切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11357阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 w][1C\8m  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! `;7^@k  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 '~ RP+  
    function z = zernfun(n,m,r,theta,nflag) umrfA  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. [z$th  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m72r6Yq2@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xJ>U_Gd  
    %   unit circle.  N is a vector of positive integers (including 0), and q"OvuHBSOn  
    %   M is a vector with the same number of elements as N.  Each element S6gg(nNe  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) H: Rd4dl,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 'Z#8]YP`  
    %   and THETA is a vector of angles.  R and THETA must have the same hjywYd]8  
    %   length.  The output Z is a matrix with one column for every (N,M) T+7O+X#  
    %   pair, and one row for every (R,THETA) pair. &*\wr} a!  
    % _p/ _t76s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t W ;1  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gT$`a  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Q?KWiFA}'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bD[W`yW0  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (K"U #Zn  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mt$0p|B8  
    % 4(>|f_$  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6m_ fEkS[  
    %   They are used in disciplines such as astronomy, optics, and Y.&nxT95=  
    %   optometry to describe functions on a circular domain. A L|F Bd  
    % +CL`]'~;E-  
    %   The following table lists the first 15 Zernike functions. =n>&Bl-Bl  
    % r9<OB`)3+  
    %       n    m    Zernike function           Normalization [F4] pR(  
    %       -------------------------------------------------- /1ZRjf^  
    %       0    0    1                                 1 L=4%MyZ.e  
    %       1    1    r * cos(theta)                    2 3B#qQ#  
    %       1   -1    r * sin(theta)                    2 f0+)%gO{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !t/I j~o  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Eb66GXF[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Q$!dPwDg  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) t'Zq>y;yg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) lt\. )Y>4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >5Y%4++(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Y=+pz^/"  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) $'# hCs  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Nv!If$d  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gE$D#PZa  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ha+)ZF  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *@`Sx'5!  
    %       -------------------------------------------------- k I  
    % KITC,@xE_O  
    %   Example 1: yClX!OL  
    % &`+tWL6L  
    %       % Display the Zernike function Z(n=5,m=1) W]b>k lp;  
    %       x = -1:0.01:1; PhTMXv<cE  
    %       [X,Y] = meshgrid(x,x); J:g4ES-/   
    %       [theta,r] = cart2pol(X,Y); r'!L}^n  
    %       idx = r<=1; o9I=zAGjy  
    %       z = nan(size(X)); ~n9x ,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); a=n* }.  
    %       figure ,*_=w^;Rr  
    %       pcolor(x,x,z), shading interp SB"Uu2)wZ  
    %       axis square, colorbar ZBYFQTEE  
    %       title('Zernike function Z_5^1(r,\theta)') DJ)Q,l*|N9  
    % [t #xX59  
    %   Example 2: />^sGB  
    % g i>`  
    %       % Display the first 10 Zernike functions fCC^hB]'  
    %       x = -1:0.01:1; =^a Ngq  
    %       [X,Y] = meshgrid(x,x); EjxzX1:  
    %       [theta,r] = cart2pol(X,Y); ?r P'PUB  
    %       idx = r<=1; CshYUr -  
    %       z = nan(size(X)); 44@yQ?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :(7icHa  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <5).(MTa  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; tZ|0wPp  
    %       y = zernfun(n,m,r(idx),theta(idx)); L>xecep  
    %       figure('Units','normalized') ;W"=s79  
