非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7 y$a=+D i
function z = zernfun(n,m,r,theta,nflag) $\M];S=CY
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. _6g(C_m'T?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Jje!*?&8X
% and angular frequency M, evaluated at positions (R,THETA) on the %36@1l-N
% unit circle. N is a vector of positive integers (including 0), and 8xkLfN|N=
% M is a vector with the same number of elements as N. Each element ,lFp4 C
% k of M must be a positive integer, with possible values M(k) = -N(k) s#(%u t
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, T8yMaC
% and THETA is a vector of angles. R and THETA must have the same !fjB oK+
% length. The output Z is a matrix with one column for every (N,M) 4=N(@mS
% pair, and one row for every (R,THETA) pair. yM,Y8^
% jdx T662q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Iyb_5 UmpF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), rZE+B25T~
% with delta(m,0) the Kronecker delta, is chosen so that the integral {kr14l*2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q1m{G1W
n
% and theta=0 to theta=2*pi) is unity. For the non-normalized S,Tc\}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z9Z\2t
% RdNLf
% The Zernike functions are an orthogonal basis on the unit circle. -=ZDfM
% They are used in disciplines such as astronomy, optics, and 81w"*G5AM
% optometry to describe functions on a circular domain. M+:9U&>
% yhs:.h
% The following table lists the first 15 Zernike functions. 7:<A_OLi
% ?/myG{E
% n m Zernike function Normalization 15r=d
% -------------------------------------------------- 'K#ndCGJ$
% 0 0 1 1 e*U6^Xex
% 1 1 r * cos(theta) 2 dcyHp>\)|
% 1 -1 r * sin(theta) 2
T;V!>W37
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2u+!7D!w$
% 2 0 (2*r^2 - 1) sqrt(3) cv7:5P
% 2 2 r^2 * sin(2*theta) sqrt(6) *N"CV={No
% 3 -3 r^3 * cos(3*theta) sqrt(8) vhcp[=e :
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) <XN=v!2;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) RgZ9ZrE\
% 3 3 r^3 * sin(3*theta) sqrt(8) ml /S|`Drk
% 4 -4 r^4 * cos(4*theta) sqrt(10) nd7g8P9p
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) OkfxX&n
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) m;t&P58f
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K9y~
e
% 4 4 r^4 * sin(4*theta) sqrt(10) ,Q0H)//~
% -------------------------------------------------- d`=LZio
% j-.Y!$a%6
% Example 1: ]hoq!:>M1
% l5\V4
% % Display the Zernike function Z(n=5,m=1) Hmnxmgx
% x = -1:0.01:1; <fV][W
% [X,Y] = meshgrid(x,x); jL'`M%8O
% [theta,r] = cart2pol(X,Y); \ Ce*5h
% idx = r<=1; Vjw u:M
% z = nan(size(X)); 9C0#K\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); y*6/VSRkt4
% figure xc\zRsY`
% pcolor(x,x,z), shading interp ge<D}6GQ
% axis square, colorbar <HzL%DX
% title('Zernike function Z_5^1(r,\theta)') "Mhn?PTq
% (z?j{J
% Example 2: JodD6;P
% xu%eg]
% % Display the first 10 Zernike functions
v+8Ybq
% x = -1:0.01:1; Vzo<ma^
% [X,Y] = meshgrid(x,x); 1@Ju sS0^K
% [theta,r] = cart2pol(X,Y); ]5Dh<QY&.
% idx = r<=1; Iy&,1CI"]
% z = nan(size(X)); v^vi *c
% n = [0 1 1 2 2 2 3 3 3 3]; \4^rb?B
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Rn]xxa'
% Nplot = [4 10 12 16 18 20 22 24 26 28]; yMTO 5~U{
% y = zernfun(n,m,r(idx),theta(idx)); :7mHPe}(
% figure('Units','normalized') w( _42)v]g
% for k = 1:10 Jazg n5
% z(idx) = y(:,k); l;L_A@B<
% subplot(4,7,Nplot(k)) k~ByICE
% pcolor(x,x,z), shading interp 0H]{,mVs
% set(gca,'XTick',[],'YTick',[]) /jGV[_Q=P
% axis square Wpi35JrC
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |_>^vW1f
% end U+@U/s%8
% y&-QLX L
% See also ZERNPOL, ZERNFUN2. "WUS?Q
zsJermF,O
% Paul Fricker 11/13/2006 _B&Lyg!J
]JV'z<
nSC2wTH!1
% Check and prepare the inputs: " aCAA#$J
% ----------------------------- H;l_;c`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) dRnf
error('zernfun:NMvectors','N and M must be vectors.') Dfa3#{
end >m..
