非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^|yw)N]Q/
function z = zernfun(n,m,r,theta,nflag) -*8 |J;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~#/NpKHT@A
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WW33ZJ
% and angular frequency M, evaluated at positions (R,THETA) on the -a:+ h\K
% unit circle. N is a vector of positive integers (including 0), and v'`VyXetl
% M is a vector with the same number of elements as N. Each element },9Hq~TA
% k of M must be a positive integer, with possible values M(k) = -N(k) Fd@n#DR `
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (V2~txMh
% and THETA is a vector of angles. R and THETA must have the same dg[&5D1Q
% length. The output Z is a matrix with one column for every (N,M) c#'t][Ii
% pair, and one row for every (R,THETA) pair.
ismx evD
% 6Y4sv5G
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D:`b61sWi_
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~,[<R
% with delta(m,0) the Kronecker delta, is chosen so that the integral f9FJ:?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O_%X>Q9
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ne7HPSWiOP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jWHv9XtW
% 3^m0 k
E
% The Zernike functions are an orthogonal basis on the unit circle. _*\:UBZx6
% They are used in disciplines such as astronomy, optics, and zu8
% optometry to describe functions on a circular domain. cMxuG'{=.
% ;Fw{p{7<
% The following table lists the first 15 Zernike functions. VJW%y)_[
% \\Ps*HN
% n m Zernike function Normalization {%g]Ym=
% -------------------------------------------------- QWL$F:9:
% 0 0 1 1 ;S
Re`
% 1 1 r * cos(theta) 2 $ ?ayE
% 1 -1 r * sin(theta) 2 o+{]&V->gN
% 2 -2 r^2 * cos(2*theta) sqrt(6) *E$&
% 2 0 (2*r^2 - 1) sqrt(3) | Q0Wv8/
% 2 2 r^2 * sin(2*theta) sqrt(6) Ph@hk0dgr/
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9FB k|g"U)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) TmI~P+5w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Mr/;$O{
% 3 3 r^3 * sin(3*theta) sqrt(8) \0gU)tVZ
% 4 -4 r^4 * cos(4*theta) sqrt(10) klkshlk d
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |~)!8N.{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) AQAZ+g(IK
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '3B"@^]
% 4 4 r^4 * sin(4*theta) sqrt(10) {O24:'K&
% -------------------------------------------------- `h%(ZG~
% v6uXik
% Example 1: .|ZO2MCd
% ~kHWh8\b:
% % Display the Zernike function Z(n=5,m=1) D(bQFRBY6"
% x = -1:0.01:1; Ife/:v
% [X,Y] = meshgrid(x,x); pBo=omQV
% [theta,r] = cart2pol(X,Y); W(~7e?fO
% idx = r<=1; {lv@V*_Y0
% z = nan(size(X)); V)|]w[(Y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "{TVd>9_
% figure @\ udaZc
% pcolor(x,x,z), shading interp JDbRv'F:(
% axis square, colorbar ~w
Ekbq=
% title('Zernike function Z_5^1(r,\theta)') Epo/}y
% 3MqyHOOv
% Example 2: o8uak*"{
% 5?] Dn k.o
% % Display the first 10 Zernike functions 5~,usA*
% x = -1:0.01:1; Veeuw
% [X,Y] = meshgrid(x,x); },eV?eGj
% [theta,r] = cart2pol(X,Y); _!qi`A
% idx = r<=1; eMHBY6<~=
% z = nan(size(X)); T?lp:~d
% n = [0 1 1 2 2 2 3 3 3 3]; msf%i !
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _bsAF^ ;
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7{W#i<W
% y = zernfun(n,m,r(idx),theta(idx)); -] @cUx
% figure('Units','normalized') g
\;,NW^
% for k = 1:10 Fy#y.jK9v
% z(idx) = y(:,k); ~<.%sVwE
% subplot(4,7,Nplot(k)) k-CW?=
% pcolor(x,x,z), shading interp Ef)v("'w
% set(gca,'XTick',[],'YTick',[]) @zs.M-F
% axis square Z;'5A2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s~i73Qk/
% end >f\$~cp
% Rz03he
% See also ZERNPOL, ZERNFUN2. $j(laD#AR
d?6\
% Paul Fricker 11/13/2006 h/s8".\
8wH1x
.
