切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11171阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Ct30EZ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! +(J{~A~  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  9dFSppM  
    KixS)sG  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ` kG}NJf  
    ZW0gd7Wh  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 4nfpPN t  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. fJb<<6C  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of B|~tW21  
    %   order N and frequency M, evaluated at R.  N is a vector of B4yC"55  
    %   positive integers (including 0), and M is a vector with the }CiB+  
    %   same number of elements as N.  Each element k of M must be a =-r[ s%t &  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 'n9<z)/,!  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is V?a+u7*U&  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix GtCbzNY  
    %   with one column for every (N,M) pair, and one row for every Y R2Q6}xR  
    %   element in R. [q/tKdo@  
    % x>?jfN,e  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- y7;i4::A\  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is H>x(c|ZBp  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to bvf}r ,`Q7  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 c Bl F  
    %   for all [n,m]. PfaBzi9?f  
    % SxHj3,`#C  
    %   The radial Zernike polynomials are the radial portion of the GvL)SVv?  
    %   Zernike functions, which are an orthogonal basis on the unit \BV$p2m5-  
    %   circle.  The series representation of the radial Zernike NDJIaX:]  
    %   polynomials is #+v Iq?  
    % ]"jJgO^  
    %          (n-m)/2 Ye'=F  
    %            __ oJcDs-!  
    %    m      \       s                                          n-2s L8&$o2+07r  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r l Ikh4T6i  
    %    n      s=0 D5wy7`c  
    % e;y\v/A  
    %   The following table shows the first 12 polynomials. $c!cO" U  
    % @A_bZQ@  
    %       n    m    Zernike polynomial    Normalization _&Hq`KJm  
    %       --------------------------------------------- %>dCAj"  
    %       0    0    1                        sqrt(2) 3HU_ ~%l  
    %       1    1    r                           2 na;U]IK  
    %       2    0    2*r^2 - 1                sqrt(6) %nTgrgS(=  
    %       2    2    r^2                      sqrt(6) %Ts6M,Fpp  
    %       3    1    3*r^3 - 2*r              sqrt(8) R. sRH/6  
    %       3    3    r^3                      sqrt(8) ,cbCt  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) `CW I%V  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) %_rdO(   
    %       4    4    r^4                      sqrt(10) h&$7^P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) +:hZ,G?>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) U>bmCK2  
    %       5    5    r^5                      sqrt(12) j4ARGkK5B  
    %       --------------------------------------------- 8X6F6RK6,1  
    % (v11;kdJB  
    %   Example: `D0>L '  
    % XYJ7k7zc+Y  
    %       % Display three example Zernike radial polynomials xWwQm'I2}  
    %       r = 0:0.01:1; (]JZ1s|  
    %       n = [3 2 5]; Y#>'.$ (Az  
    %       m = [1 2 1]; .?L&k|wX-  
    %       z = zernpol(n,m,r); Uxla,CCp-  
    %       figure cs]N%M^s  
    %       plot(r,z) ~uF%*  
    %       grid on ,_STt)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 'W!N1W@  
    % T6gugDQ~.  
    %   See also ZERNFUN, ZERNFUN2. Q\pTyNAYn  
    hJr cy!P<a  
    % A note on the algorithm. 1o&] =(  
    % ------------------------ RTPxAp+\5  
    % The radial Zernike polynomials are computed using the series -dCM eC  
    % representation shown in the Help section above. For many special MIblx  
    % functions, direct evaluation using the series representation can ~]}V"O%,  
    % produce poor numerical results (floating point errors), because D(EY"s37  
