切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11087阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 J,$xQ?,wE  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! }n)0}U5;0  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Wvl~|Sx]  
    function z = zernfun(n,m,r,theta,nflag) y&(#C:N  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. e&sH<hWR  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c0wLc,)G  
    %   and angular frequency M, evaluated at positions (R,THETA) on the [%k8l~ 6  
    %   unit circle.  N is a vector of positive integers (including 0), and *+v*VH  
    %   M is a vector with the same number of elements as N.  Each element 8#!g;`~ D  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) T]wC?gQG  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, -!!]1\S*Y  
    %   and THETA is a vector of angles.  R and THETA must have the same yPE3Awh5  
    %   length.  The output Z is a matrix with one column for every (N,M) ~q`f@I  
    %   pair, and one row for every (R,THETA) pair. ^cZ< .d2  
    % HMVP71  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,X!)zAmm  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cs6oD!h  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ; gBR~W  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a!R*O3  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized s AFn.W  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Kyx9_2  
    % f2~Aug  
    %   The Zernike functions are an orthogonal basis on the unit circle. Cl '$*h  
    %   They are used in disciplines such as astronomy, optics, and ;_\y g)X,  
    %   optometry to describe functions on a circular domain. h: yJ  
    % D%+yp  
    %   The following table lists the first 15 Zernike functions. !aSj1 2J  
    % /KvJjt'8  
    %       n    m    Zernike function           Normalization .I_atv  
    %       -------------------------------------------------- ezw*Lo!  
    %       0    0    1                                 1 =rymd3/  
    %       1    1    r * cos(theta)                    2 x8aOXN#w}  
    %       1   -1    r * sin(theta)                    2 ?OW!D?  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]Ea-MeH  
    %       2    0    (2*r^2 - 1)                    sqrt(3) CUJq [  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) XQ~Xls%]   
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Q z(n41@`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N.mRay,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) u xyj6(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) j-d&4,a:c  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) e?XFtIj$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e6MBy\*n  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .Wt3|?\=nd  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U[MeK)*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %|JiFDjp  
    %       -------------------------------------------------- ='jT 5Mg  
    % &]YyV.  
    %   Example 1: tN<X3$aN  
    % *%/O (ohs@  
    %       % Display the Zernike function Z(n=5,m=1) # bHkI~  
    %       x = -1:0.01:1; L ~'98C  
    %       [X,Y] = meshgrid(x,x); %|e)s_%XE  
    %       [theta,r] = cart2pol(X,Y); =/K)hI!u  
    %       idx = r<=1; eP" B3Jw  
    %       z = nan(size(X)); @'>RGaPV  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0GxJja  
    %       figure YyYZD{^  
    %       pcolor(x,x,z), shading interp U',C-56z  
    %       axis square, colorbar `(HvD] l  
    %       title('Zernike function Z_5^1(r,\theta)') 7tWC<#  
    % S3/%;=|  
    %   Example 2: :!MEBqcU  
    % PS" rXaY  
    %       % Display the first 10 Zernike functions 4GP?t4][  
    %       x = -1:0.01:1; "a].v 8l!  
