切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11571阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |v[Rp=?]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! pxSX#S6I  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  OMihXt[  
    R*1kR|*_)  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ovf/;Q/}  
    &jV_"_3n  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 2wh#$zGy  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. o$_93<zc  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 66ohmP@04Z  
    %   order N and frequency M, evaluated at R.  N is a vector of |'hLa  
    %   positive integers (including 0), and M is a vector with the )&1!xF   
    %   same number of elements as N.  Each element k of M must be a oNRG25  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) *v #/Y9}  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ]W9B6G_  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ]A:( L9  
    %   with one column for every (N,M) pair, and one row for every )+~E8yK  
    %   element in R. ,ECAan/@  
    % i2F(GH?p[  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- T)\NkM&  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is INNAYQ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to &IQ%\W#aY  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 fD6GQ*  
    %   for all [n,m]. ;) pl{_  
    % jUY+3"?   
    %   The radial Zernike polynomials are the radial portion of the @phN|;?  
    %   Zernike functions, which are an orthogonal basis on the unit 9Q[>.):  
    %   circle.  The series representation of the radial Zernike M<oA<#IW  
    %   polynomials is h[U7!aM  
    % #( uj$[o  
    %          (n-m)/2 6Y?`=kAp  
    %            __ cf*zejbw  
    %    m      \       s                                          n-2s dB)9K)  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r sc xLB;  
    %    n      s=0 ^5)_wUf  
    % x;U|3{I o  
    %   The following table shows the first 12 polynomials. jH0Bo;  
    % yh!B!v'  
    %       n    m    Zernike polynomial    Normalization &va*IR  
    %       --------------------------------------------- ~I$}#  
    %       0    0    1                        sqrt(2) `p|[rS>  
    %       1    1    r                           2 #]zhZW4  
    %       2    0    2*r^2 - 1                sqrt(6) +qE']yzm!  
    %       2    2    r^2                      sqrt(6) >l2w::l%  
    %       3    1    3*r^3 - 2*r              sqrt(8) |cu`f{E2]  
    %       3    3    r^3                      sqrt(8) dQ6GhS ~  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) <IH*\q:7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 8A/>JD3^  
    %       4    4    r^4                      sqrt(10) 0M\NS$u(Y  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) qy9i9$8  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -A;w$j6*  
    %       5    5    r^5                      sqrt(12) gb_X?j%p7  
    %       --------------------------------------------- JN^bo(kb  
    % cHEz{'1m  
    %   Example: Z3`2-r_=  
    % 2FT-}w0;  
    %       % Display three example Zernike radial polynomials 6+ANAk  
    %       r = 0:0.01:1; )Pa*+ew7  
    %       n = [3 2 5]; Lh!z>IWjOG  
    %       m = [1 2 1]; ^srs$ w]  
    %       z = zernpol(n,m,r); )[ b#g(Y(  
    %       figure <(uTst  
    %       plot(r,z) u_Zm1*'?B  
    %       grid on dJE`9$jN  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Mi D  
    % NDW8~lkL  
    %   See also ZERNFUN, ZERNFUN2. {Y "8~  
    aH^{Vv$]M@  
    % A note on the algorithm. jJ-d/"(  
    % ------------------------ SJ[AiHR  
    % The radial Zernike polynomials are computed using the series o'^phlX  
    % representation shown in the Help section above. For many special z5ZKks   
    % functions, direct evaluation using the series representation can eaxfn]gV  
    % produce poor numerical results (floating point errors), because bQV("~#  
    % the summation often involves computing small differences between ,4yG(O$)  
    % large successive terms in the series. (In such cases, the functions 2YluJ:LN  
    % are often evaluated using alternative methods such as recurrence v,*Q]r0m  
    % relations: see the Legendre functions, for example). For the Zernike qAORWc  
    % polynomials, however, this problem does not arise, because the ' 3VqkQ4  
    % polynomials are evaluated over the finite domain r = (0,1), and ;%!tf{Si  
    % because the coefficients for a given polynomial are generally all LV\ieM  
    % of similar magnitude. <vLdBfw&N  
    % xfes_v""  
    % ZERNPOL has been written using a vectorized implementation: multiple d}VALjXHX!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %xpd(&)n  
    % values can be passed as inputs) for a vector of points R.  To achieve FdM<;}6T  
    % this vectorization most efficiently, the algorithm in ZERNPOL IO6MK&R  
    % involves pre-determining all the powers p of R that are required to 9nO(xJ"e4  
    % compute the outputs, and then compiling the {R^p} into a single r hZQQOQ  
    % matrix.  This avoids any redundant computation of the R^p, and F'ENq6  
    % minimizes the sizes of certain intermediate variables. G V=OKf#  
    % *bU% @O  
    %   Paul Fricker 11/13/2006 t#{x?cF  
    |yU3Kt  
    <B=[hk!  
