切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11596阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 tXTa>Q  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! xCV3HnZ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8+uwzBNZ:  
    function z = zernfun(n,m,r,theta,nflag) J%;TK6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %?C{0(Z{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %u43Pj  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gR(*lXm5w  
    %   unit circle.  N is a vector of positive integers (including 0), and 5HioxHL  
    %   M is a vector with the same number of elements as N.  Each element HT5G HkT  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) >b |l6 #%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3Cwqy#X#8  
    %   and THETA is a vector of angles.  R and THETA must have the same K,^{|5'3q  
    %   length.  The output Z is a matrix with one column for every (N,M) e4ajT  
    %   pair, and one row for every (R,THETA) pair. ?PSm) ~ Oa  
    % 'UT 4x9&z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vrf` :%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q'M-a tE.  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral V D.p"F(]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j+J)S1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Sz"J-3b^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w=3@IW  
    % M>0=A  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^C@uP9g  
    %   They are used in disciplines such as astronomy, optics, and r+>E`GGQ  
    %   optometry to describe functions on a circular domain. U^~K-!0  
    % W9Bl'e  
    %   The following table lists the first 15 Zernike functions. ho@f}4jhQ3  
    % ^`\c;!)F<  
    %       n    m    Zernike function           Normalization vBQ5-00YY=  
    %       -------------------------------------------------- ~c :e0}  
    %       0    0    1                                 1 7^Jszd:c08  
    %       1    1    r * cos(theta)                    2 RWXj)H)w  
    %       1   -1    r * sin(theta)                    2 FcsEv {#U  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^,b*.6t  
    %       2    0    (2*r^2 - 1)                    sqrt(3) l8%x(N4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P~i^V;g  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z%XBuq:BY  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z.:5< oEKg  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b2H!{a"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !Il>,q&F  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 91%+Bf()J6  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <h U ZD;  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @C7S^|eo  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  #d*mG =  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) * C~  
    %       -------------------------------------------------- |RwD]2H  
    % ay'= M`uO_  
    %   Example 1: Fkz+Qz  
    % =q^o6{d0"  
    %       % Display the Zernike function Z(n=5,m=1) [t<^WmgtxL  
    %       x = -1:0.01:1; X`:(-3T  
    %       [X,Y] = meshgrid(x,x); l?a(=  
    %       [theta,r] = cart2pol(X,Y); ^;NM'Z  
    %       idx = r<=1; q!""pr<n  
    %       z = nan(size(X)); ]NuY{T&:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); u-pE ;|  
    %       figure g84~d(\?  
    %       pcolor(x,x,z), shading interp } ~=53$+  
    %       axis square, colorbar s:R>uGYOd  
    %       title('Zernike function Z_5^1(r,\theta)') Zx55mSfx:  
    % hof$0Fg  
    %   Example 2: GfJm&'U&  
    % %6L!JN  
    %       % Display the first 10 Zernike functions _"a(vfl#  
    %       x = -1:0.01:1; d<V+;">2  
    %       [X,Y] = meshgrid(x,x); =a?l@dI]  
    %       [theta,r] = cart2pol(X,Y); p4W->AVv$  
    %       idx = r<=1; sryujb.,  
    %       z = nan(size(X)); K,|Gtaa~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; h}z^NX  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !;'U5[}8  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; (Y, @-V  
