切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10937阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 W$y?~2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! |laq y`D  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i6[Hu8  
    function z = zernfun(n,m,r,theta,nflag) T3bBc  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. LE Y$St  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5y.kOe4vH  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ZN. #g_  
    %   unit circle.  N is a vector of positive integers (including 0), and 1vX97n<}  
    %   M is a vector with the same number of elements as N.  Each element lK{h%2A\b  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _- { >e  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3t8VH`!mL{  
    %   and THETA is a vector of angles.  R and THETA must have the same .(! $j-B  
    %   length.  The output Z is a matrix with one column for every (N,M) .}^m8PP  
    %   pair, and one row for every (R,THETA) pair. . 8k9yk  
    % >1W)J3  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Obbjl@]  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d}Q;CF3 m:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral t1D6#JP(a  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Nl0*"}`I_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 6<gh:vj  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L9@nx7D  
    % O}2;>eH  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mu TlN  
    %   They are used in disciplines such as astronomy, optics, and "I u3&mc  
    %   optometry to describe functions on a circular domain. 1X]?-+',.  
    % WxFVbtw  
    %   The following table lists the first 15 Zernike functions. [V =O$X_  
    % |'.\}xt7  
    %       n    m    Zernike function           Normalization G/b $cO}  
    %       -------------------------------------------------- }DoNp[`  
    %       0    0    1                                 1 "1Vuf<?C  
    %       1    1    r * cos(theta)                    2 a8NL  
    %       1   -1    r * sin(theta)                    2 )A,M T i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) I_\j05  
    %       2    0    (2*r^2 - 1)                    sqrt(3) | X! d*4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) : W^ k3/t  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) qEE V&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 6,| !zaeS  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z!DGCw  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) EP,lT.u3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;~F&b:CyG  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !2=< MO  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) eX>x +]l6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eqV;4dhm  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) lx(kbSxF  
    %       -------------------------------------------------- ("?V|  
    % PCtf&U  
    %   Example 1: cJ=0zEv  
    % 4;=+qb  
    %       % Display the Zernike function Z(n=5,m=1) qi!+ Ceo}  
    %       x = -1:0.01:1; #L ffmS  
    %       [X,Y] = meshgrid(x,x); WTbq)D(&[_  
    %       [theta,r] = cart2pol(X,Y); <<4U:  
    %       idx = r<=1; 8(]*J8/wt  
    %       z = nan(size(X)); 22$M6Qof]n  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); g\:(1oY  
    %       figure &]tZ6  
    %       pcolor(x,x,z), shading interp ].w~FUa  
    %       axis square, colorbar ~qT5F)$B-  
    %       title('Zernike function Z_5^1(r,\theta)') &#_c,c;  
    % b*(74>XY  
    %   Example 2: _TEjB:9eY  
    % 4SlEc|'7@  
    %       % Display the first 10 Zernike functions OO#_ 0qK  
    %       x = -1:0.01:1; ,v,#f .  
    %       [X,Y] = meshgrid(x,x); 05hjC  
    %       [theta,r] = cart2pol(X,Y); X;'H@GU0  
    %       idx = r<=1; Ce_k&[AJF  
    %       z = nan(size(X)); wNl{,aH@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %W` }  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n` M!K:Pq  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $ra q,SP  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~xCv_u^=  
    %       figure('Units','normalized') <x-7MU&  
    %       for k = 1:10 4 ))ZBq?  
