切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10580阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )Me&xQTn  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! "j>0A Hem  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5477
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ~n?U{ RmH  
    _C?K;-v}  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  NNX/2  
    =*pu+o,?  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) dCinbAQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. WA<~M) rb  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of MT3UJ6~P  
    %   order N and frequency M, evaluated at R.  N is a vector of *2 [r?!  
    %   positive integers (including 0), and M is a vector with the Dx8^V%b  
    %   same number of elements as N.  Each element k of M must be a jWm<!< ~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) p4/D%*G^`  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is /rquI y^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix J[^-k!9M  
    %   with one column for every (N,M) pair, and one row for every CkOd>Kn  
    %   element in R. \X(.%5xC  
    % m$U2|5un&  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- p}h)WjC  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?&[`=ZVn  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Ts.6 1Rx  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 H#f FU  
    %   for all [n,m]. n|8fdiK#}  
    % 5y.kOe4vH  
    %   The radial Zernike polynomials are the radial portion of the ZN. #g_  
    %   Zernike functions, which are an orthogonal basis on the unit oR5'g7?  
    %   circle.  The series representation of the radial Zernike s8R.?mhH=  
    %   polynomials is PJ);d>tz  
    % NZv1dy`fa  
    %          (n-m)/2 1%>/%eyn5  
    %            __ IF<jq\M  
    %    m      \       s                                          n-2s H=*;3gM,'  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r iZ&CE5+  
    %    n      s=0 -(Yq$5Zc&  
    % Z5v\[i@H!  
    %   The following table shows the first 12 polynomials. sVGyHA  
    % ]@_*O$  
    %       n    m    Zernike polynomial    Normalization xgfK0-T|[  
    %       --------------------------------------------- 59GS:  
    %       0    0    1                        sqrt(2) B lD  
    %       1    1    r                           2 y<kW2<?  
    %       2    0    2*r^2 - 1                sqrt(6) [/'W#x  
    %       2    2    r^2                      sqrt(6) WxFVbtw  
    %       3    1    3*r^3 - 2*r              sqrt(8) gd2cwnP  
    %       3    3    r^3                      sqrt(8) 6m?}oMz  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) o H$4K8j  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) @2V#bK  
    %       4    4    r^4                      sqrt(10) {"-uaH>,  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) u1rT:\G1  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) L)kwMk  
    %       5    5    r^5                      sqrt(12) H|5\c=  
    %       --------------------------------------------- d7A vx  
    % 86oa>#opU  
    %   Example: Rkgpa/te"  
    % yoQ}m/Cj  
    %       % Display three example Zernike radial polynomials ).5$c0`U&  
    %       r = 0:0.01:1; R e-4y5f  
    %       n = [3 2 5]; kyMWO*>|  
    %       m = [1 2 1]; z`XX[9$qm  
    %       z = zernpol(n,m,r); Rjt]^gb!*  
    %       figure (*F/^4p!$  
    %       plot(r,z) mSr(PIH{\  
    %       grid on l%L..WCT]  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :A"GO c,  
    % ^i:%0"[*^i  
    %   See also ZERNFUN, ZERNFUN2. jhg0H2C8  
    /GRkQ",  
    % A note on the algorithm. 3,t3\`=  
    % ------------------------ 0F/o  
    % The radial Zernike polynomials are computed using the series O!#r2Y"?K1  
    % representation shown in the Help section above. For many special C8ek{o)%W  
    % functions, direct evaluation using the series representation can 4J{6Wt";  
    % produce poor numerical results (floating point errors), because v;1<K@UT  
    % the summation often involves computing small differences between bL-+  
    % large successive terms in the series. (In such cases, the functions Dn~c  
    % are often evaluated using alternative methods such as recurrence +8h!@  
    % relations: see the Legendre functions, for example). For the Zernike ;LD!eWSK,  
    % polynomials, however, this problem does not arise, because the 4SlEc|'7@  
    % polynomials are evaluated over the finite domain r = (0,1), and Yv>kToa\^  
    % because the coefficients for a given polynomial are generally all (l}W\iB' d  
    % of similar magnitude. F!ZE4S_  
    % +VT/ c  
    % ZERNPOL has been written using a vectorized implementation: multiple 8#L V oR  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Lh\ 1L  
    % values can be passed as inputs) for a vector of points R.  To achieve lub_2Cb|j  
    % this vectorization most efficiently, the algorithm in ZERNPOL m) QV2n  
    % involves pre-determining all the powers p of R that are required to -?nr q <3  
    % compute the outputs, and then compiling the {R^p} into a single ZD~ra7  
    % matrix.  This avoids any redundant computation of the R^p, and 07b =Zhh  
    % minimizes the sizes of certain intermediate variables. kn %i#Fz  
    % z[|2od  
    %   Paul Fricker 11/13/2006 3127 4O  
    A{|^_1  
    9lqH  
    % Check and prepare the inputs: x18(}4  
    % ----------------------------- }l"pxp1K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \:y oS>G  
        error('zernpol:NMvectors','N and M must be vectors.') %>Q[j`9y  
    end \w#)uYK{i_  
    [] cF*en  
    if length(n)~=length(m) h(C@IIO^;G  
        error('zernpol:NMlength','N and M must be the same length.') V$0mcwH  
    end P_}wjz}9ZX  
    *{DpNV8"  
    n = n(:); aGBUFCCa  
    m = m(:); g|TWoRx:  
    length_n = length(n); /Vdu|k=  
    y7^E`LKK  
    if any(mod(n-m,2)) z=/&tRe W  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') u4x>gRz)  
    end cXw8#M!  
