切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11513阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 g!$ "CX%8  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ;$Y?j8g  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  tf>?;  
    ~V(WD;Mk  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 T'w=v-(J  
    zg)]:  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _5y3<H<?  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. `VwZDU~6  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of V'^Hn?1^  
    %   order N and frequency M, evaluated at R.  N is a vector of ~+7q.XL$$K  
    %   positive integers (including 0), and M is a vector with the b+9M? k"  
    %   same number of elements as N.  Each element k of M must be a D `c YQ-  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) =Z2Cg{z  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is rgJKXl;@s  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ??Q'| r  
    %   with one column for every (N,M) pair, and one row for every V)=!pT  
    %   element in R. Z~CL|=  
    % S2'./!3yv  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- qlNK }  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Gk g)\ 3  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U@ Y0 z.Y  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 $OldHe[p  
    %   for all [n,m]. >/9f>d?w^  
    % <!Ed ND=  
    %   The radial Zernike polynomials are the radial portion of the |>Qj]  
    %   Zernike functions, which are an orthogonal basis on the unit Vf:/Kokq  
    %   circle.  The series representation of the radial Zernike l03{ ezJk[  
    %   polynomials is 9(V12gn+lk  
    % +`>Tuz~  
    %          (n-m)/2 j}ywdP`a  
    %            __ 2x<,R/}  
    %    m      \       s                                          n-2s 3A!`U6C(  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r b*&AIiT  
    %    n      s=0 -<h4I aM  
    % =dSH8C"  
    %   The following table shows the first 12 polynomials. @ (<C{  
    % c@>Tzk%?"  
    %       n    m    Zernike polynomial    Normalization m-Z<zEQ  
    %       --------------------------------------------- jgNdcP  
    %       0    0    1                        sqrt(2) Cdg/wRje  
    %       1    1    r                           2 wc`UcGO  
    %       2    0    2*r^2 - 1                sqrt(6) xkV(E!O  
    %       2    2    r^2                      sqrt(6) x]{}y_  
    %       3    1    3*r^3 - 2*r              sqrt(8) Y@B0.5U2  
    %       3    3    r^3                      sqrt(8) p8,Rr{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) GCm(3%{V%(  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) B|XrjI?  
    %       4    4    r^4                      sqrt(10) iq*]CF  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) |mvY=t %  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) v"ZNS  
    %       5    5    r^5                      sqrt(12) |qTvy,U[  
    %       --------------------------------------------- +?y ', Ir  
    % g9C/Oj`I  
    %   Example: -|V1A[  
    % a|S6r-_;s  
    %       % Display three example Zernike radial polynomials ynY(  
    %       r = 0:0.01:1; a4aM.o  
    %       n = [3 2 5]; |I \&r[J  
    %       m = [1 2 1]; 4~<78r5m  
    %       z = zernpol(n,m,r); U1nObA  
    %       figure uIh68UM  
    %       plot(r,z) ,Y9bXC8+dU  
    %       grid on ISa}Km>Q  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 6.5E d-  
    % hvW FzT5  
    %   See also ZERNFUN, ZERNFUN2. gOb"-;Zw  
    5?l8;xe`{f  
    % A note on the algorithm. %[S-"k  
    % ------------------------ &FrUj>i  
    % The radial Zernike polynomials are computed using the series |Yb]@9 >vn  
    % representation shown in the Help section above. For many special oD<aWZ"Z  
    % functions, direct evaluation using the series representation can 6sjd:~J:  
    % produce poor numerical results (floating point errors), because =1#obB  
    % the summation often involves computing small differences between  N$ oQK(  
    % large successive terms in the series. (In such cases, the functions Ob!NC&  
    % are often evaluated using alternative methods such as recurrence OTe h8h  
    % relations: see the Legendre functions, for example). For the Zernike t?Ku6Z'  
    % polynomials, however, this problem does not arise, because the 65]>6D43  
    % polynomials are evaluated over the finite domain r = (0,1), and ~aBf.  
