非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7!F -.kG
function z = zernfun(n,m,r,theta,nflag) cY^'Cj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. icK$W2<8mg
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^ 0.` 1$
% and angular frequency M, evaluated at positions (R,THETA) on the 6Vgxfic
% unit circle. N is a vector of positive integers (including 0), and :i3
W U%
% M is a vector with the same number of elements as N. Each element 8kLHQ0pmu
% k of M must be a positive integer, with possible values M(k) = -N(k) 7#&e0fw/I
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
"F=ta
% and THETA is a vector of angles. R and THETA must have the same }U'VVPh_
% length. The output Z is a matrix with one column for every (N,M) +!Q*ie+q
% pair, and one row for every (R,THETA) pair. vRh)o1u)
% cJE4uL<
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike XL7||9,(h
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SM8f"H28
% with delta(m,0) the Kronecker delta, is chosen so that the integral + )n}n5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !bIE%cq
% and theta=0 to theta=2*pi) is unity. For the non-normalized Mt4*`CxtH;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k4PXH
% I5@8=rFk
% The Zernike functions are an orthogonal basis on the unit circle. "m%EFWUOl
% They are used in disciplines such as astronomy, optics, and d#HlO}
% optometry to describe functions on a circular domain. G<-<>)zO!
% X[!S7[d-y
% The following table lists the first 15 Zernike functions. GG`j9"t4
% 3bRW]mP8
% n m Zernike function Normalization Cg(&WJw(ep
% -------------------------------------------------- sXmP<c
% 0 0 1 1 ?bPW*A82{q
% 1 1 r * cos(theta) 2 &5[B\yv
% 1 -1 r * sin(theta) 2 '#C5m#v
% 2 -2 r^2 * cos(2*theta) sqrt(6) .}5qi;CA
% 2 0 (2*r^2 - 1) sqrt(3) D*>#]0X
% 2 2 r^2 * sin(2*theta) sqrt(6) 6zi 5#23
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z,tHyyF?j
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1Va=.#<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 34QW^{dgE
% 3 3 r^3 * sin(3*theta) sqrt(8) ^T*!~K8A
% 4 -4 r^4 * cos(4*theta) sqrt(10) Vr@tSc&
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qz89=#W
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^/VnRpU
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u* G+=aV.6
% 4 4 r^4 * sin(4*theta) sqrt(10) *aJO5&w<T
% -------------------------------------------------- \a4X},h\
% JZK93R
% Example 1: S['cX ~
% / ykc`E?f
% % Display the Zernike function Z(n=5,m=1) 1?yj<^"
% x = -1:0.01:1; z%1e>`\E
% [X,Y] = meshgrid(x,x); h@z0 x4_])
% [theta,r] = cart2pol(X,Y); q65]bs4M
% idx = r<=1; MsZx 0]
% z = nan(size(X)); CG95ScrX
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ~%2yDhdQ
% figure i&8|@CACb
% pcolor(x,x,z), shading interp l,~`o$_
% axis square, colorbar :+
mULUi
% title('Zernike function Z_5^1(r,\theta)') } '?qUy3x
% eY-h<K)y
% Example 2: d"@ /{O^1
% {kBsiSvsA;
% % Display the first 10 Zernike functions tJ7F.}\;C
% x = -1:0.01:1; `!spi=f
% [X,Y] = meshgrid(x,x); VR .t
% [theta,r] = cart2pol(X,Y); 4AKr.a0q
% idx = r<=1; as'yYn8
% z = nan(size(X)); ?"^{:~\N
% n = [0 1 1 2 2 2 3 3 3 3]; Mna
yiJl
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; [Y~~C J
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 4"H*hKp
% y = zernfun(n,m,r(idx),theta(idx)); g*(z.
% figure('Units','normalized') ZyDNtX%
% for k = 1:10 a]Pw:lT
% z(idx) = y(:,k); a#{"3Z2|
% subplot(4,7,Nplot(k)) Zk/ejhy0
% pcolor(x,x,z), shading interp F,A+O+
% set(gca,'XTick',[],'YTick',[]) qpMcVJL
% axis square Bz <I7h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =36fS/Gb
% end 7{(UiQbf
% L N
Fe7<y
% See also ZERNPOL, ZERNFUN2. ; o
Y|~
U[|5:qWs
% Paul Fricker 11/13/2006 <R+?>kz6
kz1#"8Zd!
