非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 I>\}}!
function z = zernfun(n,m,r,theta,nflag) FU'^n6[<B
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. `9:v*KuM#R
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z5yt]-WN&
% and angular frequency M, evaluated at positions (R,THETA) on the f x%z|K
% unit circle. N is a vector of positive integers (including 0), and HuK Aj
% M is a vector with the same number of elements as N. Each element +A&EKk%$ |
% k of M must be a positive integer, with possible values M(k) = -N(k) {rs6"X^
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, C CLfvex
% and THETA is a vector of angles. R and THETA must have the same PMD,8] |
% length. The output Z is a matrix with one column for every (N,M) GCZu<,
% pair, and one row for every (R,THETA) pair. s8{-c^G:R
% 1`nc8qC
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g<0w/n!jmC
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Vvx a.B
% with delta(m,0) the Kronecker delta, is chosen so that the integral /E;;j9
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MM=W9#
% and theta=0 to theta=2*pi) is unity. For the non-normalized B#;s(O
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. VyRW '
% (R,NV3m?w
% The Zernike functions are an orthogonal basis on the unit circle. &Jrq5Q C
% They are used in disciplines such as astronomy, optics, and 3zk:59
% optometry to describe functions on a circular domain. "9TxK6
% F]hx
% The following table lists the first 15 Zernike functions. ?G2qlna
% =ZFcxGo
% n m Zernike function Normalization ;L#LDk{Za
% -------------------------------------------------- R (t!xf
% 0 0 1 1 O_qu;Dx!
% 1 1 r * cos(theta) 2 Z3LQl(
% 1 -1 r * sin(theta) 2 .ruqRGe/
% 2 -2 r^2 * cos(2*theta) sqrt(6) |^
2rtI
% 2 0 (2*r^2 - 1) sqrt(3) ]JkpR aP$
% 2 2 r^2 * sin(2*theta) sqrt(6) mjWp8i
% 3 -3 r^3 * cos(3*theta) sqrt(8) l2z`<2mp
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) v+|@}9| Z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;a#}fX
% 3 3 r^3 * sin(3*theta) sqrt(8) Xi 1q]ps
% 4 -4 r^4 * cos(4*theta) sqrt(10) ';i"?D?NAk
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6RR4L^(m
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) eA3`]XP.`b
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a*pXrp@
% 4 4 r^4 * sin(4*theta) sqrt(10)
O6M}W_
% -------------------------------------------------- QwKky ^A
% =1V>Vd?8.
% Example 1: &':UlzG
% :u[
oc.
% % Display the Zernike function Z(n=5,m=1) Lf$Q
%eM0
% x = -1:0.01:1; KIXwx98
% [X,Y] = meshgrid(x,x); $8<j5%/ $M
% [theta,r] = cart2pol(X,Y); qk"oFP6
% idx = r<=1; ?,A}E|jZ
% z = nan(size(X)); HV#?6,U}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); SSSDl$}'t
% figure 6Cop#kW#
% pcolor(x,x,z), shading interp :)^#
xE(
% axis square, colorbar 0KWy?6 X
% title('Zernike function Z_5^1(r,\theta)') B}l}Aq8
% O2V6UX@&<w
% Example 2: [Gh%nsH
% x= vE&9_u
% % Display the first 10 Zernike functions t?3{s\z 8+
% x = -1:0.01:1; n1k$)S$iiy
% [X,Y] = meshgrid(x,x); o O{|C&A
% [theta,r] = cart2pol(X,Y); \N'hbT=
% idx = r<=1; PV Q#>_~5
% z = nan(size(X)); XcJ'm{=
% n = [0 1 1 2 2 2 3 3 3 3]; %l9WZ*yZ`2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; <;TP@-a
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ~/]\iOL
% y = zernfun(n,m,r(idx),theta(idx)); 7(nz<z p
% figure('Units','normalized') )-TeDIfm
% for k = 1:10 b3CspBgC
% z(idx) = y(:,k); '6dD^0dZ
% subplot(4,7,Nplot(k)) `-9*@_-=M
% pcolor(x,x,z), shading interp Kq@m?h
% set(gca,'XTick',[],'YTick',[]) yNb#Ia
% axis square 9;xL!cy
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) q7)]cY_
% end qxg7cj2
% Wq[=}qh~
% See also ZERNPOL, ZERNFUN2. @+T{M:&l
Qzs\|KS
% Paul Fricker 11/13/2006 Jnu}{^~
/64^5DjTh
x]my e
% Check and prepare the inputs: q~:'R
% ----------------------------- N('S2yfDR
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [][:/~q!
