切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11125阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 FZB~|3eq{  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! B*!WrB :s  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `n!viW|tB  
    function z = zernfun(n,m,r,theta,nflag) Z.Rb~n&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &R+#W  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '#\D]5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the "rXOsX\;  
    %   unit circle.  N is a vector of positive integers (including 0), and x}fn 'iUnm  
    %   M is a vector with the same number of elements as N.  Each element vUQFQ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,xJrXPW  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~Pk0u{,4XQ  
    %   and THETA is a vector of angles.  R and THETA must have the same !- C' }  
    %   length.  The output Z is a matrix with one column for every (N,M) $awi>#[  
    %   pair, and one row for every (R,THETA) pair. ,KW;2t*IQ@  
    % t$^l<ppQ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B~r}c4R{7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _17|U K|N  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "oJ(J{Jat  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xu%'GZ,o9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]/]ju$l9Z  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Bt^K]F\  
    % (J:dK=O@Z  
    %   The Zernike functions are an orthogonal basis on the unit circle. f<[jwhCWV  
    %   They are used in disciplines such as astronomy, optics, and jigs6#  
    %   optometry to describe functions on a circular domain. OVoO6F ]  
    % p5c8YfM  
    %   The following table lists the first 15 Zernike functions. Y{Ap80'\6  
    % |oKu=/[K  
    %       n    m    Zernike function           Normalization "i'bTVs  
    %       -------------------------------------------------- }4jC_ZAupt  
    %       0    0    1                                 1 ^Uw[x\%#gD  
    %       1    1    r * cos(theta)                    2 y93k_iq$S  
    %       1   -1    r * sin(theta)                    2 cErI%v}v0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <MD;@_Nz\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ph30'"[Z}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $,1dQeE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ka7uK][  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 34C``i  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) H^c0Kh+  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #*IVlchA"B  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) f %fa{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D\L!F6taS  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tR`S#rk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I{.HO<$7D}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ='Oj4T  
    %       -------------------------------------------------- Q49BU@xX  
    % 9$WJ"]  
    %   Example 1: F+=urc>w  
    % ^^Lj I  
    %       % Display the Zernike function Z(n=5,m=1) nW;kcS*A  
    %       x = -1:0.01:1; p]LnE `v  
    %       [X,Y] = meshgrid(x,x); =DgC C|p  
    %       [theta,r] = cart2pol(X,Y); Vb6K:ZnF  
    %       idx = r<=1; tbj=~xYf  
    %       z = nan(size(X)); 2/Nq'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); VK .^v<Yo  
    %       figure P[gO85  
    %       pcolor(x,x,z), shading interp k'13f,o}  
    %       axis square, colorbar aPIr_7e  
    %       title('Zernike function Z_5^1(r,\theta)') HFh /$VM  
    % TL-i=\{L:d  
    %   Example 2: H:}}t]E  
    % }Jxq'B  
    %       % Display the first 10 Zernike functions u*R7zY  
    %       x = -1:0.01:1; }5S2p@W)  
    %       [X,Y] = meshgrid(x,x); +t\^(SJ6  
    %       [theta,r] = cart2pol(X,Y); p]f&mBO*  
    %       idx = r<=1; 0<P(M:a  
    %       z = nan(size(X));  v4<j   
    %       n = [0  1  1  2  2  2  3  3  3  3]; Xz1c6mX|o  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; mZoD033H  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Z.jCera.  
