非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 T*sB Wn'am
function z = zernfun(n,m,r,theta,nflag) d|(@#*{T]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. J+6bp0RIh
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2OJ=Xb1
% and angular frequency M, evaluated at positions (R,THETA) on the 7IH^5r
% unit circle. N is a vector of positive integers (including 0), and }
h pTS_
% M is a vector with the same number of elements as N. Each element j?rq%rQd
% k of M must be a positive integer, with possible values M(k) = -N(k) XT
'v7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {:r8X
% and THETA is a vector of angles. R and THETA must have the same 9&uWj'%ia
% length. The output Z is a matrix with one column for every (N,M) n9Xs sl0
% pair, and one row for every (R,THETA) pair. v"dj%75O?e
% 92HxZ*t7km
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _~b$6Nf!83
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 27!9LU
% with delta(m,0) the Kronecker delta, is chosen so that the integral OCVF+D :
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /_G^d1T1?L
% and theta=0 to theta=2*pi) is unity. For the non-normalized }TS4D={1
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m;"i4!
% d,9YrwbD
% The Zernike functions are an orthogonal basis on the unit circle. QjlwT 2o'
% They are used in disciplines such as astronomy, optics, and ")87GQ( R
% optometry to describe functions on a circular domain. " %)zTH
% d;D8$q)8Q
% The following table lists the first 15 Zernike functions. /"M7YPX;
% Gf{FFIe(
% n m Zernike function Normalization s!d"(K9E
% -------------------------------------------------- S4?N_"m9
% 0 0 1 1 TZ,kmk#
% 1 1 r * cos(theta) 2 ~~_!&
% 1 -1 r * sin(theta) 2 ;w_f ^R #
% 2 -2 r^2 * cos(2*theta) sqrt(6) ITu6m<V
% 2 0 (2*r^2 - 1) sqrt(3) K;wd2/jmJ
% 2 2 r^2 * sin(2*theta) sqrt(6) _DK%-,Spu
% 3 -3 r^3 * cos(3*theta) sqrt(8) okO^/"
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $m;rOKVU
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8[|RsM
% 3 3 r^3 * sin(3*theta) sqrt(8) L[Dr[
% 4 -4 r^4 * cos(4*theta) sqrt(10) Ox` +Z0)a
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =A,6KY=E
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) MWS=$N)v*
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0{PRv./`
% 4 4 r^4 * sin(4*theta) sqrt(10) ;(0E#hGN
% -------------------------------------------------- 3d2|vQx,K
% |oSx*Gh
% Example 1: j<LDJi>O
% t(|\3$z
% % Display the Zernike function Z(n=5,m=1) kR0d]"dr
% x = -1:0.01:1; ]~SOGAFW
% [X,Y] = meshgrid(x,x); S"Dw8_y7}
% [theta,r] = cart2pol(X,Y); ?{"_9g9
% idx = r<=1; d +Vx:`tT
% z = nan(size(X)); tp,e:4\8Q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); xJ|3}o:,
% figure W7a aL
% pcolor(x,x,z), shading interp Ifm|_
% axis square, colorbar gt9{u"o
% title('Zernike function Z_5^1(r,\theta)') i$Q$y
hT{
% P-?ya!@"
% Example 2: 52$7vYMto
% + a%Vp!y
% % Display the first 10 Zernike functions qd9CKd
% x = -1:0.01:1; fJ3*'(
% [X,Y] = meshgrid(x,x);
;Q;u^T`
% [theta,r] = cart2pol(X,Y); lqO"
% idx = r<=1; S?bG U8R5
% z = nan(size(X)); CV~\xYY
% n = [0 1 1 2 2 2 3 3 3 3]; 0{/P1
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l;I)$=={=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; U`D.cEMfH
% y = zernfun(n,m,r(idx),theta(idx)); 7[wHNJ7)r
% figure('Units','normalized') `3Gjj&c
% for k = 1:10 6]%79?'A
% z(idx) = y(:,k); B*+3A!{s
% subplot(4,7,Nplot(k)) l@8UL</W
% pcolor(x,x,z), shading interp f((pRP
% set(gca,'XTick',[],'YTick',[]) asDq(J`sQ
% axis square K +oFu%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *uAsKU
% end BTXS+mvl
% q][{?
