切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11134阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 F+"_]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ]{oZn5F  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  !cwZ*eM  
    J;C:nE|V  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 `ePC$Ovn  
    p+ CUYo(  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag)  is'V%q  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. al2t\Iq90  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of RB5SK#z  
    %   order N and frequency M, evaluated at R.  N is a vector of sV\_DP/l  
    %   positive integers (including 0), and M is a vector with the oBzl=N3<  
    %   same number of elements as N.  Each element k of M must be a "y1Iu   
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) @~3--  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is W(,j2pU  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix .tngN<f  
    %   with one column for every (N,M) pair, and one row for every h>N}M}8  
    %   element in R. );5o13h2  
    % z/@_?01T=  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 79\ wjR!T  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ]v+<K63@T  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to h9vcN#22D  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 i5,iJe0cA  
    %   for all [n,m]. NGx3f3 9  
    % J2UQq7-y  
    %   The radial Zernike polynomials are the radial portion of the zM'eqo>!c>  
    %   Zernike functions, which are an orthogonal basis on the unit } M#e\neii  
    %   circle.  The series representation of the radial Zernike /jbAf]"F;  
    %   polynomials is 5KCB^`|b>t  
    % Q;h.}N8W  
    %          (n-m)/2 bO '\QtW9  
    %            __ Sj9fq*  
    %    m      \       s                                          n-2s )vp0X\3q`  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r K_7pr~D]@r  
    %    n      s=0 ajYe?z  
    % gP^2GnjHL8  
    %   The following table shows the first 12 polynomials. &#r+a'  
    % 8{ zX=  
    %       n    m    Zernike polynomial    Normalization 6{Wo5O{!\  
    %       --------------------------------------------- -YRIe<}E -  
    %       0    0    1                        sqrt(2) )2}R1K>  
    %       1    1    r                           2 rIyH/=;  
    %       2    0    2*r^2 - 1                sqrt(6) pLMt 2 G  
    %       2    2    r^2                      sqrt(6) qd`e:s*%  
    %       3    1    3*r^3 - 2*r              sqrt(8) v^|U?  
    %       3    3    r^3                      sqrt(8) i\R0+ O{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 5]xuU.w'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 7|rH9Bc{U  
    %       4    4    r^4                      sqrt(10) 3h@]cWp  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) .~z'm$s1o  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) @^{Hq6_`  
    %       5    5    r^5                      sqrt(12) ]hl*6  
    %       --------------------------------------------- la!]Y-s)'4  
    % h Yu6PWK  
    %   Example: 1{}p_"s>  
    % Jt~Ivn,  
    %       % Display three example Zernike radial polynomials ZsmOn#`=^}  
    %       r = 0:0.01:1; -<iP$,bq72  
    %       n = [3 2 5]; -m@o\9Ic  
    %       m = [1 2 1]; sNf& "C!;  
    %       z = zernpol(n,m,r); >{#JIG.  
    %       figure .RD<]BxJ  
    %       plot(r,z) bIQ,=EA1  
    %       grid on b#j:)PA0C  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest')  Rr) 5 [  
    % ]#!uke Q  
    %   See also ZERNFUN, ZERNFUN2. #Z&/w.D2  
    '&>"`q  
    % A note on the algorithm. O zAIz+`  
    % ------------------------ kZ]H[\Fs  
    % The radial Zernike polynomials are computed using the series %mI0*YRma  
    % representation shown in the Help section above. For many special 1S{Biqi+  
    % functions, direct evaluation using the series representation can j"W>fC/u  
    % produce poor numerical results (floating point errors), because x*7@b8J  
    % the summation often involves computing small differences between C]^Ep  
    % large successive terms in the series. (In such cases, the functions kY0HP a  
    % are often evaluated using alternative methods such as recurrence [%W'd9`>  
    % relations: see the Legendre functions, for example). For the Zernike Vl^(K_`(  
    % polynomials, however, this problem does not arise, because the #3uv^m LGa  
    % polynomials are evaluated over the finite domain r = (0,1), and NvK9L.K  
    % because the coefficients for a given polynomial are generally all iL/c^(1  
    % of similar magnitude. ycA<l"  
    % 0<M-asI?  
