切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11541阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 lq }g*ih  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! @szr '&\%A  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]..7t|^b&  
    function z = zernfun(n,m,r,theta,nflag) =SV b k  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6 U_P  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jj6yf.r6c  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Hp5.jor(k  
    %   unit circle.  N is a vector of positive integers (including 0), and ?,^ Aoy  
    %   M is a vector with the same number of elements as N.  Each element X}B ]0z>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \@m^w"Ij  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5]~4 51  
    %   and THETA is a vector of angles.  R and THETA must have the same x4-_K%  
    %   length.  The output Z is a matrix with one column for every (N,M) {fa3"k_ke  
    %   pair, and one row for every (R,THETA) pair. ]Gf`nJDV  
    % cUC!'+L  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]-cSTtO  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), D hD^w;f]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hO; XJyv  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -mw`f)?Ev  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized R'Uf#.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. aKz:hG  
    % I`;SA~5  
    %   The Zernike functions are an orthogonal basis on the unit circle. +F+M[ef<ws  
    %   They are used in disciplines such as astronomy, optics, and odWK\e  
    %   optometry to describe functions on a circular domain. Fs&r ^ [/b  
    % xQkvK=~$  
    %   The following table lists the first 15 Zernike functions. 9PdD=9HH  
    % vKBi jmE  
    %       n    m    Zernike function           Normalization pD;fFLvN  
    %       -------------------------------------------------- q5{h@}|M  
    %       0    0    1                                 1 Go(Td++HS  
    %       1    1    r * cos(theta)                    2 i>e?$H,/  
    %       1   -1    r * sin(theta)                    2 e%C_>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gUY~ l= c  
    %       2    0    (2*r^2 - 1)                    sqrt(3) tmi)LRF H  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) YO9;NA{sH  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) oS^KC}X  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ug\$Ob5=q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) LB`{35b-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 8p]9A,Uq&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !RSJb  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G`RQl@W>)(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) bE?X?[K  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iFnD`l 6)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) hkMVA  
    %       -------------------------------------------------- >:HmIW0PLe  
    % K/K|[=bl  
    %   Example 1: Ll .P>LH  
    % QD%!a{I  
    %       % Display the Zernike function Z(n=5,m=1) N-W>tng_x  
    %       x = -1:0.01:1; \rd%$hci  
    %       [X,Y] = meshgrid(x,x); r1:CHIwK  
    %       [theta,r] = cart2pol(X,Y); wf`A&P5tF  
    %       idx = r<=1; ,B'fOJ.2  
    %       z = nan(size(X)); ")<5 VtV  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); i` Q&5KL  
    %       figure  { &Vt]9  
    %       pcolor(x,x,z), shading interp A9;,y'm^8  
    %       axis square, colorbar R3%%;`c=  
    %       title('Zernike function Z_5^1(r,\theta)') 8OiCldw:HN  
    % W/g_XQ   
    %   Example 2: 4:5M,p  
    % m`}mbm^  
    %       % Display the first 10 Zernike functions  1D_&n@  
    %       x = -1:0.01:1; eph2&)D}Ep  
    %       [X,Y] = meshgrid(x,x); hZlHY9[t?  
