切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11313阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 9$xEktfV  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ?Ze3t5Ll  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $`'^&o;&f  
    function z = zernfun(n,m,r,theta,nflag) tS2lex%  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. gzDb~UEoF  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D0QXvrf  
    %   and angular frequency M, evaluated at positions (R,THETA) on the >?e*;f$VdJ  
    %   unit circle.  N is a vector of positive integers (including 0), and _>5BFQ_  
    %   M is a vector with the same number of elements as N.  Each element ej<z]{`05  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) sZ'3PNpCP  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $^7 &bQ  
    %   and THETA is a vector of angles.  R and THETA must have the same d*3R0Q|#{  
    %   length.  The output Z is a matrix with one column for every (N,M) i=2+1 ;K  
    %   pair, and one row for every (R,THETA) pair. q0y?$XS  
    % O!f* @  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ro:-u7q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wCvD4C.WH  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral rI]:| k  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l}AB):<Z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =GR Em5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d(a6vEL4  
    % <R{\pz2w  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mdwh-Cis/  
    %   They are used in disciplines such as astronomy, optics, and z|P& 8#txM  
    %   optometry to describe functions on a circular domain. 0l_-   
    % *rEW@06^\  
    %   The following table lists the first 15 Zernike functions. F"23>3  
    % dbZPt~S'$  
    %       n    m    Zernike function           Normalization jv0e&rt  
    %       -------------------------------------------------- 1<R \V  
    %       0    0    1                                 1 ;pB?8Z  
    %       1    1    r * cos(theta)                    2 FpRK^MEkG  
    %       1   -1    r * sin(theta)                    2 2N,*S   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) t%dPj8~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) OC\C^Yh*U  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :,VyOmf  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) kD; BwU[  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) R a*9d]N@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \aW5V:?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qbAoab53  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Tf0#+6 1>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y2$ % %@  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) E_yh9lk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @/7Rp8Fr  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \|&5eeE@  
    %       -------------------------------------------------- Q'=!1^&  
    % 4*dT|NU  
    %   Example 1: =q"3a9 pb7  
    % pI^n("|  
    %       % Display the Zernike function Z(n=5,m=1) 7I.[1V`  
    %       x = -1:0.01:1; 6% ,Q  
    %       [X,Y] = meshgrid(x,x); (Pu*[STTT  
    %       [theta,r] = cart2pol(X,Y); l/I W"A  
    %       idx = r<=1; (?3( =+t  
    %       z = nan(size(X)); |F=^Cu,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?QMs<  
    %       figure l;;:3:  
    %       pcolor(x,x,z), shading interp &`%C'KZ  
    %       axis square, colorbar =Tj0dfO|"  
    %       title('Zernike function Z_5^1(r,\theta)') w\QpQ~OX  
    % 4v?S` w:6  
    %   Example 2: eX$Biv1N  
    % F% |(pHk  
    %       % Display the first 10 Zernike functions 7:;V[/  
    %       x = -1:0.01:1; O ,;SA  
    %       [X,Y] = meshgrid(x,x); {M$8V~8D  
    %       [theta,r] = cart2pol(X,Y); 6RtpB\hq  
    %       idx = r<=1; /;>EyWW  
    %       z = nan(size(X)); GS^4t mc  
    %       n = [0  1  1  2  2  2  3  3  3  3]; d8K^`k+x  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; NSkI2>+P  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >]`x~cE.5  
    %       y = zernfun(n,m,r(idx),theta(idx)); /za,&7sf  
    %       figure('Units','normalized') #*`|}_6L  
    %       for k = 1:10 K4tX4U[Z  
    %           z(idx) = y(:,k); r9U1O@c  
    %           subplot(4,7,Nplot(k)) @GV^B'}*  
    %           pcolor(x,x,z), shading interp SW=p5@Hy{  
    %           set(gca,'XTick',[],'YTick',[]) [+1 i$d  
    %           axis square s0h)~z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8;5/_BwMu  
    %       end Ylf4q/-  
    % =osj}(  
    %   See also ZERNPOL, ZERNFUN2. +(<f(]bG  
    BKTsc/v2>:  
    %   Paul Fricker 11/13/2006 ^q6~xC,/  
    | jkmh6  
    t&oNJq{  
    % Check and prepare the inputs: @PI\.y_w  
    % ----------------------------- v$cD!`+k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :z:Blp>nK/  
        error('zernfun:NMvectors','N and M must be vectors.') wVVe L$28  
    end ~:@H6Ke[  
    izxCbbg  
    if length(n)~=length(m) )<|TEp4r-  
        error('zernfun:NMlength','N and M must be the same length.') :s5g6TR  
    end Z*)<E)  
    Cr` 0C  
    n = n(:); BAhC-;B#R  
    m = m(:); t&xx-4  
    if any(mod(n-m,2)) $1v5*E  
        error('zernfun:NMmultiplesof2', ... ZUu^==a  
              'All N and M must differ by multiples of 2 (including 0).') x\%eg w  
    end =bDG|:+  
    0b4O J[  
    if any(m>n) (g Z!o_  
        error('zernfun:MlessthanN', ... >g[W@FhT'k  
              'Each M must be less than or equal to its corresponding N.') jz)H?UuDY  
    end sa`Yan  
    s :ruCS  
    if any( r>1 | r<0 ) (TE2t7ab|M  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') B'Wky>5)  
    end _x!pM j(A  
    5-OvPTY`M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cC4T3]4l'  
        error('zernfun:RTHvector','R and THETA must be vectors.') |(S W  
    end R+K[/AA  
    I?K0bs+6  
    r = r(:); ueR42J%s  
    theta = theta(:); @I&"P:E0F;  
    length_r = length(r); +[ItkfSod!  