    % ZERNPOL has been written using a vectorized implementation: multiple 05UN <l]  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] i~B?p[  
    % values can be passed as inputs) for a vector of points R.  To achieve -I< >Ab  
    % this vectorization most efficiently, the algorithm in ZERNPOL -D^I;[j_  
    % involves pre-determining all the powers p of R that are required to 5Xy(za  
    % compute the outputs, and then compiling the {R^p} into a single ,67Q!/O  
    % matrix.  This avoids any redundant computation of the R^p, and _nGx[1G( 5  
    % minimizes the sizes of certain intermediate variables. 7h' C"rH  
    % ChBf:`e  
    %   Paul Fricker 11/13/2006 F.s$Y+c!6  
    C{)1#<`  
    ?hoOSur+  
    % Check and prepare the inputs: [8V;Q  
    % ----------------------------- Cq5.gkS<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ULx:2jz  
        error('zernpol:NMvectors','N and M must be vectors.') 'nmGHorp  
    end 0uy'Py@2<  
    e =amh  
    if length(n)~=length(m) kc'$4 J4Tw  
        error('zernpol:NMlength','N and M must be the same length.') X9>fE{)!  
    end I}$`gUXX8x  
    r&=ulg  
    n = n(:); s{^98*  
    m = m(:); cXweg;  
    length_n = length(n); q~{) {t;  
    w\C1Bh!  
    if any(mod(n-m,2)) !z?   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') RB>=#03  
    end )W\)37=.  
    ]4~Yi1]  
    if any(m<0)  3@Ndn  
        error('zernpol:Mpositive','All M must be positive.') 2- iY:r  
    end e02Hf{eOfw  
    HcRw9,I'  
    if any(m>n) 7w )?s@CD  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') S!K<kn`E3  
    end ,GOIg|51  
    t FU4%c7V  
    if any( r>1 | r<0 ) fe .=Z&  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') +%5L2/n7  
    end =<\22d5L  
    ,%!m%+K9a  
    if ~any(size(r)==1) X G#?fr}L  
        error('zernpol:Rvector','R must be a vector.') w4 yrAj 2  
    end T!/o^0w  
    A %w9Da?B  
    r = r(:); ,fjY|ip  
    length_r = length(r); B>{%$@4  
    qI'pjTMDY  
    if nargin==4 7cc^n\c?Y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ;<~f-D,  
        if ~isnorm E}wT5t;u  
            error('zernpol:normalization','Unrecognized normalization flag.') lHiWzt u  
        end nD i^s{  
    else zC50 @S3|  
        isnorm = false; , ['}9:f9  
    end hcVu`Bn  
    iXWzIb}CJ-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8W3zrnc  
    % Compute the Zernike Polynomials B*/!s7c.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0E\#!L  
    }6Pbjm*  
    % Determine the required powers of r: . !1[I{KU  
    % ----------------------------------- (KI9j7  
    rpowers = []; m .++nF  
    for j = 1:length(n) _'D(>e?  
        rpowers = [rpowers m(j):2:n(j)]; Z+B*V )a=  
    end MlTC?Rp#  
    rpowers = unique(rpowers); x'EEmjJ  
    Kp7D I0~  
    % Pre-compute the values of r raised to the required powers, ,ye}p 1M  
    % and compile them in a matrix: c b-IRGF  
    % ----------------------------- MkW=sD_  
    if rpowers(1)==0 tE %g)hL-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fz=8"cDR  
        rpowern = cat(2,rpowern{:}); MKbcJZe  
        rpowern = [ones(length_r,1) rpowern]; QC'Ru'8S  
    else ;R= n<=Axa  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (iKJ~bJ  
        rpowern = cat(2,rpowern{:}); xLed];2G  
    end S(@kdL  
    |GMo"[  
    % Compute the values of the polynomials: bo<P%$(D  
    % -------------------------------------- *VsGa<V  
    z = zeros(length_r,length_n); _DxHJl  
    for j = 1:length_n AL":j6!OQ  
        s = 0:(n(j)-m(j))/2; L#S W!  
