非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 J^` pE^S
function z = zernfun(n,m,r,theta,nflag) :LX!T&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. [C
7X#|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %:l\Vhhz
% and angular frequency M, evaluated at positions (R,THETA) on the r
H9}VA:h
% unit circle. N is a vector of positive integers (including 0), and U.^%7.
% M is a vector with the same number of elements as N. Each element tJd/uQJ
% k of M must be a positive integer, with possible values M(k) = -N(k) +BI%.A`2
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, CD?b.Cxai
% and THETA is a vector of angles. R and THETA must have the same
!&KE">3Qu
% length. The output Z is a matrix with one column for every (N,M) p0Ij4
% pair, and one row for every (R,THETA) pair. = "Lb5!
% Pvkr$ou
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ezJ^
r,D|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9ys[xOh
WM
% with delta(m,0) the Kronecker delta, is chosen so that the integral
6 ;\>,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "el3mloR8
% and theta=0 to theta=2*pi) is unity. For the non-normalized ABtv|0K
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :Z;kMrU
% "[L+LPET
% The Zernike functions are an orthogonal basis on the unit circle. Hn)^C{RN*{
% They are used in disciplines such as astronomy, optics, and B$97"$#u
% optometry to describe functions on a circular domain. ~ebm,3?
% = p2AK\
% The following table lists the first 15 Zernike functions. :NwFJc
% y3'K+?4
% n m Zernike function Normalization J0@#xw=+
% -------------------------------------------------- )lx;u.$4
% 0 0 1 1 7&|&y
SCu
% 1 1 r * cos(theta) 2 tN;~.\TKg
% 1 -1 r * sin(theta) 2 :(jovse\
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8+_e= _3R
% 2 0 (2*r^2 - 1) sqrt(3) z{>
)'A/
% 2 2 r^2 * sin(2*theta) sqrt(6) gWjz3ob
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^j_t{h)W(0
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) =WFG[~8
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) F,GG>(6c
% 3 3 r^3 * sin(3*theta) sqrt(8) &ujq6~#
% 4 -4 r^4 * cos(4*theta) sqrt(10) <^A1.o<GN
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q@l.p-:^U
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) LCpS}L;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [*=UH*:'N
% 4 4 r^4 * sin(4*theta) sqrt(10) 6CWm;%B#G
% -------------------------------------------------- r<kqs,-~
% /(ArA=#
% Example 1: Q;p%
VQ
% `~W ?a
% % Display the Zernike function Z(n=5,m=1) Z2\Xe~{
% x = -1:0.01:1; yD&UH_ 1g
% [X,Y] = meshgrid(x,x); tj!~7lo
% [theta,r] = cart2pol(X,Y); 3:P "6mN
% idx = r<=1; {D 8[pG%z
% z = nan(size(X)); !='&#@7u
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ->YF</I
% figure 71yf+xL
% pcolor(x,x,z), shading interp ^5gB?V,
% axis square, colorbar K06&.>v_
% title('Zernike function Z_5^1(r,\theta)') bU"2D.k
% :,dO7dJi
% Example 2: )VR/a
% {{4Sgb
% % Display the first 10 Zernike functions ZNbb8v
% x = -1:0.01:1; iX'#~eK*<
% [X,Y] = meshgrid(x,x); 1|\/2
% [theta,r] = cart2pol(X,Y); mOi 8W,2
% idx = r<=1; lWYgIpw
% z = nan(size(X)); 7(= 09z
% n = [0 1 1 2 2 2 3 3 3 3]; UzmD2AsO"
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Kkds^v6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7
S2QTRvH
% y = zernfun(n,m,r(idx),theta(idx)); ?qjlWCV|e
% figure('Units','normalized') W[tX%B
% for k = 1:10 ghqq%g
% z(idx) = y(:,k); $5/lU
}To
% subplot(4,7,Nplot(k)) lAPvphO
% pcolor(x,x,z), shading interp )y}W=Q>T
% set(gca,'XTick',[],'YTick',[]) 2r&T.
