非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !l0"nPM=
function z = zernfun(n,m,r,theta,nflag) 0A~UuH0.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cN?/YkW?]
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SiaW; ks
% and angular frequency M, evaluated at positions (R,THETA) on the D}X6I#U'/
% unit circle. N is a vector of positive integers (including 0), and sR83e|4I
% M is a vector with the same number of elements as N. Each element H
lM7^3(&
% k of M must be a positive integer, with possible values M(k) = -N(k) E@xrn+L>-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ezY^T
% and THETA is a vector of angles. R and THETA must have the same Gos#=H
% length. The output Z is a matrix with one column for every (N,M) %xG<hNw/
% pair, and one row for every (R,THETA) pair. yvzH}$!]
% t2OBVzK
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0%[IG$u)|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EmrkaV-?k
% with delta(m,0) the Kronecker delta, is chosen so that the integral 7)[Ve1;/N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^,^MW
% and theta=0 to theta=2*pi) is unity. For the non-normalized ^xNzppz`]C
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [wm0a4fg
% M&29J
% The Zernike functions are an orthogonal basis on the unit circle. 7=u
Gf$/
% They are used in disciplines such as astronomy, optics, and V>Z4gZp5sc
% optometry to describe functions on a circular domain. NyRa.hgZ;
% ~CV.Ci.dG
% The following table lists the first 15 Zernike functions. PWx%~U.8~j
% (BxmV1
% n m Zernike function Normalization Zr2T^p5u
% -------------------------------------------------- !vJ$$o6#
% 0 0 1 1 :7"Q
% 1 1 r * cos(theta) 2 Ly^bP>2i
% 1 -1 r * sin(theta) 2 oOvQAW8`
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0x5Ax=ut
% 2 0 (2*r^2 - 1) sqrt(3) l=l$9H,
% 2 2 r^2 * sin(2*theta) sqrt(6) =. \hCgq
% 3 -3 r^3 * cos(3*theta) sqrt(8) b-#{O=B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,<#Rk'y$
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Keo<#Cc?
% 3 3 r^3 * sin(3*theta) sqrt(8) uo2k
% 4 -4 r^4 * cos(4*theta) sqrt(10) ilJ`_QN
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n
YUFRV$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~@l4T_,k
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gYrB@W;2
% 4 4 r^4 * sin(4*theta) sqrt(10) BgT ^
% -------------------------------------------------- CR9wp]-Vd
% : Bo
% Example 1: =<Sn&uL
% =JfwHFHd#
% % Display the Zernike function Z(n=5,m=1) h0k?(O
% x = -1:0.01:1; }}]Lf 3;
% [X,Y] = meshgrid(x,x); =:w,wI.
% [theta,r] = cart2pol(X,Y); V~/-e- 9u
% idx = r<=1; OOXSJE1
% z = nan(size(X)); u*=^>LD
% z(idx) = zernfun(5,1,r(idx),theta(idx)); EZI#CLT[
% figure P)f8lU^z
% pcolor(x,x,z), shading interp cf"&22TQ+Z
% axis square, colorbar aAGV\o{^
% title('Zernike function Z_5^1(r,\theta)') inO;Uwlv
% -`\^_nVC
% Example 2: &Lt$~}*&6
% JZxA:dg
l
% % Display the first 10 Zernike functions ?uL-qsU
% x = -1:0.01:1; +3-5\t`
% [X,Y] = meshgrid(x,x); H9ES|ZJs
% [theta,r] = cart2pol(X,Y); bK0(c1*a[e
% idx = r<=1; 9^n0<(99b
% z = nan(size(X)); e>e${\=,
% n = [0 1 1 2 2 2 3 3 3 3]; j?|Vx'
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; j][&o-Ev
% Nplot = [4 10 12 16 18 20 22 24 26 28]; )mwwceN
% y = zernfun(n,m,r(idx),theta(idx)); 1irSI,j%z
% figure('Units','normalized') Yu)GV7\2
% for k = 1:10 N_B^k8j
% z(idx) = y(:,k); G,?a8(
% subplot(4,7,Nplot(k)) weu+$Kr
% pcolor(x,x,z), shading interp 'R-\6;3E>9
% set(gca,'XTick',[],'YTick',[]) j[dZ*Jr_
% axis square
WZ,k][~
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) aBaiXv/*
% end \ Xh
C
%
hO.b?>3NL
% See also ZERNPOL, ZERNFUN2. LFi* O&
U7n#TPet
% Paul Fricker 11/13/2006 q\i&ERr
7"aN7Q+EbI
g7hI9(8+
% Check and prepare the inputs: ,|VLOY^
% ----------------------------- ub>:dNBN
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aLm~.@Q
error('zernfun:NMvectors','N and M must be vectors.')
