非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6+8mV8{-8
function z = zernfun(n,m,r,theta,nflag) BPWnck=%
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. hNO)~rt
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [EGx
% and angular frequency M, evaluated at positions (R,THETA) on the ]xR4->eix
% unit circle. N is a vector of positive integers (including 0), and /Ri,>}n
% M is a vector with the same number of elements as N. Each element ?f@ 9n ph
% k of M must be a positive integer, with possible values M(k) = -N(k) nx;$dxx_Ws
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, h]P/KVqR.
% and THETA is a vector of angles. R and THETA must have the same QUPf*3Oy
% length. The output Z is a matrix with one column for every (N,M) !~d'{sy6
% pair, and one row for every (R,THETA) pair. E{gv,cUM
% 6z1\a
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike taCCw2s-8*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), p1
4d,}4W
% with delta(m,0) the Kronecker delta, is chosen so that the integral sJ7sjrEp1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WFj*nS^~l
% and theta=0 to theta=2*pi) is unity. For the non-normalized 6+Jry@
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L *{QjH
% `r]TA]DR
% The Zernike functions are an orthogonal basis on the unit circle. eKJ:?Lxv;
% They are used in disciplines such as astronomy, optics, and fM{1Os
% optometry to describe functions on a circular domain. iIB9j8
% 3"vRK5Bf
% The following table lists the first 15 Zernike functions. ^5>du~d
% <Cr8V'c
% n m Zernike function Normalization F8 ?uQP8
% -------------------------------------------------- gr\@sx?b
% 0 0 1 1 *N'hA5.z
% 1 1 r * cos(theta) 2 <c\]Ct
% 1 -1 r * sin(theta) 2 /4H[4m]I
% 2 -2 r^2 * cos(2*theta) sqrt(6) :K;T Q
% 2 0 (2*r^2 - 1) sqrt(3) p6[#f96^u
% 2 2 r^2 * sin(2*theta) sqrt(6) (h|ch#
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0T1ko,C!,e
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) X/wmKi
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \2Xx%SX
% 3 3 r^3 * sin(3*theta) sqrt(8) I)rGOda{
% 4 -4 r^4 * cos(4*theta) sqrt(10) \KNdZC?V2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;'hi9L
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) shy
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u x#.:C|
% 4 4 r^4 * sin(4*theta) sqrt(10)
N)P((>S;
% -------------------------------------------------- J&
)#G@fRX
% w`0)x5
TGR
% Example 1: &
L3UlL
% ]xI?,('_m
% % Display the Zernike function Z(n=5,m=1) bk0Y
% x = -1:0.01:1; T|!D>l'
% [X,Y] = meshgrid(x,x); mHHzCKE ,
% [theta,r] = cart2pol(X,Y); ?n&$m
% idx = r<=1; L=,Y1nO:p
% z = nan(size(X)); n3*UgNg%fK
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ) (+)Q'*
% figure ;*.(.
% pcolor(x,x,z), shading interp %P(;8sS
% axis square, colorbar PlF!cr7:4
% title('Zernike function Z_5^1(r,\theta)') {:3.27jQ
% q`cEA<~S
% Example 2: ?LR"hZ>
% @Mzz2&(dU
% % Display the first 10 Zernike functions Vj/fAHR`>'
% x = -1:0.01:1; 90?,-6
% [X,Y] = meshgrid(x,x); _ r~+p
% [theta,r] = cart2pol(X,Y); %
<^[j^j}o
% idx = r<=1; z^gi[
mi
% z = nan(size(X)); ~~U<
% n = [0 1 1 2 2 2 3 3 3 3]; L)1C'8).
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; U%h7h`=F?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; z2.*#xTZn
% y = zernfun(n,m,r(idx),theta(idx)); w[e0wh`.
% figure('Units','normalized') \Oz,Qzr|
% for k = 1:10 @T5YsX]qb7
% z(idx) = y(:,k); \ibCR~W4
% subplot(4,7,Nplot(k)) C?{D"f`[]
% pcolor(x,x,z), shading interp cJSVT8
% set(gca,'XTick',[],'YTick',[]) Gee~>:_Q{J
% axis square "$]ls9-%n
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T.J`S(oI
% end 2rF?Q?$,B
% Sy4
mZ}:
% See also ZERNPOL, ZERNFUN2. ^@ M [t<
N?\bBt@
% Paul Fricker 11/13/2006 (%6(5,
#"hJpyW 4V
-QN1oK@\mE
% Check and prepare the inputs: t3pZjdLJd
% ----------------------------- {ms,q_Zr
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,Y$F7&
error('zernfun:NMvectors','N and M must be vectors.') ,tcP=fdk]
end 7WgIhQ~
JL?Cnk$!
