非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8mO_dQ
function z = zernfun(n,m,r,theta,nflag) }$a*XY1
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. x@|10GC#:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8/~@3-9EK
% and angular frequency M, evaluated at positions (R,THETA) on the T
^/\Rr
% unit circle. N is a vector of positive integers (including 0), and Wq<HsJd/
% M is a vector with the same number of elements as N. Each element +hs:W'`%
% k of M must be a positive integer, with possible values M(k) = -N(k) Ia:M+20n
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, VY@`)
% and THETA is a vector of angles. R and THETA must have the same D"{%[;J
% length. The output Z is a matrix with one column for every (N,M) #.LI`nYA
% pair, and one row for every (R,THETA) pair. j
~I_by
% NYR:dH]N~d
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "DRiJ.|APs
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Bo0T}P~
% with delta(m,0) the Kronecker delta, is chosen so that the integral kAW2vh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ze?H
% and theta=0 to theta=2*pi) is unity. For the non-normalized xg;F};}5$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m5W':vM
% 0bu!(Tpg7
% The Zernike functions are an orthogonal basis on the unit circle. Q=epUHFs
% They are used in disciplines such as astronomy, optics, and lEw!H^O4
% optometry to describe functions on a circular domain. *QoQ$alHH
%
9q2x}
% The following table lists the first 15 Zernike functions. raM{!T:
% mw83 pU6
% n m Zernike function Normalization 1([?EfC
% -------------------------------------------------- _znpzr9H
% 0 0 1 1 unr`.}A2>
% 1 1 r * cos(theta) 2 QO4eDSW
% 1 -1 r * sin(theta) 2 8w~X4A,
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]hbrzvo
% 2 0 (2*r^2 - 1) sqrt(3) T|5uywA|
% 2 2 r^2 * sin(2*theta) sqrt(6) hS^8/]E={
% 3 -3 r^3 * cos(3*theta) sqrt(8) tHFUV\D;,
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) }'uV{$
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) V} h)e3X
% 3 3 r^3 * sin(3*theta) sqrt(8) l_ LH!Tu
% 4 -4 r^4 * cos(4*theta) sqrt(10) P R_|
8H|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0.B'Bvn=s2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) {$C"yksr
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T5_rPz
% 4 4 r^4 * sin(4*theta) sqrt(10) \WZSY||C|_
% -------------------------------------------------- ] B>.}
% LE g#W
% Example 1: c3O&sa
V!
% o\nFSGkn
% % Display the Zernike function Z(n=5,m=1) Qo80u?*
% x = -1:0.01:1; F*y7 4j,
% [X,Y] = meshgrid(x,x); z/pxZB~"
% [theta,r] = cart2pol(X,Y); ^fbzlu?G4-
% idx = r<=1; Xzqx8Kd
% z = nan(size(X)); fhro"5/4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 9Wdx"g52_D
% figure <"7Wb"+
% pcolor(x,x,z), shading interp W}WDj:
% axis square, colorbar w1+
%+x
% title('Zernike function Z_5^1(r,\theta)') 2>xEE
% 2hb>6Z;r]K
% Example 2: nDz.61$[
%
~vMJ?P@
% % Display the first 10 Zernike functions ,fhK
% x = -1:0.01:1; 1gX$U00:
% [X,Y] = meshgrid(x,x); =@d->d
% [theta,r] = cart2pol(X,Y); tjcsT>
% idx = r<=1; "l B%"}
% z = nan(size(X)); u_Xp\RJ
% n = [0 1 1 2 2 2 3 3 3 3]; @$;I%
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; .Z@ i z5
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $/Llzpvny
% y = zernfun(n,m,r(idx),theta(idx)); QF$s([
% figure('Units','normalized') |zy` ]p9
% for k = 1:10 dfXBgsc6i
% z(idx) = y(:,k); <#)Q.P
% subplot(4,7,Nplot(k))
wKbU}29c
% pcolor(x,x,z), shading interp Bsj^R\
% set(gca,'XTick',[],'YTick',[]) >|1-o;UU
% axis square Y 9BKd78Y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F1%^,;
% end pzT`.#N:M
% L^Fb;sJYI
% See also ZERNPOL, ZERNFUN2. k:z)Sw
}RUK?:lEA
% Paul Fricker 11/13/2006 R3*{"!O
=RHIB1
ZSLvr-,D
% Check and prepare the inputs: {3``B#}
% ----------------------------- JcC2Zn6
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I.U=%{.
