非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Z|$OPMLX
function z = zernfun(n,m,r,theta,nflag) {o.i\"x;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;PX>] r5U0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \@:mq]Y
% and angular frequency M, evaluated at positions (R,THETA) on the 7-MkfWH2b6
% unit circle. N is a vector of positive integers (including 0), and s4{ >7`N2
% M is a vector with the same number of elements as N. Each element o51jw(wO
% k of M must be a positive integer, with possible values M(k) = -N(k) $r=tOD4;
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Z\*jt B:
% and THETA is a vector of angles. R and THETA must have the same RE75TqYW
% length. The output Z is a matrix with one column for every (N,M) *z\L
% pair, and one row for every (R,THETA) pair. [cf!%3>53
% y8=H+Y
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $2gZpO|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W%^;:YQ9i
% with delta(m,0) the Kronecker delta, is chosen so that the integral kG$U
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, iwT
PJGK|
% and theta=0 to theta=2*pi) is unity. For the non-normalized XfH[:XG3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. IH~[/qNk
% $y+Bril5W
% The Zernike functions are an orthogonal basis on the unit circle. @t?uhT*Z=
% They are used in disciplines such as astronomy, optics, and \L{V|}"X
% optometry to describe functions on a circular domain. ; )J\k2
% /%w3(e
% The following table lists the first 15 Zernike functions. n|f Huv
% *.F4?i2D
% n m Zernike function Normalization *b+~@o
% -------------------------------------------------- M[7$cfp-Y~
% 0 0 1 1 Ow4H7sl
% 1 1 r * cos(theta) 2 +LsACSB
% 1 -1 r * sin(theta) 2 MF/@Efjn
]
% 2 -2 r^2 * cos(2*theta) sqrt(6) ky-9I<Z,,
% 2 0 (2*r^2 - 1) sqrt(3) ?hS&OtW
% 2 2 r^2 * sin(2*theta) sqrt(6) 'PVxc%[
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z.
G<'
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Ea\Khf]2
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) b;%>?U`>p
% 3 3 r^3 * sin(3*theta) sqrt(8) I&G"{Dl94
% 4 -4 r^4 * cos(4*theta) sqrt(10) Pmj%QhOYE
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) % #$K P
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,@4~:OY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eT6T@C](
% 4 4 r^4 * sin(4*theta) sqrt(10) j0+l-]F-
% -------------------------------------------------- - HiRXB
% ==)q{e5
% Example 1: n!$zO{P
% W 2.Ap
% % Display the Zernike function Z(n=5,m=1) U/l3C(bc!
% x = -1:0.01:1; 5VR=D\j
% [X,Y] = meshgrid(x,x); @ UCr`>
% [theta,r] = cart2pol(X,Y); kx31g,cf]w
% idx = r<=1; /Mmts=^Ja
% z = nan(size(X)); Ny2. C?2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {IA3`y~
% figure @[. 0,
% pcolor(x,x,z), shading interp J_rb3
% axis square, colorbar |Pj]sh[^Y
% title('Zernike function Z_5^1(r,\theta)') <Po$|$_~
% >JckN4v
% Example 2: rK} =<R
% urK~]68
% % Display the first 10 Zernike functions xfK@tLEZ-1
% x = -1:0.01:1; LZH~VkK@m}
% [X,Y] = meshgrid(x,x); j;SK{Oq
% [theta,r] = cart2pol(X,Y); VBv|7S
% idx = r<=1; *9O@DF&*6
% z = nan(size(X)); h 1REL^!c
% n = [0 1 1 2 2 2 3 3 3 3]; >PmnR>x-rj
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; zW9/[Db
% Nplot = [4 10 12 16 18 20 22 24 26 28]; r"xs?P&/$
% y = zernfun(n,m,r(idx),theta(idx)); PJ3M,2H1b.
% figure('Units','normalized') iV2v<ap.n
% for k = 1:10 !@3"vd{^
% z(idx) = y(:,k);
5VZZk%oy
% subplot(4,7,Nplot(k)) Q"F" 13
% pcolor(x,x,z), shading interp ^ZPynduR
% set(gca,'XTick',[],'YTick',[]) 5/YGu=,
% axis square _2
oZhJ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :Fh#"<A&&
% end {j[a'Gb
% #G!\MYfQt
% See also ZERNPOL, ZERNFUN2. mr2fNA>kR
i#bcjH
% Paul Fricker 11/13/2006 b>]k=zd
tg6iHFa
{L/hhKT
% Check and prepare the inputs: e82xBLxR%
% ----------------------------- Lq2ZgKd!
