切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10491阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;cxYX/fJ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /xj'Pq((}p  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R"=G?d)  
    function z = zernfun(n,m,r,theta,nflag) )]X_')K  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. CNf eHMT  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3u+~!yz  
    %   and angular frequency M, evaluated at positions (R,THETA) on the i#(T?=VPcy  
    %   unit circle.  N is a vector of positive integers (including 0), and #UI@<0P)  
    %   M is a vector with the same number of elements as N.  Each element 1 9;\:tN  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }3M\&}=8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u_zp?Nc  
    %   and THETA is a vector of angles.  R and THETA must have the same +4B>gS[ F  
    %   length.  The output Z is a matrix with one column for every (N,M) !mq+Oz~  
    %   pair, and one row for every (R,THETA) pair. YujhpJ<  
    % tw\/1wa.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "d%":F(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), o`hF1*yp  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Eh8.S)E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 611:eLyy&l  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `4(k ?Pk2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Tx],- U  
    % ^om(6JL2  
    %   The Zernike functions are an orthogonal basis on the unit circle. /1o~x~g(b  
    %   They are used in disciplines such as astronomy, optics, and e @=Bl-  
    %   optometry to describe functions on a circular domain. ^ 8egn|  
    % 8 :Z3Q  
    %   The following table lists the first 15 Zernike functions. }$81FSKh  
    % :;)K>g,b  
    %       n    m    Zernike function           Normalization f>l}y->-Ug  
    %       -------------------------------------------------- & 7JCPw  
    %       0    0    1                                 1 F4Z+)'oDr,  
    %       1    1    r * cos(theta)                    2 CbI[K|  
    %       1   -1    r * sin(theta)                    2 %3'80u6BCJ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?w /tq!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) =#n|t[h-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TJ2$ Z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 80 i<Ij8J  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) o}Dy\UfU  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /m.6NVu7  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) NC@OmSR\0  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) G|IO~o0+  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vMj"%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  h ej  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !W .ooy5(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^Shz[=fd  
    %       -------------------------------------------------- ]"{K5s7  
    % Z?CmD ;W  
    %   Example 1: WPpl9)Qc  
    % |V%Qp5 XJ  
    %       % Display the Zernike function Z(n=5,m=1) hJ+>Xm@@!  
    %       x = -1:0.01:1; Lc0^I<Y  
    %       [X,Y] = meshgrid(x,x); O .m; a_  
    %       [theta,r] = cart2pol(X,Y); |4ONGU*`E  
    %       idx = r<=1; bC)d iC  
    %       z = nan(size(X)); [bH6>{3u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2c_#q1/Z/  
    %       figure Ej8EQ% P  
    %       pcolor(x,x,z), shading interp N3 07lGb  
    %       axis square, colorbar 7`|$uIM`  
    %       title('Zernike function Z_5^1(r,\theta)') vfcj,1  
    % K"#np!Y)  
    %   Example 2: IF$f^$  
    % _l{G Hz  
    %       % Display the first 10 Zernike functions e>z3 \4  
    %       x = -1:0.01:1; /i"L@t)\t  
    %       [X,Y] = meshgrid(x,x); Y!Wz7 C  
    %       [theta,r] = cart2pol(X,Y); oCXBek?\  
    %       idx = r<=1; 9ZeTS~i  
    %       z = nan(size(X)); 7M=`Z{=9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; uiPfAPZ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; w=e~ M  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %Z}A+Rv+*m  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7%&#V2  
    %       figure('Units','normalized') T B1E1  
    %       for k = 1:10 pg [F{T<  
    %           z(idx) = y(:,k); gj0gs  
    %           subplot(4,7,Nplot(k)) CES^ c-. k  
    %           pcolor(x,x,z), shading interp DnMfHG[<  
    %           set(gca,'XTick',[],'YTick',[]) t+|c)"\5h  
    %           axis square `Q' 0l},  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /{."*jK  
    %       end #t>w)`bA-  
    % )apqL{u:=  
    %   See also ZERNPOL, ZERNFUN2. ?m}vDd  
    *"d"  
    %   Paul Fricker 11/13/2006 D[-V1K&g  
    wm%9>mA%  
    #9F=+[L  
    % Check and prepare the inputs: Dny5X.8  
    % ----------------------------- z v*hA/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CC;T[b&  
        error('zernfun:NMvectors','N and M must be vectors.') 2E9Cp  
    end Nv{r`J.  
