切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11196阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 =&qH%S6  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! $xq04ejJ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  F;}JSb"  
    jG;J qT  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ~M} K]Li  
    UdM2!f  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) C@`#@1X  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. b,~pwbHf  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of MT>(d*0s  
    %   order N and frequency M, evaluated at R.  N is a vector of g&2g>]  
    %   positive integers (including 0), and M is a vector with the Y3:HQ0w`|  
    %   same number of elements as N.  Each element k of M must be a BX[ IWP\%  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) E#(e2Z=  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Q2m[XcnX  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix {q8|/{;  
    %   with one column for every (N,M) pair, and one row for every ky[Cx!81C  
    %   element in R. MW rhVn{R  
    % Lr*PbjQDIY  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- C$+Q,guM  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is W1"NKg~4  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to P`Ku. ONQ  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 SQf[1}$ .  
    %   for all [n,m]. F=e;[uK\  
    % j`.&4.7+  
    %   The radial Zernike polynomials are the radial portion of the g*oX`K.  
    %   Zernike functions, which are an orthogonal basis on the unit qF bj~ec  
    %   circle.  The series representation of the radial Zernike dNt^lx  
    %   polynomials is uVU)LOx  
    % hfY/)-60o  
    %          (n-m)/2 ">wvd*w0"(  
    %            __ nN<,rN{ :  
    %    m      \       s                                          n-2s b; C}=gg  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ?B ,<gen  
    %    n      s=0 /FXvrH(  
    % oz=ULPZ%  
    %   The following table shows the first 12 polynomials. iU 6,B  
    % 1DcBF@3sWG  
    %       n    m    Zernike polynomial    Normalization X+A@//,7  
    %       --------------------------------------------- tUULpx.h  
    %       0    0    1                        sqrt(2) >>KI_$V  
    %       1    1    r                           2 hIqUidJod  
    %       2    0    2*r^2 - 1                sqrt(6) ]FVJQS2h  
    %       2    2    r^2                      sqrt(6) klQmo30i  
    %       3    1    3*r^3 - 2*r              sqrt(8) tP! %(+V  
    %       3    3    r^3                      sqrt(8) l]zQSXip  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) d38o*+JCf  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) *> nOL  
    %       4    4    r^4                      sqrt(10) bv]SR_Tiq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) TX$dxHSPK  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) --l UEo~  
    %       5    5    r^5                      sqrt(12) LhAW|];  
    %       --------------------------------------------- z-gMk@l  
    % *Xk5H,:  
    %   Example: DQW)^j h  
    % [UzacXt  
    %       % Display three example Zernike radial polynomials hE=xS:6  
    %       r = 0:0.01:1; T:{&e WH  
    %       n = [3 2 5]; HJg&fkHn1  
    %       m = [1 2 1]; rM= :{   
    %       z = zernpol(n,m,r); MCibYv c[  
    %       figure $<)]~* *K  
    %       plot(r,z) T$u'+* Xx  
    %       grid on dI%jR&.e;  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ; ,sNRES3  
    % n5"oXpcIx  
    %   See also ZERNFUN, ZERNFUN2. +zche  
    Wm-$l  
    % A note on the algorithm. O(%6/r`L,k  
    % ------------------------ Am@Ta "2  
    % The radial Zernike polynomials are computed using the series *Lz'<=DLoW  
    % representation shown in the Help section above. For many special w`8H=Hf  
    % functions, direct evaluation using the series representation can r{r~!=u  
    % produce poor numerical results (floating point errors), because 9kWI2cLzQt  
    % the summation often involves computing small differences between b6k_u9m^E  
    % large successive terms in the series. (In such cases, the functions .>TG{>sH  
    % are often evaluated using alternative methods such as recurrence FD E?O]^  
    % relations: see the Legendre functions, for example). For the Zernike `!N}u  
    % polynomials, however, this problem does not arise, because the SN{A@dyt  
    % polynomials are evaluated over the finite domain r = (0,1), and cOdRb=?9  
    % because the coefficients for a given polynomial are generally all ba G_7>Q9H  
    % of similar magnitude. a"YVr'|  
    % zOSUYn  
    % ZERNPOL has been written using a vectorized implementation: multiple ?q4`&";{3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I^f|U  
    % values can be passed as inputs) for a vector of points R.  To achieve [N~7PNdS  
    % this vectorization most efficiently, the algorithm in ZERNPOL Xux[  
    % involves pre-determining all the powers p of R that are required to pm=O.)g4`  
    % compute the outputs, and then compiling the {R^p} into a single n[!QrEeR},  
    % matrix.  This avoids any redundant computation of the R^p, and {G vGV  
    % minimizes the sizes of certain intermediate variables. iT{4-j7|P4  
    % V#$QKn`;  
    %   Paul Fricker 11/13/2006 25`W"x_  
    dpS@:  
    WGA&Lr  
    % Check and prepare the inputs: {9Qc\Ij  
    % ----------------------------- bf.+Ewb(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /f?;,CyI  
        error('zernpol:NMvectors','N and M must be vectors.') \9p.I?=  
    end (@*|[wN  
    zP0<4E$M`  
    if length(n)~=length(m) X1P1 $RdkR  
        error('zernpol:NMlength','N and M must be the same length.') b*S,8vE]  
    end 3,G|oR{D  
    ,2Ed^!`  
    n = n(:); vA:ZR=)F  
    m = m(:); S_Nm?;P  
    length_n = length(n); f2gh|p`  
    nT=%3_.  
