非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 erbk(
function z = zernfun(n,m,r,theta,nflag) p\F%Nj,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. [p~,;%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c#"t.j<E}
% and angular frequency M, evaluated at positions (R,THETA) on the K)se$vb6
% unit circle. N is a vector of positive integers (including 0), and F?05+
% M is a vector with the same number of elements as N. Each element Kop(+]Q&n
% k of M must be a positive integer, with possible values M(k) = -N(k) %''L7o.#a
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -`eB4j'7
% and THETA is a vector of angles. R and THETA must have the same B2P@9u|9
% length. The output Z is a matrix with one column for every (N,M) ,W|-?b?
% pair, and one row for every (R,THETA) pair. a h_>:x
% <Z<meB[g
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )wCNLi>4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _ZFEo< `'
% with delta(m,0) the Kronecker delta, is chosen so that the integral +xU( {/
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vJ=Q{_D=\
% and theta=0 to theta=2*pi) is unity. For the non-normalized W]7/
e
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lw[c+F7
% <F(2D<d{;)
% The Zernike functions are an orthogonal basis on the unit circle. YURMXbj
% They are used in disciplines such as astronomy, optics, and GGr82)E
% optometry to describe functions on a circular domain. e0(aRN{W
% +egwZ$5I
% The following table lists the first 15 Zernike functions. m%apGp'=1
% 6hv.;n};
% n m Zernike function Normalization u:2Ll[ eo
% -------------------------------------------------- zBTW&
% 0 0 1 1 3\Q 9>>
% 1 1 r * cos(theta) 2 qy)~OBY
% 1 -1 r * sin(theta) 2 mfaU_Vo&
% 2 -2 r^2 * cos(2*theta) sqrt(6) _p+E(i 9
% 2 0 (2*r^2 - 1) sqrt(3) %)?jaE}[
% 2 2 r^2 * sin(2*theta) sqrt(6) kaB4[u
% 3 -3 r^3 * cos(3*theta) sqrt(8) X~c?C-fV
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 3Cc#{X-+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) :S_]!'H
% 3 3 r^3 * sin(3*theta) sqrt(8) %dg[ho
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1ONkmVtL
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )X[2~E
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _/noWwVu
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p/VVb%
% 4 4 r^4 * sin(4*theta) sqrt(10) |g)>6+?]W
% -------------------------------------------------- $*iovam>^]
% vno/V#e$WX
% Example 1: O^row1D_
% rf:H$\yw
% % Display the Zernike function Z(n=5,m=1) B 5|\<CF
% x = -1:0.01:1; Cp"7R&s
% [X,Y] = meshgrid(x,x); ,&WwADZ-s
% [theta,r] = cart2pol(X,Y); Cd"{7<OyM4
% idx = r<=1; Y.]$T8
% z = nan(size(X)); 7g(Z@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 6`@J=Q?
% figure PBCGC^0{
% pcolor(x,x,z), shading interp lYJSg70P
% axis square, colorbar U|%}B(
% title('Zernike function Z_5^1(r,\theta)') WEif&<Y
% &
rab,I"
% Example 2: VDbbA\
% tMX$8W0
c
% % Display the first 10 Zernike functions y"q>}5
% x = -1:0.01:1; vBl:&99[/
% [X,Y] = meshgrid(x,x); 60u_,@rV
% [theta,r] = cart2pol(X,Y); 7\,9Gcv1
% idx = r<=1; [%N?D#;
% z = nan(size(X)); iP"sw0V8
% n = [0 1 1 2 2 2 3 3 3 3]; dM^Z,;u
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; DJ:'<"zH7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; DI{*E
% y = zernfun(n,m,r(idx),theta(idx)); Q'jw=w!|g
% figure('Units','normalized') t'Wv?,
% for k = 1:10 {XmCG%%L
% z(idx) = y(:,k); \>-
M&C
% subplot(4,7,Nplot(k)) u/u(Z&
% pcolor(x,x,z), shading interp Bso#+v5
% set(gca,'XTick',[],'YTick',[]) ()?83Xj[c
% axis square N8dxgh!,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MkPQ@so
% end ;: 2U}p^-
% h&$h<zL[
% See also ZERNPOL, ZERNFUN2. C'#)mo_@t
BA]$Fi.Mw
% Paul Fricker 11/13/2006 lbBWOx/|
gYc]z5`
-PE_q Z^
% Check and prepare the inputs: ?!U[~Gq
% ----------------------------- *c94'T cl
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S-7&$n
error('zernfun:NMvectors','N and M must be vectors.') .PUp3X-
end jfY7ich
/q]rA
if length(n)~=length(m) 2H)4}5H
error('zernfun:NMlength','N and M must be the same length.') *(?Wzanh
end +SH{`7r
mOsp~|d
n = n(:); MxIa,M<
m = m(:); (O5Yd 6u
if any(mod(n-m,2)) 4\Y5RfLB_
error('zernfun:NMmultiplesof2', ... <ukBAux,D
'All N and M must differ by multiples of 2 (including 0).') YOD.y!.zq7
end Zp9.