    %       for k = 1:10 +% E)]*Ym  
    %           z(idx) = y(:,k); Klr+\R@(n  
    %           subplot(4,7,Nplot(k)) i`k{}!F  
    %           pcolor(x,x,z), shading interp #Y|t,x;  
    %           set(gca,'XTick',[],'YTick',[]) oUSv)G.zb  
    %           axis square M/<>'%sj  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ":igYh  
    %       end ::<v; `l  
    % @J~hi\&`  
    %   See also ZERNPOL, ZERNFUN2. o/dj1a~U  
    *z?Vy<u G  
    %   Paul Fricker 11/13/2006 \tCxz(vKz  
    y6#AL<W@=  
    .|?UqZ(,  
    % Check and prepare the inputs: * I)F5M  
    % ----------------------------- pUV4oyGV   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1s\   
        error('zernfun:NMvectors','N and M must be vectors.') =[_=y=G  
    end $X\deJ1Hi  
    |f+`FOliP  
    if length(n)~=length(m) rf\/Y"D  
        error('zernfun:NMlength','N and M must be the same length.') 8cKP_Ec  
    end OV>JmYe1{/  
    X}f u $2  
    n = n(:); gPJZpaS  
    m = m(:); 8?l/x  
    if any(mod(n-m,2)) j'IZetT  
        error('zernfun:NMmultiplesof2', ... !_i;6UVG  
              'All N and M must differ by multiples of 2 (including 0).') PS:"mP7n  
    end eVRPjVzQ'Q  
    [\BLb8  
    if any(m>n) /^M|$JRI  
        error('zernfun:MlessthanN', ... yiO/0nMp  
              'Each M must be less than or equal to its corresponding N.') ?GT,Y5  
    end ; ElwF&"!X  
    XbaUmCuh  
    if any( r>1 | r<0 ) fk5$z0/  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Fo.p}j+>  
    end (qyT,K8  
    oVAY}q|wU  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Oaj$Z- f  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3'jH,17lWV  
    end OAiSE`  
    v\ <4y P  
    r = r(:); ]8o[&50y  
    theta = theta(:); N+nv#]{  
    length_r = length(r); wAA9M4  
    if length_r~=length(theta) 8M6wc394  
        error('zernfun:RTHlength', ... Sv>bU4LHf  
              'The number of R- and THETA-values must be equal.') )RCva3Ul  
    end @3v[L<S{  
    han S8  
    % Check normalization: QLLMSa+! \  
    % -------------------- 1e)5D& njS  
    if nargin==5 && ischar(nflag) s`dwE*~  
        isnorm = strcmpi(nflag,'norm'); =yCz!vc  
        if ~isnorm 0 zn }l6OS  
            error('zernfun:normalization','Unrecognized normalization flag.') qBDhCE  
        end jccSjGX@w  
    else D:=Q)Uh0I  
        isnorm = false; )YY8`\F>1  
    end ~{00moN"m  
    w:3CWF4q]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?' /#Gt`  
    % Compute the Zernike Polynomials `gE_u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w|[{xn^R  
    L7"B`oa(p  
    % Determine the required powers of r: u5I#5  
    % ----------------------------------- cM Z-  
    m_abs = abs(m); ]yV,lp  
    rpowers = []; rp_Aw  
    for j = 1:length(n) @!KG;d:l  
        rpowers = [rpowers m_abs(j):2:n(j)]; h=o%\F4  
    end iPK:gK3Q  
    rpowers = unique(rpowers); B!AJ*  
    VK[`e[.C  
    % Pre-compute the values of r raised to the required powers, Aq,&p,m03  
    % and compile them in a matrix: :TRhk.  
    % ----------------------------- i~ITRi@  
    if rpowers(1)==0 fl+dL#]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E5Zxp3N  
        rpowern = cat(2,rpowern{:}); _)a!g-Do7  
        rpowern = [ones(length_r,1) rpowern]; N?l  
    else &pFP=|Pq  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &'"dYZj{  
        rpowern = cat(2,rpowern{:}); Z_ (P^/  
    end JWV n@)s  
    7*(K%e"U  
    % Compute the values of the polynomials: z|v/h UrD  
    % -------------------------------------- zOn% \  
    y = zeros(length_r,length(n)); xY@<<  
    for j = 1:length(n) ,T0q.!d  
        s = 0:(n(j)-m_abs(j))/2; owe6ge7m  
        pows = n(j):-2:m_abs(j); $^5c8wT  
        for k = length(s):-1:1 il~A(`+YO  
            p = (1-2*mod(s(k),2))* ... <G /a-Z  
                       prod(2:(n(j)-s(k)))/              ... W0\ n?$ZC~  
                       prod(2:s(k))/                     ... )~C+nb '6/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... UI_u:a9Q/  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W/G75o~6  
            idx = (pows(k)==rpowers); @XN*H- |  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [?S-on.  
        end "W@>lf?"  