    %           z(idx) = y(:,k); eI%9.Cx#I  
    %           subplot(4,7,Nplot(k)) x18(}4  
    %           pcolor(x,x,z), shading interp }l"pxp1K  
    %           set(gca,'XTick',[],'YTick',[]) \:y oS>G  
    %           axis square %>Q[j`9y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \w#)uYK{i_  
    %       end XCvL`  
    % v9*31Jx  
    %   See also ZERNPOL, ZERNFUN2. ?*LVn~y  
    [8jIu&tJf  
    %   Paul Fricker 11/13/2006 4Dy|YH$>S  
    x/NjdK  
    i/|}#yw8A  
    % Check and prepare the inputs: 0#Ae<  
    % ----------------------------- \~X:ffb =  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) hU'h78bt(  
        error('zernfun:NMvectors','N and M must be vectors.') {f"oqry_g  
    end YC[c QX  
    Q%r KKOX8  
    if length(n)~=length(m) Lo,uH`qU  
        error('zernfun:NMlength','N and M must be the same length.') \Vb|bw'e(  
    end QZ& 4W  
     gx9=L&=d  
    n = n(:); &ea6YQ  
    m = m(:); Y[!s:3\f  
    if any(mod(n-m,2)) { k>T*/  
        error('zernfun:NMmultiplesof2', ... []:&WA 9N  
              'All N and M must differ by multiples of 2 (including 0).') ]$~\GE^  
    end 0@yw#.j  
    7y4jk  
    if any(m>n) hh!4DHv   
        error('zernfun:MlessthanN', ... "O~7s}  
              'Each M must be less than or equal to its corresponding N.') Zz?)k])F  
    end go9tvK  
    !mH !W5&  
    if any( r>1 | r<0 ) w"{mDL}c  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') [>D5(O  
    end :Z%-&) F  
    NK\0X5##.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) a(IUAh*mO  
        error('zernfun:RTHvector','R and THETA must be vectors.') @d|3c7` A  
    end Gv&%cq1  
    _9yW; i-  
    r = r(:); E(F?o.b  
    theta = theta(:); zJ)`snN|  
    length_r = length(r); +;T\:'CU  
    if length_r~=length(theta) hx!:F"#  
        error('zernfun:RTHlength', ... G5hf m-  
              'The number of R- and THETA-values must be equal.') ZZ>F ^t  
    end ,Cd4Q7T  
    osn ,kD*  
    % Check normalization: wEZieHw  
    % -------------------- "m > BE  
    if nargin==5 && ischar(nflag) "[ieOFI  
        isnorm = strcmpi(nflag,'norm'); _MW W  
        if ~isnorm 3S .2  
            error('zernfun:normalization','Unrecognized normalization flag.') C<#_1@^:8e  
        end -H F1c  
    else D@%!|:  
        isnorm = false; IdoS6   
    end ,zEPdhTX  
    iUbcvF3aP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VIaj])m  
    % Compute the Zernike Polynomials Z.`0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;OC{B}.vH  
    E~c>j<'-"<  
    % Determine the required powers of r: woa|h"T  
    % ----------------------------------- :w]NN\  
    m_abs = abs(m); ;6$W-W _  
    rpowers = []; 7+Er}y>  
    for j = 1:length(n) l{QlJ>%~{;  
        rpowers = [rpowers m_abs(j):2:n(j)]; #y'p4Xf  
    end 0ybMI+*  
    rpowers = unique(rpowers); +7{8T{  
    jX .' G   
    % Pre-compute the values of r raised to the required powers, Wcbm,O4u  
    % and compile them in a matrix: .pG`/[*a  
    % ----------------------------- JQ|*XU  
    if rpowers(1)==0 j$<g8Bg=o  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FE1'MUT_  
        rpowern = cat(2,rpowern{:}); =QIu3%&  
        rpowern = [ones(length_r,1) rpowern]; I+QM":2  
    else w\M"9T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [b3$em<^JV  
        rpowern = cat(2,rpowern{:}); e5D\m g)  
    end O;$}j:;KF  
    i|0!yID0@  
    % Compute the values of the polynomials: vuZ'Wo:S{  
    % -------------------------------------- Kpkpr`:)]  
    y = zeros(length_r,length(n)); 3lbGG42:  
    for j = 1:length(n) ve\@u@K^  
        s = 0:(n(j)-m_abs(j))/2; ^9]g5.z:  
        pows = n(j):-2:m_abs(j); TEla?N  
        for k = length(s):-1:1 oBs5xH7@-  
            p = (1-2*mod(s(k),2))* ... \~r_S  
                       prod(2:(n(j)-s(k)))/              ... MwX8FYF D  
                       prod(2:s(k))/                     ... e0]#vqdO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... If8Lt}-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .$1S-+(kV  
            idx = (pows(k)==rpowers); qC-4X"y+  
            y(:,j) = y(:,j) + p*rpowern(:,idx); pq%inSY  
