切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11067阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 A?t%e  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! <-D0u?8  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 5i1>I=N  
    function z = zernfun(n,m,r,theta,nflag) {jho&Ai  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .Jrqm  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N # P?6@\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y))u&*RuT0  
    %   unit circle.  N is a vector of positive integers (including 0), and 8rMX9qTO@  
    %   M is a vector with the same number of elements as N.  Each element UF<uU-C"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) K,bo VFs  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ( |PAx (  
    %   and THETA is a vector of angles.  R and THETA must have the same l-s!A(l  
    %   length.  The output Z is a matrix with one column for every (N,M) hDcEGU_  
    %   pair, and one row for every (R,THETA) pair. " 9^j.  
    % k?z98 >4  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K!'AkTW+-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &b?LP]   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Zuw?58RE\  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b D[!/'4eJ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c=L2%XPP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }2uI?i8  
    % u9}1)9  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,^x4sA[/  
    %   They are used in disciplines such as astronomy, optics, and `KK>~T_$J  
    %   optometry to describe functions on a circular domain. YR>B_,Gl  
    % Sz^5b!  
    %   The following table lists the first 15 Zernike functions. f~d d3m('  
    % 839IRM@'5  
    %       n    m    Zernike function           Normalization @ W^| ?  
    %       -------------------------------------------------- eXK o.JL  
    %       0    0    1                                 1 E 2"q3_,,  
    %       1    1    r * cos(theta)                    2 FFH_d <q  
    %       1   -1    r * sin(theta)                    2 E7CH^]x  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Bnb#{tL  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6q]5Es<  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) HE'2"t[a  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8 XICF  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Xy@7y[s]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9$Xu,y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) cu%C"  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7G\\{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) md q;R*`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) '^Ql]% _  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ??i,Vr@)w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) p8\zG|b5  
    %       -------------------------------------------------- Wt=|  
    % EC\yz H*X  
    %   Example 1: 1xbK'i:-S  
    % ooV3gj4  
    %       % Display the Zernike function Z(n=5,m=1) ^B@Wp  
    %       x = -1:0.01:1; -,+q#F  
    %       [X,Y] = meshgrid(x,x); u6_@.a}  
    %       [theta,r] = cart2pol(X,Y); |6(ZD^w  
    %       idx = r<=1; Fb4`|  
    %       z = nan(size(X)); m <w "T7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `8I&7c  
    %       figure g=2Rqi5  
    %       pcolor(x,x,z), shading interp L}FO jrN  
    %       axis square, colorbar s7l;\XBy  
    %       title('Zernike function Z_5^1(r,\theta)') OzQ -7|m'J  
    % 13+<Q \  
    %   Example 2: Vg>(  Y,  
    % y /BJIQ  
    %       % Display the first 10 Zernike functions 5i-Rglo  
    %       x = -1:0.01:1; 2 OwV^-OG  
    %       [X,Y] = meshgrid(x,x); q-`RI*1]  
    %       [theta,r] = cart2pol(X,Y); 9!Ar`Io2@  
    %       idx = r<=1; n':!,a[  
    %       z = nan(size(X)); Pf_S[ sm  
    %       n = [0  1  1  2  2  2  3  3  3  3]; m@Qt.4m%g  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; IhBp%^H0-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !Yw3 d   
    %       y = zernfun(n,m,r(idx),theta(idx)); ;]w<&C!=  
    %       figure('Units','normalized') !Mu|mz=  
    %       for k = 1:10 z9p05NFH  
    %           z(idx) = y(:,k); J%jB?2 1:o  
    %           subplot(4,7,Nplot(k)) #."Hh<C  
    %           pcolor(x,x,z), shading interp |0\0a&tkPl  
    %           set(gca,'XTick',[],'YTick',[]) %rF?dvb;?  
    %           axis square !p[9{U->o;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RKa}$ 7  
    %       end }->.k/vc  
    % b.@P%`@a.  
    %   See also ZERNPOL, ZERNFUN2. ^<:sdv>Y5  
    :mS# h@l  
    %   Paul Fricker 11/13/2006 4_UU<GEp  
    Hzhceeh_+  
    W?We6.%  
    % Check and prepare the inputs: cwuO[^S}  
    % ----------------------------- a3VM '  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3VUWX5K?  
        error('zernfun:NMvectors','N and M must be vectors.') #CnHf  
    end AxZD-|.  
