非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 UGNFWZ c
function z = zernfun(n,m,r,theta,nflag) &n.7~C]R
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. h5-<2B|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N p-H q\DP
% and angular frequency M, evaluated at positions (R,THETA) on the _N 5$>2
% unit circle. N is a vector of positive integers (including 0), and !Qu)JR
% M is a vector with the same number of elements as N. Each element QQ4
&,d
% k of M must be a positive integer, with possible values M(k) = -N(k) FfnW
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, e'I13)
% and THETA is a vector of angles. R and THETA must have the same opK=Z
% length. The output Z is a matrix with one column for every (N,M) M~Yho".
% pair, and one row for every (R,THETA) pair. |@]`" k
% @3/.W +
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _h4{Sx
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), T&Y?IE}
% with delta(m,0) the Kronecker delta, is chosen so that the integral &y?L^Aq
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3[: |)i)
% and theta=0 to theta=2*pi) is unity. For the non-normalized 5+<<:5_6l
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 'OKDB7Ni
% 8'Eu6H&$G
% The Zernike functions are an orthogonal basis on the unit circle. 3"HpM\A{A=
% They are used in disciplines such as astronomy, optics, and /`YHPeXu
% optometry to describe functions on a circular domain. ^1rw\Zp
% kDM\IyM<\
% The following table lists the first 15 Zernike functions. _q >>]{5
% d7+YCi?
% n m Zernike function Normalization V#:`:-$$+
% -------------------------------------------------- E"D+CD0
% 0 0 1 1 ^PY*INv
% 1 1 r * cos(theta) 2 x?0ZzB),
% 1 -1 r * sin(theta) 2 \e%H5Wx
% 2 -2 r^2 * cos(2*theta) sqrt(6) sGjYL>*
% 2 0 (2*r^2 - 1) sqrt(3) ENwDW#U9
% 2 2 r^2 * sin(2*theta) sqrt(6) x
j6-~<
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,}i`1E 1=
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) rmj?jBKQU
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3+gp_7L
% 3 3 r^3 * sin(3*theta) sqrt(8) &h.E
B
% 4 -4 r^4 * cos(4*theta) sqrt(10) KS($S(Fi
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &u-H/CU%
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) FI1R7A
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2)DrZI
% 4 4 r^4 * sin(4*theta) sqrt(10) " >QNiR!
% -------------------------------------------------- JTw\5j
% KUG\C\z6=
% Example 1: Ti`H?9t
% './j<2|;U
% % Display the Zernike function Z(n=5,m=1) Zvd^<SP<?
% x = -1:0.01:1; +@),Fk_
% [X,Y] = meshgrid(x,x); RkVU^N"
% [theta,r] = cart2pol(X,Y); &D,gKT~
% idx = r<=1; "V!y"yQ
% z = nan(size(X)); rWKc,A[
% z(idx) = zernfun(5,1,r(idx),theta(idx)); zG|}| //}
% figure ;W6P$@'zs
% pcolor(x,x,z), shading interp 'ojI_%9<
% axis square, colorbar 1df}gG
% title('Zernike function Z_5^1(r,\theta)') :*V1jp+
% t0XM#9L
% Example 2: 2fp\s5%J}
% @N?A0S/
% % Display the first 10 Zernike functions =}txcA+
% x = -1:0.01:1; 5#+G7 'k
% [X,Y] = meshgrid(x,x); Wu]Dpe
% [theta,r] = cart2pol(X,Y); /PbN!r<1
% idx = r<=1; Z)cGe1?q
% z = nan(size(X)); @RW=(&<1
% n = [0 1 1 2 2 2 3 3 3 3]; Gj]*_"T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; FBpf_=(_1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; `N%q^f~
% y = zernfun(n,m,r(idx),theta(idx)); $ qk2!
