非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /7Sg/d%c
function z = zernfun(n,m,r,theta,nflag) 5g-1pzP9
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (G+)v[f
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RjUrpS[I
% and angular frequency M, evaluated at positions (R,THETA) on the B]yO
% unit circle. N is a vector of positive integers (including 0), and ,ov$`v
% M is a vector with the same number of elements as N. Each element bz nMD
% k of M must be a positive integer, with possible values M(k) = -N(k) {f4jE#a>v
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, aU.3
% and THETA is a vector of angles. R and THETA must have the same [AFR \{
% length. The output Z is a matrix with one column for every (N,M) k8n9zJ8
% pair, and one row for every (R,THETA) pair. fI;nVRfp
% U+B{\38
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j-/$e, xX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m=h/A xW
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~u0<c:C^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y]6dYq{k
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?Mo)&,__
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8v/,<eARJ
% mnZfk
% The Zernike functions are an orthogonal basis on the unit circle. b (HJ|
% They are used in disciplines such as astronomy, optics, and y]R+/
% optometry to describe functions on a circular domain. e@O]c"
% eW<NDI&b
% The following table lists the first 15 Zernike functions. NoF|j57?u'
% 3dZj<(.
% n m Zernike function Normalization 3jfAv@I ~
% -------------------------------------------------- KIY`3Fl09
% 0 0 1 1 um/F:rp
% 1 1 r * cos(theta) 2 EFtn!T
% 1 -1 r * sin(theta) 2 mmjWLrhlu
% 2 -2 r^2 * cos(2*theta) sqrt(6) *7*cWO=
% 2 0 (2*r^2 - 1) sqrt(3) zI^:{]p
% 2 2 r^2 * sin(2*theta) sqrt(6) G
9 &,`
% 3 -3 r^3 * cos(3*theta) sqrt(8) 4yTgH0(T
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Ed0}$b
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8.wtv5eZ
% 3 3 r^3 * sin(3*theta) sqrt(8) mg._ c
% 4 -4 r^4 * cos(4*theta) sqrt(10) =s.0 f:(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vY4}vHH2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~S~+'V,d
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T%"wz3~
% 4 4 r^4 * sin(4*theta) sqrt(10) }3WP:Et
% -------------------------------------------------- Dh}d-m_5
% /ioBc}]
% Example 1: W4P\HM>2
% +,7vbs3
% % Display the Zernike function Z(n=5,m=1) Fku<|1}&y
% x = -1:0.01:1; 8yOhKEPX
% [X,Y] = meshgrid(x,x); uTO%O}D N
% [theta,r] = cart2pol(X,Y); !%(kMN
% idx = r<=1; XLYGhM
% z = nan(size(X)); /Trbr]lWy
% z(idx) = zernfun(5,1,r(idx),theta(idx)); @!ja/Y^
% figure G[`2Nd<
% pcolor(x,x,z), shading interp sc-h O9~k
% axis square, colorbar {ktwX\z
% title('Zernike function Z_5^1(r,\theta)') Ur1kb{i
% ]d{lS&PRlg
% Example 2: 3
Sf':N`u
% .n.N.e
% % Display the first 10 Zernike functions |#xBC+
% x = -1:0.01:1; C^_m>H3b
% [X,Y] = meshgrid(x,x); iN0'/)ar
% [theta,r] = cart2pol(X,Y);
Zf??/+[
% idx = r<=1; 1jBIi
% z = nan(size(X)); lc [)Ev
% n = [0 1 1 2 2 2 3 3 3 3]; PN J&{4wY
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5TeGdfu @
% Nplot = [4 10 12 16 18 20 22 24 26 28]; g#1Y4
% y = zernfun(n,m,r(idx),theta(idx)); ^)`e}}
% figure('Units','normalized') mL#$8wUdt{
% for k = 1:10 211T}a
% z(idx) = y(:,k); [T[]U
% subplot(4,7,Nplot(k)) :1"k`AG
% pcolor(x,x,z), shading interp Bz%wV-
% set(gca,'XTick',[],'YTick',[]) k%sxA
% axis square ;/ |tU
o$
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OYmutq
% end sUiO~<Ozpk
% M,oZ_tY%
% See also ZERNPOL, ZERNFUN2. %SCt_9u
8NNs_~+x}
% Paul Fricker 11/13/2006 P_p\OK*l]o
r AqS;@]0
j`Ek :
% Check and prepare the inputs: ) 3f\H
% ----------------------------- qq?o^_^4
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E*,nKJu'r
error('zernfun:NMvectors','N and M must be vectors.') c|k(_#\B
end Qk|+Gj
8`1]#Vw
if length(n)~=length(m) &U([Wd?E2
error('zernfun:NMlength','N and M must be the same length.') =E(ed,gH8
end /m^G 99N
>b:5&s\9
n = n(:); 'X4)2iFV
m = m(:); *<"{(sAvk
if any(mod(n-m,2)) eZhF<<Y
error('zernfun:NMmultiplesof2', ... Qs#;sy
W@~
'All N and M must differ by multiples of 2 (including 0).') i]@k'2N
end JnqP`kYbTE
:>H{?
