切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11278阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 E&K8hY%5  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! #x%O0  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P.fgt>v]  
    function z = zernfun(n,m,r,theta,nflag) ~O|0.)71]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 97&6iTYA  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DV.MvFV  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !nYAyjf   
    %   unit circle.  N is a vector of positive integers (including 0), and >l7 o/*4  
    %   M is a vector with the same number of elements as N.  Each element WW_X:N~~e\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) NCsUC  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, lA ,%'+-  
    %   and THETA is a vector of angles.  R and THETA must have the same oC?b]tzj  
    %   length.  The output Z is a matrix with one column for every (N,M) +0a',`yc  
    %   pair, and one row for every (R,THETA) pair. xFvSQ`sp  
    % =kCpCpET  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mee-Qq:}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), n/ 8fv~zU  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [+%*s3`c#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~/.&Z`ls  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +HcH]D;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Fb}9cpz{  
    % fklM Yu4:n  
    %   The Zernike functions are an orthogonal basis on the unit circle.   C[Fh^  
    %   They are used in disciplines such as astronomy, optics, and w5|"cD#8A  
    %   optometry to describe functions on a circular domain. 8<G@s`*  
    % LnL<WI*Pq  
    %   The following table lists the first 15 Zernike functions. Ay_<?F+&  
    % +u Lu.-N  
    %       n    m    Zernike function           Normalization lg=[cC2  
    %       -------------------------------------------------- 5eU/ [F9  
    %       0    0    1                                 1 du qu}*Jw  
    %       1    1    r * cos(theta)                    2 N; hq  
    %       1   -1    r * sin(theta)                    2 E }yxF .  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Rza \n8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) {P3,jY^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) f9 rToH  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) xpnnWHdaq  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) HWd,1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b9vKux  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xv ja  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |~/{lE=I  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *83+!DV|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) MaEh8*  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jgYiuM3c\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 5_O.p3$tV  
    %       -------------------------------------------------- AsLAm#zq  
    % 'X?`+2wK   
    %   Example 1: '=ZE*nGC  
    % $M8'm1R9  
    %       % Display the Zernike function Z(n=5,m=1) 3! +5MsR+  
    %       x = -1:0.01:1; oT_,k}LIX  
    %       [X,Y] = meshgrid(x,x); l5MxJ>?4%B  
    %       [theta,r] = cart2pol(X,Y); JDs<1@\  
    %       idx = r<=1; }Yt0VtLt  
    %       z = nan(size(X)); x O)nS _I  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); t (1z+  
    %       figure 5M(?_qj  
    %       pcolor(x,x,z), shading interp qB&*"gf  
    %       axis square, colorbar #"Zr#P{P  
    %       title('Zernike function Z_5^1(r,\theta)') JrQN-e!  
    % s2$R2,  
    %   Example 2: 7OZ s~6(  
    % w_-{$8|  
    %       % Display the first 10 Zernike functions bZi>   
    %       x = -1:0.01:1; k-89(  
    %       [X,Y] = meshgrid(x,x); QVP $e`4  
    %       [theta,r] = cart2pol(X,Y); I?PKc'b  
    %       idx = r<=1; *7R3EUUk  
    %       z = nan(size(X)); 5GY%ZRHh  
    %       n = [0  1  1  2  2  2  3  3  3  3]; G ;z2}Ei  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ecF I"g  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h8h4)>:  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]EK"AuEz`  
    %       figure('Units','normalized') @#V{@@3$  
    %       for k = 1:10 o1Xk\R{  
    %           z(idx) = y(:,k); +F/'+  
    %           subplot(4,7,Nplot(k)) -0kwS4Hx2  
    %           pcolor(x,x,z), shading interp V^0*S=N  
    %           set(gca,'XTick',[],'YTick',[]) `KL`^UqR  
    %           axis square V`%m~#Me  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /Ly%-py-$  
    %       end "qF&%&#r'  
    % e L(T  
    %   See also ZERNPOL, ZERNFUN2. [qy@g5`  
    %0]&o, w{  
    %   Paul Fricker 11/13/2006 *s!8BwiE  
    & =frt3  
    1jV^\ x0  
    % Check and prepare the inputs: lfGiw^  
    % ----------------------------- 'UB<;6wy  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j{HxX  
        error('zernfun:NMvectors','N and M must be vectors.') `$i`i'S  
    end +(<CE#bb[  
    A$ S9 `  
    if length(n)~=length(m) & IDF9B  
