切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11592阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 [ncOtDE  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )I9Wa*I  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ,nELWzz%{  
    Dog Tj  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 "3"9sIZ(  
    _f8<t=R  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 5gV%jQgkC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. S.bB.<  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0Bx.jx0?  
    %   order N and frequency M, evaluated at R.  N is a vector of ad).X:Qs  
    %   positive integers (including 0), and M is a vector with the tl|Qw";I  
    %   same number of elements as N.  Each element k of M must be a Dz4fP;n  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ALqP;/  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is \Lxsg! wtJ  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix w{J0K; L  
    %   with one column for every (N,M) pair, and one row for every -MrEJ  
    %   element in R. P>/n!1c  
    % 0p\cDrB ?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 6mr5`5~w  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 1=x4m=wV  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /xmUu0H$R  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 v%|^\A"V  
    %   for all [n,m]. XOQj?Q7)U  
    % 3+gp_7L  
    %   The radial Zernike polynomials are the radial portion of the &h.E B  
    %   Zernike functions, which are an orthogonal basis on the unit KS($S( Fi  
    %   circle.  The series representation of the radial Zernike &u-H/C U%  
    %   polynomials is okx~F9  
    % =k#SQ/@  
    %          (n-m)/2 +;7Rz_.6f  
    %            __ [bd fp a  
    %    m      \       s                                          n-2s w) o^?9T  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r jX5lwP Q|F  
    %    n      s=0 @G  0k+  
    % `a}!t=~#w  
    %   The following table shows the first 12 polynomials. l$$N~FN  
    % b&BSigrvou  
    %       n    m    Zernike polynomial    Normalization f!;4 -.p`  
    %       --------------------------------------------- RkVU^N"  
    %       0    0    1                        sqrt(2) &D, gKT~  
    %       1    1    r                           2 "V!y"yQ  
    %       2    0    2*r^2 - 1                sqrt(6) rWKc,A[  
    %       2    2    r^2                      sqrt(6) zG|}| //}  
    %       3    1    3*r^3 - 2*r              sqrt(8) ;W6P$@'zs  
    %       3    3    r^3                      sqrt(8) f(Q-W6  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 4R5+"h:  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) M#II,z>q  
    %       4    4    r^4                      sqrt(10) trL:qD+{(  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) GQXN1R   
    %       5    3    5*r^5 - 4*r^3            sqrt(12) z}v6!u|iZu  
    %       5    5    r^5                      sqrt(12) "Gx(-NH+  
    %       --------------------------------------------- X(F 2 5  
    % `z<k7ig  
    %   Example: ]J\tosTi  
    % wjGD[~mB  
    %       % Display three example Zernike radial polynomials $ BV4i$  
    %       r = 0:0.01:1; _w8iPL5:  
    %       n = [3 2 5]; ]YcM45xg  
    %       m = [1 2 1]; 6; g_}Zx  
    %       z = zernpol(n,m,r); SXn\k;F<  
    %       figure .Ua|KKK C  
    %       plot(r,z) P#5&D*`}h  
    %       grid on sqw^Hwy=!2  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') cx?t C#t  
    % HMT^gmF)  
    %   See also ZERNFUN, ZERNFUN2. 3*9<JHu  
    aW-'Jg=@H^  
    % A note on the algorithm. 5}FPqyK"  
    % ------------------------ 1Wzm51RU  
    % The radial Zernike polynomials are computed using the series r=YprVX  
    % representation shown in the Help section above. For many special a=3?hVpB  
    % functions, direct evaluation using the series representation can JAM4 R_  
    % produce poor numerical results (floating point errors), because  u!TVvc  
    % the summation often involves computing small differences between ||TKo967]  
    % large successive terms in the series. (In such cases, the functions ?k)(~Y&@p  
    % are often evaluated using alternative methods such as recurrence SB R=  
    % relations: see the Legendre functions, for example). For the Zernike \Ub=Wm\  
    % polynomials, however, this problem does not arise, because the uY+N163i  
    % polynomials are evaluated over the finite domain r = (0,1), and ^Wk.D-  
    % because the coefficients for a given polynomial are generally all "|&xUWJ!)  