    %       [X,Y] = meshgrid(x,x); yZ{yzv'D&  
    %       [theta,r] = cart2pol(X,Y); oi|N8a2R  
    %       idx = r<=1; @\nQ{\^;  
    %       z = nan(size(X)); ?PWg  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )T"Aji-hy  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h,FU5iK|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; zc8^#D2y&  
    %       y = zernfun(n,m,r(idx),theta(idx)); el`?:dY H  
    %       figure('Units','normalized') 0 aH&M4  
    %       for k = 1:10 2!0tD+B  
    %           z(idx) = y(:,k); Yw#fQFm  
    %           subplot(4,7,Nplot(k)) rX)&U4#[m  
    %           pcolor(x,x,z), shading interp 0?$|F0U"J  
    %           set(gca,'XTick',[],'YTick',[]) zoi0Z  
    %           axis square =q0V%h{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VxDIA_@y  
    %       end ^7 \kvW  
    % 1iY4|j;ahV  
    %   See also ZERNPOL, ZERNFUN2. Soq#cl'll-  
    t3<8n;'y:  
    %   Paul Fricker 11/13/2006 FbroI>"e  
    \{`^Q+<  
    0e<>2AL   
    % Check and prepare the inputs: f|VCibI  
    % ----------------------------- _U&HXQ8X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Xgd-^  
        error('zernfun:NMvectors','N and M must be vectors.') }?,YE5~  
    end wr"0+J7  
    4ams~  
    if length(n)~=length(m) _!1LV[x!s  
        error('zernfun:NMlength','N and M must be the same length.') 0F-{YQr>  
    end ,V,mz?d^9  
    ?Fx~_GT  
    n = n(:); lXTE#,XVf  
    m = m(:); C0[U}Y/r2  
    if any(mod(n-m,2)) 'UhHcMh:  
        error('zernfun:NMmultiplesof2', ... QNOdt2NN  
              'All N and M must differ by multiples of 2 (including 0).')  .x%w#  
    end i*/i"W<  
    ~D3 S01ecM  
    if any(m>n) 1W'Ai"DLw  
        error('zernfun:MlessthanN', ... d^A]]Xg  
              'Each M must be less than or equal to its corresponding N.') b]b>i]n  
    end mq[=,,#  
    y:98}gW`n  
    if any( r>1 | r<0 ) uCr& `  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') P 9yMf~  
    end 0#OyT'~V%  
    .2c/V  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) l+@;f(8}  
        error('zernfun:RTHvector','R and THETA must be vectors.') AwNr}9`  
    end dvjj"F'Bf  
    BzS4:e<  
    r = r(:); Qwpni^D8j  
    theta = theta(:); OUUV8K  
    length_r = length(r); J{b#X"i  
    if length_r~=length(theta) rb-ao\  
        error('zernfun:RTHlength', ... g0j)k6<6(Y  
              'The number of R- and THETA-values must be equal.') c+3`hVV  
    end P6.PjK!Ar  
    ZwBz\jmbP  
    % Check normalization: +o`%7r(R  
    % -------------------- 'Wnh1|z  
    if nargin==5 && ischar(nflag) nSyLt6zn\  
        isnorm = strcmpi(nflag,'norm'); n5kGHL2   
        if ~isnorm |gI>Sp%Fu  
            error('zernfun:normalization','Unrecognized normalization flag.') xg/(  
        end - $<oY88  
    else ?Vd~  
        isnorm = false; %3qjgyLZ|  
    end ]0*aE  
    C zJ-tEO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ={%'tv`  
    % Compute the Zernike Polynomials r1< 'l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FTCIfW  
    Kj4BVs  
    % Determine the required powers of r: t$nJmfzm  
    % ----------------------------------- > pb}@\;:  
    m_abs = abs(m); Gw3+TvwU+Q  
    rpowers = []; ;/$pxD  
    for j = 1:length(n) -+@N/d5  
        rpowers = [rpowers m_abs(j):2:n(j)]; T;(,9>Qsu  
    end B1_9l3RM  
    rpowers = unique(rpowers); x t-s"A  
    `15}jTi  
    % Pre-compute the values of r raised to the required powers, HNS^:X R  
    % and compile them in a matrix: m8F$h-  
    % ----------------------------- MS;^:t1`  
    if rpowers(1)==0 n{!{,s  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HSNj  
        rpowern = cat(2,rpowern{:}); =h4u N,  
        rpowern = [ones(length_r,1) rpowern]; ;)FvTm'"\.  