"\KBF
if length(n)~=length(m) J}:.I>
error('zernfun:NMlength','N and M must be the same length.')
^B%=P
end +a1iZ bh
~rJG4U
n = n(:); #mA(x@:*
m = m(:); F_jHi0A
if any(mod(n-m,2)) T9H*]LxK
error('zernfun:NMmultiplesof2', ... P
<+0sh
'All N and M must differ by multiples of 2 (including 0).') va'F '|
end 9S*"={}%
=@?[.`
if any(m>n) fzQR0
error('zernfun:MlessthanN', ... Zrr)<'!i
'Each M must be less than or equal to its corresponding N.') q*3keB;X
end ?!6Itkg
W%-XN
if any( r>1 | r<0 ) '.(Gg%*\.
error('zernfun:Rlessthan1','All R must be between 0 and 1.') pX?3inQP%(
end Es%f@$0uy
JHt
U"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x9 %=d
error('zernfun:RTHvector','R and THETA must be vectors.') %BP>,E/w
end pUb1#=
Y}N\|*ye-
r = r(:); ~<m^
theta = theta(:); 0!_?\)X
length_r = length(r); !}#> ky!t
if length_r~=length(theta) f7lj,GAZ
error('zernfun:RTHlength', ... _>Raw
'The number of R- and THETA-values must be equal.') ExS5RV@v'
end -HG.GA
nQjpJ
/=
% Check normalization: Y \-W`
% -------------------- 9Yv:6@. F
if nargin==5 && ischar(nflag) *WQ?r&[_'
isnorm = strcmpi(nflag,'norm'); !m+Pd.4TaB
if ~isnorm :_~.Nt
error('zernfun:normalization','Unrecognized normalization flag.') ir_XU/ve
end 'z(Y9%+a
else &aLTy&8Fv
isnorm = false; 6*q1%rs:w
end d-D,Gx]>$
&>,;ye>A
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8(L$a1#5W
% Compute the Zernike Polynomials d+D~NA[M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3ic /xy;}
%o0b~R
% Determine the required powers of r: w={q@.
g%
% ----------------------------------- 3' i6<
m_abs = abs(m); =9GALoGL
rpowers = []; %^IQ<
for j = 1:length(n) EfrQ~`\
rpowers = [rpowers m_abs(j):2:n(j)]; Y 3BJ@sqz
end qk2E>
rpowers = unique(rpowers); Q[biy{(b8
)4L2&e`k)(
% Pre-compute the values of r raised to the required powers, /Sw~<B!8N
% and compile them in a matrix: k&ci5MpN
% ----------------------------- !C#oZU]P
if rpowers(1)==0 1;ttwF>G7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aDF@AS
rpowern = cat(2,rpowern{:}); 'f\9'v
rpowern = [ones(length_r,1) rpowern]; 4>*=q*<V5E
else yV(#z2|
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }=[p>3Dd
rpowern = cat(2,rpowern{:}); s6,~JF^
end *#T:
_
.\R9tt}
% Compute the values of the polynomials: !p&<.H_
% -------------------------------------- J\L'HIs
y = zeros(length_r,length(n)); i1vz{Tc
for j = 1:length(n) >Ku4Il+36
s = 0:(n(j)-m_abs(j))/2; !kovrvM6F
pows = n(j):-2:m_abs(j); >G6kF!V
for k = length(s):-1:1 \,Y
.5 ?
p = (1-2*mod(s(k),2))* ... msBoInhI
prod(2:(n(j)-s(k)))/ ... }?s-$@$R
prod(2:s(k))/ ... P0l
fK}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?+t;\
prod(2:((n(j)+m_abs(j))/2-s(k))); 8RMM97@1Q
idx = (pows(k)==rpowers); ,hn#DJ)
y(:,j) = y(:,j) + p*rpowern(:,idx); U>2KjZB
end Nk7y2[
}dkXRce*
if isnorm ~
WWhCRq
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6!\V|
end lVvcrU
end D
S U`(`
% END: Compute the Zernike Polynomials ip-X r|Bq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^Arv6kD,
q/EX`%U
% Compute the Zernike functions: 8^UF0>`'
% ------------------------------ )U %`7(bN
idx_pos = m>0; m!FuC=e
idx_neg = m<0; /wJ#-DZ
&
kC
z = y; c4fH/-
if any(idx_pos) qp})4XT v
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \CjJa(vV
end )'+[,z ;s
if any(idx_neg) Cbff:IP
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 32ki ?\P
end 5P!ZGbG
sX1DbEjj[o
% EOF zernfun