error('zernfun:NMvectors','N and M must be vectors.') "0!eb3n
end hK9t}NE.O
t?#vb}_
if length(n)~=length(m) qMW%$L\HA
error('zernfun:NMlength','N and M must be the same length.') !Xv2PdP
end 99+/W*C
>X\s[d&(
n = n(:); j4
&
m = m(:); hsQ rd%{f
if any(mod(n-m,2)) %gne%9nn
error('zernfun:NMmultiplesof2', ... _nIqy&<
'All N and M must differ by multiples of 2 (including 0).') U d=gdsL
end %RT6~0z
2A18hP`^
if any(m>n) M#8Ao4
T
error('zernfun:MlessthanN', ... :vgh
KI
'Each M must be less than or equal to its corresponding N.') GqK&'c
end P/1UCITq}
y uK5 r
if any( r>1 | r<0 ) c|;|%"Mk
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \aJ-q?=
end &:e}4/G
OV@h$fg
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) D=I5[t0c4
error('zernfun:RTHvector','R and THETA must be vectors.') 2'UFHiK
end z"P,=M6De
z7us*8X{
r = r(:); lo]B5_en
theta = theta(:); 65e
Wu=T
length_r = length(r); (k)gZD9~{?
if length_r~=length(theta) coP$7Q .
error('zernfun:RTHlength', ... /NN[gz
'The number of R- and THETA-values must be equal.') $M3A+6["H
end w]5f3CIm
39a]B`y
% Check normalization: Rp%\`'+Xz
% -------------------- Qig!NgOM
if nargin==5 && ischar(nflag) M]/wei"X
isnorm = strcmpi(nflag,'norm'); 52C-D+zCJ
if ~isnorm ^D>M Dj6
error('zernfun:normalization','Unrecognized normalization flag.') YI\Cs=T/
end pi l*/&pB
else !y2h`ZAZ
isnorm = false; :7PSZc:xE
end 3TvhOC>yG
YT%SCaU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t=pkYq5t8
% Compute the Zernike Polynomials
rgvc5p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q$2taG}
~JmxW;|_x)
% Determine the required powers of r: M(]|}%
% ----------------------------------- F]&J%i
F[
m_abs = abs(m); ALt";8Oa
rpowers = []; WZ
V*J&
for j = 1:length(n) #uw*8&%0
rpowers = [rpowers m_abs(j):2:n(j)]; HgBEV
end wqoN@d
rpowers = unique(rpowers); D~ `YRbv
=z/mI y<
% Pre-compute the values of r raised to the required powers, VA
r?teY
% and compile them in a matrix: zB7dCw
% ----------------------------- d?qO`-
~$
if rpowers(1)==0 AJ1$$c
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #?d>S;)+
rpowern = cat(2,rpowern{:}); SrU
rpowern = [ones(length_r,1) rpowern]; &i}cC4i
else *Lk&@(
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H&Lbdu~E
rpowern = cat(2,rpowern{:}); C5z
end ,`2xfVa-
3eDx@8N
}
% Compute the values of the polynomials: qmeEUch`
% -------------------------------------- 3&d+U)E
y = zeros(length_r,length(n)); $gtT5{"PN(
for j = 1:length(n) 7Sv5fLu2
s = 0:(n(j)-m_abs(j))/2; <YNPhu~5
pows = n(j):-2:m_abs(j); 0QSi\: 1f
for k = length(s):-1:1 S gsR;)2
p = (1-2*mod(s(k),2))* ... (C[S?@S
prod(2:(n(j)-s(k)))/ ... #^[N4uV
prod(2:s(k))/ ... aj-uk(r
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ',ybHW%D%i
prod(2:((n(j)+m_abs(j))/2-s(k))); E|}Nj}(*
idx = (pows(k)==rpowers); k
<Sa<
y(:,j) = y(:,j) + p*rpowern(:,idx); x};g!FYfkB
end wDTV /"Y
Z]+Xh
if isnorm L ]'CA^N
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2x J5
end zi 14]FWo
end e ^&8x
% END: Compute the Zernike Polynomials !7kOw65+0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qO'5*d;!d
O g~"+IGp
% Compute the Zernike functions: @wZ_VE7B
% ------------------------------ '(:J|DN
idx_pos = m>0; KT?s\w
idx_neg = m<0; QlXF:Gx"=
R20GjWy=
z = y; bL[W.O0
if any(idx_pos) IY6S\Gn
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /[T8/7;_l
end cuk}VZ
if any(idx_neg) At|tk
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');
*zht(~%
end srA~gzF
#i U/Yg!
% EOF zernfun