切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11321阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 !VJoM,b8  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! j.Hf/vi`z  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  s[jTP(d)8  
    G\i9:7 `  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Tk}]Gev  
    A^g(k5M*  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %{W6PrY{  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. x}4q {P5$  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of w;M#c Y  
    %   order N and frequency M, evaluated at R.  N is a vector of \bXa&Lq  
    %   positive integers (including 0), and M is a vector with the &oNAv-m^GD  
    %   same number of elements as N.  Each element k of M must be a $xsd~L &  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) VbYdZCC  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 6tZI["\   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix W9&=xs6  
    %   with one column for every (N,M) pair, and one row for every *. t^MP  
    %   element in R. ~%oR[B7=|  
    % g)-te+?6  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- PCA4k.,T  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is mpyt5#f  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to h[ ZN+M  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 4eu O1=  
    %   for all [n,m]. gGYKEq{j(  
    % JF]JOI6.e  
    %   The radial Zernike polynomials are the radial portion of the  *CMx-_  
    %   Zernike functions, which are an orthogonal basis on the unit bA 2pbjg=  
    %   circle.  The series representation of the radial Zernike i b m4fa  
    %   polynomials is 7zMr:JmV  
    % :RYTL'hes  
    %          (n-m)/2 ZSw.U:ep$s  
    %            __ g(g& TO  
    %    m      \       s                                          n-2s crCJrN=  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r vO=fP_  
    %    n      s=0 +ZYn? #IQ  
    % ]e3Ax(i)  
    %   The following table shows the first 12 polynomials. =4!mAo}  
    % KvS G;  
    %       n    m    Zernike polynomial    Normalization |Tw~@kT@  
    %       --------------------------------------------- K3C<{#r  
    %       0    0    1                        sqrt(2) x-c"%Z|  
    %       1    1    r                           2 :UdF  
    %       2    0    2*r^2 - 1                sqrt(6) ICCc./l|  
    %       2    2    r^2                      sqrt(6) ~&O%N  
    %       3    1    3*r^3 - 2*r              sqrt(8) G}*hM$F  
    %       3    3    r^3                      sqrt(8) ~[: 2I  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /reX{Y  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) CLSK'+l  
    %       4    4    r^4                      sqrt(10) Ac6=(B  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) :Tc^y%b0  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1M-pr 8:6s  
    %       5    5    r^5                      sqrt(12) 9uY'E'm*  
    %       --------------------------------------------- 9Flb|G%  
    % E^PB)D(.  
    %   Example: Z)!C'cb  
    % c> af  
    %       % Display three example Zernike radial polynomials 0x7'^Z>-oe  
    %       r = 0:0.01:1; dx]>(e@(t{  
    %       n = [3 2 5]; ^8tEach  
    %       m = [1 2 1]; R]dg_Da  
    %       z = zernpol(n,m,r); t) +310w  
    %       figure K,]=6 Rj  
    %       plot(r,z) n%-0V>  
    %       grid on =;k|*Ny  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') .hiSw  
    % J1kM\8%b\  
    %   See also ZERNFUN, ZERNFUN2. !wNO8;(  
    <VcQ{F  
    % A note on the algorithm. d _ e WcI  
    % ------------------------ iE{&*.q_}>  
    % The radial Zernike polynomials are computed using the series @;kSx":b  
    % representation shown in the Help section above. For many special BY*Q_Et  
    % functions, direct evaluation using the series representation can >p/`;Kq@  
    % produce poor numerical results (floating point errors), because 8fb'yjIC  
    % the summation often involves computing small differences between 'S~5"6r  
    % large successive terms in the series. (In such cases, the functions #g=XUZ/"  
    % are often evaluated using alternative methods such as recurrence u>$t'  