    %       [theta,r] = cart2pol(X,Y); sUU[QP-  
    %       idx = r<=1; [+Fajo;0  
    %       z = nan(size(X)); t<o7 S:a"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; p=odyf1hK  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \*[DR R0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; qsQ{`E0  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7hTpjox2  
    %       figure('Units','normalized') +abb[  
    %       for k = 1:10 7Mk>`4D'c  
    %           z(idx) = y(:,k); V~p01f"J  
    %           subplot(4,7,Nplot(k)) YgdQC(ib  
    %           pcolor(x,x,z), shading interp 2vh }:A_  
    %           set(gca,'XTick',[],'YTick',[]) `!$6F:d_l  
    %           axis square {xeJO:M3/  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `So/G  
    %       end AUu<@4R7  
    % 3!$+N\ #w  
    %   See also ZERNPOL, ZERNFUN2. bv VkN  
    *@p"  
    %   Paul Fricker 11/13/2006 %}e['d h  
    >lKu[nq;  
    `S0`3q}L3%  
    % Check and prepare the inputs: *CPpU|  
    % ----------------------------- n_Qua|R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) YC')vv3o(  
        error('zernfun:NMvectors','N and M must be vectors.') $v #  
    end ~_Fx2T:X  
    JsNj!aeU%  
    if length(n)~=length(m) } C:i0Q  
        error('zernfun:NMlength','N and M must be the same length.') Il Qk W<  
    end heL`"Y2'y>  
    `a83bF35  
    n = n(:); [N Afy~X*  
    m = m(:); I;-Y2*  
    if any(mod(n-m,2)) GcDA0%i  
        error('zernfun:NMmultiplesof2', ... uAqiL>y  
              'All N and M must differ by multiples of 2 (including 0).') \Oq8kJ=  
    end q/@+.q  
    -fXQ62:S  
    if any(m>n) x"g)pGsT  
        error('zernfun:MlessthanN', ... "T{WOGU+  
              'Each M must be less than or equal to its corresponding N.') _cE_\Ay  
    end (' 7$K  
    yQMwt|C4  
    if any( r>1 | r<0 ) ;N?(R\* 8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &l3(+4Sh  
    end fLqjBG]<  
    !^&VZh  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) >~nr,V.q  
        error('zernfun:RTHvector','R and THETA must be vectors.') b>VV/j4!/  
    end g4b#U\D@)/  
    ,h*N9}xYTi  
    r = r(:); ,dR.Sac v  
    theta = theta(:); %~x?C4L8  
    length_r = length(r); }6!/Nb  
    if length_r~=length(theta) '~Cn+xf4]  
        error('zernfun:RTHlength', ... p]EugLEmG  
              'The number of R- and THETA-values must be equal.') nq HpYb6I0  
    end YI ?P@y  
    "3\y~<8%'  
    % Check normalization: ; cvMNU$fN  
    % -------------------- 8-NycG&)  
    if nargin==5 && ischar(nflag) hPSMPbI  
        isnorm = strcmpi(nflag,'norm'); &Ap9h# dK  
        if ~isnorm ^!\AT!OT  
            error('zernfun:normalization','Unrecognized normalization flag.') E I(e3  
        end SMD*9&,  
    else :`zO%h  
        isnorm = false; xi(1H1KN5B  
    end Lv]%P.=[G  
    a`n)aXU l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QMz=e  
    % Compute the Zernike Polynomials l[c '%M|N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d}zh.O5P!  
    G@#lf@M]  
    % Determine the required powers of r: D\&S {  
    % ----------------------------------- wR@>U.XT@  
    m_abs = abs(m);  Q&xH  
    rpowers = []; & H%/.4la  
    for j = 1:length(n) I51]+gEN  
        rpowers = [rpowers m_abs(j):2:n(j)]; F0p=|W  
    end cJaA*sg  
    rpowers = unique(rpowers); pT->qQ3;  
    ;7qIm83  
    % Pre-compute the values of r raised to the required powers, !(F?`([A  
    % and compile them in a matrix: +4_,, I  
    % ----------------------------- m..ajYSQ  
    if rpowers(1)==0 (g@\QdH`|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k\ .9iI'6  
        rpowern = cat(2,rpowern{:}); 3?a`@C&x  
        rpowern = [ones(length_r,1) rpowern]; BYXc 'K  
    else fV|uKs(W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  x)Bbo9J  
        rpowern = cat(2,rpowern{:}); 0>Snps3*Z  
    end > v%.q]E6n  
    v,ZYh w  
    % Compute the values of the polynomials: @6yc^DAA  
    % -------------------------------------- ZI!:  
    y = zeros(length_r,length(n)); T,/rC{  
    for j = 1:length(n) @d0f+9d  
        s = 0:(n(j)-m_abs(j))/2; O*l,&5  
        pows = n(j):-2:m_abs(j); IU"  
        for k = length(s):-1:1 {\D &*  
            p = (1-2*mod(s(k),2))* ... h'-4nu;*  
                       prod(2:(n(j)-s(k)))/              ... ?h&XIM(  
                       prod(2:s(k))/                     ... JkJ @bh Eu  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8F8?1  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); B1)Eo2i#  
            idx = (pows(k)==rpowers); yO1 7C  
            y(:,j) = y(:,j) + p*rpowern(:,idx); dgpE3 37Lt  
        end 49Jnp>h  
         oYkd%N9P  
        if isnorm 6]b"n'G  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XeI2 <=@%  
        end c EYHB1*cT  
    end y<Q"]H.CkQ  
    % END: Compute the Zernike Polynomials H9(?yI@Zr#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /ovVS6Ai  
    Dhn7N8(LF!  