    if length_r~=length(theta) ;i9CQ0e ?  
        error('zernfun:RTHlength', ... wLtTC4D  
              'The number of R- and THETA-values must be equal.') qo@dFKy  
    end MjpJAV/84  
    }]I?vyQ#V  
    % Check normalization: $ZS9CkN  
    % -------------------- v\Ljm,+  
    if nargin==5 && ischar(nflag) (5> ibe  
        isnorm = strcmpi(nflag,'norm'); %\l,X{X  
        if ~isnorm qC )VT3  
            error('zernfun:normalization','Unrecognized normalization flag.') 'T[zh#v>S  
        end mw[4<vfB0a  
    else +!v RU`  
        isnorm = false; 0R& U18)y  
    end Bt,Xe~$z-  
    O[ !o1.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `xUPML-  
    % Compute the Zernike Polynomials K_QCYS.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |Z ,G  
    6<Z: Xw  
    % Determine the required powers of r: WM"^#=+$  
    % ----------------------------------- 5F"?]'*/  
    m_abs = abs(m); O@iW?9C+  
    rpowers = []; tWn m{mF  
    for j = 1:length(n) W[Bu&?h$  
        rpowers = [rpowers m_abs(j):2:n(j)]; oui!fTy  
    end u7?juI#Cl  
    rpowers = unique(rpowers); !9, pX  
    >|)0Amt  
    % Pre-compute the values of r raised to the required powers, %z~U@Mka  
    % and compile them in a matrix: ozC!q)j  
    % ----------------------------- =[JN'|Q+  
    if rpowers(1)==0 pGY]Vw Y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @@IA35'tc  
        rpowern = cat(2,rpowern{:}); 2HXKz7da  
        rpowern = [ones(length_r,1) rpowern]; 4Umsc>yfK  
    else Net)l@IB]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [+g@@\X4  
        rpowern = cat(2,rpowern{:}); ;YDF*~9u  
    end t1jlxK  
    6#M0AG  
    % Compute the values of the polynomials: %i8>w:@NW  
    % -------------------------------------- "<x~{BN?  