        pows = n(j):-2:m(j); 1$RJzHS  
        for k = length(s):-1:1 &~2m@X(o  
            p = (1-2*mod(s(k),2))* ... fXWy9 #M  
                       prod(2:(n(j)-s(k)))/          ... <T>s;b  
                       prod(2:s(k))/                 ... "{8j!+]4i  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {.Qv1oOa  
                       prod(2:((n(j)+m(j))/2-s(k))); D%+yp  
            idx = (pows(k)==rpowers); !aSj1 2J  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /KvJjt'8  
        end k86TlQRh  
         HGAi2+&  
        if isnorm DpggZ|J  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); np2&W'C/i  
        end + yI$4MY  
    end ZK;/~9KU  
    WVD48}HF-  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) oeg Bk  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. wU|@fm"  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated zG$5g^J  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive !p$p 7   
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, %|e)s_%XE  
    %   and THETA is a vector of angles.  R and THETA must have the same ^?RH<z  
    %   length.  The output Z is a matrix with one column for every P-value, 1UK= t  
    %   and one row for every (R,THETA) pair. ^mn!;nu  
    % W`PJ flr|  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike i.'"`pn_  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) T; tY7;<  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) p _[,P7  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 .v(GVkE}  
    %   for all p. JXL?.{'A  
    % M 6&=-  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 T^Ia^B-%}g  
    %   Zernike functions (order N<=7).  In some disciplines it is tTBDb  
    %   traditional to label the first 36 functions using a single mode F%<*a,m6g  
    %   number P instead of separate numbers for the order N and azimuthal N ;=z o-8  
    %   frequency M. 2*Qi4%s#  
    % y5F+~z }{  
    %   Example: "LTw;& y  
    % ef^GJTv&k  
    %       % Display the first 16 Zernike functions ]7}!3m  
    %       x = -1:0.01:1; 6HZtdRQF  
    %       [X,Y] = meshgrid(x,x); kJmwR  
    %       [theta,r] = cart2pol(X,Y); 1q(Qr h  
    %       idx = r<=1; (1|wM+)"  
    %       p = 0:15; Yw#fQFm  
    %       z = nan(size(X)); rX)&U4#[m  
    %       y = zernfun2(p,r(idx),theta(idx)); 0?$|F0U"J  
    %       figure('Units','normalized') K?J_cnJ`  
    %       for k = 1:length(p) C*ep8{B  
    %           z(idx) = y(:,k); }Q4Vy  
    %           subplot(4,4,k) r QiRhp  
    %           pcolor(x,x,z), shading interp VOD-< "|  
    %           set(gca,'XTick',[],'YTick',[]) Hmr f\(x  
    %           axis square )M dddz4  
    %           title(['Z_{' num2str(p(k)) '}']) /%g9g_rt#  
    %       end a%.W9=h=M(  
    % w^Y/J4 I0  
    %   See also ZERNPOL, ZERNFUN. N#Rb8&G)b  
    !b_(|~7Lc  
    %   Paul Fricker 11/13/2006 joskKik^  
    #M|lBYdW}  
    c45 s #6  
    % Check and prepare the inputs: B>c$AS\5y  
    % ----------------------------- xgMh@@e  
    if min(size(p))~=1 rmzzbLTu  
        error('zernfun2:Pvector','Input P must be vector.') `$Rgn3  
    end lXTE#,XVf  
    C0[U}Y/r2  
    if any(p)>35 'UhHcMh:  
        error('zernfun2:P36', ... .F8[;+  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ^Zz^h@+  
               '(P = 0 to 35).']) B?i#m^S  
    end z(A[xN@/W<  
    [-*&ZYp  
    % Get the order and frequency corresonding to the function number: %\ i&g$  
    % ---------------------------------------------------------------- ]UUa/ep-  
    p = p(:); )>{ .t=#  
    n = ceil((-3+sqrt(9+8*p))/2); V5(_7b#z``  
    m = 2*p - n.*(n+2); \4wMv[;7  
    _M/N_Fm  
    % Pass the inputs to the function ZERNFUN: OJpfiZ@Q_  
    % ---------------------------------------- F:q4cfL6  
    switch nargin sR1_L/.  
        case 3 ]uox ^HC  
            z = zernfun(n,m,r,theta); `{:Nt#7  
        case 4 KxK,en4)+  
            z = zernfun(n,m,r,theta,nflag); pi"M*$  
        otherwise )9"^ D  
            error('zernfun2:nargin','Incorrect number of inputs.') ]TT >3"Dw7  
    end Q// @5m_  
    KV$&qM.  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 syB pF:`-W  
    function z = zernfun(n,m,r,theta,nflag) =!q]0#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /al56n  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ck )W=  
    %   and angular frequency M, evaluated at positions (R,THETA) on the aC[G_ACwc  
    %   unit circle.  N is a vector of positive integers (including 0), and _y[C52,  
    %   M is a vector with the same number of elements as N.  Each element 9SsVJ<9,R  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |p[Mp:^^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6:G&x<{  
    %   and THETA is a vector of angles.  R and THETA must have the same `.J)Z=o  
    %   length.  The output Z is a matrix with one column for every (N,M) g7]S  
    %   pair, and one row for every (R,THETA) pair. #aL.E(%  
    % y\^zxG*]'  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "b`#RohCi  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), e2 c'Wab  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral yZ6WbI8n  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }{N#JTmjB#  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized V.:,Q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [T r7SU#x  
    % b\ED<'  
    %   The Zernike functions are an orthogonal basis on the unit circle. f4  S:L&  
    %   They are used in disciplines such as astronomy, optics, and DQY1oM)D !  