        end h7 mk<  
         zCv)%y  
        if isnorm KpIY>k  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |"[;0)dw^  
        end (w`_{%T  
    end R2Lq??XA=  
    % END: Compute the Zernike Polynomials g-H,*^g+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "([lkn  
    %q.5; L  
    % Compute the Zernike functions: *,)1Dcv(  
    % ------------------------------ P F);KQ  
    idx_pos = m>0; IpM"k)HR  
    idx_neg = m<0; WR u/7$8  
    : rudo[L  
    z = y; %TO&  
    if any(idx_pos) <<V"4 C2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^F- 2tc  
    end [!Djs![O  
    if any(idx_neg) a '?LC)^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;2[OI  
    end E>:#{%  
    Zad>i w}  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "`mG_qHI[  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. x_<,GE@  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated N7GZ'-t^Er  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive AG#Mj(az!  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Hn/V*RzQ  
    %   and THETA is a vector of angles.  R and THETA must have the same &i6JBZ#~,  
    %   length.  The output Z is a matrix with one column for every P-value, eT?vZH[N  
    %   and one row for every (R,THETA) pair. ^)'D eP/  
    % &x4*YM h  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike '}OAl  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ) r"7"i  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) h\5~&}Hp  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 *g9VI;X  
    %   for all p. nITkgN:s  
    % h A '>  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 I]cZcx,<q  
    %   Zernike functions (order N<=7).  In some disciplines it is k4en/&  
    %   traditional to label the first 36 functions using a single mode dz/3=0  
    %   number P instead of separate numbers for the order N and azimuthal P,7R/-u5D  
    %   frequency M. WpMm%G~'4t  
    % P,#l~\  
    %   Example: u Tdz$Nh  
    % |O'gT8  
    %       % Display the first 16 Zernike functions @PK 1  
    %       x = -1:0.01:1; iAeq%N1(0  
    %       [X,Y] = meshgrid(x,x); {$7vd  
    %       [theta,r] = cart2pol(X,Y); {cjp8W8hS  
    %       idx = r<=1; #WE lL2&  
    %       p = 0:15; 'b6qEU#  
    %       z = nan(size(X)); K.}jyhKIKi  
    %       y = zernfun2(p,r(idx),theta(idx)); iszVM  
    %       figure('Units','normalized') qWXw*d1]  
    %       for k = 1:length(p) Q91mCP~$  
    %           z(idx) = y(:,k); .eCUvX`$  
    %           subplot(4,4,k) }0>\%C  
    %           pcolor(x,x,z), shading interp 'oM=ZU8wo  
    %           set(gca,'XTick',[],'YTick',[]) 5kHU'D  
    %           axis square J:IAs:e`  
    %           title(['Z_{' num2str(p(k)) '}']) ]6MXG%  
    %       end n" vO?8Sx  
    % ACI.{`SrQ=  
    %   See also ZERNPOL, ZERNFUN. %][zn$aa|  
    #U vWS  
    %   Paul Fricker 11/13/2006 f'tQLF[r<  
    +xU=7chA  
    <2LUq@Pg  
    % Check and prepare the inputs: r jnf30  
    % ----------------------------- gEmsPk,  
    if min(size(p))~=1 s -F3(mc(  
        error('zernfun2:Pvector','Input P must be vector.') B9`_~~^U5  
    end &O5&pet  
    Y+EwBg)co  
    if any(p)>35 |T*t3}  
        error('zernfun2:P36', ... MB6lKLy6~  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... R#ya9GN{  
               '(P = 0 to 35).']) b8 6c[2  
    end 20M]gw]  
    3'7X[{uBr  
    % Get the order and frequency corresonding to the function number: yoTx3U@  
    % ---------------------------------------------------------------- GwG(?_I"  
    p = p(:); >^v,,R8j  
    n = ceil((-3+sqrt(9+8*p))/2); R78P](1\>  
    m = 2*p - n.*(n+2); !3"Hn  
    @Dd(  
    % Pass the inputs to the function ZERNFUN: )$O'L7In&  
    % ---------------------------------------- l5U^lc  
    switch nargin [h.i,%Ua"P  
        case 3 Q:]v4 /MT  
            z = zernfun(n,m,r,theta); xoQqku"vn  
        case 4 /f>I;z1  
            z = zernfun(n,m,r,theta,nflag); /vqsp0e"H  
        otherwise vfh\X1Ui}  
            error('zernfun2:nargin','Incorrect number of inputs.') b\xse2#  
    end 9"dZ4{\!  
