切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11248阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )fP ,F(  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! TKvUBy  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 QIQB  
    function z = zernfun(n,m,r,theta,nflag) >/;\{IG Wn  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $SSE\+|3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @;qC % +^  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0 lXV+lj  
    %   unit circle.  N is a vector of positive integers (including 0), and \#1!qeF  
    %   M is a vector with the same number of elements as N.  Each element 6[$kEKOY=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `IOp*8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, p^Ca-+R3  
    %   and THETA is a vector of angles.  R and THETA must have the same t>7t4>X  
    %   length.  The output Z is a matrix with one column for every (N,M) Hj |~*kG  
    %   pair, and one row for every (R,THETA) pair. H$KE*Wwq  
    % \3n{%\_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Kv:UQdnU[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), z{d],M  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral E$.|h;i]Q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FH)bE#4  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized kuu9'Sqc'b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3:<+9X  
    % kMKI=>s+  
    %   The Zernike functions are an orthogonal basis on the unit circle. )wP0U{7?v  
    %   They are used in disciplines such as astronomy, optics, and Odxq]HlbO  
    %   optometry to describe functions on a circular domain. x,E#+ m  
    % :{h,0w'd  
    %   The following table lists the first 15 Zernike functions. {.bLh 0  
    % l~Kn-S{  
    %       n    m    Zernike function           Normalization 4U<'3~RN  
    %       -------------------------------------------------- ?)<zrE5p  
    %       0    0    1                                 1 5IW^^<kiu  
    %       1    1    r * cos(theta)                    2 %=/Y~ml?  
    %       1   -1    r * sin(theta)                    2 '&Q_5\Tn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~^lQ[x  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +1Si>I  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) vF;6Y(h>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) )~_!u}+:(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) G\Hck=P[$3  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UYW%% 5p?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) CWE jX-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1]A%lud4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -4,qAnuMx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Ptzha?}OZ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lk \|EG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 3 C=nC  
    %       -------------------------------------------------- <3P?rcd,5K  
    % 7$x@;%xd  
    %   Example 1: 5U|f"3&8  
    % ZgtW  
    %       % Display the Zernike function Z(n=5,m=1) yZxgUF&`  
    %       x = -1:0.01:1; v 8{oXzyy  
    %       [X,Y] = meshgrid(x,x); )jR:\fe  
    %       [theta,r] = cart2pol(X,Y); MgHyKn'rL  
    %       idx = r<=1; HGWwGd  
    %       z = nan(size(X)); dmP*2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); [H0jDbN  
    %       figure ETH`.~%  
    %       pcolor(x,x,z), shading interp r NU,(htS  
    %       axis square, colorbar LAw X9q`  
    %       title('Zernike function Z_5^1(r,\theta)') H b]    
    % dulW!&*No  
    %   Example 2: (z2)<_bXJ  
    % cIl^5eE^Pq  
    %       % Display the first 10 Zernike functions dT/Cn v=  
    %       x = -1:0.01:1; q*DR~Ov  
    %       [X,Y] = meshgrid(x,x); (d^pYPr{  
    %       [theta,r] = cart2pol(X,Y); jA=uK6m  
    %       idx = r<=1; ]!YzbvoR  
    %       z = nan(size(X)); :b=`sUn<X+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; n+zXt?{u  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?j8CkqX!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; xw%?R=&L  
    %       y = zernfun(n,m,r(idx),theta(idx)); rM[Ps=5  
    %       figure('Units','normalized') *2 MUG h  
