切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11568阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 'w%N(Ntq  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! F!>K8q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 aJ)5DlfLR  
    function z = zernfun(n,m,r,theta,nflag) M<$l&%<`G  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,t+ATaOF  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C-Fp)Zs{0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the H9)uni   
    %   unit circle.  N is a vector of positive integers (including 0), and H+5]3>O-$  
    %   M is a vector with the same number of elements as N.  Each element h5F'eur  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jATU b-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e4)g F*  
    %   and THETA is a vector of angles.  R and THETA must have the same 'c$9[|x  
    %   length.  The output Z is a matrix with one column for every (N,M) ONjc},_  
    %   pair, and one row for every (R,THETA) pair. J/<`#XZB   
    % BWPYHWW}E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >A,WXzAK}S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), E+1j3Q;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral CQ( @7  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0KQ8; &a|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Fo G<$9  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >rFvT>@NU  
    % =!CuCV7$1O  
    %   The Zernike functions are an orthogonal basis on the unit circle. kN$70N7I;  
    %   They are used in disciplines such as astronomy, optics, and CXQ ?P  
    %   optometry to describe functions on a circular domain. (&*F`\  
    % .FXQ,7mZ-  
    %   The following table lists the first 15 Zernike functions. :9h8q"T  
    % &"kx (B  
    %       n    m    Zernike function           Normalization {f&ga  
    %       -------------------------------------------------- Q~@8t"P  
    %       0    0    1                                 1 $Tur"_`I;  
    %       1    1    r * cos(theta)                    2 j d8 1E  
    %       1   -1    r * sin(theta)                    2 z>0"T2W y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q]7Q  
    %       2    0    (2*r^2 - 1)                    sqrt(3) qJ/C*Wqic  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #`fT%'T!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) LuqaGy}>-  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) kxmS   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) L,D>E  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i@J,u  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) P&tK}Se^V  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `/AzX *`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) &rd(q'Vi  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @ubz?5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) #CS>A# Lk  
    %       -------------------------------------------------- xKr,XZu  
    % Ww(_EW  
    %   Example 1: lewDR"0Kx  
    % =z3jFaZ  
    %       % Display the Zernike function Z(n=5,m=1) w?tKL0c  
    %       x = -1:0.01:1; 3-R3Qlr  
    %       [X,Y] = meshgrid(x,x); "P{&UwMmh  
    %       [theta,r] = cart2pol(X,Y); =R'v]SXj  
    %       idx = r<=1; u7=[~l&L  
    %       z = nan(size(X)); bevT`D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `-H:j:U{  
    %       figure C#~MR+;  
    %       pcolor(x,x,z), shading interp  5q ,  
    %       axis square, colorbar >&&xJ5  
    %       title('Zernike function Z_5^1(r,\theta)') =eqI]rVj^  
    % i4I0oRp  
    %   Example 2: _6m3$k_[MJ  
    % S>,I&`yi  
    %       % Display the first 10 Zernike functions 3I5WDuq  
    %       x = -1:0.01:1; X4$e2f  
    %       [X,Y] = meshgrid(x,x); /=@vG Vp6  
    %       [theta,r] = cart2pol(X,Y); JLu0;XVK  
    %       idx = r<=1; +I<Sq_-  
    %       z = nan(size(X)); ]K7  64}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; |&Pl4P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; A,{D9-%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B0i}Y-Z  
    %       y = zernfun(n,m,r(idx),theta(idx)); >y9o&D  
    %       figure('Units','normalized') lAk1ncx  
    %       for k = 1:10 'u[o`31.  
    %           z(idx) = y(:,k); fqb$_>3Ol  
    %           subplot(4,7,Nplot(k)) 8q3TeMYV  
    %           pcolor(x,x,z), shading interp .dCP8|  
    %           set(gca,'XTick',[],'YTick',[]) $t$f1?  
