切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11476阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Ybiz]1d  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! R.$Y1=U6  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  PV Q%y  
    YN3uhd[2  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 6<R U~Gh  
    Z m>69gl  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) K|&y?w  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. a ]*^uEs  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of "T'!cy  
    %   order N and frequency M, evaluated at R.  N is a vector of j8b:+io  
    %   positive integers (including 0), and M is a vector with the l40$}!!<  
    %   same number of elements as N.  Each element k of M must be a xFJ>s-g*  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) (0S"ZT  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is sr\MQ?\fB  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Ce:kMkJ  
    %   with one column for every (N,M) pair, and one row for every 9D bp`%j  
    %   element in R. m-:k]9I  
    % ;4 &~i  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ]lo O5  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is cb+!H>+  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to sTb/l!=o  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 {"<Q?yA2y  
    %   for all [n,m]. ^a]:GPc  
    % &sW/r::,  
    %   The radial Zernike polynomials are the radial portion of the $KiA~l  
    %   Zernike functions, which are an orthogonal basis on the unit biJU r^n  
    %   circle.  The series representation of the radial Zernike o8" [6Ys  
    %   polynomials is HTC7fS  
    % .C1^QY-wL  
    %          (n-m)/2 myYe~f4=HQ  
    %            __ $?GF]BT  
    %    m      \       s                                          n-2s I%ez_VG  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,Ya&M@^Z  
    %    n      s=0 3K'3Xp@A  
    % ZE :oK   
    %   The following table shows the first 12 polynomials. e'jR<ln|  
    % aRV<y8{9  
    %       n    m    Zernike polynomial    Normalization 2XE4w# [j  
    %       --------------------------------------------- \nLO.,  
    %       0    0    1                        sqrt(2) H=dj\Br`  
    %       1    1    r                           2 zIL.R#|D=  
    %       2    0    2*r^2 - 1                sqrt(6) l6O2B/2j  
    %       2    2    r^2                      sqrt(6) :{sX8U%  
    %       3    1    3*r^3 - 2*r              sqrt(8) WN0^hDc-  
    %       3    3    r^3                      sqrt(8) ZK;HW  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) k~?@~xm,R  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) >Nov9<p  
    %       4    4    r^4                      sqrt(10) (YR1ML3N  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) xGA%/dy,;  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 2@ad! h  
    %       5    5    r^5                      sqrt(12) i^n&K:6  
    %       --------------------------------------------- ]t,ppFC#  
    % 'd28YjtoX  
    %   Example: F 4k`x/ak  
    % $ }&6p6|  
    %       % Display three example Zernike radial polynomials _K9jj  
    %       r = 0:0.01:1; /g_}5s-Z  
    %       n = [3 2 5]; 6L2.88 i  
    %       m = [1 2 1]; zRz3ot,|  
    %       z = zernpol(n,m,r); Kp"o0fh<9  
    %       figure O9qEKW)a  
    %       plot(r,z) s)-=l _4T  
    %       grid on iQA f  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') e]rWR  
    % FuD$jsEw  
    %   See also ZERNFUN, ZERNFUN2. UE(%R1Py  
    6VA@;g0$  
    % A note on the algorithm. kY*D s;  
    % ------------------------ Y+D#Dv |  
    % The radial Zernike polynomials are computed using the series iR_X,&p   
    % representation shown in the Help section above. For many special GI/g@RV  
    % functions, direct evaluation using the series representation can ?&N JN/+%  
    % produce poor numerical results (floating point errors), because SL*B `P~{  
    % the summation often involves computing small differences between gHTo|2 Q{  
    % large successive terms in the series. (In such cases, the functions lc*<UZR  
    % are often evaluated using alternative methods such as recurrence #t;@x_2yD\  
    % relations: see the Legendre functions, for example). For the Zernike /N~.,vf  
    % polynomials, however, this problem does not arise, because the E")82I  
    % polynomials are evaluated over the finite domain r = (0,1), and Fd3V5h  
    % because the coefficients for a given polynomial are generally all VPf=LSxJe  
    % of similar magnitude. or0f%wAF  
    % {| Tl3  
    % ZERNPOL has been written using a vectorized implementation: multiple R7vO,kZ6Q  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] O7E0{8  
    % values can be passed as inputs) for a vector of points R.  To achieve A_CK,S*\,&  
    % this vectorization most efficiently, the algorithm in ZERNPOL ;Lz96R@}  
    % involves pre-determining all the powers p of R that are required to p0[ %+n%  
    % compute the outputs, and then compiling the {R^p} into a single 5*~G7/hT  
    % matrix.  This avoids any redundant computation of the R^p, and Lg-Sxz}P!  
