切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11172阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 OK}+:Y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ^gpswhp 5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 UGNFWZ c  
    function z = zernfun(n,m,r,theta,nflag) &n.7~C]R  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. h5-<2B|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N p-H q\DP  
    %   and angular frequency M, evaluated at positions (R,THETA) on the _N5$>2  
    %   unit circle.  N is a vector of positive integers (including 0), and !Qu)JR  
    %   M is a vector with the same number of elements as N.  Each element QQ4  &,d  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) FfnW  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e 'I13)  
    %   and THETA is a vector of angles.  R and THETA must have the same  opK=Z  
    %   length.  The output Z is a matrix with one column for every (N,M) M~Yho".  
    %   pair, and one row for every (R,THETA) pair. |@]`" k  
    % @3/.W+  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _h4{Sx  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), T&Y?IE}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &y?L^Aq  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3[: |)i)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5+<<:5_6l  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 'OKDB7Ni  
    % 8'Eu6H&$G  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3"HpM\A{A=  
    %   They are used in disciplines such as astronomy, optics, and /`YHPeXu  
    %   optometry to describe functions on a circular domain. ^ 1rw\Zp  
    % kDM\IyM<\  
    %   The following table lists the first 15 Zernike functions. _q >>]{5  
    % d7+YCi?  
    %       n    m    Zernike function           Normalization V#:`:-$$+  
    %       -------------------------------------------------- E"D+CD0  
    %       0    0    1                                 1 ^PY*INv  
    %       1    1    r * cos(theta)                    2 x?0ZzB),  
    %       1   -1    r * sin(theta)                    2 \e%H5W x  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sGjYL>*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ENwDW#U9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) x j6-~<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,}i`1E1=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) rmj?jBKQU  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3+gp_7L  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &h.E B  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) KS($S( Fi  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &u-H/C U%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) FI1R7A  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2)DrZI  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ">QNiR!  
    %       -------------------------------------------------- JTw\5j  
    % KUG\C\z6=  
    %   Example 1: Ti`H?9t  
    % './j<2|;U  
    %       % Display the Zernike function Z(n=5,m=1) Zvd^<SP<?  
    %       x = -1:0.01:1; +@),Fk_  
    %       [X,Y] = meshgrid(x,x); RkVU^N"  
    %       [theta,r] = cart2pol(X,Y); &D, gKT~  
    %       idx = r<=1; "V!y"yQ  
    %       z = nan(size(X)); rWKc,A[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); zG|}| //}  
    %       figure ;W6P$@'zs  
    %       pcolor(x,x,z), shading interp 'ojI_%9<  
    %       axis square, colorbar 1df }gG  
    %       title('Zernike function Z_5^1(r,\theta)') :*V1jp+  
    % t0XM#9L  
    %   Example 2: 2 fp\s5%J}  
    % @N?A 0S/  
    %       % Display the first 10 Zernike functions =}txcA+  
    %       x = -1:0.01:1; 5#+G7 'k  
    %       [X,Y] = meshgrid(x,x); Wu]D pe  
    %       [theta,r] = cart2pol(X,Y); /P bN!r<1  
    %       idx = r<=1; Z)cGe1?q  
    %       z = nan(size(X)); @RW=(&<1  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Gj]*_"T  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; FBpf_=(_1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; `N%q^f~  
    %       y = zernfun(n,m,r(idx),theta(idx)); $qk2!  
