非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )]c3bMVE-
function z = zernfun(n,m,r,theta,nflag) Evq Ai/(g
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I#E(r>KW*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N a<wQzgxG
% and angular frequency M, evaluated at positions (R,THETA) on the 6eYf2sZ;J
% unit circle. N is a vector of positive integers (including 0), and vF6*c
% M is a vector with the same number of elements as N. Each element :@%-f:iDj
% k of M must be a positive integer, with possible values M(k) = -N(k) K}E7|gdG
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ;i9<y8Dha
% and THETA is a vector of angles. R and THETA must have the same ,o@~OTja*
% length. The output Z is a matrix with one column for every (N,M) A9l})_~i
% pair, and one row for every (R,THETA) pair. wYO"znd
% m_!vIUOz
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4[,B ;7
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), koEX4q
% with delta(m,0) the Kronecker delta, is chosen so that the integral VMZ]n%XRXW
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ca/o#9:N`:
% and theta=0 to theta=2*pi) is unity. For the non-normalized hQ}7Z&O
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
SU%rWH
% d9-mWz(V+
% The Zernike functions are an orthogonal basis on the unit circle. s w.AfRQP
% They are used in disciplines such as astronomy, optics, and n^pZXb;Y
% optometry to describe functions on a circular domain. Uy59zB2|=
% fQW_YQsb
% The following table lists the first 15 Zernike functions. ke9QT#~p!-
% Go\} A:|s
% n m Zernike function Normalization H/Ec^Lc+_
% -------------------------------------------------- (!VMnLlXRK
% 0 0 1 1 8S1P&+iKs
% 1 1 r * cos(theta) 2 UhSh(E8p>
% 1 -1 r * sin(theta) 2 @bW[J
% 2 -2 r^2 * cos(2*theta) sqrt(6) RJRq` T|m
% 2 0 (2*r^2 - 1) sqrt(3) Uc&6=5~Ys\
% 2 2 r^2 * sin(2*theta) sqrt(6) `o_fUOe8a
% 3 -3 r^3 * cos(3*theta) sqrt(8) tSb?]J
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _iGU|$a
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) C](z#c~c
% 3 3 r^3 * sin(3*theta) sqrt(8) xdL/0 N3
% 4 -4 r^4 * cos(4*theta) sqrt(10) ,zN3? /7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jKj=#O
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1J-Qh<Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )ew[ Ak|
% 4 4 r^4 * sin(4*theta) sqrt(10) NDRW
% -------------------------------------------------- $K?T=a;z
% h
eE'S/
% Example 1: &R'w-0k_
% ntj`+7mw
% % Display the Zernike function Z(n=5,m=1) 1C0Y0{6,
% x = -1:0.01:1;
coF T2Pq
% [X,Y] = meshgrid(x,x); oI_oz0nHk
% [theta,r] = cart2pol(X,Y); *bCi2mbm@
% idx = r<=1; , G[r+4|h
% z = nan(size(X)); kUn2RZ6$#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); *|LbbRu
% figure &0+x2e)7g
% pcolor(x,x,z), shading interp :F7k{~
% axis square, colorbar C#Hcv*D
% title('Zernike function Z_5^1(r,\theta)') |oe!P}u
% %XJQ0CE<(
% Example 2: |jahpji6
% 7_Ba3+9jpa
% % Display the first 10 Zernike functions 6_R\l@a
% x = -1:0.01:1; `E} p77
% [X,Y] = meshgrid(x,x); (px*R~}
% [theta,r] = cart2pol(X,Y); X~v4"|a
% idx = r<=1; ,4H;P/xsb
% z = nan(size(X)); =5y`(0 I`U
% n = [0 1 1 2 2 2 3 3 3 3]; lo+xo;Nd
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ~@T+mHny
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8pYyG
| \
% y = zernfun(n,m,r(idx),theta(idx)); ^oQekga\l
% figure('Units','normalized')
bKk CW
% for k = 1:10 T&1-eq>l
% z(idx) = y(:,k); xClRO,-
% subplot(4,7,Nplot(k)) F2IC$:e
M
% pcolor(x,x,z), shading interp AH&9Nye8
% set(gca,'XTick',[],'YTick',[]) 5%<TF.;-J
% axis square Mn]}s:v
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
?. zu2
% end XVQL.A7
% O.*jR`l
% See also ZERNPOL, ZERNFUN2. T>#TDMU#Fm
