非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ea4
* o
function z = zernfun(n,m,r,theta,nflag) 4p x_ZD#J
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. -]QguZE
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N k6J\Kkk(
% and angular frequency M, evaluated at positions (R,THETA) on the y#bK,}
% unit circle. N is a vector of positive integers (including 0), and {{E jMBg{
% M is a vector with the same number of elements as N. Each element 3G&0Ciet
% k of M must be a positive integer, with possible values M(k) = -N(k) ?48AY6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "=ElCaP}
% and THETA is a vector of angles. R and THETA must have the same l7Y8b`
% length. The output Z is a matrix with one column for every (N,M) t {=i=K3
% pair, and one row for every (R,THETA) pair. O3+)qb!X
% P/`m3aSzX.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike c
`ud;lI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), fqX~xp
% with delta(m,0) the Kronecker delta, is chosen so that the integral &9@gm--b:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !u%9;>T7
% and theta=0 to theta=2*pi) is unity. For the non-normalized a hwy_\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &GU@8
% (0g7-Ci
% The Zernike functions are an orthogonal basis on the unit circle. K>LpN')d
% They are used in disciplines such as astronomy, optics, and ^vn\4
% optometry to describe functions on a circular domain. ?C~X@sq
% nFj-<!
% The following table lists the first 15 Zernike functions. mo*'"/
% *pK lA&_
% n m Zernike function Normalization ?k::tNv0
% -------------------------------------------------- T\cR2ZT~
% 0 0 1 1 TC@bL<1
% 1 1 r * cos(theta) 2 wlL8X7+:
% 1 -1 r * sin(theta) 2 S" {GlRpd
% 2 -2 r^2 * cos(2*theta) sqrt(6) NZ)b:~a
% 2 0 (2*r^2 - 1) sqrt(3)
dQ`:8SK
% 2 2 r^2 * sin(2*theta) sqrt(6) [%t3[p<)O
% 3 -3 r^3 * cos(3*theta) sqrt(8) u6p5:oJj,
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) )"F5lOA6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) wH#-mu#Yl<
% 3 3 r^3 * sin(3*theta) sqrt(8) "SLvUzO>q
% 4 -4 r^4 * cos(4*theta) sqrt(10) nIR*_<ow
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iz$FcA]
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) a(5y>HF
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v#-E~;CcC
% 4 4 r^4 * sin(4*theta) sqrt(10) $mD>rx
% -------------------------------------------------- 2pjW,I!`
% m'SmN{(t
% Example 1: QS5H>5M)
% \.kTe<.:_
% % Display the Zernike function Z(n=5,m=1) pY,O_
t$
% x = -1:0.01:1; 2H3(HZv
% [X,Y] = meshgrid(x,x); +!Q!m 3/I
% [theta,r] = cart2pol(X,Y); Gxo#
!
% idx = r<=1;
A<2I!
% z = nan(size(X)); 2DUr7rM
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ;hkro$
% figure Ogd8!'\
% pcolor(x,x,z), shading interp l`G(O$ct
% axis square, colorbar X:R%1+&*
% title('Zernike function Z_5^1(r,\theta)') u\:rY)V
% *$JB`=Q
% Example 2: pK<%<dIc
% ^g-Fg>&M
% % Display the first 10 Zernike functions T7^ulG1'
% x = -1:0.01:1; D9,e3.?p
% [X,Y] = meshgrid(x,x); K q/~T7Ru
% [theta,r] = cart2pol(X,Y); _IC,9bbg
% idx = r<=1; ([[)Ub$U
% z = nan(size(X));
!8we8)7
% n = [0 1 1 2 2 2 3 3 3 3]; 8g.AT@ ,Q
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Is<x31R
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ;x,+*%
% y = zernfun(n,m,r(idx),theta(idx)); 0GS{F8f~,
% figure('Units','normalized') 692Rw}/
% for k = 1:10 vJ~4D*(]l
% z(idx) = y(:,k); 2ve
lH;
% subplot(4,7,Nplot(k)) \y[Bu^tk
% pcolor(x,x,z), shading interp uXjoGcW
% set(gca,'XTick',[],'YTick',[]) T=^jCH &
% axis square L7s>su|c(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :m]/u( /N
% end 2]2{&b u
% LjSLg[ i
% See also ZERNPOL, ZERNFUN2. qo)Q}0
_yiRh:
% Paul Fricker 11/13/2006 ht2
f-EKf{
Qk+=znJ
j.<:00<
% Check and prepare the inputs: (D0C#<4P
% ----------------------------- w'!ECm>*`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u82h6s<'W
error('zernfun:NMvectors','N and M must be vectors.') f3/SO+Me}
end o<Xc,mP
W+8BQ-2
if length(n)~=length(m) xOwNCh
error('zernfun:NMlength','N and M must be the same length.') lr-12-D%-
end TNyK@~#m
qUifw @
n = n(:); fL(':W&n-
m = m(:); v&p,Clt-2
if any(mod(n-m,2)) P#w}3^
error('zernfun:NMmultiplesof2', ... &7$,<9.