    % the summation often involves computing small differences between &d"c6il[  
    % large successive terms in the series. (In such cases, the functions AqPE.mf  
    % are often evaluated using alternative methods such as recurrence 5_bIc=L1  
    % relations: see the Legendre functions, for example). For the Zernike 'hTA O1n8  
    % polynomials, however, this problem does not arise, because the ,QDS_u$xi&  
    % polynomials are evaluated over the finite domain r = (0,1), and AOT +4*)%  
    % because the coefficients for a given polynomial are generally all mlIX>ss|7B  
    % of similar magnitude. .T*K4m{b0  
    % mN5`Fct*A>  
    % ZERNPOL has been written using a vectorized implementation: multiple q|*}>=NX  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 8Iz-YG~%3  
    % values can be passed as inputs) for a vector of points R.  To achieve t<_Jx<{2  
    % this vectorization most efficiently, the algorithm in ZERNPOL .~ )[>  
    % involves pre-determining all the powers p of R that are required to K"p$ga{  
    % compute the outputs, and then compiling the {R^p} into a single :)!X%2 _  
    % matrix.  This avoids any redundant computation of the R^p, and mcbr3P  
    % minimizes the sizes of certain intermediate variables. m!{}Y]FZn  
    % ls5s}X  
    %   Paul Fricker 11/13/2006 -P|EV|8=  
    Oeua<,]Z~  
    oSmv  (O  
    % Check and prepare the inputs: Z3:M%)e_u$  
    % ----------------------------- ya!RiHj  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h8IjTd]z{$  
        error('zernpol:NMvectors','N and M must be vectors.') bjgf8427I  
    end ?{bF3Mz=  
    kbqG)  
    if length(n)~=length(m) e-$ U .cx  
        error('zernpol:NMlength','N and M must be the same length.') ye-o'%{  
    end PQl a-  
    68m (%%E@  
    n = n(:); 'b#`)w@/=  
    m = m(:); O>zPWVwa  
    length_n = length(n); W$&kOdD!$  
    bFivHms  
    if any(mod(n-m,2)) w28!Yj1Q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ]Lc:M'V#  
    end Ql1HaC/5)-  
    E)eRi"a46  
    if any(m<0) <+MNv#1:w  
        error('zernpol:Mpositive','All M must be positive.') yY,O=yOjq  
    end ]B;GU  
    DqgYc[UGA  
    if any(m>n) Qo*,2B9R L  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]X:{y&g(  
    end 19 h7 M  
    s?;rP,{:p  
    if any( r>1 | r<0 ) */=5m]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') f/spJ<B).4  
    end n@pm5f  
    HGuY-f  
    if ~any(size(r)==1) +r7uIwi$@  
        error('zernpol:Rvector','R must be a vector.') C$X )I~M  
    end f wN  
    mQRQ2SN6  
    r = r(:); zd) 2@jX=  
    length_r = length(r); !V~`e9[rl  
    8 *@knkJ  
    if nargin==4 O'5d6m  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); kV@*5yc?R  
        if ~isnorm i ! wzID  
            error('zernpol:normalization','Unrecognized normalization flag.') d4"KM+EP?  
        end ~z)diF<  
    else pfj%AP:  
        isnorm = false; SvUC8y  
    end |yE_M-Nc  
    #q{i<E 07  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DA s&4Y`  
    % Compute the Zernike Polynomials [ m*=Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8'=8!V  
    1jdv<\U   
    % Determine the required powers of r: #(o 'G4T  
    % ----------------------------------- wAHW@q9CK  
    rpowers = []; &5&C   
    for j = 1:length(n) D#>+]}5@x  
        rpowers = [rpowers m(j):2:n(j)]; RX",Zt$q  
    end xk}(u`:.  
    rpowers = unique(rpowers); +MG(YP/ l  
    ;IhkGPpWP  
    % Pre-compute the values of r raised to the required powers, bP;cDQ(g  
    % and compile them in a matrix: zx7*Bnu0  
    % ----------------------------- {7^7)^@  
    if rpowers(1)==0 . e2qa  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r!eCfV7  
        rpowern = cat(2,rpowern{:}); 'L#qR)t  
        rpowern = [ones(length_r,1) rpowern]; ?>lvV+3^`  
    else Wc4K?3 ZM  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8+Lig  
        rpowern = cat(2,rpowern{:}); 8Rq+eOP=S  
    end jEBZ"Jvb  
    MRvtuE|g  
