切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11570阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ou-;k }  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ]rm=F]W/n  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 A~V\r<N j  
    function z = zernfun(n,m,r,theta,nflag) Se8y-AL6x>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. tV9C33  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Zto E= 7K  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Z(M)2  
    %   unit circle.  N is a vector of positive integers (including 0), and eHe /w9`$R  
    %   M is a vector with the same number of elements as N.  Each element dDbC0} x/  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :nUsC+oBS  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]:s|.C%qI  
    %   and THETA is a vector of angles.  R and THETA must have the same Nk4_!  
    %   length.  The output Z is a matrix with one column for every (N,M) |lwN!KVQ,  
    %   pair, and one row for every (R,THETA) pair. >}*jsqaVU  
    % OvG0UXRU  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %U7f9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s= fKAxH  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral / nFw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A5ID I<a  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized L? +|%[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. VBJ]d|  
    % vq7%SEkES  
    %   The Zernike functions are an orthogonal basis on the unit circle. CD[=z)<z{  
    %   They are used in disciplines such as astronomy, optics, and Y{|yB  
    %   optometry to describe functions on a circular domain. Ue:T3jp 3%  
    % B31-<w  
    %   The following table lists the first 15 Zernike functions. S(h*\we  
    % oZ:F3 GQ4Q  
    %       n    m    Zernike function           Normalization 0 _}89:-  
    %       -------------------------------------------------- nV*sdSt  
    %       0    0    1                                 1 s'Gy+h.  
    %       1    1    r * cos(theta)                    2 QvN <uxm  
    %       1   -1    r * sin(theta)                    2 86F+N_>Z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) jgw'MpQm{  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *AR<DXE L  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) em!R9J.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Sr 4 7u{n  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) bnu0*Zg>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) }zxh:"#K  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) {; cB?II  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &"%|`gE  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <# r.}T.l  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) F5[ITK]A4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vzvw/17J  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) < DZ76  
    %       -------------------------------------------------- nvVsO>2{ o  
    % TcmZ0L^O  
    %   Example 1: p!QneeA`&X  
    %  .OS?^\  
    %       % Display the Zernike function Z(n=5,m=1) 6_K#,_oZ  
    %       x = -1:0.01:1; @b\_696.  
    %       [X,Y] = meshgrid(x,x); C,vc aC?  
    %       [theta,r] = cart2pol(X,Y); N: jiZ)  
    %       idx = r<=1; .r%|RWs6W  
    %       z = nan(size(X)); Lj-&TO}OZ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s{J!^q  
    %       figure Ny7=-]N4{"  
    %       pcolor(x,x,z), shading interp dS_)ll.6z  
    %       axis square, colorbar /1#Q=T  
    %       title('Zernike function Z_5^1(r,\theta)') 9OT4j Am  
    % lT!$\E$1   
    %   Example 2: &|"I0|tJ  
    % u4M2Ec  
    %       % Display the first 10 Zernike functions -JhjTA  
    %       x = -1:0.01:1;  Is6 _  
    %       [X,Y] = meshgrid(x,x); C|;Mhe'r=  
    %       [theta,r] = cart2pol(X,Y); C*6)Ut '  
    %       idx = r<=1; 2$W,R/CLh  
    %       z = nan(size(X)); 'Qq_Xn8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; UMi`u6#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; iA{jKk=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7RC096 ?}  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~nc([%!=  
    %       figure('Units','normalized') z<vO#  
    %       for k = 1:10 6 %k+0\d  
    %           z(idx) = y(:,k); 4|41^B5Y  
    %           subplot(4,7,Nplot(k)) : tqm2t  
    %           pcolor(x,x,z), shading interp ^zPEAXm  
    %           set(gca,'XTick',[],'YTick',[]) ?r E]s!K  
    %           axis square {!eANm'  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )Z]y.W)  
