切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11433阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 -FU}pz/  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )+:EJH~  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 C{U?0!^  
    function z = zernfun(n,m,r,theta,nflag) .yz}ROmN^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. >CHrg]9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <g$~1fa  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #d6)#:uss  
    %   unit circle.  N is a vector of positive integers (including 0), and 8X[:j&@  
    %   M is a vector with the same number of elements as N.  Each element 1`=nWy='  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) E|iQc8gr&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, qm/)ku0  
    %   and THETA is a vector of angles.  R and THETA must have the same N sXHO  
    %   length.  The output Z is a matrix with one column for every (N,M) Q+[n91ey**  
    %   pair, and one row for every (R,THETA) pair. RoPRQCE  
    % jIJ~QpNE  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike o~`/_ +  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yDzc<p\`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral EV]1ml k$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4h|c<-`>t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 0Tx6zO  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F1*>y  
    % uXn1 'K<'2  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mk"^?%PxT  
    %   They are used in disciplines such as astronomy, optics, and `dq,>HdW  
    %   optometry to describe functions on a circular domain. %)1y AdG 8  
    % ~%&LTX0s|  
    %   The following table lists the first 15 Zernike functions. 8\+uec]k  
    % G<65H+)M\  
    %       n    m    Zernike function           Normalization (A9Fhun  
    %       -------------------------------------------------- | )K8N<n  
    %       0    0    1                                 1 xF!,IKlBBp  
    %       1    1    r * cos(theta)                    2 Z^3rLCa  
    %       1   -1    r * sin(theta)                    2 >g1~CEMN#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) :CG`t?N9M  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +$ 'Zf0U  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) hOjk3 k  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ZMQ Zs~;~d  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u^^[Q2LDU}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) M?1Y,5  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ,wQ5.U,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) DX#Nf""Pw  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ag-(5:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) p|U?86 t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +}Dw3;W}m  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *#,7d"6W5  
    %       -------------------------------------------------- R@1xt@?  
    % <FV1Wz  
    %   Example 1: .s?L^Z^  
    % _>&X\`D   
    %       % Display the Zernike function Z(n=5,m=1) n\mO6aJ  
    %       x = -1:0.01:1; /6)<}#  
    %       [X,Y] = meshgrid(x,x); f\|w '  
    %       [theta,r] = cart2pol(X,Y); o_izl \  
    %       idx = r<=1; D+rxT: d  
    %       z = nan(size(X)); G|bT9f$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); *7uH-u"5d  
    %       figure rD*jp6Cl  
    %       pcolor(x,x,z), shading interp h0g8*HY+}  
    %       axis square, colorbar Wf+cDpK  
    %       title('Zernike function Z_5^1(r,\theta)') y6(Z`lx  
    % d[iQ` YW5  
    %   Example 2: h79}qU  
    % =9H7N]*h  
    %       % Display the first 10 Zernike functions uy>q7C  
    %       x = -1:0.01:1; k =>oO9`  
    %       [X,Y] = meshgrid(x,x); 7`*h2 mgY  
    %       [theta,r] = cart2pol(X,Y); ; 5*&xz  
    %       idx = r<=1; Zu*F#s!tUI  
    %       z = nan(size(X)); j*|VctM  
    %       n = [0  1  1  2  2  2  3  3  3  3]; yuh *  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zYH&i6nj  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; L^1NY3=$  
    %       y = zernfun(n,m,r(idx),theta(idx)); (d(CT;  
    %       figure('Units','normalized') ]%;:7?5l  
    %       for k = 1:10 )v'WWwXY>  
    %           z(idx) = y(:,k); 6fkRrD  
    %           subplot(4,7,Nplot(k)) U7?;UCmX  
    %           pcolor(x,x,z), shading interp g_;\iqxL  
    %           set(gca,'XTick',[],'YTick',[]) Z%gh3  
    %           axis square 'NWfBJm  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /p/]t,-j2  
    %       end ]vAz  
    % Sj3+l7S?  