        error('zernfun:NMlength','N and M must be the same length.') rdC(+2+Ay  
    end B@F1!8l  
    jem$R/4"  
    n = n(:); 9<Bf5d   
    m = m(:); weu'<C   
    if any(mod(n-m,2)) 0zEn`rq&  
        error('zernfun:NMmultiplesof2', ... @^P=jXi<  
              'All N and M must differ by multiples of 2 (including 0).') b\^.5SEw  
    end 9M7{.XR,  
    9]S}m[8k  
    if any(m>n) h)YqC$A-s  
        error('zernfun:MlessthanN', ... !g}9xIL  
              'Each M must be less than or equal to its corresponding N.') 0h; -Yg  
    end Q0r_+0[7j  
    aMHIOA%Kh  
    if any( r>1 | r<0 ) VRxBi!d  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') C ]#R7G  
    end H8\N~>  
    Xu'u"amt  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NfN#q:w1  
        error('zernfun:RTHvector','R and THETA must be vectors.') B4{A(-Tc  
    end Ck[Z(=b$$:  
    xi.;`Q^#  
    r = r(:); !|`YNsR  
    theta = theta(:); E-Mp|y/V  
    length_r = length(r); +ivz  
    if length_r~=length(theta)  ,{.&xJ$  
        error('zernfun:RTHlength', ... +)V6"XY-(  
              'The number of R- and THETA-values must be equal.') Gd'^vqo<  
    end (K2 p3M^  
    sd=i!r)ya  
    % Check normalization: Pajr`gU  
    % -------------------- 1 ltoLd\{  
    if nargin==5 && ischar(nflag) ;/YSQt)rc>  
        isnorm = strcmpi(nflag,'norm'); lxxK6;r~>  
        if ~isnorm -nU_eDy  
            error('zernfun:normalization','Unrecognized normalization flag.') $ D45X<  
        end #}A!Bk  
    else on(W^ocnD  
        isnorm = false; VR_1cwKBM  
    end hup]Jk  
    &'(:xjN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TM"i9a? ;  
    % Compute the Zernike Polynomials EKDv3aFQZ#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xxedezNko  
    L=VuEF  
    % Determine the required powers of r: 9t)t-t#P;  
    % ----------------------------------- $y`|zK|G-  
    m_abs = abs(m); QALMF rWH  
    rpowers = []; s~TYzfA  
    for j = 1:length(n) NcPzmW{#;g  
        rpowers = [rpowers m_abs(j):2:n(j)]; V# Wd   
    end 3"<{YEj8U  
    rpowers = unique(rpowers); N-5lILuJJ  
    qC]D9 A  
    % Pre-compute the values of r raised to the required powers, mT~:k}u~W  
    % and compile them in a matrix: m2 OP=z@)  
    % ----------------------------- (apAUIE  
    if rpowers(1)==0 |"ck;.)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2Gx&ECa,  
        rpowern = cat(2,rpowern{:}); <iTaJa$0m  
        rpowern = [ones(length_r,1) rpowern]; 578Dl(I#)  
    else w%L0mH2]ng  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ()P?fed  
        rpowern = cat(2,rpowern{:}); T$k) ^'  
    end Ib!`ChZ  
    [.0R"|$sy+  
    % Compute the values of the polynomials: fPspJug  
    % -------------------------------------- 8XTVpf4  
    y = zeros(length_r,length(n)); !WrUr]0IP  
    for j = 1:length(n) 56L>tP  
        s = 0:(n(j)-m_abs(j))/2;  EI+.Q  
        pows = n(j):-2:m_abs(j); 4cs`R+]o  
        for k = length(s):-1:1 /TpM#hkq/2  
            p = (1-2*mod(s(k),2))* ... }z[ O_S,X  
                       prod(2:(n(j)-s(k)))/              ... rYc?y  
                       prod(2:s(k))/                     ... (z"Cwa@e  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8)sqj=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); g*8sh  
            idx = (pows(k)==rpowers); `33+OW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); RMsr7M4<91  
        end 3"q%-M|+Q  
         0xH$!?{b  
        if isnorm _a c_8m  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %*LdacjZ  
        end "IB)=Hc  
    end kigc+R  
    % END: Compute the Zernike Polynomials =<FFFoF*C_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iT I W;Cv  
    lK}F>6^\  
    % Compute the Zernike functions: d~YDg{H  
    % ------------------------------ ^@jOS{f l  
    idx_pos = m>0; _Z2VS"yH  
    idx_neg = m<0; 2\m+  
    B<6*Ktc  
    z = y; Is-Kz}4L  
    if any(idx_pos) W"z!sf5U  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Px)VDs=k  
    end T|oz_c\e  
    if any(idx_neg) R1?g6. Mq  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); E-&=I> B5  
    end F4d L{0;j  
    -rU *)0PR  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <gJ|Wee  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 5GC{)#4  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated RM QlciG  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive H6*F?a`)I  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~9 K4]5K-  
    %   and THETA is a vector of angles.  R and THETA must have the same F5&4x"c  
    %   length.  The output Z is a matrix with one column for every P-value, nqy\xK#.^  
    %   and one row for every (R,THETA) pair. c5^i5de  
    % Vk8:;Hj  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike (;cbgHo%}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ,I'Y)SLx  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) #^#N%_8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ;V`~'357%  
    %   for all p. dIMs{!  