    % Compute the Zernike functions: J;>epM ;*  
    % ------------------------------ "iK= 8  
    idx_pos = m>0; HXa[0VOx  
    idx_neg = m<0; dR]-R/1|  
    E)$>t}$  
    z = y; losqc *|  
    if any(idx_pos) BS##nS-[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,XO@ZBOM  
    end XG.[C>  
    if any(idx_neg) wli cuY?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Jr !BDg  
    end ^f! M"@  
    ;n Bf  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) >)ekb7  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0A) 0Zw  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Vn^GJ'^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive jU&m*0nL  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, e-ta7R4  
    %   and THETA is a vector of angles.  R and THETA must have the same f=l/Fp}4UH  
    %   length.  The output Z is a matrix with one column for every P-value, [Y](Y3/.N  
    %   and one row for every (R,THETA) pair. H[~ D]RG}'  
    % h:8P9WhWF  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike d-~V.  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) epiviCYC  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) !XtG6ON=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 S $p>sItO  
    %   for all p. U80=f2  
    % ytIPY7E  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Km(i}:6"  
    %   Zernike functions (order N<=7).  In some disciplines it is 3<^Up1CaZ  
    %   traditional to label the first 36 functions using a single mode > ubq{'  
    %   number P instead of separate numbers for the order N and azimuthal l}uZxKuYx  
    %   frequency M. S&!(h {O  
    % i&:SWH=  
    %   Example: NuQ!huh  
    % 7 XxZF43  
    %       % Display the first 16 Zernike functions k77IXT_7u  
    %       x = -1:0.01:1; U*C^g}iA  
    %       [X,Y] = meshgrid(x,x); MR1I"gqE}I  
    %       [theta,r] = cart2pol(X,Y); sG u.G  
    %       idx = r<=1; %P0  
    %       p = 0:15; 3lp'U&3`5  
    %       z = nan(size(X)); ~!Nj DDk  
    %       y = zernfun2(p,r(idx),theta(idx)); XH?//.q  
    %       figure('Units','normalized') H4y9\ -  
    %       for k = 1:length(p) <,)R`90_X6  
    %           z(idx) = y(:,k); qk<jvha  
    %           subplot(4,4,k) K KB+o)*W  
    %           pcolor(x,x,z), shading interp [q?RJmB]  
    %           set(gca,'XTick',[],'YTick',[]) 9w=7A>.U  
    %           axis square Ah2 {kK  
    %           title(['Z_{' num2str(p(k)) '}']) ?9\D(V  
    %       end  V;%ug'j  
    % N\PdX$  
    %   See also ZERNPOL, ZERNFUN. r'*$'QY-N  
    /i,n75/y?  
    %   Paul Fricker 11/13/2006 ZHNL ~=r}  
    mWv$eR  
    \n[kzi7  
    % Check and prepare the inputs: o.ZR5`.  
    % ----------------------------- `<nxXsLe  
    if min(size(p))~=1 G3DgB!  
        error('zernfun2:Pvector','Input P must be vector.') G`FYEmD  
    end uY.Ns ?8  
    C+TB>~Gv`  
    if any(p)>35 r:bJU1P1$s  
        error('zernfun2:P36', ... ~M}{rl.n=  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... >%tG[jb  
               '(P = 0 to 35).']) F}}!e.>c  
    end ^m#tWb)f  
    )$!b`u  
    % Get the order and frequency corresonding to the function number: hW#^H5?  
    % ---------------------------------------------------------------- t5+p]7  
    p = p(:); v@=qVwX  
    n = ceil((-3+sqrt(9+8*p))/2); uHKEt[PS$  
    m = 2*p - n.*(n+2); Yj@ Sy  
    aZb\uMePK  
    % Pass the inputs to the function ZERNFUN: 4k225~GQ:C  
    % ---------------------------------------- {32m&a  
    switch nargin / dJz?0  
        case 3 qnp}#BZ  
            z = zernfun(n,m,r,theta); &3t973=  
        case 4 >`AK'K8{M  
            z = zernfun(n,m,r,theta,nflag); (m R)o&Y%,  
        otherwise Cx2# 0$  
            error('zernfun2:nargin','Incorrect number of inputs.') -Rpra0o. C  
    end LFax$CZc  
    e{E\YEc  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _bCAZa&&  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. -~]H5er`  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of G?}?>O  
    %   order N and frequency M, evaluated at R.  N is a vector of X<,QSTP  
    %   positive integers (including 0), and M is a vector with the 2p&$bf t  
    %   same number of elements as N.  Each element k of M must be a v^JzbO~|gj  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) BzfR8mD  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is fn,n'E]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix :GIBB=D9  
    %   with one column for every (N,M) pair, and one row for every [\W&  
    %   element in R. cANt7  
    % KM;H '~PZi  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- P\MDD@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @mCe{r*`  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 4J5zSTw  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 W/,bz",v3  
    %   for all [n,m]. d}Pfj=W  
    % DP @1to@  
    %   The radial Zernike polynomials are the radial portion of the :xr^E]  
    %   Zernike functions, which are an orthogonal basis on the unit 7*PBJt\  
    %   circle.  The series representation of the radial Zernike jkL=JAcf~  
    %   polynomials is 84WD R?  