         V!zU4!@qP  
        if isnorm 3)3$ L  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !CUX13/0  
        end ( P\oLr9  
    end gT#hF]c:  
    % END: Compute the Zernike Polynomials _qjkiKm?1F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6I-Qq?L[H  
    S&{#sl#e  
    % Compute the Zernike functions: LLd5Z44v  
    % ------------------------------ VskdC?yIp  
    idx_pos = m>0; f <LRM  
    idx_neg = m<0; 8?G534*r@2  
    _\u?]YTv  
    z = y; H&=fD` Xq  
    if any(idx_pos) [_1K1i"m  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z>_F:1x  
    end eK =v<X  
    if any(idx_neg) H'x) [2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); arb'.:[z^  
    end [KNA5(Y0  
    kA{eT  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) FGu#Pa  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. '=cAdja  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated f1 Zj:3e  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 6'ia^om  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >m4HCs>  
    %   and THETA is a vector of angles.  R and THETA must have the same yN9setw*,M  
    %   length.  The output Z is a matrix with one column for every P-value, RZTC+ylj  
    %   and one row for every (R,THETA) pair. W ,|JocDq  
    % ;\rKkH"K8n  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike LHHDD\X   
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) P>qDQ1  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) /YD2F  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 K%3{a=1  
    %   for all p. CNrK]+>  
    % ]C5/-J,F  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 2_ CJV  
    %   Zernike functions (order N<=7).  In some disciplines it is uM@ve(8\  
    %   traditional to label the first 36 functions using a single mode ^u$?& #  
    %   number P instead of separate numbers for the order N and azimuthal |\J! x|xy  
    %   frequency M. xL\R-H^c]  
    % *IV_evgM7  
    %   Example: 6 i'kc3w  
    % }D*5PV%d  
    %       % Display the first 16 Zernike functions *Fm#Qek  
    %       x = -1:0.01:1; r"x/,!_E  
    %       [X,Y] = meshgrid(x,x); TUM7(-,9  
    %       [theta,r] = cart2pol(X,Y); ER)to<k  
    %       idx = r<=1; @{o3NR_  
    %       p = 0:15; %617f=(E?!  
    %       z = nan(size(X)); 7(]M`bBH  
    %       y = zernfun2(p,r(idx),theta(idx)); #uCE0}N@  
    %       figure('Units','normalized') /..a9x{At>  
    %       for k = 1:length(p) :y3e-lr  
    %           z(idx) = y(:,k); `xie/  
    %           subplot(4,4,k) #ByrX\  
    %           pcolor(x,x,z), shading interp ~.&2N Ur  
    %           set(gca,'XTick',[],'YTick',[]) \4"01:u'  
    %           axis square ]n^TN r7  
    %           title(['Z_{' num2str(p(k)) '}']) ,n/^;. _1  
    %       end LRKl3"M  
    % /6nj 4.xxc  
    %   See also ZERNPOL, ZERNFUN. =SpD6 9-H  
    RinaGeim  
    %   Paul Fricker 11/13/2006 ,,CheRO  
    Pef$-3aP>E  
    [ @`Ki  
    % Check and prepare the inputs: ~#nbD-*#  
    % ----------------------------- q+?>shqsZ  
    if min(size(p))~=1 vz}_^8O  
        error('zernfun2:Pvector','Input P must be vector.') Bxs0m]  
    end 3FhkK/@  
    ,B||8W9  
    if any(p)>35 z3(:a'  
        error('zernfun2:P36', ... 0uwe,;   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :Mzkm^7B  
               '(P = 0 to 35).']) pPnJf{  
    end boWaH}?0'  
    XpoEZ|0  
    % Get the order and frequency corresonding to the function number: kbKGGn4u  
    % ---------------------------------------------------------------- Ub%1OQ  
    p = p(:); .|x" '3#  
    n = ceil((-3+sqrt(9+8*p))/2); OYayTKxN  
    m = 2*p - n.*(n+2); JF-ew"o<E  
    Yb=Z `)  
    % Pass the inputs to the function ZERNFUN: U[WR?J4~LX  
    % ---------------------------------------- ,n\'dMNii  
    switch nargin >gGdzL  
        case 3 >cRE$d?  
