切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11435阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 2Myz[)<P_  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! zKG]7  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @?<1~/sfL  
    )m$i``*<  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 v@]\  P<E  
    iJ~e8l0CA  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _Zs]za.#)|  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. @&M$oI$4*  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of qJrMr4:F  
    %   order N and frequency M, evaluated at R.  N is a vector of J?N9*ap)  
    %   positive integers (including 0), and M is a vector with the @s/0 .7  
    %   same number of elements as N.  Each element k of M must be a 4 Gm(P~N  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 1 |zy6  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is -S%)2(f^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0ge^p O\Z  
    %   with one column for every (N,M) pair, and one row for every 9F"Q2^l'  
    %   element in R. MW6KEiQ"  
    % ]w[T_4 l  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- GcYT<pwN6  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is y?s8UEC  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to M~&X?/8  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 eEG]JH  
    %   for all [n,m]. 6 C|]Fm  
    % /i)1BaF  
    %   The radial Zernike polynomials are the radial portion of the YKsc[~ h  
    %   Zernike functions, which are an orthogonal basis on the unit ^U4|TR6mub  
    %   circle.  The series representation of the radial Zernike #XlE_XD  
    %   polynomials is lm;G8IP`  
    % B 8ycr~  
    %          (n-m)/2 !1\j D  
    %            __ vz_ZXy9Z  
    %    m      \       s                                          n-2s `F<[\@\d5  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r : 'LG%E:b  
    %    n      s=0 t,yzqn  
    % Z*rA~`@K6  
    %   The following table shows the first 12 polynomials. ;c_pa0L  
    % W^^}-9  
    %       n    m    Zernike polynomial    Normalization 0fTEb%z8  
    %       --------------------------------------------- Qe )#'$T  
    %       0    0    1                        sqrt(2) wzRIvm{  
    %       1    1    r                           2 cOr@dUSL  
    %       2    0    2*r^2 - 1                sqrt(6) Z|kMoB  
    %       2    2    r^2                      sqrt(6) 8?7gyp!k_f  
    %       3    1    3*r^3 - 2*r              sqrt(8) =':,oz^|  
    %       3    3    r^3                      sqrt(8) @GiR~bKZ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 4U*uH  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 20t</lq.  
    %       4    4    r^4                      sqrt(10) 5vso%}c  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) UUt631  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) q|A-h'  
    %       5    5    r^5                      sqrt(12) d^w*!<8  
    %       --------------------------------------------- |e@Bi#M[  
    % G Riu]   
    %   Example: (Q$]X5L  
    % .ZxH#l _  
    %       % Display three example Zernike radial polynomials 92k}ON  
    %       r = 0:0.01:1; D?w-uR%Y  
    %       n = [3 2 5]; %T&#JF+;  
    %       m = [1 2 1]; DjT ekn  
    %       z = zernpol(n,m,r); CKTD27})  
    %       figure H5N(MihT  
    %       plot(r,z) -e{H8ro  
    %       grid on -^ (NIl'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') IrRn@15,  
    % ibOXh U  
    %   See also ZERNFUN, ZERNFUN2. y{eZrX|  
    W&>+~A  
    % A note on the algorithm. !!c.cv'  
    % ------------------------ JAA P5ur  
    % The radial Zernike polynomials are computed using the series YJ5;a\QxN  
    % representation shown in the Help section above. For many special Z6cG<,DQ  
    % functions, direct evaluation using the series representation can rr[9sk`^H  
    % produce poor numerical results (floating point errors), because !HXdUAKu  
    % the summation often involves computing small differences between Q#bFW?>y,  