    if any(mod(n-m,2)) %KO8 i)n  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ~u1~%  
    end B0yGr\KJ  
    DI;LhS*z  
    if any(m<0) 8g{Mv#b%  
        error('zernpol:Mpositive','All M must be positive.') CZ] Dm4  
    end ']2d^'TH  
    *^]  
    if any(m>n) P]}:E+E<.I  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Y{e,I-"{  
    end kb~ s, @p  
    YY tVp_)  
    if any( r>1 | r<0 ) bt1bTo  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') UK^w;w2F  
    end _Fj\0S"  
    x v$fw>  
    if ~any(size(r)==1) vxPr)"Vvz  
        error('zernpol:Rvector','R must be a vector.') rr`_\ut  
    end }vB{6E+h/w  
    "dndhoMq  
    r = r(:); VWdTnu  
    length_r = length(r); fuHNsrNlm  
    K($+ILZ  
    if nargin==4 dMjQV&  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Vo{ ~D:)  
        if ~isnorm ) xV>Va8)  
            error('zernpol:normalization','Unrecognized normalization flag.') $Nvox<d0  
        end F3!6}u\F  
    else |]q{ qsy  
        isnorm = false; [W[awGf  
    end *dB3Gu{ +  
    %<Qv?`B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gJwX  
    % Compute the Zernike Polynomials {s*1QBM$\Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w H=7pS"s  
    _z]v;Q  
    % Determine the required powers of r: !7]^QdBLY  
    % ----------------------------------- $M-"az]  
    rpowers = []; mBrZ{hqS  
    for j = 1:length(n) Qt'3v"S>)  
        rpowers = [rpowers m(j):2:n(j)]; G^<m0ew|  
    end H 9/m6F  
    rpowers = unique(rpowers); T[[E)f1[  
    *pS3xit~  
    % Pre-compute the values of r raised to the required powers, "3 2Ua3m:G  
    % and compile them in a matrix: >3p8o@:  
    % ----------------------------- [}Rs  
    if rpowers(1)==0 ""V\hHdp  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <Cs9$J  
        rpowern = cat(2,rpowern{:}); ~QE?GL   
        rpowern = [ones(length_r,1) rpowern]; &kWT<*;J)  
    else 3M[d6@a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _ !"[Zr  
        rpowern = cat(2,rpowern{:}); h>xB"E|.  
