切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11019阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 i_Z5SMZ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \q|PHl  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ]HyHz9QkL  
    $v:gBlj%"  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 "J P{Q  
    8> Du  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 2.]~*7   
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ^ b@!dS  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of PDhWFF  
    %   order N and frequency M, evaluated at R.  N is a vector of ja?s@Y}-9s  
    %   positive integers (including 0), and M is a vector with the {-Yee[d<?  
    %   same number of elements as N.  Each element k of M must be a 3Mw}R6g@#  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Q2q| *EL  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ^ZR8s^X  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix )R~a;?T_c0  
    %   with one column for every (N,M) pair, and one row for every A$Wx#r7)  
    %   element in R. W;.{]x.0  
    % goB;EWz  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Gp,'kw"I  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is o,J^ e_  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to # J]~  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 n_J5zQJ  
    %   for all [n,m]. n%*tMr9s  
    % h<)yJh  
    %   The radial Zernike polynomials are the radial portion of the w?_`/oqd|  
    %   Zernike functions, which are an orthogonal basis on the unit nW11wtiO.  
    %   circle.  The series representation of the radial Zernike }Fm\+JOS   
    %   polynomials is 2qlIy  
    % "ct58Y@   
    %          (n-m)/2 (V!0'9c  
    %            __ aV#h5s  
    %    m      \       s                                          n-2s !O8.#+  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r fQO ""qh  
    %    n      s=0 u3ST;  
    % |*ReqM|_C  
    %   The following table shows the first 12 polynomials. K_Re}\D  
    % B 2Z0  
    %       n    m    Zernike polynomial    Normalization }1Z6e[K?  
    %       --------------------------------------------- 5/,Qz>QE[  
    %       0    0    1                        sqrt(2) d+e0;!s~O  
    %       1    1    r                           2 83Uw  
    %       2    0    2*r^2 - 1                sqrt(6) `6}Yqh))  
    %       2    2    r^2                      sqrt(6) _Z$?^gn  
    %       3    1    3*r^3 - 2*r              sqrt(8) S2Vxe@b)  
    %       3    3    r^3                      sqrt(8) ']h IfOD"r  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) >8(jW  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) J)KnE2dw5  
    %       4    4    r^4                      sqrt(10) T0Q51Q  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) C bQ4Y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 8jNOEM(0Y+  
    %       5    5    r^5                      sqrt(12) #2N_/J(U  
    %       --------------------------------------------- + KP_yUq[  
    % _JA:.V^3gm  
    %   Example: :X Lp  
    % TL@mM  
    %       % Display three example Zernike radial polynomials 5NFRPGYX  
    %       r = 0:0.01:1; c 6q/X*  
    %       n = [3 2 5]; "&<~UiI  
    %       m = [1 2 1]; Why"G1`  
    %       z = zernpol(n,m,r); M $uf:+F  
    %       figure d- kZt@DL=  
    %       plot(r,z) . pP7"E4]  
    %       grid on 32^#RlSu8  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 4 4`WYK l  
    % 2vvh|?M  
    %   See also ZERNFUN, ZERNFUN2. In+^V([u+_  
    w5(yCyNp~  
    % A note on the algorithm. `M0YAiG  
    % ------------------------ ;W6-i2?  
    % The radial Zernike polynomials are computed using the series 7 Kjj?~RA  
    % representation shown in the Help section above. For many special nALnB1  
    % functions, direct evaluation using the series representation can Gnv!]c&S>l  
    % produce poor numerical results (floating point errors), because y@aKNWy}$  
    % the summation often involves computing small differences between 3a^)u-9,x  
    % large successive terms in the series. (In such cases, the functions kC31$jMC3!  
    % are often evaluated using alternative methods such as recurrence 3Y(9\}E@`  
    % relations: see the Legendre functions, for example). For the Zernike M}KZG'7  
    % polynomials, however, this problem does not arise, because the = hhvmo  
    % polynomials are evaluated over the finite domain r = (0,1), and 2`E! |X  
    % because the coefficients for a given polynomial are generally all gb(#DbI  
    % of similar magnitude. 9t0Cj/w}  
    % K( z[ }  
    % ZERNPOL has been written using a vectorized implementation: multiple wonYm27f  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %ZiK[e3G  
    % values can be passed as inputs) for a vector of points R.  To achieve cd+^=esSO  
    % this vectorization most efficiently, the algorithm in ZERNPOL .jaZ|nN8`  
    % involves pre-determining all the powers p of R that are required to 4&]%e6,jH  
    % compute the outputs, and then compiling the {R^p} into a single lz}llLb1  
    % matrix.  This avoids any redundant computation of the R^p, and (V)9s\Le_  
    % minimizes the sizes of certain intermediate variables. +dM.-wW  
    % .aJ%am/:%  
    %   Paul Fricker 11/13/2006 zsQF,7/}B  
    7JS#a=D#  
    NA\x<  
    % Check and prepare the inputs: "vsjen.K>  
    % ----------------------------- s.KOBNCFa  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zu<>"5}]  
        error('zernpol:NMvectors','N and M must be vectors.') [WYJrk.  