    % relations: see the Legendre functions, for example). For the Zernike JRFtsio*  
    % polynomials, however, this problem does not arise, because the =xrv~  
    % polynomials are evaluated over the finite domain r = (0,1), and d3Rw!slIq  
    % because the coefficients for a given polynomial are generally all DJir{ \F  
    % of similar magnitude. *A< 5*Db:F  
    % -8Xf0_  
    % ZERNPOL has been written using a vectorized implementation: multiple -N@|QK>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] & ~!Wym  
    % values can be passed as inputs) for a vector of points R.  To achieve _U0f=m  
    % this vectorization most efficiently, the algorithm in ZERNPOL S$3JMFA  
    % involves pre-determining all the powers p of R that are required to "j-CZ\]U|  
    % compute the outputs, and then compiling the {R^p} into a single q;U,s)Uz^  
    % matrix.  This avoids any redundant computation of the R^p, and J;%Xfx]  
    % minimizes the sizes of certain intermediate variables. 3F0 N^)@  
    % 9cgU T@a  
    %   Paul Fricker 11/13/2006 2%> FR4a  
    C7vxw-o|&p  
    Tr|JYLwF  
    % Check and prepare the inputs: R4@6G&2d>  
    % ----------------------------- AEuG v}#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q =Il|Nb>  
        error('zernpol:NMvectors','N and M must be vectors.') dd["dBIZ '  
    end [2koe.?(  
    fLVAKn  
    if length(n)~=length(m) DJ%PWlK5  
        error('zernpol:NMlength','N and M must be the same length.') {U1m.30n  
    end BD-AI  
    W`&hp6Jq  
    n = n(:); P&q7|ST%N  
    m = m(:);  9a kH  
    length_n = length(n); m3ff;,  
    .G^YqJ 4  
    if any(mod(n-m,2)) + )?J#g  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') '!$%> ||S  
    end qa6,z.mQ  
    Q &t<Y^B  
    if any(m<0) ap~^Ty<>  
        error('zernpol:Mpositive','All M must be positive.') v@Ox:wl>  
    end SB7c.H,  
    mqJ_W[y7  
    if any(m>n) aoTP [Bp  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') dTtSUA|V7"  
    end b6M  
    8V(pugJ  
    if any( r>1 | r<0 ) Jo}eeJ;k  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') x`?3C"N:<  
    end @P" p+  
    L+QLLcS~EM  
    if ~any(size(r)==1) #[a*rD%m  
        error('zernpol:Rvector','R must be a vector.') kW (Bkuc)  
    end "\=U)CJ  
    d7i]FV  
    r = r(:); EE'!|N3  
    length_r = length(r); 4X$Qu6#i  
    j=J/x:w_e  
    if nargin==4 ;>YzEo  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ,(4K4pN  
        if ~isnorm \4#W xZ  
            error('zernpol:normalization','Unrecognized normalization flag.') v}x&?fU `  
        end '{`$#@a.  
    else |I|fMF2K  
        isnorm = false; d/Q%IeEL.  
    end yWya&|D9  
    F>cv<l =6l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X76e&~  
    % Compute the Zernike Polynomials PT9*)9<L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :eg4z )  
    {GO#.P"  
    % Determine the required powers of r: ;\l,5EG  
    % ----------------------------------- _~ &iq1  
    rpowers = []; JZ#[ 2mLh  
    for j = 1:length(n) h@h!,;  
        rpowers = [rpowers m(j):2:n(j)]; IMfqiH)  
    end m_l[MG\  
    rpowers = unique(rpowers); 5D l/aHb  
    ;'Nd~:-]  
    % Pre-compute the values of r raised to the required powers, m9A!D  
    % and compile them in a matrix: ow#1="G,=  
    % ----------------------------- ; Hd7*`$  
    if rpowers(1)==0 T5:G$-qL(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5^KWCS7@  
        rpowern = cat(2,rpowern{:}); T n}s*<=V  
        rpowern = [ones(length_r,1) rpowern]; eN~=*Mn(za  
    else ,{q;;b9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); AFfAtu  
        rpowern = cat(2,rpowern{:}); 5BJmA2L  
    end 2[;_d;oB@  
    o+9j?|M  
    % Compute the values of the polynomials: #!m.!? O  
    % -------------------------------------- 'Qo*y%{@5  
    z = zeros(length_r,length_n); B~du-Z22IZ  
    for j = 1:length_n XS BA$y  
        s = 0:(n(j)-m(j))/2; ))i}7 chc  
        pows = n(j):-2:m(j); BRYHX.}h\A  
        for k = length(s):-1:1 \B 7tX  
            p = (1-2*mod(s(k),2))* ... Y)a^(!<H<  
                       prod(2:(n(j)-s(k)))/          ... Y]5 l.SV  
                       prod(2:s(k))/                 ...  v<:R#  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ...  0{ [,E.  