    {:] u 6l  
    if any(m<0) }i$ER,hXh  
        error('zernpol:Mpositive','All M must be positive.') _$+BYK@  
    end k@Qd:I;;  
    L9{y1'')  
    if any(m>n) q?y-s  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ;"B@QPX  
    end swKqsN.  
    Q2qT[aD,  
    if any( r>1 | r<0 ) ?xwLe  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') \&/V p`  
    end `l2h65\  
    @)XR  
    if ~any(size(r)==1)  SwE bVwB  
        error('zernpol:Rvector','R must be a vector.') C <Pd_&  
    end uN&UYJ' B  
    9+#BU$*v  
    r = r(:); Cz|F%>y#  
    length_r = length(r); ?t)Mt]("  
    0oQJ}8t  
    if nargin==4 [2{2w68D!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); DGbEQiX$\  
        if ~isnorm y!8m7a  
            error('zernpol:normalization','Unrecognized normalization flag.') / %1-tGh  
        end 6t=)1T  
    else ^P|Zze zwU  
        isnorm = false; {X 5G  
    end f cnv[B..{  
    ;Wgkf_3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =%SH2kb  
    % Compute the Zernike Polynomials +#L'g c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U1Y0G[i)  
    _Un*x5u2O  
    % Determine the required powers of r: GXi)3I%  
    % ----------------------------------- ~p?D[]h  
    rpowers = []; 3/y"kl:< -  
    for j = 1:length(n) !Qq~lAJO;  
        rpowers = [rpowers m(j):2:n(j)]; ;#L]7ZY9:-  
    end =6a=`3r!I  
    rpowers = unique(rpowers); T 9FGuit9  
    cJ\ 1ndBH  
    % Pre-compute the values of r raised to the required powers, MxOIe|=&  
    % and compile them in a matrix: <m/XGFc  
    % ----------------------------- JmC2buO  
    if rpowers(1)==0 Rrrq>{D  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N6Dv1_c,  
        rpowern = cat(2,rpowern{:}); fI,2l   
        rpowern = [ones(length_r,1) rpowern]; &Qe2 }e$  
    else >9y!M'V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .qLX jU  
        rpowern = cat(2,rpowern{:}); +&r=XJ5:`p  
    end LJA uTg  
    _7b4+ L  
    % Compute the values of the polynomials: _yp<#q]  
    % -------------------------------------- XMzQ8|]  
    z = zeros(length_r,length_n); !yvw5As%  
    for j = 1:length_n P6")OWd  
        s = 0:(n(j)-m(j))/2; drvz [ 9;  
        pows = n(j):-2:m(j); 558!?kx$  
        for k = length(s):-1:1 wlQ @3RN>  
            p = (1-2*mod(s(k),2))* ... FE1'MUT_  
                       prod(2:(n(j)-s(k)))/          ... *x_e] /}  
                       prod(2:s(k))/                 ... <sn,X0W  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... #\ECQF  
                       prod(2:((n(j)+m(j))/2-s(k))); c_t7<  
            idx = (pows(k)==rpowers); Tv `&  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 1)5/a5  
        end k(xB%>ns  
         L#WGOl  
        if isnorm IH`7ou{  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); pgW^hj\  
        end ( G~ME>  
    end _$/Bt?h  
    N;DE,[:<  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 1d$wP$  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. MShcZtN  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated C`uL 4r  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive FxT]*mo  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, k@pEs# a  
