切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11378阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 7)J6/('  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0[)VO[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >I<PO.c!  
    >lzA]aM$c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 `DW2spd  
    UT]?;o"  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7L(e h7  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Ve 3 ;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of J >0b1  
    %   order N and frequency M, evaluated at R.  N is a vector of 9.OA, 6  
    %   positive integers (including 0), and M is a vector with the sH#X0fG  
    %   same number of elements as N.  Each element k of M must be a v syWm.E  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) c/3$AUsuO  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is DT(d@upH  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 2a=sm1?  
    %   with one column for every (N,M) pair, and one row for every 7:=k`yS,  
    %   element in R. S]/b\ B.h+  
    % 7{kP}?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0HeD{TH\  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 0"WDH)7hJ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]wn/BG)  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 (GK pA}~R  
    %   for all [n,m]. LO%!Z,}   
    % {=:#S+^ER  
    %   The radial Zernike polynomials are the radial portion of the i\?*=\a  
    %   Zernike functions, which are an orthogonal basis on the unit #& .]" d  
    %   circle.  The series representation of the radial Zernike Ww3wsyx  
    %   polynomials is OEhHR  
    % U7$WiPTNL9  
    %          (n-m)/2 +=$  
    %            __ u0s8yPA  
    %    m      \       s                                          n-2s rVSZ.+n  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r cDEJk?3+  
    %    n      s=0 k;y w#Af8  
    % pf"<!O[  
    %   The following table shows the first 12 polynomials. PA;6$vqX  
    % CON0E~"  
    %       n    m    Zernike polynomial    Normalization 1`bl&}6l|E  
    %       --------------------------------------------- <X7\z  
    %       0    0    1                        sqrt(2) Of}|ib^t  
    %       1    1    r                           2 m}j:nk  
    %       2    0    2*r^2 - 1                sqrt(6) MmTC=/j  
    %       2    2    r^2                      sqrt(6) j+4H}XyE  
    %       3    1    3*r^3 - 2*r              sqrt(8) R=j% S!  
    %       3    3    r^3                      sqrt(8) F'm(8/A$  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) !p"aAZT7sq  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) v}JD2.O+  
    %       4    4    r^4                      sqrt(10) 8P' ana  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) gN6rp(?y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 6i@\5}m=  
    %       5    5    r^5                      sqrt(12) !c#]?b%  
    %       --------------------------------------------- zy'D!db`Z  
    % ShOX<Fb&  
    %   Example: H6TD@kL9Wr  
    % C(T;>if0NH  
    %       % Display three example Zernike radial polynomials dP2irC%f8  
    %       r = 0:0.01:1; RI n9(r  
    %       n = [3 2 5]; G[Lpe  
    %       m = [1 2 1]; tB7}|jC  
    %       z = zernpol(n,m,r); GwU?wIIj^  
    %       figure (oz$B0HO:  
    %       plot(r,z) {No L  
    %       grid on 266oTER]v:  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') SGc8^%-`  
    % RJeDEYXeg  
    %   See also ZERNFUN, ZERNFUN2. AV8T  
    ~X(UcZ2  
    % A note on the algorithm. B@YyQ'  
    % ------------------------ Fm_y&7._  
    % The radial Zernike polynomials are computed using the series UaG1c%7?X  
    % representation shown in the Help section above. For many special P(k(m< 0  
    % functions, direct evaluation using the series representation can \G@wp5  
    % produce poor numerical results (floating point errors), because I751 t  
    % the summation often involves computing small differences between V%0I%\0Y  
    % large successive terms in the series. (In such cases, the functions az;Q"V'6  
    % are often evaluated using alternative methods such as recurrence bizTd  
    % relations: see the Legendre functions, for example). For the Zernike a&{X!:X  
    % polynomials, however, this problem does not arise, because the "t=hzn"~%  
    % polynomials are evaluated over the finite domain r = (0,1), and G2{O9  
    % because the coefficients for a given polynomial are generally all >O9o,o/6R  
    % of similar magnitude. t`'iU$:1f  
    % 5+Mdh`  
    % ZERNPOL has been written using a vectorized implementation: multiple fU3`v\X  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] lq:}0<k  
    % values can be passed as inputs) for a vector of points R.  To achieve V&]DzjT/  
    % this vectorization most efficiently, the algorithm in ZERNPOL ikBYd }5  
    % involves pre-determining all the powers p of R that are required to  =SOe}!  
