切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11152阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 4<tbZP3/6)  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! tBkgn3w  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @",#'eC"  
    n6,YA2yZO  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^Os }sJ*5S  
    b==jlYa=  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }yrs6pQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. iNi1+sm  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of aw lq/  
    %   order N and frequency M, evaluated at R.  N is a vector of Jpp-3i.F#  
    %   positive integers (including 0), and M is a vector with the ziO(`"v  
    %   same number of elements as N.  Each element k of M must be a C^'r>0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) K\B!tk  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is !F~1+V>zP  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0Qeda@J  
    %   with one column for every (N,M) pair, and one row for every (Dv GA I  
    %   element in R. 5"3 `ss<m  
    % or;VmU8$zb  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- gU&+^e >  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is hTZ6@i/pS  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +&f_k@+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 N GnE  
    %   for all [n,m]. n{<@-6  
    % Cpd>xXZz&S  
    %   The radial Zernike polynomials are the radial portion of the yr>J^Et%_  
    %   Zernike functions, which are an orthogonal basis on the unit E>*b,^J7g  
    %   circle.  The series representation of the radial Zernike `g(#~0R  
    %   polynomials is KdHkX+-R  
    % UBQtD|m\  
    %          (n-m)/2 \?e2qu/ C  
    %            __ c"`HKfL  
    %    m      \       s                                          n-2s qa~ju\jm.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r zN+jn  
    %    n      s=0 >yVrIko  
    % x?0(K=h,  
    %   The following table shows the first 12 polynomials. u\xrC\Ka  
    % 0VR,I{<.{  
    %       n    m    Zernike polynomial    Normalization -Tuk.>i)  
    %       --------------------------------------------- p'@z}T?F  
    %       0    0    1                        sqrt(2) (1er?4  
    %       1    1    r                           2 loq2+(  
    %       2    0    2*r^2 - 1                sqrt(6) KU+u.J  
    %       2    2    r^2                      sqrt(6) E:\#Ur2  
    %       3    1    3*r^3 - 2*r              sqrt(8) n.5M6i/~a  
    %       3    3    r^3                      sqrt(8) *}(B"FSO  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) h= YTgJ  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) '{JMWNY  
    %       4    4    r^4                      sqrt(10) Td^62D;  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) l_ x jsu  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) d--6<_q  
    %       5    5    r^5                      sqrt(12) :N<o<qn  
    %       --------------------------------------------- \:n<&<aVSr  
    % *$('ous8  
    %   Example: | z}VP-L  
    % 5|bfrc  
    %       % Display three example Zernike radial polynomials NgxJz ]b  
    %       r = 0:0.01:1; ?5pZp~  
    %       n = [3 2 5]; 1Nv qtVC  
    %       m = [1 2 1]; 5?j#  
    %       z = zernpol(n,m,r); ~^ '+ .  
    %       figure yG#x*\9  
    %       plot(r,z) +]H!q W:  
    %       grid on !,7)ZW?*8  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') (8W ?ym  
    % ^q}phj3E  
    %   See also ZERNFUN, ZERNFUN2. $Zrc-tkV  
    ]nxSVKE4p  
    % A note on the algorithm. g6 SZ4WV  
    % ------------------------ a*_" nI&lr  
    % The radial Zernike polynomials are computed using the series PP_ar{|7  
    % representation shown in the Help section above. For many special &,/-<y-S  
    % functions, direct evaluation using the series representation can 7Z}T!HFMr  
    % produce poor numerical results (floating point errors), because 8k Sb92  
    % the summation often involves computing small differences between ldaT: er9  
    % large successive terms in the series. (In such cases, the functions [NGq$5  
    % are often evaluated using alternative methods such as recurrence R\6dvd  
    % relations: see the Legendre functions, for example). For the Zernike C6tfFS3bq  
    % polynomials, however, this problem does not arise, because the RM25]hx  
    % polynomials are evaluated over the finite domain r = (0,1), and te>Op 1R  
    % because the coefficients for a given polynomial are generally all u~N'UD1x  
    % of similar magnitude. _*t75e$-  
