切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11329阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 }}LjEOvL=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! C_ W%]8u  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  0^3@>> ^  
    5OX5\#Ux  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 u/4|Akui  
    D4ud|$s1  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) -O-qEQd  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. S<V__Sv  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of |4s`;4c&  
    %   order N and frequency M, evaluated at R.  N is a vector of `+/xA\X]  
    %   positive integers (including 0), and M is a vector with the  uM9[  
    %   same number of elements as N.  Each element k of M must be a vQpR0IEf]e  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) >-{)wk;1&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ki^c)Tqn  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Ll !J!{  
    %   with one column for every (N,M) pair, and one row for every RjS&^u aP  
    %   element in R. $Z;?d@6yI  
    % //}[(9b'\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 3+2&@:$t  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is oG)JH)!  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~"+Fp&[9f  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 RrDNEwAr  
    %   for all [n,m]. <([1(SY2e  
    % AZCbUkq  
    %   The radial Zernike polynomials are the radial portion of the ^"h`U'YC  
    %   Zernike functions, which are an orthogonal basis on the unit FV&&  
    %   circle.  The series representation of the radial Zernike t$z FsFTQ  
    %   polynomials is jtk2>Ol   
    % r>hkm53  
    %          (n-m)/2 #Pz},!7  
    %            __ ,afh]#  
    %    m      \       s                                          n-2s 3P!Jw7e  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r FSqS]6b3  
    %    n      s=0 z6K"}C%  
    % 1YA_`_@w  
    %   The following table shows the first 12 polynomials. 8S>T1st  
    % Gv!* Qk4  
    %       n    m    Zernike polynomial    Normalization %jK-}0Tu  
    %       --------------------------------------------- P{eL;^I  
    %       0    0    1                        sqrt(2) ,?+rM ;  
    %       1    1    r                           2 XQu~/{A=  
    %       2    0    2*r^2 - 1                sqrt(6) mACj>0Z'  
    %       2    2    r^2                      sqrt(6) CqUK[#kW(  
    %       3    1    3*r^3 - 2*r              sqrt(8) l("Dw8 H  
    %       3    3    r^3                      sqrt(8) h,q%MZ==^s  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  ?6!7fs,  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) JBCcR,\kM*  
    %       4    4    r^4                      sqrt(10) f!~gfnn  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ?#^_yd|<  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Dq!Vo;s2  
    %       5    5    r^5                      sqrt(12) &WIiw$@  
    %       --------------------------------------------- Z~t OR{q  
    % 8Hf!@p6R+  
    %   Example: Nw}y_Qf{  
    % dlC)&Ai  
    %       % Display three example Zernike radial polynomials TE4{W4I  
    %       r = 0:0.01:1; nBGFa  
    %       n = [3 2 5]; kmM1)- v  
    %       m = [1 2 1]; &j,rq?eh$  
    %       z = zernpol(n,m,r); *]fBd<(8  
    %       figure Bl-nS{9"  
    %       plot(r,z) adh=Kp e!w  
    %       grid on VpJ/M(UD-  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') A e&t#,)  
    % E8WOXoP(  
    %   See also ZERNFUN, ZERNFUN2. yVm~5Y&Z  
    rS>JzbWa  
    % A note on the algorithm. q28i9$Yqj\  
    % ------------------------ 0A@'w*=  
    % The radial Zernike polynomials are computed using the series 3~\mP\/4v  
    % representation shown in the Help section above. For many special o Q= Q}  
    % functions, direct evaluation using the series representation can ewqfs/  
    % produce poor numerical results (floating point errors), because ] 5lp.#EB  
    % the summation often involves computing small differences between Y&aFAjj  
    % large successive terms in the series. (In such cases, the functions lvIKL!;H  
    % are often evaluated using alternative methods such as recurrence V?v,q'? $  
    % relations: see the Legendre functions, for example). For the Zernike R74kt36M  
    % polynomials, however, this problem does not arise, because the @kUCc1LT  
    % polynomials are evaluated over the finite domain r = (0,1), and &dZ-}. af  
    % because the coefficients for a given polynomial are generally all :04sB]H  
    % of similar magnitude. +qe!KPk2  
    % ja}_u}:  
    % ZERNPOL has been written using a vectorized implementation: multiple q_5k2'4K  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M]  R:98'`X=  
    % values can be passed as inputs) for a vector of points R.  To achieve T9\wkb.  