    % Check and prepare the inputs: _ flg Q  
    % ----------------------------- n{z8Ao%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qr9Imr0w<  
        error('zernpol:NMvectors','N and M must be vectors.') +#9xA6,AE  
    end niQ+EAD  
    L1rA T  
    if length(n)~=length(m) /!-J53K  
        error('zernpol:NMlength','N and M must be the same length.') U(P:Je  
    end _Ws#UL+Nq  
    *b:u * `@  
    n = n(:); b24di  
    m = m(:); L2<+#O#  
    length_n = length(n); % kJh6J  
    TG4^_nRl  
    if any(mod(n-m,2)) !2#\| NJk  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') A%P 8c  
    end E`(5UF*>  
    &+,:u*%  
    if any(m<0) T^d#hl.U  
        error('zernpol:Mpositive','All M must be positive.') G I&qwA  
    end CH55K[{<  
    i]LU4y %'  
    if any(m>n) WI0QLR'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') gO9'q='5l  
    end ~37R0`C  
    avmcGyL  
    if any( r>1 | r<0 ) \)p4okpR  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') dZ.}j&ZH'  
    end j/~VP2R`  
    N/(ofy  
    if ~any(size(r)==1) g%+ql[(4  
        error('zernpol:Rvector','R must be a vector.') @>+^W&  
    end %N7gT*B:  
    i0VhG :O;  
    r = r(:); sE^ns\&QP=  
    length_r = length(r); -|6V}wHg~  
    }!eF  
    if nargin==4 o*?[_{x W  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); CQj/e+eE4  
        if ~isnorm p .lu4  
            error('zernpol:normalization','Unrecognized normalization flag.') &qNP?>C!=  
        end =VCi8jDkP  
    else CM`x>J  
        isnorm = false; >F,$;y52  
    end +[>y O _}  
    *Ro8W-+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z@<q/2).|  
    % Compute the Zernike Polynomials u![4=w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6{cybD`Ef&  
    d]^\w'w$  
    % Determine the required powers of r: @=02  
    % ----------------------------------- <ur KIu  
    rpowers = []; BT&rp%NO6l  
    for j = 1:length(n) >|v=Ba6R0  
        rpowers = [rpowers m(j):2:n(j)]; l0eANB%Y=@  
    end jB*9 !xrd,  
    rpowers = unique(rpowers); bMSD/L  
    xAR^  
    % Pre-compute the values of r raised to the required powers, LBW.*PHW  
    % and compile them in a matrix: E6,`Ld;c[  
    % ----------------------------- Kh>?!` lL  
    if rpowers(1)==0 Vww@eK%5Q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _K 4eD.  
