切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11339阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 mX_`rvYII  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! "Fiv ]^  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  $c-3Q|C  
    @4i D N  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 d\v _!7  
    t>xV]W<  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) pQp}HD!-  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H.9J}k1S  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of O/k4W#  
    %   order N and frequency M, evaluated at R.  N is a vector of -l\@50, D  
    %   positive integers (including 0), and M is a vector with the lY1m%  
    %   same number of elements as N.  Each element k of M must be a /nrDU*  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) IQM!dC  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4nY2v['m0  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix =3"Nn4Z  
    %   with one column for every (N,M) pair, and one row for every j.z#fU  
    %   element in R. 6+It>mnR  
    % ;02lmpBj  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 8]Pf:_e,+  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3]!(^N>V  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ^I0SfZ'Y  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 S2*:]pYf}  
    %   for all [n,m]. !yxb<  
    % EU+sTe>  
    %   The radial Zernike polynomials are the radial portion of the -B_dE-l,  
    %   Zernike functions, which are an orthogonal basis on the unit k @ Hu0x  
    %   circle.  The series representation of the radial Zernike `jV0;sPd;  
    %   polynomials is /`1zkBj<&  
    % $]Q_x?  
    %          (n-m)/2 8\yH 7H  
    %            __ 0trFLX  
    %    m      \       s                                          n-2s / g&mDYV|  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r !{4p+peqJV  
    %    n      s=0 H P7Ec  
    % lyib+Sa ?`  
    %   The following table shows the first 12 polynomials. ZFRKh:|  
    % U'\\(m|  
    %       n    m    Zernike polynomial    Normalization mU3UQ j  
    %       --------------------------------------------- ^|8cS0dK]Q  
    %       0    0    1                        sqrt(2) {ng  
    %       1    1    r                           2 vOqYt42  
    %       2    0    2*r^2 - 1                sqrt(6) p* ^O 8o  
    %       2    2    r^2                      sqrt(6) @<};Bo'  
    %       3    1    3*r^3 - 2*r              sqrt(8) ULoTPx@N  
    %       3    3    r^3                      sqrt(8) Tv(s?T6f  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) kh`X92~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ic3qb<2  
    %       4    4    r^4                      sqrt(10) _r ajm J  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) LJBoS]~  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 4TLh'?Xu9  
    %       5    5    r^5                      sqrt(12) wo*/{KFvh  
    %       --------------------------------------------- Db2G)63  
    % `dj/Uk  
    %   Example: xOkf 9k_  
    % xUG|@xIwc  
    %       % Display three example Zernike radial polynomials X=DJOepH'  
    %       r = 0:0.01:1; onjTuZ^h  
    %       n = [3 2 5]; EqOB 0\  
    %       m = [1 2 1]; =B; )h  
    %       z = zernpol(n,m,r); ~:JKXa?  
    %       figure QJv,@@mu  
    %       plot(r,z) 5Wn6a$^  
    %       grid on "r[Ea|  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') !D  
    % :?60pu=  
    %   See also ZERNFUN, ZERNFUN2. >s1HQSe66  
    V-jo2+Y5=  
    % A note on the algorithm. {2V=BDS|?K  
    % ------------------------ T *$uc,  
    % The radial Zernike polynomials are computed using the series p<jHUG4?'  
    % representation shown in the Help section above. For many special !{SEm"J^  
    % functions, direct evaluation using the series representation can 0a(*/u  
    % produce poor numerical results (floating point errors), because vK6bpzI 3  
    % the summation often involves computing small differences between C#gQJ=!B  
    % large successive terms in the series. (In such cases, the functions D]4?UL  
    % are often evaluated using alternative methods such as recurrence +[cm  
    % relations: see the Legendre functions, for example). For the Zernike ~ 9'64  
    % polynomials, however, this problem does not arise, because the Vv zd>yII  
    % polynomials are evaluated over the finite domain r = (0,1), and s$RymM  
    % because the coefficients for a given polynomial are generally all q6osRK*20  
    % of similar magnitude. `pLp+#1 `R  
    % |ejrE,~1vb  
    % ZERNPOL has been written using a vectorized implementation: multiple 0ai4%=d-  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 9%)'QDVGLf  
    % values can be passed as inputs) for a vector of points R.  To achieve F`Pu$>8C  
    % this vectorization most efficiently, the algorithm in ZERNPOL +|o -lb  
    % involves pre-determining all the powers p of R that are required to X.JB&~/rO  
    % compute the outputs, and then compiling the {R^p} into a single bf}r8$,  
    % matrix.  This avoids any redundant computation of the R^p, and /0(4wZe~?  