    %   See also ZERNPOL, ZERNFUN2. z0 d.J1VW  
    =}~hWL  
    %   Paul Fricker 11/13/2006 #$.;'#u'so  
    %Tfbsyf%f  
    " s,1%Ltt  
    % Check and prepare the inputs: ?e%ZOI  
    % ----------------------------- oh4E7yN  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8'[~2/  
        error('zernfun:NMvectors','N and M must be vectors.') i}cRi&2[  
    end 8=!D$t\3  
    Lc}LGq!  
    if length(n)~=length(m) n'"/KS+_  
        error('zernfun:NMlength','N and M must be the same length.') &5>Kl}7  
    end W~)}xy  
    N"Z{5A  
    n = n(:); ,<.V7(|t)  
    m = m(:); `~cqAs}6]Q  
    if any(mod(n-m,2)) ,>:U2%  
        error('zernfun:NMmultiplesof2', ... |NlO7aQ>2H  
              'All N and M must differ by multiples of 2 (including 0).') :@yEQ#nFp  
    end [|v][Hwv  
    (|2t#'m  
    if any(m>n) z[ N`s$;  
        error('zernfun:MlessthanN', ... }H53~@WP>  
              'Each M must be less than or equal to its corresponding N.') r-,%2y?  
    end <3n Mx^  
    Usvl}{L[  
    if any( r>1 | r<0 ) %O;:af"Ja8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') T9=I$@/  
    end &0d# Y]D4`  
    `Gs9Xmc|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z'Hw  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?d*z8w  
    end juJklSD  
    e1yt9@k,  
    r = r(:); Y/F6\oh  
    theta = theta(:); [+Iz@0q  
    length_r = length(r); Q3'llOx  
    if length_r~=length(theta) @NR>{Eg  
        error('zernfun:RTHlength', ... y RqL9t  
              'The number of R- and THETA-values must be equal.') #<fRE"v:Q  
    end [NTzcSN.  
    q])K,)  
    % Check normalization: Xg6Jh``  
    % -------------------- 1er TldX  
    if nargin==5 && ischar(nflag) 1C+13LE$U  
        isnorm = strcmpi(nflag,'norm'); {p2!|A&a  
        if ~isnorm  $c!p&  
            error('zernfun:normalization','Unrecognized normalization flag.') v&\Q8!r_  
        end <sbu;dQ`  
    else 70d1ReQ  
        isnorm = false; Z-%\ <zT  
    end =IZT(8  
    2k~l$p>CN!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #~]zhHI  
    % Compute the Zernike Polynomials Fe*R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !)f\%lb  
    `7E;VL^Y1  
    % Determine the required powers of r: , >a&"V^k  
    % ----------------------------------- [(i  
    m_abs = abs(m); ]h`&&Bqt  
    rpowers = []; 6q\bB  
    for j = 1:length(n) (TtkFo'!U  
        rpowers = [rpowers m_abs(j):2:n(j)]; l:~/<`o  
    end ;fTKfa  
    rpowers = unique(rpowers); tAd%#:K  
    LVM%"sd?  
    % Pre-compute the values of r raised to the required powers, Y(y kng  
    % and compile them in a matrix: >b}o~F^J  
    % ----------------------------- mthA4sz  
    if rpowers(1)==0 g{)dP!}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :LQYo'@yB  
        rpowern = cat(2,rpowern{:});  tU5zF.%  
        rpowern = [ones(length_r,1) rpowern]; UW={[h{.|@  
    else =ZznFVJ`={  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /KaZH R.  
        rpowern = cat(2,rpowern{:}); :`#d:.@]o@  
    end y-b%T|p9  
    u/0h$l  
    % Compute the values of the polynomials: g}oi!f$|  
    % -------------------------------------- C3f' {}  
    y = zeros(length_r,length(n)); "S]0  
    for j = 1:length(n) `g?Negt\v  
        s = 0:(n(j)-m_abs(j))/2; M] %?>G  
        pows = n(j):-2:m_abs(j); [85spub&}  
        for k = length(s):-1:1 8NJqV+jn)t  
            p = (1-2*mod(s(k),2))* ... }"H,h)T  
                       prod(2:(n(j)-s(k)))/              ... qBQ?HLK-  
                       prod(2:s(k))/                     ... iq8<ov  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &m7]v,&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i^&~?2  
            idx = (pows(k)==rpowers); <$$yw=ef  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H2 {+)  
        end 2a)xTA#  
         wW P}C D  
        if isnorm +)om^e@.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m 9WDT  
        end !-x$L>1$  
    end RLXL&  
    % END: Compute the Zernike Polynomials fw~Bza\e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >2)OiQ`zg  
    UgSB>V<?  
