切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11306阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 {E-.W"t4  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0^az<!!O#  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @ODwO;_R5  
    9zSHn.y  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 `q|&;wP.  
    OzY55  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %Q]u_0P*  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. XL[/)lX{  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of NGYliP,.6  
    %   order N and frequency M, evaluated at R.  N is a vector of m87,N~DP  
    %   positive integers (including 0), and M is a vector with the Y.I-h l1<r  
    %   same number of elements as N.  Each element k of M must be a  V|=PaO  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) m"Y;GzqQl  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is O%)@> 5#S  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix .G[y^w)w}  
    %   with one column for every (N,M) pair, and one row for every z;1y7W!v  
    %   element in R. p7(Pymkd  
    % /dTy%hZC}  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ^NJ]~h{n$  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 9hAS#|vK  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /lAB  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 p:M#F:  
    %   for all [n,m]. U3r[ysf  
    % "zW3d KVc  
    %   The radial Zernike polynomials are the radial portion of the 1);$#Dlt k  
    %   Zernike functions, which are an orthogonal basis on the unit -q7A\8C  
    %   circle.  The series representation of the radial Zernike 3L/qU^`  
    %   polynomials is PfX{n5yBW8  
    % X! 5N2x  
    %          (n-m)/2 8r[ZGUV  
    %            __ ;9r Z{'i+|  
    %    m      \       s                                          n-2s {Z[yY6Nu  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r rQiX7  
    %    n      s=0 Z=%+U _,  
    % \8\)5#?  
    %   The following table shows the first 12 polynomials. -_=0PW5{  
    % v+-f pl&  
    %       n    m    Zernike polynomial    Normalization eeIh }t>[  
    %       --------------------------------------------- o?\)!_Z|  
    %       0    0    1                        sqrt(2) <%eY>E  
    %       1    1    r                           2 kg[u@LgvoN  
    %       2    0    2*r^2 - 1                sqrt(6) 'Z2:u!E  
    %       2    2    r^2                      sqrt(6) EM/NT/  
    %       3    1    3*r^3 - 2*r              sqrt(8) y7SOz'd  
    %       3    3    r^3                      sqrt(8) jB }O6u[%  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 7t-j2 n`<  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) cT{iMgdI?  
    %       4    4    r^4                      sqrt(10) QFoZv+|  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) G)gf +)W  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) VlW#_.  
    %       5    5    r^5                      sqrt(12) ~ `2w ul  
    %       --------------------------------------------- Rf@D]+v  
    % 8D]:>[|E  
    %   Example: *nNzhcuR  
    % ~45u a  
    %       % Display three example Zernike radial polynomials Myss$gt}  
    %       r = 0:0.01:1; !f_GR Pj'  
    %       n = [3 2 5]; dJ\6m!Mp  
    %       m = [1 2 1]; /H.QGPr  
    %       z = zernpol(n,m,r); !8&,GT  
    %       figure m%V+px  
    %       plot(r,z) 5A1oZ+C#  
    %       grid on EQPZV K/  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') hZnT`!iFE^  
    % +C7 1".i-  
    %   See also ZERNFUN, ZERNFUN2. Pg[zRRf<  
    b3b 4'l   
    % A note on the algorithm. J#*Uf>5NY  
    % ------------------------ G],+?E_,  
    % The radial Zernike polynomials are computed using the series \Ekez~k{`  
    % representation shown in the Help section above. For many special 3(P^PP8  
    % functions, direct evaluation using the series representation can Pb?H cg  
    % produce poor numerical results (floating point errors), because C>cc!+n%H  
    % the summation often involves computing small differences between [i[G" %Q  
    % large successive terms in the series. (In such cases, the functions !s,<h U#  
    % are often evaluated using alternative methods such as recurrence &Pxt6M\d  
    % relations: see the Legendre functions, for example). For the Zernike k Fv\V   
    % polynomials, however, this problem does not arise, because the 1=#r$H  
    % polynomials are evaluated over the finite domain r = (0,1), and V5rnI\:7  
    % because the coefficients for a given polynomial are generally all T Uhp  
    % of similar magnitude. x6HebIR+  
    % X@+:O-$  
    % ZERNPOL has been written using a vectorized implementation: multiple m6V1m0M  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] rP ;~<IxEr  
    % values can be passed as inputs) for a vector of points R.  To achieve HY#7Ctn3  
    % this vectorization most efficiently, the algorithm in ZERNPOL ,r5<v_  
    % involves pre-determining all the powers p of R that are required to qt]QO1pAd  
    % compute the outputs, and then compiling the {R^p} into a single vVyO}Q`  
    % matrix.  This avoids any redundant computation of the R^p, and B0=:A  
    % minimizes the sizes of certain intermediate variables. GG"0n{>0  
    % el!Bi>b9c!  