    %       y = zernfun(n,m,r(idx),theta(idx)); wa?+qiWnrl  
    %       figure('Units','normalized') PZ]5Hf1"  
    %       for k = 1:10 }brr ) )  
    %           z(idx) = y(:,k); rc~Y=m   
    %           subplot(4,7,Nplot(k)) 3"i% {  
    %           pcolor(x,x,z), shading interp v5Y@O|i#  
    %           set(gca,'XTick',[],'YTick',[]) H1UL.g%d=  
    %           axis square [\HQPo'S  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oI$V|D3 9  
    %       end ?[SVqj2-  
    % QT}iaeC1i  
    %   See also ZERNPOL, ZERNFUN2. wXCyj+XB*  
    mTd<2Hy  
    %   Paul Fricker 11/13/2006 Q;gQfr"c7  
    x-~-nn\O  
    HTNA])G  
    % Check and prepare the inputs: *PcVSEP/0  
    % ----------------------------- {5x>y:v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4!'1/3cY  
        error('zernfun:NMvectors','N and M must be vectors.') iPFL"v<#J  
    end (4ZLpsbJ  
    eiB(VOJ  
    if length(n)~=length(m) \9jpCNdJ  
        error('zernfun:NMlength','N and M must be the same length.') }:^XX0:FK  
    end 5rF/323z  
    a(Sv,@/  
    n = n(:); 7K !GK  
    m = m(:); bw;iz ,Z  
    if any(mod(n-m,2)) sN@j5p^jc  
        error('zernfun:NMmultiplesof2', ... nOuN|q=C  
              'All N and M must differ by multiples of 2 (including 0).') n2;(1qr  
    end g^n;IE$B  
    #Y: ~UVV  
    if any(m>n) %JaE4&  
        error('zernfun:MlessthanN', ... G;9|%yvd8  
              'Each M must be less than or equal to its corresponding N.') yTj p-  
    end qa;EI ;8  
    okh0 _4  
    if any( r>1 | r<0 ) u;(K34!)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') aKOf;^@  
    end g1dmkX  
    )+k[uokj  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $l43>e{E  
        error('zernfun:RTHvector','R and THETA must be vectors.') "?+UI   
    end { "}+V`O{  
    9<~,n1b>x  
    r = r(:); ZU^Q1}</5  
    theta = theta(:); !xJFr6G~8  
    length_r = length(r); [BE:+ ID3  
    if length_r~=length(theta) F]Pul|.l  
        error('zernfun:RTHlength', ... A'b<?)Y7_  
              'The number of R- and THETA-values must be equal.') 3liq9P_  
    end n4XMN\:g{  
    iUpSN0XkMM  
    % Check normalization: "1CGO@AXS  
    % -------------------- P69>gBZYD  
    if nargin==5 && ischar(nflag) 6|i`@|#  
        isnorm = strcmpi(nflag,'norm'); .8%vd  
        if ~isnorm y!BB7cK6  
            error('zernfun:normalization','Unrecognized normalization flag.') L c{!FG>  
        end ju r1!rg%  
    else QZ:v  
        isnorm = false; U0zW9jB  
    end "1\(ZKG8^Q  
    bL#sn_(m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @eA %(C  
    % Compute the Zernike Polynomials ]~ >@%v&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e$x4Ux7*"  
    tvK rc  
    % Determine the required powers of r: 7kOE/>P?  
    % ----------------------------------- #Xj;f^}/  
    m_abs = abs(m); 37,L**Dgs  
    rpowers = []; N.k+AQb  
    for j = 1:length(n) (PyTq 5:F  
        rpowers = [rpowers m_abs(j):2:n(j)]; {W]bU{%.  
    end =nw,*q +  
    rpowers = unique(rpowers); % d4+Ctrp-  
    z`;&bg\8  
    % Pre-compute the values of r raised to the required powers, `s#sE.=o  
    % and compile them in a matrix: G)4 ZK#wz  
    % ----------------------------- j #4+-  
    if rpowers(1)==0 (xjqB{U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o8iig5bp  
        rpowern = cat(2,rpowern{:}); z^ YeMe  
        rpowern = [ones(length_r,1) rpowern]; Bd/} %4V\@  
    else )Fw @afE~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xNocGtS  
        rpowern = cat(2,rpowern{:}); 7=; D0SS  
    end 7j4ej|Fjo  
    ^n6)YX  
    % Compute the values of the polynomials: Sa( yjF1  
    % -------------------------------------- C+ZQB)gn  
    y = zeros(length_r,length(n)); 8  /5sv  
    for j = 1:length(n) *vRNG 3D/  
        s = 0:(n(j)-m_abs(j))/2; >SY 2LmV'a  
        pows = n(j):-2:m_abs(j); L?AM&w-cg9  
        for k = length(s):-1:1 tCd{G c  
            p = (1-2*mod(s(k),2))* ... 5B8V$ X  
                       prod(2:(n(j)-s(k)))/              ... A%.J%[MVz  
