切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10685阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Lng. X8D  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ^.6yzlY  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  S'!&,Dxq^  
    > '=QBW  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 q\<l"b z  
    p?L%'  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) )yyH_Ax2  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. R{c~jjd  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9~`#aQG T  
    %   order N and frequency M, evaluated at R.  N is a vector of bK6^<,~  
    %   positive integers (including 0), and M is a vector with the 8a*&,W  
    %   same number of elements as N.  Each element k of M must be a 2n3&uvf'TL  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 5 <k)tF%  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is zV}:~;w  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix eikZ~!@  
    %   with one column for every (N,M) pair, and one row for every =)Hu(;Yv  
    %   element in R. *=oO3c0|b,  
    % ;@S'8  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- WD\Yx~o  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is $B?8\>_?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to %ud-3u52M8  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 MUbKlX  
    %   for all [n,m]. 3!F^ vZ.  
    % T(u; <}e@[  
    %   The radial Zernike polynomials are the radial portion of the 0&)6mO  
    %   Zernike functions, which are an orthogonal basis on the unit *@bz<{!  
    %   circle.  The series representation of the radial Zernike d8;kM`U  
    %   polynomials is Iq%<E:+GL  
    % <5%*"v  
    %          (n-m)/2 n@tt.n!{l  
    %            __ 1|8Bv0-b  
    %    m      \       s                                          n-2s m7i_ Iv  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r  ^[SW07o~  
    %    n      s=0 \%r0'1f  
    % Y7+c/co  
    %   The following table shows the first 12 polynomials. ftMlm_u  
    % d1_kw A2y  
    %       n    m    Zernike polynomial    Normalization 8nBYP+t,e  
    %       --------------------------------------------- %J-:%i  
    %       0    0    1                        sqrt(2) I(7 GVYM  
    %       1    1    r                           2 ,sSo\%  
    %       2    0    2*r^2 - 1                sqrt(6) R"XycXn_$  
    %       2    2    r^2                      sqrt(6) Fc[vs52  
    %       3    1    3*r^3 - 2*r              sqrt(8) qN1fWU#$  
    %       3    3    r^3                      sqrt(8) G9-ETj}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ? ch?q~e)  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) dH5*%  
    %       4    4    r^4                      sqrt(10) vTFG*\Cq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Ns YEBT7f  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) s@$0!8sxm  
    %       5    5    r^5                      sqrt(12) :vIJ>6lIR  
    %       --------------------------------------------- PeIi@0vA  
    % ;bG?R0a  
    %   Example: XK\nOHLS  
    % 3| w$gG;Y  
    %       % Display three example Zernike radial polynomials wz3X;1l`c  
    %       r = 0:0.01:1; Uu8ayN j  
    %       n = [3 2 5]; o|d:rp!^  
    %       m = [1 2 1]; /-!Fr:Ox>  
    %       z = zernpol(n,m,r); xGr{ad.N  
    %       figure yw:%)b{  
    %       plot(r,z) u9Adu`  
    %       grid on VF11eZ"  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;]xc}4@=mg  
    % ]:@{tX 7c  
    %   See also ZERNFUN, ZERNFUN2. HaL'/V~  
    Wn6m$=  
    % A note on the algorithm. uSYI X  
    % ------------------------ H (K!{k  
    % The radial Zernike polynomials are computed using the series *YH!L{y  
    % representation shown in the Help section above. For many special HOu$14g  
    % functions, direct evaluation using the series representation can g&$5!ifgi  
    % produce poor numerical results (floating point errors), because H0tu3Pqk  
    % the summation often involves computing small differences between !21G $ [H  
    % large successive terms in the series. (In such cases, the functions 72RTEGy  
    % are often evaluated using alternative methods such as recurrence a0]GQyIG  
    % relations: see the Legendre functions, for example). For the Zernike L"vk ^>E6  
    % polynomials, however, this problem does not arise, because the 'LG\]h>+)  
    % polynomials are evaluated over the finite domain r = (0,1), and w5y.kc;  
    % because the coefficients for a given polynomial are generally all GQ?FUFuIoW  
    % of similar magnitude. bA 0H  
    % uPcx6X3]  
    % ZERNPOL has been written using a vectorized implementation: multiple Mu:zWLM*M  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] $X:,Q,?  
