切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11802阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 : MjDcI~  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! c1jR j=\  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  K8X7IE  
    'A7!@hVy  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 NF6xKwRU]_  
    lsOv#X-b E  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ^^"zjl*^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ),p0V  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of D;0>-  
    %   order N and frequency M, evaluated at R.  N is a vector of RBrb7D{  
    %   positive integers (including 0), and M is a vector with the /&Oo)OB;  
    %   same number of elements as N.  Each element k of M must be a $M)i]ekm  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) c36p+6rJk=  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is (Ut8pa+yX  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix toPbFU'  
    %   with one column for every (N,M) pair, and one row for every hE {";/}J  
    %   element in R. )&1v[]%S  
    % e' l9  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Tx PFl7,r  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 9?,i+\)qK@  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to `#ruZM066  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 GfELL `yz  
    %   for all [n,m]. wPM>-F  
    % ]%A> swCpn  
    %   The radial Zernike polynomials are the radial portion of the 1- s(v)cxh  
    %   Zernike functions, which are an orthogonal basis on the unit +;~o R_p  
    %   circle.  The series representation of the radial Zernike Nj4CkMM[3  
    %   polynomials is >;MJm  
    % Nf )YG!  
    %          (n-m)/2 i"a3POV>  
    %            __ DSwb8q  
    %    m      \       s                                          n-2s @. -S(MNR  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $.Tn\4z&  
    %    n      s=0 e|{R2z"^  
    % zfKO)Itd  
    %   The following table shows the first 12 polynomials. x9 Z89Gwi  
    % lk 1\|Q I  
    %       n    m    Zernike polynomial    Normalization hEB5=~A_  
    %       --------------------------------------------- 0vj CSU-X  
    %       0    0    1                        sqrt(2) V gMgeja  
    %       1    1    r                           2 i6KfH\{N  
    %       2    0    2*r^2 - 1                sqrt(6) 1jd{AqHl  
    %       2    2    r^2                      sqrt(6) kZG.Id  
    %       3    1    3*r^3 - 2*r              sqrt(8) R#hy2kA  
    %       3    3    r^3                      sqrt(8) _dm0*T ?  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ?{ExBZNa  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) I #1~CbR  
    %       4    4    r^4                      sqrt(10) E_=F' sP?  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) E\!X$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) I.3~ctzu  
    %       5    5    r^5                      sqrt(12) '{2]:  
    %       --------------------------------------------- 8Ij<t{Lps  
    % 7{}E{/  
    %   Example: @\&j3A  
    % m&gd<rt/  
    %       % Display three example Zernike radial polynomials j<~Wp$\i7>  
    %       r = 0:0.01:1; !*:g??[T  
    %       n = [3 2 5]; qhY+<S9  
    %       m = [1 2 1]; OCrTzz8  
    %       z = zernpol(n,m,r); hP+4{F*}-  
    %       figure INr1bAe$  
    %       plot(r,z) M]PZwW8  
    %       grid on yo#r^iAr  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') $Lj ]NtO  
    % /.0K#J:  
    %   See also ZERNFUN, ZERNFUN2. o08g]a  
    2%WeB/)9  
    % A note on the algorithm. 'l^Bb#)"  
    % ------------------------ ! :]_-DX  
    % The radial Zernike polynomials are computed using the series ,}IcQu'O  
    % representation shown in the Help section above. For many special B`-uZ9k   
    % functions, direct evaluation using the series representation can z)C}}NH*!@  
    % produce poor numerical results (floating point errors), because ooJxE\L  
    % the summation often involves computing small differences between "a[;{s{{.  
