切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10884阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 j2&OYg  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! :\HN?_?{4  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R(#;yn  
    function z = zernfun(n,m,r,theta,nflag) +mel0ZStS  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vTa23YDW  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "alO"x8t  
    %   and angular frequency M, evaluated at positions (R,THETA) on the H0:6zSsc=|  
    %   unit circle.  N is a vector of positive integers (including 0), and W`rE\P  
    %   M is a vector with the same number of elements as N.  Each element h!3Z%M  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) yD'h5)yu  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Nr7.BDA  
    %   and THETA is a vector of angles.  R and THETA must have the same K*D]\/;^  
    %   length.  The output Z is a matrix with one column for every (N,M) 'r3}=z4Y  
    %   pair, and one row for every (R,THETA) pair. ZI*A0_;L  
    % DD3yl\#,  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MZ[g|o!)v  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Kct +QO(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral }|,\ ?7,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, AZP>\Dq  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w6Ny>(T/  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k0=y_7 =(5  
    % "s^@PzQpN  
    %   The Zernike functions are an orthogonal basis on the unit circle. */qc%!YV9  
    %   They are used in disciplines such as astronomy, optics, and y(g Otg  
    %   optometry to describe functions on a circular domain. Y'":OW#oN  
    % c_=zd6 b$S  
    %   The following table lists the first 15 Zernike functions. X'p%$HsMG  
    % M0\[hps~X  
    %       n    m    Zernike function           Normalization ;qQzF  
    %       -------------------------------------------------- %}MM+1eu  
    %       0    0    1                                 1 N>iCb:_ T;  
    %       1    1    r * cos(theta)                    2 yr DYw T  
    %       1   -1    r * sin(theta)                    2 1Vvx@1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4& WzG nK  
    %       2    0    (2*r^2 - 1)                    sqrt(3) p 8rAtz>=J  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) clV/i&]Qa  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dXN&<Q,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ;0{*V5A  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) oMf h|B  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2(xKE_|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) IKj1{nZvDc  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k!rz8S"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) f2XD^:Gc  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5Uz(Bi  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) AE~}^(G`  
    %       -------------------------------------------------- 7guxkN#  
    % }e|]G,NZO  
    %   Example 1: |bUmkw  
    % #J9XcD{1  
    %       % Display the Zernike function Z(n=5,m=1) Jx7^|A  
    %       x = -1:0.01:1; Ee| y[y,  
    %       [X,Y] = meshgrid(x,x); SpQ6A]M gm  
    %       [theta,r] = cart2pol(X,Y); x$4'a~E  
    %       idx = r<=1; p8bTR!rvz  
    %       z = nan(size(X)); 9a,CiH%@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ywBo9|%T  
    %       figure cE?J]5#^  
    %       pcolor(x,x,z), shading interp I<f M8t.Y>  
    %       axis square, colorbar X^)5O>>|t  
    %       title('Zernike function Z_5^1(r,\theta)') 5T*7HC[  
    % JE!Xf}nEi  
    %   Example 2: BGOI  
    % xJlq2cK  
    %       % Display the first 10 Zernike functions $80/ub:R  
    %       x = -1:0.01:1; J>&GP#7}  
    %       [X,Y] = meshgrid(x,x); "=O)2}  
    %       [theta,r] = cart2pol(X,Y); 3iwZUqyq  
    %       idx = r<=1; 4Yk (ldR~  
    %       z = nan(size(X)); j$Co-b1  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M3;B]iRQD  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; jeNEC&J  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <#Dc(VhT  
    %       y = zernfun(n,m,r(idx),theta(idx)); /qr8  
    %       figure('Units','normalized') 7 |A,GH  
    %       for k = 1:10 |&.)_+w  
    %           z(idx) = y(:,k); ~{{:-XkVB  
    %           subplot(4,7,Nplot(k)) Qmn5-yiw1d  
    %           pcolor(x,x,z), shading interp 2q bpjm  
