切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11126阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @{lnfOESl  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! mDf WR  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  A_%w (7o"  
    / yCV-L2J  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 {NR~>=~K-  
    odDt.gQXU  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 4_$f "6  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. --FvE|I  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ^-DK<jZ^  
    %   order N and frequency M, evaluated at R.  N is a vector of "xWC49   
    %   positive integers (including 0), and M is a vector with the 4R6X"T9-  
    %   same number of elements as N.  Each element k of M must be a bbz86]AhY  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) m|!sY[!  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I)clGMS,  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7\.5G4dr%  
    %   with one column for every (N,M) pair, and one row for every epQ7@9,Q  
    %   element in R. K.z@Vx.  
    % # aC}\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- -Jb I7Le  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is i+OyBDkJM!  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to kY|<1Ht  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 #N*~Q  
    %   for all [n,m]. 'SC`->F4D  
    % N7|ctO  
    %   The radial Zernike polynomials are the radial portion of the t ,0~5>5  
    %   Zernike functions, which are an orthogonal basis on the unit qu?D`29  
    %   circle.  The series representation of the radial Zernike !+i  
    %   polynomials is f+rBIE  
    % "F=O   
    %          (n-m)/2 W)KV"A3C  
    %            __ \hg12],#:@  
    %    m      \       s                                          n-2s ur;8uv2o  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r STO6cNi  
    %    n      s=0 4]Krx m`8  
    % %.]qkGZe#  
    %   The following table shows the first 12 polynomials. 8kk$:8  
    % K1Uur>Pk%  
    %       n    m    Zernike polynomial    Normalization d35,[  
    %       --------------------------------------------- S^3I"B  
    %       0    0    1                        sqrt(2) zH.7!jeE  
    %       1    1    r                           2 a4c~ThbI  
    %       2    0    2*r^2 - 1                sqrt(6) }psJ'aiG*  
    %       2    2    r^2                      sqrt(6) U`xjau+  
    %       3    1    3*r^3 - 2*r              sqrt(8) 'En6h"{  
    %       3    3    r^3                      sqrt(8) f"z96{zo  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Nx~8]h1(  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) =YR/|9(  
    %       4    4    r^4                      sqrt(10) (R{W Jjj  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) tip\vS)  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =^NR(:SaaU  
    %       5    5    r^5                      sqrt(12) g^=p)h3  
    %       --------------------------------------------- >=wlS\:"  
    % KATt9ox@  
    %   Example: 23zB@aE_?1  
    % QD<f) JZK  
    %       % Display three example Zernike radial polynomials JBp^@j{_  
    %       r = 0:0.01:1; OXI.>9  
    %       n = [3 2 5]; rlgp1>89  
    %       m = [1 2 1]; Ue! &Vm  
    %       z = zernpol(n,m,r); 0m!+gZ@  
    %       figure JW (.,Ztm  
    %       plot(r,z) =}F &jl  
    %       grid on 0:Xvch0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') awGI|d  
    % S-*4HV_l  
    %   See also ZERNFUN, ZERNFUN2. L'.7V ~b{  
    LJ9^:U  
    % A note on the algorithm. + Uq$'2CT  
    % ------------------------ 0KE+RzrB  
    % The radial Zernike polynomials are computed using the series Ng2qu!F7  
    % representation shown in the Help section above. For many special \IIR2Xf,K  
    % functions, direct evaluation using the series representation can >k5nU^|B1  
    % produce poor numerical results (floating point errors), because YhRES]^  
    % the summation often involves computing small differences between CM_FF:<tn  
    % large successive terms in the series. (In such cases, the functions [?^,,.Dd  
    % are often evaluated using alternative methods such as recurrence `$7. (.#s  
    % relations: see the Legendre functions, for example). For the Zernike m\RU |Z  
    % polynomials, however, this problem does not arise, because the \}Z5}~S  
