非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 L;WFHIE
function z = zernfun(n,m,r,theta,nflag) \-SC-c
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ZW4$Ks2]Y
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6F5g2hBz
% and angular frequency M, evaluated at positions (R,THETA) on the nk;^sq4M:
% unit circle. N is a vector of positive integers (including 0), and ;iW>i8
% M is a vector with the same number of elements as N. Each element 1Tr%lO5?6
% k of M must be a positive integer, with possible values M(k) = -N(k) Ym.{
{^=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "T*1C=
% and THETA is a vector of angles. R and THETA must have the same gVrfZ&XF84
% length. The output Z is a matrix with one column for every (N,M) tSe[*V4{'
% pair, and one row for every (R,THETA) pair. Ri\\Yb
% H>o \C
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %j/pln&
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), > `mV^QD
% with delta(m,0) the Kronecker delta, is chosen so that the integral /P Tq.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, BwrX.!M
% and theta=0 to theta=2*pi) is unity. For the non-normalized WrS>^\:
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {$#88Qa\-
% 'j-U=2,n
% The Zernike functions are an orthogonal basis on the unit circle. t1NGs-S3
% They are used in disciplines such as astronomy, optics, and ?C- ju8]|
% optometry to describe functions on a circular domain. DIfQ~O+u
% 4Y1dkg1y
% The following table lists the first 15 Zernike functions. Z;,G:@,
% }1%%`
% n m Zernike function Normalization e^,IZ{
% -------------------------------------------------- t fD7!N{
% 0 0 1 1 =dsEt\
j
% 1 1 r * cos(theta) 2 iXq*EZb"R
% 1 -1 r * sin(theta) 2 OL%}C*Zq
% 2 -2 r^2 * cos(2*theta) sqrt(6) MiR$N
% 2 0 (2*r^2 - 1) sqrt(3) wWSo+40
% 2 2 r^2 * sin(2*theta) sqrt(6) ns*:mGh
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3 qJ00A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 81C;D`!K
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @biU@[D
% 3 3 r^3 * sin(3*theta) sqrt(8) 9aNOfs8(
% 4 -4 r^4 * cos(4*theta) sqrt(10) Ql%B=vgKL
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zd88+GS,#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) t2YB(6w+xg
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tfu`_6
% 4 4 r^4 * sin(4*theta) sqrt(10) )8oN$20
% -------------------------------------------------- d!4TwpIgx
% *l;S"}b*,_
% Example 1: #6v357-5
% !XM<`H/
% % Display the Zernike function Z(n=5,m=1) z>\l%_w
% x = -1:0.01:1; cGR) $:
% [X,Y] = meshgrid(x,x); gwdAf%|f
% [theta,r] = cart2pol(X,Y); SF9N S*mr
% idx = r<=1; W#E(?M[r
% z = nan(size(X)); _RUL$Ds
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ijUu{PG`X
% figure >{9VXSc
% pcolor(x,x,z), shading interp D.Cn`O}
% axis square, colorbar 5Zd oem
% title('Zernike function Z_5^1(r,\theta)') QnP?j&
% l($8HAJ
% Example 2: j S[#R_
% <QO1Yg7}
% % Display the first 10 Zernike functions \*'@F+
% x = -1:0.01:1; dJ#go*Gn
% [X,Y] = meshgrid(x,x); ck%YEMs
% [theta,r] = cart2pol(X,Y); @}:E{J#g
% idx = r<=1; RwYFBc
% z = nan(size(X)); $(+xhn(O
% n = [0 1 1 2 2 2 3 3 3 3]; /zb/am1#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; YM6
J:89
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MBU|<tc
% y = zernfun(n,m,r(idx),theta(idx)); TET=>6
% figure('Units','normalized') |Olz h63k:
% for k = 1:10 v|\#wrCT?
% z(idx) = y(:,k); ~,E }^
% subplot(4,7,Nplot(k)) qp/1tC`
% pcolor(x,x,z), shading interp L6DYunh}^N
% set(gca,'XTick',[],'YTick',[]) S89j:KRXH%
% axis square vz>9jw:Y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OzD\*,{7
% end *9uNM@7&0
% <7SE|
% See also ZERNPOL, ZERNFUN2. K;WQV,
4hLk+ z<n
% Paul Fricker 11/13/2006 ~[dL:=?c
HfgTc
h
!02y'JS1
% Check and prepare the inputs: c"-X:m"
% ----------------------------- c*.