    % values can be passed as inputs) for a vector of points R.  To achieve X} V]3  
    % this vectorization most efficiently, the algorithm in ZERNPOL FZU1WBNL%t  
    % involves pre-determining all the powers p of R that are required to ~)$R'=  
    % compute the outputs, and then compiling the {R^p} into a single Ff0V6j)ji  
    % matrix.  This avoids any redundant computation of the R^p, and X ]&`"Z]  
    % minimizes the sizes of certain intermediate variables. p`&{NR3+  
    % ueU"v'h\  
    %   Paul Fricker 11/13/2006 C$q-WoTM(  
    ik?IC$*n3i  
    0=7Ud<  
    % Check and prepare the inputs: (&)uWjq `  
    % ----------------------------- a'-xCV|^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lMW6D0^  
        error('zernpol:NMvectors','N and M must be vectors.') ":T"Y;  
    end q2|z \  
    xzz@Wc^_  
    if length(n)~=length(m) o6 NmDv5  
        error('zernpol:NMlength','N and M must be the same length.') SZ4y\I  
    end ;7E"@b,tPN  
     WSeiW  
    n = n(:); He4q-\ht  
    m = m(:); Q ijO%)  
    length_n = length(n); ~FI} [6Dd  
    s$9ow<oi]  
    if any(mod(n-m,2)) -KbO[b\V  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') S]T71W<i  
    end }Dcpe M?  
    /^{Q(R(X<  
    if any(m<0) b; ;y|H  
        error('zernpol:Mpositive','All M must be positive.') N0D5N(kH%  
    end Z$Ps_Ik  
    ;CL^2{  
    if any(m>n) uVZm9Sp  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') <.lN'i;(  
    end @:'E9J06  
    /YwwG;1  
    if any( r>1 | r<0 ) {X pjm6a7  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') +&X>ul  
    end P:'y}a-  
    eon(C|S7eK  
    if ~any(size(r)==1) DVs$3RL  
        error('zernpol:Rvector','R must be a vector.') hI<$lEB  
    end ;F,6]LH!  
    $1Z3yb^  
    r = r(:); )086u8w )y  
    length_r = length(r); bDw\;bnG  
    [sPLu)q2  
    if nargin==4 \q-["W34  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); +C`vO5\0  
        if ~isnorm TxkvHiq2  
            error('zernpol:normalization','Unrecognized normalization flag.') _cfAJ)8=  
        end jP3~O  
    else ^=cX L  
        isnorm = false; L(`q3>iC4.  
    end 8p~[8}  
    |])Ko08*tE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G in  
    % Compute the Zernike Polynomials OnW,R3eg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +(q r{G?  
    |>I4(''}  
    % Determine the required powers of r: N~yGtnW  
    % ----------------------------------- 99q$>nx,w  
    rpowers = []; p_3VFKq>0  
    for j = 1:length(n) K,HR=5  
        rpowers = [rpowers m(j):2:n(j)]; kA4kQ}q  
    end ?0E-Lac=  
    rpowers = unique(rpowers); .|kp`-F51  
    U@:iN..  
    % Pre-compute the values of r raised to the required powers, !.{{QwZ  
    % and compile them in a matrix: pHDPj,lu  
    % ----------------------------- | -AR)Smt  
    if rpowers(1)==0 q*>|EJR^Rw  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `jFvG\aC  
        rpowern = cat(2,rpowern{:}); 3o__tU)B  
        rpowern = [ones(length_r,1) rpowern]; eY$Q}BcW  
    else l]e7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dI8y}EbE~  
        rpowern = cat(2,rpowern{:}); !3at(+4  
    end g!;Hv  
    Q# $dp  
    % Compute the values of the polynomials: YC~kq?  