            z = zernfun(n,m,r,theta); ^:64(7  
        case 4 + -OnO7f  
            z = zernfun(n,m,r,theta,nflag); I%gDqfdL  
        otherwise $hE,BeQ  
            error('zernfun2:nargin','Incorrect number of inputs.') E6_.Q `!ll  
    end c/ s$*"  
    02 6|u|R  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) #5/.n.X"  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. @l^BW*BCo  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of &<\i37y  
    %   order N and frequency M, evaluated at R.  N is a vector of 8@Hl0{q  
    %   positive integers (including 0), and M is a vector with the $ ";NS6 1  
    %   same number of elements as N.  Each element k of M must be a !3T,{:gyrI  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  1@p'><\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4E~!$Ustx  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix o u*`~K|R  
    %   with one column for every (N,M) pair, and one row for every H<wrusRg  
    %   element in R. ds|L'7  
    % UKfpoDhEe  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- fjwUh>[ }  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is $9m>(b/;n  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]5`Y^hS_g  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ._5"FUg  
    %   for all [n,m]. B jsF5~+\  
    % }!n90 9 L  
    %   The radial Zernike polynomials are the radial portion of the :HTV8;yc  
    %   Zernike functions, which are an orthogonal basis on the unit gW(7jFl  
    %   circle.  The series representation of the radial Zernike T3#KuiwU9  
    %   polynomials is +PGtO9}B  
    % dxAP7v  
    %          (n-m)/2 Tyk\l>S  
    %            __ P@pJ^5Jf  
    %    m      \       s                                          n-2s .X)TRD#MW  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r R}VEq gq  
    %    n      s=0 cc_v4d{x  
    % 6y d/3k  
    %   The following table shows the first 12 polynomials. ,oS<9kC68  
    % [23F0-p  
    %       n    m    Zernike polynomial    Normalization :L'U>)k  
    %       --------------------------------------------- F4`5z)<*  
    %       0    0    1                        sqrt(2) Sx|)GTJJ|-  
    %       1    1    r                           2 ZuIw4u(9  
    %       2    0    2*r^2 - 1                sqrt(6) -D-]tL6w  
    %       2    2    r^2                      sqrt(6) bQelU  
    %       3    1    3*r^3 - 2*r              sqrt(8) +kN/-UsB  
    %       3    3    r^3                      sqrt(8) s_`=ugue  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 1`z^Xk8vt  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;S_\- ]m&g  
    %       4    4    r^4                      sqrt(10) lX*IEAc  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) :*0l*j  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 0X'2d  
    %       5    5    r^5                      sqrt(12) M);@XcS  
    %       --------------------------------------------- f~{@(g&Gl  
    % z0Bw+&^]}  
    %   Example: @& vtY._  
    % '4J];Nj0  
    %       % Display three example Zernike radial polynomials U9ZWSDs  
    %       r = 0:0.01:1; e6JT|>9A7  
    %       n = [3 2 5]; :2_8.+:  
    %       m = [1 2 1]; 13v#  
    %       z = zernpol(n,m,r); B[Gl}(E  
    %       figure dD{{G :V  
    %       plot(r,z) S+7:fu2?+  
    %       grid on 7g a|4j3%  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Rz_fNlA  
    % eYD|`)-f<^  
    %   See also ZERNFUN, ZERNFUN2. Yo$NE  
    n fU\l<  
    % A note on the algorithm. tF@hH}{;  
    % ------------------------ /y~ "n4CK~  
    % The radial Zernike polynomials are computed using the series 1tMs\e-  
    % representation shown in the Help section above. For many special v2tKk^6`(i  
    % functions, direct evaluation using the series representation can f3u^:6U~  
    % produce poor numerical results (floating point errors), because gfW8s+  
    % the summation often involves computing small differences between eJv_`#R&Of  
    % large successive terms in the series. (In such cases, the functions A,4|UA?-  
    % are often evaluated using alternative methods such as recurrence E)h&<{%  
    % relations: see the Legendre functions, for example). For the Zernike 6JYVC>i  
    % polynomials, however, this problem does not arise, because the 00d<V:Aoy  
    % polynomials are evaluated over the finite domain r = (0,1), and G6?+Qz r  
    % because the coefficients for a given polynomial are generally all [LHx9(,NM  
    % of similar magnitude. 0s#`H  
    % yS)73s/MrY  
    % ZERNPOL has been written using a vectorized implementation: multiple |re>YQ!zd  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] >,V~-Tp  
    % values can be passed as inputs) for a vector of points R.  To achieve 2V*<HlqOif  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7Y>17=|  
    % involves pre-determining all the powers p of R that are required to <,S5(pZ  
    % compute the outputs, and then compiling the {R^p} into a single ,(  ?q  
    % matrix.  This avoids any redundant computation of the R^p, and QlmZ4fT[r  
    % minimizes the sizes of certain intermediate variables. t|ih{0  
    % & 1:_+  
    %   Paul Fricker 11/13/2006 $aFCe}3b<  
    uR:@7n  
    @D3Y}nR:  
    % Check and prepare the inputs: xpb,Nzwt^  
    % ----------------------------- }{(dG7G+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -/O_wqm#  
        error('zernpol:NMvectors','N and M must be vectors.') *b@YoQe3!  