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) U._fb=
error('zernfun:NMvectors','N and M must be vectors.') dNNXMQ0"
end Du65>O
24k]X`/n
if length(n)~=length(m) A%?c1`ZxF
error('zernfun:NMlength','N and M must be the same length.') TfT^.p*
end /RMtCa~
TukhGgmF
n = n(:); f<iK%
m = m(:); [ 5!}+8]W
if any(mod(n-m,2)) ygj%VG
error('zernfun:NMmultiplesof2', ... c0o Z7)*}
'All N and M must differ by multiples of 2 (including 0).') VevG 64o
end yj#FO'UY
\8!CKnfs
if any(m>n) Q~qM;l\i
error('zernfun:MlessthanN', ... DbLo{mFEIj
'Each M must be less than or equal to its corresponding N.') dor1(@no|
end j5" L
M!5=3>Z
if any( r>1 | r<0 ) #b;k+<n[X
error('zernfun:Rlessthan1','All R must be between 0 and 1.') utuWFAGn A
end ymqv@Byi8A
vs[!B-
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /g!ZU2&l
error('zernfun:RTHvector','R and THETA must be vectors.') 6H:
fg
end *]NfT}}
W_E^+Wl@
r = r(:); pZopdEFDK|
theta = theta(:); h U-FSdR
length_r = length(r); T9&{s-3*
if length_r~=length(theta) IqFcrU$4
error('zernfun:RTHlength', ... cZ|NGkZ
'The number of R- and THETA-values must be equal.') `ovMfL.u
end "qF/7`e[
du$M
% Check normalization: H`fJ<So?
% -------------------- F nXm;k,9*
if nargin==5 && ischar(nflag) L&)e}"
isnorm = strcmpi(nflag,'norm'); ! J<Xel{
if ~isnorm bRyxP2
error('zernfun:normalization','Unrecognized normalization flag.') }q]*aADe
end E56
else (}6\_k[}m
isnorm = false; i0/QfB%O
end aT IzfqCM
HVoPJ!K3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MXfyj5K
% Compute the Zernike Polynomials /7\q#qIm:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &8l?$7S"_/
$;G<!]& s
% Determine the required powers of r: 9ghzK?Yc
% ----------------------------------- ,'HjL:r
m_abs = abs(m); qhvT,"
rpowers = []; ]tT=jN&(
for j = 1:length(n) LYL_Ah'=
rpowers = [rpowers m_abs(j):2:n(j)]; ; 8DtnnE
end 0+op|bdj
rpowers = unique(rpowers); kN1R8| pv
,M?8s2?
% Pre-compute the values of r raised to the required powers, |[iO./zP
% and compile them in a matrix: 5o 5DG
% ----------------------------- aWJ
BYw6{L
if rpowers(1)==0 NYP3u_
QX
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cL*oO@I&_
rpowern = cat(2,rpowern{:}); Mz(?_7
rpowern = [ones(length_r,1) rpowern]; Q&{C%j~N
else Z3c\}HLY
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5j.@)XXe
rpowern = cat(2,rpowern{:}); UakVmVN/P
end syg{qtBz^
O&aD]~|
% Compute the values of the polynomials: Z]Udx
% -------------------------------------- 8%u|[Si;
y = zeros(length_r,length(n)); /{hT3ncb
for j = 1:length(n) Xw'sh#i2
s = 0:(n(j)-m_abs(j))/2; R[l`# I
pows = n(j):-2:m_abs(j); T^#d;A
for k = length(s):-1:1 Cq/u$G
p = (1-2*mod(s(k),2))* ... \8<[P(!3
prod(2:(n(j)-s(k)))/ ... rQ _cH
prod(2:s(k))/ ... #tHYCSr]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /cx'(AT
prod(2:((n(j)+m_abs(j))/2-s(k))); O>hh
idx = (pows(k)==rpowers); B,_K mHItd
y(:,j) = y(:,j) + p*rpowern(:,idx); 5EQ)pH+
end .hxFFk%5
VT4>6u}
if isnorm H.XyNtJ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }]dzY(
end k"gm;,`
end hy;V~J#
% END: Compute the Zernike Polynomials eDP&W$s#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iOhX\@&
xLFMC?I
% Compute the Zernike functions: u? >x
% ------------------------------ =J)-#|eZG
idx_pos = m>0; R'tvF$3=i
idx_neg = m<0; >f Hu
z7XI`MZN^
z = y; *2-b&PQR{
if any(idx_pos)
+ug2p;<B
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); HU/4K7e`
end hG~.Sc:G
if any(idx_neg) wAW{{ p
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $Bc3| `K1v
end `a[fC9
H1q,w|O9j
% EOF zernfun