    % -------------------------------------- j~9,Ct  
    z = zeros(length_r,length_n); ;V~~lcD&Y`  
    for j = 1:length_n iuq%Q\0@w  
        s = 0:(n(j)-m(j))/2; _UeIzdV9  
        pows = n(j):-2:m(j); Op<|Oz$Q|l  
        for k = length(s):-1:1 F a'2i<  
            p = (1-2*mod(s(k),2))* ... w.0]>/C  
                       prod(2:(n(j)-s(k)))/          ... B7qiCX}pD  
                       prod(2:s(k))/                 ... #T)gKp  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $3n@2 N`  
                       prod(2:((n(j)+m(j))/2-s(k))); EabZ7zFoN  
            idx = (pows(k)==rpowers); ,7Lu7Q  
            z(:,j) = z(:,j) + p*rpowern(:,idx); oG;;='*  
        end ODqWXw#  
         BcTV5Wcr  
        if isnorm ViT$]Nv  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); s*pgR=dZZ  
        end Z,Tv8;  
    end D3%`vq u&  
    U5wO;MA  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag)  Dy@f21+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. L$+ap~ld  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated xem:#>&r  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive .<`Rq'  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, :xT=uE.I  
    %   and THETA is a vector of angles.  R and THETA must have the same 9f4#b8  
    %   length.  The output Z is a matrix with one column for every P-value, =r:-CRq(  
    %   and one row for every (R,THETA) pair. 7L:$Amb_F  
    % pJ#R :#P  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ,2%>e"%  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) q|%(47}z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 29#;;n}p  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 v(t?d  
    %   for all p. A %s"WSx,  
    % r`L$[C5I  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 lLT;V2=osX  
    %   Zernike functions (order N<=7).  In some disciplines it is *lIK?"mo  
    %   traditional to label the first 36 functions using a single mode JtU/%s  
    %   number P instead of separate numbers for the order N and azimuthal oY{r83h{  
    %   frequency M. ZIx,?E+eJ  
    % ^8nK x<&5  
    %   Example:  3y?ig2  
    % h^5'i} @u  
    %       % Display the first 16 Zernike functions HBL)_c{/O  
    %       x = -1:0.01:1; E0}jEl/{  
    %       [X,Y] = meshgrid(x,x); <c6C+OWT,  
    %       [theta,r] = cart2pol(X,Y); }_L@CpG  
    %       idx = r<=1; U:E:"  
    %       p = 0:15; :R<n{%~  
    %       z = nan(size(X)); Rd5r~iT  
    %       y = zernfun2(p,r(idx),theta(idx)); #$Z|)i]w  
    %       figure('Units','normalized') @"H+QVJ@  
    %       for k = 1:length(p) -)aBS3  
    %           z(idx) = y(:,k); mYN|)QVKy  
    %           subplot(4,4,k) fV_(P_C  
    %           pcolor(x,x,z), shading interp G~e`O,+  
    %           set(gca,'XTick',[],'YTick',[]) Ng,#d`Br  
    %           axis square *"Ipu"G5?  
    %           title(['Z_{' num2str(p(k)) '}']) S3Tww]q  
    %       end W&6P%0G/  
    % g4I&3 M  
    %   See also ZERNPOL, ZERNFUN. xU^Flw,4  
    s"G6aM  
    %   Paul Fricker 11/13/2006 EpCUL@+  
    ;#!`c gAh  
    #uT-_L}s w  
    % Check and prepare the inputs: l\*}  
    % ----------------------------- 3M(:}c  
    if min(size(p))~=1 r$6z{Na\[  
        error('zernfun2:Pvector','Input P must be vector.') H>`?S{J  
    end :D?%!Q 0  
    0%+TU4Xx  
    if any(p)>35 N@^?J@#V  
        error('zernfun2:P36', ... ;EE*#"IJ  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 5Y)!q?#H  
               '(P = 0 to 35).']) #T n~hnW  
    end e4ajT  
    ?PSm) ~ Oa  
    % Get the order and frequency corresonding to the function number: 8Hs>+Udl  
    % ---------------------------------------------------------------- s&M6DFlA  
    p = p(:); A[!Fg0X0  
    n = ceil((-3+sqrt(9+8*p))/2); ^[8e|,U  
    m = 2*p - n.*(n+2); } CJQC  
    Zi2NgVF  
    % Pass the inputs to the function ZERNFUN: JB'q_dS}  
    % ---------------------------------------- ?4_^}B9  
    switch nargin zie])_8|h  
        case 3 %n9}P , ?  
