非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4ZrX=e,
function z = zernfun(n,m,r,theta,nflag) kIWQ
_2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. P6&@fwJ<
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4`)`%R $
% and angular frequency M, evaluated at positions (R,THETA) on the wo5"f}vd#
% unit circle. N is a vector of positive integers (including 0), and JOS,>;;F4
% M is a vector with the same number of elements as N. Each element ):;
&~
% k of M must be a positive integer, with possible values M(k) = -N(k) |G&<@8O
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &%+}bt5
% and THETA is a vector of angles. R and THETA must have the same cod__.
% length. The output Z is a matrix with one column for every (N,M) lZ.x@hDS
% pair, and one row for every (R,THETA) pair. ~J^Gzl
% Ki(qA(r
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }` E5I&r4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?M.n 9|}y
% with delta(m,0) the Kronecker delta, is chosen so that the integral [wWip1OR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IeLG/ fB
% and theta=0 to theta=2*pi) is unity. For the non-normalized w{f!t8C*s
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .xS3,O_[
% j$'L-kK+
% The Zernike functions are an orthogonal basis on the unit circle. -D?T0>
% They are used in disciplines such as astronomy, optics, and J3KY?,g3O_
% optometry to describe functions on a circular domain. TCYjj:/
% B!0o6)u'
% The following table lists the first 15 Zernike functions. ?lW-NPr
% lM`M70~
% n m Zernike function Normalization =kH7
% -------------------------------------------------- Tjma'3H*T0
% 0 0 1 1 +dq&9N/
% 1 1 r * cos(theta) 2 q4'szDYO2
% 1 -1 r * sin(theta) 2 3`uv/O2~i
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3/>T/To&2
% 2 0 (2*r^2 - 1) sqrt(3) 6Qnerd%Ec
% 2 2 r^2 * sin(2*theta) sqrt(6) jq:FDyOAW
% 3 -3 r^3 * cos(3*theta) sqrt(8) (JHzwI8+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 23?\jw3w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $"1Unu&P
% 3 3 r^3 * sin(3*theta) sqrt(8) /yPFts_q
% 4 -4 r^4 * cos(4*theta) sqrt(10) @8E mY,{;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h}r*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0h/gqlTK1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `T7gfb%1-3
% 4 4 r^4 * sin(4*theta) sqrt(10) R_ymTB}<t(
% -------------------------------------------------- A:PQIcR;V
% ^ZV1Ev8T6
% Example 1: H^z6.!$m
% JJ`RF
% % Display the Zernike function Z(n=5,m=1) EvSo|}JA[
% x = -1:0.01:1; R#gt~]x6k
% [X,Y] = meshgrid(x,x); 6$$4!R-
% [theta,r] = cart2pol(X,Y); 0t[|3A~Q
% idx = r<=1; Y5?*=eM
% z = nan(size(X)); H~IR:WOw
% z(idx) = zernfun(5,1,r(idx),theta(idx)); t`=TonLb8
% figure Lf0Y|^!S_u
% pcolor(x,x,z), shading interp TbX#K:l
% axis square, colorbar qn)
VKx=
% title('Zernike function Z_5^1(r,\theta)') %\Dvng6$
% tmT/4Ia
% Example 2: J&Ig%&/
% 0?OTa<c
% % Display the first 10 Zernike functions )7!q>^S{B
% x = -1:0.01:1; j_H"m R
% [X,Y] = meshgrid(x,x); [&12`!;j
% [theta,r] = cart2pol(X,Y); ]."~)
% idx = r<=1; Y3@\uM`2#
% z = nan(size(X)); gS{hfDpk,h
% n = [0 1 1 2 2 2 3 3 3 3]; SNqw2f5
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; u~SvR~OE
% Nplot = [4 10 12 16 18 20 22 24 26 28]; c1 aCN
% y = zernfun(n,m,r(idx),theta(idx)); xPMTmx?2
% figure('Units','normalized') I~Y1DP)R
% for k = 1:10 Wmri%
% z(idx) = y(:,k); RW| LL@r
% subplot(4,7,Nplot(k)) (Z(O7X(/
% pcolor(x,x,z), shading interp r:pS[f|4\
% set(gca,'XTick',[],'YTick',[]) XG_h\NIL
% axis square |dNJx<-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) c#o(y6
% end .axJ '*~W
% }nh!dVA8lh
% See also ZERNPOL, ZERNFUN2. u\-WArntc
aY`qb Jy
% Paul Fricker 11/13/2006 .U}"ONd9e
;MRK*sfw{
v
C,53g
% Check and prepare the inputs: 3"v
k$
% ----------------------------- @o4+MQFn
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pc9m,?n
error('zernfun:NMvectors','N and M must be vectors.') WRa1VU&f
end uWm,mGd9
yTt,/+I%gJ
if length(n)~=length(m) bm/pLC6%.
