切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11226阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 HK&F'\'}  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 6Om-[^  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 |UR.7rOV  
    function z = zernfun(n,m,r,theta,nflag) &]vd7Q.t  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. sU bZVPDr  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'a"<uk3DT  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 3\D jV2t  
    %   unit circle.  N is a vector of positive integers (including 0), and wau81rSd  
    %   M is a vector with the same number of elements as N.  Each element 9=< Z>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S~6<'N&[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, j*xens$)  
    %   and THETA is a vector of angles.  R and THETA must have the same dc?Yk3(Y  
    %   length.  The output Z is a matrix with one column for every (N,M) oTx#e[8f{  
    %   pair, and one row for every (R,THETA) pair. P9%9/ B:-  
    % OvK_CN{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gXw\_ue<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9wWjl}%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral DMs|Q$XB  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *Z/B\nb  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,Y!T!o} 1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W8":lpp  
    % *$l8H[  
    %   The Zernike functions are an orthogonal basis on the unit circle. bJBx~  
    %   They are used in disciplines such as astronomy, optics, and Y$Uvt_  
    %   optometry to describe functions on a circular domain. v"$; aJ  
    % )YnB6@=nyk  
    %   The following table lists the first 15 Zernike functions. !J2Lp  
    % P_ ZguNH  
    %       n    m    Zernike function           Normalization Vq<|DM3z<  
    %       -------------------------------------------------- KqtI^qC8  
    %       0    0    1                                 1 n$=n:$`q  
    %       1    1    r * cos(theta)                    2 qx!IlO  
    %       1   -1    r * sin(theta)                    2 Rwy:.)7B$q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ' GW@P  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Hpsg[d)!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {'r*Jb0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^NnZYr.  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9f"6Jw@F  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?tSY=DK\n  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Y":hb;&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ZjI^0D8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]}5j X^j  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) !8A5Y[(XD  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _` D_0v(X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :YV!;dKJ  
    %       -------------------------------------------------- m=}kGzIY4  
    % d+^4 ;Hv4  
    %   Example 1: Jp,ohVRNq  
    % igo7F@_,  
    %       % Display the Zernike function Z(n=5,m=1) I}8F3_b,#  
    %       x = -1:0.01:1; !.w S+  
    %       [X,Y] = meshgrid(x,x); (ZI&'"H  
    %       [theta,r] = cart2pol(X,Y); t(_XB|AKm  
    %       idx = r<=1; YInW)My.h  
    %       z = nan(size(X)); j`tUx# h  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx));  XG^  
    %       figure {< wq}~  
    %       pcolor(x,x,z), shading interp ev@1+7(  
    %       axis square, colorbar 2]C0d8=*?  
    %       title('Zernike function Z_5^1(r,\theta)') 0<Pe~i_=  
    % .#}SK!"B  
    %   Example 2: )1]C%)zn  
    % ?=T&|pp  
    %       % Display the first 10 Zernike functions hZJ Nh,,w  
    %       x = -1:0.01:1; v~xG*e  
    %       [X,Y] = meshgrid(x,x); iFDQnt [t  
    %       [theta,r] = cart2pol(X,Y); (>Yii_Cd  
    %       idx = r<=1; k1cBMDSokO  
    %       z = nan(size(X)); X F40;urm  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +22[ h@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; '"KK|]vJ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; AV&eg e  
    %       y = zernfun(n,m,r(idx),theta(idx)); jBB<{VV|  
    %       figure('Units','normalized') x*)Wl!  
    %       for k = 1:10 ]v#T'<Nl  
    %           z(idx) = y(:,k); >AfJxdd1  
    %           subplot(4,7,Nplot(k)) ^wHO!$  
    %           pcolor(x,x,z), shading interp :@3d  
    %           set(gca,'XTick',[],'YTick',[]) Z?@07Y[|K  
    %           axis square VEpQT Qp  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) EgO4:8$h  
    %       end +tA rH C]  
    % u*U?VZ5  
    %   See also ZERNPOL, ZERNFUN2. u9&p/qMx2  
    FUOvH 85f  
    %   Paul Fricker 11/13/2006 R.fRQ>rI  
    0b|!S/*A3  
    cCeD3CuRA%  
    % Check and prepare the inputs: @z,'IW74V  
    % ----------------------------- kOc'@;_O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '- ~86Q  
        error('zernfun:NMvectors','N and M must be vectors.') MdKZH\z/  
    end tJn2:}-s  
    ~cez+VQe  
    if length(n)~=length(m) \"*l:x-u  
        error('zernfun:NMlength','N and M must be the same length.') ILpB:g  
    end 1`uIjXr(  
    !hc7i=V ?  
