切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10962阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 %, iAn gF'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! v#<{Y' K  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  P!IA;i  
    A[7H-1-  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Z4As'al  
    (hZNWQ0  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) -X%t wy=  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8,vP']4r%  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of e@Ev']  
    %   order N and frequency M, evaluated at R.  N is a vector of eX"Ecl{  
    %   positive integers (including 0), and M is a vector with the V?x&\<;,  
    %   same number of elements as N.  Each element k of M must be a C\BKdx5;  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 4h--x~ @  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is md18q:AG)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix &Fuk+Cu{  
    %   with one column for every (N,M) pair, and one row for every AT3HH QD  
    %   element in R. ^z, B}Nz  
    % LCA+y1LP-_  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- /`aPV"$M  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is r^rk@W;[  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to pG)dF@  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 k$J!,!q  
    %   for all [n,m]. tq'hiS(b  
    % [] "bn9 +  
    %   The radial Zernike polynomials are the radial portion of the Wrp+B[ {r\  
    %   Zernike functions, which are an orthogonal basis on the unit bZfq?   
    %   circle.  The series representation of the radial Zernike rZ-< Ryg  
    %   polynomials is }.9a!/@Aj  
    % iS.gN&\z^  
    %          (n-m)/2 4K`b?{){+a  
    %            __ w^nA/=;r  
    %    m      \       s                                          n-2s 7iM@BeIf  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Q7v1xBM  
    %    n      s=0 @RuMo"js  
    % &c&TQkx  
    %   The following table shows the first 12 polynomials. oVbs^sbRH  
    % 2Y[n  
    %       n    m    Zernike polynomial    Normalization &;JeLL1J  
    %       --------------------------------------------- T5T[$%]6  
    %       0    0    1                        sqrt(2) :ntAU2)H  
    %       1    1    r                           2 Zn)o@'{}{  
    %       2    0    2*r^2 - 1                sqrt(6) 0 .T5% _ /  
    %       2    2    r^2                      sqrt(6) LqJV  
    %       3    1    3*r^3 - 2*r              sqrt(8) 0Db=/sJ>  
    %       3    3    r^3                      sqrt(8) wEI? 9  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) FdEUZ[IT`{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) O6b+eS  
    %       4    4    r^4                      sqrt(10) ;Q/1l=Bn  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) \fI05GZ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) C;U4`0=8  
    %       5    5    r^5                      sqrt(12) i7YUyU  
    %       --------------------------------------------- u` (yT<>H  
    % "66#F  
    %   Example: a7u*d`3X=  
    % ;tA$ x!5]  
    %       % Display three example Zernike radial polynomials +N2ILE8[<  
    %       r = 0:0.01:1;  eBmHb\  
    %       n = [3 2 5]; mO]dP;,  
    %       m = [1 2 1]; *(]ZdB_2  
    %       z = zernpol(n,m,r); Uy)pEEu  
    %       figure <KCyXU*  
    %       plot(r,z) j*f\Z!EeZ  
    %       grid on r[7*1'. p  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') P;'ZdZ(SLu  
    % D97 vfC  
    %   See also ZERNFUN, ZERNFUN2. &l_}yf"v  
    0blbf@XA  
    % A note on the algorithm. ?pd /cj^  
    % ------------------------ {:n1|_r4Z  
    % The radial Zernike polynomials are computed using the series 4N7|LxNNl_  
    % representation shown in the Help section above. For many special %i?v)EW  
    % functions, direct evaluation using the series representation can =9p3^:S  
    % produce poor numerical results (floating point errors), because o :4#Ak S  
    % the summation often involves computing small differences between }rs>B,=*k  
    % large successive terms in the series. (In such cases, the functions n8T'}d+mm  
    % are often evaluated using alternative methods such as recurrence ^4<&"aoo  
    % relations: see the Legendre functions, for example). For the Zernike D eT$4c*:[  
    % polynomials, however, this problem does not arise, because the T;PLUjp}  
    % polynomials are evaluated over the finite domain r = (0,1), and Pl`Nniy  
    % because the coefficients for a given polynomial are generally all 1B~Z1w  
    % of similar magnitude. m$pRA0s2`  
    % *1_Ef).  