    %   Paul Fricker 11/13/2006 M)Rp+uQ  
    y:4Sw#M%(  
    N-^\X3X  
    % Check and prepare the inputs: =D5@PHpv(  
    % ----------------------------- qU8UKIP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6uDA{[OH  
        error('zernpol:NMvectors','N and M must be vectors.') *" <tFQ  
    end {EJVZG:&  
    Y'f I4  
    if length(n)~=length(m) T.ub! ,Y  
        error('zernpol:NMlength','N and M must be the same length.') d!8q+FI  
    end B0p>'O2  
    ~b\7 qx_a9  
    n = n(:); `m<="No  
    m = m(:); _WK+BxH  
    length_n = length(n); '5ky<  
    yE9JMi 0  
    if any(mod(n-m,2)) iN<5[ztd  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ^S ,E"Q  
    end SNvK8,"g  
    ("/*k  
    if any(m<0) u MzefRN  
        error('zernpol:Mpositive','All M must be positive.') Aog 3d\1$  
    end ';aPoaO %  
    I-/PzL<W P  
    if any(m>n) 0IDHoNaT<  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') /<:9NP'^  
    end TeqFy(Dr  
    OD\x1,E)I  
    if any( r>1 | r<0 ) jLr8?Hyf  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') bG^eP :r  
    end Xz]}cRQ[  
    DDAqgx  
    if ~any(size(r)==1) fS#/-wugOB  
        error('zernpol:Rvector','R must be a vector.') w41#? VC/  
    end tHoFnPd\|  
    nr&G4t+%Hv  
    r = r(:); czMLvPXRx  
    length_r = length(r); P]Gsc  
    9k7|B>LT  
    if nargin==4 7h&xfrSrD  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); yE"hgdL  
        if ~isnorm S\0"G*  
            error('zernpol:normalization','Unrecognized normalization flag.') *<9D]  
        end J=zZGd%  
    else =1yUH9\,b  
        isnorm = false; K:'pK1zy  
    end &)s A(  
    (3]7[h7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -^#Ix;%  
    % Compute the Zernike Polynomials uU5:,Wy+dg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <R3S{ ty  
    "#4PU5.  
    % Determine the required powers of r: O')Ivm,E  
    % ----------------------------------- }1R k]$XC  
    rpowers = []; uaU!V4-  
    for j = 1:length(n) ]-* }-j`  
        rpowers = [rpowers m(j):2:n(j)]; ?Fi-,4  
    end yvH:U5%  
    rpowers = unique(rpowers); *EV]8  
    $~D`-+J  
    % Pre-compute the values of r raised to the required powers, $oxPmELtpe  
    % and compile them in a matrix: QyHUuG|g  
    % ----------------------------- $wN'mY  
    if rpowers(1)==0 W 8E<P y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $u3N ',&  
        rpowern = cat(2,rpowern{:}); i}wu+<Mk  
        rpowern = [ones(length_r,1) rpowern]; <EBp X   
    else H[>_LYZ8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }1 _gemlf  
        rpowern = cat(2,rpowern{:}); .mok.f<G_m  
    end c&0IJ7fZG  
    PKjA@+  
    % Compute the values of the polynomials: R8],}6,;E}  
    % -------------------------------------- /@wm?ft6Gk  
    z = zeros(length_r,length_n); 8|d[45*q  
    for j = 1:length_n j ^_ G  
        s = 0:(n(j)-m(j))/2; <M$hj6.tn  
        pows = n(j):-2:m(j); q!AS}rV  
        for k = length(s):-1:1 -Q$$2QW!  
