非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :O}= $[
function z = zernfun(n,m,r,theta,nflag) >i %{5d
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FabzP_<b
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0Z{f!MOh
% and angular frequency M, evaluated at positions (R,THETA) on the ?H\K];
% unit circle. N is a vector of positive integers (including 0), and +,&8U&~`
% M is a vector with the same number of elements as N. Each element VL5GX(
% k of M must be a positive integer, with possible values M(k) = -N(k) 3: 'eZcM
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6\7bE$K
% and THETA is a vector of angles. R and THETA must have the same HrH-e=j
% length. The output Z is a matrix with one column for every (N,M) E({W`b~_f
% pair, and one row for every (R,THETA) pair. 0>?%{Xy
% A~_*vcz
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike X\:;A {
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (*>%^ C?
% with delta(m,0) the Kronecker delta, is chosen so that the integral diF-`~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cRm+?/
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]_6w(>A@3#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AM4lAq_
% \a+.~_iL|
% The Zernike functions are an orthogonal basis on the unit circle. SW!lSIk
% They are used in disciplines such as astronomy, optics, and 4NaL#3
% optometry to describe functions on a circular domain. #1-,s.)
% Ib(q9!L
% The following table lists the first 15 Zernike functions. /a}F;^
% `52+.*J+%
% n m Zernike function Normalization )N4!zuSVf
% -------------------------------------------------- _?"P<3/iF
% 0 0 1 1 1 !N+hf
% 1 1 r * cos(theta) 2 z ;>xI~
% 1 -1 r * sin(theta) 2 zPzy0lx
% 2 -2 r^2 * cos(2*theta) sqrt(6) $]v=2j
% 2 0 (2*r^2 - 1) sqrt(3) x3j)'`=15
% 2 2 r^2 * sin(2*theta) sqrt(6) TPjElBh
% 3 -3 r^3 * cos(3*theta) sqrt(8) N~rA /B]T
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) cR'l\iv+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) i2]7Bf)oV
% 3 3 r^3 * sin(3*theta) sqrt(8) }HB>Zb5
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]_!5g3VQh
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z l?Gd4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 87; E#2
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gEghDO_G
% 4 4 r^4 * sin(4*theta) sqrt(10) [Dr'
% -------------------------------------------------- g=)B+SY'
% HSXv_
% Example 1: 05o)Q &`
% Y fRjr
% % Display the Zernike function Z(n=5,m=1) &8p]yo2zO
% x = -1:0.01:1; w ]8+
OP
% [X,Y] = meshgrid(x,x); :1>h,NKC>
% [theta,r] = cart2pol(X,Y); M]c"4b;
% idx = r<=1; 52X[{
% z = nan(size(X)); s7(NFX5
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]ySm|&aU
% figure PHQ7
% pcolor(x,x,z), shading interp z$64Ep#
% axis square, colorbar /g/]Q^
% title('Zernike function Z_5^1(r,\theta)') yvIeK6
% Fru&-T[
% Example 2: V{jQ=<)@e
% (AYzN3
?D
% % Display the first 10 Zernike functions -!o*A>N
% x = -1:0.01:1; e}f#dR+(
% [X,Y] = meshgrid(x,x); s2Z'_rT
% [theta,r] = cart2pol(X,Y); olm0O (9
% idx = r<=1; _3Kow{y\
% z = nan(size(X)); Q$Q>pV;uH
% n = [0 1 1 2 2 2 3 3 3 3]; 6zyxGJ(
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; .rPg
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !uZ)0R
% y = zernfun(n,m,r(idx),theta(idx)); ^(+ X|t
% figure('Units','normalized') cn~/P|B[
% for k = 1:10 6!39t
% z(idx) = y(:,k); ^LI\W'K
% subplot(4,7,Nplot(k)) 7)RDu,fx
% pcolor(x,x,z), shading interp lJHU1
gu
% set(gca,'XTick',[],'YTick',[]) :@rq+wvP
% axis square ;AH8/M B9
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y0z)5),[U:
% end nYsB^Nr6
% 6o:b(v&Oo
% See also ZERNPOL, ZERNFUN2. p>ba6BDJT
3VZ}5
% Paul Fricker 11/13/2006 Oj=g;iY
a!@(bb
z>
.8%&K0
% Check and prepare the inputs: D6I-:{ws
% ----------------------------- &0*7]Wo*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) V7 OhOLK8
error('zernfun:NMvectors','N and M must be vectors.') 7v']wA r]
end (X?HuWTm
UuKW`(?^
if length(n)~=length(m) W{$J)iQ
error('zernfun:NMlength','N and M must be the same length.') >sm~te$5
end uQhI)
T^ )\
n = n(:); r@t
\a+
m = m(:); ~0@uR
if any(mod(n-m,2)) {^@vCBE+
error('zernfun:NMmultiplesof2', ... )H1\4LeP
'All N and M must differ by multiples of 2 (including 0).') l5T0x=y9!
end Dz3~cuVb
{EjzJr>
if any(m>n) ?vBMx _0
error('zernfun:MlessthanN', ... 6ys|'<?