    % large successive terms in the series. (In such cases, the functions rQ* w3F?:  
    % are often evaluated using alternative methods such as recurrence  ~frsgHW  
    % relations: see the Legendre functions, for example). For the Zernike v<v;ZR)  
    % polynomials, however, this problem does not arise, because the mj'~-$5T  
    % polynomials are evaluated over the finite domain r = (0,1), and 5&s6(?,Eu  
    % because the coefficients for a given polynomial are generally all  <)TIj6  
    % of similar magnitude. ( 3B1X  
    % x4v:67_^  
    % ZERNPOL has been written using a vectorized implementation: multiple uNn1qV  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ysOf=~ 1  
    % values can be passed as inputs) for a vector of points R.  To achieve i$] :Y`3h  
    % this vectorization most efficiently, the algorithm in ZERNPOL n' mrLZw  
    % involves pre-determining all the powers p of R that are required to KhWy  
    % compute the outputs, and then compiling the {R^p} into a single IaeO0\ 4E  
    % matrix.  This avoids any redundant computation of the R^p, and 9wR D=a  
    % minimizes the sizes of certain intermediate variables. LKvX~68  
    % _\d|`3RM  
    %   Paul Fricker 11/13/2006 R7Qj<,  
    h/tCve3Z  
    _5 SvZ;4  
    % Check and prepare the inputs: =7+%31  
    % ----------------------------- PFp!T [)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o?}dHTk7  
        error('zernpol:NMvectors','N and M must be vectors.') 01@ WU1IN  
    end (5jKUQ8Q>  
    AVjRhe   
    if length(n)~=length(m) =Lkn   
        error('zernpol:NMlength','N and M must be the same length.') (m2%7f.I  
    end IB# ua:  
    'df@4}9  
    n = n(:); 4S'e>:  
    m = m(:); c{Z "'t7  
    length_n = length(n); l\ dPfJ  
    ]@9W19=P!P  
    if any(mod(n-m,2)) PWS8Dpb  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') A~Sc ] M  
    end "&SE!3*m`I  
    PV,Z@qm@^  
    if any(m<0) dsw^$R}   
        error('zernpol:Mpositive','All M must be positive.') O83J[YuzjN  
    end ;cf$u}+  
    =b$g_+  
    if any(m>n) D-@6 hWh~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') uH$hMg  
    end B)7:*Kj  
    4e>f}u 5  
    if any( r>1 | r<0 ) Byw EoS  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') H%m^8yW1  
    end XwEMF5[  
    U $#^ e  
    if ~any(size(r)==1) 6?}|@y^fb  
        error('zernpol:Rvector','R must be a vector.') KLM6#6`  
    end kq=Htbv7  
    4'D^>z!c  
    r = r(:); 5(#z)T  
    length_r = length(r); !jl^__ .DR  
    3q/"4D  
    if nargin==4 O=U,x-Wl  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ]u|FcwWc3  
        if ~isnorm sB:e:PK  
            error('zernpol:normalization','Unrecognized normalization flag.') \68bXY.  
        end MMjewGxe  
    else 0*]0#2Z  
        isnorm = false; W:<2" &7  
    end ([$KXfAi]h  
    VB/75xK_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '2l[~T$*  
    % Compute the Zernike Polynomials JT}"CuC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }6LcimQyK  
    )X#$G?|Hn  
    % Determine the required powers of r: o&q:b9T  
    % ----------------------------------- pDP* 3  
    rpowers = []; W!el[@  
    for j = 1:length(n) (~\HizSl  
        rpowers = [rpowers m(j):2:n(j)]; TQt[he$O  
    end SKf;Fe  
    rpowers = unique(rpowers); S~ckIN]  
    " ?aE3$/  
    % Pre-compute the values of r raised to the required powers, -"yma_  
    % and compile them in a matrix: oSYJXs  
    % ----------------------------- S8;c0}-  
    if rpowers(1)==0 T^8`ji  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }6u}?>S  
        rpowern = cat(2,rpowern{:}); W"/,<xHuh  
        rpowern = [ones(length_r,1) rpowern]; 0RdW.rZJ  
    else 7KC2%s#7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); lnl>!z  
        rpowern = cat(2,rpowern{:}); F'<XB~ &o  
    end %[*_-%  
    s#8}&2#l  
    % Compute the values of the polynomials: mtFC H  
    % -------------------------------------- agoMsxI9  
    z = zeros(length_r,length_n); Wf:X) S7  
    for j = 1:length_n Y]&2E/oc  
        s = 0:(n(j)-m(j))/2; l;z+E_sQ  
        pows = n(j):-2:m(j); J'#o6Ud  
        for k = length(s):-1:1 vG}\Amx+  
            p = (1-2*mod(s(k),2))* ... 1N]-WCxQ  
                       prod(2:(n(j)-s(k)))/          ... G?s;L NR  
                       prod(2:s(k))/                 ... pTQ7woj}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... !+hw8@A  
                       prod(2:((n(j)+m(j))/2-s(k))); Nsy>qa7  
            idx = (pows(k)==rpowers); (Gzq 1+B  
            z(:,j) = z(:,j) + p*rpowern(:,idx); $\oe}`#o  
        end iF##3H$c  
         z2.OR,R}]  
        if isnorm v>hc\H1P  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); o9D#d\G  
        end OlW5k`B  
    end }i;!p Ue$  
    ] C_$zbmi  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }N3Ur~X\  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,-1taS  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated "X1{*  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive <~5$<L4  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, / vzwokH  
    %   and THETA is a vector of angles.  R and THETA must have the same G;msq=9|  
    %   length.  The output Z is a matrix with one column for every P-value, pKL^ <'w0  
    %   and one row for every (R,THETA) pair. SP|Dz,o  
    % {bp~_`O  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike B&lF! ]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 4y9n,~Qgw  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) SI l<\  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 V/DdV}n!  
