切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11409阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 *T.V5FB0S  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Rhw+~gd*F  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ^xr & E  
    &0+Ba[Z ^  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 J~N!. i  
    =n;LP#(h?  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) |gfG\fL3V  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  |  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Z jXn,W]~  
    %   order N and frequency M, evaluated at R.  N is a vector of T~d_?UAw$  
    %   positive integers (including 0), and M is a vector with the y!~ }7=  
    %   same number of elements as N.  Each element k of M must be a |sAl k,8s  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 6<YAoo  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 9ol&p>  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix F2Mxcs* M  
    %   with one column for every (N,M) pair, and one row for every =V:Al   
    %   element in R. 7<LCX{Uw  
    % /7WdG)'  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- +_ $!9m  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is N \woFrG  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Crezo?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 26=G%F6  
    %   for all [n,m]. )p{,5"0u  
    % 5#dJga/88  
    %   The radial Zernike polynomials are the radial portion of the _I0=a@3  
    %   Zernike functions, which are an orthogonal basis on the unit :VX2&*  
    %   circle.  The series representation of the radial Zernike (b7',:_U7  
    %   polynomials is sLc,Dx"+  
    % 0*KL*Gn  
    %          (n-m)/2 kXO c)  
    %            __ 9{-H/YS\_s  
    %    m      \       s                                          n-2s ".kH5(:  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r D*g K,`  
    %    n      s=0 u/J1Z>0  
    % C-^8;xd  
    %   The following table shows the first 12 polynomials. c7]0 >nU;  
    % <lRjh7  
    %       n    m    Zernike polynomial    Normalization @={ qy}  
    %       --------------------------------------------- {gB9EGY  
    %       0    0    1                        sqrt(2) s6Il3K f  
    %       1    1    r                           2 bj@f<f`  
    %       2    0    2*r^2 - 1                sqrt(6) ~eXI}KhBw6  
    %       2    2    r^2                      sqrt(6) x}OJ~Yk]  
    %       3    1    3*r^3 - 2*r              sqrt(8) FW3uq^  
    %       3    3    r^3                      sqrt(8) q<cxmo0S  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) nHQWO   
    %       4    2    4*r^4 - 3*r^2            sqrt(10) !HF<fn  
    %       4    4    r^4                      sqrt(10) %kuUQ%W1  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) AH^ud*3F  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) `6v24?z  
    %       5    5    r^5                      sqrt(12) K}p0$Lc  
    %       --------------------------------------------- n9V8A[QJ  
    % cEK#5   
    %   Example: "71Y{WQ   
    % 7s 0pH+  
    %       % Display three example Zernike radial polynomials }5}#QHF  
    %       r = 0:0.01:1; U[hokwZ  
    %       n = [3 2 5]; gj4ONmY  
    %       m = [1 2 1]; PVrNS7 Rk/  
    %       z = zernpol(n,m,r);  X*`b}^T  
    %       figure 4XSq\.@G  
    %       plot(r,z) !y3XIbdS"  
    %       grid on fjm 3X$tR  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :DFtH13qO  
    % ,v#3A7"yW  
    %   See also ZERNFUN, ZERNFUN2. vg5fMH9ZZ  
    07>D G#  
    % A note on the algorithm. "j=E8Dd}  
    % ------------------------ w=[ITQ|W%  
    % The radial Zernike polynomials are computed using the series |wyua@2  
    % representation shown in the Help section above. For many special 5IbCE.>iU  
    % functions, direct evaluation using the series representation can L8KaK  
    % produce poor numerical results (floating point errors), because y/"CWD/i  
    % the summation often involves computing small differences between A9z3SJ\vXl  
    % large successive terms in the series. (In such cases, the functions  y)3OQ24  
    % are often evaluated using alternative methods such as recurrence gj82qy\:  
    % relations: see the Legendre functions, for example). For the Zernike =P,pW  
