切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11450阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 'gvR?[!t  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! FO5a<6  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  |ia5Mr"t  
    @C)s4{V  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 mn7I# ~  
    m+<&NDj.  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Ku[q #_7  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. RuHDAJ"&a  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of < se~wR  
    %   order N and frequency M, evaluated at R.  N is a vector of zJXZ0yRT  
    %   positive integers (including 0), and M is a vector with the +L09^I  
    %   same number of elements as N.  Each element k of M must be a v[$e{Dz(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 5RT#H0/+  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Xe4   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  !XTzsN  
    %   with one column for every (N,M) pair, and one row for every E2zL-ft.  
    %   element in R. s)\PY  
    % \n}%RD-Ce  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- .U{}N%S  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~BI`{/O=  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =d;a1AO{&  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )v(rEY  
    %   for all [n,m]. `Am|9LOT  
    % 1feVFRx'  
    %   The radial Zernike polynomials are the radial portion of the 6PsT])*>DE  
    %   Zernike functions, which are an orthogonal basis on the unit \4 b^*`d  
    %   circle.  The series representation of the radial Zernike %s}{5Qcl/  
    %   polynomials is T>'w]wi  
    % 61_PSScSY  
    %          (n-m)/2 IR"C?  
    %            __ `C4(C4u  
    %    m      \       s                                          n-2s |21V OPBS  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +P))*0(c_  
    %    n      s=0 remc_}`w  
    % |K. I%B  
    %   The following table shows the first 12 polynomials. !~zn*Hm  
    % %|4Kak]:Q  
    %       n    m    Zernike polynomial    Normalization %0&,_jM/9  
    %       --------------------------------------------- Lq3<&$  
    %       0    0    1                        sqrt(2) @Ov}X]ELi  
    %       1    1    r                           2 U9BhtmY  
    %       2    0    2*r^2 - 1                sqrt(6) I!!cA?W  
    %       2    2    r^2                      sqrt(6) j~b NH~3  
    %       3    1    3*r^3 - 2*r              sqrt(8) n%WjU)<  
    %       3    3    r^3                      sqrt(8) :H>I`)bw  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) C#[P<=v  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) *lDVV,T'}w  
    %       4    4    r^4                      sqrt(10) NP3 e^  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Q0-gU+ig  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 26}3  
    %       5    5    r^5                      sqrt(12) 7Ws88Qs)  
    %       --------------------------------------------- e>_a (  
    % _o w7E\70  
    %   Example: zn/>t-Bc  
    % r5Q#GY>  
    %       % Display three example Zernike radial polynomials #bcZ:D@FC  
    %       r = 0:0.01:1; WXo bh  
    %       n = [3 2 5]; # a4OtRiI  
    %       m = [1 2 1]; 3Z~_6P^ +N  
    %       z = zernpol(n,m,r); \hBzQ%0  
    %       figure a?ete9Q+  
    %       plot(r,z) ]fDb|s48  
    %       grid on uNEl]Q]<e]  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') SWtqp(h]'  
    % <0Y<9+g!  
    %   See also ZERNFUN, ZERNFUN2. sMLXn]m  
    vMY!Z1.*  
    % A note on the algorithm. jp "Q[gR##  
    % ------------------------ 7`7M4  
    % The radial Zernike polynomials are computed using the series N=U`BhL_  
    % representation shown in the Help section above. For many special ~p'|A}9[/  
    % functions, direct evaluation using the series representation can AP`1hz4].-  
    % produce poor numerical results (floating point errors), because g3Q;]8Y&  
    % the summation often involves computing small differences between s3sD7 @  
    % large successive terms in the series. (In such cases, the functions @[v,q_^8  
    % are often evaluated using alternative methods such as recurrence J3'q.Pc  
    % relations: see the Legendre functions, for example). For the Zernike 1\{FKO t  
    % polynomials, however, this problem does not arise, because the e KuF7Oo  
    % polynomials are evaluated over the finite domain r = (0,1), and Xn~\Vb  
    % because the coefficients for a given polynomial are generally all (:]+IjnE  
    % of similar magnitude. ZJ+ad,?,  
    % w)&4i$Lk6  
    % ZERNPOL has been written using a vectorized implementation: multiple Z0M,YSnz  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] P B-x_D  
    % values can be passed as inputs) for a vector of points R.  To achieve CL`+\ .  