            p = (1-2*mod(s(k),2))* ... QGshc  
                       prod(2:(n(j)-s(k)))/          ... 1/&j'B  
                       prod(2:s(k))/                 ... a#raUF7e  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... aB'<#X$x  
                       prod(2:((n(j)+m(j))/2-s(k))); }(hE{((o  
            idx = (pows(k)==rpowers); ?L'k2J  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {Ua5bSbh  
        end :_e.ch:4  
         x(t} H8q  
        if isnorm Mb<KZ_wYOX  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); !4 hs9b  
        end R#T6I i  
    end Lqch~@E&%#  
    -Z;:_"&9  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) I 9u=RI s  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. tjTF?>^6|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated RV($G8U  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive )b-G2< kb  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, v(t&8)Uu  
    %   and THETA is a vector of angles.  R and THETA must have the same }BfwMq4E)n  
    %   length.  The output Z is a matrix with one column for every P-value, |BW956fBU  
    %   and one row for every (R,THETA) pair. 3AB5Qs<  
    % ZtvU~'Q  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike p5 [uVRZ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ILVbbC`D  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) a%]p*X!  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ZHF@k'vm/9  
    %   for all p. ;{ezK8FJ}@  
    % >N3{*W  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9rid98~d  
    %   Zernike functions (order N<=7).  In some disciplines it is WkO .  
    %   traditional to label the first 36 functions using a single mode g_x<+3a  
    %   number P instead of separate numbers for the order N and azimuthal 7dakj>JM  
    %   frequency M. ::5-UxGL<2  
    % L*l( ~t)vF  
    %   Example: {otvJ |'N  
    % O^<6`ku  
    %       % Display the first 16 Zernike functions +amvQ];?Q8  
    %       x = -1:0.01:1; /;lk.-yU  
    %       [X,Y] = meshgrid(x,x); *CG2sAeB  
    %       [theta,r] = cart2pol(X,Y); h\dIp`H  
    %       idx = r<=1; @V-ZV  
    %       p = 0:15; fSP~~YSeU  
    %       z = nan(size(X)); mrbIoN==`  
    %       y = zernfun2(p,r(idx),theta(idx)); K)14v;@  
    %       figure('Units','normalized') |/s.PNP2  
    %       for k = 1:length(p) ~W#f,mf  
    %           z(idx) = y(:,k); MVj@0W33m  
    %           subplot(4,4,k) Iq5F^rH`[  
    %           pcolor(x,x,z), shading interp '|cuVxcE55  
    %           set(gca,'XTick',[],'YTick',[]) af_zZf!0  
    %           axis square iIT<{m&`  
    %           title(['Z_{' num2str(p(k)) '}']) H}@|ucM"\  
    %       end 42C:cl} ."  
    % L"Gi~:z  
    %   See also ZERNPOL, ZERNFUN. V|D;7  
    y jpjJ  
    %   Paul Fricker 11/13/2006 f"tO*/|`  
    vIREvj#U  
    SB;Wa%  
    % Check and prepare the inputs: .dfTv/n  
    % ----------------------------- #[si.rv->  
    if min(size(p))~=1 a} /Vu"  
        error('zernfun2:Pvector','Input P must be vector.') *p-Fn$7\n  
    end [X I5Bu ~  
    :.~a[\C@V<  
    if any(p)>35 ! Q#b4f  
        error('zernfun2:P36', ... 3xe8DD  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... b^xf ,`D  
               '(P = 0 to 35).']) wiVQMgi`  
    end V.4j?\#%  
    I*ej_cFQ^  
    % Get the order and frequency corresonding to the function number: A/QVotcU  
    % ---------------------------------------------------------------- <|8 l;  
    p = p(:); oaKf{$vg  
    n = ceil((-3+sqrt(9+8*p))/2); 4/jY;YN,2  
    m = 2*p - n.*(n+2); dbLX}>  
    A`r9"([-A  
    % Pass the inputs to the function ZERNFUN: `%=Jsi0.Nq  
    % ---------------------------------------- d;=,/a  
    switch nargin 1t0F J@)*  
        case 3 <r kW4  
            z = zernfun(n,m,r,theta); </%H'V@  
        case 4 7^; OjO@8  
            z = zernfun(n,m,r,theta,nflag); K c<z;  
        otherwise U\[V !1O  
            error('zernfun2:nargin','Incorrect number of inputs.') y(R*Z^c}d,  
    end BuYDw*.  
    J'EK5=H  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 YUb,5Y0  
    function z = zernfun(n,m,r,theta,nflag) [w/t  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]Yu+M3Fq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -FR;:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the v(h Xk]S  
    %   unit circle.  N is a vector of positive integers (including 0), and M;Rw]M  
    %   M is a vector with the same number of elements as N.  Each element <f6PULm  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Ak1)  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, WK}+f4tdW[  
    %   and THETA is a vector of angles.  R and THETA must have the same /RC!Yi  
    %   length.  The output Z is a matrix with one column for every (N,M) {|h"/   
    %   pair, and one row for every (R,THETA) pair. ?>8zU;Aj  
    % Bg h$P  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iq:[+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EAB+kY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral lnWi E}F  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F"H!CJJu&  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w2+]C&B*  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. aTm.10{^  
    % j*u9+.   
