非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .Q,"gsY
function z = zernfun(n,m,r,theta,nflag) !S':G
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :rVR{,pL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1+;bd'Ie
% and angular frequency M, evaluated at positions (R,THETA) on the Ak9{P`
% unit circle. N is a vector of positive integers (including 0), and p2Ep(0w,R5
% M is a vector with the same number of elements as N. Each element |l;
Ot=C=
% k of M must be a positive integer, with possible values M(k) = -N(k) Nh.+woFq4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 9{jMO
% and THETA is a vector of angles. R and THETA must have the same Swhz\/u9
% length. The output Z is a matrix with one column for every (N,M) 9efDM
% pair, and one row for every (R,THETA) pair. ]`&_!T
% 6(bN*.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +?{"Q#.>;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Cdz&'en^
% with delta(m,0) the Kronecker delta, is chosen so that the integral JY#vq'dl|
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <eG| `
% and theta=0 to theta=2*pi) is unity. For the non-normalized szsVk#p
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. cmG27\c RO
% _YF>Y=D-
% The Zernike functions are an orthogonal basis on the unit circle. ?$f.[;mh
% They are used in disciplines such as astronomy, optics, and Trv}YT.
% optometry to describe functions on a circular domain. 5E'/8xp bB
% "/Qz?1>l+
% The following table lists the first 15 Zernike functions. )}@D\(/@
% )j36Y =r3
% n m Zernike function Normalization ?Ij(B}D
% -------------------------------------------------- f CU]
% 0 0 1 1 Zd[rn:9\
% 1 1 r * cos(theta) 2 @s LN
% 1 -1 r * sin(theta) 2 fs'SCwx
% 2 -2 r^2 * cos(2*theta) sqrt(6) ;
j!dbT~5
% 2 0 (2*r^2 - 1) sqrt(3) f8:nKb>nq$
% 2 2 r^2 * sin(2*theta) sqrt(6) e"S?qpJK
% 3 -3 r^3 * cos(3*theta) sqrt(8) D;pI!S<#
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) odhS0+d^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) %;'~TtW5
% 3 3 r^3 * sin(3*theta) sqrt(8) 6<];}M_{
% 4 -4 r^4 * cos(4*theta) sqrt(10) v1OVrk>s>
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >3uNh:|>/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Qo#]Lo> \g
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BIWe Hx
% 4 4 r^4 * sin(4*theta) sqrt(10) yJ $6vmQ
% -------------------------------------------------- |UXSUP
@s
% [I
*_0
% Example 1: WywS1viD
% 9eMle?pF
% % Display the Zernike function Z(n=5,m=1) DhyR
% x = -1:0.01:1; n~I-mR)"
% [X,Y] = meshgrid(x,x); Nm?^cR5r
% [theta,r] = cart2pol(X,Y); qIi
\[Ugh
% idx = r<=1; :<J7 g`f
% z = nan(size(X)); -l= 4{^pK
% z(idx) = zernfun(5,1,r(idx),theta(idx)); %~!4DXrMk
% figure Ek{Q NlQ]4
% pcolor(x,x,z), shading interp MGR:IOTa
% axis square, colorbar >WSh)(Cg
% title('Zernike function Z_5^1(r,\theta)') ;qWu8\T+
% ~[ufL25K
% Example 2: |R}=HsYey
% cpdESc9W
% % Display the first 10 Zernike functions S<0 &V
% x = -1:0.01:1; <fUo@]Lv
% [X,Y] = meshgrid(x,x); q+L'h8
% [theta,r] = cart2pol(X,Y); 8o~
NJ 6
% idx = r<=1; [YOH'i&X
% z = nan(size(X)); O4R\]B#Xu
% n = [0 1 1 2 2 2 3 3 3 3]; lfgJQzi
G
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; FzInIif
% Nplot = [4 10 12 16 18 20 22 24 26 28]; TjUwe@&Rw
% y = zernfun(n,m,r(idx),theta(idx)); h&>3;Lj
% figure('Units','normalized') ZNQx;51
% for k = 1:10 B>53+GyMV
% z(idx) = y(:,k); LikcW#
% subplot(4,7,Nplot(k)) Scrj%h%[
% pcolor(x,x,z), shading interp 6("_}9ZOc
% set(gca,'XTick',[],'YTick',[]) xuioU
% axis square P<PZ4hNx
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A=<7*E
% end sINQ?4_8T
% xp^RAVXq`
% See also ZERNPOL, ZERNFUN2. <z<>E1ZLI
h4;kjr}h}
% Paul Fricker 11/13/2006 _**Nlp*%
6w^P{%ul
MAek856
% Check and prepare the inputs: FIq'W:q:
% ----------------------------- F&B\ X
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yK*vn]}
error('zernfun:NMvectors','N and M must be vectors.') %qc_kQ5%
end Kip&YB%rk
LF7-??'
if length(n)~=length(m) (]]hSkE
error('zernfun:NMlength','N and M must be the same length.') c*IrZm
end *[si!e%
Z
[!"x&H]h
n = n(:); 0m_yW$w
m = m(:); J"r?F0
if any(mod(n-m,2)) BSm"]!D8*
error('zernfun:NMmultiplesof2', ... :33@y%>L
'All N and M must differ by multiples of 2 (including 0).') }Ng P`m
end #mQ@4k9i
'_c/CNs
if any(m>n) ]\pi!oa
error('zernfun:MlessthanN', ... 6v)TCj/
'Each M must be less than or equal to its corresponding N.') bzi"7%c
end @v)Z>xv
Z[?n{vD7
if any( r>1 | r<0 ) yv,FzF}7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') '09|Y#F
end Qq,2V
m{q'RAw
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ` Ig5*X4|
error('zernfun:RTHvector','R and THETA must be vectors.') h:4(Gm;
end \|HtE(uCM1
m+c-"arIpA
r = r(:); "^]gI Qc
theta = theta(:); [q9B"@X
length_r = length(r); Hx.|5n,5
if length_r~=length(theta) !l[;,l
error('zernfun:RTHlength', ... 8C3k:
D[
'The number of R- and THETA-values must be equal.') JxVGzb`8
end SzW;Yb"#^k
|*bUcS<S
% Check normalization: $TUYxf0q
% -------------------- x3O%W?5
if nargin==5 && ischar(nflag) [Sm<X
isnorm = strcmpi(nflag,'norm'); R$&;
if ~isnorm NW\CEJV
error('zernfun:normalization','Unrecognized normalization flag.') VX)8pV$
end Xh"9Bcjf
else 't<iB&wgF
isnorm = false; Sz0PZtJ
end qTuR[(
E+L7[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !JCs'?A
% Compute the Zernike Polynomials 5%,3)H{;t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u]*7",R
uU
yT^2;/Z
% Determine the required powers of r: un "I
% ----------------------------------- KXt8IMP_"y
m_abs = abs(m); /M2in]oH
rpowers = []; iYXD }l;r
for j = 1:length(n) vXKL<