    % 8)f/H&)>8  
    % ZERNPOL has been written using a vectorized implementation: multiple m{yq.H[X  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] S*ie$}ZX  
    % values can be passed as inputs) for a vector of points R.  To achieve ub4(g~E  
    % this vectorization most efficiently, the algorithm in ZERNPOL K1- 3!G  
    % involves pre-determining all the powers p of R that are required to V-dub{K  
    % compute the outputs, and then compiling the {R^p} into a single ZtI@$ An  
    % matrix.  This avoids any redundant computation of the R^p, and $D*Yhv!/  
    % minimizes the sizes of certain intermediate variables. Ivq|-LDNc  
    % CSFE[F63  
    %   Paul Fricker 11/13/2006 \ tU[,3  
    "@xL9[d  
    d8^S~7  
    % Check and prepare the inputs: _tnoq;X[  
    % ----------------------------- Hv =7+O$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JWxSN9.X  
        error('zernpol:NMvectors','N and M must be vectors.') 2d OUY $4  
    end HNX/#?3  
    8(-N;<Ef2  
    if length(n)~=length(m) ;l@Ge`&u  
        error('zernpol:NMlength','N and M must be the same length.') t0ZaIE   
    end !3*%-8bp  
    SXV f&8  
    n = n(:); 5lE9UoG[Q  
    m = m(:); zwlz zqV  
    length_n = length(n); X'7MW? q@  
    VQ2B|v  
    if any(mod(n-m,2)) xI5zP? _v  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;'4Kg@/  
    end pG$l   
    wqt/0,\  
    if any(m<0) jXyK[q&O&  
        error('zernpol:Mpositive','All M must be positive.') l]5!$N*  
    end H<3a yp$  
    !$,e)89  
    if any(m>n) QLH6Nmk  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') B,{Q[  
    end Ehtb`Ms  
    )dRB I)P  
    if any( r>1 | r<0 ) 0&6(y* #Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 6[]O3Aa  
    end >td\PW~X  
    SiT5QJe  
    if ~any(size(r)==1) u< 5{H='6  
        error('zernpol:Rvector','R must be a vector.') E@)9'?q  
    end /| [%~`?BM  
    )m10IyUAY  
    r = r(:); k= .pcDX  
    length_r = length(r); N6/;p]|  
    fSm|anuKZe  
    if nargin==4 f_r4*#&v  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); X}]g;|~SN  
        if ~isnorm .$r7q[  
            error('zernpol:normalization','Unrecognized normalization flag.') &jF[f4:7  
        end ~qb-uT\(99  
    else yJHFo[wGMJ  
        isnorm = false; ]Cc8[ZC  
    end TZE;$:1vx>  
    !;&{Q^}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P<R'S  
    % Compute the Zernike Polynomials E"t79dD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R"{oj]d;$F  
    C,dRdEB>  
    % Determine the required powers of r: /8s>JPXKH[  
    % ----------------------------------- #j6qq3OG  
    rpowers = []; fzjZiBK@  
    for j = 1:length(n) d)v'K5  
        rpowers = [rpowers m(j):2:n(j)]; NGuRyZp69&  
    end _!E/ em  
    rpowers = unique(rpowers); {'q(a4  
    h[j(@P  
    % Pre-compute the values of r raised to the required powers, [7=?I.\Cr7  
    % and compile them in a matrix: )ZDqj  
    % ----------------------------- _{0IX  
    if rpowers(1)==0 <FU1|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 'FmnlC1  
        rpowern = cat(2,rpowern{:}); v\Xyz )  
        rpowern = [ones(length_r,1) rpowern]; 5^GrG|~  
    else Gbc2\A\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]*pro|  
        rpowern = cat(2,rpowern{:}); , Y cF~  
    end ,Q>wcE6v  
    V=5v7Y3( j  
    % Compute the values of the polynomials: _[u fH*  
    % -------------------------------------- Q`[J3-Q*{  
    z = zeros(length_r,length_n); Mp`i@pm+  
    for j = 1:length_n aX(Y `g)|  
        s = 0:(n(j)-m(j))/2; $}Ky6sBnvO  
        pows = n(j):-2:m(j); 5s=L5]]r_j  
        for k = length(s):-1:1 hG lRf_{  
            p = (1-2*mod(s(k),2))* ... > R2o7~  
                       prod(2:(n(j)-s(k)))/          ... 2/#%^,Kb2  
                       prod(2:s(k))/                 ... jV|/ C  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... OE_A$8L  
                       prod(2:((n(j)+m(j))/2-s(k))); JAP4Vwj%j  
            idx = (pows(k)==rpowers); J+0T8 ?A  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ttA0* >'  
        end ~ZZJ/Cu  
         )w&k&TY4H  
        if isnorm w]Z:Y`  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); p& +w  
        end QAKA3{-(  
    end Sv|jR r'  
    n~G-X  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) e95@4f^K2  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. x^P~+(g  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated <c$K3  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ;ZowC#j  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, $mq @g  