    % Ro]Z9C>1o  
    %          (n-m)/2 bW=q G  
    %            __ (?Mn_FNE|  
    %    m      \       s                                          n-2s %4LoEm=U  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Ss%Cf6qdWL  
    %    n      s=0 G*4I;'6  
    % VFf;|PHS  
    %   The following table shows the first 12 polynomials. L ?/AKg  
    % fM ID}S  
    %       n    m    Zernike polynomial    Normalization x:Q\pZ  
    %       --------------------------------------------- 3JGrJ!x  
    %       0    0    1                        sqrt(2) ESB^"|9  
    %       1    1    r                           2 WOn<;'}M&  
    %       2    0    2*r^2 - 1                sqrt(6) 59zWB,y(P  
    %       2    2    r^2                      sqrt(6) B{)#A?Rh.  
    %       3    1    3*r^3 - 2*r              sqrt(8) d` ttWWPw  
    %       3    3    r^3                      sqrt(8) n$C- ^3 c  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) &9flNoNR9  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) R5ra*!|L)  
    %       4    4    r^4                      sqrt(10) (B4)L%  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12)  :f[ w  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ,y]-z8J  
    %       5    5    r^5                      sqrt(12) q\<l"b z  
    %       --------------------------------------------- r2SZC`Z}-M  
    % MAYb.>X#>  
    %   Example: 1Of(O!  
    % =H)]HxEEM  
    %       % Display three example Zernike radial polynomials :"Xnu%1  
    %       r = 0:0.01:1; uaO.7QSwN  
    %       n = [3 2 5]; q%x i>H.:{  
    %       m = [1 2 1]; 2L&c91=wE  
    %       z = zernpol(n,m,r); aM $2lR])J  
    %       figure =p4n @C  
    %       plot(r,z) xmnBG4,f  
    %       grid on c ?CD;Pk  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Ibz9j uY  
    % {j$2=0Cec  
    %   See also ZERNFUN, ZERNFUN2. S%MDQTM  
    Xr K29a  
    % A note on the algorithm. T{ @@V  
    % ------------------------ &lLk[/b  
    % The radial Zernike polynomials are computed using the series zd5=W"Y;]  
    % representation shown in the Help section above. For many special 2FuV%\p  
    % functions, direct evaluation using the series representation can i!2k f  
    % produce poor numerical results (floating point errors), because }@HgFM"  
    % the summation often involves computing small differences between \H .Cmm^I  
    % large successive terms in the series. (In such cases, the functions dI\_I]  
    % are often evaluated using alternative methods such as recurrence kqKT>xo4EZ  
    % relations: see the Legendre functions, for example). For the Zernike "BT M,CB  
    % polynomials, however, this problem does not arise, because the /V*SI!C<f  
    % polynomials are evaluated over the finite domain r = (0,1), and ta{24{?M\  
    % because the coefficients for a given polynomial are generally all m+XHFU  
    % of similar magnitude. ?w(hPUd!2  
    % \C$e+qb~{  
    % ZERNPOL has been written using a vectorized implementation: multiple fof}I:vO  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] R*pPUw\yn  
    % values can be passed as inputs) for a vector of points R.  To achieve _b<;n|^  
    % this vectorization most efficiently, the algorithm in ZERNPOL Z5TA4Q+Q  
    % involves pre-determining all the powers p of R that are required to =u}~\ 'd  
    % compute the outputs, and then compiling the {R^p} into a single {{G3^ysa  
    % matrix.  This avoids any redundant computation of the R^p, and t)j$lmQn  
    % minimizes the sizes of certain intermediate variables. :jv(-RTI  
    % _OG9wi(Fpx  
    %   Paul Fricker 11/13/2006 aUNA` L  
    {v0r'+`  
    5, ,'hAq_  
    % Check and prepare the inputs: zI[<uvxzW`  
