切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11141阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 z7X[$T$V  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! _<x4/".}B3  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  +m Plid\  
    %hcn|-" F  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =?Y%w%2  
    .6I*=qv)NA  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) <[7 bUB  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Qrr8i:Y^  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 1A>>#M=A  
    %   order N and frequency M, evaluated at R.  N is a vector of E1p?v!   
    %   positive integers (including 0), and M is a vector with the +&t`"lRl&  
    %   same number of elements as N.  Each element k of M must be a GEJEhwO;H  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) >lZ9Y{Y4v  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is @9yY`\"ed  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix p#['CqP8  
    %   with one column for every (N,M) pair, and one row for every Bismd21F6=  
    %   element in R. zT;F4_p3G-  
    % p[kEFE,%  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Q>`|{m  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is UZsn14xSA  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 85$W\d  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 &YAw~1A  
    %   for all [n,m]. %!_okf   
    % ) `u)#@x  
    %   The radial Zernike polynomials are the radial portion of the ~N2<-~=si  
    %   Zernike functions, which are an orthogonal basis on the unit u19 d!#g  
    %   circle.  The series representation of the radial Zernike Q& p'\6~  
    %   polynomials is zqd_^  
    % PjL"7^Q&  
    %          (n-m)/2 LP_w6fjT  
    %            __ }E?{M~"<  
    %    m      \       s                                          n-2s 9?4EM^ -  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 8KQD w:  
    %    n      s=0 }jF67c->  
    % lRIS&9vA3  
    %   The following table shows the first 12 polynomials. u$A*Vsmr  
    % 1y/_D$~ZO  
    %       n    m    Zernike polynomial    Normalization Ygwej2  
    %       --------------------------------------------- x  RV@ _  
    %       0    0    1                        sqrt(2) x>Hg.%/c[  
    %       1    1    r                           2 i,77F!  
    %       2    0    2*r^2 - 1                sqrt(6) OQ,KQ\  
    %       2    2    r^2                      sqrt(6) 6xLLIby,  
    %       3    1    3*r^3 - 2*r              sqrt(8) I/F3%'O  
    %       3    3    r^3                      sqrt(8) cr;\;Ta_!W  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) RtE2%d$JT  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) &f2'cR  
    %       4    4    r^4                      sqrt(10) Re`'dde=  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) mW_B|dM"  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) _z`g@[m:t  
    %       5    5    r^5                      sqrt(12) BQ\o?={  
    %       --------------------------------------------- ups] k?4  
    % ,!m][  
    %   Example: *3,Kn}ik  
    % p3sR>ToJ  
    %       % Display three example Zernike radial polynomials _]g?3Gw7!  
    %       r = 0:0.01:1; Vh%=JL sK  
    %       n = [3 2 5]; K6C@YY(  
    %       m = [1 2 1]; \NIj&euF  
    %       z = zernpol(n,m,r); 5*Wo/%#q  
    %       figure g;|3n&  
    %       plot(r,z) 5]c'n  
    %       grid on U6 4WTS@  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') _[eAA4h  
    % p5 !B  
    %   See also ZERNFUN, ZERNFUN2. H <gC{:S  
    8&gr}r- 5  
    % A note on the algorithm. @k"Q e&BQ  
    % ------------------------ ;QRnZqSv  
    % The radial Zernike polynomials are computed using the series QX1rnVzg0  
    % representation shown in the Help section above. For many special U$-;^=;  
    % functions, direct evaluation using the series representation can F@+FXnz  
    % produce poor numerical results (floating point errors), because G;^},%<  
    % the summation often involves computing small differences between f{m,?[1C,  
    % large successive terms in the series. (In such cases, the functions j,HUk,e^&  
    % are often evaluated using alternative methods such as recurrence e:&+m`OSH  
    % relations: see the Legendre functions, for example). For the Zernike nE4?oq  
    % polynomials, however, this problem does not arise, because the -#9Hb.Q;  
    % polynomials are evaluated over the finite domain r = (0,1), and 8$c_M   
    % because the coefficients for a given polynomial are generally all zvzS$Gpe  
    % of similar magnitude. -AJ$-y  
    % @|N'V"*MT  
    % ZERNPOL has been written using a vectorized implementation: multiple dZMOgZ.!yr  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] .Mn+Bd4f  
    % values can be passed as inputs) for a vector of points R.  To achieve ^rHG#^hA  
    % this vectorization most efficiently, the algorithm in ZERNPOL ,wyfMOGLt  
    % involves pre-determining all the powers p of R that are required to 1c$<z~  