    n = n(:); aL`pvsnF  
    m = m(:); <)&ykcB  
    if any(mod(n-m,2)) h'}5 "m  
        error('zernfun:NMmultiplesof2', ... ywdNwNJ  
              'All N and M must differ by multiples of 2 (including 0).') %NBD^g F  
    end D"Xm9 (  
    [|>.iH X  
    if any(m>n) o4J K$%  
        error('zernfun:MlessthanN', ... nxJhK T  
              'Each M must be less than or equal to its corresponding N.') *83+!DV|  
    end Vz#cb5:g  
    W)"q9(T?%  
    if any( r>1 | r<0 ) vB,N6~r>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') COT;KC6 n  
    end hN}X11  
    9X(bByEO  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YnMph0\Y^  
        error('zernfun:RTHvector','R and THETA must be vectors.') x=Ru@nK;  
    end  O{4m-;  
    UFl*^j_)]  
    r = r(:); f(C0&"4e  
    theta = theta(:); H Ow][}M_w  
    length_r = length(r); -R8RAwsLG  
    if length_r~=length(theta) Vr^wesT\Hx  
        error('zernfun:RTHlength', ... 'D-imLV<<  
              'The number of R- and THETA-values must be equal.') %iGME%oXr  
    end ;EJ6C#} >7  
    l^vq'<kI  
    % Check normalization: s)N1@RBR  
    % -------------------- OO$<Wgh  
    if nargin==5 && ischar(nflag) ^NCH)zK]v  
        isnorm = strcmpi(nflag,'norm'); AV'>  
        if ~isnorm tQ/w\6{  
            error('zernfun:normalization','Unrecognized normalization flag.') wS5hXTb"  
        end dfrq8n]  
    else -py.Y Z  
        isnorm = false; kSJWQ  
    end $""[( d?0  
    XI0O^[/n{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JvUKfsnu{  
    % Compute the Zernike Polynomials 87HVD Di  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "<&F=gV  
    saV3<zgx  
    % Determine the required powers of r: OVd"'|&6_  
    % ----------------------------------- hsl8@=_ B  
    m_abs = abs(m); ;?y?s'>t&  
    rpowers = []; @NVq .z  
    for j = 1:length(n) vxwctJ&  
        rpowers = [rpowers m_abs(j):2:n(j)]; S)~h|&A(  
    end ~E!"YkIr  
    rpowers = unique(rpowers); p7k0pSt  
    e88JT_zrO  
    % Pre-compute the values of r raised to the required powers, Y,8M[UIK  
    % and compile them in a matrix: F|PYDC  
    % ----------------------------- FCI T+ 8K  
    if rpowers(1)==0 >GjaA1,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9+/<[w7  
        rpowern = cat(2,rpowern{:}); N( /PJJ~  
        rpowern = [ones(length_r,1) rpowern]; fLy s$*^)^  
    else x=H*"L=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hA"N&v~  
        rpowern = cat(2,rpowern{:}); ('gjf l  
    end %xg"e O2x  
    sz)3 z  
    % Compute the values of the polynomials: GJW1|Fk  
    % -------------------------------------- YZoudX'"  
    y = zeros(length_r,length(n)); ,og@}gOMB  
    for j = 1:length(n) $<y b~z7J  
        s = 0:(n(j)-m_abs(j))/2; <y!BO  
        pows = n(j):-2:m_abs(j); 5!5P\o  
        for k = length(s):-1:1 -1< }_*  
            p = (1-2*mod(s(k),2))* ... ~U^0z|.  
                       prod(2:(n(j)-s(k)))/              ... "'PDreS  
                       prod(2:s(k))/                     ... _2TIan}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... BBp Hp  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); eAl&[_o|S  
            idx = (pows(k)==rpowers); @z2RMEC~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H,uOshR  
        end d8x$NW-s  
         2V  
        if isnorm W0?yPP=.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o30PI  
        end ~gV|_G  
    end E7*]t_p"  
    % END: Compute the Zernike Polynomials SKYS6b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B0YY7od  
    H_$"]iQ  
    % Compute the Zernike functions: ^&,{  
    % ------------------------------ KDY~9?}TM  
    idx_pos = m>0; N.VzA 6 C  
    idx_neg = m<0; `yVJ `} hm  
    *|4~ 0w  
    z = y; bG5c~  
    if any(idx_pos) AQFx>:in  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }X AoMp  
    end ly{ ~X  
    if any(idx_neg) xR%CS`0R  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u]oS91  
    end Gud!(5'  
    !867DX3*  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) W`;E-28Dg  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 5:AAqMa  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 20K<}:5t1  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Xe*  L^8+  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9aXm}  
    %   and THETA is a vector of angles.  R and THETA must have the same LxG :?=O.  
