切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11428阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 **rA/*Oc  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! SCl$+9E  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  \|nF55W [  
    a'f"Zdh%w  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Z`nHpmNM  
    R%o:'-~  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) E^w2IIw  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. I|69|^  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of lxb+0fiN  
    %   order N and frequency M, evaluated at R.  N is a vector of ,T@+QXh  
    %   positive integers (including 0), and M is a vector with the &5puGnTZ  
    %   same number of elements as N.  Each element k of M must be a %jz]s4u$5j  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 0+MNu8t  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is k#Qav1_  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix >QO^h<.>  
    %   with one column for every (N,M) pair, and one row for every Jb~$Vrdy  
    %   element in R. 0JzH dz  
    % O 4zD >O  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- |U{9Yy6p  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is li'h&!|]  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to G2 A#&86J{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0$)s? \  
    %   for all [n,m]. FsQeyh>  
    % .j?`U[V%a  
    %   The radial Zernike polynomials are the radial portion of the 873$EiyXR  
    %   Zernike functions, which are an orthogonal basis on the unit O ]o7  
    %   circle.  The series representation of the radial Zernike p=%Vo@*]  
    %   polynomials is XN9s!5A<L)  
    % |,3s]b`  
    %          (n-m)/2 M)S(:Il6Xx  
    %            __ & $E[l'  
    %    m      \       s                                          n-2s F. 5'5%  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r e??tp]PLn  
    %    n      s=0 Zjqa n  
    % x` T  
    %   The following table shows the first 12 polynomials. xCN6?  
    % '%Og9Bgd+  
    %       n    m    Zernike polynomial    Normalization e R Y2.!  
    %       --------------------------------------------- _8t5rF  
    %       0    0    1                        sqrt(2) 9U[Gh97Sf  
    %       1    1    r                           2 rR`'l=,t  
    %       2    0    2*r^2 - 1                sqrt(6) *D`]7I~}  
    %       2    2    r^2                      sqrt(6) a&:1W83  
    %       3    1    3*r^3 - 2*r              sqrt(8) Gk_%WY*  
    %       3    3    r^3                      sqrt(8) &"H xAK)f  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Mx9#YJ?t~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) DUH\/<^g  
    %       4    4    r^4                      sqrt(10) ?bFP'.  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) cUW>`F( S  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?LJ$:u  
    %       5    5    r^5                      sqrt(12) *+(t2!yFmE  
    %       --------------------------------------------- UNLmnj;-Q  
    % CTawXHM  
    %   Example: kc*zP=  
    % ^n8ioL\*i  
    %       % Display three example Zernike radial polynomials |OW/-&)  
    %       r = 0:0.01:1; !ieMhJ5r  
    %       n = [3 2 5]; N>h/!# ZC  
    %       m = [1 2 1]; C]S~DK1  
    %       z = zernpol(n,m,r); @ig'CF%(  
    %       figure [/dGOl+  
    %       plot(r,z) ?%RAX CK  
    %       grid on fP 1V1ao  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') c:#<g/-{wM  
    % 1{6BU!  
    %   See also ZERNFUN, ZERNFUN2. ]vj.s/F~  
    L{`S^'P<  
    % A note on the algorithm. "FuOWI{in  
    % ------------------------ U@t" o3E  
    % The radial Zernike polynomials are computed using the series 0$=Uhi  
    % representation shown in the Help section above. For many special EQQ/E!N8l  
    % functions, direct evaluation using the series representation can w Vegr  
    % produce poor numerical results (floating point errors), because 5zk<s`h  
    % the summation often involves computing small differences between SCwAAE9s]  
    % large successive terms in the series. (In such cases, the functions ~ZrSoVP=  
    % are often evaluated using alternative methods such as recurrence ggluQGA  
    % relations: see the Legendre functions, for example). For the Zernike [3$L}m  
    % polynomials, however, this problem does not arise, because the H~Z$pk%  
    % polynomials are evaluated over the finite domain r = (0,1), and y{ & k`H  
    % because the coefficients for a given polynomial are generally all 4%!#=JCl  
    % of similar magnitude. Zl,c+/  
