切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10932阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 PX52a[wNDH  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ;^lVIS%&{  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  M,8a$Mdqh  
    lV]hjt-L 2  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ",(-AU!a)h  
    0rxlN [Yp  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) oJ ,t]e*q=  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ;Z-xum{  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of n,hHh=.Fu  
    %   order N and frequency M, evaluated at R.  N is a vector of oZHsCQ%  
    %   positive integers (including 0), and M is a vector with the 0R\lm<&  
    %   same number of elements as N.  Each element k of M must be a ]sE~gro  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) IFlDw}M!9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is R9f*&lj  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix DPw"UY:  
    %   with one column for every (N,M) pair, and one row for every }\|$8~  
    %   element in R. 51;V#@CsQ  
    % \`;FL\1+W  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 'b]GcAL  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is UpL?6)  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U 3aY =8B  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ),v[.9!}:  
    %   for all [n,m]. jY-{hW+r  
    % HUuL3lYka  
    %   The radial Zernike polynomials are the radial portion of the rbS67--]  
    %   Zernike functions, which are an orthogonal basis on the unit P6&@fwJ<  
    %   circle.  The series representation of the radial Zernike 4`)`%R$  
    %   polynomials is 3+@p  
    % U2\g Kg[-Q  
    %          (n-m)/2 G&)A7WaC  
    %            __ <]eWr:;  
    %    m      \       s                                          n-2s SL zL/5s  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r R(@B4M2  
    %    n      s=0 oFB~)}f<v  
    % U+CZv1  
    %   The following table shows the first 12 polynomials. ?wt%e;  
    % } 1^/[?  
    %       n    m    Zernike polynomial    Normalization jw?/@(AC6  
    %       --------------------------------------------- cq>{  
    %       0    0    1                        sqrt(2) |'9%vtbM  
    %       1    1    r                           2 j2\bCGY  
    %       2    0    2*r^2 - 1                sqrt(6) k"Y9Kc0XoU  
    %       2    2    r^2                      sqrt(6) >p [|U`>{  
    %       3    1    3*r^3 - 2*r              sqrt(8) -^]8w QU  
    %       3    3    r^3                      sqrt(8) Gu}|CFL\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) oXRmnt  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) +ObP[F  
    %       4    4    r^4                      sqrt(10) E;.<'t>  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ? acm5dN  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -'BC*fVr  
    %       5    5    r^5                      sqrt(12) /) sA{q 4  
    %       --------------------------------------------- "aIiW VQ  
    % A&*lb7X  
    %   Example: |b7 v(Hx  
    % FivgOa  
    %       % Display three example Zernike radial polynomials 28 [hp[<  
    %       r = 0:0.01:1; CE]0OY  
    %       n = [3 2 5]; @]P#]%^D2  
    %       m = [1 2 1]; p \A^kX^5  
    %       z = zernpol(n,m,r); 2a8ZU{wjn  
    %       figure {R%v4#nk  
    %       plot(r,z) A;7p  
    %       grid on fgIzT!fyz  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 1wP#?p)c  
    % =cI -<0QSn  
    %   See also ZERNFUN, ZERNFUN2. S&_Z,mT./  
    2 eo]D?}  
    % A note on the algorithm. Vp{! Ft8>  
    % ------------------------ xS?[v&"2  
    % The radial Zernike polynomials are computed using the series j hf%ze  
    % representation shown in the Help section above. For many special /?uA{/8  
    % functions, direct evaluation using the series representation can iU"jV*P]  
    % produce poor numerical results (floating point errors), because KI)jP((  
    % the summation often involves computing small differences between (8qD'(@  
    % large successive terms in the series. (In such cases, the functions WP[h@#7<  
    % are often evaluated using alternative methods such as recurrence dZcRLLR  
    % relations: see the Legendre functions, for example). For the Zernike DjY&)oce(  
