非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :%-w/QwTR
function z = zernfun(n,m,r,theta,nflag) F|a'^:Qs
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. m'zve%G
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \
)WS^KR%
% and angular frequency M, evaluated at positions (R,THETA) on the ({3Ap{Q}
% unit circle. N is a vector of positive integers (including 0), and nIr:a|}[
% M is a vector with the same number of elements as N. Each element KCIya[$*
% k of M must be a positive integer, with possible values M(k) = -N(k) Xf#+^cQ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, =PF2p'.o
% and THETA is a vector of angles. R and THETA must have the same ]ZnASlc)
% length. The output Z is a matrix with one column for every (N,M) YK\pV'&+
% pair, and one row for every (R,THETA) pair. >PzZt8e
% c)3.AgT
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }K^v Ujl
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xa'^:H $X
% with delta(m,0) the Kronecker delta, is chosen so that the integral &\=Tm~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #;[0:jU0
% and theta=0 to theta=2*pi) is unity. For the non-normalized .?vHoNvo
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JZdRAL2#v
% !r8_'K5R(
% The Zernike functions are an orthogonal basis on the unit circle. [vY#9W"!
% They are used in disciplines such as astronomy, optics, and bcq&yL'D
% optometry to describe functions on a circular domain.
OqWm5(u&S
% : *XAQb0
% The following table lists the first 15 Zernike functions. g< xE}[gF
% -2[#1S*
% n m Zernike function Normalization <+-=j
% -------------------------------------------------- + ZKU2N*
% 0 0 1 1 ;F|#m,2Q-
% 1 1 r * cos(theta) 2
:R`e<g~4
% 1 -1 r * sin(theta) 2 zO2=o5nF.
% 2 -2 r^2 * cos(2*theta) sqrt(6) @j!(at4B
% 2 0 (2*r^2 - 1) sqrt(3) HSWki';G
% 2 2 r^2 * sin(2*theta) sqrt(6) XzPOqZ`Nv
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]>Ym
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ;\v&4+3S
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) xL*J9&~iG
% 3 3 r^3 * sin(3*theta) sqrt(8) {P_i5V?
% 4 -4 r^4 * cos(4*theta) sqrt(10) H|_@9V
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }N}Js*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) twu,yC!
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x`c7*q%
% 4 4 r^4 * sin(4*theta) sqrt(10) nU' qE
% -------------------------------------------------- c`/VYgcTqB
% R7"7
Rx
% Example 1: Y0Tad?iC
% Dw/vXyZ
% % Display the Zernike function Z(n=5,m=1) b*Q3j}c Z
% x = -1:0.01:1; z#Fel/L`O
% [X,Y] = meshgrid(x,x); P z~jW):E
% [theta,r] = cart2pol(X,Y); }K={HW1>
% idx = r<=1; 7H09\g&
% z = nan(size(X)); $E&T6=Wn
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =IW!ZN_
% figure |gWA'O0S
% pcolor(x,x,z), shading interp ">G*hS
% axis square, colorbar =tbfBK+
% title('Zernike function Z_5^1(r,\theta)') @dk-+YxG
% 0@!huk
% Example 2: Ka6u*:/
% $#-rOi /
% % Display the first 10 Zernike functions ImG8v[Q
E
% x = -1:0.01:1; Q=8YAiCu
% [X,Y] = meshgrid(x,x); Xy%||\P{)
% [theta,r] = cart2pol(X,Y); IIih9I`IR
% idx = r<=1; =
% z = nan(size(X)); 2GORGS%
% n = [0 1 1 2 2 2 3 3 3 3]; yuy\T(7BN
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]\KVA)\
% Nplot = [4 10 12 16 18 20 22 24 26 28]; h]h"-3
% y = zernfun(n,m,r(idx),theta(idx)); q01 L{~>bz
% figure('Units','normalized') m5iCvOP
% for k = 1:10 U#cGd\b
% z(idx) = y(:,k); JRi:MWR<r
% subplot(4,7,Nplot(k)) "T_9_6tH
% pcolor(x,x,z), shading interp .Sn{a}XP4
% set(gca,'XTick',[],'YTick',[]) Zj!,3{jX^
% axis square V]; i$
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tVO}{[U}
% end 4~3
n
=T*
% G"`
}"T0}
% See also ZERNPOL, ZERNFUN2. u.|%@
SGSyO0O
% Paul Fricker 11/13/2006 \?]U*)B.r
{ibu0
h$kz3r;b,"
% Check and prepare the inputs: lHtywZ@%3
% ----------------------------- *djLf.I@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,+
G
error('zernfun:NMvectors','N and M must be vectors.') >zqaV@T
end 4P[MkMoC
W M` 3QJb
if length(n)~=length(m) zwZvKV/g
error('zernfun:NMlength','N and M must be the same length.') +HBizJ9K
end Et!J*{s
jQ;/=9
n = n(:); cN0
*<
m = m(:); :Bmn<2[Y;
if any(mod(n-m,2)) ttUK~%wSx
error('zernfun:NMmultiplesof2', ... \894Jqh
'All N and M must differ by multiples of 2 (including 0).') {iX#
end F$)l8}
~w3u(X$m"
if any(m>n) beBG40
error('zernfun:MlessthanN', ... E+i*u
'Each M must be less than or equal to its corresponding N.') o *J*}y
end &Gh0f"?