    % minimizes the sizes of certain intermediate variables. oKzLt  
    % JEj.D=@[  
    %   Paul Fricker 11/13/2006 V,lz}&3L  
    0p8(Q  
    ZMoN  
    % Check and prepare the inputs: ,\ov$biL  
    % ----------------------------- *_@8v?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W* N^Gp@  
        error('zernpol:NMvectors','N and M must be vectors.')  z7>  
    end .]P@{T||Y  
    o AvX(  
    if length(n)~=length(m) ;jS~0R  
        error('zernpol:NMlength','N and M must be the same length.') ]H%y7kH8  
    end EE-jU<>|  
    R0 AVAUG  
    n = n(:); F`+}p-  
    m = m(:); d'q,:="c  
    length_n = length(n); :Fu.S1j$  
    P6@(nGgK<  
    if any(mod(n-m,2)) r,aV11{  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') .r$d 8J  
    end SCZtHEl9  
    m&cVda/  
    if any(m<0) HvLvSy1U  
        error('zernpol:Mpositive','All M must be positive.') ~}PB&`%7  
    end \= =rdW-  
    6]1cy&SG  
    if any(m>n) U TC|8  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') iW9G0Ay  
    end C,HKao\  
    Dz3=ksXZ  
    if any( r>1 | r<0 ) %9C_p]P*  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Kj.4Z+^  
    end *`7cvt5]IM  
    V]&0"HX2r!  
    if ~any(size(r)==1) -YPUrU[)  
        error('zernpol:Rvector','R must be a vector.') EPkmBru ^  
    end ef*Vs  
    o)GLh^g_I'  
    r = r(:); PS7ta?V QC  
    length_r = length(r); <xv@us7  
    Bs:INvhYW  
    if nargin==4 =^%#F~o:  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -T$%MX  
        if ~isnorm /N>f#:}  
            error('zernpol:normalization','Unrecognized normalization flag.') AU0pJB'  
        end !,WO]O v  
    else 8&t3a+8l  
        isnorm = false; `o4alK\  
    end cdY|z]B  
    P+K< /i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DPqk~KCM  
    % Compute the Zernike Polynomials RE 6d&#N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rY yB"|  
    41dB4Td5t  
    % Determine the required powers of r: }RvinF:5  
    % ----------------------------------- sbqAjm}  
    rpowers = []; N/CL?Z>c  
    for j = 1:length(n) v!~tX*q  
        rpowers = [rpowers m(j):2:n(j)]; ,sF49C D  
    end F8Y_L\q  
    rpowers = unique(rpowers); qD!qSM  
    Pk)>@F<  
    % Pre-compute the values of r raised to the required powers, p^J=*jm)x  
    % and compile them in a matrix: #s% _ L  
    % ----------------------------- Fp=O:]  
    if rpowers(1)==0 0Ez(;4]3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZMa@/\pf1  
        rpowern = cat(2,rpowern{:}); ;xqN#mqq  
        rpowern = [ones(length_r,1) rpowern]; (t[sSl  
    else ' ?tx?t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (+aU,EQ  
        rpowern = cat(2,rpowern{:}); aq,Ab~V]  
    end ;[) O{%s  
    b}<?& @  
    % Compute the values of the polynomials: !DU4iq_.  
    % -------------------------------------- skeH~-`M@  
    z = zeros(length_r,length_n); n[+$a)$8  
    for j = 1:length_n \P~ h0zg?  
        s = 0:(n(j)-m(j))/2; UmEc")3  
        pows = n(j):-2:m(j); F .h A.E  
        for k = length(s):-1:1 b';oFUU>Q  
            p = (1-2*mod(s(k),2))* ... {#U 3A_y  
                       prod(2:(n(j)-s(k)))/          ... FW=`Fm@z%%  
                       prod(2:s(k))/                 ... JiN>sEAM  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~S\y)l\wZ  
                       prod(2:((n(j)+m(j))/2-s(k))); .30eO_msK  
            idx = (pows(k)==rpowers); w#qE#g %1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); "Sb<"$ :  
        end -F7P$/9  
         lD9QS ;  
        if isnorm to,\sc  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0#y i5U  
        end , ;$SRQ.  