    else ^WB[uFt-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f4  S:L&  
        rpowern = cat(2,rpowern{:}); K>+ v" x  
    end w3,KqF  
    P_3IFHe  
    % Compute the values of the polynomials: $/"Ymm#"\Y  
    % -------------------------------------- n~6$CQ5dF(  
    y = zeros(length_r,length(n)); DGGySO6=$e  
    for j = 1:length(n) 2x<BU3  
        s = 0:(n(j)-m_abs(j))/2; XA#qBxp/h  
        pows = n(j):-2:m_abs(j); Wd7*7']  
        for k = length(s):-1:1 L;opQ~g  
            p = (1-2*mod(s(k),2))* ... LmJjO:W}^y  
                       prod(2:(n(j)-s(k)))/              ... 4ct-K)Ris  
                       prod(2:s(k))/                     ... .\oW@2,RA9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <~uzHg%Y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ?MFC(Wsh  
            idx = (pows(k)==rpowers); \m|5Aqs  
            y(:,j) = y(:,j) + p*rpowern(:,idx); pP.`+vPi  
        end ]~]TZb  
         mh"PAp  
        if isnorm ;g?PK5rB(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .) tQ&2  
        end @xdtl{5G  
    end  dHx4yFS  
    % END: Compute the Zernike Polynomials x} =,'Ko}3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Dsw.@/  
    O:GPuVb\  
    % Compute the Zernike functions: Ag0 6M U  
    % ------------------------------ eg*aVb  
    idx_pos = m>0; O<p=&=TD7  
    idx_neg = m<0; DtBvfYO8)>  
    ).jQ+XE'>  
    z = y; #L!`n )J"  
    if any(idx_pos) +I uu8t  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^!^M Gzu  
    end vX>{1`e{S  
    if any(idx_neg) ;Lfn&2G  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tLKf]5}f  
    end &<*M{GW'&  
    ILDO/>n  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 56YqYu.  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. zfDfy!\2_  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7)D[}UXz  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive RU/WI<O  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, O D5qPovsd  
    %   and THETA is a vector of angles.  R and THETA must have the same 3-{WFnA  
    %   length.  The output Z is a matrix with one column for every P-value, p&\QkI=  
    %   and one row for every (R,THETA) pair. Heqr1btK  
    % sE]z.Po=  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike O=}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) <z60E vHg  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 3BK 8{/  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 T*B`8P  
    %   for all p. VG7#C@>Z  
    % _t]Q*i0p  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 rgXX,+cO  
    %   Zernike functions (order N<=7).  In some disciplines it is 1h`F*:nva  
    %   traditional to label the first 36 functions using a single mode Edc3YSg%;  
    %   number P instead of separate numbers for the order N and azimuthal 3s]o~I2x  
    %   frequency M. }Uj-R3]}K  
    % DJdhOLx  
    %   Example:  ,e 7 ~G  
    % 21<Sfsc$  
    %       % Display the first 16 Zernike functions )]w&DNc  
    %       x = -1:0.01:1; ~)pZ5%C  
    %       [X,Y] = meshgrid(x,x); g@O?0,+1  
    %       [theta,r] = cart2pol(X,Y); #(}{*d R  
    %       idx = r<=1; |2TH[J_a  
    %       p = 0:15; "}0QxogYE  
    %       z = nan(size(X)); cfBl HeYE  
    %       y = zernfun2(p,r(idx),theta(idx)); 4+>~Ui_#  
    %       figure('Units','normalized') 6&i])iH  
    %       for k = 1:length(p) u*\QVOF  
    %           z(idx) = y(:,k); bly `m p8#  
    %           subplot(4,4,k) sw1gpkX  
    %           pcolor(x,x,z), shading interp =j w?*  
    %           set(gca,'XTick',[],'YTick',[]) .+8#&Uy  
    %           axis square !RLXB$@`  
    %           title(['Z_{' num2str(p(k)) '}']) ]n1#8T&<*z  
    %       end ae3 Gn }tf  
    % X pK eN2=p  
    %   See also ZERNPOL, ZERNFUN. V@z/%=PJ  
    .j)DE}[q>  
    %   Paul Fricker 11/13/2006 /3Y"F"`M.  
    kG4])qxC'  
    (G{:O   
    % Check and prepare the inputs: .pxUO3g  
    % ----------------------------- x^`P[>  
    if min(size(p))~=1 V@G|2ZI  
        error('zernfun2:Pvector','Input P must be vector.') ;)f,A)(Z  
    end B;iJ$gt]  
    I+ Qt5Ox  
    if any(p)>35 1'&HmBfcb  
        error('zernfun2:P36', ... H2g#'SK@  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... (3x2^M8  
               '(P = 0 to 35).']) AKLFUk  
    end !*qQ 7  
    /viBJ`-O  
    % Get the order and frequency corresonding to the function number: Xa'b @*o&  
    % ---------------------------------------------------------------- um". Z4S  
    p = p(:); ^=-W8aVi>  
    n = ceil((-3+sqrt(9+8*p))/2); ~}D"8[ABj  
    m = 2*p - n.*(n+2); g_Y$5ft`  
    oO &%&;[/A  
    % Pass the inputs to the function ZERNFUN: './qBJ  
    % ---------------------------------------- {A MAQ  
    switch nargin (A_H[xP  
        case 3 XGnC8Be{4  
            z = zernfun(n,m,r,theta); 5}9rpN{y  
        case 4 C?g*c  
            z = zernfun(n,m,r,theta,nflag); L?(1 [jB4G  
        otherwise [--] ?Dr  
            error('zernfun2:nargin','Incorrect number of inputs.') 5C-n"8&C&  
    end xJ\sm8  
    7S_"h*Ud  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) P=4o)e7E!  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. b]Lp_t  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of SzjylUYV  
    %   order N and frequency M, evaluated at R.  N is a vector of 8\`otJY  
    %   positive integers (including 0), and M is a vector with the ~X) 1!Sr  
    %   same number of elements as N.  Each element k of M must be a 3SF J8  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ARB^]  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is eGrxS;NY  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix =~$)Ieu  
    %   with one column for every (N,M) pair, and one row for every u&Xn#f h  
    %   element in R. 7I@@}A  
    % 2ZMVYa2%(  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Uv:NY1(3!  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 5[+E?4,&  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to d6e]aO=g  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ueJ_F#y  
    %   for all [n,m]. 2\xEMec  
    % 7lQ:}&  
    %   The radial Zernike polynomials are the radial portion of the 2C &l\16  
    %   Zernike functions, which are an orthogonal basis on the unit 6~8X/ -02  
    %   circle.  The series representation of the radial Zernike 9>L{K   
    %   polynomials is J35[GZ';D  
    % -hO[^^i9  
    %          (n-m)/2 <:0d%YB)  
    %            __ B}ASZYpW>  
    %    m      \       s                                          n-2s NK(; -~{P  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r u*!/J R  
    %    n      s=0 6Y= MW{=F  
    % uI&<H T?  