    #!9S}b$  
    if length(n)~=length(m) q\q=PB6r  
        error('zernfun:NMlength','N and M must be the same length.') _kdL'x  
    end DEw8*MN  
    D!oc>K$B  
    n = n(:); R'dSbn  
    m = m(:); d7&eLLx  
    if any(mod(n-m,2)) GCttXAto  
        error('zernfun:NMmultiplesof2', ... "ywh9cp  
              'All N and M must differ by multiples of 2 (including 0).') +hRmO  
    end tdEnk.O  
    &I({T`=  
    if any(m>n) oM)h#8bq  
        error('zernfun:MlessthanN', ... VN 'Wq7>6  
              'Each M must be less than or equal to its corresponding N.') ~=wC wA|1  
    end S#b-awk  
    rFZrYm  
    if any( r>1 | r<0 ) Pa^A$fy\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') bC^(U`y32  
    end {Rear 2  
    )g|xpb  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  /q@ s  
        error('zernfun:RTHvector','R and THETA must be vectors.') 97,rE$bC  
    end Xwa_3Xm*Le  
    #"ftI7=42  
    r = r(:); kJAn4I.l  
    theta = theta(:); e8EfQ1 Ar  
    length_r = length(r); $f pq 3  
    if length_r~=length(theta) ]O TH"*j  
        error('zernfun:RTHlength', ... JTqq0OD}  
              'The number of R- and THETA-values must be equal.') EQe5JFR  
    end m))<!3  
    vNW jH!'  
    % Check normalization: |3{&@7  
    % -------------------- fRvAKz|rL  
    if nargin==5 && ischar(nflag) !'f3>W\   
        isnorm = strcmpi(nflag,'norm'); e/8z+H^H  
        if ~isnorm OI0B:()  
            error('zernfun:normalization','Unrecognized normalization flag.') k{AyD`'Q  
        end C*X G_b ]  
    else u=&Bmn_  
        isnorm = false; O%f8I'u$  
    end &48_2Q"{  
    d"U(`E=H9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MDRe(rF=  
    % Compute the Zernike Polynomials vU*x2fVb}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ir:d'g1k  
     y\F=ui  
    % Determine the required powers of r: e9^2,:wLB  
    % ----------------------------------- XMRNuEU  
    m_abs = abs(m); xAwf49N~  
    rpowers = []; 8z<r.joxC  
    for j = 1:length(n) ue8qIZH  
        rpowers = [rpowers m_abs(j):2:n(j)]; Hwm?#6\5  
    end L fl-!1  
    rpowers = unique(rpowers); .1QgK  
    #)`A7 $/,  
    % Pre-compute the values of r raised to the required powers, RiO="tX'  
    % and compile them in a matrix: Dz_eB"}  
    % ----------------------------- "%@uO)A /  
    if rpowers(1)==0 =Z sGT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [rreFSy#@  
        rpowern = cat(2,rpowern{:}); }Uf<ZXW  
        rpowern = [ones(length_r,1) rpowern]; (D{Ys'{q  
    else a}d6o;li  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ze'.Y%]  
        rpowern = cat(2,rpowern{:}); NNa1EXZ[  
    end fj 4^VXD  
    1Xyp/X2rI  
    % Compute the values of the polynomials: 137Xl>nO  
    % -------------------------------------- Z0fJ9 HW  
    y = zeros(length_r,length(n)); nSY-?&l6P  
    for j = 1:length(n) sFb4`  
        s = 0:(n(j)-m_abs(j))/2; m]IysyFFK  
        pows = n(j):-2:m_abs(j); fw{,bJ(U  
        for k = length(s):-1:1 y~F<9;$=  
            p = (1-2*mod(s(k),2))* ... ,vG<*|pn  
                       prod(2:(n(j)-s(k)))/              ... E/za @W  
                       prod(2:s(k))/                     ... WA LGIW  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +#]|)V Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [}3cDR  
            idx = (pows(k)==rpowers); }.:d#]g8  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C$#W{2x%6  
        end -{9Gagy2&  
         2[dIOb4b  
        if isnorm aQcN&UA@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <]8^J}8T{D  
        end k|O,1  
    end =p&sl;PsLw  
    % END: Compute the Zernike Polynomials (BERY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 98*x 'Wp  
    x.EgTvA&d  
    % Compute the Zernike functions: '1]7zWbW  
    % ------------------------------ K!b8= K`  
    idx_pos = m>0; DMkhbo&+  
    idx_neg = m<0; Qg0vG]  
    [F|+(}  
    z = y; *`KrVu 6s  
    if any(idx_pos) Q[s 2}Z!N;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |5 xzl  
    end kUHie   
    if any(idx_neg) _ K/swT{f  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %yaG,;>U  
    end PZ34*q  
    6.Bh3p  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) lcig7%  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Dq`~XS*  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated j@ C0af  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive u)7 ]1e{  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, a RKv+{K  