    % this vectorization most efficiently, the algorithm in ZERNPOL OS6 l*S('  
    % involves pre-determining all the powers p of R that are required to V<AT"vU[  
    % compute the outputs, and then compiling the {R^p} into a single ua*k{0[  
    % matrix.  This avoids any redundant computation of the R^p, and PD12gUU?  
    % minimizes the sizes of certain intermediate variables. 0&Q-y&$7  
    % s)#FqB8  
    %   Paul Fricker 11/13/2006 ^SB?NRk  
    Fd-PjW/E8  
    _rXTHo7P  
    % Check and prepare the inputs: Mxn>WCPo  
    % ----------------------------- ;wIpche  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jpZ, $  
        error('zernpol:NMvectors','N and M must be vectors.') kt.z,<w5O  
    end ps"DL4*  
    ^ElUU?rX  
    if length(n)~=length(m) D(D:/L8T,  
        error('zernpol:NMlength','N and M must be the same length.') yazC2Enes8  
    end EAU6z(X$  
    4[|^78  
    n = n(:); EA9`-xs|  
    m = m(:); QWv+J a  
    length_n = length(n); bB'iK4  
    @FKNB.>  
    if any(mod(n-m,2)) *z;4. OX  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9l9 nT  
    end 4bqi&h3  
    0&2(1  
    if any(m<0) I.TdYSB  
        error('zernpol:Mpositive','All M must be positive.') EV| 6._Z(D  
    end $Zp\^cIE+  
    1GKd*z  
    if any(m>n) :zZK%} G<  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ~~k_A|&  
    end 6Y0k}+j|>E  
    {^2``NYM_  
    if any( r>1 | r<0 ) .ml24SeC  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') }z1aKa9  
    end -hw^3Af  
    MW8GM}Ho[  
    if ~any(size(r)==1) 9 o6ig>C  
        error('zernpol:Rvector','R must be a vector.') nS)U+q-x&o  
    end JsI` #  
    6/Y3#d  
    r = r(:); HtB>#`'  
    length_r = length(r); Hj't.lg+j  
    p 9Zi}!  
    if nargin==4 )WavG1  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ;rYL\`6L  
        if ~isnorm `"zXf-qeE  
            error('zernpol:normalization','Unrecognized normalization flag.') +<7~yZ[Z8  
        end yEIM58l  
    else ?U.+SQ  
        isnorm = false; hAtf)  
    end 9HrT>{@  
    FIhq>L.q4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =B@+[b0Z  
    % Compute the Zernike Polynomials @S\!wjl]C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :UM>`Y  
    |l)SX\Qf`@  
    % Determine the required powers of r: Lg Xc}3  
    % ----------------------------------- $(B|$e^:(  
    rpowers = []; =V~p QbZ  
    for j = 1:length(n) "1|n]0BF  
        rpowers = [rpowers m(j):2:n(j)]; {Qbg'|HO=l  
    end V:HxRMF2X  
    rpowers = unique(rpowers); =i[_C>U  
    p&dpDJ?d:=  
    % Pre-compute the values of r raised to the required powers, wm~35cF(  
    % and compile them in a matrix: jWk1FQte  
    % ----------------------------- 5e=9~].7  
    if rpowers(1)==0 *Z'*^Y1le  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,]RMa\Q4Wg  
        rpowern = cat(2,rpowern{:}); Q`- JRY-  
        rpowern = [ones(length_r,1) rpowern]; }-QFMPXhG  
    else =p~k5k4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6D3hX>K4  
        rpowern = cat(2,rpowern{:}); LG3D3{H(.  
    end o;5 J=  
    j<|I@0  
    % Compute the values of the polynomials: {2"8^;  
    % -------------------------------------- &iR3]FNI  
    z = zeros(length_r,length_n); >dO1)  
    for j = 1:length_n T40&a(hXQ  
        s = 0:(n(j)-m(j))/2; U4;r.#qw,  
        pows = n(j):-2:m(j); :"QR;O@  
        for k = length(s):-1:1 M ,!Dhuas  
            p = (1-2*mod(s(k),2))* ... MiHa'90{K  
                       prod(2:(n(j)-s(k)))/          ... D>tex/Of3  
                       prod(2:s(k))/                 ... }#%3y&7M7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ...  *-Y`7=^$  
                       prod(2:((n(j)+m(j))/2-s(k))); q,S[[{("  
            idx = (pows(k)==rpowers); b7-M'-Km0_  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 2OT RP4U  
        end ?RW7TWf  
         v'3.`aZ!  
