非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 YUb,5Y0
function z = zernfun(n,m,r,theta,nflag) [w/t
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]Yu+M3Fq
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -FR ;:
% and angular frequency M, evaluated at positions (R,THETA) on the v (h Xk]S
% unit circle. N is a vector of positive integers (including 0), and M;Rw]M
% M is a vector with the same number of elements as N. Each element <f6PULm
% k of M must be a positive integer, with possible values M(k) = -N(k) Ak1)
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, WK}+f4tdW[
% and THETA is a vector of angles. R and THETA must have the same /RC!Yi
% length. The output Z is a matrix with one column for every (N,M) {|h"/
% pair, and one row for every (R,THETA) pair. ?>8zU;Aj
% Bg
h$P
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iq:[+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EAB+kY
% with delta(m,0) the Kronecker delta, is chosen so that the integral lnWiE}F
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F"H!CJJu&
% and theta=0 to theta=2*pi) is unity. For the non-normalized w2+]C&B*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. aTm.10{^
% j*u9+.
% The Zernike functions are an orthogonal basis on the unit circle. W~F/ZrT3A
% They are used in disciplines such as astronomy, optics, and \,!q[nC
% optometry to describe functions on a circular domain. SU'9+=_$
% ;QQ7vo
% The following table lists the first 15 Zernike functions.
;"^9L
% ,rI
|+
% n m Zernike function Normalization $0SZlq>En
% -------------------------------------------------- y7-:l u$9
% 0 0 1 1 uW~,H}E
% 1 1 r * cos(theta) 2 (VAL.v*
% 1 -1 r * sin(theta) 2 J_|}Xd)~t6
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8VmN?"5v
% 2 0 (2*r^2 - 1) sqrt(3) a.IF%hP0xo
% 2 2 r^2 * sin(2*theta) sqrt(6) AV4HX\`{P0
% 3 -3 r^3 * cos(3*theta) sqrt(8) g<4M!gi
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $ F7gH
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /VO@>Hoh
% 3 3 r^3 * sin(3*theta) sqrt(8) '?gIcWM
% 4 -4 r^4 * cos(4*theta) sqrt(10) r)]CZ])
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [0ffOTy
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) TDE1z>h+"
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >Mz|e(6
% 4 4 r^4 * sin(4*theta) sqrt(10) |K;Txe_
% -------------------------------------------------- {U '&9_y
% YIQ]]q8R!L
% Example 1: +4g%?5'
% #Rx"L&3Ue
% % Display the Zernike function Z(n=5,m=1) <`_OpNxqW
% x = -1:0.01:1; d"6]?
% [X,Y] = meshgrid(x,x); 0o$HC86w
% [theta,r] = cart2pol(X,Y); 'xZPIj+
% idx = r<=1; &9_\E{o%]
% z = nan(size(X)); ;3}EBcw)
% z(idx) = zernfun(5,1,r(idx),theta(idx)); %
r Y8
% figure -f2`qltjb
% pcolor(x,x,z), shading interp `6N-MsP
% axis square, colorbar 1R%`i'$/
% title('Zernike function Z_5^1(r,\theta)') 8H#c4%by)
% B H0#Q5
% Example 2: EhPVK6@
% E}' d,v#Z{
% % Display the first 10 Zernike functions #!Cter2
% x = -1:0.01:1; x~9z`d{!
% [X,Y] = meshgrid(x,x); k?/ v y9
% [theta,r] = cart2pol(X,Y); ?hJsN
% idx = r<=1; Mev-M2A
% z = nan(size(X)); -iDEh_pts
% n = [0 1 1 2 2 2 3 3 3 3]; dHq )vs,L
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; QYTTP6 Gz+
% Nplot = [4 10 12 16 18 20 22 24 26 28]; q$?7
~*M;x
% y = zernfun(n,m,r(idx),theta(idx)); ]]=-AuV.
% figure('Units','normalized') $JhZ'Z
% for k = 1:10 a][pTC\ rb
% z(idx) = y(:,k); ;*-@OLT_K
% subplot(4,7,Nplot(k)) t&9as}
% pcolor(x,x,z), shading interp +dgo-)kP(_
% set(gca,'XTick',[],'YTick',[]) Wz-3?EQ
% axis square w38c
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8PoHBOxpc
% end hX8gV~E=y
% % O&m#)|
% See also ZERNPOL, ZERNFUN2. iRUR4Zs
"37@Zt
% Paul Fricker 11/13/2006 c
BHL,
yC'hwoQ`
mS:j$$]u
% Check and prepare the inputs: c8-69hb?
