非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 z?7pn}-
function z = zernfun(n,m,r,theta,nflag) ]`%cTdpLj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9kcAMk1K
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &W1c#]q@r
% and angular frequency M, evaluated at positions (R,THETA) on the !^w+<p
% unit circle. N is a vector of positive integers (including 0), and @<_4Nb
% M is a vector with the same number of elements as N. Each element 3/iGSG`
% k of M must be a positive integer, with possible values M(k) = -N(k) q*>`HTPcU
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 9!tRM-
% and THETA is a vector of angles. R and THETA must have the same vq|W&
% length. The output Z is a matrix with one column for every (N,M) dbw`E"g
% pair, and one row for every (R,THETA) pair. m6s32??m
% C+_ NG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike L49`=p<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w1[F]|
% with delta(m,0) the Kronecker delta, is chosen so that the integral rQU;?[y
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^j@,N&W:lG
% and theta=0 to theta=2*pi) is unity. For the non-normalized >#SQDVFf
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *+5AN306
% bx1'
% The Zernike functions are an orthogonal basis on the unit circle. VgOj#Z?K
% They are used in disciplines such as astronomy, optics, and OX!9T.j
% optometry to describe functions on a circular domain. 9k1n-po
% Lf3:' n
% The following table lists the first 15 Zernike functions. Gt' %:9r
% z"|^Y|`m
% n m Zernike function Normalization C;_10Rb2ut
% -------------------------------------------------- Eg>MG87
% 0 0 1 1 6tVB}UKs
% 1 1 r * cos(theta) 2 m3 ,i{
% 1 -1 r * sin(theta) 2 |+%K89W
% 2 -2 r^2 * cos(2*theta) sqrt(6) |iJ37QIM
% 2 0 (2*r^2 - 1) sqrt(3) ~b*f2UVs
% 2 2 r^2 * sin(2*theta) sqrt(6) +h"RXwlBM
% 3 -3 r^3 * cos(3*theta) sqrt(8) F]xo *
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V#zDYrp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ygh*oVHO
% 3 3 r^3 * sin(3*theta) sqrt(8) D{~I
% 4 -4 r^4 * cos(4*theta) sqrt(10) WI' ;e4
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {2A/ @$?
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 7i`8 c =.
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -W2 !_
% 4 4 r^4 * sin(4*theta) sqrt(10) r\Zz=~![<
% -------------------------------------------------- >J+hu;I5
% pno]Bld'z
% Example 1: 5P [b/.n
% >zVj+
% % Display the Zernike function Z(n=5,m=1) 4 QD.'+L
% x = -1:0.01:1; WOiw 0
% [X,Y] = meshgrid(x,x); 7YrX3Hx8
% [theta,r] = cart2pol(X,Y); D3N\$ D
% idx = r<=1; gq!|0
% z = nan(size(X)); /aP4'U8ov
% z(idx) = zernfun(5,1,r(idx),theta(idx)); crG+BFi
% figure #}3$n/
% pcolor(x,x,z), shading interp zQ&`|kS
% axis square, colorbar a~jM^b;VN
% title('Zernike function Z_5^1(r,\theta)') q,A; d^g
% $5Jo%K%
% Example 2: X H,1\J-S
% jNBvy1
% % Display the first 10 Zernike functions Mt"j< ]EW
% x = -1:0.01:1; G$( B26
% [X,Y] = meshgrid(x,x); QE1DTU
% [theta,r] = cart2pol(X,Y); F6`$5%$M;?
% idx = r<=1; 4*&_h g)h
% z = nan(size(X)); }j;*7x8(
% n = [0 1 1 2 2 2 3 3 3 3]; $n.oY5=\
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; RX3P%xZ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; gZ8n[zxf6
% y = zernfun(n,m,r(idx),theta(idx)); )OpB\k
% figure('Units','normalized') $9)| cO
% for k = 1:10 W{B)c?G]
% z(idx) = y(:,k); S2T~7-
% subplot(4,7,Nplot(k)) * EY^t=
% pcolor(x,x,z), shading interp )2~Iqzc4
% set(gca,'XTick',[],'YTick',[]) R9%Um6
% axis square lu2"?y[2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QpbyC_:;$4
% end XR3=Y0YDf
% lky{<jZ%
% See also ZERNPOL, ZERNFUN2. KsZd.Rf=@
h2<Y*j
% Paul Fricker 11/13/2006 wC{?@h
(r78AZ
w_4/::K*
% Check and prepare the inputs: ]#x!mZ!
