切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11474阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 9.+/~$Ht  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! HgRwi It  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 %b!-~ Y.  
    function z = zernfun(n,m,r,theta,nflag) udqS'g&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @9G- m(?*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e;95a  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Xa 9TS"  
    %   unit circle.  N is a vector of positive integers (including 0), and omX?Bl  
    %   M is a vector with the same number of elements as N.  Each element 2&(sa0*y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) p9ZXbAJ{  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, o>D  
    %   and THETA is a vector of angles.  R and THETA must have the same %:C ]7gQ  
    %   length.  The output Z is a matrix with one column for every (N,M) :Ao!ls' =  
    %   pair, and one row for every (R,THETA) pair. R MYP"  
    % C*70;:b  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike `iShJz96  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YE+$H%Jl!  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ]> !<G8 =N  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Owv +1+B  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized '_0]vupvY  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wo^Sy41bF  
    % 3TuC+'`G  
    %   The Zernike functions are an orthogonal basis on the unit circle. c9Es%@]  
    %   They are used in disciplines such as astronomy, optics, and SS.jL)  
    %   optometry to describe functions on a circular domain. rnm03 '{  
    % MQ/ A]EeL  
    %   The following table lists the first 15 Zernike functions. Q[ieaL6&  
    % v Y|!  
    %       n    m    Zernike function           Normalization &~DTZg Y  
    %       -------------------------------------------------- n]!fO 6kj  
    %       0    0    1                                 1 Ju` [m  
    %       1    1    r * cos(theta)                    2 &~sfYW  
    %       1   -1    r * sin(theta)                    2 [Gr*,nVvB  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >um!Eo  
    %       2    0    (2*r^2 - 1)                    sqrt(3) D$e B ,~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F1azZ (  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <&!]K?Q9i  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,K9f_bv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _sHK*&W{CT  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =v6*|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {y^3> 7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _Tm0x>EM  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) p#8W#t$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) do/)~9[4\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) d4^`}6@  
    %       -------------------------------------------------- V1=*z  
    % vxlOh.a|/L  
    %   Example 1: ;."<m   
    % wOgE|n  
    %       % Display the Zernike function Z(n=5,m=1) %kI} [6J_  
    %       x = -1:0.01:1; oUDVy_k  
    %       [X,Y] = meshgrid(x,x); @)YY\l#  
    %       [theta,r] = cart2pol(X,Y); ^+70<#Xc  
    %       idx = r<=1; ")#<y@Rv  
    %       z = nan(size(X)); AD5) .}[F  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); '{?C{MK3Q  
    %       figure M++0zhS  
    %       pcolor(x,x,z), shading interp l3i,K^YL  
    %       axis square, colorbar _uxPx21g}  
    %       title('Zernike function Z_5^1(r,\theta)') "AueLl)  
    % .q`{Dgc~  
    %   Example 2: ;1AG3P'  
    % CX/(o]  
    %       % Display the first 10 Zernike functions D@Da0  
    %       x = -1:0.01:1; H3/caN:  
    %       [X,Y] = meshgrid(x,x); KJhN J  
    %       [theta,r] = cart2pol(X,Y); "`tXA  
    %       idx = r<=1; \y Hen|%  
    %       z = nan(size(X)); 4)-)#`K  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X~T/qFS   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _cI_#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; C*Vd-U  
    %       y = zernfun(n,m,r(idx),theta(idx)); %FkLQ+v/<  
    %       figure('Units','normalized') .=R lOK  
    %       for k = 1:10 "l~Ci7& !a  
    %           z(idx) = y(:,k); 6o&ZIYJ9k  
    %           subplot(4,7,Nplot(k)) q%3<Juq~$  
    %           pcolor(x,x,z), shading interp c-]fKj7  
    %           set(gca,'XTick',[],'YTick',[]) @|-OJ4[5  
    %           axis square @M;(K<%h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o=+Z.-q  
    %       end mNmUUj9z  
    % 7v~j=Z>  
    %   See also ZERNPOL, ZERNFUN2. lP<I|O=z  
    1TJ0D_,  
    %   Paul Fricker 11/13/2006 `x8B n"  
    G$WOzY(  
    a=]W zlz  
    % Check and prepare the inputs: L&2u[ml  
    % ----------------------------- $n=lsDnhQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5>0.NiXGf'  
        error('zernfun:NMvectors','N and M must be vectors.') eQN.sl5  
    end +Ghi}v  
    /MTf0^9  
    if length(n)~=length(m) ~hX-u8Ul'N  
        error('zernfun:NMlength','N and M must be the same length.')  !rL<5L  
    end dbGgD=}o  
    >>'C :7+Y  
    n = n(:); -E>)j\{PX7  
    m = m(:); [[L-j q.'  
