非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 5i1>I=N
function z = zernfun(n,m,r,theta,nflag) {jho&Ai
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .Jrqm
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #P?6@\
% and angular frequency M, evaluated at positions (R,THETA) on the Y))u&*RuT0
% unit circle. N is a vector of positive integers (including 0), and 8rMX9qTO@
% M is a vector with the same number of elements as N. Each element UF<uU-C"
% k of M must be a positive integer, with possible values M(k) = -N(k) K,boVFs
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (
|PAx(
% and THETA is a vector of angles. R and THETA must have the same l-s!A(l
% length. The output Z is a matrix with one column for every (N,M) hDcEGU_
% pair, and one row for every (R,THETA) pair. "9^j.
% k?z98 >4
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K!'AkTW+-
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &b?LP]
% with delta(m,0) the Kronecker delta, is chosen so that the integral Zuw?58RE\
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bD[!/'4eJ
% and theta=0 to theta=2*pi) is unity. For the non-normalized c=L2%XPP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }2uI?i8
% u9}1)9
% The Zernike functions are an orthogonal basis on the unit circle. ,^x4sA[/
% They are used in disciplines such as astronomy, optics, and `KK>~T_$J
% optometry to describe functions on a circular domain. YR>B_,Gl
% Sz^5b!
% The following table lists the first 15 Zernike functions. f~dd3m('
% 839IRM@'5
% n m Zernike function Normalization @W^| ?
% -------------------------------------------------- eXKo.JL
% 0 0 1 1 E2"q3_,,
% 1 1 r * cos(theta) 2 FFH_d <q
% 1 -1 r * sin(theta) 2 E7CH^]x
% 2 -2 r^2 * cos(2*theta) sqrt(6) Bnb#{tL
% 2 0 (2*r^2 - 1) sqrt(3) 6q]5Es<
% 2 2 r^2 * sin(2*theta) sqrt(6) HE'2"t[a
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8 XICF
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Xy@7y[s]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9$Xu,y
% 3 3 r^3 * sin(3*theta) sqrt(8) cu% C"
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7G\\{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mdq;R*`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) '^Ql]% _
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ??i,Vr@)w
% 4 4 r^4 * sin(4*theta) sqrt(10) p8\zG|b5
% -------------------------------------------------- Wt=|
% EC\yzH*X
% Example 1: 1xbK'i:-S
% ooV3gj4
% % Display the Zernike function Z(n=5,m=1) ^B@Wp
% x = -1:0.01:1; -,+q#F
% [X,Y] = meshgrid(x,x); u6_@.a}
% [theta,r] = cart2pol(X,Y); |6(ZD^w
% idx = r<=1; Fb4`|
% z = nan(size(X)); m<w"T7
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `8I&7c
% figure g =2Rqi5
% pcolor(x,x,z), shading interp L}FOjrN
% axis square, colorbar s7l;\XBy
% title('Zernike function Z_5^1(r,\theta)') OzQ -7|m'J
% 13+<Q \
% Example 2: Vg>( Y,
% y /BJIQ
% % Display the first 10 Zernike functions 5i-Rglo
% x = -1:0.01:1; 2OwV^-OG
% [X,Y] = meshgrid(x,x); q-`RI*1]
% [theta,r] = cart2pol(X,Y); 9!Ar`Io2@
% idx = r<=1; n':! ,a[
% z = nan(size(X)); Pf_S[
sm
% n = [0 1 1 2 2 2 3 3 3 3]; m@Qt.4m%g
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; IhBp%^H0-
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !Yw3 d
% y = zernfun(n,m,r(idx),theta(idx)); ;]w<&C!=
% figure('Units','normalized') !Mu|mz=
% for k = 1:10 z9p05NFH
% z(idx) = y(:,k); J%jB?2
1:o
% subplot(4,7,Nplot(k)) #."Hh<C
% pcolor(x,x,z), shading interp |0\0a&tkPl
% set(gca,'XTick',[],'YTick',[]) %rF?dvb;?
% axis square !p[9{U->o;
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RKa}$
7
% end }->.k/vc
% b.@P%`@a.
% See also ZERNPOL, ZERNFUN2. ^<:sdv>Y5
:mS# h@l
% Paul Fricker 11/13/2006 4_UU<GEp
Hzhceeh_+
W?We6.%
% Check and prepare the inputs: cwuO[^S}
% ----------------------------- a3VM'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3VUWX5K?
error('zernfun:NMvectors','N and M must be vectors.') #CnHf
end AxZD-|.