    % of similar magnitude. s,Uc cA@  
    % ^W-03  
    % ZERNPOL has been written using a vectorized implementation: multiple [ix45xu7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] M$j]VZ  
    % values can be passed as inputs) for a vector of points R.  To achieve ajFSbi)l  
    % this vectorization most efficiently, the algorithm in ZERNPOL S~auwY,<  
    % involves pre-determining all the powers p of R that are required to S'"(zc3 =  
    % compute the outputs, and then compiling the {R^p} into a single 7XLz Ewa  
    % matrix.  This avoids any redundant computation of the R^p, and 5yO %|)  
    % minimizes the sizes of certain intermediate variables. QF 2Eg  
    % sr(f9Vl  
    %   Paul Fricker 11/13/2006 C"w>U   
    ,<]X0;~oB  
    |ho|Kl `=  
    % Check and prepare the inputs: ao>`[-  
    % ----------------------------- K1c@]]y)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <a_Q1 l  
        error('zernpol:NMvectors','N and M must be vectors.') Y'6GY*dL  
    end *gHGi(U(U  
    OEc$ro=m*  
    if length(n)~=length(m) G  @ib  
        error('zernpol:NMlength','N and M must be the same length.') p7y8/m\6  
    end |1vi kG8  
    JA'C\  
    n = n(:); =#qf0  
    m = m(:); qH(3Z^#.|  
    length_n = length(n); H%c:f  
    "_Wv,CYmNr  
    if any(mod(n-m,2)) XBi}hT  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') '{9nQ DgT  
    end z)$X/v  
    v{7Jzjd  
    if any(m<0) Cf#[E~24  
        error('zernpol:Mpositive','All M must be positive.') `em}vdY  
    end J)R;NYl  
    >gNVL (  
    if any(m>n) R<>ptwy  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') rOC2 S(m  
    end  f,utA3[  
    fz H$`X'M  
    if any( r>1 | r<0 ) *T(z4RVg  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') sBozz#  
    end NijvFT$V1  
    0'ha!4h3Z  
    if ~any(size(r)==1) gc|?$aE  
        error('zernpol:Rvector','R must be a vector.') +m Plid\  
    end 4 \*!]5i  
    `/en&l  
    r = r(:); Y_qRW. k  
    length_r = length(r); WJ)( *1  
    \bJ,8J1C  
    if nargin==4 >U/ m/H'  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 58FjzW  
        if ~isnorm ,A`.u\f(:  
            error('zernpol:normalization','Unrecognized normalization flag.') Un{hI`3]  
        end !F3Y7R  
    else %W!C  
        isnorm = false; 4c"x&x|  
    end ~@8r-[  
    t#pF.!9=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,'~8{,h5  
    % Compute the Zernike Polynomials C(( 7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ROZOX$XM  
    8*O]  
    % Determine the required powers of r: 2u0C ~s  
    % ----------------------------------- i|zs Li/  
    rpowers = []; |TCHPKN  
    for j = 1:length(n) QH:PClW![  
        rpowers = [rpowers m(j):2:n(j)]; -*;-T9  
    end Rlvb@aXgy  
    rpowers = unique(rpowers); o&tETJ5Bhe  
    b(<#n6a}\  
    % Pre-compute the values of r raised to the required powers, H=2sT+Sp  
    % and compile them in a matrix: iwJeV J  
    % ----------------------------- f|eUpf%)  
    if rpowers(1)==0 2%0J/]n\A"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o[C,fh,$  
        rpowern = cat(2,rpowern{:}); #:E}Eby/6I  
        rpowern = [ones(length_r,1) rpowern]; ~";GH20  
    else G$b*N4yR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Gn}G$uk61  
        rpowern = cat(2,rpowern{:}); ^HpUbZpat)  
    end {9(#X]'  
    pwq a/Yi  
    % Compute the values of the polynomials: G&P[n8Z$  
    % -------------------------------------- <5oG[1j  
    z = zeros(length_r,length_n); ')ZM# :G  
    for j = 1:length_n tqdw y.  
        s = 0:(n(j)-m(j))/2; )n8(U%q$  
        pows = n(j):-2:m(j); }u"iA^'Ot  
        for k = length(s):-1:1 FjUf|  
            p = (1-2*mod(s(k),2))* ... (8bo"{zI  
                       prod(2:(n(j)-s(k)))/          ... C'4gve 7!  
                       prod(2:s(k))/                 ... Y", :u@R  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ["N{6d&Q  
                       prod(2:((n(j)+m(j))/2-s(k))); u} y)'eH  
            idx = (pows(k)==rpowers); eBw6k09C+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); xWNB/{F  
        end 9 F"2$;  
         J!l/!Z>!cF  
        if isnorm h_O6Z2J1  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); +k@$C,A  
        end `/WX!4eR,  
    end NWK+.{s>m  
    '`.bmiM  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) $:v!*0/  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )vO?d~x|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated |&O7F;/_  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 3`V #ImV>  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, <$#;J>{WV  
    %   and THETA is a vector of angles.  R and THETA must have the same }Xn5M&>?  