    %       end J[Yg]6  
    % `CEj 4  
    %   See also ZERNPOL, ZERNFUN2. <6O _t,K]  
    Y0fO.k#C^  
    %   Paul Fricker 11/13/2006 ?(ls<&s{w  
    qM!f   
    N|O]z  
    % Check and prepare the inputs: VMye5  P  
    % ----------------------------- * :tjxC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9}jq`xSL  
        error('zernfun:NMvectors','N and M must be vectors.') MAD}Tv\S7  
    end 1mVVPt^6  
    27 145  
    if length(n)~=length(m) zPh\3B  
        error('zernfun:NMlength','N and M must be the same length.') {+ 6D-rDw  
    end "3i80R\w`F  
    $n#Bi.A j  
    n = n(:); $FusDdCv3  
    m = m(:); X})Imk7&E  
    if any(mod(n-m,2)) wAl}:|+n  
        error('zernfun:NMmultiplesof2', ... =i^<a7M~  
              'All N and M must differ by multiples of 2 (including 0).')  e_~fJ  
    end ^?7dOW  
    1S(\2{Ylo  
    if any(m>n) H1%[\X?=  
        error('zernfun:MlessthanN', ... Jg|cvu-+  
              'Each M must be less than or equal to its corresponding N.') >g>`!Sf  
    end lHKf#|  
    :IR9=nhS]  
    if any( r>1 | r<0 ) 6(J4IzZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') (YYj3#|  
    end G]mWaA  
    ,s><kHJ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) M9s43XL(&  
        error('zernfun:RTHvector','R and THETA must be vectors.') pgd8`$(Q  
    end {s8U7rmML  
    puS&S *  
    r = r(:); mYh5#E41J  
    theta = theta(:); U7B/t3,=U  
    length_r = length(r); a\{1UD  
    if length_r~=length(theta) I& M36f  
        error('zernfun:RTHlength', ... phgexAq  
              'The number of R- and THETA-values must be equal.') Gh2Q$w:  
    end R{) Q1~H=q  
    /j' B\,  
    % Check normalization: IObx^N_K  
    % -------------------- Ob8B  
    if nargin==5 && ischar(nflag) ) Ab6!"'  
        isnorm = strcmpi(nflag,'norm'); Cx+WLD  
        if ~isnorm )XP#W|;  
            error('zernfun:normalization','Unrecognized normalization flag.') 1 @%B?  
        end jWXR__>.  
    else a;"Uz|rz  
        isnorm = false; Oz&+{ c  
    end ;Rhb@]X  
    Gg9VS&VI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oe!:|ck<  
    % Compute the Zernike Polynomials y7JZKtsFA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `k(u:yGK  
    % Cu.u)/+  
    % Determine the required powers of r: SLtSqG7~  
    % ----------------------------------- 69C8-fF0[I  
    m_abs = abs(m); @8=vFP'  
    rpowers = []; G[3k  
    for j = 1:length(n) tx0Go'{  
        rpowers = [rpowers m_abs(j):2:n(j)]; /Fv/oY  
    end Z&FkLww  
    rpowers = unique(rpowers); OGJ=VQA  
    S~0JoCeo  
    % Pre-compute the values of r raised to the required powers, s) Cpi  
    % and compile them in a matrix: kDzj%sm!  
    % ----------------------------- =2 &hQd   
    if rpowers(1)==0 g ?afX1Sg  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %5JW< 9  
        rpowern = cat(2,rpowern{:}); P_p6GT:5  
        rpowern = [ones(length_r,1) rpowern]; K1T1@ j  
    else nW4Vct  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hCzjC|EO~  
        rpowern = cat(2,rpowern{:}); W.A1m4l58R  
    end E@w[&#  
    LBiowd[  
    % Compute the values of the polynomials: ^ <qrM  
    % -------------------------------------- [N)#/ 6j  
    y = zeros(length_r,length(n)); x*.Ye 5Jb  
    for j = 1:length(n) *Ph]F$ZP  
        s = 0:(n(j)-m_abs(j))/2; J&M1t#UN  
        pows = n(j):-2:m_abs(j); fO].e"}  
        for k = length(s):-1:1 \bhOPK>w  
            p = (1-2*mod(s(k),2))* ... c[SU5 66y  
                       prod(2:(n(j)-s(k)))/              ... M h`CP  
                       prod(2:s(k))/                     ... rdO@X9z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ZCm1+Y$  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [2Iau1<@  
            idx = (pows(k)==rpowers); * R%.a^R  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 3bWum  
        end v btAq^1  
         HOE2*4r  
        if isnorm jOs H2^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U,e'ZRU6  
        end Bwjg#1E  
    end osl=[pm  
    % END: Compute the Zernike Polynomials 0pD W _  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )8;{nqoC  
    /Zc#j^_  
    % Compute the Zernike functions: kLJlS,nh\r  
    % ------------------------------ v"rl5x  
    idx_pos = m>0; !g8*r"[UJ  
    idx_neg = m<0; 7Yuk  
    uJgI<l'|e3  
    z = y; pA<eTlH  
    if any(idx_pos) Q uB+vL  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~z5@V5 z  
    end =yo{[&Jz  
    if any(idx_neg) Ls]@icH0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sxo;/~.p  
    end 9qpU@V!  