#!9S}b$
if length(n)~=length(m) q\q=PB6r
error('zernfun:NMlength','N and M must be the same length.') _kdL'x
end DEw8*MN
D!oc>K$B
n = n(:); R'dSbn
m = m(:); d7&eLLx
if any(mod(n-m,2)) GCttXAto
error('zernfun:NMmultiplesof2', ... "ywh9cp
'All N and M must differ by multiples of 2 (including 0).') +hRmO
end tdEnk.O
&I({T`=
if any(m>n) oM)h#8bq
error('zernfun:MlessthanN', ... VN'Wq7>6
'Each M must be less than or equal to its corresponding N.') ~=wCwA|1
end S#b-awk
rFZrYm
if any( r>1 | r<0 ) Pa^A$fy\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') bC^(U`y 32
end {Rear2
)g|xpb
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
/q@s
error('zernfun:RTHvector','R and THETA must be vectors.') 97,rE$bC
end Xwa_3Xm*Le
#"ftI7=42
r = r(:); kJAn4I.l
theta = theta(:); e8EfQ1 Ar
length_r = length(r); $fpq
3
if length_r~=length(theta) ]O
TH"*j
error('zernfun:RTHlength', ... JTqq0OD}
'The number of R- and THETA-values must be equal.') EQe5JFR
end m))<!3
vNW jH!'
% Check normalization: |3{&@7
% -------------------- fRvAKz|rL
if nargin==5 && ischar(nflag) !'f3>W\
isnorm = strcmpi(nflag,'norm'); e/8z+H^H
if ~isnorm OI0B:()
error('zernfun:normalization','Unrecognized normalization flag.') k{AyD`'Q
end C*X
G_b ]
else u=&Bmn_
isnorm = false; O%f8I'u$
end &48_2Q"{
d"U(`E=H9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MDRe(rF=
% Compute the Zernike Polynomials vU*x2fVb}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ir:d'g1k
y\F=ui
% Determine the required powers of r: e9^2,:wLB
% ----------------------------------- XMRNuEU
m_abs = abs(m); xAwf49N~
rpowers = []; 8z<r.joxC
for j = 1:length(n) ue8qIZH
rpowers = [rpowers m_abs(j):2:n(j)]; Hwm?#6\5
end L fl-!1
rpowers = unique(rpowers); .1 QgK
#)`A7 $/,
% Pre-compute the values of r raised to the required powers, RiO="tX'
% and compile them in a matrix: Dz_eB"}
% ----------------------------- "%@uO)A /
if rpowers(1)==0 =ZsGT
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [rreFSy#@
rpowern = cat(2,rpowern{:}); }Uf<ZXW
rpowern = [ones(length_r,1) rpowern]; (D{Ys'{q
else a}d6o;li
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ze'.Y%]
rpowern = cat(2,rpowern{:}); NNa1EXZ[
end fj4^VXD
1Xyp/X2rI
% Compute the values of the polynomials: 137Xl>nO
% -------------------------------------- Z0fJ9HW
y = zeros(length_r,length(n)); nSY-?&l6P
for j = 1:length(n) sFb4`
s = 0:(n(j)-m_abs(j))/2; m]IysyFFK
pows = n(j):-2:m_abs(j); fw{,bJ(U
for k = length(s):-1:1 y~F<9;$=
p = (1-2*mod(s(k),2))* ... ,vG<*|pn
prod(2:(n(j)-s(k)))/ ... E/za@W
prod(2:s(k))/ ... WA
LGIW
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +#]|)VZ
prod(2:((n(j)+m_abs(j))/2-s(k))); [}3cDR
idx = (pows(k)==rpowers); }.:d#]g8
y(:,j) = y(:,j) + p*rpowern(:,idx); C$#W{2x%6
end -{9Gagy2&
2[dIOb4b
if isnorm aQcN&UA@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <]8^J}8T{D
end k|O,1
end =p&sl;PsLw
% END: Compute the Zernike Polynomials (BERY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 98*x 'Wp
x.EgTvA&d
% Compute the Zernike functions: '1]7zWbW
% ------------------------------ K!b8= K`
idx_pos = m>0; DMkhbo&+
idx_neg = m<0; Qg0vG]
[F|+(}
z = y; *`KrVu 6s
if any(idx_pos) Q[s2}Z!N;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |5xz l
end kUHie
if any(idx_neg) _
K/swT{f
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %yaG,;>U
end PZ34 *q
6.Bh3p
% EOF zernfun