切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10905阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 T)\"Xj  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! HK+/:'P u  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  /J)l/oI  
    rwIe qV{:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 kX:tc   
    v}^5Rp&m  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) bAxTLIf  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ydWtvFuS  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of I.}1JJF*   
    %   order N and frequency M, evaluated at R.  N is a vector of T#:F]=  
    %   positive integers (including 0), and M is a vector with the &;H{cv`  
    %   same number of elements as N.  Each element k of M must be a e1 *__'  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) iZ[tHw||  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Y ?]G}5  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 9Z\z96O-  
    %   with one column for every (N,M) pair, and one row for every guN4-gGDr<  
    %   element in R.  Kn+=lCk  
    % #`tD1T{;  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `NwdbKX  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _J?SIm  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to >Pe:I  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 E(+T*  
    %   for all [n,m]. {g/wY%u=  
    % o}8{Bh^  
    %   The radial Zernike polynomials are the radial portion of the `0BdMKjA  
    %   Zernike functions, which are an orthogonal basis on the unit B{, Bno  
    %   circle.  The series representation of the radial Zernike DOD6Liau{Q  
    %   polynomials is &yH#s 8^8  
    % g jG2  
    %          (n-m)/2 Rag iV6c  
    %            __ 67<CbQZoN3  
    %    m      \       s                                          n-2s ~] =?b)B  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r V*B0lI7`B  
    %    n      s=0 &jts:^N>  
    % Oo%!>!Lt,  
    %   The following table shows the first 12 polynomials. 24@^{ }  
    % Wb=Jj 9;  
    %       n    m    Zernike polynomial    Normalization  :q2YBa  
    %       --------------------------------------------- _[E\=  
    %       0    0    1                        sqrt(2) f[/.I,9U^  
    %       1    1    r                           2 H$!-f>Rxa  
    %       2    0    2*r^2 - 1                sqrt(6) !Cj(A"uqY  
    %       2    2    r^2                      sqrt(6) GXb47_b^  
    %       3    1    3*r^3 - 2*r              sqrt(8) 5ouQQ)vA  
    %       3    3    r^3                      sqrt(8) O4+F^+qN  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +802`eax  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) QJ4AL3 ^6  
    %       4    4    r^4                      sqrt(10) gn5% F5W  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (:?&G9k "  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) < tQc_  
    %       5    5    r^5                      sqrt(12) *8!w&ME+.  
    %       --------------------------------------------- 'XfgBJF=  
    % kJ8vKcc  
    %   Example: KVijs1q  
    % >iy^$bqF  
    %       % Display three example Zernike radial polynomials Vq}r_#!Q  
    %       r = 0:0.01:1; Z*bC#s?  
    %       n = [3 2 5]; yKDZ+3xK]  
    %       m = [1 2 1]; \y*j4 0  
    %       z = zernpol(n,m,r); ;/Q6 i  
    %       figure oa0X5}D  
    %       plot(r,z) _@prmSc  
    %       grid on NiTJ}1 l  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {'IFWD.5  
    % u(9X  
    %   See also ZERNFUN, ZERNFUN2. GoeIjuELR  
    }'`xu9<  
    % A note on the algorithm. 3_J>y  
    % ------------------------ ="lI i$>O  
    % The radial Zernike polynomials are computed using the series $9i9s4u^  
    % representation shown in the Help section above. For many special T'R,vxP)\  
    % functions, direct evaluation using the series representation can =x4a~=HX  
    % produce poor numerical results (floating point errors), because 2Guvze_bU  
    % the summation often involves computing small differences between a;&}zcc*  
    % large successive terms in the series. (In such cases, the functions #{>uC&jD  
    % are often evaluated using alternative methods such as recurrence t{ H 1u  
    % relations: see the Legendre functions, for example). For the Zernike 6$z'wy/*  
    % polynomials, however, this problem does not arise, because the @^wpAQfd4  
    % polynomials are evaluated over the finite domain r = (0,1), and "A7<XN<  
    % because the coefficients for a given polynomial are generally all `cO|RhD @  
    % of similar magnitude. [a NhP;<  
    % l:z };  
    % ZERNPOL has been written using a vectorized implementation: multiple h2&y<Eg>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Doj(.wm~  
    % values can be passed as inputs) for a vector of points R.  To achieve P!>g7X  
    % this vectorization most efficiently, the algorithm in ZERNPOL T&4fBMBp,%  
    % involves pre-determining all the powers p of R that are required to IozNjII$:.  