    >9=:sSQu  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Gg|M+M?+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #|Oj]bd(=  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated }p=g*Zo*C;  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive EWA;L?g|A  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, )Vg2Jix,]  
    %   and THETA is a vector of angles.  R and THETA must have the same cx{T '1  
    %   length.  The output Z is a matrix with one column for every P-value, :6Pnie  
    %   and one row for every (R,THETA) pair. `}gdN};  
    % zI^Da!r.  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike i ?;R}%~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /Wu|)tx  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Iq^if>  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 qaG#;  
    %   for all p. U]1(&MgV  
    % mRwT_(;t  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 P]Xbjs<p  
    %   Zernike functions (order N<=7).  In some disciplines it is v0#*X5C1'  
    %   traditional to label the first 36 functions using a single mode ^,TTwLy- t  
    %   number P instead of separate numbers for the order N and azimuthal o>F*Itr{  
    %   frequency M. \5TxE  
    % WDkuB  
    %   Example: *P!s{i  
    % ong""K4H  
    %       % Display the first 16 Zernike functions ',{7% G9  
    %       x = -1:0.01:1; GX?*1  
    %       [X,Y] = meshgrid(x,x); %ucjMa>t  
    %       [theta,r] = cart2pol(X,Y); +}a C-&  
    %       idx = r<=1; B[F-gq-  
    %       p = 0:15; X3wX`V}  
    %       z = nan(size(X)); {U"^UuU]  
    %       y = zernfun2(p,r(idx),theta(idx)); LnFWA0y  
    %       figure('Units','normalized') gcf6\f}\<  
    %       for k = 1:length(p) O> c$sL0g  
    %           z(idx) = y(:,k); 3~Qd)j"<  
    %           subplot(4,4,k) JYm7@gx  
    %           pcolor(x,x,z), shading interp ]6&$|2H?Ni  
    %           set(gca,'XTick',[],'YTick',[]) ^aF8wbuZ  
    %           axis square c #lPc>0xb  
    %           title(['Z_{' num2str(p(k)) '}']) /(?@mnq_  
    %       end +th%enRB  
    % lw[e *q{s.  
    %   See also ZERNPOL, ZERNFUN. k1='c7s  
    }T.?c9l X  
    %   Paul Fricker 11/13/2006 " xR[mJ@U  
    = 96P7#%  
    {v` 2sB  
    % Check and prepare the inputs: KrcgIB8X  
    % ----------------------------- ?2#(jZ# 2  
    if min(size(p))~=1 y'} O)lO1  
        error('zernfun2:Pvector','Input P must be vector.') VK:8 Nk_y  
    end 8K{[2O7i)  
    .Cz %:%9  
    if any(p)>35 QI}E4-s8  
        error('zernfun2:P36', ...  c</1  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +f NvNbtA  
               '(P = 0 to 35).']) > cN~U3  
    end *7$P]  
    /i_ @  
    % Get the order and frequency corresonding to the function number: bZ 443SG  
    % ---------------------------------------------------------------- 6!q#x[A  
    p = p(:); iv&v8;B  
    n = ceil((-3+sqrt(9+8*p))/2); =f1B,%7G+5  
    m = 2*p - n.*(n+2); \or G63T:  
    A],ooiq<  
    % Pass the inputs to the function ZERNFUN: e3(/qMl  
    % ---------------------------------------- IQH[Q9%  
    switch nargin o[1ylzk}+  
        case 3 bKDA!R2  
            z = zernfun(n,m,r,theta); p'94SXO_  
        case 4 XYEv&-M`?w  
            z = zernfun(n,m,r,theta,nflag); TDtAmk  
        otherwise en*d/>OVJ  
            error('zernfun2:nargin','Incorrect number of inputs.') E?)656F[  
    end sJG5/w  
    58V[mlW)O0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) @A<PkpNL  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 0k,-;j,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Zw1U@5}A  
    %   order N and frequency M, evaluated at R.  N is a vector of rN)V[5R#M  
    %   positive integers (including 0), and M is a vector with the J%H;%ROx  
    %   same number of elements as N.  Each element k of M must be a [K/m  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) _~u2: yl (  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is l^MzN  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix }J:+{4Yn  
    %   with one column for every (N,M) pair, and one row for every 4LH[4Yj?`  
    %   element in R. cD|Htt"  
