非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 c-sfg>0 ^
function z = zernfun(n,m,r,theta,nflag) c7H^$_^ =
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. YGNP53CU
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `Urhy#LC
% and angular frequency M, evaluated at positions (R,THETA) on the t%8BK>AHvw
% unit circle. N is a vector of positive integers (including 0), and wUJcmM;
% M is a vector with the same number of elements as N. Each element q!@4~plz
% k of M must be a positive integer, with possible values M(k) = -N(k) d&>^&>?$zh
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "\yT7?},
% and THETA is a vector of angles. R and THETA must have the same 1< ?4\?j
% length. The output Z is a matrix with one column for every (N,M) R=\IEqqsi
% pair, and one row for every (R,THETA) pair. 2&cT~ZX&'
% , W?VhO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "#g}ve,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), n `Ac 3A
% with delta(m,0) the Kronecker delta, is chosen so that the integral ))Za&S*<
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, JW&gJASGC
% and theta=0 to theta=2*pi) is unity. For the non-normalized {_*yGK48n
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. E"IZ6)Q
% ~"A0Rs=
% The Zernike functions are an orthogonal basis on the unit circle. c &c@M$
% They are used in disciplines such as astronomy, optics, and 'Pbr
v
% optometry to describe functions on a circular domain. :k#HW6p
% 2~[juWbz
% The following table lists the first 15 Zernike functions. uQzXfOq
% `WS&rmq&'
% n m Zernike function Normalization D2O~kNd
% -------------------------------------------------- K(|}dl:
% 0 0 1 1 ;kKyksxlD
% 1 1 r * cos(theta) 2 %a7$QF]
% 1 -1 r * sin(theta) 2 k}rbim
% 2 -2 r^2 * cos(2*theta) sqrt(6) F"mmLao
% 2 0 (2*r^2 - 1) sqrt(3) [#iz/q~}
% 2 2 r^2 * sin(2*theta) sqrt(6) N$tGQ@
% 3 -3 r^3 * cos(3*theta) sqrt(8) cZ3v=ke^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ia?
c0xL
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Iga024KR
% 3 3 r^3 * sin(3*theta) sqrt(8) vih9KBT
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4^d?D!j
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) : rVnc =k
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \{D"
!e
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zT{VE+=
% 4 4 r^4 * sin(4*theta) sqrt(10) !5N.B|Nt
% -------------------------------------------------- )U#K
% s#GLJl\E_P
% Example 1: l+b~KU7~l
% {4PwLCy
% % Display the Zernike function Z(n=5,m=1) rmOj
% x = -1:0.01:1; 1 -b_~DF
% [X,Y] = meshgrid(x,x); `GLx#=Q
% [theta,r] = cart2pol(X,Y); eJX#@`K
% idx = r<=1; t#yuOUg
% z = nan(size(X)); QsW/X0YBv
% z(idx) = zernfun(5,1,r(idx),theta(idx)); jb)ZLA;L_c
% figure Xwtqi@zlE
% pcolor(x,x,z), shading interp )M^
gT}M
% axis square, colorbar H"F29Pu2
% title('Zernike function Z_5^1(r,\theta)') .S4u-
% 4&iCht
=
% Example 2: *K;~!P
% +H2Qk4XFB
% % Display the first 10 Zernike functions E(|>Ddv B&
% x = -1:0.01:1; S8gs-gL#Og
% [X,Y] = meshgrid(x,x); 6w7 7YTJ
% [theta,r] = cart2pol(X,Y); eV~goj
% idx = r<=1; i@'dH3-kO
% z = nan(size(X)); W_ZJ0GuE(
% n = [0 1 1 2 2 2 3 3 3 3]; F:ELPs4"
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; wKHBAW[i]
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Ir]\|t
% y = zernfun(n,m,r(idx),theta(idx)); `$NP>%J-
% figure('Units','normalized') fc@A0Hf
% for k = 1:10 B7%U_F|m
% z(idx) = y(:,k); WEpoBP
CL
% subplot(4,7,Nplot(k)) M^I(OuRMeI
% pcolor(x,x,z), shading interp [00m/fT6
% set(gca,'XTick',[],'YTick',[]) D)Dr__x
% axis square :hA#m[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) yLcEX
% end DTs;{c
% 0CvUc>Pj`"
% See also ZERNPOL, ZERNFUN2. i6N',&jFU
