mpositive','All M must be positive.') (:E_m|00;  
    end e:{v.C0ez  
    Vnuz! 6.  
    if any(m>n)  Py\xN  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') STu!v5XY}-  
    end ,(Fo%.j  
    a`(6hL3IT  
    if any( r>1 | r<0 ) @PuJre4!;L  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') RL |.y~  
    end )0`;leli  
    6NJ"ty9Bp  
    if ~any(size(r)==1) qC?J`   
        error('zernpol:Rvector','R must be a vector.') W3* BdpTw  
    end wl^bvHG  
    L?&+*|VxI  
    r = r(:);  CJg &  
    length_r = length(r); #T Cz$_=t  
    dgpo4'c}  
    if nargin==4 3B/ GcltfM  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); NuI9"I/  
        if ~isnorm mbv\Gn#>  
            error('zernpol:normalization','Unrecognized normalization flag.') Rct|"k_"Ys  
        end /pgfa-<  
    else X!&DKE  
        isnorm = false; 0z/tceW'F  
    end Lx,"jA/  
    hXM8`iFW5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xksQMS2#  
    % Compute the Zernike Polynomials C$ oY,A,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w_pEup\`  
    & S_gNa  
    % Determine the required powers of r: _CAW D;P  
    % ----------------------------------- [&t3xC,  
    rpowers = []; 3  8pw  
    for j = 1:length(n) 7}-.U=tnP  
        rpowers = [rpowers m(j):2:n(j)]; z %{>d#rw  
    end |\@e  
    rpowers = unique(rpowers); nH}api^0A  
    { ,.1KtrSN  
    % Pre-compute the values of r raised to the required powers, GjE/!6b  
    % and compile them in a matrix: |vz< FR6  
    % ----------------------------- LSlaz  
    if rpowers(1)==0 j(F%uUpN  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 'x<gC"0A  
        rpowern = cat(2,rpowern{:}); #9}KC 9f  
        rpowern = [ones(length_r,1) rpowern]; ]Rohf WHX  
    else xr?=gY3E;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); " jn@S-  
        rpowern = cat(2,rpowern{:}); yw"FI!M  
    end YNc%[S[u^1  
    xb0hJ~e  
    % Compute the values of the polynomials: 2/=CrK  
    % -------------------------------------- &tw.]3  
    z = zeros(length_r,length_n); B<DvH"+$  
    for j = 1:length_n /ivt8Uiw  
        s = 0:(n(j)-m(j))/2; ,=B "%=S  
        pows = n(j):-2:m(j); E:xpma1Qf  
        for k = length(s):-1:1 .3qaaXeH  
            p = (1-2*mod(s(k),2))* ... dG.s8r*?M  
                       prod(2:(n(j)-s(k)))/          ... 15VOQE5Fl`  
                       prod(2:s(k))/                 ... v3[Z ]+ ]  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 0z&3jWWY@  
                       prod(2:((n(j)+m(j))/2-s(k))); dr^pzM!N  
            idx = (pows(k)==rpowers); j/3827jw=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); o4o&}  
        end S0/@y'q3en  
          rmUT l  
        if isnorm f"xi7vJv!f  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ':!w%& \  
        end `j0T[Pi  
    end Yfk[mo  
    ,d)!&y  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) *rSMD_>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Kpz>si?CL  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $Eg|Qc-1  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive {#: js  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9bl&\Ykt.  
    %   and THETA is a vector of angles.  R and THETA must have the same '{\VO U  
    %   length.  The output Z is a matrix with one column for every P-value, #R"9(Q&  
    %   and one row for every (R,THETA) pair. %CfJ.;BDNE  
    % ,G e7 9(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Tc,Bv7:  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) cE/7B'cR  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;E(gl$c:  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 (u@[}!  