    % UBv@+\Y8m  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ?:{sH#ua  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^5GW$  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +HT1ct+dI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 a|7a_s4(  
    %   for all [n,m]. ikD1N  
    % b75 $?_+  
    %   The radial Zernike polynomials are the radial portion of the DV)3  
    %   Zernike functions, which are an orthogonal basis on the unit !TM*o+;  
    %   circle.  The series representation of the radial Zernike q$(5Vd:  
    %   polynomials is #|GSQJ$F)`  
    % 'G\XXf% J  
    %          (n-m)/2 gKz(=  
    %            __ w;UqEC V  
    %    m      \       s                                          n-2s ev1 W6B-a  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~Nf})U  
    %    n      s=0 0+Ta%H{  
    % ~S,p?I  
    %   The following table shows the first 12 polynomials. _A13[Mt3  
    % F!zP<A "  
    %       n    m    Zernike polynomial    Normalization t\P<X^d%  
    %       --------------------------------------------- 05yZad*  
    %       0    0    1                        sqrt(2) j>Iaq"  
    %       1    1    r                           2 hpTDxh'?$C  
    %       2    0    2*r^2 - 1                sqrt(6) 40E#JF#  
    %       2    2    r^2                      sqrt(6) K~=UUB  
    %       3    1    3*r^3 - 2*r              sqrt(8) 6DG@?O  
    %       3    3    r^3                      sqrt(8) 9O{b]=>wq  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) fXI:Y8T  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) p G1WXbqW  
    %       4    4    r^4                      sqrt(10) _Z5Mw+=19  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) !q"W{P  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) jZ`;Cy\<B  
    %       5    5    r^5                      sqrt(12) KL$bqgc(p3  
    %       --------------------------------------------- 2(5ebe[  
    % HbP!KVHyk1  
    %   Example: _iNq"8>2  
    % ljl^ GFo  
    %       % Display three example Zernike radial polynomials 6T 8!xyi-+  
    %       r = 0:0.01:1; W>-Et7&2  
    %       n = [3 2 5]; ,h"-  
    %       m = [1 2 1]; f&v9Q97=  
    %       z = zernpol(n,m,r); "-@[R  
    %       figure Z{&cuo.@<]  
    %       plot(r,z) SBA?^T  
    %       grid on CLvX!O(~  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') C8FB:JNJV  
    % >pUtwIP  
    %   See also ZERNFUN, ZERNFUN2. `+6R0Ch  
    4pw6bK,s2\  
    % A note on the algorithm. 7{&|;U  
    % ------------------------ cGjPxG;  
    % The radial Zernike polynomials are computed using the series  {o(j^@  
    % representation shown in the Help section above. For many special N F)~W#  
    % functions, direct evaluation using the series representation can Zd"^</ S  
    % produce poor numerical results (floating point errors), because %|s+jeUDn|  
    % the summation often involves computing small differences between 2UGsYQn  
    % large successive terms in the series. (In such cases, the functions 2eMTxwt*S  
    % are often evaluated using alternative methods such as recurrence fb^fVSh>  
    % relations: see the Legendre functions, for example). For the Zernike MEB it  
    % polynomials, however, this problem does not arise, because the SlsdqP 9  
    % polynomials are evaluated over the finite domain r = (0,1), and /SYw;<=  
    % because the coefficients for a given polynomial are generally all #g6.Glz3  
    % of similar magnitude. 8WnwQ%;m?  
    % O/[cpRe  
    % ZERNPOL has been written using a vectorized implementation: multiple j?'GZ d"B  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Gea\,{E9xA  
    % values can be passed as inputs) for a vector of points R.  To achieve 7uzk p&+:  
    % this vectorization most efficiently, the algorithm in ZERNPOL SdD6 ~LS  
    % involves pre-determining all the powers p of R that are required to ]+X@ 7  
    % compute the outputs, and then compiling the {R^p} into a single a+n0|CvF  
    % matrix.  This avoids any redundant computation of the R^p, and Gz .|]:1  
    % minimizes the sizes of certain intermediate variables. UFMA:o,  
    % AK@9?_D  
    %   Paul Fricker 11/13/2006 SL5Ai/X0N  
    | Bi!  
