非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;dq AmBG{8
function z = zernfun(n,m,r,theta,nflag) K>H_q@-?f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Epm'u[wV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S&BJR!FQ
% and angular frequency M, evaluated at positions (R,THETA) on the -u6`B-T
% unit circle. N is a vector of positive integers (including 0), and dm4dT59
% M is a vector with the same number of elements as N. Each element I<Vh
Eo,
% k of M must be a positive integer, with possible values M(k) = -N(k) ]stAC3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, cpV:y
% and THETA is a vector of angles. R and THETA must have the same HRF4
R o
% length. The output Z is a matrix with one column for every (N,M) EFl[u+
1tx
% pair, and one row for every (R,THETA) pair. P<iS7Ys+
% ^FLuhLS\*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike A]nDI:pO|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), WZ"g:Khw
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5S:&^ A<
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )9@I7QG?
% and theta=0 to theta=2*pi) is unity. For the non-normalized =Mc]FCV
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TI-#\v9
% n*\AB=|X
% The Zernike functions are an orthogonal basis on the unit circle. yQQ[_1$pq
% They are used in disciplines such as astronomy, optics, and |q$br-0+
% optometry to describe functions on a circular domain. /wIev1Z!Y
% % ~%>3
% The following table lists the first 15 Zernike functions. K%h83tm+
% %v++AcE
% n m Zernike function Normalization 7{oG4X!
% -------------------------------------------------- Z@j$i\,`
% 0 0 1 1 KZV$rJ%G
% 1 1 r * cos(theta) 2 l'N>9~f
% 1 -1 r * sin(theta) 2 BaIh,iu
% 2 -2 r^2 * cos(2*theta) sqrt(6) luZqW`?Bt
% 2 0 (2*r^2 - 1) sqrt(3) ;F@dN,Y
% 2 2 r^2 * sin(2*theta) sqrt(6) k07 JMS?
% 3 -3 r^3 * cos(3*theta) sqrt(8) AR\1w'
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) o?P(Fuf
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $UlA_l29
% 3 3 r^3 * sin(3*theta) sqrt(8) S<+_yB?
% 4 -4 r^4 * cos(4*theta) sqrt(10) zk]6|i$!I
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
ZMJ\C|S:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) tZ1iaYbvV
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F0Xv84:O
% 4 4 r^4 * sin(4*theta) sqrt(10) d87pQ3e:&
% -------------------------------------------------- <wTkPErUG
% kl[bDb1p
% Example 1: ?Gr<9e2Eo
% #m9V)1"wB
% % Display the Zernike function Z(n=5,m=1) zx{\SU
% x = -1:0.01:1; 6m21Y8N
% [X,Y] = meshgrid(x,x); =Feavyx
% [theta,r] = cart2pol(X,Y); 5}e-~-
% idx = r<=1; GpF, =:
% z = nan(size(X)); C78d29
% z(idx) = zernfun(5,1,r(idx),theta(idx)); U^ BB|
% figure ~I/7{B|yX
% pcolor(x,x,z), shading interp ;3'}(_n
% axis square, colorbar Pw
/wAUt
% title('Zernike function Z_5^1(r,\theta)') dQA J`9B
% ^~MHxF5d
% Example 2: $y=sT({VVe
% M:?eK
[h
% % Display the first 10 Zernike functions -tx)7KV-
% x = -1:0.01:1; 7w)#[^
% [X,Y] = meshgrid(x,x); zE.4e&m%Z?
% [theta,r] = cart2pol(X,Y); %{/0K<M
% idx = r<=1; /eR @&!D '
% z = nan(size(X)); 5n.4>yOY
% n = [0 1 1 2 2 2 3 3 3 3]; )+w0NhJw
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; /H^bDUC :r
% Nplot = [4 10 12 16 18 20 22 24 26 28]; =KT7ZSTV
% y = zernfun(n,m,r(idx),theta(idx)); I?-9%4 8iM
% figure('Units','normalized') wlKpHd*
% for k = 1:10 w_eu@R:u@
% z(idx) = y(:,k); 4)9X) Qx
% subplot(4,7,Nplot(k)) nC`#Hm.V%
% pcolor(x,x,z), shading interp *goi^Xp
% set(gca,'XTick',[],'YTick',[]) R|NmkqTK~(
% axis square 7"4|`y^#
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +cy(}Vp
% end /[nt=#+
% 9L:v$4{LU
% See also ZERNPOL, ZERNFUN2. L6$,<}l
oB9Fas!N
% Paul Fricker 11/13/2006 2T?t[;-
Q;r 0#"
*/\dH<
% Check and prepare the inputs: v-G(bw3
% ----------------------------- 9FV#@uA}D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w/G5I )G
error('zernfun:NMvectors','N and M must be vectors.') pS%,wjb&P
end 5bmtUIj
[4xN:i
if length(n)~=length(m) Y<#7E;aL
error('zernfun:NMlength','N and M must be the same length.') IRo[|&c
end @292;qi
6t]oSxN
n = n(:); "
I`YJEv
m = m(:); z=)5M*h
if any(mod(n-m,2)) 3)0*hq&83
error('zernfun:NMmultiplesof2', ... 6xz&Qi7w
'All N and M must differ by multiples of 2 (including 0).') l`$f@'k
end Pn 7oQA\
qLYv=h$,
if any(m>n) 2b|vb}|t{
error('zernfun:MlessthanN', ... |k
4+I
'Each M must be less than or equal to its corresponding N.') 8n~@Rj5
end zi*D8!_C
z
eIBB
if any( r>1 | r<0 ) =Z-.4\ 3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >+oQxml6nI
end ,st4K;-
zP=J5qOZ8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vgE5(fJh
error('zernfun:RTHvector','R and THETA must be vectors.') PVEEKKJP]J
end >b*Pd
*f
$ a5K
r = r(:); )sNtwSl^
theta = theta(:); 3Q`'C7Pi
length_r = length(r); A;kAAM
if length_r~=length(theta) Za}91z"
error('zernfun:RTHlength', ... QX(:!b
'The number of R- and THETA-values must be equal.') NmtBn^t
end ?6j@EJ<2q
b: %>TPT
% Check normalization: nh9K(
% -------------------- C5sV-UMR
if nargin==5 && ischar(nflag) Ld`~^<