非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {@1.2AWg
function z = zernfun(n,m,r,theta,nflag) ,$@nbS{Q]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. EU.vw0}u8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z W`
Ur>
% and angular frequency M, evaluated at positions (R,THETA) on the zd AqGQfc
% unit circle. N is a vector of positive integers (including 0), and #=UEx
% M is a vector with the same number of elements as N. Each element p"f=[awp
% k of M must be a positive integer, with possible values M(k) = -N(k) 3/mVdU?U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, mz;S*ONlV
% and THETA is a vector of angles. R and THETA must have the same uhvmh
% length. The output Z is a matrix with one column for every (N,M) (-Rh%ZHH
% pair, and one row for every (R,THETA) pair. rMAH YH9
% [,)yc/{*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1$oVcDLl
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w-\U;&8
% with delta(m,0) the Kronecker delta, is chosen so that the integral Bt4
X
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =A&x
d"
% and theta=0 to theta=2*pi) is unity. For the non-normalized j$<uE{c
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &n+3^JNl
% FDM&rQ
% The Zernike functions are an orthogonal basis on the unit circle. }c(".v#
% They are used in disciplines such as astronomy, optics, and vAiNOpz#
% optometry to describe functions on a circular domain. HubSmbS1
% ei'=%r8~
% The following table lists the first 15 Zernike functions. %:oyHlz%
% QIQ }ia
% n m Zernike function Normalization }7YDe'5V
% -------------------------------------------------- e_s9E{(
% 0 0 1 1 |E$Jt-'
% 1 1 r * cos(theta) 2 6T{Zee
% 1 -1 r * sin(theta) 2 +N1oOcPC>C
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4} uX[~e&
% 2 0 (2*r^2 - 1) sqrt(3) g{wIdV
% 2 2 r^2 * sin(2*theta) sqrt(6) {Buoo~
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^! /7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) MVHj?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |g]TWKc*
% 3 3 r^3 * sin(3*theta) sqrt(8) +RS>#zd/=
% 4 -4 r^4 * cos(4*theta) sqrt(10) un0tzz
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dgh|,LqUB
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Q#P=t83
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %\PnsnJ9Q
% 4 4 r^4 * sin(4*theta) sqrt(10) rhY>aj
% -------------------------------------------------- Gb+cT
% GczGW4\P'
% Example 1: Ai\"w 0
% xExy?5H7
% % Display the Zernike function Z(n=5,m=1) 33x3zEUt6
% x = -1:0.01:1; %||}WT-wv
% [X,Y] = meshgrid(x,x); B% !z7AT
% [theta,r] = cart2pol(X,Y); Z0T{1YEJ
% idx = r<=1; |,M&ks
% z = nan(size(X)); 3;=nQ{0b
% z(idx) = zernfun(5,1,r(idx),theta(idx)); f'aQ T
% figure ;;'b;,/
% pcolor(x,x,z), shading interp CBdSgHA3>
% axis square, colorbar tdg.vYMDPC
% title('Zernike function Z_5^1(r,\theta)') O-B~~$g
% Jhu<^pjs
% Example 2: ,?i^i#Wqzg
% c 2j?<F1
% % Display the first 10 Zernike functions )BNm~sP
% x = -1:0.01:1; 3n9$qr='
% [X,Y] = meshgrid(x,x); .CFaBwj
% [theta,r] = cart2pol(X,Y); eCdx(4(\a
% idx = r<=1; 0z{S@
% z = nan(size(X)); *9e T#dH
% n = [0 1 1 2 2 2 3 3 3 3]; UN_f2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; =BJ/ZM
% Nplot = [4 10 12 16 18 20 22 24 26 28]; vco/h
% y = zernfun(n,m,r(idx),theta(idx)); 8}h ^Frh
% figure('Units','normalized') ;SkC[;`J
% for k = 1:10 adtK$@Yeg
% z(idx) = y(:,k); WmLl.Vv=
% subplot(4,7,Nplot(k)) Rt~Aud[
% pcolor(x,x,z), shading interp _H@s^g
% set(gca,'XTick',[],'YTick',[]) Ga~N7
% axis square +kTAOfM
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Mp;t?C4
% end pW O-YZ#+
% '"QC^Joz
% See also ZERNPOL, ZERNFUN2. {"8\~r &b
