切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9583阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 o D*h@yL  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! X@\rg}kP  
     
    分享到
    离线phoenixzqy
    发帖
    4345
    光币
    8843
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  `aD~\O  
    l ~b# Y&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  SP?~i@H  
    z\Hg@J&#  
    07年就写过这方面的计算程序了。
    提供免费光学设计培训,请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    846
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 3qf?n5 "8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. #mKF)W  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #1fL2nlP*E  
    %   order N and frequency M, evaluated at R.  N is a vector of &A}hx\_T  
    %   positive integers (including 0), and M is a vector with the ~(*2 :9*0  
    %   same number of elements as N.  Each element k of M must be a Gb!R>WY  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) E<RPMd @a  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is boS=  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (vP<}  
    %   with one column for every (N,M) pair, and one row for every G+7#!y Y  
    %   element in R. HTz5LAe~b7  
    % AjVX  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Zzn N"Si,  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 4SVIdSA  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +[vI ocu  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 {ty)2  
    %   for all [n,m]. >piVi[`  
    % Ty<."dyPW  
    %   The radial Zernike polynomials are the radial portion of the 9U>OeTh(  
    %   Zernike functions, which are an orthogonal basis on the unit "?%2`*\  
    %   circle.  The series representation of the radial Zernike ]*?lgwE  
    %   polynomials is wKU9I[]  
    % mF:Pplf<  
    %          (n-m)/2 p<[MU4  
    %            __ PctXh, =  
    %    m      \       s                                          n-2s <$(y6+lY  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r E$.fAIt  
    %    n      s=0 +pPfvE`  
    % po\(O8#5U  
    %   The following table shows the first 12 polynomials. 12VIP-ABK  
    % RDfv D|}VN  
    %       n    m    Zernike polynomial    Normalization D%}rQ,*  
    %       --------------------------------------------- !He_f-eZ  
    %       0    0    1                        sqrt(2) v-Tkp Yn  
    %       1    1    r                           2 nuH=pIq6x  
    %       2    0    2*r^2 - 1                sqrt(6) a[Nm< qV05  
    %       2    2    r^2                      sqrt(6) A(_HM qA]  
    %       3    1    3*r^3 - 2*r              sqrt(8) C(8VXtx_  
    %       3    3    r^3                      sqrt(8) 9>ajhFyOhX  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) |k$6"dXSO  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Q.?(h! )9  
    %       4    4    r^4                      sqrt(10) [QFAkEJ--o  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) EHy15RL  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) !9.k%B:  
    %       5    5    r^5                      sqrt(12) +E^2]F7Zk  
    %       --------------------------------------------- qj9[mBkP"  
    % :w q][0)  
    %   Example: V0NLwl O  
    % tD*k   
    %       % Display three example Zernike radial polynomials m%0_fNSJ  
    %       r = 0:0.01:1; 0K'{w]Q  
    %       n = [3 2 5]; k%3)J"|/  
    %       m = [1 2 1]; NH;e|8  
    %       z = zernpol(n,m,r); 0W0GSDx  
    %       figure )DmydyQ'  
    %       plot(r,z) yAAV,?:o[  
    %       grid on 4E2#krE%  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') =+LIGHIt  
    % Llkh kq_  
    %   See also ZERNFUN, ZERNFUN2. c2t`i  
    E[WU  
    % A note on the algorithm. ht*N[Pi4;  
    % ------------------------ g$ HL::  
    % The radial Zernike polynomials are computed using the series eL>wKu:r  
    % representation shown in the Help section above. For many special e^em^1H( %  
    % functions, direct evaluation using the series representation can X-tw)  
    % produce poor numerical results (floating point errors), because vf zC2  
    % the summation often involves computing small differences between Nyt*mbd5 {  
    % large successive terms in the series. (In such cases, the functions ^vxx]Hji  
    % are often evaluated using alternative methods such as recurrence fF(AvMsO  
