切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11294阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 BpX`49  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Q00v(6V46  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9}Z;(,6/.\  
    function z = zernfun(n,m,r,theta,nflag) !_~ /Y/M  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. r:E4Wi{\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N UIg?3J}R  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~-uf%=  
    %   unit circle.  N is a vector of positive integers (including 0), and c#1kg@q@  
    %   M is a vector with the same number of elements as N.  Each element 11Qi _T\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Gm9  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 7#oq|5  
    %   and THETA is a vector of angles.  R and THETA must have the same .O(9\3q\  
    %   length.  The output Z is a matrix with one column for every (N,M) Tp.]{*  
    %   pair, and one row for every (R,THETA) pair. +Wy`X5v  
    % #Ufb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9^`cVjD5  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {D :WXvI  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral kdx06'4o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `kv7Rr}Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l{ql'm  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C!9mygI  
    % b`j9}t Z  
    %   The Zernike functions are an orthogonal basis on the unit circle. f\Hw Y)^>  
    %   They are used in disciplines such as astronomy, optics, and Nh/i'q/  
    %   optometry to describe functions on a circular domain. Kng=v~)N'  
    % 8;c\} D  
    %   The following table lists the first 15 Zernike functions. O@W/s!&lFa  
    % 6#K.n&=*  
    %       n    m    Zernike function           Normalization P>)J:.tr0  
    %       -------------------------------------------------- VAUd^6Xdwx  
    %       0    0    1                                 1 &2[Xu4*  
    %       1    1    r * cos(theta)                    2 #R31V QwK5  
    %       1   -1    r * sin(theta)                    2 T /IX(b'<  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2EN}"Du]mj  
    %       2    0    (2*r^2 - 1)                    sqrt(3) {hN<Ot  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &y|PseH"  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ycki0&n3  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 8'b ZR]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) z8%qCq  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) bi+g=cS  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Eyk:pnKJb  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BD}%RTeWKq  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?u".*!%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >SziRm>Y7  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ZGI<L  
    %       -------------------------------------------------- ) R5j?6}xF  
    % \-{$IC-L  
    %   Example 1: &`vThs[x  
    % .f;@O qU  
    %       % Display the Zernike function Z(n=5,m=1) :pz@'J  
    %       x = -1:0.01:1; HkhZB^_V  
    %       [X,Y] = meshgrid(x,x); #902x*Z'c"  
    %       [theta,r] = cart2pol(X,Y); L]"$d F  
    %       idx = r<=1; 9%3+\[s1  
    %       z = nan(size(X)); V*(x@pF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "AKr;|m  
    %       figure YRf$?xa  
    %       pcolor(x,x,z), shading interp @OUBo;/  
    %       axis square, colorbar }lhk;#r  
    %       title('Zernike function Z_5^1(r,\theta)') P O0Od z  
    % >hq{:m  
    %   Example 2: q@XJ,e1A  
    % *icaKy3  
    %       % Display the first 10 Zernike functions _5(p=Zc  
    %       x = -1:0.01:1; h"Wpb}FT  
    %       [X,Y] = meshgrid(x,x); `'3 De(  
    %       [theta,r] = cart2pol(X,Y); 5WxNH}{  
    %       idx = r<=1; w2/3[VZ}l  
    %       z = nan(size(X)); fO^s4gWTg  
    %       n = [0  1  1  2  2  2  3  3  3  3]; /38I (0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; YPq:z"`-y4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $3&XM  
    %       y = zernfun(n,m,r(idx),theta(idx)); 'NfsAE  
    %       figure('Units','normalized') tSoF!@6  
    %       for k = 1:10 6@FhDj2X  
    %           z(idx) = y(:,k); }aXSMxCd  
    %           subplot(4,7,Nplot(k)) 4MW oGV9  
    %           pcolor(x,x,z), shading interp kRbJK  
    %           set(gca,'XTick',[],'YTick',[]) J&JZYuuf  
    %           axis square "*l{ m2"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *3@8,~_tp  
    %       end B1E:P`t  
    % I!u=.[5zdC  
    %   See also ZERNPOL, ZERNFUN2. WS.g` %  
    n <> ^cD  
    %   Paul Fricker 11/13/2006 \pTC[Ry1  
    WJa7  
    B~qo^ppVU  
    % Check and prepare the inputs: C\ Yf]J  
    % ----------------------------- p W5D!z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T;{:a-8  
        error('zernfun:NMvectors','N and M must be vectors.') n6Uf>5  
    end _nxu8g]  
    N `fFYO  
    if length(n)~=length(m) v.TgB)  
        error('zernfun:NMlength','N and M must be the same length.') Y9vi&G?Jl  
    end ,g*3u  
    O<,\ tZ'N  
    n = n(:); gV\Y>y4v  
    m = m(:); o]qwN:8^  
    if any(mod(n-m,2)) &OXx\}>MW  
        error('zernfun:NMmultiplesof2', ... c{?SFwgd  
              'All N and M must differ by multiples of 2 (including 0).') `Je1$)%  
    end W7_m,{q  
    }''0N1,/  
    if any(m>n) 0CXXCa7!  