d}tn/Eu?B
% Paul Fricker 11/13/2006 ="
K;3a`GI
OO_{o
>1:s.[&
% Check and prepare the inputs: AC3K*)`E
% ----------------------------- R[
S*ON
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >bxT_qEm
error('zernfun:NMvectors','N and M must be vectors.') w_G/[R3
end m
s\:^a
evsH>hE^
if length(n)~=length(m) I^/Ugu
error('zernfun:NMlength','N and M must be the same length.') D2|-\vJ>
end $1oU^VY
OTd=(dwh
n = n(:); o*97Nbjn
m = m(:); ;+K:^*oJ
if any(mod(n-m,2)) LfyycC2E
error('zernfun:NMmultiplesof2', ... !JUXq
'All N and M must differ by multiples of 2 (including 0).') \*6%o0c
end |DfYH~@(
"[@-p
if any(m>n) xr!FDfM.K
error('zernfun:MlessthanN', ... 5R4h9D5
'Each M must be less than or equal to its corresponding N.') I%%\;Dy
end `ea;qWy
6k"Wy3/
if any( r>1 | r<0 ) 2N)=fBF%-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zb-TCS+3l
end srx`"
:
ttLChL
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) a}`4BMi3
error('zernfun:RTHvector','R and THETA must be vectors.') 0sVCTJ@
end iKV;>gF,)v
2j-|.l c
r = r(:); aGNt?)8WPZ
theta = theta(:); h+zJ"\
length_r = length(r); R|{AIa{}
if length_r~=length(theta) `y0ZFh1>X
error('zernfun:RTHlength', ... Q`g0g)3w
'The number of R- and THETA-values must be equal.') m\U@L+L
end IvetQ+
aMuc]Wy#
% Check normalization: UBpYR>
<\
% -------------------- QpS0iUG
if nargin==5 && ischar(nflag) zF<*h~
isnorm = strcmpi(nflag,'norm'); dTyTj|"x{
if ~isnorm e{O mW
error('zernfun:normalization','Unrecognized normalization flag.') cg7NtY
end W5$jIQ}Bw
else \% &QIe;:k
isnorm = false; ko
im@B
end wGd8q xa
t ?28s/?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~zRUJ2hD!
% Compute the Zernike Polynomials T#J]%IDd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INW8Q`[F
[:a;|t
% Determine the required powers of r: ?F*gFW_k
% ----------------------------------- 2{"Wa|o`
m_abs = abs(m); NeCTEe|V
rpowers = []; >2Al+m<w
for j = 1:length(n) ^qiTO`lg
rpowers = [rpowers m_abs(j):2:n(j)]; gTW(2?xYf
end T9{94Ra
rpowers = unique(rpowers); eN>=x40
-{pcb7.xuv
% Pre-compute the values of r raised to the required powers, 3RscuD&
% and compile them in a matrix: ub}t3#
% ----------------------------- p(Y'fd}
if rpowers(1)==0 mY(~94{d
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $"J+3mO
rpowern = cat(2,rpowern{:}); |6`yE]3-(
rpowern = [ones(length_r,1) rpowern]; GUmOK=D >
else `"I^nD^t>Y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2aW&d=!ZV
rpowern = cat(2,rpowern{:}); 3 _:yHwkD
end U;;vNzcn
nEQw6q~je
% Compute the values of the polynomials: FlD
!?
% -------------------------------------- JmWN/mx
y = zeros(length_r,length(n)); O9p8x2
for j = 1:length(n) }OI;M^5L
s = 0:(n(j)-m_abs(j))/2; B Gh%3"q
pows = n(j):-2:m_abs(j); vhTte
|(
for k = length(s):-1:1 1`5d~>fV
p = (1-2*mod(s(k),2))* ... "^zxq5u
prod(2:(n(j)-s(k)))/ ... n:`> QY
prod(2:s(k))/ ... ]^VC@$\)+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e}(ws~.
prod(2:((n(j)+m_abs(j))/2-s(k))); `t{aN|3V[
idx = (pows(k)==rpowers); vov"60K
y(:,j) = y(:,j) + p*rpowern(:,idx); b0tr)>d
end 'RTz*CSZ
6Ei>VcN4a
if isnorm n_)d4d zl
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4punJg~1
end '2/48j X5
end 4ZQXYwfC|
% END: Compute the Zernike Polynomials j*q]-$ 2E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #";(&|7
JdfjOlEb
% Compute the Zernike functions: v#(wc+[
% ------------------------------ M!,$i
idx_pos = m>0; Hl?\P6
idx_neg = m<0; )e4nKh],
or]8;eQ?
z = y; bMxzJRrNg
if any(idx_pos) hCc_+/j|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); EbY%:jR
end +[V?3Gdb
if any(idx_neg) ;5q=/
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i0L)hkV
end :p=IZY
i.)kV B
% EOF zernfun