    % Compute the Zernike functions: bH9kj/q\b  
    % ------------------------------ jOunWv|  
    idx_pos = m>0; 8'[7 )I=  
    idx_neg = m<0; ua$GNm  
    mDABH@ R  
    z = y; 2]jn '4  
    if any(idx_pos) f*% D$Mqg  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X7 MM2V  
    end 4he GnMD  
    if any(idx_neg) ek\ xx  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4[r0G+  
    end xrz,\eTb  
    2;`1h[,-^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 6 7.+ .2  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. dr}`H,X"3  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated mHTXni<!  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive -#[a7',Z;  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, TDKki(o=~  
    %   and THETA is a vector of angles.  R and THETA must have the same l`{\"#4  
    %   length.  The output Z is a matrix with one column for every P-value, }5[qo`M  
    %   and one row for every (R,THETA) pair. PI)+Jr%L  
    % #e1>H1eU  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 81F/G5  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) X1|njJGO1  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) drP=A~?&:  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &K.d'$q  
    %   for all p. ,j{,h_Op  
    % hGe/ ;@%  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 J.b9F:&}  
    %   Zernike functions (order N<=7).  In some disciplines it is AaOu L,l  
    %   traditional to label the first 36 functions using a single mode )gIKH{JYL  
    %   number P instead of separate numbers for the order N and azimuthal Q7\w+ANf0  
    %   frequency M. wLH>:yKUU  
    % A*2jENgci  
    %   Example: *[Tz![|  
    % Q5`*3h6p=  
    %       % Display the first 16 Zernike functions Y|f[bw  
    %       x = -1:0.01:1; ,, OW  
    %       [X,Y] = meshgrid(x,x); 4<Utmr  
    %       [theta,r] = cart2pol(X,Y); c /HHy,  
    %       idx = r<=1; xb~yM%*c  
    %       p = 0:15; GL#up  
    %       z = nan(size(X)); ,X-bJA@(  
    %       y = zernfun2(p,r(idx),theta(idx)); O)*+="Rg  
    %       figure('Units','normalized') 9gDkTYkj  
    %       for k = 1:length(p) 2B[X,rL.pX  
    %           z(idx) = y(:,k); ?m}s4a  
    %           subplot(4,4,k) @[<><uTH  
    %           pcolor(x,x,z), shading interp dI(@ZV{  
    %           set(gca,'XTick',[],'YTick',[]) L-WT]&n_  
    %           axis square m@2QnA[ 4  
    %           title(['Z_{' num2str(p(k)) '}']) Smn;(K  
    %       end Uw. `7b>B  
    % O7m(o:t x3  
    %   See also ZERNPOL, ZERNFUN. U0y%u  
    rdP[<Y9  
    %   Paul Fricker 11/13/2006 -`kW&I0  
    X ::JV7hu  
    wedbx00o  
    % Check and prepare the inputs: t7Iv?5]N  
    % ----------------------------- v6bGjVK[  
    if min(size(p))~=1 XK3tgaH  
        error('zernfun2:Pvector','Input P must be vector.') Z, Yb&b  
    end {j?FNOJn  
    $oID(P  
    if any(p)>35 wx= $2N6  
        error('zernfun2:P36', ... yy^q2P  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... kW Ml  
               '(P = 0 to 35).']) @sW24J1q+  
    end M#4p E_G  
    _LEK%  
    % Get the order and frequency corresonding to the function number: 2ozax)GY  
    % ---------------------------------------------------------------- XH4  
    p = p(:); nLZTK&7}  
    n = ceil((-3+sqrt(9+8*p))/2); z,[Hli*0  
    m = 2*p - n.*(n+2); ;;OAQ`  
    MDZ640-Y  
    % Pass the inputs to the function ZERNFUN: A Ru2W1g  
    % ---------------------------------------- TCwFPlF|  
    switch nargin X; \+<LE  
        case 3 y1eW pPJa  
            z = zernfun(n,m,r,theta); 6 6EV$*dRL  
        case 4 SuJ aL-;  
            z = zernfun(n,m,r,theta,nflag); ar!R|zmf  
        otherwise D09Sg%w  
            error('zernfun2:nargin','Incorrect number of inputs.') ~?Qe?hB  
    end jjB~G^n  
    ["k,QX  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) O'p9u@kc  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 7 UKh688  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of e\`&p  
    %   order N and frequency M, evaluated at R.  N is a vector of E!)xj.aS$  
    %   positive integers (including 0), and M is a vector with the  c(f  
    %   same number of elements as N.  Each element k of M must be a ~]|6T~+]83  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 4<w.8rR:A  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Af~$TyX  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix av8B-GQI*#  
    %   with one column for every (N,M) pair, and one row for every UawyDs  
    %   element in R. PFlNo` iO  
    % CAig ]=2'  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Wa>}wA=v  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is "rALt~AX  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to '5#^i:  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 `!3SF|x&  
    %   for all [n,m]. Fbr;{T .  