    % this vectorization most efficiently, the algorithm in ZERNPOL v2r|) c,h  
    % involves pre-determining all the powers p of R that are required to 48S NI  
    % compute the outputs, and then compiling the {R^p} into a single o[RwK  
    % matrix.  This avoids any redundant computation of the R^p, and s;l"'6:_  
    % minimizes the sizes of certain intermediate variables. FzSL[S4i  
    % LB({,0mcX  
    %   Paul Fricker 11/13/2006 0s Jp,4Vv  
    p,f$9t4  
    : Wtpg   
    % Check and prepare the inputs: ukVBC"Ny  
    % ----------------------------- -awG1 4%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g[O  
        error('zernpol:NMvectors','N and M must be vectors.') }(DH_0  
    end EUh_`R  
    'C`Ykjf  
    if length(n)~=length(m) m8 _yorz  
        error('zernpol:NMlength','N and M must be the same length.') KT 6 ppo  
    end 3(t3r::&  
    | Vlx:  
    n = n(:); Jqgm>\y  
    m = m(:); 1R yE8DdP  
    length_n = length(n); AEx VKy  
    m6^#pqSL  
    if any(mod(n-m,2)) d@$bPQQ$,  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +Q"~2_q5/;  
    end h-O;5.m-P  
    !Ea9 fe  
    if any(m<0) O#):*II`9  
        error('zernpol:Mpositive','All M must be positive.') av5a2r0W1  
    end  y<m[9FC}  
    z`$c4p6G6  
    if any(m>n) VR1[-OE  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ;; {K##^l  
    end QBi]gT@&g  
    Z'uiU e`&  
    if any( r>1 | r<0 ) O&y`:#  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') tcRJ1:d  
    end G;W2Z,  
    TF!v,cX  
    if ~any(size(r)==1) IC8%E3  
        error('zernpol:Rvector','R must be a vector.') ypGt6t(;  
    end 4{vEW(  
    -I6t ^$HA  
    r = r(:); >!lpI5'Z&  
    length_r = length(r); XpkOCo02  
    ~b X~_\  
    if nargin==4 \o72VHG66  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); mvTp,^1  
        if ~isnorm Z1v~tqx  
            error('zernpol:normalization','Unrecognized normalization flag.') I S'Uuuz7g  
        end 3HuGb^SNg  
    else r_,;[+!  
        isnorm = false; X6(s][Wn  
    end )[M:#;,L  
    3iX\):4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |6^%_kO!|  
    % Compute the Zernike Polynomials cPAR.h,b?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }a9G,@:k  
    P,3w b  
    % Determine the required powers of r: |Ox='.oIb  
    % ----------------------------------- 4 83rU  
    rpowers = []; $?k]KD  
    for j = 1:length(n) Q[q`)~|  
        rpowers = [rpowers m(j):2:n(j)]; L1DH9wiQi  
    end IFS_DW  
    rpowers = unique(rpowers); y5O &9Ckw  
    W\w#}kY  
    % Pre-compute the values of r raised to the required powers, nfGI4ZE  
    % and compile them in a matrix: E'U x2sh  
    % ----------------------------- [Y@>,B!V  
    if rpowers(1)==0 Yc_(g0NK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +w?R4Sxjn  
        rpowern = cat(2,rpowern{:}); tk=S4 /VWv  
        rpowern = [ones(length_r,1) rpowern]; :Y1;= W  
    else Kdp($L9r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &(32s!qH  
        rpowern = cat(2,rpowern{:}); W-&V:S{<  
    end 0x]?rd+q8Q  
     O&|<2Qr  
    % Compute the values of the polynomials: 3b]M\ F9  
    % -------------------------------------- nu-&vX  
    z = zeros(length_r,length_n); 6'@{ * u  
    for j = 1:length_n T{f$S  
        s = 0:(n(j)-m(j))/2; ez*QP|F*9  
        pows = n(j):-2:m(j); q}VdPt>X/  
        for k = length(s):-1:1 >{:hadUH  
            p = (1-2*mod(s(k),2))* ... $of2lA  
                       prod(2:(n(j)-s(k)))/          ... |K-`  
                       prod(2:s(k))/                 ... CAs:>s '8  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... A%$~  
                       prod(2:((n(j)+m(j))/2-s(k))); r@Jy*2[-Jq  
            idx = (pows(k)==rpowers); btq 4diW  
            z(:,j) = z(:,j) + p*rpowern(:,idx); k>.8lc\  
        end ]Zc|<f;  
         6X m'^T  
        if isnorm !8cV."~  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); PRTjXq6)5  
        end l$EN7^%w  
    end {)!>e  