    % polynomials are evaluated over the finite domain r = (0,1), and /{6PwlP5  
    % because the coefficients for a given polynomial are generally all JdF;*`_7*  
    % of similar magnitude. <`}Oi 5nW  
    % j@ lHgis  
    % ZERNPOL has been written using a vectorized implementation: multiple e<#t]V  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] unKi)v1  
    % values can be passed as inputs) for a vector of points R.  To achieve vWc=^tT   
    % this vectorization most efficiently, the algorithm in ZERNPOL 8HDYA$L  
    % involves pre-determining all the powers p of R that are required to _SY4Q s`d  
    % compute the outputs, and then compiling the {R^p} into a single  R5(<:]  
    % matrix.  This avoids any redundant computation of the R^p, and yHsmX2s  
    % minimizes the sizes of certain intermediate variables. 9ePG-=5I  
    % gs7h`5[es  
    %   Paul Fricker 11/13/2006 ~dg7c{o5  
    Cz` !j  
    Bvb.N$G  
    % Check and prepare the inputs: Dk[m)]w\  
    % ----------------------------- BIqZg$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  Y[#EFM  
        error('zernpol:NMvectors','N and M must be vectors.') ;EDc1:  
    end ..'k+0u^  
    ge %ytrst  
    if length(n)~=length(m) 5[suwaJQ  
        error('zernpol:NMlength','N and M must be the same length.') F%M4i`Vh  
    end 2iO AUo+  
    FxeDjAP  
    n = n(:); +uZ,}J  
    m = m(:); o`,|{K$H  
    length_n = length(n); |*W_  
    d^p af  
    if any(mod(n-m,2)) bk^W]<:z`  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') B >2"O  
    end : p %G+q2  
     3 c #oK  
    if any(m<0) iZm# "}VG  
        error('zernpol:Mpositive','All M must be positive.') P@lDhzd  
    end J)tk<&X  
    }ya@*jH  
    if any(m>n) >ka*-8?  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 4IfOvAN%  
    end `< _A#@  
    P5-1z&9O  
    if any( r>1 | r<0 ) $v5)d J  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [&y="6No  
    end qM}Uk3N0  
    B6 rz  
    if ~any(size(r)==1) }(tuBJ9  
        error('zernpol:Rvector','R must be a vector.') 4u0\|e@a  
    end c$fi3O  
    WRIOjQ:  
    r = r(:); dAg<BK/  
    length_r = length(r); k+qxx5{  
    ye?4^@u u  
    if nargin==4 dRC RB  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 9NzK1V0X  
        if ~isnorm ' b?' u  
            error('zernpol:normalization','Unrecognized normalization flag.') 0 ]K\G55  
        end o9GtS$ O\  
    else )\K;Ncp[  
        isnorm = false; PH!^ww6  
    end zt,Tda4Y  
    F/8="dM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fyHFfPEE  
    % Compute the Zernike Polynomials hv. 33l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MC\rx=cR\  
    @bfW-\ I  
    % Determine the required powers of r: ,EsPm'`?A/  
    % ----------------------------------- [te9ui%JS  
    rpowers = []; \Dn47V{7-  
    for j = 1:length(n) KkD.n#A  
        rpowers = [rpowers m(j):2:n(j)]; VKGH+j[  
    end *,x-}%X  
    rpowers = unique(rpowers); }253Q!f  
    r [NI#wW  
    % Pre-compute the values of r raised to the required powers, s}1S6*Cr  
    % and compile them in a matrix: J)kH$!csi  
    % ----------------------------- S<Rl?El<=  
    if rpowers(1)==0 t 0 omJP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0XgJCvMcB  
        rpowern = cat(2,rpowern{:}); 8,VX%CS#q  
        rpowern = [ones(length_r,1) rpowern];  iwiHw  
    else }8lvi vR4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N*mm[F2+F  
        rpowern = cat(2,rpowern{:}); /Ko{S_3< I  
    end 0 oC5W?>8s  
    h eR$j  
    % Compute the values of the polynomials: E\$7tXQK6  
    % -------------------------------------- >0XB7sC  
    z = zeros(length_r,length_n); M'(4{4rC  
    for j = 1:length_n OCX>LK!K  
        s = 0:(n(j)-m(j))/2; ?@@BIg-  
        pows = n(j):-2:m(j); 'ptD`)^(  
        for k = length(s):-1:1 [<0\v<{`L  
            p = (1-2*mod(s(k),2))* ... th :I31  
                       prod(2:(n(j)-s(k)))/          ... b '9L}q2m  
                       prod(2:s(k))/                 ... (7zdbJX  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... G d%X> ~  
                       prod(2:((n(j)+m(j))/2-s(k))); DTx!# [  
            idx = (pows(k)==rpowers);  UZ*Yt  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Q`0 k=<  
        end tMy<MO)Ei  
         M "W~%   
        if isnorm H Z)an  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); eV"Za.a.  