error('zernfun:NMvectors','N and M must be vectors.') )c<[@::i
end &_'3(xIO
,2mq}u>WU
if length(n)~=length(m) E=ObfN"ge
error('zernfun:NMlength','N and M must be the same length.') nHQWO
end oKPG0iM:
%kuUQ%W1
n = n(:); ;Ao`yC2(v
m = m(:); 2|${2u`$&y
if any(mod(n-m,2)) 5
axt\
error('zernfun:NMmultiplesof2', ... }wC=p>zA
'All N and M must differ by multiples of 2 (including 0).') ~NIqO4 D
end af&P;#U
7s0pH+
if any(m>n) 'T]Ok\
error('zernfun:MlessthanN', ... ">q?(i\
'Each M must be less than or equal to its corresponding N.') UryHte
end lN*"?%<x>
-`PLewvX
if any( r>1 | r<0 ) CJ6v S
error('zernfun:Rlessthan1','All R must be between 0 and 1.') R+9 hog
end 8o466m6/
A"IaFXB
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !#S"[q
error('zernfun:RTHvector','R and THETA must be vectors.') it->)?"(6
end -~
Dn^B1^
e]V7
7oc
r = r(:); S~^]ib0
theta = theta(:); $v=(`=
length_r = length(r); '2SZ]
if length_r~=length(theta) Sre:l'.
error('zernfun:RTHlength', ... Li\b,_C
'The number of R- and THETA-values must be equal.') l=47#zbpZ]
end w=thaF.
VI)hA
^S
% Check normalization: 1{G@'#(
% -------------------- &H2j3De
if nargin==5 && ischar(nflag) Us3zvpy)o
isnorm = strcmpi(nflag,'norm'); WP PDvB
if ~isnorm jm[f|4\
error('zernfun:normalization','Unrecognized normalization flag.') Pxgal4{6
end @QDpw1;V'
else y_T%xWK5
isnorm = false; CH $*=3M
end kE1k@h#/
|oR#j
`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vr #o]v
% Compute the Zernike Polynomials u\)q.`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [!4V_yOb
PrF('PH7i
% Determine the required powers of r: x#t?`
% ----------------------------------- (mx}6A
m_abs = abs(m); )9+H[
rpowers = []; +B4 i,]lCx
for j = 1:length(n) T^Hq 5Oy
rpowers = [rpowers m_abs(j):2:n(j)]; 0kaMYV?
end 3vEwui-5
rpowers = unique(rpowers); 4r9AU mJqw
E/_n}$Z
% Pre-compute the values of r raised to the required powers, 7+rroCr"
% and compile them in a matrix: 'i 8`LPQ
% ----------------------------- x/%/MFK)>8
if rpowers(1)==0 $Y%,?>AL<
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |j4;XaG)
rpowern = cat(2,rpowern{:}); cK'}+
rpowern = [ones(length_r,1) rpowern]; R%Xz3Z&|
else o>I,$=
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yg"FF:^T
rpowern = cat(2,rpowern{:}); K\5/ ||gi
end Q1x=@lXR
la`f@~Bbr1
% Compute the values of the polynomials: XKvH^Z4h{l
% -------------------------------------- kM3#[#6$!
y = zeros(length_r,length(n)); L"(
{6H
for j = 1:length(n) /=KEM gI?
s = 0:(n(j)-m_abs(j))/2; 4"Mq]_D
pows = n(j):-2:m_abs(j); t5EYu*
for k = length(s):-1:1 mA5sK?W
p = (1-2*mod(s(k),2))* ... COA>y?
prod(2:(n(j)-s(k)))/ ... c`7 dNx
prod(2:s(k))/ ... qrcir-+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8B6-f:
prod(2:((n(j)+m_abs(j))/2-s(k))); ?qbq\t
idx = (pows(k)==rpowers); Om2w+yU
y(:,j) = y(:,j) + p*rpowern(:,idx); 2QKt.a
end l2kUa'O-
|zOwC9-6
if isnorm tQ`|MO&o
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2FEi-m}
end MK <\:g
end 5]2 p>%G
% END: Compute the Zernike Polynomials "FLiSz%ME
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ccy q~
TmJXkR.5
% Compute the Zernike functions: >&Y\g?Z6G
% ------------------------------ "MyMByomQ
idx_pos = m>0; ME*A6/h
idx_neg = m<0; -6#
_ t
Sea6xGdq
z = y; jH37{S-
if any(idx_pos) zEw~t&:e
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (dHjf;
end +(h{3Y|
if any(idx_neg) 5e&;f
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); A&X
XL~yH
end 2j$~lI
-a7BVEFts
% EOF zernfun