    ogtKj"a  
    if length(n)~=length(m) 2,{m>fF  
        error('zernfun:NMlength','N and M must be the same length.') "M3R}<Vt  
    end }q^M  
    %oJ_,m_(  
    n = n(:); !iN=py  
    m = m(:); K.Nun)<  
    if any(mod(n-m,2)) =6y4*f  
        error('zernfun:NMmultiplesof2', ... /. k4Y  
              'All N and M must differ by multiples of 2 (including 0).') !_3R dS  
    end KB0 HM  
    _VLc1svv  
    if any(m>n) Y;O\ >o[  
        error('zernfun:MlessthanN', ... w+)MrB-}  
              'Each M must be less than or equal to its corresponding N.') xc7Wk&{=  
    end \DI%/(?  
    .DR^<Qy  
    if any( r>1 | r<0 ) I kv@}^p 7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 80TSE*  
    end Q*u4q-DE  
    9*pH[vH  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `md)|PSU  
        error('zernfun:RTHvector','R and THETA must be vectors.') JKN0:/t7 Q  
    end H`odQkZ!  
    e<2?O  
    r = r(:); TUuw  
    theta = theta(:); gVO<W.?  
    length_r = length(r); dtD)VNkBZ  
    if length_r~=length(theta) 9|R]Lz3PA  
        error('zernfun:RTHlength', ... $9k7A 8K  
              'The number of R- and THETA-values must be equal.') N/IDj2C4  
    end .-2i9Bh6  
    s tvI  
    % Check normalization: b9b384Q1O  
    % -------------------- `"`/_al^  
    if nargin==5 && ischar(nflag) /UtCJMQ  
        isnorm = strcmpi(nflag,'norm'); \Jq$!foYx  
        if ~isnorm ~5g2~.&*  
            error('zernfun:normalization','Unrecognized normalization flag.') s$Z zS2d  
        end @Cg%7AF  
    else *S,5  
        isnorm = false; b|F4E{{D^  
    end Qa-]IKOs  
    s~(!m. R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vcm66J.14  
    % Compute the Zernike Polynomials 4JV/Ci5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T:k-`t0":N  
    GF]V$5.ps  
    % Determine the required powers of r: LE$_qX`L  
    % ----------------------------------- ^~\cx75D  
    m_abs = abs(m); *q**,_?;  
    rpowers = []; h r9rI  
    for j = 1:length(n) a k&G=a6^  
        rpowers = [rpowers m_abs(j):2:n(j)]; cXP*?N4C f  
    end I2"F2(>8K  
    rpowers = unique(rpowers); ^I2+$  
    !Q(xA,p  
    % Pre-compute the values of r raised to the required powers, CRXIVver  
    % and compile them in a matrix: .&Tcds  
    % ----------------------------- oTS/z\C"<u  
    if rpowers(1)==0 jFAnhbbCE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E d6k7  
        rpowern = cat(2,rpowern{:}); rZ[}vU/H`  
        rpowern = [ones(length_r,1) rpowern]; $6 46"1S  
    else %#7NCdk;S  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dZ]['y%  
        rpowern = cat(2,rpowern{:}); , gYbi-E  
    end abAX)R'  
    NmbA~i  
    % Compute the values of the polynomials: G!Gbg3:4e5  
    % -------------------------------------- O>FE-0rW}e  
    y = zeros(length_r,length(n)); '8RBR%)y  
    for j = 1:length(n) $"#2hVO  
        s = 0:(n(j)-m_abs(j))/2;   %4  
        pows = n(j):-2:m_abs(j); v>S[} du  
        for k = length(s):-1:1 J9buf}C[  
            p = (1-2*mod(s(k),2))* ... uB&um*DP  
                       prod(2:(n(j)-s(k)))/              ... Tw`n3y?  
                       prod(2:s(k))/                     ... VH*4fcT'D  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Lt 8J^}kwl  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); '#Yqs/V  
            idx = (pows(k)==rpowers); QV&yVH=Xs  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ePD~SO9*  
        end ]|6)'L&]*s  
         I;u1mywd  
        if isnorm RH^!7W*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hW~XE{<  
        end mT:Z!sS  
    end YoU|)6Of   
    % END: Compute the Zernike Polynomials CRpMpPi@}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ON()2@Y4  
    ^*-6PV#Z  
    % Compute the Zernike functions: Ad%3 fvn  
    % ------------------------------ JSf \ApX  
    idx_pos = m>0; %]U'   
    idx_neg = m<0; Ja`xG{~Y7i  
    *PSUB{i(  
    z = y; &-e@Et`Pg  
    if any(idx_pos) sfo+B$4|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q eW{Cl~  
    end {D>@ZC  
    if any(idx_neg) n^xB_DJ~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); r9\7I7z  
    end L9"yQD^R7?  