    %   for all p. '6>nXp?)r  
    % \xtmd[7lb<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 pc_$,RkN  
    %   Zernike functions (order N<=7).  In some disciplines it is }~Y#N  
    %   traditional to label the first 36 functions using a single mode /I#SP/M&l  
    %   number P instead of separate numbers for the order N and azimuthal FU(s jB  
    %   frequency M. w5&,AL:  
    % j0K}nS\ P  
    %   Example:  gY@$g  
    % SR 1UO'.  
    %       % Display the first 16 Zernike functions $66DyK?  
    %       x = -1:0.01:1; JMYM}G  
    %       [X,Y] = meshgrid(x,x); A!5)$>!o  
    %       [theta,r] = cart2pol(X,Y); kKSn^q L*  
    %       idx = r<=1; Ll6|WhX  
    %       p = 0:15; e0u* \b  
    %       z = nan(size(X)); Kd,7x'h`E  
    %       y = zernfun2(p,r(idx),theta(idx)); ^,Y#_$oR  
    %       figure('Units','normalized') sJ/?R:  
    %       for k = 1:length(p) bX]$S 5c_u  
    %           z(idx) = y(:,k); a@WSIcX*W  
    %           subplot(4,4,k) \c$! C8z  
    %           pcolor(x,x,z), shading interp "^@0zy@x  
    %           set(gca,'XTick',[],'YTick',[]) O!\\m0\ e  
    %           axis square K1Wiiw  
    %           title(['Z_{' num2str(p(k)) '}']) 1=%\4\  
    %       end [VwoZX:  
    % fDY#&EO: %  
    %   See also ZERNPOL, ZERNFUN. > jvi7  
    \XlT  
    %   Paul Fricker 11/13/2006 [L@ vC>G  
    ~I)\d/7o  
    $nbZ+~49  
    % Check and prepare the inputs: GKKf#r74  
    % ----------------------------- k GzosUt  
    if min(size(p))~=1 w;Na9tR  
        error('zernfun2:Pvector','Input P must be vector.') [Y]\sF;J  
    end x+7jJ=F  
    sjV>&eb  
    if any(p)>35 'PrrP3lO_~  
        error('zernfun2:P36', ... ,;yiV<AD  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... E7qk>~Dg  
               '(P = 0 to 35).']) BI-xo}KI  
    end n +z5;'my  
    k:0HsN!F9  
    % Get the order and frequency corresonding to the function number: Cuq=>J  
    % ---------------------------------------------------------------- Y_49UtJIg  
    p = p(:); @t6B\ ?4'T  
    n = ceil((-3+sqrt(9+8*p))/2); ^SKuX?f\  
    m = 2*p - n.*(n+2); =F5(k(Ds  
    (r?41?5K  
    % Pass the inputs to the function ZERNFUN: Fh4kd>1 D  
    % ---------------------------------------- s`G3SE  
    switch nargin |Tp>,\:5  
        case 3 G-]ndrTn  
            z = zernfun(n,m,r,theta); .* xaI+:  
        case 4 EnGVp<6R  
            z = zernfun(n,m,r,theta,nflag); @m[r0i0J"  
        otherwise C-abc+/  
            error('zernfun2:nargin','Incorrect number of inputs.') W])<0R52  
    end {WJ+6!v  
    @e_ bG@  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :O}=$[  
    function z = zernfun(n,m,r,theta,nflag) >i%{5d  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. FabzP_<b  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0Z{f!MOh  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?H\K];  
    %   unit circle.  N is a vector of positive integers (including 0), and +,&8U&~`  
    %   M is a vector with the same number of elements as N.  Each element VL5GX (  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3: 'eZ cM  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6\7b E$K  
    %   and THETA is a vector of angles.  R and THETA must have the same HrH-e= j  
    %   length.  The output Z is a matrix with one column for every (N,M) E({W`b~_f  
    %   pair, and one row for every (R,THETA) pair. 0>?%{Xy  
    % A~_*vcz  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike X\:;A{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (*>%^C?  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral diF-`~  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cRm+?/  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]_6w(>A@3#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AM4lAq_  
    % \a+.~_iL|  
    %   The Zernike functions are an orthogonal basis on the unit circle. SW!lSIk  
    %   They are used in disciplines such as astronomy, optics, and 4NaL#3  
    %   optometry to describe functions on a circular domain. #1-,s.)  