    %           set(gca,'XTick',[],'YTick',[])  \ Ld7fP  
    %           axis square L"0L_G  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z9ZAY!Zhq]  
    %       end nz+KA\iW  
    % G@2M&0'  
    %   See also ZERNPOL, ZERNFUN2. `MS=/xE  
    ^} #!?" Y  
    %   Paul Fricker 11/13/2006 )k Uw,F=6  
    ,GlK_-6>  
    A>k;o0r  
    % Check and prepare the inputs: c+c^F/  
    % ----------------------------- *!kg@ _0K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s.R(3}/  
        error('zernfun:NMvectors','N and M must be vectors.') g*uO IF  
    end 3lqhjA  
    ?u|g2!{_  
    if length(n)~=length(m) f]ef 1#  
        error('zernfun:NMlength','N and M must be the same length.') 7+bzCDKU  
    end dLq!t@?iu>  
    ~%ZO8X:^  
    n = n(:); xUUp ?]9y  
    m = m(:); 5s9~rm  
    if any(mod(n-m,2)) ub&1L_K  
        error('zernfun:NMmultiplesof2', ... L.'N'-BV  
              'All N and M must differ by multiples of 2 (including 0).') wl4yNC  
    end h kY E7  
    ,??|R` S  
    if any(m>n) O(VV-n7U  
        error('zernfun:MlessthanN', ... M vCBgLN  
              'Each M must be less than or equal to its corresponding N.') s.U p<Rw  
    end m,b<b91  
    ?5D7n"jY  
    if any( r>1 | r<0 ) rm7UFMCR6i  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') xnTky1zq  
    end s] qfLC  
    Wil +"[Ge  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,~!lNyL  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4^r}&9C ~  
    end h?b{{  
    R;%iu0  
    r = r(:); 9bB~r[k  
    theta = theta(:); RB!g,u  
    length_r = length(r); &fcRVku  
    if length_r~=length(theta) q)/4i9  
        error('zernfun:RTHlength', ... PSE![whK  
              'The number of R- and THETA-values must be equal.') MB)xL-jO  
    end &1&*(oi]X  
    Je'$V%{E  
    % Check normalization: ?$?Ni)Z  
    % -------------------- 3 f3?%9  
    if nargin==5 && ischar(nflag) 9M6&+1XE  
        isnorm = strcmpi(nflag,'norm'); _Cs.%R!r  
        if ~isnorm nsPM`dz/  
            error('zernfun:normalization','Unrecognized normalization flag.') JGtdbD?Fw  
        end u=4Rn  
    else GZ1>]HB>r^  
        isnorm = false; #KIHq2:.4  
    end SFjN 5u  
    nm)F tX|A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l"+=z.l6;  
    % Compute the Zernike Polynomials \%)p7PNY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #>0nNR[$Y  
    8ViDh  
    % Determine the required powers of r: ~HELMS~-  
    % ----------------------------------- $I.'7 &h;  
    m_abs = abs(m); qnOAIP:0  
    rpowers = []; cj[y]2{1h  
    for j = 1:length(n) >7n(* M  
        rpowers = [rpowers m_abs(j):2:n(j)]; uwbj`lpf  
    end ` p)#!  
    rpowers = unique(rpowers); @'S-nn,sO  
    d-Sm<XHu.  
    % Pre-compute the values of r raised to the required powers, U@9n 7F  
    % and compile them in a matrix: 6wGf47  
    % ----------------------------- # RtrHm  
    if rpowers(1)==0 $ZA71TzMV  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +iXA|L9=  
        rpowern = cat(2,rpowern{:}); EprgLZ1B  
        rpowern = [ones(length_r,1) rpowern]; $I_aHhKt  
    else Q$3%aR-2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P63f0 F-G  
        rpowern = cat(2,rpowern{:}); H]SnM'Y  
    end {9z EnVfg  
    $zJ.4NA  
    % Compute the values of the polynomials: hgm`6TQ  
    % -------------------------------------- GR"Jk[W9  
    y = zeros(length_r,length(n)); x{=ty*E  
    for j = 1:length(n) ;&iQNXL  
        s = 0:(n(j)-m_abs(j))/2; 1e }wDMU(  
        pows = n(j):-2:m_abs(j);  3N;X|pa  
        for k = length(s):-1:1 sp JB6n(  
            p = (1-2*mod(s(k),2))* ... ]86U -`p  
                       prod(2:(n(j)-s(k)))/              ... u|+O%s TQ  
                       prod(2:s(k))/                     ... GSypdEBj+w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U:_&aY_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8tsW^y;S  
            idx = (pows(k)==rpowers); A;h~Fx6s  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 291v R]  
        end N/Z<v* i"  
         8NpQ"0X  
        if isnorm !bQ5CB  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vrH/Z.WD  
        end 5)0R:  
    end w* v%S   
    % END: Compute the Zernike Polynomials hEDj"`Px  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PQ1\b-I  
    a 6[bF  
    % Compute the Zernike functions: m+CvU?)gJ  
    % ------------------------------ q")}vN  
    idx_pos = m>0; n:HF&j4C,  
    idx_neg = m<0; kYx|`-PA<r  
    |ONkRxr@!  