    % polynomials, however, this problem does not arise, because the [2ri=lf,  
    % polynomials are evaluated over the finite domain r = (0,1), and a@#<qf8g  
    % because the coefficients for a given polynomial are generally all )#,a'~w  
    % of similar magnitude. f+2mX"Z[F  
    % 6dYa07  
    % ZERNPOL has been written using a vectorized implementation: multiple [o.#$(   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 9!6u Yf+  
    % values can be passed as inputs) for a vector of points R.  To achieve DN;$ ->>  
    % this vectorization most efficiently, the algorithm in ZERNPOL &0OH:P%  
    % involves pre-determining all the powers p of R that are required to q'%!qa+  
    % compute the outputs, and then compiling the {R^p} into a single U:8cz=#  
    % matrix.  This avoids any redundant computation of the R^p, and m[Qr>="  
    % minimizes the sizes of certain intermediate variables. o)H| #9h5  
    % @Suww@<  
    %   Paul Fricker 11/13/2006 *]ME]2qP  
    G_xql_QR  
    VgMuX3=  
    % Check and prepare the inputs: )a$sx}  
    % ----------------------------- /km0[M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >dwY( a  
        error('zernpol:NMvectors','N and M must be vectors.') h2 >a_0"  
    end [V0%=q+R  
    *\^(-p~M  
    if length(n)~=length(m) TtgsM}Fm  
        error('zernpol:NMlength','N and M must be the same length.') ;>Z0e`=  
    end ZsGJ[  
    \$,8aRT>#U  
    n = n(:); ~2QD.(  
    m = m(:); rC6EgWt<V  
    length_n = length(n); TZarI-A  
    r`PD}6\  
    if any(mod(n-m,2)) T|uG1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') #W/ATsDt  
    end "}:SXAZ5`  
    >eX9dA3X  
    if any(m<0) HyIyrUrYW  
        error('zernpol:Mpositive','All M must be positive.') B8zc#0!1  
    end }q:4Zh'l!  
    7M$cIWe$  
    if any(m>n) >&Vz/0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') D*ZswHT{y  
    end yRt7&,}zL  
    / &yc?Ui  
    if any( r>1 | r<0 ) `=2p6<#z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3/8<dc  
    end _hEr,IX=J  
    j_SUR)5  
    if ~any(size(r)==1) e,l-}=5* P  
        error('zernpol:Rvector','R must be a vector.') @[]#[7  
    end P-X2A2  
    l <yYfGO  
    r = r(:); |^OK@KdL1  
    length_r = length(r); LVJn2t^  
    I~,bZA  
    if nargin==4 4 Z&KR<2Z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); >&Y\g?Z6G  
        if ~isnorm Z5[g[Q  
            error('zernpol:normalization','Unrecognized normalization flag.') {}BAQ9|q  
        end B\+uRiD8w  
    else Eopb##o  
        isnorm = false; }`]Et99Q5  
    end F:LrQu  
    Am#Pa,g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% euET)Ccq  
    % Compute the Zernike Polynomials ^O&&QRH~w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RJdijj  
    Xl E0oN~{  
    % Determine the required powers of r: '|G8yojz  
    % ----------------------------------- J#\oc@  
    rpowers = []; [ic%ZoZ_  
    for j = 1:length(n) 8I0G%hD  
        rpowers = [rpowers m(j):2:n(j)]; u"DE?  
    end @su!9]o  
    rpowers = unique(rpowers); @ 6H7  
    *C.Kdf3w  
    % Pre-compute the values of r raised to the required powers, HP:[aR!2P  
    % and compile them in a matrix: rGay~\  
    % ----------------------------- #j"GS/y"  
    if rpowers(1)==0 Nwk^r75lq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \og2\Oh&gH  
        rpowern = cat(2,rpowern{:}); 8qoA5fW>  
        rpowern = [ones(length_r,1) rpowern]; 877Kv);  
    else T/jxsIt3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  I^G6aw  
        rpowern = cat(2,rpowern{:}); %I@ vMs^  
    end ~iq=J5IN#  
    \ !IEZ  
    % Compute the values of the polynomials: P[r$KGz  
    % -------------------------------------- aTs9lr:  
    z = zeros(length_r,length_n); xsU3c0wbr8  
    for j = 1:length_n N3w y][bo  
        s = 0:(n(j)-m(j))/2; x\YVB',h  
        pows = n(j):-2:m(j); $dug"[  
        for k = length(s):-1:1 j3j^cO[8v  
            p = (1-2*mod(s(k),2))* ... =]1g*~%  
                       prod(2:(n(j)-s(k)))/          ... JY3!jtv  
                       prod(2:s(k))/                 ... WZ UeW*#=  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... R#s_pW{op  
                       prod(2:((n(j)+m(j))/2-s(k))); 18]Q4s8E  
            idx = (pows(k)==rpowers); 6rlvSdB  
            z(:,j) = z(:,j) + p*rpowern(:,idx); l|M|;5TW  
