切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11352阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 GF^ ?#Jh  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Q%^!j_#  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  VwxLElV  
    ej9|Y5D"S  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 :Mq-4U.e  
    "<5su5]  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) |\W9$V  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. `,O#r0m  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of UHh7x%$n  
    %   order N and frequency M, evaluated at R.  N is a vector of P wY~L3,  
    %   positive integers (including 0), and M is a vector with the f=L&>X  
    %   same number of elements as N.  Each element k of M must be a ^DW vzfj  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 6(5YvT  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &Oih#I  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix s G6ts,={  
    %   with one column for every (N,M) pair, and one row for every =>kE`"{!  
    %   element in R. &# ?2zbZ  
    % yDil  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~7$4w# of0  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3iI 4yg  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3m#/1=@o  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 'wg>=|Q5  
    %   for all [n,m]. z{N~AaY  
    % $k,wA8OZ-  
    %   The radial Zernike polynomials are the radial portion of the 8`{)1.d5[  
    %   Zernike functions, which are an orthogonal basis on the unit ?E*;fDEC  
    %   circle.  The series representation of the radial Zernike Pd"=&Az|  
    %   polynomials is 7%Q?BH7{  
    % {%"n[DLps  
    %          (n-m)/2 O_kBAC-|R(  
    %            __ R'udC}  
    %    m      \       s                                          n-2s -*<4 hFb  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r }^@Q9<P^E  
    %    n      s=0 )#H&lH  
    % I+VL~'VlS  
    %   The following table shows the first 12 polynomials. 5!b+^UR;z  
    % s IE2a0+  
    %       n    m    Zernike polynomial    Normalization !'jZ !NFO  
    %       --------------------------------------------- LrGLIt`  
    %       0    0    1                        sqrt(2) OABMIgX  
    %       1    1    r                           2 A%[ BCY_  
    %       2    0    2*r^2 - 1                sqrt(6) Vx<`6uv  
    %       2    2    r^2                      sqrt(6) =Lc!L !(,b  
    %       3    1    3*r^3 - 2*r              sqrt(8) >STAPrBp+  
    %       3    3    r^3                      sqrt(8) b5@sG^  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 2 lc  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) NR6wNz&81  
    %       4    4    r^4                      sqrt(10) QCD MRh n  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) aWCZ1F  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) n?[JPG2X  
    %       5    5    r^5                      sqrt(12) tpY]Mz[J  
    %       --------------------------------------------- $5]}]  
    % X9-WU\?UC  
    %   Example: bih%hqny  
    % J\@W+/#dF  
    %       % Display three example Zernike radial polynomials 4m:D8&D_M  
    %       r = 0:0.01:1; @CTSvTt$  
    %       n = [3 2 5]; )/y7Fh  
    %       m = [1 2 1]; X7g@.Oy`  
    %       z = zernpol(n,m,r); mM$|cge"  
    %       figure sP'U9l  
    %       plot(r,z) AbExJ~JV\g  
    %       grid on _ g8CvH)?!  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') HVHd@#pDZ  
    % P2!+ZJ&  
    %   See also ZERNFUN, ZERNFUN2. li37*  
    q?* z<)#  
    % A note on the algorithm. N8E  
    % ------------------------ Im g$D*BM  
    % The radial Zernike polynomials are computed using the series wU5.t -|`  
    % representation shown in the Help section above. For many special [KMNMg  
    % functions, direct evaluation using the series representation can P{ K;vEp  
    % produce poor numerical results (floating point errors), because (Qcd !!   