    % O:#t> ;  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Gz$DsaG  
    %   Zernike functions (order N<=7).  In some disciplines it is ^yjc"r%B  
    %   traditional to label the first 36 functions using a single mode Ewu 7tq Z  
    %   number P instead of separate numbers for the order N and azimuthal )|'? uN7  
    %   frequency M. Q!|. ,?V  
    % ow%s_yV]R  
    %   Example: L@0DT&5  
    % e2Ba@e-  
    %       % Display the first 16 Zernike functions A+NLo[swwu  
    %       x = -1:0.01:1; sR'rY[^/|  
    %       [X,Y] = meshgrid(x,x); /?HRq ?n  
    %       [theta,r] = cart2pol(X,Y); Up)b;wR  
    %       idx = r<=1; 3v5]L3  
    %       p = 0:15; prhFA3 rW.  
    %       z = nan(size(X)); |L<oKMZY  
    %       y = zernfun2(p,r(idx),theta(idx)); ) Q]kUG#`  
    %       figure('Units','normalized') i%v^Zg&FU  
    %       for k = 1:length(p) *>zr'Tt,W  
    %           z(idx) = y(:,k); qvhTc6oH  
    %           subplot(4,4,k) 7@|(z:uw  
    %           pcolor(x,x,z), shading interp o+q4Vg9&  
    %           set(gca,'XTick',[],'YTick',[]) vQYd!DSh  
    %           axis square d),@&MSN  
    %           title(['Z_{' num2str(p(k)) '}']) h`?0=:Tru  
    %       end 03AYW)"}M  
    % xlv:+  
    %   See also ZERNPOL, ZERNFUN. {_KuztJGA  
    =`Nnd@3v  
    %   Paul Fricker 11/13/2006 -9vAY+s.  
    /Y%) Y  
    v )4 kS  
    % Check and prepare the inputs: FHqa|4Ie  
    % ----------------------------- J(g!>Sp!p  
    if min(size(p))~=1 7H++ pOF  
        error('zernfun2:Pvector','Input P must be vector.') XNd:x {  
    end noGMfZ1  
    W)$;T%u  
    if any(p)>35 PBR+NHrZ  
        error('zernfun2:P36', ... c;B Q$je}  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :G,GHU'/78  
               '(P = 0 to 35).']) E+UOuf*(  
    end WcbJ4Ore  
    U~!97,|ic  
    % Get the order and frequency corresonding to the function number: OA&NWAm4  
    % ---------------------------------------------------------------- Cf2rRH  
    p = p(:); Nbuaw[[iz  
    n = ceil((-3+sqrt(9+8*p))/2); 5"]PwC  
    m = 2*p - n.*(n+2); $1#|<|  
    M\>y&'J-  
    % Pass the inputs to the function ZERNFUN: VBBqoyP h  
    % ---------------------------------------- Ed.~9*m  
    switch nargin XZJ}nXy  
        case 3 3eFD[c%mN  
            z = zernfun(n,m,r,theta); N y7VIh|  
        case 4 IeZ}`$[H  
            z = zernfun(n,m,r,theta,nflag); m -7^$  
        otherwise K;gm^  
            error('zernfun2:nargin','Incorrect number of inputs.') c|hKo[r)  
    end pJK puoiX  
    6EP5n  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) VL7zU->  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ~Se/uL;*  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @;JT }R H-  
    %   order N and frequency M, evaluated at R.  N is a vector of b6R0za  
    %   positive integers (including 0), and M is a vector with the >eWHPO  
    %   same number of elements as N.  Each element k of M must be a SI8mr`gJ  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ]C}z3hhk  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [ wr0TbtV  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix D{PO!WzW  
    %   with one column for every (N,M) pair, and one row for every MpGWt#  
    %   element in R. GriL< =?t  
    % ~^KemwogPN  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- /J wQ5  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is [;h@ q}  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to y [.0L!C {  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )xT_RBR  
    %   for all [n,m]. q@r8V&-<  
    % hXmW,+1  
    %   The radial Zernike polynomials are the radial portion of the q#c\  
    %   Zernike functions, which are an orthogonal basis on the unit \6 2|w HX  
    %   circle.  The series representation of the radial Zernike UXR$7<D+  
    %   polynomials is p`T7Y\\#!  
