切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11061阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "xMnD(p  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ,a@jg&Mb]  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  MY" 8!  
    ]B3\IT  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 N@r`+(_t  
    aX{i   
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) |QcE5UC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. LOX}  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 3yp?|> e  
    %   order N and frequency M, evaluated at R.  N is a vector of ,ctm;T1H+  
    %   positive integers (including 0), and M is a vector with the 5KIlU78  
    %   same number of elements as N.  Each element k of M must be a j8#xNA  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ! uX0G4  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is FQW{c3%qZ  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix vn Ol-`Z ~  
    %   with one column for every (N,M) pair, and one row for every O/1:2G/`  
    %   element in R. d:SLyFD$q  
    % 5nSi29C  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- q9iHJ'lMD*  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is (HD8Mm  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Tw+V$:$$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 $$f89, h  
    %   for all [n,m]. 2SV}mK U  
    % b^q8s4(   
    %   The radial Zernike polynomials are the radial portion of the {sb2r%U!+  
    %   Zernike functions, which are an orthogonal basis on the unit ngI3.v/R  
    %   circle.  The series representation of the radial Zernike ZW)_dg9  
    %   polynomials is |(77ao3  
    % 7wB*@a-  
    %          (n-m)/2 L2<IG)oXU  
    %            __ eb#p-=^KP  
    %    m      \       s                                          n-2s tS:/:0HnA)  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r k=M_2T'  
    %    n      s=0 }K'gjs/N;  
    % y13Y,cz~B  
    %   The following table shows the first 12 polynomials. @:%p#$V  
    % :HW\awv  
    %       n    m    Zernike polynomial    Normalization J_eu(d[9  
    %       --------------------------------------------- #WqpU.  
    %       0    0    1                        sqrt(2) $z48~nu@ j  
    %       1    1    r                           2 _6!@>`u~  
    %       2    0    2*r^2 - 1                sqrt(6) 9^<Y~rkm  
    %       2    2    r^2                      sqrt(6) t$zeB OI)  
    %       3    1    3*r^3 - 2*r              sqrt(8) Y7_2pGvZ  
    %       3    3    r^3                      sqrt(8) Ehw2o-s^  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) "HwSW4a]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) -.!+i8d>  
    %       4    4    r^4                      sqrt(10) J_`a}ox  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) W:hg*0z-*  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Ygs:Ox"[-G  
    %       5    5    r^5                      sqrt(12) \qZ>WCp>r  
    %       --------------------------------------------- ?4%@"49n X  
    % Uy98lv  
    %   Example: 2m{d>  
    % T:=ST3#m  
    %       % Display three example Zernike radial polynomials e]DuV)k&  
    %       r = 0:0.01:1; G<:gNWXd\  
    %       n = [3 2 5]; a>8&B  
    %       m = [1 2 1]; cf+EQY  
    %       z = zernpol(n,m,r); [M/0Qx[,  
    %       figure ,+GS.]8<  
    %       plot(r,z) v9 *WM3  
    %       grid on ;>*Pwz`~jT  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') $eiW2@  
    % !=bGU=^  
    %   See also ZERNFUN, ZERNFUN2. nI7v:h4  
    G(;R+%pu  
    % A note on the algorithm. ?d' vIpzO!  
    % ------------------------ 1EAQ ~S!2  
    % The radial Zernike polynomials are computed using the series WG]`Sy  
    % representation shown in the Help section above. For many special /CXQ&nwY9=  
    % functions, direct evaluation using the series representation can 2|\WaH9P  
    % produce poor numerical results (floating point errors), because Iq@&?,W  
    % the summation often involves computing small differences between )o`[wq  
    % large successive terms in the series. (In such cases, the functions Y. Uca<{.[  
    % are often evaluated using alternative methods such as recurrence ~+S,`8-P  
    % relations: see the Legendre functions, for example). For the Zernike d J.up*aR  
    % polynomials, however, this problem does not arise, because the zGaqYbQD  
    % polynomials are evaluated over the finite domain r = (0,1), and Oj8xc!d'  
    % because the coefficients for a given polynomial are generally all r)|6H"n#]S  
    % of similar magnitude. ;Z.sK-NJ4  
    % j.kv!;Rj=  
    % ZERNPOL has been written using a vectorized implementation: multiple w JF(&P  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] jp880}  
    % values can be passed as inputs) for a vector of points R.  To achieve k@P?,r  
    % this vectorization most efficiently, the algorithm in ZERNPOL ~B\O{5W  
    % involves pre-determining all the powers p of R that are required to $bFH%EA.  