    % minimizes the sizes of certain intermediate variables. BL]^+KnP  
    % RzyEA3L'  
    %   Paul Fricker 11/13/2006 EkJo.'0@  
     *A_  
    s  n?  
    % Check and prepare the inputs: 8^M5u>=t;  
    % ----------------------------- {VI%]n{M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X_=oJi|:  
        error('zernpol:NMvectors','N and M must be vectors.') Va9vDb6  
    end GifD>c |z  
    \Z)'':},C  
    if length(n)~=length(m) 4}8Xoywi1  
        error('zernpol:NMlength','N and M must be the same length.') I]T-}pG  
    end "i#!  
    rPQ$e!m1Ee  
    n = n(:); H4%wq  
    m = m(:); iPHMyxT+S  
    length_n = length(n); J\2F%kBej?  
    uV;Z  
    if any(mod(n-m,2)) !rrjA$P<v  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') m 81\cg  
    end +LrW#K;  
    t7lRMCN  
    if any(m<0) 2b!b-  
        error('zernpol:Mpositive','All M must be positive.') @^`-VF  
    end ]Q^oc  
    1f~_# EIC  
    if any(m>n) 'X`\vTxB  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') X2o5Hc)l<  
    end #`?uV)(  
    _)^(-}(_D  
    if any( r>1 | r<0 ) 4 9#I  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') .p0;y3so4  
    end />]/At  
    mD|<qsY)  
    if ~any(size(r)==1) lJq %me;4m  
        error('zernpol:Rvector','R must be a vector.') -[+FVvS  
    end W/J3sAYv  
    $|A vT;4  
    r = r(:); $BNn1C8[  
    length_r = length(r); )Q9J,  
    E4 JS   
    if nargin==4 .t\ Yv/|`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); a)} ?rzT]  
        if ~isnorm *6k (xL  
            error('zernpol:normalization','Unrecognized normalization flag.') >2N` l  
        end {%~Sbcq4F  
    else *mBn''a"*  
        isnorm = false; mz/KGZ5t  
    end R[o KhU  
    1q/z&@+B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z#O{rwnl  
    % Compute the Zernike Polynomials h j9 b Mj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pQW^lqwZ:6  
    `(16_a  
    % Determine the required powers of r: GY0<\-  
    % ----------------------------------- f61~%@fE  
    rpowers = []; ~|?2<g$gYR  
    for j = 1:length(n) DfqXw^BKD  
        rpowers = [rpowers m(j):2:n(j)]; SkN^ytKE  
    end -Xx,"[sN\w  
    rpowers = unique(rpowers); X/'B*y'=U  
    ,P5HR+h  
    % Pre-compute the values of r raised to the required powers, Cvi-4   
    % and compile them in a matrix: R:OoQ^c  
    % ----------------------------- 8CMI\yk  
    if rpowers(1)==0 wwE9|'Ok  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GAPZt4Z2  
        rpowern = cat(2,rpowern{:}); P]INYH  
        rpowern = [ones(length_r,1) rpowern]; w=O:|Xu#*  
    else v]vrD2L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :qw:)i  
        rpowern = cat(2,rpowern{:}); O+(Z`,^  
    end %K?~$;Z.  