    % Compute the values of the polynomials: {;4AdZk  
    % -------------------------------------- ;I'pC?!y  
    z = zeros(length_r,length_n); `Q!|/B  
    for j = 1:length_n J~z;sTR  
        s = 0:(n(j)-m(j))/2; c1j)  
        pows = n(j):-2:m(j); A(y^1Nm  
        for k = length(s):-1:1 n8"S;:Zm  
            p = (1-2*mod(s(k),2))* ... t0Q/vp*/  
                       prod(2:(n(j)-s(k)))/          ... zGFo -C  
                       prod(2:s(k))/                 ... ARYqX\-e  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... DJ"O`qNV3  
                       prod(2:((n(j)+m(j))/2-s(k))); 2#Fc4RR;  
            idx = (pows(k)==rpowers); ;$W/le"Xr  
            z(:,j) = z(:,j) + p*rpowern(:,idx); aK'`yuN  
        end )I<p<HQD  
         T:Dp+m!\{  
        if isnorm LP bZ.  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _%Ay\4H^\  
        end pfW0)V1t  
    end gBRhO^Sz  
    jqHg'Fq  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 10 dVV[=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. yEt:g0Z \  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated lpkg( J#&  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ~1YL  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, <Ft6d  
    %   and THETA is a vector of angles.  R and THETA must have the same =tl[?6  
    %   length.  The output Z is a matrix with one column for every P-value, MP,l*wVd  
    %   and one row for every (R,THETA) pair. Iw~3y{\  
    % VY8 p[`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Ky`rf}cI>  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) W?{:HV  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) |E-0P=h  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /E(H`;DG  
    %   for all p. y|b|_eE?{  
    % S4kGy}{+i  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 W;*rSK|(Sc  
    %   Zernike functions (order N<=7).  In some disciplines it is J=>?D@K  
    %   traditional to label the first 36 functions using a single mode QOIi/flK  
    %   number P instead of separate numbers for the order N and azimuthal Okca6=2"  
    %   frequency M. .EVy?-   
    % k%#`{#n i  
    %   Example: 48M)A  
    % Y-&r_s_~  
    %       % Display the first 16 Zernike functions m` cw:  
    %       x = -1:0.01:1; ;nG"y:qq  
    %       [X,Y] = meshgrid(x,x); Ojp)OeF\  
    %       [theta,r] = cart2pol(X,Y); W<TW6_*e  
    %       idx = r<=1; V ?3>hQtB  
    %       p = 0:15; L7mN&Xr  
    %       z = nan(size(X)); "+s#!Fh *  
    %       y = zernfun2(p,r(idx),theta(idx)); boo,KhW'Y  
    %       figure('Units','normalized') !cw<C*  
    %       for k = 1:length(p) _Jj/"?  
    %           z(idx) = y(:,k); I.tJ4  
    %           subplot(4,4,k) jD3,z*  
    %           pcolor(x,x,z), shading interp ` 1DJwe2  
    %           set(gca,'XTick',[],'YTick',[]) "5e~19  
    %           axis square VB*N;bM^  
    %           title(['Z_{' num2str(p(k)) '}']) ws tI8">  
    %       end /ee:GjUkB  
    % t$r^'ZN  
    %   See also ZERNPOL, ZERNFUN. 0"o<( 1  
    *x[B g]/  
    %   Paul Fricker 11/13/2006 qAm$yfYs`  
    C.s{ &  
    ;OmmXygl  
    % Check and prepare the inputs: X`]-) (U X  
    % ----------------------------- !U}A1)  
    if min(size(p))~=1 nul?5{z@  
        error('zernfun2:Pvector','Input P must be vector.') >yUThhJRn  
    end sl|s#+Z  
    `3kE$h#  
    if any(p)>35 Ri4_zb  
        error('zernfun2:P36', ... Gk,{{:M:5  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... v83uGEq(  
               '(P = 0 to 35).']) WM: ~P$%cx  
    end _`/0/69  
    5. :To2  
    % Get the order and frequency corresonding to the function number: JWy$` "{  
    % ---------------------------------------------------------------- [6 wI22  
    p = p(:); 3XY$w&f  
    n = ceil((-3+sqrt(9+8*p))/2); <qZXpQ#  
    m = 2*p - n.*(n+2); "%urT/F v&  
    jM1_+Lm1  
    % Pass the inputs to the function ZERNFUN: nSsVONHfa  
    % ---------------------------------------- 0{ v?  