    %   and THETA is a vector of angles.  R and THETA must have the same ?wYvBFRn7"  
    %   length.  The output Z is a matrix with one column for every P-value, a>XlkkX  
    %   and one row for every (R,THETA) pair. c 6Z\ecH9  
    % :ZP`Y%dt'  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ^=V b'g3P~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ]\Q9j7}37+  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Y;OqdO  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 No G`J$D  
    %   for all p. H_<hZ UB  
    % tX *}l|;(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 {m2lVzK  
    %   Zernike functions (order N<=7).  In some disciplines it is >,s.!vpK  
    %   traditional to label the first 36 functions using a single mode l&4+v.zr  
    %   number P instead of separate numbers for the order N and azimuthal !$5.\D  
    %   frequency M. [  bB   
    % !%s&GD8&l  
    %   Example: _k2*2db   
    % @#= ail  
    %       % Display the first 16 Zernike functions ej9|Y5D"S  
    %       x = -1:0.01:1; s`Z'5J;S  
    %       [X,Y] = meshgrid(x,x); P]b * hC  
    %       [theta,r] = cart2pol(X,Y); A,'JmF$d  
    %       idx = r<=1; qe"t0w|U?  
    %       p = 0:15; fKN&0N |^R  
    %       z = nan(size(X)); `(@}O?w!1  
    %       y = zernfun2(p,r(idx),theta(idx)); ?*h 2:a$  
    %       figure('Units','normalized') g8^YDrH  
    %       for k = 1:length(p) DEcsFC/SK  
    %           z(idx) = y(:,k); }HC6m{vH(  
    %           subplot(4,4,k) Gcz@z1a=n  
    %           pcolor(x,x,z), shading interp C/L+gU&  
    %           set(gca,'XTick',[],'YTick',[]) bQFMg41*w7  
    %           axis square 3Sb'){.MT+  
    %           title(['Z_{' num2str(p(k)) '}']) FJl_2  
    %       end }g\1JSJ%H  
    % X[{tD#  
    %   See also ZERNPOL, ZERNFUN. ]~H\X":[>  
    lE@ V>%b  
    %   Paul Fricker 11/13/2006 C+=8?u<  
    JL1z8Nu  
    bm:"&U*tu'  
    % Check and prepare the inputs: jR[3{ Reo  
    % ----------------------------- sS5:5i  
    if min(size(p))~=1 ,m)k;co^  
        error('zernfun2:Pvector','Input P must be vector.') Ja@zeD)f"  
    end u6#=<FD/}  
    R&`; C<6}D  
    if any(p)>35 ToVi;  
        error('zernfun2:P36', ... |)pRkn8x  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... y$7vJl.uS/  
               '(P = 0 to 35).']) yaD_c;  
    end l#;DO9  
    r%^l~PN  
    % Get the order and frequency corresonding to the function number: SL O~   
    % ---------------------------------------------------------------- "7&DuF$s)  
    p = p(:); !8 V  
    n = ceil((-3+sqrt(9+8*p))/2); V{ yP/X  
    m = 2*p - n.*(n+2); Wu!s  
    :4V8Iz 71  
    % Pass the inputs to the function ZERNFUN: <HC5YA)4  
    % ---------------------------------------- |\W9$V  
    switch nargin yD-L:)@"  
        case 3 Pzl2X@{%  
            z = zernfun(n,m,r,theta); qlJzXq{|`  
        case 4 ,sqx xq  
            z = zernfun(n,m,r,theta,nflag); [$<\*d/  
        otherwise ~5Cid)Q}@o  
            error('zernfun2:nargin','Incorrect number of inputs.') % >\v6ea  
    end c :{#H9  
    UbnX%2TW  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1_of;=9V  
    function z = zernfun(n,m,r,theta,nflag) -*<4 hFb  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }^@Q9<P^E  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )#H&lH  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ? +q(,P@*  
    %   unit circle.  N is a vector of positive integers (including 0), and *:+&Sx L  
    %   M is a vector with the same number of elements as N.  Each element %tOGs80_{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `Pcbc\"*y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, D["~G v  
    %   and THETA is a vector of angles.  R and THETA must have the same p" ;5J+?(  
    %   length.  The output Z is a matrix with one column for every (N,M) hp$/O4fD  
    %   pair, and one row for every (R,THETA) pair. L*QX21@wC  
    % FoNkISzW  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5p}ri,Y<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), sYG:\>}ie  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral L/Ytkag  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wOLDHg_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized J_|LG rt})  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !<8-juY  
    % i0TbsoKh:  
    %   The Zernike functions are an orthogonal basis on the unit circle. Z"pCDW)  
    %   They are used in disciplines such as astronomy, optics, and X>la!}sV  
    %   optometry to describe functions on a circular domain. :Rftn6!  