    %           axis square C):d9OI?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U_- K6:tr  
    %       end pYVy(]1I(3  
    % H040-Q;S'  
    %   See also ZERNPOL, ZERNFUN2. ? ~Zrd  
    ?Q)Z..7  
    %   Paul Fricker 11/13/2006 udGGDH  
    M:M>@|)  
    WdqK/s<jM  
    % Check and prepare the inputs: C[nr>   
    % ----------------------------- 0xUj#)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l :Nxl  
        error('zernfun:NMvectors','N and M must be vectors.') :WIf$P?X  
    end va(9{AXI  
    \hW73a!  
    if length(n)~=length(m) Ro]IE|Fv  
        error('zernfun:NMlength','N and M must be the same length.') ?ev G=S4>  
    end IKDjatn  
    |u;BAb  
    n = n(:); wmE,k1G  
    m = m(:); htYrv5q=M  
    if any(mod(n-m,2)) FRt/{(jro  
        error('zernfun:NMmultiplesof2', ... ^3|$wB=  
              'All N and M must differ by multiples of 2 (including 0).') 4sBoD=e  
    end Kw0V4UF  
    W4*BR_H&*  
    if any(m>n) jL+}F/~r  
        error('zernfun:MlessthanN', ... #}7m'F  
              'Each M must be less than or equal to its corresponding N.') eBTedSM?t  
    end 2{kfbm-89t  
    *rz(}(r  
    if any( r>1 | r<0 ) 'lsq3!d.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;9p5YxD  
    end ,DuZMGg  
    .cS,T<$  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pt%~,M _  
        error('zernfun:RTHvector','R and THETA must be vectors.') q4GW=@eD  
    end mUyv+n,  
    jnp6qpY{  
    r = r(:); >?W;>EUH  
    theta = theta(:); d)1sP0Z_@  
    length_r = length(r); wu!_BCIy  
    if length_r~=length(theta) H.8CwsfP  
        error('zernfun:RTHlength', ... p5;,/ |Ft  
              'The number of R- and THETA-values must be equal.') cvV?V\1f  
    end 6a]f&={E  
    D2%G.z  
    % Check normalization: 1X"H6j[w  
    % -------------------- <6b\i5j  
    if nargin==5 && ischar(nflag) ,cy/fW  
        isnorm = strcmpi(nflag,'norm'); AzO3(1:  
        if ~isnorm ]7S7CVDk4  
            error('zernfun:normalization','Unrecognized normalization flag.') $ l sRg:J  
        end Rc:cVK  
    else BdB`  
        isnorm = false; #D LT-G0  
    end v8[ek@  
    D0y,TF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% },EUcVXk  
    % Compute the Zernike Polynomials _h=< _Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @7l=+`.i  
    lmtQr5U  
    % Determine the required powers of r: oF b mz*  
    % ----------------------------------- $:u7Dv}\  
    m_abs = abs(m); aEFe!_QY  
    rpowers = []; $Y 4ch ko  
    for j = 1:length(n) @t; O"q'|  
        rpowers = [rpowers m_abs(j):2:n(j)]; vgQhdtt  
    end %<J(lC9,C  
    rpowers = unique(rpowers); fyg~KF}  
    oY2?W  
    % Pre-compute the values of r raised to the required powers, "l[ V%f E  
    % and compile them in a matrix: ~b$z\|Y  
    % ----------------------------- ~0[G/A$]  
    if rpowers(1)==0 M,_^hm7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Tu= eQS|'  
        rpowern = cat(2,rpowern{:}); !: EW21m  
        rpowern = [ones(length_r,1) rpowern]; d JQ }{,+6  
    else ttbQergS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {F(-s"1;xO  
        rpowern = cat(2,rpowern{:}); 7\0|`{|R@  
    end !skb=B#  
    jWv3O&+?X  
    % Compute the values of the polynomials: =2g[tsY  
    % -------------------------------------- # McK46B z  
    y = zeros(length_r,length(n)); n$m]58w  
    for j = 1:length(n) SD|4ybK>d  
        s = 0:(n(j)-m_abs(j))/2; 9-a2L JI  
        pows = n(j):-2:m_abs(j); ,p*ntj{  
        for k = length(s):-1:1 VO @ 4A6  
            p = (1-2*mod(s(k),2))* ... xu"94y+  
                       prod(2:(n(j)-s(k)))/              ... x<{;1F,k3  
                       prod(2:s(k))/                     ... fUp|3bBE  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... RQ*|+ ~H  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h$aew63  
            idx = (pows(k)==rpowers); k67i`f=  
            y(:,j) = y(:,j) + p*rpowern(:,idx); , Y g5X  
        end s;-78ejj7  
         a_ 9|xI  
        if isnorm ^T}}4I_Y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XUQW;H  
        end G%j/eTTf  
    end EvSnZB1 y  
    % END: Compute the Zernike Polynomials wcdW72   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L.IoGUxD  
    $/<"Si&(  
    % Compute the Zernike functions: ;9p#xW6  
    % ------------------------------ f74%YY  
    idx_pos = m>0; _#J_$CE#  
    idx_neg = m<0; As6)_8w  
    !!-}ttFA  
    z = y; QLF,/"  
    if any(idx_pos) Wk\mgGn+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |c 06ix;).  