            z = zernfun(n,m,r,theta); $d!Sl a  
        case 4 >NW /0'/  
            z = zernfun(n,m,r,theta,nflag); wI}5[m  
        otherwise ."PR Z,  
            error('zernfun2:nargin','Incorrect number of inputs.') :j vx-jQ  
    end *n2Q_o  
    Jnm{i|6N  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _$wWKJy9  
    function z = zernfun(n,m,r,theta,nflag) n@5pS3qZ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /^#k /z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0d:t$2~C  
    %   and angular frequency M, evaluated at positions (R,THETA) on the z>&Py(  
    %   unit circle.  N is a vector of positive integers (including 0), and o]}b#U8S  
    %   M is a vector with the same number of elements as N.  Each element R',|Jf=`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) W2yNEiH  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Q]w;o&eo  
    %   and THETA is a vector of angles.  R and THETA must have the same ,^,Vq]$3  
    %   length.  The output Z is a matrix with one column for every (N,M) -t?S:9 [w  
    %   pair, and one row for every (R,THETA) pair. &EmxSYL>  
    % . %tc7`k8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /!JpmI  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RXt`y62yK  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral u$&7fmZ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, phbdV8$L  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3oxQ[.o  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  t\{q,4  
    % Otn,(j;u  
    %   The Zernike functions are an orthogonal basis on the unit circle. eOD;@4lR  
    %   They are used in disciplines such as astronomy, optics, and '7wI 2D  
    %   optometry to describe functions on a circular domain. @p|[7'  
    % E` XUK,b  
    %   The following table lists the first 15 Zernike functions. 2j4VW0:  
    % p."pI Bd  
    %       n    m    Zernike function           Normalization _7]5 Q  
    %       -------------------------------------------------- 8 8pz<$  
    %       0    0    1                                 1 0d`s(b54;O  
    %       1    1    r * cos(theta)                    2 {NKDmeg:D  
    %       1   -1    r * sin(theta)                    2 /.$n>:XR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 05DK-Wh?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) MrLDe {^C2  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) nrwb6wj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,, ]y 8P  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N~\1yQT  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Nh]eZ3O  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) H=Yl @  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Si6%6rAhj  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WsJ3zZc  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) YqR MVWcnk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \ zhT1#O  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -:a 9'dT  
    %       -------------------------------------------------- 4zpprh+`K  
    % f Nm Sx  
    %   Example 1: /Kwo^Q{  
    % bX|Z||img  
    %       % Display the Zernike function Z(n=5,m=1) HP. j.  
    %       x = -1:0.01:1; 1U@qR U  
    %       [X,Y] = meshgrid(x,x); K}`.?6O  
    %       [theta,r] = cart2pol(X,Y); &Zd{ElM  
    %       idx = r<=1; Q++lgVh)E  
    %       z = nan(size(X));  7I^(v Q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !ygh`]6V  
    %       figure -7'>Rw  
    %       pcolor(x,x,z), shading interp ztgSd8GGE  
    %       axis square, colorbar  Cj_cu  
    %       title('Zernike function Z_5^1(r,\theta)') 9d#-;qV  
    % '2uQ  
    %   Example 2: Sw%=/g  
    % f/*Xw{s#  
    %       % Display the first 10 Zernike functions >Ah [uM  
    %       x = -1:0.01:1; C[&  \Xq  
    %       [X,Y] = meshgrid(x,x); `cy_@Z5A  
    %       [theta,r] = cart2pol(X,Y); -?2ThvT  
    %       idx = r<=1; {]Nvq9?  
    %       z = nan(size(X)); |"5NI'X?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; h[ba$S,T  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &=<x&4H+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p8%x@%k  
    %       y = zernfun(n,m,r(idx),theta(idx)); E2LpQNvN%g  
    %       figure('Units','normalized') dL |D  
    %       for k = 1:10 `L]cJ0tAs  
    %           z(idx) = y(:,k); Pqo"~&Y|~  
    %           subplot(4,7,Nplot(k)) -+Kx^V#'R  
    %           pcolor(x,x,z), shading interp \[B5j0vV,  
    %           set(gca,'XTick',[],'YTick',[]) =>)l6**UE  
    %           axis square }/SbmW8(1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~>k<I:BtrT  