    % compute the outputs, and then compiling the {R^p} into a single  _?vo U  
    % matrix.  This avoids any redundant computation of the R^p, and F1%vtk;2?  
    % minimizes the sizes of certain intermediate variables. uQb!=]  
    % LK9g0_  
    %   Paul Fricker 11/13/2006 o KD/rI  
    $h[Q Q-  
    S/ywA9~3Q  
    % Check and prepare the inputs: )}%O>%  
    % ----------------------------- U).*q?.z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?rX]x8iP  
        error('zernpol:NMvectors','N and M must be vectors.') /Ss7"*JLe  
    end  6Si-u  
    iZ3W"Vd`b  
    if length(n)~=length(m) UM*jKi2]"  
        error('zernpol:NMlength','N and M must be the same length.') vR6Bn  
    end yqXH:757~  
    cV{%^0? D  
    n = n(:); J/!cGr( B~  
    m = m(:); h4pTq[4*  
    length_n = length(n); }U w&Ny  
    l&YKD,H};  
    if any(mod(n-m,2)) I:V0Xxz5t  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1{Mcs%W;w5  
    end )\;Z4x;]U  
    x_!0.SU  
    if any(m<0) g$:Xuw1  
        error('zernpol:Mpositive','All M must be positive.') JPM))4YDR  
    end 6C4'BCYW(  
    \,Lo>G`!  
    if any(m>n) tGdf/aTjy  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') u,3,ck!B>@  
    end !  Z`0(d  
    :4S%'d7  
    if any( r>1 | r<0 ) |]Z:&[D]i  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 9~rUkHD  
    end w=h1pwY  
    8n BL\{'B[  
    if ~any(size(r)==1) 0Z<I%<8bK  
        error('zernpol:Rvector','R must be a vector.') 3cS2gxF  
    end o'~5pS(wq  
    gG%V 9eOQ  
    r = r(:); Ch()P.n?  
    length_r = length(r); $GQ`clj<  
    [a o U5;7  
    if nargin==4 h0oMTiA  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?;YC'bF  
        if ~isnorm "jecsqCgK0  
            error('zernpol:normalization','Unrecognized normalization flag.') x6afI<dm  
        end %S` v!*2  
    else pu!dqF<  
        isnorm = false; G!8Z~CPF  
    end qrvsjYi*w  
    @=]~\[e\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {*ZY(6^  
    % Compute the Zernike Polynomials Ogt]_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kz<@x`0   
     HBys  
    % Determine the required powers of r: ?.c;oS|  
    % ----------------------------------- ) yY6rI;:  
    rpowers = []; G iq=*D+  
    for j = 1:length(n) DcIvhBp  
        rpowers = [rpowers m(j):2:n(j)]; Glq85S  
    end 3QSZ ZJ  
    rpowers = unique(rpowers); .,~(%#Wl$  
    G1t\Q-|l0  
    % Pre-compute the values of r raised to the required powers, w#JJXXQI  
    % and compile them in a matrix: @ DZD  
    % ----------------------------- [>#*B9  
    if rpowers(1)==0 N4;7gSc"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2,vB'CAI  
        rpowern = cat(2,rpowern{:}); t:JI!DR  
        rpowern = [ones(length_r,1) rpowern]; 133I.XBU  
    else ?6c-7QV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~.PO[hC  
        rpowern = cat(2,rpowern{:}); T,fI BD:  
    end #U=X NU}k  
    p\C%%  
    % Compute the values of the polynomials: :[@ k<8<]  
    % -------------------------------------- wiOgyMdx  
    z = zeros(length_r,length_n); ]maYUKqv}'  
    for j = 1:length_n 4GG>!@|  
        s = 0:(n(j)-m(j))/2; Vh3Ijn  
        pows = n(j):-2:m(j); !$A37j6  
        for k = length(s):-1:1 IdIrI  
            p = (1-2*mod(s(k),2))* ... p <eC<dtu  
                       prod(2:(n(j)-s(k)))/          ... 41#w|L \  
                       prod(2:s(k))/                 ... Mh(]3\  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... k~%<Ir1V]  
                       prod(2:((n(j)+m(j))/2-s(k))); t3Z_Dp~\  
            idx = (pows(k)==rpowers); `"iY*  
            z(:,j) = z(:,j) + p*rpowern(:,idx); CV$],BM  
        end |o'Q62`%}  
         sDgXU@  
        if isnorm RjJU4q  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &"_u}I&\  
        end M:Er_,E  
    end z|G9,:9  
    4fh^[\  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) |{g+Y  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. &m3.h!dq  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated fsO9EEn7 X  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive =U OLT>!  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8T;IZ(s  
    %   and THETA is a vector of angles.  R and THETA must have the same Gy1xG.yM~  
    %   length.  The output Z is a matrix with one column for every P-value, ?!w^`D0}o  
    %   and one row for every (R,THETA) pair. {"*VU3%q  
    % ,O1O8TwUB0  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike F} J-gZl  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Uu6L~iB  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LL!.c  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 va/m~k|i  
    %   for all p. U]qav,^[  
    % C7T(+Wd!,  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ->-*]-fv[L  
    %   Zernike functions (order N<=7).  In some disciplines it is < (RC|?  
