非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ~m@w p
function z = zernfun(n,m,r,theta,nflag) >dqeGM7Np>
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6dX l ny1H
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N AZjj71UE
% and angular frequency M, evaluated at positions (R,THETA) on the 1'g{tP"d
% unit circle. N is a vector of positive integers (including 0), and de?lO;8
% M is a vector with the same number of elements as N. Each element HA%r:Px
% k of M must be a positive integer, with possible values M(k) = -N(k) lIF*$#`oh*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 'l3K*lck
% and THETA is a vector of angles. R and THETA must have the same i3\6*$Ug
% length. The output Z is a matrix with one column for every (N,M)
I`}<1~ue
% pair, and one row for every (R,THETA) pair. QG=&{-I~[3
% HxH=~B1"P
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike db.E-@W.OI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vxC,8Z
% with delta(m,0) the Kronecker delta, is chosen so that the integral 66~]7w
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O1K~]Nt
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1)f~OL8o
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z
]WA-Q6n
% E8.xmTq
% The Zernike functions are an orthogonal basis on the unit circle. #T8$NZA
% They are used in disciplines such as astronomy, optics, and yD9<-B<)
% optometry to describe functions on a circular domain. N%&D(_
% )<1}`9G
% The following table lists the first 15 Zernike functions. n/]$k4h
% 5Pl~du
% n m Zernike function Normalization -'!%\E;5
% -------------------------------------------------- uua1_#a
% 0 0 1 1 B>&eciY
% 1 1 r * cos(theta) 2 ku}I;k |
% 1 -1 r * sin(theta) 2 #GHLF
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8QGj:3
% 2 0 (2*r^2 - 1) sqrt(3) 6|D,`dk3U
% 2 2 r^2 * sin(2*theta) sqrt(6) :Gz# 4k
% 3 -3 r^3 * cos(3*theta) sqrt(8) !zNMU$p
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) O/=i'0Xv
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8oj-5|ct
% 3 3 r^3 * sin(3*theta) sqrt(8) z3[0BWXs
% 4 -4 r^4 * cos(4*theta) sqrt(10) :i6k6=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a/wkc*}}/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 5CsJghTw
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /U%Xs}A)
% 4 4 r^4 * sin(4*theta) sqrt(10) rn?:utP
% -------------------------------------------------- o[!g,Gmoh
% _8'F I_E3
% Example 1: e[@q{.
% 1=t\|Th-
% % Display the Zernike function Z(n=5,m=1) g{cHh(S
% x = -1:0.01:1; 1!E+(Iq
% [X,Y] = meshgrid(x,x); ?DC3BA\)
% [theta,r] = cart2pol(X,Y); SdfrLdi}Y
% idx = r<=1; J
dDP
% z = nan(size(X)); Xx0}KJq~"
% z(idx) = zernfun(5,1,r(idx),theta(idx)); O$%C(n(
% figure 0F<O \
% pcolor(x,x,z), shading interp f9FsZD
% axis square, colorbar fxQN
% title('Zernike function Z_5^1(r,\theta)') $[Fh|%\
% kE".v|@
% Example 2: D>O{>;y[
% P~0d'Oi
% % Display the first 10 Zernike functions khb
Gyg%
% x = -1:0.01:1; *s6MF{Ds
% [X,Y] = meshgrid(x,x); 96Tc:#9i
% [theta,r] = cart2pol(X,Y); N3nk\)V\E
% idx = r<=1; PaEsz$mgy
% z = nan(size(X)); B*owV%
% n = [0 1 1 2 2 2 3 3 3 3]; e6f!6a+%
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %Ya-;&;`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; {A(=phN
% y = zernfun(n,m,r(idx),theta(idx)); 0=8.8LnN(
% figure('Units','normalized') OX?9 3AlG
% for k = 1:10 $s hlNW\
% z(idx) = y(:,k); NdQXQa?,
% subplot(4,7,Nplot(k)) Kk~0jP_ B9
% pcolor(x,x,z), shading interp 56o?=|
% set(gca,'XTick',[],'YTick',[]) (0qdU;
% axis square 'B"kUh%3$5
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t?v0ylN
% end 'lv\I9"S)
% U3^T.i"R
% See also ZERNPOL, ZERNFUN2. N2}].}
HFx8v!^5N
% Paul Fricker 11/13/2006 UJ)\E
^Hp
'MM#nQ\(
d
`Q$URn|
% Check and prepare the inputs: /s=TLPm
% ----------------------------- 'W$jHs
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WW;S
error('zernfun:NMvectors','N and M must be vectors.') Ah &D5,3
end 6yF4%Sz9
7fl'nCo\"
if length(n)~=length(m) @)m+O#a
error('zernfun:NMlength','N and M must be the same length.') fZXJPy;n
end }_M.-Xm
-?!Z/#i4
n = n(:); $<]y.nr|CX
m = m(:); vdNh25a<h
if any(mod(n-m,2)) 6[c
LbT0
error('zernfun:NMmultiplesof2', ... 2u6N';jgZ
'All N and M must differ by multiples of 2 (including 0).') )j@k[}R#g
end wLU w'Ai
N`grr{*_
if any(m>n) "aP>}5<h
error('zernfun:MlessthanN', ... i<1w*yu
'Each M must be less than or equal to its corresponding N.') {:Z# 8dGe
end .dp~%!"Sn,
~/\;7E{8!