    P}A!C9Frh  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) GjHR.p?-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. \'*M }G  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated (A6~mi r!  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive /kkUEo+  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, _"yA1D0d_  
    %   and THETA is a vector of angles.  R and THETA must have the same fTvm2+.nX  
    %   length.  The output Z is a matrix with one column for every P-value, 'EAskA] *  
    %   and one row for every (R,THETA) pair. wL 4Y%g  
    % V<H9KA  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 9iZio3m  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) n%J=!z3  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) p T8?z  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 u%)gnj_  
    %   for all p. p .=9[`  
    % IyyBW2  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 yivu|q  
    %   Zernike functions (order N<=7).  In some disciplines it is #Q^" .#  
    %   traditional to label the first 36 functions using a single mode tULGfvp  
    %   number P instead of separate numbers for the order N and azimuthal V1V0T ,  
    %   frequency M. 4#03x:/<\  
    % c!4F0(n4  
    %   Example: 4r1\&sI$~  
    % GN(<$,~g  
    %       % Display the first 16 Zernike functions `9J9[!+!`  
    %       x = -1:0.01:1; r%ES#\L6+|  
    %       [X,Y] = meshgrid(x,x); iT4*~(p 3  
    %       [theta,r] = cart2pol(X,Y); 1Qf}nWy  
    %       idx = r<=1; TD}<U8I8_  
    %       p = 0:15; H,X|-B  
    %       z = nan(size(X)); K ?!qNK  
    %       y = zernfun2(p,r(idx),theta(idx)); &HM-UC|  
    %       figure('Units','normalized') '|^:,@8P9  
    %       for k = 1:length(p) 1I9v`eT4  
    %           z(idx) = y(:,k); ]zSFX =~(S  
    %           subplot(4,4,k) s.}K?)mH  
    %           pcolor(x,x,z), shading interp e}e8WR=B  
    %           set(gca,'XTick',[],'YTick',[]) <s'de$[  
    %           axis square `)n4I:)2  
    %           title(['Z_{' num2str(p(k)) '}']) ?W'p&(;  
    %       end ilL0=[2  
    % d7X&3L%Oq  
    %   See also ZERNPOL, ZERNFUN. <'I["Um  
    .9qK88fUR  
    %   Paul Fricker 11/13/2006 Fr8GGN~/  
    RU:Rt'  
    (G>[A}-  
    % Check and prepare the inputs: { :tO RF  
    % ----------------------------- ^[tE^(|T  
    if min(size(p))~=1 MePD:;mm^  
        error('zernfun2:Pvector','Input P must be vector.') ;"wCBuXcu  
    end ((k"*f2%  
    5G* cAlU  
    if any(p)>35 85GIEUvH/  
        error('zernfun2:P36', ... f V. c6  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 7C{ y NX#  
               '(P = 0 to 35).']) fSuykbZ  
    end .gRj^pu   
    fe?Z33V  
    % Get the order and frequency corresonding to the function number: yp.K-  
    % ---------------------------------------------------------------- BPba3G9H  
    p = p(:); )\fY1WD  
    n = ceil((-3+sqrt(9+8*p))/2); &r5q,l&@n  
    m = 2*p - n.*(n+2); 2d ! '9mA  
    h4? x_"V"  
    % Pass the inputs to the function ZERNFUN: #@S%?`4,  
    % ---------------------------------------- 86r5!@WN  
    switch nargin !Lf<hS^  
        case 3 g>@JGzMLP  
            z = zernfun(n,m,r,theta); TC\+>LXiZ  
        case 4 bmfM_oz  
            z = zernfun(n,m,r,theta,nflag); IU%|K~_n  
        otherwise %a;#]d  
            error('zernfun2:nargin','Incorrect number of inputs.') QU|_ r2LM  
    end y/lF1{}5  
    j9+$hu#a  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ifj&S'():  
    function z = zernfun(n,m,r,theta,nflag) P3$eomX'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. *Z5^WHwg  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E$e7(D  
    %   and angular frequency M, evaluated at positions (R,THETA) on the `@]s[1?f  
    %   unit circle.  N is a vector of positive integers (including 0), and [I $+wWW_  
    %   M is a vector with the same number of elements as N.  Each element k*.]*]   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) RU)35oEV|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]b/]^1-(b  
    %   and THETA is a vector of angles.  R and THETA must have the same NR{wq|"  
    %   length.  The output Z is a matrix with one column for every (N,M) C$3*[  
