非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 H`".L^
function z = zernfun(n,m,r,theta,nflag) ` n_ Z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !^N/n5eoz
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >!oN+8[~
% and angular frequency M, evaluated at positions (R,THETA) on the Na`qA j}
% unit circle. N is a vector of positive integers (including 0), and ~{N|("nB
% M is a vector with the same number of elements as N. Each element "W1 q}4_
% k of M must be a positive integer, with possible values M(k) = -N(k)
s$]I@;_
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, T@z$g
% and THETA is a vector of angles. R and THETA must have the same [oYe/<3
% length. The output Z is a matrix with one column for every (N,M) w
S;(u[W
% pair, and one row for every (R,THETA) pair. qS7*.E~j|]
% sX=!o})0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike crmnh4-
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SC!IQ80H#D
% with delta(m,0) the Kronecker delta, is chosen so that the integral 7IvCMb&%R
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PffwNj/l
% and theta=0 to theta=2*pi) is unity. For the non-normalized GRs ;-Jt
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d }]b
% E+Gea[c
% The Zernike functions are an orthogonal basis on the unit circle. {1qEN_ERx
% They are used in disciplines such as astronomy, optics, and pGOS'.K%t8
% optometry to describe functions on a circular domain. S#""((U$
% ~PV>3c3l=
% The following table lists the first 15 Zernike functions. 5=
F-^
% CZ0 {*K:
% n m Zernike function Normalization :<jf}[w!
% -------------------------------------------------- W6*(Y
% 0 0 1 1 (*2"dd
% 1 1 r * cos(theta) 2 1%+0OmV&
% 1 -1 r * sin(theta) 2 KYeA=
% 2 -2 r^2 * cos(2*theta) sqrt(6) lF#Kg!-l
% 2 0 (2*r^2 - 1) sqrt(3) ^yb_aC w
% 2 2 r^2 * sin(2*theta) sqrt(6) T^Z#x-Q
% 3 -3 r^3 * cos(3*theta) sqrt(8) '}}DPoV
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) &"CS1P|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 2R_k$kHl
% 3 3 r^3 * sin(3*theta) sqrt(8) g VuN a)
% 4 -4 r^4 * cos(4*theta) sqrt(10) a`{'u)@
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5G2u(hx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =6 [!'K
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mki=.l$O
% 4 4 r^4 * sin(4*theta) sqrt(10) `SU;TN0
% -------------------------------------------------- ](W#Tj5-
% |UBJu `%
% Example 1: -ss2X
% E+>;tLw3j
% % Display the Zernike function Z(n=5,m=1) g-]td8}#
% x = -1:0.01:1; Z-~^)l o
% [X,Y] = meshgrid(x,x); }\irr9,
% [theta,r] = cart2pol(X,Y); ^@ux
% idx = r<=1; )/=J=xw2
% z = nan(size(X)); 2ru6bIb;
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !cq4+0{O;&
% figure P_Zo}.{
% pcolor(x,x,z), shading interp 9V;m;sz
% axis square, colorbar G(4k#jB
% title('Zernike function Z_5^1(r,\theta)') Wqqo8Y~fq
% ?K]k(ZV_+Y
% Example 2: R@EFG%|`_
% ]A\n>Z!;
% % Display the first 10 Zernike functions _l Jj 6=
% x = -1:0.01:1; 6z(_^CY
% [X,Y] = meshgrid(x,x); |;].~7^
% [theta,r] = cart2pol(X,Y); ZBYmAD
% idx = r<=1; <>R7G)w
F
% z = nan(size(X)); M\]E;C'"U
% n = [0 1 1 2 2 2 3 3 3 3]; Nn^el'S'
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; i0R=P[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; l==T3u
r
% y = zernfun(n,m,r(idx),theta(idx)); Hnaq+ _]
% figure('Units','normalized') Ne4A
% for k = 1:10 6$zUFIk
% z(idx) = y(:,k); d`xqs,0f
% subplot(4,7,Nplot(k)) %1lLUgf3G/
% pcolor(x,x,z), shading interp o 1b#q/
% set(gca,'XTick',[],'YTick',[])
Wi|.Z/
% axis square 9 (&!>z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4bKZ@r%
% end O=mJ8W@
% 7j]@3D9[:p
% See also ZERNPOL, ZERNFUN2. E6US
@3G3l|~>
% Paul Fricker 11/13/2006 m:H )b{
z C``G<TB
6m{3GKaW~
% Check and prepare the inputs: %AJdtJ@0H
% ----------------------------- @!Pq"/
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) H@6
error('zernfun:NMvectors','N and M must be vectors.') WT0U)x( m5
end <k)rfv7
Zs4N0N{
if length(n)~=length(m) @B[V'|
error('zernfun:NMlength','N and M must be the same length.') L2:C6Sc
end ik]UzB
RS93_F8
n = n(:);
#8(@a
Y
m = m(:); 3j3AI7c
if any(mod(n-m,2)) [m4<j
error('zernfun:NMmultiplesof2', ... CR_A{(
'All N and M must differ by multiples of 2 (including 0).') `,|7X]%b
end @Wv*`
n.T
[a
if any(m>n) Io:xG6yG
error('zernfun:MlessthanN', ... D]0#A|nF
'Each M must be less than or equal to its corresponding N.') [`:\(( 8
end ;TR.UUT
.z9JoQ
if any( r>1 | r<0 ) g6~uf4;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') c-3? D;
end "B\qp "N
'Kq%tM26!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {:"bX~<^
error('zernfun:RTHvector','R and THETA must be vectors.') 2yN~[,L
end :|Z*aI]9
1M+mH#?