    % large successive terms in the series. (In such cases, the functions Z v=p0xH  
    % are often evaluated using alternative methods such as recurrence tc{23Rf%  
    % relations: see the Legendre functions, for example). For the Zernike / N@0qQ  
    % polynomials, however, this problem does not arise, because the /Ki :6  
    % polynomials are evaluated over the finite domain r = (0,1), and ~X;(m<f2  
    % because the coefficients for a given polynomial are generally all Ej1 [ry  
    % of similar magnitude. TBQ`:`g^m  
    % u%O^hcfb  
    % ZERNPOL has been written using a vectorized implementation: multiple  <C4^Vem  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ^3`98y.Q  
    % values can be passed as inputs) for a vector of points R.  To achieve (D8'qx-M  
    % this vectorization most efficiently, the algorithm in ZERNPOL Y5 4*mn  
    % involves pre-determining all the powers p of R that are required to )^!-Aj\x  
    % compute the outputs, and then compiling the {R^p} into a single =*'X  
    % matrix.  This avoids any redundant computation of the R^p, and 0zpP$q$  
    % minimizes the sizes of certain intermediate variables. P|.KMtG  
    % `bZ_=UAb  
    %   Paul Fricker 11/13/2006 _<.R\rX&  
    yh5KN_W  
    U hCd,  
    % Check and prepare the inputs: YKh%`Y1<  
    % ----------------------------- LM _4.J  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4PUM.%  
        error('zernpol:NMvectors','N and M must be vectors.') !9o8v0ZI  
    end No[xf9>t  
    VH*j3  
    if length(n)~=length(m) W,agP G\+  
        error('zernpol:NMlength','N and M must be the same length.') ecf7g)+C  
    end v%aD:%wlY@  
    @V:b Co  
    n = n(:); fWm;cDM H  
    m = m(:); ,iPkx(  
    length_n = length(n); 9Zrn(D  
    .yWdlq##  
    if any(mod(n-m,2)) !s)2H/KM8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') I )B2Z(<Q  
    end 00pHnNoxW  
    N=+Up\h  
    if any(m<0) 1xtbhk]D  
        error('zernpol:Mpositive','All M must be positive.') w#b~R^U  
    end OClY ,@  
    C1G Wi4)  
    if any(m>n) 5WZLB =  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3\@6i'  
    end M(3E b;`   
    &P {%C5?{  
    if any( r>1 | r<0 ) jEO;  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') *gT TI;:  
    end FyS K&  
    9)YG)A~<  
    if ~any(size(r)==1) xU rfH$$!`  
        error('zernpol:Rvector','R must be a vector.') rfPJBD{Ve  
    end wOk:Q4OjL  
    5!cplx=<  
    r = r(:); d#z67Nl6  
    length_r = length(r); cL WM]\Y  
    Z=H f OC  
    if nargin==4 W4YC5ZH{l  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); fg1 zT~  
        if ~isnorm |]]fcJOBP  
            error('zernpol:normalization','Unrecognized normalization flag.') i'EXylb  
        end ss2:8up 99  
    else er<~dqZ}]  
        isnorm = false; d~_OWCg`  
    end ):[[Ch_  
    7PvuKAv?k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FP\[7?ZLn  
    % Compute the Zernike Polynomials r-V./M@L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QWP_8$Q  
    igQyn|  
    % Determine the required powers of r: G37_ `C  
    % ----------------------------------- FQ4rA 4  
    rpowers = []; ~|!lC}!IKL  
    for j = 1:length(n) <=`@`rm{  
        rpowers = [rpowers m(j):2:n(j)]; ``\H'^{B  
    end JL$RBr  
    rpowers = unique(rpowers); 5s|gKM  
    P~*fZ)\}F@  
    % Pre-compute the values of r raised to the required powers, < <xJ-N  
    % and compile them in a matrix: w5nRgdboy!  
    % ----------------------------- bVrvb`0  
    if rpowers(1)==0 KVntBe]I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2-CK:)n/#  
        rpowern = cat(2,rpowern{:}); l{3utQH-=z  
        rpowern = [ones(length_r,1) rpowern]; b13>>'BMB  
    else `<Ftn  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); NdZ: 7  
        rpowern = cat(2,rpowern{:}); 9PBmBP ~  
    end 1hN! 2Y:  
    z(=:J_N  
    % Compute the values of the polynomials: >w'6ZDA*X  
    % -------------------------------------- "N;|~S)w!  