    if any(mod(n-m,2)) |Fln8wB  
        error('zernfun:NMmultiplesof2', ... >l1 r,/\\  
              'All N and M must differ by multiples of 2 (including 0).') =]>%t]  
    end }p3b#fAr  
    I<\ '%  
    if any(m>n) [I+9dSM1t  
        error('zernfun:MlessthanN', ... Opg#*w%-  
              'Each M must be less than or equal to its corresponding N.') }uO5q42  
    end je%M AgW`  
    u=K2Q4  
    if any( r>1 | r<0 ) `iixq9xi  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :b#%C pR  
    end pWaPC /,g  
    >.%4~\U  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ? Nj)6_&  
        error('zernfun:RTHvector','R and THETA must be vectors.') /XpSe<3  
    end d,#.E@Po  
    n'w,n1z7  
    r = r(:); 7Ua7A  
    theta = theta(:); W4(?HTWZ  
    length_r = length(r); m#@_8_ M  
    if length_r~=length(theta) c[(Pg%  
        error('zernfun:RTHlength', ... 3(_!`0#F%  
              'The number of R- and THETA-values must be equal.') !q /5yEJ>h  
    end <4X?EYaTq  
    R,0Oq5  
    % Check normalization: Z5)eREi=  
    % -------------------- f6ZZ}lwaV  
    if nargin==5 && ischar(nflag) l gq=GHW  
        isnorm = strcmpi(nflag,'norm'); " ~Q*XN2  
        if ~isnorm 8C&x MA^  
            error('zernfun:normalization','Unrecognized normalization flag.') ohZx03  
        end >M4"|W U_  
    else  W'/>et  
        isnorm = false; aC\4}i<  
    end z1j|E :  
    v|@1(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YMzBAf  
    % Compute the Zernike Polynomials W kkxU.xXE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y`li> .\  
    zY APf &5  
    % Determine the required powers of r: o:\XRPB  
    % ----------------------------------- >{&A%b4JF  
    m_abs = abs(m); C3"&sdLb$  
    rpowers = []; B@cz ?%]  
    for j = 1:length(n) 5P+YK\~  
        rpowers = [rpowers m_abs(j):2:n(j)]; wh6&>m#r  
    end J_"3UZ~&  
    rpowers = unique(rpowers); PdE>@0X?M  
    0s%6n5>  
    % Pre-compute the values of r raised to the required powers, 8&(-8  
    % and compile them in a matrix: %KV2< t?  
    % ----------------------------- YKx 1NC  
    if rpowers(1)==0 f%Ke8'&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  Alu5$6X  
        rpowern = cat(2,rpowern{:}); uQp_':\k  
        rpowern = [ones(length_r,1) rpowern]; ?!S GiARW?  
    else &9P<qU^N)  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @YZ 4AC  
        rpowern = cat(2,rpowern{:}); }~zO+Wf2  
    end eV;me>,  
    ]N}]d +^6  
    % Compute the values of the polynomials: Bw-s6MS  
    % -------------------------------------- "$@,n7 k  
    y = zeros(length_r,length(n)); >]/dOH,A  
    for j = 1:length(n)  P\(30  
        s = 0:(n(j)-m_abs(j))/2; E+{5-[Zc*$  
        pows = n(j):-2:m_abs(j); $c =&0yt5  
        for k = length(s):-1:1 $9H[3OZPVv  
            p = (1-2*mod(s(k),2))* ... Z<]VTo  
                       prod(2:(n(j)-s(k)))/              ... _Ex?Xk  
                       prod(2:s(k))/                     ... pGkef0p@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qS]G&l6QF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); chLeq  
            idx = (pows(k)==rpowers); !; WbOnLP  
            y(:,j) = y(:,j) + p*rpowern(:,idx); WOb8 "*OM  
        end Wem?{kx0  
         Bbs 0v6&,  
        if isnorm 2oB?Dn  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ND,`QjmZ  
        end x5vzPh`  
    end p#<nK+6.8  
    % END: Compute the Zernike Polynomials "::9aYd!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x]' H jTqX  
    =uc^433.  