    end ~ur)f AuF2  
    \QiqcD9Y  
    if length(n)~=length(m) C[g&F 0 6  
        error('zernpol:NMlength','N and M must be the same length.') Cc*|Zw  
    end >pnz_MQ   
    .jCk#@+  
    n = n(:); "~Us#4>  
    m = m(:); N4s$.`  
    length_n = length(n); kHZKj!!R  
    Etdd\^  
    if any(mod(n-m,2)) oR7 7`  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') x7Eeb!s0f,  
    end (KZUvsSk  
    S~}$Ly@  
    if any(m<0) 6mX:=Q  
        error('zernpol:Mpositive','All M must be positive.') IK85D>00T  
    end R+C+$?4NG  
    aL{EkiR  
    if any(m>n) ]D?oQ$q7  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') WtMcI>4w  
    end 3$;J0{&[i  
    !P+~ c0DF  
    if any( r>1 | r<0 ) P~;<o! f  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') >Y44{D\`  
    end WReYF+Uen  
    `;R|V  
    if ~any(size(r)==1) I):m6y@  
        error('zernpol:Rvector','R must be a vector.') zaQ$ Ht  
    end *vEU}SxRuv  
    X+fu hcn  
    r = r(:); ':9%3Wq]j  
    length_r = length(r); PpI+@:p[  
    jqV)V>M.  
    if nargin==4 Q3'(f9 x  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); "'Q$.sR  
        if ~isnorm ;2+ FgOj  
            error('zernpol:normalization','Unrecognized normalization flag.') ot&j HS'  
        end ? Yynd  
    else U0lqGEZ  
        isnorm = false; &6=TtTp"9  
    end h Kp,4D>2_  
    %`t]FV^#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S}XB |  
    % Compute the Zernike Polynomials Qr^Z~$i t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f=-!2#%  
    8Iqk%n~(  
    % Determine the required powers of r:  ==r ?  
    % ----------------------------------- _ d(Ks9  
    rpowers = []; 'Kt4O9=p  
    for j = 1:length(n) s~IA},F,\  
        rpowers = [rpowers m(j):2:n(j)]; VdjU2d  
    end J%O[@jX1  
    rpowers = unique(rpowers); J"a2 @S&  
    pU'`9f Li_  
    % Pre-compute the values of r raised to the required powers, <*b]JY V@  
    % and compile them in a matrix: _mI:Lr#dT  
    % ----------------------------- pE YrmC  
    if rpowers(1)==0 ,i$(yx?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4IGQ,RTB  
        rpowern = cat(2,rpowern{:}); A+bu bH,  
        rpowern = [ones(length_r,1) rpowern]; 0YsN82IDD  
    else 4p/V6kr&r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @zVBn~=i  
        rpowern = cat(2,rpowern{:}); 6{F S /+  
    end p1`'1`.3  
    * zJiii  
    % Compute the values of the polynomials: G3^n_]Jb  
    % -------------------------------------- ;MdK3c  
    z = zeros(length_r,length_n); 9O 0  
    for j = 1:length_n Z:o' +oh  
        s = 0:(n(j)-m(j))/2; CH R?i1e  
        pows = n(j):-2:m(j); m= beB\=  
        for k = length(s):-1:1 EF7|%N  
            p = (1-2*mod(s(k),2))* ... yrv SbqR  
                       prod(2:(n(j)-s(k)))/          ... Aaw:B?4)  
                       prod(2:s(k))/                 ... uzn))/"  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... BX)cV  
                       prod(2:((n(j)+m(j))/2-s(k))); 1wH/#K  
            idx = (pows(k)==rpowers); (L6]uNOG  
            z(:,j) = z(:,j) + p*rpowern(:,idx); OmUw.VH  
        end 9[]"%6  
         T;pn -  
        if isnorm MsiC!j.-  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |(8Hk@\CT>  
        end 1X:whS5S  
    end L5N{ie_  
    +H^V},dBp!  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ]SR`96vG  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. pC.T)k  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated [k{iN1n  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive !l~aRj-WZ  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, w=>mG-  
    %   and THETA is a vector of angles.  R and THETA must have the same k_^/   
    %   length.  The output Z is a matrix with one column for every P-value, ~TR|Pv  
    %   and one row for every (R,THETA) pair. =v=!x  