    hgdr\ F  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) bFfDaO<k  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. |YrvY1d!  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of tk+t3+  
    %   order N and frequency M, evaluated at R.  N is a vector of (2/i1)Cq  
    %   positive integers (including 0), and M is a vector with the p8z"Jn2P  
    %   same number of elements as N.  Each element k of M must be a B,A\/%<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) +F^X1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is oXGP6#  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (=tu~ ^  
    %   with one column for every (N,M) pair, and one row for every 9YwS"~Q =w  
    %   element in R. 6/|"y  
    % 21~~=+)X  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- K$-|7tJon  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .X6V>e)(3  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ^K!R4Y4t  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ZIaFvm&q7Z  
    %   for all [n,m]. ,fyqa  
    % w)Y}hlcq  
    %   The radial Zernike polynomials are the radial portion of the V`LW~P;  
    %   Zernike functions, which are an orthogonal basis on the unit qjIcRue'"  
    %   circle.  The series representation of the radial Zernike WZ ,t~TN  
    %   polynomials is K(}<L-cv  
    % /O$)m[  
    %          (n-m)/2 Xgo`XsA  
    %            __ 7 '7a`-W  
    %    m      \       s                                          n-2s * Vymb  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r `R o>?H  
    %    n      s=0 1i$OcN?x%  
    % 2spK#0n.HV  
    %   The following table shows the first 12 polynomials. w%f51Ex  
    % 6X$iTJ[\x  
    %       n    m    Zernike polynomial    Normalization $+HS^m  
    %       --------------------------------------------- Mm#=d?YUHJ  
    %       0    0    1                        sqrt(2) Ky'\t7p u  
    %       1    1    r                           2 rXnG"A  
    %       2    0    2*r^2 - 1                sqrt(6) 9S)A6]  
    %       2    2    r^2                      sqrt(6) _2Fa .gi  
    %       3    1    3*r^3 - 2*r              sqrt(8) |1Ko5z  
    %       3    3    r^3                      sqrt(8) U,nQnD"!t&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) `O}bPwa{>  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ,9/s`o  
    %       4    4    r^4                      sqrt(10) A*3R@G*h  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) < nyk:E  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) H3q L&xL  
    %       5    5    r^5                      sqrt(12) >Y&o2zJy  
    %       --------------------------------------------- SP5t=#M6  
    % p2o6 6t  
    %   Example: JPS<e*5  
    % vX}mwK8  
    %       % Display three example Zernike radial polynomials lV2MRxI  
    %       r = 0:0.01:1; tqK}KL  
    %       n = [3 2 5]; ^ px)W,O  
    %       m = [1 2 1]; P+;@?ofB  
    %       z = zernpol(n,m,r); ~uu~NTz  
    %       figure  tD}HL_  
    %       plot(r,z) F6#U31Q=  
    %       grid on $6\W8v  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ^b(> Bg )T  
    % [KwwhI@3  
    %   See also ZERNFUN, ZERNFUN2. .ZOyZnr Z  
    \)9R1zp/x  
    % A note on the algorithm. %q,^A+=  
    % ------------------------ @7<m.?A!  
    % The radial Zernike polynomials are computed using the series eFCXjM  
    % representation shown in the Help section above. For many special =;HmU.Uek%  
    % functions, direct evaluation using the series representation can 7S9Q{  
    % produce poor numerical results (floating point errors), because u+uu?.bM  
    % the summation often involves computing small differences between YiPp#0T[Gx  
    % large successive terms in the series. (In such cases, the functions p=J9N-EM  
    % are often evaluated using alternative methods such as recurrence )ur&Mnmm  
    % relations: see the Legendre functions, for example). For the Zernike dCM*4B<  
    % polynomials, however, this problem does not arise, because the 6u v'{  
    % polynomials are evaluated over the finite domain r = (0,1), and y2Z1B2E%f  
    % because the coefficients for a given polynomial are generally all ]j?Kn$nv*S  
    % of similar magnitude. #n}n %  
    % mPo].z  
    % ZERNPOL has been written using a vectorized implementation: multiple f^X\N/  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] MOW {g\{\  