    % relations: see the Legendre functions, for example). For the Zernike _CPj] m{  
    % polynomials, however, this problem does not arise, because the m.rV1#AI  
    % polynomials are evaluated over the finite domain r = (0,1), and 0$ON`Vsu|  
    % because the coefficients for a given polynomial are generally all Mq#m;v$E  
    % of similar magnitude. mKjTJzS  
    % Z^]jy>dj  
    % ZERNPOL has been written using a vectorized implementation: multiple 5kGQf  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %%|pJ%}Q>  
    % values can be passed as inputs) for a vector of points R.  To achieve ]isq}Qv~  
    % this vectorization most efficiently, the algorithm in ZERNPOL e]nP7TIU  
    % involves pre-determining all the powers p of R that are required to +.&P$`;TZj  
    % compute the outputs, and then compiling the {R^p} into a single vp2w^/])u  
    % matrix.  This avoids any redundant computation of the R^p, and De>e`./56  
    % minimizes the sizes of certain intermediate variables. X&HYWH'@,  
    % 8!0fT}  
    %   Paul Fricker 11/13/2006 ^, YTQ.O  
    :1Nc6G  
     Cu5_OJ  
    % Check and prepare the inputs: @D=B5f@(o  
    % -----------------------------  71@kIJI  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Gk+R, :  
        error('zernpol:NMvectors','N and M must be vectors.') sVr|kvn2  
    end }-sh  
    )sW!s3>S>  
    if length(n)~=length(m) 2z*}fkJ  
        error('zernpol:NMlength','N and M must be the same length.') g%tUkM  
    end epKr6 xq  
    Y# I8gzv  
    n = n(:); f,i2U|1pbj  
    m = m(:); z6}p4  
    length_n = length(n); gaQ E'qp>  
    |JR`" nF`  
    if any(mod(n-m,2)) >?OUs>}3y2  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +L"F]_?  
    end b+q'xnA=>  
    :!l.ze{F  
    if any(m<0) -<k)|]8  
        error('zernpol:Mpositive','All M must be positive.') k~so+k&=b  
    end 4CchE15  
    Iila|,cM  
    if any(m>n) MM]0}65KG  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 5Pq6X  
    end n-SO201[*  
    \BH?GMoP  
    if any( r>1 | r<0 ) PY C  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  H{yBD xw  
    end (1q(6!  
    50|nQ:u,  
    if ~any(size(r)==1) (SQGl!Lai0  
        error('zernpol:Rvector','R must be a vector.') p#Po?  
    end c~/poFj  
    jbq x7x  
    r = r(:); "=K3sk  
    length_r = length(r); A(uo%QE|  
    0FE_><e  
    if nargin==4 QHja4/  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); JL!^R_b&c  
        if ~isnorm j:uq85 s  
            error('zernpol:normalization','Unrecognized normalization flag.') ^wc:qll  
        end <$hv{a  
    else _.R]K$U  
        isnorm = false; 88<d<)7t  
    end )MSCyPp5  
    5 (!FQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d&L  
    % Compute the Zernike Polynomials Nt]nwae>A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6HJsIeQ  
    5#x[rr{^*  
    % Determine the required powers of r: uPbdzUk$  
    % ----------------------------------- y{<js!au  
    rpowers = []; h5T~dGRlR  
    for j = 1:length(n) =jh^mD&'  
        rpowers = [rpowers m(j):2:n(j)]; R\X;`ptT  
    end : O@(Sv  
    rpowers = unique(rpowers); 8+7*> FD)1  
    p<h(  
    % Pre-compute the values of r raised to the required powers, -K$ugDi  
    % and compile them in a matrix: &hI!0DixX  
    % ----------------------------- _t;^\"\  
    if rpowers(1)==0 :-U& _%#w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #@w/S:KbJt  
        rpowern = cat(2,rpowern{:}); qhG2j;  
        rpowern = [ones(length_r,1) rpowern]; Z_dL@\#|  
    else %-$ :/ N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G;#xcld  
        rpowern = cat(2,rpowern{:}); t~dK\>L  
    end b?cO+PY01  
    pO fw *lD  
    % Compute the values of the polynomials: +:jv )4^O  
    % -------------------------------------- +A1*e+/b\  
    z = zeros(length_r,length_n); K$GQc"  
    for j = 1:length_n _*g.U=u  
        s = 0:(n(j)-m(j))/2; 3TeRZ=2:*x  
        pows = n(j):-2:m(j); 7&HcrkP]  
        for k = length(s):-1:1 Gg GjBt  
            p = (1-2*mod(s(k),2))* ... nLwfPj  
                       prod(2:(n(j)-s(k)))/          ... 6&6dd_K(  
                       prod(2:s(k))/                 ... +t*I{X(  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *' es(]W  
                       prod(2:((n(j)+m(j))/2-s(k))); g,o46`6"  
            idx = (pows(k)==rpowers); "Xwsu8~  
            z(:,j) = z(:,j) + p*rpowern(:,idx); W`oyDg,D  
        end NOoF1kS+  