    z = y; |06G)r&  
    if any(idx_pos) Fe8xOo6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A07FjT5w8  
    end i: 1V\q%  
    if any(idx_neg) oveW)~4  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wF}/7b54  
    end [9X1;bO#f  
     dY|(  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `O-$qT, _  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. YaDr6)  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated g?)9zJ9  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive v:eVK!O  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, c)+IX;q-C  
    %   and THETA is a vector of angles.  R and THETA must have the same PO1sVP.S  
    %   length.  The output Z is a matrix with one column for every P-value, VQ2)qJ#l  
    %   and one row for every (R,THETA) pair. Mvu!  
    % uee2WGD  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike [{L4~(uU8  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) s lXk <  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Y}Y2 Vx  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 V\Cu|m&HI  
    %   for all p. * ix&"|h  
    % $s5LzJn  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 YOy/'Le^:  
    %   Zernike functions (order N<=7).  In some disciplines it is skf7Si0z  
    %   traditional to label the first 36 functions using a single mode 7jvf:#\LtL  
    %   number P instead of separate numbers for the order N and azimuthal >XM-xK-=  
    %   frequency M. 5F18/:\n  
    % k& 2U&  
    %   Example: c\065#f!  
    % ,)[u<&  
    %       % Display the first 16 Zernike functions ?v \A&d  
    %       x = -1:0.01:1; S)T~vK(n  
    %       [X,Y] = meshgrid(x,x); lo5,E(7~h  
    %       [theta,r] = cart2pol(X,Y); q{nNWvL  
    %       idx = r<=1; C5c@@ch :  
    %       p = 0:15; sFsp`kf  
    %       z = nan(size(X)); \GO^2&g(  
    %       y = zernfun2(p,r(idx),theta(idx)); VE`5bD+%e  
    %       figure('Units','normalized') 7o-umZ}8  
    %       for k = 1:length(p) YAYPof~A$l  
    %           z(idx) = y(:,k); R%=u<O  
    %           subplot(4,4,k) qH1[Bs Ox  
    %           pcolor(x,x,z), shading interp ]6bh#N;.  
    %           set(gca,'XTick',[],'YTick',[]) !?,7Cu.5#6  
    %           axis square ZEYT17g]  
    %           title(['Z_{' num2str(p(k)) '}']) Gb4k5jl  
    %       end E3@G^Y  
    % ycz6-kEp  
    %   See also ZERNPOL, ZERNFUN. omevF>b;  
    N =FX3Z  
    %   Paul Fricker 11/13/2006 ~oWCTj-  
    0JN>w^  
    US[{ Q  
    % Check and prepare the inputs: G:7HL5u  
    % ----------------------------- 5|z>_f.^pS  
    if min(size(p))~=1 QpxRYv  
        error('zernfun2:Pvector','Input P must be vector.') Uus%1hC%a  
    end ^cs:S-s  
    ~)xg7\k  
    if any(p)>35 [#hpWNez(>  
        error('zernfun2:P36', ... Wn6~x2LaV  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +m8CN(c  
               '(P = 0 to 35).']) f3El9[  
    end a~ sU  
    C-O~Oil  
    % Get the order and frequency corresonding to the function number: 6Lj=%&  
    % ---------------------------------------------------------------- O< [h  
    p = p(:); xMsSZ{j%5  
    n = ceil((-3+sqrt(9+8*p))/2); }-4@EC>  
    m = 2*p - n.*(n+2); [CxnGeKK  
    z=%&?V  
    % Pass the inputs to the function ZERNFUN: R!{^qHb  
    % ---------------------------------------- +}1h  
    switch nargin w*#B_6bG  
        case 3 v% a)nv  
            z = zernfun(n,m,r,theta); Qf|x]x*5  
        case 4 rH Y SS0*3  
            z = zernfun(n,m,r,theta,nflag); r{2V`h1/|  
        otherwise 2MY-9(no  
            error('zernfun2:nargin','Incorrect number of inputs.') 6bPoC$<Z  
    end sT8(f=^)8F  
    t7#lRp&  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) O2;iY_P7lV  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Odn`q=  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of \G4L+Q/13  
    %   order N and frequency M, evaluated at R.  N is a vector of ;[nomxu|?  