        end \>7hT;Av=G  
    end RX"~m!26  
    HNMVs]/e  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) {>]7xTpwZ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. '#*5jn]CqB  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ~N!-4-~p  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive aP`[O]8j  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, C)H1<Br7  
    %   and THETA is a vector of angles.  R and THETA must have the same ^1}Y=! &  
    %   length.  The output Z is a matrix with one column for every P-value, -~HyzX\cZB  
    %   and one row for every (R,THETA) pair. ]+)cXJ}6#  
    % %uUQBZ4  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike OZCbMeB{+J  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ]A.tauSW  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) p]^?4  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 3[T<pAZ  
    %   for all p. [@4.<4Y  
    % %J b/HWC[  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 FHv^^u'@  
    %   Zernike functions (order N<=7).  In some disciplines it is H}f} Y8J{  
    %   traditional to label the first 36 functions using a single mode FVo_=O)  
    %   number P instead of separate numbers for the order N and azimuthal %9HL "  
    %   frequency M. ;5.S"  
    % ]N#%exBVo  
    %   Example: 4r+s" |  
    % }z|@X KA#  
    %       % Display the first 16 Zernike functions S +mM S  
    %       x = -1:0.01:1; #CcC& I :c  
    %       [X,Y] = meshgrid(x,x); i^I U)\   
    %       [theta,r] = cart2pol(X,Y); 84|oqwZO  
    %       idx = r<=1; #y2IHO-  
    %       p = 0:15; W6 y-~  
    %       z = nan(size(X)); Kc,=J?Ob  
    %       y = zernfun2(p,r(idx),theta(idx)); gq`S`  
    %       figure('Units','normalized') mu/GOEZ5  
    %       for k = 1:length(p) dPx{9Y<FzU  
    %           z(idx) = y(:,k); 1SY`V?cu  
    %           subplot(4,4,k) jSKhWxL;'  
    %           pcolor(x,x,z), shading interp LagHzCB  
    %           set(gca,'XTick',[],'YTick',[]) NW AT"  
    %           axis square +C8yzMN\  
    %           title(['Z_{' num2str(p(k)) '}']) EW}7T3g  
    %       end NJqjW  
    % 4IUdlb  
    %   See also ZERNPOL, ZERNFUN. \(g/::|  
    *l9Wj$vja  
    %   Paul Fricker 11/13/2006 M&q3xo"w  
    4eh~/o&h  
    UifuRmn  
    % Check and prepare the inputs: $bd tiD  
    % ----------------------------- !STa}wl  
    if min(size(p))~=1 r}%2;!T  
        error('zernfun2:Pvector','Input P must be vector.') ,%!E-gr  
    end |9&bkojo  
    $?FA7=_  
    if any(p)>35 AJWV#J%nB  
        error('zernfun2:P36', ... "$6 .L^9W  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 6upCL:A~r  
               '(P = 0 to 35).']) Kx<T;iJ}  
    end )o[Jxu'  
    *ke9/hO1i  
    % Get the order and frequency corresonding to the function number: +.Cx.Nf(  
    % ---------------------------------------------------------------- z c4l{+3  
    p = p(:); 6vL+qOdx  
    n = ceil((-3+sqrt(9+8*p))/2); A."]6R<  
    m = 2*p - n.*(n+2); E|`JmfLQu  
    T^F9A55y  
    % Pass the inputs to the function ZERNFUN: R'e>YDC  
    % ---------------------------------------- jph"94  
    switch nargin yG~7Xo5  
        case 3  >M-ZjT>  
            z = zernfun(n,m,r,theta); ~V`F5B  
        case 4 2n3g!M6~  
            z = zernfun(n,m,r,theta,nflag); %<?U`o@*  
        otherwise {%PgR){qR  
            error('zernfun2:nargin','Incorrect number of inputs.') TLWU7aj&!  
    end QgB%\mO=  
    XxeyGs^%9  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @b2JR^  
    function z = zernfun(n,m,r,theta,nflag) gPYF2m  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9d8bh4[  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +GDT@,/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the rV6SN.  
