非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 SxAZ2|/-
function z = zernfun(n,m,r,theta,nflag) kYwV0xQ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~>j5z&:&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1FkS$ j8:
% and angular frequency M, evaluated at positions (R,THETA) on the ~d9R:t1
% unit circle. N is a vector of positive integers (including 0), and M,uQ8SZA[
% M is a vector with the same number of elements as N. Each element W7\s=t\
% k of M must be a positive integer, with possible values M(k) = -N(k) ;ui=7[Us
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, /t4#-vz
% and THETA is a vector of angles. R and THETA must have the same ZxDh94w/
% length. The output Z is a matrix with one column for every (N,M) KOYU'hw
% pair, and one row for every (R,THETA) pair. 1N3qMm^
% w=|"{-ijo
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;5ANw"Dq
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lRy^Wp
% with delta(m,0) the Kronecker delta, is chosen so that the integral bL6, fUS
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E8`AU<
% and theta=0 to theta=2*pi) is unity. For the non-normalized vv F:
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !4?QR
% B1u.aa$
% The Zernike functions are an orthogonal basis on the unit circle. JBvMe H5
% They are used in disciplines such as astronomy, optics, and r+yl{
% optometry to describe functions on a circular domain. $,s"c(pv[,
% p+ki1!Ed
% The following table lists the first 15 Zernike functions. 'yIz<o
% )0tq&
% n m Zernike function Normalization h)~i?bq!/
% -------------------------------------------------- (^U
8wit/
% 0 0 1 1 ,;
81FK
% 1 1 r * cos(theta) 2
zfm-vU
% 1 -1 r * sin(theta) 2 Omkpjr(1
% 2 -2 r^2 * cos(2*theta) sqrt(6) `S&.gPE2
% 2 0 (2*r^2 - 1) sqrt(3) n
_H]*~4F
% 2 2 r^2 * sin(2*theta) sqrt(6) Klv~#9Si
% 3 -3 r^3 * cos(3*theta) sqrt(8) GIs
*;ps7w
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $K'A_G^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~T'!.^/
% 3 3 r^3 * sin(3*theta) sqrt(8) D.ajO^[
% 4 -4 r^4 * cos(4*theta) sqrt(10) JKJ+RkXf3
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JvI6+[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9 M<3m
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vgyv~Px]AW
% 4 4 r^4 * sin(4*theta) sqrt(10) :JI&ngWK
% -------------------------------------------------- MODi:jsl
% }zE
Qrfl
% Example 1: an<loLW
% yE3l%<;q
% % Display the Zernike function Z(n=5,m=1) v"~0 3-SX
% x = -1:0.01:1; sf(2~BMQI
% [X,Y] = meshgrid(x,x); NH$!<ffz
% [theta,r] = cart2pol(X,Y); V\=QAN^
% idx = r<=1; V=+wsc
% z = nan(size(X)); v;_k*y[VV$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); BT3X7Cx
% figure |PY*"Ul
% pcolor(x,x,z), shading interp :tTP3t5
% axis square, colorbar F Tk`Mq
% title('Zernike function Z_5^1(r,\theta)') 920 o]Dh=t
% wV&UB@
% Example 2: `yXJaTbo
% Mu>WS)1lS
% % Display the first 10 Zernike functions /z(;1$Ld6{
% x = -1:0.01:1; ndB [f
% [X,Y] = meshgrid(x,x); FKVf_Ncf%
% [theta,r] = cart2pol(X,Y); 4^>FN"Ve`B
% idx = r<=1; T=-$ok`G
% z = nan(size(X)); c
c^I9g~
% n = [0 1 1 2 2 2 3 3 3 3]; >AUj4d
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !92zC._
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Ic,V,#my
% y = zernfun(n,m,r(idx),theta(idx)); $ Lf-Gi
% figure('Units','normalized') &nXa/XIZ_
% for k = 1:10 u,f$cR
% z(idx) = y(:,k); 5Y}=,v*h}
% subplot(4,7,Nplot(k)) ]
1:pnd
% pcolor(x,x,z), shading interp !}$,) ~<+H
% set(gca,'XTick',[],'YTick',[]) zo{WmV7[|
% axis square $SAk|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) So^;5tG
% end Y7L1`<SC
% + NpHk
% See also ZERNPOL, ZERNFUN2. q n2X._`
=w#sCy
% Paul Fricker 11/13/2006 c7[+gc5}
gb,X"ODq
`N,q~@gL
% Check and prepare the inputs: zK@DQ5
% ----------------------------- m@2;9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d0"Xlleld
error('zernfun:NMvectors','N and M must be vectors.') Jd0I!L
end *|F
;An.N^
{;0+N -U
if length(n)~=length(m) Bl6>y/
error('zernfun:NMlength','N and M must be the same length.') zwEZ?m!