    %   and THETA is a vector of angles.  R and THETA must have the same IR?nH`V  
    %   length.  The output Z is a matrix with one column for every P-value, \mZB*k)+  
    %   and one row for every (R,THETA) pair. A"0Yn(awWu  
    % wv=U[:Y  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike a p(PI?]X  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) F0"("4h:  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) jAovzZ6BL  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 O_ vH w^  
    %   for all p. xiL+s-   
    % ,Y16m{<eC  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 WEoD ?GLS8  
    %   Zernike functions (order N<=7).  In some disciplines it is =iB$4d2  
    %   traditional to label the first 36 functions using a single mode 6W~JM^F  
    %   number P instead of separate numbers for the order N and azimuthal #Zi6N  
    %   frequency M. Nfv` )n@  
    % t3*.Bm:^  
    %   Example: p@h<u!rL8  
    % bM }zGFt  
    %       % Display the first 16 Zernike functions Ft}nG&D  
    %       x = -1:0.01:1; ?X\uzu  
    %       [X,Y] = meshgrid(x,x); U lCw{:#F  
    %       [theta,r] = cart2pol(X,Y); F&Rr&m  
    %       idx = r<=1; y-S23B(  
    %       p = 0:15; r oBb o  
    %       z = nan(size(X)); ?kRx;S+  
    %       y = zernfun2(p,r(idx),theta(idx)); ,s 6lB0  
    %       figure('Units','normalized') #TV #*  
    %       for k = 1:length(p) 9yu#G7  
    %           z(idx) = y(:,k); -FrK'!\  
    %           subplot(4,4,k) sxdDI?W4  
    %           pcolor(x,x,z), shading interp o)Px d  
    %           set(gca,'XTick',[],'YTick',[]) jthyZZ   
    %           axis square b ZZ _yc  
    %           title(['Z_{' num2str(p(k)) '}']) 7W+{U0 2O  
    %       end X_)I"`  
    % h\5~&}Hp  
    %   See also ZERNPOL, ZERNFUN. 9|NF)~Q}'  
    32pPeYxB!-  
    %   Paul Fricker 11/13/2006 ,#9i=gp  
    dnM.  
    l*Fp}d.  
    % Check and prepare the inputs: vg1E@rH|}  
    % ----------------------------- &'/bnN +R  
    if min(size(p))~=1 ]vw%J ^7:a  
        error('zernfun2:Pvector','Input P must be vector.') _bv9/#tR  
    end %`s1 Ocvp  
    {IF$\{Al  
    if any(p)>35 5 o[E8c 8  
        error('zernfun2:P36', ... + (`.pa z@  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... AmUH]+5KT  
               '(P = 0 to 35).']) p  S|  
    end U} Pr1  
    [<}W S} .  
    % Get the order and frequency corresonding to the function number: Gs4t6+Al  
    % ---------------------------------------------------------------- .R#<Q  
    p = p(:); !u/c'ZLZ>  
    n = ceil((-3+sqrt(9+8*p))/2); -vh\XO  
    m = 2*p - n.*(n+2); %fXgV\xY  
    IK8" 3+(  
    % Pass the inputs to the function ZERNFUN: 67||wh.BU  
    % ---------------------------------------- 61sEeM  
    switch nargin =(bTS n  
        case 3 !G<gp4Js+N  
            z = zernfun(n,m,r,theta); MRHRa  
        case 4 Z4{N|h?  