    %   pair, and one row for every (R,THETA) pair. *2'8d8>R%]  
    % @fL ^I&++  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike o u|emAV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )?L=o0  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0J)s2&H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H"P b)t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized gg;r;3u  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R$awgSE  
    % d"$8-_K  
    %   The Zernike functions are an orthogonal basis on the unit circle. )xGAe#E~j  
    %   They are used in disciplines such as astronomy, optics, and ( ?V`|[+u  
    %   optometry to describe functions on a circular domain. L+%"e w  
    % TOYK'|lwM  
    %   The following table lists the first 15 Zernike functions. ]Z JoC!u  
    % P:qmg"i@3  
    %       n    m    Zernike function           Normalization LSo!_tY  
    %       -------------------------------------------------- YdY-Jg Xm  
    %       0    0    1                                 1 h`fVQN.3  
    %       1    1    r * cos(theta)                    2 CI|lJ  
    %       1   -1    r * sin(theta)                    2 &c`-/8c  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) p|4qkJK8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "q4tvcK.  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) BG{f)2F\  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) g|=_@ pL  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) R#(0C(FI^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .=_p6_G  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]6&NIz`:,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7\u+%i;YZ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) SGd]o"VF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) d1/emwH  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '[F:uA  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .u`[|: K  
    %       -------------------------------------------------- \ /-c)  
    % ?I.9?cQXZ  
    %   Example 1: fGgt[f[  
    % r;cDYg  
    %       % Display the Zernike function Z(n=5,m=1) 0MQ= Rt  
    %       x = -1:0.01:1; JuRoeq.  
    %       [X,Y] = meshgrid(x,x); mp|pz%U  
    %       [theta,r] = cart2pol(X,Y); kH!Z|P s?R  
    %       idx = r<=1; Pg4&}bX:I  
    %       z = nan(size(X)); +bjy#=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); fS]& ?$q  
    %       figure Urj*V0^  
    %       pcolor(x,x,z), shading interp x^eu[olN  
    %       axis square, colorbar <QtZ6-;_f  
    %       title('Zernike function Z_5^1(r,\theta)')  K +7  
    % Ku;fZN[g  
    %   Example 2: l =^A41L_  
    % wZrFu(_  
    %       % Display the first 10 Zernike functions XLpP*VH3  
    %       x = -1:0.01:1; wI#8|,]"z  
    %       [X,Y] = meshgrid(x,x); D+8d^-:  
    %       [theta,r] = cart2pol(X,Y); ]{-.?W*$  
    %       idx = r<=1; 4Nm>5*]  
    %       z = nan(size(X)); ?0b-fL^^+l  
    %       n = [0  1  1  2  2  2  3  3  3  3]; z,HhSW?&^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; L aTcBcI  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; c0Ug5Vr  
    %       y = zernfun(n,m,r(idx),theta(idx)); owVvbC2<b(  
    %       figure('Units','normalized') t2&kGf"  
    %       for k = 1:10 K/4@ 2vF  
    %           z(idx) = y(:,k); vwR_2u  
    %           subplot(4,7,Nplot(k)) >WLPE6E  
    %           pcolor(x,x,z), shading interp ?z ,!iK`  
    %           set(gca,'XTick',[],'YTick',[]) &|SWy 2 N  
    %           axis square uL'f8Pqg  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |5@Ra@0  
    %       end h!"2Ux3!x  
    % A`c22Ls]  
    %   See also ZERNPOL, ZERNFUN2. # @\3{;{R  
    s"(RdJ-,  
    %   Paul Fricker 11/13/2006 #ydold{F  
    7KT*p&xm  
    ~z[`G#dU  
    % Check and prepare the inputs: {1GJ,['qL  
    % ----------------------------- $Dg-;I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) r}U6LE?>  
        error('zernfun:NMvectors','N and M must be vectors.') %wD#[<BGn>  
    end 6(|mdk`i  
    ?y>N&\pt2  
    if length(n)~=length(m) HKN|pO3v  
        error('zernfun:NMlength','N and M must be the same length.') _S!^=9bJ  
