非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 aJ)5 DlfLR
function z = zernfun(n,m,r,theta,nflag) M<$l&%<`G
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,t+ATaOF
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C-Fp)Zs{0
% and angular frequency M, evaluated at positions (R,THETA) on the H9)uni
% unit circle. N is a vector of positive integers (including 0), and H+5]3>O-$
% M is a vector with the same number of elements as N. Each element h5F'eur
% k of M must be a positive integer, with possible values M(k) = -N(k) jATU b-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, e4)gF*
% and THETA is a vector of angles. R and THETA must have the same 'c$9[|x
% length. The output Z is a matrix with one column for every (N,M) ONjc},_
% pair, and one row for every (R,THETA) pair. J/<`#XZB
% BWPYHWW}E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >A,WXzAK}S
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), E+1j3Q;
% with delta(m,0) the Kronecker delta, is chosen so that the integral CQ( @7
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0KQ8;&a|
% and theta=0 to theta=2*pi) is unity. For the non-normalized FoG<$9
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >rFvT>@NU
% =!CuCV7$1O
% The Zernike functions are an orthogonal basis on the unit circle. kN$70N7I;
% They are used in disciplines such as astronomy, optics, and CXQ?P
% optometry to describe functions on a circular domain. (&*F`\
% .FXQ,7mZ-
% The following table lists the first 15 Zernike functions. :9h8q"T
% &"kx(B
% n m Zernike function Normalization {f&ga
% -------------------------------------------------- Q~@8t"P
% 0 0 1 1 $Tur"_`I;
% 1 1 r * cos(theta) 2 j d81E
% 1 -1 r * sin(theta) 2 z>0"T2W
y
% 2 -2 r^2 * cos(2*theta) sqrt(6) Q]7Q
% 2 0 (2*r^2 - 1) sqrt(3) qJ/C*Wqic
% 2 2 r^2 * sin(2*theta) sqrt(6) #`fT%'T!
% 3 -3 r^3 * cos(3*theta) sqrt(8) LuqaGy}>-
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) kxmS
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) L,D>E
% 3 3 r^3 * sin(3*theta) sqrt(8) i@J,u
% 4 -4 r^4 * cos(4*theta) sqrt(10) P&tK}Se^V
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `/AzX *`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &rd(q'Vi
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @ubz?5
% 4 4 r^4 * sin(4*theta) sqrt(10) #CS>A#Lk
% -------------------------------------------------- xK r,XZu
% Ww(_EW
% Example 1: lewDR"0Kx
% =z3jFaZ
% % Display the Zernike function Z(n=5,m=1) w?tKL0c
% x = -1:0.01:1; 3-R3Qlr
% [X,Y] = meshgrid(x,x); "P{&UwMmh
% [theta,r] = cart2pol(X,Y); =R'v]SXj
% idx = r<=1; u7=[~l&L
% z = nan(size(X)); bevT`D
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `-H:j:U{
% figure C#~MR+;
% pcolor(x,x,z), shading interp 5 q ,
% axis square, colorbar >&&xJ5
% title('Zernike function Z_5^1(r,\theta)') =eqI]rVj^
% i4I0oRp
% Example 2: _6m3$k_[MJ
% S>,I&`yi
% % Display the first 10 Zernike functions 3I5WDuq
% x = -1:0.01:1; X4$e2f
% [X,Y] = meshgrid(x,x); /=@vG Vp6
% [theta,r] = cart2pol(X,Y); JLu0;XVK
% idx = r<=1; +I <Sq_-
% z = nan(size(X)); ]K7 64}
% n = [0 1 1 2 2 2 3 3 3 3]; |&Pl 4P
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; A,{D9-%
% Nplot = [4 10 12 16 18 20 22 24 26 28]; B0i}Y-Z
% y = zernfun(n,m,r(idx),theta(idx)); >y9o&D