    %   and THETA is a vector of angles.  R and THETA must have the same v[D&L_  
    %   length.  The output Z is a matrix with one column for every P-value, aFG3tuaKrQ  
    %   and one row for every (R,THETA) pair. _j 5N=I{U  
    % 6F`\YSn+  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike kV 1vb  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) B+Q+0tw*i  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) NQ!<f\m4n  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ,xj3w#`zaf  
    %   for all p. OMd# ^z  
    % hrT%XJl  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 M;qb7Mu  
    %   Zernike functions (order N<=7).  In some disciplines it is wA r~<  
    %   traditional to label the first 36 functions using a single mode K_##-6>  
    %   number P instead of separate numbers for the order N and azimuthal +\U]p_Fo3  
    %   frequency M. v?%3~XoH  
    % V5X i '=  
    %   Example: b8cVnP  
    % )]A9~H  
    %       % Display the first 16 Zernike functions M,JA;a, _  
    %       x = -1:0.01:1; A^cU$V%?W  
    %       [X,Y] = meshgrid(x,x); C.HYS S  
    %       [theta,r] = cart2pol(X,Y); &>V/X{>$`K  
    %       idx = r<=1; jI Z+d;1  
    %       p = 0:15; 3q CHh  
    %       z = nan(size(X)); hpjUkGm5  
    %       y = zernfun2(p,r(idx),theta(idx)); H`?* bG  
    %       figure('Units','normalized') lO_c/o$  
    %       for k = 1:length(p) {Ve D@  
    %           z(idx) = y(:,k); [Gf{f\O  
    %           subplot(4,4,k) Q!x`M4   
    %           pcolor(x,x,z), shading interp @%H8"A  
    %           set(gca,'XTick',[],'YTick',[]) _iq2([BpL  
    %           axis square Ym:{Mm=ud  
    %           title(['Z_{' num2str(p(k)) '}']) Nor`c+,4  
    %       end &_YtY47  
    % |f3U%2@  
    %   See also ZERNPOL, ZERNFUN. 3/l\ <{  
    9H[/Tj-;  
    %   Paul Fricker 11/13/2006 `11#J;[@G  
    ,{pGP#  
     yIa[yJq  
    % Check and prepare the inputs: -^R b7 g-  
    % ----------------------------- +Tp%5+E  
    if min(size(p))~=1 0&Qsk!-B  
        error('zernfun2:Pvector','Input P must be vector.') :Dt\:`(r'  
    end U81;7L8  
    vi<X3G6Xh  
    if any(p)>35 s1Okoxh/!V  
        error('zernfun2:P36', ... H):-! ?:  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Gj5>Y!9  
               '(P = 0 to 35).']) o|+E+l9\  
    end 2@4x"F]U;  
    2 mSD"[%  
    % Get the order and frequency corresonding to the function number: fPOEVmj<  
    % ---------------------------------------------------------------- ^ ~, ndH{  
    p = p(:); bSY;[{Kl  
    n = ceil((-3+sqrt(9+8*p))/2); ?LR"hZ>  
    m = 2*p - n.*(n+2); @Mzz2&(d U  
    Vj/fAHR`>'  
    % Pass the inputs to the function ZERNFUN: k3C"  
    % ---------------------------------------- _ r~+p  
    switch nargin % <^[j^j}o  
        case 3 z^gi[ mi  
            z = zernfun(n,m,r,theta); ~~ U<  
        case 4 yV8-  
            z = zernfun(n,m,r,theta,nflag); kAY@^vi  
        otherwise A"0wvk)UcY  
            error('zernfun2:nargin','Incorrect number of inputs.') jzMhJ  
    end WBy[m ?d  
    v;Swo("  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) #NW Zk.S  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. h-Tsi:%b  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :jBZK=3F>  
    %   order N and frequency M, evaluated at R.  N is a vector of ]bs+:  
    %   positive integers (including 0), and M is a vector with the ESn6D@"  
    %   same number of elements as N.  Each element k of M must be a C2CYIo k$&  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) t'dHCp}  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is mXQl;  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix NY.}uZ  
    %   with one column for every (N,M) pair, and one row for every .4H_Zt[2  
    %   element in R. txj wZ_p  
    % ;R/k2^uF  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- +ylxezc  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is dVPq%[J2  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to a3Z :C!|O'  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 mfu*o0   
    %   for all [n,m]. D8)O4bh  
    % :0WkxEY9  
    %   The radial Zernike polynomials are the radial portion of the \s.1R/TyD  
    %   Zernike functions, which are an orthogonal basis on the unit VV?]U$  
    %   circle.  The series representation of the radial Zernike 9 %D$T'K  
    %   polynomials is : : F!   