         9 `bLQd  
        if isnorm wpC .!T  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); x $[_Hix  
        end z19%!k  
    end 5kWzD'!^  
    P_mP ^L  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +>2.O2)%q  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,JbP~2M~%  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated snu?+*6  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Wlq3r#  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8yDsl  
    %   and THETA is a vector of angles.  R and THETA must have the same Hd7Vp:KM  
    %   length.  The output Z is a matrix with one column for every P-value, sKs`gi2  
    %   and one row for every (R,THETA) pair. vF~q".imC  
    % &w`Ho)P  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike O8v9tGZoh  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7B5b +  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) XhWo~zh"  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 1=9GV+`n  
    %   for all p. CK|AXz+EN  
    % cH:&S=>h  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -`z%<)!Y  
    %   Zernike functions (order N<=7).  In some disciplines it is ]mNsG0r6  
    %   traditional to label the first 36 functions using a single mode +R;LHRS%  
    %   number P instead of separate numbers for the order N and azimuthal $T66%wX  
    %   frequency M. v_v>gPl,  
    % 8cMX=P  
    %   Example: -k2|`t _  
    % m#O; 1/P  
    %       % Display the first 16 Zernike functions (n2_HePE  
    %       x = -1:0.01:1; %BMlc m7Ec  
    %       [X,Y] = meshgrid(x,x); GNB'.tJ:0Y  
    %       [theta,r] = cart2pol(X,Y); B`3z(a92S  
    %       idx = r<=1; -byaV;T?"  
    %       p = 0:15; ]c|JxgU  
    %       z = nan(size(X)); s`[V{1m,  
    %       y = zernfun2(p,r(idx),theta(idx)); I 0x;rP  
    %       figure('Units','normalized') ` l'QAIo  
    %       for k = 1:length(p) O7.eq524  
    %           z(idx) = y(:,k); ''!j:49  
    %           subplot(4,4,k) >zw@!1{1  
    %           pcolor(x,x,z), shading interp KjF8T7%  
    %           set(gca,'XTick',[],'YTick',[]) >dw 0@T&p  
    %           axis square Z0'LD<  
    %           title(['Z_{' num2str(p(k)) '}']) v^p* l0r6:  
    %       end eOXu^M>:F  
    % i$ hWX4L  
    %   See also ZERNPOL, ZERNFUN. [TqX"@4NS  
    []yIz1P=j  
    %   Paul Fricker 11/13/2006 KIWHn_ :  
    C{G=Y[?oc  
    Ad3TD L?  
    % Check and prepare the inputs: P%Q'w  
    % ----------------------------- SJ;{  Hg  
    if min(size(p))~=1 $$Ibr]$5  
        error('zernfun2:Pvector','Input P must be vector.') 0a@tPskV  
    end tO1k2<Z"Y&  
    "fSaM&@[B  
    if any(p)>35 I4UsDs*BD  
        error('zernfun2:P36', ...  Yy`A0v  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... OS>%pgv  
               '(P = 0 to 35).']) o"P)(;  
    end IeA/<'U s  
    V,[[# a)y  
    % Get the order and frequency corresonding to the function number: "qZTgCOY2  
    % ---------------------------------------------------------------- 7`)RB hGB  
    p = p(:); xH,e$t#@@~  
    n = ceil((-3+sqrt(9+8*p))/2); b`DPlQHj  
    m = 2*p - n.*(n+2); 6e5A8e8"]  
    $DnJ/hg;qD  
    % Pass the inputs to the function ZERNFUN: %X%f0J  
    % ---------------------------------------- zA$ f$J7\^  
    switch nargin rG[2.\&  
        case 3 d#ab"&$bv  
            z = zernfun(n,m,r,theta); [x`),3qD  
        case 4 ^Mhh2v  
            z = zernfun(n,m,r,theta,nflag); ]z=dRq  
        otherwise V@gG x  
            error('zernfun2:nargin','Incorrect number of inputs.') HB.:/ 5\  
    end ^)|tf\4  
    ~qTChCXP  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ,#0#1k<Dm  
    function z = zernfun(n,m,r,theta,nflag) K>\v<!%a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. C9FAX$$^(Y  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *kj+6`:CPs  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ew c:-2Y^  
    %   unit circle.  N is a vector of positive integers (including 0), and 6vU%Y_n=y]  
    %   M is a vector with the same number of elements as N.  Each element N!\1O,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) u2I@ fH/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ?fc<3q"  
    %   and THETA is a vector of angles.  R and THETA must have the same N];K  
    %   length.  The output Z is a matrix with one column for every (N,M) P/k#([:2  
    %   pair, and one row for every (R,THETA) pair. P.^*K:5@  