    % polynomials, however, this problem does not arise, because the -x)Oo`  
    % polynomials are evaluated over the finite domain r = (0,1), and x O?w8*d  
    % because the coefficients for a given polynomial are generally all |YCGWJaci  
    % of similar magnitude. _^K)>  
    % XgL-t~_  
    % ZERNPOL has been written using a vectorized implementation: multiple C^9G \s'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] |s[kY  
    % values can be passed as inputs) for a vector of points R.  To achieve u`?MV2jU2  
    % this vectorization most efficiently, the algorithm in ZERNPOL 29{Ep   
    % involves pre-determining all the powers p of R that are required to >xrO W`p ]  
    % compute the outputs, and then compiling the {R^p} into a single q2 K@i*s  
    % matrix.  This avoids any redundant computation of the R^p, and JrlDTNJj'  
    % minimizes the sizes of certain intermediate variables. #tX\m ;  
    % S. my" j  
    %   Paul Fricker 11/13/2006 _RI`I}&9Z  
    c1 aCN  
    =)_9GO  
    % Check and prepare the inputs: _2uRY  
    % ----------------------------- &j=Fx F9o  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?pSb,kN}'  
        error('zernpol:NMvectors','N and M must be vectors.') kS_oj  
    end ffyDi1Q  
    U9^o"vT  
    if length(n)~=length(m) ~*"]XE?M  
        error('zernpol:NMlength','N and M must be the same length.') pT3p!/pl3  
    end ]^aOYtKX  
    #9{N[t  
    n = n(:); `;KU^dH  
    m = m(:); F<FNZQ@<U  
    length_n = length(n); Su" 9`  
    PF=BXY1<UL  
    if any(mod(n-m,2)) Ja1[vO"YgP  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') K @x4>9 3n  
    end eh4`a<gC  
    ]`@= ;w  
    if any(m<0) bu[PQsT  
        error('zernpol:Mpositive','All M must be positive.') _cPGS=Ew  
    end `y"(\1  
    t~_j+k0K#  
    if any(m>n) EFpV  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') XS:W{tL!  
    end 7b>FqW)%  
    |#_IAN  
    if any( r>1 | r<0 ) kp F")0qr  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $glt%a  
    end DJ&ni`  
    mEK0ID\  
    if ~any(size(r)==1) GxH]  
        error('zernpol:Rvector','R must be a vector.') >i&"{GZ  
    end t<8vgdD  
    RWyDX_z#<  
    r = r(:); ZiR },F/  
    length_r = length(r); RP!!6A6:  
    4Js2/s  
    if nargin==4 8&[Lr o9  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); dyH<D5  
        if ~isnorm 9, A(|g  
            error('zernpol:normalization','Unrecognized normalization flag.') 7Iz%Jty  
        end ;4(ULJ*  
    else Kjw==5)}  
        isnorm = false; 6yn34'yw  
    end hY*ylzr83  
    `.oWmBey\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Tt;h?  
    % Compute the Zernike Polynomials MH wjJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x}^ :Bs+j  
    ?=u/&3Cw  
    % Determine the required powers of r: 7(8i~}  
    % ----------------------------------- &# [w*t(A  
    rpowers = []; c#)!-5E~H  
    for j = 1:length(n) J\06j%d,  
        rpowers = [rpowers m(j):2:n(j)]; u92);1R  
    end X667*L^  
    rpowers = unique(rpowers); E&;[E  
    [ADSGnw  
    % Pre-compute the values of r raised to the required powers, Uz4!O  
    % and compile them in a matrix: JD\yl[ac%  
    % ----------------------------- p :v'"A}  
    if rpowers(1)==0 qG lbO  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Fx@ovI- 5  
        rpowern = cat(2,rpowern{:}); !xE /  
        rpowern = [ones(length_r,1) rpowern]; ]n\Qa   
    else Xu.Wdl/{Ra  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); LqYP0%7  
        rpowern = cat(2,rpowern{:}); c[IT?6J4  
    end %yyvB5Y^  
    FR BW(vKE  
    % Compute the values of the polynomials: Ee~<PDzB  
    % -------------------------------------- Jn |sS(Q}  
    z = zeros(length_r,length_n); wo#,c(  
    for j = 1:length_n 61aU~w11a  
        s = 0:(n(j)-m(j))/2; Kl\g{>{Uz  
        pows = n(j):-2:m(j); "_f~8f`y  
        for k = length(s):-1:1 nE&`~  
            p = (1-2*mod(s(k),2))* ... Mzg zOM  
                       prod(2:(n(j)-s(k)))/          ... ~vbyX  
                       prod(2:s(k))/                 ... N1',`L5  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5n0B`A  
                       prod(2:((n(j)+m(j))/2-s(k))); *+ i1m `6Q  
            idx = (pows(k)==rpowers); MQ#nP_i  
