非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 3u+~!yz
function z = zernfun(n,m,r,theta,nflag) n8R{LjJ2@
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. c_HYB/'
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (fY (-
% and angular frequency M, evaluated at positions (R,THETA) on the 'DRyOJn r
% unit circle. N is a vector of positive integers (including 0), and .VTHZvyn
% M is a vector with the same number of elements as N. Each element 19;\:tN
% k of M must be a positive integer, with possible values M(k) = -N(k) B>|@XfPM
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, V&)-u(s_S/
% and THETA is a vector of angles. R and THETA must have the same 1w1(FpQO.
% length. The output Z is a matrix with one column for every (N,M) 6ZCt xs!
% pair, and one row for every (R,THETA) pair. HQv#\Xi1
% %J2u+K
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !3?HpR/nV
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a;([L8^7$l
% with delta(m,0) the Kronecker delta, is chosen so that the integral Q4_j`q
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ed_A#@V
% and theta=0 to theta=2*pi) is unity. For the non-normalized OC"W=[Myl
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "mHSbG
% jJ|O]v$N
% The Zernike functions are an orthogonal basis on the unit circle. 9J0m
% They are used in disciplines such as astronomy, optics, and M^k~w{
% optometry to describe functions on a circular domain. kAf2g
% >qAQNX
% The following table lists the first 15 Zernike functions. F9-xp7T
% S%g`X
% n m Zernike function Normalization 6W#M[0
% -------------------------------------------------- :2K0/@<x
% 0 0 1 1 :|N5fkhN
% 1 1 r * cos(theta) 2 </qXKEu`_
% 1 -1 r * sin(theta) 2 ks
3<zW(
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8(5}Jo+
% 2 0 (2*r^2 - 1) sqrt(3) lE$X9yIt
% 2 2 r^2 * sin(2*theta) sqrt(6)
Hco[p+
% 3 -3 r^3 * cos(3*theta) sqrt(8) ks:Z=%o
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #pE:!D
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) cFD(Ap
% 3 3 r^3 * sin(3*theta) sqrt(8) z/6eP`jj
% 4 -4 r^4 * cos(4*theta) sqrt(10) co@Q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @<AyCaU`.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) W[w8@OCNf
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^5j9WV
% 4 4 r^4 * sin(4*theta) sqrt(10) fZT=q^26
% -------------------------------------------------- Pou`PNvH
% T+N%KRl
% Example 1: BWfsk/lej
% ZIkXy*<(
% % Display the Zernike function Z(n=5,m=1) y`7BR?l
% x = -1:0.01:1; (A/V(.!
% [X,Y] = meshgrid(x,x); [p[Kpunr{l
% [theta,r] = cart2pol(X,Y); ON]
z-
% idx = r<=1; MXSPD#gN
% z = nan(size(X)); b2r@vZ]D
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {b=]JPE
% figure "4oY F:h
% pcolor(x,x,z), shading interp IGOqV>;
% axis square, colorbar :a[L-lr`e
% title('Zernike function Z_5^1(r,\theta)') 3dQV5E.
% qZG "{8
% Example 2: QcIa%lf
% Nt'(JAZ;
% % Display the first 10 Zernike functions Xr6UN{_-
% x = -1:0.01:1; v; &-]ka
% [X,Y] = meshgrid(x,x); *";,HG?|Iz
% [theta,r] = cart2pol(X,Y); Y(-4Agq
% idx = r<=1; 8u!!a^F
% z = nan(size(X)); &0*j nb
% n = [0 1 1 2 2 2 3 3 3 3]; bAGQ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ,eF}`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; `SZ^~O
% y = zernfun(n,m,r(idx),theta(idx)); ]fnc.^{
% figure('Units','normalized') [8(e`6xePb
% for k = 1:10 `N]!-=o
% z(idx) = y(:,k); <Gr{h>b
% subplot(4,7,Nplot(k)) 8{(;s$H~
% pcolor(x,x,z), shading interp Gt2NUGU
% set(gca,'XTick',[],'YTick',[]) xQ-]Iw5
% axis square oV&AJ=|\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @s b\0 }
% end
sas;<yh
% #\GWYWkR
% See also ZERNPOL, ZERNFUN2. 8^CL:8lI^\