        if isnorm i/UDda"E  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Z*uv~0a>9Q  
        end ) 0NKL:u  
    end })#VO-J  
    8(d Hn  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) |h^[/  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. +lYo5\1=  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated hHA!.u4&  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive _\"2Mdk`]  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~,Y xUn8@  
    %   and THETA is a vector of angles.  R and THETA must have the same 3{:AG,G  
    %   length.  The output Z is a matrix with one column for every P-value, )NF5,eD  
    %   and one row for every (R,THETA) pair. rgo#mTQ_  
    % Tumv0=q4wd  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike bF2RP8?en  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3#\++h]QZ  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) "FD`1  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 q\DN8IJ  
    %   for all p. -G'U\EXT  
    % hZZ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 EKgY  
    %   Zernike functions (order N<=7).  In some disciplines it is jm ORKX+)  
    %   traditional to label the first 36 functions using a single mode mV>l`&K=  
    %   number P instead of separate numbers for the order N and azimuthal W( 4Mvd  
    %   frequency M. cMU"SO  
    % Bm>>-nG;  
    %   Example: yf4I<v$y  
    % b#%$y  
    %       % Display the first 16 Zernike functions s!IX3rz  
    %       x = -1:0.01:1; C(%b!Q,2  
    %       [X,Y] = meshgrid(x,x); Ei HQ&u*  
    %       [theta,r] = cart2pol(X,Y); !+FrU'^  
    %       idx = r<=1; Tv[| ^G9x  
    %       p = 0:15; /nq\*)S#&  
    %       z = nan(size(X)); Vb @lK~  
    %       y = zernfun2(p,r(idx),theta(idx)); J#'8]p3E  
    %       figure('Units','normalized') @k-C>h()C  
    %       for k = 1:length(p) +,Ud 3iS  
    %           z(idx) = y(:,k); W(jOD,QMB  
    %           subplot(4,4,k) fzdWM:g  
    %           pcolor(x,x,z), shading interp ""f'L,`{.  
    %           set(gca,'XTick',[],'YTick',[]) yR3pK 0Y(?  
    %           axis square MD):g @  
    %           title(['Z_{' num2str(p(k)) '}']) !qu/m B  
    %       end [%c5MQ?H  
    % ,*kh{lJ  
    %   See also ZERNPOL, ZERNFUN. 5r1u_8)'  
    O7"16~ a  
    %   Paul Fricker 11/13/2006 0SV<Pl^  
    BHu%x|d  
    ~tc,p  
    % Check and prepare the inputs: 1j*E/L  
    % ----------------------------- n \i ~H  
    if min(size(p))~=1 12VSzIm  
        error('zernfun2:Pvector','Input P must be vector.') `Sx1?@8(  
    end L`"j> ),  
    ^O3i)GO  
    if any(p)>35 Et! 6i7`]  
        error('zernfun2:P36', ... ["_+~*  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ],~H3u=s3  
               '(P = 0 to 35).']) ;Rf@S$  
    end |SfCuV#g/<  
    ,p>@:C/M  
    % Get the order and frequency corresonding to the function number: M <nH  
    % ---------------------------------------------------------------- qKD Nw8>  
    p = p(:); Y 8n*o3jM  
    n = ceil((-3+sqrt(9+8*p))/2); $(]E$ek  
    m = 2*p - n.*(n+2); 5{xK&[wR*  
    5m yQBKE  
    % Pass the inputs to the function ZERNFUN: `aDVN_h{6  
    % ---------------------------------------- h e[2,  
    switch nargin iv ~<me0F  
        case 3 "-Yj~  
            z = zernfun(n,m,r,theta); 1)#dgsa  
        case 4 ?J@P0(M#  
            z = zernfun(n,m,r,theta,nflag); f+lPQIB  
        otherwise ?[=OQ/E  
            error('zernfun2:nargin','Incorrect number of inputs.')  r4M;]  
    end /PKu",Azj  
    0!b9%I=j  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @A|#/]S1  
    function z = zernfun(n,m,r,theta,nflag) r&+w)U~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. dJe 3DW :  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N eQwvp`@"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the X"sJiFS  
    %   unit circle.  N is a vector of positive integers (including 0), and `n RF"T_  