        rpowern = cat(2,rpowern{:}); }".\ 4B$n  
        rpowern = [ones(length_r,1) rpowern]; zfk'>_'  
    else nwZ[Ygl|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #N<s^KYG-  
        rpowern = cat(2,rpowern{:}); L-^# 02  
    end 113Z@F  
    s#'|{  
    % Compute the values of the polynomials: *O2^{ C  
    % -------------------------------------- trID#DT~  
    z = zeros(length_r,length_n); {Bav$kw;?e  
    for j = 1:length_n VZU Zngw  
        s = 0:(n(j)-m(j))/2; 0S)"Q^6n y  
        pows = n(j):-2:m(j); ,apd3X%g  
        for k = length(s):-1:1 1C^HCIH7J  
            p = (1-2*mod(s(k),2))* ... Ws2prh^e(  
                       prod(2:(n(j)-s(k)))/          ... BZ]&uD|f  
                       prod(2:s(k))/                 ... !Ei Ze.K  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... WyKUvVi  
                       prod(2:((n(j)+m(j))/2-s(k))); {jj]K.&  
            idx = (pows(k)==rpowers); \#h})`  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 31 KDeFg  
        end KUl Zk^a  
         N[|by}@n  
        if isnorm C=xo&I7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); umq$4}T '$  
        end F9>(W#aC  
    end ;Xnk+  
    AxG?zBTFx  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^^j|0qshL  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ss|6_H =  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated OI;L9\MJc  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive K4K3< Pg  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ynOc~TN  
    %   and THETA is a vector of angles.  R and THETA must have the same P~b%;*m}8  
    %   length.  The output Z is a matrix with one column for every P-value, X:zyzEhS  
    %   and one row for every (R,THETA) pair. r`mzsO-'  
    % iG;d0>Sp  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike IArpCF/"8  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) \k$]GK-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) <9MQ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 !T&u2=`D  
    %   for all p. $yR{ZFo  
    % s525`Q;  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 //4p1^%  
    %   Zernike functions (order N<=7).  In some disciplines it is   t`&s  
    %   traditional to label the first 36 functions using a single mode \a~;8):q=i  
    %   number P instead of separate numbers for the order N and azimuthal <try%p|f  
    %   frequency M. `qYc#_ELv  
    % +@<^i?ale  
    %   Example: G%W03c  
    % e-T9HM&%P  
    %       % Display the first 16 Zernike functions ,rvZW}=  
    %       x = -1:0.01:1; U`vt/#j 1  
    %       [X,Y] = meshgrid(x,x); ~k:>Xo[|O  
    %       [theta,r] = cart2pol(X,Y); 2-B8>-   
    %       idx = r<=1; H~1? MAX  
    %       p = 0:15; O+3D 5*  
    %       z = nan(size(X)); 'KN!m| z  
    %       y = zernfun2(p,r(idx),theta(idx)); '&o> %V  
    %       figure('Units','normalized') u.xA}yVS  
    %       for k = 1:length(p) O.m.]%URW  
    %           z(idx) = y(:,k); y|2g"J  
    %           subplot(4,4,k) k?@W/}Iv9  
    %           pcolor(x,x,z), shading interp p_kTLNZd9  
    %           set(gca,'XTick',[],'YTick',[]) nG(|7x   
    %           axis square EZNB`gO  
    %           title(['Z_{' num2str(p(k)) '}']) U]R|ej  
    %       end B1AF4}~5  
    % h^3Vd K,  
    %   See also ZERNPOL, ZERNFUN. X#\P.$  
    g]hn@{[  
    %   Paul Fricker 11/13/2006 a6K$omu  
    y5opdIaT  
    jl ?y}  
    % Check and prepare the inputs: 70 D Q/b  
    % ----------------------------- ~NJLS-  
    if min(size(p))~=1 D\i8rqU/l  
        error('zernfun2:Pvector','Input P must be vector.') hF?\K^tF  
    end Yv|bUZ @  
    Q!$kUcky9  
    if any(p)>35 l>Oe ,`9O  
        error('zernfun2:P36', ... i\c^h;wX  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... xdSj+507  
               '(P = 0 to 35).']) <MDFf nj  
    end A UO0  
    Z{>Y':\?<  
    % Get the order and frequency corresonding to the function number: 1,sO =p)Yg  
    % ---------------------------------------------------------------- m:o$|7r  
    p = p(:); (4/`@;[  
    n = ceil((-3+sqrt(9+8*p))/2); -1Ki7|0,  
    m = 2*p - n.*(n+2); .cn w?EI  
    _a02#  
    % Pass the inputs to the function ZERNFUN: L?pvz}  
    % ---------------------------------------- \}_7^)S;  
    switch nargin Ffqn|} gb  
        case 3 =I*ZOE3n  
            z = zernfun(n,m,r,theta); tLGwF3e$A  
        case 4 n$VPh/  
            z = zernfun(n,m,r,theta,nflag); Nl>b'G96  
        otherwise E!]rh,mYK  
            error('zernfun2:nargin','Incorrect number of inputs.') )fcpE,g'  
    end |kRx[UL  
    ny;)+v?mN\  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 5+PBS)pJ]%  
    function z = zernfun(n,m,r,theta,nflag) MkIO0&0O  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Kwmo)|7uPU  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1 jd=R7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,}$x'8v  
    %   unit circle.  N is a vector of positive integers (including 0), and eT \Q  
    %   M is a vector with the same number of elements as N.  Each element !)1Zp*  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 9(\N+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, h.0&)t\q"  
    %   and THETA is a vector of angles.  R and THETA must have the same dtXJ<1:  
    %   length.  The output Z is a matrix with one column for every (N,M) N1zrfn-VU  
    %   pair, and one row for every (R,THETA) pair. fXR_)d  
    % GeR -k9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3). c [F^l  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x6mq['_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7o%|R2mL}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;-wPXXR  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >TVd*S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;&:Et  
    % |L#r)$n{1  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3^Q U4  
    %   They are used in disciplines such as astronomy, optics, and [WSIC *|;  
    %   optometry to describe functions on a circular domain. gG?*Fi  
    % G(,~{N||  
    %   The following table lists the first 15 Zernike functions. X Ow^"=Oa[  
    % im%3*bv-  
    %       n    m    Zernike function           Normalization `Y$5g~3.  