    %   length.  The output Z is a matrix with one column for every P-value, 6gUcoDD  
    %   and one row for every (R,THETA) pair. irg% n  
    % 2m$\]\kCUv  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike kZ8+ev=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) [N$#&4{Je  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) W{z7h[?5,  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 lwY2zX&%)/  
    %   for all p. ^o`;C\  
    % I-=H;6w7  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 "YUh4uZ~P  
    %   Zernike functions (order N<=7).  In some disciplines it is ,U-aZ  
    %   traditional to label the first 36 functions using a single mode P5vxQR_*lc  
    %   number P instead of separate numbers for the order N and azimuthal jHP6d =  
    %   frequency M. VR/*h%  
    % }ioHSkCD  
    %   Example: 5Z2tTw'i  
    % qB%?t.k7  
    %       % Display the first 16 Zernike functions Tc{n]TV  
    %       x = -1:0.01:1; 9DAk|K  
    %       [X,Y] = meshgrid(x,x); y'5 y  
    %       [theta,r] = cart2pol(X,Y); _{d0Nm  
    %       idx = r<=1; y.pwj~s  
    %       p = 0:15; Klw\  
    %       z = nan(size(X)); GIo7- 6kvm  
    %       y = zernfun2(p,r(idx),theta(idx)); ,5tW|=0@  
    %       figure('Units','normalized') ,-55*Rbi  
    %       for k = 1:length(p) H <gC{:S  
    %           z(idx) = y(:,k); 8&gr}r- 5  
    %           subplot(4,4,k) @k"Q e&BQ  
    %           pcolor(x,x,z), shading interp xEX"pd  
    %           set(gca,'XTick',[],'YTick',[]) g~>g])  
    %           axis square Xup"gYTZQ  
    %           title(['Z_{' num2str(p(k)) '}']) Zx%ib8| j  
    %       end 3hN.`G-E  
    % XOk0_[  
    %   See also ZERNPOL, ZERNFUN. G4VdJ(_  
    tC4:cX  
    %   Paul Fricker 11/13/2006 ~M>EB6  
    V l,V  
    sYt\3/yL'  
    % Check and prepare the inputs: QT!!KTf  
    % ----------------------------- R]s\s[B  
    if min(size(p))~=1 !9w;2Z]uum  
        error('zernfun2:Pvector','Input P must be vector.') mX4u#$xs:  
    end v,=[!=8!  
    yu<'-)T.?  
    if any(p)>35 ZSB_OS[N  
        error('zernfun2:P36', ... R F)Qsa  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... F|rJ{=x  
               '(P = 0 to 35).']) %syFHUBw  
    end VE <p,IO  
    uQ}0hs  
    % Get the order and frequency corresonding to the function number: 3 &aBU [  
    % ---------------------------------------------------------------- RB\0o,mw4  
    p = p(:); ~v /NG  
    n = ceil((-3+sqrt(9+8*p))/2); /b44;U`v5-  
    m = 2*p - n.*(n+2); ?u*gKI  
    1XwW4cZ>:  
    % Pass the inputs to the function ZERNFUN: *{ =5AW}o  
    % ---------------------------------------- 0n'~wz"wB  
    switch nargin TA x9<'  
        case 3 NXJyRAJ*%  
            z = zernfun(n,m,r,theta); 3!+N} [$iy  
        case 4 x_C#ALq9  
            z = zernfun(n,m,r,theta,nflag); u{H'evv0O  
        otherwise m|7lDfpb  
            error('zernfun2:nargin','Incorrect number of inputs.') !I 7bxDzK$  
    end  1#G(  
    pPC_ub  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h`_@eax  
    function z = zernfun(n,m,r,theta,nflag) x[ sSM:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. h-^7cHI}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B\/"$"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d%"?^e  
    %   unit circle.  N is a vector of positive integers (including 0), and 8-A * Jc  
    %   M is a vector with the same number of elements as N.  Each element ndsu}:my  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) rvdhfM!-A  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, k:+Bex$g  
    %   and THETA is a vector of angles.  R and THETA must have the same C*S%aR  
    %   length.  The output Z is a matrix with one column for every (N,M) Ws+Zmpk%  
    %   pair, and one row for every (R,THETA) pair. K*ZH<@o4  
    % BUuU#e5  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike w&M)ws;$  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), WWO@ULGY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral SO}$96  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WFOO6 kMz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized #WOb&h  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W w{|:>j  
    % k 5<[N2D|!  