    z = zeros(length_r,length_n); GQQ!3LwP\O  
    for j = 1:length_n  5-J-Tn  
        s = 0:(n(j)-m(j))/2; Z~R i%XG  
        pows = n(j):-2:m(j); Nf~<xK  
        for k = length(s):-1:1 Psv!`K  
            p = (1-2*mod(s(k),2))* ... K XGs'D  
                       prod(2:(n(j)-s(k)))/          ... ppYz~ {"r  
                       prod(2:s(k))/                 ... @PI\.y_w  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... bM'AD[  
                       prod(2:((n(j)+m(j))/2-s(k))); %|I|Mc  
            idx = (pows(k)==rpowers); wVVe L$28  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ~:@H6Ke[  
        end izxCbbg  
         )<|TEp4r-  
        if isnorm :s5g6TR  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Z*)<E)  
        end Cr` 0C  
    end BAhC-;B#R  
    t&xx-4  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) )~/U+,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. &0g,Xkr  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated r>Ln*R,9D  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Zx_m?C_2_  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {ZcZ\Q;6  
    %   and THETA is a vector of angles.  R and THETA must have the same q :bKT#\  
    %   length.  The output Z is a matrix with one column for every P-value, BUb(BzC  
    %   and one row for every (R,THETA) pair. 4(R2V]  
    % x3Ud0[(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike wGvgMZ]?'  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) F MVmH!E  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) $c}0L0  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ]c)SVn$6  
    %   for all p. o >Lk`\  
    % Xo`1#6xsE  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -?W@-*J  
    %   Zernike functions (order N<=7).  In some disciplines it is 6"7qZq  
    %   traditional to label the first 36 functions using a single mode sYXS#;|M  
    %   number P instead of separate numbers for the order N and azimuthal L3AwL)I   
    %   frequency M. .N=hA  
    % kgz{m;R  
    %   Example: +a/o)C{  
    % M2}<gRL*}J  
    %       % Display the first 16 Zernike functions RY{tX`  
    %       x = -1:0.01:1; { rT`*P~  
    %       [X,Y] = meshgrid(x,x); `xUPML-  
    %       [theta,r] = cart2pol(X,Y); kre&J  
    %       idx = r<=1; {0 ~0  
    %       p = 0:15; D.(G9H  
    %       z = nan(size(X)); &>e DCs  
    %       y = zernfun2(p,r(idx),theta(idx)); oui!fTy  
    %       figure('Units','normalized') u7?juI#Cl  
    %       for k = 1:length(p) !9, pX  
    %           z(idx) = y(:,k); (GG"'bYk  
    %           subplot(4,4,k) Ug21d42Z4  
    %           pcolor(x,x,z), shading interp M N#C2 qz  
    %           set(gca,'XTick',[],'YTick',[]) =[JN'|Q+  
    %           axis square pGY]Vw Y  
    %           title(['Z_{' num2str(p(k)) '}']) @@IA35'tc  
    %       end |L;psK  
    % (:QQ7xc{}  
    %   See also ZERNPOL, ZERNFUN. Net)l@IB]  
    GYC&P]  
    %   Paul Fricker 11/13/2006 5vf t}f  
    hX m} d\  
    y.p6%E_`  
    % Check and prepare the inputs: Da [C'm=  
    % ----------------------------- S |>$0P4W(  
    if min(size(p))~=1 `{F~'t['  
        error('zernfun2:Pvector','Input P must be vector.') d&uTiH?0  
    end nud=uJ"(  
    ^,lZ58 2  
    if any(p)>35 87KrSZ  
        error('zernfun2:P36', ... 4|N\Q=,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ]M;6o@hq  
               '(P = 0 to 35).']) UglG!1L  
    end hF"g 91P  
    b$O_L4CP  
    % Get the order and frequency corresonding to the function number: UMuuf6  
    % ---------------------------------------------------------------- "F$o!Vk  
    p = p(:); =nx:GT3&[  
    n = ceil((-3+sqrt(9+8*p))/2); S9R]Zl7{-  
    m = 2*p - n.*(n+2); F,M"/hnPT  
    drKjLo[y  
    % Pass the inputs to the function ZERNFUN: K;p<f{PE  
    % ---------------------------------------- #we>75l{+R  
    switch nargin T_?nd T2  
        case 3 GrR0RwnH)?  
            z = zernfun(n,m,r,theta); l(,;wAH  
        case 4 pP* ~ =?  