    %   unit circle.  N is a vector of positive integers (including 0), and 1 ^q~NYTK  
    %   M is a vector with the same number of elements as N.  Each element aNxq_pRb  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) } 0^wJs  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, C;BC@OE  
    %   and THETA is a vector of angles.  R and THETA must have the same 3<vw#]yL  
    %   length.  The output Z is a matrix with one column for every (N,M) B!iz=+RNC1  
    %   pair, and one row for every (R,THETA) pair. 530Z>q  
    % 8<X,6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QT[yw6Z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?Gr2@,jlD  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral JS{trqc1d  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, v==]v2 -  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2F- ]0kGR|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. EKTn$k=  
    % WK)2/$7@  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6B .x=  
    %   They are used in disciplines such as astronomy, optics, and B+Ox#[<75  
    %   optometry to describe functions on a circular domain. RV{'[8gM   
    % SZ)AO8&  
    %   The following table lists the first 15 Zernike functions. *~H\#N|x  
    % WY3D.z-</  
    %       n    m    Zernike function           Normalization fAHf}j  
    %       -------------------------------------------------- I%qZMoS1h  
    %       0    0    1                                 1 OqNtTk+  
    %       1    1    r * cos(theta)                    2 xfsf  
    %       1   -1    r * sin(theta)                    2 H1^m>4ll9  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) m.0: R  
    %       2    0    (2*r^2 - 1)                    sqrt(3) p.50BcDg  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #eKg!]4-R  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \cKY{(E  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {=)g?!zC  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ICxj$b  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !\RBOdw C  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) z&x3":@u<  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3|qT.QR`Z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) \ =(r6X  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kl/eJN'S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  WPnw  
    %       -------------------------------------------------- M,V~oc5  
    % =k +nC)e  
    %   Example 1: !da [#zK  
    % x;; =+)Gg  
    %       % Display the Zernike function Z(n=5,m=1) ZQV,gIFys  
    %       x = -1:0.01:1; 52H'aHO1  
    %       [X,Y] = meshgrid(x,x); /yhGc}h  
    %       [theta,r] = cart2pol(X,Y); g(`m#&P>G  
    %       idx = r<=1; -o`Eka!ELz  
    %       z = nan(size(X)); +^0Q~>=VD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); F{;{o^Pv  
    %       figure %40uw3  
    %       pcolor(x,x,z), shading interp =mWr8p-H  
    %       axis square, colorbar % bpVK~z  
    %       title('Zernike function Z_5^1(r,\theta)') MfJ8+3@K  
    % &R7N^*He  
    %   Example 2: =}h8Cl{H/  
    % gp`H>Sn.|  
    %       % Display the first 10 Zernike functions 6Uik>e7?  
    %       x = -1:0.01:1; 9]E;en NQ  
    %       [X,Y] = meshgrid(x,x); #Y9'n0 AL  
    %       [theta,r] = cart2pol(X,Y); J/ ! Mt  
    %       idx = r<=1; &Ub0o2+y  
    %       z = nan(size(X)); n>|7 k3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [@RJ2q$  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; O wJZ?j& )  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GI ~<clhf  
    %       y = zernfun(n,m,r(idx),theta(idx)); g~#HiBgWq[  
    %       figure('Units','normalized') G5K_e:i  
    %       for k = 1:10 P}dhpU  
    %           z(idx) = y(:,k); A"$UU6Z4  
    %           subplot(4,7,Nplot(k)) 1_Ag:> #X  
    %           pcolor(x,x,z), shading interp aOWfu^&H:  
    %           set(gca,'XTick',[],'YTick',[]) djGzJLH  
    %           axis square E?@batIrf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ivdg1X  
    %       end s2'] "wM  
    % h_{//W[  
    %   See also ZERNPOL, ZERNFUN2. T+9#&  
    cI g|sn  
    %   Paul Fricker 11/13/2006 ?~g X7{>  
    :fW\!o 8Z2  
    `_*NFv1_  
    % Check and prepare the inputs: qwz_.=5E6  
    % ----------------------------- vI)-Zz[3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O5;$cP:  