    % Compute the Zernike functions: ?!m m a\W  
    % ------------------------------ K+> V|zKuk  
    idx_pos = m>0; LDX y}hm)  
    idx_neg = m<0; y:9?P~  
    )52#:27F  
    z = y; |Gc&1*$  
    if any(idx_pos) #M:B3C!ouY  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RAOKZ~`  
    end iiN?\OO^~  
    if any(idx_neg) [x$; XqA  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c}cG<F  
    end T#N80BH[  
    .b~OMTHuvM  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .S(^roM;+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. n4R]+&*  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated V^WQ6G1  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive -G!6U2*#  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Ks51:M  
    %   and THETA is a vector of angles.  R and THETA must have the same `>y[wa>9r  
    %   length.  The output Z is a matrix with one column for every P-value, D/*vj|  
    %   and one row for every (R,THETA) pair. !,R  
    % `U!(cDY  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike G\uU- z$)  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Pgx+\;w"  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) DbQBVy  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Sn0Xl3yr  
    %   for all p. 'l8eH$  
    % Cl{{H]QngX  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -$b?rt]h1g  
    %   Zernike functions (order N<=7).  In some disciplines it is T 77)Np  
    %   traditional to label the first 36 functions using a single mode ko>M&/^  
    %   number P instead of separate numbers for the order N and azimuthal DWdLA~'t  
    %   frequency M. y]MWd#U  
    % y^, "gD  
    %   Example: {#0Tl  
    % ^`/V i  
    %       % Display the first 16 Zernike functions :nt}7Dn'  
    %       x = -1:0.01:1; PXR0Yn  
    %       [X,Y] = meshgrid(x,x); Vj29L?3  
    %       [theta,r] = cart2pol(X,Y); VBhE{4J  
    %       idx = r<=1; LuLy6]6D;  
    %       p = 0:15; j#CuR7m  
    %       z = nan(size(X)); +6uOg,;  
    %       y = zernfun2(p,r(idx),theta(idx)); ]y$)%J^T  
    %       figure('Units','normalized')  ?DJuQFv  
    %       for k = 1:length(p) dPRtN@3  
    %           z(idx) = y(:,k); YBR)s\*  
    %           subplot(4,4,k) fO0- N>W'P  
    %           pcolor(x,x,z), shading interp TjT](?'o  
    %           set(gca,'XTick',[],'YTick',[]) |%n|[LP'  
    %           axis square MG;4M>H  
    %           title(['Z_{' num2str(p(k)) '}']) 3HXh6( e  
    %       end Qb@BV&^y&  
    % l DgzM3  
    %   See also ZERNPOL, ZERNFUN. ;.L!%$0i#  
    NT'Ie]|  
    %   Paul Fricker 11/13/2006 < JGYr 4V  
    K~P76jAe$  
    4 3}qaf[  
    % Check and prepare the inputs: DrW/KU,{+(  
    % ----------------------------- (69kvA&|q  
    if min(size(p))~=1 M_yZR^;^-  
        error('zernfun2:Pvector','Input P must be vector.') :p,c%"8  
    end wHq('+{=&  
    hU |LFjc  
    if any(p)>35 GcPB'`!M  
        error('zernfun2:P36', ... \XZU'JIO  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :Xb*m85y  
               '(P = 0 to 35).']) rHH#@ Zx  
    end 3L%Y"4(mm  
    V=:,]fTr  
    % Get the order and frequency corresonding to the function number: h<t<]i'  
    % ---------------------------------------------------------------- 1 OuSH+  
    p = p(:); 44z=m MR<  
    n = ceil((-3+sqrt(9+8*p))/2); h]G6~TYI5  
    m = 2*p - n.*(n+2); :k Rv  
    I #Arr#%  
    % Pass the inputs to the function ZERNFUN: ,oy4V^B&  
    % ---------------------------------------- h;&&@5@lM  
    switch nargin hj%}GP{{  
        case 3 bfcD5:q  
            z = zernfun(n,m,r,theta); h}Fu"zK  
        case 4 J+-,^8)  
            z = zernfun(n,m,r,theta,nflag); :DF`A(  
        otherwise g`y/ _  
            error('zernfun2:nargin','Incorrect number of inputs.') **"zDY*?W  
    end lsTe*Od  
    0b!fWS?,k0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) J~PTVR  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. p;)klH@X  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Br?++\  
    %   order N and frequency M, evaluated at R.  N is a vector of ZVCv(J  
    %   positive integers (including 0), and M is a vector with the 5k!(#@a_T  
    %   same number of elements as N.  Each element k of M must be a kr &:;  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) @DjG? yLK$  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is KV3+}k  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix |wl")|b%  
    %   with one column for every (N,M) pair, and one row for every [bQ8A(u  
    %   element in R. *{L<BB^  
    % #==[RNM%ap  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- av$\@4I  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is  Wl}G[>P  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Tg}H < T  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 vM$#m1L?  