    end y?Cq{(  
    XU5GmGu_+  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %LjhK,'h  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. &zV; p  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated  $*$X5  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive R1?LB"aN  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, K#;EjR4H  
    %   and THETA is a vector of angles.  R and THETA must have the same |SX31T9rG  
    %   length.  The output Z is a matrix with one column for every P-value, b|Sjh;  
    %   and one row for every (R,THETA) pair. y^:N^Gt  
    % pq +~|  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike >Q#\X=a>  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) tRYi q  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) hqc)Ydg_%  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 b wqd` C  
    %   for all p. wOV}<.W  
    % A}W}H;8x  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }AG dWt@  
    %   Zernike functions (order N<=7).  In some disciplines it is R>B4v+b  
    %   traditional to label the first 36 functions using a single mode WH lvd  
    %   number P instead of separate numbers for the order N and azimuthal ]I: h4hgw  
    %   frequency M. ydMfV-  
    % f#3!Q!C^  
    %   Example: >A.m`w  
    % I* 4g ;1x  
    %       % Display the first 16 Zernike functions M32Z3<  
    %       x = -1:0.01:1; =z4kK_?F,  
    %       [X,Y] = meshgrid(x,x); <G60R^o  
    %       [theta,r] = cart2pol(X,Y); oGKk2oP  
    %       idx = r<=1; mvXIh";  
    %       p = 0:15; chszP{-@X  
    %       z = nan(size(X)); mw fl x8  
    %       y = zernfun2(p,r(idx),theta(idx)); 4fL/,j/^  
    %       figure('Units','normalized') + 0 |d2_]E  
    %       for k = 1:length(p) ay>u``$R  
    %           z(idx) = y(:,k); ZIp"X  
    %           subplot(4,4,k) h e1=  
    %           pcolor(x,x,z), shading interp &BE'~G  
    %           set(gca,'XTick',[],'YTick',[]) js F96X{  
    %           axis square ^"{txd?6  
    %           title(['Z_{' num2str(p(k)) '}']) ZU K'z  
    %       end xB|?}uS-  
    % kpx2e2C|  
    %   See also ZERNPOL, ZERNFUN. 4n}^1eQ9  
    M?.[Rr-uw  
    %   Paul Fricker 11/13/2006 9#)&  
    }gtkO&  
    fBZR  
    % Check and prepare the inputs: n]a/nv  
    % ----------------------------- hWAZP=H  
    if min(size(p))~=1 Q|Go7MQZ@k  
        error('zernfun2:Pvector','Input P must be vector.') [fIElH<  
    end Av,E|C  
    $zD}hO9  
    if any(p)>35 ~O~R,h>  
        error('zernfun2:P36', ... ES9|eo6  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :M9 E  
               '(P = 0 to 35).']) ,#hx%$f}d  
    end 5o2|QL  
    {i|$^A3  
    % Get the order and frequency corresonding to the function number: <69Uq8GI  
    % ---------------------------------------------------------------- 1zWEK]2.R  
    p = p(:); 0k 6S`e9gI  
    n = ceil((-3+sqrt(9+8*p))/2); %bZ}vJ5b  
    m = 2*p - n.*(n+2); e>Q_&6L  
    uBA84r%{QQ  
    % Pass the inputs to the function ZERNFUN: OE[N$,4I*  
    % ---------------------------------------- ? yek\X  
    switch nargin xAJuIR1Hi  
        case 3 U9%#(T$  
            z = zernfun(n,m,r,theta); D>m!R[!o  
        case 4 {/K_NSg+h  
            z = zernfun(n,m,r,theta,nflag); y)D7!s  
        otherwise ^gd[UC-"w  
            error('zernfun2:nargin','Incorrect number of inputs.') Qv/Kbw N{  
    end \zv?r :1t  
    @ !m+s~~]h  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 x/^,{RrPk  
    function z = zernfun(n,m,r,theta,nflag) u!DAeE  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. iES?}K/q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Avr2MaY{h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Z0Df~ @  
    %   unit circle.  N is a vector of positive integers (including 0), and <P#]U"?A  
    %   M is a vector with the same number of elements as N.  Each element MO-)j_o-Z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) '/ v@q]!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, a^QyYX}\qR  
    %   and THETA is a vector of angles.  R and THETA must have the same ?R8wmE[w  