    % cS2PrsUx  
    %   The following table lists the first 15 Zernike functions. nr{#Krkb  
    % i!a. 6Gq  
    %       n    m    Zernike function           Normalization )-s9CWJv  
    %       -------------------------------------------------- Z0'&@P$  
    %       0    0    1                                 1 x@)G@'vV|  
    %       1    1    r * cos(theta)                    2 -P.51q  
    %       1   -1    r * sin(theta)                    2 lM |}K-2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +v.<Fw2k#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1o8C4?T&  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j&Trvw<t  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7K 'uNPC  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [X%Wg:K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @PZ{(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) w!eY)p<  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _t/~C*=:=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F%tV^$%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Dx5X6t9=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tgVMgu  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =`KA@~XH4  
    %       -------------------------------------------------- Uk'bOp  
    % DuMzK%  
    %   Example 1: ZamOYkRX  
    % Nrn_Gy>|D  
    %       % Display the Zernike function Z(n=5,m=1) B6yTD7  
    %       x = -1:0.01:1; 6KRC_-  
    %       [X,Y] = meshgrid(x,x); `6:B0-r  
    %       [theta,r] = cart2pol(X,Y); ^ 7SE2Zi  
    %       idx = r<=1; 9R m\@E [  
    %       z = nan(size(X)); 0 L$[w  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `PUGg[Zx^  
    %       figure X=KC +1e  
    %       pcolor(x,x,z), shading interp {ew; /;  
    %       axis square, colorbar `x]`<kS;  
    %       title('Zernike function Z_5^1(r,\theta)') k.ttrKy<q/  
    % } 3}H}  
    %   Example 2: /&  W&  
    % YvG=P<_xw  
    %       % Display the first 10 Zernike functions sR4B/1'E  
    %       x = -1:0.01:1; bgYUsc*uR  
    %       [X,Y] = meshgrid(x,x); [Qqomm.[\w  
    %       [theta,r] = cart2pol(X,Y); bs&>QsI?j  
    %       idx = r<=1; !+u K@z&G  
    %       z = nan(size(X)); 6]sP"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .|e8v _2J  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =z!^O T6eb  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .%EYof  
    %       y = zernfun(n,m,r(idx),theta(idx)); B#G:aBCM  
    %       figure('Units','normalized') o/6VOX  
    %       for k = 1:10 SU5O+;{`'  
    %           z(idx) = y(:,k); EeR}34  
    %           subplot(4,7,Nplot(k))  :Y Ki  
    %           pcolor(x,x,z), shading interp S J2l6  
    %           set(gca,'XTick',[],'YTick',[]) rS!M0Hq>t  
    %           axis square bO` S Bq$  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KL yI*`  
    %       end fKW)h?.Kd  
    % [DZ|Ltv  
    %   See also ZERNPOL, ZERNFUN2. h343$,))u  
    1,(WS F  
    %   Paul Fricker 11/13/2006 K3iQ/j~aq  
    E&N~ h|CL  
    :8`~dj.  