    %   traditional to label the first 36 functions using a single mode (VvKGh  
    %   number P instead of separate numbers for the order N and azimuthal l>lW]W  
    %   frequency M. ArLvz5WV  
    % gOT+%Ab{_  
    %   Example: Vi! Q  
    % < V\Y@Ei+  
    %       % Display the first 16 Zernike functions @#+jMV$g  
    %       x = -1:0.01:1; L;_c|\%  
    %       [X,Y] = meshgrid(x,x); N\t1T(C|  
    %       [theta,r] = cart2pol(X,Y); N)R[6u}  
    %       idx = r<=1; PZ:u_*Vu`  
    %       p = 0:15; /4=-b_2Y~  
    %       z = nan(size(X)); pl*~kG=  
    %       y = zernfun2(p,r(idx),theta(idx)); y-?>*fN o  
    %       figure('Units','normalized') 0m[dP  
    %       for k = 1:length(p) C>^D*C(  
    %           z(idx) = y(:,k); fbrp#G71y  
    %           subplot(4,4,k) UbJ*'eoX  
    %           pcolor(x,x,z), shading interp Ue5O9;y]u  
    %           set(gca,'XTick',[],'YTick',[]) m:tiY [c>W  
    %           axis square l2v_?j-)x  
    %           title(['Z_{' num2str(p(k)) '}']) ${~|+zdB  
    %       end gLD`wfZR  
    % Qx|H1_6  
    %   See also ZERNPOL, ZERNFUN. 5`^o1nGO'  
    OL59e %X  
    %   Paul Fricker 11/13/2006 iY[+Ywh  
    $<@\-vYvr@  
    jdut4 nFc  
    % Check and prepare the inputs: ~%w~-O2  
    % ----------------------------- x!S;SU  
    if min(size(p))~=1 KcGsMPJ  
        error('zernfun2:Pvector','Input P must be vector.') )\/ =M*  
    end hPm>tV2X  
    z,;;=V6j  
    if any(p)>35 3{raKM6F  
        error('zernfun2:P36', ... 33l>{(y  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... hi{%pi&!T  
               '(P = 0 to 35).']) `cP <}^]  
    end H{ M)-  
    =?}twC$  
    % Get the order and frequency corresonding to the function number: r >{G`de4  
    % ---------------------------------------------------------------- U SOKDDm  
    p = p(:); |fsm8t<~8  
    n = ceil((-3+sqrt(9+8*p))/2); MKGS`X]<J  
    m = 2*p - n.*(n+2); `hh9"Ws%  
    Gu(lI ~  
    % Pass the inputs to the function ZERNFUN: AG"l1wz  
    % ---------------------------------------- W+>wu%[L  
    switch nargin b=##A  
        case 3 dFW=9ru+MQ  
            z = zernfun(n,m,r,theta); _v5t<_^N  
        case 4 >X}{BDMb.  
            z = zernfun(n,m,r,theta,nflag); 8 ,}ikOZ?  