    % because the coefficients for a given polynomial are generally all E)>.2{]C>  
    % of similar magnitude. Yw(O}U 5e  
    % Q&5s,)w-  
    % ZERNPOL has been written using a vectorized implementation: multiple B<$(Nb5<  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] UpTVLx^c  
    % values can be passed as inputs) for a vector of points R.  To achieve 5nV IC3N+1  
    % this vectorization most efficiently, the algorithm in ZERNPOL LO;7NK  
    % involves pre-determining all the powers p of R that are required to DyPHQ}G  
    % compute the outputs, and then compiling the {R^p} into a single N =T 0Td  
    % matrix.  This avoids any redundant computation of the R^p, and qt{lZ_$  
    % minimizes the sizes of certain intermediate variables. ,tTq25~H\  
    % "%(SLQOyy  
    %   Paul Fricker 11/13/2006 :%[mc-6.  
    ~n=oPm$pR  
    -kk0zg &|i  
    % Check and prepare the inputs: 3-/F]}0y6  
    % ----------------------------- '[Zgwz;z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +-r ~-bs  
        error('zernpol:NMvectors','N and M must be vectors.') Uee(1  
    end f/95}6M  
    O2qy[]km  
    if length(n)~=length(m) A Xpg_JC  
        error('zernpol:NMlength','N and M must be the same length.') yQcIfl]f  
    end 2WK c;?  
    $;pHv<  
    n = n(:); 3ncN) E/@  
    m = m(:); XjXz#0nR  
    length_n = length(n); 7!F -.kG  
    D wfw|h  
    if any(mod(n-m,2)) V_3K((P6  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 8,@0~2fz#  
    end y[{}124  
    CzDV^Iv;Q{  
    if any(m<0) @?JFqwq!  
        error('zernpol:Mpositive','All M must be positive.') O70#lvsM;  
    end !$NQF/Ol  
    6]r#6c %  
    if any(m>n) OF}."a  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') _vJ(F  
    end D"msD"  
    d`UK mj  
    if any( r>1 | r<0 ) :85QwN]\  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') []jbzVwS2  
    end <v6W l\  
    EQtYb"_  
    if ~any(size(r)==1) ?bAv{1dvT=  
        error('zernpol:Rvector','R must be a vector.') _lDNYpv  
    end :6:,s#av  
    eI9#JM|2  
    r = r(:); 7,s5Gd-  
    length_r = length(r); IISdC(5  
    Ft^X[5G4L  
    if nargin==4 8VtRRtl  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); R=<%!  
        if ~isnorm 4T]A! y{  
            error('zernpol:normalization','Unrecognized normalization flag.') 6e S~*  
        end '#C5m#v  
    else .}5qi;CA  
        isnorm = false; a!EW[|[Q  
    end z=TO G P(  
    #KNl<V+c}1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )5NWUuH 5  
    % Compute the Zernike Polynomials G8zbb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D\Y,2!I  
    Ih N^*P:Fo  
    % Determine the required powers of r: :uJHFF xg  
    % ----------------------------------- 8aJJ??o{  
    rpowers = []; t3AmXx  
    for j = 1:length(n) UxxX8N  
        rpowers = [rpowers m(j):2:n(j)]; ==UYjbuU  
    end SOZs!9oi  
    rpowers = unique(rpowers);  =W&m{F96  
    7GTDe'T  
    % Pre-compute the values of r raised to the required powers, ol K+|nR  
    % and compile them in a matrix: _K&Hiz/'  
    % ----------------------------- Yw yMC d  
    if rpowers(1)==0 ^f57qc3nF  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .Cf!5[0E  
        rpowern = cat(2,rpowern{:}); ]9PG"<^k  
        rpowern = [ones(length_r,1) rpowern]; &Yo|Pj  
    else NG`Y{QT6N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,!,tU7-H  
        rpowern = cat(2,rpowern{:}); *$5p,m6G  
    end N~0ih T G5  
    F v*QcB9K  
    % Compute the values of the polynomials: dVk(R9 8  
    % -------------------------------------- W/3sJc9  
    z = zeros(length_r,length_n); Nw*F1*v`  
    for j = 1:length_n ]28j$)6  
        s = 0:(n(j)-m(j))/2; #.!#"8{0_  
        pows = n(j):-2:m(j); U{j4FlB  
        for k = length(s):-1:1 |Y8}*C\M.h  
            p = (1-2*mod(s(k),2))* ... ?pcbso  
                       prod(2:(n(j)-s(k)))/          ... w3 kkam"  
                       prod(2:s(k))/                 ... R(*t 1R\  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 1Q!kk5jE  
                       prod(2:((n(j)+m(j))/2-s(k))); 4"H *hKp  
            idx = (pows(k)==rpowers); g*(z .  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ZyDNtX%  
        end a]P w:lT  
         a#{"3Z2|  
        if isnorm 4U_+NC>b  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); BU4IN$d0Po  
        end ^{{a v?h  
    end Bz <I7h  
    K a& 2>F  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) $,J}w%A  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. %#rtNDi  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7Mq{Py1  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive /8Y8-&K0  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {@iLfBh5  
    %   and THETA is a vector of angles.  R and THETA must have the same <tBT?#C9+  
    %   length.  The output Z is a matrix with one column for every P-value, {hJCn*m_   
    %   and one row for every (R,THETA) pair. *;9H\%  
    % 38T] qz[Sn  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Sh1$AGm  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Gp \-AwE  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5I,NvHD4  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 yf0v,]v[  
    %   for all p. Y JMs9X~3  
    % R6BbkYWrX  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 BO4;S/ O  
    %   Zernike functions (order N<=7).  In some disciplines it is wM4{\  f\  
    %   traditional to label the first 36 functions using a single mode K}cA%Y  
    %   number P instead of separate numbers for the order N and azimuthal Q-V8=.  