    %   for all [n,m]. #EwRb<'Em  
    % s?z=q%-p  
    %   The radial Zernike polynomials are the radial portion of the pD)/- Dgdm  
    %   Zernike functions, which are an orthogonal basis on the unit OmQuAG ^\x  
    %   circle.  The series representation of the radial Zernike 7i%P&oB  
    %   polynomials is 8I|1P l  
    % 6'X.[0M  
    %          (n-m)/2 Sxx.>gP"61  
    %            __ }pU!1GsO  
    %    m      \       s                                          n-2s /-cX(z 7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r l"V8n BR`  
    %    n      s=0 ?7uStqa  
    % 2T{-J!k  
    %   The following table shows the first 12 polynomials. mSqk[ Ig\  
    % ;U5x'}%0]  
    %       n    m    Zernike polynomial    Normalization c"_H%x<[  
    %       --------------------------------------------- aF_ZV bS  
    %       0    0    1                        sqrt(2) KfN`ZZ<  
    %       1    1    r                           2 7kew/8-  
    %       2    0    2*r^2 - 1                sqrt(6) &dHm!b  
    %       2    2    r^2                      sqrt(6) _*-'yu8#  
    %       3    1    3*r^3 - 2*r              sqrt(8) }G0.Lq+a  
    %       3    3    r^3                      sqrt(8) L< nkI  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )y [[Se  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) {e!uvz,e  
    %       4    4    r^4                      sqrt(10) D=Yag!1  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ~N+/ZVo&y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 2&G1Q'!  
    %       5    5    r^5                      sqrt(12) 0zk T8'v  
    %       --------------------------------------------- -^NAHE$bW  
    % q2"'W|I  
    %   Example: "Ezr-4  
    % "=0 lcb C  
    %       % Display three example Zernike radial polynomials 9 h{:!  
    %       r = 0:0.01:1; +xu/RY_  
    %       n = [3 2 5]; E;+OD&|  
    %       m = [1 2 1]; #+5mpDh  
    %       z = zernpol(n,m,r); ]idD&5gd  
    %       figure  z]R!l%`  
    %       plot(r,z) [OToz~=)  
    %       grid on 3qwYicq,  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') K^1O =1gY  
    % oew]ijnB  
    %   See also ZERNFUN, ZERNFUN2. 0jx~_zq-j  
    OrqJo!FEg{  
    % A note on the algorithm. 8f`b=r(a>  
    % ------------------------ %l$&_xV-  
    % The radial Zernike polynomials are computed using the series 1*Fvx-U'  
    % representation shown in the Help section above. For many special 8=_| qy}l/  
    % functions, direct evaluation using the series representation can kl<B*:RqH  
    % produce poor numerical results (floating point errors), because Bjrv;)XH  
    % the summation often involves computing small differences between JnKbd~  
    % large successive terms in the series. (In such cases, the functions }R] }@i~i  
    % are often evaluated using alternative methods such as recurrence ~k< 31 ez  
    % relations: see the Legendre functions, for example). For the Zernike as47eZ0\  
    % polynomials, however, this problem does not arise, because the Bv|9{:1%X}  
    % polynomials are evaluated over the finite domain r = (0,1), and *,=+R$  
    % because the coefficients for a given polynomial are generally all \/dm}' `  
    % of similar magnitude. ""KN?qh9  
    % \:)o'-   
    % ZERNPOL has been written using a vectorized implementation: multiple }\qdow-  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] g|*eN{g]uE  
    % values can be passed as inputs) for a vector of points R.  To achieve f0'Wq^^  
    % this vectorization most efficiently, the algorithm in ZERNPOL H\>I&gC'  
    % involves pre-determining all the powers p of R that are required to B0SmE_u_N  
    % compute the outputs, and then compiling the {R^p} into a single |~vQ0D  
    % matrix.  This avoids any redundant computation of the R^p, and 'C8=d(mR=m  
    % minimizes the sizes of certain intermediate variables. g"AfI  
    % >Ti2E+}[M  
    %   Paul Fricker 11/13/2006 9^h%}>  
    vpw&"?T  
    Pw0KQUs  
    % Check and prepare the inputs: QZq9$;>dW  
    % ----------------------------- v\tbf  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uNGxz*e  
        error('zernpol:NMvectors','N and M must be vectors.') vrldRn'*9  
    end F!cAaL1  
    Br$PL&e~  
    if length(n)~=length(m) CO+jB  
        error('zernpol:NMlength','N and M must be the same length.') |MR?8A^"  
    end aC6b})^  
    p?NjxQLA  
    n = n(:); ~O7(0RsCN  
    m = m(:); J7] 60H#P  
    length_n = length(n); \@t5S  
    <;Z3 5 {  
    if any(mod(n-m,2)) 1 3az [  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') e*Med)tc^$  
    end ZVR 9vw 28  
    ?B!ZqJ#  
    if any(m<0) ^W05Z!}  
        error('zernpol:Mpositive','All M must be positive.') JX<W[P>M  
    end IbaL.t\>  
    R}26"+~  
    if any(m>n) ,DO mh<b  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6(^9D_"@  
    end =8 D4:Ds  
    h4i $z-!  