error('zernfun:NMlength','N and M must be the same length.') >
mI1wV[
end %C8p!)Hu
*B<Ig^c
n = n(:); J-iFAKN
m = m(:); ~V#MI@]V~
if any(mod(n-m,2)) bEO\oS
error('zernfun:NMmultiplesof2', ... JH3$G,:zM
'All N and M must differ by multiples of 2 (including 0).') `N;}Gf-'
end ,Sz`$'^c
k55s-%Ayr
if any(m>n) {jyI7r#X
error('zernfun:MlessthanN', ... $y%X#:eLJ
'Each M must be less than or equal to its corresponding N.') Z8vMVo
end s?-@8.@
etnq{tE5
if any( r>1 | r<0 ) U(xN}Y?
error('zernfun:Rlessthan1','All R must be between 0 and 1.') {tS^Q*F
end ++>HU{
qW~Z#Si
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +M )ep\j
error('zernfun:RTHvector','R and THETA must be vectors.') hM_0/o-
end C:r@)Mhq
ENx1) ]
r = r(:); F7f psAt7
theta = theta(:); 2EO WbN}M
length_r = length(r); \\ZR~f!<
if length_r~=length(theta) g5",jTn#
error('zernfun:RTHlength', ... y4N8B:j%
'The number of R- and THETA-values must be equal.') Rs$fNW@P
end [N@t/^gRC
rC !!X
% Check normalization: /#<R
% -------------------- gKPqWh
if nargin==5 && ischar(nflag) seQSDCsvw*
isnorm = strcmpi(nflag,'norm'); 9F~e^v]zp
if ~isnorm Bqcih$`BVU
error('zernfun:normalization','Unrecognized normalization flag.') aNt+;M7g`
end u& 4i=K'x8
else dM-qd`
isnorm = false; d+caGpaR
end u"$=:GK
i}tBB~]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \C{Dui)F
% Compute the Zernike Polynomials k<&zVV'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yr;~M{{4
z_i(o
% Determine the required powers of r: D,3Kx ^
% ----------------------------------- %>];F~z
m_abs = abs(m); ~nP~6Q'wSH
rpowers = []; cVV @MC
for j = 1:length(n) @p$Nw.{'
rpowers = [rpowers m_abs(j):2:n(j)]; l1 M
%
end mM[KT}
A
rpowers = unique(rpowers); :CeK
'A\
(^{tu89ab
% Pre-compute the values of r raised to the required powers, B|f
=hlY
% and compile them in a matrix: 3-=f@uH!
% ----------------------------- c 5%uiv]
if rpowers(1)==0 (yJY/|
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N1',`L5
rpowern = cat(2,rpowern{:}); ~|:U"w\[=
rpowern = [ones(length_r,1) rpowern]; 0I v(ioB=
else a<NZC
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); " jBc5*
rpowern = cat(2,rpowern{:}); &g.do?
end |#b]e|aP
cj64.C
% Compute the values of the polynomials: ?5IF;vk
% -------------------------------------- >fq]c
y = zeros(length_r,length(n)); 6*aU^#Hz6
for j = 1:length(n) w=QlQ\
s = 0:(n(j)-m_abs(j))/2; CyV2=o!F w
pows = n(j):-2:m_abs(j); '+s ?\X4VC
for k = length(s):-1:1 W?:e4:Q
p = (1-2*mod(s(k),2))* ... uGc0Lv4i/
prod(2:(n(j)-s(k)))/ ... ez-jVi-Fi
prod(2:s(k))/ ... !,cLc}a
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?Tlt(%f
prod(2:((n(j)+m_abs(j))/2-s(k))); G`e!Wv C
idx = (pows(k)==rpowers); u]z87#4
y(:,j) = y(:,j) + p*rpowern(:,idx); /'l"Us},^!
end
Nd h
#iiXJnG
if isnorm "!B\c9q
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ylhy Z&a,
end rj
] ~g
end !jTxMf
% END: Compute the Zernike Polynomials `9Rj;^NJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T!jMh-8
!{+a2wi
% Compute the Zernike functions: 5-RA<d#
% ------------------------------ =T- jG_.H
idx_pos = m>0; r
[E4/?_
idx_neg = m<0; 1KadT7<0}
ujf]@L?
z = y; 1wg#4h43l
if any(idx_pos) ,Dy9-o
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8~}~d}wW
end eyzXHS*s;L
if any(idx_neg) VZ]}9k
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j0~dJ#
end 0JXXJ:d B
7$JOIsM
% EOF zernfun