    %   frequency M. G![d_F" e  
    % Wz=& 0>Mm_  
    %   Example: Pg8boN]}  
    % 3o[(pfcU  
    %       % Display the first 16 Zernike functions R[v0T/  
    %       x = -1:0.01:1; =oIt.`rf  
    %       [X,Y] = meshgrid(x,x); =DfI^$Lr:  
    %       [theta,r] = cart2pol(X,Y); MKvmzLh$)  
    %       idx = r<=1; {q`8+$Z;  
    %       p = 0:15; =WUL%MfW  
    %       z = nan(size(X)); X Vt;hO  
    %       y = zernfun2(p,r(idx),theta(idx)); b9vud r  
    %       figure('Units','normalized') &"JC8  
    %       for k = 1:length(p) \ t1#5  
    %           z(idx) = y(:,k); X4 S| JT  
    %           subplot(4,4,k) ~dEo^vJD  
    %           pcolor(x,x,z), shading interp & ;.rPU  
    %           set(gca,'XTick',[],'YTick',[]) Ewp2 1  
    %           axis square zHz>Gc  
    %           title(['Z_{' num2str(p(k)) '}']) ed/B.SY  
    %       end H[p~1%Lq  
    % [KYq01cj  
    %   See also ZERNPOL, ZERNFUN. :AFW=e@<  
    e|~{ X\l  
    %   Paul Fricker 11/13/2006 8 <;.[l  
    @}H'2V  
    y\;oZ]J  
    % Check and prepare the inputs: rgCC3TX  
    % ----------------------------- ] 9C)F*r7  
    if min(size(p))~=1 'l<$H=ZUVG  
        error('zernfun2:Pvector','Input P must be vector.') !{CIP`P1  
    end Uz,P^\8^$  
    W|@SXO)DY  
    if any(p)>35 O0z-jZ,])  
        error('zernfun2:P36', ... { CR`~)v&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... FT~c|ep.  
               '(P = 0 to 35).']) 9ThsR&h3  
    end 4y+hr   
    ;kZD>G8  
    % Get the order and frequency corresonding to the function number: Gdb0e]Vt+  
    % ---------------------------------------------------------------- Y=<ABtertS  
    p = p(:); @w==*.x  
    n = ceil((-3+sqrt(9+8*p))/2); p gLhxc:  
    m = 2*p - n.*(n+2); OfBWf6b  
    6x(b/`VW  
    % Pass the inputs to the function ZERNFUN: ufR>*)_+  
    % ---------------------------------------- Z"Hq{?l9  
    switch nargin T+P{,,a/]  
        case 3 cwaR#-#  
            z = zernfun(n,m,r,theta); y@*4*46v  
        case 4 3=ME$%f  
            z = zernfun(n,m,r,theta,nflag); 7mi*#X}  
        otherwise ;WN% tI)  
            error('zernfun2:nargin','Incorrect number of inputs.') bt=D<YZk  
    end l2Py2ZI-b  
    V4"o.G3\o  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 J^` pE^S  
    function z = zernfun(n,m,r,theta,nflag) : LX!T&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. [C 7X#|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %:l\Vhhz  
    %   and angular frequency M, evaluated at positions (R,THETA) on the r H9}VA:h  
    %   unit circle.  N is a vector of positive integers (including 0), and U .^%7.  
