非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 A~V\r<N
j
function z = zernfun(n,m,r,theta,nflag) Se8y-AL6x>
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. tV9C33
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ZtoE=7K
% and angular frequency M, evaluated at positions (R,THETA) on the Z(M)2
% unit circle. N is a vector of positive integers (including 0), and eHe /w9`$R
% M is a vector with the same number of elements as N. Each element dDbC0} x/
% k of M must be a positive integer, with possible values M(k) = -N(k) :nUsC+oBS
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]:s|.C%q I
% and THETA is a vector of angles. R and THETA must have the same Nk4_!
% length. The output Z is a matrix with one column for every (N,M) |lwN!KVQ,
% pair, and one row for every (R,THETA) pair. >}*jsqaVU
% OvG0UXRU
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %U7f9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s=
fKAxH
% with delta(m,0) the Kronecker delta, is chosen so that the integral /nFw
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A5ID I<a
% and theta=0 to theta=2*pi) is unity. For the non-normalized L?+|%[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. VBJ]d|
% vq7%SEkES
% The Zernike functions are an orthogonal basis on the unit circle. CD[=z)<z{
% They are used in disciplines such as astronomy, optics, and Y{|yB
% optometry to describe functions on a circular domain. Ue:T3jp3%
% B31-<w
% The following table lists the first 15 Zernike functions. S(h*\we
% oZ:F3 GQ4Q
% n m Zernike function Normalization 0 _}89:-
% -------------------------------------------------- nV*sdSt
% 0 0 1 1 s'Gy+h.
% 1 1 r * cos(theta) 2 QvN
<uxm
% 1 -1 r * sin(theta) 2 86F+N_>Z
% 2 -2 r^2 * cos(2*theta) sqrt(6) jgw'MpQm{
% 2 0 (2*r^2 - 1) sqrt(3) *AR<DXEL
% 2 2 r^2 * sin(2*theta) sqrt(6) em!R9J.
% 3 -3 r^3 * cos(3*theta) sqrt(8) Sr 4 7u{n
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) bnu0*Zg>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) }zxh:"#K
% 3 3 r^3 * sin(3*theta) sqrt(8) {; cB?II
% 4 -4 r^4 * cos(4*theta) sqrt(10) &"%|`gE
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <#
r.}T.l
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) F5[ITK]A4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vzvw/17J
% 4 4 r^4 * sin(4*theta) sqrt(10) < DZ76
% -------------------------------------------------- nvVsO>2{ o
% TcmZ0L^O
% Example 1: p!QneeA`&X
% .OS?^\
% % Display the Zernike function Z(n=5,m=1) 6_K#,_oZ
% x = -1:0.01:1; @b\_696.
% [X,Y] = meshgrid(x,x); C,vc
aC?
% [theta,r] = cart2pol(X,Y); N:jiZ)
% idx = r<=1; .r%|RWs6W
% z = nan(size(X)); Lj-&TO}OZ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); [Ms{J!^q
% figure Ny7=-]N4{"
% pcolor(x,x,z), shading interp dS_)ll.6z
% axis square, colorbar /1#Q=T
% title('Zernike function Z_5^1(r,\theta)') 9O T4jAm
% lT!$\E$1
% Example 2: &|"I0|tJ
% u4M2Ec
% % Display the first 10 Zernike functions -JhjTA
% x = -1:0.01:1; Is6 _
% [X,Y] = meshgrid(x,x);
C|;Mhe'r=
% [theta,r] = cart2pol(X,Y); C*6)Ut '
% idx = r<=1; 2$W,R/CLh
% z = nan(size(X)); 'Qq_Xn8
% n = [0 1 1 2 2 2 3 3 3 3]; UMi`u6#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; iA{jKk=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7RC096 ?}
% y = zernfun(n,m,r(idx),theta(idx)); ~nc([%!=
% figure('Units','normalized') z<vO#
% for k = 1:10 6 %k+0\d
% z(idx) = y(:,k); 4|41^B5Y
% subplot(4,7,Nplot(k)) :tqm2t
% pcolor(x,x,z), shading interp ^zPEAXm
% set(gca,'XTick',[],'YTick',[]) ?r E]s!K
% axis square {!e ANm'
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )Z]y.W )
% end J[Yg]6
% `CEj 4
% See also ZERNPOL, ZERNFUN2. <6O_t,K]