    %       figure('Units','normalized') PzThVeJ+  
    %       for k = 1:10 n gA&PU  
    %           z(idx) = y(:,k); ml$"C  
    %           subplot(4,7,Nplot(k)) Td%[ -  
    %           pcolor(x,x,z), shading interp `!<RP'  
    %           set(gca,'XTick',[],'YTick',[]) epa)~/sA  
    %           axis square <`8l8cL  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OM,-:H,  
    %       end D6 B(6 5Y  
    % }Z5#{Sd  
    %   See also ZERNPOL, ZERNFUN2. 0U'g2F>{  
    /*DC`,q  
    %   Paul Fricker 11/13/2006 C FY3D|  
    L=W8Q8hf  
    <igsO  
    % Check and prepare the inputs: {R b|";  
    % ----------------------------- QGE)Xn#_bN  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >D'Kt?L<]m  
        error('zernfun:NMvectors','N and M must be vectors.') U  JO  
    end 6j9P`#Lt  
    >(Mu9ie*`  
    if length(n)~=length(m) )*_4=-8H  
        error('zernfun:NMlength','N and M must be the same length.') ).HYW _Yih  
    end dZ'hTzw~  
    HhkubG)\  
    n = n(:); zb/w^~J_i  
    m = m(:); ^ s< p5V  
    if any(mod(n-m,2)) cl s-x@ Kd  
        error('zernfun:NMmultiplesof2', ... L7i^?40  
              'All N and M must differ by multiples of 2 (including 0).') ?0HPd5=<v  
    end v^_OX $=,  
    /I@nPH<y  
    if any(m>n) wmu#@Hf/[h  
        error('zernfun:MlessthanN', ... Wt2+D{@8  
              'Each M must be less than or equal to its corresponding N.') p-QD(+@M  
    end Dg]( ?^  
    nJH+P!AC  
    if any( r>1 | r<0 ) [hU5ooB  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ki`7S  
    end <{U "0jY!9  
    %G!BbXlz  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,#Y>nP0  
        error('zernfun:RTHvector','R and THETA must be vectors.') dY>oj<9  
    end $7%e|0jC  
    Vm NCknG  
    r = r(:); 871taL=  
    theta = theta(:); D&KD5_Sw  
    length_r = length(r);  =lIG#{`Q  
    if length_r~=length(theta) JGjqBuz#A*  
        error('zernfun:RTHlength', ... kI5`[\  
              'The number of R- and THETA-values must be equal.')  h"<-^=b  
    end &sJZSrk|  
    !9+xKr99  
    % Check normalization: 6`$HBX%.K  
    % -------------------- 8t3,}}TJ  
    if nargin==5 && ischar(nflag) [43:E*\$  
        isnorm = strcmpi(nflag,'norm'); >q{E9.~b  
        if ~isnorm Q)}_S@v|%  
            error('zernfun:normalization','Unrecognized normalization flag.') 9Yg=4>#$  
        end <4!SQgL  
    else A*)G . o:  
        isnorm = false; go^?F- dZ  
    end Ra%" +=  
    g~EJja;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /Q Xq<NG  
    % Compute the Zernike Polynomials ~Dsz9  f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wGfU@!m  
    $`L!2  
    % Determine the required powers of r: #Fx$x#Gc@y  
    % ----------------------------------- 8I o--Ew3  
    m_abs = abs(m); Jr/|nhGl5  
    rpowers = []; </,RS5ukn  
    for j = 1:length(n) cfn\De%.  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4,D$% .  
    end #sLyU4QV  
    rpowers = unique(rpowers); |q&&"SpA  
    1+\ZLy!5:  
    % Pre-compute the values of r raised to the required powers, yEm[C(gZ  
    % and compile them in a matrix: tz0_S7h  
    % ----------------------------- y^"[^+F3 .  
    if rpowers(1)==0 ~/0 t<^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vMBF7Jfx  
        rpowern = cat(2,rpowern{:}); JWHKa=-H  
        rpowern = [ones(length_r,1) rpowern]; }%z {tn  
    else F2QX ^*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); iQryX(z  
        rpowern = cat(2,rpowern{:}); hq}kAv4B=  
    end _=ani9E]uF  
    +S!gS|8P  
    % Compute the values of the polynomials: ESdjDg$[u  
    % -------------------------------------- \nQV{J  
    y = zeros(length_r,length(n)); /Yk4%ZJ{  
    for j = 1:length(n) qcYF&  
        s = 0:(n(j)-m_abs(j))/2; 2, bo  
        pows = n(j):-2:m_abs(j); *`]LbS  
        for k = length(s):-1:1 R0>GM`{  
            p = (1-2*mod(s(k),2))* ... 6$#p}nE  
                       prod(2:(n(j)-s(k)))/              ... :xdl I`S  
                       prod(2:s(k))/                     ... !)1r{u  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {pEay|L_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7GN>o@t  
            idx = (pows(k)==rpowers); .L;M-`^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); i"eUacBz/-  
        end MXy~kb&  
         y7[D9ZvZ  
        if isnorm :by EXe;3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mj\]oWS7d  
        end Hggp*(AQK  
    end U&DD+4+28:  
    % END: Compute the Zernike Polynomials +6cOL48"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //9M~qHa"  
    tbbZGyg5b  
    % Compute the Zernike functions: MfzSoxCb  
    % ------------------------------ tPDd~fOk  
    idx_pos = m>0; bUR; d78  
    idx_neg = m<0; sxac( L  
    fTn  
    z = y;  "u#T0  
    if any(idx_pos) 9 gt$z}oU  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \>}G|yL  
    end mIJYe&t7)  