LWv<mtuYf
if any( r>1 | r<0 ) 4?1Qe\A^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') R1X'}#mU
end Rb L?(
e?.j8Q~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^T!Zz"/:
error('zernfun:RTHvector','R and THETA must be vectors.') V*b/N
end oh< -&3Jn
P !i_?M
r = r(:); (O{OQk;CF
theta = theta(:); 0TmEa59P
length_r = length(r); n#g_)\
if length_r~=length(theta) Q"dq_8\`U
error('zernfun:RTHlength', ... &Gjpc>d
'The number of R- and THETA-values must be equal.') (p{%]M
end gLX<>|)*
w\acgQ^%e
% Check normalization: uK@d?u!`
% -------------------- 9$\s
v5
if nargin==5 && ischar(nflag) p[JIH~nb
isnorm = strcmpi(nflag,'norm'); 4>=M"DhB
if ~isnorm M5h
r0R{
error('zernfun:normalization','Unrecognized normalization flag.') u9"yU:1keb
end ?YW~7zG
else `f; w
isnorm = false; ;[::&qf
end ?Z 2,?G
QFx3N%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =$J(]KPv!?
% Compute the Zernike Polynomials zbxW
U]<S?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :|s8v2am
D6Ad"|Z
% Determine the required powers of r: vW=-RTRH
% ----------------------------------- nZbI}kcm
m_abs = abs(m); wnokP
rpowers = []; 8X7??f1;Y
for j = 1:length(n) ~pRgTXbz
rpowers = [rpowers m_abs(j):2:n(j)]; |T6K?:U7
end Y/5M)AyJt
rpowers = unique(rpowers); A0Mjk
@3?>[R
% Pre-compute the values of r raised to the required powers, =:&xdphZ+
% and compile them in a matrix: ,,{;G'R|
% ----------------------------- /xk7Z
q
if rpowers(1)==0 P~trxp=k
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); DEZww9T2Qs
rpowern = cat(2,rpowern{:}); =IC.FT}
rpowern = [ones(length_r,1) rpowern]; S[F06.(1
else ~(V\.hq
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L~6%Fi&n4
rpowern = cat(2,rpowern{:}); j9NF|
end 2%pED
xui
r!Aj5
% Compute the values of the polynomials: cX-M9Cz
% -------------------------------------- 6j(/uF4!#
y = zeros(length_r,length(n)); W'@|ob
for j = 1:length(n) (L/>LZn|
s = 0:(n(j)-m_abs(j))/2; ^Gk`n
pows = n(j):-2:m_abs(j); R])Eg&
for k = length(s):-1:1 V\Cl""`XN
p = (1-2*mod(s(k),2))* ... ({!!b"B2
prod(2:(n(j)-s(k)))/ ... XR+
SjCA
prod(2:s(k))/ ... $.jGO!
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =K`.$R
prod(2:((n(j)+m_abs(j))/2-s(k))); 3NpB1lgh&:
idx = (pows(k)==rpowers); efQ8jO
y(:,j) = y(:,j) + p*rpowern(:,idx); |qw0:c=7!
end <T_3s\
e#Cv*i_<
if isnorm ZQfxlzj+X
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4EqThvI{
end }:#WjH^
end wm`<+K
% END: Compute the Zernike Polynomials Nj>6TD81u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :lB*km g
P-\f-FS
% Compute the Zernike functions: &42]#B"*
% ------------------------------ _@ao$)q{J
idx_pos = m>0; &ys>z<Z
idx_neg = m<0; /L^g. ~
'3l TI
z = y; ,clbD4
if any(idx_pos) zq};{~u(
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q VTL}AT2:
end yzS^8,
if any(idx_neg) ETHcZ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N!K%aH~O
end Pm/<^z%
_KH91$iW8m
% EOF zernfun