    end { .aK{ V  
    if any(idx_neg) I8<Il ^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KlVi4.]  
    end a%MzNH  
    uKR\Xo}  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Aj8l%'h[  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 45Nv_4s  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated K;<NBnH  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive pY{; Yn&t  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, PtVo7zO ye  
    %   and THETA is a vector of angles.  R and THETA must have the same N5q}::Odc  
    %   length.  The output Z is a matrix with one column for every P-value, ou<S)_|Iu  
    %   and one row for every (R,THETA) pair. }j+~'O4m  
    % o9KyAP$2  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Tm%$J  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8N=%X-R%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Whv]88w{  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 GN:Ru|n  
    %   for all p. bDciZ7[b  
    % :Az8K)  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 yPf?"W  
    %   Zernike functions (order N<=7).  In some disciplines it is pchQ#GU  
    %   traditional to label the first 36 functions using a single mode }G>v]bV0V  
    %   number P instead of separate numbers for the order N and azimuthal ;yk9(wea}"  
    %   frequency M. jgk{'_ j  
    % B,~f "  
    %   Example: Zw;$(="  
    % |Hx%f  
    %       % Display the first 16 Zernike functions kJ%{ [1fr  
    %       x = -1:0.01:1; /[\6oa  
    %       [X,Y] = meshgrid(x,x); 33=Mm/<m$P  
    %       [theta,r] = cart2pol(X,Y); RpHpMtvNo/  
    %       idx = r<=1; >X;xIyRL  
    %       p = 0:15; 3c01uObTL  
    %       z = nan(size(X)); j4E H2v  
    %       y = zernfun2(p,r(idx),theta(idx)); qg^(w fI  
    %       figure('Units','normalized') gbYLA a  
    %       for k = 1:length(p) KotPV  
    %           z(idx) = y(:,k); ggerh#  
    %           subplot(4,4,k) <T(s\N5B=  
    %           pcolor(x,x,z), shading interp f:_=5e +  
    %           set(gca,'XTick',[],'YTick',[]) l\K%  
    %           axis square 5Z* b(R  
    %           title(['Z_{' num2str(p(k)) '}']) Dl0/-=L  
    %       end `)rg|~#k  
    % f Ub1/-}  
    %   See also ZERNPOL, ZERNFUN. Wr]O  
    "sFW~Y  
    %   Paul Fricker 11/13/2006 oUl=l}qnD  
    .i MnWW  
    gsW=3m&`  
    % Check and prepare the inputs: wY' "ab  
    % ----------------------------- kxwNbxC  
    if min(size(p))~=1 @)9REA(U  
        error('zernfun2:Pvector','Input P must be vector.') 5gO /-Zj  
    end JzHqNUn*M  
    I)[`ZVAXR  
    if any(p)>35 KjO-0VMN3  
        error('zernfun2:P36', ... "4 'kb  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... MB1sQReOO  
               '(P = 0 to 35).']) y:qx5Mi  
    end 1v;'d1Hg;  
    4BHtR017r  
    % Get the order and frequency corresonding to the function number: +c-6#7hh  
    % ---------------------------------------------------------------- u@AI&[Z  
    p = p(:); {?w"hjy  
    n = ceil((-3+sqrt(9+8*p))/2); 7*+Km'=M  
    m = 2*p - n.*(n+2); 7 rH'1U  
    )V=0IZi  
    % Pass the inputs to the function ZERNFUN: _o\>V:IZ  
    % ---------------------------------------- Ynvj;  
    switch nargin aPprMQ5  
        case 3 $2Kau 1  
            z = zernfun(n,m,r,theta); 1Wv{xML"  
        case 4 ojX%RU  
            z = zernfun(n,m,r,theta,nflag); Nfr:`$k  
        otherwise -&@]M>r@  
            error('zernfun2:nargin','Incorrect number of inputs.') k}X[u8A  
    end F|,6N/;!W  
    >H$;Z$o*(  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) "t=UX -3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 4b]_ #7Qm  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of JfbKf~g  
    %   order N and frequency M, evaluated at R.  N is a vector of %Mh Q  
    %   positive integers (including 0), and M is a vector with the k'g$2  
    %   same number of elements as N.  Each element k of M must be a ?<! nm&~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {>/)5 AGs  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is NaF(\j  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _$8{;1$T?  