                       prod(2:((n(j)+m(j))/2-s(k))); lu6(C  
            idx = (pows(k)==rpowers); F*K_+ ?m  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Jdp3nzM^^@  
        end Z*2Vpnqh\  
         &(mR> mT  
        if isnorm a -moI+y  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); WSY}d Vr  
        end ;xs"j-r/  
    end Q?/o%`N  
    ,-e{(L  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) {T Ug. %u  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. \K<QmK  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated XNu^`Ha  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive QW~1%`  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, q\527^ZM  
    %   and THETA is a vector of angles.  R and THETA must have the same Mzw X>3x  
    %   length.  The output Z is a matrix with one column for every P-value, kd$D 3S ^{  
    %   and one row for every (R,THETA) pair. 9v!1V,`j"  
    % we?76t:-  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike =k:,qft2  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ^B 2 -)  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) a"g!e^  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 _M5|Y@XN-  
    %   for all p. ^Uh BH@ti  
    % k/gZ,  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Bv%GJ*>>  
    %   Zernike functions (order N<=7).  In some disciplines it is \<6CZ  
    %   traditional to label the first 36 functions using a single mode 3nnJ8zQ  
    %   number P instead of separate numbers for the order N and azimuthal Y0K[Sm>  
    %   frequency M. 'W,jMju  
    % B\:%ufd ~  
    %   Example: Jl9k``r*  
    % A;|D:;x3G  
    %       % Display the first 16 Zernike functions qXtC^n@x  
    %       x = -1:0.01:1; %(G* ,  
    %       [X,Y] = meshgrid(x,x); JNUt$h  
    %       [theta,r] = cart2pol(X,Y);  !V g`  
    %       idx = r<=1; )$bS}.  
    %       p = 0:15; 3az&<Pqb  
    %       z = nan(size(X)); hJ#xB6  
    %       y = zernfun2(p,r(idx),theta(idx)); 2WVka  
    %       figure('Units','normalized') gH7|=W  
    %       for k = 1:length(p) Q=20IQp  
    %           z(idx) = y(:,k); jc f #6   
    %           subplot(4,4,k) #!KE\OI;@5  
    %           pcolor(x,x,z), shading interp Jh[UtYb5  
    %           set(gca,'XTick',[],'YTick',[]) t9:0TBt-[  
    %           axis square t#pS{.I  
    %           title(['Z_{' num2str(p(k)) '}']) dg"3rs /?A  
    %       end Zt.|oYH$  
    % FfPar:PHj  
    %   See also ZERNPOL, ZERNFUN. 6N S201o  
    -f>%+<k=  
    %   Paul Fricker 11/13/2006 >R! jB]5  
    P8)=Kbd  
    I4q9|'-yx  
    % Check and prepare the inputs: H_X [t*2  
    % ----------------------------- "#oHYz3D  
    if min(size(p))~=1 ndz]cx  
        error('zernfun2:Pvector','Input P must be vector.') |! E)GahM  
    end u=7J /!H7^  
    #"\gLr_:m  
    if any(p)>35 ~C`^6UQr/?  
        error('zernfun2:P36', ... $LFYoovX  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... g($DdKc|g  
               '(P = 0 to 35).']) \(Y\|zC'0$  
    end GV69eG3bX#  
    ~`\?"s:  
    % Get the order and frequency corresonding to the function number: MgrLSKLT  
    % ---------------------------------------------------------------- d]6#m'U  
    p = p(:); aV|hCN~  
    n = ceil((-3+sqrt(9+8*p))/2); gPsi  
    m = 2*p - n.*(n+2); &wCg\j_c  
    |O9 O )o  
    % Pass the inputs to the function ZERNFUN: m?fy^>1  
    % ---------------------------------------- v,{yU\)  
    switch nargin &Ao+X=qw  
        case 3 sN2p76KN  
            z = zernfun(n,m,r,theta); ~h85BF5  
        case 4 5r8< 7g:>C  
            z = zernfun(n,m,r,theta,nflag); gSUcx9f]  
        otherwise \GZM&Zd  
            error('zernfun2:nargin','Incorrect number of inputs.') QpA/SmJ  
    end ( _)jkI \  
    $5< #n@  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }w<7.I  
    function z = zernfun(n,m,r,theta,nflag) RBm ;e0  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. WDPb!-VT  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L=8<B=QT$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the O6/f5  
    %   unit circle.  N is a vector of positive integers (including 0), and Vz~nT  
    %   M is a vector with the same number of elements as N.  Each element \cUNsB5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ?$^2Umt 0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, -Sx\Xi"<o=  
    %   and THETA is a vector of angles.  R and THETA must have the same 5Z\#0":e  
    %   length.  The output Z is a matrix with one column for every (N,M) & <J[Q%2  
    %   pair, and one row for every (R,THETA) pair. ReI/]#Us  
    % 5>j)kx=J9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #+5pgD2C  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;\Y& ce  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7MHKeLq  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {(wHPzq  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "zRoU$X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RUT,Y4 b  
    % !l 1fIc  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5nO% Ke=  
    %   They are used in disciplines such as astronomy, optics, and M:3h e  
    %   optometry to describe functions on a circular domain. xJZ>uTN  
    % wl$h4 {L7  
    %   The following table lists the first 15 Zernike functions. ?)X,0P'  
    % 3G~@H>j  
    %       n    m    Zernike function           Normalization u r@Z|5  
    %       -------------------------------------------------- w1"nffhO  
    %       0    0    1                                 1 oifv+oY  
    %       1    1    r * cos(theta)                    2 :^x?2% ~K.  