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jG["#5<?
error('zernfun:NMvectors','N and M must be vectors.') R@~=z5X(Q
end i+ICgMcd
GUn$IPOM
if length(n)~=length(m) <%?!3 n*
error('zernfun:NMlength','N and M must be the same length.') +;/ s0
end {R8)DK
|'qvq/#^
n = n(:); .H
9r_
m = m(:); Te2C<c
if any(mod(n-m,2)) &lnM
1W
error('zernfun:NMmultiplesof2', ... :hTmt{LjN
'All N and M must differ by multiples of 2 (including 0).') kX%vTl7F
end Qo\?(EM
O-&^;]ieJ
if any(m>n) @Nn'G{8OG
error('zernfun:MlessthanN', ... t?wVh0gT
'Each M must be less than or equal to its corresponding N.') 7:e5l19 uI
end nxMZd=Y
<f#pS[A
if any( r>1 | r<0 ) wC?>,LOl
error('zernfun:Rlessthan1','All R must be between 0 and 1.') MO@XbPZB
end ~,7Tj
TeRH@oI
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |[!7^tU*
error('zernfun:RTHvector','R and THETA must be vectors.') `Wd4d2aLG
end
~S\8 '
hc*t Q2
r = r(:); $Y M(NC
theta = theta(:); wOg#J
length_r = length(r); L)c]i'WZ
if length_r~=length(theta) *Hz]<b?
error('zernfun:RTHlength', ... B#r"|x# [
'The number of R- and THETA-values must be equal.') XtqhK"f%
end +GncQs
y
=q}Z2 OoYh
% Check normalization: ^hcK&
% -------------------- <%.lPO]&E
if nargin==5 && ischar(nflag) ?x/Lb*a^
isnorm = strcmpi(nflag,'norm'); qOv`&%txW
if ~isnorm Y`."=8R~
error('zernfun:normalization','Unrecognized normalization flag.') yz"hU
end k}C4:?AT
else 3_8W5J3I
isnorm = false; , Xxp]*K2
end f>|Wd;7l:
$18?Q+?3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rl,i,1t
% Compute the Zernike Polynomials #v; :K8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iJ`zWpj+{Q
$,B;\PX
% Determine the required powers of r: 0g9y4z{H
% ----------------------------------- f@2F!
m_abs = abs(m); +8Y|kC{9"
rpowers = []; Ehxu`>@N
for j = 1:length(n) &?}A/(#
rpowers = [rpowers m_abs(j):2:n(j)]; 5O;D\M{>
end my0iE:
rpowers = unique(rpowers); Xzl$Qc
a"`>J!
% Pre-compute the values of r raised to the required powers, ](FFvqA
% and compile them in a matrix: #r/5!*3
% ----------------------------- axOEL:-|Bu
if rpowers(1)==0 Ckc5;:b&m
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [^W
+^3V
rpowern = cat(2,rpowern{:}); H%>^_:h
rpowern = [ones(length_r,1) rpowern]; O`5h jq#
else eV~"T2!Sb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >.I9S{7
rpowern = cat(2,rpowern{:}); f[
KI
T
end U }AIOtUw
wbvOf X
% Compute the values of the polynomials: {u+=K-Bj
% -------------------------------------- *s<cgPKJ@
y = zeros(length_r,length(n)); ;/t~MH
for j = 1:length(n) m2P&DdN[
s = 0:(n(j)-m_abs(j))/2; 1 e]D=2y
pows = n(j):-2:m_abs(j); L6#4A3yh
for k = length(s):-1:1 Te`@{>
p = (1-2*mod(s(k),2))* ... x4(8
=&Z
prod(2:(n(j)-s(k)))/ ... *(qj!U43
prod(2:s(k))/ ... B3pjli
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bDm7$ (
prod(2:((n(j)+m_abs(j))/2-s(k))); s4QCun~m
idx = (pows(k)==rpowers); Lz!JLiMEET
y(:,j) = y(:,j) + p*rpowern(:,idx); Ud7Z7?Ym
end ns*:mGh
3 qJ00A
if isnorm 81C;D`!K
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); slhMvHOk-
end K7@|2;e
end evpy%/D
% END: Compute the Zernike Polynomials ANJL8t-m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ve:Oe{Ie{
<EQaYZY=
% Compute the Zernike functions: bWSc&/9y
% ------------------------------ `HO]
kJpX
idx_pos = m>0; ^d@2Y0hH
idx_neg = m<0; uE<8L(*B
|>[qC O
z = y; #C~ </R%
if any(idx_pos) a
9{:ot8,
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 99(@O,*(Y
end h"/'H)G7_&
if any(idx_neg) ^*.+4iHx
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tTF<DD}8
end J@"UFL'^
jm@,Ihz=wI
% EOF zernfun