    %   length.  The output Z is a matrix with one column for every P-value, b9:E0/6   
    %   and one row for every (R,THETA) pair. LtNG<n)_BH  
    % kiXa2Yn*(d  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike OtnYv  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) :qnRiK]  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]zD/W%c  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 2Yyc`o0R;h  
    %   for all p. D@f%&|IZ  
    % M.t5,NJ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 L1aN"KGMF  
    %   Zernike functions (order N<=7).  In some disciplines it is txliZ|.O  
    %   traditional to label the first 36 functions using a single mode T$'Ja'9Kj  
    %   number P instead of separate numbers for the order N and azimuthal VGe/;&1h  
    %   frequency M. b@,w/Uw[*  
    % z[7U>q[E  
    %   Example: (I\aGGW  
    % 'av OQj]`K  
    %       % Display the first 16 Zernike functions *WOA",gZ  
    %       x = -1:0.01:1; 56L>tP  
    %       [X,Y] = meshgrid(x,x); 6KV&E8Gn  
    %       [theta,r] = cart2pol(X,Y); 4cs`R+]o  
    %       idx = r<=1; ey y&JjVs  
    %       p = 0:15; Kr8p:$D};  
    %       z = nan(size(X)); vL-%"*>v  
    %       y = zernfun2(p,r(idx),theta(idx)); mWO=(}Fb\  
    %       figure('Units','normalized') lZb1kq%9g  
    %       for k = 1:length(p) *S ;v406  
    %           z(idx) = y(:,k); dmf~w_(7  
    %           subplot(4,4,k) .*v8*8OJ&  
    %           pcolor(x,x,z), shading interp [=XsI]B\  
    %           set(gca,'XTick',[],'YTick',[]) 3"q%-M|+Q  
    %           axis square 0xH$!?{b  
    %           title(['Z_{' num2str(p(k)) '}']) _a c_8m  
    %       end %*LdacjZ  
    % "IB)=Hc  
    %   See also ZERNPOL, ZERNFUN. RJ@d_~%U  
    >j\zj] -"  
    %   Paul Fricker 11/13/2006 sHAzg^n}r  
    #E*jX-JT  
    Dx iCq(;  
    % Check and prepare the inputs: G&:YgwG  
    % ----------------------------- 9t;aJFI  
    if min(size(p))~=1 Lw-)ijBW  
        error('zernfun2:Pvector','Input P must be vector.') =TyN"0@  
    end |f`!{=?  
    (swP#t5S  
    if any(p)>35 #{<Jm?sU  
        error('zernfun2:P36', ... lQ)ZsFs=  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... oA73\BFfP  
               '(P = 0 to 35).']) w Gw}a[a  
    end NjL,0Bp  
    /&dC?bY  
    % Get the order and frequency corresonding to the function number: g_.BJ>Uv  
    % ---------------------------------------------------------------- nuXaZRH  
    p = p(:); ou@Dd4  
    n = ceil((-3+sqrt(9+8*p))/2); ,]Hn*\@p[c  
    m = 2*p - n.*(n+2); AnIENJ  
    U9kt7#@FDK  
    % Pass the inputs to the function ZERNFUN: >b<br  
    % ---------------------------------------- ]xV7)/b5G  
    switch nargin KXYq|w  
        case 3 ?6~RGg  
            z = zernfun(n,m,r,theta); #y2="$ V  
        case 4 t3G%}d?  
            z = zernfun(n,m,r,theta,nflag); 2}+V3/  
        otherwise Y#C=ku  
            error('zernfun2:nargin','Incorrect number of inputs.') +5 @8't  
    end d0IHl!X  
    9KD2C>d<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .(nq"&u-*  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Ow mI*`  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of SIzW3y[  
    %   order N and frequency M, evaluated at R.  N is a vector of #%B1, .A  
    %   positive integers (including 0), and M is a vector with the rOH8W  
    %   same number of elements as N.  Each element k of M must be a =DvnfT<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) A5B 5pJ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is RG#  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix )7[>/2aGd  
    %   with one column for every (N,M) pair, and one row for every - C8 h$P  
    %   element in R. r'k-*I  
    % |L<oKMZY  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- HI)ks~E/  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is {.;MsE  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to R&=Y7MfZ  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 cAA J7?  