    % ZERNPOL has been written using a vectorized implementation: multiple "d}ey=$h4  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] jPx}-_jM  
    % values can be passed as inputs) for a vector of points R.  To achieve ,i;#e  
    % this vectorization most efficiently, the algorithm in ZERNPOL $2}%3{<j  
    % involves pre-determining all the powers p of R that are required to 08%Bx~88_%  
    % compute the outputs, and then compiling the {R^p} into a single 7+X~i@#rU  
    % matrix.  This avoids any redundant computation of the R^p, and 0&2`)W?9  
    % minimizes the sizes of certain intermediate variables. Xi\c>eALO  
    % JZ:yPvJ  
    %   Paul Fricker 11/13/2006 `}bvbvmA  
    inK;n  
    *_}0vd  
    % Check and prepare the inputs: #<u;.'R  
    % ----------------------------- O;}K7rSc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) HGd.meQ  
        error('zernpol:NMvectors','N and M must be vectors.') cJTwgm?  
    end aS\$@41"  
    i*!2n1c[  
    if length(n)~=length(m) \W= qqE]  
        error('zernpol:NMlength','N and M must be the same length.') fd>&RbUp  
    end +#<Z/  
    Ve)BF1YG  
    n = n(:); [/n@BK  
    m = m(:); ja&m-CFK  
    length_n = length(n); |z:4T%ES  
    'lu3BQvfh  
    if any(mod(n-m,2)) O(D2F$VlL  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') e :C4f  
    end HXZ,"S  
    U)aftH *Pk  
    if any(m<0) B_b5&M@  
        error('zernpol:Mpositive','All M must be positive.') &CN(PZv  
    end +"k?G  
    Y| ch ;  
    if any(m>n) 8gt&*;'}*D  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %yk_(3a  
    end R-1MD  
    Z{yH:{Vk  
    if any( r>1 | r<0 ) lNWP9?X  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') HSAr6h  
    end 8VO]; +N  
    G|8>Q3D  
    if ~any(size(r)==1) "h7Dye  
        error('zernpol:Rvector','R must be a vector.') /4+(eI7  
    end !=a]Awr\  
    wEJzLFCn  
    r = r(:); BNI)y@E^X  
    length_r = length(r); jiLJiYMg  
    CXyb8z4/+  
    if nargin==4 [+ xsX*+  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); lCl5#L9  
        if ~isnorm u |.7w 2  
            error('zernpol:normalization','Unrecognized normalization flag.') D>HbJCG4^  
        end 8Gnf_lkI  
    else *kYGXT,f]  
        isnorm = false; J.M&Vj:  
    end woBx609Aak  
    t4/ye>P &  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mw;4/ /R  
    % Compute the Zernike Polynomials T&b_*)=S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K :~tZ  
    =adHP|S  
    % Determine the required powers of r: ftl?x'P%  
    % ----------------------------------- yO!M$aOn/  
    rpowers = []; W g6H~x  
    for j = 1:length(n) X?n=UebO^  
        rpowers = [rpowers m(j):2:n(j)]; /7:+.#Ag`  
    end YhS_ ,3E  
    rpowers = unique(rpowers); JPng !tvR  
    p:W]  
    % Pre-compute the values of r raised to the required powers, h& }iH  
    % and compile them in a matrix: TO"Md["GI  
    % ----------------------------- kV4Oq.E  
    if rpowers(1)==0 ~T-uk  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A>2_I)  
        rpowern = cat(2,rpowern{:}); `8RKpZv&  
        rpowern = [ones(length_r,1) rpowern]; ()O&O+R|)  
    else ,uPcQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nw%`CnzT  
        rpowern = cat(2,rpowern{:}); 2{vAs  
    end `&OX|mL^w  
    !Hl]&  
    % Compute the values of the polynomials: 0BhcXH t  
    % -------------------------------------- _ezRE"F5  
    z = zeros(length_r,length_n); $/;K<*O$  
    for j = 1:length_n '@ Rk#=85Z  
        s = 0:(n(j)-m(j))/2; 3,6f}:CG  
        pows = n(j):-2:m(j); 9q_{_%G%  
        for k = length(s):-1:1 q` IY;"~  
            p = (1-2*mod(s(k),2))* ... gD4vV'|  
                       prod(2:(n(j)-s(k)))/          ... cy;i1#1rO  
                       prod(2:s(k))/                 ... [YHtBM:y  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... O#=%t  
                       prod(2:((n(j)+m(j))/2-s(k))); [WG\w j.  