    % compute the outputs, and then compiling the {R^p} into a single Cgo XZX  
    % matrix.  This avoids any redundant computation of the R^p, and w -dI<s  
    % minimizes the sizes of certain intermediate variables. ;Xh5oB\)W  
    % BK*UR+,  
    %   Paul Fricker 11/13/2006 ]-EN/V  
    @H4wHlb  
    <{ # <5 8  
    % Check and prepare the inputs: vrO%XvXW  
    % ----------------------------- w 06gY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) bZXlJa`'S  
        error('zernpol:NMvectors','N and M must be vectors.') Wbd_a R (  
    end <)J55++  
    &z QWIv  
    if length(n)~=length(m) 9/Wn!Ld  
        error('zernpol:NMlength','N and M must be the same length.') +Wd L  
    end * 2%oZX F  
    rT<1S?jR  
    n = n(:); wNR=?Z~  
    m = m(:); |DGCdB|`G  
    length_n = length(n); d1lH[r!Z  
    gQ,4xTX  
    if any(mod(n-m,2)) ]wR6bEm7  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') T"B8;|  
    end }Oh5Nm)  
    E]?2!)mgce  
    if any(m<0) VHj*aBHB  
        error('zernpol:Mpositive','All M must be positive.') _Ua PwJ  
    end LiF.w:}  
    !&6-(q9  
    if any(m>n) G-s a L*  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') .:SfM r;G  
    end MKe *f%  
    "|\94  
    if any( r>1 | r<0 ) qWkx:-g]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') CCy .  
    end lvG3<ls0K$  
    DSTx#*  
    if ~any(size(r)==1) qm~Kw!kV  
        error('zernpol:Rvector','R must be a vector.') R<t&F\>  
    end HK? Foo?  
    fA;x{0CAMX  
    r = r(:); np= J:v4  
    length_r = length(r); Zq9>VqGe  
    KM EXT$p  
    if nargin==4 @!Y.935/0  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); z{AM2Z  
        if ~isnorm l; */M.B  
            error('zernpol:normalization','Unrecognized normalization flag.') EyzY2>"^  
        end x[Hhj'  
    else x vHOY:  
        isnorm = false; ;,R[]B01u  
    end zab w!@]  
    >&g2 IvDS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i^~sn `o  
    % Compute the Zernike Polynomials La@\q[U{@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A<]&JbIt  
    t% <pbZO  
    % Determine the required powers of r: /Lj%A   
    % ----------------------------------- T$f:[ye]Z  
    rpowers = []; PZ~`O  
    for j = 1:length(n) F1zT )wW  
        rpowers = [rpowers m(j):2:n(j)]; rUGZjLIGqz  
    end "Fo  
    rpowers = unique(rpowers); rGGS]^  
    elNB7%Y/  
    % Pre-compute the values of r raised to the required powers, :A,O(   
    % and compile them in a matrix:  `NTM%# w  
    % ----------------------------- 3#7ENV`  
    if rpowers(1)==0 wbn^R'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZE{aS4c  
        rpowern = cat(2,rpowern{:}); ccIDMJ=2  
        rpowern = [ones(length_r,1) rpowern]; `4se7{'UK`  
    else eUi> Mp  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); NU BpIx&  
        rpowern = cat(2,rpowern{:}); z&\Il#'\m+  
    end nYo&x'  
    xn0s`I[  
    % Compute the values of the polynomials: Ka[Sm|-q  
    % -------------------------------------- c8 H9_6  
    z = zeros(length_r,length_n); )zo#1$C-  
    for j = 1:length_n ^U R-#WaQ  
        s = 0:(n(j)-m(j))/2; oNh68ON:c  
        pows = n(j):-2:m(j); 9;}L{yve  
        for k = length(s):-1:1 ]t8{)r  
            p = (1-2*mod(s(k),2))* ... m 4wPuW  
                       prod(2:(n(j)-s(k)))/          ... ly9x1`?$  
                       prod(2:s(k))/                 ... yd\5Z[iEp  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... f$~ _FX  
                       prod(2:((n(j)+m(j))/2-s(k))); cg>!<T*  
            idx = (pows(k)==rpowers); 3RBpbTNWp  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 7O;BS}Lv=  
        end =ip~J<sw&  
         jAD+:@  
        if isnorm ]b5%?^Z#  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); #RCZA4>  
        end &ryl$!!3H  
    end 6{Krw \0  
    fU\k?'x_  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) y\r^\ S9%  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. &etL&s v  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated =rf )yp-D  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive j3sz*:  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, s0X/1Cq  
    %   and THETA is a vector of angles.  R and THETA must have the same '7RR2f>V  
    %   length.  The output Z is a matrix with one column for every P-value, nm{'HH-4  
    %   and one row for every (R,THETA) pair. 0{^l2?mgSb  
    % <=5,(a5g  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike \UkNE5  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) e{q p!N1!  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) y{&{=1#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 k8Su/U  
    %   for all p. t wa(M?  