    % compute the outputs, and then compiling the {R^p} into a single hV}C.- 6h  
    % matrix.  This avoids any redundant computation of the R^p, and &fe67#0r)  
    % minimizes the sizes of certain intermediate variables. 4L/nEZ!Nsu  
    % Xmw%f[Xl  
    %   Paul Fricker 11/13/2006 {J*|)-eAw  
    4 z^7T  
    }6"l`$=Ev  
    % Check and prepare the inputs:  N<~LgH  
    % ----------------------------- Hq aay  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vD76IG jm  
        error('zernpol:NMvectors','N and M must be vectors.') {sW>J0  
    end -unQ 4G  
    w*\JA+  
    if length(n)~=length(m) s0m k<>z  
        error('zernpol:NMlength','N and M must be the same length.') %$'Z"njO&  
    end a[jNT$8  
    #_Z)2ESX  
    n = n(:); c)Ne/E{!0  
    m = m(:); !.{"Ttn;s  
    length_n = length(n);  y7vA[us  
    >Z>s R0s7  
    if any(mod(n-m,2)) :Q ?p^OC  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') L KLLBrm:  
    end {~`{bnx^]7  
    V3<#_:;  
    if any(m<0) C9 j{:&  
        error('zernpol:Mpositive','All M must be positive.') g>QN9v})  
    end tuJ{IF  
    Ym?VF{e,  
    if any(m>n) {wD:!\5  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') S5\KI+;PW  
    end xoQ(GrBY  
    LKgo(&mY  
    if any( r>1 | r<0 ) pP%9MSCi  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Mtc  -  
    end S 59^$  
     \|C*b<  
    if ~any(size(r)==1) U~w8yMxX  
        error('zernpol:Rvector','R must be a vector.') NInZ~4:  
    end p\Fxt1Y@X  
    NH4T*R)Vz  
    r = r(:); MS\?+8|SV(  
    length_r = length(r); @M6F?;  
    =1\mLI}@  
    if nargin==4 xy4P_  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ,I H~  
        if ~isnorm +1^L35\@  
            error('zernpol:normalization','Unrecognized normalization flag.') F{Oaxn  
        end HMhdK  
    else |>b;M ,`OO  
        isnorm = false; h:i FLSf  
    end :r7!HG _  
    e?pQuF~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =s9*=5r8  
    % Compute the Zernike Polynomials xT-`dS0u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h)^|VM   
    x,HD,VQR/  
    % Determine the required powers of r: Zr(eH2}0D  
    % ----------------------------------- >J#/IjCW  
    rpowers = []; sl:1P^b  
    for j = 1:length(n) JAy-N bb\  
        rpowers = [rpowers m(j):2:n(j)]; BS%pS(  
    end LtPaTe  
    rpowers = unique(rpowers); jp|*kBDq\  
    N*+WGsxl$z  
    % Pre-compute the values of r raised to the required powers, c]"w0a-`^@  
    % and compile them in a matrix: z pDc~ebh  
    % ----------------------------- i(kx'ua?  