    %   length.  The output Z is a matrix with one column for every (N,M) J-)9>~[E<  
    %   pair, and one row for every (R,THETA) pair. TaTs-]4  
    % 0VBbSn}Z<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +ht{ARX2(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uSU[Y,'x  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "*N=aHsj  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3 F ke#t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ouf91<n  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /`vn/X^?^  
    % 60@]^g;$I  
    %   The Zernike functions are an orthogonal basis on the unit circle. zf}X%tp  
    %   They are used in disciplines such as astronomy, optics, and +`s%-}-r  
    %   optometry to describe functions on a circular domain. lx"#S '^~  
    % ZQ'bB5I  
    %   The following table lists the first 15 Zernike functions. mH\eJ  
    % >4@/x{{  
    %       n    m    Zernike function           Normalization 4g}'/  
    %       -------------------------------------------------- S=.7$PY  
    %       0    0    1                                 1 Uth H  
    %       1    1    r * cos(theta)                    2 bUBQ  
    %       1   -1    r * sin(theta)                    2 8dY Pn+`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5}" @$.{i  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /swNhDQ"o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) OPP^n-iPr  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8,m3]Lg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `R+I(Cb  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @.SuHd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Kfl#78$d  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _)6N&u8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D<:J6W7]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) q|_t=YM@  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fo@cz"%  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 32KL~32Y  
    %       -------------------------------------------------- T_=iJ: Q  
    % S B# Y^!  
    %   Example 1: Y&JK*d  
    % do>,ELS+m  
    %       % Display the Zernike function Z(n=5,m=1) p ! _\a  
    %       x = -1:0.01:1; #y:,owo3I  
    %       [X,Y] = meshgrid(x,x); @fz!]/  
    %       [theta,r] = cart2pol(X,Y); EBl?oN7E  
    %       idx = r<=1; %zCV>D  
    %       z = nan(size(X)); r(Vz(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~vMdIZ.h  
    %       figure ,9@JBV%_  
    %       pcolor(x,x,z), shading interp yv2N5IQ>{V  
    %       axis square, colorbar r3_O?b  
    %       title('Zernike function Z_5^1(r,\theta)') n^P~]1i   
    % |1[3RnG S  
    %   Example 2: ]/klKqz  
    % eKw!%97>  
    %       % Display the first 10 Zernike functions ]:X# w0UR  
    %       x = -1:0.01:1; N(W;\>P  
    %       [X,Y] = meshgrid(x,x); Gi=s|vt  
    %       [theta,r] = cart2pol(X,Y); f+K vym.  
    %       idx = r<=1; &?)? w-$p  
    %       z = nan(size(X)); fKYR DGn  
    %       n = [0  1  1  2  2  2  3  3  3  3]; `z)q/;}fC  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;p_@%*JAx  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p6Ie?Gg  
    %       y = zernfun(n,m,r(idx),theta(idx)); 0!fT:Ra  
    %       figure('Units','normalized') 6 J B"qd  
    %       for k = 1:10 R5KOai!  
    %           z(idx) = y(:,k); yJRqX]MLA  
    %           subplot(4,7,Nplot(k)) 6";ew:Ih^  
    %           pcolor(x,x,z), shading interp *\!>22*  
    %           set(gca,'XTick',[],'YTick',[]) `EJ.L6j$'  
    %           axis square U-mZO7y!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7kDqgod^A  
    %       end }\$CU N  
    % (.Th?p%>7  
    %   See also ZERNPOL, ZERNFUN2. r|,_qNrw  
    _< LJQ  
    %   Paul Fricker 11/13/2006 `k]2*$%  
    RNMd,?dj  
    YQ7\99tj  
    % Check and prepare the inputs: Ua2waA  
    % ----------------------------- ]o<&Q52|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q dPqcw4+X  
        error('zernfun:NMvectors','N and M must be vectors.') A6Vb'Gqv{  
    end qe3d,!  