    % ue^?/{OuT  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 F1{?]>G  
    %   Zernike functions (order N<=7).  In some disciplines it is &UJ Ty'  
    %   traditional to label the first 36 functions using a single mode 14@q$}sf  
    %   number P instead of separate numbers for the order N and azimuthal /:*R -VdF  
    %   frequency M. wHo#%Y,Nmi  
    % _^ CQ*+F  
    %   Example: ]XpU'/h>q;  
    % dcrJ,>i}  
    %       % Display the first 16 Zernike functions i"r.>X'Z  
    %       x = -1:0.01:1; 8`rAE_n`%  
    %       [X,Y] = meshgrid(x,x); y<'2BTf  
    %       [theta,r] = cart2pol(X,Y); Z7KB?1{G  
    %       idx = r<=1; V;[ __w  
    %       p = 0:15; gs`27Gih  
    %       z = nan(size(X)); 3LmBV\["  
    %       y = zernfun2(p,r(idx),theta(idx)); (Ay4B*|!  
    %       figure('Units','normalized') >gS5[`xRE  
    %       for k = 1:length(p) ]VHdE_7)  
    %           z(idx) = y(:,k); +i q+  
    %           subplot(4,4,k) |+$j( YuH  
    %           pcolor(x,x,z), shading interp ~3*ZG  
    %           set(gca,'XTick',[],'YTick',[]) am$-sh72  
    %           axis square 7Da^Jv k  
    %           title(['Z_{' num2str(p(k)) '}']) gl(6m`a>  
    %       end 8YJqM,t5)  
    % kHo;9j-U  
    %   See also ZERNPOL, ZERNFUN. [w#x5Xsn  
    zYgK$u^H  
    %   Paul Fricker 11/13/2006 *fuGVA  
    46.q a nh  
    8en#PH }  
    % Check and prepare the inputs: !z4Hj{A_  
    % ----------------------------- 0F;(_2V-  
    if min(size(p))~=1 40l#'< y;  
        error('zernfun2:Pvector','Input P must be vector.') t KqCy\-q  
    end gYH:EuY,  
    XM5;AcD  
    if any(p)>35 +_|cZlQ&  
        error('zernfun2:P36', ... (>Q9jNW  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... i5~ /+~  
               '(P = 0 to 35).']) @u'27c_<d3  
    end GO:1 Z?^  
    83 ^,'Z  
    % Get the order and frequency corresonding to the function number: KSpC%_LC  
    % ---------------------------------------------------------------- zf!\wY"`  
    p = p(:); iYfLo">  
    n = ceil((-3+sqrt(9+8*p))/2); Lh9>8@ jf  
    m = 2*p - n.*(n+2); o4I!VK(C#s  
    ; HLMU36q  
    % Pass the inputs to the function ZERNFUN: k~s>8N:&G  
    % ---------------------------------------- 9|kEq>d  
    switch nargin smLD m  
        case 3 |yl0}. ()  
            z = zernfun(n,m,r,theta); +EB,7<5<  
        case 4 G]3ML)l  
            z = zernfun(n,m,r,theta,nflag); Z@aL"@2]a  
        otherwise GzZ|T7fm  
            error('zernfun2:nargin','Incorrect number of inputs.') 5)zh@aJ@  
    end |~" A:gf  
    >J75T1PH=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 KL\=:iWA  
    function z = zernfun(n,m,r,theta,nflag) L"vG:Mq@D  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. d~f0]O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QO`SnN}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the '*{Rn7B5  
    %   unit circle.  N is a vector of positive integers (including 0), and 0~L 8yMM  
    %   M is a vector with the same number of elements as N.  Each element ppo$&W &z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) A5H8+gATK  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Wes "t}[25  
    %   and THETA is a vector of angles.  R and THETA must have the same #Uk6Fmu ]  
    %   length.  The output Z is a matrix with one column for every (N,M) ]=XL9MI  
    %   pair, and one row for every (R,THETA) pair. ]~x/8%e76  
    % 28qWC~/9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike exMPw ;8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >U Ich  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral j tkPi)QR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FZ.Yn   
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized n_ NG~ /x  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?;7>`F6ld  
    % cw-JGqLx  
    %   The Zernike functions are an orthogonal basis on the unit circle. \c^jaK5  