    q$ZmR]p  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ]iq2_{q  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. (\zxiK  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated uH.1'bR?a  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive y$Rh$e K  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, k x?m "a%  
    %   and THETA is a vector of angles.  R and THETA must have the same r`OC5IoQ  
    %   length.  The output Z is a matrix with one column for every P-value, FpYeuH%  
    %   and one row for every (R,THETA) pair. x)0''}E~  
    % -(Fhj Ir  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nQm (UN  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ahmxbv3f=5  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) >U9JbkeF  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @?/>$  
    %   for all p. tmgZNg  
    % Vm8rQFCp74  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ,bRYqU?#0  
    %   Zernike functions (order N<=7).  In some disciplines it is oa"_5kn,  
    %   traditional to label the first 36 functions using a single mode hf1h*x^J  
    %   number P instead of separate numbers for the order N and azimuthal VEG p!~D  
    %   frequency M. v1aE[Q  
    % ']__V[  
    %   Example: K2@],E?e%|  
    % p?H2W-  
    %       % Display the first 16 Zernike functions nYE' 'g+x  
    %       x = -1:0.01:1; =c34MY(#X  
    %       [X,Y] = meshgrid(x,x); zPyN2|iFah  
    %       [theta,r] = cart2pol(X,Y); M/5+AsT  
    %       idx = r<=1; \T:*tgU  
    %       p = 0:15; z0-[ RGg  
    %       z = nan(size(X)); yLY$1#Sa  
    %       y = zernfun2(p,r(idx),theta(idx)); fpA%:V  
    %       figure('Units','normalized') FE4P EBXvu  
    %       for k = 1:length(p) \<kQ::o1y  
    %           z(idx) = y(:,k); >ca w :  
    %           subplot(4,4,k) (p!w`MSv  
    %           pcolor(x,x,z), shading interp m+=L}[  
    %           set(gca,'XTick',[],'YTick',[])  Uip-qWI  
    %           axis square l\"wdS}  
    %           title(['Z_{' num2str(p(k)) '}']) 4%"Df1 U  
    %       end  8\Uy  
    % Fu\!'\6  
    %   See also ZERNPOL, ZERNFUN. -Crm#Ib~  
    Cb i;CF\{  
    %   Paul Fricker 11/13/2006 '&<saqA  
    pp1kcrE\M  
    K]H [A,  
    % Check and prepare the inputs: m_C#fR /I  
    % ----------------------------- i@o'Fc  
    if min(size(p))~=1 I/k/5  
        error('zernfun2:Pvector','Input P must be vector.') )tp;2rJ/  
    end ]r@CmwC  
    `+]e}*7$f  
    if any(p)>35 %j. *YvveW  
        error('zernfun2:P36', ... C)(/NGf  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... N@3&e;y  
               '(P = 0 to 35).']) ::k cV'*  
    end Rwe!xY^d8  
    `6FH@" |I  
    % Get the order and frequency corresonding to the function number: /:+MUw7~  
    % ---------------------------------------------------------------- (3  ]!ZV  
    p = p(:); (RafidiH  
    n = ceil((-3+sqrt(9+8*p))/2); WJBwo%J  
    m = 2*p - n.*(n+2); }_,={<g  
    Nf1&UgX  
    % Pass the inputs to the function ZERNFUN: x#jJ 0T  
    % ---------------------------------------- @s8wYcW  
    switch nargin #]}]ZE  
        case 3 SS7C|*-Zd  
            z = zernfun(n,m,r,theta); E, ;'n  
        case 4 39oI &D>8  
            z = zernfun(n,m,r,theta,nflag); VX,@Gp_'m  
        otherwise :BVYS|%  
            error('zernfun2:nargin','Incorrect number of inputs.') _qU;`Q  
    end &]jCoBj+_  
    ; -,VJCPi  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) GEZ!z5";BQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 6UAw9 'X8  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Je#vu`.\\  
    %   order N and frequency M, evaluated at R.  N is a vector of Hr!%L*h?  