end Eqc,/
{WYHT6Z
n = n(:); n\x@~ SzrX
m = m(:); cf7UV6D g
if any(mod(n-m,2)) ,f(:i^iz!
error('zernfun:NMmultiplesof2', ... ^vQ,t*Uj=
'All N and M must differ by multiples of 2 (including 0).') i[\`]C{gf
end 8F#z)>q~
hDsSOpj
if any(m>n) LaolAqU
error('zernfun:MlessthanN', ... w]ZE('3%W
'Each M must be less than or equal to its corresponding N.') )kl(}.9X
end +LEU|#
dRXEF6G
if any( r>1 | r<0 ) y~ZYI]`
J
error('zernfun:Rlessthan1','All R must be between 0 and 1.') E2Jmo5yJR
end =,4iMENm!
=Co[pt
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1[&V6=n
error('zernfun:RTHvector','R and THETA must be vectors.') {*jo,<4ee
end 0qPbmLMK
zP(UaSXz/
r = r(:); %Uz
5Ve
theta = theta(:); ^zs]cFN#%
length_r = length(r); 6bXP{,}Gp
if length_r~=length(theta) bW e_<'N
error('zernfun:RTHlength', ... /`b(} m
'The number of R- and THETA-values must be equal.') *Mg. *N
end ]LE
`YinhO:Z
% Check normalization: 1m5=Nu
% -------------------- c%bGVRhE
if nargin==5 && ischar(nflag) S#9EBw7
isnorm = strcmpi(nflag,'norm'); 3cH`>#c
if ~isnorm 4EZl
(v"f`
error('zernfun:normalization','Unrecognized normalization flag.') F6$QEiDu@
end `c)//o
else ?;dfA/
isnorm = false; AzmISm
end eInx\/
k-`5TmW
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6S2u%-]
% Compute the Zernike Polynomials 4-wCk=I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pg4J)<t#
*co=<g]4KY
% Determine the required powers of r: XC
D &Im
% ----------------------------------- r{Cbx#;
m_abs = abs(m); <Z -d5D>
rpowers = []; (i"@{[IP
for j = 1:length(n) l1utk8'-
rpowers = [rpowers m_abs(j):2:n(j)]; e7cqm*Qi
end "kHQ}#6r
rpowers = unique(rpowers); TO|&}sDh
ycr\vn
t
% Pre-compute the values of r raised to the required powers, b;;C><
% and compile them in a matrix: g3`:d)|
% -----------------------------
@o g&l;
if rpowers(1)==0 6u'+#nm
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :k"VR,riF
rpowern = cat(2,rpowern{:}); +frkC| .
rpowern = [ones(length_r,1) rpowern]; f.~-31
else ?<l,a!V'6
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !}TZmwf'
rpowern = cat(2,rpowern{:}); O'OVj
end *_aeK~du.
eVVm"96Q.;
% Compute the values of the polynomials: "/O`#Do/
% -------------------------------------- \"X<\3z2
y = zeros(length_r,length(n)); w[A$bqz
for j = 1:length(n) <![]=~z$
s = 0:(n(j)-m_abs(j))/2; 20O\@}2q2M
pows = n(j):-2:m_abs(j); BM@:=>ypQ
for k = length(s):-1:1 B}(+\Q$I
p = (1-2*mod(s(k),2))* ... C_RxJWka
prod(2:(n(j)-s(k)))/ ... nisW<Q`uB
prod(2:s(k))/ ... 6^Q Bol
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Wd R ~
prod(2:((n(j)+m_abs(j))/2-s(k))); _I&];WM\
idx = (pows(k)==rpowers); rTgCmr'&
y(:,j) = y(:,j) + p*rpowern(:,idx); [KT'aGK$
end ZP]l%6\.
U1Z.#ETnM
if isnorm !@r1B`]j+"
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t81}jD
end SXA`o<Ma
end Td7=La0
% END: Compute the Zernike Polynomials }=+J&cR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% } ! jk
>A+0"5+_p
% Compute the Zernike functions: ^Ia:e
?)W
% ------------------------------ c']3N
idx_pos = m>0; 6zJ<27
idx_neg = m<0; sn4wd:b7%
u+&t"B
z = y; g.&n
X/
if any(idx_pos) {GTOHJ2
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4490l"
end (sXR@Ce$
if any(idx_neg) (4hCT*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y6>@zznk
end 2]$
7
Jj_ t0"
% EOF zernfun