        end \8USFN~(Y  
         ,Qj\_vr@  
        if isnorm iDYm4sY  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 9fsc>9  
        end V6'k\5|_  
    end }sp?@C,Z  
    n%!50E6*:  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) wV,=hMTd&\  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {vur9L  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ?i}wm`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive GqgJ]m  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, MI~Q Xy,  
    %   and THETA is a vector of angles.  R and THETA must have the same wkT4R\H>  
    %   length.  The output Z is a matrix with one column for every P-value, jRxzZt4  
    %   and one row for every (R,THETA) pair. <ILi38%Y  
    % P#"_H}qC*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike K] &GSro  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ,? Q1JZPy@  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {fMo#`9=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 |WW'qg]Uu  
    %   for all p. l s%'\}  
    % :^]Fp UY  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 jI$7vmO  
    %   Zernike functions (order N<=7).  In some disciplines it is N5b&tJb M0  
    %   traditional to label the first 36 functions using a single mode ;`Z>^.CB  
    %   number P instead of separate numbers for the order N and azimuthal r$%,k*X^ k  
    %   frequency M. \3)U~[O>:  
    % ~L.5;8a3Pe  
    %   Example: {6F]w_\  
    % 9xL` i-7]  
    %       % Display the first 16 Zernike functions ~u r}6T  
    %       x = -1:0.01:1; <XzRRCYQ  
    %       [X,Y] = meshgrid(x,x); )7Oj  
    %       [theta,r] = cart2pol(X,Y); ?l`|j*  
    %       idx = r<=1; FQcm =d_s  
    %       p = 0:15; ?:W=ddg  
    %       z = nan(size(X)); OGW0lnQ/  
    %       y = zernfun2(p,r(idx),theta(idx)); !@> :k3DC&  
    %       figure('Units','normalized') X$ A ]7t  
    %       for k = 1:length(p) #vTF:r  
    %           z(idx) = y(:,k); #*G}v%Ow/u  
    %           subplot(4,4,k) 'f6!a5qC  
    %           pcolor(x,x,z), shading interp Ex{;&UWm  
    %           set(gca,'XTick',[],'YTick',[]) e{.P2rnh  
    %           axis square c43&[xP Lz  
    %           title(['Z_{' num2str(p(k)) '}']) /1r {z1pv\  
    %       end r1sA^2g.  
    % j0S[JpoF  
    %   See also ZERNPOL, ZERNFUN. 'JAe =K H  
    <p[RhP  
    %   Paul Fricker 11/13/2006 @! jpJ}  
    D~,i I7ac  
    +sXnC\  
    % Check and prepare the inputs: B:)vPO+ d  
    % ----------------------------- z{qn|#}  
    if min(size(p))~=1 %i&\ X[  
        error('zernfun2:Pvector','Input P must be vector.') MA v-#  
    end ,k m`-6.2?  
    -i4hJC!3  
    if any(p)>35 }$:ha>  
        error('zernfun2:P36', ... 5(y Q-/6C+  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... &>XSQB(&%  
               '(P = 0 to 35).']) :Z]\2(x  
    end Vje LPbk)  
    ?)4c!3#  
    % Get the order and frequency corresonding to the function number: ;5}"2hU>  
    % ---------------------------------------------------------------- ak(P<OC-  
    p = p(:);  "-G&]YMl  
    n = ceil((-3+sqrt(9+8*p))/2); J#G\7'?{  
    m = 2*p - n.*(n+2); r7v 1q  
    hy@e(k|S]U  
    % Pass the inputs to the function ZERNFUN: QB7^8O!<  
    % ---------------------------------------- a<Ps6'  
    switch nargin 9tB:1n}  
        case 3 &-|(q!jm  
            z = zernfun(n,m,r,theta); I@q4D1g  
        case 4 ?gS~9jgcd  
            z = zernfun(n,m,r,theta,nflag); 1@`mpm#Y  
        otherwise Fw6x (j"  
            error('zernfun2:nargin','Incorrect number of inputs.') }do=lm?/  
    end M532>+A]Za  
    Xyw;Nh!!d  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 aP +)  
    function z = zernfun(n,m,r,theta,nflag) 2@pEuB3$?!  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. M"z3F!-j  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3HB(rTw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uJ%XF*>_D  
    %   unit circle.  N is a vector of positive integers (including 0), and x5!lnN,#  
    %   M is a vector with the same number of elements as N.  Each element M!] g36h[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ziD+% -  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Rm=[Sj84  
    %   and THETA is a vector of angles.  R and THETA must have the same 1&JB@F9!  