    %   The Zernike functions are an orthogonal basis on the unit circle. W~F/ZrT3A  
    %   They are used in disciplines such as astronomy, optics, and \,!q[nC  
    %   optometry to describe functions on a circular domain. SU'9+=_$  
    % ;QQ7vo  
    %   The following table lists the first 15 Zernike functions.  ;"^9L  
    % ,rI |+  
    %       n    m    Zernike function           Normalization $0SZlq>En  
    %       -------------------------------------------------- y7-:l u$9  
    %       0    0    1                                 1 uW~ ,H}E  
    %       1    1    r * cos(theta)                    2 (VAL.v*  
    %       1   -1    r * sin(theta)                    2 J_|}Xd)~t6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8VmN? "5v  
    %       2    0    (2*r^2 - 1)                    sqrt(3) a.IF%hP0xo  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) AV4HX\`{P0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) g <4M!gi  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $F7gH  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /VO@>Hoh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) '?gI cWM  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) r)]CZ])  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [0ffOTy  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) TDE1z>h+"  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >Mz|e(6  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |K;Txe_  
    %       -------------------------------------------------- {U '&9_y  
    % YIQ]]q8R!L  
    %   Example 1: + 4g%?5'  
    % #Rx"L&3Ue  
    %       % Display the Zernike function Z(n=5,m=1) <`_OpNxqW  
    %       x = -1:0.01:1; d"6]?  
    %       [X,Y] = meshgrid(x,x); 0o$HC86w  
    %       [theta,r] = cart2pol(X,Y); ' xZPIj+  
    %       idx = r<=1; &9_\E{o%]  
    %       z = nan(size(X)); ;3}EB cw)  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); % rY8  
    %       figure -f2`qltjb  
    %       pcolor(x,x,z), shading interp `6N-MsP  
    %       axis square, colorbar 1R%`i '$/  
    %       title('Zernike function Z_5^1(r,\theta)') 8H#c4%by)  
    % BH0#Q5  
    %   Example 2: EhPVK6@  
    % E}' d,v#Z{  
    %       % Display the first 10 Zernike functions #!Cter2  
    %       x = -1:0.01:1; x~9z`d{!  
    %       [X,Y] = meshgrid(x,x); k?/vy9  
    %       [theta,r] = cart2pol(X,Y); ?hJsN  
    %       idx = r<=1; Mev-M2A  
    %       z = nan(size(X)); -iDEh_pts  
    %       n = [0  1  1  2  2  2  3  3  3  3]; dHq )vs,L  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; QYTTP6 Gz+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; q$?7 ~*M;x  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]]=-AuV.  
    %       figure('Units','normalized') $JhZ'Z  
    %       for k = 1:10 a][pTC\rb  
    %           z(idx) = y(:,k); ;*-@OLT_K  
    %           subplot(4,7,Nplot(k)) t&9as}  
    %           pcolor(x,x,z), shading interp +dgo-)kP(_  
    %           set(gca,'XTick',[],'YTick',[]) Wz-3?EQ  
    %           axis square w38c  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8PoHBOxpc  
    %       end hX8gV~E=y  
    % %O&m#)|  
    %   See also ZERNPOL, ZERNFUN2. iRUR4Zs  
    "37@Zt  
    %   Paul Fricker 11/13/2006 c BHL,  
    yC'hwoQ`  
    mS:j$$]u  
    % Check and prepare the inputs: c8-69hb?  