            z = zernfun(n,m,r,theta,nflag); ej%;%`C-  
        otherwise Hpi%9SAM  
            error('zernfun2:nargin','Incorrect number of inputs.') ^YR|WKY  
    end !UoU#YU  
    vM7vf6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .L7Yf+yFg  
    function z = zernfun(n,m,r,theta,nflag) sQ}%7BMK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. j\'+wVyo  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N W 9Vz[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LR3`=Z9  
    %   unit circle.  N is a vector of positive integers (including 0), and X#DL/#z k  
    %   M is a vector with the same number of elements as N.  Each element nFe` <Al$N  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) h zZ-$IX X  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~J1;tZS  
    %   and THETA is a vector of angles.  R and THETA must have the same 8nIMZV  
    %   length.  The output Z is a matrix with one column for every (N,M) G7Z vfLR{:  
    %   pair, and one row for every (R,THETA) pair. 1a&/Zlr  
    % .6#cDrK  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6KEykw j  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), y98JiNq  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [O7w =  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2"leUur~rO  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 19F ;oFp  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ut4r~~Ar  
    % }A1|jY)x  
    %   The Zernike functions are an orthogonal basis on the unit circle. Yz=h"Zr  
    %   They are used in disciplines such as astronomy, optics, and u3Usq=Ij{  
    %   optometry to describe functions on a circular domain. "mPSA Z  
    % w dGpt_  
    %   The following table lists the first 15 Zernike functions. '7Mep ]  
    % 7deAr$?Wx  
    %       n    m    Zernike function           Normalization 7`IUMYl#~  
    %       -------------------------------------------------- AozmO  
    %       0    0    1                                 1 1mHwYT+  
    %       1    1    r * cos(theta)                    2 ;Y'8:ncDn  
    %       1   -1    r * sin(theta)                    2 GS ;HtUQ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7~wFU*P1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) s~=KhP~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) R2}kz.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]<27Sw&yaG  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) EI1W .V>@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5/B#)gm  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) K,f* SXM  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h@*lWi2K7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N[qA2+e$Z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) VK2@2`$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) { p1lae  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) nJFk4v4:2  
    %       -------------------------------------------------- {y,nFxLq  
    % (U|)xA]y!  
    %   Example 1: (M ]XNn  
    % Mv.Ciyc  
    %       % Display the Zernike function Z(n=5,m=1) 6xH;: B)d  
    %       x = -1:0.01:1; j4;Du>obQ  
    %       [X,Y] = meshgrid(x,x); Ci~f#{  
    %       [theta,r] = cart2pol(X,Y); }m6f^fs}  
    %       idx = r<=1; O( VxMO  
    %       z = nan(size(X)); (y1$MYZ Q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 9s! 2 wwh  
    %       figure ]SFWt/<  
    %       pcolor(x,x,z), shading interp HSNOL  
    %       axis square, colorbar JOBz{;:R{  
    %       title('Zernike function Z_5^1(r,\theta)') m8'@UzB  
    % WgE@89  
    %   Example 2: 807al^s x  
    % sffhPX\I  
    %       % Display the first 10 Zernike functions jm+ V$YBP  
    %       x = -1:0.01:1; ?4^} ;wDb2  
    %       [X,Y] = meshgrid(x,x); N99[.mErU  
    %       [theta,r] = cart2pol(X,Y); 0|g[o:;fl_  
    %       idx = r<=1; :'Zx{F`  
    %       z = nan(size(X)); {'NBp0i  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ?RHn @$g8M  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; WFouoXlG0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; tKwn~T  
    %       y = zernfun(n,m,r(idx),theta(idx)); rwy+~  
    %       figure('Units','normalized') Qh*)pt]n  
    %       for k = 1:10 Nepi|{  
    %           z(idx) = y(:,k); ^f9>l;Lb  
    %           subplot(4,7,Nplot(k)) 5J  ySFG3  
    %           pcolor(x,x,z), shading interp ton1oq  
    %           set(gca,'XTick',[],'YTick',[]) 4S tjj!ew  
    %           axis square Z a! gbt  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sa*g  
    %       end oz LH]*  
    % E Zi&]  
    %   See also ZERNPOL, ZERNFUN2. j !`B'{cH  
    t<Ot|Ex  
    %   Paul Fricker 11/13/2006 GQb i$kl  
    vm8$:W2 }  
    6D|p Qs  
    % Check and prepare the inputs: JnY$fs*"  
    % ----------------------------- P>(&glr|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Qlw>+y-i  
        error('zernfun:NMvectors','N and M must be vectors.') >z(wf>2J  
    end K4:  $=  
    ,]ga[  
    if length(n)~=length(m) S#tY@h@XV  
        error('zernfun:NMlength','N and M must be the same length.') ;+a2\j+  
    end gljo;f:  
    *Ddi(`  
    n = n(:); z`4c 4h]I  
    m = m(:); p}uncIod  
    if any(mod(n-m,2)) 6#U^< `  
        error('zernfun:NMmultiplesof2', ... e4DMO*6  
              'All N and M must differ by multiples of 2 (including 0).') #AShbl jm+  
    end V C-d0E0  
    5MR,UgT  
    if any(m>n) M%I@<~wl  
        error('zernfun:MlessthanN', ... b?8)7.{F{  
              'Each M must be less than or equal to its corresponding N.') R:M,tL-l  
    end U6<M/>RG$  
    Xd3}Vn=  
    if any( r>1 | r<0 ) 49AW6H.JT  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') c+g@Z"es  
    end ##cnFQCB  
    1yM r~Fo  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4 j X3lq|  
        error('zernfun:RTHvector','R and THETA must be vectors.') {WQq}-(  
    end $5NKFJc  
    gv|"OlB  
    r = r(:); Od##U6e`  
    theta = theta(:); ! \sMR  
    length_r = length(r); zU&L.+   
    if length_r~=length(theta) "u492^  
        error('zernfun:RTHlength', ... | &7S8Q  
              'The number of R- and THETA-values must be equal.') ; b*i3*!g  
    end :5b0np!  
