非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `n!viW|tB
function z = zernfun(n,m,r,theta,nflag) Z.Rb~n&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. &R+#W
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '#\D]5
% and angular frequency M, evaluated at positions (R,THETA) on the "rXOsX\;
% unit circle. N is a vector of positive integers (including 0), and x}fn'iUnm
% M is a vector with the same number of elements as N. Each element vUQFQ
% k of M must be a positive integer, with possible values M(k) = -N(k) ,xJrXPW
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~Pk0u{,4XQ
% and THETA is a vector of angles. R and THETA must have the same !- C' }
% length. The output Z is a matrix with one column for every (N,M) $awi>#[
% pair, and one row for every (R,THETA) pair. ,KW;2t*IQ@
% t$^l<ppQ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B~r}c4R{7
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _17|U K|N
% with delta(m,0) the Kronecker delta, is chosen so that the integral "oJ(J{Jat
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xu%'GZ,o9
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]/]ju$l9Z
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Bt^K]F\
% (J:dK=O@Z
% The Zernike functions are an orthogonal basis on the unit circle. f<[jwhCWV
% They are used in disciplines such as astronomy, optics, and jigs6#
% optometry to describe functions on a circular domain. OVoO6F]
% p5c8YfM
% The following table lists the first 15 Zernike functions. Y{Ap80'\6
% |oKu=/[K
% n m Zernike function Normalization "i'bTVs
% -------------------------------------------------- }4jC_ZAupt
% 0 0 1 1 ^Uw[x\%#gD
% 1 1 r * cos(theta) 2 y93k_iq$S
% 1 -1 r * sin(theta) 2 cErI%v}v0
% 2 -2 r^2 * cos(2*theta) sqrt(6) <MD;@_Nz\
% 2 0 (2*r^2 - 1) sqrt(3) ph30'"[Z}
% 2 2 r^2 * sin(2*theta) sqrt(6) $,1dQeE
% 3 -3 r^3 * cos(3*theta) sqrt(8) ka7uK][
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 34C``i
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) H^c0Kh+
% 3 3 r^3 * sin(3*theta) sqrt(8) #*IVlchA"B
% 4 -4 r^4 * cos(4*theta) sqrt(10) f%fa{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D\L!F6taS
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) tR`S#rk
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I{.HO<$7D}
% 4 4 r^4 * sin(4*theta) sqrt(10) ='Oj4T
% -------------------------------------------------- Q49BU@xX
% 9$WJ"]
% Example 1: F+=urc>w
% ^^LjI
% % Display the Zernike function Z(n=5,m=1) nW;kcS*A
% x = -1:0.01:1; p]LnE`v
% [X,Y] = meshgrid(x,x); =DgCC|p
% [theta,r] = cart2pol(X,Y); Vb6K:ZnF
% idx = r<=1; tbj=~xYf
% z = nan(size(X)); 2/Nq'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); VK
.^v<Yo
% figure P[gO85
% pcolor(x,x,z), shading interp k'13f,o}
% axis square, colorbar aPIr_7e
% title('Zernike function Z_5^1(r,\theta)') HFh /$VM
% TL-i=\{L:d
% Example 2: H:}}t]E
% }Jxq'B
% % Display the first 10 Zernike functions u*R7zY
% x = -1:0.01:1; }5S2p@W)
% [X,Y] = meshgrid(x,x); +t\^(SJ6
% [theta,r] = cart2pol(X,Y); p]f&mBO*
% idx = r<=1; 0<P(M: a
% z = nan(size(X)); v4<j
% n = [0 1 1 2 2 2 3 3 3 3]; Xz1c6mX|o
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; mZoD033H
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Z.jCera.
