切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10748阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 3^/w`(-{@  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! &J 3QO%  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  PSJj$bt;<+  
    Ll KO(Q{"  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Gi)Vr\Q.  
    KtaoOe  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) s O#cJAfuu  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ~2>Adp  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of J3y _JoS  
    %   order N and frequency M, evaluated at R.  N is a vector of jvQ^Vh!mC  
    %   positive integers (including 0), and M is a vector with the _Yo)m |RaB  
    %   same number of elements as N.  Each element k of M must be a +7%?p"gEY\  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) bYLYJ`hH<R  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is gE#|eiu  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix oQ,n?on  
    %   with one column for every (N,M) pair, and one row for every B{\Y~>]Pj  
    %   element in R. /{l_tiE7  
    % >h%>s4W  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- z$1|D{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #jBmWaP.  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to <U$YJtEK  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 +F NGRL  
    %   for all [n,m]. \j!/l f)  
    % ^GV'Y  
    %   The radial Zernike polynomials are the radial portion of the ,JI]Eij^  
    %   Zernike functions, which are an orthogonal basis on the unit \ C:Gx4K  
    %   circle.  The series representation of the radial Zernike 5$+7Q$Gw  
    %   polynomials is {3KY:%6qj  
    % :g$"Xc8Zn  
    %          (n-m)/2 ,]\cf  
    %            __ =xkaF)AW&v  
    %    m      \       s                                          n-2s o.r D  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ue3 ].:  
    %    n      s=0 T x Mh_  
    % r]LP=K1  
    %   The following table shows the first 12 polynomials. nZ=[6?  
    % 28v^j*=* \  
    %       n    m    Zernike polynomial    Normalization "3jTU  
    %       --------------------------------------------- kj2qX9 Ms  
    %       0    0    1                        sqrt(2) "{@[06|1  
    %       1    1    r                           2 rbOJ;CK  
    %       2    0    2*r^2 - 1                sqrt(6) 4w|t|?  
    %       2    2    r^2                      sqrt(6) W2h*t"5W  
    %       3    1    3*r^3 - 2*r              sqrt(8) fahQ^#&d`  
    %       3    3    r^3                      sqrt(8) zATOFV  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) |}^u<S8X  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) YCP D+  
    %       4    4    r^4                      sqrt(10) F ]X<q uuL  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [3=Y 9P:  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Ma\%uEgTD  
    %       5    5    r^5                      sqrt(12) zdem}kBIe  
    %       --------------------------------------------- d. d J^M  
    % EyR/   
    %   Example: >lmqPuf  
    % Vc(kw7  
    %       % Display three example Zernike radial polynomials 0X99D2c  
    %       r = 0:0.01:1; [pms>TQ2  
    %       n = [3 2 5]; u0) O Fz  
    %       m = [1 2 1];  ]LsT  
    %       z = zernpol(n,m,r); /)v+|%U  
    %       figure a(IE8:yU`  
    %       plot(r,z) X)(K|[  
    %       grid on y)L X?d  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') #/I+[|=[O  
    % D4"<suU|.  
    %   See also ZERNFUN, ZERNFUN2. pno}`Cer  
    hc$m1lLn  
    % A note on the algorithm. VQf^yq  
    % ------------------------ p".wqg*W  
    % The radial Zernike polynomials are computed using the series vC&0UNe$  
    % representation shown in the Help section above. For many special 8T.bT6  
    % functions, direct evaluation using the series representation can C&@'oLr  
    % produce poor numerical results (floating point errors), because `Gxb98h/r  
    % the summation often involves computing small differences between Jo qhmn$j  
    % large successive terms in the series. (In such cases, the functions IW@xT@  
    % are often evaluated using alternative methods such as recurrence C3.]dsv:  
    % relations: see the Legendre functions, for example). For the Zernike XRM/d5  
    % polynomials, however, this problem does not arise, because the nQ'NS  
    % polynomials are evaluated over the finite domain r = (0,1), and <% mD#S  
    % because the coefficients for a given polynomial are generally all [< 9%IGH  
    % of similar magnitude. xc'uC bH  
    % <Ed;tq  
    % ZERNPOL has been written using a vectorized implementation: multiple r9-ayp#pC  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 7H6Ge-u  
    % values can be passed as inputs) for a vector of points R.  To achieve j+fF$6po#t  
    % this vectorization most efficiently, the algorithm in ZERNPOL r 25VcY  
    % involves pre-determining all the powers p of R that are required to lO9Ixhf~iu  
    % compute the outputs, and then compiling the {R^p} into a single %d-WQwJ  
    % matrix.  This avoids any redundant computation of the R^p, and e|SN b*_  
    % minimizes the sizes of certain intermediate variables. 4TQmEM,  
    % vnf2Z,f%  
    %   Paul Fricker 11/13/2006 O)R}|  
    TqS s*as5  
    IuFr:3(  
    % Check and prepare the inputs: RI<s mt.Ng  
    % ----------------------------- 1foG*   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7C Sn79E  
        error('zernpol:NMvectors','N and M must be vectors.') C_ ;nlG6  
    end Y1AZ%{^0a  
    hb0)<^xu  
    if length(n)~=length(m) *E>R1bJ8  
        error('zernpol:NMlength','N and M must be the same length.') y] 9/Xr/  
    end P1L+Vnfu  
    E>#@ H  
    n = n(:); IEM{?  