            idx = (pows(k)==rpowers); 3]mprX'  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ThI}~$Y  
        end :-JryiI  
         LR>s2zu-  
        if isnorm f pq|mY  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ftR& 5 !Wm  
        end G:tY1'5  
    end dgoAaS2M  
    sVw:d _ E  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \?T9 v  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 1Ng.Ukb  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated cVL|kYVWT  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Zdqm|_R[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {eaR,d~X  
    %   and THETA is a vector of angles.  R and THETA must have the same f/#Id]B  
    %   length.  The output Z is a matrix with one column for every P-value, ?1JY6v]h4  
    %   and one row for every (R,THETA) pair. D4 8e30  
    % DMG~56cTO,  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike '!7>*<  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Nyy&'\`!  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) _Ik?WA_;  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tSJ#  
    %   for all p. uo]xC+^  
    % %(/E `  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^ WO3,  
    %   Zernike functions (order N<=7).  In some disciplines it is e>Z&0lV:  
    %   traditional to label the first 36 functions using a single mode T3{~f  
    %   number P instead of separate numbers for the order N and azimuthal $5JeN{B  
    %   frequency M. i3N{Dt  
    % 6Lq`zU^  
    %   Example: _) x{TnK  
    % &`l\Q\_[@  
    %       % Display the first 16 Zernike functions =?6c&Z  
    %       x = -1:0.01:1; & mOn]  
    %       [X,Y] = meshgrid(x,x); ,X^3.ILz  
    %       [theta,r] = cart2pol(X,Y); 1#,4P1"  
    %       idx = r<=1; s;OGb{H7  
    %       p = 0:15; ITw *m3  
    %       z = nan(size(X)); Zpkd8@g@  
    %       y = zernfun2(p,r(idx),theta(idx)); lK=Is v+  
    %       figure('Units','normalized') iF^qbh%%E  
    %       for k = 1:length(p) :$b` n  
    %           z(idx) = y(:,k); 1Z< ^8L<  
    %           subplot(4,4,k) 0NU%z.(%s  
    %           pcolor(x,x,z), shading interp Yvo*^jv  
    %           set(gca,'XTick',[],'YTick',[]) @-dGZ 5  
    %           axis square *HR pbe2  
    %           title(['Z_{' num2str(p(k)) '}']) o{,I O!q  
    %       end hi!A9T3%}M  
    % z1Ieva]  
    %   See also ZERNPOL, ZERNFUN. Ur xiaE  
    1DB{"8ov  
    %   Paul Fricker 11/13/2006 l!x+K&  
    w<`0D)mQ  
    =SLG N`m3  
    % Check and prepare the inputs: , yltt+ e  
    % ----------------------------- ^^"zjl*^  
    if min(size(p))~=1 )hrsA&1w  
        error('zernfun2:Pvector','Input P must be vector.') 3O2G+G2  
    end ~ps,U  
    l|WFS  
    if any(p)>35 _,L_H[FN  
        error('zernfun2:P36', ... }( F:U#  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... *ai~!TR  
               '(P = 0 to 35).']) :1*E5pX0n  
    end e&z@yy$  
    OK80-/8HI  
    % Get the order and frequency corresonding to the function number: Sxq@W8W  
    % ----------------------------------------------------------------  bHG<B  
    p = p(:); ,<%uG6/",g  
    n = ceil((-3+sqrt(9+8*p))/2); RlL ]p`g  
    m = 2*p - n.*(n+2); v ^h:E  
    VEh9N  
    % Pass the inputs to the function ZERNFUN: (s;W>,~q  
    % ---------------------------------------- EU[eG^/0@  
    switch nargin k4V3.i!E  
        case 3 e|{R2z"^  
            z = zernfun(n,m,r,theta); VBL4cU8D  
        case 4 ts,r,{  
            z = zernfun(n,m,r,theta,nflag); ,N(Yjq"R  
        otherwise {jO+N+Ez9  
            error('zernfun2:nargin','Incorrect number of inputs.') -SM_JR3<  
    end j $q5m 24L  
    m:h6J''<Z*  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 G~5pMyOR  
    function z = zernfun(n,m,r,theta,nflag) lq:q0>vyI  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. teS>t!d  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1.+O2qB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the L-w3A:jk  
    %   unit circle.  N is a vector of positive integers (including 0), and {C 5:as  
    %   M is a vector with the same number of elements as N.  Each element UAF$bR  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) p*c(dkOe8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DKt98;  
    %   and THETA is a vector of angles.  R and THETA must have the same IVh5SS  
    %   length.  The output Z is a matrix with one column for every (N,M) `6VnL)  
    %   pair, and one row for every (R,THETA) pair. iKaX8c,zI  