        error('zernfun:MlessthanN', ... ! os@G  
              'Each M must be less than or equal to its corresponding N.') X !0 7QKs  
    end JTBt=u{6^  
    2DJg__("  
    if any( r>1 | r<0 ) KECW~e`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |#yT]0L%pA  
    end w{*V8S3h9  
    3#]IIj`\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .j|uf[?h  
        error('zernfun:RTHvector','R and THETA must be vectors.') *HGhm04F{  
    end B|$o.$5  
    7j&EQm5\9  
    r = r(:); ;E.f%   
    theta = theta(:); s] ;P<  
    length_r = length(r); -m>3@"q  
    if length_r~=length(theta) U,6sR  
        error('zernfun:RTHlength', ... i^A=nsD`  
              'The number of R- and THETA-values must be equal.') '!?t+L%gO  
    end 5=<KA   
    41+WIa L  
    % Check normalization: 1n7'\esC*  
    % -------------------- 5ZH3}B^L$  
    if nargin==5 && ischar(nflag) GJ2ZK=/  
        isnorm = strcmpi(nflag,'norm'); a;-%C{S9r  
        if ~isnorm % a.T@E  
            error('zernfun:normalization','Unrecognized normalization flag.') "zQ<)Q]U  
        end c$BH`" <*  
    else Y}t)!}p$r  
        isnorm = false; >BK/HuS  
    end P6ktA-Hv>  
    UHU ,zgM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N'aq4okoL  
    % Compute the Zernike Polynomials .7LQ l ?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c|aX4=Z  
    WQiRbbX  
    % Determine the required powers of r: L+ XAbL)  
    % ----------------------------------- zks7wt]A  
    m_abs = abs(m); P?n4B \!  
    rpowers = []; xJU]py~o  
    for j = 1:length(n) bqA`oRb\  
        rpowers = [rpowers m_abs(j):2:n(j)]; [uHC AP  
    end t?PqfVSq  
    rpowers = unique(rpowers); :&'jh/vRN  
    UQ7]hX9  
    % Pre-compute the values of r raised to the required powers, "Y^ 9g/  
    % and compile them in a matrix: YX)Rs Vf  
    % ----------------------------- ElDeXLr'  
    if rpowers(1)==0 5k Q@]n:<k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .j^BWr  
        rpowern = cat(2,rpowern{:}); mD&I6F[s  
        rpowern = [ones(length_r,1) rpowern]; <-n^h~,4  
    else *mJ#|3I<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y3(MKq  
        rpowern = cat(2,rpowern{:}); o~\.jQQxa  
    end SDE$ymP x  
    +Ss3Ph  
    % Compute the values of the polynomials: ~tRGw^<9  
    % -------------------------------------- "p|.[d  
    y = zeros(length_r,length(n)); |j9aTv[`  
    for j = 1:length(n) *V\.6,^v  
        s = 0:(n(j)-m_abs(j))/2; xL i3|^q  
        pows = n(j):-2:m_abs(j); 5p:BHw;%;  
        for k = length(s):-1:1 2fu<s^9dh  
            p = (1-2*mod(s(k),2))* ... HQ7g0:-^a>  
                       prod(2:(n(j)-s(k)))/              ... !!V1#?0jw  
                       prod(2:s(k))/                     ... r<:d+5"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yTK3eK  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pmWy:0R  
            idx = (pows(k)==rpowers); gCiM\Qx  
            y(:,j) = y(:,j) + p*rpowern(:,idx); |o9`h9i  
        end [+R_3'aK  
         qhcx\eD:?  