    %   for all p. vI{JBWE,S  
    % #w*1 !  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 a)MjX<y  
    %   Zernike functions (order N<=7).  In some disciplines it is skR/Wf9DH  
    %   traditional to label the first 36 functions using a single mode <>A:Oi3^  
    %   number P instead of separate numbers for the order N and azimuthal 1}tZ,w>  
    %   frequency M. :7D&=n)  
    % 6%JKY+n^  
    %   Example: f*Xonb  
    % N $M#3Y;  
    %       % Display the first 16 Zernike functions /gL(40  
    %       x = -1:0.01:1; a~Sf~ka  
    %       [X,Y] = meshgrid(x,x); "Fy34T0N  
    %       [theta,r] = cart2pol(X,Y); zPe4WE|  
    %       idx = r<=1; j,80EhZ  
    %       p = 0:15; lzBy;i  
    %       z = nan(size(X)); >{~W"  
    %       y = zernfun2(p,r(idx),theta(idx)); }$hxD9z  
    %       figure('Units','normalized') pNcNU[c  
    %       for k = 1:length(p) =8X`QUmT  
    %           z(idx) = y(:,k); 00Tm0rY  
    %           subplot(4,4,k) :J@q Xa  
    %           pcolor(x,x,z), shading interp @4B+<,i   
    %           set(gca,'XTick',[],'YTick',[]) s!~M,zsQN  
    %           axis square {lT9gJ+  
    %           title(['Z_{' num2str(p(k)) '}']) 3uwu}aw  
    %       end  LS,/EGJ  
    % >^Klq`"?g=  
    %   See also ZERNPOL, ZERNFUN. VjtI1I  
    lJi'%bOi  
    %   Paul Fricker 11/13/2006 $7a| 9s0  
    xQ>c.}J/i  
    %RL\t5 TV  
    % Check and prepare the inputs: 6i( V+  
    % ----------------------------- Ox8dnPcx  
    if min(size(p))~=1 $)mq  
        error('zernfun2:Pvector','Input P must be vector.') 5z~Ji77!  
    end p/:)Z_  
    <P'^olQ  
    if any(p)>35 K$\az%NE  
        error('zernfun2:P36', ... ;DL|%-%;$r  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 5@tpJ8E8$  
               '(P = 0 to 35).']) f~jx2?W  
    end l$z[Vh^UU<  
    ge`)sB,  
    % Get the order and frequency corresonding to the function number: GxLoNVr  
    % ---------------------------------------------------------------- 1.o-2:]E  
    p = p(:); VCiJ]$`M  
    n = ceil((-3+sqrt(9+8*p))/2); 4};!nYey!  
    m = 2*p - n.*(n+2); fPiq  
    z_*]joL  
    % Pass the inputs to the function ZERNFUN: $|C%G6!s?@  
    % ---------------------------------------- s24-X1d(9  
    switch nargin |b;}' *  
        case 3 79~,KFct  
            z = zernfun(n,m,r,theta); >a%NC'~rc  
        case 4 ;wbQTp2  
            z = zernfun(n,m,r,theta,nflag); ~=Z&l  
        otherwise 0Tp?ED_  
            error('zernfun2:nargin','Incorrect number of inputs.') O4@Ki4f3A%  
    end NS#qein~i  
    #-'=)l}i1A  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4adCMfP7.  