    % the summation often involves computing small differences between @"G+kLv0  
    % large successive terms in the series. (In such cases, the functions !\}X?G f  
    % are often evaluated using alternative methods such as recurrence 1VR|z  
    % relations: see the Legendre functions, for example). For the Zernike Pxvf"SXX  
    % polynomials, however, this problem does not arise, because the >lV'}0u)  
    % polynomials are evaluated over the finite domain r = (0,1), and rHa*WA;TE  
    % because the coefficients for a given polynomial are generally all DP8%/CV!*  
    % of similar magnitude. _qO'(DKylC  
    % }WV}in0  
    % ZERNPOL has been written using a vectorized implementation: multiple II'"Nkxd  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] fjd)/Gg  
    % values can be passed as inputs) for a vector of points R.  To achieve Ab In\,x  
    % this vectorization most efficiently, the algorithm in ZERNPOL `PUGg[Zx^  
    % involves pre-determining all the powers p of R that are required to X=KC +1e  
    % compute the outputs, and then compiling the {R^p} into a single {ew; /;  
    % matrix.  This avoids any redundant computation of the R^p, and `x]`<kS;  
    % minimizes the sizes of certain intermediate variables. k.ttrKy<q/  
    % jcbq#  
    %   Paul Fricker 11/13/2006 zMXQfR   
    $3 =S\jyfK  
    eev-";c  
    % Check and prepare the inputs: h5Ee*D e  
    % ----------------------------- H:F'5Zt  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9vauCIfVC  
        error('zernpol:NMvectors','N and M must be vectors.') M5kw3Jy5  
    end agkGUK/  
    cSTF$62E  
    if length(n)~=length(m) #M)+sK$H%f  
        error('zernpol:NMlength','N and M must be the same length.') <Ej`zGhWz  
    end NZ"nG<;5  
    mt]^d;E  
    n = n(:); #\8"d  
    m = m(:); X`fb\}~R(  
    length_n = length(n); "WzKJwFr  
    ifcp!l+8  
    if any(mod(n-m,2)) '.wb= C  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') L++qMRk9  
    end &/n*>%2  
    ox*>HkV  
    if any(m<0) }/lyrjV  
        error('zernpol:Mpositive','All M must be positive.') mxE<  
    end YsMM$rjP +  
    brX[-  
    if any(m>n) [w90gp1O[  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 8'"=y}]H~  
    end <L+1 &H  
    #g/m^8n?s  
    if any( r>1 | r<0 ) 61w ({F  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') N8iLI`  
    end O 6ph_$nt.  
    Q5b9q$L$  
    if ~any(size(r)==1) ^=k=;   
        error('zernpol:Rvector','R must be a vector.') /i~x.i3  
    end |\W53,n9  
    +e, c'.  
    r = r(:); & 'CUc/,  
    length_r = length(r); guG&3{&\s  
    )8!*,e=4  
    if nargin==4 JW!.+ Q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -xG6J.S  
        if ~isnorm Eq%f`Qg+1E  
            error('zernpol:normalization','Unrecognized normalization flag.') wB bCGU  
        end d'"|Qg_'  
    else d_Jj&:"l  
        isnorm = false; D4\[D8pD  
    end B Dp")[l  
    inFS99DKx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mPhu#oK'f  
    % Compute the Zernike Polynomials j9rxu$N+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *4e?y  
    L6ap |u  
    % Determine the required powers of r: ah%Ws#&  
    % ----------------------------------- 8{i O#C  
    rpowers = []; ;: &|DN3;  
    for j = 1:length(n) ^|SiqE  
        rpowers = [rpowers m(j):2:n(j)]; dr(-k3ex  
    end ; NH^+h  
    rpowers = unique(rpowers); ?;_*8Doq-a  
    3vKTCHbk9  
    % Pre-compute the values of r raised to the required powers, b50mMW tG  
    % and compile them in a matrix: 4BSqL!i(  
    % ----------------------------- 2kt0Rxg  
    if rpowers(1)==0 x5CMP%}d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u>]3?ty`  
        rpowern = cat(2,rpowern{:}); tS>^x  
        rpowern = [ones(length_r,1) rpowern]; M\/hK2J# #  
    else `/Rqt+C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  DR{O.TX  
        rpowern = cat(2,rpowern{:}); x. #E3xI  
    end Rpv[rvK'  
    5.*,IedY  
    % Compute the values of the polynomials: *FktI\tS  
    % -------------------------------------- -|Zzs4bx  
    z = zeros(length_r,length_n); lm 96:S  
    for j = 1:length_n c -PZG|<C[  
        s = 0:(n(j)-m(j))/2; 2l O(f+  
        pows = n(j):-2:m(j); ,l6,k<   
        for k = length(s):-1:1 14" 57Jt8  
            p = (1-2*mod(s(k),2))* ... P%)r4+at  
                       prod(2:(n(j)-s(k)))/          ... t,Ka] /I  
                       prod(2:s(k))/                 ... <gFa@at  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ^Fh*9[Zf$  
                       prod(2:((n(j)+m(j))/2-s(k))); J8!2Tt  
            idx = (pows(k)==rpowers); Pmo<t6  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ^~.AV]t|  
        end J_ h.7V  
         M2-`p  
        if isnorm 4qz+cB_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ROmmak(y8  
        end :09NZ !!  