    end HCktgL:E=  
    +m}D.u*cp  
    % Compute the values of the polynomials: }{J>kgr6  
    % -------------------------------------- F DGzh/  
    z = zeros(length_r,length_n); Mp5Z=2l5  
    for j = 1:length_n 5D^2 +`$/  
        s = 0:(n(j)-m(j))/2; QRdtr  
        pows = n(j):-2:m(j); T 9}dgf  
        for k = length(s):-1:1 f0g_Gn $  
            p = (1-2*mod(s(k),2))* ... ;L],i<F  
                       prod(2:(n(j)-s(k)))/          ... w1F)R^tU  
                       prod(2:s(k))/                 ... N-p||u  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... KxJDAP  
                       prod(2:((n(j)+m(j))/2-s(k))); 54]UfmT%I  
            idx = (pows(k)==rpowers); _!vuDv%  
            z(:,j) = z(:,j) + p*rpowern(:,idx); gz:US 77  
        end V2m= m}HQ  
         A}uWy^w  
        if isnorm u8x#XESR7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 33"!K>wC  
        end Oeg^%Y   
    end \H PB{ ;  
    ~WmA55  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) -?)z@Lc  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. \gir  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated *2m{i:3  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive py/#h$eY  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, l n09_Lr  
    %   and THETA is a vector of angles.  R and THETA must have the same 8hX /~-H  
    %   length.  The output Z is a matrix with one column for every P-value, \VAS<?3  
    %   and one row for every (R,THETA) pair. ~NK|q5(I  
    % $C{-gx+:  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike |)ALJJ=+  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) f Lns^  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) T' )l  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 V$  MMK  
    %   for all p. Bv}i#D  
    % 40;4=  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <)oW  
    %   Zernike functions (order N<=7).  In some disciplines it is u-wj\BU  
    %   traditional to label the first 36 functions using a single mode 5W_Rg:J{P  
    %   number P instead of separate numbers for the order N and azimuthal [:{HX U7y  
    %   frequency M. 1|7t q  
    % o7fJ@3B/  
    %   Example: [_tBv" z  
    % =%crSuP  
    %       % Display the first 16 Zernike functions eC$ Jdf  
    %       x = -1:0.01:1; Y c>.P  
    %       [X,Y] = meshgrid(x,x); *b(nX,e  
    %       [theta,r] = cart2pol(X,Y); JjH141 n%D  
    %       idx = r<=1; Fau24-g  
    %       p = 0:15; E$5A 1  
    %       z = nan(size(X)); /Nd`eUn  
    %       y = zernfun2(p,r(idx),theta(idx)); ;c#jO:A5  
    %       figure('Units','normalized') e6'y S81  
    %       for k = 1:length(p) '!XVz$C  
    %           z(idx) = y(:,k); 6"c(5#H  
    %           subplot(4,4,k) 843O}v'  
    %           pcolor(x,x,z), shading interp R\lUE,o]<q  
    %           set(gca,'XTick',[],'YTick',[]) U{&gV~  
    %           axis square C.=[K_  
    %           title(['Z_{' num2str(p(k)) '}']) `mDCX  
    %       end s>e)\9c  
    % 3TnrPO1E  
    %   See also ZERNPOL, ZERNFUN. ks(BS k4  
    {} Zqaf  
    %   Paul Fricker 11/13/2006 y-a3  
    }m.45n/  
    03dmHg.E!E  
    % Check and prepare the inputs: a~Y`N73/c  
    % ----------------------------- lemUUl(^  
    if min(size(p))~=1 GNI:k{H@"?  
        error('zernfun2:Pvector','Input P must be vector.') pn aSOyR  
    end F+m;y  
    7SJtW`~  
    if any(p)>35 :z%q09.)  
        error('zernfun2:P36', ... U~Rs?JmTdD  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... \) g?mj^  
               '(P = 0 to 35).']) yo!Y%9  
    end _ v3VUm#  
    ECvTmU'=  
    % Get the order and frequency corresonding to the function number: AP/#?   
    % ---------------------------------------------------------------- V*F |Yo:  
    p = p(:); KWi P`h8  
    n = ceil((-3+sqrt(9+8*p))/2); qPgny/(  
    m = 2*p - n.*(n+2); Ws:MbZyr  
    6[& x7"  
    % Pass the inputs to the function ZERNFUN: 4)E$. F^   
    % ---------------------------------------- !4(QeV-=  
    switch nargin ix_&<?8  
        case 3 )PjU=@$lI  
            z = zernfun(n,m,r,theta); wF$z ?L  
        case 4 YaAOP'p  
            z = zernfun(n,m,r,theta,nflag); ^_G@a,  
        otherwise =nE^zY2m%  
            error('zernfun2:nargin','Incorrect number of inputs.') e# z#bz2<  
    end 4~z-&>%  
    ! +XreCw  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 A/88WC$v  
    function z = zernfun(n,m,r,theta,nflag) 7,5Bur  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z^_gS&nDa~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N YU/?AQg  
    %   and angular frequency M, evaluated at positions (R,THETA) on the F $1f8U8  
    %   unit circle.  N is a vector of positive integers (including 0), and 1EA#c>I$  
