非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 RB4n>&Y
function z = zernfun(n,m,r,theta,nflag) :G>w MMv&z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "R5G^-<hp
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0
s+X:*C~
% and angular frequency M, evaluated at positions (R,THETA) on the LZ wCe$1
% unit circle. N is a vector of positive integers (including 0), and g} !{_z
% M is a vector with the same number of elements as N. Each element JDf>Qg{
% k of M must be a positive integer, with possible values M(k) = -N(k) t
U}6^yc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ECt<\h7}
% and THETA is a vector of angles. R and THETA must have the same m 3UK`~ji
% length. The output Z is a matrix with one column for every (N,M) D?#l8
% pair, and one row for every (R,THETA) pair. CHTK.%AQH!
% (F^R9G|
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /"J 6``MV
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j7)mC4o:%
% with delta(m,0) the Kronecker delta, is chosen so that the integral a/uo)']B
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZBDF>u@
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2d*bF.
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e1g3a1tnWl
% tN<X3$aN
% The Zernike functions are an orthogonal basis on the unit circle. *%/O (ohs@
% They are used in disciplines such as astronomy, optics, and #
bHkI~
% optometry to describe functions on a circular domain. L ~'98C
% Gtaa^mnxD
% The following table lists the first 15 Zernike functions. d<d3j9u(#
% ,KJHY m=Q
% n m Zernike function Normalization 8#;=>m%
% -------------------------------------------------- zg3kU65PJE
% 0 0 1 1 g"748LY>=p
% 1 1 r * cos(theta) 2 |!]
"y<
% 1 -1 r * sin(theta) 2 vyDxX
% 2 -2 r^2 * cos(2*theta) sqrt(6) keC'/\e
% 2 0 (2*r^2 - 1) sqrt(3) |K_%]1*riC
% 2 2 r^2 * sin(2*theta) sqrt(6) i{m!v6j:
% 3 -3 r^3 * cos(3*theta) sqrt(8) |kK5:\H
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) |dQz(z&6{5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) m"rht:v5
% 3 3 r^3 * sin(3*theta) sqrt(8) yZ{yzv'D&
% 4 -4 r^4 * cos(4*theta) sqrt(10) O|sk"YXF
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PwW$=M{\.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) !#pc@(rE
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FkrXM!mJ
% 4 4 r^4 * sin(4*theta) sqrt(10) Mv%Qze,\V^
% -------------------------------------------------- k6M D3c
%
<=p>0L
% Example 1: L9O;K$[s
% nHm29{G0
% % Display the Zernike function Z(n=5,m=1) k Nc-@B
% x = -1:0.01:1; Hy4;i^Ik <
% [X,Y] = meshgrid(x,x); Bc.de&Bxz_
% [theta,r] = cart2pol(X,Y); (=uT*Cb
% idx = r<=1; P!Fykg
% z = nan(size(X)); _^Q!cB'~/`
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7zCJ3p
% figure b5H}0<
% pcolor(x,x,z), shading interp ?:3hp2k<
% axis square, colorbar {!D(3~MI
% title('Zernike function Z_5^1(r,\theta)') nEu:& 4
%
O6NH
% Example 2: 5@+?{Cl
% - (WH+
% % Display the first 10 Zernike functions ('J@GTe@xj
% x = -1:0.01:1; -_n Qn
% [X,Y] = meshgrid(x,x); F/ZFO5C%
% [theta,r] = cart2pol(X,Y); 4ams~
% idx = r<=1; _!1LV[x!s
% z = nan(size(X)); D(ItNMcKu
% n = [0 1 1 2 2 2 3 3 3 3]; <c[\\
:Hh*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; BW)-F (v
% Nplot = [4 10 12 16 18 20 22 24 26 28]; "'bl)^+?,
% y = zernfun(n,m,r(idx),theta(idx)); ,93Uji[l
% figure('Units','normalized') :+DrV\)
% for k = 1:10 z |llf7:
% z(idx) = y(:,k); Xi%Og\vm5
% subplot(4,7,Nplot(k)) cy.r/Z}
% pcolor(x,x,z), shading interp z(A[xN@/W<
% set(gca,'XTick',[],'YTick',[]) [-*&ZYp
% axis square %\
i&g$
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]UUa/ep-
% end ]O@iT= *3
% V5(_7b#z``
% See also ZERNPOL, ZERNFUN2. avq$aq(3&
_M/N_Fm
% Paul Fricker 11/13/2006 OJpfiZ@Q_
:wS&3:h
sR1_L/.