    %       for k = 1:10 \5s!lv*&  
    %           z(idx) = y(:,k); F__DPEAc_  
    %           subplot(4,7,Nplot(k)) s<:"rw`  
    %           pcolor(x,x,z), shading interp Fj1/B0acS  
    %           set(gca,'XTick',[],'YTick',[]) F`Q,pBl1p6  
    %           axis square H.Jcp|k[;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^%go\ C ;  
    %       end p*Q"<@n  
    % .a=M@; p  
    %   See also ZERNPOL, ZERNFUN2. 4$IPz7  
    +R2  
    %   Paul Fricker 11/13/2006 RF6(n8["MW  
    vm8QKPy  
    Esw&ScBOP  
    % Check and prepare the inputs: r}f -.Fo  
    % ----------------------------- rxP^L(q0*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w/YKWv{_S  
        error('zernfun:NMvectors','N and M must be vectors.') =C`v+NPM)|  
    end He#+zE ;  
    N:L<ySJ7  
    if length(n)~=length(m) V_+3@C  
        error('zernfun:NMlength','N and M must be the same length.') @D0Ut9)  
    end ~JC``&6E=}  
    gP/]05$e  
    n = n(:); aMv  
    m = m(:); {y<_S]0  
    if any(mod(n-m,2)) eWwSD#N#  
        error('zernfun:NMmultiplesof2', ... #\`6ZHW  
              'All N and M must differ by multiples of 2 (including 0).') ANT^&NjJ7  
    end <LBMth  
    Cc!n`%qc  
    if any(m>n) vf5[x!4  
        error('zernfun:MlessthanN', ... NKGo E/  
              'Each M must be less than or equal to its corresponding N.') (B$2)yZY  
    end AqN(htGvx  
    Onot<}K  
    if any( r>1 | r<0 ) -(:BkA  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') c (\-7*En  
    end vja^ O  
    x!I7vs~~zW  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) rycscE4,  
        error('zernfun:RTHvector','R and THETA must be vectors.') .Z/"L@  
    end dr9I+c7u  
    UKX'A)$  
    r = r(:); [;|g2\  
    theta = theta(:); i&_sbQ^  
    length_r = length(r); :$P < e~z'  
    if length_r~=length(theta) m1+DeXR_g  
        error('zernfun:RTHlength', ... yGS._;#R  
              'The number of R- and THETA-values must be equal.') ty-4yK#  
    end Q|pz].0  
    #wC4$y<>  
    % Check normalization: s[xdID^3.  
    % -------------------- ^]aDLjD  
    if nargin==5 && ischar(nflag) W:9L!+m^  
        isnorm = strcmpi(nflag,'norm'); + FLzK(  
        if ~isnorm f3yZx!K_Br  
            error('zernfun:normalization','Unrecognized normalization flag.') 3FNj~=N  
        end  61gZZM  
    else _k ~bH\(  
        isnorm = false; &,e@pvc3  
    end N k^#Sa?  
    c-s ~q/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N:&^ql4  
    % Compute the Zernike Polynomials *B3` #t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z&-3H/   
    7&T1RB'>  
    % Determine the required powers of r: XqJ@NgsY  
    % ----------------------------------- ^-=,q.[7  
    m_abs = abs(m); @Vb-BC,  
    rpowers = []; "G4{;!0C  
    for j = 1:length(n) #>>-:?X  
        rpowers = [rpowers m_abs(j):2:n(j)]; a nIdCOh  
    end I.(/j  
    rpowers = unique(rpowers); 1lMU('r%  
    4; &(  
    % Pre-compute the values of r raised to the required powers, bNc=}^  
    % and compile them in a matrix: vk[Km[(U'  
    % ----------------------------- F'`L~!F  
    if rpowers(1)==0 ZEApE+m  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s6KZV@1  
        rpowern = cat(2,rpowern{:}); \idg[&}l}  
        rpowern = [ones(length_r,1) rpowern]; E@[`y:P  
    else meIY00   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {)k}dr  
        rpowern = cat(2,rpowern{:}); 81aY*\  
    end [>6:xGSe9X  
    ~BZA_w"`1  
    % Compute the values of the polynomials: ux-Fvwoh  
    % -------------------------------------- [qid4S~r,&  
    y = zeros(length_r,length(n)); j_ :4_zdBy  
    for j = 1:length(n) QF\NHV  
        s = 0:(n(j)-m_abs(j))/2; KeXQ'.x5O  
        pows = n(j):-2:m_abs(j); iyj&O"  
        for k = length(s):-1:1 SJ+.i u/  
            p = (1-2*mod(s(k),2))* ... Zx`hutCv  
                       prod(2:(n(j)-s(k)))/              ... 5GpR N  
                       prod(2:s(k))/                     ... Q*U$i#,  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nDaQ1  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <$7*yV  
            idx = (pows(k)==rpowers); xJZbax[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~":?})  
        end =DF7l<&km  
         )!M:=}."  