'Each M must be less than or equal to its corresponding N.') []-<-TqJ
end H73 r3BH
~v@.YJoZ4Z
if any( r>1 | r<0 ) cd&sAK"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') FrsXLUY
end 'u#c_m!9
Bh UGMK
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /EW=OZ/
error('zernfun:RTHvector','R and THETA must be vectors.') kp-`_sDg
end *L&|4|BF2
P6 7*-Ki
r = r(:); ;uho.)%N`F
theta = theta(:); <CcSChCg
length_r = length(r); 3:aj8F2
if length_r~=length(theta) E{'Y>gB6
error('zernfun:RTHlength', ... R('\i/fy
'The number of R- and THETA-values must be equal.')
/s~BE ,su
end ]pWn%aGv*Y
F AQx8P
% Check normalization: y&A&d-
% -------------------- 2U`!0~pod
if nargin==5 && ischar(nflag) mhMTn*9
isnorm = strcmpi(nflag,'norm'); 2c'<rkA
if ~isnorm '};mBW4z
error('zernfun:normalization','Unrecognized normalization flag.') ro+8d
end ^KJi|'B
else |&MOus#v
isnorm = false; {wl7&25
end 'Yaq; mDY
YIs_.CTi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L@S1C=-/
% Compute the Zernike Polynomials !<<wI'8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y
8-;eqH
;>%wf3e
% Determine the required powers of r: tmQ,>
% ----------------------------------- -nZDFC8y$
m_abs = abs(m); t9.| i H
rpowers = []; EeQ2\'t
for j = 1:length(n) Z kBWVZb
rpowers = [rpowers m_abs(j):2:n(j)]; 3fUiYI|&7
end BQ=JZ4&
rpowers = unique(rpowers); +Mb}70^
vs{VRc
% Pre-compute the values of r raised to the required powers, \.?'y71
% and compile them in a matrix: jFl!<ooCo
% ----------------------------- Rw<O%i5/d
if rpowers(1)==0 xS; tmc
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QJ%N80
rpowern = cat(2,rpowern{:}); Q?bC'147O
rpowern = [ones(length_r,1) rpowern]; or"9I1o
else ,uD}1
G<u
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }((P)\s
rpowern = cat(2,rpowern{:}); Q]]M;(
end 4WPco"xH!
bduHYs+rq
% Compute the values of the polynomials: SB:z[kfz|
% -------------------------------------- w3;T]R*
y = zeros(length_r,length(n)); ./<giTR:p
for j = 1:length(n) {5 3#Xd
s = 0:(n(j)-m_abs(j))/2; :|-^et]a8
pows = n(j):-2:m_abs(j); 8g?2( MT;
for k = length(s):-1:1 v
<m=g!
p = (1-2*mod(s(k),2))* ... #+
{%>f
prod(2:(n(j)-s(k)))/ ... F5H]$AjW
prod(2:s(k))/ ... zhh6;>P
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EL6<%~,V"I
prod(2:((n(j)+m_abs(j))/2-s(k))); ([ A%>u>h
idx = (pows(k)==rpowers); Y2|c;1~5$
y(:,j) = y(:,j) + p*rpowern(:,idx);
`ghNS
end xs?]DJj
aNgJm~K0P
if isnorm 'X~CrgQl
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E?jb?
end Gw#z:gX2
end gu1n0N`b
% END: Compute the Zernike Polynomials >+%p}l:<\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uFG ;AY|
a
fB?js6
% Compute the Zernike functions: XcKyrh;i
% ------------------------------ w ; PV
&M
idx_pos = m>0; p+;x&h)[l
idx_neg = m<0; 5N907XVu
'EB5#
z = y; /+m7J"Km
if any(idx_pos) 1#x@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RPkOtRKL=w
end 5 HN,y
if any(idx_neg) _:Ov-HIR
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ah!fQLMH
end ;n b>IL
OQ _wsAA
% EOF zernfun