    %   optometry to describe functions on a circular domain. HjA~3l7  
    % Hj>9#>b  
    %   The following table lists the first 15 Zernike functions. >KuNHuHu  
    % P1[.[q/-e  
    %       n    m    Zernike function           Normalization k*;U?C!  
    %       -------------------------------------------------- c;]\$#2  
    %       0    0    1                                 1 )8oyo~4?  
    %       1    1    r * cos(theta)                    2 5V/&4$.U!  
    %       1   -1    r * sin(theta)                    2 u;$qJjS N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 6<W^T9}v@/  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !O"2)RU1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) HE+'fQ!R  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >I@&"&d  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) e*T^:2oRl  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) dYISjk@  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (9]1p;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }Q: CZ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aQ(P#n>a2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1oO(;--u_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @xdtl{5G  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  dHx4yFS  
    %       -------------------------------------------------- 1sg:8AA  
    % WVyDE1K <  
    %   Example 1: {D8opepO)  
    % ~s&r.6 DW  
    %       % Display the Zernike function Z(n=5,m=1) <7`k[~)VB  
    %       x = -1:0.01:1; %R4 \[e  
    %       [X,Y] = meshgrid(x,x); (enr{1  
    %       [theta,r] = cart2pol(X,Y); VE]TT><  
    %       idx = r<=1; AAfU]4u0S  
    %       z = nan(size(X)); A v>v\ :.>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f`ibP6%  
    %       figure ,$t1LV;o=  
    %       pcolor(x,x,z), shading interp #Db^*  
    %       axis square, colorbar rEp\ld  
    %       title('Zernike function Z_5^1(r,\theta)') [H\0 '  
    % 9 D.wW  
    %   Example 2: bJPKe]spJ=  
    % h(kPf ]0  
    %       % Display the first 10 Zernike functions ;rL>{UhG  
    %       x = -1:0.01:1; }~LGq.H  
    %       [X,Y] = meshgrid(x,x); 4j0;okQWV'  
    %       [theta,r] = cart2pol(X,Y); pWE(?d_M{G  
    %       idx = r<=1; {w3<dfJ  
    %       z = nan(size(X)); O6$,J1 2l  
    %       n = [0  1  1  2  2  2  3  3  3  3]; nnhI]#,a{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uDG>m7(}/h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GTbV5{Ss  
    %       y = zernfun(n,m,r(idx),theta(idx)); U= GJuixy  
    %       figure('Units','normalized') U4dfO=  
    %       for k = 1:10 /NB|N*}O)  
    %           z(idx) = y(:,k); ^vh!1"T  
    %           subplot(4,7,Nplot(k)) sE]z.Po=  
    %           pcolor(x,x,z), shading interp O=}  
    %           set(gca,'XTick',[],'YTick',[]) Zt41fPQ  
    %           axis square ,^ ,R .T  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) < (9 BO&  
    %       end %Qj$@.*:  
    % I3.JAoB>!  
    %   See also ZERNPOL, ZERNFUN2. 7?g({]  
    (ZF~   
    %   Paul Fricker 11/13/2006 DJdhOLx  
    dL'oIBp  
    w$s6NBF7  
    % Check and prepare the inputs: IV1O/lGp  
    % ----------------------------- ShtV2}s|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FDF DB  
        error('zernfun:NMvectors','N and M must be vectors.') \COoU("  
    end cfBl HeYE  
     7a_u=\,  
    if length(n)~=length(m) DI-&P3iGx  
        error('zernfun:NMlength','N and M must be the same length.') n|.eL8lX.<  
    end ^Hf?["m^@  
    ErA*a3  
    n = n(:); qMVuBv  
    m = m(:); 3&[d.,/  
    if any(mod(n-m,2)) 0ZD)(ps|  
        error('zernfun:NMmultiplesof2', ... 3^H-,b0^  
              'All N and M must differ by multiples of 2 (including 0).') wmbG$T%k  
    end JC$_Pg!  