            z(:,j) = z(:,j) + p*rpowern(:,idx); yv;KKQ   
        end JI3x^[(Z  
         ?lPn{oB9"  
        if isnorm 7Mj:bm&9  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); P Nf_{4  
        end a23XrX  
    end '5)PYjMnH  
    )K}-z+$)k  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) '>^!a!<G  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 2CF5qn}T  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Wt M1nnJp  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "?M)2,:A  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Y6E0-bL@Fe  
    %   and THETA is a vector of angles.  R and THETA must have the same 1xD?cA\vu  
    %   length.  The output Z is a matrix with one column for every P-value, 8yC/:_ML  
    %   and one row for every (R,THETA) pair. W9G1wU  
    % h J H  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ujf]@L?  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 1wg#4h43l  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ,Dy9-o  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 98rO]rg  
    %   for all p. v8y !zo'  
    % 0F%/R^mw  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Y'+mC  
    %   Zernike functions (order N<=7).  In some disciplines it is =&"a:l  
    %   traditional to label the first 36 functions using a single mode 0B]c`$"aD  
    %   number P instead of separate numbers for the order N and azimuthal b:Tv Ta  
    %   frequency M. iOB*K)U1  
    % ^ AJ_  
    %   Example: WjsmLb:5  
    % *AG01# ZF  
    %       % Display the first 16 Zernike functions xqpq|U  
    %       x = -1:0.01:1; %%T?LRv  
    %       [X,Y] = meshgrid(x,x); .3CQFbHF  
    %       [theta,r] = cart2pol(X,Y); &U_T1-UR2  
    %       idx = r<=1; H-qbgd6&>R  
    %       p = 0:15; pM-mZ/?  
    %       z = nan(size(X)); oi7Y?hTj  
    %       y = zernfun2(p,r(idx),theta(idx)); "uP~hFA7M  
    %       figure('Units','normalized') =bOMtQ]  
    %       for k = 1:length(p) Hbl&)!I  
    %           z(idx) = y(:,k); Ov;q]Vn>  
    %           subplot(4,4,k) =>- W!Of  
    %           pcolor(x,x,z), shading interp e8 c.&j3m  
    %           set(gca,'XTick',[],'YTick',[]) 2Mu3] 2>  
    %           axis square Rxq4Diq5k  
    %           title(['Z_{' num2str(p(k)) '}']) re fAgS!=q  
    %       end @GWlo\rM6^  
    % #!C|~=  
    %   See also ZERNPOL, ZERNFUN. s_P[lbHt.  
    u/apnAW@M  
    %   Paul Fricker 11/13/2006 ul{D)zm\D  
    Gce[RB:  
    }vd72P B  
    % Check and prepare the inputs: (@NW2  
    % ----------------------------- a5/r|BiBK  
    if min(size(p))~=1 v.53fx  
        error('zernfun2:Pvector','Input P must be vector.') ?L"x>$  
    end 2S//5@~_m  
    gNC'kCx0c  
    if any(p)>35 J4Ca0Ag  
        error('zernfun2:P36', ... }_D{|! !!T  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 5R6QZVc  
               '(P = 0 to 35).']) epI~w  
    end [W99}bi$  
    Pf~0JNnc  
    % Get the order and frequency corresonding to the function number: Rl'xEtaN  
    % ---------------------------------------------------------------- k- exqM2x=  
    p = p(:); ab[V->>%  
    n = ceil((-3+sqrt(9+8*p))/2); tILnD1q  
    m = 2*p - n.*(n+2); ~FVbL-2  
    P]7s1kgaS  
    % Pass the inputs to the function ZERNFUN: OI:T#uk5  
    % ---------------------------------------- 0zk054F'  
    switch nargin 1[-RIN;U8  
        case 3 |!J_3*6$>*  
            z = zernfun(n,m,r,theta); ;x&3tN/I  
        case 4 ?4t~z 1.f  
            z = zernfun(n,m,r,theta,nflag); GL^ j |1  
        otherwise @ev^e !B  
            error('zernfun2:nargin','Incorrect number of inputs.') }OSfC~5P  
    end yMOYTN@]  
    KP!7hJhw  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 lEpPi@2PK  
    function z = zernfun(n,m,r,theta,nflag) 7N0m7SC  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. z u1gP/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N P d(n|t3[8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Si|8xq$E;  
    %   unit circle.  N is a vector of positive integers (including 0), and QzYaxNGv  
    %   M is a vector with the same number of elements as N.  Each element K4^B~0~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) '=IuwCB|;  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^fM=|.?  