'All N and M must differ by multiples of 2 (including 0).') ;RNM
end f-vZ2+HP
8$2l^
if any(m>n) $dlnmNP+
error('zernfun:MlessthanN', ... \_lG#p|
'Each M must be less than or equal to its corresponding N.') 7bA4P*
end >]:N?[Y_~}
$?[1#%
if any( r>1 | r<0 ) TTeA a
error('zernfun:Rlessthan1','All R must be between 0 and 1.') X!,#'&p&
end 30A`\+^f
=$^Wkau
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0|.7Kz^
error('zernfun:RTHvector','R and THETA must be vectors.') Aqa6R+c
end A)hq0FPp
C$$"{FfgU"
r = r(:); ,:v.L}+Z
theta = theta(:); 0$n8b/%.
length_r = length(r); TrSN00
if length_r~=length(theta) Zx}NFcn
error('zernfun:RTHlength', ... 9=Y,["br$_
'The number of R- and THETA-values must be equal.') (:_%kmu
end jHs<s`#h
@o}1n?w
% Check normalization: aEcktg6h
% -------------------- +CsI,Uf4*
if nargin==5 && ischar(nflag) ,"P5D&,_
isnorm = strcmpi(nflag,'norm'); *Gg1h@&
if ~isnorm KU1+<OCh
error('zernfun:normalization','Unrecognized normalization flag.') zkjPLeX
end a9yIV5_N
else GCcwEl!K^
isnorm = false; ?R|fS*e2EB
end X)`(nj
|HaU3E*R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4?9soc
% Compute the Zernike Polynomials *4(/t$)pEl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^/_\etV
r!{w93rPX
% Determine the required powers of r: 9F2w.(m
% ----------------------------------- X@6zI-Y%
m_abs = abs(m); {toyQ)C7
rpowers = []; el <<D
for j = 1:length(n) /2g)Z!&+L
rpowers = [rpowers m_abs(j):2:n(j)]; Ft3N#!ubl
end tb-OKZq
rpowers = unique(rpowers); Q3B'-BZe
j[$B\H
% Pre-compute the values of r raised to the required powers, Z:\;R{D
% and compile them in a matrix: ^>,<*p
% ----------------------------- .nj?;).
if rpowers(1)==0 y)?W-5zL
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kWZ/ej
rpowern = cat(2,rpowern{:}); *kX3sG$8
rpowern = [ones(length_r,1) rpowern]; GNhtnB
else <.PPs:{8#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7h9 fQ&y
rpowern = cat(2,rpowern{:}); )
xfc-Q
end ]C}u-B746
E3CiZ4=5
% Compute the values of the polynomials: xG *lV|<7>
% -------------------------------------- W (=Wg|cr
y = zeros(length_r,length(n)); 6e$sA (a=i
for j = 1:length(n) uPv;y!Lsa@
s = 0:(n(j)-m_abs(j))/2; 3bg4# c
pows = n(j):-2:m_abs(j); 'k-u9
for k = length(s):-1:1 !wLH&X$XT
p = (1-2*mod(s(k),2))* ... mV:RmA
prod(2:(n(j)-s(k)))/ ... 7]M,yIwc
prod(2:s(k))/ ... <F#*:Re_y
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Sy+]SeF&
prod(2:((n(j)+m_abs(j))/2-s(k))); <B]i80.
idx = (pows(k)==rpowers); /%ODJ1 M
y(:,j) = y(:,j) + p*rpowern(:,idx); }#\;np
end U}RS*7`
WuP([8
if isnorm e'/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0@sr
NuW
end t_dw}I
end 9Sx<tj_4P{
% END: Compute the Zernike Polynomials rj2r# {[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #q~3c;ec
9I`Mm}v@
% Compute the Zernike functions: xY\*L:TwW
% ------------------------------ E]u'MX
idx_pos = m>0; gCk y(4
idx_neg = m<0; dbMu6Bm\G
!_XU^A>
z = y; F9u:8;\@`
if any(idx_pos) zulf%aaL
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;G%wc!
end 9z|>roNe
if any(idx_neg) {0A[v}X ~
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D_yY0rRM
end /+<%,c$n
:]u}xDv3
% EOF zernfun