    % values can be passed as inputs) for a vector of points R.  To achieve 9CTvG zkw  
    % this vectorization most efficiently, the algorithm in ZERNPOL \:wLUGFl 5  
    % involves pre-determining all the powers p of R that are required to {01wW1  
    % compute the outputs, and then compiling the {R^p} into a single K1>(Fs$  
    % matrix.  This avoids any redundant computation of the R^p, and yw)Ztg)  
    % minimizes the sizes of certain intermediate variables. Y^f12%  
    % Y_<(~eN`  
    %   Paul Fricker 11/13/2006 =Z(#j5TGvH  
    XS/5y(W  
    CiGN?1|  
    % Check and prepare the inputs: _Uz}z#jt  
    % ----------------------------- f*SAbDE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c F (]`49(  
        error('zernpol:NMvectors','N and M must be vectors.') L)ry!BuHI  
    end q<cpU'-#  
    !Rw\k'<GKX  
    if length(n)~=length(m) ^~dvA)bH  
        error('zernpol:NMlength','N and M must be the same length.') r3b~|O^}  
    end g#ONtY@*U  
    "ci<W_lx  
    n = n(:); ?RD)a`y51  
    m = m(:); 4x:Odt5  
    length_n = length(n); RFkJ^=}  
    ai ,Mez  
    if any(mod(n-m,2)) [2,u:0"  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') \l leO|m  
    end Up$vBE8i]  
    1xo<V5  
    if any(m<0) _9Ig`?<>I  
        error('zernpol:Mpositive','All M must be positive.') G#4cWn'  
    end ^OQ#Nz  
    HiG&`:P>q  
    if any(m>n) P( W8XC  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') G#! j`  
    end `v)-v<  
    E 2DTE  
    if any( r>1 | r<0 ) &~Q ?k  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  iV71t17  
    end ASLRP  
    [J+K4o8L<A  
    if ~any(size(r)==1) 4>^ %_Xj[  
        error('zernpol:Rvector','R must be a vector.') @]HV:7<q  
    end yREO;m|o  
    viBf" .  
    r = r(:); *R>I%?]V3  
    length_r = length(r); qD4e] 5  
    8X]j;Rb  
    if nargin==4 I=^%l7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); f(?`PD[  
        if ~isnorm H2RNekck  
            error('zernpol:normalization','Unrecognized normalization flag.') l(zkMR$b8  
        end }~-)31e'`  
    else  N _r*Ig  
        isnorm = false; "O|fX\}5  
    end _ #l b\  
    v.v3HB8p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R< xxwjt  
    % Compute the Zernike Polynomials (s{%XB:K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4!6g[[| &J  
    jt2 m-*aP  
    % Determine the required powers of r: ?#D@e5Wf  
    % ----------------------------------- NnSI=M  
    rpowers = []; 4Df TVO"h  
    for j = 1:length(n) lLtC9:  
        rpowers = [rpowers m(j):2:n(j)]; zAB-kE\ )  
    end xyz-T1ib  
    rpowers = unique(rpowers); O,JthlAV4  
    +U%lWE%  
    % Pre-compute the values of r raised to the required powers, Yjk A^e  
    % and compile them in a matrix: !1"~tA!+p=  
    % ----------------------------- <WBGPzVZE  
    if rpowers(1)==0 7qXgHrr0|U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T:.J9  
        rpowern = cat(2,rpowern{:}); e@^}y4 C  
        rpowern = [ones(length_r,1) rpowern]; 7X}_yMxc  
    else r?/>t1Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); OR"ni  
        rpowern = cat(2,rpowern{:}); W {dx\+  
    end S^D ~A8u  
    rzaEVXbz1  
    % Compute the values of the polynomials: ~P6K)V|@<  
    % -------------------------------------- !b _<_Y{l  
    z = zeros(length_r,length_n); 9fl !CG  
    for j = 1:length_n $X*$,CCIB  
        s = 0:(n(j)-m(j))/2; /e{Oqhf[n  
        pows = n(j):-2:m(j); \wDOE(>  
        for k = length(s):-1:1 A7b7IM[  
            p = (1-2*mod(s(k),2))* ... oS,<2Z  
                       prod(2:(n(j)-s(k)))/          ... R#\8jvv  
                       prod(2:s(k))/                 ... sCRBKCR?  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ={L:q8v)  
                       prod(2:((n(j)+m(j))/2-s(k))); 6lWO8j^BN  
            idx = (pows(k)==rpowers); g\ *gHHa  
            z(:,j) = z(:,j) + p*rpowern(:,idx); "F[VqqD  
        end .=@M>TZM  
         rX{|]M":T  
        if isnorm Y?%6af+  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 3?5 ~KxOE(  
        end 5E!|-xD  
    end >2g CM  
    0|^x[dh  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  mU=6"A0 U  
    y@M}T{,/  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Q@2tT&eL  
    mei_aN7zW  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)