    %   and THETA is a vector of angles.  R and THETA must have the same N]|U-fN\  
    %   length.  The output Z is a matrix with one column for every (N,M) qt%/0  
    %   pair, and one row for every (R,THETA) pair. &jDRRT3  
    % 1'5 !")r  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +7K]5p;!~  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cr{dl\ Na  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 2aQ}| `  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vb2")+*:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized cH7D@p}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J1Y3>40  
    % GF Rd:e  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,qlFk|A|  
    %   They are used in disciplines such as astronomy, optics, and EtB56FU\  
    %   optometry to describe functions on a circular domain. iainl@3Qj  
    % L^nS%lm  
    %   The following table lists the first 15 Zernike functions. zdDJcdbGd1  
    % J~G"D-l<9/  
    %       n    m    Zernike function           Normalization .]Z,O>N  
    %       -------------------------------------------------- fGLOXbsA  
    %       0    0    1                                 1 [g*]u3s  
    %       1    1    r * cos(theta)                    2 bRAf!<3  
    %       1   -1    r * sin(theta)                    2 )^'wcBod,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 9$'Edi=6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) iAW oKW  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) BcoE&I?[m|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) +<I1@C  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /h%MWCZWm^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @)8C  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Jh:-<xy)  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1')/BM2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _'oy C(:}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) dUJNr_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h Tn^:%(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @.iOFY  
    %       -------------------------------------------------- rQ$A|GJL  
    % f1>^kl3@P  
    %   Example 1: w02HSQ  
    % ^ihXM]1{G  
    %       % Display the Zernike function Z(n=5,m=1) `ionMTZY  
    %       x = -1:0.01:1; osX23T~-  
    %       [X,Y] = meshgrid(x,x); I_ .;nU1xA  
    %       [theta,r] = cart2pol(X,Y); 7"JU)@ U]  
    %       idx = r<=1; C5RDP~au  
    %       z = nan(size(X)); = -pss 47  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); :7>Si%  
    %       figure MgMLfgt"V  
    %       pcolor(x,x,z), shading interp UmgLH Cz  
    %       axis square, colorbar <p0$Q!^dK=  
    %       title('Zernike function Z_5^1(r,\theta)') -{b1&  
    % p go\(K0  
    %   Example 2: L kq>>?T=  
    % c8"I]Qc7  
    %       % Display the first 10 Zernike functions Sc~kO4  
    %       x = -1:0.01:1; |f?C*t',  
    %       [X,Y] = meshgrid(x,x); *E)Y?9u"  
    %       [theta,r] = cart2pol(X,Y); e<^4F%jSK  
    %       idx = r<=1; T*T.\b  
    %       z = nan(size(X)); M<~F>(wxA  
    %       n = [0  1  1  2  2  2  3  3  3  3]; G[>-@9_b  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; hy)RV=X  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; #=.h:_9  
    %       y = zernfun(n,m,r(idx),theta(idx)); 'qd")  
    %       figure('Units','normalized') l*m|b""].u  
    %       for k = 1:10 t+(CAP|,  
    %           z(idx) = y(:,k); tl^[MLQa  
    %           subplot(4,7,Nplot(k)) 0\~Zg  
    %           pcolor(x,x,z), shading interp +tN-X'u##  
    %           set(gca,'XTick',[],'YTick',[]) `A^} X  
    %           axis square YYvs~?bAy  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z"O-d<U5  
    %       end M{4_BQ4$  
    % ]Ojt3) fB  
    %   See also ZERNPOL, ZERNFUN2. x+TNF>%' D  
    hW+Dko(s  
    %   Paul Fricker 11/13/2006 j5)qF1W,  
    Elq8WtS  
    )nk>*oE  
    % Check and prepare the inputs: >PJ-Z~O'   
    % ----------------------------- ,/ : )FV  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &L?Dogo  
        error('zernfun:NMvectors','N and M must be vectors.') t]o gn(  
    end n{yjH*\Z  
    M:SxAo-D2  
    if length(n)~=length(m) ]\ezES  
        error('zernfun:NMlength','N and M must be the same length.') U+i[r&{gb  
    end UiEB?X]-l'  
    XHg %X  
    n = n(:); #"M Pe4  
    m = m(:); t;1NzI$^  
    if any(mod(n-m,2))  e.GzGX  
        error('zernfun:NMmultiplesof2', ... Ja&%J:  
              'All N and M must differ by multiples of 2 (including 0).') {LeEnh-  
    end ]O\W<'+V  
    "%]dC {  
    if any(m>n) X m3t xp#  
        error('zernfun:MlessthanN', ... ^Bb_NcU  
              'Each M must be less than or equal to its corresponding N.') GT.^u#r  
    end e`rY]X  
    FTfA\/tl(;  
    if any( r>1 | r<0 ) 7GUJ&U) J  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !tdfTf$  
    end xVyUUzXs  
    %E\%nTV  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yBj)#m5!  