    m = m(:); 8t< X  
    length_n = length(n); M4;M.zxJv  
    (,mV6U%  
    if any(mod(n-m,2)) qb=%W  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') @b2?BSdUp  
    end SH"<f_  
    ?|NsaW  
    if any(m<0) [# X} (  
        error('zernpol:Mpositive','All M must be positive.') "`S?q G  
    end eMEKR5*-O  
    qxyY2&  
    if any(m>n) 3DCR n :  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') GaJE(N  
    end Pec40g:#F  
    W! |_ hL  
    if any( r>1 | r<0 ) pP# _B  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') M/xm6  
    end B4zuWCE@  
    \Lbwfd=  
    if ~any(size(r)==1) rHybP6C<  
        error('zernpol:Rvector','R must be a vector.') gDw(_KC  
    end ,9F3~Ryt(  
    V3|" v4  
    r = r(:); DqI"B  
    length_r = length(r); mICx9oz]  
    G^;]]Ji"  
    if nargin==4 &{#6Z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Jp8,s%  
        if ~isnorm cN2Pl%7  
            error('zernpol:normalization','Unrecognized normalization flag.') GVf[H2%H  
        end VgY6M_V  
    else (Xz q(QV  
        isnorm = false; 9)[)0 7  
    end t"~X6o|R  
    %k"hzjXAw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KB~`3Wj|Z  
    % Compute the Zernike Polynomials < uV@/fn<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S@ y! 0,  
    wpNb/U  
    % Determine the required powers of r: [H$kVQC  
    % ----------------------------------- "*c&[ALw  
    rpowers = []; 7bVKH[  
    for j = 1:length(n) 1} _<qk9  
        rpowers = [rpowers m(j):2:n(j)]; y+7+({w<  
    end ]|IeE!6  
    rpowers = unique(rpowers);  "}[ ]R  
    /L]@k`.q@  
    % Pre-compute the values of r raised to the required powers, P $r!u%W  
    % and compile them in a matrix: g<w1d{Td  
    % ----------------------------- KZ=5"a  
    if rpowers(1)==0 W=#jtU`:5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r' |ei,  
        rpowern = cat(2,rpowern{:}); u2':~h?l  
        rpowern = [ones(length_r,1) rpowern]; C(KV5c  
    else *Hv d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A-^B ?E  
        rpowern = cat(2,rpowern{:}); uc=u4@.>  
    end z,!A4ws  
    ePSD#kY5  
    % Compute the values of the polynomials: dry%aT  
    % -------------------------------------- R&'Mze fb  
    z = zeros(length_r,length_n); h7xgLe@  
    for j = 1:length_n qr*e9Uk^  
        s = 0:(n(j)-m(j))/2; k<o<!   