{>;R?TG]$
% Paul Fricker 11/13/2006 QS j]ZA
ItCv.yv35
92-I~
!d
% Check and prepare the inputs: Y^]rMK/;
% ----------------------------- h7@6T+#WoT
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) NuI9iU
error('zernfun:NMvectors','N and M must be vectors.') E)3NxmM#
end !o-@&q
'f|o{
if length(n)~=length(m) Dhv3jg;lq
error('zernfun:NMlength','N and M must be the same length.') Wez5N
end H']+L~j
|&jXp%4T
n = n(:); .8|X
m = m(:); Vz[C=_m
if any(mod(n-m,2)) 8EEuv-aeo
error('zernfun:NMmultiplesof2', ... "ITIhnE
'All N and M must differ by multiples of 2 (including 0).') qY#6SO`_iy
end )CyS#j#=
`,0}ZzaV&
if any(m>n) FgI3
error('zernfun:MlessthanN', ... {^\r`Vp
'Each M must be less than or equal to its corresponding N.') bN88ua}k{
end j~QwV='S
,2)6s\]/b
if any( r>1 | r<0 ) IO> yIU[
error('zernfun:Rlessthan1','All R must be between 0 and 1.') DeYV$W
B
end E!AE4B1bd
$wU\Js`/S]
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u-C)v*#L
error('zernfun:RTHvector','R and THETA must be vectors.') #D|p2L$
end [8*)8jP3
a}uSm/S
r = r(:); l@:0e]8|o
theta = theta(:); [SW_C
length_r = length(r); s9d_GhT%-
if length_r~=length(theta) }d }lR
error('zernfun:RTHlength', ... hpJ-r
'The number of R- and THETA-values must be equal.') :j`sr
end D,ln)["xm
Mc}^LDX
% Check normalization: Tb-F]lg$
% -------------------- JMM W
if nargin==5 && ischar(nflag) MJrR[h]
isnorm = strcmpi(nflag,'norm'); Tac$LS\Q
if ~isnorm ,v&(Y Od
error('zernfun:normalization','Unrecognized normalization flag.') ]0\MmAJRn
end 8KNZ](Dj
else 4H<lm*!^
isnorm = false; cFWc<55aX6
end V470C@
Qw)c$93
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% as_PoCoss
% Compute the Zernike Polynomials :,I:usW"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :a)u&g@G
9&ids!W~yx
% Determine the required powers of r: @ry_nKr9
% ----------------------------------- ?F;8Pa/
m_abs = abs(m); PiYxk+N
rpowers = []; .6'qoo_N
for j = 1:length(n) 6MkP |vr6
rpowers = [rpowers m_abs(j):2:n(j)]; B93+BwN>95
end K96<M);:g
rpowers = unique(rpowers); l/awS!Q/nF
0K2`-mL
% Pre-compute the values of r raised to the required powers, ,4oo=&
% and compile them in a matrix: 3%ZOKb"D*
% ----------------------------- ZQ0F$J)2~
if rpowers(1)==0 DDH:)=;z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '08=yqy4N
rpowern = cat(2,rpowern{:}); # Vha7
rpowern = [ones(length_r,1) rpowern]; '6Q=#:mc\
else Z)aUt
Srf
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z]9MM
2+
rpowern = cat(2,rpowern{:}); $p?aVO
end E+w<RNBmz
]P?vdgEM&
% Compute the values of the polynomials: xK\d4"
% -------------------------------------- xUistwq
y = zeros(length_r,length(n)); iW /}#
for j = 1:length(n) $ DSZO!pB
s = 0:(n(j)-m_abs(j))/2; ,nB5/Lx
pows = n(j):-2:m_abs(j); Per1IcN
for k = length(s):-1:1 & 9 ?\b7
p = (1-2*mod(s(k),2))* ... cpJ|w3xB
prod(2:(n(j)-s(k)))/ ... A$:U'ZG_
prod(2:s(k))/ ... >&5DsV.B
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0=E]cQwh
prod(2:((n(j)+m_abs(j))/2-s(k))); 1PV'?tXp(
idx = (pows(k)==rpowers); s}% M4
y(:,j) = y(:,j) + p*rpowern(:,idx); >s?S+W[L
end `lt"[K<
2V;PYI
if isnorm :A'y+MnK<
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7s{GbU\
end ?m?::R H
end /C G"]!2 "
% END: Compute the Zernike Polynomials )f<z%:I+Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }@+:\
exUu7&*:
% Compute the Zernike functions: *itUWpNhr
% ------------------------------ xx%j.zDI]
idx_pos = m>0; k{SAvKx=
idx_neg = m<0; -I,$_
]F'e
aR
z = y; 8C9-_Ng`
if any(idx_pos) @wNG{Stj
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @'!SN\?W8
end D!-g&HBTC
if any(idx_neg) 8i#2d1O
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); x Bi' X
end XXn67sF/
*]/zc1Q4M
% EOF zernfun