    4oCn F+(  
    % Compute the values of the polynomials: d0 |Q1R+3  
    % -------------------------------------- ]+,Z()  
    z = zeros(length_r,length_n); {:fyz#>>^  
    for j = 1:length_n $g 5pKk  
        s = 0:(n(j)-m(j))/2; 5>$*#0%"}  
        pows = n(j):-2:m(j); DlTV1X-^1  
        for k = length(s):-1:1 8=t?rA  
            p = (1-2*mod(s(k),2))* ... 7?p%~j  
                       prod(2:(n(j)-s(k)))/          ... )WuuU [(  
                       prod(2:s(k))/                 ... YW>|gE  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... m;8_A|$A  
                       prod(2:((n(j)+m(j))/2-s(k))); C\E Z8  
            idx = (pows(k)==rpowers); 7Nx@eoZ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4W$53LP8  
        end us$~6  
         Tf*X\{"  
        if isnorm D[yaAG<  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); F;`es%8  
        end Sd}fse  
    end -O. MfI+  
    hg=\L5R  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ;/ >~|@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. T3wR0,  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Po93&qE  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ?RrJYj1  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, kRZ(  
    %   and THETA is a vector of angles.  R and THETA must have the same A~O 'l&KB  
    %   length.  The output Z is a matrix with one column for every P-value, bbS'ZkB\  
    %   and one row for every (R,THETA) pair. G }TT-  
    % kax9RH vku  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 6WI_JbT~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ()3+! };  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) j^986  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 b< Pjmb+  
    %   for all p. v#=WdaNz  
    % I-&/]<5y  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 CK'Cf{S  
    %   Zernike functions (order N<=7).  In some disciplines it is hq(3%- 7&  
    %   traditional to label the first 36 functions using a single mode li,kW`j+t  
    %   number P instead of separate numbers for the order N and azimuthal >/ HC{.k  
    %   frequency M. 5#q ^lL  
    % Q Gn4AW_  
    %   Example: Pr@ EpO  
    % |oPqX %?  
    %       % Display the first 16 Zernike functions DlfXzKn;  
    %       x = -1:0.01:1; &> }MoB  
    %       [X,Y] = meshgrid(x,x); A7~)h}~   
    %       [theta,r] = cart2pol(X,Y); kZSe#'R's  
    %       idx = r<=1; #d(6q$IE  
    %       p = 0:15; aN%t>*?Xa  
    %       z = nan(size(X)); 8t0i j  
    %       y = zernfun2(p,r(idx),theta(idx)); H*;J9{  
    %       figure('Units','normalized') m S!/>.1[  
    %       for k = 1:length(p) ely&'y!  
    %           z(idx) = y(:,k); w[:5uo(  
    %           subplot(4,4,k) \ 1ys2BX  
    %           pcolor(x,x,z), shading interp ,Sghi&Ky  
    %           set(gca,'XTick',[],'YTick',[]) <$,i Yx   
    %           axis square %+xh  
    %           title(['Z_{' num2str(p(k)) '}']) P^VV8Z>\&  
    %       end ax7u b  
    % 9tk}_+  
    %   See also ZERNPOL, ZERNFUN. C Hyb{:<  
    G'}%m;-mt  
    %   Paul Fricker 11/13/2006 3l5q?"$  
    rbQA6_U 5A  
    LvhF@%(9J  
    % Check and prepare the inputs: cg0L(oI~  
    % ----------------------------- ag[yM  
    if min(size(p))~=1 {K_YW  
        error('zernfun2:Pvector','Input P must be vector.') |44CD3A%  
    end g7_a8_  
    BU]9eF!>h  
    if any(p)>35 dy|r:~j3  
        error('zernfun2:P36', ... )wSsxX7:  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... /HI#8  
               '(P = 0 to 35).']) &..'7  
    end %0fj~s;  
    "AUY+ LN  
    % Get the order and frequency corresonding to the function number: |p.mA-81  
    % ---------------------------------------------------------------- Z+I[  
    p = p(:); [rE,fR   
    n = ceil((-3+sqrt(9+8*p))/2); k. px  
    m = 2*p - n.*(n+2); PyzW pf  
    4)Z78H%>  
    % Pass the inputs to the function ZERNFUN: N@;6/[8  
    % ---------------------------------------- CZ|Y o  
    switch nargin {#Mz4s`M  
        case 3 1u)I}"{W>  
            z = zernfun(n,m,r,theta); T"dWrtO  
        case 4 V"T;3@N/4  
            z = zernfun(n,m,r,theta,nflag); V..m2nQj  
        otherwise |]\qI  
            error('zernfun2:nargin','Incorrect number of inputs.') {jggiMwo.v  
    end d=H C;T)  
    4+ yd/^S  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +}X@{DB  