        otherwise jrJR1npB  
            error('zernfun2:nargin','Incorrect number of inputs.') s PYX~G&T  
    end <zfe }0  
    Eyh|a. )-  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 gtU1'p"  
    function z = zernfun(n,m,r,theta,nflag) cf8-]G?tK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. T{MC-j _T9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ueyw;Y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =V$j6  
    %   unit circle.  N is a vector of positive integers (including 0), and <&#+ E%E4  
    %   M is a vector with the same number of elements as N.  Each element m@qqVRn#)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (i`(>I.(/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @ RR\lZ  
    %   and THETA is a vector of angles.  R and THETA must have the same b](o]O{v  
    %   length.  The output Z is a matrix with one column for every (N,M) ym%slg  
    %   pair, and one row for every (R,THETA) pair. TQ9'76INb  
    % bkQ3c-C<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7[o {9Yp&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (Pi-uL<[a  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *Zkss   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2_pz3<,\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized L7q |^`  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ZlR!s!vv  
    % ?ApRJm:T  
    %   The Zernike functions are an orthogonal basis on the unit circle. D1"7s,Hmu  
    %   They are used in disciplines such as astronomy, optics, and M []OHw  
    %   optometry to describe functions on a circular domain. |O (G nsZ  
    % 0-xCp ~vE  
    %   The following table lists the first 15 Zernike functions. d'zT:g  
    % m6n hC  
    %       n    m    Zernike function           Normalization U</+.$b  
    %       -------------------------------------------------- 960qvz!  
    %       0    0    1                                 1 !wh=dQgMe  
    %       1    1    r * cos(theta)                    2  (K #A  
    %       1   -1    r * sin(theta)                    2 EF;,Gjh5p  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) J+2R&3;_O  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Pz473d  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -<oZ)OfU  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) b=LF%P  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) c^S&F9/U*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]h@{6N'oNS  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 9*pG?3*I  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !<Z{@7oH  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `"Dy%&U  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |=3 *;}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?)cJZ>$!w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .cR*P<3O  
    %       -------------------------------------------------- (!n-Age  
    % N$Hqa^!'T  
    %   Example 1: `^%GN8d}nm  
    % 1g i}H)  
    %       % Display the Zernike function Z(n=5,m=1) raQYn?[  
    %       x = -1:0.01:1; >eo8  
    %       [X,Y] = meshgrid(x,x); L?f qcW{  
    %       [theta,r] = cart2pol(X,Y); 3wNN<R  
    %       idx = r<=1; kPJ~X0Fr{t  
    %       z = nan(size(X)); FOp_[rR   
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2u&c &G  
    %       figure ,k%8yK  
    %       pcolor(x,x,z), shading interp \X opU"  
    %       axis square, colorbar l$`G:%qHj  
    %       title('Zernike function Z_5^1(r,\theta)') r5)f82pQ  
    % ,4Y sZ  
    %   Example 2: Wf1-"Q  
    % 4~WlP,,M  
    %       % Display the first 10 Zernike functions )/TVJAJ  
    %       x = -1:0.01:1; }85#[~m'  
    %       [X,Y] = meshgrid(x,x); +~:0Dxv W  
    %       [theta,r] = cart2pol(X,Y); h.LSMU (O  
    %       idx = r<=1; YPQCOG  
    %       z = nan(size(X)); s=jO; K$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; j&}B<f _6J  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +-k`x0v  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2$Y3[$  
    %       y = zernfun(n,m,r(idx),theta(idx)); Vx(;|/:  
    %       figure('Units','normalized') :+A; TV  
    %       for k = 1:10 j)@oRWL<  
    %           z(idx) = y(:,k); EEg O  
    %           subplot(4,7,Nplot(k)) *EE|?vn  
    %           pcolor(x,x,z), shading interp (QhAGk&lu  
    %           set(gca,'XTick',[],'YTick',[]) |vN$"mp^a  
    %           axis square ^ N_`^m  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G[B*TM6$  
    %       end c=<v.J@K  
    % Q,TaJ]  
    %   See also ZERNPOL, ZERNFUN2. &`5 :G LV  
    ~pwY6Q  
    %   Paul Fricker 11/13/2006 F13%)G(  
    [ 1D)$"  
    @%7/2k  
    % Check and prepare the inputs: 2X +7b M  
    % ----------------------------- EkV!hqs*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7dx4~dF  
        error('zernfun:NMvectors','N and M must be vectors.') B C&^]M  
    end C890+(D~  
    QD6Z=>?S  
    if length(n)~=length(m) M, Po54u  
        error('zernfun:NMlength','N and M must be the same length.') |O^V)bZmx  
    end w7[0  
    .;}pU!S~R  
    n = n(:); 6UtG-WHHt  
    m = m(:);  2fbvU  
    if any(mod(n-m,2)) r6/<&1[  
        error('zernfun:NMmultiplesof2', ... J]_)gb'1BR  
              'All N and M must differ by multiples of 2 (including 0).') Pyit87h{  
    end ol1AD: Ho  
    %hrsE5k^,  
    if any(m>n) gB'`I(q5.  