if any(m>n) COBjJ3
error('zernfun:MlessthanN', ... ^LXsU]
R
'Each M must be less than or equal to its corresponding N.') \PG_i' R
end *]Cyc<
Be^"sC
if any( r>1 | r<0 ) E]a;Ydf~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') xwHE,ykE
end @~5Fcfmm
$S2
/*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #i*PwgC%_
error('zernfun:RTHvector','R and THETA must be vectors.') |942#rM
end -Edi"B4K
/L|x3RHs
r = r(:); -r~9'aEs
theta = theta(:); <F-IF7>a
length_r = length(r); qwn EVjf
if length_r~=length(theta) Dk2Zl
error('zernfun:RTHlength', ... jJ'NYG
'The number of R- and THETA-values must be equal.') m*i,|{UZ
end E7w^A
*1:kIi7_
% Check normalization: #e@[{s7
% -------------------- g
4$
if nargin==5 && ischar(nflag) WYcZD_
isnorm = strcmpi(nflag,'norm'); z 9WeOs
if ~isnorm Y 9st3
error('zernfun:normalization','Unrecognized normalization flag.') +;oR_]l
end uGYH4
else ~xws5n}F
isnorm = false; &arJe!K
end ,KPrUM}
_t4(H))]vG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;l < amB
% Compute the Zernike Polynomials hD, |CQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCD5dihJ
,u-9e4
% Determine the required powers of r: NH=@[t)P,
% ----------------------------------- MFWkJbZV
m_abs = abs(m); n 1^h;2gz
rpowers = []; G"Ey%Q2K
for j = 1:length(n) m<*+^JN
rpowers = [rpowers m_abs(j):2:n(j)]; 2jkma :$'
end A\E ))b9+
rpowers = unique(rpowers); 0Xn,q]@Z
Z\n^m^Z
=
% Pre-compute the values of r raised to the required powers, qn}VW0!
% and compile them in a matrix: h^14/L=|
% ----------------------------- ;.R)
uCd{=
if rpowers(1)==0 mW,b#'hy
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IfI:|w}:"r
rpowern = cat(2,rpowern{:}); E4_,EeC#
rpowern = [ones(length_r,1) rpowern]; ']1a
else vuJEPn%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z|(<Co8#.
rpowern = cat(2,rpowern{:}); !>kg:xV
end #2Iw%H 2q&
pRjrMS
% Compute the values of the polynomials: qamq9F$V
% -------------------------------------- cBZJ
y = zeros(length_r,length(n)); cveQ6
-`K
for j = 1:length(n) Cj YI *
s = 0:(n(j)-m_abs(j))/2; h2?\A%
pows = n(j):-2:m_abs(j); [ThAvQ_$
for k = length(s):-1:1 |fgh
ryI,
p = (1-2*mod(s(k),2))* ... 3RFU
prod(2:(n(j)-s(k)))/ ... WU,b<PU &
prod(2:s(k))/ ... [.CP,Ly
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $) qL=kR
prod(2:((n(j)+m_abs(j))/2-s(k))); 8;f5;7Mn
idx = (pows(k)==rpowers); g{2~G6%;0
y(:,j) = y(:,j) + p*rpowern(:,idx); E9@Sc>e
end Y&DoA0/y
rD !GEU
if isnorm GR 1%(,
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wuSotbc/
end h1f 05
end {yd(n_PqY
% END: Compute the Zernike Polynomials q [+KQ,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VAqZ`y
4#ikdjB;
% Compute the Zernike functions: PZ?kv 4
% ------------------------------ EDF0q i
idx_pos = m>0; z"FxKN~Z
idx_neg = m<0; 9}a&:QTHR
_E/
z = y; QDKY7"H
if any(idx_pos) ,<s:*
k
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); b+$wx~PLi
end .4<lw
if any(idx_neg) @`iz0DPG?Y
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,TYFPulYcp
end w`dSc@ :
Ip *8R]W
% EOF zernfun