    if any(idx_neg) }= )  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {<\[gm\X  
    end :a YbP,mE  
    ,MH9e!  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) . 4$SNzv3V  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 58T<~u7  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated q|Oz   
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive |2oCEb1  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, =&kd|o/i  
    %   and THETA is a vector of angles.  R and THETA must have the same F(?A7  
    %   length.  The output Z is a matrix with one column for every P-value, e -sZ_<GH  
    %   and one row for every (R,THETA) pair. @@&([f  
    % &y164xn'h  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 9eA2v{!S  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) zUw=e}?:  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Vn4y^_H  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ]{mz %\  
    %   for all p. lwY2zX&%)/  
    % ^o`;C\  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 I-=H;6w7  
    %   Zernike functions (order N<=7).  In some disciplines it is *^]lFuX\&E  
    %   traditional to label the first 36 functions using a single mode . fZ*N/  
    %   number P instead of separate numbers for the order N and azimuthal =3~u.iq$  
    %   frequency M. #!a}ZhIt  
    % VR/*h%  
    %   Example: +:JyXF u  
    % h[%t7qo=  
    %       % Display the first 16 Zernike functions ;@I4[4ph}  
    %       x = -1:0.01:1; I2U/ \  
    %       [X,Y] = meshgrid(x,x); 9DAk|K  
    %       [theta,r] = cart2pol(X,Y); y'5 y  
    %       idx = r<=1; {w,g~ew `  
    %       p = 0:15; G-vBJlt=t  
    %       z = nan(size(X)); Iuh1tcc  
    %       y = zernfun2(p,r(idx),theta(idx)); ]VarO'  
    %       figure('Units','normalized') w=ZSyT-i  
    %       for k = 1:length(p)  L=Pz0  
    %           z(idx) = y(:,k); epWTZV(1x  
    %           subplot(4,4,k) 8&gr}r- 5  
    %           pcolor(x,x,z), shading interp a{oG[e   
    %           set(gca,'XTick',[],'YTick',[]) ;QRnZqSv  
    %           axis square QX1rnVzg0  
    %           title(['Z_{' num2str(p(k)) '}']) "r:i  
    %       end 2YU-iipdOq  
    % YlF<S49loC  
    %   See also ZERNPOL, ZERNFUN. @Ido6Z7  
    A7|CG[wZ  
    %   Paul Fricker 11/13/2006 5x( [fG  
    |H.i$8_A  
    J.R|Xd  
    % Check and prepare the inputs: 9>@@W#TK~  
    % ----------------------------- &zGf`Zi6*%  
    if min(size(p))~=1 dKKh^D`~  
        error('zernfun2:Pvector','Input P must be vector.') Z= 'DV1A$,  
    end Sr9)i8x{  
    I04GQql  
    if any(p)>35 X=sC8Edx  
        error('zernfun2:P36', ... WcG!6.U>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ZQ&A '(tt4  
               '(P = 0 to 35).']) , W w\C  
    end gM0^k6bB8  
    @L p;p$G`  
    % Get the order and frequency corresonding to the function number: Aqc Cb[1r  
    % ---------------------------------------------------------------- GT -(r+u  
    p = p(:); qIO<\Y l  
    n = ceil((-3+sqrt(9+8*p))/2); 'aq9]D_k  
    m = 2*p - n.*(n+2); CY"iP,nHl  
    zK*zT$<l  
    % Pass the inputs to the function ZERNFUN: 2 /rDi  
    % ---------------------------------------- 5tSR2gG#K,  
    switch nargin AGH7z  
        case 3 d]kP@flOV  
            z = zernfun(n,m,r,theta); \`nRgY SE  
        case 4 $?Et sf#*'  
            z = zernfun(n,m,r,theta,nflag); k|ol+ 9Z  
        otherwise igoUKDNiQ-  
            error('zernfun2:nargin','Incorrect number of inputs.') +PCsp'D d  
    end 1l8kuwH  
    4 ^=qc99  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) x[ sSM:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. "Yk3K^`1T.  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of !hBzT7CO  
    %   order N and frequency M, evaluated at R.  N is a vector of .g|D  
    %   positive integers (including 0), and M is a vector with the A7/ R5p  
    %   same number of elements as N.  Each element k of M must be a z_Nw%V4kr  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) qkM<t?uS  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is -y@5% _-  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix yf2I%\p}  
    %   with one column for every (N,M) pair, and one row for every JOR ? xCc  
    %   element in R. HjX!a29Wf  
    % )2U#<v^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- dHcGe{T^(  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is rm-6Az V  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]h Dy]  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 q}nL'KQ,n  
    %   for all [n,m]. !'-|]xx(  
    % oic}Go  
    %   The radial Zernike polynomials are the radial portion of the \~1>%F'op  
    %   Zernike functions, which are an orthogonal basis on the unit [jOvy>2K]  
    %   circle.  The series representation of the radial Zernike N|pyp*8Z  
    %   polynomials is |;L%hIR[  
    % q=o"] 6  
    %          (n-m)/2 xk1pZQ8c  
    %            __ xaiA?  