Y0fO.k#C^
% Paul Fricker 11/13/2006 ?(ls<&s{w
qM!f
N|O]z
% Check and prepare the inputs: VMye5 P
% ----------------------------- *:tjxC
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9}jq`xSL
error('zernfun:NMvectors','N and M must be vectors.') MAD}Tv\S7
end 1mVVPt^6
27 145
if length(n)~=length(m) zP h\3B
error('zernfun:NMlength','N and M must be the same length.') {+6D-rDw
end "3i80R\w`F
$n#Bi.A
j
n = n(:); $FusDdCv3
m = m(:); X})Imk7&E
if any(mod(n-m,2)) w Al}:|+n
error('zernfun:NMmultiplesof2', ... =i^<a7M~
'All N and M must differ by multiples of 2 (including 0).') e_~fJ
end ^?7dOW
1S(\2{Ylo
if any(m>n) H1%[\X?=
error('zernfun:MlessthanN', ... Jg|cvu-+
'Each M must be less than or equal to its corresponding N.') >g>`!Sf
end lHKf#|
:IR9=nhS]
if any( r>1 | r<0 ) 6(J4IzZ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') (YYj3#|
end G]mWaA
,s><kHJ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) M9s43XL(&
error('zernfun:RTHvector','R and THETA must be vectors.') pgd8`$(Q
end {s8U7rmML
puS&S
*
r = r(:); mYh5#E41J
theta = theta(:); U7B/t3,=U
length_r = length(r); a\{1UD
if length_r~=length(theta) I& M36f
error('zernfun:RTHlength', ... phgexAq
'The number of R- and THETA-values must be equal.') Gh2Q$w:
end R{)
Q1~H=q
/j' B\,
% Check normalization: IObx^N_K
% -------------------- O b8B
if nargin==5 && ischar(nflag) )Ab6!"'
isnorm = strcmpi(nflag,'norm'); Cx+WLD
if ~isnorm )XP#W|;
error('zernfun:normalization','Unrecognized normalization flag.') 1@%B?
end jWXR__>.
else a;"Uz|rz
isnorm = false; Oz&+{ c
end ;Rhb@]X
Gg9VS&VI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oe!:|ck<
% Compute the Zernike Polynomials y7JZKtsFA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `k(u:yGK
% Cu.u)/+
% Determine the required powers of r: SLtSqG7~
% ----------------------------------- 69C8-fF0[I
m_abs = abs(m);
@8=vFP'
rpowers = []; G [3k
for j = 1:length(n) tx0Go'{
rpowers = [rpowers m_abs(j):2:n(j)]; /Fv/oY
end Z&FkLww
rpowers = unique(rpowers); OGJ=VQA
S~0JoCeo
% Pre-compute the values of r raised to the required powers, s) Cpi
% and compile them in a matrix: kDzj%sm!
% ----------------------------- =2
&hQd
if rpowers(1)==0 g ?afX1Sg
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %5JW<9
rpowern = cat(2,rpowern{:}); P_p6GT:5
rpowern = [ones(length_r,1) rpowern]; K1T1@ j
else nW4Vct
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hCzjC|EO~
rpowern = cat(2,rpowern{:}); W.A1m4l58R
end E@w[
LBiowd[
% Compute the values of the polynomials: ^
<qrM
% -------------------------------------- [N)#/6j
y = zeros(length_r,length(n)); x*.Ye5Jb
for j = 1:length(n) *Ph]F$ZP
s = 0:(n(j)-m_abs(j))/2; J&M1t#UN
pows = n(j):-2:m_abs(j); fO].e"}
for k = length(s):-1:1 \bhOPK>w
p = (1-2*mod(s(k),2))* ... c[SU5 66y
prod(2:(n(j)-s(k)))/ ... M
h`CP
prod(2:s(k))/ ... rdO@X9z
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ZCm1+Y$
prod(2:((n(j)+m_abs(j))/2-s(k))); [2Iau1<@
idx = (pows(k)==rpowers); * R%.a^R
y(:,j) = y(:,j) + p*rpowern(:,idx); 3bWum
end v btAq^1
HOE2*4r
if isnorm jOs
H2^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U,e'ZRU6
end Bwjg#1 E
end osl=[pm
% END: Compute the Zernike Polynomials 0pD
W _
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )8;{nqoC
/Zc#j^_
% Compute the Zernike functions: kLJlS,nh\r
% ------------------------------ v"rl5x
idx_pos = m>0; !g8*r"[UJ
idx_neg = m<0; 7Yuk
uJgI<l'|e3
z = y; pA<eTlH
if any(idx_pos) Q uB+vL
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~z5@V5z
end =yo{[&Jz
if any(idx_neg) Ls]@icH0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sxo;/~.p
end 9qpU@V!
>9=:sSQu
% EOF zernfun