if length(n)~=length(m) Tt{U"EFO
error('zernfun:NMlength','N and M must be the same length.') &fCP2]hj'
end -l\~p4U
uE"5 cq'B/
n = n(:); Po'-z<}wS
m = m(:); :!(YEF#}
if any(mod(n-m,2)) N[0
xqQ
error('zernfun:NMmultiplesof2', ... S&5Q~}{,
'All N and M must differ by multiples of 2 (including 0).') L[CU
end SAd97A:
@c6"RHG9
if any(m>n) P{"WlJ
error('zernfun:MlessthanN', ... (m<R0
'Each M must be less than or equal to its corresponding N.') 7fap*
end /_$~rW
6e-#XCR{
if any( r>1 | r<0 ) $7msL#E7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') #L_@s
d
end ?(fQ<i n
;3 G~["DA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oP+kAV#]
error('zernfun:RTHvector','R and THETA must be vectors.') N8,EI^W8Z
end nu;}S!J
[B}1z
r = r(:); !S~,>,yd
theta = theta(:); zY]Bu-S3
length_r = length(r); {z.[tvE8h
if length_r~=length(theta) 2=igS#h
error('zernfun:RTHlength', ... R#"U/8b>z
'The number of R- and THETA-values must be equal.') %y~`"l$-
end ]cx"
qgwv=5|
% Check normalization: zj~8>QnKk
% -------------------- I(z>)S'7r
if nargin==5 && ischar(nflag) xP8iz?6"V
isnorm = strcmpi(nflag,'norm'); N90\]dFmy
if ~isnorm B@ZqJw9J[
error('zernfun:normalization','Unrecognized normalization flag.') )$ ofl%+
end 2q`)GCES~
else bHhC56[M
isnorm = false; aeG#:
Ln+{
end 2>!_B\%) H
>E//pr)_Km
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s,1pZT <E
% Compute the Zernike Polynomials "WF(
6z#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% skk-.9
n%83jep9
% Determine the required powers of r: @?<N +qdH>
% ----------------------------------- /W"Bf
m_abs = abs(m); hg[l{)Q
rpowers = []; tU+@1~
~
for j = 1:length(n) D}zOuB,S
rpowers = [rpowers m_abs(j):2:n(j)]; GOv92$e
end }u(d'9u
rpowers = unique(rpowers); )z]q"s5 Y
anHBySI3
% Pre-compute the values of r raised to the required powers, B'G*y2UnG
% and compile them in a matrix:
91-P)%?
% ----------------------------- 3v9gb,)y\
if rpowers(1)==0 5en
[)3E
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LP5eFl`|T
rpowern = cat(2,rpowern{:}); >u BV
rpowern = [ones(length_r,1) rpowern]; ?;0nJf
else tx:rj6-z
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rz<d%C;R
rpowern = cat(2,rpowern{:}); N&0uXrw
end jOoIF/So
,omp F$%
% Compute the values of the polynomials: g5kYyE
% -------------------------------------- MZUF! B
y = zeros(length_r,length(n)); d8Q_6(Ar|
for j = 1:length(n) $\YLmG
s = 0:(n(j)-m_abs(j))/2; ;4-pupK~%
pows = n(j):-2:m_abs(j); AmT|%j&3
for k = length(s):-1:1 33#7U+~]@
p = (1-2*mod(s(k),2))* ... Ft%TnEp
prod(2:(n(j)-s(k)))/ ... }S~ysQwT
prod(2:s(k))/ ... p|bc=`TD
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ()@.;R.Z
prod(2:((n(j)+m_abs(j))/2-s(k))); .LXh]I*
idx = (pows(k)==rpowers); b'Fx),
y(:,j) = y(:,j) + p*rpowern(:,idx); <
"L){$
end [a>JG8[,t
<B]i80.
if isnorm /%ODJ1 M
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }#\;np
end \U)2
Tg
end ~uhyROO,G"
% END: Compute the Zernike Polynomials M5cOz|j/*R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zCBtD_@
\p>]G[g
% Compute the Zernike functions: an$]IN
% ------------------------------ WTV3p,;6a
idx_pos = m>0; Vq .!(x
idx_neg = m<0; *! r\GGb
|
Q1ubS
z = y; Wvut)T
if any(idx_pos) "W_jdE6v
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .WL\:{G8;
end eB<V%,%N#
if any(idx_neg) o-Q]Dk1W
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \pewbu5^
end rB.=f[aX[
!\&7oAs=I
% EOF zernfun