    %   M is a vector with the same number of elements as N.  Each element p;.M .  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 5Tq*]Z E  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :r9<wbr)k0  
    %   and THETA is a vector of angles.  R and THETA must have the same b!`{fwV  
    %   length.  The output Z is a matrix with one column for every (N,M) zQaD&2 q  
    %   pair, and one row for every (R,THETA) pair. l;}3J3/qq]  
    % hd@jm^k  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $) m$ c5!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -mLS\TFS  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral LpN3cy>U  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ix+eP|8F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized vF1Fcp.@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x.Tulo0/  
    % -lm)xpp1  
    %   The Zernike functions are an orthogonal basis on the unit circle. L wn  
    %   They are used in disciplines such as astronomy, optics, and (h'Bz6K  
    %   optometry to describe functions on a circular domain. pKaU [1x?%  
    % 'PWA  
    %   The following table lists the first 15 Zernike functions. S ^$!n,  
    % DGNn#DP  
    %       n    m    Zernike function           Normalization __}ut+H^5p  
    %       -------------------------------------------------- {%c&T S@s  
    %       0    0    1                                 1 b*1yvkX5  
    %       1    1    r * cos(theta)                    2 2WC$r8E  
    %       1   -1    r * sin(theta)                    2 ]EdZ,`B4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) B[9y<FB+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) fNz(z\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) wlgR = l  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) UjS+Ddp  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) r+;k(HMY}[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) OAf}\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Yz#E0aTTA  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d'iSvd.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /}9)ZY Mx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) X.ecA`0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }m&\I  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Po*!eD  
    %       -------------------------------------------------- 3n~O&{  
    % rE]Nr ;Ys  
    %   Example 1: E;wT4 T=  
    % i|m8#*Hd  
    %       % Display the Zernike function Z(n=5,m=1) #x`K4f)  
    %       x = -1:0.01:1; ae" o|Q  
    %       [X,Y] = meshgrid(x,x); "z*.Bk  
    %       [theta,r] = cart2pol(X,Y); sDAP'&  
    %       idx = r<=1; sf/m@425  
    %       z = nan(size(X)); ESUO I  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =cO5Nt  
    %       figure [5tvdW6Z &  
    %       pcolor(x,x,z), shading interp %J Jp/I  
    %       axis square, colorbar R+z'6&/ =I  
    %       title('Zernike function Z_5^1(r,\theta)') LH.Gf  
    % >'4$g7o,  
    %   Example 2:  W =;,ls  
    % Y=?{TX=6<[  
    %       % Display the first 10 Zernike functions 4>OS2b`.;  
    %       x = -1:0.01:1; K1o>>388G  
    %       [X,Y] = meshgrid(x,x); Xu E' %;:  
    %       [theta,r] = cart2pol(X,Y); C#e :_e]  
    %       idx = r<=1; +~ Hb}0ry  
    %       z = nan(size(X));  ;u [:J  
    %       n = [0  1  1  2  2  2  3  3  3  3]; q%QvBN  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Hzj8o3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %?, 7!|Ls  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^$}O?y7O  
    %       figure('Units','normalized') }V*?~.R  
    %       for k = 1:10 ` &bF@$((  
    %           z(idx) = y(:,k); V)`A,7X  
    %           subplot(4,7,Nplot(k)) j}d):3!  
    %           pcolor(x,x,z), shading interp _|W&tB *  
    %           set(gca,'XTick',[],'YTick',[]) [PB73q8  
    %           axis square Pksr9"Ah  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) e$_gOwB  
    %       end B8?9L8M}  
    % kZo# Ny  
    %   See also ZERNPOL, ZERNFUN2. H }]Zp  
    "" >Yw/'  
    %   Paul Fricker 11/13/2006 Q)BSngW+  
    ]kx<aQ^  
    S.Kcb=;"L  
    % Check and prepare the inputs: 0Ze&GK'Hf  
    % ----------------------------- ,YjjL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vea{o 35!  
        error('zernfun:NMvectors','N and M must be vectors.') _ Pzgn@D  
    end 8+dsTX`|S  
    P^=B6>e  
    if length(n)~=length(m) ,/GFD[SQ  
        error('zernfun:NMlength','N and M must be the same length.') SmD#hE[  
    end jtpHDS  
    )m3emMO2  
    n = n(:); PX_9i@ZG  
    m = m(:); Og1\6Q  
    if any(mod(n-m,2)) &Ep$<kx8  
        error('zernfun:NMmultiplesof2', ... ": BZZ\!  