    %   They are used in disciplines such as astronomy, optics, and 73Zs/  
    %   optometry to describe functions on a circular domain. 6!PX! UkF  
    % ^>}[[:(6/  
    %   The following table lists the first 15 Zernike functions. FHPZQC8  
    % *E q7r>[  
    %       n    m    Zernike function           Normalization ;? QAPTz  
    %       -------------------------------------------------- <yaw9k+P  
    %       0    0    1                                 1 b0CaoSWo  
    %       1    1    r * cos(theta)                    2 8n p>#V  
    %       1   -1    r * sin(theta)                    2 ?U[nYp}"v  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~=]@], {  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Gkvd{G?F  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6#63D>OWp  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >bP7}T  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) e$|)wOwU  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) PsT v\!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +GtGyp  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) gG>^h1_o~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N28?JQha  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _@?Jx/`;bk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 90k|u'ikOp  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) siZ_JJW  
    %       -------------------------------------------------- #EK8Qe_  
    % 4T\/wyq0  
    %   Example 1: /3%xQK>%  
    % | (9FV^_  
    %       % Display the Zernike function Z(n=5,m=1) eC:Q)%$%l  
    %       x = -1:0.01:1; &8L\FAY0%9  
    %       [X,Y] = meshgrid(x,x); m|gd9m $,?  
    %       [theta,r] = cart2pol(X,Y); nezbmpL4  
    %       idx = r<=1; _jKVA6_E  
    %       z = nan(size(X)); n,LKkOG  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); JNCtsfd  
    %       figure epyYo&x}  
    %       pcolor(x,x,z), shading interp eV}Tx;1|}  
    %       axis square, colorbar -%$ dFq  
    %       title('Zernike function Z_5^1(r,\theta)') \>azY g  
    % t O;W?g  
    %   Example 2: `;GGuJb \  
    % '0rwNEg  
    %       % Display the first 10 Zernike functions r}Av"  
    %       x = -1:0.01:1; T<GD!j(  
    %       [X,Y] = meshgrid(x,x); mQuaO# I,  
    %       [theta,r] = cart2pol(X,Y); 4'| :SyOm  
    %       idx = r<=1; "$YLU}S9  
    %       z = nan(size(X)); 1D DOUV  
    %       n = [0  1  1  2  2  2  3  3  3  3]; HKw4}FC*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Bq`kVfx  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Jtk(yp{Zz  
    %       y = zernfun(n,m,r(idx),theta(idx)); Lxrn#Z eM  
    %       figure('Units','normalized') =%G[vm/-)  
    %       for k = 1:10 'mR+W{r  
    %           z(idx) = y(:,k); $o H,:x?}  
    %           subplot(4,7,Nplot(k)) C{^@.8:  
    %           pcolor(x,x,z), shading interp S*:w\nXP~  
    %           set(gca,'XTick',[],'YTick',[]) (j"MsCwE  
    %           axis square %W@IB8]Vr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _ @76eZd  
    %       end 3f8Z ?[Bb@  
    % Jx?>1q=M  
    %   See also ZERNPOL, ZERNFUN2. ,Yz+?SmSZ&  
    ``Rb-.Fq,  
    %   Paul Fricker 11/13/2006 >Sah\u`  
    !7?wd^C'f  
    N Q=YTRU  
    % Check and prepare the inputs: G"w Q(6J@  
    % ----------------------------- `^{P,N>X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ZeV)/g,w  
        error('zernfun:NMvectors','N and M must be vectors.') 6>J #M  
    end 4f,x@:Jw  
    L,L7WObA  
    if length(n)~=length(m) F tjm@:X  
        error('zernfun:NMlength','N and M must be the same length.') GrC")Z|3u  
    end net9K X4\  
    rfpxE>_|G  
    n = n(:); uD3_'a  
    m = m(:); ![%,pip2/&  
    if any(mod(n-m,2)) m"]ys #  
        error('zernfun:NMmultiplesof2', ... A4h/oMis  