        error('zernfun:NMvectors','N and M must be vectors.') =5PNH2  
    end IW1+^F9NEw  
    M:*^k  
    if length(n)~=length(m) U:[#n5g  
        error('zernfun:NMlength','N and M must be the same length.') _#2AdhCu  
    end OB&lq.r  
    ED>T2.:{  
    n = n(:); l'#P:eW  
    m = m(:); fQtV-\Bc  
    if any(mod(n-m,2)) +d=cI  
        error('zernfun:NMmultiplesof2', ... E$w2S Q  
              'All N and M must differ by multiples of 2 (including 0).') /N'|Vs,X  
    end |x[zzx# >-  
    k OycS  
    if any(m>n) H%AF,  
        error('zernfun:MlessthanN', ... a/(IvOy#6  
              'Each M must be less than or equal to its corresponding N.') AzwG_XgM)  
    end MK*WStY  
    -5_[m@Vr  
    if any( r>1 | r<0 ) ;g M$%!&  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') p` '8M  
    end u\,("2ZW9+  
    ^{vf|zZ _  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :W++`f&  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ul41R Ny)  
    end ;is*[r\|1  
    ebuR-9  
    r = r(:); @H?_x/qBT  
    theta = theta(:); _ zh>q4M  
    length_r = length(r); <Fc @T4Q,  
    if length_r~=length(theta) lM<SoC;[  
        error('zernfun:RTHlength', ... m3La;%aA0  
              'The number of R- and THETA-values must be equal.') &;D(VdSr9  
    end w,'"2^Cwy  
    3O W) %  
    % Check normalization: v@8 =u4  
    % -------------------- f8m%T%]f  
    if nargin==5 && ischar(nflag) r-ldqj  
        isnorm = strcmpi(nflag,'norm'); kCq]#e~wq  
        if ~isnorm pX nY=  
            error('zernfun:normalization','Unrecognized normalization flag.') yLo{^4a.  
        end  ?Cu1"bl  
    else 7Z(F-B +j  
        isnorm = false; s /? &H-  
    end  3e<FlH{  
    L;n2,b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H| uvcvf  
    % Compute the Zernike Polynomials T vEN0RV2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m _0D^e7#  
    T2nbU6H  
    % Determine the required powers of r: e2SU)Tr%b  
    % ----------------------------------- 5K~kzR L$r  
    m_abs = abs(m); b`4R`mo  
    rpowers = []; Or0eY#c  
    for j = 1:length(n) }P5zf$  
        rpowers = [rpowers m_abs(j):2:n(j)]; rY 0kzD/  
    end $7#N@7  
    rpowers = unique(rpowers); Mbt}G|;8H7  
    NbD"O8dL~E  
    % Pre-compute the values of r raised to the required powers, 78s:~|WB<{  
    % and compile them in a matrix: B"-gK20vY  
    % ----------------------------- y11/:|  
    if rpowers(1)==0 ; FO1b*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L=. 4x=%%  
        rpowern = cat(2,rpowern{:}); Al^n&Aa+\  
        rpowern = [ones(length_r,1) rpowern]; pP4i0mO{Dv  
    else q+MV@8w  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); PgKA>50a  
        rpowern = cat(2,rpowern{:}); P(_wT:8C?  
    end {\OIowa  
    q<YteuZJ,  
    % Compute the values of the polynomials:  Yfk){1  
    % -------------------------------------- c !$ 8>  
    y = zeros(length_r,length(n)); O};U3=^0f  
    for j = 1:length(n) ]7QRelMiz+  
        s = 0:(n(j)-m_abs(j))/2; )C @W_cfMN  
        pows = n(j):-2:m_abs(j); Ek [V A\G  
        for k = length(s):-1:1 =:+k  
            p = (1-2*mod(s(k),2))* ... Xwg|fr+p  
                       prod(2:(n(j)-s(k)))/              ... qsB,yckml  
                       prod(2:s(k))/                     ... +F &,,s"&  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^y?7B_%:B#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &S}i)Nu6J  
            idx = (pows(k)==rpowers); FuOP+r!H  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @j%r6N  
        end `"0#lZ`n  
         dOm#NSJVd  
        if isnorm *t;'I -1w^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  +X i#y}%  
        end AsRS7V  
    end 4:\s.Z{!3  
    % END: Compute the Zernike Polynomials <a-I-~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G>?hojvi  
    W;]*&P[[   
    % Compute the Zernike functions: ?_e2)+q8YG  
    % ------------------------------ KzeTf?G  
    idx_pos = m>0; /znW$yh o  
    idx_neg = m<0; (+<SR5,/3  
    / r#.BXP  
    z = y; DnA}!s  
    if any(idx_pos) %]JSDb=C  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `}1IQ.3  
    end #zC_;u$  
    if any(idx_neg) ^|@t2Rp@  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =J0X{Ovn4z  
    end ^$):Xz  
    \UI7H1XDH  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的