    end }"Y<<e<z:  
    _h%Jf{nu  
    n = n(:); .X g.,kW  
    m = m(:); 0Q3U\cDr  
    if any(mod(n-m,2)) o$_0Qs$  
        error('zernfun:NMmultiplesof2', ... UhB +c  
              'All N and M must differ by multiples of 2 (including 0).') :4AQhn^;"  
    end w+$$uz  
    D#jwI,n}x  
    if any(m>n) b3N IFKw  
        error('zernfun:MlessthanN', ... 1nVQYqT_  
              'Each M must be less than or equal to its corresponding N.') ]l7W5$26 @  
    end +]l?JKV  
    lH fZw})d  
    if any( r>1 | r<0 ) +Z#=z,.^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') VO#rJ1J  
    end ?o<vmIge  
    (6,:X  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8)B{x[?|  
        error('zernfun:RTHvector','R and THETA must be vectors.') X)g X9DA  
    end A#>wbHjWF  
    ]+lT*6P*  
    r = r(:); D@=]mh6vl  
    theta = theta(:); VPCI5mS_  
    length_r = length(r); ODJ"3 J  
    if length_r~=length(theta) 4+olyBht  
        error('zernfun:RTHlength', ... :kZ]Swi 5  
              'The number of R- and THETA-values must be equal.') &+9 ;  
    end bLT3:q#s  
    v[CR$@Y  
    % Check normalization: 88Pt"[{1  
    % -------------------- j/V_h'}  
    if nargin==5 && ischar(nflag) D5zc{) /  
        isnorm = strcmpi(nflag,'norm'); k-$Acv(  
        if ~isnorm e\)%<G5  
            error('zernfun:normalization','Unrecognized normalization flag.') Aez2n(yac  
        end [*%lm9 x  
    else T! }G51  
        isnorm = false; <Qq {&,Le  
    end )Rr6@o  
    #rHMf%0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <5Vf3KoC&  
    % Compute the Zernike Polynomials kV-<[5AWW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DksYKv  
    g5BL"Dn  
    % Determine the required powers of r: j;$f[@0o  
    % ----------------------------------- }0 ~$^J  
    m_abs = abs(m); (o>N*?, }  
    rpowers = []; |:)Bo<8  
    for j = 1:length(n) iBE|6+g~Cj  
        rpowers = [rpowers m_abs(j):2:n(j)]; 'O%*:'5k  
    end k_g@4x1y*  
    rpowers = unique(rpowers); osc8;B/  
    I!zoo[/)%  
    % Pre-compute the values of r raised to the required powers, +;,{`*W+N  
    % and compile them in a matrix: 74_?@Z(  
    % ----------------------------- c<13r=+  
    if rpowers(1)==0 Yjg$o:M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); besc7!S  
        rpowern = cat(2,rpowern{:}); n'rq  
        rpowern = [ones(length_r,1) rpowern]; e`Yj}i*bx]  
    else 8Y SvBy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^;II@n i  
        rpowern = cat(2,rpowern{:}); j ,rc9  
    end ~HY)$Yp;  
    Zl_sbIY  
    % Compute the values of the polynomials: 5|0}bv O  
    % -------------------------------------- n%r>W^2j  
    y = zeros(length_r,length(n)); '[r:pwE  
    for j = 1:length(n) _d!sSyk`  
        s = 0:(n(j)-m_abs(j))/2; ,]wab6sY  
        pows = n(j):-2:m_abs(j); Vc\g"1 x  
        for k = length(s):-1:1 2<7pe@c98  
            p = (1-2*mod(s(k),2))* ... <v ub Q4  
                       prod(2:(n(j)-s(k)))/              ... $y;w@^  
                       prod(2:s(k))/                     ... ]xf89[;0  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /@"mQx~[q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); y0O(n/  
            idx = (pows(k)==rpowers); hLfWDf*T|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5ncW s)  
        end s?<FS@k  
         %g*nd#wG  
        if isnorm LBio$67F  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $%U}k=-  
        end /A5=L<T6F  
    end 3SM'vV0[  
    % END: Compute the Zernike Polynomials %n]jsdE^|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]:ca=&>  
    Gb2|e.z  
    % Compute the Zernike functions: aT/2rMKPF  
    % ------------------------------ zt2#K  
    idx_pos = m>0; Qc33C A  
    idx_neg = m<0; M5[#YG'FlQ  
    ks$5$,^T2o  
    z = y; '>[ZfT  
    if any(idx_pos) Z4 z|B&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .}E<,T  
    end `-nSH)GBM  
    if any(idx_neg) #WA7}tHb  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0gyvRM@ x[  
    end ZyDf@(z`  
    6n:X p_yO  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的