% figure('Units','normalized') PzThVeJ+
% for k = 1:10 n gA&PU
% z(idx) = y(:,k); ml$"C
% subplot(4,7,Nplot(k)) Td%[ -
% pcolor(x,x,z), shading interp `!<RP'
% set(gca,'XTick',[],'YTick',[]) epa)~/sA
% axis square <`8l8cL
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OM,-:H,
% end D6
B(6
5Y
% }Z5#{Sd
% See also ZERNPOL, ZERNFUN2. 0U'g2F>{
/*DC`,q
% Paul Fricker 11/13/2006 C
FY 3D|
L=W8Q8hf
<igsO
% Check and prepare the inputs: {Rb|";
% ----------------------------- QGE)Xn#_bN
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >D'Kt?L<]m
error('zernfun:NMvectors','N and M must be vectors.') U JO
end 6j9P`#Lt
>(Mu9ie*`
if length(n)~=length(m) )*_4=-8H
error('zernfun:NMlength','N and M must be the same length.') ).HYW _Yih
end dZ'hTzw~
HhkubG)\
n = n(:); zb/w^~J_i
m = m(:); ^s<p5V
if any(mod(n-m,2)) cl s-x@
Kd
error('zernfun:NMmultiplesof2', ... L7i^?40
'All N and M must differ by multiples of 2 (including 0).') ?0HPd5=<v
end v^_OX$=,
/I@nPH<y
if any(m>n) wmu#@Hf/[h
error('zernfun:MlessthanN', ... Wt2+D{@8
'Each M must be less than or equal to its corresponding N.') p-QD(+@M
end Dg]( ?^
n JH+P!AC
if any( r>1 | r<0 ) [hU5ooB
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ki`7S
end <{U "0jY!9
%G!BbXlz
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,#Y>nP0
error('zernfun:RTHvector','R and THETA must be vectors.') dY>oj<9
end $7%e|0jC
Vm
NCknG
r = r(:); 871taL=
theta = theta(:); D&KD5_Sw
length_r = length(r); =lIG#{`Q
if length_r~=length(theta) JGjqBuz#A*
error('zernfun:RTHlength', ... kI5`[\
'The number of R- and THETA-values must be equal.')
h"<-^=b
end &sJZSrk|
!9+xKr99
% Check normalization: 6`$HBX%.K
% -------------------- 8t3,}}TJ
if nargin==5 && ischar(nflag) [43:E*\$
isnorm = strcmpi(nflag,'norm'); >q{E9.~b
if ~isnorm Q)}_S@v|%
error('zernfun:normalization','Unrecognized normalization flag.') 9Yg=4>#$
end <4!SQgL
else A*)G. o:
isnorm = false; go^?F-
dZ
end Ra%" +=
g~EJja;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /Q
Xq<NG
% Compute the Zernike Polynomials ~Dsz9 f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wGfU@!m
$`L!2
% Determine the required powers of r: #Fx$x#Gc@y
% ----------------------------------- 8Io--Ew3
m_abs = abs(m); Jr/|nhGl5
rpowers = []; </,RS5ukn
for j = 1:length(n) cfn\De%.
rpowers = [rpowers m_abs(j):2:n(j)]; 4,D$% .
end #sLyU4QV
rpowers = unique(rpowers); |q&&"SpA
1+\ZLy!5:
% Pre-compute the values of r raised to the required powers, yEm[C(gZ
% and compile them in a matrix: tz0_S7h
% ----------------------------- y^"[^+F3 .
if rpowers(1)==0 ~/0t<^
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vMBF7Jfx
rpowern = cat(2,rpowern{:}); JWHKa=-H
rpowern = [ones(length_r,1) rpowern]; }%z {tn
else F2QX ^*
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); iQry X(z
rpowern = cat(2,rpowern{:}); hq}kAv4B=
end _=ani9E]uF
+S!gS|8P
% Compute the values of the polynomials: ESdjDg$[u
% -------------------------------------- \nQV{J
y = zeros(length_r,length(n)); /Yk4%ZJ{
for j = 1:length(n) q cYF&
s = 0:(n(j)-m_abs(j))/2; 2, bo
pows = n(j):-2:m_abs(j); *`]LbS
for k = length(s):-1:1 R0>GM`{
p = (1-2*mod(s(k),2))* ... 6$#p}nE
prod(2:(n(j)-s(k)))/ ... :xdl I`S
prod(2:s(k))/ ... !)1r{u
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {pEay|L_
prod(2:((n(j)+m_abs(j))/2-s(k))); 7GN>o@ t
idx = (pows(k)==rpowers); .L;M-`^
y(:,j) = y(:,j) + p*rpowern(:,idx); i"eUacBz/-
end MXy~kb&
y7[D9ZvZ
if isnorm :by EXe;3
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mj\]oWS7d
end Hggp*(AQK
end U&DD+4+28:
% END: Compute the Zernike Polynomials +6cOL48"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //9M~qHa"
tbbZGyg5b
% Compute the Zernike functions: MfzSoxCb
% ------------------------------ tPDd~fOk
idx_pos = m>0; bUR;d78
idx_neg = m<0; sxac(L
fTn
z = y; "u#T0
if any(idx_pos)
9
gt$z}oU
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \>}G|yL
end mIJYe&t7)
if any(idx_neg) }=)
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {<\ [gm\X
end :aYbP,mE
,MH9e!
% EOF zernfun