    % `l+ >iM  
    %          (n-m)/2 <sgZ3*,A  
    %            __ 9B qQ^`bu  
    %    m      \       s                                          n-2s "}0)YRz%  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r , D exJ1  
    %    n      s=0 A Z4|&iT  
    % F9Ifw><XM  
    %   The following table shows the first 12 polynomials. N|UBaPS|o  
    % fndK/~?]H  
    %       n    m    Zernike polynomial    Normalization ' 9IP;  
    %       --------------------------------------------- <P+G7!KZ&  
    %       0    0    1                        sqrt(2) Z[a O_6L  
    %       1    1    r                           2 ;[;)P tFz\  
    %       2    0    2*r^2 - 1                sqrt(6) %T`4!:vy  
    %       2    2    r^2                      sqrt(6) >W>##vK  
    %       3    1    3*r^3 - 2*r              sqrt(8) /d{glOk  
    %       3    3    r^3                      sqrt(8) cYZwWMzp  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 70'} f  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) q,<n,0)K  
    %       4    4    r^4                      sqrt(10) zWF 5m )-  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) v9Z lNA7m!  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) B.]qrS|  
    %       5    5    r^5                      sqrt(12) Py|H? ,6=  
    %       --------------------------------------------- Q mb[ e>  
    % UiJ^~rn  
    %   Example: ."~7 \E> t  
    % 4y|xUO:  
    %       % Display three example Zernike radial polynomials T [T6  
    %       r = 0:0.01:1; DCEvr"(  
    %       n = [3 2 5]; T)b3N| ONB  
    %       m = [1 2 1]; "2)+)Db  
    %       z = zernpol(n,m,r); o>xxmyW|  
    %       figure mA&RN"+V  
    %       plot(r,z) Y&?|k'7  
    %       grid on >/7KL2*  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') T^/Gj|N*  
    % ^m6k@VM  
    %   See also ZERNFUN, ZERNFUN2. z5x ,fQw6O  
    `U {o:  
    % A note on the algorithm. p<Zs*  @  
    % ------------------------ B'G*y2UnG  
    % The radial Zernike polynomials are computed using the series 91-P)%?  
    % representation shown in the Help section above. For many special 3v9gb,)y\  
    % functions, direct evaluation using the series representation can 5en [)3E  
    % produce poor numerical results (floating point errors), because Y0/jH2n  
    % the summation often involves computing small differences between '#cT4_D^lI  
    % large successive terms in the series. (In such cases, the functions qPFG+~\c  
    % are often evaluated using alternative methods such as recurrence ~[ d=s  
    % relations: see the Legendre functions, for example). For the Zernike pr0@sri@  
    % polynomials, however, this problem does not arise, because the h]J&A  
    % polynomials are evaluated over the finite domain r = (0,1), and }XfS#Xr1aV  
    % because the coefficients for a given polynomial are generally all p?dGZ2` [I  
    % of similar magnitude. 8\qCj.>S  
    % ka?IX9t\  
    % ZERNPOL has been written using a vectorized implementation: multiple w\"n!^ms  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] QOkE\ro  
    % values can be passed as inputs) for a vector of points R.  To achieve ,W)IVc   
    % this vectorization most efficiently, the algorithm in ZERNPOL GW>7R6i  
    % involves pre-determining all the powers p of R that are required to |QAeQWP+1  
    % compute the outputs, and then compiling the {R^p} into a single 4 |:Q1  
    % matrix.  This avoids any redundant computation of the R^p, and "!%w9  
    % minimizes the sizes of certain intermediate variables. veYsctK~  
    % aBqe+FXp4  
    %   Paul Fricker 11/13/2006 l5\B2 +}7  
    ^7ea6G"  
    ch5`fm  
    % Check and prepare the inputs: br34Eh  