    % Ib(q9!L  
    %   The following table lists the first 15 Zernike functions. /a}F ;^  
    % `52+.*J+%  
    %       n    m    Zernike function           Normalization )N4!zuSVf  
    %       -------------------------------------------------- _?"P<3/iF  
    %       0    0    1                                 1 1 !N+hf  
    %       1    1    r * cos(theta)                    2 z ;>xI~  
    %       1   -1    r * sin(theta)                    2 zPzy 0lx  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) $]v=2j  
    %       2    0    (2*r^2 - 1)                    sqrt(3) x3j)'`=15  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TPjElBh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) N~rA/B]T  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) cR'l\iv+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) i2]7Bf)oV  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }HB>Zb5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]_!5g3VQh  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zl?Gd4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 87; E#2  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gEghDO_G  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [Dr'  
    %       -------------------------------------------------- g=)B+SY'  
    % HSXv_  
    %   Example 1: 05o)Q &`  
    % YfRjr  
    %       % Display the Zernike function Z(n=5,m=1) &8p]yo2zO  
    %       x = -1:0.01:1; w ]8+ OP  
    %       [X,Y] = meshgrid(x,x); :1>h,NKC>  
    %       [theta,r] = cart2pol(X,Y); M]c"4 b;  
    %       idx = r<=1; 52X[ {  
    %       z = nan(size(X)); s7(NFX5  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]ySm|&aU  
    %       figure PHQ7  
    %       pcolor(x,x,z), shading interp z$64Ep#  
    %       axis square, colorbar /g/]Q^  
    %       title('Zernike function Z_5^1(r,\theta)') y vIeK6  
    % F ru&-T[  
    %   Example 2: V{jQ=<)@e  
    % (AYzN3 ?D  
    %       % Display the first 10 Zernike functions -!o*A>N  
    %       x = -1:0.01:1; e}f#dR+(  
    %       [X,Y] = meshgrid(x,x); s2Z'_r T  
    %       [theta,r] = cart2pol(X,Y); olm0O  (9  
    %       idx = r<=1; _3Kow{y\  
    %       z = nan(size(X)); Q$Q>pV;uH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 6 zyxGJ(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .rPg  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !uZ)0R  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^(+ X|t  
    %       figure('Units','normalized') cn ~/P|B[  
    %       for k = 1:10 6!39t  
    %           z(idx) = y(:,k); ^LI\W'K  
    %           subplot(4,7,Nplot(k)) 7)RDu,fx  
    %           pcolor(x,x,z), shading interp lJHU1 gu  
    %           set(gca,'XTick',[],'YTick',[]) :@rq+wvP  
    %           axis square ;AH8/M B9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y0z)5),[U:  
    %       end nYsB^Nr6  
    % 6o:b(v&Oo  
    %   See also ZERNPOL, ZERNFUN2. p>ba6BDJT  
    3VZ}5  
    %   Paul Fricker 11/13/2006 Oj=g;iY  
    a!@(bb z>  
    .8%&K0  
    % Check and prepare the inputs: D6I-:{ws  
    % ----------------------------- &0*7]Wo*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) V7 OhOLK8  
        error('zernfun:NMvectors','N and M must be vectors.') 7v']wA r]  
    end (X?HuWTm  
    UuKW`(?^  
    if length(n)~=length(m) W{$J)iQ  
        error('zernfun:NMlength','N and M must be the same length.') >sm~te$5  
    end uQhI)  
    T^ )\  
    n = n(:); r@t \a+  
    m = m(:); ~0@ uR  
    if any(mod(n-m,2)) {^@vCBE+  
        error('zernfun:NMmultiplesof2', ... )H1\4LeP  
              'All N and M must differ by multiples of 2 (including 0).') l5 T0x=y9!  
    end Dz3~cuVb  
    {EjzJr>  
    if any(m>n) ?vBMx _0  
        error('zernfun:MlessthanN', ... 6ys|'<?  