        if isnorm ]M= 3Sn8}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qW7S<ouh  
        end -bKli<C  
    end +hK Qha!*  
    % END: Compute the Zernike Polynomials $7PFos%@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i mJ{wF  
    w9z((\5  
    % Compute the Zernike functions: c< \:lhl  
    % ------------------------------ >mh:OJH45  
    idx_pos = m>0; :IS]|3wD  
    idx_neg = m<0; VN;Sz,1Z  
    .cle^P  
    z = y; #9p{Y}2#  
    if any(idx_pos) xB 4A"|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); HiVF<tN  
    end ~M43#E[oOF  
    if any(idx_neg) /t ,ujTK  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #CVD:p  
    end tjO||]I  
    f*kT7PJG  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) R}Z"Y xx  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. j}S  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated sDWX} NV  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  3]<$;[Q  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, .ay K+6I  
    %   and THETA is a vector of angles.  R and THETA must have the same jw#'f%*  
    %   length.  The output Z is a matrix with one column for every P-value, jlzqa7  
    %   and one row for every (R,THETA) pair. =^=9z'u"=  
    % nM)]  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike $ShL^g@  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3(6i6 vV  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) WB $Z<m :  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 t'0r4&\  
    %   for all p. Yq<D(F#qx  
    % Cl4y9|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 QTK \"  
    %   Zernike functions (order N<=7).  In some disciplines it is yq\)8Fe  
    %   traditional to label the first 36 functions using a single mode g#5g0UP)V  
    %   number P instead of separate numbers for the order N and azimuthal NfS0yQPx  
    %   frequency M. f{WJM>$:  
    % &l{yEWA}g  
    %   Example: az0( 54M  
    % j08|zUe  
    %       % Display the first 16 Zernike functions pg*'2AT  
    %       x = -1:0.01:1; d<(1^Rto  
    %       [X,Y] = meshgrid(x,x); eJ$?T7aUf  
    %       [theta,r] = cart2pol(X,Y); 8~\Fpz|Og  
    %       idx = r<=1; 8r)eiERv  
    %       p = 0:15; C6CX{IA]  
    %       z = nan(size(X)); DQH _@-q  
    %       y = zernfun2(p,r(idx),theta(idx)); [$9sr=3:  
    %       figure('Units','normalized') m'oVqA&  
    %       for k = 1:length(p) lb`P9mbr+  
    %           z(idx) = y(:,k); sVaWg?=qs'  
    %           subplot(4,4,k) JB''Ujyi  
    %           pcolor(x,x,z), shading interp  CG$S?  
    %           set(gca,'XTick',[],'YTick',[]) v?n`kw  
    %           axis square |PDuvv!.f  
    %           title(['Z_{' num2str(p(k)) '}']) :a#]"z0  
    %       end fZxZ):7i  
    % !0*=z~  
    %   See also ZERNPOL, ZERNFUN. pRUN [[L  
    SX/yY  
    %   Paul Fricker 11/13/2006 8Tv;,a  
    9"_qa q  
    l yO_rZT  
    % Check and prepare the inputs: ^7F!>!9Ca  
    % ----------------------------- v#YO3nD  
    if min(size(p))~=1 qV9`  
        error('zernfun2:Pvector','Input P must be vector.') peR=J7  
    end 6~;fj+S  
    'rp(k\ pY  
    if any(p)>35 qC.jXU?rO  
        error('zernfun2:P36', ... |3Oe2qb  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... /M v\~vg$1  
               '(P = 0 to 35).']) NVeb,Pf  
    end jr" yIC_  
    !*?&V3!  
    % Get the order and frequency corresonding to the function number: v?fB:[dG  
    % ---------------------------------------------------------------- zd>[uIOR  
    p = p(:); h7[VXE  
    n = ceil((-3+sqrt(9+8*p))/2); Q:>;d-D|1  
    m = 2*p - n.*(n+2); D#W{:_f  
    j4ypXPY``!  