% ----------------------------- ?Zu2=<DU
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ='"DUQH|*
error('zernfun:NMvectors','N and M must be vectors.') #[=%+ *Q
end ( CDwl,
VjsQy>5m
if length(n)~=length(m) >,;,
6|S
error('zernfun:NMlength','N and M must be the same length.') Uskz~~}G
end T-S6`^_L
!0p_s;uu,W
n = n(:); G>Uam TM
m = m(:); *PEk+e
if any(mod(n-m,2)) &b~if}vcb
error('zernfun:NMmultiplesof2', ... z86[_l:
'All N and M must differ by multiples of 2 (including 0).') 6'E3Q=}d
end d'y\~M9(
fdk]i/*)
if any(m>n) NWx.l8G
error('zernfun:MlessthanN', ... Ut|G.%1Vd%
'Each M must be less than or equal to its corresponding N.') *?dw`j_b >
end oVDqX=G
0H;,~
WY
if any( r>1 | r<0 ) >Z-f</v03
error('zernfun:Rlessthan1','All R must be between 0 and 1.') J)yNp,V
end EkWipF(
(4ueO~jb$
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \l$gcFXb
error('zernfun:RTHvector','R and THETA must be vectors.') 5ctH=t0
end [3&Y* W
LNm{}VJ%
r = r(:); 6h8fzqRzc
theta = theta(:); 3JnBKh\n
length_r = length(r); BM6 J
if length_r~=length(theta) .~>Uh3S
error('zernfun:RTHlength', ... e(t,~(
'The number of R- and THETA-values must be equal.') b d!|/Lk
end
B6| g2Tt
z^xrB$8
u
% Check normalization: f/!^QL{
% -------------------- X0IXj%\N
if nargin==5 && ischar(nflag) srX" vF
isnorm = strcmpi(nflag,'norm'); ~k}>CNTr
if ~isnorm TttD}`\.
error('zernfun:normalization','Unrecognized normalization flag.') yDk|ad|
end /<J&ZoeJB
else iP nu *29
isnorm = false; 7*D*nY4+
end DH@})TN*O
?=C?3R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eJh4hp;x
% Compute the Zernike Polynomials {OK+d#=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JYQ.Y!X1O
^7cZ9/3
% Determine the required powers of r: S w<V/t
% ----------------------------------- !%pY)69gv
m_abs = abs(m); kB`t_`7f
rpowers = []; ?hW?w$C
for j = 1:length(n) [;IW'cXNq
rpowers = [rpowers m_abs(j):2:n(j)]; ~[E@P1
end Woo2hg-ti
rpowers = unique(rpowers); H\BhAf
xUp[)B6?:
% Pre-compute the values of r raised to the required powers, GoVB1)
% and compile them in a matrix: )T4%}$(
% ----------------------------- oN0p$/La
if rpowers(1)==0 Ib$*w)4:
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |(mr&7O
rpowern = cat(2,rpowern{:}); y(I_ 6+B^
rpowern = [ones(length_r,1) rpowern]; S}0W<H P
else rkp 1tv
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ulc m
rpowern = cat(2,rpowern{:}); !>%U8A
end st8=1}:&\
q(N2#di
% Compute the values of the polynomials: cy0
%tsB|
% -------------------------------------- Sk*-B@!S
y = zeros(length_r,length(n)); QH_0U`3
for j = 1:length(n) R`7v3{
s = 0:(n(j)-m_abs(j))/2; )+'De
pows = n(j):-2:m_abs(j); OK=lp4X
for k = length(s):-1:1 vY+{zGF
p = (1-2*mod(s(k),2))* ... 0zSRk]i.f
prod(2:(n(j)-s(k)))/ ... .I6:iB
prod(2:s(k))/ ... lu]Z2xSv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )p,uZ`~v
prod(2:((n(j)+m_abs(j))/2-s(k))); ]e*Zx;6oi
idx = (pows(k)==rpowers); H|E{n/g
y(:,j) = y(:,j) + p*rpowern(:,idx); |7ga9
end /zB;1%m-
pHW
Qk z(
if isnorm Q}a, f75
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); aD2+9?m
end .d\<}\zZ7J
end zjyj,jP
% END: Compute the Zernike Polynomials r*-e~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [G(}`u8w"
w"-'
% Compute the Zernike functions: Qv3g
4iJ
% ------------------------------ NPN* k].
idx_pos = m>0; @,b:s+]rp
idx_neg = m<0; -jBk
F vJJpPS
z = y; uO4kCK<7C
if any(idx_pos) n?@3+wG
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )gO=5_^u*o
end Z */*P4\
if any(idx_neg) 9u3~s<
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); r_sZw@lqJ
end c1v,5c6d j
qr5ME/)z
% EOF zernfun