    % DD>n-8M@>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4JH^R^O<n  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u:wf :^  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )hVn/*mH  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, onv0gb/J  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9%MgAik(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. DoICf1  
    % QV#HN"F/K  
    %   The Zernike functions are an orthogonal basis on the unit circle. $HRl:KDdP~  
    %   They are used in disciplines such as astronomy, optics, and yU~w Zjw  
    %   optometry to describe functions on a circular domain. e_S,N0  
    % #.,LWL]  
    %   The following table lists the first 15 Zernike functions. #B_H/9f(  
    % mK^E@uxN  
    %       n    m    Zernike function           Normalization }%y5<n*v\  
    %       -------------------------------------------------- {t]8#[lo  
    %       0    0    1                                 1 >Wd_?NaI  
    %       1    1    r * cos(theta)                    2 5+(Cp3  
    %       1   -1    r * sin(theta)                    2 ,~Lx7 5{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) /(%!txSNEt  
    %       2    0    (2*r^2 - 1)                    sqrt(3) UdpuQzV<4`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) f]Rh<N$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) diKl}V#u  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /f=31<+MtF  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) . lSoC`HE  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *A0d0M]cg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4`+R |"4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) cCG!X%9  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) lxR]Bh+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WZviC_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'PTQ S,E  
    %       -------------------------------------------------- pqohLA  
    % 1V,DcolRY  
    %   Example 1: Nr*o RYY  
    % 0R-W 9qP  
    %       % Display the Zernike function Z(n=5,m=1) rWN%j)#+  
    %       x = -1:0.01:1; h5v=h>c  
    %       [X,Y] = meshgrid(x,x); m,rkKhXP  
    %       [theta,r] = cart2pol(X,Y); <Iil*\SC  
    %       idx = r<=1; yy`XtJBWWs  
    %       z = nan(size(X)); dvAz}3p0]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5'|W(yR}  
    %       figure 8rLhOA  
    %       pcolor(x,x,z), shading interp u!FF{~5cs  
    %       axis square, colorbar B@8lD\  
    %       title('Zernike function Z_5^1(r,\theta)') E>u U6#v  
    % q0nIJ(  
    %   Example 2: *}>)E]O@  
    % Fj`K$K?  
    %       % Display the first 10 Zernike functions >h$Q%w{V  
    %       x = -1:0.01:1; ZdT-  
    %       [X,Y] = meshgrid(x,x); ;O<-4$  
    %       [theta,r] = cart2pol(X,Y); j=u) z7J  
    %       idx = r<=1; xg'xuz$U  
    %       z = nan(size(X)); IJ7wUZp"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Y3H5}4QD  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  1%";|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; nJwP|P_  
    %       y = zernfun(n,m,r(idx),theta(idx)); G4\|bwh  
    %       figure('Units','normalized') 5>VX]nE3!  
    %       for k = 1:10 {r#uD5NJ/  
    %           z(idx) = y(:,k); Q5Epq sKyC  
    %           subplot(4,7,Nplot(k)) BxaGBK<k  
    %           pcolor(x,x,z), shading interp qXoq< |  
    %           set(gca,'XTick',[],'YTick',[]) mp*?GeV?M  
    %           axis square {"|la;*I  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m;ju@5X  
    %       end 5inCAPXz  
    % )OK"H^}f  
    %   See also ZERNPOL, ZERNFUN2.  +&<k}Mz  
    FRsp?i K)  
    %   Paul Fricker 11/13/2006 !Yz CK*av1  
    n8i: /ypB  
    equi26jhr  
    % Check and prepare the inputs: jPn.w,=)27  
    % ----------------------------- 02-% B~oP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vTC{  
        error('zernfun:NMvectors','N and M must be vectors.') k+hl6$:Qj%  
    end }-Jo9dNs  
    t~":'le`zr  
    if length(n)~=length(m) BQB<+o'  
        error('zernfun:NMlength','N and M must be the same length.') ;(Az   
    end Ydyz-  
    ;s+3 #Py  
    n = n(:); Qm_;o(  
    m = m(:); .fS{j$  
    if any(mod(n-m,2)) PO ,zP9  
        error('zernfun:NMmultiplesof2', ... {e0(M*u  
              'All N and M must differ by multiples of 2 (including 0).') Q(4~r+  
    end C 1)+^{7ef  
    E H|L1g  
    if any(m>n) ?6h~P:n.  