    % 7  s+j)  
    % ZERNPOL has been written using a vectorized implementation: multiple X;2I' Kg  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] $ ~>3bik@  
    % values can be passed as inputs) for a vector of points R.  To achieve '8%pEl^  
    % this vectorization most efficiently, the algorithm in ZERNPOL #+VH]7]  
    % involves pre-determining all the powers p of R that are required to 0!4;."S  
    % compute the outputs, and then compiling the {R^p} into a single @|I:A  
    % matrix.  This avoids any redundant computation of the R^p, and V[9#+l~#  
    % minimizes the sizes of certain intermediate variables. }E o\=>l7  
    % Ufx^@%v  
    %   Paul Fricker 11/13/2006 2bJqZ,@  
    K)-Gv|*t  
    [^N8v;O  
    % Check and prepare the inputs: NxOiT#YH  
    % ----------------------------- 8]SJ=c"}Xf  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [cJQ"G '  
        error('zernpol:NMvectors','N and M must be vectors.') Mn)>G36(  
    end ,/m@<NyK  
    !WTZ =|  
    if length(n)~=length(m) .`I;qF  
        error('zernpol:NMlength','N and M must be the same length.') =J@M, mbHg  
    end j@w+>h  
    =1!,A  
    n = n(:); Vgh;w-a  
    m = m(:); OO7sj@  
    length_n = length(n); 8 `\^wG$W  
    25bbuhss  
    if any(mod(n-m,2)) "o| f  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') "hE/f~\  
    end /6?A#%hc  
    }kNbqwVP  
    if any(m<0) v~l_6V}  
        error('zernpol:Mpositive','All M must be positive.') n jfh4}g:  
    end /KL;%:7  
    {c 82bFiv  
    if any(m>n) os :/-A_m  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6}V)\"u&   
    end {"^LUw8fd  
    ,5Vc  
    if any( r>1 | r<0 ) ywSV4ZtM  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Sio> QL Y  
    end '7'*+sgi$  
    su?{Cj6*  
    if ~any(size(r)==1) _oV;Y`_  
        error('zernpol:Rvector','R must be a vector.') qcNu9Ih  
    end s!lLdR[g  
    98c##NV(7|  
    r = r(:); qVHXZdGL  
    length_r = length(r); |igr3p5Fw  
    PZT]H?  
    if nargin==4 mYU7b8x_  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [RAzKzC\M  
        if ~isnorm *qX!  
            error('zernpol:normalization','Unrecognized normalization flag.') +%O_xqq  
        end t:NYsL  
    else G,{=sFX  
        isnorm = false; b `W2^/D  
    end |"K<   
    LnwI 7uvq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2H,^i,  
    % Compute the Zernike Polynomials 6%j v|\>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d9j+==S <  
    uG5RE  
    % Determine the required powers of r: O^Y}fo'  
    % ----------------------------------- %=ZN2)7{  
    rpowers = []; 8+7n"6GY2/  
    for j = 1:length(n) .C 6wsmQ  
        rpowers = [rpowers m(j):2:n(j)]; I.4o9Z[?  
    end iY|zv|;]=  
    rpowers = unique(rpowers); LTn@OhC  
     (0wQ [(  
    % Pre-compute the values of r raised to the required powers, ^R g=*L  
    % and compile them in a matrix: wqB 5KxO  
    % ----------------------------- nnzfKn:J  
    if rpowers(1)==0 6w?l I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jX9{Ki"  
        rpowern = cat(2,rpowern{:}); gv6}GE  
        rpowern = [ones(length_r,1) rpowern]; ak SUk)}e  
    else k;7R3O@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |9fvj6?Y  
        rpowern = cat(2,rpowern{:}); GlVb |O"  
    end >}uDQwX8  
    `4xnM`:L"  
    % Compute the values of the polynomials: =DL |Q  
    % -------------------------------------- @4O;dFOQ)  
    z = zeros(length_r,length_n); I[x+7Y0k9  
    for j = 1:length_n .wdWs tQ  
        s = 0:(n(j)-m(j))/2; E43Gk!/|(  
        pows = n(j):-2:m(j); T z`O+fx &  
        for k = length(s):-1:1 TKwMgC}<[  
            p = (1-2*mod(s(k),2))* ... u|.c?fW'3  
                       prod(2:(n(j)-s(k)))/          ... o+w G6 9  
                       prod(2:s(k))/                 ... O<*l"fw3  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... <FkoWN  
                       prod(2:((n(j)+m(j))/2-s(k))); qe/|u3I<lF  
            idx = (pows(k)==rpowers); u|G&CV#r  
            z(:,j) = z(:,j) + p*rpowern(:,idx); nfldj33*  
        end >~%EB?8  
         rfz\DvV d  
        if isnorm wU"0@^k]<  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |}FK;@'I6  
        end oP"X-I  
    end hja;d1yH  
    <[oPh(!V  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) x!i(M>P  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {hNvCk  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated _MI8P/  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive i3SrsVSG  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, wnPg).  