    end yKoZj   
    (jA5`4>u  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Q{|%kU"  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Wu^Rv-xA  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated vI I{i  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &F uPd}F  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, aL4^ po  
    %   and THETA is a vector of angles.  R and THETA must have the same D9[19,2r`  
    %   length.  The output Z is a matrix with one column for every P-value, >jsY'Bm  
    %   and one row for every (R,THETA) pair. {#qUZ z-  
    % V!+iq*Z|=  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike wKLYyetM!  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) j*<J&/luYZ  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) D[/fs`XES  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /iFn =pk1?  
    %   for all p. \ saV8U7B  
    % Vo@7G@7K(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 LDc EjFK(  
    %   Zernike functions (order N<=7).  In some disciplines it is K2zln_W  
    %   traditional to label the first 36 functions using a single mode SjB"#E)  
    %   number P instead of separate numbers for the order N and azimuthal oI{.{]  
    %   frequency M. c$ !?4z_.  
    % q4[}b-fF  
    %   Example: Kf:!tRE  
    % EL$DvJ~  
    %       % Display the first 16 Zernike functions bE/|&8  
    %       x = -1:0.01:1; 5_aj]"x  
    %       [X,Y] = meshgrid(x,x); xrPZy*Y,  
    %       [theta,r] = cart2pol(X,Y); A7Ql%$v7^  
    %       idx = r<=1; |@u2/U9  
    %       p = 0:15; ^A@f{g$KB+  
    %       z = nan(size(X)); /AD&z?My+E  
    %       y = zernfun2(p,r(idx),theta(idx)); Pp-N2t86#2  
    %       figure('Units','normalized') Xe %J{  
    %       for k = 1:length(p) bgi_QB#k\  
    %           z(idx) = y(:,k); ?Fl}@EA#M  
    %           subplot(4,4,k) &))d],tJX  
    %           pcolor(x,x,z), shading interp PaI\y! f  
    %           set(gca,'XTick',[],'YTick',[]) ->b5"{t  
    %           axis square k sv]  
    %           title(['Z_{' num2str(p(k)) '}']) Iw`tb N L[  
    %       end 6kH6"  
    % 9fEe={ B+  
    %   See also ZERNPOL, ZERNFUN. ;#85 _/  
    d/7R}n^  
    %   Paul Fricker 11/13/2006 _u[tv,  
    =7<JD}G  
    #"N60T@  
    % Check and prepare the inputs: LeLUt<4~  
    % ----------------------------- .7.lr[$g  
    if min(size(p))~=1 YGo?%.X  
        error('zernfun2:Pvector','Input P must be vector.') qS vV |G  
    end |#2WN-  
    IE`3I#v  
    if any(p)>35 eL}w{Hlk T  
        error('zernfun2:P36', ... ?:\/-y)Sp  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ty,oj33  
               '(P = 0 to 35).']) _"1RidhH  
    end lnyb4d/  
    9>~pA]j%  
    % Get the order and frequency corresonding to the function number: X<L=*r^C,=  
    % ---------------------------------------------------------------- =\O#F88ui  
    p = p(:); %]4Tff  
    n = ceil((-3+sqrt(9+8*p))/2); I_r@Y:5{  
    m = 2*p - n.*(n+2); kEDpF26!  
    _eKO:Y[e  
    % Pass the inputs to the function ZERNFUN: ,u `xneOs  
    % ---------------------------------------- <l<O2l  
    switch nargin /}m)FaAi  
        case 3 Te-p0x?G.  
            z = zernfun(n,m,r,theta); ZA(u"T~  
        case 4 L BbST!  
            z = zernfun(n,m,r,theta,nflag); -!PJHCLd  
        otherwise e=0]8l>\V  
            error('zernfun2:nargin','Incorrect number of inputs.') 2<@2_wSJ  
    end PFJ$Ia|  
    +HS]kFH  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;QBS0x\f@  
    function z = zernfun(n,m,r,theta,nflag) |[.-pA^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }X)vktE+|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cXb*d|-|N  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1@|+l!rYF  
    %   unit circle.  N is a vector of positive integers (including 0), and 4,)9@-|0R  
    %   M is a vector with the same number of elements as N.  Each element #LasTN9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,Pa*; o\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ?9~^QRLT  
    %   and THETA is a vector of angles.  R and THETA must have the same pl]|yIZ  
    %   length.  The output Z is a matrix with one column for every (N,M) yD3}USw  
    %   pair, and one row for every (R,THETA) pair. c]^P$F8U  
    % K7RAmX  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4mvR]: G  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), oqJ Ybim  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral E=8'!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j*.;6}\o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }-oba_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0i*V?  