    %   The following table shows the first 12 polynomials. Ha!]*wg#  
    % bdyE9t   
    %       n    m    Zernike polynomial    Normalization (qy82F-|2  
    %       --------------------------------------------- 6[C>"s}Ol  
    %       0    0    1                        sqrt(2) 'y:+w{I2o  
    %       1    1    r                           2 X$$b:q  
    %       2    0    2*r^2 - 1                sqrt(6) bQ_N^[oxQ  
    %       2    2    r^2                      sqrt(6) i<uk}  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~_yz\;#  
    %       3    3    r^3                      sqrt(8) 3l''   
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) lJXihr  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ew6\Z$1c~  
    %       4    4    r^4                      sqrt(10) F5EsaF'e4  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 2sqNTuO6,|  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) vWpkU<&3|  
    %       5    5    r^5                      sqrt(12) <-a6'g2y  
    %       --------------------------------------------- MF~Tr0tOC  
    % L+$9 ,<'[  
    %   Example: %N-f9o8  
    % )3KQ QGi8  
    %       % Display three example Zernike radial polynomials yBxWBW*e  
    %       r = 0:0.01:1; "': u#UdS  
    %       n = [3 2 5]; UZRCJ  
    %       m = [1 2 1]; .UJjB}4$f  
    %       z = zernpol(n,m,r); srfM"Lb'  
    %       figure IgU65p  
    %       plot(r,z) x*z$4)RP  
    %       grid on d<^o@  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') sa>}wz<o  
    % lip1wR7  
    %   See also ZERNFUN, ZERNFUN2. cv  /  
    vL:tuEE3  
    % A note on the algorithm. LTc= D  
    % ------------------------ zkRL'-  
    % The radial Zernike polynomials are computed using the series :raYt5n1,y  
    % representation shown in the Help section above. For many special Qh. : N  
    % functions, direct evaluation using the series representation can Oe*+pReSD  
    % produce poor numerical results (floating point errors), because vT>ki0P_;  
    % the summation often involves computing small differences between 6H_7M(f  
    % large successive terms in the series. (In such cases, the functions P~"`Og+  
    % are often evaluated using alternative methods such as recurrence /SDDCZ`;|c  
    % relations: see the Legendre functions, for example). For the Zernike u|a+ :r)*4  
    % polynomials, however, this problem does not arise, because the Q:~>$5Em5  
    % polynomials are evaluated over the finite domain r = (0,1), and h q& 2o  
    % because the coefficients for a given polynomial are generally all XQ]5W(EP  
    % of similar magnitude. ;F!wyTF>}  
    % DsP FB q  
    % ZERNPOL has been written using a vectorized implementation: multiple a\m@I_r.N  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] K1K3s< y+  
    % values can be passed as inputs) for a vector of points R.  To achieve O*7Gl G  
    % this vectorization most efficiently, the algorithm in ZERNPOL zf>r@>S!L  
    % involves pre-determining all the powers p of R that are required to hhVyz{u  
    % compute the outputs, and then compiling the {R^p} into a single HC*V\vz  
    % matrix.  This avoids any redundant computation of the R^p, and %SJ9Jr,  
    % minimizes the sizes of certain intermediate variables. GGR hM1II  
    % E1e#E3Yq}s  
    %   Paul Fricker 11/13/2006 !(EJ.|LH  
    h5?yrti  
    (X"WEp^Q{I  
    % Check and prepare the inputs: L3g}Z1<!$  
    % ----------------------------- z"C+r'39d=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _jW}p-j  
        error('zernpol:NMvectors','N and M must be vectors.') ch%-Cg~%  
    end !wttKUO?  