        error('zernfun:RTHvector','R and THETA must be vectors.') B# fzMaC  
    end D=>^m=?0  
    bH{aI:9Fb  
    r = r(:); ;^*!<F%t9R  
    theta = theta(:); h<.[U $,  
    length_r = length(r); gNd J=r4  
    if length_r~=length(theta) 8TPm[r]  
        error('zernfun:RTHlength', ... ^-!HbbVv  
              'The number of R- and THETA-values must be equal.') |7$h@KF=S  
    end ;" *`  
    d"UW38K{  
    % Check normalization: ,]mwk~HeF  
    % -------------------- | dwxea  
    if nargin==5 && ischar(nflag) U;GoC$b}|  
        isnorm = strcmpi(nflag,'norm'); }$1 ;<  
        if ~isnorm 2>k)=hl:  
            error('zernfun:normalization','Unrecognized normalization flag.') eeZysCy+DY  
        end vWH>k+9&X  
    else Cpcd`y=IN  
        isnorm = false; ([-=NT}Aq  
    end `W n5 .V  
    u&XkbPZ%4c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q4iD59yd)S  
    % Compute the Zernike Polynomials QP%Fz#u`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )^Pvm  
    J\'5CG  
    % Determine the required powers of r: l%(`<a]VIB  
    % ----------------------------------- Xh"iP%  
    m_abs = abs(m); })lT fy  
    rpowers = []; %UQB?dkf$  
    for j = 1:length(n) }%ThnFFBw  
        rpowers = [rpowers m_abs(j):2:n(j)]; ON0+:`3\  
    end k)V%.Eobf  
    rpowers = unique(rpowers); 5]l7Z35  
    O + & xb  
    % Pre-compute the values of r raised to the required powers, AsLjU#jn  
    % and compile them in a matrix: c/Yi0Rl)  
    % ----------------------------- '5/}MMT  
    if rpowers(1)==0 BkxhF  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); DS}rFU  
        rpowern = cat(2,rpowern{:}); u^zitW!X$  
        rpowern = [ones(length_r,1) rpowern]; V55J[s*6!  
    else c dbSv=r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N%A`rY}u  
        rpowern = cat(2,rpowern{:}); 7&1~O#  
    end aSkx#mV  
    Cw&D}  
    % Compute the values of the polynomials: i:M*L< +  
    % -------------------------------------- #pQ"+X  
    y = zeros(length_r,length(n)); FP'lEp  
    for j = 1:length(n) pEj^x[b`^  
        s = 0:(n(j)-m_abs(j))/2; Z/= %J3f  
        pows = n(j):-2:m_abs(j); rHgdvDc  
        for k = length(s):-1:1 .*~u  
            p = (1-2*mod(s(k),2))* ... }K80G~O2<  
                       prod(2:(n(j)-s(k)))/              ... Y\e]2  
                       prod(2:s(k))/                     ... SWjQ.aM  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <yI,cM<c  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); r`R~{;oT  
            idx = (pows(k)==rpowers); &^n> ZY,  
            y(:,j) = y(:,j) + p*rpowern(:,idx); p?$G>nkdq  
        end PT#eXS9_  
         ~]W[ {3 ;  
        if isnorm Dbdzb m7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cia-OVX  
        end Kq 4<l  
    end :~3{oZGX&  
    % END: Compute the Zernike Polynomials H<Kkj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EKeh>3;?  
    d&T6p&V$  
    % Compute the Zernike functions: n R\n\   
    % ------------------------------ dH2]ZE0V  
    idx_pos = m>0; fb"J Bc}X  
    idx_neg = m<0; ::OFW@dS  
    xR|eyeR  
    z = y; 3> \fP#oQ  
    if any(idx_pos) >=~Fo)V!(V  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M_!u@\  
    end  =Etwa  
    if any(idx_neg) 0^}'+t,lc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); PM-PP8h  
    end XK%W^a*x  
    EARfbb"SG7  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的