切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11382阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 /'_ RI  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 4'=N{.TtO  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _If?&KJ r  
    function z = zernfun(n,m,r,theta,nflag) R!qrb26k  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. N+75wtLy&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +eXfT*=u5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Acv{XnB  
    %   unit circle.  N is a vector of positive integers (including 0), and rv%[?Ml  
    %   M is a vector with the same number of elements as N.  Each element d~8~RT2m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ptQ (7N  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (*BW/.Fq  
    %   and THETA is a vector of angles.  R and THETA must have the same -=IM8Dny  
    %   length.  The output Z is a matrix with one column for every (N,M) uJ\Nga<?  
    %   pair, and one row for every (R,THETA) pair. XCriZ|s  
    % ~Xw?>&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Uroj%xN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #wiP{+%b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral r ngw6?`n-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -P&e4sV{  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized IBh~(6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -rlX<(pl)  
    % ?Fpl.t~  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1?\Y,+  
    %   They are used in disciplines such as astronomy, optics, and 0&@ pX~h:  
    %   optometry to describe functions on a circular domain. Am  $L  
    % +Bfi/>  
    %   The following table lists the first 15 Zernike functions. "M &4c:cz  
    % a6P.Zf7  
    %       n    m    Zernike function           Normalization fk1f'M)/8  
    %       -------------------------------------------------- V p{5Kxq  
    %       0    0    1                                 1 Y cpO;md  
    %       1    1    r * cos(theta)                    2 T%/w^27E  
    %       1   -1    r * sin(theta)                    2 Q$j48,e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) tvRy8u;  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1bkUT_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) hh&y2#Io  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) pa-4|)qY  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1+($"$ZC&B  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) edx'p`%d5  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) [^~9wFNtd  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) y@_?3m7B=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RiG!TTa b  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) w-Fk&dC69  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A!yLwkc:5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'bPo 5V|  
    %       -------------------------------------------------- k)Wz b  
    % @x +#ZD(  
    %   Example 1: e~?]F 0/  
    % G.TX1  
    %       % Display the Zernike function Z(n=5,m=1) cU|jT8Q4H  
    %       x = -1:0.01:1; #jiqRhm  
    %       [X,Y] = meshgrid(x,x); #" -^;Z  
    %       [theta,r] = cart2pol(X,Y); S '+"+%^tj  
    %       idx = r<=1; *'-^R9dN.S  
    %       z = nan(size(X)); i{qURP}.  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); G[j79o  
    %       figure BxYA[#fd}  
    %       pcolor(x,x,z), shading interp V}+;b bUc-  
    %       axis square, colorbar krc!BK`V  
    %       title('Zernike function Z_5^1(r,\theta)') Ypj)6d  
    % mC(t;{  
    %   Example 2: b0 `9wn  
    % 7!w nx.  
    %       % Display the first 10 Zernike functions k]pD3.QJ  
    %       x = -1:0.01:1; x`i`]6q  
    %       [X,Y] = meshgrid(x,x); XtdLKYET  
    %       [theta,r] = cart2pol(X,Y); e8<nP t`C  
    %       idx = r<=1; uf] $@6)  
    %       z = nan(size(X)); ;tiU OixJ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; r0 C6Ww7u  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; f om"8iL1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >]8.xkQq  
    %       y = zernfun(n,m,r(idx),theta(idx)); >irT|VTf  
    %       figure('Units','normalized') 1G.gPx[  
    %       for k = 1:10 tta0sJ8 i  
    %           z(idx) = y(:,k); Nn1^#kc  
    %           subplot(4,7,Nplot(k)) DNBpIC5&6  
    %           pcolor(x,x,z), shading interp I]1Hi?A2  
    %           set(gca,'XTick',[],'YTick',[]) Gi4dgMVei  
    %           axis square ,8nZzVo  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @rE )xco  
    %       end :=v{inN  
    % ?Zp!AV  
    %   See also ZERNPOL, ZERNFUN2. @6'E8NFl  
    /,$\H  
    %   Paul Fricker 11/13/2006 wQB{K3  
    ?u!AHSr(  
    X>8?p'*  
    % Check and prepare the inputs: G>>u#>0  
    % ----------------------------- V_622~Tc/[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w1(06A}/  
        error('zernfun:NMvectors','N and M must be vectors.') }h h^U^ia  
    end _rdj,F8  
    }(EOQ2TI  
    if length(n)~=length(m) dU^<7 K:S  
        error('zernfun:NMlength','N and M must be the same length.') g_c)Ts(  
    end \&)W#8V  
    `h5eej&s(  
    n = n(:); |ZlT>u  
    m = m(:); YKOO(?lv  
    if any(mod(n-m,2)) ?$4R <  
        error('zernfun:NMmultiplesof2', ... .|`=mx  
              'All N and M must differ by multiples of 2 (including 0).') (ul-J4E\O  
    end qpqz. {\  
    9Ru%E>el-  
    if any(m>n) 8'WMspX  
        error('zernfun:MlessthanN', ... q)xl$*g  
              'Each M must be less than or equal to its corresponding N.') ;Jn0e:x`E  
    end ^|i\d \  
    ,T*_mDVY  
    if any( r>1 | r<0 ) TM}'XZ&  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') gLMea:  
    end fB,1s}3Hn  
    ]O=S2Q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =C>`}%XT}  
        error('zernfun:RTHvector','R and THETA must be vectors.') EZumJ."  