    %       end &h`s:Y  
    % c,!Ijn\;(  
    %   See also ZERNPOL, ZERNFUN2.  zy  
    s34{\/'D+  
    %   Paul Fricker 11/13/2006 CS:j->  
    Wf-i)oc4I  
    //3iai  
    % Check and prepare the inputs: 7xO =:*  
    % -----------------------------  pzg|?U  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (6^v`SZ  
        error('zernfun:NMvectors','N and M must be vectors.') Owo2DsT t  
    end Q\<C9%a  
    q$(aMO&J  
    if length(n)~=length(m) DJS0;!# |O  
        error('zernfun:NMlength','N and M must be the same length.') i`z1if6O  
    end d2Z5HFtY  
    2h IM!wQ  
    n = n(:); + Hc[5WL  
    m = m(:); X#Y0g`muW  
    if any(mod(n-m,2)) A Ns.`S  
        error('zernfun:NMmultiplesof2', ... }/4 AT  
              'All N and M must differ by multiples of 2 (including 0).') 4;<?ec(dc  
    end Z[)t34EY"  
    `J'xVq#O  
    if any(m>n) Xjw> Qws  
        error('zernfun:MlessthanN', ... $.a<b^.Xi  
              'Each M must be less than or equal to its corresponding N.') M56^p ,  
    end r? nvJHP  
    |cEJRs@B  
    if any( r>1 | r<0 ) p^3 ]Q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5k)QjZo  
    end )M<"YI)g  
     s X.L  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~pO6C*"  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ur6UE2   
    end Qj.]I0d  
    (+`pEDD{X  
    r = r(:); ai)S:2  
    theta = theta(:); :1^ R$0d  
    length_r = length(r); ,|D_? D)U  
    if length_r~=length(theta) umaF}}-Q{  
        error('zernfun:RTHlength', ... Nj$3Ig"l  
              'The number of R- and THETA-values must be equal.') k@L},Td  
    end N7Kq$G2O  
    JR8 b[Oj.S  
    % Check normalization: "1FPe63\*O  
    % -------------------- {_&'tXL  
    if nargin==5 && ischar(nflag) EiQX* v  
        isnorm = strcmpi(nflag,'norm'); ;IZ*o<_  
        if ~isnorm = NHuj.  
            error('zernfun:normalization','Unrecognized normalization flag.') j]U sb_7  
        end ELfcZfJ  
    else ROlef;/A  
        isnorm = false; Zyt,D|eWj  
    end 3=5K7 F  
    ajC'C!"^Ty  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UCG8=+t5T  
    % Compute the Zernike Polynomials o=}}hE\H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^,*ED Yz  
    f4UnLig  
    % Determine the required powers of r: JL[$B1  
    % ----------------------------------- 0zQ"5e?qy  
    m_abs = abs(m); O=~8+sa  
    rpowers = []; Ir&rTGFN  
    for j = 1:length(n) W; yNg  
        rpowers = [rpowers m_abs(j):2:n(j)]; d` %8qLIW  
    end t5t,(^;f  
    rpowers = unique(rpowers); Oxo?\ :T  
    ~QgyhJM_h=  
    % Pre-compute the values of r raised to the required powers, %IrR+f+H  
    % and compile them in a matrix: _&V%idz!0  
    % ----------------------------- K.)ionb  
    if rpowers(1)==0 5.m&93P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x93h{K f  
        rpowern = cat(2,rpowern{:}); [Jv0^"]  
        rpowern = [ones(length_r,1) rpowern]; w0qrh\3du  
    else wJyrF  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B7 PkCS&X  
        rpowern = cat(2,rpowern{:}); I><B6pIR  
    end Hdvtgss!  
    t/55tL  
    % Compute the values of the polynomials: e_RLKFv7  
    % -------------------------------------- 8(-V pU  
    y = zeros(length_r,length(n)); <A|X4;  
    for j = 1:length(n)  ?QA![  
        s = 0:(n(j)-m_abs(j))/2; paKur%2u  
        pows = n(j):-2:m_abs(j); V"Cx5#\7C  
        for k = length(s):-1:1 bfo..f-0/Y  
            p = (1-2*mod(s(k),2))* ... 7egE."  
                       prod(2:(n(j)-s(k)))/              ... LGnb"ZN  
                       prod(2:s(k))/                     ... SeuC7!q{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... m=Mb'<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L& =a(  
            idx = (pows(k)==rpowers); 9mE6Cp.Wv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ba5,?FVI~  
        end (=A61]yB  
         .8o?`  
        if isnorm "PgVvm#w'  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l5h+:^#M5c  
        end L`'#}#O l  
    end 9S 'u 1%  
    % END: Compute the Zernike Polynomials /q| r!+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nm"]q`(K  
    `iHyGfm  
    % Compute the Zernike functions: zM+4<k_dH]  
    % ------------------------------ JJ:pA_uX  
    idx_pos = m>0; EdL2t``  
    idx_neg = m<0; 5D]3I=kj  
    1G}f83yR  
    z = y; 1`hmD1d  
    if any(idx_pos) 7eNLs  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); IRhi1{K$"  
    end @},|i*H/  
    if any(idx_neg) 5!QT }Um  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #|PPkg%v<  
    end WCNycH+1  
    rn$G.SMgz  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的