    dWK"Tkf\  
    if length(n)~=length(m) L#6!W  
        error('zernfun:NMlength','N and M must be the same length.') # X`t~Y'  
    end LyuA("xB#  
    N7 ox#=g  
    n = n(:); b2 5.CGF  
    m = m(:); RoLN#  
    if any(mod(n-m,2)) h; "pAE  
        error('zernfun:NMmultiplesof2', ... dMlJ2\ ]u  
              'All N and M must differ by multiples of 2 (including 0).') + \jn$>E  
    end \~BYY|UB;W  
    7RZ HU+  
    if any(m>n) Q*54!^l+_r  
        error('zernfun:MlessthanN', ... `37%|e3bQ  
              'Each M must be less than or equal to its corresponding N.') T jrz_o)  
    end "969F(S$  
    N eC]MW  
    if any( r>1 | r<0 ) 8c3/n   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -SlAt$IJ  
    end zb,YYE1  
    {TVQ]G%'b  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !~_6S*~  
        error('zernfun:RTHvector','R and THETA must be vectors.') 'A{B[  
    end wvcj*{7[  
    ZuNUha&a  
    r = r(:); *bl|[(pP  
    theta = theta(:); ,~G:>q$ad  
    length_r = length(r); K +l-A>Ic  
    if length_r~=length(theta) "UUoT  
        error('zernfun:RTHlength', ... ,:6.Gi)|  
              'The number of R- and THETA-values must be equal.') @ *&`1  
    end #9rCF 3P  
    AK//]   
    % Check normalization: oEJxey]B7  
    % -------------------- ufB9\yl{~  
    if nargin==5 && ischar(nflag) %zYTTPLZ  
        isnorm = strcmpi(nflag,'norm'); 9ePR6WS4  
        if ~isnorm 2= )V"lR\  
            error('zernfun:normalization','Unrecognized normalization flag.') qS/ 'Kyp_  
        end ~sVbg$]\G  
    else <~hx ~"c  
        isnorm = false; 2v{42]XYf  
    end Ch'e'EmI  
    l(Y\@@t1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lGXr-K?+Y  
    % Compute the Zernike Polynomials V(=3K"j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d;g]OeF  
    ^%t{:\  
    % Determine the required powers of r: 6 g)X&pZ  
    % ----------------------------------- *t bgIW+h  
    m_abs = abs(m); xgJyG.?  
    rpowers = []; ,veo/k<"r8  
    for j = 1:length(n) `,s0^?_  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4Ix~Feuph  
    end `{&l _  
    rpowers = unique(rpowers); ,!bcm  
    )VeeAu)p  
    % Pre-compute the values of r raised to the required powers, *qKf!&  
    % and compile them in a matrix: %:.IG.`d  
    % ----------------------------- nnuJY$O;M  
    if rpowers(1)==0 Q(BM0n)f  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); v%)=!T ,  
        rpowern = cat(2,rpowern{:}); RY9Ur  
        rpowern = [ones(length_r,1) rpowern]; 6)1xjE#  
    else P,bis7X.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?jn";:  
        rpowern = cat(2,rpowern{:}); ]//D d/L6  
    end =`t%p1   
    i)[~]D.EH8  
    % Compute the values of the polynomials: Z9UNp[  0  
    % -------------------------------------- n:[LsbTk  
    y = zeros(length_r,length(n)); kYu"`_n}  
    for j = 1:length(n) I{7Hz{  
        s = 0:(n(j)-m_abs(j))/2; t Z]b0T(e  
        pows = n(j):-2:m_abs(j); 6D29s]h2  
        for k = length(s):-1:1 H1e^/JD)  
            p = (1-2*mod(s(k),2))* ... `_E@cZ4  
                       prod(2:(n(j)-s(k)))/              ... $`txU5#vs  
                       prod(2:s(k))/                     ... x<>In"QV  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (@cZmU,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ePY69!pO5e  
            idx = (pows(k)==rpowers); }O8#4-E_Ji  
            y(:,j) = y(:,j) + p*rpowern(:,idx); r~sQdf  
        end N  Bpf  
         B'KZ >jO  
        if isnorm e2Df@8>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9 [wR/8Xm  
        end J0yo@O  
    end +\~Mx>Cn  
    % END: Compute the Zernike Polynomials *h2)$^P%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h9j/mUwV  
    |^t8ct?x~  
    % Compute the Zernike functions: Q);^gV  
    % ------------------------------ "%)^:('Ki  
    idx_pos = m>0; Gu\lV c  
    idx_neg = m<0; X-J<gI(Y  
    QiQO>r  
    z = y; b;$j h   
    if any(idx_pos) qb$f,E[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); QVQ?a&HYS  
    end v`9n'+h-c6  
    if any(idx_neg) `+EjmY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); < c[dpK5c  
    end "~aCW~  
    l;'c6o0e  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的