    end 1(7.V-(G  
    TKu68/\)  
    r = r(:); &W<>^C2v  
    theta = theta(:); 39aCwhh7v  
    length_r = length(r); Q>a7Ps@~  
    if length_r~=length(theta) nf.:5I.  
        error('zernfun:RTHlength', ... Y\Qxdq  
              'The number of R- and THETA-values must be equal.') 8w8I:*  
    end .>64h H  
    v&b.Q:h*'  
    % Check normalization: }-q`&1!t  
    % -------------------- VIYksv   
    if nargin==5 && ischar(nflag) }A)36  
        isnorm = strcmpi(nflag,'norm'); KD"&_PX  
        if ~isnorm ={E!8"  
            error('zernfun:normalization','Unrecognized normalization flag.') p@7i=hyt`p  
        end >yA,@%X  
    else oD#< ?h)(  
        isnorm = false; u ?G\b{$m  
    end y.*=Ww+  
    %6IlE.*,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,*nZf|  
    % Compute the Zernike Polynomials ]%<Q:+38  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1u"*09yZd  
    P 5qa:<  
    % Determine the required powers of r: x\J;ZiWwW  
    % ----------------------------------- M o"JV  
    m_abs = abs(m); x !:9c<  
    rpowers = []; q 5v?`c  
    for j = 1:length(n) bxhg*A  
        rpowers = [rpowers m_abs(j):2:n(j)]; f*T)*R_  
    end B=gsd0^]  
    rpowers = unique(rpowers); NrJ_6sjF0g  
    )}Rfa}MD  
    % Pre-compute the values of r raised to the required powers, P7wqZ?  
    % and compile them in a matrix: wsJ%* eYf  
    % ----------------------------- N;x<| %peL  
    if rpowers(1)==0 oWx_O-_._  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); WE.$at{*h  
        rpowern = cat(2,rpowern{:}); .mT#%ex  
        rpowern = [ones(length_r,1) rpowern]; G_^iR-  
    else dm,}Nbc91(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); JIP+ !2  
        rpowern = cat(2,rpowern{:}); j FPU zB"  
    end oGJ*Rn)Z  
    T}t E/  
    % Compute the values of the polynomials: =CKuiO.j  
    % -------------------------------------- #6N+5Yx_[  
    y = zeros(length_r,length(n)); {C/L5cZ]J  
    for j = 1:length(n) xMNNXPz(  
        s = 0:(n(j)-m_abs(j))/2; .L^pMU+!^  
        pows = n(j):-2:m_abs(j); YXX36  
        for k = length(s):-1:1 YA"Ti9-EV  
            p = (1-2*mod(s(k),2))* ... >d{dZD}  
                       prod(2:(n(j)-s(k)))/              ... ws>WA{]gq  
                       prod(2:s(k))/                     ... b.R!2]T]i^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g= FDm*  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +HOCVqx  
            idx = (pows(k)==rpowers); )+n,5W  
            y(:,j) = y(:,j) + p*rpowern(:,idx); qY$*#*Q  
        end hgweNRTh!  