    %   positive integers (including 0), and M is a vector with the 96ydcJY0'  
    %   same number of elements as N.  Each element k of M must be a XS#Jy n  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) KYw~(+gHv2  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is a%nksuP3  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix oz8z%*9 (  
    %   with one column for every (N,M) pair, and one row for every ^lvYj E  
    %   element in R. 5z/*/F=X  
    % FT'2 J  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- fI<|]c}P&J  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is xgp 6lO[  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to vD-m FC)  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 t@(:S6d  
    %   for all [n,m]. LI~ofCp  
    % 3[{RH*nHD  
    %   The radial Zernike polynomials are the radial portion of the ]9A@iA  
    %   Zernike functions, which are an orthogonal basis on the unit W _b!FQ]  
    %   circle.  The series representation of the radial Zernike _s{;9&qX]  
    %   polynomials is ]#NJ[IZb  
    % bT>1S2s  
    %          (n-m)/2 V Zz>)Kz:  
    %            __ Q$bi:EyJXc  
    %    m      \       s                                          n-2s ]nIH0k3y  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r h/goV  
    %    n      s=0 fvE:'( #?  
    % r+RFDg/  
    %   The following table shows the first 12 polynomials. }+@GgipyO.  
    % D`9a"o  
    %       n    m    Zernike polynomial    Normalization HpKF7oJ'N  
    %       --------------------------------------------- e0Jz|?d=  
    %       0    0    1                        sqrt(2) (/i?Fd  
    %       1    1    r                           2 _8 C:Md`  
    %       2    0    2*r^2 - 1                sqrt(6) w. c]   
    %       2    2    r^2                      sqrt(6) /gH[|d  
    %       3    1    3*r^3 - 2*r              sqrt(8) ^{}$o#iof  
    %       3    3    r^3                      sqrt(8) w;p~|!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Ht,+KbB  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ?mi1PNps#  
    %       4    4    r^4                      sqrt(10) $n#NUPzG+  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) QKHAN{hJ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) w<|Qezi3 w  
    %       5    5    r^5                      sqrt(12) dbsD\\,2%N  
    %       --------------------------------------------- 5>x?2rp  
    % 7Zw.mM!i  
    %   Example: 9ao GptgN  
    % 1@Gmzh  
    %       % Display three example Zernike radial polynomials 6%A_PP3Z  
    %       r = 0:0.01:1; w,x'FZD  
    %       n = [3 2 5]; UFl+|wf  
    %       m = [1 2 1]; SJ8CBxA  
    %       z = zernpol(n,m,r); ExxD w_VGT  
    %       figure al1Nmc #  
    %       plot(r,z) A(@VjXl  
    %       grid on WV&grG|  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Q!R eA{  
    % &_dM2lj{  
    %   See also ZERNFUN, ZERNFUN2. .|g|X8X  
    U6xs'0  
    % A note on the algorithm. Y;"rJxHD  
    % ------------------------ +:ih`q][b  
    % The radial Zernike polynomials are computed using the series aovw'O\Q  
    % representation shown in the Help section above. For many special %] #XIr  
    % functions, direct evaluation using the series representation can 2tqj]i  
    % produce poor numerical results (floating point errors), because p:Hg>Z  
    % the summation often involves computing small differences between U][\|8i  
    % large successive terms in the series. (In such cases, the functions 7 (kC|q\4M  
    % are often evaluated using alternative methods such as recurrence S{ fFpe-  
    % relations: see the Legendre functions, for example). For the Zernike RQO&F$R=  
    % polynomials, however, this problem does not arise, because the x='T`*HD  
    % polynomials are evaluated over the finite domain r = (0,1), and G?dxLRy.do  
    % because the coefficients for a given polynomial are generally all > }fw7X  
    % of similar magnitude. u` L9Pj&v  
    % |y$8!*S~(  
    % ZERNPOL has been written using a vectorized implementation: multiple xcM*D3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] lN~V1(1B  
    % values can be passed as inputs) for a vector of points R.  To achieve ,SG-{   
    % this vectorization most efficiently, the algorithm in ZERNPOL Vo`,|3^  
    % involves pre-determining all the powers p of R that are required to 2H9;4>ss  
    % compute the outputs, and then compiling the {R^p} into a single dxi5p!^^9  
    % matrix.  This avoids any redundant computation of the R^p, and kNk$[Yfs  
    % minimizes the sizes of certain intermediate variables. COc t d  
    % ]9PQKC2&  
    %   Paul Fricker 11/13/2006 $I|6v  
    Q4h6K 7  
     Op5S'  
    % Check and prepare the inputs: 2Fc>6]:*  
    % ----------------------------- T=,A pa  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LK:Jkjp^  
        error('zernpol:NMvectors','N and M must be vectors.') ;hb_jW-0W  
    end 3R& FzLs  
    C8W4~~1S  
    if length(n)~=length(m) ;"w?@ELE  
        error('zernpol:NMlength','N and M must be the same length.') =;(y5c  
    end 11YpC;[o  
    3%L@=q  
    n = n(:); AMre(lgh  
    m = m(:); _?oofE:{  
    length_n = length(n); AU 4K$hC^  
    *?3c2Jg=E  
    if any(mod(n-m,2)) ]$&N"&q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ]114\JE  
    end wCgi@\  
    \'CA:9V}  
    if any(m<0) <`?V:};Q  
        error('zernpol:Mpositive','All M must be positive.') TD-o-*mO  
    end )>;V72  
    G$A=Tu~  
    if any(m>n) sd&^lpH  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 4 Kh0evZ  
    end *!MMl]gU?  