% Check and prepare the inputs: ]uox ^HC
% ----------------------------- vcdVck@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0]bt}rh
error('zernfun:NMvectors','N and M must be vectors.') e:Y+-C5
end (*$F7oO<
H9)n<r
if length(n)~=length(m) y/\b0&
error('zernfun:NMlength','N and M must be the same length.') I9zs
end '(@q"`n
K1hkOj;S
n = n(:); ,e43m=KhK
m = m(:); $h
pUI
if any(mod(n-m,2)) j7Fb4;o{
error('zernfun:NMmultiplesof2', ... r\Y,*e
'All N and M must differ by multiples of 2 (including 0).') 0\XWdTj{
end :ZY%-]u7
(0.oE%B",1
if any(m>n) \85%d0@3
error('zernfun:MlessthanN', ... t9U6\ru
'Each M must be less than or equal to its corresponding N.') rQ{|0+l
end ~'%d]s+q
aI&~aezmN
if any( r>1 | r<0 ) # &.syD#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') B`e/ /
end 7JBs7LG
*/h(4Hz
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Oq~{HJ{
error('zernfun:RTHvector','R and THETA must be vectors.') m@XX2l9:9
end xR0*w7YE
S'34](9n6
r = r(:); tV(iC~/
theta = theta(:); ]%D!-[C%1
length_r = length(r); X1(ds*'Kv
if length_r~=length(theta) Ob]\t/:%P
error('zernfun:RTHlength', ... ]:Ep1DIMl
'The number of R- and THETA-values must be equal.') U\lbh;9G
end \)/qCeiZ
CWkWW/ZI
% Check normalization: 1rZ E2
% -------------------- @>O7/d?O
if nargin==5 && ischar(nflag) +pqbl*W;1
isnorm = strcmpi(nflag,'norm'); 6"G(Iq'2t3
if ~isnorm "qq$i35x
error('zernfun:normalization','Unrecognized normalization flag.') 8*u'D@0
end %U{sn\V
else I%r7L
isnorm = false; C{/U;Ie-b
end TNqL ')f
k*;U?C!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;>Z+b#C[
% Compute the Zernike Polynomials s U`#hL6;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RL4|!HzR
Z0Sqw
% Determine the required powers of r: B0b|+5WhR
% ----------------------------------- _m?i$5
m_abs = abs(m); d~QKZ&jf
rpowers = []; esTL3 l{[
for j = 1:length(n) Q.$8>)
rpowers = [rpowers m_abs(j):2:n(j)]; L-E &m* %
end 8i]
S[$Fc
rpowers = unique(rpowers); Vwp>:'Pu
h81giY]
% Pre-compute the values of r raised to the required powers, *Hn=)q
% and compile them in a matrix: F.y_H#h
% ----------------------------- c\ZI
5&4jT
if rpowers(1)==0 i}8OaX3x
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R-zS7Jyox
rpowern = cat(2,rpowern{:}); ]zj#X\
rpowern = [ones(length_r,1) rpowern]; n>u_>2Ikkj
else l tNI+G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )8^E{w^D}
rpowern = cat(2,rpowern{:}); m&=Dy5
end I@m(}
VvIUAn
% Compute the values of the polynomials: %TI3Eb
% -------------------------------------- vh.8m$,
y = zeros(length_r,length(n)); tF,`v{-up
for j = 1:length(n) *^@b0f~vj
s = 0:(n(j)-m_abs(j))/2; OH>Gc-V
pows = n(j):-2:m_abs(j); ;V~x[J|x
for k = length(s):-1:1 u^SInanw
p = (1-2*mod(s(k),2))* ... [gUD +
prod(2:(n(j)-s(k)))/ ... VM5'd
prod(2:s(k))/ ... R(0[bMr3Q
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \1<aBgKi
prod(2:((n(j)+m_abs(j))/2-s(k))); ]/h$6mrL
idx = (pows(k)==rpowers); yH:p*|% :
y(:,j) = y(:,j) + p*rpowern(:,idx); _}47U7s8
end 2|?U%YrHWs
N}/V2K]Q
if isnorm +vJ}'uR3P
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rCqwJoC`v
end lmcgOTT):
end ,k.")
% END: Compute the Zernike Polynomials +(x(Ybl#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZL0Vx6Ph
V"8Go;[
% Compute the Zernike functions: yD\Kn{
% ------------------------------ !lg_zAV
idx_pos = m>0;
M3UC9t9]
idx_neg = m<0; ?r|iZKa
;C =d(
pY
z = y; 8)iI=,T*
if any(idx_pos) ._p2"<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >P(.yQ8&kL
end z+oy#p6+F.
if any(idx_neg) 19R~&E's
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~b*|V
end ,]JIp~=nsh
!ck luj
% EOF zernfun