              'All N and M must differ by multiples of 2 (including 0).') ry"zec B  
    end 1YL5 ![T  
    F{tSfKy2  
    if any(m>n) n Lb 9$&  
        error('zernfun:MlessthanN', ... 5Bo)j_Qo  
              'Each M must be less than or equal to its corresponding N.') v^'~-^s  
    end c-d}E!C:  
    Xi.?9J`@  
    if any( r>1 | r<0 ) YvX I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |e >-v  
    end ;"z>p25=T  
    X3yr6J[ ^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (=9&"UH  
        error('zernfun:RTHvector','R and THETA must be vectors.') V ;jz0B  
    end g!ww;_  
    1O4"MeF  
    r = r(:); wP*Z/}Uum+  
    theta = theta(:); Pa<X^&  
    length_r = length(r); ;\N*iN#K  
    if length_r~=length(theta) vKf=t&gqr  
        error('zernfun:RTHlength', ... /+msrrpD  
              'The number of R- and THETA-values must be equal.') $}fA;BP  
    end 5@ug1F&   
    ig{5 ]wZ(  
    % Check normalization: C+5nft6:  
    % -------------------- bE~lc}%  
    if nargin==5 && ischar(nflag) _L":Wux  
        isnorm = strcmpi(nflag,'norm'); FQ%mNowuj  
        if ~isnorm  \Z':hw  
            error('zernfun:normalization','Unrecognized normalization flag.') X[<9+Q-&  
        end x#D=?/~/Kv  
    else "RLb wm~  
        isnorm = false; L%FL{G  
    end s?Kn,6Y  
    P>|2~YxjU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9&cZIP   
    % Compute the Zernike Polynomials \BL9}5y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <=Qk^Y2k  
    jxvVp*-=<j  
    % Determine the required powers of r: 5oS\uX|  
    % ----------------------------------- eAMT72_  
    m_abs = abs(m); ,"o \_{<z  
    rpowers = []; il~,y8WTU{  
    for j = 1:length(n) lS^0*(Y  
        rpowers = [rpowers m_abs(j):2:n(j)]; o9i\[Ul  
    end OjZ@_V:  
    rpowers = unique(rpowers); JFZ p^{  
    iweP3u##  
    % Pre-compute the values of r raised to the required powers, W= !f  
    % and compile them in a matrix: #82B`y<<y/  
    % ----------------------------- $Tg$FfD6&  
    if rpowers(1)==0 ;Peyo1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); KVuv%?  
        rpowern = cat(2,rpowern{:}); Z>l>@wNm  
        rpowern = [ones(length_r,1) rpowern]; |{ k B`  
    else :Lx]`dSk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kbY@Y,:w  
        rpowern = cat(2,rpowern{:}); iX=*qiVX  
    end jkq+j^  
    |($pXVLH`  
    % Compute the values of the polynomials: Q*he%@w  
    % -------------------------------------- k;sUDmrO  
    y = zeros(length_r,length(n)); k{~5pxd-t  
    for j = 1:length(n) O%r<I*T^r  
        s = 0:(n(j)-m_abs(j))/2; PsLCO(26  
        pows = n(j):-2:m_abs(j); "q$M\jK#V  
        for k = length(s):-1:1 }49?Z3  
            p = (1-2*mod(s(k),2))* ... pfT7  
                       prod(2:(n(j)-s(k)))/              ... Ev%\YI!MaY  
                       prod(2:s(k))/                     ... /y}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d1-QkW^0y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W>~V?%F&'  
            idx = (pows(k)==rpowers); .qZ<ROZ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <W pz\U  
        end $)U RY~;i  
         <6@Db$-  
        if isnorm G.Q+"+* ^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Sz =z TPnO  
        end ,0~=9dR  
    end 2,+H;Ypi!  
    % END: Compute the Zernike Polynomials \m<*3eS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fc91D]c  
    wNlp4Z'[  
    % Compute the Zernike functions: }sFHb[I &  
    % ------------------------------ [(C lvGx  
    idx_pos = m>0; ?^dyQhb  
    idx_neg = m<0; 4 QWHGh"  
    [lf[J&}X  
    z = y; 5q\]]LV>  
    if any(idx_pos) DD1S]m  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); H_{Yr+p  
    end Q-\: u~  
    if any(idx_neg) 1peN@Yk2W  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )lZb=t  
    end \|Mz'*  
    fIu/*PFPVY  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的