    % ch8VJ^%Ra1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,pD sU@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0FcDO5ia  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ="$w8iRU  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,CyX*k8o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized v<v;ZR)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mj'~-$5T  
    % 5&s6(?,Eu  
    %   The Zernike functions are an orthogonal basis on the unit circle.  <)TIj6  
    %   They are used in disciplines such as astronomy, optics, and ( 3B1X  
    %   optometry to describe functions on a circular domain. x4v:67_^  
    % @}4>:\es  
    %   The following table lists the first 15 Zernike functions. hOB<6Tm[  
    % *Vl#]81~  
    %       n    m    Zernike function           Normalization Trs~KcsD  
    %       -------------------------------------------------- i[KXkjr  
    %       0    0    1                                 1 G K~A,Miqk  
    %       1    1    r * cos(theta)                    2 v>LK+|U  
    %       1   -1    r * sin(theta)                    2 q.=Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q(f0S  
    %       2    0    (2*r^2 - 1)                    sqrt(3) tM"vIz 05  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /}@F q  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]z'L1vQl7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #|E#Rkw!  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) : 2%eh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) k4$zM/ob  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :0y-n.-{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FL\pgbI  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) n@+?tYk*e  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sX6\AYF1M  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) q,ie)`  
    %       -------------------------------------------------- qe&|6M!  
    % E}4{{{r  
    %   Example 1: P-ZvW<M  
    % i{EQjZ  
    %       % Display the Zernike function Z(n=5,m=1) SlB`ktcfI  
    %       x = -1:0.01:1; T2rwK2  
    %       [X,Y] = meshgrid(x,x); sd\}M{U  
    %       [theta,r] = cart2pol(X,Y); GImPPF  
    %       idx = r<=1; sP^:*B0  
    %       z = nan(size(X)); |I1,9ex  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); dE8f?L'  
    %       figure |[n\'Xy;{  
    %       pcolor(x,x,z), shading interp k+{~#@  
    %       axis square, colorbar fwt+$`n  
    %       title('Zernike function Z_5^1(r,\theta)') /ZiMD;4@y  
    % 6%p6BK6  
    %   Example 2: @VP/kut  
    %  je$H}D  
    %       % Display the first 10 Zernike functions |rJN  
    %       x = -1:0.01:1; x3Cn:F  
    %       [X,Y] = meshgrid(x,x); oU1N>,  
    %       [theta,r] = cart2pol(X,Y); 2#$7!`6 K  
    %       idx = r<=1; b(N+_= n  
    %       z = nan(size(X)); 4'D^>z!c  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >AV9 K  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0(c,J$I]Z!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; w@2NXcmw  
    %       y = zernfun(n,m,r(idx),theta(idx)); NUnwf h  
    %       figure('Units','normalized') #(qvhoi7lM  
    %       for k = 1:10 DOtz  
    %           z(idx) = y(:,k); ;PMPXN'z6  
    %           subplot(4,7,Nplot(k)) 8ZV!ld  
    %           pcolor(x,x,z), shading interp |goBIp[  
    %           set(gca,'XTick',[],'YTick',[]) ksU& q%1  
    %           axis square U !+O+(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y+BiaD!U  
    %       end Z .`+IN(>E  
    % [i~@X2:Al  
    %   See also ZERNPOL, ZERNFUN2. ~Fvz&dO  
    Kc] GE#~g  
    %   Paul Fricker 11/13/2006 OkQ< Sc   
    =S54p(>  
    B[sI7D>Y  
    % Check and prepare the inputs: @&HLm^j2O  
    % ----------------------------- *9KT@"v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )5`^@zx  
        error('zernfun:NMvectors','N and M must be vectors.') {>9<H]cSP  
    end /FXb,)1t  
    vKoQ!7g  
    if length(n)~=length(m) dn~k_J=p  
        error('zernfun:NMlength','N and M must be the same length.') D {E,XOi  
    end q\P{h ij  
    ow (YgM>t  
    n = n(:); rr1,Ijh{D  
    m = m(:); S5m.oHJI*  
    if any(mod(n-m,2)) ^,'KmZm=  
        error('zernfun:NMmultiplesof2', ... p&(z'd  
              'All N and M must differ by multiples of 2 (including 0).')  [Ketg  
    end }nM+"(}  
    p/ZgzHyF  
    if any(m>n) 'U@Ep  
        error('zernfun:MlessthanN', ... :ldI1*@i<  
              'Each M must be less than or equal to its corresponding N.') )q!dMZ(  
    end !x-9A  
    P5XUzLV L  
    if any( r>1 | r<0 ) vEt=enQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') `aMnTF5:  
    end &_QD1 TT  
    j*VYUM@y1\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !k 'E  
        error('zernfun:RTHvector','R and THETA must be vectors.') :gkn`z  
    end OpOR!  