    %   The Zernike functions are an orthogonal basis on the unit circle. mXX9Aa>  
    %   They are used in disciplines such as astronomy, optics, and efK)6T^p  
    %   optometry to describe functions on a circular domain. j3!]wolY  
    % *ybwl Lg  
    %   The following table lists the first 15 Zernike functions. +2}aCoL\  
    %  Tl.%7)  
    %       n    m    Zernike function           Normalization )$# Ku2X  
    %       -------------------------------------------------- X(b"b:j'  
    %       0    0    1                                 1 W|go*+`W%  
    %       1    1    r * cos(theta)                    2 /1Xji 0LK  
    %       1   -1    r * sin(theta)                    2 v{R:F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [M^ur%H  
    %       2    0    (2*r^2 - 1)                    sqrt(3) rC(-dJkV  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P5:X7[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]Z@+ |&@L  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) O_PKS$sz{  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) oEqt7l[I{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "hwG"3n1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) nUAs:Q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R!v ?d2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1I#S?RSb  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =5JTVF  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) l_G&#sQ0  
    %       -------------------------------------------------- y=L9E?  
    % -?8;-h, h  
    %   Example 1: K1P3 FfG  
    % ]FJpe^ ua  
    %       % Display the Zernike function Z(n=5,m=1) AT#&`Ew  
    %       x = -1:0.01:1; 9w-V +Nf  
    %       [X,Y] = meshgrid(x,x); lgxG:zAC  
    %       [theta,r] = cart2pol(X,Y); I|6wPV?  
    %       idx = r<=1; a\wpJ|3{=T  
    %       z = nan(size(X)); LnN6{z{M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "}"Bvp^  
    %       figure ;tS4 h  
    %       pcolor(x,x,z), shading interp uZyR{~-C  
    %       axis square, colorbar UTatcn  
    %       title('Zernike function Z_5^1(r,\theta)') H8>u:  
    % [l+1zt0w0  
    %   Example 2: 0G(T'Z1  
    % YpFh_Zr[  
    %       % Display the first 10 Zernike functions P'prp=JD  
    %       x = -1:0.01:1; d83K;Ryd  
    %       [X,Y] = meshgrid(x,x); Bn7~p+N  
    %       [theta,r] = cart2pol(X,Y); _T\~AwVc<  
    %       idx = r<=1; *k$":A  
    %       z = nan(size(X)); &Rgy/1  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4{d`-reHg  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; B}= WxG|)  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; H3=U|wr|  
    %       y = zernfun(n,m,r(idx),theta(idx)); |%F[.9Dp  
    %       figure('Units','normalized') p;S<WJv k  
    %       for k = 1:10 O k-*xd  
    %           z(idx) = y(:,k); C|kZT<,]  
    %           subplot(4,7,Nplot(k)) /f!CX|U  
    %           pcolor(x,x,z), shading interp )~q@2^  
    %           set(gca,'XTick',[],'YTick',[]) 3>[_2}l  
    %           axis square OzFA>FK0f;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _)q,:g~fu  
    %       end Ns6Vf5T.  