    %    m      \       s                                          n-2s U 0$?:C+?  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 2n9E:tc  
    %    n      s=0 m[@7!.0=  
    % [7QIpt+FSo  
    %   The following table shows the first 12 polynomials. D]I]I!2c  
    % 9Q!X~L|\S  
    %       n    m    Zernike polynomial    Normalization G8JwY\  
    %       --------------------------------------------- . PzlhTL7  
    %       0    0    1                        sqrt(2) ng ZkBX  
    %       1    1    r                           2 8:BPXdiK  
    %       2    0    2*r^2 - 1                sqrt(6) 5UFR^\e  
    %       2    2    r^2                      sqrt(6) I+) Acy;  
    %       3    1    3*r^3 - 2*r              sqrt(8) ozs xqN  
    %       3    3    r^3                      sqrt(8) _;A?w8z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) G1Qc\mp  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ([-xM%BI6  
    %       4    4    r^4                      sqrt(10) Q~5!c#r  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) W^c> (d</  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) t^|+|>S  
    %       5    5    r^5                      sqrt(12) n3-2;xuNKE  
    %       --------------------------------------------- J,8Wo6  
    % 67uUeCW  
    %   Example: Unl6?_  
    % u 1?1x  
    %       % Display three example Zernike radial polynomials %hYol89F  
    %       r = 0:0.01:1;  TP6iSF  
    %       n = [3 2 5]; 9s5PJj"u  
    %       m = [1 2 1]; VfJbexYT  
    %       z = zernpol(n,m,r); 0n <t/74  
    %       figure  oQrkd:  
    %       plot(r,z) 9d7$Fz#  
    %       grid on sA3=x7j%c  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }&Eb {'  
    % SX$Nef9p  
    %   See also ZERNFUN, ZERNFUN2. [:HT=LX3  
    WQ\H 2go  
    % A note on the algorithm. 3^>D |  
    % ------------------------ 0]dL;~0y.  
    % The radial Zernike polynomials are computed using the series DA[s k7  
    % representation shown in the Help section above. For many special =] R_6#  
    % functions, direct evaluation using the series representation can a95QDz  
    % produce poor numerical results (floating point errors), because UB3b  
    % the summation often involves computing small differences between t3TnqA  
    % large successive terms in the series. (In such cases, the functions r?e)2l~C8j  
    % are often evaluated using alternative methods such as recurrence #+2|ZfCn%  
    % relations: see the Legendre functions, for example). For the Zernike N'L3Oa\%  
    % polynomials, however, this problem does not arise, because the 1/t}>>,M  
    % polynomials are evaluated over the finite domain r = (0,1), and u`l1 zMk  
    % because the coefficients for a given polynomial are generally all OzFA>FK0f;  
    % of similar magnitude. f IUz%YFn  
    % rPV\ F  
    % ZERNPOL has been written using a vectorized implementation: multiple JrF\7*rh9  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] :*wnO;eN  
    % values can be passed as inputs) for a vector of points R.  To achieve Kt,ENbF  
    % this vectorization most efficiently, the algorithm in ZERNPOL Qrt[MJ+#  
    % involves pre-determining all the powers p of R that are required to EUv xil  
    % compute the outputs, and then compiling the {R^p} into a single b"+ J8W  
    % matrix.  This avoids any redundant computation of the R^p, and kan?2x  
    % minimizes the sizes of certain intermediate variables. ;cBFft}D  
    % y//yLrs;  
    %   Paul Fricker 11/13/2006 +jcg[|-' /  
    U>^u!1X  
    Z8 \c'xN  
    % Check and prepare the inputs: Z 8??+d=  