    switch nargin Di9yd  
        case 3 Zqd&EOm  
            z = zernfun(n,m,r,theta); J[YA1  
        case 4 Y+iC/pd  
            z = zernfun(n,m,r,theta,nflag); <?52Svi}}  
        otherwise VbM5]UT/  
            error('zernfun2:nargin','Incorrect number of inputs.') V-A^9AAPm  
    end yNc>s/  
    tzi+A;>c(v  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 VT3Zo%Xx  
    function z = zernfun(n,m,r,theta,nflag) sl6p/\_w  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Lj*F KP\{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N P :lv Z   
    %   and angular frequency M, evaluated at positions (R,THETA) on the \q3H#1A  
    %   unit circle.  N is a vector of positive integers (including 0), and }S*6+4  
    %   M is a vector with the same number of elements as N.  Each element ^ eM=h  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )@eBe^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, t8i"f L  
    %   and THETA is a vector of angles.  R and THETA must have the same lU Uq|Qr  
    %   length.  The output Z is a matrix with one column for every (N,M) HZ 8 j[kO  
    %   pair, and one row for every (R,THETA) pair. [.6>%G1C  
    % n,PHfydqX  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6;n^/3*#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kUP[&/Lc  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,z1# |Y  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :U)e 8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7S] h:q%%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^l$(-#'y  
    % /lr RbZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. C| Mh<,~ E  
    %   They are used in disciplines such as astronomy, optics, and f@LUp^Z/v  
    %   optometry to describe functions on a circular domain. ^{6Y7T]  
    % >=U $s@  
    %   The following table lists the first 15 Zernike functions.  Xid>8  
    % dZ%b|CUb  
    %       n    m    Zernike function           Normalization `yQHPN0/  
    %       -------------------------------------------------- <ya'L&  
    %       0    0    1                                 1 .Z_U]_(  
    %       1    1    r * cos(theta)                    2 T{uktIO/  
    %       1   -1    r * sin(theta)                    2 S<Q1 &],  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Efp=z=E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _'I9rGlx3  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) GK&yP%Z3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) .z[+sy_  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *r-Bt1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) t<`ar@}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Q@$1!9m  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) b%oma{I=.c  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >,] #~d  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) a@8knJ|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ce:R p?  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Gi<f/xQk>  
    %       -------------------------------------------------- ?5(L.XFm  
    % k&~vVx  
    %   Example 1: Xrz0ch  
    % Rp@u.C <  
    %       % Display the Zernike function Z(n=5,m=1) 2X*epU_1h  
    %       x = -1:0.01:1; kkJg/:g  
    %       [X,Y] = meshgrid(x,x); wz, \zh  
    %       [theta,r] = cart2pol(X,Y); BKD Wd]KEf  
    %       idx = r<=1; Z(<ul<?r  
    %       z = nan(size(X)); vaQ,l6z .h  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /ZzlC#`  
    %       figure .s!:p pwl  
    %       pcolor(x,x,z), shading interp AoR`/tr,  
    %       axis square, colorbar qnA:[H;F  
    %       title('Zernike function Z_5^1(r,\theta)') ;m5M: Z"  
    % iF%q 6R  
    %   Example 2: yr=r? h}  
    % yq<YGNy!  
    %       % Display the first 10 Zernike functions %]R#}amW  
    %       x = -1:0.01:1; YLCwo]\+>  
    %       [X,Y] = meshgrid(x,x); :?p{ga9  
    %       [theta,r] = cart2pol(X,Y); xO.7cSqgw  
    %       idx = r<=1; ;=7z!:)  
    %       z = nan(size(X)); t{ 7l.>kf  
    %       n = [0  1  1  2  2  2  3  3  3  3]; kl={L{r  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; z)0VP QMT  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HAiUFO/R  
    %       y = zernfun(n,m,r(idx),theta(idx)); eT|_0kx1  
    %       figure('Units','normalized') Y{O&- 5H^|  
    %       for k = 1:10 Ym6ec|9;  
    %           z(idx) = y(:,k); $bo^UYZ6  
    %           subplot(4,7,Nplot(k)) gO/(/e>P  
    %           pcolor(x,x,z), shading interp asF- mf;D  
    %           set(gca,'XTick',[],'YTick',[]) :rj78_e9  
    %           axis square Q0--.Q=:Y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) x:bYd\ EJ[  
    %       end C{ti>'"V  
    % y H'\<bT  
    %   See also ZERNPOL, ZERNFUN2. |`okIqp  
    =QC^7T  
    %   Paul Fricker 11/13/2006 x'KsQlI/  
    PWmz7*/  
    v]J# SlF  
    % Check and prepare the inputs: o2|(0uN'  
    % ----------------------------- RasoOj$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l6 WcnJ  
        error('zernfun:NMvectors','N and M must be vectors.') P$QjDu-  
    end |HEw~x<=  
    9s!/yiP5  
    if length(n)~=length(m) H|Nw)*.  
        error('zernfun:NMlength','N and M must be the same length.') IN"vi|1  
    end Jt)~h,68  
    t#q> U%!  