    % ffd 3QQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike s3!LR2qiF  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) O}!@28|3"  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) a-2 {x2O  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 X[Gk!d r#  
    %   for all p. jz:c)C&/  
    % %Z0S"B 3  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 1Sk6[h'CL  
    %   Zernike functions (order N<=7).  In some disciplines it is ?^ 5*[H  
    %   traditional to label the first 36 functions using a single mode <&Xq`i/(  
    %   number P instead of separate numbers for the order N and azimuthal " CoR?[,x  
    %   frequency M. Z-!T(:E]  
    % b u9&sQ;  
    %   Example: <t@*[Aw  
    %  IomJo  
    %       % Display the first 16 Zernike functions HN@)/5BY  
    %       x = -1:0.01:1; 0Ch._~Q+20  
    %       [X,Y] = meshgrid(x,x); uNBhVsM6<  
    %       [theta,r] = cart2pol(X,Y); a[l5k  
    %       idx = r<=1; cLP @0`^H  
    %       p = 0:15; nQmYeM  
    %       z = nan(size(X)); !WnI`  
    %       y = zernfun2(p,r(idx),theta(idx)); k@U`?7X  
    %       figure('Units','normalized') VNXVuM )c  
    %       for k = 1:length(p) ^u,x~nPXg  
    %           z(idx) = y(:,k); zxdO3I  
    %           subplot(4,4,k) W7"sWaOhW  
    %           pcolor(x,x,z), shading interp Vrh],xK7  
    %           set(gca,'XTick',[],'YTick',[]) AFED YRX  
    %           axis square ]Jq e)o  
    %           title(['Z_{' num2str(p(k)) '}']) RoRVu,1  
    %       end s&</zU'  
    % pC8i &_A  
    %   See also ZERNPOL, ZERNFUN. ;0gpS y$#  
    -Ma"V  
    %   Paul Fricker 11/13/2006 RoZV6U~  
    ?2;G_P+  
    _: K\v8  
    % Check and prepare the inputs: }JsdgO&z  
    % ----------------------------- YSif`W!  
    if min(size(p))~=1 DM95Il[/  
        error('zernfun2:Pvector','Input P must be vector.') d]]qy  
    end b.;W|$.  
    ehq6.+l  
    if any(p)>35 _#:1Axx1  
        error('zernfun2:P36', ... VUb*,/hxa  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... =qRVKz  
               '(P = 0 to 35).']) _?ZT[t<  
    end 2}twt  
    Cn<x  
    % Get the order and frequency corresonding to the function number: f7'%AuSQ(  
    % ---------------------------------------------------------------- /v[- KjTj7  
    p = p(:); RAC-;~$WB  
    n = ceil((-3+sqrt(9+8*p))/2); p* @L1  
    m = 2*p - n.*(n+2); Gf?KpU  
    @!$NUY8,A#  
    % Pass the inputs to the function ZERNFUN: xcig'4L  
    % ---------------------------------------- ? &O$ayG77  
    switch nargin iYf4 /1IG,  
        case 3 mI# BQE`p6  
            z = zernfun(n,m,r,theta); 5IMH G%W7  
        case 4 IjNm/${$  
            z = zernfun(n,m,r,theta,nflag); <Yc:,CU  
        otherwise P(`IY +  
            error('zernfun2:nargin','Incorrect number of inputs.') vl<J-+|0C  
    end pGIeW}2'9  
    Nd6z81  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `# R$  
    function z = zernfun(n,m,r,theta,nflag) )L{\k$r!EM  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. <ygO?m{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G2Apm`/ y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .JiQq]  
    %   unit circle.  N is a vector of positive integers (including 0), and -l\@50, D  
    %   M is a vector with the same number of elements as N.  Each element O7.Is88!  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Pwq} ;+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, p;@PfhEz)  
    %   and THETA is a vector of angles.  R and THETA must have the same 6?_Uow}  
    %   length.  The output Z is a matrix with one column for every (N,M) 5 `+*({  
    %   pair, and one row for every (R,THETA) pair. #zXDh3%]a  
    % S2*:]pYf}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike E`i;9e'S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), pS%Az)3RZ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `jV0;sPd;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M6e"4Gh  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized TqlUe@E  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B8 2A:t)  