    s-He  
    if length(n)~=length(m) elBmF#,j 7  
        error('zernpol:NMlength','N and M must be the same length.') iX{Lc+u3  
    end ['SZe0  
    phA^ kdW  
    n = n(:); i YJzSVO  
    m = m(:); loLN ~6  
    length_n = length(n); {)QSxO  
    i$A0_ZJKjZ  
    if any(mod(n-m,2)) dm&vLQVS  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ^&W(|R-,J&  
    end K 9X0/  
    +h$) l/>:  
    if any(m<0) PfI~`ke  
        error('zernpol:Mpositive','All M must be positive.') 8W|qm;J98  
    end "c6(=FFq  
    Lit@ m2{\  
    if any(m>n) 9cu0$P`}5  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') xCOC5f5*@  
    end %y/8i%@6  
    wY`yP!xO  
    if any( r>1 | r<0 ) #UcqKq  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Cku&s  
    end W7a aL  
    8tM40/U$  
    if ~any(size(r)==1) S;vE %  
        error('zernpol:Rvector','R must be a vector.') P-?ya!@"  
    end 52$7vYMto  
    +a%Vp!y  
    r = r(:); qd9CKd  
    length_r = length(r); fJ3*'(  
     ;Q;u^T`  
    if nargin==4 /\S1p3EW*  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 'L w4jq  
        if ~isnorm 7B`,q-x.  
            error('zernpol:normalization','Unrecognized normalization flag.') 6}YWM]c%  
        end eUyQSI4A  
    else F]hKi`@  
        isnorm = false; g9fS|T  
    end ?t&sT  
    i9.~cnk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cc?BJ  
    % Compute the Zernike Polynomials '[ZRWwhr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yB&+2  
    ic}M)S FD;  
    % Determine the required powers of r: |=7ouFl  
    % ----------------------------------- @iZ"I i&+  
    rpowers = []; GT[,[l  
    for j = 1:length(n) %=:*yf>}  
        rpowers = [rpowers m(j):2:n(j)]; 8:%=@p>$  
    end ^rI<}cfR  
    rpowers = unique(rpowers); g7*ii X  
    km; M!}D  
    % Pre-compute the values of r raised to the required powers, Zc"Vf]:  
    % and compile them in a matrix: .!ThqYo  
    % ----------------------------- s6(iiB%d  
    if rpowers(1)==0 [Yx)`e  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '1lr "}"Q+  
        rpowern = cat(2,rpowern{:}); KLI(Rve24  
        rpowern = [ones(length_r,1) rpowern]; D:9/;9V  
    else %ec9`0^4S  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); h*_h M1*;  
        rpowern = cat(2,rpowern{:}); Y"G U"n~  
    end g0m6D:f  
    1nv#Ehorg  
    % Compute the values of the polynomials: V0Cz!YM_3  
    % -------------------------------------- U2*g9Es  
    z = zeros(length_r,length_n); ffuV158a&  
    for j = 1:length_n _c=[P@  
        s = 0:(n(j)-m(j))/2; &+?JY|u  
        pows = n(j):-2:m(j); c?qg i"kS  
        for k = length(s):-1:1 v$R+5_@[l  
            p = (1-2*mod(s(k),2))* ... D"WqJcDt  
                       prod(2:(n(j)-s(k)))/          ... B!|<<;Da6  
                       prod(2:s(k))/                 ... D|W^PR:@h  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... FE+Y#  
                       prod(2:((n(j)+m(j))/2-s(k))); ;\@co5.=  
            idx = (pows(k)==rpowers); "HRoS#|\  
            z(:,j) = z(:,j) + p*rpowern(:,idx); :"+/M{qz  
        end 7 tOOruiC  
         Y<U"}}  
        if isnorm vc.:du  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); tZS-e6*S  
        end ;P9P2&c8c  
    end )J?Nfi%  
    V[<]BOM\v  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ,at"Q$)T  
    5wM*(H^c[  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 {awv= s  
    ylm*a74-X  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)