    if any( r>1 | r<0 ) twS3J)UH  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') <|G~S<y}  
    end qP'g}Pc  
    `v{X@x  
    if ~any(size(r)==1) *c c+Fd  
        error('zernpol:Rvector','R must be a vector.') z$5C(!)  
    end 3 pH` ]m2  
    ?C2;:ol  
    r = r(:); j]D =\  
    length_r = length(r); ck+rOGv7{Z  
    5hK\YTU  
    if nargin==4 [k}\{i>  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); /~5YTe( F  
        if ~isnorm s@iCfXU  
            error('zernpol:normalization','Unrecognized normalization flag.') gD =5M\  
        end 3) 0~:  
    else AAY UXY!  
        isnorm = false; ]*U')  
    end %.U{):lNx  
    m3-J0D<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]<LU NxBR  
    % Compute the Zernike Polynomials B '/ >Ax&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T$;XJx  
    ='>UKy[=  
    % Determine the required powers of r: ;qK6."b`;  
    % ----------------------------------- =1[g`b  
    rpowers = []; +eXfT*=u5  
    for j = 1:length(n) Acv{XnB  
        rpowers = [rpowers m(j):2:n(j)]; rv%[?Ml  
    end Zw{tuO7}K  
    rpowers = unique(rpowers); ptQ (7N  
    1iDo$]TEK  
    % Pre-compute the values of r raised to the required powers, H12@12v  
    % and compile them in a matrix: n82Q.M-H  
    % ----------------------------- *)I1gR~  
    if rpowers(1)==0 W2N7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .&xNJdsY  
        rpowern = cat(2,rpowern{:}); f|0QN#$  
        rpowern = [ones(length_r,1) rpowern]; #Q7$I.O]  
    else sdD[`#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,+9r/}K]/  
        rpowern = cat(2,rpowern{:}); RY< b]|  
    end ?!oa15  
    Y1\vt+`O  
    % Compute the values of the polynomials: hspg-|R  
    % -------------------------------------- D0i30p`  
    z = zeros(length_r,length_n); 8l0 (6x$  
    for j = 1:length_n v2sU$M  
        s = 0:(n(j)-m(j))/2; `1]9(xwhQ0  
        pows = n(j):-2:m(j); V}-o): dI|  
        for k = length(s):-1:1 $t}1|q|  
            p = (1-2*mod(s(k),2))* ... <LN$[&f#  
                       prod(2:(n(j)-s(k)))/          ... T_T{c+,Zd$  
                       prod(2:s(k))/                 ... *xP:7K  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... UV.9 KcN.  
                       prod(2:((n(j)+m(j))/2-s(k))); T@.D5[q0:  
            idx = (pows(k)==rpowers); MNC!3d(D\R  
            z(:,j) = z(:,j) + p*rpowern(:,idx); zK?[dO  
        end ]E^f8s0#V  
         DA~ELje^j  
        if isnorm I_7EfAqg(  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); wP"|$HN  
        end >oDP(]YGg  
    end A!yLwkc:5  
    lJ#>Y5Qg  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  zo7XmUI3P  
    \i;&@Kp.N  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 :`u&TXsu  
    }-q`&1!t  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)