非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^bG91"0A
function z = zernfun(n,m,r,theta,nflag) 5-?*Boi>i
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5DxNHEuS
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7*\CfqrU
% and angular frequency M, evaluated at positions (R,THETA) on the It:,8
% unit circle. N is a vector of positive integers (including 0), and )/cf%
% M is a vector with the same number of elements as N. Each element s&7TARd
% k of M must be a positive integer, with possible values M(k) = -N(k) Fv$oXg/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |e{ ^Yf4
% and THETA is a vector of angles. R and THETA must have the same 0"J0JcFX
% length. The output Z is a matrix with one column for every (N,M) Cm%|hk>fQ
% pair, and one row for every (R,THETA) pair. r%\%tz'`j
% *w$3/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x@#aOf4<U
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), e82xBLxR%
% with delta(m,0) the Kronecker delta, is chosen so that the integral )0?u_Z]w9
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Tnoy#w}Ve
% and theta=0 to theta=2*pi) is unity. For the non-normalized .oH)eD
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g1v=a
% IN7Cpg~9%
% The Zernike functions are an orthogonal basis on the unit circle. K( r@JW
% They are used in disciplines such as astronomy, optics, and Dgc}T8R
% optometry to describe functions on a circular domain.
!U=o<)I
% A9Icn>3?`(
% The following table lists the first 15 Zernike functions. \=uD)9V
% OF/hD2V
% n m Zernike function Normalization O;+
sAt
% -------------------------------------------------- =*{Ii]D
% 0 0 1 1 9";qR,
% 1 1 r * cos(theta) 2 7sq15oL
% 1 -1 r * sin(theta) 2 rT(b t~Z
% 2 -2 r^2 * cos(2*theta) sqrt(6) Y_nl9}&+C0
% 2 0 (2*r^2 - 1) sqrt(3) BU.O[?@64
% 2 2 r^2 * sin(2*theta) sqrt(6) P,@/ap7J
% 3 -3 r^3 * cos(3*theta) sqrt(8) yT|44
D2j
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) S S fNI>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ?7uK:'8
% 3 3 r^3 * sin(3*theta) sqrt(8) _$_,r H
% 4 -4 r^4 * cos(4*theta) sqrt(10) GIhX2EvAS
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4*'ZabDD
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ]Z?jo#F
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gH
yJ~
% 4 4 r^4 * sin(4*theta) sqrt(10) 2Mu@P8O&
% -------------------------------------------------- 'x6rU"e $J
% qSt\ 6~
% Example 1: M|fC2[]v B
% @,m 7%,
% % Display the Zernike function Z(n=5,m=1) XhUVDmeUMb
% x = -1:0.01:1; 9[R+m3V/`
% [X,Y] = meshgrid(x,x); rvuasr~
% [theta,r] = cart2pol(X,Y); {F;"m&3Lt
% idx = r<=1; Irui{%T
% z = nan(size(X)); .uSVZqJ7
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _Kbj?j
% figure gx8i|]
% pcolor(x,x,z), shading interp N}nE?|N=5
% axis square, colorbar '<$*N
% title('Zernike function Z_5^1(r,\theta)') /ke[nr
% TE:|w
Xe
% Example 2: m48Ab`
% Rn)fwGC
% % Display the first 10 Zernike functions 5Q\ hd*+g
% x = -1:0.01:1; "U/yq
% [X,Y] = meshgrid(x,x); 6^lix9q7
% [theta,r] = cart2pol(X,Y); B=~uJUr
% idx = r<=1; a7!{`fR5
% z = nan(size(X)); a"l\_D'.K8
% n = [0 1 1 2 2 2 3 3 3 3]; >qBJK)LHOv
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Xl:.`{5L
% Nplot = [4 10 12 16 18 20 22 24 26 28]; qh+&Z x~
% y = zernfun(n,m,r(idx),theta(idx)); ]FgKL0
% figure('Units','normalized') !%[fi[p
% for k = 1:10 PS8^=
% z(idx) = y(:,k); Ym.{
{^=
% subplot(4,7,Nplot(k)) "T*1C=
% pcolor(x,x,z), shading interp gVrfZ&XF84
% set(gca,'XTick',[],'YTick',[])
h_]*|[g
% axis square Y<V$3h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kj6H+@
{
% end N>CNgUyP
% T;]Ob3(BpW
% See also ZERNPOL, ZERNFUN2. p[&b@U#
a?xZsR
% Paul Fricker 11/13/2006 &*745,e
q0DRT4K
I E{:{b\
% Check and prepare the inputs: z,bK.KFSs
% ----------------------------- -{q'Tmst
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K>C@oE[W
error('zernfun:NMvectors','N and M must be vectors.') SSq4KFO1
end mT #A?C2
GS7'pTsYH
if length(n)~=length(m) !^o{}*]Pi
error('zernfun:NMlength','N and M must be the same length.') \C>+ubF
end TV#>x!5!d
B3pjli
n = n(:); _90<*{bt.