    % h9&0Z +zs  
    %   The radial Zernike polynomials are the radial portion of the U/66L+1  
    %   Zernike functions, which are an orthogonal basis on the unit 64 wv<r]5j  
    %   circle.  The series representation of the radial Zernike g]l'' 7G  
    %   polynomials is hlvK5Z   
    % +5g_KS  
    %          (n-m)/2 ^,lIK+#Elz  
    %            __ EqkN3%IG  
    %    m      \       s                                          n-2s q5J5>  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Y!aSs3c  
    %    n      s=0 pGP7nw_g  
    % ;>U2|>5V  
    %   The following table shows the first 12 polynomials. ?um;s-x)  
    % rQ{7j!Im  
    %       n    m    Zernike polynomial    Normalization .FP$m?  
    %       --------------------------------------------- ^&9zw\x;z  
    %       0    0    1                        sqrt(2) #X+JHl  
    %       1    1    r                           2 n$A9_cHF7  
    %       2    0    2*r^2 - 1                sqrt(6) T#T*Zw"+  
    %       2    2    r^2                      sqrt(6) Di,^%  
    %       3    1    3*r^3 - 2*r              sqrt(8) 6IN e@  
    %       3    3    r^3                      sqrt(8) 59 T 8r  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) \}yc`7T:L0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) '|6]_   
    %       4    4    r^4                      sqrt(10) >mbHy<<  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) v ,i%Q$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) t4."/ .=+  
    %       5    5    r^5                      sqrt(12) ih-#5M@  
    %       --------------------------------------------- CCs%%U/=  
    % )J o: pkM  
    %   Example: <`8n^m*  
    % Y Vt% 0  
    %       % Display three example Zernike radial polynomials (R,#a *CV  
    %       r = 0:0.01:1; nmee 'oEw  
    %       n = [3 2 5]; \Gef \   
    %       m = [1 2 1]; r8t}TU>C  
    %       z = zernpol(n,m,r); ]6k\)#%2  
    %       figure hE:9{;Gf  
    %       plot(r,z) 9 &dtd  
    %       grid on .r=4pQ@#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') >>4qJ%bL  
    % zF`0J  
    %   See also ZERNFUN, ZERNFUN2. <q58uuK  
    ~gJwW+  
    % A note on the algorithm. etQCzYIhn  
    % ------------------------ B9_ X;c  
    % The radial Zernike polynomials are computed using the series i'<[DjMDlm  
    % representation shown in the Help section above. For many special dM.f]-g  
    % functions, direct evaluation using the series representation can A7 {\</Z  
    % produce poor numerical results (floating point errors), because ''cInTCr  
    % the summation often involves computing small differences between B&M%I:i  
    % large successive terms in the series. (In such cases, the functions Qab>|eSm  
    % are often evaluated using alternative methods such as recurrence \k7"=yx  
    % relations: see the Legendre functions, for example). For the Zernike tH@Erh|%  
    % polynomials, however, this problem does not arise, because the ^cC,.Fdw  
    % polynomials are evaluated over the finite domain r = (0,1), and 3GYw+%Z]  
    % because the coefficients for a given polynomial are generally all dZl5Ic  
    % of similar magnitude. LtO!umM  
    % 5+4IN5o]=  
    % ZERNPOL has been written using a vectorized implementation: multiple EmWn%eMN  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] PudS2k_Qv  
    % values can be passed as inputs) for a vector of points R.  To achieve JJ-( Sl  
    % this vectorization most efficiently, the algorithm in ZERNPOL zy?|ODM  
    % involves pre-determining all the powers p of R that are required to 6xmZXp d!  