~(~fuDT~O
% Paul Fricker 11/13/2006 jyb/aov
Z455g/=ye
Ma2sQW\
% Check and prepare the inputs: vxzh|uF
% ----------------------------- hdXdz aNS
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +DY% Y
`0
error('zernfun:NMvectors','N and M must be vectors.') 4ac2^`
end 4'cdV0]
_%?}e|epy
if length(n)~=length(m) Rs$k3
error('zernfun:NMlength','N and M must be the same length.') `$ql>k-6C
end <w}YD @(f
3<88j&9
n = n(:); +ng8!k
m = m(:); b*+Od8r
if any(mod(n-m,2)) pd?3_yU
error('zernfun:NMmultiplesof2', ... )+'FTz` c
'All N and M must differ by multiples of 2 (including 0).') EC<g7_0F
end b%IRIi&,
"7(2m
if any(m>n) qL/4mM0
error('zernfun:MlessthanN', ... rwWs\~.H
'Each M must be less than or equal to its corresponding N.') F.<sKQ&A
end k1e0kxn
-NHA{?6r
if any( r>1 | r<0 ) s5F,*<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') sOhQu>gN
end {*RyT.J
:G=N|3
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -aK_
error('zernfun:RTHvector','R and THETA must be vectors.') h:\WW;s[B
end V^Z"FwWk
d~M;@<eD
r = r(:); pTT7#b(t
theta = theta(:); A>8"8=C
length_r = length(r); ;7Cb!v1
if length_r~=length(theta) kTZ`RW&0
error('zernfun:RTHlength', ... aKkL0D
'The number of R- and THETA-values must be equal.') j
qfxQ
end }pxMO? h$
KSe`G;{
% Check normalization: ZCsL%(
% -------------------- ZV=O oLt,
if nargin==5 && ischar(nflag) ca%s$' d
isnorm = strcmpi(nflag,'norm'); L 1iA
^x
if ~isnorm `a2%U/U
error('zernfun:normalization','Unrecognized normalization flag.') ?:73O`sX:
end p_pI=_:
else 1AiqB Rs
isnorm = false; lO&TSPD^
end n]c6nX:'
Jn!-Wa,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7DQ{#Gf#G
% Compute the Zernike Polynomials US3rkkgDO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "& h;\hL
zg L0v5vk
% Determine the required powers of r: VUAW/
% ----------------------------------- GvQKFgO6h
m_abs = abs(m); N.R,[K
rpowers = []; X!#rw= Q
for j = 1:length(n) &Z3g$R 9
rpowers = [rpowers m_abs(j):2:n(j)]; j:ze5F A+
end D_mdX9-~
rpowers = unique(rpowers); Zt;3HY=y
I.#V/{J
% Pre-compute the values of r raised to the required powers, GF]V$5.ps
% and compile them in a matrix: LE$_qX`L
% ----------------------------- 2IDN?Mw
if rpowers(1)==0 9+><:(,
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c%,@O&o
rpowern = cat(2,rpowern{:}); =qG%h5]n
rpowern = [ones(length_r,1) rpowern]; %N``EnF2
else ixc~DV+@[
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \o}m]v
i
rpowern = cat(2,rpowern{:}); B.
'&[A
end ffDh0mDN
)*6]m1
% Compute the values of the polynomials: -CePtq`
% -------------------------------------- gT3i{iU
y = zeros(length_r,length(n)); "%^T~Z(_j
for j = 1:length(n) /*Xr^X6
s = 0:(n(j)-m_abs(j))/2; ;QZ}$8D 6Q
pows = n(j):-2:m_abs(j); ~\HGV+S!g}
for k = length(s):-1:1 LEu_RU?
p = (1-2*mod(s(k),2))* ... y8~/EyY|^
prod(2:(n(j)-s(k)))/ ... pYXusS7S
prod(2:s(k))/ ... fviq}.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jNjm}8`t
prod(2:((n(j)+m_abs(j))/2-s(k))); N`o[iHUj \
idx = (pows(k)==rpowers); qRk<1.
y(:,j) = y(:,j) + p*rpowern(:,idx); +bO]9*g]
end S:b-+w|*
V!^5#A<
if isnorm
%4
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /<"<N<X
end #>[BSgW
end Eu;f~ V
% END: Compute the Zernike Polynomials b#
v+_7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OH+kN/Fd
acG4u+[ ]
% Compute the Zernike functions: 6sE%] u<V
% ------------------------------ PRTn~!Z0
idx_pos = m>0; kx3?'=0;5
idx_neg = m<0; 3y9R1/!
g$CWGB*%lm
z = y; q-tm`t*7
if any(idx_pos) 9|('*
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jPu m2U_
end 3n ~n-Jo
if any(idx_neg) ^/`W0kT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ()cqax4
end w6cW7}ZD,
0<^!<i(%
% EOF zernfun