% y = zernfun(n,m,r(idx),theta(idx)); wa?+qiWnrl
% figure('Units','normalized') PZ]5Hf1"
% for k = 1:10 }brr ))
% z(idx) = y(:,k); rc~Y=m
% subplot(4,7,Nplot(k)) 3"i% {
% pcolor(x,x,z), shading interp v5Y@O|i#
% set(gca,'XTick',[],'YTick',[]) H1UL.g%d=
% axis square [\HQPo'S
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oI$V|D3 9
% end ?[SVqj2-
% QT}iaeC1i
% See also ZERNPOL, ZERNFUN2. wXCyj+XB*
mTd<2Hy
% Paul Fricker 11/13/2006 Q;gQfr"c7
x-~-nn\O
HTNA])G
% Check and prepare the inputs: *PcVSEP/0
% ----------------------------- {5x>y:v
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4!'1/3cY
error('zernfun:NMvectors','N and M must be vectors.') iPFL"v<#J
end (4ZLpsbJ
eiB(VOJ
if length(n)~=length(m) \9jpCNdJ
error('zernfun:NMlength','N and M must be the same length.') }:^X X0:FK
end 5rF /323z
a(Sv,@/
n = n(:); 7K !GK
m = m(:); bw;iz,Z
if any(mod(n-m,2)) sN@j5p^jc
error('zernfun:NMmultiplesof2', ... nOuN|q=C
'All N and M must differ by multiples of 2 (including 0).') n2;(1qr
end g^n;IE$B
#Y: ~UVV
if any(m>n) %JaE4&
error('zernfun:MlessthanN', ... G;9|%yvd8
'Each M must be less than or equal to its corresponding N.') yTj p-
end qa;EI ;8
okh0_4
if any( r>1 | r<0 )
u;(K34!)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') aKOf;^@
end g1dmkX
)+k[uokj
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $l43>e{E
error('zernfun:RTHvector','R and THETA must be vectors.') "?+UI
end {"}+V`O{
9<~,n1b>x
r = r(:); ZU^Q1}</5
theta = theta(:); !xJFr6G~8
length_r = length(r); [BE:+ ID3
if length_r~=length(theta) F]Pul|.l
error('zernfun:RTHlength', ... A'b<?)Y7_
'The number of R- and THETA-values must be equal.') 3li q9P_
end n4XMN\:g{
iUpSN0XkMM
% Check normalization: "1CGO@AXS
% -------------------- P69>gBZYD
if nargin==5 && ischar(nflag) 6|i`@|#
isnorm = strcmpi(nflag,'norm'); .8%vd
if ~isnorm y!BB7cK6
error('zernfun:normalization','Unrecognized normalization flag.') L c{!FG>
end ju r1!rg%
else QZ:v
isnorm = false; U0zW9jB
end "1\(ZKG8^Q
bL#sn_(m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @eA %(C
% Compute the Zernike Polynomials ]~ >@%v&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e$x4Ux7*"
tvK rc
% Determine the required powers of r: 7kOE/>P?
% ----------------------------------- #Xj;f^}/
m_abs = abs(m); 37,L**Dgs
rpowers = []; N.k+AQb
for j = 1:length(n) (PyTq
5:F
rpowers = [rpowers m_abs(j):2:n(j)]; {W]bU{%.
end =nw,*q +
rpowers = unique(rpowers); % d4+Ctrp-
z`;&bg\8
% Pre-compute the values of r raised to the required powers, `s#sE.=o
% and compile them in a matrix: G)4ZK#wz
% ----------------------------- j#4+-
if rpowers(1)==0 (xjqB{U
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o8iig5bp
rpowern = cat(2,rpowern{:}); z^YeMe
rpowern = [ones(length_r,1) rpowern]; Bd/}
%4V\@
else )Fw
@afE~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xNocGtS
rpowern = cat(2,rpowern{:}); 7=; D0SS
end 7j4ej|Fjo
^n6)YX
% Compute the values of the polynomials: S a(yjF1
% -------------------------------------- C+ZQB)gn
y = zeros(length_r,length(n)); 8 /5sv
for j = 1:length(n) *vRNG 3D/
s = 0:(n(j)-m_abs(j))/2; >SY2LmV'a
pows = n(j):-2:m_abs(j); L?AM&w-cg9
for k = length(s):-1:1 tCd{G
c
p = (1-2*mod(s(k),2))* ... 5B8V$ X
prod(2:(n(j)-s(k)))/ ... A%.J%[MVz
prod(2:s(k))/ ... +e&m#d
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... CM+F7#T?n
prod(2:((n(j)+m_abs(j))/2-s(k))); VyB\]EBu
idx = (pows(k)==rpowers); -[i40
1
y(:,j) = y(:,j) + p*rpowern(:,idx); s
ZlJ/_g
end /&S~+~]n
PU,6h}
if isnorm GhSL%y
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
muK'h`
end 61ON
end ]}UeuF\
% END: Compute the Zernike Polynomials H9oXZSm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,6S_&<{
i}v}K'`
% Compute the Zernike functions: u|]mcZ,ZW
% ------------------------------ chvrHvByS
idx_pos = m>0; ~%cSckE
idx_neg = m<0; UE}8Rkt
P5yJO97
z = y; f}Ne8]U/Hc
if any(idx_pos)
?.4yg(
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q#yu(
end &hSnB~hi
if any(idx_neg) v^y}lT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zN?$Sxttx
end i?1js ! 8
1kz9>;Ud6
% EOF zernfun