    %   positive integers (including 0), and M is a vector with the ~NZ}@J{00_  
    %   same number of elements as N.  Each element k of M must be a |6T"T P  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) =0mXTY1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <59G  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix R0bWI`$Z  
    %   with one column for every (N,M) pair, and one row for every 91:TE8?Z  
    %   element in R. ]:Sb#=,!&!  
    % 0wZAsG"Bg  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L]3gHq  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ]6;oS-4gu?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to x_OZdI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 g#r,u5<*?  
    %   for all [n,m]. ^k4 n  
    % /A>1TPb09"  
    %   The radial Zernike polynomials are the radial portion of the iuHs.k<z  
    %   Zernike functions, which are an orthogonal basis on the unit g{^(EZ,  
    %   circle.  The series representation of the radial Zernike z.0!FUd  
    %   polynomials is  "xp>Vj  
    % b_GAK  
    %          (n-m)/2 Xf*}V+&WN  
    %            __ 3y]rhB  
    %    m      \       s                                          n-2s ?oulQR6:  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r mmBZ}V+&=  
    %    n      s=0 2br~Vn0N  
    % #}aBRKZ f6  
    %   The following table shows the first 12 polynomials. g0 Jy:`M  
    % HRW }Yl  
    %       n    m    Zernike polynomial    Normalization >|_B=<!99W  
    %       --------------------------------------------- 6M X4h  
    %       0    0    1                        sqrt(2) GdtR  /1  
    %       1    1    r                           2 A S]jJc^  
    %       2    0    2*r^2 - 1                sqrt(6) {14sI*b16  
    %       2    2    r^2                      sqrt(6) 0=c:O  
    %       3    1    3*r^3 - 2*r              sqrt(8) t0+D~F(g  
    %       3    3    r^3                      sqrt(8) [eZ'h8  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) _VI3b$  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 06fs,!Q@  
    %       4    4    r^4                      sqrt(10) x qLIs:*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) x(bM   
    %       5    3    5*r^5 - 4*r^3            sqrt(12) X2to](\% X  
    %       5    5    r^5                      sqrt(12) <7yn:  
    %       --------------------------------------------- g%2twq_  
    % <n)R?P(or  
    %   Example: brClYpp,h  
    % V|G[j\]E<  
    %       % Display three example Zernike radial polynomials NK|m7 (  
    %       r = 0:0.01:1; H`Ld,E2ex&  
    %       n = [3 2 5]; 8b:\@]g$  
    %       m = [1 2 1]; Uiu9o]n  
    %       z = zernpol(n,m,r); @ )m9#F  
    %       figure OvtiFN^s'  
    %       plot(r,z) O>sE~~g]?  
    %       grid on V9<CeTl'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {uji7TB  
    % HK!Vd_&9,  
    %   See also ZERNFUN, ZERNFUN2. 2-.%WhE/  
    Z'|A>4\  
    % A note on the algorithm. <nE|Y@S  
    % ------------------------ 7T@"2WYat  
    % The radial Zernike polynomials are computed using the series AAld2"r  
    % representation shown in the Help section above. For many special ,Z p9,nf  
    % functions, direct evaluation using the series representation can TM?7F2  
    % produce poor numerical results (floating point errors), because TM1J1GU  
    % the summation often involves computing small differences between }Q%fY&#(bp  
    % large successive terms in the series. (In such cases, the functions ~L=Idt!9  
    % are often evaluated using alternative methods such as recurrence Ax"I$6n>  
    % relations: see the Legendre functions, for example). For the Zernike c0W4<(  
    % polynomials, however, this problem does not arise, because the i=8){G X4  
    % polynomials are evaluated over the finite domain r = (0,1), and 3+| {O  
    % because the coefficients for a given polynomial are generally all (y{nD~k  
    % of similar magnitude. +)7Yqh#$  
    % o= N_0.  