    y = zeros(length_r,length(n)); N?;o_^C  
    for j = 1:length(n) T-C#xmY(  
        s = 0:(n(j)-m_abs(j))/2; X5Y `(/V  
        pows = n(j):-2:m_abs(j); <z uE=0P~%  
        for k = length(s):-1:1 Rt^<xXX$  
            p = (1-2*mod(s(k),2))* ... JGcD{RU|  
                       prod(2:(n(j)-s(k)))/              ... WEtA4zCO  
                       prod(2:s(k))/                     ... W@,p9=425  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1G%PXrEj8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P0e""9JOo  
            idx = (pows(k)==rpowers); JA(fam~{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); t3t0vWE<,  
        end [fi'=Cb  
         2BDan^:-Av  
        if isnorm $-Pqs ^g  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); P4j8`}&/  
        end M J,ZXJXs  
    end BD7@Mj*|  
    % END: Compute the Zernike Polynomials _]xt65TL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QZ3(u<f  
    +'/}[1q1/T  
    % Compute the Zernike functions: d:hL )x  
    % ------------------------------ 8i;)|z7  
    idx_pos = m>0; ] 5v4^mk  
    idx_neg = m<0; 2l@"p!ar=  
    ZQ~myqx,+L  
    z = y; & 8' (  
    if any(idx_pos) ncattp   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RP,:[}mPl  
    end 5!F\h'E  
    if any(idx_neg) j- YJ."  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~ sIGI?5f  
    end z8/xGQn  
    eR-=<0Iw;  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ~#"7,rQp  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. nFe` <Al$N  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated E-sSRt  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive jefNiEE[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, gf3U#L}P  
    %   and THETA is a vector of angles.  R and THETA must have the same /&$"}Z6z  
    %   length.  The output Z is a matrix with one column for every P-value, H+VO.s.a  
    %   and one row for every (R,THETA) pair. 2K]IlsMO&  
    % ^+*GbY$'  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Qq T/1^imS  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) e)HhnN@  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) `u#;MUg  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 q*[!>\ Z8  
    %   for all p. A{z>D`d  
    % {jOzap|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 | "Jx  
    %   Zernike functions (order N<=7).  In some disciplines it is aGB0-;.t7  
    %   traditional to label the first 36 functions using a single mode M!Z*QY."P  
    %   number P instead of separate numbers for the order N and azimuthal X<~k =qwA  
    %   frequency M. BFMS*t`  
    % E+}GxFG-:  
    %   Example: %'L].+$t  
    % %1\v7Xw{9  
    %       % Display the first 16 Zernike functions AozmO  
    %       x = -1:0.01:1; 1mHwYT+  
    %       [X,Y] = meshgrid(x,x); |5=~(-I>@  
    %       [theta,r] = cart2pol(X,Y); K`Bq(z?/  
    %       idx = r<=1; -RG8<bI,  
    %       p = 0:15; Z}8k[*.  
    %       z = nan(size(X)); @s%X  
    %       y = zernfun2(p,r(idx),theta(idx)); /!=U +X  
    %       figure('Units','normalized') M=5d95*-}  
    %       for k = 1:length(p) [)#u<lZ<~  
    %           z(idx) = y(:,k); tYs8)\{  
    %           subplot(4,4,k) \G$QNUU  
    %           pcolor(x,x,z), shading interp FZe:co8Mu  
    %           set(gca,'XTick',[],'YTick',[]) vG]GQ#  
    %           axis square C-llq`(d  
    %           title(['Z_{' num2str(p(k)) '}']) SU%mmw ES3  
    %       end 6OL41g'  
    % ud0QZ X  
    %   See also ZERNPOL, ZERNFUN. "7=bL7wM&  
     vv+TKO  
    %   Paul Fricker 11/13/2006 !1a}| !Zn  
    j4;Du>obQ  
    2E^"r jLm  
    % Check and prepare the inputs: }m6f^fs}  
    % ----------------------------- O( VxMO  
    if min(size(p))~=1 :KEq<fEI  
        error('zernfun2:Pvector','Input P must be vector.') tNK^z7Dm  
    end ]SFWt/<  
    {7vgHutp  
    if any(p)>35 ~?#~Ar  
        error('zernfun2:P36', ... OmB TA=E<  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Y [W6Sc  
               '(P = 0 to 35).']) w{PUj  
    end B!eK!B  
    HHz;0V4w?  