    %   and THETA is a vector of angles.  R and THETA must have the same 0DZ}8"2  
    %   length.  The output Z is a matrix with one column for every P-value, 1 7..  
    %   and one row for every (R,THETA) pair. p'fD:M:  
    % M'gL_Xsei  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike +HpPVuV  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) zK_+UT  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 6^Q/D7U;s  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ^p}S5,  
    %   for all p. nYvx[ zq?^  
    % {\ P`-'C  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 f ecV[  
    %   Zernike functions (order N<=7).  In some disciplines it is "R!) "B==  
    %   traditional to label the first 36 functions using a single mode 7<Yf  
    %   number P instead of separate numbers for the order N and azimuthal G9|w o)N  
    %   frequency M. C3hQT8~  
    % !Z}d^$  
    %   Example: zZhA]J  
    % f)b+>!  
    %       % Display the first 16 Zernike functions O^L#(8bC  
    %       x = -1:0.01:1; ;/79tlwq  
    %       [X,Y] = meshgrid(x,x); yPmo@aw]1  
    %       [theta,r] = cart2pol(X,Y); 5.TeH@(  
    %       idx = r<=1; BPwn!ii|  
    %       p = 0:15; }}Kj b  
    %       z = nan(size(X)); ~Q3y3,x  
    %       y = zernfun2(p,r(idx),theta(idx)); g2|qGfl{C  
    %       figure('Units','normalized') nF#1B4b>  
    %       for k = 1:length(p) A#@9|3  
    %           z(idx) = y(:,k); je[1>\3W  
    %           subplot(4,4,k) ;WqWD-C  
    %           pcolor(x,x,z), shading interp d OYEl<!J  
    %           set(gca,'XTick',[],'YTick',[]) })#SjFq<V  
    %           axis square 3$yOv "`  
    %           title(['Z_{' num2str(p(k)) '}']) vTk\6o q  
    %       end d8p<f+  
    % ?B5934X  
    %   See also ZERNPOL, ZERNFUN. P2t{il   
    >%?kp[  
    %   Paul Fricker 11/13/2006 h@H8oZ[  
    j]X $7  
    p7{%0  
    % Check and prepare the inputs: S!r,p};  
    % ----------------------------- 4]P5k6 nV  
    if min(size(p))~=1 VHbQLJ0  
        error('zernfun2:Pvector','Input P must be vector.') 'Y;M%  
    end #=81`u  
    ulAOQGZ  
    if any(p)>35 `J v~.EF%  
        error('zernfun2:P36', ... R?E< }\!  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... kHhxR;ymA7  
               '(P = 0 to 35).']) GLpl  
    end 5nA *'($j  
    v&]k8Hc-  
    % Get the order and frequency corresonding to the function number: Gp.XTz#=  
    % ---------------------------------------------------------------- 0g{`Qd  
    p = p(:); m5'nqy F  
    n = ceil((-3+sqrt(9+8*p))/2); }9FAM@x1K&  
    m = 2*p - n.*(n+2); *]#(?W.$w  
    d>wpG^"w  
    % Pass the inputs to the function ZERNFUN:  qH9bo-6  
    % ---------------------------------------- 5?=haGn  
    switch nargin $E,,::oJ  
        case 3 :g~X"C1s  
            z = zernfun(n,m,r,theta); {n'+P3\T:  
        case 4 9[@K4&  
            z = zernfun(n,m,r,theta,nflag); 5%#V>|@e#  
        otherwise KM:k<pvi  
            error('zernfun2:nargin','Incorrect number of inputs.') +f"q^RIU  
    end rFLm!J]  
    z^z,_?q;  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;QS(`SK l  
    function z = zernfun(n,m,r,theta,nflag) !V O^oD7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~bnyk%S o  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^/M-*U8ab  
    %   and angular frequency M, evaluated at positions (R,THETA) on the WFm\ bZ.  