                       prod(2:s(k))/                     ... +e&m#d  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... CM+F7#T?n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); VyB\]EBu  
            idx = (pows(k)==rpowers); -[i40 1  
            y(:,j) = y(:,j) + p*rpowern(:,idx); s ZlJ/_g  
        end /&S~+~]n  
          PU,6h}  
        if isnorm GhSL%y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  muK'h`  
        end 61ON  
    end ]}UeuF\  
    % END: Compute the Zernike Polynomials H9oXZSm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,6S_&<{  
    i}v}K'`  
    % Compute the Zernike functions: u|]mcZ,ZW  
    % ------------------------------ chvrHvByS  
    idx_pos = m>0; ~%cSckE  
    idx_neg = m<0; UE}8Rkt  
    P5yJO97  
    z = y; f}Ne8]U/Hc  
    if any(idx_pos)  ?.4yg(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q#yu(  
    end &hSnB~hi  
    if any(idx_neg) v^ y}lT  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zN?$Sxttx  
    end i?1js! 8  
    1kz9>;Ud6  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ZTgAZ5_cz  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. >Rl0%!  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated CA~em_dC  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive v;N1'  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, O&rD4#  
    %   and THETA is a vector of angles.  R and THETA must have the same zezofW]a  
    %   length.  The output Z is a matrix with one column for every P-value, !R] CmK  
    %   and one row for every (R,THETA) pair. BCa90  
    % 34+)-\xt:  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike m-Z'K_oQ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) WcZo+r  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) (d5vH)+ A  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 $,z[XM&9)  
    %   for all p. hX'z]Am<  
    % [pRVZV  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 /q*Qx )y+1  
    %   Zernike functions (order N<=7).  In some disciplines it is c|R3,<Q]  
    %   traditional to label the first 36 functions using a single mode ;S{Ld1;  
    %   number P instead of separate numbers for the order N and azimuthal K 8yyxJ  
    %   frequency M. ;*j6d3E  
    % A^= Hu,"e  
    %   Example: t`Y1.]@U  
    % H(5ui`'s  
    %       % Display the first 16 Zernike functions @=MZ6q  
    %       x = -1:0.01:1; Us@ {w`T  
    %       [X,Y] = meshgrid(x,x); *'`3]!A  
    %       [theta,r] = cart2pol(X,Y); npG+# z  
    %       idx = r<=1; l b1sV  
    %       p = 0:15; x jP" 'yU  
    %       z = nan(size(X)); 9`gGsC  
    %       y = zernfun2(p,r(idx),theta(idx)); >r4Y\"/j  
    %       figure('Units','normalized') 2o s6c te  
    %       for k = 1:length(p) mAYr<=  
    %           z(idx) = y(:,k); sGDrMAQt  
    %           subplot(4,4,k) WW8L~4Zy  
    %           pcolor(x,x,z), shading interp gqHH Hh  
    %           set(gca,'XTick',[],'YTick',[]) 2Xj-A\Oh~  
    %           axis square <'4!G"_EP  
    %           title(['Z_{' num2str(p(k)) '}']) <=y5 8O]x  
    %       end D\_*,Fc  
    % O+8ApicjTc  
    %   See also ZERNPOL, ZERNFUN. #(7RX}  
    1,;qXMhK`;  
    %   Paul Fricker 11/13/2006 v^lm8/}NO  
    9q0,K" x)  
    ;hfG$ {l;  
    % Check and prepare the inputs: hF=V ?\  
    % ----------------------------- 1!v >I"]  
    if min(size(p))~=1 ]B[/sqf  
        error('zernfun2:Pvector','Input P must be vector.') <g|nmu)o$  
    end $Zu4tuXA  
    b#\ k Z/W  
    if any(p)>35 ETH#IM8J  
        error('zernfun2:P36', ... ^) b7m  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Jk6/i;4|  
               '(P = 0 to 35).']) >`,#%MH#  
    end HNHhMi`w  
    1rm$@L  
    % Get the order and frequency corresonding to the function number: enD C#  
    % ---------------------------------------------------------------- UgP=k){  
    p = p(:); BS<>gA R;/  
    n = ceil((-3+sqrt(9+8*p))/2); gQ+_&'C  
    m = 2*p - n.*(n+2); eQ)ioY  
    ?H7p6m u  
    % Pass the inputs to the function ZERNFUN: 5-QvQ&eH.  