    % compute the outputs, and then compiling the {R^p} into a single \.@fAgv  
    % matrix.  This avoids any redundant computation of the R^p, and ;q8tOvQ  
    % minimizes the sizes of certain intermediate variables. G`a,(<kT;  
    % W .B>"u  
    %   Paul Fricker 11/13/2006 P|:*OM p  
    Aqc Cb[1r  
    GT -(r+u  
    % Check and prepare the inputs: Ezvm5~<  
    % ----------------------------- #_A <C+[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CY"iP,nHl  
        error('zernpol:NMvectors','N and M must be vectors.') U}6F B =  
    end 6m=FWw3y  
    dBB;dN  
    if length(n)~=length(m) efK3{   
        error('zernpol:NMlength','N and M must be the same length.') .e^AS~4pl  
    end M[;N6EJH  
    5W T^;J9V  
    n = n(:); GzC=xXON  
    m = m(:); zF%'~S0{  
    length_n = length(n); DE0gd ux8  
    ~If{`zWoC  
    if any(mod(n-m,2)) %lr<;   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') BW`)q/  
    end vP_V%5~yN  
    J?Ed^B-  
    if any(m<0) Sxj _gn  
        error('zernpol:Mpositive','All M must be positive.') `]+-z +  
    end B/iRR2h  
    1X5*V!u  
    if any(m>n) 17itC9U  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') qWQ7:*DL  
    end i8]2y  
    &_DRrp0CN  
    if any( r>1 | r<0 ) vlHE\%{  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') s+=JT+g  
    end !7m )QNV  
    /7bIE!Cn  
    if ~any(size(r)==1) [P,/J$v^~  
        error('zernpol:Rvector','R must be a vector.') kpe7\nd=>  
    end ,>DaS(  
    #4?(A[]>H  
    r = r(:); eX+FtN  
    length_r = length(r); U%Igj:%?;`  
    x vi&d1  
    if nargin==4 #^\q Fj  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 5i 6*$#OM_  
        if ~isnorm ]>K02SVT:  
            error('zernpol:normalization','Unrecognized normalization flag.') _li\b-  
        end L$ nFRl&  
    else !A.Kb74  
        isnorm = false; H%K,2/Nj  
    end Kn#3^>D  
    7c:5 Ey  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L5"|RI}  
    % Compute the Zernike Polynomials =<_ei|ME  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ";)SA,Z  
    D92#&,KD  
    % Determine the required powers of r: w|"cf{$^x  
    % ----------------------------------- A[,[j?wC  
    rpowers = []; }]qx "  
    for j = 1:length(n) 5y}kI  
        rpowers = [rpowers m(j):2:n(j)]; m &U $V  
    end 1I'ep\`"X  
    rpowers = unique(rpowers); 3$R^tY2UU  
    wbC'SOM  
    % Pre-compute the values of r raised to the required powers, q{rc[ s?  
    % and compile them in a matrix: P]Hcg|&  
    % ----------------------------- ~MvLrg"i  
    if rpowers(1)==0 ?\HXYCi0r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gFsnL*L0  
        rpowern = cat(2,rpowern{:}); Vd8BQB,Q  
        rpowern = [ones(length_r,1) rpowern]; dM A"% R  
    else lS`hJ:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [@Db7]nG  
        rpowern = cat(2,rpowern{:}); /r4QDwu  
    end ozs xqN  
    w85PRruW  
    % Compute the values of the polynomials: 4_`ss+gk  
    % -------------------------------------- ?0UzmJV?8  
    z = zeros(length_r,length_n); QE:%uT  
    for j = 1:length_n Cq7EdK;x  
        s = 0:(n(j)-m(j))/2; t/6t{*-w  
        pows = n(j):-2:m(j); ]-6=+\]   
        for k = length(s):-1:1 zuWfR&U|W  
            p = (1-2*mod(s(k),2))* ... [WOLUb  
                       prod(2:(n(j)-s(k)))/          ... E57J).x-BP  
                       prod(2:s(k))/                 ... _&/FO{F@m  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... I b)>M`J  
                       prod(2:((n(j)+m(j))/2-s(k))); ODG OWw0  
            idx = (pows(k)==rpowers); k$V.hG|6M  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Wr\rruH6  
        end #&Zb8HAj  
         P|"U  
        if isnorm e3+'m  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0G(T'Z1  
        end YpFh_Zr[  
    end P'prp=JD  
    d83K;Ryd  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) K-$gTV  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 3>[_2}l  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $<)k-Cf  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive t^h {D   
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, EJ*  
    %   and THETA is a vector of angles.  R and THETA must have the same .Dw^'p>  
    %   length.  The output Z is a matrix with one column for every P-value, bg\~"  
    %   and one row for every (R,THETA) pair. e]\{ Ia  
    % *QzoBpO<  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike _kR,R"lh  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) qDqgU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) <r*A(}Y  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 _rQM[{Bkg  
    %   for all p. iJg3`1@j  
    % tUXq!r<'dT  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^O cM)Z6h  
    %   Zernike functions (order N<=7).  In some disciplines it is `I.Uw$,P  
    %   traditional to label the first 36 functions using a single mode W/PZD (  
    %   number P instead of separate numbers for the order N and azimuthal d#@N2  
    %   frequency M. ,B>Rc#  
    % +tz^ &(  
    %   Example: dP(*IOO.  