    % h9 [ov)  
    %          (n-m)/2 ,d&~#W]  
    %            __ `?2S4lN/  
    %    m      \       s                                          n-2s !!DHfAV]  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r mWfzL'*  
    %    n      s=0 .y#@~H($  
    % '!b1~+PV  
    %   The following table shows the first 12 polynomials. 7z5AI!s_  
    % Ym2![FC1  
    %       n    m    Zernike polynomial    Normalization E{(7]Wri  
    %       --------------------------------------------- G0xk @SE  
    %       0    0    1                        sqrt(2) nhiCV>@y  
    %       1    1    r                           2  gX.4I;  
    %       2    0    2*r^2 - 1                sqrt(6) -YJ7ne]  
    %       2    2    r^2                      sqrt(6) n;/yo~RR  
    %       3    1    3*r^3 - 2*r              sqrt(8) AQ'~EbH(  
    %       3    3    r^3                      sqrt(8) }gGcYRT  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ,M5zhp$  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) M,3sK!`>  
    %       4    4    r^4                      sqrt(10) ~eA7:dZLb  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [Xg?sdQCI  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) u\<z5O  
    %       5    5    r^5                      sqrt(12) NcwZ_*sqj  
    %       --------------------------------------------- = 0Z}s  
    % yI)~- E.  
    %   Example: QUH USDT  
    % I[c/) N  
    %       % Display three example Zernike radial polynomials EO:i+e]=  
    %       r = 0:0.01:1; [qI, $ +  
    %       n = [3 2 5]; gG&2fV}l6  
    %       m = [1 2 1]; n]r7} 2hM  
    %       z = zernpol(n,m,r); "tn]s>iAd=  
    %       figure Fnzv&  
    %       plot(r,z) mC8c`# 1T  
    %       grid on 5)AMl)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') wHEt;rc(  
    % Vyf r>pgW1  
    %   See also ZERNFUN, ZERNFUN2. q~ T*R<S  
    |Q@4F&k  
    % A note on the algorithm. Kn?>XXAc  
    % ------------------------ hDSt6O4za  
    % The radial Zernike polynomials are computed using the series VK[^v;  
    % representation shown in the Help section above. For many special [K9l>O  
    % functions, direct evaluation using the series representation can `!K(P- yB?  