    % ---------------------------------------- 3 z/O`z  
    switch nargin <&m  
        case 3 Z5^,!6  
            z = zernfun(n,m,r,theta); C6T 9  
        case 4 )mo|.L0  
            z = zernfun(n,m,r,theta,nflag); MT#[ - M\  
        otherwise s)&R W#:X  
            error('zernfun2:nargin','Incorrect number of inputs.') NYV0<z@M2M  
    end G}hkr  
    >8mW-p  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) WaO;hy~us  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8w@jUGsc  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of By"ul:.D  
    %   order N and frequency M, evaluated at R.  N is a vector of 1ZH8/1gWI  
    %   positive integers (including 0), and M is a vector with the vH\nL>r  
    %   same number of elements as N.  Each element k of M must be a 9lwo/(s  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) HBkQ`T  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is sAAIyPJts  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix g8@i_  
    %   with one column for every (N,M) pair, and one row for every g='2~c  
    %   element in R. WRyv >Y  
    % KB-#):'  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- =|t1eSzc  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Vblf6qaBs  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |P?B AWYeQ  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 # 2t\>7]  
    %   for all [n,m]. B!C32~[  
    % p.7p,CyB  
    %   The radial Zernike polynomials are the radial portion of the oM7-1O  
    %   Zernike functions, which are an orthogonal basis on the unit HOI`F3#XI  
    %   circle.  The series representation of the radial Zernike 5UD;Z V%  
    %   polynomials is = |zyi|  
    % .\\#~r`t3  
    %          (n-m)/2 "+"dALX{3K  
    %            __ ^\t">NJ^  
    %    m      \       s                                          n-2s GnHf9 JrR  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ll^O+>1dO  
    %    n      s=0 4>eg@sN  
    % @)B5^[4(;  
    %   The following table shows the first 12 polynomials. NNV.x7  
    % |"&4"nwa  
    %       n    m    Zernike polynomial    Normalization {*  _ W  
    %       --------------------------------------------- wA+4:CF @  
    %       0    0    1                        sqrt(2) t#Yh!L6>  
    %       1    1    r                           2 Z19y5?uR  
    %       2    0    2*r^2 - 1                sqrt(6) fC:\Gh5  
    %       2    2    r^2                      sqrt(6) BiAcjN:Z  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9_^V1+   
    %       3    3    r^3                      sqrt(8) i; uM!d}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 'n`$c{N<tM  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) m`6`a|Twp$  
    %       4    4    r^4                      sqrt(10) )u:8Pv  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) a'.=.eDQ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) _C\ d^a (  
    %       5    5    r^5                      sqrt(12) SQCuY<mD  
    %       --------------------------------------------- Hd}t=6  
    % g5]DA.&(  
    %   Example: u9%:2$[  
    % PltPIu)F  
    %       % Display three example Zernike radial polynomials dNmX<WXG  
    %       r = 0:0.01:1; 5{=MUU=  
    %       n = [3 2 5]; ~0  t'+.  
    %       m = [1 2 1]; NWcF9z%@  
    %       z = zernpol(n,m,r); %[;KO&Ga  
    %       figure ?|F;x"  
    %       plot(r,z) .j,&/y&  
    %       grid on #_5+kBA+>'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') KWkT 9[H  
    % O~1p]j  
    %   See also ZERNFUN, ZERNFUN2. LD"}$vfs  
    ,*#M%Pv1t  
    % A note on the algorithm. Zz ?y&T  
    % ------------------------ p`ZGV97  
    % The radial Zernike polynomials are computed using the series sVf7g?  
    % representation shown in the Help section above. For many special L 3Iz]D3s  
    % functions, direct evaluation using the series representation can ucO]&'hu:  
    % produce poor numerical results (floating point errors), because =z dti'2{4  
    % the summation often involves computing small differences between N($]))~3&  
    % large successive terms in the series. (In such cases, the functions `fHiY.-  
    % are often evaluated using alternative methods such as recurrence {uG_)GFr0  
    % relations: see the Legendre functions, for example). For the Zernike n*|-"'j  
    % polynomials, however, this problem does not arise, because the W12K93tO  
    % polynomials are evaluated over the finite domain r = (0,1), and 0<;B2ce  
    % because the coefficients for a given polynomial are generally all b(,[g>xH   