    % h9)QQPP  
    %       % Display the first 16 Zernike functions a7#J af  
    %       x = -1:0.01:1; ~F`t[p  
    %       [X,Y] = meshgrid(x,x); rC>')`uk  
    %       [theta,r] = cart2pol(X,Y); }.<%46_Z-  
    %       idx = r<=1; 4_3 DQx9s  
    %       p = 0:15; <~BheGmmy  
    %       z = nan(size(X)); 56Q9RU(M  
    %       y = zernfun2(p,r(idx),theta(idx)); @g*=xwve=~  
    %       figure('Units','normalized') 'l$<DcBj  
    %       for k = 1:length(p) ?`Oh]2n)6  
    %           z(idx) = y(:,k); X!0s__IOc  
    %           subplot(4,4,k) A*I mruV  
    %           pcolor(x,x,z), shading interp .7-Yu1{2  
    %           set(gca,'XTick',[],'YTick',[]) EM+_c)d}  
    %           axis square ~Tv %6iaeE  
    %           title(['Z_{' num2str(p(k)) '}']) Az2HlKF"L  
    %       end %(`4wo},  
    % gIR{!'  
    %   See also ZERNPOL, ZERNFUN. lgC|3]  
    pA9:1*+;;  
    %   Paul Fricker 11/13/2006 #`6A}/@.+  
    'J^E|1P  
    ^F<[5e)M  
    % Check and prepare the inputs: 1MdVWFKXV  
    % ----------------------------- ^Bihm] Aq  
    if min(size(p))~=1 [{F8+a^  
        error('zernfun2:Pvector','Input P must be vector.') 36D-J)-Z  
    end Z']D8>d  
    wVD-}n1"  
    if any(p)>35 dB7E&"f  
        error('zernfun2:P36', ... B$b'bw.  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... FAAqdK0  
               '(P = 0 to 35).']) C[:Q?LE  
    end %J\1W"I?  