    function z = zernfun(n,m,r,theta,nflag) DGC -`z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ci+Pg9sS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j^1T3 +  
    %   and angular frequency M, evaluated at positions (R,THETA) on the r4gkSwy  
    %   unit circle.  N is a vector of positive integers (including 0), and `Vw9j,G  
    %   M is a vector with the same number of elements as N.  Each element 'P)xY-15  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) w(J-[t118  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +IuV8XT2(  
    %   and THETA is a vector of angles.  R and THETA must have the same 9| v  
    %   length.  The output Z is a matrix with one column for every (N,M) )"WImf:*  
    %   pair, and one row for every (R,THETA) pair. (u]ft]z,-B  
    % .Y&_k  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .Ap[C? mV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7\"-<z;kK  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `kwyF27v]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vPi\ v U{  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized lBR6O!sBP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nOkX:5  
    % +; C|5y  
    %   The Zernike functions are an orthogonal basis on the unit circle. zf$OC}|\w  
    %   They are used in disciplines such as astronomy, optics, and ;G0~f9  
    %   optometry to describe functions on a circular domain. ~`#.ZMO  
    % a,d\< mx  
    %   The following table lists the first 15 Zernike functions. 56G5JSB=\  
    % R=i$*6}a  
    %       n    m    Zernike function           Normalization MQQiQ 2  
    %       -------------------------------------------------- YM 7P!8Gc  
    %       0    0    1                                 1 Aw4Qm2Kf  
    %       1    1    r * cos(theta)                    2 z Rz#0  
    %       1   -1    r * sin(theta)                    2 dDi 1{s  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) kX'1.<[  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B6 x5E  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -njxc{b  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9=rYzA?)+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 18}L89S>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~NpnRIt  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) E-*udQ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #E^%h  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sG}}a}U1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `*KS` z?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >/6v` 8F  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) E"#<I*b  
    %       --------------------------------------------------  *X*D, VY  
    % qI<*Cze  
    %   Example 1: k,X)PQc  
    % aMm`G}9n  
    %       % Display the Zernike function Z(n=5,m=1) 1ikkm7  
    %       x = -1:0.01:1; s<E_74q1  
    %       [X,Y] = meshgrid(x,x); )09_CC!a  
    %       [theta,r] = cart2pol(X,Y); [mw#a9  
    %       idx = r<=1; 5Lu m$C c}  
    %       z = nan(size(X)); VY=~cVkzS  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p&Nw:S  
    %       figure ]K XknEaxl  
    %       pcolor(x,x,z), shading interp sFSrMI#R  
    %       axis square, colorbar @faf  
    %       title('Zernike function Z_5^1(r,\theta)') RZOk.~[v  
    % d>@{!c-  
    %   Example 2: e Yyl=YW  
    % (niZN_qv  
    %       % Display the first 10 Zernike functions }mu8fm'  
    %       x = -1:0.01:1; BAzc'x&<  
    %       [X,Y] = meshgrid(x,x); - /#3U{O  
    %       [theta,r] = cart2pol(X,Y); [<wy @W  
    %       idx = r<=1; p"q-sMYl  
    %       z = nan(size(X)); ai#EFo+#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #g~~zwx/N  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #0!C3it6c  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; +8Peh9"  
    %       y = zernfun(n,m,r(idx),theta(idx)); .IF dJ  
    %       figure('Units','normalized') lba*&j]w=  
    %       for k = 1:10  gxU(&  
    %           z(idx) = y(:,k); k^R>xV  
    %           subplot(4,7,Nplot(k)) 168U-<  
    %           pcolor(x,x,z), shading interp -6+HA9zz@C  
    %           set(gca,'XTick',[],'YTick',[]) DgClN:Hw  
    %           axis square Q{>9Dg  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Bw{@YDO{  
    %       end t:m t9}$d  
    % SB$~Btr  
    %   See also ZERNPOL, ZERNFUN2. BOt\"N  
    `q$DNOrS  
    %   Paul Fricker 11/13/2006 AuO%F YKY  
    xU@Z<d,k  
    }pTw$B  
    % Check and prepare the inputs: &hV;3";  
    % ----------------------------- _QXo4z!a8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ta9;;B?$  
        error('zernfun:NMvectors','N and M must be vectors.') 7yQ r  
    end YI%S)$  
    ;R 2(Gb  
    if length(n)~=length(m) >z[d ~  
        error('zernfun:NMlength','N and M must be the same length.') b#82G`6r  
    end :^l*_v{  
    "T~Ps$  
    n = n(:); Rw$ @%o%  
    m = m(:); qIb(uF@l"  
    if any(mod(n-m,2)) &<tji8Dj  
        error('zernfun:NMmultiplesof2', ... /Zm@.%.  