    %   unit circle.  N is a vector of positive integers (including 0), and `"s*'P398  
    %   M is a vector with the same number of elements as N.  Each element jV 98 2Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :v Do{My^1  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~zO>Q4-k  
    %   and THETA is a vector of angles.  R and THETA must have the same ?K!^[aO}=  
    %   length.  The output Z is a matrix with one column for every (N,M) Bbj%RF2,  
    %   pair, and one row for every (R,THETA) pair. aUYq~E tj  
    % MY w3+B+Jj  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +L hV4@zC  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KSgYf;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VOkSR6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $_Kcm"oj  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized x"83[0ib  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )[np{eF.k  
    % N?j#=b+D  
    %   The Zernike functions are an orthogonal basis on the unit circle. Y2d(HD@  
    %   They are used in disciplines such as astronomy, optics, and 08MY=PC~R  
    %   optometry to describe functions on a circular domain. `P *wz<  
    % AO~f=GW  
    %   The following table lists the first 15 Zernike functions. k esuM3  
    % 76eF6N+%}t  
    %       n    m    Zernike function           Normalization ^hRx{A  
    %       -------------------------------------------------- FnWN]9  
    %       0    0    1                                 1 @aC9O 9|~  
    %       1    1    r * cos(theta)                    2 m'PU0x  
    %       1   -1    r * sin(theta)                    2 i1JVvNMQ,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) KJYcP72P  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Rc2JgV  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _uq[D`=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4d63+iM+}  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) W!o|0u!D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) mhW*rH*m  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) IcJQC  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) t b>At*tO  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S.R|Bwj}(Y  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /I48jO^2  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mkuK$Mj  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) yN{TcX  
    %       -------------------------------------------------- 7fXta|eP0  
    % pB:/oHV  
    %   Example 1: F S!D  
    % Y|nC_7&Bv  
    %       % Display the Zernike function Z(n=5,m=1) tRVz4fk[G  
    %       x = -1:0.01:1; `DS7J\c$  
    %       [X,Y] = meshgrid(x,x); ESmWK;7b  
    %       [theta,r] = cart2pol(X,Y); t_kRYdW9  
    %       idx = r<=1; VM}7 ~  
    %       z = nan(size(X)); RMs+pN<5  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ^E&WgXlb  
    %       figure *X\J[$!  
    %       pcolor(x,x,z), shading interp cq"#[y$r  
    %       axis square, colorbar U28frRa  
    %       title('Zernike function Z_5^1(r,\theta)') ] XjL""EbC  
    % 8 -YC#&  
    %   Example 2: 9?tG?b0  
    % w&x$RP  
    %       % Display the first 10 Zernike functions v(P5)R,  
    %       x = -1:0.01:1; 821;;]H  
    %       [X,Y] = meshgrid(x,x); YB]{gm2  
    %       [theta,r] = cart2pol(X,Y); R q`j|tY  
    %       idx = r<=1; 8}K4M(  
    %       z = nan(size(X)); |ngv{g  
    %       n = [0  1  1  2  2  2  3  3  3  3]; D}~uxw;[^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; O"~CZh,:r}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *h M5pw  
    %       y = zernfun(n,m,r(idx),theta(idx)); q,T4- E  
    %       figure('Units','normalized') |+Cd2[hN  
    %       for k = 1:10 9xOTR#B:_V  
    %           z(idx) = y(:,k); @tlWyUju  
    %           subplot(4,7,Nplot(k)) zALtG<_t  
    %           pcolor(x,x,z), shading interp f~:wI9  
    %           set(gca,'XTick',[],'YTick',[]) UsgrI>|l  
    %           axis square y' RQ_Gi  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -"6Z@8=  
    %       end }"M5"?  
    % }=p+X:k=  
    %   See also ZERNPOL, ZERNFUN2. 'fPDODE  
    IL{tm0$r  
    %   Paul Fricker 11/13/2006 m,)o&ix1  
    g\1|<jb3  
    uj@d {AQ  
    % Check and prepare the inputs: CU@}{}Yl  
    % ----------------------------- Gq-~z mg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^$s&bH'8  
        error('zernfun:NMvectors','N and M must be vectors.') &l0 ,q=T  
    end H'}6Mw%ra  
    Y)2#\ F   
    if length(n)~=length(m) hA1p#  
        error('zernfun:NMlength','N and M must be the same length.') -I[KIeF  
    end "R]wPF5u  
    nh+Hwj#(x  
    n = n(:); dP?QPky{9  
    m = m(:); _R}yZ=di  
    if any(mod(n-m,2)) (0["|h32,  
        error('zernfun:NMmultiplesof2', ... ` <u2 N  
              'All N and M must differ by multiples of 2 (including 0).') $r)NL  
    end %+oqAY m+s  
    x(A8FtG  
    if any(m>n) 0 YAH[YF  
        error('zernfun:MlessthanN', ... m(`O>zS  
              'Each M must be less than or equal to its corresponding N.') [lGxys)J  
    end a U*}.{<!  