    % ----------------------------- Im?= e  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "y~muE:.  
        error('zernfun:NMvectors','N and M must be vectors.') 5X`w&(]m  
    end ,qe]fo >  
    G9i&#)nWr  
    if length(n)~=length(m) hC|5e|S  
        error('zernfun:NMlength','N and M must be the same length.') 5y%un  
    end \[[TlB>  
    8<yV  
    n = n(:); aYaG]&hb  
    m = m(:); P /c Q1  
    if any(mod(n-m,2)) \)^,PA3  
        error('zernfun:NMmultiplesof2', ... =!?[]>Dh  
              'All N and M must differ by multiples of 2 (including 0).') d2C[wQF  
    end i'W_;Y}  
    FQk_#BkK  
    if any(m>n) 8! H8[J  
        error('zernfun:MlessthanN', ... GUu\dl9WA'  
              'Each M must be less than or equal to its corresponding N.') >'} Y1_S5  
    end K0 O-WJ  
    YY#s=  
    if any( r>1 | r<0 ) S2rEy2\}:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?iPZsV  
    end }uF[Ra  
    sf |oNOz  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ( zn_8s  
        error('zernfun:RTHvector','R and THETA must be vectors.') I&TTr7  
    end Wl& >6./{  
    (s}Rj)V[^  
    r = r(:); 2^)D .&  
    theta = theta(:); t] r,9df'  
    length_r = length(r); cBz!U 8(  
    if length_r~=length(theta) g08*}0-k  
        error('zernfun:RTHlength', ... pqyWv;  
              'The number of R- and THETA-values must be equal.') z5XYpi_;[  
    end '1W!xQ}E  
    Js\-['`  
    % Check normalization: 4Qa@`  
    % -------------------- <i\UMrD]`:  
    if nargin==5 && ischar(nflag) <|{L[  
        isnorm = strcmpi(nflag,'norm'); T@;! yz}Pf  
        if ~isnorm ?,ZELpg n  
            error('zernfun:normalization','Unrecognized normalization flag.') RLdl z  
        end dT5J-70Fl  
    else j0g5<M  
        isnorm = false; ]b4pI*:$I  
    end h5L=M^z!>  
    %04:z77  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BZovtm3 E  
    % Compute the Zernike Polynomials i&'#+f4t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^cYStMjpy  
    kQ@gO[hS  
    % Determine the required powers of r: b;S6'7Jf9  
    % ----------------------------------- 8)L'rW{q#  
    m_abs = abs(m); 'e}uvbK  
    rpowers = []; X AQGG>  
    for j = 1:length(n) To3^L_v"  
        rpowers = [rpowers m_abs(j):2:n(j)]; z%OuI 8"'  
    end $Mdbt o~<  
    rpowers = unique(rpowers); KMUK`tbaI  
    ;tJWOm  
    % Pre-compute the values of r raised to the required powers, Z;ZuS[ZA  
    % and compile them in a matrix: ZU=,f'bU  
    % ----------------------------- 5\okU"{d7  
    if rpowers(1)==0 b6 $,Xh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  b<[jaI0  
        rpowern = cat(2,rpowern{:}); 3^{8_^I  
        rpowern = [ones(length_r,1) rpowern]; hT?6sWa  
    else +T9Q_e*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); O`cdQu  
        rpowern = cat(2,rpowern{:}); +`ai1-vw  
    end dVa!.q_3  
    q[-|ZA bbr  
    % Compute the values of the polynomials: W%TQYR  
    % -------------------------------------- Yl $X3wi  
    y = zeros(length_r,length(n)); lK0s=4c{  
    for j = 1:length(n) Vzpt(_><  
        s = 0:(n(j)-m_abs(j))/2; <"<Mbbp  
        pows = n(j):-2:m_abs(j); KacR?Al  
        for k = length(s):-1:1 5?Bc Y ;  
            p = (1-2*mod(s(k),2))* ... )D;*DUtMVm  
                       prod(2:(n(j)-s(k)))/              ... X:>$ 8^gS  
                       prod(2:s(k))/                     ... z<hFK+j,'^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... :4|M jn  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2d-{Q 8Pi  
            idx = (pows(k)==rpowers); m+?N7  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ny)]GvxI  
        end ',GV6kt_k  
         aR _NyA  
        if isnorm Bz?l{4".  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %;7.9%  
        end GD!- qH  
    end `ruNA>M  
    % END: Compute the Zernike Polynomials mb&lCd ^-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +IrZ ;&oy  
    w!\3ICB  
    % Compute the Zernike functions: Y(_KizBY  
    % ------------------------------ Wbe0ZnM]  
    idx_pos = m>0; 9RH"d[%yc}  
    idx_neg = m<0; ?OE#q$g  
    joqWh!kv7U  
    z = y; /Y,r@D  
    if any(idx_pos) Oa! m  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); w]nX?S8  
    end @xS]!1-  
    if any(idx_neg) e'34Pw!m  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =Q-k'=6\  
    end 3Hw[s0[$  
    +TH3&H5I_A  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的