    vHXCT?FuG  
    if any( r>1 | r<0 ) mX5%6{],  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') S LU$DW;t  
    end 6wq>&P5  
    *!^l ZpF  
    if ~any(size(r)==1) 6~^ M<E  
        error('zernpol:Rvector','R must be a vector.') ib-H jJ8  
    end D"M[}$P  
    -?p4"[  
    r = r(:); <O0.q.  
    length_r = length(r); KBa ]s q_  
    CB^.N>'  
    if nargin==4 2D2} *);eW  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); K~6u5a9s  
        if ~isnorm T#GTNk!v  
            error('zernpol:normalization','Unrecognized normalization flag.') ~@$RX: p  
        end  7 T  
    else Qs,4PPEg  
        isnorm = false; yJ4ZB/ZQ  
    end B!1h"K5.($  
    K05U>151  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z(I=K BI  
    % Compute the Zernike Polynomials Mp?L9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C`=YGyj=TL  
    iAo/Dnp2J  
    % Determine the required powers of r: Y?ZzFd,i&  
    % ----------------------------------- g#:P cl  
    rpowers = []; PiN^/#D  
    for j = 1:length(n) SW}?y%~  
        rpowers = [rpowers m(j):2:n(j)]; H/y,}z  
    end Y_<-.?jf  
    rpowers = unique(rpowers); G|YNShK4=9  
    nJ}@9v F/  
    % Pre-compute the values of r raised to the required powers, =O3)tm;  
    % and compile them in a matrix: -B& Nou  
    % ----------------------------- +c$:#9$ |  
    if rpowers(1)==0 d7S?"JpV  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b|-S;cw  
        rpowern = cat(2,rpowern{:}); Eh*(N(`  
        rpowern = [ones(length_r,1) rpowern]; saTS8p z  
    else :(iBLO<x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x~Dj2 F]  
        rpowern = cat(2,rpowern{:}); Ab6R ?mUM  
    end jyB Ys& v  
    =!\Y;rk  
    % Compute the values of the polynomials: GOOm] ]I  
    % -------------------------------------- E=Vp%08(  
    z = zeros(length_r,length_n); waU2C2!w  
    for j = 1:length_n ~jzjJ&O&  
        s = 0:(n(j)-m(j))/2; V8#NXU g<!  
        pows = n(j):-2:m(j); {1gT{2/~@  
        for k = length(s):-1:1 G6dUm_iB  
            p = (1-2*mod(s(k),2))* ... qw 03]a  
                       prod(2:(n(j)-s(k)))/          ... [ eb k u_  
                       prod(2:s(k))/                 ... msY6zJc`  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5>lIrBf  
                       prod(2:((n(j)+m(j))/2-s(k))); h5(OjlMC  
            idx = (pows(k)==rpowers); aS``fE ;O  
            z(:,j) = z(:,j) + p*rpowern(:,idx); S=j pn  
        end _+.JTk  
         MdN0 Y@Ll  
        if isnorm ]GO=8$Z  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); mV^~  
        end N=\weuED  
    end bjo} 95  
    4xH/a1&p=  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    855
    光币
    840
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  TI4Hu,rc  
    ,Uz8_r  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 #$I@V4O;#  
    _x!id f  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)