    %       -------------------------------------------------- n]g,)m  
    %       0    0    1                                 1 y^fU_L?p  
    %       1    1    r * cos(theta)                    2 X64I~*  
    %       1   -1    r * sin(theta)                    2 HBYpjxh  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Jm^jz  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Z1}zf( JU  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) AMiFsgBj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) qOanu  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) F#R\Ot,hv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) zIm!8a  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +F6_P  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10)  ~&jCz4M  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3Q"+ #Ob  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $+N^ s^  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nWsz0v3'9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) c3BL2>c  
    %       -------------------------------------------------- 7l EwQ  
    % Y3&ecEE  
    %   Example 1: )eyxAg  
    % Kt0Tuj@CY  
    %       % Display the Zernike function Z(n=5,m=1) *a.*Ha  
    %       x = -1:0.01:1; +Ea X S  
    %       [X,Y] = meshgrid(x,x); _YUF /B'  
    %       [theta,r] = cart2pol(X,Y); n[-!Jp[  
    %       idx = r<=1; !Z)^c&  
    %       z = nan(size(X)); H!=BjU1Pmg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); h0pr"]sO;$  
    %       figure N#ObxOE6T"  
    %       pcolor(x,x,z), shading interp `v er "s;  
    %       axis square, colorbar X"GQ^]$O  
    %       title('Zernike function Z_5^1(r,\theta)') vGDo?X~#o  
    % ' qVa/GJ  
    %   Example 2: !X_~|5.  
    % uwzT? C A6  
    %       % Display the first 10 Zernike functions I-hhHm<@  
    %       x = -1:0.01:1; U]$3NIe  
    %       [X,Y] = meshgrid(x,x); M*uG`Eo&  
    %       [theta,r] = cart2pol(X,Y); ?^Ux+mVE  
    %       idx = r<=1; 8B9zo&  
    %       z = nan(size(X)); rpWy 6oD  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _ RYZyw   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; v\FD~   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ?8/h3xV;  
    %       y = zernfun(n,m,r(idx),theta(idx)); [J Xrj{  
    %       figure('Units','normalized') g&wQ^  
    %       for k = 1:10 2N]s}/l  
    %           z(idx) = y(:,k); b5R*]  
    %           subplot(4,7,Nplot(k)) q"oNB-bz  
    %           pcolor(x,x,z), shading interp BD+?Ad?  