    % x,Im%!h  
    %   See also ZERNPOL, ZERNFUN2. :*wnO;eN  
    *o8DfZ  
    %   Paul Fricker 11/13/2006 q? x.P2  
    zwAkXj  
    VP4W~;UV|\  
    % Check and prepare the inputs: mQQ5>0^m  
    % ----------------------------- jgLCs)=5hV  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,q yp2Y7  
        error('zernfun:NMvectors','N and M must be vectors.') =sG9]a<I  
    end D0?l$]aE  
    ^O cM)Z6h  
    if length(n)~=length(m) `I.Uw$,P  
        error('zernfun:NMlength','N and M must be the same length.') W/PZD (  
    end anj*a<C<  
    Xa._  
    n = n(:); ~]71(u2  
    m = m(:); 9/LI[{  
    if any(mod(n-m,2)) Hu .e@7  
        error('zernfun:NMmultiplesof2', ... em@\S  
              'All N and M must differ by multiples of 2 (including 0).') lx<]v^  
    end 66"-Xf~u  
    ;J3az`  
    if any(m>n) ]KMOLe6(  
        error('zernfun:MlessthanN', ... y0Pr[XZ  
              'Each M must be less than or equal to its corresponding N.') C LhD[/Fo  
    end }e/P|7&  
    $=8?@My<  
    if any( r>1 | r<0 ) |BD]K0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') P=K+!3ZXo  
    end RVmD&  
    M2ig iR  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SSANt?\Z<  
        error('zernfun:RTHvector','R and THETA must be vectors.') u 89u#gCAC  
    end 2nOoG/6 E  
    O>^0}  
    r = r(:); ]XEkQ  
    theta = theta(:); CErkmod{}e  
    length_r = length(r); pA9:1*+;;  
    if length_r~=length(theta) <!h&h  
        error('zernfun:RTHlength', ... `;L0ax  
              'The number of R- and THETA-values must be equal.') jV^Dj  
    end N{@kgc  
    1!RD kZw e  
    % Check normalization: >= Hcw  
    % -------------------- %gB 0\C  
    if nargin==5 && ischar(nflag) /i+8b(x  
        isnorm = strcmpi(nflag,'norm'); rIz"_r  
        if ~isnorm B$b'bw.  
            error('zernfun:normalization','Unrecognized normalization flag.') FAAqdK0  
        end yi3@-  
    else S5ofe]tS@  
        isnorm = false; d;KrV=%30s  
    end RaFk/mSw  
    ': Gk~   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =4 &/Pr  
    % Compute the Zernike Polynomials EJYfk?(B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SE+K"faKQ  
    xUE9%qO  
    % Determine the required powers of r: Ek'  
    % ----------------------------------- B[^mWVp6L  
    m_abs = abs(m); w U.K+4-k  
    rpowers = []; STp}?Cb  
    for j = 1:length(n) IEV3(qzt  
        rpowers = [rpowers m_abs(j):2:n(j)]; b'fj  
    end >\b=bT@iM  
    rpowers = unique(rpowers); 5Bw  
    F|X-|Co  
    % Pre-compute the values of r raised to the required powers, XA{ tVh  
    % and compile them in a matrix: }pKHa'/\  
    % ----------------------------- T"-HBwl  
    if rpowers(1)==0 &#Sg1$/+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D,+I)-k<  
        rpowern = cat(2,rpowern{:}); c$ Kn.<a  
        rpowern = [ones(length_r,1) rpowern]; "V:B-q  
    else Ow=`tv$l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KLlo^1.<  
        rpowern = cat(2,rpowern{:}); w}pFa76rm  
    end a  1bu  
    0V*L",9M  
    % Compute the values of the polynomials: '3eP<earRP  
    % -------------------------------------- <#ujm fD  
    y = zeros(length_r,length(n)); $53I%.  
    for j = 1:length(n) < 2w@5qL  
        s = 0:(n(j)-m_abs(j))/2; uj_u j!  
        pows = n(j):-2:m_abs(j); pdsjX)O+f  
        for k = length(s):-1:1 =!r9;L,?  
            p = (1-2*mod(s(k),2))* ... uD_|/(  
                       prod(2:(n(j)-s(k)))/              ... ,dKcxp~[  
                       prod(2:s(k))/                     ... Gs2.}l z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... E,5jY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Ps0'WRJnx  
            idx = (pows(k)==rpowers); |{]\n/M  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 3/o-\wWO  
        end j2 "j Cv  
         =kohQ d.n  
        if isnorm ^r73(8{)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lKEdpF<  
        end a;m-Vu!  
    end z= vfP%  
    % END: Compute the Zernike Polynomials 0*W=u-|s6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +Ck<tx3h&  
    oT$w14b  
    % Compute the Zernike functions: F?e_$\M  
    % ------------------------------ ]1rr$f9  
    idx_pos = m>0; dNG>:p  
    idx_neg = m<0; #)_4$<P*'  
    IX;u+B  
    z = y; Lm"l*j4  
    if any(idx_pos) WcAX/<Y>  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <oTIzj7f  
    end o6  
    if any(idx_neg) $d?<(n  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); I :%(nKBK  
    end c3]ZU^  
    SfQ ,uD6  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的