        error('zernfun:MlessthanN', ... 5tEkQ(Ei8  
              'Each M must be less than or equal to its corresponding N.') LZQG.  
    end '-3K`[  
    uG-S$n"7K  
    if any( r>1 | r<0 ) m[BpV.s  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') E%a&6W  
    end BnaI30-  
    {Q @?CT  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p$` ^A  
        error('zernfun:RTHvector','R and THETA must be vectors.') :SY,;..3e  
    end $ 'yWg_(  
    3ug~m-_  
    r = r(:); ;j+*}|!  
    theta = theta(:); Iz>\qC}  
    length_r = length(r); s +E4AG1r  
    if length_r~=length(theta) n(C M)(ozU  
        error('zernfun:RTHlength', ... Rm~8n;7oOr  
              'The number of R- and THETA-values must be equal.') WC b 5  
    end b;NVvc(  
    _rz\[{)  
    % Check normalization: 3sDyB-\&  
    % -------------------- 2-@t,T  
    if nargin==5 && ischar(nflag) $x#qv1  
        isnorm = strcmpi(nflag,'norm'); XEN-V-Z%*  
        if ~isnorm +]0hSpZ"p  
            error('zernfun:normalization','Unrecognized normalization flag.') \tCK7sBn  
        end .')^4\  
    else VFm)!'=I  
        isnorm = false; ID,os_ T=  
    end Dj6^|R$z&  
    _qh \  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =5uhIU0O  
    % Compute the Zernike Polynomials LLMGs: [  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }G!'SZ$F 5  
    s!1/Bm|_T  
    % Determine the required powers of r: ?v'CuWS  
    % ----------------------------------- `, 4YPjk^  
    m_abs = abs(m); 7Q,<h8N\5  
    rpowers = []; w7\vrS>&  
    for j = 1:length(n) Mgu9m8 `J  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4ywtE}mp  
    end l>J%Q^  
    rpowers = unique(rpowers); -iFFXESVX  
    Cv p#=x0  
    % Pre-compute the values of r raised to the required powers, z80*Ylx  
    % and compile them in a matrix: $_e{Zv[  
    % ----------------------------- 8cRc5X  
    if rpowers(1)==0 ?9?o8!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m~&>+q ^7  
        rpowern = cat(2,rpowern{:}); p:ZQ*Ue  
        rpowern = [ones(length_r,1) rpowern]; :_+U[k(#  
    else (&, E}{p9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); OC\cN%qlw  
        rpowern = cat(2,rpowern{:}); TGjxy1A  
    end #G\-ftA&  
    ?zVcP=p@  
    % Compute the values of the polynomials: !#E-p?O.  
    % -------------------------------------- >4HB~9dKU  
    y = zeros(length_r,length(n)); ]{I>HA5[  
    for j = 1:length(n) U@(8)[?nxn  
        s = 0:(n(j)-m_abs(j))/2; %{me<\(  
        pows = n(j):-2:m_abs(j); {xP-p"?p  
        for k = length(s):-1:1 jP<6Q|5F  
            p = (1-2*mod(s(k),2))* ... E;"VI2F  
                       prod(2:(n(j)-s(k)))/              ... w2^s}NO  
                       prod(2:s(k))/                     ... CurU6x1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... h,K&R8S  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); cvx"XxE,  
            idx = (pows(k)==rpowers); #kJ8 qN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R1.Yx?  
        end ]n$ v ^  
         z_8Bl2tl  
        if isnorm 'uwq^b_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "`'+@KlE  
        end "'>fTk_  
    end g1B P  
    % END: Compute the Zernike Polynomials ]]5(:>l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d Z+7S`{  
    B E#pHg  
    % Compute the Zernike functions: m5hu;>gt  
    % ------------------------------ J>nta?/,X  
    idx_pos = m>0; h}S2b@e|  
    idx_neg = m<0; sr~VvciIy  
    D^{jXNDNO  
    z = y; h[ C XH"  
    if any(idx_pos) !=+;9Ry$z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z(J 1A x  
    end |6`7kb;p  
    if any(idx_neg) nYj7r* e[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 475jmQ{q  
    end j\.e6&5%SS  
    ~{6}SXp4U  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的