非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :s\zk^h?
function z = zernfun(n,m,r,theta,nflag) hQ(^;QcSu
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. K1o>>388G
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vxOnv8(
% and angular frequency M, evaluated at positions (R,THETA) on the N;,zPW a
% unit circle. N is a vector of positive integers (including 0), and ?8/r=
% M is a vector with the same number of elements as N. Each element ]#W7-Q;]
% k of M must be a positive integer, with possible values M(k) = -N(k) Pm%5c\ef
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, V'tR
\b
% and THETA is a vector of angles. R and THETA must have the same #!E`%'
s]
% length. The output Z is a matrix with one column for every (N,M) QO0@Ax\b
% pair, and one row for every (R,THETA) pair. :,M+njcFc
% u})*6 l.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?PqkC&o[q
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QT
zN
% with delta(m,0) the Kronecker delta, is chosen so that the integral ({@"{
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, JZ+6)R
% and theta=0 to theta=2*pi) is unity. For the non-normalized w>8kBQ?b
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. v9FR
% [VqiF~o,
% The Zernike functions are an orthogonal basis on the unit circle. X)6 G :cD
% They are used in disciplines such as astronomy, optics, and ,|A6l?iV
% optometry to describe functions on a circular domain. o.w/?
% 63J3NwFt
% The following table lists the first 15 Zernike functions. ITg:OOQ
% 'wtb"0 }
% n m Zernike function Normalization Pksr9"Ah
% -------------------------------------------------- GyMN;|
% 0 0 1 1 M$.bC0}T
% 1 1 r * cos(theta) 2 ](v,2(}=
% 1 -1 r * sin(theta) 2 lNf );!}SM
% 2 -2 r^2 * cos(2*theta) sqrt(6) 7)[2Ud8
% 2 0 (2*r^2 - 1) sqrt(3) H }]Zp
% 2 2 r^2 * sin(2*theta) sqrt(6) S7WHOr9XMV
% 3 -3 r^3 * cos(3*theta) sqrt(8) )">#bu$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9C2pGfEbn}
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .ahY 1CO
% 3 3 r^3 * sin(3*theta) sqrt(8) pdER#7Tq
% 4 -4 r^4 * cos(4*theta) sqrt(10) e$P^},0/
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4M> pHz4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (9ZW^flY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R9^vAS4t[O
% 4 4 r^4 * sin(4*theta) sqrt(10) 7w" !"W#
% -------------------------------------------------- ;?@Rq"*
% ("ix!\1K@
% Example 1: $GU s\
% YgjW%q
% % Display the Zernike function Z(n=5,m=1) X@}7 #Vt
% x = -1:0.01:1; QIU%!9Y
% [X,Y] = meshgrid(x,x); $[ S 33Q
% [theta,r] = cart2pol(X,Y); Pv,PS.,-
% idx = r<=1; |f$ws R`&
% z = nan(size(X)); =,q/FY:
% z(idx) = zernfun(5,1,r(idx),theta(idx)); pfIK9>i
% figure d}fd^x/
% pcolor(x,x,z), shading interp @(oY.PeS<z
% axis square, colorbar {fDRVnI?