    % ----------------------------- RE`J"&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `}k&HRn  
        error('zernpol:NMvectors','N and M must be vectors.') f>\bUmk(  
    end %!ER@&1f&  
    5{R#h :  
    if length(n)~=length(m) b*'=W"%\  
        error('zernpol:NMlength','N and M must be the same length.') _V_8p)%  
    end 5UrXVdP  
    fG8}=xH_&  
    n = n(:); W%cj39$  
    m = m(:); .T#y N\S1  
    length_n = length(n); g:.,}L  
     qrkRD*a  
    if any(mod(n-m,2)) .yK\&q[<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') |"Xi%CQ2  
    end Y2=Brtc[@  
    RS||KA])J  
    if any(m<0) uh C=  
        error('zernpol:Mpositive','All M must be positive.') DuO%B  
    end rB.=f[aX[  
    !\&7oAs=I  
    if any(m>n) h 0QYoDvbC  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') G)tq/`zNw  
    end L5zG0mC8  
    DSDl[;3O{s  
    if any( r>1 | r<0 ) %|D\j-~  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') c5B_WqjJ  
    end T}w*K[z $  
    CD8JYiJ  
    if ~any(size(r)==1) JL.yd H79  
        error('zernpol:Rvector','R must be a vector.') r'9=k x  
    end @R'g@+{I  
    9h3~;Q  
    r = r(:); VeN&rjc  
    length_r = length(r); ."!8B9 s  
    ]df9'\  
    if nargin==4 {x&jh|f`g  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); !dbA (  
        if ~isnorm {0)WS}&  
            error('zernpol:normalization','Unrecognized normalization flag.') B(en5|  
        end 9p[W :)P4d  
    else 6wpND|cT  
        isnorm = false; ?G>5 D`V  
    end Z+``/Q]>+  
    YA;8uMqh;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WnJLX ^;  
    % Compute the Zernike Polynomials  &aevR^f+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f1]AfH#  
    XY+aunLf  
    % Determine the required powers of r: N}l]Ilm$34  
    % ----------------------------------- xPfnyAo?%z  
    rpowers = []; l9ifUh e  
    for j = 1:length(n) n6%jhv9H  
        rpowers = [rpowers m(j):2:n(j)]; 3f:1D=f  
    end <_sT]?N #  
    rpowers = unique(rpowers); *nsnX/e(-  
    2LxVt@_R!%  
    % Pre-compute the values of r raised to the required powers, ~kj(s>xP  
    % and compile them in a matrix: :`>+f.)  
    % ----------------------------- S"KTL*9D  
    if rpowers(1)==0 -EkDG]my  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?^yh5   
        rpowern = cat(2,rpowern{:}); jC/JiI  
        rpowern = [ones(length_r,1) rpowern]; m|ERf2-  
    else /H;kYx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @8<uAu%  
        rpowern = cat(2,rpowern{:}); e\ l,gQP  
    end 4na4Jsq{  
    IjB*myN.  
    % Compute the values of the polynomials: se n{f^U  
    % -------------------------------------- <E}]t,'3  
    z = zeros(length_r,length_n); @'<j!CqQ o  
    for j = 1:length_n h4B#T'b  
        s = 0:(n(j)-m(j))/2; C(t6;&H  
        pows = n(j):-2:m(j); }_kI>  
        for k = length(s):-1:1 602eLV)  
            p = (1-2*mod(s(k),2))* ... MY<!\4/  
                       prod(2:(n(j)-s(k)))/          ... d T,m{[+  
                       prod(2:s(k))/                 ... WlQ&Yau  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _[OEE<(  
                       prod(2:((n(j)+m(j))/2-s(k))); Wse*gO  
            idx = (pows(k)==rpowers); E]eqvTNH  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /"%IhX-  
        end RkH oT^  
         v/TlXxfil  
        if isnorm G}dOx}kT  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); dI0>m:RBz  
        end dT@SO  
    end Zz)oMw  
    In9|n^=H@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2(J tD  
    n}'.6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Hz3X*G\5b  
    Y4!q 1]TGX  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)