         15xd~V?ai:  
        if isnorm Q%& _On  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 80?6I%UB<  
        end x)ddRq l  
    end t;.^K\S4  
    % END: Compute the Zernike Polynomials RIy5ww}3|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {Ax)[<i  
    29Gwv  
    % Compute the Zernike functions: :!JpP R5  
    % ------------------------------ n#+%!HTh  
    idx_pos = m>0; qIbg 4uE  
    idx_neg = m<0; .3lGX`d{  
    [j)\v^m  
    z = y; {W5ydHXy  
    if any(idx_pos) W.,% 0cZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1R=)17'O  
    end =tr1*s{  
    if any(idx_neg) `z|= ~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bZNIxkc[Dh  
    end {OB-J\7Y  
    Em e'Gk  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) &w+;N5}3  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. }.0Bl&\UK  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ;mDM5.iF  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive C%giv9a  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, L|&'jH)  
    %   and THETA is a vector of angles.  R and THETA must have the same h ?uqLsRl  
    %   length.  The output Z is a matrix with one column for every P-value, weNzYMf%  
    %   and one row for every (R,THETA) pair. J+Q+&-a  
    % FH)t:!#  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 9YR]+*  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) KK?Zm_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) CY34X2F  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &J8 Z@^  
    %   for all p. `AWy!}8  
    % U?gl"6x  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 41u*w2j  
    %   Zernike functions (order N<=7).  In some disciplines it is k*5'L<&  
    %   traditional to label the first 36 functions using a single mode =EQJqj1T  
    %   number P instead of separate numbers for the order N and azimuthal fJaubDxa  
    %   frequency M. /-h6`@[  
    % gfi AK%  
    %   Example: ac9qj  
    % $:Rn;  
    %       % Display the first 16 Zernike functions Mr-DGLJ  
    %       x = -1:0.01:1; ujU=JlJ7dl  
    %       [X,Y] = meshgrid(x,x); !RS9%ES_?  
    %       [theta,r] = cart2pol(X,Y); LH4>@YPGE#  
    %       idx = r<=1; {@?G 9UypA  
    %       p = 0:15; N;uUx#z  
    %       z = nan(size(X)); KkEv#2n  
    %       y = zernfun2(p,r(idx),theta(idx)); dd]?9  
    %       figure('Units','normalized') 7_-w_"X  
    %       for k = 1:length(p) -K"4rz  
    %           z(idx) = y(:,k); # kyl?E  
    %           subplot(4,4,k) h;-a`@rO ;  
    %           pcolor(x,x,z), shading interp zbNA \.y  
    %           set(gca,'XTick',[],'YTick',[]) g& k58{e  
    %           axis square F*M|<E=  
    %           title(['Z_{' num2str(p(k)) '}']) "NDxgJ%J35  
    %       end Ht#@'x  
    % Z,K7Ot0  
    %   See also ZERNPOL, ZERNFUN. %?bcT[|3  
    syv$XeG=}  
    %   Paul Fricker 11/13/2006 n-$VUo  
    p~K9 B-D  
    f;gZ|a  
    % Check and prepare the inputs: 'n0 .#E_  
    % ----------------------------- mLwoi!]m  
    if min(size(p))~=1 'B_\TU0 O  
        error('zernfun2:Pvector','Input P must be vector.') 7 {f_fkbs  
    end  B$^7h!  