    % +bznKy!  
    %   The Zernike functions are an orthogonal basis on the unit circle. & P-8_I  
    %   They are used in disciplines such as astronomy, optics, and 0-Mzb{n5  
    %   optometry to describe functions on a circular domain. w/6X9d  
    % 2^o7 ^S  
    %   The following table lists the first 15 Zernike functions. =%W:N|k  
    % _*o <<C\E  
    %       n    m    Zernike function           Normalization >5FTB e[D  
    %       -------------------------------------------------- 'I$FOH   
    %       0    0    1                                 1 %YR&>j k  
    %       1    1    r * cos(theta)                    2 \W*L9azr  
    %       1   -1    r * sin(theta)                    2 A*OqUq/H`;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _WEJ,0* #'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Vm%G q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =z'(FP5!0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) k6b ct@7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7P<VtS  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `DYhGk  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) D;R~!3f./b  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) z=>fBb>w7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3x;UAi+&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) KfiSQ!{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &>\;4E.O5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) So 1TH%  
    %       -------------------------------------------------- Q a (Sb  
    % roQI;gq^  
    %   Example 1: oP,*H6)i  
    % 1$0Kvvg[  
    %       % Display the Zernike function Z(n=5,m=1) Rt#QW*h\|i  
    %       x = -1:0.01:1;  LSC[S:  
    %       [X,Y] = meshgrid(x,x); " aG6u^%  
    %       [theta,r] = cart2pol(X,Y); }B-$}  
    %       idx = r<=1; "-&K!Vfs  
    %       z = nan(size(X)); u}%OC43  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); w % Hj'  
    %       figure V}s/knd  
    %       pcolor(x,x,z), shading interp "u6pl);G  
    %       axis square, colorbar H,% bKl#  
    %       title('Zernike function Z_5^1(r,\theta)') (%B{=w}8  
    % _pTcSp 3  
    %   Example 2: :Qge1/  
    % )gdeFA V  
    %       % Display the first 10 Zernike functions A$@;Q5/2  
    %       x = -1:0.01:1; cp Ot?XYR~  
    %       [X,Y] = meshgrid(x,x); #Pg#\v|7#>  
    %       [theta,r] = cart2pol(X,Y); % G= cKM  
    %       idx = r<=1; 6\7c:  
    %       z = nan(size(X)); FsED9+/m  
    %       n = [0  1  1  2  2  2  3  3  3  3]; PLz{EQ[cV  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ZO%^r%~s  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1K9.3n   
    %       y = zernfun(n,m,r(idx),theta(idx)); zQ=b|p]|W  
    %       figure('Units','normalized') AY52j  
    %       for k = 1:10 |?88EG@05  
    %           z(idx) = y(:,k); ?,$:~O* w  
    %           subplot(4,7,Nplot(k)) 2PQBUq  
    %           pcolor(x,x,z), shading interp _x.2&S89  
    %           set(gca,'XTick',[],'YTick',[]) <W0(!<U  
    %           axis square {bXN[=j  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l!,tssQ  
    %       end M+&~sX*a  
    % a[K&;)  
    %   See also ZERNPOL, ZERNFUN2. ql@2<V{  
    LLgw1 @-D  
    %   Paul Fricker 11/13/2006 >>{):r Z  
    ^&<M""Z  
    li%@HdA!  