    n = n(:); vq s~a7E-P  
    m = m(:); W"*R#:Q  
    if any(mod(n-m,2)) ZX0c_Mk=  
        error('zernfun:NMmultiplesof2', ... m7"f6zSo(  
              'All N and M must differ by multiples of 2 (including 0).') } -vBRY  
    end gfYB|VyWo  
    Wk|z\OR(  
    if any(m>n) Zb 2  
        error('zernfun:MlessthanN', ... IBqY$K+l  
              'Each M must be less than or equal to its corresponding N.') e ?YbG.(E9  
    end X2`>@GR/>  
    P&GZe/6Y  
    if any( r>1 | r<0 ) .}E)7"Qi,  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') [1*/lt|+p  
    end *p3P\ H^5  
    9X%Klm 5w  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  (2li:1j  
        error('zernfun:RTHvector','R and THETA must be vectors.') v2{O67j} o  
    end p[)<d_  
     SoX V  
    r = r(:); ]cr;PRyv  
    theta = theta(:); 7j:{rCp3J  
    length_r = length(r); J$Epj  
    if length_r~=length(theta) Q8x{V_Pot  
        error('zernfun:RTHlength', ... /;4MexgB%  
              'The number of R- and THETA-values must be equal.') Q.1ohj0)  
    end X2[cR;;'  
    CiuN26>  
    % Check normalization: !d\GD8|4  
    % -------------------- uE j6A  
    if nargin==5 && ischar(nflag) 9ojhI=:  
        isnorm = strcmpi(nflag,'norm'); ,*[LnR  
        if ~isnorm "o 3"1s>d{  
            error('zernfun:normalization','Unrecognized normalization flag.') ,7P^]V1  
        end ~-`02  
    else d*$<%J  
        isnorm = false; %B*dj9n^q  
    end =LxmzQO#  
    uw=Ube(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \NU [DHrMP  
    % Compute the Zernike Polynomials mj=|oIMwT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n*~   
    wF8\  
    % Determine the required powers of r: 9/Dt:R3QU  
    % ----------------------------------- LFyceFbm  
    m_abs = abs(m); 4P!DrOB  
    rpowers = []; Fz&ilB  
    for j = 1:length(n) Qiw4'xQm  
        rpowers = [rpowers m_abs(j):2:n(j)]; TEyx((SK  
    end yrAzD=  
    rpowers = unique(rpowers); "5:f{GfO#v  
    k{jw%a<Sc  
    % Pre-compute the values of r raised to the required powers, c)MR+'d\WO  
    % and compile them in a matrix: 2nkj;x{H$  
    % ----------------------------- i8_x1=A  
    if rpowers(1)==0 jHH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;J-Ogt@d7  
        rpowern = cat(2,rpowern{:}); WgJAr73 l  
        rpowern = [ones(length_r,1) rpowern]; @z)tC@  
    else ZT8J i?_n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1lyOp   
        rpowern = cat(2,rpowern{:}); { $/Fk6qr  
    end G.nftp(*}  
    nFnF_  
    % Compute the values of the polynomials: 1L8ULxi_?]  
    % -------------------------------------- J xm9@,  
    y = zeros(length_r,length(n)); m}[~A@qD  
    for j = 1:length(n) jne9=Als5  
        s = 0:(n(j)-m_abs(j))/2; ]H#Rm#q  
        pows = n(j):-2:m_abs(j); |vN@2h(|"  
        for k = length(s):-1:1 ](>7h _2B  
            p = (1-2*mod(s(k),2))* ... )_*a7N!  
                       prod(2:(n(j)-s(k)))/              ... M |?p3%  
                       prod(2:s(k))/                     ... ;[%}Xx  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... l$VxE'&LQ  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  OI_/7@L  
            idx = (pows(k)==rpowers); b2X'AHK S  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R P:F<`DB|  
        end =j+oKGkoCa  
          zc/%1  
        if isnorm e9@fQ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `3y!XET  
        end cbCE $  
    end M=[q+A  
    % END: Compute the Zernike Polynomials b q3fiT9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *76viqY;dE  
    0uIV6LI  
    % Compute the Zernike functions: HS6Imi  
    % ------------------------------ 4ZJT[zi  
    idx_pos = m>0; 9MB\z"b?A  
    idx_neg = m<0; ~26s7S}  
    37 O#aJ,K  
    z = y; OKZam ik~  
    if any(idx_pos) J4[x,(iq(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Md>f  
    end VyoE5o  
    if any(idx_neg) foz5D9sQ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Z0"&  
    end 4/2RfDp  
    L_U3*#Zdz7  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的