            z = zernfun(n,m,r,theta,nflag); n:}'f- :T  
        otherwise [vnxp/v/<  
            error('zernfun2:nargin','Incorrect number of inputs.') 1C/Vwf:@  
    end s -F3(mc(  
    %+(fdk-k+  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Nig)!4CG  
    function z = zernfun(n,m,r,theta,nflag) &}0#(Fa`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. dAaxbP|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yQFZRDV~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the DRRy5+,I  
    %   unit circle.  N is a vector of positive integers (including 0), and l 1BAW$  
    %   M is a vector with the same number of elements as N.  Each element #*  8^ar<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) HzZX=c  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ei[,ug'  
    %   and THETA is a vector of angles.  R and THETA must have the same C`aUitL}  
    %   length.  The output Z is a matrix with one column for every (N,M) "Fxw"I <  
    %   pair, and one row for every (R,THETA) pair. k vt^s0T8Q  
    % vtq47i  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Mu_'C$zA  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1Nz#,IdQ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral %'9&JsO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1R#1Fy%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `t7GYmw^#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :eSwXDy&  
    % Pj7MR/AH  
    %   The Zernike functions are an orthogonal basis on the unit circle. 0}\8,U  
    %   They are used in disciplines such as astronomy, optics, and )+a]M1j  
    %   optometry to describe functions on a circular domain. FuP~_ E~  
    % eM^Y  
    %   The following table lists the first 15 Zernike functions. @nM+*0 $d  
    % v2 >Dn=V  
    %       n    m    Zernike function           Normalization )2b bG4:N  
    %       -------------------------------------------------- iv6bXV'N  
    %       0    0    1                                 1 +4k4z:<n  
    %       1    1    r * cos(theta)                    2 vARZwIu^D  
    %       1   -1    r * sin(theta)                    2 ^E3 HY@j  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #o(@S{(NZ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _D1)_?`a@-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) E{'\(6z_  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) lH>6;sE  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9}11>X  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^>h2.A J  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) J 77*Ue ^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !6*4^$i#o  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DE$T1pFV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) U,,rB(  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A~'p~ @L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) z2SR/[I?  
    %       -------------------------------------------------- ^bXCYkx  
    % 'WoB\y569  
    %   Example 1: 2*0n#" L  
    % ,>I_2mc  
    %       % Display the Zernike function Z(n=5,m=1) %? z;'Y7D  
    %       x = -1:0.01:1; C,5Erb/  
    %       [X,Y] = meshgrid(x,x); [Ny'vAHOj  
    %       [theta,r] = cart2pol(X,Y); = 8\'AU  
    %       idx = r<=1; @C5 %`{\  
    %       z = nan(size(X)); )h;zH,DA[3  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 21\?FQrz  
    %       figure xf8.PqVNo  
    %       pcolor(x,x,z), shading interp \V9);KAOj  
    %       axis square, colorbar O9)k)A]`O  
    %       title('Zernike function Z_5^1(r,\theta)') aGmbB7[BZ  
    % i-&"1D[&  
    %   Example 2: "'6R|<u=:  
    % ,CnUQx0  
    %       % Display the first 10 Zernike functions |( R[5q  
    %       x = -1:0.01:1; s _`y"' ^  
    %       [X,Y] = meshgrid(x,x); 20mZ{_%  
    %       [theta,r] = cart2pol(X,Y); ^r~R]stE^  
    %       idx = r<=1; zKaEh   
    %       z = nan(size(X)); T q5F'@e  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +,bgOq\aG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; QK`2^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X[o"9O|<  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]Oe[;<I  
    %       figure('Units','normalized') yykyvy  
    %       for k = 1:10 Mer\W6e"e  
    %           z(idx) = y(:,k); c# WIB 4  
    %           subplot(4,7,Nplot(k)) NKw}VW'|  
    %           pcolor(x,x,z), shading interp w7h=vy n?  
    %           set(gca,'XTick',[],'YTick',[]) w3peG^4D_  
    %           axis square +@K8:}lOW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1z=}`,?>  
    %       end \fD[Ej  
    % Vq#_/23=$y  
    %   See also ZERNPOL, ZERNFUN2. 69/qH_Y  
    ^b(> Bg )T  
    %   Paul Fricker 11/13/2006 &8 4Izs/[  
    -X#qW"92q  
    Dv+:d4|"  
    % Check and prepare the inputs: l ~ /y  
    % ----------------------------- q"pnFK9/L  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T 9?!.o  
        error('zernfun:NMvectors','N and M must be vectors.') GE.@*W  
    end U HUO9h  
    ,=p.Cx'PR  
    if length(n)~=length(m) -qRO}EF  
        error('zernfun:NMlength','N and M must be the same length.') RlTVx :  
    end f*~z|  
    BXo9s~5Q  
    n = n(:); d@t3C8  
    m = m(:); MEn#MT/Cz  
    if any(mod(n-m,2)) _i{4 4zE  
        error('zernfun:NMmultiplesof2', ... {p@uj_pS  
              'All N and M must differ by multiples of 2 (including 0).') esQRg~aCGy  
    end U9p^?\-=  
    .:#6dG\0z  
    if any(m>n) $U/_8^6B0  
        error('zernfun:MlessthanN', ... S~DY1e54GF  
              'Each M must be less than or equal to its corresponding N.') o] 7U;W  
    end Vl+,OBy  
    )hai?v~g  
    if any( r>1 | r<0 ) Yhd|1,m9f  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Jv=G3=.  