    % Check and prepare the inputs: .s<0}<Aq>  
    % ----------------------------- U;bx^2<m  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QP'sS*saJ  
        error('zernfun:NMvectors','N and M must be vectors.') ] 0R*F30]  
    end !}6'vq  
    @|:fm() <  
    if length(n)~=length(m) \ aJ>?   
        error('zernfun:NMlength','N and M must be the same length.') .!4'Y}  
    end 2Z{?3mAb;  
    `<tRfl}qs  
    n = n(:); h{)m}"n<R  
    m = m(:); zLl-{Kk  
    if any(mod(n-m,2)) vl/!w2  
        error('zernfun:NMmultiplesof2', ... 1`?o#w  
              'All N and M must differ by multiples of 2 (including 0).') X4o#kW  
    end uf?;;wg  
    ^KbR@Ah  
    if any(m>n) ;> 7~@ K  
        error('zernfun:MlessthanN', ... gOg7:VPG  
              'Each M must be less than or equal to its corresponding N.') N_g=,E=U%  
    end zYaFbNi  
    =Z.0-C>W  
    if any( r>1 | r<0 ) {m U%.5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') W7!Rf7TK  
    end Py*WHHO  
    eztK`_n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Kii@Z5R_?  
        error('zernfun:RTHvector','R and THETA must be vectors.') )L&y@dy)  
    end _gVihu  
    ?Q_ @@)  
    r = r(:); yM 7{v$X0  
    theta = theta(:); ll5;09  
    length_r = length(r); B}04E^  
    if length_r~=length(theta) \Hb!<mrp  
        error('zernfun:RTHlength', ... :NLY;B`  
              'The number of R- and THETA-values must be equal.') #_ulmB;  
    end T4W20dxL7  
    ~Y43`@3H:  
    % Check normalization: ddL3wQ  
    % -------------------- % (h6m${j  
    if nargin==5 && ischar(nflag) fm Yx  
        isnorm = strcmpi(nflag,'norm'); tzN9d~JZ  
        if ~isnorm H^Pq[3NQ  
            error('zernfun:normalization','Unrecognized normalization flag.') xlZh(pf  
        end GipiO5)1C  
    else y3j$?o M  
        isnorm = false; 2+ u+9rW  
    end h HHR]e5:  
    9L7z<ntn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f/L8usBXq  
    % Compute the Zernike Polynomials K cex%.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G739Ne[gL  
    &DGqY5=  
    % Determine the required powers of r: ~ tR!hc}  
    % ----------------------------------- #reR<qp&]  
    m_abs = abs(m); yuC"V'  
    rpowers = []; X,3"4 SK  
    for j = 1:length(n) DzhLb8k  
        rpowers = [rpowers m_abs(j):2:n(j)]; VP< zOk7  
    end t[k ['<G  
    rpowers = unique(rpowers); %o9mG<.T  
    e}O&_ j-  
    % Pre-compute the values of r raised to the required powers, YQ+8lANC  
    % and compile them in a matrix: HpbwW=;V  
    % ----------------------------- b w1s?_P  
    if rpowers(1)==0 1<h@ ^s;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n jd2  
        rpowern = cat(2,rpowern{:}); q h bagw~  
        rpowern = [ones(length_r,1) rpowern]; _&(Wz0  
    else @}jg5}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /E/6(c  
        rpowern = cat(2,rpowern{:}); 6!)hl"  
    end DaH4Br.2  
    W\Il@Je;  
    % Compute the values of the polynomials: h_X'O3r  
    % -------------------------------------- >WO;q  
    y = zeros(length_r,length(n)); tM@%EO  
    for j = 1:length(n) y=8KNseW|  
        s = 0:(n(j)-m_abs(j))/2; mr[1F]G  
        pows = n(j):-2:m_abs(j); {uwPP2YD,  
        for k = length(s):-1:1 H^*[TX=#[  
            p = (1-2*mod(s(k),2))* ... bPV}T`  
                       prod(2:(n(j)-s(k)))/              ... s4 , `  
                       prod(2:s(k))/                     ... ZLaht(`+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... xz:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); TH>uL;?=  
            idx = (pows(k)==rpowers); ;U0w<>4L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); M+-odLltw  
        end |@rf#,hTDp  
         y[f%0*\B  
        if isnorm _ y'g11 \  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <F}j;mX  
        end REc90v2"  
    end fZs}u<3Q)  
    % END: Compute the Zernike Polynomials oeVI 6-_S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n%2c<@p#  
    Ye^#]%m  
    % Compute the Zernike functions: 5!i\S[:  
    % ------------------------------ G"J 8i|~  
    idx_pos = m>0; =J-&usX  
    idx_neg = m<0; abVEi[nP  
    \Pfm>$Ib=  
    z = y; Ayw {I#"  
    if any(idx_pos) K_j*9@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ktY  
    end s7`2ky()kz  
    if any(idx_neg) u<\Sf"fs  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .$&vSOgd(  
    end EwfL.z  
    ckdCd J  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的