    % Fc=8Qt^  
    %   The Zernike functions are an orthogonal basis on the unit circle. _ pJU~8  
    %   They are used in disciplines such as astronomy, optics, and  "u%$`*  
    %   optometry to describe functions on a circular domain. ^|8cS0dK]Q  
    % Jjy}m0)#W_  
    %   The following table lists the first 15 Zernike functions. eSvu:euv  
    % H fRxgA@  
    %       n    m    Zernike function           Normalization PKwx)! Rz  
    %       -------------------------------------------------- v!x=fjr<  
    %       0    0    1                                 1 /aK },+  
    %       1    1    r * cos(theta)                    2 *kDXx&7B$  
    %       1   -1    r * sin(theta)                    2 =^{^KHzIl3  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &;y(@e }D  
    %       2    0    (2*r^2 - 1)                    sqrt(3) A$-{WN.W  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 's e 9|:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) K46mE   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1s*I   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ncWASw`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) >s1HQSe66  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) p HWol!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %D&FnTa  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) QJ$]~)w?H  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (Q\w4?ci  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) KKOu":b  
    %       -------------------------------------------------- hwexv 9""  
    % %';n9M  
    %   Example 1: 3Hq0\Y"Y  
    % N'^ 0:zK:  
    %       % Display the Zernike function Z(n=5,m=1) ^P]: etld9  
    %       x = -1:0.01:1; d`^@/1tO  
    %       [X,Y] = meshgrid(x,x); dso\+s  
    %       [theta,r] = cart2pol(X,Y); u<+;]8[o  
    %       idx = r<=1; IPJs$PtKok  
    %       z = nan(size(X)); NMOTWA }2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =r GkM.^  
    %       figure h; {?z  
    %       pcolor(x,x,z), shading interp 3?fya8W<  
    %       axis square, colorbar \Z)'':},C  
    %       title('Zernike function Z_5^1(r,\theta)') -"(e*&TJ#  
    % YP#OI 6u  
    %   Example 2: 1AhL-Lj  
    % TzPVO>s  
    %       % Display the first 10 Zernike functions ujwI4oj"c  
    %       x = -1:0.01:1; }De)_E\~  
    %       [X,Y] = meshgrid(x,x); hf%W grO.  
    %       [theta,r] = cart2pol(X,Y); _&yQW&vH#  
    %       idx = r<=1; } 1c5#Ym  
    %       z = nan(size(X)); #+r-$N.7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; k 9s3@S  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n NAJ8z}Nt  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; />]/At  
    %       y = zernfun(n,m,r(idx),theta(idx)); 0E++  
    %       figure('Units','normalized') &(wik#S  
    %       for k = 1:10 1no$|n#  
    %           z(idx) = y(:,k); =niU6Q}  
    %           subplot(4,7,Nplot(k)) 'zRd?Z>%  
    %           pcolor(x,x,z), shading interp r Cmqq/hZ  
    %           set(gca,'XTick',[],'YTick',[]) A(<- U|  
    %           axis square S,J'Z:spf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t$s)S>  
    %       end '\ 6.GP  
    % 7rsrC  
    %   See also ZERNPOL, ZERNFUN2. +>/ Q+nh  
    r?H {Y3 ,  
    %   Paul Fricker 11/13/2006 #r0A<+t{T  
    -BNW\ ]}  
    sd>#Hn  
    % Check and prepare the inputs: LgB}!OLQ  
    % ----------------------------- +}z T][9w  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g"<kj"  
        error('zernfun:NMvectors','N and M must be vectors.') }8 ,b; Q  
    end >oLM2VJ  
    3",6 E(  
    if length(n)~=length(m) *FOTq'%i  
        error('zernfun:NMlength','N and M must be the same length.') m|e!1_ :H  
    end vO <;Gnh~  
    ?c(f6p?%  
    n = n(:); 8+ `cv"  
    m = m(:); Z=n& fsE  
    if any(mod(n-m,2)) .LV=Z0ja  
        error('zernfun:NMmultiplesof2', ... W@/D2K(  