    .$>?2|gRv  
    % Get the order and frequency corresonding to the function number: rt5UT~  
    % ---------------------------------------------------------------- Lxm1.TOJ  
    p = p(:); 6=]%Y  
    n = ceil((-3+sqrt(9+8*p))/2); h3.wR]ut  
    m = 2*p - n.*(n+2); /U[Y w)  
    AF5.gk=  
    % Pass the inputs to the function ZERNFUN: 7 \aLK#  
    % ---------------------------------------- v7VJVLH,I7  
    switch nargin $l }MB7  
        case 3 uY;-x~Z  
            z = zernfun(n,m,r,theta); kStWsc$;+T  
        case 4 H".~@,-}  
            z = zernfun(n,m,r,theta,nflag); LQSno)OZ  
        otherwise >S5:zz\  
            error('zernfun2:nargin','Incorrect number of inputs.') z;UkK  
    end j'i-XIs  
    K"1xtpy  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Dq+rEt  
    function z = zernfun(n,m,r,theta,nflag) xmZ]mu,,$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. s,ZJ?[/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N elXY*nt8h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y;S+2])R2  
    %   unit circle.  N is a vector of positive integers (including 0), and >L?)f3_a  
    %   M is a vector with the same number of elements as N.  Each element \}t(g}7T  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) z7F~;IB*u  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, /kyuL]6  
    %   and THETA is a vector of angles.  R and THETA must have the same %"@KuqV  
    %   length.  The output Z is a matrix with one column for every (N,M) ciI;U/V  
    %   pair, and one row for every (R,THETA) pair. z (rQ6  
    % =kohQ d.n  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zLue j'  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )DuOo83n["  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral l"!.aIY"e  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RH^8"%\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zzy%dc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ro7\}O:I  
    % ,6,#Lc  
    %   The Zernike functions are an orthogonal basis on the unit circle. T>d-f=(9KH  
    %   They are used in disciplines such as astronomy, optics, and o <8L, u(U  
    %   optometry to describe functions on a circular domain. 1p>5ZkHb  
    % !0ySS {/  
    %   The following table lists the first 15 Zernike functions. 31k.{dnm  
    % <9YRSE [Ed  
    %       n    m    Zernike function           Normalization K~AQ) ]pJI  
    %       -------------------------------------------------- Q u2W  
    %       0    0    1                                 1 w<N [K>  
    %       1    1    r * cos(theta)                    2 #Zk6   
    %       1   -1    r * sin(theta)                    2 i;`r zsRb  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) JC}y{R8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) fZH:&EP  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) lM"@vNgK  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ?%(8RQ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \MQ|(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) zCj]mH`es'  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ZffK];D  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) t.c XrX`k  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h djv/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Hb=4k)-/]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *^ncb,1+i  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) GUE 3|  
    %       -------------------------------------------------- bNp RGhlV  
    % |/[?]`  
    %   Example 1: 2#ND(  
    % g5lf- }?  
    %       % Display the Zernike function Z(n=5,m=1) `Q^G k{9P  
    %       x = -1:0.01:1; ]wWN~G)2lV  
    %       [X,Y] = meshgrid(x,x); { :'#Ts<  
    %       [theta,r] = cart2pol(X,Y); Wcl@ H @  
    %       idx = r<=1; `] ;*k2  
    %       z = nan(size(X)); ^tIs57!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p E lF,Y  
    %       figure 6:i{_YX(.S  
    %       pcolor(x,x,z), shading interp J7/"8S_#N  
    %       axis square, colorbar Q3u P7j  
    %       title('Zernike function Z_5^1(r,\theta)') \$}^u5Y  
    % L+7L0LbNU  
    %   Example 2:  Zm!T4pL  
    % l4u_Z:<w  
    %       % Display the first 10 Zernike functions kUUeyq  
    %       x = -1:0.01:1; |E&a3TQW  
    %       [X,Y] = meshgrid(x,x); .&=nP?ZPC6  
    %       [theta,r] = cart2pol(X,Y); x6\EU=,  
    %       idx = r<=1; Y` Oz\W  
    %       z = nan(size(X)); w`&~m:R  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 8- 3]Bm!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; xCz(qR  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }&Ngh4/  
    %       y = zernfun(n,m,r(idx),theta(idx)); j[k&O)A{C  
    %       figure('Units','normalized') lt`(R*B%  
    %       for k = 1:10 gUwg\>UC  
    %           z(idx) = y(:,k); wP8Wx~Q=  
    %           subplot(4,7,Nplot(k)) !E8y!|7$  
    %           pcolor(x,x,z), shading interp v8W.84e-  
    %           set(gca,'XTick',[],'YTick',[]) pZUckQ  
    %           axis square zBtlkBPu  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?8X;F"Ba  
    %       end <V0]~3  
    % _TY9!:&}q  
    %   See also ZERNPOL, ZERNFUN2. Md mS  
    FJomUVR.  
    %   Paul Fricker 11/13/2006 4qXO8T#~J=  
    ?j9J6=2  
    #kjN!S*=  
    % Check and prepare the inputs: pyYm<dn  
    % ----------------------------- *UhYX)J  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jU.z{(s  
        error('zernfun:NMvectors','N and M must be vectors.') w$8Su:g=  
    end ?-%Q[W  
    jI %v[]V  
    if length(n)~=length(m) }7&.FV "  
        error('zernfun:NMlength','N and M must be the same length.') E j`  
    end gpDH_!K  
    PKFjM~J  
    n = n(:); c u*8,*FU  
    m = m(:); >?>@&A/  
    if any(mod(n-m,2)) EK`}?>'  
        error('zernfun:NMmultiplesof2', ... E7X6Shng  
              'All N and M must differ by multiples of 2 (including 0).') x`~YTOfYk  
    end   @a2n{  
    s)C5u;3!  
