非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 qF;|bF
function z = zernfun(n,m,r,theta,nflag) > /caXvS
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. i?^L/b`H
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N J<jy2@"tXo
% and angular frequency M, evaluated at positions (R,THETA) on the |Ds1
% unit circle. N is a vector of positive integers (including 0), and fVpMx4&F
% M is a vector with the same number of elements as N. Each element D2~*&'4y
% k of M must be a positive integer, with possible values M(k) = -N(k) >}6%#CAf
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 4
"'~NvO
% and THETA is a vector of angles. R and THETA must have the same a<bwzX|.
% length. The output Z is a matrix with one column for every (N,M) u.xnO cOH!
% pair, and one row for every (R,THETA) pair. 'm
kLCS
% 1#+S+g@#
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 40m -ch6Q
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9CD_os\h
% with delta(m,0) the Kronecker delta, is chosen so that the integral 0YDR1dO(*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, C!bUI8x
z
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1/J=uH
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t;\Y{`
% }:)&u|d_
% The Zernike functions are an orthogonal basis on the unit circle. &0JI!bR(
% They are used in disciplines such as astronomy, optics, and f(MO_Sj]
% optometry to describe functions on a circular domain. ]~3V}z,T*
% 61'XgkacDS
% The following table lists the first 15 Zernike functions. =Jb>x#Y
% H"WprHe
% n m Zernike function Normalization P\k# >}}
% -------------------------------------------------- 6(ol1
(U
% 0 0 1 1 E hMNap}5"
% 1 1 r * cos(theta) 2 1bX<$>x9u
% 1 -1 r * sin(theta) 2 \
}G>8^
% 2 -2 r^2 * cos(2*theta) sqrt(6) #S"nF@
% 2 0 (2*r^2 - 1) sqrt(3) cyz3,3\e
% 2 2 r^2 * sin(2*theta) sqrt(6) [.wYdv35
% 3 -3 r^3 * cos(3*theta) sqrt(8) c5GuM|*7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) vyI!]p
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _.8S&
% 3 3 r^3 * sin(3*theta) sqrt(8) R8'RA%O9J
% 4 -4 r^4 * cos(4*theta) sqrt(10) -nV9:opD
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h~zT ydnH
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) j&qub_j"xX
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /9fR'EO{x
% 4 4 r^4 * sin(4*theta) sqrt(10) C;^X[x%h7$
% -------------------------------------------------- [d]9Oa4
% {R`[kt
% Example 1: i=2N;sAl
% FU4L6n
% % Display the Zernike function Z(n=5,m=1) nAdf=D'P
% x = -1:0.01:1; qUb&
% [X,Y] = meshgrid(x,x); 'TB2:W3
% [theta,r] = cart2pol(X,Y); }@d @3
% idx = r<=1; M9%$lCl
% z = nan(size(X)); `VguQl_,gA
% z(idx) = zernfun(5,1,r(idx),theta(idx)); '6%2.[o
% figure ?4T-@~~*`=
% pcolor(x,x,z), shading interp ' S/gmn
% axis square, colorbar ey$&;1x#5
% title('Zernike function Z_5^1(r,\theta)') \qJXF|z<K
% ]:J$w]\
% Example 2: "fOV^B
% .(k|wX[Fu~
% % Display the first 10 Zernike functions 63IM]J
% x = -1:0.01:1; Pa:|_IXA
% [X,Y] = meshgrid(x,x); {E|$8)58i
% [theta,r] = cart2pol(X,Y); '!B&:X)
% idx = r<=1; f]srRYSR
% z = nan(size(X)); "E4a=YH_
% n = [0 1 1 2 2 2 3 3 3 3]; {]4LULq
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8Z=R)asGS
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7WzxA=*#
% y = zernfun(n,m,r(idx),theta(idx)); 8zW2zkv2|#
% figure('Units','normalized') FGBbO\</
% for k = 1:10 H3-hcx54T
% z(idx) = y(:,k); sc#qwQ#
% subplot(4,7,Nplot(k)) 5*u+q2\F
% pcolor(x,x,z), shading interp \1M4Dl5!
% set(gca,'XTick',[],'YTick',[]) 'PW5ux@`<
% axis square W ]8QM1$
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ('+d.F[109
% end 44j*KsBf
% &s>Jb?_5Mx
% See also ZERNPOL, ZERNFUN2. nKj7.,>;:<
1<aP92/N&
% Paul Fricker 11/13/2006 YKK*ER0
~WF\
W=+ Y|R!