    %   with one column for every (N,M) pair, and one row for every J,RDTXqn  
    %   element in R. l^ARW E  
    % l nfm0  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- s1{[{L3  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is cs t&0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to pL! a  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 mGO>""<:  
    %   for all [n,m]. \2j|=S6  
    % %Z7%jma  
    %   The radial Zernike polynomials are the radial portion of the `os8;`G  
    %   Zernike functions, which are an orthogonal basis on the unit BY$[g13  
    %   circle.  The series representation of the radial Zernike 5Q|sta!  
    %   polynomials is DKTD Z*  
    %   La9r  
    %          (n-m)/2 n08; <  
    %            __ zFywC-my@  
    %    m      \       s                                          n-2s 7D   
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ocwE_dR{  
    %    n      s=0 %&tb9_T)d  
    % |0kXCq  
    %   The following table shows the first 12 polynomials. %J _ymJ'pd  
    % Sl"BK0:%7  
    %       n    m    Zernike polynomial    Normalization S.W^7Ap  
    %       --------------------------------------------- &L%Jy #=  
    %       0    0    1                        sqrt(2) U;p e:  
    %       1    1    r                           2 ' l|R5   
    %       2    0    2*r^2 - 1                sqrt(6) 'y.JcS!|  
    %       2    2    r^2                      sqrt(6) %l]Rh/VPn?  
    %       3    1    3*r^3 - 2*r              sqrt(8) E?cZ bn*>`  
    %       3    3    r^3                      sqrt(8) 1q] & 7R  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 7TpRCq#  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) =*O=E@]  
    %       4    4    r^4                      sqrt(10) @cIgxp  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) bK4&=#Zh  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =m9i)Q  
    %       5    5    r^5                      sqrt(12) hg8Be6G <  
    %       --------------------------------------------- t.)AggXj#  
    % 7}%H2$Do  
    %   Example: O,|\"b1(  
    % \2 >?6zs  
    %       % Display three example Zernike radial polynomials Bc<n2 C0  
    %       r = 0:0.01:1; Yb 6q))Y  
    %       n = [3 2 5]; Ak A!:!l  
    %       m = [1 2 1]; 0% +'  
    %       z = zernpol(n,m,r); MwAJ(  
    %       figure |` "?  
    %       plot(r,z) /H)Br~ l  
    %       grid on 6,+nRiZ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') A=X-;N#  
    % %i"}x/CD[  
    %   See also ZERNFUN, ZERNFUN2. Kt6>L5:94  
    =|,A%ZGF$  
    % A note on the algorithm. #\ #3r  
    % ------------------------ Ri @`a  
    % The radial Zernike polynomials are computed using the series ^A!$i$NON  
    % representation shown in the Help section above. For many special OH6n^WKY  
    % functions, direct evaluation using the series representation can >f$NzJ}  
    % produce poor numerical results (floating point errors), because hcyO97@r  
    % the summation often involves computing small differences between "Pj}E=!k  
    % large successive terms in the series. (In such cases, the functions CGZ^hoh/  
    % are often evaluated using alternative methods such as recurrence kjE*9bUc  
    % relations: see the Legendre functions, for example). For the Zernike 3=- })X ;  
    % polynomials, however, this problem does not arise, because the ARWZ; GX  
    % polynomials are evaluated over the finite domain r = (0,1), and 6Dst;:  
    % because the coefficients for a given polynomial are generally all TzKK;(GX  
    % of similar magnitude. +EkW>$  
    % !` 26\@1  
    % ZERNPOL has been written using a vectorized implementation: multiple m|F:b}0Hb  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ,2,5Odrz  
    % values can be passed as inputs) for a vector of points R.  To achieve c AEokP  
    % this vectorization most efficiently, the algorithm in ZERNPOL URw5U1  
    % involves pre-determining all the powers p of R that are required to BJ5}GX!  