    =v! 8i  
    r = r(:); suX^"Io%!  
    theta = theta(:); 4tiCxf)  
    length_r = length(r); *bcemH8f  
    if length_r~=length(theta) 7'.6/U  
        error('zernfun:RTHlength', ... yF XPY=EQ  
              'The number of R- and THETA-values must be equal.') ] C_$zbmi  
    end $f"Ce,f  
    r_^]5C\  
    % Check normalization: -k,}LJjo  
    % -------------------- wXeJjE%j:3  
    if nargin==5 && ischar(nflag) XX1Iw {o9:  
        isnorm = strcmpi(nflag,'norm'); jfR!M07|  
        if ~isnorm ac43d`wpK  
            error('zernfun:normalization','Unrecognized normalization flag.') 8(6mH'^y  
        end %[?{H} y  
    else *q1sM#;5  
        isnorm = false; 7B gA+Fz  
    end SsL>K*t5  
    _rUsb4r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ltl(S Ii  
    % Compute the Zernike Polynomials <~5$<L4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% / vzwokH  
    G;msq=9|  
    % Determine the required powers of r: pKL^ <'w0  
    % ----------------------------------- bu\D*-  
    m_abs = abs(m); {bp~_`O  
    rpowers = []; B&lF! ]  
    for j = 1:length(n) 4y9n,~Qgw  
        rpowers = [rpowers m_abs(j):2:n(j)]; SI l<\  
    end V/DdV}n!  
    rpowers = unique(rpowers); '6>nXp?)r  
    \xtmd[7lb<  
    % Pre-compute the values of r raised to the required powers, sv>c)L}I  
    % and compile them in a matrix: ByXcs'  
    % ----------------------------- /I#SP/M&l  
    if rpowers(1)==0 FU(s jB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~F]If\b  
        rpowern = cat(2,rpowern{:}); c:`&QDF  
        rpowern = [ones(length_r,1) rpowern]; )Chx,pcx<  
    else P-lE,X   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z9*7fT  
        rpowern = cat(2,rpowern{:}); NB/ wJ3 F  
    end }qdGS<{  
    Zh.9j7 >p  
    % Compute the values of the polynomials: e0u* \b  
    % -------------------------------------- Y'i_EX|  
    y = zeros(length_r,length(n)); !TuMrA *  
    for j = 1:length(n) g~=#8nJ  
        s = 0:(n(j)-m_abs(j))/2; XS"lR |  
        pows = n(j):-2:m_abs(j); !~aDmY 2  
        for k = length(s):-1:1 zFV?,"\r  
            p = (1-2*mod(s(k),2))* ... 5eSmyj-W  
                       prod(2:(n(j)-s(k)))/              ... >&N8Du*[  
                       prod(2:s(k))/                     ... X5D}<J2"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v.I>B3bEg  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); VFwp .1oa!  
            idx = (pows(k)==rpowers); IE9A _u*  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {p(.ck ze+  
        end iY1JU -S  
         H@,(  
        if isnorm Vg4N7i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {e8.E<f-  
        end 8CKI9  
    end "#mr?h_  
    % END: Compute the Zernike Polynomials [Y]\sF;J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0dgp<  
    A#j'JA>_  
    % Compute the Zernike functions: K%A:W  
    % ------------------------------ <}$o=>'  
    idx_pos = m>0; gaw/3@  
    idx_neg = m<0; ?-0>Wbg  
    q.>{d%?  
    z = y; 0X3kVm <  
    if any(idx_pos) Am? dHP  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *L.+w-g&&  
    end EBN'u&zX  
    if any(idx_neg) f?1?$Sp/W  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RE(R5n28,  
    end 3Vl?;~ :5  
    SXA_P{j&a  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的