        error('zernfun:MlessthanN', ... A` oa|k!U  
              'Each M must be less than or equal to its corresponding N.') pzYG?9cwz  
    end | eK,Td%  
    Y-?51g[u  
    if any( r>1 | r<0 ) .|tQ=l@I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ZlUFJ*pk  
    end IrUpExJ  
    .jy)>"h0  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HX z iDnj  
        error('zernfun:RTHvector','R and THETA must be vectors.') S:DcfR=a  
    end aj+zmk~-  
    i,^>uf  
    r = r(:); 6YB-}>?  
    theta = theta(:); 8VKb*  
    length_r = length(r); VN1# 8{  
    if length_r~=length(theta) "1E?3PFJ  
        error('zernfun:RTHlength', ... ei(| 5h  
              'The number of R- and THETA-values must be equal.') F12S(5Z0%  
    end GWVEIZ  
    sT@u3^>  
    % Check normalization: _q2`m  
    % -------------------- |2tSUOZ  
    if nargin==5 && ischar(nflag) * , |)~$=>  
        isnorm = strcmpi(nflag,'norm'); qLU15cOM  
        if ~isnorm 8yNRx iW:  
            error('zernfun:normalization','Unrecognized normalization flag.') #p;4:IT  
        end wK/}E h\^  
    else GA}hp%  
        isnorm = false; )[F46?$vrk  
    end 8JFnB(3xU  
    w/)e2CH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k|)^!BdO  
    % Compute the Zernike Polynomials w`w ` q'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ss*Lg K_  
    b*9m2=6  
    % Determine the required powers of r: #h}IUR  
    % ----------------------------------- O p!  
    m_abs = abs(m); =+kvL2nx-  
    rpowers = []; hPNQGVv  
    for j = 1:length(n) T(t <Ay?c  
        rpowers = [rpowers m_abs(j):2:n(j)]; {3_Ffsg`  
    end 4'7 v!I9  
    rpowers = unique(rpowers); vUA)#z<  
    |sDG>Zq?  
    % Pre-compute the values of r raised to the required powers, |^>L`6uo  
    % and compile them in a matrix: 6Vu}k K)  
    % ----------------------------- mRix0XBI~  
    if rpowers(1)==0 =2GP^vh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t\E-6u  
        rpowern = cat(2,rpowern{:}); I3F6-gH  
        rpowern = [ones(length_r,1) rpowern]; QqT6P`0u  
    else 2xz%'X%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3 tx0y  
        rpowern = cat(2,rpowern{:}); QZz{74]n  
    end o>QFd x  
    N23+1h  
    % Compute the values of the polynomials: >"m@qkh  
    % -------------------------------------- UGezo3}  
    y = zeros(length_r,length(n)); 'IqK M  
    for j = 1:length(n) '/n%}=a=  
        s = 0:(n(j)-m_abs(j))/2; 9|?(GG  
        pows = n(j):-2:m_abs(j); vi()1LS/!  
        for k = length(s):-1:1 2!"\;/  
            p = (1-2*mod(s(k),2))* ... 6>P  
                       prod(2:(n(j)-s(k)))/              ... ._F 6-pl  
                       prod(2:s(k))/                     ... Oujlm|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... HnYFE@Nl:U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); {O3oUE+  
            idx = (pows(k)==rpowers); 6#lC(ko'  
            y(:,j) = y(:,j) + p*rpowern(:,idx); i32_ZBZ?y  
        end Ot8S'cB1,$  
         d >wmg*J  
        if isnorm + X|m>9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); EY[Q%  
        end p7ns(g@9  
    end Z ^9{Qq  
    % END: Compute the Zernike Polynomials AD4L`0D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dp%pbn6w  
    O'yjB$j  
    % Compute the Zernike functions: wshp{ y  
    % ------------------------------ ]oWZ{#r2  
    idx_pos = m>0; <PuB3PEvV  
    idx_neg = m<0; s poWdRM2  
    9OO_Hp#|9  
    z = y; VTgbJ {?  
    if any(idx_pos) "3>*i!i  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); O%Gsk'mo  
    end R*TGn_J`  
    if any(idx_neg) R4rm>zisVX  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); e 7)%=F/)  
    end Lw+1|  
    ,mBKya)  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的