非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;QBS0x\f@
function z = zernfun(n,m,r,theta,nflag) |[.-pA^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }X)vktE+|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cXb*d|-|N
% and angular frequency M, evaluated at positions (R,THETA) on the 1@|+l!rYF
% unit circle. N is a vector of positive integers (including 0), and 4,)9@-|0R
% M is a vector with the same number of elements as N. Each element #LasTN9
% k of M must be a positive integer, with possible values M(k) = -N(k) ,P a*; o\
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?9~^QRLT
% and THETA is a vector of angles. R and THETA must have the same pl]|yIZ
% length. The output Z is a matrix with one column for every (N,M) yD3}USw
% pair, and one row for every (R,THETA) pair. c]^P$F8U
% K7RAmX
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4mvR]:G
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), oqJYbim
% with delta(m,0) the Kronecker delta, is chosen so that the integral E=8'!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j*.;6}\o
% and theta=0 to theta=2*pi) is unity. For the non-normalized }-oba_
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0i*V?
% +bznKy!
% The Zernike functions are an orthogonal basis on the unit circle. & P-8_I
% They are used in disciplines such as astronomy, optics, and 0-Mzb{n5
% optometry to describe functions on a circular domain. w/6X9d
% 2^o7 ^S
% The following table lists the first 15 Zernike functions. =%W:N|k
% _*o<<C\E
% n m Zernike function Normalization >5FTBe[D
% -------------------------------------------------- 'I$FOH
% 0 0 1 1 %YR&>j
k
% 1 1 r * cos(theta) 2 \W*L9azr
% 1 -1 r * sin(theta) 2 A*OqUq/H`;
% 2 -2 r^2 * cos(2*theta) sqrt(6) _WEJ,0*#'
% 2 0 (2*r^2 - 1) sqrt(3) Vm%G
q
% 2 2 r^2 * sin(2*theta) sqrt(6) =z'(FP5!0
% 3 -3 r^3 * cos(3*theta) sqrt(8) k6bct@7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 7P<VtS
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) `DYhGk
% 3 3 r^3 * sin(3*theta) sqrt(8) D;R~!3f./b
% 4 -4 r^4 * cos(4*theta) sqrt(10) z=>fBb>w7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3x;UAi+&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) KfiSQ!{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &>\;4E.O5
% 4 4 r^4 * sin(4*theta) sqrt(10) So1TH%
% -------------------------------------------------- Q a (Sb
% roQI;gq^
% Example 1: oP,*H6)i
% 1$0Kvvg[
% % Display the Zernike function Z(n=5,m=1) Rt#QW*h\|i
% x = -1:0.01:1; LSC[S:
% [X,Y] = meshgrid(x,x); "
aG6u^%
% [theta,r] = cart2pol(X,Y); }B-$}
% idx = r<=1; "-&K!Vfs
% z = nan(size(X)); u}%OC43
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w
% Hj'
% figure V}s/knd
% pcolor(x,x,z), shading interp "u6pl);G
% axis square, colorbar H,%bKl#
% title('Zernike function Z_5^1(r,\theta)') (%B{=w}8
% _pTcSp3
% Example 2: :Qge1/
% )gdeFA V
% % Display the first 10 Zernike functions A$@;Q5/2
% x = -1:0.01:1; cpOt?XYR~
% [X,Y] = meshgrid(x,x); #Pg#\v|7#>
% [theta,r] = cart2pol(X,Y); %
G=cKM
% idx = r<=1; 6\7c:
% z = nan(size(X)); FsED9+/m
% n = [0 1 1 2 2 2 3 3 3 3]; PLz{EQ[cV
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ZO%^r%~s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 1K9.3n
% y = zernfun(n,m,r(idx),theta(idx)); zQ=b|p]|W
% figure('Units','normalized') AY52j
% for k = 1:10 |?88EG@05
% z(idx) = y(:,k); ?,$:~O*w
% subplot(4,7,Nplot(k)) 2PQBUq
% pcolor(x,x,z), shading interp _x.2&S89
% set(gca,'XTick',[],'YTick',[]) <W0(!<U
% axis square {bXN[=j
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l!,tssQ
% end M+&~sX*a
% a[K&;)
% See also ZERNPOL, ZERNFUN2. ql@2<V{
LLgw1 @-D
% Paul Fricker 11/13/2006 >>{):r
Z
^&<M""Z
li%@HdA!
