非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R"=G?d)
function z = zernfun(n,m,r,theta,nflag) )]X_')K
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. CNfeHMT
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3u+~!yz
% and angular frequency M, evaluated at positions (R,THETA) on the i#(T?=VPcy
% unit circle. N is a vector of positive integers (including 0), and #UI@<0P)
% M is a vector with the same number of elements as N. Each element 19;\:tN
% k of M must be a positive integer, with possible values M(k) = -N(k) }3M\&}=8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, u_zp?Nc
% and THETA is a vector of angles. R and THETA must have the same +4B>gS[ F
% length. The output Z is a matrix with one column for every (N,M) !mq+Oz~
% pair, and one row for every (R,THETA) pair. YujhpJ<
% tw\/1wa.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "d%":F(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), o`h F1*yp
% with delta(m,0) the Kronecker delta, is chosen so that the integral Eh8.S)E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 611:eLyy&l
% and theta=0 to theta=2*pi) is unity. For the non-normalized `4(k ?Pk2
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Tx],-
U
% ^om(6JL2
% The Zernike functions are an orthogonal basis on the unit circle. /1o~x~g(b
% They are used in disciplines such as astronomy, optics, and e@=Bl-
% optometry to describe functions on a circular domain. ^ 8egn|
% 8 :Z3Q
% The following table lists the first 15 Zernike functions. }$81FSKh
% :;)K>g,b
% n m Zernike function Normalization f>l}y->-Ug
% -------------------------------------------------- &7JCPw
% 0 0 1 1 F4Z+)'oDr,
% 1 1 r * cos(theta) 2 CbI[K|
% 1 -1 r * sin(theta) 2 %3'80u6BCJ
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?w /tq!
% 2 0 (2*r^2 - 1) sqrt(3) =#n|t[h-
% 2 2 r^2 * sin(2*theta) sqrt(6) TJ2$
Z
% 3 -3 r^3 * cos(3*theta) sqrt(8) 80
i<Ij8J
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) o}Dy\UfU
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /m.6NVu7
% 3 3 r^3 * sin(3*theta) sqrt(8) NC@OmSR\0
% 4 -4 r^4 * cos(4*theta) sqrt(10) G|IO~o0+
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vMj"%
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
h ej
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !W .ooy5(
% 4 4 r^4 * sin(4*theta) sqrt(10) ^Shz[=fd
% -------------------------------------------------- ]"{K5s7
% Z?CmD;W
% Example 1: WPpl9)Qc
% |V%Qp5 XJ
% % Display the Zernike function Z(n=5,m=1) hJ+>Xm@@!
% x = -1:0.01:1; Lc0^I<Y
% [X,Y] = meshgrid(x,x); O .m;a_
% [theta,r] = cart2pol(X,Y); |4ONGU*`E
% idx = r<=1; bC)diC
% z = nan(size(X)); [bH6>{3u
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 2c_#q1/Z/
% figure Ej8EQ%P
% pcolor(x,x,z), shading interp N3 07lGb
% axis square, colorbar 7`|$uIM`
% title('Zernike function Z_5^1(r,\theta)') vfcj,1
% K"#np!Y)
% Example 2: IF$f^$
% _l{GHz
% % Display the first 10 Zernike functions e>z3\4
% x = -1:0.01:1; /i"L@t)\t
% [X,Y] = meshgrid(x,x); Y!Wz7
C
% [theta,r] = cart2pol(X,Y); oCXBek?\
% idx = r<=1; 9ZeTS~i
% z = nan(size(X)); 7M=`Z{=9
% n = [0 1 1 2 2 2 3 3 3 3]; uiP fAPZ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; w=e~
M
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %Z}A+Rv+*m
% y = zernfun(n,m,r(idx),theta(idx)); 7%V2
% figure('Units','normalized')
TB1E1
% for k = 1:10 pg [F{T<
% z(idx) = y(:,k); gj0gs
% subplot(4,7,Nplot(k)) CES^
c-. k
% pcolor(x,x,z), shading interp DnMfHG[<
% set(gca,'XTick',[],'YTick',[]) t+|c)"\5h
% axis square `Q' 0l},
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /{."*jK
% end #t>w)`bA-
% )apqL{u:=
% See also ZERNPOL, ZERNFUN2. ?m}vDd
*"d"
% Paul Fricker 11/13/2006 D[-V1K&g
wm%9>mA%
#9F=+[L
% Check and prepare the inputs: Dny5X.8
% ----------------------------- z
v*hA/
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C C;T[b&
error('zernfun:NMvectors','N and M must be vectors.') 2E9Cp
end Nv{r`J.