    % produce poor numerical results (floating point errors), because s%1O}X$c  
    % the summation often involves computing small differences between L(fOe3 v  
    % large successive terms in the series. (In such cases, the functions 3ktjMVy\  
    % are often evaluated using alternative methods such as recurrence  |'aGj  
    % relations: see the Legendre functions, for example). For the Zernike L 1H!o!*  
    % polynomials, however, this problem does not arise, because the SRRqIQz  
    % polynomials are evaluated over the finite domain r = (0,1), and |~Z.l  
    % because the coefficients for a given polynomial are generally all .!/DM-C  
    % of similar magnitude. ;%0$3a  
    % TMpV .iH  
    % ZERNPOL has been written using a vectorized implementation: multiple onI%Jl sq  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 6c$ so  
    % values can be passed as inputs) for a vector of points R.  To achieve SDwTGQ/0  
    % this vectorization most efficiently, the algorithm in ZERNPOL LPc)-t|p"  
    % involves pre-determining all the powers p of R that are required to anxg D?<+B  
    % compute the outputs, and then compiling the {R^p} into a single G%jgr"]\z  
    % matrix.  This avoids any redundant computation of the R^p, and TwH%P2)x  
    % minimizes the sizes of certain intermediate variables. A,Wwt [Qw  
    % (y *7 g f  
    %   Paul Fricker 11/13/2006 K`{P/w  
     z"Miy  
    HIsIW%B  
    % Check and prepare the inputs: jhgS@g=@ZC  
    % ----------------------------- MxQhkY-=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;4>YPH  
        error('zernpol:NMvectors','N and M must be vectors.') U5\^[~vW  
    end 9~n`6;R  
    WK)hj{k  
    if length(n)~=length(m) L-? ?%_=  
        error('zernpol:NMlength','N and M must be the same length.') -d1 YG[1|  
    end kVz9}Xp"  
    *:gx1wd  
    n = n(:); ~_8Dv<"a  
    m = m(:); n=J~Rssp  
    length_n = length(n); VHyH't_&s  
    \@&oK2f  
    if any(mod(n-m,2)) 8eq*q   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1 j"G~TM  
    end  DA]<30 w  
    u atY:GSR  
    if any(m<0) q!iTDg*$  
        error('zernpol:Mpositive','All M must be positive.') h;cl+c|B  
    end Q]$gw,H"6  
    !IF]P#  
    if any(m>n) d!0iv'^t  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') q)te/J@  
    end `yF6-F  
    diHK  
    if any( r>1 | r<0 ) Z*/{^ zsE  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') X .,Lmh  
    end mh#NmW>n  
    @n2Dt d  
    if ~any(size(r)==1) |?v(?  
        error('zernpol:Rvector','R must be a vector.') yC\dM1X  
    end ]Q0m]OaT  
    k;/K']4y  
    r = r(:); "o_s=^U  
    length_r = length(r); }uP`=T!"8  
    =r|e]4  
    if nargin==4 3 PkVMX  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); f euATL]  
        if ~isnorm X1* f#3cm#  
            error('zernpol:normalization','Unrecognized normalization flag.') WbJ|]}hJ\  
        end q)j b9e   
    else +FomAs1*f  
        isnorm = false; h4p<n&)F  
    end mR,w~wP  
    9*~bAgkWI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u00w'=pe)  
    % Compute the Zernike Polynomials M>qqe!c*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FEY_(70  
    B(|*u  
    % Determine the required powers of r: >0F)^W?  
    % ----------------------------------- #`]`gNB0Yg  
    rpowers = []; ,3XlX(P  
    for j = 1:length(n) OQ(w]G0LP  
        rpowers = [rpowers m(j):2:n(j)]; 8c`E B-y  
    end A@uU*]TqJ8  
    rpowers = unique(rpowers); hGU  m7  
    eI,'7u4q  
    % Pre-compute the values of r raised to the required powers, 8k{KnH  
    % and compile them in a matrix: '4KN  
    % ----------------------------- /a,"b8  
    if rpowers(1)==0 h"0)g :\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NF "|*S  
        rpowern = cat(2,rpowern{:}); ($nQmr;t  
        rpowern = [ones(length_r,1) rpowern]; 8Z|A'M  
    else &x?m5%^l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V8n z@  
        rpowern = cat(2,rpowern{:}); nsL"'iQ  
    end 0tKVo]EK  
    ~nJ"#Q_T  
    % Compute the values of the polynomials: ~P7zg!p/q  
    % -------------------------------------- 0Q7|2{  
    z = zeros(length_r,length_n); jn +*G<NJ  
    for j = 1:length_n t:x"]K  
        s = 0:(n(j)-m(j))/2; lvAKL>qX  
        pows = n(j):-2:m(j); _u3%16,o  
        for k = length(s):-1:1 "D,}|  
            p = (1-2*mod(s(k),2))* ... e0<Wed  
                       prod(2:(n(j)-s(k)))/          ... z0H+Or  
                       prod(2:s(k))/                 ... )O],$\u  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 23d*;ri5  
                       prod(2:((n(j)+m(j))/2-s(k))); $^e(?P q  
            idx = (pows(k)==rpowers); |&"/u7^  
            z(:,j) = z(:,j) + p*rpowern(:,idx); xX?9e3(  
        end ).)^\  
         enGZb&  
        if isnorm IG.!M@_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); .],:pL9d  
        end -zg 6^f_pW  
    end c(b2f-0!4  
    QE|x[?7e,!  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  c,]fw2  
    Z%b1B<u$  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 g~(G P  
    YE:5'@Z  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)