              'Each M must be less than or equal to its corresponding N.') []-<-TqJ  
    end H73 r3BH  
    ~v@.YJoZ4Z  
    if any( r>1 | r<0 ) cd&sAK"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') FrsXLUY  
    end 'u#c_m! 9  
    BhUGMK  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /EW=OZ/  
        error('zernfun:RTHvector','R and THETA must be vectors.') kp-`_sDg  
    end *L&|4|BF2  
    P67*-Ki  
    r = r(:); ;uho.)%N`F  
    theta = theta(:); <CcSChCg  
    length_r = length(r); 3:aj8F2  
    if length_r~=length(theta) E{'Y>g B6  
        error('zernfun:RTHlength', ... R('\i/fy  
              'The number of R- and THETA-values must be equal.') /s~BE ,su  
    end ]pWn%aGv*Y  
    F AQx8P  
    % Check normalization: y&A&d-  
    % -------------------- 2U`!0~pod  
    if nargin==5 && ischar(nflag) mhMTn*9  
        isnorm = strcmpi(nflag,'norm'); 2c'<rkA  
        if ~isnorm '};mBW4z  
            error('zernfun:normalization','Unrecognized normalization flag.') ro+8d  
        end ^KJi |'B  
    else |&MO us#v  
        isnorm = false; {wl7&25  
    end 'Yaq; mDY  
    YIs_.CTi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L@S1C=-/  
    % Compute the Zernike Polynomials !<<wI'8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y 8-;eqH  
    ;> %wf3e  
    % Determine the required powers of r: tmQ,>   
    % ----------------------------------- -nZDFC8y$  
    m_abs = abs(m); t9.| i H  
    rpowers = []; EeQ2\'t  
    for j = 1:length(n) ZkBWVZb  
        rpowers = [rpowers m_abs(j):2:n(j)]; 3fUiYI|&7  
    end BQ=JZ4&  
    rpowers = unique(rpowers); +Mb}70^  
    vs{VRc  
    % Pre-compute the values of r raised to the required powers, \.?' y71  
    % and compile them in a matrix: jFl!<ooCo  
    % ----------------------------- Rw<O%i5/d  
    if rpowers(1)==0 xS;tmc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QJ%N80  
        rpowern = cat(2,rpowern{:}); Q?bC'147O  
        rpowern = [ones(length_r,1) rpowern]; or"9I1o  
    else ,uD}1 G<u  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }((P)\s  
        rpowern = cat(2,rpowern{:}); Q]]M;(  
    end 4WPco"xH!  
    bduHYs+rq  
    % Compute the values of the polynomials: SB:z[kfz|  
    % -------------------------------------- w3;T]R*  
    y = zeros(length_r,length(n)); ./<giTR:p  
    for j = 1:length(n) {5 3#Xd  
        s = 0:(n(j)-m_abs(j))/2; :|-^et]a8  
        pows = n(j):-2:m_abs(j); 8g?2( MT;  
        for k = length(s):-1:1 v <m=g!  
            p = (1-2*mod(s(k),2))* ... #+ {%>f  
                       prod(2:(n(j)-s(k)))/              ... F5H]$AjW  
                       prod(2:s(k))/                     ... zhh6;>P  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EL6<%~,V"I  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ([A%>u>h  
            idx = (pows(k)==rpowers); Y2|c;1~5$  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  `ghNS  
        end xs?]DJj  
         aNgJm~K0P  
        if isnorm 'X~CrgQl  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E?jb?  
        end Gw#z:gX2  
    end gu1n0N`b  
    % END: Compute the Zernike Polynomials >+%p }l:<\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uFG ;AY|  
    a fB?js6  
    % Compute the Zernike functions: XcKyrh;i  
    % ------------------------------ w ; PV &M  
    idx_pos = m>0; p+;x&h)[l  
    idx_neg = m<0; 5N907XVu  
    'EB5#  
    z = y; /+m7J"Km  
    if any(idx_pos) 1#x@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RPkOtRKL=w  
    end 5 HN,y  
    if any(idx_neg) _:Ov-HIR  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ah!fQLMH  
    end ;nb>IL  
    OQ _wsAA  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的