    %       1   -1    r * sin(theta)                    2 ~-m"   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^__Dd)(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ICkp$u^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) a@*S+3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 2e9es  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) y+6o{`0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UE ,t8j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +H #U~p$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) glXZZ=j  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .Pw\~X3!  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ),!;| bh  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 69NQ]{1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 7{qy7,Gp  
    %       -------------------------------------------------- .j>hI="b  
    % a5!Fv54  
    %   Example 1: eI:C{0p=  
    % i?e`:}T  
    %       % Display the Zernike function Z(n=5,m=1) qfz8jY]  
    %       x = -1:0.01:1; .h5[Q/*h  
    %       [X,Y] = meshgrid(x,x); 5 Ho^N1q  
    %       [theta,r] = cart2pol(X,Y); V6#K2  
    %       idx = r<=1; hk;7:G  
    %       z = nan(size(X)); {=-\|(Bx  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =xJKIu  
    %       figure OP|8Sk6 r  
    %       pcolor(x,x,z), shading interp ~Oq +IA~9  
    %       axis square, colorbar *`Yv.=cd  
    %       title('Zernike function Z_5^1(r,\theta)') g9WGkH F  
    % 1, ~SS  
    %   Example 2: ~JD nKo  
    % Bk\Gj`"7  
    %       % Display the first 10 Zernike functions mzc 4/<th  
    %       x = -1:0.01:1; [.*;6y3  
    %       [X,Y] = meshgrid(x,x); %T9  sz4V  
    %       [theta,r] = cart2pol(X,Y); {Gw.l."  
    %       idx = r<=1; S^<g_ q  
    %       z = nan(size(X)); 3LTcEd  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0#*#a13  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; UNi`P9D]3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 01. &> Duw  
    %       y = zernfun(n,m,r(idx),theta(idx)); g{9+O7q  
    %       figure('Units','normalized') b-*3 2Y%  
    %       for k = 1:10 dwv6;x  
    %           z(idx) = y(:,k); ;6{@^  
    %           subplot(4,7,Nplot(k)) u=/CRjot  
    %           pcolor(x,x,z), shading interp >ap1"n9k  
    %           set(gca,'XTick',[],'YTick',[]) )){9&5,0:  
    %           axis square }sFm9j7yR  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (q7 Ry4-  
    %       end &0BdUU+:<  
    % .eO?Z^  
    %   See also ZERNPOL, ZERNFUN2. $Qy7G{XJ[^  
    T=:]]nf?M  
    %   Paul Fricker 11/13/2006 t"YNgC ^  
    5 `RiS]IO]  
    d{de6 `  
    % Check and prepare the inputs: 2kUxD8BcN  
    % ----------------------------- d4 (/m_HMu  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D'hW|  
        error('zernfun:NMvectors','N and M must be vectors.') rzI|?QaPi  
    end >xn}N6Rj2~  
    Z0>DNmH*  
    if length(n)~=length(m) 4~OQhiJ   
        error('zernfun:NMlength','N and M must be the same length.') cFF*Z=L _  
    end $VQtwuYt  
    y{a$y}7#X  
    n = n(:); H<G4O02i_  
    m = m(:); (x$9~;<S*d  
    if any(mod(n-m,2)) iIGbHn,/  
        error('zernfun:NMmultiplesof2', ... v^7LctcVm  
              'All N and M must differ by multiples of 2 (including 0).') e~T@~(fft  
    end q0bHB_|wL  
    Y05P'Q  
    if any(m>n) J!*/a'Cv  
        error('zernfun:MlessthanN', ... =60~UM  
              'Each M must be less than or equal to its corresponding N.') ')$NfarQ.  