    end mF !=H%  
    da&f0m U  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #`H^8/!e  
        error('zernfun:RTHvector','R and THETA must be vectors.') >K;'dB/m;1  
    end 9#@CmiIhy  
    >h m<$3  
    r = r(:); ?V&[U  
    theta = theta(:); VCvqiHn  
    length_r = length(r); n`hes_{,g  
    if length_r~=length(theta) (_lc< Bj  
        error('zernfun:RTHlength', ... |!{ BjOAD'  
              'The number of R- and THETA-values must be equal.') -m~[z  
    end QYL ';  
    %7?v='s=  
    % Check normalization: (8(z42  
    % -------------------- q}["Nww-  
    if nargin==5 && ischar(nflag) $'Hg}|53  
        isnorm = strcmpi(nflag,'norm'); qqYH}%0dz  
        if ~isnorm lFY;O !Y5\  
            error('zernfun:normalization','Unrecognized normalization flag.') :I}_  
        end U q6..<#  
    else :Y[r^=>  
        isnorm = false; VmB/X))   
    end +6{KrREX)  
    R%Yws2Le2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K9*#H(  
    % Compute the Zernike Polynomials (Rk g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FB PT@`~v  
    KV0e^c;  
    % Determine the required powers of r: JPk3T.qp  
    % ----------------------------------- WiL~b =fT  
    m_abs = abs(m); GJqSNi}  
    rpowers = []; 5\tYs=>b<  
    for j = 1:length(n) w`VmN}pR  
        rpowers = [rpowers m_abs(j):2:n(j)]; 2'J.$ h3  
    end kc8T@5+I0  
    rpowers = unique(rpowers); ;r[=q u\  
    T+2I:W%  
    % Pre-compute the values of r raised to the required powers, I=^%l7  
    % and compile them in a matrix: Nu{RF  
    % ----------------------------- H2RNekck  
    if rpowers(1)==0 b,G+=&6u  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MT#9x>  
        rpowern = cat(2,rpowern{:}); r/L3j0  
        rpowern = [ones(length_r,1) rpowern]; b\?#O}  
    else $(}kau  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SJ7>*Sa(u$  
        rpowern = cat(2,rpowern{:}); n@g[VR2t  
    end a(8]y.`Tv  
    Af0E_  
    % Compute the values of the polynomials: wR/i+,K  
    % -------------------------------------- mcDW&jwQ  
    y = zeros(length_r,length(n)); YKl!M/  
    for j = 1:length(n) uW[s?  
        s = 0:(n(j)-m_abs(j))/2; &H5 6mL{  
        pows = n(j):-2:m_abs(j); N &p=4  
        for k = length(s):-1:1 Z/uRz]Hi  
            p = (1-2*mod(s(k),2))* ... 5 |C;]pq  
                       prod(2:(n(j)-s(k)))/              ... :N)7SYQT  
                       prod(2:s(k))/                     ... =$Q3!bJ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kC9A  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8gBqur{  
            idx = (pows(k)==rpowers); ? *I9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); n3b@ 6V1_  
        end 5'V'~Q%  
         iJrscy-  
        if isnorm [AX).b  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); p7H*Ff`  
        end web&M!-  
    end S%xGXmZ  
    % END: Compute the Zernike Polynomials NK#Dq&W+&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sQihyq6U;  
    1<5 9)RiO>  
    % Compute the Zernike functions: $ 9QVl  
    % ------------------------------ ( v ~/glf  
    idx_pos = m>0; gi;V~>kh  
    idx_neg = m<0; V (!b!i@  
    4VU5}"<  
    z = y; Dh +^;dQ6  
    if any(idx_pos) -U/& 3  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bR&hI9`%F  
    end Ha C?,  
    if any(idx_neg) MB"?^~Sm  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [sKdIw_  
    end x-Mp6  
    dqKTF_+VhA  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的