~&4o-
%'=*utOxy
if any(m>n) i.vH$
error('zernfun:MlessthanN', ... S=(O6+U
'Each M must be less than or equal to its corresponding N.') 00QJ596
end P9
<U+\z
k||t<&`Ze
if any( r>1 | r<0 ) +nDy b
error('zernfun:Rlessthan1','All R must be between 0 and 1.') vt|R)[,
end qq| 5[I.?
M Irx,d
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 27e!KG[&
error('zernfun:RTHvector','R and THETA must be vectors.') N7+L@CC6T
end _5jT}I<k
_F;v3|`D@<
r = r(:); 0Ds3wNz
theta = theta(:); ) CP
length_r = length(r); {arqcILr
if length_r~=length(theta) <OMwi9
error('zernfun:RTHlength', ... 8s0+6{vW
'The number of R- and THETA-values must be equal.') f<Hi=Qpm
end +(3_V$|Dv
Rm} ym9
% Check normalization: 6}"c4^k6
% --------------------
}X&rJV
if nargin==5 && ischar(nflag) U#` e~d t<
isnorm = strcmpi(nflag,'norm'); `t~jHe4!Y
if ~isnorm ;.A}c)b
error('zernfun:normalization','Unrecognized normalization flag.') s<9g3Gh
end m+TAaK
else 'r?ULft1
isnorm = false; -zR<m
end \HfAKBT
Iux3f+H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ')y2W1
% Compute the Zernike Polynomials FE~D:)Xj'?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $.SBW=^V
L8VOiK=,
% Determine the required powers of r: ZSC*{dD$E
% ----------------------------------- ZEP?~zV\A
m_abs = abs(m); ,&P
4%N"
rpowers = []; ->sxz/L
for j = 1:length(n) mlnF,+s
rpowers = [rpowers m_abs(j):2:n(j)]; `^bP9X_a
end R6+)&:Ab{R
rpowers = unique(rpowers); gq7tSkH@
v ,8;:
sD
% Pre-compute the values of r raised to the required powers, c|&3e84U
% and compile them in a matrix: r;#"j%z
% ----------------------------- S
/hx\TzC
if rpowers(1)==0 {M]_]L{&7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); sdFHr4
rpowern = cat(2,rpowern{:}); x< A-Ws{^V
rpowern = [ones(length_r,1) rpowern]; 1/.BP
else ;tjOEmIiU
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^4dE8Ve"@
rpowern = cat(2,rpowern{:}); :<QknU}dwy
end {213/@,
t#k]K]
% Compute the values of the polynomials: p5G'})x
% -------------------------------------- (2g
a:}K
y = zeros(length_r,length(n)); VW-qQe
for j = 1:length(n) H+v&4} f
s = 0:(n(j)-m_abs(j))/2; NJUKH1lIhR
pows = n(j):-2:m_abs(j); <J/ =$u/
for k = length(s):-1:1 mq`/nAmt
p = (1-2*mod(s(k),2))* ... Y6` xb`
prod(2:(n(j)-s(k)))/ ... I|Oco?Q"
prod(2:s(k))/ ... *_(X$qfoW
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S,#1^S
prod(2:((n(j)+m_abs(j))/2-s(k))); oz)[-
idx = (pows(k)==rpowers); yPN '@{ 5#
y(:,j) = y(:,j) + p*rpowern(:,idx); o`bch?]
end uO%0rKW
1Cr&6 't
if isnorm po| Ux`u
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bJ~H
end (Ou%0
KW
end n(:<pz
% END: Compute the Zernike Polynomials lSxb:$g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [&)]-2w2
%B s. XW,
% Compute the Zernike functions: nV'1 $L#
% ------------------------------ BEdCA]T
idx_pos = m>0; Pvxb6\G&d
idx_neg = m<0; =rjU=3!&(
#N|\7(#~u
z = y; m'o dVZ7
if any(idx_pos) yW_yHSx;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); u` pTFy
end %yR XOt2(
if any(idx_neg) #}`sfaT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); dWAt#xII
end c;l!i-
Q:}]-lJg
% EOF zernfun