% ----------------------------- Im?= e
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "y~muE:.
error('zernfun:NMvectors','N and M must be vectors.') 5X `w&(]m
end ,qe]fo >
G9i)nWr
if length(n)~=length(m) hC|5e|S
error('zernfun:NMlength','N and M must be the same length.') 5y%un
end \[[TlB>
8<yV
n = n(:); aYaG]&hb
m = m(:); P /c
Q1
if any(mod(n-m,2)) \)^,PA3
error('zernfun:NMmultiplesof2', ... =!?[]>Dh
'All N and M must differ by multiples of 2 (including 0).') d2C[wQF
end i'W_;Y}
FQk_#BkK
if any(m>n) 8! H8[J
error('zernfun:MlessthanN', ... GUu\dl9WA'
'Each M must be less than or equal to its corresponding N.') >'} Y1_S5
end K0O-WJ
YY#s=
if any( r>1 | r<0 ) S2rEy2\}:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?iPZsV
end }uF[Ra
sf |oNOz
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ( zn_8s
error('zernfun:RTHvector','R and THETA must be vectors.') I&TTr7
end Wl&
>6./{
(s}Rj)V[^
r = r(:); 2^)D
.&
theta = theta(:); t]
r,9df'
length_r = length(r); cBz!U8(
if length_r~=length(theta) g08*}0-k
error('zernfun:RTHlength', ... pqyWv;
'The number of R- and THETA-values must be equal.') z5XYpi_;[
end '1W!xQ}E
Js\-['`
% Check normalization: 4Qa@`
% -------------------- <i\UMrD]`:
if nargin==5 && ischar(nflag) <|{L[
isnorm = strcmpi(nflag,'norm'); T@;! yz}Pf
if ~isnorm ?,ZELpg n
error('zernfun:normalization','Unrecognized normalization flag.') RLdlz
end dT5J-70Fl
else j 0g5<M
isnorm = false; ]b4pI*:$I
end h5L=M^z!>
%04:z77
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BZovtm3E
% Compute the Zernike Polynomials i&'#+f4t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^cYStMjpy
kQ@gO[hS
% Determine the required powers of r: b;S6'7Jf9
% ----------------------------------- 8)L'rW{q#
m_abs = abs(m); 'e}uvbK
rpowers = []; X AQGG>
for j = 1:length(n) To3^L_v"
rpowers = [rpowers m_abs(j):2:n(j)]; z%OuI 8"'
end $Mdbto~ <
rpowers = unique(rpowers); KMUK`tbaI
;tJWOm
% Pre-compute the values of r raised to the required powers, Z;ZuS[ZA
% and compile them in a matrix: ZU=,f'bU
% ----------------------------- 5\okU"{d7
if rpowers(1)==0 b6 $,Xh
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b<[jaI0
rpowern = cat(2,rpowern{:}); 3^{8_^I
rpowern = [ones(length_r,1) rpowern]; hT?6sWa
else +T9Q_e*
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); O`cdQu
rpowern = cat(2,rpowern{:}); +`ai1-vw
end dVa!.q_3
q[-|ZA bbr
% Compute the values of the polynomials: W%TQYR
% -------------------------------------- Yl$X3wi
y = zeros(length_r,length(n)); lK0s=4c{
for j = 1:length(n) Vzpt(_><
s = 0:(n(j)-m_abs(j))/2; <"<Mbbp
pows = n(j):-2:m_abs(j); KacR?Al
for k = length(s):-1:1 5?Bc
Y;
p = (1-2*mod(s(k),2))* ... )D;*DUtMVm
prod(2:(n(j)-s(k)))/ ... X:>$8 ^gS
prod(2:s(k))/ ... z<hFK+j,'^
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... :4|M
jn
prod(2:((n(j)+m_abs(j))/2-s(k))); 2d-{Q8Pi
idx = (pows(k)==rpowers); m+?N7
y(:,j) = y(:,j) + p*rpowern(:,idx); ny)]GvxI
end ',GV6kt_k
aR _NyA
if isnorm Bz?l{4".
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %;7.9%
end GD!-
qH
end `ruNA>M
% END: Compute the Zernike Polynomials mb&lCd^-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +IrZ
;&oy
w!\3ICB
% Compute the Zernike functions: Y(_KizBY
% ------------------------------ Wbe0ZnM]
idx_pos = m>0; 9RH"d[%yc}
idx_neg = m<0; ?OE#q$ g
joqWh!kv7U
z = y; /Y,r@D
if any(idx_pos) Oa!
m
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); w]nX?S8
end @xS]!1-
if any(idx_neg) e'34Pw!m
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =Q-k'= 6\
end 3Hw[s0[$
+TH3&H5I_A
% EOF zernfun