    % Get the order and frequency corresonding to the function number: hZcmP"wgC1  
    % ---------------------------------------------------------------- ,09DBxQq,  
    p = p(:); ^_@r.y]  
    n = ceil((-3+sqrt(9+8*p))/2); NX?}{'f  
    m = 2*p - n.*(n+2); LU%#mY  
    -*?p F_*w  
    % Pass the inputs to the function ZERNFUN: HmvsYP66  
    % ---------------------------------------- 6`acg'sk>  
    switch nargin %/51o6a  
        case 3 14mf}"z\  
            z = zernfun(n,m,r,theta); Zr=ib  
        case 4 C 8N%X2R  
            z = zernfun(n,m,r,theta,nflag); )X/*($SuA  
        otherwise Cl,9yU)1n  
            error('zernfun2:nargin','Incorrect number of inputs.') .}o~VT:!?Y  
    end DKX/W+#a  
    `|nH1sHFq  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) q]CeD   
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ,]ga[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of S#tY@h@XV  
    %   order N and frequency M, evaluated at R.  N is a vector of [@//#}5v  
    %   positive integers (including 0), and M is a vector with the * r;xw  
    %   same number of elements as N.  Each element k of M must be a fN@{y+6  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) z`4c 4h]I  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is p}uncIod  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 6#U^< `  
    %   with one column for every (N,M) pair, and one row for every lCR!:~  
    %   element in R. 8] `Ru5nd  
    % 1c$vLo832  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 5MR,UgT  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is cMaOM}mS  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 2VA!&`I  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 R:M,tL-l  
    %   for all [n,m]. U6<M/>RG$  
    % Xd3}Vn=  
    %   The radial Zernike polynomials are the radial portion of the 49AW6H.JT  
    %   Zernike functions, which are an orthogonal basis on the unit c+g@Z"es  
    %   circle.  The series representation of the radial Zernike ##cnFQCB  
    %   polynomials is (,B#t7ka  
    % !J3UqS  
    %          (n-m)/2 L0L2Ns  
    %            __ :S -";.:"  
    %    m      \       s                                          n-2s FQk!d$BG  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r I`T1Pll  
    %    n      s=0 Ab2Q \+,  
    % ^`XCT  
    %   The following table shows the first 12 polynomials. (5a1P;_Y  
    % uH:YKH':/  
    %       n    m    Zernike polynomial    Normalization t0Mx!p'T  
    %       --------------------------------------------- \vRd}   
    %       0    0    1                        sqrt(2) 9%tobo@J~n  
    %       1    1    r                           2 W3GNA""O  
    %       2    0    2*r^2 - 1                sqrt(6) du_4eB  
    %       2    2    r^2                      sqrt(6) 1& ^?U{  
    %       3    1    3*r^3 - 2*r              sqrt(8) wMWW=$h#\  
    %       3    3    r^3                      sqrt(8) P6\6?am  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Hr^3`@}#1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 36vgX=}  
    %       4    4    r^4                      sqrt(10) pr&=n;_ n  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) IeP WOpj3  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 02=lsV!U  
    %       5    5    r^5                      sqrt(12) dg_Gs>?2  
    %       --------------------------------------------- QI_4*  
    % ok{!+VCB5  
    %   Example: H C0w;MG)  
    % R#W&ery  
    %       % Display three example Zernike radial polynomials 4<gb36)|4  
    %       r = 0:0.01:1; ]rN#B-aAr  
    %       n = [3 2 5]; = a}b+(R  
    %       m = [1 2 1]; fuMJdAuY7d  
    %       z = zernpol(n,m,r); ;+/o?:AH  
    %       figure />44]A<  
    %       plot(r,z) Uz dc  
    %       grid on h@ )  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') \r {W  
    % ]uQqn]+I!  
    %   See also ZERNFUN, ZERNFUN2. .i Hn5SGA  
     Vzl^Ka'  
    % A note on the algorithm. u0Nm.--;_3  
    % ------------------------ [yS#O\$'e  
    % The radial Zernike polynomials are computed using the series }4//@J?:  
    % representation shown in the Help section above. For many special Ul+Mo&y-  
    % functions, direct evaluation using the series representation can %$5H!!~o  
    % produce poor numerical results (floating point errors), because E3aDDFDH  
    % the summation often involves computing small differences between N?P%-/7  
    % large successive terms in the series. (In such cases, the functions {Ui =b+  
    % are often evaluated using alternative methods such as recurrence jE\Sm2G9  
    % relations: see the Legendre functions, for example). For the Zernike ep/Y^&$M  
    % polynomials, however, this problem does not arise, because the rXfy!rD_P_  
    % polynomials are evaluated over the finite domain r = (0,1), and S* *oA 6  
    % because the coefficients for a given polynomial are generally all N!2Rl  
    % of similar magnitude. [7FItlF%I  
    % Np+&t}  
    % ZERNPOL has been written using a vectorized implementation: multiple o*rQP!8,oy  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] eKvV*[N a  
    % values can be passed as inputs) for a vector of points R.  To achieve Qnd5X`jF#  
    % this vectorization most efficiently, the algorithm in ZERNPOL -E"GX  
    % involves pre-determining all the powers p of R that are required to ^-z=`>SrS"  
    % compute the outputs, and then compiling the {R^p} into a single $%R$ G`.KM  
    % matrix.  This avoids any redundant computation of the R^p, and u8GMUN  
    % minimizes the sizes of certain intermediate variables. P [Uy  
    % {gbn/{  
    %   Paul Fricker 11/13/2006 *+)AqKP\Kv  
    UMl#D >:C<  
    $(e#aHB  
    % Check and prepare the inputs: 0 &_UH}10  
    % ----------------------------- 6 GP p>X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zOgTQs"ZH  
        error('zernpol:NMvectors','N and M must be vectors.') F# T 07<  
    end /,=@8k!t?  
