非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 owQ,op#
function z = zernfun(n,m,r,theta,nflag) xcU!bDV
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. &i(Ip'r
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _p*8ke
% and angular frequency M, evaluated at positions (R,THETA) on the *LU/3H|}
% unit circle. N is a vector of positive integers (including 0), and :C(/yg
% M is a vector with the same number of elements as N. Each element #Pp:H/b
% k of M must be a positive integer, with possible values M(k) = -N(k) b%%r`j,'JE
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, h]s~w
% and THETA is a vector of angles. R and THETA must have the same &UOxS W
% length. The output Z is a matrix with one column for every (N,M) 0B7G:X0
% pair, and one row for every (R,THETA) pair. Z)M
"`2Ur
% f|FS%]fCxk
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^2nrA pF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xdgAu
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,>h"~X
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ekL;SN
% and theta=0 to theta=2*pi) is unity. For the non-normalized VMRfDaO9
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Y=O+d\_W
% T\uIXL?3
% The Zernike functions are an orthogonal basis on the unit circle. abQ.N
% They are used in disciplines such as astronomy, optics, and zMFTkDY
% optometry to describe functions on a circular domain. {zvaZY|K"
% }7[]d7
% The following table lists the first 15 Zernike functions. "TZY)\{L
% CTRUr"
% n m Zernike function Normalization g"1V]
% -------------------------------------------------- jez0 A
% 0 0 1 1 p eO@ZKmM
% 1 1 r * cos(theta) 2 A}(]J!rc
% 1 -1 r * sin(theta) 2 $|- Lw!)D
% 2 -2 r^2 * cos(2*theta) sqrt(6) *k62Qz3
% 2 0 (2*r^2 - 1) sqrt(3) dX cbS<
% 2 2 r^2 * sin(2*theta) sqrt(6) B[GC@]HE
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,<t.Iz%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) z7bJV/f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9 A ?{}c
% 3 3 r^3 * sin(3*theta) sqrt(8) 5 ix*wu`,
% 4 -4 r^4 * cos(4*theta) sqrt(10) EGUlLqP6e
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LJ/He[r|[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) .iRKuBM/
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IDH~nMz
% 4 4 r^4 * sin(4*theta) sqrt(10) DOKe.k
% -------------------------------------------------- r6Yd"~ n
% (4cdkL
% Example 1: 6+IhI?lI=
% id1cZig
% % Display the Zernike function Z(n=5,m=1) OR+qi*)
% x = -1:0.01:1; TjTG+uQ
% [X,Y] = meshgrid(x,x); = 'o3 <}
% [theta,r] = cart2pol(X,Y); \mc0fY
% idx = r<=1; ,SR7DiYg
% z = nan(size(X)); 0vm> *M*p
% z(idx) = zernfun(5,1,r(idx),theta(idx)); V2Vr7v=Y"
% figure KUUA>'=
% pcolor(x,x,z), shading interp Kq3c Kp4
% axis square, colorbar c a_mift
% title('Zernike function Z_5^1(r,\theta)') iQgg[
)
% ][$I~nRf
% Example 2: 4=([v;fc
% "#r)NYq`"|
% % Display the first 10 Zernike functions 3Tl<ST\
% x = -1:0.01:1; #{q.s[g*+1
% [X,Y] = meshgrid(x,x); .C%
28fH
% [theta,r] = cart2pol(X,Y); E{|B&6$[}
% idx = r<=1; *vD.\e~
% z = nan(size(X)); \0b}Z#'0
% n = [0 1 1 2 2 2 3 3 3 3]; 90<g=B
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; q*3OWr
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^z{szy?Fg
% y = zernfun(n,m,r(idx),theta(idx)); ~(^P(
% figure('Units','normalized') xak)YOLRV
% for k = 1:10 X/~uF9a'<
% z(idx) = y(:,k); +lx&$mr?