r = r(:); avT>0b:
theta = theta(:); U"ZDt
length_r = length(r); h qxe
if length_r~=length(theta) D,R/abYZH
error('zernfun:RTHlength', ... 6 g!t1%Kb
'The number of R- and THETA-values must be equal.') 9SU;c l
end ed617J
/2YI!U@A
% Check normalization: U>{z*D
% -------------------- t[X'OK0W%3
if nargin==5 && ischar(nflag) Bp b_y;E
isnorm = strcmpi(nflag,'norm'); GB{%4)%6
if ~isnorm F&uU
,);
error('zernfun:normalization','Unrecognized normalization flag.') @NNN&%
end [WB8X,
else t<Og?m}(
isnorm = false; Q!@"Y/
end |i|>-|`!
(llg!1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :lcoS J
% Compute the Zernike Polynomials BK-{z).)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {>syZZ,h
WyO10yvR
% Determine the required powers of r: h nyZXk1|
% ----------------------------------- T]0qd^\4w
m_abs = abs(m); iptzVr#b[
rpowers = []; z;Kyg}
for j = 1:length(n) TT>;!nb
rpowers = [rpowers m_abs(j):2:n(j)]; r% qgLP{v
end VRT| OUq
rpowers = unique(rpowers); "zYlddh
Y>IEB,w
% Pre-compute the values of r raised to the required powers, &'i>5Y
% and compile them in a matrix: &t`l,]PQ=6
% ----------------------------- w%`7,du|
if rpowers(1)==0 teET nz_L
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uN'e~X6
rpowern = cat(2,rpowern{:}); 0b4QcfB1[
rpowern = [ones(length_r,1) rpowern]; -MeGJX:^I
else 3>-^/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c!j$-Ovm
rpowern = cat(2,rpowern{:}); V:yia^1
end yv&&x.!.Z
meE&, {
% Compute the values of the polynomials: q.~_vS%
% -------------------------------------- Ia[e7
y = zeros(length_r,length(n)); r IY_1
for j = 1:length(n) )88z=5.
s = 0:(n(j)-m_abs(j))/2; eR =P
pows = n(j):-2:m_abs(j); }ob#LC,
for k = length(s):-1:1 <Knl6$B
p = (1-2*mod(s(k),2))* ... lorjMS
prod(2:(n(j)-s(k)))/ ... yX/ 9jk
prod(2:s(k))/ ... `cCsJm$V"
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w8c71C
prod(2:((n(j)+m_abs(j))/2-s(k))); 8|HuxE
idx = (pows(k)==rpowers); e'p'{]r<w
y(:,j) = y(:,j) + p*rpowern(:,idx); /0@'8f\I
end 7<=xc'*8t
F0qGkMs|f
if isnorm QT&2&#Z
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); R8sj>.I9j
end g>cp;co9g
end }[\l$sS
% END: Compute the Zernike Polynomials bU7n1pzW,o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P|l62!m<
I&
DEF*
% Compute the Zernike functions: gQ6_]~4
% ------------------------------ F8S% \i
idx_pos = m>0; z;J"3kM
idx_neg = m<0; JgEPzHgx
6* (6>F5
z = y; iP)`yB5 `
if any(idx_pos) ")}^\Om
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); AAb3Jf`UW
end (p>?0h9[
if any(idx_neg) I<Wp,E9G#
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); B<%cqz@
end Y w7txp`i
+`}QIp0
% EOF zernfun