    %   length.  The output Z is a matrix with one column for every (N,M) qISzn04  
    %   pair, and one row for every (R,THETA) pair. `xu/|})KI  
    % Ec|5'Kz]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike __,}/|K2  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +FtL_7[v  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral qvN 5[rb  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !8OUH6{2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized JJE0q5[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =VDtZSa!$^  
    % !\N|$-M  
    %   The Zernike functions are an orthogonal basis on the unit circle. sqk$q pV6  
    %   They are used in disciplines such as astronomy, optics, and v/}h y$7  
    %   optometry to describe functions on a circular domain. OwG:+T_  
    % oA $]%  
    %   The following table lists the first 15 Zernike functions. G:?l;+P1  
    % "(SZ;y  
    %       n    m    Zernike function           Normalization ~JxAo\2i  
    %       --------------------------------------------------  tvvRHvL  
    %       0    0    1                                 1 ~0XV[$`L  
    %       1    1    r * cos(theta)                    2 FR1se  
    %       1   -1    r * sin(theta)                    2 $eUJd Aetk  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) naWW i]9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) uOnyU+fZV  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) O=w u0n  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) %^66(n)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) mRC6m K>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,daZ KxT  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P :D6w){  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) )K^5+oC17  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s9}VnNr  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]h0K*{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7"Iagrgw  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) XveG#oyiU  
    %       -------------------------------------------------- %y}l^P5z  
    % Qg4g(0E@  
    %   Example 1: 8t Ef>  
    % ]R  s  
    %       % Display the Zernike function Z(n=5,m=1) (3M7RpsL@  
    %       x = -1:0.01:1; q<*UeyE S  
    %       [X,Y] = meshgrid(x,x); !aub@wH3  
    %       [theta,r] = cart2pol(X,Y); ^\zf8kPti  
    %       idx = r<=1; 60&4?<lR4  
    %       z = nan(size(X)); ~J,e^$u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .|9o`mF7  
    %       figure >@NGX-gp  
    %       pcolor(x,x,z), shading interp Rt10:9Kz$  
    %       axis square, colorbar 8st~ O  
    %       title('Zernike function Z_5^1(r,\theta)') G Za<  
    % nPS:T|*G  
    %   Example 2: M]$_>&"  
    % ON/U0V:v  
    %       % Display the first 10 Zernike functions nI6[y)j  
    %       x = -1:0.01:1; wth*H$iF  
    %       [X,Y] = meshgrid(x,x); FlQ(iv)P  
    %       [theta,r] = cart2pol(X,Y); SH${\BKup  
    %       idx = r<=1; D,J yb0BW  
    %       z = nan(size(X)); B '"RKs]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; \a}W{e=FNT  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; RTR@p =ck  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X0QLT:J b  
    %       y = zernfun(n,m,r(idx),theta(idx)); my^2}>wi  
    %       figure('Units','normalized') 4?)-;Hx_X  
    %       for k = 1:10 SYsbe 5j  
    %           z(idx) = y(:,k); G`" 9/FI7  
    %           subplot(4,7,Nplot(k)) '-[~I>o%  
    %           pcolor(x,x,z), shading interp =-U8^e_Y  
    %           set(gca,'XTick',[],'YTick',[]) 9!06R-h  
    %           axis square hB)TH'R{:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -N]%) Hy  
    %       end 4q7hL  
    % $-:j'e:j  
    %   See also ZERNPOL, ZERNFUN2. 0cBk/x^s  
    [nnX,;  
    %   Paul Fricker 11/13/2006 ;jgJI~3l  
    "dO>P*k,  
    z1u1%FwOfM  
    % Check and prepare the inputs: [C"[#7  
    % ----------------------------- P<<hg3@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pNzSy"Y$  
        error('zernfun:NMvectors','N and M must be vectors.') )m7 Yo  
    end ;5fq[v^P:  
    <CnTiS#  
    if length(n)~=length(m) .}.63T$h9  
        error('zernfun:NMlength','N and M must be the same length.') ?Q XS?  