% axis square |nj,]pA
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )[hQK_e]
% end R~DZY{u+/$
% VM[Vhk[
% See also ZERNPOL, ZERNFUN2. _!*??B6u
mC(q8%/;
% Paul Fricker 11/13/2006 VlQaT7Q
?KfV>.()
#\fxU:z~r
% Check and prepare the inputs: P 6|\
^
% ----------------------------- /"<o""<]
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CwVORf,uA
error('zernfun:NMvectors','N and M must be vectors.') ^.@BD4/RPt
end As7Y4w* +
Lk|%2XGO&
if length(n)~=length(m) <);Nc1
error('zernfun:NMlength','N and M must be the same length.') UjU*`}k3
end SBBi"U:
#2023Zo]
n = n(:); 9n${M:F
m = m(:); xui.63/
if any(mod(n-m,2)) )tyhf(p6
error('zernfun:NMmultiplesof2', ... ESl</"<J
'All N and M must differ by multiples of 2 (including 0).') )!&7X L[
end tb-:9*2j-
Yw\PmRL"p
if any(m>n) amn\#_(
error('zernfun:MlessthanN', ...
$fwv'
'Each M must be less than or equal to its corresponding N.') >f$>Odqe
end ED={OZD8
uxd5 XS
if any( r>1 | r<0 ) 'bXm,Ed
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?x(]U+
end
!Z'x h +
D|}%(N@sl
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 67/&.d!
error('zernfun:RTHvector','R and THETA must be vectors.') Ok=RhoZZ
end !V6O~#
Ty21-0F
r = r(:); [BpIzhy&}
theta = theta(:); &K_"5.7-56
length_r = length(r); $=iV)-
if length_r~=length(theta) aD1G\*AFJ
error('zernfun:RTHlength', ... L/,W
'The number of R- and THETA-values must be equal.') 1h.N
&;vy
end m\88Etl@
jcWv&u|
% Check normalization: $Xf gY1S
% -------------------- 32r2<QrX
if nargin==5 && ischar(nflag) ;L5'3+U
isnorm = strcmpi(nflag,'norm'); i%8I (F
if ~isnorm ;/3
<
error('zernfun:normalization','Unrecognized normalization flag.') WvN!8*XFM
end S'NZb!1+
else K>2mm!{
isnorm = false; v:MJF*/
end $Q[a^V~:
ztNm,1pnQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LP8Stj JP
% Compute the Zernike Polynomials xbFoXYqgP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MjAF&bD^
{jX
h/`
% Determine the required powers of r: o!`.LL%
% ----------------------------------- ckXJ9>
m_abs = abs(m); >g!a\=-[
rpowers = []; MOuI;EF
for j = 1:length(n) L {6y]t7^
rpowers = [rpowers m_abs(j):2:n(j)]; _y q"F#,*
end V=pg9KR!T
rpowers = unique(rpowers); 7(m4,l+(
xr uQ=Q
% Pre-compute the values of r raised to the required powers, W_NQi
% and compile them in a matrix: ]bG8DEwD
% ----------------------------- X&1R6O
if rpowers(1)==0 }xx[=t=nUf
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9Z,vpTE
rpowern = cat(2,rpowern{:}); 0f).F
rpowern = [ones(length_r,1) rpowern]; t>J 43
else 85rXm*Df
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N@$g"w
rpowern = cat(2,rpowern{:}); !@9Vq6
end M^\#(0^2@
`p@YV(
% Compute the values of the polynomials: fKzOt<wm
% -------------------------------------- X'4g\)*
y = zeros(length_r,length(n)); `B{N3Kxbp
for j = 1:length(n) ? *I2?
s = 0:(n(j)-m_abs(j))/2; *]Nd
I
pows = n(j):-2:m_abs(j); U[/k=}76
for k = length(s):-1:1 =,q,W$-
p = (1-2*mod(s(k),2))* ... -hav/7g
prod(2:(n(j)-s(k)))/ ... \$Xo5f<
prod(2:s(k))/ ... cD&53FPXC
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /
AFn8=9'^
prod(2:((n(j)+m_abs(j))/2-s(k))); F6*n,[5(
idx = (pows(k)==rpowers); b
!FX]d1~k
y(:,j) = y(:,j) + p*rpowern(:,idx); c <8s\2
end S}Wj+H;
^EGe%Fq*x]
if isnorm 3fJGJW!zu
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); TAbd[:2{F
end o}&TFhT
end
NIcPjo
% END: Compute the Zernike Polynomials ?{W@TY@S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @^8tk3$Y
V @A+d[
% Compute the Zernike functions: T/DKT1P-
% ------------------------------ D"^4X'6
idx_pos = m>0; h}&WBN
idx_neg = m<0; xSFY8
}W{rDc kv
z = y; ezRhSN?
if any(idx_pos) 4,CQJ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZUJ!
end gs)wQgJ [
if any(idx_neg) {&,9Zy]"S
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); iR;Sd >)
end q:4 51 C
5z8CUDt
0
% EOF zernfun