        if isnorm G/(,,T}eG  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _(8#  
        end "M[&4'OM  
    end GQhy4ji'z  
    % END: Compute the Zernike Polynomials _xm<zy{`S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s2|.LmC3|B  
    _ A# lyp  
    % Compute the Zernike functions: 6S_mfWsi  
    % ------------------------------ Sa[lYMuB  
    idx_pos = m>0; ' v CMf  
    idx_neg = m<0; U!uJ)mm  
    NQZ /E )f  
    z = y; u%yYLpaKf  
    if any(idx_pos) Eri007?D  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P!IA;i  
    end K\fD';  
    if any(idx_neg) jN*wbqL  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jXALL8[c  
    end -qaO$M^Q  
    ]cS(2hP7  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) R13k2jLSQ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. %k['<BYG<  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated pt3)yj&XE  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive G7+{O7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, =>3,]hnep  
    %   and THETA is a vector of angles.  R and THETA must have the same I(7iD. ^:  
    %   length.  The output Z is a matrix with one column for every P-value, >]gB@tn[  
    %   and one row for every (R,THETA) pair. er-0i L@  
    % @ %L  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike :{Z%dD  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) MnF|'t  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) p"~@q}3  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /<$|tp\Rc  
    %   for all p. w42{)S"  
    % ~uZ9%UB_m  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^%Cd@!dk  
    %   Zernike functions (order N<=7).  In some disciplines it is 7_qsVhh]$E  
    %   traditional to label the first 36 functions using a single mode oPaoQbR(A  
    %   number P instead of separate numbers for the order N and azimuthal XP}5i!}}7=  
    %   frequency M. ^OIo  
    % SnXM`v,  
    %   Example: `fX\pOk~e  
    % +MaEet  
    %       % Display the first 16 Zernike functions H*3u]Ebh  
    %       x = -1:0.01:1; _eBNbO_J  
    %       [X,Y] = meshgrid(x,x); ps,Kj3^T<  
    %       [theta,r] = cart2pol(X,Y); N: 38N  
    %       idx = r<=1; StTxga|  
    %       p = 0:15; <b _K*]Z  
    %       z = nan(size(X)); Nv;'Ys P  
    %       y = zernfun2(p,r(idx),theta(idx)); 1EQ:@1  
    %       figure('Units','normalized') y $uq`FW  
    %       for k = 1:length(p) fSVM[  
    %           z(idx) = y(:,k); xy!E_CuC$  
    %           subplot(4,4,k) 6 ]<yR> '  
    %           pcolor(x,x,z), shading interp vShB26b  
    %           set(gca,'XTick',[],'YTick',[]) 9IG<9uj  
    %           axis square h;r^9g  
    %           title(['Z_{' num2str(p(k)) '}']) VZ`YbY  
    %       end mr#.uhd.z  
    % 5MCgmF*Y2  
    %   See also ZERNPOL, ZERNFUN. uTrzC+\aU  
    q8/k $5E  
    %   Paul Fricker 11/13/2006  (yd(ZY  
    uBg#zx  
    'w72i/  
    % Check and prepare the inputs: 4[;}/-  
    % ----------------------------- )AdwA+-x  
    if min(size(p))~=1 )y:))\>  
        error('zernfun2:Pvector','Input P must be vector.') 7^! zT  
    end ^*$!9~  
    fiSX( 9  
    if any(p)>35 N!dBF t"  
        error('zernfun2:P36', ... E2cZk6~m{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $[MAm)c:]{  
               '(P = 0 to 35).']) mA,{E-T  
    end .:Wp9M  
    '4u/g  
    % Get the order and frequency corresonding to the function number: _G<Wq`0w)  
    % ---------------------------------------------------------------- 3%o}3.P,:@  
    p = p(:); knV*,   
    n = ceil((-3+sqrt(9+8*p))/2); Ic!x y  
    m = 2*p - n.*(n+2); \?8q&o1=]  
    tIod=a)  
    % Pass the inputs to the function ZERNFUN: ^ . A  
    % ---------------------------------------- oPbziB8  
    switch nargin ~/aCzx~  
        case 3 KY%qzq,n  
            z = zernfun(n,m,r,theta); #{?RE?nD  
        case 4 0Db=/sJ>  
            z = zernfun(n,m,r,theta,nflag); wEI? 9  
        otherwise ZXiJ5BZ  
            error('zernfun2:nargin','Incorrect number of inputs.') Q\xDAOEL  
    end 2dJE` XL  
    jll|y0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ~Ij/vyB_  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. L 9cXgd  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of uXUuA/O5-  