    %   for all [n,m]. .kvuI6H  
    % My Af~&Y+  
    %   The radial Zernike polynomials are the radial portion of the 4s.wQ2m  
    %   Zernike functions, which are an orthogonal basis on the unit Xy=|qu  
    %   circle.  The series representation of the radial Zernike =i\~][-  
    %   polynomials is x-(?^g  
    % yz,ak+wp  
    %          (n-m)/2 A:& `oJl  
    %            __ ` _[\j]  
    %    m      \       s                                          n-2s ~Og'IRf  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r HFvhrG  
    %    n      s=0 {#0B~Zr  
    % Q/-YLf.  
    %   The following table shows the first 12 polynomials. '+Ts IJh  
    % u*}6)=+:  
    %       n    m    Zernike polynomial    Normalization Q->'e-\E<"  
    %       --------------------------------------------- ayHI(4!$j  
    %       0    0    1                        sqrt(2)  NM  
    %       1    1    r                           2 dV.)+X7<  
    %       2    0    2*r^2 - 1                sqrt(6) Su6ZO'[)  
    %       2    2    r^2                      sqrt(6) QWxCNt:^?  
    %       3    1    3*r^3 - 2*r              sqrt(8) U7bG(?k)  
    %       3    3    r^3                      sqrt(8) R~[ u|EC}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Y=/HsG\W]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) "n:L<F,g  
    %       4    4    r^4                      sqrt(10) * vEG%Y  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) kVe}_[{m  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) o!wz:|\S  
    %       5    5    r^5                      sqrt(12) a(BWV?A  
    %       --------------------------------------------- 64o`7  
    % yEzp+Ky  
    %   Example: OCY7Bls4  
    % l?Bv9k.^?  
    %       % Display three example Zernike radial polynomials kSoAnJ|  
    %       r = 0:0.01:1; _OHz6ag  
    %       n = [3 2 5]; g}L2\i688  
    %       m = [1 2 1]; jQ1~B1(  
    %       z = zernpol(n,m,r); %[Ia#0'Y@  
    %       figure [&3G `8hY  
    %       plot(r,z) laKMQLtv  
    %       grid on wC..LdSR  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') daY^{u3  
    % nLJ]tpw^DH  
    %   See also ZERNFUN, ZERNFUN2. 6aXsRhQ~  
    IgR_p7['.  
    % A note on the algorithm. u.1u/o1"  
    % ------------------------ b> &kL  
    % The radial Zernike polynomials are computed using the series {- 7T\mj  
    % representation shown in the Help section above. For many special o_X"+s  
    % functions, direct evaluation using the series representation can C(7LwV  
    % produce poor numerical results (floating point errors), because `{ou4H\  
    % the summation often involves computing small differences between O#CxS/M5  
    % large successive terms in the series. (In such cases, the functions 3QM.X^ANH  
    % are often evaluated using alternative methods such as recurrence Z!^iPB0~D  
    % relations: see the Legendre functions, for example). For the Zernike -QI1>7sl  
    % polynomials, however, this problem does not arise, because the aG`G$3_wx  
    % polynomials are evaluated over the finite domain r = (0,1), and f*bs{H'5  
    % because the coefficients for a given polynomial are generally all )TVyRYZ1  
    % of similar magnitude. >eWHPO  
    % Zb<DgJ=3  
    % ZERNPOL has been written using a vectorized implementation: multiple //_v"dqP{)  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] vEW;~FLd  
    % values can be passed as inputs) for a vector of points R.  To achieve )I$_wB!UV  
    % this vectorization most efficiently, the algorithm in ZERNPOL xH; 4lw  
    % involves pre-determining all the powers p of R that are required to By:A9 s  
    % compute the outputs, and then compiling the {R^p} into a single LtXFGPQf  
    % matrix.  This avoids any redundant computation of the R^p, and V)_mo/D!D  
    % minimizes the sizes of certain intermediate variables. :,LX3,  
    % [;h@ q}  
    %   Paul Fricker 11/13/2006 y [.0L!C {  
    *:_ xy{m\  
    q@r8V&-<  
    % Check and prepare the inputs: hXmW,+1  
    % ----------------------------- ;UArDwH  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M5[AA/@  
        error('zernpol:NMvectors','N and M must be vectors.') +c+#InsY  
    end $l0^2o=  
    h8 $lDFo  
    if length(n)~=length(m) ){5  $8  
        error('zernpol:NMlength','N and M must be the same length.') /c]I|$v  
    end &NB[:S =  
    CQ"5bnR  
    n = n(:); `+Wl fk;  
    m = m(:); y*2:(nI  
    length_n = length(n); !E4YUEY 6  
    83OOM;'  
    if any(mod(n-m,2)) 3' mQ=tKa  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 87r#;ND  
    end {Lrez E4  
    u2@:[:Ao  
    if any(m<0) Ycn*aR2  
        error('zernpol:Mpositive','All M must be positive.') '<4/Md[  
    end ]M-j_("&  
    -]A,SBs  
    if any(m>n) F3;UH%L1  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') lk)38.  