    &jmRA';sK  
    % Check and prepare the inputs: .V,@k7U,V  
    % ----------------------------- :OuA)f  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) eA<0$Gs,h  
        error('zernpol:NMvectors','N and M must be vectors.') ;+"+3  
    end % >=!p  
    ]q4rlT.i  
    if length(n)~=length(m) A0Qb 5e  
        error('zernpol:NMlength','N and M must be the same length.') wb0L.'jyR)  
    end z<Nfm  
    (!:,+*YY  
    n = n(:); n rjE.+v  
    m = m(:); .[_L=_.  
    length_n = length(n); %^jMj2  
    vam;4vyu  
    if any(mod(n-m,2)) |:gf lseE  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2'w?\{}D  
    end %KLpig  
    7j-4TY~  
    if any(m<0) E 7{U |\  
        error('zernpol:Mpositive','All M must be positive.') -qGa]a  
    end ;=MU';o  
    y+NN< EY@  
    if any(m>n) *}*FX+px)  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') A*\.NTM  
    end ln6d<; M5  
    F1yqxWHeo  
    if any( r>1 | r<0 ) -Fe?R*-g  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Vh4X%b$TV  
    end 2GDD!w#!j  
    *_d7E   
    if ~any(size(r)==1) M<v%CawS  
        error('zernpol:Rvector','R must be a vector.') 9w7n1k.  
    end u I )6M  
    ]Gsv0Xk1  
    r = r(:); Y^wW2-,m  
    length_r = length(r); {ttysQ-  
    A PEE ~  
    if nargin==4 C&(N I  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); = %TWX[w  
        if ~isnorm .[ICx  
            error('zernpol:normalization','Unrecognized normalization flag.') D9H?:pmv?  
        end YIG~MP  
    else Hx?;fl'G%  
        isnorm = false; V@g'#= {r  
    end cQ R]le %(  
    VAHh~Q6 ;e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a .k.n<  
    % Compute the Zernike Polynomials b gK}-EU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s Z].8.  
    yPb"V  
    % Determine the required powers of r: VY7[)  
    % ----------------------------------- I 7{T  
    rpowers = []; Pd_U7&w,5  
    for j = 1:length(n) [1Qo#w1  
        rpowers = [rpowers m(j):2:n(j)]; inMA:x}cF1  
    end fHx*e'eA  
    rpowers = unique(rpowers); qm/22:&v5  
    <h0?tv]  
    % Pre-compute the values of r raised to the required powers, |ATvS2  
    % and compile them in a matrix: D2Kp|F;  
    % ----------------------------- g}1B;zGf  
    if rpowers(1)==0 ,l\- xSM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G[uK-U  
        rpowern = cat(2,rpowern{:}); . YAT:;L  
        rpowern = [ones(length_r,1) rpowern];  iu=7O  
    else KJ)k =mJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K0|FY=#2y  
        rpowern = cat(2,rpowern{:}); ymhtX6]  
    end 2} /aFR  
    0z6R'Kjy A  
    % Compute the values of the polynomials: V^bwXr4f  
    % -------------------------------------- p>v$FiV2N  
    z = zeros(length_r,length_n); T $>&[f$6  
    for j = 1:length_n dy%;W%  
        s = 0:(n(j)-m(j))/2; 98IJu  
        pows = n(j):-2:m(j); <lPm1/8  
        for k = length(s):-1:1 yg<R=$n,Q  
            p = (1-2*mod(s(k),2))* ... Z&+ g;(g  
                       prod(2:(n(j)-s(k)))/          ... +V ;l6D  
                       prod(2:s(k))/                 ... wDal5GJp  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Rq'S>#e  
                       prod(2:((n(j)+m(j))/2-s(k))); H)kwQRfu  
            idx = (pows(k)==rpowers); P64PPbP  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ]8_NZHld  
        end *K8$eDNZ  
         c_$=-Khk  
        if isnorm l*Gvf_UH  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); {4<C_52t  
        end O`IQ(,yef  
    end P^ ~yzI  
    _^Ubs>d=*  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2^ nxoye  
    &Ok):`  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 8<Av@9 *}  
    j A%u 5V  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)