    .-0%6] cFD  
    if any(p)>35 k@V#HC{t  
        error('zernfun2:P36', ... } VEq:^o.  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ZsZcQj6G,  
               '(P = 0 to 35).']) r [s!F=^  
    end V >Hf9sZ  
    NBjeH tT  
    % Get the order and frequency corresonding to the function number: AVG>_$<  
    % ---------------------------------------------------------------- t|V0x3X  
    p = p(:); C9qJP^F  
    n = ceil((-3+sqrt(9+8*p))/2); MxOD8TDF4  
    m = 2*p - n.*(n+2); jij<yM8$g  
    ,Ol (piR  
    % Pass the inputs to the function ZERNFUN: Gs dnf 7  
    % ---------------------------------------- n,j$D62[  
    switch nargin 0)|Q6*E>  
        case 3 8!mc@$Z  
            z = zernfun(n,m,r,theta); jTb-;4 N'  
        case 4 {fV}gR2  
            z = zernfun(n,m,r,theta,nflag); O oSb>Y/4  
        otherwise r[_4Lo @G  
            error('zernfun2:nargin','Incorrect number of inputs.') e8}Ezy"^  
    end -Xz&}QA  
    ]JE TeZ^/  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Y[Ltrk{  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8FkFM^\1L  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @kFu*"  
    %   order N and frequency M, evaluated at R.  N is a vector of hWo=;#B*  
    %   positive integers (including 0), and M is a vector with the Z5(enTy-  
    %   same number of elements as N.  Each element k of M must be a >TjJA #  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) B[5r|d'  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;AJTytE>%  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7=XL!:P  
    %   with one column for every (N,M) pair, and one row for every %XTcP2pRJ  
    %   element in R. E7zm{BX]  
    % WO</Mw  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- bEV<iZDq%  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?7MqeR4/E  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |=a}iU8  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 jJZgK$5+  
    %   for all [n,m]. ]i*](UQ  
    % ww k PF  
    %   The radial Zernike polynomials are the radial portion of the oslJC$cy'  
    %   Zernike functions, which are an orthogonal basis on the unit SP]IUdE\  
    %   circle.  The series representation of the radial Zernike wJ<Oo@snm  
    %   polynomials is vhuw &.\  
    % zTbVp8\pI  
    %          (n-m)/2 ,Gk}"w  
    %            __ ,)!u)wz  
    %    m      \       s                                          n-2s {yA$V0`N{  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r &w 8)* T  
    %    n      s=0 RW$:9~  
    % 1xE]6he4{T  
    %   The following table shows the first 12 polynomials. 5kNzv~4B,;  
    % LPYbHo3fq  
    %       n    m    Zernike polynomial    Normalization )~6zYJ2  
    %       ---------------------------------------------  Ez~'^s@  
    %       0    0    1                        sqrt(2) X[gn+6WB%  
    %       1    1    r                           2 6x)$Dl  
    %       2    0    2*r^2 - 1                sqrt(6) J[~5U~F  
    %       2    2    r^2                      sqrt(6) R9rj/Co  
    %       3    1    3*r^3 - 2*r              sqrt(8) 2F#q I1  
    %       3    3    r^3                      sqrt(8) %M|,b!eF  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Em 6Qe  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) KOz(TZ?u  
    %       4    4    r^4                      sqrt(10) !HeSOzN  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "1`Oh<={b  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1?*  
    %       5    5    r^5                      sqrt(12) !\8  ;d8  
    %       --------------------------------------------- .\0isO  
    % >odbOi+X  
    %   Example: %1 vsN-O}8  
    % A\_|un%  
    %       % Display three example Zernike radial polynomials vDl- "!G1  
    %       r = 0:0.01:1; oh"O07  
    %       n = [3 2 5]; <s5qy-  
    %       m = [1 2 1]; @~c6qh  
    %       z = zernpol(n,m,r); -<v~snq'  
    %       figure e!Y0-=?nf#  
    %       plot(r,z) jcNT<}k C  
    %       grid on iy.2A!f^.  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :c9U>1`g&  
    % 3p2P= T  
    %   See also ZERNFUN, ZERNFUN2. V7G7&'  
    lv vs%@b>  
    % A note on the algorithm. A1P K  
    % ------------------------ Uw,2}yR  
    % The radial Zernike polynomials are computed using the series OouPj@r  
    % representation shown in the Help section above. For many special b^D$jY  
    % functions, direct evaluation using the series representation can -[U1]R  
    % produce poor numerical results (floating point errors), because kr$ b^"Ku  
    % the summation often involves computing small differences between ydw)mT44K  
    % large successive terms in the series. (In such cases, the functions ?pgG,=?  
    % are often evaluated using alternative methods such as recurrence ;S0Kh"A  
    % relations: see the Legendre functions, for example). For the Zernike [.RO'>2z  
    % polynomials, however, this problem does not arise, because the O=SkAsim  
    % polynomials are evaluated over the finite domain r = (0,1), and %AOja+  
    % because the coefficients for a given polynomial are generally all MX4]Vpv  
    % of similar magnitude. PP:(EN1  
    % r]3'74j:  
    % ZERNPOL has been written using a vectorized implementation: multiple E*L iM5+I  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] N]KxAttt  
    % values can be passed as inputs) for a vector of points R.  To achieve _k8A$s<d  
    % this vectorization most efficiently, the algorithm in ZERNPOL lEHzyh}2k  
    % involves pre-determining all the powers p of R that are required to [7_56\G4  
    % compute the outputs, and then compiling the {R^p} into a single yV_4?nh  
    % matrix.  This avoids any redundant computation of the R^p, and S= _vv)6+4  
    % minimizes the sizes of certain intermediate variables. w =. Fj  
    % nhIa175'  
    %   Paul Fricker 11/13/2006 !mWiYpbU+  
    O6IB. >T  
    5~mh'<:  
    % Check and prepare the inputs: =K{\p`?  