ogtKj"a
if length(n)~=length(m) 2,{m>fF
error('zernfun:NMlength','N and M must be the same length.') "M3R}<Vt
end }q^M
%oJ_,m_(
n = n(:); !iN=py
m = m(:); K.Nun)<
if any(mod(n-m,2)) =6y4* f
error('zernfun:NMmultiplesof2', ... /. k4Y
'All N and M must differ by multiples of 2 (including 0).') !_3Rd S
end KB0HM
_VLc1svv
if any(m>n) Y;O\ >o[
error('zernfun:MlessthanN', ... w+)MrB-}
'Each M must be less than or equal to its corresponding N.') xc7Wk&{=
end \DI%/(?
.DR^<Qy
if any( r>1 | r<0 ) Ikv@}^p 7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 80TSE*
end Q*u4q-DE
9*pH[vH
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `md)|PSU
error('zernfun:RTHvector','R and THETA must be vectors.') JKN0:/t7Q
end H`odQkZ!
e <2?O
r = r(:); TUuw
theta = theta(:); gVO<W.?
length_r = length(r); dtD)VNkBZ
if length_r~=length(theta) 9|R]Lz3PA
error('zernfun:RTHlength', ... $9k7A 8K
'The number of R- and THETA-values must be equal.') N/IDj2C4
end .-2i9Bh6
s
tvI
% Check normalization: b9b384Q1O
% -------------------- `"`/_al^
if nargin==5 && ischar(nflag) /UtCJMQ
isnorm = strcmpi(nflag,'norm'); \Jq$!foYx
if ~isnorm ~5g2~.&*
error('zernfun:normalization','Unrecognized normalization flag.') s$ZzS2d
end @Cg%7AF
else *S ,5
isnorm = false; b|F4E{{D^
end Qa-]IKOs
s~(!m. R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vcm66J.14
% Compute the Zernike Polynomials 4JV/Ci5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T:k-`t0":N
GF]V$5.ps
% Determine the required powers of r: LE$_qX`L
% ----------------------------------- ^~\cx75D
m_abs = abs(m); *q**,_?;
rpowers = []; hr9rI
for j = 1:length(n) a
k&G=a6^
rpowers = [rpowers m_abs(j):2:n(j)]; cXP*?N4Cf
end I2"F2(>8K
rpowers = unique(rpowers); ^I2+$
!Q(x A,p
% Pre-compute the values of r raised to the required powers, CRXIVver
% and compile them in a matrix: .&Tcds
% ----------------------------- oTS/z\C"<u
if rpowers(1)==0 jFAnhbbCE
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ed6k7
rpowern = cat(2,rpowern{:}); rZ[}vU/H`
rpowern = [ones(length_r,1) rpowern]; $646"1S
else %#7NCdk;S
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dZ]['y%
rpowern = cat(2,rpowern{:}); ,gY bi-E
end abAX)R'
NmbA~i
% Compute the values of the polynomials: G!Gbg3:4e5
% -------------------------------------- O>FE-0rW}e
y = zeros(length_r,length(n)); '8RBR%)y
for j = 1:length(n) $"#2hVO
s = 0:(n(j)-m_abs(j))/2;
%4
pows = n(j):-2:m_abs(j); v>S[}du
for k = length(s):-1:1 J9buf}C[
p = (1-2*mod(s(k),2))* ... uB&um*DP
prod(2:(n(j)-s(k)))/ ... Tw`n 3y?
prod(2:s(k))/ ... VH*4fcT'D
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Lt8J^}kwl
prod(2:((n(j)+m_abs(j))/2-s(k))); '#Yqs/V
idx = (pows(k)==rpowers); QV&yVH=Xs
y(:,j) = y(:,j) + p*rpowern(:,idx); ePD~SO9*
end ]|6)'L&]*s
I;u1mywd
if isnorm R H^!7W*
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hW~XE{<
end mT:Z!sS
end YoU|)6Of
% END: Compute the Zernike Polynomials CRpMpPi@}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ON()2@Y4
^*-6PV#Z
% Compute the Zernike functions: Ad%3 fvn
% ------------------------------ JSf \ApX
idx_pos = m>0; %]U'
idx_neg = m<0; Ja`xG{~Y7i
*PSUB{i(
z = y; &-e@Et`Pg
if any(idx_pos) sfo+B$4|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q
eW{Cl~
end {D>@ZC
if any(idx_neg) n^xB_DJ~
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); r9\7I7z
end L9"yQD^R7?
q$ZmR]p
% EOF zernfun