    %       y = zernfun(n,m,r(idx),theta(idx)); RE oFP;H~  
    %       figure('Units','normalized') P) ^K&7X  
    %       for k = 1:10 @6 gA4h  
    %           z(idx) = y(:,k); >B skw2  
    %           subplot(4,7,Nplot(k)) Y$Js5K@F  
    %           pcolor(x,x,z), shading interp X  LA  
    %           set(gca,'XTick',[],'YTick',[]) 5p94b*l  
    %           axis square 9:fVHynr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a%;$l_wVT:  
    %       end 5$GE3IER8  
    % -Qiay/tlu  
    %   See also ZERNPOL, ZERNFUN2. bW3e*O$V  
    8\. #  
    %   Paul Fricker 11/13/2006 2p@Rr7  
     4rwfY<G  
    4eBM/i  
    % Check and prepare the inputs: e0j*e7$  
    % ----------------------------- [*vk&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +X cB5S>  
        error('zernfun:NMvectors','N and M must be vectors.') ]8d]nftY  
    end T9RR. ng  
    '"~|L>F%G  
    if length(n)~=length(m) *@cXBav/<  
        error('zernfun:NMlength','N and M must be the same length.') K$ #(\-M  
    end %OfaBv&  
    2B=yT8  
    n = n(:); %Ni)^   
    m = m(:); ]#j]yGV  
    if any(mod(n-m,2)) *1ku2e]z  
        error('zernfun:NMmultiplesof2', ... *vCJTz  
              'All N and M must differ by multiples of 2 (including 0).') f@[q# }6  
    end *;Hvx32I  
    Ga.a"\F.V  
    if any(m>n) N=zrY`Vd  
        error('zernfun:MlessthanN', ... _;v4 ]MU  
              'Each M must be less than or equal to its corresponding N.') MHI0>QsI  
    end yGZb  
    V. =!^0'A  
    if any( r>1 | r<0 ) EXS 1.3>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') BtVuI5*h  
    end IObGmc  
    +QtK "5M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?bmP<(N5/  
        error('zernfun:RTHvector','R and THETA must be vectors.') (/v(.t  
    end Cbx/  
    jU@qQ@|  
    r = r(:); =>)l6**UE  
    theta = theta(:); }/SbmW8(1  
    length_r = length(r); xs.>+(@|;  
    if length_r~=length(theta) \P^WUWY  
        error('zernfun:RTHlength', ... %%G2w6 3M  
              'The number of R- and THETA-values must be equal.') &Jk0SUk MP  
    end xl5mI~n_~  
    ;} Ty b  
    % Check normalization: 3-lJ]7OT  
    % -------------------- vCFMO3  
    if nargin==5 && ischar(nflag) ;&s`g   
        isnorm = strcmpi(nflag,'norm'); r_@;eh  
        if ~isnorm i"0^Gr  
            error('zernfun:normalization','Unrecognized normalization flag.') '.c [7zL  
        end *6df|q  
    else =v:vc~G6  
        isnorm = false; vfK^^S  
    end SBzJQt@Hs  
    ltwX-   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #:3ca] k  
    % Compute the Zernike Polynomials i!*w'[G->Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u+&BR1)C  
    i 'H{cN6  
    % Determine the required powers of r: 5qt]~v%y  
    % ----------------------------------- \v)Dy)Vhg2  
    m_abs = abs(m); JLT10c3  
    rpowers = []; FF0N{bY  
    for j = 1:length(n) Oq7M1|{  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ckj2$c~  
    end ?S~HnIn  
    rpowers = unique(rpowers); SGXXv  
    5@ %$M$E  
    % Pre-compute the values of r raised to the required powers, M/EEoK^K@  
    % and compile them in a matrix: X#EMmB!  
    % ----------------------------- Y}&//S A  
    if rpowers(1)==0 Y4_/G4C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f-F+Y`P  
        rpowern = cat(2,rpowern{:}); ZgP=maQk  
        rpowern = [ones(length_r,1) rpowern]; Q })x4  
    else ({v$!AAv  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); O:IU|INq8  
        rpowern = cat(2,rpowern{:}); jV2L;APCq  
    end /x c<&  
    LBq~?Q.e  
    % Compute the values of the polynomials: 'Ybd'|t{}  
    % -------------------------------------- (dd+wx't  
    y = zeros(length_r,length(n)); d&BocJ  
    for j = 1:length(n) `O?Kftv*  
        s = 0:(n(j)-m_abs(j))/2; 4zkn~oy  
        pows = n(j):-2:m_abs(j); >v7fR<(%s  
        for k = length(s):-1:1 |`+kZ-M*  
            p = (1-2*mod(s(k),2))* ... )r3}9J  