    end T8ftBIOi  
    X^;LiwQv  
    n = n(:); WKB8k-.]ww  
    m = m(:); xJ(4RaP  
    if any(mod(n-m,2)) ;%H/^b.c  
        error('zernfun:NMmultiplesof2', ... >x$.mXX{  
              'All N and M must differ by multiples of 2 (including 0).') &CEZ+\bA  
    end LYv$U;*+  
    +bbhm0f  
    if any(m>n) ,ruL7|T&  
        error('zernfun:MlessthanN', ... XvIrO]F-  
              'Each M must be less than or equal to its corresponding N.') 3Y}X7-|)Z  
    end 5#SD$^  
    {IlX@qWr  
    if any( r>1 | r<0 ) qd7 86~  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3:;2Av2(X.  
    end >sL"HyY#H  
    +%hA 6n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) DfNX@gbo  
        error('zernfun:RTHvector','R and THETA must be vectors.') .jfkOt?2  
    end ?xbPdG":R  
    LK'|sO>|  
    r = r(:); -8]M ,,?  
    theta = theta(:); `f9I#B  
    length_r = length(r); @+3@Z?!SZ  
    if length_r~=length(theta) LS=HX~5C  
        error('zernfun:RTHlength', ... )Bq~1M 2  
              'The number of R- and THETA-values must be equal.') IC6}s  
    end `2M`;$~ 5  
    uNV\_'9>Y  
    % Check normalization: _k,/t10  
    % -------------------- *Hnk,?kPq  
    if nargin==5 && ischar(nflag) uD2v6x236  
        isnorm = strcmpi(nflag,'norm'); !\0UEC  
        if ~isnorm +H7lkbW  
            error('zernfun:normalization','Unrecognized normalization flag.') ,KMt9 <  
        end Q[+o\{ O  
    else lUR7zrwJ]o  
        isnorm = false; L(yR"A{FsE  
    end (>E 70|T  
    0pSqk/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @GB~rfB[  
    % Compute the Zernike Polynomials =vv4;az X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #sOkD  
    0koC;(<n  
    % Determine the required powers of r: YmS}*>oz  
    % ----------------------------------- )rTV}Hk  
    m_abs = abs(m); _dT,%q  
    rpowers = []; >^8=_i !  
    for j = 1:length(n) /GK1}h  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5 ,0fL  
    end Z>)(yi9+  
    rpowers = unique(rpowers); Hvn{aLa.  
    zF6]2Y?k%  
    % Pre-compute the values of r raised to the required powers, eRK kHd-  
    % and compile them in a matrix: w+P?JR!)+  
    % ----------------------------- q&h&GZ  
    if rpowers(1)==0 VPB,8zb ]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o2FQ/EIE  
        rpowern = cat(2,rpowern{:}); s/,wyxKd  
        rpowern = [ones(length_r,1) rpowern]; <mm. b  
    else liW0v!jBo  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3J2j5N:g  
        rpowern = cat(2,rpowern{:}); ]vJ] i <|b  
    end z*cC2+R}=  
    =kp-[7  
    % Compute the values of the polynomials: hcvWf\4'#q  
    % -------------------------------------- .Y8z3O  
    y = zeros(length_r,length(n)); Ut;, Z  
    for j = 1:length(n) bp06xHMu  
        s = 0:(n(j)-m_abs(j))/2; E1U~ ew  
        pows = n(j):-2:m_abs(j); ;TAf[[P  
        for k = length(s):-1:1 t,mD{ENm&  
            p = (1-2*mod(s(k),2))* ... 0]C~CvO  
                       prod(2:(n(j)-s(k)))/              ... pq 4/>WzE  
                       prod(2:s(k))/                     ... GZ.F q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nQ*9|v4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); U2=PmS P  
            idx = (pows(k)==rpowers); RJ ,a}w[9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); zCvt"!}RRa  
        end N|n"JKw)  
         [xF(t @p  
        if isnorm }n+#o!uEf  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 28KS*5S  
        end ;]* %wX  
    end ]]\\Y|0  
    % END: Compute the Zernike Polynomials <1H bjR w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% os<B}D[  
    iWbrX1 I+  
    % Compute the Zernike functions: S\"/=|\  
    % ------------------------------ 1LbJR'}  
    idx_pos = m>0; bk@F/KqL  
    idx_neg = m<0; EkV LSur  
    b~khb!]  
    z = y; 1gEeZ\B-&  
    if any(idx_pos) Y)kO"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #{]X<et  
    end a#iJXI  
    if any(idx_neg) |[ymNG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tta\.ic  
    end -r%3"C=m  
    H pHXt78  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的