    %   M is a vector with the same number of elements as N.  Each element tJ d/u QJ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) +BI%. A`2  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, CD?b.Cxai  
    %   and THETA is a vector of angles.  R and THETA must have the same !&KE">3Qu  
    %   length.  The output Z is a matrix with one column for every (N,M) p0Ij 4   
    %   pair, and one row for every (R,THETA) pair. = "Lb5!  
    % Pvkr$ou  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ezJ^ r,D|  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9ys[xOh WM  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 6 ;\>,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "el3mloR 8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ABtv|0K  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :Z;kMrU  
    % "[L+LPET  
    %   The Zernike functions are an orthogonal basis on the unit circle. Hn)^C{RN*{  
    %   They are used in disciplines such as astronomy, optics, and B$97"$#u  
    %   optometry to describe functions on a circular domain. ~ebm,3?  
    % = p2AK\  
    %   The following table lists the first 15 Zernike functions. :NwFJc  
    % y3'K+?4  
    %       n    m    Zernike function           Normalization J0@#xw=+  
    %       -------------------------------------------------- )lx;u.$4  
    %       0    0    1                                 1 7&|&y SCu  
    %       1    1    r * cos(theta)                    2 tN;~.\TKg  
    %       1   -1    r * sin(theta)                    2 :(jovse\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8+_e=_3R  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z{> )'A/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) gWjz3ob  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^j_t{h)W(0  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =WFG[~8  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) F,GG>(6c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &ujq6~#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) <^A1.o< GN  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q@l.p-:^U  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) LCpS}L;  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [*=UH* :'N  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6CWm;%B#G  
    %       -------------------------------------------------- r<kqs,-~  
    % /(A rA=#  
    %   Example 1: Q;p% VQ  
    % `~W?a  
    %       % Display the Zernike function Z(n=5,m=1) Z2\Xe~{  
    %       x = -1:0.01:1; yD&UH_ 1g  
    %       [X,Y] = meshgrid(x,x); tj!~7lo  
    %       [theta,r] = cart2pol(X,Y); 3:P "6mN  
    %       idx = r<=1; {D8[pG%z  
    %       z = nan(size(X)); !='&#@7u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ->YF</I  
    %       figure 71yf+xL  
    %       pcolor(x,x,z), shading interp ^5gB?V,  
    %       axis square, colorbar K06&.>v_  
    %       title('Zernike function Z_5^1(r,\theta)') bU"2D.k  
    % :,dO7dJi  
    %   Example 2: )VR/a  
    % {{ 4S gb  
    %       % Display the first 10 Zernike functions ZNbb8v  
    %       x = -1:0.01:1; iX'#~eK*<  
    %       [X,Y] = meshgrid(x,x); 1|\/2  
    %       [theta,r] = cart2pol(X,Y); mOi 8W,2  
    %       idx = r<=1; lW YgIpw  
    %       z = nan(size(X)); 7(= 09z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; UzmD2A sO"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Kkds^v6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7 S2QTRvH  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?qjlWCV|e  
    %       figure('Units','normalized') W[tX%B  
    %       for k = 1:10 ghqq%g  
    %           z(idx) = y(:,k); $5/lU }To  
    %           subplot(4,7,Nplot(k)) lAPvphO  
    %           pcolor(x,x,z), shading interp )y}W=Q>T  
    %           set(gca,'XTick',[],'YTick',[]) 2r&T.  