    H_8PK$c;  
    if any(m>n) (G{:O   
        error('zernfun:MlessthanN', ... .pxUO3g  
              'Each M must be less than or equal to its corresponding N.') x^`P[>  
    end ooa"Th<  
    NU.4_cixb  
    if any( r>1 | r<0 ) u1'l4VgT  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') NP\/9 8|1  
    end B&!>& Rbx  
    {6)H.vpP  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @Z""|H"0  
        error('zernfun:RTHvector','R and THETA must be vectors.') !*qQ 7  
    end n[a%*i6x  
    Xa'b @*o&  
    r = r(:); W`#E[g?]  
    theta = theta(:); -idbR[1{?  
    length_r = length(r); +:C.G[+  
    if length_r~=length(theta) W+V &  
        error('zernfun:RTHlength', ... _w <6o<@  
              'The number of R- and THETA-values must be equal.') G!F_Q7|-  
    end ?6\A$?  
    ? R[GSS1  
    % Check normalization: 5@bmm]  
    % -------------------- 0LHge7482  
    if nargin==5 && ischar(nflag) $ JCOL  
        isnorm = strcmpi(nflag,'norm'); \@NnL\ t u  
        if ~isnorm cE,,9M@^  
            error('zernfun:normalization','Unrecognized normalization flag.') ZD?LsD3  
        end >Zm|R|{BE  
    else 8"wavh|g4  
        isnorm = false; IQ~EL';<w  
    end f0{ tBD!%  
    YpSK |(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nl-tJ.MU"  
    % Compute the Zernike Polynomials pug;1UZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .'1]2/ad  
    bHs},i6  
    % Determine the required powers of r: 'A/{7*,  
    % ----------------------------------- S U P  
    m_abs = abs(m); lz#@_F|.*  
    rpowers = []; V8%( h[  
    for j = 1:length(n) ]MMXpj,9h  
        rpowers = [rpowers m_abs(j):2:n(j)]; <;Td8T;  
    end :7qJ[k{g  
    rpowers = unique(rpowers); ]4_)WUS.c  
    ^S(["6OJ(  
    % Pre-compute the values of r raised to the required powers, 2+\@0j[q  
    % and compile them in a matrix: ARB^]  
    % ----------------------------- gEq";B%?  
    if rpowers(1)==0 _#E@& z".L  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !V0)eC50  
        rpowern = cat(2,rpowern{:}); N?s5h?  
        rpowern = [ones(length_r,1) rpowern]; +227SPLd  
    else 9aKCO4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s(Fxi|v;  
        rpowern = cat(2,rpowern{:}); /T<,vR  
    end 2s`~<EF N  
    iS8yJRy  
    % Compute the values of the polynomials: w}(Ht_6q{  
    % -------------------------------------- HO8x:2m  
    y = zeros(length_r,length(n)); Oufdi3h  
    for j = 1:length(n) 7/c9azmC  
        s = 0:(n(j)-m_abs(j))/2; ;MKfssG  
        pows = n(j):-2:m_abs(j); +&)&Ny$W  
        for k = length(s):-1:1 3)~z~p7  
            p = (1-2*mod(s(k),2))* ... NK(; -~{P  
                       prod(2:(n(j)-s(k)))/              ... u*!/J R  
                       prod(2:s(k))/                     ... Gc:oS vm  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S6|L !pO  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); cD4H@!=a  
            idx = (pows(k)==rpowers); wArtg'=X  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }mQh^  
        end TSYe ~)I  
         q;qY#wD@  
        if isnorm sJcwN.s  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kF"G {5  
        end P*8DM3':  
    end %-, -:e  
    % END: Compute the Zernike Polynomials T#G (&0J5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R`emI7|  
    C'//(gjQ-G  
    % Compute the Zernike functions: 2sqNTuO6,|  
    % ------------------------------ vWpkU<&3|  
    idx_pos = m>0; <-a6'g2y  
    idx_neg = m<0; ePwoza  
    j[YO1q*  
    z = y; 7S]akcT/  
    if any(idx_pos) !T8h+3 I  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); km#Rh^  
    end yBwCFn.uP-  
    if any(idx_neg) 73d7'Fw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); XnI)s^  
    end >Sh"/3%q  
    3eS *U`_  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的