% title('Zernike function Z_5^1(r,\theta)') A^+k A)8
% sC[#R.eq
% Example 2: ?Fa$lE4
% s.rQiD
% % Display the first 10 Zernike functions TCzlu#w
% x = -1:0.01:1; Sin)]zG~0
% [X,Y] = meshgrid(x,x); 2]Cn<zJ
% [theta,r] = cart2pol(X,Y); FN/l/OSb
% idx = r<=1; N#jUqm
% z = nan(size(X)); "Dk@-Ac
% n = [0 1 1 2 2 2 3 3 3 3]; :|S[i('
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; rA8NE>
% Nplot = [4 10 12 16 18 20 22 24 26 28]; T"3LO[j+
% y = zernfun(n,m,r(idx),theta(idx)); w5)KWeGa
% figure('Units','normalized') sx;/xIU|
% for k = 1:10 Iurz?dt4w
% z(idx) = y(:,k); 4clCZ@\K^
% subplot(4,7,Nplot(k)) .t>SbGC
% pcolor(x,x,z), shading interp YGM7? o
% set(gca,'XTick',[],'YTick',[]) 3hBYx@jTO
% axis square S{bp'9]$y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *^7^g!=z2
% end }id)~h_@
% i !sVQ(:
% See also ZERNPOL, ZERNFUN2. F?MVQ!K*
? eI)m
% Paul Fricker 11/13/2006 u81F^72U
y]obO|AH
(QqeMG,Y
% Check and prepare the inputs: ]
s 2ec
% ----------------------------- oNl-!W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) psx_gv,
error('zernfun:NMvectors','N and M must be vectors.') Z ]ZUK
end h82y9($cZ
sA: /!9
if length(n)~=length(m) oa7 N6
error('zernfun:NMlength','N and M must be the same length.') Wt!;Y,1s
end A>F&b1
yGWl8\,j0
n = n(:); ^iWGGnGS
m = m(:); veh=^K%G |
if any(mod(n-m,2)) 9"1=um=
error('zernfun:NMmultiplesof2', ... WTt
/y\'6
'All N and M must differ by multiples of 2 (including 0).') ^tm2Duv
end >b3IZ^SB#$
j+/EG^*/
if any(m>n) <b\.d^=B
error('zernfun:MlessthanN', ... R*W1<W%q=
'Each M must be less than or equal to its corresponding N.') Ue,eEer
end m |+zMf&
d@cyQFX
if any( r>1 | r<0 ) "Ya;&F.'
error('zernfun:Rlessthan1','All R must be between 0 and 1.') #&S<{75A
end {O!;cI~
$1)NYsSH/H
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uF|[MWcy0#
error('zernfun:RTHvector','R and THETA must be vectors.') e1bV&
end Of-gG~
7|"G
3ck
r = r(:); jl]p e7-
theta = theta(:); WwSyw?T
length_r = length(r); G~*R6x2g
if length_r~=length(theta) 436SIh
error('zernfun:RTHlength', ... Pj8Vl)8~NV
'The number of R- and THETA-values must be equal.') 5HvYy
*B/
end {EU]\Mp0j
#^i+'Z=L
% Check normalization: 5=8_Le
% -------------------- vl%Pg!l
if nargin==5 && ischar(nflag) b_~KtMO
isnorm = strcmpi(nflag,'norm'); &w%%^ +n
|
if ~isnorm ;4oKF7]
error('zernfun:normalization','Unrecognized normalization flag.') =<=[E:B
end zCwb>v
else d+eb![fi
isnorm = false; o+<hI
end V-i:t,*lk(
g@>y`AFnr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9x8Ai
% Compute the Zernike Polynomials GCcSI;w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E/ku VZX
:KRe==/
% Determine the required powers of r: 6XVJ/qZ
% ----------------------------------- "rQ?2?
m_abs = abs(m); :J5CmU$
rpowers = []; ooYs0/,{
for j = 1:length(n) oX/#Mct{s
rpowers = [rpowers m_abs(j):2:n(j)]; U.WMu%
end *OKve
rpowers = unique(rpowers); AlgVsE%Va
xU9^8,6
% Pre-compute the values of r raised to the required powers, T5 BoOVgO
% and compile them in a matrix: k1FG$1.
% -----------------------------
bqR0./V
if rpowers(1)==0 m%OX<
T!
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gBd~:ZUa
rpowern = cat(2,rpowern{:}); r3Ih]|FK#
rpowern = [ones(length_r,1) rpowern]; ;wr]_@<~
else +G!;:o
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ."v&?o
Ck]
rpowern = cat(2,rpowern{:}); nQ'AB~ Do
end v{U1B
y {Mh ?H
% Compute the values of the polynomials: iJu$&