    %   order N and frequency M, evaluated at R.  N is a vector of w6Mv%ZO_  
    %   positive integers (including 0), and M is a vector with the u:l<NWF^  
    %   same number of elements as N.  Each element k of M must be a >X"\+7bw  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) .~rg#*]^  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [fvjvN`  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix CMv8n@ry  
    %   with one column for every (N,M) pair, and one row for every H`q[!5~8  
    %   element in R. JlRNJ#h>  
    % ~P~q'  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- H%Lln#  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is '`W6U]7>  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to c_.Fe'E  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Clap3E|a  
    %   for all [n,m]. 2 1+[9  
    % Qr6PkHU  
    %   The radial Zernike polynomials are the radial portion of the (q}Li rR  
    %   Zernike functions, which are an orthogonal basis on the unit plJUQk  
    %   circle.  The series representation of the radial Zernike cb{"1z  
    %   polynomials is [!uVo>Q4  
    % ,zK E$  
    %          (n-m)/2 Co=Bq{GY  
    %            __ {L.uLr_?e  
    %    m      \       s                                          n-2s ^%LyT!y  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r :c8d([)$  
    %    n      s=0 itc\wn  
    % |}<Gz+E>  
    %   The following table shows the first 12 polynomials. p_EM/jI,  
    % =WZ@{z9J  
    %       n    m    Zernike polynomial    Normalization GWWaH+F[h  
    %       --------------------------------------------- <nN# K{AH  
    %       0    0    1                        sqrt(2) tAY{+N]f  
    %       1    1    r                           2 _bgv +/  
    %       2    0    2*r^2 - 1                sqrt(6) Ra H1aS(  
    %       2    2    r^2                      sqrt(6) <Kl$ek8  
    %       3    1    3*r^3 - 2*r              sqrt(8) {5d 5Y%&  
    %       3    3    r^3                      sqrt(8) [9MbNJt 8~  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 7~k=t!gTY  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Y ZuA"l Y  
    %       4    4    r^4                      sqrt(10) @^ m0>H  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Mk+G(4p  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?Drq!?3PDc  
    %       5    5    r^5                      sqrt(12) ~ ^   
    %       --------------------------------------------- .`v%9-5v  
    % =]"I0G-s!  
    %   Example: m_`%#$s}  
    % b&LAk-}[  
    %       % Display three example Zernike radial polynomials ?0+g.,9  
    %       r = 0:0.01:1; {I?)ODx7qC  
    %       n = [3 2 5]; n"Bc2}{  
    %       m = [1 2 1]; 0!$y]Gr  
    %       z = zernpol(n,m,r); Q[|*P ] w  
    %       figure HTvUt*U1  
    %       plot(r,z) +PKsiUJ|  
    %       grid on 5wl;fL~e  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Cz9MXb]B  
    % '!,(G3  
    %   See also ZERNFUN, ZERNFUN2. wArfnB&  
    AS;qJ)JfzQ  
    % A note on the algorithm. ijzwct#.  
    % ------------------------ C4|OsC7J  
    % The radial Zernike polynomials are computed using the series wp> z04  
    % representation shown in the Help section above. For many special ~<_WYSzS  
    % functions, direct evaluation using the series representation can (hQi {  
    % produce poor numerical results (floating point errors), because 4udj"-V  
    % the summation often involves computing small differences between rzLW @k  
    % large successive terms in the series. (In such cases, the functions j|!t3}((  
    % are often evaluated using alternative methods such as recurrence kOq8zYU|  
    % relations: see the Legendre functions, for example). For the Zernike #Q*V9kvU/H  
    % polynomials, however, this problem does not arise, because the BpYxH#4  
    % polynomials are evaluated over the finite domain r = (0,1), and TOS'|xQ  
    % because the coefficients for a given polynomial are generally all ;YW@ 3F-h  
    % of similar magnitude. A=p'`]Yld  
    % (+/d*4  
    % ZERNPOL has been written using a vectorized implementation: multiple n+YUG  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] SO[ u4b_"h  
    % values can be passed as inputs) for a vector of points R.  To achieve RgQs`aI  