    if rpowers(1)==0 _{n4jdw%(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]|u7P{Z"R  
        rpowern = cat(2,rpowern{:}); ~V0 GRPnI  
        rpowern = [ones(length_r,1) rpowern]; 'K\H$<CJ  
    else LI<Emez  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Gd$!xN %O  
        rpowern = cat(2,rpowern{:}); JvNd'u)Z<  
    end  FL b  
    < <F  
    % Compute the values of the polynomials: 7=s0Pm  
    % -------------------------------------- @d:GtAW  
    z = zeros(length_r,length_n); pu_?) U  
    for j = 1:length_n @$nh6l>i  
        s = 0:(n(j)-m(j))/2; ^^< C9  
        pows = n(j):-2:m(j); w`v` aw]  
        for k = length(s):-1:1 FAX[| p  
            p = (1-2*mod(s(k),2))* ... y}?PyPz  
                       prod(2:(n(j)-s(k)))/          ... y`z4S,  
                       prod(2:s(k))/                 ... {R"mvB`  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... D5:|CMQ  
                       prod(2:((n(j)+m(j))/2-s(k))); Xka+1c  
            idx = (pows(k)==rpowers); "H=N>=g0E  
            z(:,j) = z(:,j) + p*rpowern(:,idx); F6}YM|  
        end 2:<H)oB  
         ) I(9qt>Y  
        if isnorm JJ'f\f9  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 9|Ylv:sR  
        end 5,-:31(j\  
    end ~NLthZ (O  
    \.>7w 1p  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) vif)g6,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 4S4gK   
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated /t! 5||G  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 9XKqsvdS  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, n5;@}Rai  
    %   and THETA is a vector of angles.  R and THETA must have the same :{VXDT"  
    %   length.  The output Z is a matrix with one column for every P-value, C%{2 sMJz  
    %   and one row for every (R,THETA) pair. (nXnP{yb  
    % ^Wn+G8n  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike !aKu9SR^e  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) IP@3R(DS%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) sKJr34  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 1Kr$JIcd  
    %   for all p. =qpGAv_#  
    % t0r0{:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 gsUF\4A(J  
    %   Zernike functions (order N<=7).  In some disciplines it is fK *l?Hr  
    %   traditional to label the first 36 functions using a single mode C`.eJF  
    %   number P instead of separate numbers for the order N and azimuthal U_;="y  
    %   frequency M. Gt _tL%  
    % )l.uj  
    %   Example: -~4r6ZcA  
    % ew~?&=  
    %       % Display the first 16 Zernike functions |"S#uJW  
    %       x = -1:0.01:1; R MOs1<D  
    %       [X,Y] = meshgrid(x,x); *|y$z+g/  
    %       [theta,r] = cart2pol(X,Y); sINf/mv+  
    %       idx = r<=1; ,>za|y<n  
    %       p = 0:15; bsr]Z&9rrk  
    %       z = nan(size(X)); Vh2uzG  
    %       y = zernfun2(p,r(idx),theta(idx)); _0FMwC#DY  
    %       figure('Units','normalized') ,zr,>^ v  
    %       for k = 1:length(p) ZJc{P5a1J  
    %           z(idx) = y(:,k); iH@u3[w  
    %           subplot(4,4,k) l'@!'  
    %           pcolor(x,x,z), shading interp WPAUY<6f  
    %           set(gca,'XTick',[],'YTick',[]) %NJ0 Y(:9(  
    %           axis square *uf)t,%  
    %           title(['Z_{' num2str(p(k)) '}']) w!v^6[!  
    %       end (6NDY5h~=n  
    % |)" y  
    %   See also ZERNPOL, ZERNFUN. cruBJZr*  
    hdcB*j?4  
    %   Paul Fricker 11/13/2006 i+_=7(e  
    6xwjKh:9  
    UNwjx7usD  
    % Check and prepare the inputs: 1]5k l J  
    % ----------------------------- %<+uJ'pj  
    if min(size(p))~=1 '+ZJf&Ox  
        error('zernfun2:Pvector','Input P must be vector.') g|->W]q@;  
    end @"A 5yD5  
    ^Ifm1$X}  
    if any(p)>35 a5saN5)H  
        error('zernfun2:P36', ... <DPRQhNW]  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... tm1&OY  
               '(P = 0 to 35).']) e`H>}O/ai  
    end r_T"b  
    3e47UquZ  
    % Get the order and frequency corresonding to the function number: 9I2&Vx=DSt  
    % ---------------------------------------------------------------- rXT?w]4  
    p = p(:); %&VI-7+K  
    n = ceil((-3+sqrt(9+8*p))/2); m@+QC$6S  
    m = 2*p - n.*(n+2); 6-tIe _5  
    S[yrGX8lu  
    % Pass the inputs to the function ZERNFUN: KK1?!7  
    % ---------------------------------------- X%znNx  
    switch nargin 6}Tftw$0z  
        case 3 7FyE?  
            z = zernfun(n,m,r,theta); lMh>eX  
        case 4 d$x vEm  
            z = zernfun(n,m,r,theta,nflag); ='w 2"4  
        otherwise C4d'z(<  
            error('zernfun2:nargin','Incorrect number of inputs.') zVf79UrK  
    end Z<^EZX3N  
    1KGf @u%-1  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ! l0"nPM=  
    function z = zernfun(n,m,r,theta,nflag) 0A~UuH0.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cN?/YkW?]  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SiaW; ks  
    %   and angular frequency M, evaluated at positions (R,THETA) on the D}X6I#U'/  
    %   unit circle.  N is a vector of positive integers (including 0), and sR83e|4I  
    %   M is a vector with the same number of elements as N.  Each element H lM7^3(&  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) E@xrn+L>-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ezY^T  
    %   and THETA is a vector of angles.  R and THETA must have the same Gos# =H  
    %   length.  The output Z is a matrix with one column for every (N,M) %xG<hNw/  
    %   pair, and one row for every (R,THETA) pair. yvzH}$!]  