% See also ZERNPOL, ZERNFUN2. =|lKB;
g.v)qB
% Paul Fricker 11/13/2006 Hz}6XS@
k\T,CZ<
P<+5So0
% Check and prepare the inputs: *^XfEO
% ----------------------------- JfmNI~%
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) GbC-6.~
error('zernfun:NMvectors','N and M must be vectors.') L~yu
end !$"DD[~\
SCClD6k=V
if length(n)~=length(m) gWo `i
error('zernfun:NMlength','N and M must be the same length.') W|K"0ab
end h 7feZ_
aI$D
qnF4
n = n(:); yv:8=.r}M
m = m(:); biCX:m+_?
if any(mod(n-m,2)) qc}r.'p
error('zernfun:NMmultiplesof2', ... =#N;ZG
'All N and M must differ by multiples of 2 (including 0).') <_HK@E<_HO
end \bze-|C
W?;kMGW-
if any(m>n) -e"~UDq`
error('zernfun:MlessthanN', ... x.r OP_rs
'Each M must be less than or equal to its corresponding N.') 8Z TN
end 8SvPDGu`]
&UhI1mi]h
if any( r>1 | r<0 ) 3:Aw.-,i\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =9UR~-`d\
end J`U\3:b`SP
D ];%Ey
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (U"Ub;[7
error('zernfun:RTHvector','R and THETA must be vectors.') -c-#1_X5
end EG<YxNX,
\atztC{-L>
r = r(:); \ltA&}!
theta = theta(:); s)#8>s -
length_r = length(r); `6KTQk'
if length_r~=length(theta) i5 x[1
error('zernfun:RTHlength', ... {EKzPr/
'The number of R- and THETA-values must be equal.') d\Xi1&&
end 60KhwD1
j9zK=eG
% Check normalization: H6ff b)&
% -------------------- K1rF;7Y6
if nargin==5 && ischar(nflag) 'JR2@W`]]
isnorm = strcmpi(nflag,'norm'); @1#QbNp#
if ~isnorm .\kcWeC\
error('zernfun:normalization','Unrecognized normalization flag.') FNpMu3Q
end :3k&[W*
else q=bW!.#?
isnorm = false; Vvuw gJX
end )3_I-Ia
6Q<^,`/T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aa8xo5tIp
% Compute the Zernike Polynomials jk-hIl&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d\aarhD8*
Si,[7um
% Determine the required powers of r: 6LUO
% ----------------------------------- w
^ v*1KA&
m_abs = abs(m); OhmKjY/}
rpowers = []; W2L:
for j = 1:length(n) t^HQ=*c
rpowers = [rpowers m_abs(j):2:n(j)]; 7XKPC+)1ya
end c\i`=>%b@
rpowers = unique(rpowers); e0O2>w
1O
bxQ_x
% Pre-compute the values of r raised to the required powers, Txkmt$h
% and compile them in a matrix: & 2MI(9v
% ----------------------------- K ~"J<798{
if rpowers(1)==0 `UFRv
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (0s7<&Iu
rpowern = cat(2,rpowern{:}); l4+!H\2
rpowern = [ones(length_r,1) rpowern]; QJc3@
else 70p1&Y7or
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )ndcBwQc"
rpowern = cat(2,rpowern{:}); =5NrkCk#V
end ^6!C":f
+g_+JLQ
% Compute the values of the polynomials: BZy&;P
% -------------------------------------- [%(}e1T(
y = zeros(length_r,length(n)); p<1z!`!P
for j = 1:length(n) &fJ92v?%^S
s = 0:(n(j)-m_abs(j))/2; {9sA'5
pows = n(j):-2:m_abs(j);
ta]B9&c
for k = length(s):-1:1 {6%vmMbJ
p = (1-2*mod(s(k),2))* ... rj qX|
prod(2:(n(j)-s(k)))/ ... 9] /xAsD
prod(2:s(k))/ ... Bq~!_6fB
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... l2uh"!
prod(2:((n(j)+m_abs(j))/2-s(k))); P( >*gp
idx = (pows(k)==rpowers); cjzhuH/y
y(:,j) = y(:,j) + p*rpowern(:,idx); EL!V\J`S_
end &jCT-dj
dR"H,$UH
if isnorm E~?0Yrm F
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o -tc}Aa
end Zw+VcZz3
end :USN`"
% END: Compute the Zernike Polynomials KK;3<kX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% su]CaHU
j.Ro(0%
% Compute the Zernike functions: =;DmD?nZ
% ------------------------------ BrYU*aPW;
idx_pos = m>0; SH>L3@Za
idx_neg = m<0; Rd6? ,
1qWIku
z = y; &7* |rshZ
if any(idx_pos) USz|Rh
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VU+` yQp
end Va^Y3/
if any(idx_neg) j-wSsjLk
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RAMkTS
end nR)/k,3W
Ed[ tmaEuV
% EOF zernfun