    %           set(gca,'XTick',[],'YTick',[]) +3CMfYsr8  
    %           axis square sxtGl^,mU:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7a net  
    %       end 1 doqznO  
    % 470Pig>I8  
    %   See also ZERNPOL, ZERNFUN2. IF1}}[Ht  
    ^p/mJ1/s7  
    %   Paul Fricker 11/13/2006 70eN]OY  
    R2@u[  
    >wwEa4   
    % Check and prepare the inputs: Q{60^vg  
    % ----------------------------- rg\w!L(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *Q?HaG|S  
        error('zernfun:NMvectors','N and M must be vectors.') [G*mQ@G9  
    end 1wt]J!hgV  
    %+~0+ev7r  
    if length(n)~=length(m) "?SnA +)  
        error('zernfun:NMlength','N and M must be the same length.') ix;8S=eP~{  
    end om6R/K  
    }=gGs  
    n = n(:); O/Vue  
    m = m(:); xmDwoLU  
    if any(mod(n-m,2)) .anL}OA_q  
        error('zernfun:NMmultiplesof2', ... Y|F);XXIl  
              'All N and M must differ by multiples of 2 (including 0).') 65v'/m!ys  
    end #A!0KN;GC2  
    G)Y!aX  
    if any(m>n) 566EMy|  
        error('zernfun:MlessthanN', ... O9Aooe4W=  
              'Each M must be less than or equal to its corresponding N.') x& S>Mr  
    end S%2qB;uw  
    d<o  
    if any( r>1 | r<0 ) N<x5:f#+  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') J7ln6Y  
    end XJ"9D#"a>  
    6c:$[owC  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -SQYr  
        error('zernfun:RTHvector','R and THETA must be vectors.') AO6;aT  
    end @u^Ib33  
    f+ &yc'[  
    r = r(:); s6I]H  
    theta = theta(:); y3#\mBiw  
    length_r = length(r); $1e@3mzM  
    if length_r~=length(theta) 6x0>E^~  
        error('zernfun:RTHlength', ... myXV~6R 3  
              'The number of R- and THETA-values must be equal.') 0^=S:~G  
    end \ iFE,z  
    J0IK =Y  
    % Check normalization: hY!G>d{J  
    % -------------------- LBg#KQ @  
    if nargin==5 && ischar(nflag) zv41Yv!x}  
        isnorm = strcmpi(nflag,'norm'); m<E7cY3mX  
        if ~isnorm jVDNThm+  
            error('zernfun:normalization','Unrecognized normalization flag.') (<12&=WxE  
        end -?uwlpm#  
    else ^P[*yf  
        isnorm = false; N`M5`=.  
    end tc[PJH&P  
    ]@xc9 tlG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *M{1RMc  
    % Compute the Zernike Polynomials &IcDUr]L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XP'KgTF  
    -Jhf]  
    % Determine the required powers of r: {PU[MHZF  
    % ----------------------------------- $hL0/T-m  
    m_abs = abs(m); ;BqX=X+#  
    rpowers = []; 1||e !W  
    for j = 1:length(n) &5B+8>  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7 ir T6O<.  
    end _u>+H#  
    rpowers = unique(rpowers); |k8;[+  
    7Qo*u;fr  
    % Pre-compute the values of r raised to the required powers, V #=N?p  
    % and compile them in a matrix: 9DIGK\  
    % ----------------------------- /F\7_  
    if rpowers(1)==0 W?@ ;(k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `]%{0 Rx  
        rpowern = cat(2,rpowern{:}); rJAY7/u  
        rpowern = [ones(length_r,1) rpowern]; H:|yu  
    else +/ #J]v-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); IcA]<}0!"v  
        rpowern = cat(2,rpowern{:}); LcF0:h'  
    end b^v.FK46G  
    t<e?f{Q5  
    % Compute the values of the polynomials: l!oU9  
    % -------------------------------------- }Iu6]?|'  
    y = zeros(length_r,length(n)); ;G w5gK^  
    for j = 1:length(n) 9<R:)Df  
        s = 0:(n(j)-m_abs(j))/2; 4-m}W;igu  
        pows = n(j):-2:m_abs(j); dZZHk  
        for k = length(s):-1:1 pM>.z9  
            p = (1-2*mod(s(k),2))* ... tvd/Y|bV=  
                       prod(2:(n(j)-s(k)))/              ... oL<^m?-u  
                       prod(2:s(k))/                     ... cM55 vVd  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Qc6323/"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *`dGapd3  
            idx = (pows(k)==rpowers); le*pd+>j  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }@x0@sI9  
        end towQoqv  
         M,l Ib9  
        if isnorm `/0FXb 8h  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -1fT2e  
        end AR&u9Y)I  
    end ,#s}nJ4  
    % END: Compute the Zernike Polynomials y M>c**9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FQ);el'_V  
    : G<1   
    % Compute the Zernike functions: IuRKj8J)o  
    % ------------------------------ e\\ I,  
    idx_pos = m>0; dD#A.C,Rz  
    idx_neg = m<0; yXl zImPn  
    ."9v1kW  
    z = y; htIV`_<Ro  
    if any(idx_pos) `?~pk)<C].  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');  ~UXW  
    end kGCd!$fsk  
    if any(idx_neg) !)ee{CwNc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 94H 6`  
    end g&v2=&aj  
    x#'# ~EO-G  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的