非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *]>OCGsr
function z = zernfun(n,m,r,theta,nflag) n_xQSVI0F
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]Gd]KP@S
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N V)?x*R*T)
% and angular frequency M, evaluated at positions (R,THETA) on the 9TXm Z
% unit circle. N is a vector of positive integers (including 0), and d'g{K]=tF
% M is a vector with the same number of elements as N. Each element @=<TA0;LL
% k of M must be a positive integer, with possible values M(k) = -N(k) d~z<,_r5c
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Tm~#wL
+r
% and THETA is a vector of angles. R and THETA must have the same {7pE9R 5
% length. The output Z is a matrix with one column for every (N,M) RfKxwo|M<
% pair, and one row for every (R,THETA) pair. k>z-Zg
% 2Z IpzH/8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1Z$99
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EH!EyNNb
% with delta(m,0) the Kronecker delta, is chosen so that the integral o7 -h'b-
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, NM.f0{:cj
% and theta=0 to theta=2*pi) is unity. For the non-normalized k`4\.m"&
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B,VSFpPx
% $O]E$S${
% The Zernike functions are an orthogonal basis on the unit circle. #35S7G^ @`
% They are used in disciplines such as astronomy, optics, and L&gEQDPgq|
% optometry to describe functions on a circular domain. cwW~ *90#
% nO.+&kA
% The following table lists the first 15 Zernike functions. Ci#5@Q9#w
% \%4+mgiD
% n m Zernike function Normalization C;:1CK
% -------------------------------------------------- ~3-YxCn%
% 0 0 1 1 H R!>g
% 1 1 r * cos(theta) 2 9:Z~}yX
% 1 -1 r * sin(theta) 2 kV(DnZ#jq
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,LPFb6o
% 2 0 (2*r^2 - 1) sqrt(3) RVKaqJ0e<
% 2 2 r^2 * sin(2*theta) sqrt(6) 9q,JqB
% 3 -3 r^3 * cos(3*theta) sqrt(8) JpHsQ8<
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) r`E1<aCr|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) W-ND<=:Up
% 3 3 r^3 * sin(3*theta) sqrt(8) 4[EO[x4C
% 4 -4 r^4 * cos(4*theta) sqrt(10) hjp?/i%TQ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z FrXw+
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^CZ|ci6bX
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -{amzyvLE
% 4 4 r^4 * sin(4*theta) sqrt(10) yNMwd.r[
% -------------------------------------------------- +MoxvW6
% AU?YZEAei
% Example 1: R^O)fL 0_
% }Yl8Q>t
% % Display the Zernike function Z(n=5,m=1) K'rs9v"K|
% x = -1:0.01:1; 7;s0m0<%~
% [X,Y] = meshgrid(x,x); [6gHi.`p'
% [theta,r] = cart2pol(X,Y); ,HO/Q6;N
% idx = r<=1; E#V-F-@2
% z = nan(size(X)); ^l2d?v8
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Qs[EA_
% figure 68br
% pcolor(x,x,z), shading interp =/'*(\C2
% axis square, colorbar ^d$e^cU
% title('Zernike function Z_5^1(r,\theta)') 8}`8lOE7
% X qva&/-
% Example 2: r_<i*l.
% sL`D}_:
% % Display the first 10 Zernike functions C%o/
% x = -1:0.01:1; p`.fYW:p
% [X,Y] = meshgrid(x,x); "N:]d*A\
% [theta,r] = cart2pol(X,Y); j\L$dPZ
% idx = r<=1; Glc4g
% z = nan(size(X)); aTL7"Myp
% n = [0 1 1 2 2 2 3 3 3 3]; <^c0bY1
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9v3Nba
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MJR\ g3
% y = zernfun(n,m,r(idx),theta(idx)); "&o@%){]
% figure('Units','normalized') x3F L/^S
% for k = 1:10 jP6G.aiO
% z(idx) = y(:,k); 0$h$7'a
% subplot(4,7,Nplot(k)) Y~?YA/.x
% pcolor(x,x,z), shading interp hfa_M[#Q-
% set(gca,'XTick',[],'YTick',[]) jN{xpd
% axis square X10TZ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) w)SxwlW}
% end -ns a3P
% {"AYOc>2|
% See also ZERNPOL, ZERNFUN2. Pw{{+PBu R
t4W0~7
% Paul Fricker 11/13/2006 |2` $g
YZu#0)
x(6.W"-S
% Check and prepare the inputs: _BaS\U%1(
% ----------------------------- !b8|{#qh.
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j|8{Vyqd
error('zernfun:NMvectors','N and M must be vectors.') X"59`Yh
end @!HMd{r
ptL}F~
if length(n)~=length(m) (&x\,19U$
error('zernfun:NMlength','N and M must be the same length.') zq>"a&Y,
end |L-juT X9
j'b4Sbs-f
n = n(:); j0NPd^
m = m(:); A^7Zy79
if any(mod(n-m,2)) rxA)&