    L_q3m-x0h  
    if any( r>1 | r<0 ) hQeG#KQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') z"-oD*ICw  
    end g3f; JB   
    <m~{60{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]f>0P3O5&  
        error('zernfun:RTHvector','R and THETA must be vectors.') M(vX.kF  
    end gYBMi)`RT  
    ~ R eX$9  
    r = r(:); O l;DJV  
    theta = theta(:);  uU=!e&3  
    length_r = length(r); tIS.,CEQF  
    if length_r~=length(theta) ={;7WB$  
        error('zernfun:RTHlength', ... CSY-{  
              'The number of R- and THETA-values must be equal.') e.fxB  
    end [5]n,toAh  
    x[xRqC vL  
    % Check normalization: 3H|drj:KV  
    % -------------------- 8nwps(3  
    if nargin==5 && ischar(nflag) Zv(6VVj  
        isnorm = strcmpi(nflag,'norm'); c Qe3  
        if ~isnorm 0lV;bVa%  
            error('zernfun:normalization','Unrecognized normalization flag.') Q%524%f$  
        end GK;IY=8W  
    else m\70&%v  
        isnorm = false; +ViL"  
    end x_CY`Y  
    ;*0nPhBw0>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eAStpG"*  
    % Compute the Zernike Polynomials Tv6y +l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1OV] W f  
    6s'n r7'0  
    % Determine the required powers of r: q[ 9N4nj$<  
    % ----------------------------------- a_-@rceU  
    m_abs = abs(m); nw_s :  
    rpowers = []; &TL"Hd  
    for j = 1:length(n) y06xl:iQwF  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?#Y:2LqPC  
    end 5nTcd@lX  
    rpowers = unique(rpowers); '$rCV,3q  
    ?J-\}X  
    % Pre-compute the values of r raised to the required powers, TZGk[u^*  
    % and compile them in a matrix: "$D'gS oYe  
    % ----------------------------- sWB@'P:x  
    if rpowers(1)==0 0+u >"7T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5=I"bnIU  
        rpowern = cat(2,rpowern{:}); bZr,jLEf  
        rpowern = [ones(length_r,1) rpowern]; RAnF=1[v  
    else , &n"#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e-OKv#]  
        rpowern = cat(2,rpowern{:}); _#MKpH  
    end yPY{ZADkQ  
    UWhJkJsX  
    % Compute the values of the polynomials: i=1crJ:  
    % -------------------------------------- *K|ah:(r1\  
    y = zeros(length_r,length(n)); &=kb>*  
    for j = 1:length(n) \ \Tz'>[\  
        s = 0:(n(j)-m_abs(j))/2; W\j)Vg__e  
        pows = n(j):-2:m_abs(j); y0ObcP.MA  
        for k = length(s):-1:1 ,7k-LAA  
            p = (1-2*mod(s(k),2))* ... hg#O_4D  
                       prod(2:(n(j)-s(k)))/              ... >#'?}@FWQN  
                       prod(2:s(k))/                     ... cx ("F /Jm  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3o0ZS^#eB  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Fn iht<  
            idx = (pows(k)==rpowers); p&5>j\uJ1&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); jVZ<i}h0B  
        end dsj}GgG?Z  
         W/b)OlG"2  
        if isnorm Jgg<u#  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t%J1(H  
        end Lis>Qr  
    end ek U%^R<  
    % END: Compute the Zernike Polynomials Jz3,vV fQ:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H5&._  
    Ok|Dh;1_  
    % Compute the Zernike functions: L &hw- .Q  
    % ------------------------------ KV$4}{  
    idx_pos = m>0; 3Zl:rYD?  
    idx_neg = m<0; hvQXYo>TZx  
    XogCq?_m  
    z = y; jwBJG7\  
    if any(idx_pos) yTh%[k  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X,#~[%h$-=  
    end eG8 l^[  
    if any(idx_neg) )7[#Ti  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1_A_)l11  
    end UqyW8TCf?  
    p\F%Nj,  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的