        pows = n(j):-2:m(j); K)\D,5X^  
        for k = length(s):-1:1 daf-B-  
            p = (1-2*mod(s(k),2))* ... `"xzC $  
                       prod(2:(n(j)-s(k)))/          ... AO7X-,  
                       prod(2:s(k))/                 ... zR=g<e1xe  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... IpKI6[2{`f  
                       prod(2:((n(j)+m(j))/2-s(k))); e&m TaCLG  
            idx = (pows(k)==rpowers); \pI ,6$'  
            z(:,j) = z(:,j) + p*rpowern(:,idx); g,Rh Ut9  
        end An BM*5G  
         (5RZLRn  
        if isnorm lZ,$lZg9Z  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); h`tf!MD]  
        end Z#GR)jb+  
    end R^K:hKQ  
    TP`"x}ACa?  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ]/mRMm9"3h  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {Q0DHNP(G  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated S~y.>X3"P  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 8PGuZw<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, $bk_%R}s  
    %   and THETA is a vector of angles.  R and THETA must have the same uVw|jj  
    %   length.  The output Z is a matrix with one column for every P-value, b]WvKdq  
    %   and one row for every (R,THETA) pair. Wk/Il^YG  
    % tqU8>d0^  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike =?hbi]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) tkdyR1-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) YgkQF0+  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 G;AV~1i:~  
    %   for all p. >>>MTV f  
    % / DS T|2  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 D._7)$d  
    %   Zernike functions (order N<=7).  In some disciplines it is SsIN@  
    %   traditional to label the first 36 functions using a single mode O$Dj_R#  
    %   number P instead of separate numbers for the order N and azimuthal qh wl  
    %   frequency M. j<vU[J+gx~  
    % dQAo~] B  
    %   Example: &([yI>%  
    % d 4;   
    %       % Display the first 16 Zernike functions bB.Yq3KI  
    %       x = -1:0.01:1; p?+;[!:  
    %       [X,Y] = meshgrid(x,x); < 'r<MA<  
    %       [theta,r] = cart2pol(X,Y); 5S #6{Y =  
    %       idx = r<=1; ">R`S<W  
    %       p = 0:15; CSE!Abg  
    %       z = nan(size(X)); !p 70g0+  
    %       y = zernfun2(p,r(idx),theta(idx)); MPJ0>Ly  
    %       figure('Units','normalized') S%w67sGl4n  
    %       for k = 1:length(p) 9OM&&Ue<E  
    %           z(idx) = y(:,k); I]N!cEr;@-  
    %           subplot(4,4,k) x1QL!MB  
    %           pcolor(x,x,z), shading interp i th!,jY*i  
    %           set(gca,'XTick',[],'YTick',[]) %VgK::)r  
    %           axis square n,|YJ,v[  
    %           title(['Z_{' num2str(p(k)) '}']) FHZQyO<|  
    %       end $/P\@|MqYQ  
    % A:,V)  
    %   See also ZERNPOL, ZERNFUN. #r80FVwiD  
    4_vJ_H-mO,  
    %   Paul Fricker 11/13/2006 El3Ayd3  
    M_F4I$V4  
    9h^TOZK)  
    % Check and prepare the inputs: f.U.(  
    % ----------------------------- l65Qk2<YC  
    if min(size(p))~=1 `qr.@0whP  
        error('zernfun2:Pvector','Input P must be vector.') wRE2rsXoU  
    end d>1#|  
    yI$Mq R  
    if any(p)>35 8BM[c;-{g`  
        error('zernfun2:P36', ... } 71 9_DF  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... vXc gl  
               '(P = 0 to 35).']) m\J" P'=  
    end _." X# }W  
    Z+! 96LR  
    % Get the order and frequency corresonding to the function number: T04&Tl'CT  
    % ---------------------------------------------------------------- FGRG?d4?h  
    p = p(:); Yk#$-"c/a  
    n = ceil((-3+sqrt(9+8*p))/2); <p8>"~ R  
    m = 2*p - n.*(n+2); hHqsI`7c  
    SCD;(I~4  
    % Pass the inputs to the function ZERNFUN: C= PV-Ul+  
    % ---------------------------------------- L"V~M F  
    switch nargin ;F>I+l_X  
        case 3 4S,/Z{ J.  