    % this vectorization most efficiently, the algorithm in ZERNPOL mdEl CC0  
    % involves pre-determining all the powers p of R that are required to PiCGZybCA  
    % compute the outputs, and then compiling the {R^p} into a single uLPBl~Y  
    % matrix.  This avoids any redundant computation of the R^p, and Fkq^2o ]  
    % minimizes the sizes of certain intermediate variables. cF8X  
    % ,u)jZ7  
    %   Paul Fricker 11/13/2006 aW{5m@p{"  
    ACZK]~Y'N*  
    >!a- "  
    % Check and prepare the inputs: `ZI-1&Y3  
    % ----------------------------- -)}Z $;1a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RwOOe7mv  
        error('zernpol:NMvectors','N and M must be vectors.') \x]\W#C  
    end 5s`r&2 w  
    =+ >>l0=_v  
    if length(n)~=length(m) c%gL3kOT  
        error('zernpol:NMlength','N and M must be the same length.') ;+6><O!G  
    end Z[ (d7  
    eNVuw:Q+  
    n = n(:); !U1 vW}H  
    m = m(:); pi/0~ke4"  
    length_n = length(n); G :k'm^k  
    1;V_E2?V  
    if any(mod(n-m,2)) " r o'?  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') A~<!@`NjB  
    end m_@XoS yxI  
    0H_uxkB~  
    if any(m<0) >0<n%V#s:r  
        error('zernpol:Mpositive','All M must be positive.') ov;^ev,(  
    end Ef28  
    g,]m8%GHE  
    if any(m>n) xdM'v{N#m  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3,6f}:CG  
    end =|ODa/2 p  
    q` IY;"~  
    if any( r>1 | r<0 ) gD4vV'|  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') hd~#I<8;2  
    end <r t$~}  
    7*K UM6z  
    if ~any(size(r)==1) L~Peerby  
        error('zernpol:Rvector','R must be a vector.') Bdb}4X rL  
    end f(~N+2}  
    %<(d %&~  
    r = r(:); }l[e@6r F  
    length_r = length(r); R]&Csr#~  
    %]DA4W  
    if nargin==4 W&%,XwkQ  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); c$7~EP  
        if ~isnorm }_XiRm<  
            error('zernpol:normalization','Unrecognized normalization flag.') 4\ Xaou2V[  
        end 62zu;p9m  
    else :=ek~s.UV  
        isnorm = false; rz k;Q@1  
    end F=1 #qo<?  
    ;(Ug]U%3_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EGQgrwY5  
    % Compute the Zernike Polynomials It&CM,=t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % _E?3  
    \WE&5 9G  
    % Determine the required powers of r: B\)Te9k'  
    % ----------------------------------- $m2#oI 'D  
    rpowers = []; >WD HRC  
    for j = 1:length(n) B#jnM~fJz  
        rpowers = [rpowers m(j):2:n(j)]; uMZ~[S z  
    end n>j2$m1[  
    rpowers = unique(rpowers); ; /K6U  
    *S:~U  
    % Pre-compute the values of r raised to the required powers, <a @7's  
    % and compile them in a matrix: Dn 0L%?_   
    % ----------------------------- Z}uY%]  
    if rpowers(1)==0 4hwb] Yz  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5 k3m"*  
        rpowern = cat(2,rpowern{:}); gI;"PkN  
        rpowern = [ones(length_r,1) rpowern]; g}D)MlXRq  
    else 8lYA6A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P{6$".kIY  
        rpowern = cat(2,rpowern{:}); PD0&ep1h7G  
    end A%W]XEa<  
    goIv m:?  
    % Compute the values of the polynomials: v4"Ukv  
    % -------------------------------------- kP&I}RY  
    z = zeros(length_r,length_n); 7UMZs7L$  
    for j = 1:length_n rBTg"^jsw  
        s = 0:(n(j)-m(j))/2; +yWD>PY(  
        pows = n(j):-2:m(j); e,e(t7c?d  
        for k = length(s):-1:1 rtJER?A  
            p = (1-2*mod(s(k),2))* ... dnoF)(d&Cm  
                       prod(2:(n(j)-s(k)))/          ... 018SFle  
                       prod(2:s(k))/                 ... WT<}3(S'?  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... BKg8p]`+  
                       prod(2:((n(j)+m(j))/2-s(k))); xyk%\&"7  
            idx = (pows(k)==rpowers); W4^zKnH  
            z(:,j) = z(:,j) + p*rpowern(:,idx); hFi gY\$m  
        end 2MRd  
         b},2A'X  
        if isnorm 9efey? z  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); jL\j$'KC  
        end Qq`S=:}~x  
    end <}{<FXk[  
    iv~R4;;)  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  lV^#[%  
    u&I c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 HZAT_  
    A8&@Vxdz  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)