    % t2OBVzK  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0%[IG$u)|  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EmrkaV-?k  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7)[Ve1;/N  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^,^MW  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ^xNzppz`]C  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [wm0a4fg  
    % M&29J  
    %   The Zernike functions are an orthogonal basis on the unit circle. 7=u Gf$/  
    %   They are used in disciplines such as astronomy, optics, and V>Z4gZp5sc  
    %   optometry to describe functions on a circular domain. NyRa.hgZ;  
    % ~CV.Ci.dG  
    %   The following table lists the first 15 Zernike functions. PWx%~U.8~j  
    % (BxmV1  
    %       n    m    Zernike function           Normalization Zr2T^p5u  
    %       -------------------------------------------------- !vJ$$o6#  
    %       0    0    1                                 1 : 7"Q  
    %       1    1    r * cos(theta)                    2 Ly^bP>2i  
    %       1   -1    r * sin(theta)                    2 oOvQA W8`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0x5Ax=ut  
    %       2    0    (2*r^2 - 1)                    sqrt(3) l=l$9H,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =. \hCgq  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) b-#{O=B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,<#Rk 'y$  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Keo<#Cc?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) uo2k  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ilJ`_QN  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n YUFRV$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~@l4T_,k  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gYrB@W; 2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) BgT ^  
    %       -------------------------------------------------- CR9wp] -Vd  
    % : Bo  
    %   Example 1: = <Sn&uL  
    % =JfwHFHd#  
    %       % Display the Zernike function Z(n=5,m=1) h0k?(O  
    %       x = -1:0.01:1; }}]Lf3;  
    %       [X,Y] = meshgrid(x,x); =:w,wI.  
    %       [theta,r] = cart2pol(X,Y); V~/-e- 9u  
    %       idx = r<=1; OOXSJE1  
    %       z = nan(size(X)); u*=^>LD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); EZI#CLT[  
    %       figure P)f8 lU^z  
    %       pcolor(x,x,z), shading interp cf"&22TQ+Z  
    %       axis square, colorbar aAGV\o{^  
    %       title('Zernike function Z_5^1(r,\theta)') inO;Uwlv  
    % -`\^_nVC  
    %   Example 2: &Lt$~}*&6  
    % JZxA:dg l  
    %       % Display the first 10 Zernike functions ?uL-qsU  
    %       x = -1:0.01:1; +3-5\t`  
    %       [X,Y] = meshgrid(x,x); H9ES|ZJs  
    %       [theta,r] = cart2pol(X,Y); bK0(c1*a[e  
    %       idx = r<=1; 9^n0<(99b  
    %       z = nan(size(X)); e>e${\ =,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; j?|Vx'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; j][&o-Ev  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )mwwceN  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1irSI,j%z  
    %       figure('Units','normalized') Yu)GV7\2  
    %       for k = 1:10 N_B^k8j  
    %           z(idx) = y(:,k); G,?a8(  
    %           subplot(4,7,Nplot(k)) weu+$Kr  
    %           pcolor(x,x,z), shading interp 'R-\6;3E>9  
    %           set(gca,'XTick',[],'YTick',[]) j[dZ*Jr_  
    %           axis square WZ,k][~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) aBaiXv/*  
    %       end \ Xh C  
    % hO.b?>3NL  
    %   See also ZERNPOL, ZERNFUN2. LFi* O&  
    U7n#TPet  
    %   Paul Fricker 11/13/2006 q\i&E Rr  
    7"aN7Q+EbI  
    g7hI9(8+  
    % Check and prepare the inputs: ,|VLOY ^  
    % ----------------------------- ub>:dNBN  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aLm~.@Q  
        error('zernfun:NMvectors','N and M must be vectors.') Pm2LB<qS  
    end ai?J  
    &)tv4L&  
    if length(n)~=length(m) o*7NyiJ@z  
        error('zernfun:NMlength','N and M must be the same length.') P#!g P3  