    function z = zernfun(n,m,r,theta,nflag) 6 )xm?RK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. pbloL3d.;+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N PlTY^N6Hn  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !63x^# kg  
    %   unit circle.  N is a vector of positive integers (including 0), and >(~; V;  
    %   M is a vector with the same number of elements as N.  Each element y*|"!FK  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Y/)>\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )[G5qTO  
    %   and THETA is a vector of angles.  R and THETA must have the same I9k o*f  
    %   length.  The output Z is a matrix with one column for every (N,M) GP`_R  
    %   pair, and one row for every (R,THETA) pair. 8[2^`g  
    % & 7JCPw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [ V/*{Z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ko2{[%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VY Va8[}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b^6Ooc/-k  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $6BXoh!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Dgp"RUP  
    % g2w0#-  
    %   The Zernike functions are an orthogonal basis on the unit circle. AdR}{:ia  
    %   They are used in disciplines such as astronomy, optics, and lN{-}f;TN  
    %   optometry to describe functions on a circular domain. C+*: lLY  
    % DoNbCVZ  
    %   The following table lists the first 15 Zernike functions. <|s|6C  
    % O62H4oT  
    %       n    m    Zernike function           Normalization VmV/~-<Z  
    %       -------------------------------------------------- fZT=q^26  
    %       0    0    1                                 1 F0+u#/#  
    %       1    1    r * cos(theta)                    2 >$?$&+e}  
    %       1   -1    r * sin(theta)                    2 V= !!;KR0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 6'+3""\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) yH@W6'.  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "P"~/<:)  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <gQw4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) X0Xs"--}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9.D'!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8)  K7 U`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) vX/~34o]\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *siS4RX2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :74)nbS  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kImS'i{A  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) f9X*bEl9;`  
    %       -------------------------------------------------- Mm+_>   
    % V!a\:%#^Y  
    %   Example 1: y]+i. 8[  
    % WFsa8qv  
    %       % Display the Zernike function Z(n=5,m=1) pDrM8)r  
    %       x = -1:0.01:1; YeptYW@xfw  
    %       [X,Y] = meshgrid(x,x); Mw*R~OX  
    %       [theta,r] = cart2pol(X,Y); >z.o?F  
    %       idx = r<=1; D CcM~  
    %       z = nan(size(X)); )&;?|X+p  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); d^!)',`  
    %       figure <p-R{}8  
    %       pcolor(x,x,z), shading interp =K- B I  
    %       axis square, colorbar  -*M/,O  
    %       title('Zernike function Z_5^1(r,\theta)') ^CDQ75tR  
    % |Q?IV5%$  
    %   Example 2: yL7a*C&  
    % CAX|[  
    %       % Display the first 10 Zernike functions NoV)}fX$X8  
    %       x = -1:0.01:1; y4w{8;Mh  
    %       [X,Y] = meshgrid(x,x); XjuAVNY  
    %       [theta,r] = cart2pol(X,Y); - b:&ACY  
    %       idx = r<=1; a=.A/;|0*  
    %       z = nan(size(X)); fnN"a Z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {I&>`?7.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Pp*|EW 1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; =3_I;L w  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,mx>)} l95  
    %       figure('Units','normalized') wm%9>mA%  
    %       for k = 1:10 hg/G7Ur"  
    %           z(idx) = y(:,k); /608P:U  
    %           subplot(4,7,Nplot(k)) z v*hA/  
    %           pcolor(x,x,z), shading interp CC;T[b&  
    %           set(gca,'XTick',[],'YTick',[]) 2E9Cp  
    %           axis square Nv{r`J.  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kid3@  
    %       end cz~Fz;)2{N  
    % _{_ybXG|  
    %   See also ZERNPOL, ZERNFUN2. uosFpa  
    `b=?z%LuT  
    %   Paul Fricker 11/13/2006 se:]F/  
    4onRO!G,  
    vUk <z*  
    % Check and prepare the inputs: Gc^w,n[E  