              'All N and M must differ by multiples of 2 (including 0).') R[6R)#o  
    end \Gk}Fer  
    9z{}DBA  
    if any(m>n) 0PFC %x  
        error('zernfun:MlessthanN', ... B8T5?bl  
              'Each M must be less than or equal to its corresponding N.') yx&}bu\  
    end ^`dMjeF  
    .pe.K3G &  
    if any( r>1 | r<0 ) m(:R(K(je  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') eYoc(bG(+  
    end ZVJ6 {DS/  
    CdCY#$Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (zy|>u  
        error('zernfun:RTHvector','R and THETA must be vectors.') g#l!b%$  
    end I]5){Q" S  
    }j1;0kb?  
    r = r(:); CE  
    theta = theta(:); Gdx %#@/  
    length_r = length(r); :.l\lj0Yf  
    if length_r~=length(theta) C" `\[F`.k  
        error('zernfun:RTHlength', ... QD^=;!  
              'The number of R- and THETA-values must be equal.') 5>CeFy  
    end RT'5i$q[  
    v,N!cp1  
    % Check normalization: kO^  
    % -------------------- i@WO>+iB  
    if nargin==5 && ischar(nflag) ! @Vj&>mH$  
        isnorm = strcmpi(nflag,'norm'); ak3WER|f#  
        if ~isnorm qkc,93B3  
            error('zernfun:normalization','Unrecognized normalization flag.') S\sy^Kt~4:  
        end &1=,?s]&  
    else Bqa_l|  
        isnorm = false; K)`R?CZ:s  
    end .3Smqwm=Y  
    :mCGY9d4L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wod{C!  
    % Compute the Zernike Polynomials {i3x\|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *"F*6+}w"  
    hZUS#75M5  
    % Determine the required powers of r: TQ/#  
    % ----------------------------------- X,o ]tgg=  
    m_abs = abs(m); GO][`zZJ]  
    rpowers = []; jamai8  
    for j = 1:length(n) #&S<{75A  
        rpowers = [rpowers m_abs(j):2:n(j)]; JPT&!%~  
    end ]>sMu]biH  
    rpowers = unique(rpowers); .1J`>T?=Q  
    1ATH$x  
    % Pre-compute the values of r raised to the required powers, e*Nm[*@UW  
    % and compile them in a matrix: p{r{}iYI  
    % ----------------------------- HQ4WunH2Y  
    if rpowers(1)==0 c[OQo~m$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k^k1>F}yx  
        rpowern = cat(2,rpowern{:}); T_)+l)  
        rpowern = [ones(length_r,1) rpowern]; cY~lDLyB  
    else )0;O<G] d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c No)LF  
        rpowern = cat(2,rpowern{:}); <bv9X?U  
    end l~kxK.Ru  
    b_~KtMO  
    % Compute the values of the polynomials: ={190=\9  
    % -------------------------------------- MD>E0p)  
    y = zeros(length_r,length(n)); rHjR 4q  
    for j = 1:length(n) !a5e{QG0  
        s = 0:(n(j)-m_abs(j))/2; #]}G{ P  
        pows = n(j):-2:m_abs(j); =`gFwH<   
        for k = length(s):-1:1 1 EV0Y]T1  
            p = (1-2*mod(s(k),2))* ... Uf[Gs/!NV  
                       prod(2:(n(j)-s(k)))/              ... /h&>tYVio  
                       prod(2:s(k))/                     ... 8Waic&lX~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *(*XNd||  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i2Gh!5]f  
            idx = (pows(k)==rpowers); .M\0+,%/  
            y(:,j) = y(:,j) + p*rpowern(:,idx); !-gOqo  
        end *K=me/ 3  
         hJ V*  
        if isnorm &gm/@_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %o0.8qVJi  
        end ,76nDXy`  
    end @|~D?&<\  
    % END: Compute the Zernike Polynomials ;wr]_@<~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )#cGeP A  
    ou&7v<)x4  
    % Compute the Zernike functions: Z:MU5(Te  
    % ------------------------------ 3Q+THg3~?  
    idx_pos = m>0; `&/zOMp  
    idx_neg = m<0; ~x +24/qT  
    f^XfIH_#  
    z = y; GwlAEhP  
    if any(idx_pos) pM@0>DVi  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W}oAgUd  
    end rMUQh~a/  
    if any(idx_neg) Wuji'sxTs  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *:,7 A9LY  
    end LZ~$=<  
    1FC 1*7A[  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的