非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i6[Hu8
function z = zernfun(n,m,r,theta,nflag) T3bBc
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. LEY$St
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5y.kOe4vH
% and angular frequency M, evaluated at positions (R,THETA) on the ZN.
#g_
% unit circle. N is a vector of positive integers (including 0), and 1vX97n<}
% M is a vector with the same number of elements as N. Each element lK{h%2A\b
% k of M must be a positive integer, with possible values M(k) = -N(k) _- { > e
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 3t8VH`!mL{
% and THETA is a vector of angles. R and THETA must have the same .(! $j-B
% length. The output Z is a matrix with one column for every (N,M) . }^m8PP
% pair, and one row for every (R,THETA) pair. .8k9yk
% >1W)J3
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Obbjl@]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d}Q;CF3m:
% with delta(m,0) the Kronecker delta, is chosen so that the integral t1D6#JP(a
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Nl0*"}`I_
% and theta=0 to theta=2*pi) is unity. For the non-normalized 6<gh:vj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L9@nx7D
% O}2;>eH
% The Zernike functions are an orthogonal basis on the unit circle. Mu TlN
% They are used in disciplines such as astronomy, optics, and "I
u3&mc
% optometry to describe functions on a circular domain. 1X]?-+',.
% WxFVbtw
% The following table lists the first 15 Zernike functions. [V
=O$X_
% |'.\}xt7
% n m Zernike function Normalization G/b
$cO}
% -------------------------------------------------- } DoNp[`
% 0 0 1 1 "1Vuf<?C
% 1 1 r * cos(theta) 2 a8NL
% 1 -1 r * sin(theta) 2 )A,MTi
% 2 -2 r^2 * cos(2*theta) sqrt(6) I_\j05
% 2 0 (2*r^2 - 1) sqrt(3) |
X! d*4
% 2 2 r^2 * sin(2*theta) sqrt(6) :W^
k3/t
% 3 -3 r^3 * cos(3*theta) sqrt(8) qEE
V&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6,| !zaeS
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z!DGCw
% 3 3 r^3 * sin(3*theta) sqrt(8) EP,lT.u3
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;~F&b:CyG
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !2=<MO
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) eX>x
+]l6
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
eqV;4dhm
% 4 4 r^4 * sin(4*theta) sqrt(10) lx(kbSxF
% -------------------------------------------------- ("?V|
% PCtf&U