    % of similar magnitude. J)+eEmrU  
    % sRG3`>1  
    % ZERNPOL has been written using a vectorized implementation: multiple mI18A#[ 3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] a+Nd%hoe  
    % values can be passed as inputs) for a vector of points R.  To achieve my0->W%L  
    % this vectorization most efficiently, the algorithm in ZERNPOL YDL)F<Y  
    % involves pre-determining all the powers p of R that are required to IVKE dwA  
    % compute the outputs, and then compiling the {R^p} into a single Melc -[  
    % matrix.  This avoids any redundant computation of the R^p, and l{yPO@ut`F  
    % minimizes the sizes of certain intermediate variables. MS)bhZvO  
    % pu#<qD*w  
    %   Paul Fricker 11/13/2006 NoIdO/vy"  
    G)`MoVH1  
    1jb@n xRjO  
    % Check and prepare the inputs: /+7L`KPD  
    % ----------------------------- ^6n]@4P  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Sy55w={  
        error('zernpol:NMvectors','N and M must be vectors.') q fe#kF9  
    end r~t7Z+PXF  
    R&p53n  
    if length(n)~=length(m) aV.<<OS   
        error('zernpol:NMlength','N and M must be the same length.') Ky|0IKE8Z  
    end $P~a   
    '` "&RuB  
    n = n(:); ~>|U%3}]  
    m = m(:); + u+fEg/A  
    length_n = length(n); c9'b `#'  
    }#M|3h;q9+  
    if any(mod(n-m,2)) wz=I+IN:  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') b/`' ?| C  
    end 6P8X)3CE<T  
    M`FL&Ac  
    if any(m<0) 04TV. /uA  
        error('zernpol:Mpositive','All M must be positive.') "M]]H^r5  
    end >XN&Q VE  
    YVi]f2F%  
    if any(m>n) ,\b5M`<c  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !k^\`jMzw  
    end MaM7u:kD#  
    @nK 08Kj-  
    if any( r>1 | r<0 ) B'yrXa|P  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') .u&g2Y  
    end g=wnly  
    >?tpGEZ\  
    if ~any(size(r)==1) ijfT!W  
        error('zernpol:Rvector','R must be a vector.') :>z0m 0nI\  
    end ~yV0SpL  
    j~0hAKHG  
    r = r(:); (nm&\b~j  
    length_r = length(r); q.4DwY5 L  
    GzX@Av$  
    if nargin==4 Rh|&{Tf  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 4T" P #)z  
        if ~isnorm 2_p/1Rs  
            error('zernpol:normalization','Unrecognized normalization flag.') cD]t%`*  
        end Om*Dy}  
    else tQ"PCm  
        isnorm = false; }j x{Cw  
    end FK>r c3 q  
    n$>H}#q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1x]G/I*  
    % Compute the Zernike Polynomials G9jtL$}E<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rHznXME$wZ  
    !#QD;,SE+  
    % Determine the required powers of r: BTB,a$P/  
    % ----------------------------------- :hr%iu  
    rpowers = []; TSeAC[%pL  
    for j = 1:length(n) \%#jT GFs~  
        rpowers = [rpowers m(j):2:n(j)]; | =&r) ~  
    end y9 "!ys  
    rpowers = unique(rpowers); TA*49Qp  
    nZ]d[  
    % Pre-compute the values of r raised to the required powers, D*b> l_  
    % and compile them in a matrix: .[7m4iJf  
    % ----------------------------- `y4+OXZ^  
    if rpowers(1)==0 {az8*MR=X  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GCrMrZ6  
        rpowern = cat(2,rpowern{:}); {"s8X(#_sC  
        rpowern = [ones(length_r,1) rpowern]; .d;/6HD[y  
    else `eA0Z:`g!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T ^uBMDYe  
        rpowern = cat(2,rpowern{:}); 3=z'Ih`  
    end 'n\ZmG{  
    <=p"c k@  
    % Compute the values of the polynomials: w!Z3EA;`  
    % -------------------------------------- ]C_6I\Z#=W  
    z = zeros(length_r,length_n); LGK}oL'  
    for j = 1:length_n R6ywc "xE  
        s = 0:(n(j)-m(j))/2; 'Z';$N ]  
        pows = n(j):-2:m(j); ;kdJxxUox  
        for k = length(s):-1:1 :wMZ&xERDZ  
            p = (1-2*mod(s(k),2))* ... 3+IS7ATn  
                       prod(2:(n(j)-s(k)))/          ... *}FoeDe  
                       prod(2:s(k))/                 ... % L]xar  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... <~3@+EEM  
                       prod(2:((n(j)+m(j))/2-s(k))); .S[5CO^  
            idx = (pows(k)==rpowers); 3?C$Tl2G8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); -)w/nq  
        end |>m@]s7Z  
         H}A67J9x  
        if isnorm !r$/-8b  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ~s+\Y/@A  
        end dP )YPy_`  
    end WKP=[o^  
    'M&`l%dIPf  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Z@(m.&ZRx  
    7fE U5@  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 mM(Z8PA 9-  
    `?=Y^+*!-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)