    ' Z0r>.  
    if length(n)~=length(m) RPd}Wf  
        error('zernpol:NMlength','N and M must be the same length.') l>*"mh  
    end OyV<u@[i  
    0sca4G0{  
    n = n(:); R218(8S  
    m = m(:); 'R`tLN  
    length_n = length(n); ^sN (  
    ABE@n%|`  
    if any(mod(n-m,2)) ;2'q_Btk4  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') . 8N.l^0,  
    end om?-WJI  
    =0uAE7q(9  
    if any(m<0) <S?ddp2  
        error('zernpol:Mpositive','All M must be positive.') 8#!i[UF dj  
    end e@:sR  
    ^j-3av=  
    if any(m>n) B#/Q'V  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') nWQ;9_qBB  
    end E|'h]NY  
    #Zrlp.M4  
    if any( r>1 | r<0 ) E dZ\1'&/9  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') b& 1`NO  
    end F1L:,.e`  
    ^&y$Wd]6  
    if ~any(size(r)==1) 34\(7JO  
        error('zernpol:Rvector','R must be a vector.') }!IL]0 q  
    end ,^#yo6-  
    ,U(1NK8o  
    r = r(:); "Ph^BU Ab  
    length_r = length(r); 3Zi@A4Wu  
    23 ~ Sjr  
    if nargin==4 [JF150zr  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); V5*OA??k<  
        if ~isnorm Kq i4hK  
            error('zernpol:normalization','Unrecognized normalization flag.') Um&(&?Xf  
        end !%$`Eq)M^7  
    else */|BpakD<  
        isnorm = false; [l,Ei?  
    end GnvL'ESa@M  
    As>_J=8} 3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w^t/9Nasi  
    % Compute the Zernike Polynomials D_vbSF)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yn#X;ja-  
    h: 9Zt0,  
    % Determine the required powers of r: S~|T4q(  
    % ----------------------------------- u*hSj)vr1  
    rpowers = []; K4kMM*D  
    for j = 1:length(n) 5LOo8xN  
        rpowers = [rpowers m(j):2:n(j)]; IIbYfPiO  
    end YpqrZWvh  
    rpowers = unique(rpowers); -Z's@'*  
    %n*-VAfE\  
    % Pre-compute the values of r raised to the required powers, 8YbE`32  
    % and compile them in a matrix: EY tQw(!Q  
    % ----------------------------- 1YH+d0UGn  
    if rpowers(1)==0 <i,U )Tt^C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "s{5O>  
        rpowern = cat(2,rpowern{:}); 6fw(T.Pe  
        rpowern = [ones(length_r,1) rpowern]; 0\eIQp  
    else lv04g} W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |j7,Mu+  
        rpowern = cat(2,rpowern{:}); 13>0OKg`#  
    end 5k.oW=  
    jbAx;Xt'=M  
    % Compute the values of the polynomials: .X;3,D[w  
    % -------------------------------------- 4T ~}  
    z = zeros(length_r,length_n); 4M2j!Sw  
    for j = 1:length_n .hifsB~  
        s = 0:(n(j)-m(j))/2; &wV]"&-  
        pows = n(j):-2:m(j); }9FSO9*&}  
        for k = length(s):-1:1 nR-YrR*k  
            p = (1-2*mod(s(k),2))* ... maNl^i  
                       prod(2:(n(j)-s(k)))/          ... 1]p ZrBh"E  
                       prod(2:s(k))/                 ... r4SXE\ G  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~Yy>zUH^X  
                       prod(2:((n(j)+m(j))/2-s(k))); H5Io{B%=  
            idx = (pows(k)==rpowers); N(Tz%o4  
            z(:,j) = z(:,j) + p*rpowern(:,idx); H*r)Z 90  
        end +8RgF   
         .?loO3 m  
        if isnorm o{y9r{~A  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); V)[@98T_4?  
        end 0E3[N:s  
    end vwxXgk  
    ci?qT,&  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  c`J.Tm[_u  
    h1B? 8pD  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -~s!73pDY  
    .L9j>iP9 *  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)