% Check and prepare the inputs: .s<0}<Aq>
% ----------------------------- U;bx^2<m
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QP'sS*saJ
error('zernfun:NMvectors','N and M must be vectors.') ]0R*F30]
end !}6'vq
@|:fm()
<
if length(n)~=length(m) \aJ>?
error('zernfun:NMlength','N and M must be the same length.') .!4'Y}
end 2Z{?3mAb;
`<tRfl}qs
n = n(:); h{)m}"n<R
m = m(:); zLl-{Kk
if any(mod(n-m,2)) vl/!w2
error('zernfun:NMmultiplesof2', ... 1`?o#w
'All N and M must differ by multiples of 2 (including 0).') X4o#kW
end uf?;;wg
^KbR@Ah
if any(m>n) ;>7~@
K
error('zernfun:MlessthanN', ... gOg7:VPG
'Each M must be less than or equal to its corresponding N.') N_g=,E=U%
end zYaFbNi
=Z.0-C>W
if any( r>1 | r<0 ) {mU%.5
error('zernfun:Rlessthan1','All R must be between 0 and 1.') W7!Rf7TK
end Py*WHHO
eztK`_n
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Kii@Z5R_?
error('zernfun:RTHvector','R and THETA must be vectors.') )L&y@dy)
end _gVihu
?Q_ @@)
r = r(:); yM 7{v$X0
theta = theta(:); ll5;09
length_r = length(r); B}04E^
if length_r~=length(theta) \Hb!<mrp
error('zernfun:RTHlength', ... :NLY;B`
'The number of R- and THETA-values must be equal.') #_ulmB;
end T4W20dxL7
~Y43`@3H:
% Check normalization: ddL3wQ
% -------------------- % (h6m${j
if nargin==5 && ischar(nflag) fmYx
isnorm = strcmpi(nflag,'norm'); tzN9d~JZ
if ~isnorm H^Pq[3NQ
error('zernfun:normalization','Unrecognized normalization flag.') xlZh(pf
end GipiO5)1C
else y3j$?oM
isnorm = false; 2+u+9 rW
end h HHR]e5:
9L7z<ntn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f/L8usBXq
% Compute the Zernike Polynomials K cex%.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G739Ne[gL
&DGqY5=
% Determine the required powers of r: ~
tR!hc}
% ----------------------------------- #reR<qp&]
m_abs = abs(m); yuC"V'
rpowers = []; X,3"4 SK
for j = 1:length(n) Dz hLb8k
rpowers = [rpowers m_abs(j):2:n(j)]; VP< zOk7
end t[k ['<G
rpowers = unique(rpowers); %o9mG<.T
e }O&_j-
% Pre-compute the values of r raised to the required powers, YQ+8lANC
% and compile them in a matrix: HpbwW=;V
% ----------------------------- b w1s?_P
if rpowers(1)==0 1<h@^s ;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n jd2
rpowern = cat(2,rpowern{:}); qh bagw~
rpowern = [ones(length_r,1) rpowern]; _&(Wz0
else @}jg5}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /E/6(c
rpowern = cat(2,rpowern{:});
6!)hl"
end DaH4 Br.2
W\Il@Je;
% Compute the values of the polynomials: h_X'O3r
% -------------------------------------- >WO;q
y = zeros(length_r,length(n)); tM@%EO
for j = 1:length(n) y=8KNseW|
s = 0:(n(j)-m_abs(j))/2; mr[ 1F]G
pows = n(j):-2:m_abs(j); {uwPP2YD,
for k = length(s):-1:1 H^*[TX=#[
p = (1-2*mod(s(k),2))* ... bPV}T`
prod(2:(n(j)-s(k)))/ ... s4 ,`
prod(2:s(k))/ ... ZLaht(`+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... xz:
prod(2:((n(j)+m_abs(j))/2-s(k))); TH>uL;?=
idx = (pows(k)==rpowers); ;U0w<>4L
y(:,j) = y(:,j) + p*rpowern(:,idx); M+-odLltw
end |@rf#,hTDp
y[f%0*\B
if isnorm _ y'g11 \
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <F}j;mX
end REc90v2"
end fZs}u<3Q)
% END: Compute the Zernike Polynomials oeVI 6-_S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n%2c<@p#
Ye^#]%m
% Compute the Zernike functions: 5!i\S[:
% ------------------------------ G"J
8i|~
idx_pos = m>0; =J-&usX
idx_neg = m<0; abVEi[nP
\Pfm>$Ib=
z = y; Ayw {I#"
if any(idx_pos) K_j*9@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ktY
end s7`2ky()kz
if any(idx_neg) u<\Sf" fs
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .$&vSOgd(
end EwfL.z
ckdCd
J
% EOF zernfun