                       prod(2:(n(j)-s(k)))/              ... 4nK\gXz19  
                       prod(2:s(k))/                     ... [=7=zV;}4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cKJf0S:cx-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9^6E> S{=  
            idx = (pows(k)==rpowers); N: ?UA  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4wjy)VD_  
        end NRN3*YGo  
         d[E~}Dq3#  
        if isnorm c7UmR?m  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4[m})X2(  
        end tS!Fn Qg4  
    end *oopdGue  
    % END: Compute the Zernike Polynomials $\M<gW6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \X.CYkgK  
    ZKy)F-yX  
    % Compute the Zernike functions: q,`"Z)97  
    % ------------------------------ B~+3<#B  
    idx_pos = m>0; =lT~  
    idx_neg = m<0; Oxo?\ :T  
    ~QgyhJM_h=  
    z = y; R % [ZQ K  
    if any(idx_pos) 7=i8$v&GX  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); zx` %)r  
    end POvxZU  
    if any(idx_neg) -FQ!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 'D`O4TsP>  
    end ;;e\"%}@=q  
    BIGln`;,f  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) krqz;q-p~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. e&~vO| 3w%  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated _y>mmE   
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ] V|hDU=t  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, MWdev.m:Z  
    %   and THETA is a vector of angles.  R and THETA must have the same R[_Q}W'HG  
    %   length.  The output Z is a matrix with one column for every P-value, e"}JHXs  
    %   and one row for every (R,THETA) pair. S]!s)q-- z  
    % 1oKF-";u(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike &T.d"i  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) bn 7"!6  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) f3yH4r?;w  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ?^Gi;d5  
    %   for all p. rU6F$I=  
    % Z9 z!YaOL  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 r]q;>\T'  
    %   Zernike functions (order N<=7).  In some disciplines it is d]A.=NAc  
    %   traditional to label the first 36 functions using a single mode @JW HG1qJ  
    %   number P instead of separate numbers for the order N and azimuthal wnioIpRkh  
    %   frequency M. ~7p!t%;$  
    % {F!/\ 2a  
    %   Example: Lql2ry$Wa  
    % I+oe{#:.  
    %       % Display the first 16 Zernike functions V}3'0  
    %       x = -1:0.01:1; )Ehi 8  
    %       [X,Y] = meshgrid(x,x); o*MiKgQ&  
    %       [theta,r] = cart2pol(X,Y); @%lkRU)  
    %       idx = r<=1; &9Y ^/W  
    %       p = 0:15; 6a*?m{  
    %       z = nan(size(X)); Pj-.oS2dA  
    %       y = zernfun2(p,r(idx),theta(idx)); mkE_ a>  
    %       figure('Units','normalized') 1Kjqs)p^  
    %       for k = 1:length(p) 45.<eWH$*(  
    %           z(idx) = y(:,k); e{Q;,jsh  
    %           subplot(4,4,k) 2LfiaHO  
    %           pcolor(x,x,z), shading interp DC samOA~  
    %           set(gca,'XTick',[],'YTick',[]) Z8Iqgz7|y  
    %           axis square sL Kk1A  
    %           title(['Z_{' num2str(p(k)) '}']) HNJR&U t  
    %       end ~<N9ckK  
    % o3"Nxq"U  
    %   See also ZERNPOL, ZERNFUN. sYEh>%mo^C  
    i)iK0g"2  
    %   Paul Fricker 11/13/2006 |,bP` Z  
    -9] ucmN  
    ~dO+kD  
    % Check and prepare the inputs: Pz^C3h$5_  
    % ----------------------------- '[Sm w'n6-  
    if min(size(p))~=1 LR "=(  
        error('zernfun2:Pvector','Input P must be vector.') lw]uH<v  
    end Ucx"\/"  
    oF0DprP@  
    if any(p)>35 U{\9mt7b!  
        error('zernfun2:P36', ... ["O_ Phb|  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... C66 9:%  
               '(P = 0 to 35).']) lfAiW;giJ  
    end k vpkWD;  
    216`rQ}z  
    % Get the order and frequency corresonding to the function number: 4#Xz-5v  
    % ---------------------------------------------------------------- r|63T%q!  