    X:|8vS+0gU  
    % Check normalization: $=)gpPT  
    % -------------------- O6X"RsI}  
    if nargin==5 && ischar(nflag) B $XwTJ>  
        isnorm = strcmpi(nflag,'norm'); >P=Q #;v  
        if ~isnorm "g0(I8  
            error('zernfun:normalization','Unrecognized normalization flag.') T.ML$"f  
        end !Ms[eB  
    else pDl3!m  
        isnorm = false; F9a^ED0l\  
    end Dd,2;#_  
    *2e!M^K<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |ZiC`Nt  
    % Compute the Zernike Polynomials e#S0Fk)z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l63hLz  
    b?T  
    % Determine the required powers of r: H,y4`p 0  
    % ----------------------------------- }Wh6zT)  
    m_abs = abs(m); =r 9r~SR#  
    rpowers = []; &%mXYj3y5  
    for j = 1:length(n) te,[f  
        rpowers = [rpowers m_abs(j):2:n(j)]; gE])!GMM3  
    end k~.&j"K  
    rpowers = unique(rpowers); k|xtr&1N.!  
    Ba'LRz  
    % Pre-compute the values of r raised to the required powers, ~ G6"3"  
    % and compile them in a matrix: 2=iH$v  
    % ----------------------------- ._PzYE|m2  
    if rpowers(1)==0 ?LK 2g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1:M@&1L Yp  
        rpowern = cat(2,rpowern{:}); U;q];e:,=}  
        rpowern = [ones(length_r,1) rpowern]; AUe# RP  
    else 5d\q-d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~Z'w)!h  
        rpowern = cat(2,rpowern{:}); 8|%^3O 0X  
    end ~j9O$s~)  
    j+-P :xvP  
    % Compute the values of the polynomials: .2) =vf'd  
    % -------------------------------------- bm% $86  
    y = zeros(length_r,length(n)); / JkC+7H4  
    for j = 1:length(n) /Q{P3:k  
        s = 0:(n(j)-m_abs(j))/2; m P'^%TE  
        pows = n(j):-2:m_abs(j); !\Xm!I8  
        for k = length(s):-1:1 L+}n@B  
            p = (1-2*mod(s(k),2))* ... Pr ]Ka  
                       prod(2:(n(j)-s(k)))/              ... -E"GX  
                       prod(2:s(k))/                     ... H1n1-!%d  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Bun> <Y @  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /FP5`:PfL  
            idx = (pows(k)==rpowers); n\z,/'d"  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @&|l^ 1  
        end :GpDg  
         d5 7i)=  
        if isnorm A][fLlpr  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); e [_m< e  
        end sZGj"_-Hzu  
    end <Z}SKR"U%  
    % END: Compute the Zernike Polynomials uvP2Wgt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D,qu-k[jMI  
    3psU?8(  
    % Compute the Zernike functions: 29CINC  
    % ------------------------------ \^7C0R-hX  
    idx_pos = m>0; +l3=3  
    idx_neg = m<0; @c9^q> Uv  
    D^%^xq )E  
    z = y; *}k;L74|  
    if any(idx_pos) YW u cvw&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); p~ HW5\4  
    end JM1R ;i6  
    if any(idx_neg) t58e(dgi  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); b306&ZVEk  
    end HK|ynBAo  
    WOuEWw=  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的