    if any(m>n) dJxdrs  
        error('zernfun:MlessthanN', ... _W]R|kYl$'  
              'Each M must be less than or equal to its corresponding N.') |`vwykhezO  
    end m1H|C3u8  
    YbAa@Sq@  
    if any( r>1 | r<0 ) _#32hAI  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2q]y(kW+  
    end 35=kZXwG+4  
    (:Di/{i&r5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `t[b0; 'OH  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~ +DPq|-O  
    end X)7_@,7  
    EMy>X  
    r = r(:); #C^)W/dP  
    theta = theta(:); *{WhUHZF  
    length_r = length(r); d8D028d  
    if length_r~=length(theta) r{\c. \  
        error('zernfun:RTHlength', ... W D8  
              'The number of R- and THETA-values must be equal.') R|&jvG=|  
    end  wO<.wPa`  
    xs#g  
    % Check normalization: |)~t ^  
    % -------------------- zI-]K,!  
    if nargin==5 && ischar(nflag) n vzk P{  
        isnorm = strcmpi(nflag,'norm'); 3Ye{a<ckK  
        if ~isnorm PU8>.9x  
            error('zernfun:normalization','Unrecognized normalization flag.') NJ]AxFG  
        end zm>^!j !  
    else 4# +i\H`  
        isnorm = false; o6bT.{8\  
    end $?P5A E  
    7:/gO~g I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |k.%e4  
    % Compute the Zernike Polynomials CcCcuxtR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tzIcR #Z  
    tuK2D,6  
    % Determine the required powers of r: f4'WT  
    % ----------------------------------- ehTrjb3k  
    m_abs = abs(m); _c!$K#Yl{  
    rpowers = []; trx y3k;  
    for j = 1:length(n) N 2XL5<  
        rpowers = [rpowers m_abs(j):2:n(j)]; J2 ZV\8t  
    end [?>\]  
    rpowers = unique(rpowers); W 6c]a/  
    Rf4}((y7Y\  
    % Pre-compute the values of r raised to the required powers, .9NYa|+0  
    % and compile them in a matrix: 0RZ[]:(  
    % ----------------------------- L;GkG! g  
    if rpowers(1)==0 *Jwx,wF}4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -UB XWl  
        rpowern = cat(2,rpowern{:}); { )g $  
        rpowern = [ones(length_r,1) rpowern]; 3xIelTf*  
    else /@w w"dmqU  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %_@T'!]  
        rpowern = cat(2,rpowern{:}); \>$3'i=mQ  
    end 'fjouO  
    I+{2DY/}  
    % Compute the values of the polynomials: 'MgYSP<  
    % -------------------------------------- vSnGPLl  
    y = zeros(length_r,length(n)); do.AesdXaq  
    for j = 1:length(n) 4`e[gvh  
        s = 0:(n(j)-m_abs(j))/2; |:w)$i& *  
        pows = n(j):-2:m_abs(j); S=<OS2W7+r  
        for k = length(s):-1:1 1*GL;W~ix*  
            p = (1-2*mod(s(k),2))* ... vf5q8/a  
                       prod(2:(n(j)-s(k)))/              ... 9?iA~r|+  
                       prod(2:s(k))/                     ... OKPNsN  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `r'$l<(4WV  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); )b?$ 4<X^  
            idx = (pows(k)==rpowers); lqTc6@:D  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9OYyR  
        end YP Qix  
         hd*GDjmRQ/  
        if isnorm ^H0#2hFa  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j1rR3)oP  
        end g=/!Ry=  
    end ,j6 R/sg  
    % END: Compute the Zernike Polynomials u69UUkG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ck< `kJ`b  
    7`j%5%q  
    % Compute the Zernike functions: kRjNz~g  
    % ------------------------------ -UM|u_  
    idx_pos = m>0; 7gcR/HNeF  
    idx_neg = m<0; c@2a)S8Y]  
    D;&\)  
    z = y; YkFAu8b>  
    if any(idx_pos) )@ofczl6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {O:{F?  
    end w4fQ~rcUIc  
    if any(idx_neg) "F =NDF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !1Hs;K  
    end OxPl0-]t  
    hF{gN3v5  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的