% subplot(4,7,Nplot(k)) t@qf/1
% pcolor(x,x,z), shading interp 1D*=ZkA)
% set(gca,'XTick',[],'YTick',[]) LORcf 1X/
% axis square Z10Vx2B
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8z#Qp(he
% end z%wh|q
% 4nsJZo#S/
% See also ZERNPOL, ZERNFUN2. ~5N}P>4*
WA`A/`taT
% Paul Fricker 11/13/2006 arYq$~U
ljKIxSvCFp
qiNVaV\wr|
% Check and prepare the inputs: JXB)'d0
% ----------------------------- =fcg4h5(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :>1nkm&Eg
error('zernfun:NMvectors','N and M must be vectors.') j7~FR{:j
end &jP1Q3
4@PA+(kvS
if length(n)~=length(m) ^e.-Ji
error('zernfun:NMlength','N and M must be the same length.') ;77K1
end ` =>}*GS
dvB=Zk]m
n = n(:); $'J3
/C7
m = m(:); =>$)F 4LW
if any(mod(n-m,2)) 6X \g7bg
error('zernfun:NMmultiplesof2', ... n=.P46|
'All N and M must differ by multiples of 2 (including 0).') 928_e)V
end Fv$tl)p*
|bY@HpMp
if any(m>n) oW3"J6,S
error('zernfun:MlessthanN', ... w'
7sh5
'Each M must be less than or equal to its corresponding N.') |b
end Pxlc RF
xlI=)ak{
if any( r>1 | r<0 ) ]@{Lx>Oh"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') dHnCSOM<
end 'R7 \
-> cL)
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) FZHA19Kb
error('zernfun:RTHvector','R and THETA must be vectors.') JVc{vSa!rm
end #EPC]jFk
zPby+BP
r = r(:); 6mM9p)"$
theta = theta(:); \Vyys[MMY8
length_r = length(r); aFnel8
if length_r~=length(theta) t3;Zx+Br
error('zernfun:RTHlength', ...
I1Q!3P
'The number of R- and THETA-values must be equal.') ]\(8d[4
end KdVKvs[
~YYnn7)
% Check normalization: GJ ^c^`
% -------------------- >i/jqT/
if nargin==5 && ischar(nflag) cQU/z"?+
isnorm = strcmpi(nflag,'norm');
^CkMk 1
if ~isnorm I?e5h@uE
error('zernfun:normalization','Unrecognized normalization flag.') zHJCXTM
end V1aP_G-:
else ^b8~X [1J_
isnorm = false; #HUn~r
end 5ya9VZ5#
vSgT36ZF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]VI^ hhf
% Compute the Zernike Polynomials 28MMH
Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z
vysLHj
GY~$<^AK
% Determine the required powers of r: wI%M3XaBws
% ----------------------------------- B~Sj#(WEa
m_abs = abs(m); cAWn*%
rpowers = []; nS+Rbhs
for j = 1:length(n) UC!mp?
rpowers = [rpowers m_abs(j):2:n(j)]; |L2>|4
end 3lP;=*m.
rpowers = unique(rpowers); '/d51
FQZ*i\G>>
% Pre-compute the values of r raised to the required powers, 7({)ou x
% and compile them in a matrix: aacy5E
% ----------------------------- qE)FQeN
if rpowers(1)==0 "5hk%T'
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =?i?-6M
rpowern = cat(2,rpowern{:}); ? x)^f+:9|
rpowern = [ones(length_r,1) rpowern]; gQnr.
else d ^bSV4
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KOcB#UHJ
rpowern = cat(2,rpowern{:}); oRV}Nz7hr
end `|t,Uc|7!
,.,8-In^
% Compute the values of the polynomials: 59E9K)c3
% -------------------------------------- h@,ja
y = zeros(length_r,length(n)); ^FVdA1~/
for j = 1:length(n) x YS81
s = 0:(n(j)-m_abs(j))/2; bZu'5+(@
pows = n(j):-2:m_abs(j); YI0
wr1N
for k = length(s):-1:1 X=)V<2WO
p = (1-2*mod(s(k),2))* ... R5HT
EB
prod(2:(n(j)-s(k)))/ ... sx,$W3zI'G
prod(2:s(k))/ ... oi #B7
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `4"8@>D
prod(2:((n(j)+m_abs(j))/2-s(k))); 'HA{6v,y
idx = (pows(k)==rpowers); bWe2z~dP
y(:,j) = y(:,j) + p*rpowern(:,idx); THrLX;I
end E0Wc8m "
T.bFB+'E|
if isnorm At7!Pas#@g
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J)|3jbX"I]
end P\U<,f
end t@%w:*&
% END: Compute the Zernike Polynomials j7I=2xnTWu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @6
he!wW
<A3%182
% Compute the Zernike functions: 4I4m4^
% ------------------------------ 1XGg0SC
idx_pos = m>0; ~ k*]Z8Z
idx_neg = m<0; iOfm:DTPr
=
0 ~4k#
z = y; %4~"$kE
if any(idx_pos) AL]gK)R
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^y5A\nz&
end LU3pCM{
if any(idx_neg) DV5hTw0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); , ZsZzZ#
end }">r0v!3
F`D$bE;|
% EOF zernfun