    % Pass the inputs to the function ZERNFUN: zdU<]ge  
    % ---------------------------------------- K]N^6ome  
    switch nargin =qCVy:RL4  
        case 3 nH NMoA  
            z = zernfun(n,m,r,theta); P]]9Sqo7  
        case 4 NAx( Qi3  
            z = zernfun(n,m,r,theta,nflag); 2Z7smDJ  
        otherwise u?Iop/b  
            error('zernfun2:nargin','Incorrect number of inputs.') o=q N+-N  
    end @hQ+pG@s  
    @UkcvhH  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) (^eE8j/K  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. oopTo51,a  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Fm*n>^P@Y  
    %   order N and frequency M, evaluated at R.  N is a vector of XH1so1h  
    %   positive integers (including 0), and M is a vector with the PKwHq<vAsB  
    %   same number of elements as N.  Each element k of M must be a d3 fE[/oU  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) JQQD~J1)E  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 75Jh(hd(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix GB^Ch YOb  
    %   with one column for every (N,M) pair, and one row for every v|t^th,  
    %   element in R. 4LUFG  
    % S%mN6b~{  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9);a0}*5  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #u|;YC  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ; =F^G?p^  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 /LPSI^l!m  
    %   for all [n,m]. SZ1+h TY7d  
    % DWm$:M4 z  
    %   The radial Zernike polynomials are the radial portion of the  UZmz k  
    %   Zernike functions, which are an orthogonal basis on the unit z/6kxV89  
    %   circle.  The series representation of the radial Zernike  ]c[80F-  
    %   polynomials is !<((@*zU  
    % 1wE~dpnx  
    %          (n-m)/2 !Lk|eGd*  
    %            __ p`33`25  
    %    m      \       s                                          n-2s +)L 'qbCSM  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r y5|`B(  
    %    n      s=0 W O|2x0K  
    % j9x}D;? n  
    %   The following table shows the first 12 polynomials. 0qw,R4YK  
    % 1 /7H` O?  
    %       n    m    Zernike polynomial    Normalization *oZBv4Vh   
    %       --------------------------------------------- oxHS7b  
    %       0    0    1                        sqrt(2) X/2Xr(z"k  
    %       1    1    r                           2 4SY]Q[  
    %       2    0    2*r^2 - 1                sqrt(6) i^Ep[3  
    %       2    2    r^2                      sqrt(6) uJF,:}qA  
    %       3    1    3*r^3 - 2*r              sqrt(8) ^|>vK,q$I  
    %       3    3    r^3                      sqrt(8) K}&|lCsb  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) sJw3o7@pg  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) oBifESJ  
    %       4    4    r^4                      sqrt(10) ]{.rx),  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) }`h)+Im=  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?P0$n 7,  
    %       5    5    r^5                      sqrt(12) A4Q8^^byY  
    %       --------------------------------------------- oPo<F5M]d%  
    % r,L#JR w#-  
    %   Example: xo7H^!_   
    % qyp"q{k0  
    %       % Display three example Zernike radial polynomials UT==x<  
    %       r = 0:0.01:1; 0Evmq3,9  
    %       n = [3 2 5]; FL/@e$AK  
    %       m = [1 2 1]; bn~=d@'  
    %       z = zernpol(n,m,r); ! Hdg $,  
    %       figure |XLx6E2F  
    %       plot(r,z) F1w~f <  
    %       grid on J0C,K U(  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') b H?dyS6Bx  
    % &r/a\t,8n  
    %   See also ZERNFUN, ZERNFUN2. ;oH%d;H  
    TPvS+_<oL{  
    % A note on the algorithm. aqoT  
    % ------------------------ @&83/U?  
    % The radial Zernike polynomials are computed using the series R1{ "  
    % representation shown in the Help section above. For many special t /EB y"N#  
    % functions, direct evaluation using the series representation can #'v7mEwt  
    % produce poor numerical results (floating point errors), because H}dsd=yO  
    % the summation often involves computing small differences between B&O931E7  
    % large successive terms in the series. (In such cases, the functions FxTOc@<  
    % are often evaluated using alternative methods such as recurrence CJ {?9z@$.  
    % relations: see the Legendre functions, for example). For the Zernike hz>&E,<8q  
    % polynomials, however, this problem does not arise, because the $s)G0/~W  
    % polynomials are evaluated over the finite domain r = (0,1), and R`:Y&)c_$  
    % because the coefficients for a given polynomial are generally all UqsVqi h(  
    % of similar magnitude. :G9.}VrU  
    % %a{cJ6P  
    % ZERNPOL has been written using a vectorized implementation: multiple &t5pJ`$(Cy  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 600-e;p  
    % values can be passed as inputs) for a vector of points R.  To achieve 4u"V52  
    % this vectorization most efficiently, the algorithm in ZERNPOL ppM d  
    % involves pre-determining all the powers p of R that are required to k8GcHqNHx  
    % compute the outputs, and then compiling the {R^p} into a single V`l.F"<L  
    % matrix.  This avoids any redundant computation of the R^p, and p*-o33Ve  
    % minimizes the sizes of certain intermediate variables. '<^%> R2  
    % Q*^zphT  
    %   Paul Fricker 11/13/2006 <q~&g &&+  
    kC!7<%(  
    /=FQ {tLr  
    % Check and prepare the inputs: AVZ-g/<  
    % ----------------------------- 15)=>=1mR.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CD +,&id  
        error('zernpol:NMvectors','N and M must be vectors.') V2^(qpM!  