    end 'HH[[9Q  
    g.iiT/b  
    if any( r>1 | r<0 ) rcY[jF  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') "b|qyT* Sl  
    end qMmh2a&  
    j2k,)MHu!x  
    if ~any(size(r)==1) at/besW  
        error('zernpol:Rvector','R must be a vector.') rB< UOe  
    end @m<xpe l  
    C Rw.UC\  
    r = r(:); &3:-(:<U  
    length_r = length(r); "2o)1G  
    gY=nU,;  
    if nargin==4 [(F.x6z)  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [59_n{S 1  
        if ~isnorm tF O27z@  
            error('zernpol:normalization','Unrecognized normalization flag.') ApG_Gd.  
        end X8GIRL)lJ  
    else ^R! qxSj  
        isnorm = false; 9V9K3xWn  
    end '[I?G6  
    @9~6+BZOq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =j#uH`jgW  
    % Compute the Zernike Polynomials |zKFF?7#wE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%UfnbZ  
    K_G( J>  
    % Determine the required powers of r: dNUi|IYm$  
    % ----------------------------------- 6:fe.0H 9  
    rpowers = []; to|O]h2*U2  
    for j = 1:length(n) z)#I"$!d  
        rpowers = [rpowers m(j):2:n(j)]; .Wc<(pfa  
    end :54ik,l  
    rpowers = unique(rpowers); [sy~i{Bm  
    bzF>Efza  
    % Pre-compute the values of r raised to the required powers, tMR&>hM  
    % and compile them in a matrix: P\pHos  
    % ----------------------------- zgI!S6q  
    if rpowers(1)==0 .hzzoLI2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6c$ so  
        rpowern = cat(2,rpowern{:}); sn+g#v9e  
        rpowern = [ones(length_r,1) rpowern]; hs!a'E  
    else anxg D?<+B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G%jgr"]\z  
        rpowern = cat(2,rpowern{:}); TwH%P2)x  
    end A,Wwt [Qw  
    !ow:P8K?  
    % Compute the values of the polynomials: >B!E 6ah  
    % -------------------------------------- |-a5|3  
    z = zeros(length_r,length_n); ="Zr.g~8  
    for j = 1:length_n p.A_,iE  
        s = 0:(n(j)-m(j))/2; Vzn0;  
        pows = n(j):-2:m(j); Qz=F nR  
        for k = length(s):-1:1 ($pNOG H  
            p = (1-2*mod(s(k),2))* ... ywTt<;  
                       prod(2:(n(j)-s(k)))/          ... 7 XE&[o  
                       prod(2:s(k))/                 ... SR!EQ<  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... z$4g9  
                       prod(2:((n(j)+m(j))/2-s(k))); AJ}QS?p8s  
            idx = (pows(k)==rpowers); m!Cvd9X=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); $P&{DOiKS  
        end `u$  Rd  
         |;sL*Vr  
        if isnorm <`rmQ`(}s  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); CT1@J-np  
        end 1y'8bt~7Pf  
    end `?E|frz[  
    o&0fvCpW  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  DH7]TRCMZ)  
    C{:U<q  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 NQxx_3*4O  
    SoWMP2/  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)