    p = p(:); 4s e6+oJe  
    n = ceil((-3+sqrt(9+8*p))/2); gSa!zQN6  
    m = 2*p - n.*(n+2); A`--*$8\  
    w%?Zb[!&  
    % Pass the inputs to the function ZERNFUN: V3% >TNp  
    % ---------------------------------------- CnpQdI  
    switch nargin {wDq*va  
        case 3 *@{  
            z = zernfun(n,m,r,theta); qeW.~B!B  
        case 4 ?f$U8A4lp  
            z = zernfun(n,m,r,theta,nflag); "38L ,PW0Z  
        otherwise f\rE{%  
            error('zernfun2:nargin','Incorrect number of inputs.') .L9g*q/}  
    end i zYC0T9  
    $bDaZGy  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag)  ZC%;5O`  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1:iB1TclP  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <-mhz`^  
    %   order N and frequency M, evaluated at R.  N is a vector of ?@z/#3b  
    %   positive integers (including 0), and M is a vector with the !PA><F  
    %   same number of elements as N.  Each element k of M must be a !>"fDz<w`  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) jo?[M  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is o[1#)&  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Q5hOVD%  
    %   with one column for every (N,M) pair, and one row for every Z4X, D`s  
    %   element in R. 1S(n3(KRk$  
    % fLpWTkr0  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- h56Kmxxk  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is kS35X)-  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to s3T7M:DM4  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 s q;!5qK  
    %   for all [n,m]. eIEL';N6  
    % p>O/H1US;  
    %   The radial Zernike polynomials are the radial portion of the o*artMkG  
    %   Zernike functions, which are an orthogonal basis on the unit ) "?eug}D  
    %   circle.  The series representation of the radial Zernike @`#x:p:  
    %   polynomials is : h(Z\D_  
    % Yg?BcY\  
    %          (n-m)/2 Yo1]HG(kXB  
    %            __ pH2/." zE<  
    %    m      \       s                                          n-2s C0K: ffv;<  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r @}19:A<'  
    %    n      s=0 z(8G=C  
    % ?E_;[(Mcr  
    %   The following table shows the first 12 polynomials. -Bl^TT  
    % +I-BqA9  
    %       n    m    Zernike polynomial    Normalization Ozhn`9L+1!  
    %       --------------------------------------------- z@ J>A![m  
    %       0    0    1                        sqrt(2) yf;TIh%)=  
    %       1    1    r                           2 $M j\ 3  
    %       2    0    2*r^2 - 1                sqrt(6) qo$ls\[X  
    %       2    2    r^2                      sqrt(6) S*>T%#F6Uo  
    %       3    1    3*r^3 - 2*r              sqrt(8) R8:5N3Fx  
    %       3    3    r^3                      sqrt(8) 9J~\.:jH-  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 2NJ\`1HZ\  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) liG|#ny{  
    %       4    4    r^4                      sqrt(10) [= BMvP5  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Bu&9J(J1  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) z;dRzwL  
    %       5    5    r^5                      sqrt(12) 6bc\ )n`  
    %       --------------------------------------------- ;BqCjS%`N  
    % jVLJ qWP'!  
    %   Example: %$kd`Rl}  
    % k0O5c[ j  
    %       % Display three example Zernike radial polynomials dWQB1Y*N  
    %       r = 0:0.01:1; y.I&x#(^  
    %       n = [3 2 5]; *Ti"8^`6  
    %       m = [1 2 1]; |IV7g*J89  
    %       z = zernpol(n,m,r); ^iBIp#  
    %       figure 122s 7A  
    %       plot(r,z) }#u #m.  
    %       grid on qrp@   
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ^H7xFd|>  
    % kxd*B P  
    %   See also ZERNFUN, ZERNFUN2. tk*-Cx?_  
    YvcV801Go  
    % A note on the algorithm. F81EZ/  
    % ------------------------ R|'W#"{@  
    % The radial Zernike polynomials are computed using the series $.kJBRgV*  
    % representation shown in the Help section above. For many special K6 >\4'q  
    % functions, direct evaluation using the series representation can 8Z_ 4%vUBg  
    % produce poor numerical results (floating point errors), because L@/IyQ[H1  
    % the summation often involves computing small differences between gpf0 -g-X  
    % large successive terms in the series. (In such cases, the functions }% q-9  
    % are often evaluated using alternative methods such as recurrence A7%/sMv  
    % relations: see the Legendre functions, for example). For the Zernike UOf\pG  
    % polynomials, however, this problem does not arise, because the wBwTJCX  
    % polynomials are evaluated over the finite domain r = (0,1), and *Cf!p\7!  