            z = zernfun(n,m,r,theta); ;JR_z'<  
        case 4 [ r=U-  
            z = zernfun(n,m,r,theta,nflag); *XqS~G  
        otherwise <x1H:8A  
            error('zernfun2:nargin','Incorrect number of inputs.') m}fY5r<<;/  
    end ^VlPnx8y=  
    B7BikxUa  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ~m@w p  
    function z = zernfun(n,m,r,theta,nflag) >dqeGM7Np>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6dX l ny1H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N AZjj71UE  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1'g{tP"d  
    %   unit circle.  N is a vector of positive integers (including 0), and de?lO ;8  
    %   M is a vector with the same number of elements as N.  Each element HA%r:Px  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) lIF*$#`oh*  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 'l3K*lck  
    %   and THETA is a vector of angles.  R and THETA must have the same i3\6*$Ug  
    %   length.  The output Z is a matrix with one column for every (N,M) I`}<1~ue  
    %   pair, and one row for every (R,THETA) pair. QG=&{-I~[3  
    % HxH=~B1"P  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike db.E-@W.OI  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vxC,8Z  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 66~]7w  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O1K~]Nt  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1)f~OL8o  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z ]WA-Q6n  
    % E8.xmTq  
    %   The Zernike functions are an orthogonal basis on the unit circle. #T8$NZA  
    %   They are used in disciplines such as astronomy, optics, and yD9<-B<)  
    %   optometry to describe functions on a circular domain. N%&D(_  
    % )<1}`9G  
    %   The following table lists the first 15 Zernike functions. n/]$k4h  
    % 5Pl~du  
    %       n    m    Zernike function           Normalization -'!%\E;5  
    %       -------------------------------------------------- uua1_# a  
    %       0    0    1                                 1 B>&eciY  
    %       1    1    r * cos(theta)                    2 ku}I; k |  
    %       1   -1    r * sin(theta)                    2 #GHLF  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8QGj:3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6|D,`dk3U  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) : Gz#4k  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !zNMU$p  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) O/=i'0X v  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8oj-5|ct  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z3[0BWXs  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :i6k6=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a/wkc*}}/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5CsJghTw  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /U%Xs}A)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) rn?:utP  
    %       -------------------------------------------------- o[!g,Gmoh  
    % _8'FI_E3  
    %   Example 1: e[@q{.  
    % 1=t\|Th-  
    %       % Display the Zernike function Z(n=5,m=1) g{ cHh(S  
    %       x = -1:0.01:1; 1!E+(Iq  
    %       [X,Y] = meshgrid(x,x); ?DC3BA\)  
    %       [theta,r] = cart2pol(X,Y); SdfrLdi}Y  
    %       idx = r<=1; J dDP  
    %       z = nan(size(X)); Xx0}KJ q~"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); O$%C(n(  
    %       figure 0F<O \  
    %       pcolor(x,x,z), shading interp f9FsZD  
    %       axis square, colorbar fx QN  
    %       title('Zernike function Z_5^1(r,\theta)') $[Fh|%\  
    % kE".v|@  
    %   Example 2: D>O{>;y[  
    % P~0d'Oi  
    %       % Display the first 10 Zernike functions khb Gyg%  
    %       x = -1:0.01:1; *s6MF{Ds  
    %       [X,Y] = meshgrid(x,x); 96Tc:#9i  
    %       [theta,r] = cart2pol(X,Y); N3nk\)V\E  
    %       idx = r<=1; PaEsz$mgy  
    %       z = nan(size(X)); B*owV%  
    %       n = [0  1  1  2  2  2  3  3  3  3]; e6f!6a+%  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %Ya-;&;`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; { A(= phN  
    %       y = zernfun(n,m,r(idx),theta(idx)); 0=8.8LnN(  
    %       figure('Units','normalized') OX ?9 3AlG  
    %       for k = 1:10 $s hlNW\  
    %           z(idx) = y(:,k); NdQXQa?,  
    %           subplot(4,7,Nplot(k)) Kk~0jP_B9  
    %           pcolor(x,x,z), shading interp 56o?=|  
    %           set(gca,'XTick',[],'YTick',[]) (0qdU;  
    %           axis square 'B"kUh%3$5  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t?v0ylN  
    %       end 'lv\I9"S)  
    % U3^T.i"R  
    %   See also ZERNPOL, ZERNFUN2. N2}].}  
    HFx8v!^5N  
    %   Paul Fricker 11/13/2006 UJ)\E ^Hp  
    'MM#nQ\(  
    d `Q$URn|  
    % Check and prepare the inputs: /s=TLPm  
    % ----------------------------- 'W$jHs  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WW;S  
        error('zernfun:NMvectors','N and M must be vectors.') Ah &D5,3  
    end 6yF4%Sz9  
    7fl'nCo\"  
    if length(n)~=length(m) @)m+O#a  
        error('zernfun:NMlength','N and M must be the same length.') fZXJPy;n  
    end }_M .-Xm  
    -?!Z/#i4  
    n = n(:); $<]y.nr|CX  
    m = m(:); vdNh25a<h  
    if any(mod(n-m,2)) 6[c LbT0  
        error('zernfun:NMmultiplesof2', ... 2u6N';jgZ  
              'All N and M must differ by multiples of 2 (including 0).') )j@k[}R#g  
    end wLU w'Ai  
    N`grr{*_  
    if any(m>n) "aP>}5<h  
        error('zernfun:MlessthanN', ... i<1w*yu  
              'Each M must be less than or equal to its corresponding N.') {:Z#8dGe  
    end .dp~%!"Sn,  
    ~/\;7E{8!  