    % ----------------------------- wKi#5k2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vk E]$4P[$  
        error('zernpol:NMvectors','N and M must be vectors.') f#&z m} t  
    end SLEOc OAmD  
    ,iYhD-"'  
    if length(n)~=length(m) *eHa4I  
        error('zernpol:NMlength','N and M must be the same length.') <B>qE a_I  
    end .<?7c!ho  
    ?jz\[0)s  
    n = n(:); |aenQA#  
    m = m(:); '1DY5`i{  
    length_n = length(n); 33<{1Y[Q6E  
    <O=0^V  
    if any(mod(n-m,2)) OB9E30  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') tRI<K  
    end mTsyVji8  
    gOnZ#  
    if any(m<0) Fk49~z   
        error('zernpol:Mpositive','All M must be positive.') G0!6rDu2,  
    end 47(_5PFb#  
    vWmp ?m  
    if any(m>n) 445JOP  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #W8F_/!n|  
    end  \xp0n  
    iPl,KjGk  
    if any( r>1 | r<0 ) ;+ C$EJw-  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 9nVb$pfe#  
    end f|(9+~K/7&  
    -3yK>\y=|  
    if ~any(size(r)==1) y@v)kN)Y9\  
        error('zernpol:Rvector','R must be a vector.') @8{8|P  
    end >{ {ds--  
    fsPsP`|  
    r = r(:); m7NWgXJ  
    length_r = length(r); `W}pA mhj  
    i/*)1;xsk  
    if nargin==4 ,{G\-(\  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); oJNQdW[  
        if ~isnorm :Ni#XZ{F-/  
            error('zernpol:normalization','Unrecognized normalization flag.') YGPb8!  
        end z\<,}x}V  
    else 4A"nm6  
        isnorm = false; ?8kFAf~  
    end ?i_/f}.K  
    p,k1*|j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >Z*b0j  
    % Compute the Zernike Polynomials }%}$h2:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nygGI_[l  
    7]Qxt%7/>  
    % Determine the required powers of r: >n/0od9  
    % ----------------------------------- ~Y f8,m  
    rpowers = []; $k )K}U  
    for j = 1:length(n) W=EcbH9/.)  
        rpowers = [rpowers m(j):2:n(j)]; Tv'1IE  
    end } l+_KA  
    rpowers = unique(rpowers); &Y@),S9  
    Y?1T XsvF  
    % Pre-compute the values of r raised to the required powers, esZhX)dS  
    % and compile them in a matrix: JE{ cZ<NNH  
    % ----------------------------- b=BNbmX  
    if rpowers(1)==0 I 2AQ G  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~pp< T  
        rpowern = cat(2,rpowern{:}); .9Oj+:n  
        rpowern = [ones(length_r,1) rpowern]; \C~6 '  
    else &+02Sn3A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >0:3CpO*  
        rpowern = cat(2,rpowern{:}); hj"JmF$m  
    end @i'D)6sC  
    `L$Av9X\  
    % Compute the values of the polynomials: 0TV16 --  
    % -------------------------------------- 8IL5 :7H8  
    z = zeros(length_r,length_n); [u*7( 4e  
    for j = 1:length_n .<%q9Jy#  
        s = 0:(n(j)-m(j))/2; $X:,Q,?  
        pows = n(j):-2:m(j); h&i(Kfv*  
        for k = length(s):-1:1 ]U~{?K'g@j  
            p = (1-2*mod(s(k),2))* ... Ff0V6j)ji  
                       prod(2:(n(j)-s(k)))/          ... H@zZ[  
                       prod(2:s(k))/                 ... g qORE/[  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... c8]%,26.  
                       prod(2:((n(j)+m(j))/2-s(k))); [E<A/_z  
            idx = (pows(k)==rpowers); 4e\wC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Ow1+zltgj-  
        end @G#`uoD  
         +KExK2=  
        if isnorm )IK%Dg(v  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1));  w<!&%  
        end D->E&#  
    end JcP<@bb>B  
    M@q)\UQ'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ut^^,w{o>  
    )wY bcH  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 F{aM6I  
    D3%`vq u&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)