    % ----------------------------- h# c.HtVE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zYvf}L&]h  
        error('zernfun:NMvectors','N and M must be vectors.') O-[lL"T  
    end F4xYfbwY"]  
    R4.$9_ ui  
    if length(n)~=length(m) UA>UW!I  
        error('zernfun:NMlength','N and M must be the same length.') s5F,*<  
    end T>7$<ulm  
    PHU#$LG  
    n = n(:); dMK| l   
    m = m(:); :P1 J>dcG  
    if any(mod(n-m,2)) JL5 )  
        error('zernfun:NMmultiplesof2', ... d~M;@<eD  
              'All N and M must differ by multiples of 2 (including 0).') 5V;BimI  
    end LmE%`qNg  
    Q x}\[  
    if any(m>n) 56T<s+X>  
        error('zernfun:MlessthanN', ... xE`uFHuS}  
              'Each M must be less than or equal to its corresponding N.') 1S/KT4  
    end 3)b[C&`  
    Z7a~M3VnZ  
    if any( r>1 | r<0 ) 00X~/'!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') q1Gc0{+)  
    end $ lz\t e  
    wl|cipy"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `a2%U/U  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?:73O`sX:  
    end p_pI=_:  
    DC4O@"  
    r = r(:); cy T,tN  
    theta = theta(:); \wwY?lOe  
    length_r = length(r); fG_.&!P  
    if length_r~=length(theta) =aR'S\<  
        error('zernfun:RTHlength', ... Gw%P5 r}Y  
              'The number of R- and THETA-values must be equal.') }q7rR:g  
    end d~ n|F|`:  
    `p0+j  
    % Check normalization: /R\]tl#2j  
    % -------------------- =8:m:Y&|`G  
    if nargin==5 && ischar(nflag) ~IrrX,mp:  
        isnorm = strcmpi(nflag,'norm'); v0W w~4|],  
        if ~isnorm 6a$=m3ic  
            error('zernfun:normalization','Unrecognized normalization flag.') H <7r  
        end o,}`4_N||  
    else <\40?*2  
        isnorm = false; I.#V/{J  
    end AT*J '37  
    z !2-U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;n1< 1M>!  
    % Compute the Zernike Polynomials )%H@.;cD_r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r:.3P  
    2wCTd:e:  
    % Determine the required powers of r:  @Tk5<B3  
    % ----------------------------------- l`"i'P   
    m_abs = abs(m); ?5@!r>i=<  
    rpowers = []; %A_h!3f&  
    for j = 1:length(n) 5A^$!q P  
        rpowers = [rpowers m_abs(j):2:n(j)]; mY!os91KoO  
    end G?Fqm@J{XT  
    rpowers = unique(rpowers); kC:GEY<N:Q  
    ++{,1wY\  
    % Pre-compute the values of r raised to the required powers, KA^r,Iw  
    % and compile them in a matrix: C(/{53G(  
    % ----------------------------- 2L?jp:$;X  
    if rpowers(1)==0 zX=K2tH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +Wgp~$o4  
        rpowern = cat(2,rpowern{:}); Z|l/6L8  
        rpowern = [ones(length_r,1) rpowern]; e0rh~@E  
    else _4~'K?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =Rv!c+?  
        rpowern = cat(2,rpowern{:}); /XEt2,sI9  
    end Z]VmTB  
    YS$42J_T  
    % Compute the values of the polynomials: G_m$W3 zS  
    % -------------------------------------- MLVrL r t  
    y = zeros(length_r,length(n)); 6yU#;|6d  
    for j = 1:length(n) 9UbD =}W  
        s = 0:(n(j)-m_abs(j))/2; @ ={Hx$zL  
        pows = n(j):-2:m_abs(j); xcf`i:\  
        for k = length(s):-1:1 _o,Mji|  
            p = (1-2*mod(s(k),2))* ... kF,_o/Jc  
                       prod(2:(n(j)-s(k)))/              ... acG4u+[ ]  
                       prod(2:s(k))/                     ... _'OXrT#Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k+nfW]UNF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); qukym3F  
            idx = (pows(k)==rpowers); hzR1O(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); TDqH"q0  
        end hW~XE{<  
         wgETL|3-  
        if isnorm YoU|)6Of   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j*XhBWE?  
        end VgBZ@*z(x  
    end ?^f=7e8]  
    % END: Compute the Zernike Polynomials 9?xD"Z   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d<,'9/a>  
    m@A?'gD  
    % Compute the Zernike functions: PP1?UT=]  
    % ------------------------------ 1\XR6q:2  
    idx_pos = m>0; 8Pgw_ 21N1  
    idx_neg = m<0; BNj@~uC{  
    ZjB]pG+  
    z = y; B_ x?s  
    if any(idx_pos) JI5%fU%O#n  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;1gWz  
    end cT&!_g#g  
    if any(idx_neg) f[wA ]&  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bxXNv^  
    end 3=@lJ?Ym  
    .5s#JL  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的