    if any( r>1 | r<0 ) m{x!uq  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :M ix*NCf  
    end 788q<7E  
    d Z"bc]z{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mw`%xID*  
        error('zernfun:RTHvector','R and THETA must be vectors.') t_,iV9NrZ  
    end G+'MTC_  
    GwwxSB&y  
    r = r(:); *s?&)][  
    theta = theta(:); VPn #O  
    length_r = length(r); J(M0t~RZ  
    if length_r~=length(theta) n`68<ybl5  
        error('zernfun:RTHlength', ... ; ZL<7tLDb  
              'The number of R- and THETA-values must be equal.') QhZ!A?':U  
    end 60teD>Eh,  
    N(}7M~m>  
    % Check normalization: P}&7G-  
    % -------------------- N!"GwH  
    if nargin==5 && ischar(nflag) 1w+&Y;d|  
        isnorm = strcmpi(nflag,'norm');  h:#  
        if ~isnorm ',6QL4qV/  
            error('zernfun:normalization','Unrecognized normalization flag.') xv 7^  
        end 0V}vVAa(B  
    else n1uJQt  
        isnorm = false; \(Zdd \,  
    end (LRv c!`"  
    p4Vw`i+DnH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I LF"m;  
    % Compute the Zernike Polynomials )Ah  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?_W "=WpC  
    ;csAhkf:S  
    % Determine the required powers of r: 5&2=;?EO  
    % ----------------------------------- 5:CC\!&QBV  
    m_abs = abs(m); Ej'a G   
    rpowers = []; A~nq4@uj  
    for j = 1:length(n) ;-^WUf |  
        rpowers = [rpowers m_abs(j):2:n(j)]; L\_8}\  
    end pR 1v^m|  
    rpowers = unique(rpowers); vT%rg r  
    ~LO MwMHl  
    % Pre-compute the values of r raised to the required powers, 8,dCx}X  
    % and compile them in a matrix: )/bt/,M&}  
    % ----------------------------- yW|yZ(7  
    if rpowers(1)==0 XV%L6x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I g-VSQ  
        rpowern = cat(2,rpowern{:}); YZpF*E;6t  
        rpowern = [ones(length_r,1) rpowern]; t}nZrD  
    else .b  N0!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1xM&"p:  
        rpowern = cat(2,rpowern{:}); $L:g7?)k  
    end g6QkF41nG  
    RS<c&{?  
    % Compute the values of the polynomials: EW#.)@-  
    % -------------------------------------- 79:x>i=  
    y = zeros(length_r,length(n)); :7:Nx`D8  
    for j = 1:length(n) $3Wl~ G}  
        s = 0:(n(j)-m_abs(j))/2; w|?Nq?KA  
        pows = n(j):-2:m_abs(j); U G^6I5  
        for k = length(s):-1:1 \+Qx}bS{  
            p = (1-2*mod(s(k),2))* ... aKH\8O4L5  
                       prod(2:(n(j)-s(k)))/              ... +Z)||MR"  
                       prod(2:s(k))/                     ... ,a^_ ~(C  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7i 334iQZ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <T  
            idx = (pows(k)==rpowers); L\y,7@1%AT  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 3iH!;`i  
        end ,W*<e-  
         s( Kf%ZoE  
        if isnorm Eto0>YyZ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _Mq@58q'  
        end 2c8,H29  
    end e *;"$7o9  
    % END: Compute the Zernike Polynomials ^x 4,}'(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m'aw`?  
    KMoRMCT  
    % Compute the Zernike functions: Cd|V<BB9  
    % ------------------------------ &z1r$X.AW  
    idx_pos = m>0; M9bb,`X>Q  
    idx_neg = m<0; -BQM i0  
    I \ vu?$w  
    z = y; z ; :E~;  
    if any(idx_pos) 0lmoI4bW}s  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Uy_`=JZ  
    end js8uvZ i  
    if any(idx_neg) ;M"hX  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :l3Tt<  
    end u^ngD64  
    wAkoX  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的