    % compute the outputs, and then compiling the {R^p} into a single -a}Dp~j  
    % matrix.  This avoids any redundant computation of the R^p, and PA{PD.4Du  
    % minimizes the sizes of certain intermediate variables. [-1^-bb  
    % l+K'beP  
    %   Paul Fricker 11/13/2006 (*9$`!wS  
    x M/+L:_<  
    jxJ8(sr$  
    % Check and prepare the inputs: 4HXo>0  
    % ----------------------------- :1Xz4wkWS*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) XAKs0*J>  
        error('zernpol:NMvectors','N and M must be vectors.') S/hQZHZHg,  
    end :wyno#8`-  
    #6aW9GO  
    if length(n)~=length(m) ?/E~/;+7=  
        error('zernpol:NMlength','N and M must be the same length.') tyDU @M  
    end q s!j>x  
    yNJ B oar  
    n = n(:); 7vKK%H_P  
    m = m(:); 6dr%;Wp  
    length_n = length(n); e`_LEv  
    V]6dscQ  
    if any(mod(n-m,2)) <]t%8GB2V  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') z]y.W`i   
    end K=Z|/Kkh  
    `:fZ)$sY  
    if any(m<0) %)8}X>xq  
        error('zernpol:Mpositive','All M must be positive.') Q~]uC2Mw  
    end l~q\3UKlt  
    nsC3  
    if any(m>n) U[-o> W#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') =%K;X\NB  
    end z6\UGSL  
    _Kf%\xg  
    if any( r>1 | r<0 ) Ms#M+[a  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') N7zft  
    end yjX9oxhtL  
    B)g[3gQ  
    if ~any(size(r)==1) e2TiBTbQaF  
        error('zernpol:Rvector','R must be a vector.') '3tCH)s  
    end M#6W(|V/  
    qOtgve`jX  
    r = r(:); *I.f1lz%*  
    length_r = length(r); %3-y[f  
    zT]8KA   
    if nargin==4 cd_yzpL@}J  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); dt]-,Y  
        if ~isnorm `5.'_3  
            error('zernpol:normalization','Unrecognized normalization flag.') `i*E~'  
        end g3/W=~r  
    else %)W2H^  
        isnorm = false; OX!tsARC@  
    end u'DRN,h+  
    0RLg:SV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }B+C~@j  
    % Compute the Zernike Polynomials lvz7#f L~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8qTys8  
    %s|Ely)  
    % Determine the required powers of r: \'D0'\:vz  
    % ----------------------------------- mR:uj2*  
    rpowers = []; D=Gtq6jd  
    for j = 1:length(n) WX?IYQ+  
        rpowers = [rpowers m(j):2:n(j)]; *)T^Ch D,  
    end Vn}0}Jz  
    rpowers = unique(rpowers); u|TeE\0  
    0&|\N ? 8_  
    % Pre-compute the values of r raised to the required powers, l<LI7Z]A  
    % and compile them in a matrix: <0&*9ZeD  
    % ----------------------------- mSF(q78?  
    if rpowers(1)==0 $ @`V  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IueFx u  
        rpowern = cat(2,rpowern{:}); J @1!Oq>  
        rpowern = [ones(length_r,1) rpowern]; .}TZxla0Zr  
    else <uw9DU7G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]MitOkX  
        rpowern = cat(2,rpowern{:}); ?mxMk6w  
    end K`zdc`/  
    9IfmW^0  
    % Compute the values of the polynomials: 0gr/<v  
    % -------------------------------------- Yk Ki|k  
    z = zeros(length_r,length_n); {@{']Y  
    for j = 1:length_n MaQqs=  
        s = 0:(n(j)-m(j))/2; *H2r@)Y[~  
        pows = n(j):-2:m(j); {qJ1ko)$  
        for k = length(s):-1:1 37.S\ gO]  
            p = (1-2*mod(s(k),2))* ... F_{Yo?_  
                       prod(2:(n(j)-s(k)))/          ... E]n&=\  
                       prod(2:s(k))/                 ... Hd ={CFip  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ,m|h<faZL  
                       prod(2:((n(j)+m(j))/2-s(k)));  {Gk1vcq  
            idx = (pows(k)==rpowers); T_5H&;a  
            z(:,j) = z(:,j) + p*rpowern(:,idx); YZ8>OwQz2  
        end eJX9_6m-  
         >jLY"  
        if isnorm /%1ON9o>  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); <=/hi l  
        end sBg.u  
    end 8dIgjQX|  
    -- 95Jz  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  =]0&i]z[.  
    ,.FxIl ]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }b.%Im<3R  
    I^$fMdT  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)