    %   M is a vector with the same number of elements as N.  Each element 2wJa:=$  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `pjB^--w  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &`,Y/Cbw  
    %   and THETA is a vector of angles.  R and THETA must have the same NwVhJdo  
    %   length.  The output Z is a matrix with one column for every (N,M) 6 ZAZJn|  
    %   pair, and one row for every (R,THETA) pair. (^"2"[?a  
    % X}wo$t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M.HMn N#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), DkSs^ym  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m8V}E& 6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |\>Ifv%{  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4Y{;%;-i  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. I_ AFHrj  
    % 91-[[<  
    %   The Zernike functions are an orthogonal basis on the unit circle. LLKYcy  
    %   They are used in disciplines such as astronomy, optics, and dvM%" k  
    %   optometry to describe functions on a circular domain. mL-6+pJ@  
    % BT`g'#O  
    %   The following table lists the first 15 Zernike functions. &;sW4jnt  
    % hV+=hX<h  
    %       n    m    Zernike function           Normalization DJ9x?SL@KD  
    %       -------------------------------------------------- PuhvJHT  
    %       0    0    1                                 1 :5F(,Z_  
    %       1    1    r * cos(theta)                    2 ==BOW\  
    %       1   -1    r * sin(theta)                    2 :G#+ 5 }  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {  '402  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 7xFZJ#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Cg|\UKfy$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [$F*R@,&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +&dkJ 4g[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1rS8+!9C  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) [RF]lM]w  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ` Z/ MQ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >FKwFwT4D  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) m\XG7uo~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `H 'wz7  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -w>ss&  
    %       -------------------------------------------------- 1{wbC)  
    % Sfa=AV7K  
    %   Example 1: :wN !E{0j  
    % eco&!R[G  
    %       % Display the Zernike function Z(n=5,m=1) >q0%yh-  
    %       x = -1:0.01:1;  Bnk '  
    %       [X,Y] = meshgrid(x,x); 0qIg:+l+  
    %       [theta,r] = cart2pol(X,Y); f$tm<:)Y  
    %       idx = r<=1; L^zh|MEyzk  
    %       z = nan(size(X)); @SyL1yFX  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ksCF"o /@V  
    %       figure JypP[yQ  
    %       pcolor(x,x,z), shading interp 1/~=61msc  
    %       axis square, colorbar :`E p#[Wvo  
    %       title('Zernike function Z_5^1(r,\theta)') aj,o<J  
    % !A1~{G2VL_  
    %   Example 2: Vh>cV  
    % IibYGF  
    %       % Display the first 10 Zernike functions + ~5P7dh6  
    %       x = -1:0.01:1; ?3 k_YN"  
    %       [X,Y] = meshgrid(x,x); ?Pa(e)8\  
    %       [theta,r] = cart2pol(X,Y); (KwC,0p  
    %       idx = r<=1; c/ih%xR  
    %       z = nan(size(X)); x}nBU q:  
    %       n = [0  1  1  2  2  2  3  3  3  3]; TVx `&C+  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; I{r*Y9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; (Li0*wRb  
    %       y = zernfun(n,m,r(idx),theta(idx)); fm`V2'Rm  
    %       figure('Units','normalized') qTN%9!0@9  
    %       for k = 1:10 qv}ECQ  
    %           z(idx) = y(:,k); :enR8MS  
    %           subplot(4,7,Nplot(k)) .}v" `>x  
    %           pcolor(x,x,z), shading interp ? dHl'  
    %           set(gca,'XTick',[],'YTick',[]) 7Xu#|k  
    %           axis square ]@b9m  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) EFljUT?&  
    %       end beC%Tnb7  
    % %Zbm%YaW5  
    %   See also ZERNPOL, ZERNFUN2. {wsJ1 v8!  
     oC*a;o  
    %   Paul Fricker 11/13/2006 |Tc4a4jS  
    Q$:Q6 /5.  