    end d-#MRl$rtK  
    `-hFk88  
    if length(n)~=length(m) xzyV| (  
        error('zernpol:NMlength','N and M must be the same length.') 6*A S4l  
    end k =ru) _$2  
    QukLsl]U  
    n = n(:); v< xe(dC  
    m = m(:); :y"Zc1_E  
    length_n = length(n); ^; Nu\c  
    @-NdgM<  
    if any(mod(n-m,2)) _W@q%L>  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ^}ngb Dn  
    end )U6T]1  
    JcvWE $  
    if any(m<0) [@eNb^ R  
        error('zernpol:Mpositive','All M must be positive.') </5uB' B ^  
    end w[^s) 1  
    NJ/6_e  
    if any(m>n) yxf|Njo0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') u `1cXL['  
    end 5sao+dZ"|  
    Eyxw.,rB/  
    if any( r>1 | r<0 ) Egi<m   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') : tu6'X\k  
    end b%2+g<UKh  
    S#/[>Cb  
    if ~any(size(r)==1) ]S[M]-I  
        error('zernpol:Rvector','R must be a vector.') ? DWF7{1  
    end c_s=>z  
    V2W)%c'  
    r = r(:); @SF*Kvb&  
    length_r = length(r); vj]-p=  
    uLD%M av  
    if nargin==4 qt=gz6!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ' JsP9>)  
        if ~isnorm YLVIn_\}  
            error('zernpol:normalization','Unrecognized normalization flag.') zqh.U @  
        end B<SuNbR  
    else c:.k2u  
        isnorm = false; G1K5J`"*  
    end iq)4/3"6  
    h.gj4/g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Wf^6:  
    % Compute the Zernike Polynomials FX`SaY>D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (]n^_G#-$  
    GS_'&Yj  
    % Determine the required powers of r: &> tmzlww  
    % ----------------------------------- cs `T7?>  
    rpowers = []; '#mv-/<t*  
    for j = 1:length(n) Zg "g/I.+d  
        rpowers = [rpowers m(j):2:n(j)]; h[b;_>7  
    end &x =}m  
    rpowers = unique(rpowers); hg_@Ui@[z  
    QCIH1\`jW  
    % Pre-compute the values of r raised to the required powers, `h*)PitRa  
    % and compile them in a matrix: WI/&r5rq   
    % ----------------------------- `?+lM  
    if rpowers(1)==0 KP `{ UD)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4loG$l+a1  
        rpowern = cat(2,rpowern{:}); 8x#SpDI  
        rpowern = [ones(length_r,1) rpowern]; _]E H~;  
    else ^"WrE(3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); } QVREj  
        rpowern = cat(2,rpowern{:}); N=]2vyh  
    end ,_?P[~1  
    dr#g[}l'H  
    % Compute the values of the polynomials: Z+! ._uA  
    % -------------------------------------- zRSIJ!A~  
    z = zeros(length_r,length_n); wiKUs0|  
    for j = 1:length_n @2ZE8O#I  
        s = 0:(n(j)-m(j))/2; >_ bH ,/D'  
        pows = n(j):-2:m(j); XC"]/ y  
        for k = length(s):-1:1 MA1.I4dm  
            p = (1-2*mod(s(k),2))* ... [(Ss^?AJW  
                       prod(2:(n(j)-s(k)))/          ... #\U;,r  
                       prod(2:s(k))/                 ... j#mo Vq  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... wPdp!h7B~N  
                       prod(2:((n(j)+m(j))/2-s(k))); ;/T=ctIs  
            idx = (pows(k)==rpowers); 3m:[o`L  
            z(:,j) = z(:,j) + p*rpowern(:,idx); qP=4D 9 ]  
        end P/uk]5H^  
         {+r0Nikx_  
        if isnorm `R]B<gp  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Y|$3%t  
        end R3=PV{`M  
    end s3?pv  
    OE_;i}58  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  nU^-D1s{  
    *y6zwe !M  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 U,;a+z4\  
    :TPT]q d@  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)