<9ma(PFa
% Paul Fricker 11/13/2006 o" |O
]
7w "sJ
p{NPcT%&
% Check and prepare the inputs: C/F@ ]_y
% ----------------------------- 6#<Ir @z
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qE>i,|rP`
error('zernfun:NMvectors','N and M must be vectors.') P?^JPbfV
end B-!guf
rnY
;K3d' U
if length(n)~=length(m) <u0*"
error('zernfun:NMlength','N and M must be the same length.') K<c2PFo)Q
end "?$L'!bM@
__8&Jv\
n = n(:); :I2H&,JT
m = m(:); ucw`;<d8
if any(mod(n-m,2)) ('=Z}~
error('zernfun:NMmultiplesof2', ... #`/bQ~s
'All N and M must differ by multiples of 2 (including 0).') avlqDi1l
end /x$}D=(CZ
$( S*GF$S
if any(m>n) 'r~8
error('zernfun:MlessthanN', ... w{3ycR
'Each M must be less than or equal to its corresponding N.') d>UnJ)V}
end O{~KR/
A*hZv|$0
if any( r>1 | r<0 ) vruD U#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') '}_=kp'X
end 5\WUoSgy
6VC-KY
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /w0sj`;"
error('zernfun:RTHvector','R and THETA must be vectors.') +vf:z?I8
end {t&*>ma6)
byafb+x
r = r(:); yx2z%E
theta = theta(:); DE%fF,Hk3
length_r = length(r); sa G8g
if length_r~=length(theta) "9w}dQ
error('zernfun:RTHlength', ... 6.[)`iF+#
'The number of R- and THETA-values must be equal.') /N>} 4Ay
end 4h;4!I|
\6{LR&
% Check normalization: P7Xg{L&@.
% -------------------- GLCAiSMz[
if nargin==5 && ischar(nflag) /
$_M@>
isnorm = strcmpi(nflag,'norm'); <KX&zi<L)
if ~isnorm syRN4
error('zernfun:normalization','Unrecognized normalization flag.') /HZv
end tU{\ev$x
else e9 *lixh
isnorm = false; Ls1B\Aw _
end >VP5vkv=
6x/s|RWL1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9p4y>3
% Compute the Zernike Polynomials Hs$'0:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KU]ok '
4^[
/=J}
% Determine the required powers of r: BKay*!'PX
% ----------------------------------- eeW`JG-E
m_abs = abs(m); h,t:]
rpowers = []; <[ZI.+_Wt
for j = 1:length(n) ALXTR%f
rpowers = [rpowers m_abs(j):2:n(j)]; ^^U%cu Kg
end b!^@PIX
rpowers = unique(rpowers); >g]ON9CGH
>La><.z~
% Pre-compute the values of r raised to the required powers, 6Hk="$6K
% and compile them in a matrix: _w>uI57U
% ----------------------------- p?JQ[K7i
if rpowers(1)==0 'OD)v
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Wo!;K|~P
rpowern = cat(2,rpowern{:}); M?$ZJ-
rpowern = [ones(length_r,1) rpowern]; O%&cE*eX
else H O*YBL
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w"~<h;
rpowern = cat(2,rpowern{:}); k"0;D-lTZ>
end s6n`?,vw
pawl|Z'Ez
% Compute the values of the polynomials: @PX\{6&
% -------------------------------------- nxfoWy
y = zeros(length_r,length(n)); [Gtb+'8
for j = 1:length(n) Gq1)1
s = 0:(n(j)-m_abs(j))/2; to`mnp9Z
pows = n(j):-2:m_abs(j); \f%.n]>
for k = length(s):-1:1 \k; n20\u
p = (1-2*mod(s(k),2))* ... MA*
:<l
prod(2:(n(j)-s(k)))/ ... S)7/0N79A
prod(2:s(k))/ ... R,,Qt
TGB
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 4MLH+/e
prod(2:((n(j)+m_abs(j))/2-s(k))); pRrHuLj^
idx = (pows(k)==rpowers); 3{ "O,h
y(:,j) = y(:,j) + p*rpowern(:,idx); vy9dAl
end :o8MUXH$
I2[]A,f,
if isnorm n_23EcSy
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [E|uY]DR
end vFhz!P~
end {v,)G)obWw
% END: Compute the Zernike Polynomials "@yyXS
r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 24B<[lSK
%u!b& 5]e
% Compute the Zernike functions: `]<`$71w
% ------------------------------ !Z|($21W
idx_pos = m>0; HID([Wk
idx_neg = m<0; .<YcSG
zk}{ dG^M:
z = y; kO_5|6
if any(idx_pos) ;gB`YNL
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +}JM&bfK
end 76@qHTh}
if any(idx_neg) GBQn_(b9I
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');
rLv;Y
end s&Yi 6:J
z 7T0u.4Ss
% EOF zernfun