    aK95&Jyw&  
    % Check and prepare the inputs: w$AR  
    % ----------------------------- R ZQH#+*t}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -egnMc67  
        error('zernfun:NMvectors','N and M must be vectors.') ]K*R[  
    end 'j<u0'K@  
    fZ5 UFq_~s  
    if length(n)~=length(m) d1/9 A-{  
        error('zernfun:NMlength','N and M must be the same length.') H@Ot77(*  
    end Ie!&FQe2q  
    R:YVmqd  
    n = n(:); >e R^G5rn;  
    m = m(:); 0VSIyG_Z  
    if any(mod(n-m,2)) i9XpP(mf  
        error('zernfun:NMmultiplesof2', ... LUId<We  
              'All N and M must differ by multiples of 2 (including 0).') `6J7c;:  
    end Ec}%!p_$  
    2/fol TR7  
    if any(m>n) 7xv9v1['  
        error('zernfun:MlessthanN', ... n#b{  
              'Each M must be less than or equal to its corresponding N.') k]5tU\;Yw  
    end ~{tO8 ]  
    ){w{#  
    if any( r>1 | r<0 ) #jrlNg4(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') v9-4yZU^WR  
    end H.4ISmXU  
    2m:K %Em6u  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) t_w\k_ T  
        error('zernfun:RTHvector','R and THETA must be vectors.') 6bhb_U'f  
    end _!qD/ [/  
    m^!j)\sM5  
    r = r(:); qb=2J5su  
    theta = theta(:); Ih|4ISI  
    length_r = length(r); /go[}X5QR[  
    if length_r~=length(theta) !zF0 7.(E  
        error('zernfun:RTHlength', ... 9QXsbd6  
              'The number of R- and THETA-values must be equal.') zpT^:Ag  
    end bUm%#a  
    T=tW'tlT\v  
    % Check normalization: .=J- !{z  
    % -------------------- [B;okW  
    if nargin==5 && ischar(nflag) FEu"b@v  
        isnorm = strcmpi(nflag,'norm'); LdG?kbJ&y  
        if ~isnorm B os`+Y  
            error('zernfun:normalization','Unrecognized normalization flag.') >fI\f <ez  
        end ;9mRumLG"  
    else ah,f~.X_|  
        isnorm = false; ;Y;r%DJ  
    end f0sLe 3  
    /qy6YF8;y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +] ;WN  
    % Compute the Zernike Polynomials (LmU\Pe%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $.4A?,d  
    n4S`k%CI  
    % Determine the required powers of r: zgEN2d  
    % ----------------------------------- >"b W'  
    m_abs = abs(m); wrgB =o  
    rpowers = []; ;!S5P(  
    for j = 1:length(n) \^" Vqx  
        rpowers = [rpowers m_abs(j):2:n(j)]; G`O*AQ}[  
    end n]$rLm%^  
    rpowers = unique(rpowers); AF"7 _  
    !'^l}K>  
    % Pre-compute the values of r raised to the required powers, g]: [^p  
    % and compile them in a matrix: l1k&@1"  
    % ----------------------------- xH:L6K/c  
    if rpowers(1)==0 81:%Z&?vRl  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V sl,u  
        rpowern = cat(2,rpowern{:}); Dh2Cj-| ~  
        rpowern = [ones(length_r,1) rpowern]; .(q'7Q Z/  
    else sk39[9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  FNH)wk  
        rpowern = cat(2,rpowern{:}); igA?E56?  
    end L5I!YP#v  
    }WIkNG4{Z  
    % Compute the values of the polynomials: .cJoNl'q  
    % -------------------------------------- ;UTM9.o[  
    y = zeros(length_r,length(n)); 4E5;wH  
    for j = 1:length(n) '[liZCg  
        s = 0:(n(j)-m_abs(j))/2; a)pc+w#  
        pows = n(j):-2:m_abs(j); 07:V[@'  
        for k = length(s):-1:1 #;ObugY,  
            p = (1-2*mod(s(k),2))* ... Tph^o^  
                       prod(2:(n(j)-s(k)))/              ... e`g+Jf`AT  
                       prod(2:s(k))/                     ... G4SA u  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \;~Nj#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); jdJTOT  
            idx = (pows(k)==rpowers); 46D`h!7L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ) dk|S\  
        end i;9X_?QF  
         6?[P^{GpH  
        if isnorm G3^<l0?S  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); MF<ZB_@  
        end 63l& ihj  
    end L$_%T  
    % END: Compute the Zernike Polynomials ]>(pj9)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !hq*WtIk  
    |E?r+]  
    % Compute the Zernike functions: N!~]D[D  
    % ------------------------------ SgxrU&::  
    idx_pos = m>0; dX/7n=  
    idx_neg = m<0; I m I$~q'  
    ?HPAX  
    z = y; 2)\->$Q(H  
    if any(idx_pos) nX3?7"v  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); li3,6{S#  
    end "!zJQl@  
    if any(idx_neg) $k0(iFzR1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #&kj>   
    end wl]3g  
    E} XmZxHV  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的