非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +}X@{DB
function z = zernfun(n,m,r,theta,nflag) 6
)xm?RK
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. pbloL3d.;+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N PlTY^N6Hn
% and angular frequency M, evaluated at positions (R,THETA) on the !63x^# kg
% unit circle. N is a vector of positive integers (including 0), and >(~;V;
% M is a vector with the same number of elements as N. Each element y*|"!FK
% k of M must be a positive integer, with possible values M(k) = -N(k) Y/)>\
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, )[G5qTO
% and THETA is a vector of angles. R and THETA must have the same I9k o*f
% length. The output Z is a matrix with one column for every (N,M) GP`_R
% pair, and one row for every (R,THETA) pair. 8[2^`g
% &7JCPw
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [ V/*{Z
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ko2{[%
% with delta(m,0) the Kronecker delta, is chosen so that the integral VY Va8[}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b^6Ooc/-k
% and theta=0 to theta=2*pi) is unity. For the non-normalized $6BXoh!
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Dgp"RUP
% g2w0#-
% The Zernike functions are an orthogonal basis on the unit circle. AdR}{:ia
% They are used in disciplines such as astronomy, optics, and lN{-}f;TN
% optometry to describe functions on a circular domain. C+*: lLY
% DoNbCVZ
% The following table lists the first 15 Zernike functions. <|s|6C
% O62H4oT
% n m Zernike function Normalization VmV/~- <Z
% -------------------------------------------------- fZT=q^26
% 0 0 1 1 F0+ u#/#
% 1 1 r * cos(theta) 2 >$?$&+e}
% 1 -1 r * sin(theta) 2 V= !!;KR0
% 2 -2 r^2 * cos(2*theta) sqrt(6) 6'+3""\
% 2 0 (2*r^2 - 1) sqrt(3) yH@W6' .
% 2 2 r^2 * sin(2*theta) sqrt(6) "P"~/<:)
% 3 -3 r^3 * cos(3*theta) sqrt(8) <gQw4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) X0Xs"--}
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9.D'!
% 3 3 r^3 * sin(3*theta) sqrt(8) K7U`
% 4 -4 r^4 * cos(4*theta) sqrt(10) vX/~34o]\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *siS4RX2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :74)nbS
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kImS'i{A
% 4 4 r^4 * sin(4*theta) sqrt(10) f9X*bEl9;`
% -------------------------------------------------- Mm+_>
% V!a\:%#^Y
% Example 1: y]+i.8[
% WFsa8qv
% % Display the Zernike function Z(n=5,m=1) pDr M8)r
% x = -1:0.01:1; YeptYW@xfw
% [X,Y] = meshgrid(x,x); Mw*R~OX
% [theta,r] = cart2pol(X,Y); >z.o?F
% idx = r<=1; D CcM~
% z = nan(size(X)); )&;?|X+p
% z(idx) = zernfun(5,1,r(idx),theta(idx)); d^!)',`
% figure <p-R{}8
% pcolor(x,x,z), shading interp =K-B
I
% axis square, colorbar -*M/,O
% title('Zernike function Z_5^1(r,\theta)') ^CDQ75tR
% |Q?IV5%$
% Example 2: yL7a*C&
% CAX|[
% % Display the first 10 Zernike functions NoV)}fX$X8
% x = -1:0.01:1; y4w{8;Mh
% [X,Y] = meshgrid(x,x); XjuAVNY
% [theta,r] = cart2pol(X,Y); -
b:&ACY
% idx = r<=1; a=.A/;|0*
% z = nan(size(X)); fnN"a Z
% n = [0 1 1 2 2 2 3 3 3 3]; {I&>`?7.