    % ZERNPOL has been written using a vectorized implementation: multiple I6,sN9` K  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Zfn390_  
    % values can be passed as inputs) for a vector of points R.  To achieve d*TpHLm  
    % this vectorization most efficiently, the algorithm in ZERNPOL RXU#.=xvy  
    % involves pre-determining all the powers p of R that are required to 20p/p~<  
    % compute the outputs, and then compiling the {R^p} into a single [Q*aJLG  
    % matrix.  This avoids any redundant computation of the R^p, and k7ODQ(*v  
    % minimizes the sizes of certain intermediate variables. 3O!TVSo  
    % O`W&`B(*k  
    %   Paul Fricker 11/13/2006 ~'2im[f J  
    /o=,\kM  
    ua!g}m~  
    % Check and prepare the inputs: hV4\#K[  
    % ----------------------------- a,U@ !}K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9QryW\6.@z  
        error('zernpol:NMvectors','N and M must be vectors.') xr\wOQ*`  
    end M:OJL\0  
    C6`<SW  
    if length(n)~=length(m) 7,N>u8cTh  
        error('zernpol:NMlength','N and M must be the same length.') Z2dy|e(c  
    end h f1f  
    "x$RTuWA9  
    n = n(:); bs_"Nn?  
    m = m(:); y~N,=5>j  
    length_n = length(n); ] x_WO_  
    \PB~ 6  
    if any(mod(n-m,2)) ii :h E=  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') #815h,nP+  
    end Z 7M%}V%  
    De*Z UN|<  
    if any(m<0) ?>p<!:E!r  
        error('zernpol:Mpositive','All M must be positive.') @#%rTKD9F  
    end Q`]E l<$  
    ?"no~(EB  
    if any(m>n) ]'UO]i/  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') \KaWR  
    end O} !L;?  
    3=r8kh7,  
    if any( r>1 | r<0 ) 3 T3p[q4  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0Up@+R2  
    end bTn7$EG  
    t;@VsQ8  
    if ~any(size(r)==1) i7[CqObzc  
        error('zernpol:Rvector','R must be a vector.') f*g>~!  
    end MKdBqnM(F  
    .FnO  
    r = r(:); Odr@9MJ  
    length_r = length(r); !(hP{k ^g  
    {da Nw>TH  
    if nargin==4 Ha\q}~_  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); x hFQjV?V  
        if ~isnorm o4b!U%  
            error('zernpol:normalization','Unrecognized normalization flag.') O\ T  
        end q)ygSOtj  
    else PomX@N}1  
        isnorm = false; .Jz$)R  
    end %3i/PIN  
    Es kh=xA {  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HB$*xS1  
    % Compute the Zernike Polynomials S #X$QD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z3G>DF:$  
    9BGPq)#  
    % Determine the required powers of r: <=V2~ asB  
    % ----------------------------------- :XMw="u=  
    rpowers = []; ?J+[|*'yK  
    for j = 1:length(n) buRXzSR  
        rpowers = [rpowers m(j):2:n(j)]; ctOC.  
    end I~qS6#%r  
    rpowers = unique(rpowers); qoMYiF}/e  
    )@3ce'  
    % Pre-compute the values of r raised to the required powers, GG\]}UjX  
    % and compile them in a matrix: )}?'1ciHI  
    % ----------------------------- r+;C}[E  
    if rpowers(1)==0 YizJT0$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :eI .E:/'  
        rpowern = cat(2,rpowern{:}); `"M=ZVk  
        rpowern = [ones(length_r,1) rpowern]; kF~}htv.=  
    else /40Z-'Bl=(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); O@3EJkv  
        rpowern = cat(2,rpowern{:}); K,' ]G&K  
    end e(BF=gesgp  
    Nm<3bd  
    % Compute the values of the polynomials: q+t*3;X.  
    % -------------------------------------- fL"-K  
    z = zeros(length_r,length_n); 6@!<' l%z  
    for j = 1:length_n DJrE[wI  
        s = 0:(n(j)-m(j))/2; Iq_cs '  
        pows = n(j):-2:m(j); #:{PAt  
        for k = length(s):-1:1 /wI$}X5o~  
            p = (1-2*mod(s(k),2))* ... ~LHG  
                       prod(2:(n(j)-s(k)))/          ... Ol"p^sqwj  
                       prod(2:s(k))/                 ... S'V0c%'QQV  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... b}o^ ?NtA  
                       prod(2:((n(j)+m(j))/2-s(k))); uI-te~]  
            idx = (pows(k)==rpowers); E<'3?(D9hL  
            z(:,j) = z(:,j) + p*rpowern(:,idx); .BlGV2@^#  
        end A[;R_  
         M'HmVg4'  
        if isnorm h5x FP  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ,;H)CUe1"  
        end ve=oH;zf  
    end N(]6pG=  
    # o)a`,f  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  XrP'FLY o  
    $WmB__  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =h5&:?X  
    qaJ$0,]H+  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)