m = m(:); ~FQHT?DAo
if any(mod(n-m,2)) PT
}J.Dwx
error('zernfun:NMmultiplesof2', ... MkhD*\D
/
'All N and M must differ by multiples of 2 (including 0).') Y`(~eNX^%
end "0,FB4L[U5
R1/c@HQw?
if any(m>n) /]U;7)
error('zernfun:MlessthanN', ... IRueq @4
'Each M must be less than or equal to its corresponding N.') 7XLqP
end gVe]?Jva`
!
,{zDMA
if any( r>1 | r<0 ) J_fs}Y1q\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') s;..a&C'
end |28'<BL
; O(M l }z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uE<8L(*B
error('zernfun:RTHvector','R and THETA must be vectors.') \<\H1;=.@'
end 'MBXk2?b
a
9{:ot8,
r = r(:); 99(@O,*(Y
theta = theta(:); h"/'H)G7_&
length_r = length(r); \yZVn6GVr
if length_r~=length(theta) _/'VD!(MV
error('zernfun:RTHlength', ... J@"UFL'^
'The number of R- and THETA-values must be equal.') jm@,Ihz=wI
end FJ4,|x3v[x
QqRF?%7q"q
% Check normalization: g{i= $xc
% -------------------- fVf:voh
if nargin==5 && ischar(nflag) 0kNKt(_
isnorm = strcmpi(nflag,'norm'); Kn<+Au_]L
if ~isnorm V.*y_=i8t
error('zernfun:normalization','Unrecognized normalization flag.') }2;iIw`
end xm1'
else 4/k`gT4
isnorm = false; +2}cR66%
end !>D[Y
H(tC4'tA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qe\vx1GRLH
% Compute the Zernike Polynomials lM}-'8tt?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s^SU6P/]
{I0U 4]
% Determine the required powers of r: 09trFj$L
% ----------------------------------- I>JE\## ^n
m_abs = abs(m); _hJdC|/
rpowers = []; 3 o$zT9j
for j = 1:length(n) a!/\:4-uc
rpowers = [rpowers m_abs(j):2:n(j)]; #z
_<{'
P"
end ]z5hTY
rpowers = unique(rpowers); e^3D`GA
M.
%
p'^5
% Pre-compute the values of r raised to the required powers, RgUQ:
% and compile them in a matrix: ]s\vc:cc?
% ----------------------------- -CuuO=h
if rpowers(1)==0 7s3=Fa:9Q
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pgiZA?r*<
rpowern = cat(2,rpowern{:}); E:dN)
rpowern = [ones(length_r,1) rpowern]; U,Uy0s2r
else 8>W52~^fU
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /}
z9(
rpowern = cat(2,rpowern{:}); 2G$px
end {?Y\T
[DDe}D3C
% Compute the values of the polynomials: i{TPf1OY`M
% -------------------------------------- ej@4jpHQN
y = zeros(length_r,length(n)); |>.MH
for j = 1:length(n) ~3M8"}X;L
s = 0:(n(j)-m_abs(j))/2; 7)5G 1
pows = n(j):-2:m_abs(j); )^AZmUYZ
for k = length(s):-1:1 HcJ!(
p = (1-2*mod(s(k),2))* ... *$|f9jVh
prod(2:(n(j)-s(k)))/ ... Z37Dv;&ZD
prod(2:s(k))/ ... L.yM"
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +6$+]u]
prod(2:((n(j)+m_abs(j))/2-s(k))); >r7PK45.K
idx = (pows(k)==rpowers); 036m\7+Qj
y(:,j) = y(:,j) + p*rpowern(:,idx); bf+C=A)s0
end |h6!b t!=
`h'l"3l
if isnorm Yj>4*C9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0)g]pG8&ro
end V^R,j1*
end BYMdX J
% END: Compute the Zernike Polynomials X/cb1#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gC(S(osF
d/j?.\
% Compute the Zernike functions: NfPWcK[
% ------------------------------ u&uFXOc'
idx_pos = m>0; ;$zvm`|:
idx_neg = m<0; L(K 5f7\
j0~am,yZ
z = y; 97\K ]Tr
if any(idx_pos) ;22?-F^
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pTG[F
end Y:O|6%00Y
if any(idx_neg) C]8w[)d[`;
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \V!{z;.fA
end k<Gmb~Tg1
DJ<+" .v!
% EOF zernfun