if any( r>1 | r<0 ) m{x!uq
error('zernfun:Rlessthan1','All R must be between 0 and 1.') :M ix*NCf
end 788q<7E
d Z"bc]z{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mw`%xID*
error('zernfun:RTHvector','R and THETA must be vectors.') t_,iV9NrZ
end G+'MTC_
GwwxSB&y
r = r(:); *s?&)][
theta = theta(:); VPn#O
length_r = length(r); J(M0t~RZ
if length_r~=length(theta) n`6 8<ybl5
error('zernfun:RTHlength', ... ; ZL<7tLDb
'The number of R- and THETA-values must be equal.') QhZ!A?':U
end 60teD>Eh,
N(}7M~m>
% Check normalization: P}&7G-
% -------------------- N!"GwH
if nargin==5 && ischar(nflag) 1w+&Y;d|
isnorm = strcmpi(nflag,'norm'); h:#
if ~isnorm ',6QL4qV/
error('zernfun:normalization','Unrecognized normalization flag.') xv7^
end 0V}vVAa(B
else n1uJQt
isnorm = false; \(Zdd
\,
end (LRv c!`"
p4Vw`i+DnH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ILF"m;
% Compute the Zernike Polynomials )Ah
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?_W "=WpC
;csAhkf:S
% Determine the required powers of r: 5&2=;?EO
% ----------------------------------- 5:CC\!&QBV
m_abs = abs(m); Ej 'a
G
rpowers = []; A~nq4@uj
for j = 1:length(n) ;-^WUf|
rpowers = [rpowers m_abs(j):2:n(j)]; L\ _8}\
end pR 1 v^m|
rpowers = unique(rpowers); vT%rg r
~LO MwMHl
% Pre-compute the values of r raised to the required powers, 8,dCx}X
% and compile them in a matrix: )/bt/,M&}
% ----------------------------- yW|yZ(7
if rpowers(1)==0 XV %L6x
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I g-VSQ
rpowern = cat(2,rpowern{:}); YZpF*E;6t
rpowern = [ones(length_r,1) rpowern]; t}nZrD
else .b N0!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1x M&"p:
rpowern = cat(2,rpowern{:}); $L:g7?)k
end g6QkF41nG
RS<c&{?
% Compute the values of the polynomials: EW#.)@-
% -------------------------------------- 79:x>i=
y = zeros(length_r,length(n)); :7:Nx`D8
for j = 1:length(n) $3Wl~
G}
s = 0:(n(j)-m_abs(j))/2; w|?Nq?KA
pows = n(j):-2:m_abs(j); U G^6I5
for k = length(s):-1:1 \+Qx}bS{
p = (1-2*mod(s(k),2))* ... aKH\8O4L5
prod(2:(n(j)-s(k)))/ ... +Z)||MR"
prod(2:s(k))/ ... ,a^_
~(C
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7i334iQZ
prod(2:((n(j)+m_abs(j))/2-s(k))); <T
idx = (pows(k)==rpowers); L\y,7@1%AT
y(:,j) = y(:,j) + p*rpowern(:,idx); 3iH!;`i
end ,W*<e-
s(Kf%ZoE
if isnorm Eto0>YyZ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _Mq@58q'
end 2c8,H29
end e
*;"$7o9
% END: Compute the Zernike Polynomials ^x4,}'(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m'aw`?
KMoRMCT
% Compute the Zernike functions: Cd|V<BB9
% ------------------------------ &z1r$X.AW
idx_pos = m>0; M9bb,`X>Q
idx_neg = m<0; -BQM i0
I \vu?$w
z = y; z ;
:E~;
if any(idx_pos) 0lmoI4bW}s
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Uy_`=JZ
end js8uvZ i
if any(idx_neg) ; M"hX
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :l3Tt<
end u^ngD64
wAk oX
% EOF zernfun