Pm2LB<qS
end ai?J
&)tv4L&
if length(n)~=length(m) o*7NyiJ@z
error('zernfun:NMlength','N and M must be the same length.') P#!gP3
end #Ox@[Z1I
C&qo$C
n = n(:); W>+`e]z
m = m(:); U.~G{H`G,u
if any(mod(n-m,2)) rWNe&gFM
error('zernfun:NMmultiplesof2', ... iVeH\a
'All N and M must differ by multiples of 2 (including 0).') <h#W*a
end ZoJqJWsd
GQYn |vm
if any(m>n) Oj%5FUP~[%
error('zernfun:MlessthanN', ... 7z3tDE[#
'Each M must be less than or equal to its corresponding N.') w<!,mL5 N
end 9Ca0Tu
?nL,Otz
if any( r>1 | r<0 ) )mN/e+/Lu
error('zernfun:Rlessthan1','All R must be between 0 and 1.') aizws[C
end _>`9]6\&
Yh!k uS#<
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) [6g$;SicT
error('zernfun:RTHvector','R and THETA must be vectors.') Dl0{pGK~
end zq$L[X
PPG+~.7
r = r(:); ]CcRI|g}
theta = theta(:); G+2fmVB*X
length_r = length(r); V73/q
if length_r~=length(theta) aLW3Ub{h
error('zernfun:RTHlength', ... ^vSSG5 :
'The number of R- and THETA-values must be equal.') YGQ/zB^Pj
end (?(gz#-
K>~YO~~
% Check normalization: v8C( $<3%
% -------------------- G!C }ULq
if nargin==5 && ischar(nflag) 7>MG8pf3a
isnorm = strcmpi(nflag,'norm'); |/xA5_-N
if ~isnorm $i<+O,@-
error('zernfun:normalization','Unrecognized normalization flag.') b5%<},ySq
end sx7zRw
>X
else "v0bdaQH3
isnorm = false; l SKq
end fH9"sBiO
1]0;2THx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;m.6 ~A
% Compute the Zernike Polynomials 0'A"]6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q4!\^HwQ
V,& OO
% Determine the required powers of r: 9vDOSwU*
% ----------------------------------- qo\9,<
m_abs = abs(m); \@h$|nb
rpowers = []; jzpDKc%
for j = 1:length(n) jp4-w(
rpowers = [rpowers m_abs(j):2:n(j)]; /L(}VJg-
end ()Wu_Q
rpowers = unique(rpowers); c]U+6JH
"B +F6
% Pre-compute the values of r raised to the required powers, o>+ mw| {
% and compile them in a matrix: +CSv@ />3
% ----------------------------- Oop6o$k
if rpowers(1)==0 .C+(E@ey A
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NB^Al/V@
rpowern = cat(2,rpowern{:}); yoe@]c=
rpowern = [ones(length_r,1) rpowern]; N5K2Hv<"
else <?DI!~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); UB8n,+R
rpowern = cat(2,rpowern{:}); m&q0 _nay
end S"^'ksL\
_ 3>E+9TQ
% Compute the values of the polynomials: (s|WmSQ
% -------------------------------------- Fx1FxwIJ
y = zeros(length_r,length(n)); ;{R;lF,
for j = 1:length(n) @}PX:*c
s = 0:(n(j)-m_abs(j))/2; f9y+-GhaD
pows = n(j):-2:m_abs(j); Dz2Z
(EXI~
for k = length(s):-1:1 Z'5&N5hx
p = (1-2*mod(s(k),2))* ... $7Z-Nn38
prod(2:(n(j)-s(k)))/ ... @\oZ2sB
prod(2:s(k))/ ... 3gJZlH5IR
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... T <k;^iqR
prod(2:((n(j)+m_abs(j))/2-s(k))); >fT%CGLC0
idx = (pows(k)==rpowers); 74
)G.!
y(:,j) = y(:,j) + p*rpowern(:,idx); Vep41\g^
end M5:*aCN6P
e~'z;%O~
if isnorm B2LXF3#/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g;[t1~oF
end hc0 $mit
end o F_rC[
% END: Compute the Zernike Polynomials km^ZF<. @
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >@?mP$;=
.tHc*Eh
% Compute the Zernike functions: sy4Nm0m
% ------------------------------ Tw*p^rU
idx_pos = m>0; >mMfZvxl%
idx_neg = m<0; b *0u xvLu
{^;7DV:
z = y; "s zJ[
_B
if any(idx_pos) UpSJ%%.n
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G^VOA4
end <u#
7K\:
if any(idx_neg) &IRM<A!8
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;0?OBUDO
end Ml?KnSb
'YbE%i}
% EOF zernfun