              'All N and M must differ by multiples of 2 (including 0).') ~x4Y57  
    end D+ jk0*bJ  
    0;k3  
    if any(m>n) (\WePOy&  
        error('zernfun:MlessthanN', ... . `hlw'20  
              'Each M must be less than or equal to its corresponding N.') h[XGFz  
    end NiyAAw  
    [FC%_R&&  
    if any( r>1 | r<0 ) WZFV8'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7[u&%  
    end 4~o\Os+8  
    NugJjd56x  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ` -w;=_Bm  
        error('zernfun:RTHvector','R and THETA must be vectors.') (8H^{2K~  
    end '}!dRpx  
    uQ8]j.0  
    r = r(:); 8,['q~z  
    theta = theta(:); BA-n+WCWJ  
    length_r = length(r); g|nPr)<  
    if length_r~=length(theta) ja 9y  
        error('zernfun:RTHlength', ... /iukiWeW  
              'The number of R- and THETA-values must be equal.') 2t(E+^~  
    end cDAO5^  
    W?6RUyMC$T  
    % Check normalization: $6Ty~.RP5H  
    % -------------------- nY~CAo/:  
    if nargin==5 && ischar(nflag) cFH,fj  
        isnorm = strcmpi(nflag,'norm'); [9>1e  
        if ~isnorm xNm<` Y?  
            error('zernfun:normalization','Unrecognized normalization flag.') yq&]>ox  
        end H:~LL0Md%  
    else +,PBhB  
        isnorm = false; ){wE)NN  
    end 1miTE4;?  
    ;OVJM qg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nR ,j1IUF  
    % Compute the Zernike Polynomials Ad`; O+/;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w>m/c1  
    H"n"Q:Yp  
    % Determine the required powers of r: A4SM@ry  
    % ----------------------------------- Yoaz|7LS  
    m_abs = abs(m); hd^?svID  
    rpowers = []; Sc*p7o: A  
    for j = 1:length(n) IS8ppu&E  
        rpowers = [rpowers m_abs(j):2:n(j)]; ea B-u  
    end f+F /`P%  
    rpowers = unique(rpowers); R%5\1!Fl=G  
    Bj\0RmVa1  
    % Pre-compute the values of r raised to the required powers, <k^h&1J#g  
    % and compile them in a matrix: J6f;dF^  
    % ----------------------------- #_Tceq5  
    if rpowers(1)==0 ZA:YoiaC#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b$M? _<G  
        rpowern = cat(2,rpowern{:});  /@%  
        rpowern = [ones(length_r,1) rpowern]; Ai /a y# E  
    else y]@_DL#J=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GJH6b7I  
        rpowern = cat(2,rpowern{:}); r,0> 40^  
    end *t*yozN  
     |\,e9U>  
    % Compute the values of the polynomials: \:O5,wf2  
    % -------------------------------------- U?@UIhtM|  
    y = zeros(length_r,length(n)); sLB{R#Pt  
    for j = 1:length(n) Q=>@:1=  
        s = 0:(n(j)-m_abs(j))/2; ,.F,]m=  
        pows = n(j):-2:m_abs(j); JLs7[W)O  
        for k = length(s):-1:1 FK+jfr [  
            p = (1-2*mod(s(k),2))* ... O </<  
                       prod(2:(n(j)-s(k)))/              ... YSeXCJ:Iy  
                       prod(2:s(k))/                     ... cMtkdIO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +[D=2&tmk  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); f<y""0L9  
            idx = (pows(k)==rpowers); j!jZJD  
            y(:,j) = y(:,j) + p*rpowern(:,idx); dNbN]gHC  
        end .F> c Z,  
         N?R1;|Z]  
        if isnorm R$cg\DD  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); P\w.:.2  
        end iF<VbQP=X^  
    end %tmK6cY4Y  
    % END: Compute the Zernike Polynomials PcJ,Y\"[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q.rnZU  
    >\KBXS}  
    % Compute the Zernike functions: !U*i13  
    % ------------------------------ VNA VdP  
    idx_pos = m>0; nh,N (t 9  
    idx_neg = m<0; :)%Vahu  
    ']4sx_)S  
    z = y; gK`6 NUj  
    if any(idx_pos) X}g!Lp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~Kt.%K5lgt  
    end ;|}6\=(  
    if any(idx_neg) ^Cpvh}1#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); E!jM&\Zj  
    end RqH"+/wR  
    K4A=lD+  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的