    % compute the outputs, and then compiling the {R^p} into a single ;Z9IZ~  
    % matrix.  This avoids any redundant computation of the R^p, and _kN*e:t  
    % minimizes the sizes of certain intermediate variables. S_\ F  
    % -5k2j^r;  
    %   Paul Fricker 11/13/2006 hO( RZ '{  
    ]tY:,Mfs  
    c1%rV`)]  
    % Check and prepare the inputs: A,#2^dR  
    % ----------------------------- tsv$r$Se  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x_!ZycEa  
        error('zernpol:NMvectors','N and M must be vectors.') PJ q yvbD  
    end K5k?H  
    SlaDt  
    if length(n)~=length(m) j@| `f((4  
        error('zernpol:NMlength','N and M must be the same length.') X3B{8qx_>  
    end Fn+ ?u  
    /k6fLn2;  
    n = n(:); A-uB\ L  
    m = m(:); n:4uA`Vg  
    length_n = length(n); v(O=IUa  
    8l>CR#%@C  
    if any(mod(n-m,2)) 4["&O=:d  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') xs!p|  
    end X?o( b/F -  
    VKW|kU7Cs$  
    if any(m<0) b,<9  
        error('zernpol:Mpositive','All M must be positive.') KnzsHli,~k  
    end Vrp[r *V@E  
    g^~Kze  
    if any(m>n) uaw <  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ig_2={Q@  
    end d,cN(  
    ^^Jnv{)  
    if any( r>1 | r<0 ) :}q\tNY<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') H0*,8i5I  
    end ,k0r  
    ~?Omy8#  
    if ~any(size(r)==1) )qU7`0'8  
        error('zernpol:Rvector','R must be a vector.') MI#mAg<  
    end vqNsZ 8|`  
    K_/B?h  
    r = r(:); E4[}lX}  
    length_r = length(r); R;}22s  
    !<n"6KA.  
    if nargin==4 q4 k@l  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); K%j&/T j1  
        if ~isnorm buMq F-j  
            error('zernpol:normalization','Unrecognized normalization flag.') _GoVx=t   
        end 7;}l\VXHm  
    else 9NpD!A&64<  
        isnorm = false; \%A%s*1  
    end .dmi#%W  
    lmCZ8 j(FF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XcfKx@l  
    % Compute the Zernike Polynomials b=[?b+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @QEqB_W  
    2+"r~#K*  
    % Determine the required powers of r: lWZuXb,G  
    % ----------------------------------- Y)I8eU{Wl(  
    rpowers = []; f [o%hCS  
    for j = 1:length(n) )Y]/^1hx  
        rpowers = [rpowers m(j):2:n(j)]; /VTM 9)u  
    end +cB&Mi5  
    rpowers = unique(rpowers); &tI#T)SSs  
    \h{r;#g  
    % Pre-compute the values of r raised to the required powers, bKbp?-]  
    % and compile them in a matrix: vS?odqi#n  
    % ----------------------------- v."Dnl  
    if rpowers(1)==0 >'=MH2;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9w4sSj`  
        rpowern = cat(2,rpowern{:}); -_^c6!i  
        rpowern = [ones(length_r,1) rpowern]; ;</Lf=+Vm  
    else XhW %,/<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )j&"%[2F  
        rpowern = cat(2,rpowern{:}); H{G{H=K_  
    end _}Ps(_5D  
    6[dur'x  
    % Compute the values of the polynomials: #`SD$;  
    % -------------------------------------- mDMt5(.   
    z = zeros(length_r,length_n); j|(Z#3J  
    for j = 1:length_n w YNloU  
        s = 0:(n(j)-m(j))/2; Ca>&  
        pows = n(j):-2:m(j); /2uQCw&x-  
        for k = length(s):-1:1 % 4 ~l  
            p = (1-2*mod(s(k),2))* ... ~oD8Rnf  
                       prod(2:(n(j)-s(k)))/          ... )mN9(Ob!  
                       prod(2:s(k))/                 ... \E4B&!m  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ...  lhLGG  
                       prod(2:((n(j)+m(j))/2-s(k))); X" R<J#4  
            idx = (pows(k)==rpowers); +5p{5 q(o  
            z(:,j) = z(:,j) + p*rpowern(:,idx); : mGAt[Cc  
        end _D!g4"  
         )ZR+lX }  
        if isnorm fys  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); m6n!rRQ^U  
        end M:SO2Czz  
    end |;vi*u  
    O/Y)&VG7  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Qc-(*}  
    P~$< X  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 :Hy]  
    :> -1'HC  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)