    %           axis square |nj,]pA  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )[hQK_e]  
    %       end R~DZY{u+/$  
    % VM[Vh k[  
    %   See also ZERNPOL, ZERNFUN2. _!*??B6u  
    mC(q8%/;  
    %   Paul Fricker 11/13/2006 VlQaT7Q  
    ?KfV>.()  
    #\fxU:z~r  
    % Check and prepare the inputs: P 6|\ ^  
    % ----------------------------- /"<o""<]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CwVORf,uA  
        error('zernfun:NMvectors','N and M must be vectors.') ^.@BD4/RPt  
    end As7Y4w*+  
    Lk|%2XGO&  
    if length(n)~=length(m) <);Nc1  
        error('zernfun:NMlength','N and M must be the same length.') UjU*`}k3  
    end SBBi"U:  
    #2023Zo]  
    n = n(:); 9n${M:F  
    m = m(:); xui.63/  
    if any(mod(n-m,2)) )tyhf(p6  
        error('zernfun:NMmultiplesof2', ... ESl</"<J  
              'All N and M must differ by multiples of 2 (including 0).') )!&7XL[  
    end tb-:9*2j-  
    Yw\PmRL"p  
    if any(m>n) amn\#_(  
        error('zernfun:MlessthanN', ... $fwv'  
              'Each M must be less than or equal to its corresponding N.') >f$>Odqe  
    end ED={OZD8  
    uxd5XS  
    if any( r>1 | r<0 ) 'bXm,Ed  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?x(]U+  
    end  !Z'x h +  
    D|}%(N@sl  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 67/&.d!  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ok=RhoZZ  
    end !V6O~#  
    Ty21-0 F  
    r = r(:); [BpIzhy&}  
    theta = theta(:); &K_"5.7-56  
    length_r = length(r); $=iV)-  
    if length_r~=length(theta) aD1G\*AFJ  
        error('zernfun:RTHlength', ... L/,W  
              'The number of R- and THETA-values must be equal.') 1h.N &;vy  
    end m\88Etl@  
    jcWv&u|  
    % Check normalization: $Xf gY1S  
    % -------------------- 32r2<QrX  
    if nargin==5 && ischar(nflag) ;L5'3+U  
        isnorm = strcmpi(nflag,'norm'); i%8I (F  
        if ~isnorm ; /3 <  
            error('zernfun:normalization','Unrecognized normalization flag.') WvN!8*XFM  
        end S'NZb!1+  
    else K>2mm!{  
        isnorm = false; v:MJF*/  
    end $Q[a^V~:  
    ztNm,1pnQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LP8Stj JP  
    % Compute the Zernike Polynomials xbFoXYqgP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MjAF&bD^  
    {jX h/`  
    % Determine the required powers of r: o!`.LL%  
    % ----------------------------------- ckXJ9>  
    m_abs = abs(m); >g!a\=-[  
    rpowers = []; MOuI;EF  
    for j = 1:length(n) L {6y]t7^  
        rpowers = [rpowers m_abs(j):2:n(j)]; _yq"F#,*  
    end V=pg9KR!T  
    rpowers = unique(rpowers); 7(m4,l+(  
    xr uQ=Q  
    % Pre-compute the values of r raised to the required powers, W_NQi  
    % and compile them in a matrix: ]bG8DEwD  
    % ----------------------------- X&1R6 O  
    if rpowers(1)==0 }xx[=t=nUf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9Z,vpTE  
        rpowern = cat(2,rpowern{:}); 0f).F  
        rpowern = [ones(length_r,1) rpowern]; t> J 43  
    else 85rXm*Df  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N@$g"w  
        rpowern = cat(2,rpowern{:}); !@9Vq6  
    end M^\#(0^2@  
    `p@YV(  
    % Compute the values of the polynomials: fKzOt<wm  
    % -------------------------------------- X'4g\)*  
    y = zeros(length_r,length(n)); `B{N3Kxbp  
    for j = 1:length(n) ?*I2?   
        s = 0:(n(j)-m_abs(j))/2; *]Nd I  
        pows = n(j):-2:m_abs(j); U[/k=}76  
        for k = length(s):-1:1  =,q,W$-  
            p = (1-2*mod(s(k),2))* ... -hav/7g  
                       prod(2:(n(j)-s(k)))/              ... \$Xo5f<  
                       prod(2:s(k))/                     ... cD&53FPXC  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... / AFn8=9'^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); F6*n,[5(  
            idx = (pows(k)==rpowers); b !FX]d1~k  
            y(:,j) = y(:,j) + p*rpowern(:,idx); c <8s \2  
        end S}Wj+H;  
         ^EGe%Fq*x]  
        if isnorm 3fJ GJW!zu  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); TAbd[:2{F  
        end o}&TFhT  
    end NIcPjo  
    % END: Compute the Zernike Polynomials ?{W@TY@S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @^8tk3$ Y  
    V @A+d[  
    % Compute the Zernike functions: T/DKT1P-  
    % ------------------------------ D"^4X'6  
    idx_pos = m>0; h }&WBN  
    idx_neg = m<0; xSFY8  
    }W{rDc kv  
    z = y; ezRhSN?  
    if any(idx_pos) 4,CQJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZUJ !  
    end gs)wQgJ[  
    if any(idx_neg) {&,9Zy]"S  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); iR;Sd >)  
    end q:4 51C  
    5z8CUDt 0  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的