    % because the coefficients for a given polynomial are generally all /5/gnp C  
    % of similar magnitude. 3(\D.Z  
    % G`kz 0Vk  
    % ZERNPOL has been written using a vectorized implementation: multiple W+63B8)4  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ;*t#:U*  
    % values can be passed as inputs) for a vector of points R.  To achieve 8{/.1:  
    % this vectorization most efficiently, the algorithm in ZERNPOL 6 iMJ0  
    % involves pre-determining all the powers p of R that are required to 5qW>#pTFVV  
    % compute the outputs, and then compiling the {R^p} into a single A9 g%>  
    % matrix.  This avoids any redundant computation of the R^p, and ] uyp i#[  
    % minimizes the sizes of certain intermediate variables. YS){ N=g&'  
    % .?Y"o3  
    %   Paul Fricker 11/13/2006 _fu <`|kc  
    /z4c>)fV  
    `R: W5_n  
    % Check and prepare the inputs: CX{6  
    % ----------------------------- Dqii60  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D?"P\b[/  
        error('zernpol:NMvectors','N and M must be vectors.') .kg 3>*  
    end <7F-WR/2n  
    <\<o#Vq  
    if length(n)~=length(m) [8IO0lul+  
        error('zernpol:NMlength','N and M must be the same length.') hEu_mw#  
    end -qDqJ62mC  
    sAqy(oy#M  
    n = n(:); tx>7?e8E  
    m = m(:); K&`1{,  
    length_n = length(n); ;J TY#)Bh  
    |r Aot2  
    if any(mod(n-m,2)) uf#h~;B  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') kt)Et  
    end ed#fDMXGQ%  
    $1|E(d1  
    if any(m<0) ;]Q6K9.d8  
        error('zernpol:Mpositive','All M must be positive.') ;J,(YNI 1  
    end EG3,TuDH8  
    :M6v<Kg{;  
    if any(m>n) C'|9nK$%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 4k@n5JNa  
    end \8QOZjy  
    k%cE8c}R;A  
    if any( r>1 | r<0 ) EUuSN| a  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') r5S/lp+Y+N  
    end aF^N  Ye  
    U?:P7YWy  
    if ~any(size(r)==1) X\ P%C  
        error('zernpol:Rvector','R must be a vector.') I{g.V|+ x  
    end m =b7 r  
    G]f|?  
    r = r(:); Ld}?daPj  
    length_r = length(r); \Dq'~ d  
    S \]O8#OX  
    if nargin==4 "4\  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); EwN{|34C  
        if ~isnorm h>\C2Q  
            error('zernpol:normalization','Unrecognized normalization flag.') s<F*kLib  
        end d'ZNp2L  
    else j@z IJ  
        isnorm = false; Mww^  
    end /Rq\Mgb  
    .5G`Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "UMaZgI  
    % Compute the Zernike Polynomials H575W"53  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "Bf8mEmp  
    +mVAmG@  
    % Determine the required powers of r: @}d;-m~  
    % ----------------------------------- <N=k&\  
    rpowers = []; Fk/I (Q  
    for j = 1:length(n) w!20  
        rpowers = [rpowers m(j):2:n(j)]; kx;X:I(5&P  
    end Z\CvaX  
    rpowers = unique(rpowers); )DXt_leLg  
    ?lsK?>uU  
    % Pre-compute the values of r raised to the required powers, r$={_M$  
    % and compile them in a matrix: Bgm8IK)6  
    % ----------------------------- cr!W5+r  
    if rpowers(1)==0 ?^%[*OCCC!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B&a{,.m&q6  
        rpowern = cat(2,rpowern{:}); ``WTg4C(Y  
        rpowern = [ones(length_r,1) rpowern]; cWkg.ri-x  
    else 6AAvsu:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _ f%s]  
        rpowern = cat(2,rpowern{:}); 4<#ItQ(  
    end |})s0TU  
    E #,"C`&*  
    % Compute the values of the polynomials: \yJ 4+vo2Q  
    % -------------------------------------- 5eori8gr7  
    z = zeros(length_r,length_n); y 9]d{:9  
    for j = 1:length_n Jj \ nye+  
        s = 0:(n(j)-m(j))/2; PF`uwx@zH  
        pows = n(j):-2:m(j); >+dS PI  
        for k = length(s):-1:1 L K #A  
            p = (1-2*mod(s(k),2))* ... '\#q7YjaL  
                       prod(2:(n(j)-s(k)))/          ... m| ,Tk:xH  
                       prod(2:s(k))/                 ... ]\xt[/?{  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... I+& T}R  
                       prod(2:((n(j)+m(j))/2-s(k))); {:gx*4}q8  
            idx = (pows(k)==rpowers); y]jx-w c3O  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 6LDZ|K@  
        end uBbQJvL  
         b\(f>g[  
        if isnorm L }*o8l`  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); x *I'Ar  
        end m0bxVV^DK!  
    end gGVt ( ^  
    7p.8{zQ*  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  b^i$2$9_  
    ,^4"e (  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 T\zn&6  
    d<?Zaehe\  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)