    end #Ox@[Z1I  
     C&qo$C  
    n = n(:); W>+`e]z  
    m = m(:); U.~G{H`G,u  
    if any(mod(n-m,2)) rWNe&gFM  
        error('zernfun:NMmultiplesof2', ... iVeH\a  
              'All N and M must differ by multiples of 2 (including 0).') <h#W*a  
    end ZoJq JWsd  
    GQYn |vm  
    if any(m>n) Oj%5FUP~[%  
        error('zernfun:MlessthanN', ... 7z3tDE[#  
              'Each M must be less than or equal to its corresponding N.') w<!,mL5 N  
    end  9Ca0Tu  
    ?nL,Otz  
    if any( r>1 | r<0 ) )mN/e+/Lu  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') aiz ws[C  
    end _>`9]6\&  
    Yh!k uS#<  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) [6g$;SicT  
        error('zernfun:RTHvector','R and THETA must be vectors.') Dl0{pGK~  
    end zq$L[ X  
    PPG+~.7  
    r = r(:); ]CcRI|g}  
    theta = theta(:); G+2fmVB*X  
    length_r = length(r); V73/q  
    if length_r~=length(theta) aLW3Ub{h  
        error('zernfun:RTHlength', ... ^vSSG5  :  
              'The number of R- and THETA-values must be equal.') YGQ/zB^Pj  
    end ( ?(gz#-  
    K>~YO~~  
    % Check normalization: v8C($<3%  
    % -------------------- G!C }ULq  
    if nargin==5 && ischar(nflag) 7>MG8pf3a  
        isnorm = strcmpi(nflag,'norm'); |/xA5_-N  
        if ~isnorm $i<+O,@-  
            error('zernfun:normalization','Unrecognized normalization flag.') b5%<},ySq  
        end sx7zRw >X  
    else "v0bdaQH3  
        isnorm = false; l SKq  
    end fH9"sBiO  
    1]0;2THx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;m.6 ~A  
    % Compute the Zernike Polynomials 0'A"]6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q4!\^HwQ  
    V,& OO  
    % Determine the required powers of r: 9vDOSwU*  
    % ----------------------------------- qo \9,<  
    m_abs = abs(m); \@h$|nb  
    rpowers = []; jzpDKc%  
    for j = 1:length(n) jp4-w(  
        rpowers = [rpowers m_abs(j):2:n(j)]; /L(}VJg-  
    end ()Wu_Q  
    rpowers = unique(rpowers); c]U+6JH  
    "B +F6  
    % Pre-compute the values of r raised to the required powers, o>+mw|{  
    % and compile them in a matrix: +CSv@ />3  
    % ----------------------------- Oop6o $k  
    if rpowers(1)==0 .C+(E@eyA  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NB^Al/V@  
        rpowern = cat(2,rpowern{:});  yoe@]c=  
        rpowern = [ones(length_r,1) rpowern]; N5K2Hv<"  
    else <?DI!~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); UB8n,+R  
        rpowern = cat(2,rpowern{:}); m&q0 _nay  
    end S"^'ksL\  
    _ 3>E+9TQ  
    % Compute the values of the polynomials: (s|WmSQ  
    % -------------------------------------- Fx1FxwIJ  
    y = zeros(length_r,length(n)); ;{R;lF,  
    for j = 1:length(n) @}PX:*c  
        s = 0:(n(j)-m_abs(j))/2; f9y+-GhaD  
        pows = n(j):-2:m_abs(j); Dz2Z (EXI~  
        for k = length(s):-1:1 Z'5&N5hx  
            p = (1-2*mod(s(k),2))* ... $7Z-Nn38  
                       prod(2:(n(j)-s(k)))/              ... @\oZ2sB  
                       prod(2:s(k))/                     ... 3gJZlH5IR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... T <k;^iqR  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >fT%CGLC0  
            idx = (pows(k)==rpowers); 74 )G.!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Vep 41\g^  
        end M5:*aCN6P  
         e~'z;% O~  
        if isnorm B2LXF3#/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g;[t1~oF  
        end hc0$mit  
    end o F_r C[  
    % END: Compute the Zernike Polynomials km^ZF<.@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >@?mP$;=  
    .tHc*Eh  
    % Compute the Zernike functions: sy4Nm0m  
    % ------------------------------ Tw*p^rU  
    idx_pos = m>0; >mMfZvxl%  
    idx_neg = m<0; b *0uxvLu  
    {^;7DV:  
    z = y; "szJ[ _B  
    if any(idx_pos) UpSJ%%.n  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G^VOA4  
    end <u# 7K\:  
    if any(idx_neg) &IRM<A!8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;0?OBUDO  
    end Ml?KnSb  
    'YbE%i}  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的