    % ----------------------------- TuW%zF/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J|'7_0OAx  
        error('zernpol:NMvectors','N and M must be vectors.') G8Nt 8U~  
    end +w=AJdc  
    /axIIfx-  
    if length(n)~=length(m) gTA%uRBa  
        error('zernpol:NMlength','N and M must be the same length.') hs tbz  
    end ^v.,y3  
    hXqD<?  
    n = n(:); u%~igt@x  
    m = m(:); LM&y@"wfm  
    length_n = length(n); CHV*vU<N  
    7^w >Rj  
    if any(mod(n-m,2)) JK.ZdY%  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') p~*UpU8u  
    end ,t\* ZTt$  
    \GHiLs,!  
    if any(m<0) V+I|1{@i0  
        error('zernpol:Mpositive','All M must be positive.') `7/Y@}n  
    end H\XP\4#u  
    4)1s M=u  
    if any(m>n) &QhX1dT+  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') i hh/sPi  
    end sZW^ !z  
    $H+VA@_  
    if any( r>1 | r<0 ) dnj}AVfQx  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') i;!H!-sM  
    end IpP~Uz  
    ^h{)Gf,+\  
    if ~any(size(r)==1) 1KjU ] r2  
        error('zernpol:Rvector','R must be a vector.') rk)##)  
    end sg+uBCGB  
    Qx[t /~  
    r = r(:); C+|b1/N-  
    length_r = length(r); ?JL:CBvCp  
    ,\qs4&  
    if nargin==4 _x!7}O#k  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); A45A:hqs  
        if ~isnorm 5 Kkdo!z  
            error('zernpol:normalization','Unrecognized normalization flag.') ve\X3"p#  
        end WJ_IuX51'  
    else o1<_fI  
        isnorm = false; }g4 M2|  
    end I_A@BnM{I  
    Unsogd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^a#X9  
    % Compute the Zernike Polynomials RIIitgV_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y+Fljr*  
    NMA}Q$o s  
    % Determine the required powers of r: YfRkwKjy(  
    % ----------------------------------- C:Hoq(  
    rpowers = []; wQRZ"ri,  
    for j = 1:length(n) %rxO_  
        rpowers = [rpowers m(j):2:n(j)]; sqW* pi  
    end r3>i+i42  
    rpowers = unique(rpowers); vsa92c@T  
    F+@5C:<?  
    % Pre-compute the values of r raised to the required powers, '3?\K3S4i  
    % and compile them in a matrix: :H c0b=  
    % ----------------------------- ;X?mmv'  
    if rpowers(1)==0 h(5P(`M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /c,(8{(O  
        rpowern = cat(2,rpowern{:}); p ZZc:\fJ  
        rpowern = [ones(length_r,1) rpowern]; !H ~<  
    else |m2X+s9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;$z$@@WC  
        rpowern = cat(2,rpowern{:}); )HvnoUO0  
    end "I QlVi  
    kcQ'$<Mz<  
    % Compute the values of the polynomials: O9r>E3-q  
    % -------------------------------------- 95z]9UL  
    z = zeros(length_r,length_n); {Lm~r+ U  
    for j = 1:length_n mdw7}%5V  
        s = 0:(n(j)-m(j))/2; EI^06q4x  
        pows = n(j):-2:m(j); :hM/f  
        for k = length(s):-1:1 0C>%LJ8r  
            p = (1-2*mod(s(k),2))* ... &-mX ,   
                       prod(2:(n(j)-s(k)))/          ... !tp1:'KG  
                       prod(2:s(k))/                 ... 8KRba4[  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... kS!viJwtT  
                       prod(2:((n(j)+m(j))/2-s(k))); Hbpqyl%O>  
            idx = (pows(k)==rpowers); v.]Q$q^  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4)("v-p  
        end &SrO)  
         *f?4   
        if isnorm ZfB " E  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); *<J*S#]  
        end Kh MSL  
    end qs QNjt  
    CXC`sPY  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Y9`5G%  
    XyOl:>%L!P  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 hnznp1[#@  
    oy;K_9\  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)