    end A[YpcG'9  
    X5*C+ I=2  
    if any( r>1 | r<0 ) O!Z|r ?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') WmQ 01v  
    end nD2, !71  
    m3g2b _;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $.489x+'Z  
        error('zernfun:RTHvector','R and THETA must be vectors.') j9/-"dTL  
    end m%8q Zzqk  
    8g >b  
    r = r(:); cubk]~VD  
    theta = theta(:); P~FUS%39"o  
    length_r = length(r); :9|W#d{o  
    if length_r~=length(theta) oQj=;[  
        error('zernfun:RTHlength', ... .6pOvGKb  
              'The number of R- and THETA-values must be equal.') h !(>7/Gi  
    end V=:_d,  
    NS,5/t  
    % Check normalization: [ &qA\  
    % -------------------- PZD>U)M  
    if nargin==5 && ischar(nflag) Pu>N_^  C  
        isnorm = strcmpi(nflag,'norm'); Ut)r&?  
        if ~isnorm t=#Pya  
            error('zernfun:normalization','Unrecognized normalization flag.') 5ZAb]F90  
        end ARfRsPxr  
    else AP\ofLmq  
        isnorm = false; VZIR4J[\.  
    end \BI/G  
    L{ymI) Y^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% efuK  
    % Compute the Zernike Polynomials 8S;CFyT\n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i(6J>^I  
    &(xUhX T  
    % Determine the required powers of r: vVs#^"-nW  
    % ----------------------------------- pD@zmCU  
    m_abs = abs(m); !1uzX Kb  
    rpowers = []; ~-F?Mc  
    for j = 1:length(n) 7nHTlI1 b  
        rpowers = [rpowers m_abs(j):2:n(j)]; '?GQ~Bf<>  
    end y$tX-9U  
    rpowers = unique(rpowers); p11G#.0  
    DjW$?>  
    % Pre-compute the values of r raised to the required powers, qU[O1bN  
    % and compile them in a matrix: .%0ne:5  
    % ----------------------------- <V_7|)'/A  
    if rpowers(1)==0 w9#R'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); } IlP:  
        rpowern = cat(2,rpowern{:}); Z#Lx_*p]Q  
        rpowern = [ones(length_r,1) rpowern]; 1ZKzumF  
    else {sC=J hs-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $~'Tf>e  
        rpowern = cat(2,rpowern{:}); i!MwBYk  
    end hWcTI{v  
    LN!W(n(  
    % Compute the values of the polynomials: V_L[P9  
    % -------------------------------------- uf@U:V  
    y = zeros(length_r,length(n)); =V^@%YIn  
    for j = 1:length(n) 9|!j4DS<  
        s = 0:(n(j)-m_abs(j))/2; 3^G96]E  
        pows = n(j):-2:m_abs(j); S@:B6](D$  
        for k = length(s):-1:1 iG[? ]]  
            p = (1-2*mod(s(k),2))* ... F1A1@{8bN  
                       prod(2:(n(j)-s(k)))/              ... ->yeJTsE9  
                       prod(2:s(k))/                     ... (buw^ ,NwZ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B[xR-6phW  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3DoRE2}  
            idx = (pows(k)==rpowers); 5iWe-xQ>  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &P n]  
        end IG / $!* E  
         6d{j0?mM  
        if isnorm #Mi|IwL  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); EE%s<_k`  
        end 2X @G"  
    end MtG_9-  
    % END: Compute the Zernike Polynomials V8'`nuC+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "r-l8r,  
    x9}++r  
    % Compute the Zernike functions: [b5(XIGUN}  
    % ------------------------------ bc}dYK3$q  
    idx_pos = m>0;  0:dB 9  
    idx_neg = m<0; ?*K<*wBw#  
    dokuyiN\  
    z = y; z/vDgH!s  
    if any(idx_pos) d1NE%hg3  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &]3:D  
    end 5V|tXsy:  
    if any(idx_neg) HP$K.a7H  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j+1KNH  
    end oO:LG%q  
    #S i|!  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的