    % Check and prepare the inputs: aJ QzM  
    % ----------------------------- X'88W-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x5|^p=  
        error('zernfun:NMvectors','N and M must be vectors.') wF9L<<&B  
    end jU-aa+  
    6>]w1 H  
    if length(n)~=length(m) jV[;e15+  
        error('zernfun:NMlength','N and M must be the same length.') fx-8mf3  
    end |R2p^!m  
    l,*5*1lM  
    n = n(:); as(/ >p  
    m = m(:); y 2)W"PuG  
    if any(mod(n-m,2)) Z9.0#Jnu  
        error('zernfun:NMmultiplesof2', ... /xSFW7d1  
              'All N and M must differ by multiples of 2 (including 0).') = N;5T  
    end UwxszEHC  
    wn;)La  
    if any(m>n) (:I]v_qEYS  
        error('zernfun:MlessthanN', ... !S%0#d2  
              'Each M must be less than or equal to its corresponding N.') {a__/I>)  
    end <F8e?xy  
    qW`?,N)r  
    if any( r>1 | r<0 ) Cv@)tb  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ! B92W  
    end i),bAU!+m  
    tY>Zy1hlI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $ x:N/mMu`  
        error('zernfun:RTHvector','R and THETA must be vectors.') d@p#{ -  
    end vz~Oi  
    yVp,)T9  
    r = r(:); 7{]dh+)  
    theta = theta(:); t.dr<  
    length_r = length(r); IJ~j(.W  
    if length_r~=length(theta) :w -:B^VB  
        error('zernfun:RTHlength', ... v$D U q+  
              'The number of R- and THETA-values must be equal.') ' '(rC38  
    end damG*-7Svx  
    }h=PW'M{  
    % Check normalization: T-#4hY`  
    % -------------------- v3aPHf  
    if nargin==5 && ischar(nflag) =7JSJ98  
        isnorm = strcmpi(nflag,'norm'); q-+:1E  
        if ~isnorm O5aXa_A_u  
            error('zernfun:normalization','Unrecognized normalization flag.') #%2d;V  
        end ,zdGY]$  
    else }lDX3h  
        isnorm = false; ggL/7I(  
    end .$H"j>  
    |g.CS$'#Nt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f@$W5*j  
    % Compute the Zernike Polynomials BM/o7%]n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - om9 Z0e  
    [@ev%x,  
    % Determine the required powers of r: P1Z"}Qw  
    % ----------------------------------- 9=~ZA{0J  
    m_abs = abs(m); oOaFA+0x  
    rpowers = []; e6>G8d  
    for j = 1:length(n) oX8EY l  
        rpowers = [rpowers m_abs(j):2:n(j)]; /IG{j}  
    end Uns%6o  
    rpowers = unique(rpowers); Q"ZpT  
    bY2R/FNL=  
    % Pre-compute the values of r raised to the required powers, }%8ZN :  
    % and compile them in a matrix: GdcXU:J /  
    % ----------------------------- q~b# ml2QS  
    if rpowers(1)==0 GTM0Qvf?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W-l+%T!  
        rpowern = cat(2,rpowern{:}); *d3-[HwZCL  
        rpowern = [ones(length_r,1) rpowern]; (^35cj{s  
    else nj'5iiV`]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Gk{ 'U  
        rpowern = cat(2,rpowern{:}); k9f|R*LM  
    end 7;o:r$08&}  
    *qm|A{FQR  
    % Compute the values of the polynomials: zQ |2D*W  
    % -------------------------------------- P,ueLG=  
    y = zeros(length_r,length(n)); Zs />_w}  
    for j = 1:length(n) X'jyR:ut#  
        s = 0:(n(j)-m_abs(j))/2; g ns}%\,  
        pows = n(j):-2:m_abs(j); \0x>#ygX  
        for k = length(s):-1:1 Jgv Mx  
            p = (1-2*mod(s(k),2))* ... A{ ~D_q  
                       prod(2:(n(j)-s(k)))/              ... zPa2fS8  
                       prod(2:s(k))/                     ... 3"7Q[9Oj  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ik$$Tn&;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9L:wfg}8s  
            idx = (pows(k)==rpowers); /iFn =pk1?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \ saV8U7B  
        end ud  r\\5  
         =^rt?F4  
        if isnorm x*7A33@i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !iKW1ks  
        end .DhI3'Jrl  
    end x<gmDy*  
    % END: Compute the Zernike Polynomials 7b[s W|{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {&,p<5o  
    P!W%KobZ7|  
    % Compute the Zernike functions: 0[l}@K?  
    % ------------------------------ #QoWneZ  
    idx_pos = m>0; Xx{| [2`  
    idx_neg = m<0; ICN>kJ\;M  
    O~*i_t*i9{  
    z = y; &T,|?0>~=J  
    if any(idx_pos) 4{YA['  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?.SGn[  
    end f?UI+TU  
    if any(idx_neg) R^.PKT2E  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); l&ueD& *4&  
    end KMj\A d  
    t2o{=!$WH  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的