% Check and prepare the inputs: b4Ekqas
% ----------------------------- BDQsP$'6QT
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4 s9LB
error('zernfun:NMvectors','N and M must be vectors.') nQ3A~ ()
end n|yO9:Uw<
]7c=PC
if length(n)~=length(m) zX i'kB
error('zernfun:NMlength','N and M must be the same length.') gf\oC> N
end B&"Q\'c
Pr
C{'XDlU
n = n(:); 6j|{`Zd)G
m = m(:); 6Q5^>\Y
if any(mod(n-m,2)) +:/%3}`
error('zernfun:NMmultiplesof2', ... 2y1Sne=<Kb
'All N and M must differ by multiples of 2 (including 0).') k4zZ7H
end {?7Uj
%E;'ln4h&,
if any(m>n) %mgE;~"&
error('zernfun:MlessthanN', ... YtLt*Ig%
'Each M must be less than or equal to its corresponding N.') M X]n&
end 9}
.z;prz
*/S_Icf
if any( r>1 | r<0 ) [{/jI\?v
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )0k53-h&
end )D%~`,#pQ
|u p
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) bpa?C
error('zernfun:RTHvector','R and THETA must be vectors.') .*Qx\,
end F,CTZ~
;q>ah!"k
r = r(:); -$Ih@2"6
theta = theta(:); 3o/[t
length_r = length(r); + LJ73
!
if length_r~=length(theta) MLp9y#
error('zernfun:RTHlength', ... WTiD[u
'The number of R- and THETA-values must be equal.') KqP#6^ _
end 9;If&uM
l;E(I_
i)
% Check normalization: 9W);rL|5
% -------------------- -trkA'ewZ
if nargin==5 && ischar(nflag) 2st3
isnorm = strcmpi(nflag,'norm'); #4;wjcGWw
if ~isnorm tX~w{|k
error('zernfun:normalization','Unrecognized normalization flag.') EKN~H$.
end (^>J&[=
else K:WDl;8(d
isnorm = false; sa8Vvzvo.
end ue>D7\8
:rP=t ,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \GU<43J2uo
% Compute the Zernike Polynomials f%8C!W]Dm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $<OD31T
V28M lP
% Determine the required powers of r: z0Z%m@
% ----------------------------------- MWh6]gGs
m_abs = abs(m); l}P=/#</T
rpowers = []; _t ycgq#
for j = 1:length(n) Rk8P
ax/JK
rpowers = [rpowers m_abs(j):2:n(j)]; EiaW1Cs
end Ni7nq8B<
rpowers = unique(rpowers); bhs
_9ivw
J9 I:Q<;
% Pre-compute the values of r raised to the required powers, (w zQ2Dk
% and compile them in a matrix: )YI(/*+]
% ----------------------------- DW3G
if rpowers(1)==0 '0,^6'VWOV
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %]7d`/
rpowern = cat(2,rpowern{:}); BL4-7
rpowern = [ones(length_r,1) rpowern]; IvNT6]6 P
else |&4/n6;P$0
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .eC1qWZJpd
rpowern = cat(2,rpowern{:}); fd9k?,zM
end o,wUc"CE
T6kdS]4-
% Compute the values of the polynomials: lr$zHI7_`
% -------------------------------------- `QY)!$mUIF
y = zeros(length_r,length(n)); #,v{Ihn
for j = 1:length(n) B|X!>Q<g
s = 0:(n(j)-m_abs(j))/2; |+"(L#wk
pows = n(j):-2:m_abs(j); a09<!0Rp
for k = length(s):-1:1 3
8`<:{^Y
p = (1-2*mod(s(k),2))* ... Xlt|nX~#;
prod(2:(n(j)-s(k)))/ ... XB5DPx
prod(2:s(k))/ ... {f p[BF
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )=-szJjXZ
prod(2:((n(j)+m_abs(j))/2-s(k))); 7>*vI7O0l
idx = (pows(k)==rpowers); ,"0:3+(8;
y(:,j) = y(:,j) + p*rpowern(:,idx); Yz93'HDB
end @|T'0_'
yaV|AB$v
if isnorm v(%*b,^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Jfl!#UAD|n
end (C)p9-,
end S0W||#Pr
% END: Compute the Zernike Polynomials 3irl
(;v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )BfAw
/2VJX@h
% Compute the Zernike functions: 2I{"XB
% ------------------------------ W=4FFl[
idx_pos = m>0; 0Wp|1)ljA
idx_neg = m<0; Z<{QaY$"
,9
a
z = y; |(^PS8wG
if any(idx_pos) <ZR9GlIr
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); UkGCyGyZ[
end Y\'}a+:@Ph
if any(idx_neg) Y`wSv NU
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .6 ?U@2
end Ilm^G}GB
UJ6v(:z<
% EOF zernfun