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Pp*|EW 1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; =3_I;Lw
% y = zernfun(n,m,r(idx),theta(idx)); ,mx>)}l95
% figure('Units','normalized') wm%9>mA%
% for k = 1:10 hg/G7Ur"
% z(idx) = y(:,k); /608P:U
% subplot(4,7,Nplot(k)) z
v*hA/
% pcolor(x,x,z), shading interp C C;T[b&
% set(gca,'XTick',[],'YTick',[]) 2E9Cp
% axis square Nv{r`J.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k id3@
% end cz~Fz;)2{N
% _{_ybXG|
% See also ZERNPOL, ZERNFUN2. uosFpa
`b=?z%LuT
% Paul Fricker 11/13/2006 se:]F/
4onRO!G,
vUk <z*
% Check and prepare the inputs: Gc^w,n[E
% ----------------------------- h# c.HtVE
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zYvf}L&]h
error('zernfun:NMvectors','N and M must be vectors.') O-[ lL"T
end F4xYfbwY"]
R4.$9_ui
if length(n)~=length(m) UA>UW!I
error('zernfun:NMlength','N and M must be the same length.') s5F,*<
end T>7$<ulm
PHU#$LG
n = n(:); dMK|l
m = m(:); :P1 J> dcG
if any(mod(n-m,2)) JL5
)
error('zernfun:NMmultiplesof2', ... d~M;@<eD
'All N and M must differ by multiples of 2 (including 0).') 5V;BimI
end LmE%`qNg
Q x}\[
if any(m>n) 56T<s+X>
error('zernfun:MlessthanN', ... xE`uFHuS}
'Each M must be less than or equal to its corresponding N.') 1S/KT4
end 3)b[C&`
Z7a~M3VnZ
if any( r>1 | r<0 ) 00X~/'!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') q1Gc0{+)
end $lz\te
wl|cipy"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `a2%U/U
error('zernfun:RTHvector','R and THETA must be vectors.') ?:73O`sX:
end p_pI=_:
DC4O@"
r = r(:); cy T,tN
theta = theta(:); \wwY?lOe
length_r = length(r); fG_.&!P
if length_r~=length(theta) =aR'S\<
error('zernfun:RTHlength', ... Gw%P5 r}Y
'The number of R- and THETA-values must be equal.') }q7rR:g
end d~n|F|`:
`p0+j
% Check normalization: /R\]tl#2j
% -------------------- =8:m:Y&|`G
if nargin==5 && ischar(nflag) ~IrrX,mp:
isnorm = strcmpi(nflag,'norm'); v0Ww~4|],
if ~isnorm 6a$=m3ic
error('zernfun:normalization','Unrecognized normalization flag.') H <7r
end o,}`4_N||
else <\40?*2
isnorm = false; I.#V/{J
end AT*J '37
z !2-U
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;n1<1M>!
% Compute the Zernike Polynomials )%H@.;cD_r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r:.3P
2wCTd:e:
% Determine the required powers of r:
@Tk5<B3
% ----------------------------------- l`"i'P
m_abs = abs(m); ?5@!r>i=<
rpowers = []; %A_h!3f&
for j = 1:length(n) 5A^$!q P
rpowers = [rpowers m_abs(j):2:n(j)]; mY!os91KoO
end G?Fqm@J{XT
rpowers = unique(rpowers); kC:GEY<N:Q
++{,1wY\
% Pre-compute the values of r raised to the required powers, KA^r,Iw
% and compile them in a matrix: C(/{53G(
% ----------------------------- 2L?jp:$;X
if rpowers(1)==0 zX=K2tH
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +Wgp~$o4
rpowern = cat(2,rpowern{:}); Z|l/6L8
rpowern = [ones(length_r,1) rpowern]; e0rh~@E
else _4~'K?
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =Rv!c+?
rpowern = cat(2,rpowern{:}); /XEt2,sI9
end Z]VmTB
YS$42J_T
% Compute the values of the polynomials: G_m$W3 zS
% -------------------------------------- MLVrL r t
y = zeros(length_r,length(n)); 6yU#;|6d
for j = 1:length(n) 9UbD=}W
s = 0:(n(j)-m_abs(j))/2; @ ={Hx$zL
pows = n(j):-2:m_abs(j); xcf`i:\
for k = length(s):-1:1 _o,Mji|
p = (1-2*mod(s(k),2))* ... kF,_o/Jc
prod(2:(n(j)-s(k)))/ ... acG4u+[ ]
prod(2:s(k))/ ... _'OXrT#Q
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k+nfW]UNF
prod(2:((n(j)+m_abs(j))/2-s(k))); quky m3F
idx = (pows(k)==rpowers); hzR1O(
y(:,j) = y(:,j) + p*rpowern(:,idx); TDqH"q0
end hW~XE{<
wgETL|3-
if isnorm YoU|)6Of
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j*XhBWE?
end VgBZ@*z(x
end ?^f=7e8]
% END: Compute the Zernike Polynomials 9?xD"Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d<,'9/a>
m@A?'gD
% Compute the Zernike functions: PP1?UT=]
% ------------------------------ 1\XR6q:2
idx_pos = m>0; 8Pgw_ 21N1
idx_neg = m<0; BNj@~uC{
ZjB]pG+
z = y; B_ x?s
if any(idx_pos) JI5%fU%O#n
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;1gWz
end cT&!_g#g
if any(idx_neg) f[wA]&
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bx XNv^
end 3=@lJ?Ym
.5s#JL
% EOF zernfun