    end YgN:$+g5  
    {M.OOEcIp  
    if length(n)~=length(m) \UF/_'=K  
        error('zernpol:NMlength','N and M must be the same length.') BcfW94  
    end P!apAr  
    "Y> #=>8  
    n = n(:); L/U^1=Wi*O  
    m = m(:); ^"?fZSC  
    length_n = length(n); U^n71m>]%T  
    2 ;z~xR  
    if any(mod(n-m,2)) #Oeb3U  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') *x;&fyR  
    end %rmn+L),;  
    )M!6y%b67  
    if any(m<0) Nzo;j0 [  
        error('zernpol:Mpositive','All M must be positive.') 122%KS  
    end i`Tp +e@a>  
    m4<5jC`-M  
    if any(m>n) 7l%]/`Y-  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') R.FC3<TTv  
    end `k 5'nnyP  
    Ob+Rnfx37  
    if any( r>1 | r<0 ) ^Pq4 n%x  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') vIL'&~C\y  
    end z; dFS  
    \x,q(npHi  
    if ~any(size(r)==1) =Z3{6y}3p  
        error('zernpol:Rvector','R must be a vector.') ~ry B*eZH  
    end 4DYa~ =w  
    R0l5"l*@+  
    r = r(:); 'nrX RDb  
    length_r = length(r); $mV1K)ege  
    -8r';zR  
    if nargin==4 .}wVM`81z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm');  MYD`P2F  
        if ~isnorm gyz#:z$p^  
            error('zernpol:normalization','Unrecognized normalization flag.') )dv w.X  
        end X#|B*t34  
    else 8,0WHivg  
        isnorm = false; Cw*:`  
    end vG{+}o#  
    eNwF<0}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G`_LD+  
    % Compute the Zernike Polynomials t+ ,'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GV+K] KDI  
    ;77#$H8)  
    % Determine the required powers of r: Q1A_hW2x  
    % -----------------------------------  ?)_?YLi  
    rpowers = []; ;V=Y#|o  
    for j = 1:length(n) *t)Y@=k3>  
        rpowers = [rpowers m(j):2:n(j)]; +PlA#DZu  
    end j.?c~Fh  
    rpowers = unique(rpowers); va>u1S<lO  
    X\ -IAv  
    % Pre-compute the values of r raised to the required powers, O3YD jas  
    % and compile them in a matrix: e={X{5z0  
    % ----------------------------- iOFp9i=j  
    if rpowers(1)==0 ,[} XK9  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @%oHt*u  
        rpowern = cat(2,rpowern{:}); o#D;H[' A  
        rpowern = [ones(length_r,1) rpowern]; _|'e Az   
    else 8(6(,WwP}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D <16m<b  
        rpowern = cat(2,rpowern{:}); 8NE+G.:G  
    end s9Tp(Yr,k  
    Rz #&v  
    % Compute the values of the polynomials: u{6b>c|,X  
    % -------------------------------------- y:m ;_U,%c  
    z = zeros(length_r,length_n); u . xUM  
    for j = 1:length_n !a.|URa7  
        s = 0:(n(j)-m(j))/2; :aIS>6  
        pows = n(j):-2:m(j); hR g?H  
        for k = length(s):-1:1 V!{}%;f  
            p = (1-2*mod(s(k),2))* ... pZ@)9c  
                       prod(2:(n(j)-s(k)))/          ... ~$WBcqo  
                       prod(2:s(k))/                 ... /.1yxb#Z?,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Xxz_h*  
                       prod(2:((n(j)+m(j))/2-s(k))); +E7Os|m  
            idx = (pows(k)==rpowers); f"{|c@%  
            z(:,j) = z(:,j) + p*rpowern(:,idx); JNJ96wnX1  
        end UdiogXZ  
         8JFns-5  
        if isnorm A"V($:>U  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }Ai_peO0a  
        end =o!1}'1}}  
    end Fv<^\q  
    :rBPgrt  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Mpx98xcO  
    5kik+  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 qHl>d*IZ  
    TFG0~"4Cz  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)