    % ----------------------------- Qh)QdW4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K0xZZ`  
        error('zernpol:NMvectors','N and M must be vectors.') b 469  
    end lNSB "S  
    hJ0)"OA5  
    if length(n)~=length(m) U?u0|Y+  
        error('zernpol:NMlength','N and M must be the same length.') \lVX~r4  
    end M[ea!an  
    u$c)B<.UR  
    n = n(:); #D"fCVIS  
    m = m(:); gB!K{ Io'  
    length_n = length(n); z.f~wAT@<  
    xF*C0B;QL  
    if any(mod(n-m,2)) $x&\9CRM  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') g->cgExj  
    end A*I mruV  
    Dm': D  
    if any(m<0) n/_cJD \  
        error('zernpol:Mpositive','All M must be positive.') W`fE@*k0  
    end }hOExTz  
    T,h,)|:I^  
    if any(m>n) ZbJUOa?WF  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') L3 M]06y  
    end :F:<{]oG_  
    i)V-q9\  
    if any( r>1 | r<0 ) EQ&E C  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') )1H$5h  
    end :U`8s#  
    QE7 r{  
    if ~any(size(r)==1) 8S1%;@c  
        error('zernpol:Rvector','R must be a vector.') s1XW}Dw  
    end X*Mw0;+T  
    }Y(yDg;"  
    r = r(:); tk5Bb`a  
    length_r = length(r); !*wK4UcX"  
    =R)9_D6I  
    if nargin==4 3\6 UH  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); <o5+*X  
        if ~isnorm 2RD os#  
            error('zernpol:normalization','Unrecognized normalization flag.') 9V&%_.Z  
        end JcxhI]E  
    else ,[IN9W  
        isnorm = false; I(E1ym  
    end <Tr_,Ya{9  
    TL(L[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Au'[|Pr r  
    % Compute the Zernike Polynomials r=dFk?8XbC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _N~h#(  
    ='=\!md  
    % Determine the required powers of r: 7>EjP&l  
    % ----------------------------------- x,"'\=|s*  
    rpowers = []; <{.o+~k  
    for j = 1:length(n) LV{a^!f`y  
        rpowers = [rpowers m(j):2:n(j)]; 8Pklw^k   
    end }pKHa'/\  
    rpowers = unique(rpowers); T"-HBwl  
    zH8l-0I+$  
    % Pre-compute the values of r raised to the required powers, F7^d@hSV  
    % and compile them in a matrix: `P9vZR;  
    % ----------------------------- {{ M?+]p,^  
    if rpowers(1)==0 = wNul"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y'kD_T`f,  
        rpowern = cat(2,rpowern{:}); aX6.XHWbDf  
        rpowern = [ones(length_r,1) rpowern]; _T^ip.o  
    else li\hHd5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dI&2dcumS  
        rpowern = cat(2,rpowern{:}); 0q"&AxNsP  
    end Kd CPt!  
    N4"%!.Y  
    % Compute the values of the polynomials: d; \x 'h2  
    % -------------------------------------- ]>K%,}PS  
    z = zeros(length_r,length_n); 0mL#8\'"  
    for j = 1:length_n PL<q|y  
        s = 0:(n(j)-m(j))/2; R% XbO~{u  
        pows = n(j):-2:m(j); [Z0&`qz  
        for k = length(s):-1:1 '6u;KIG  
            p = (1-2*mod(s(k),2))* ... *iS<]y  
                       prod(2:(n(j)-s(k)))/          ... (`gqLPx[  
                       prod(2:s(k))/                 ... kc `Q- N}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ptGM'  
                       prod(2:((n(j)+m(j))/2-s(k))); h,<%cvU=  
            idx = (pows(k)==rpowers); vWI9ocl`W  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 3.B|uN  
        end YS k,kU  
         d}%GHvOi  
        if isnorm IZeWswz  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); y!fV+S,  
        end qR!SwG44+  
    end dkJ+*L5  
    -uN5 DJSW  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2q]y(kW+  
    )N$T&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 8 p D$/  
    -([ ipg(r  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)