"\O7_od-
% Check and prepare the inputs: o[}Dj6e\t
% ----------------------------- Jfk#E^1
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @0s'
(
error('zernfun:NMvectors','N and M must be vectors.') 934j5D
end jpO0dtn3=
j}tM0Ug.U
if length(n)~=length(m) IG# wY
error('zernfun:NMlength','N and M must be the same length.') hRRxOr#*$
end cc*?4C/t
8'L:D
n = n(:); K#N9N@W jR
m = m(:); bhGRD{=
if any(mod(n-m,2)) RRPPojKZ
error('zernfun:NMmultiplesof2', ... >Oj$Dn=
'All N and M must differ by multiples of 2 (including 0).') 9 " t;6
end 4r`I)
6)ibXbH
if any(m>n) VBQAkl?(}4
error('zernfun:MlessthanN', ... Xz^k.4 Y{4
'Each M must be less than or equal to its corresponding N.') -(F}=o'
end Q,JH/X
E0Q6Ryn
if any( r>1 | r<0 ) #^r-D[/m
error('zernfun:Rlessthan1','All R must be between 0 and 1.') wM4{\ f\
end }~|`h1JF
v@ OELJX
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _AFje
error('zernfun:RTHvector','R and THETA must be vectors.') 4K'U}W
end D ka8[z7
kmC0.\
r = r(:); eOiH7{OA,
theta = theta(:); -&`_bf%M
length_r = length(r); :d9GkC
if length_r~=length(theta) p0 X%^A,4
error('zernfun:RTHlength', ... pP1DR'
'The number of R- and THETA-values must be equal.') iAQ[;M3p
end Iy49o!
Y @'do)
% Check normalization: oA[`|
ji
% -------------------- yQUrHxm
if nargin==5 && ischar(nflag) s`H|o'0
isnorm = strcmpi(nflag,'norm'); n]Yz<#
if ~isnorm 3))CD,|
error('zernfun:normalization','Unrecognized normalization flag.') &_-=(rK
end p?>J86%[
else fcEm:jEZ*
isnorm = false; v~Dobk/n
end |v%$Q/zp&
-rI7ihr*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fsPNxy"_
% Compute the Zernike Polynomials 8v2Wi.4T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cip|eM &l
DJgM>&Y6,
% Determine the required powers of r: B=K<k+{6"
% ----------------------------------- #*qV kPX
m_abs = abs(m); zO\_^A|8H
rpowers = []; z+;$cfN
for j = 1:length(n) }v2p]D5n.
rpowers = [rpowers m_abs(j):2:n(j)]; Xe\}(O
end ~&p]kmwXSX
rpowers = unique(rpowers); AZhI~QWo
9C,gJp}P
% Pre-compute the values of r raised to the required powers, }NwmZw>_
% and compile them in a matrix: mfI[9G
% ----------------------------- guYP|
if rpowers(1)==0 _ps4-<ugC
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); sj&(O@~R
rpowern = cat(2,rpowern{:}); ]kmAN65c
rpowern = [ones(length_r,1) rpowern]; #e-7LmO~
else uKXU.u*C
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9NVtvBA
rpowern = cat(2,rpowern{:}); 89D`!`Ah]
end ym6Emf]
/];N 1
% Compute the values of the polynomials: T+P{,,a/]
% -------------------------------------- )E=B;.FH
y = zeros(length_r,length(n)); ,Aq, f$5V
for j = 1:length(n) um]*nXIr
s = 0:(n(j)-m_abs(j))/2; jWxa
[>
pows = n(j):-2:m_abs(j); ld(_+<e
for k = length(s):-1:1 2BO H8Mp9
p = (1-2*mod(s(k),2))* ... Q$.CtECo
prod(2:(n(j)-s(k)))/ ... `_Iyr3HAf
prod(2:s(k))/ ... ~oSA&v4V
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... i=b'_SZ'
prod(2:((n(j)+m_abs(j))/2-s(k))); 7YTO{E6]d\
idx = (pows(k)==rpowers); E5P.x^
y(:,j) = y(:,j) + p*rpowern(:,idx); t"%~r3{
end -M]/Xv]
ZT&[:>upR
if isnorm j^ 8Hjg
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Y(rQ032s
end x?{l<mc
end =u9e5n
% END: Compute the Zernike Polynomials S?v;+3TG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SP2";,%/9
~rOvVi&4
% Compute the Zernike functions: {yf,:5
% ------------------------------ 8[^b8^
idx_pos = m>0; [C
7X#|
idx_neg = m<0; A;C4>U Y
Sb?v5
z = y; ?=iy 6q
if any(idx_pos) i0x[w>\-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E(S$Q^
end 0\ j)!b
if any(idx_neg) fH,h\0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @d3yqA
end yyVJb3n5:!
bsc b
% EOF zernfun