s#BSZP
% Check and prepare the inputs: xoe/I[P]U
% ----------------------------- 8"=E0(m
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 52P^0<Wq
error('zernfun:NMvectors','N and M must be vectors.') Y@ l>4q")
end 8-5g6qAS
{3@"}Eh
if length(n)~=length(m) wn Q% 'Eo
error('zernfun:NMlength','N and M must be the same length.') rds4eUxe
end APUpqY
JT cE{i
n = n(:); 1lLXu
m = m(:); hd>_K*oH
if any(mod(n-m,2)) 49!(Sa_]j
error('zernfun:NMmultiplesof2', ... 8+mu'RZ X
'All N and M must differ by multiples of 2 (including 0).') wl Nl|+ K
end INNTp[
J;5G]$s
if any(m>n) :"Gd;~p.
error('zernfun:MlessthanN', ... Ue&I]/?;$
'Each M must be less than or equal to its corresponding N.') pP)> x*1
end SO+J5,)HA
k
& 6$S9
if any( r>1 | r<0 ) =`EVg>+^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]N^>>k
end mV;)V8'
' JAcN@q~z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z}`A'#!
error('zernfun:RTHvector','R and THETA must be vectors.') =<.h.n
end wDt9Lf
O
j&l2n2z
r = r(:); ekPn`U
theta = theta(:); .2f0e[J
length_r = length(r); Ksb55cp`
if length_r~=length(theta) \E8CC>Jd
error('zernfun:RTHlength', ... >>.4@
'The number of R- and THETA-values must be equal.') mQ=nU
end 7e/K YS+!s
|IZFWZd
% Check normalization: #eY?6Kjn
% -------------------- }kF*I@:g
if nargin==5 && ischar(nflag) !{S HlS
isnorm = strcmpi(nflag,'norm'); BDcA_=^R&
if ~isnorm evE$$# 6R
error('zernfun:normalization','Unrecognized normalization flag.') !glGW[r/7
end W@WKdaJ
else bnxR)b~
isnorm = false; +"3K)9H
end -!-1X7v|Fp
v"V?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AkX8v66:
% Compute the Zernike Polynomials aMO+y91Y(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NaC}KI`
]cP$aixd
% Determine the required powers of r: *k
!zdV
% ----------------------------------- \heQVWRl
m_abs = abs(m); @YI-@
rpowers = []; kWxcB7)uk
for j = 1:length(n) 5@`DS-7h
rpowers = [rpowers m_abs(j):2:n(j)]; a3B^RbDP&8
end 8gXf4A(N
rpowers = unique(rpowers); x0ICpt{;
WXX08"
% Pre-compute the values of r raised to the required powers, (k<__W c_t
% and compile them in a matrix: xf4`+[
% ----------------------------- o0FVVS l
if rpowers(1)==0 4L/8Hj#g
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Na>?1F"KHk
rpowern = cat(2,rpowern{:}); 5tcJTz
rpowern = [ones(length_r,1) rpowern]; i1-wzI
else C^9bur/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4qg]
oiT
rpowern = cat(2,rpowern{:}); ]7
2wv#-
end ^<v]x;
3
mVEHVz $
% Compute the values of the polynomials: (db4.G+0
% -------------------------------------- MzCZj
y = zeros(length_r,length(n)); xYD.j~
for j = 1:length(n) 4qmaL+Q
s = 0:(n(j)-m_abs(j))/2; O_[]+5.TX
pows = n(j):-2:m_abs(j); =(]||1.
for k = length(s):-1:1 |emZZj
p = (1-2*mod(s(k),2))* ... ZfSAXr "(
prod(2:(n(j)-s(k)))/ ... c@)}zcw*
prod(2:s(k))/ ... p'YNj3&u
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... f}?q
prod(2:((n(j)+m_abs(j))/2-s(k))); I;3Uzv
idx = (pows(k)==rpowers); D",~?
y(:,j) = y(:,j) + p*rpowern(:,idx); <"}WpT
end JB(P-Y#yyA
Vv~:^6il
if isnorm Q??nw^8Hi
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); VQ'DNv| 9
end MP%pEUomev
end 2[TssJQ
% END: Compute the Zernike Polynomials bT#re
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JN<IMH
@g==U{k;t
% Compute the Zernike functions: M$+2f.(>k)
% ------------------------------ "%fvA;
idx_pos = m>0; h0n,WU/Kw
idx_neg = m<0; -8D$ [@y(
YDdY'd`*
z = y; drEND`,@6|
if any(idx_pos) oZ"93]3-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5$Aiez~tBq
end _)F0oC {
if any(idx_neg) EE[JXoke
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /6d:l>4
end 3m59EI-p
e+7x &-+
% EOF zernfun