              'All N and M must differ by multiples of 2 (including 0).') *}3~8fu{  
    end Tf*X\{"  
    W9.Z hpM  
    if any(m>n) u{exQ[,E  
        error('zernfun:MlessthanN', ... o"TEmZUP  
              'Each M must be less than or equal to its corresponding N.') h&.9Q{D  
    end rcNM,!dZ  
    mn4j#-  
    if any( r>1 | r<0 ) JA())0a  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \-`L}$  
    end cXtL3T+  
    c[J#Hc8;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) C[<&% =  
        error('zernfun:RTHvector','R and THETA must be vectors.') fM \T^X  
    end Sr%~ 5Q[W  
    %[;<'s5e~  
    r = r(:); 2-UZ|y  
    theta = theta(:); 2 R1S>X  
    length_r = length(r); vqv(KsD+::  
    if length_r~=length(theta) yu3EPT!~  
        error('zernfun:RTHlength', ... nr-VzF7zu  
              'The number of R- and THETA-values must be equal.') oa1&9  
    end E8#y9q  
    s^js}9]p  
    % Check normalization: DlfXzKn;  
    % -------------------- )<IbQH|_  
    if nargin==5 && ischar(nflag) AY,6Ddw  
        isnorm = strcmpi(nflag,'norm'); (#\3XBG  
        if ~isnorm C'*1w  
            error('zernfun:normalization','Unrecognized normalization flag.') ;bkS0Vmg  
        end I`DdhMi7  
    else y#YCc{K [  
        isnorm = false; -V_e=Y<J/  
    end :mL\KQ  
    Ya304Pjd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3l5q?"$  
    % Compute the Zernike Polynomials 2*%0m^#^6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P8z+ +h  
    h, +2Mc<  
    % Determine the required powers of r: ''v_8sv  
    % ----------------------------------- %C'!L]#  
    m_abs = abs(m); )k0bP1oGS  
    rpowers = []; &..'7  
    for j = 1:length(n) v\$XhOK  
        rpowers = [rpowers m_abs(j):2:n(j)]; |F9/7 z\5+  
    end +%'0;  
    rpowers = unique(rpowers); PyzW pf  
    6i=m1Yk  
    % Pre-compute the values of r raised to the required powers, J=zh+oLCV  
    % and compile them in a matrix: <P g.N  
    % ----------------------------- @i6D&e=  
    if rpowers(1)==0 Il*wVNrZI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n8R{LjJ2@  
        rpowern = cat(2,rpowern{:}); oAvL?2  
        rpowern = [ones(length_r,1) rpowern];   7&l  
    else ]>*Z 1g;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &d9";V"E  
        rpowern = cat(2,rpowern{:}); <@@.~Qm'  
    end YI&^j2  
    "d%":F(  
    % Compute the values of the polynomials: R &T(S  
    % -------------------------------------- Ed_A#@V  
    y = zeros(length_r,length(n)); d}ue/hdw  
    for j = 1:length(n) /1o~x~g(b  
        s = 0:(n(j)-m_abs(j))/2; } Tp!Ub\Cc  
        pows = n(j):-2:m_abs(j); /':kJOk<[  
        for k = length(s):-1:1 8Qek![3^  
            p = (1-2*mod(s(k),2))* ... 8[2^`g  
                       prod(2:(n(j)-s(k)))/              ... 95?$O~I  
                       prod(2:s(k))/                     ... hZc$`V=R  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]?b#~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); a|lcOU  
            idx = (pows(k)==rpowers); PL%_V ?z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); N\<M4 fn  
        end @<AyCaU`.  
         |c dQJW  
        if isnorm Z5_U D  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); q\[f$==p  
        end EcBSi995dj  
    end [p[Kpunr{l  
    % END: Compute the Zernike Polynomials |4ONGU*`E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9.D'!  
    Fl<BCJY  
    % Compute the Zernike functions: W32bBzhL  
    % ------------------------------ T>.*c6I b  
    idx_pos = m>0; K"#np!Y)  
    idx_neg = m<0; y]+i. 8[  
    shj S^CP  
    z = y; H '&x4[J:  
    if any(idx_pos) 9ZeTS~i  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V)f/umT%g  
    end jf~/x>Q  
    if any(idx_neg) %Z}A+Rv+*m  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  Fp'k{  
    end o} YFDYi  
    g3Xq@RAJc  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的