切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11537阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $/;K<*O$  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! W{tZX^|  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0r1GGEW`s  
    function z = zernfun(n,m,r,theta,nflag) FrXP"U}Y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. )-Hs]D:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5 k3m"*  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gI;"PkN  
    %   unit circle.  N is a vector of positive integers (including 0), and :#^qn|{e  
    %   M is a vector with the same number of elements as N.  Each element 8$\j| mN  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {Fw"y %a^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, zH}3J}  
    %   and THETA is a vector of angles.  R and THETA must have the same _Ik?WA_;  
    %   length.  The output Z is a matrix with one column for every (N,M) kP&I}RY  
    %   pair, and one row for every (R,THETA) pair. 7UMZs7L$  
    % >U{iof<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6Qt(Yu*s  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |di(hY|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .F 6US<]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N knS:r&2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (is',4^b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WT<}3(S'?  
    % CE`]X;#y  
    %   The Zernike functions are an orthogonal basis on the unit circle. nXLz<wE  
    %   They are used in disciplines such as astronomy, optics, and 7b>_vtrt  
    %   optometry to describe functions on a circular domain. xj>P5\mW#  
    % 2MRd  
    %   The following table lists the first 15 Zernike functions. b},2A'X  
    % 9efey? z  
    %       n    m    Zernike function           Normalization jL\j$'KC  
    %       -------------------------------------------------- Qq`S=:}~x  
    %       0    0    1                                 1 <}{<FXk[  
    %       1    1    r * cos(theta)                    2 iv~R4;;)  
    %       1   -1    r * sin(theta)                    2 j*?8w(!  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) T:@6(_Z  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >^jBE''  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 1Z< ^8L<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ; um)JCXz  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) A[+)PkR  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) mufGv%U2  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qhxMO[f  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Unb2D4&'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s`bGW1#io  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +Pl)E5W!=`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H_RfIX)X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \s*UUODWK  
    %       -------------------------------------------------- HXKM<E{j  
    % SPb +H19;  
    %   Example 1: dXh[Ea^  
    % aKriO  
    %       % Display the Zernike function Z(n=5,m=1) )hrsA&1w  
    %       x = -1:0.01:1; M/p9 I gp  
    %       [X,Y] = meshgrid(x,x); ,yGbMOV  
    %       [theta,r] = cart2pol(X,Y); ~ps,U  
    %       idx = r<=1; 0Gs\x  
    %       z = nan(size(X)); uMw6b=/U  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); P! +Gwm{  
    %       figure nKm# kb  
    %       pcolor(x,x,z), shading interp 'M~`IN`  
    %       axis square, colorbar D5c 8sB  
    %       title('Zernike function Z_5^1(r,\theta)') ~6t!)QATnp  
    % w UxFE=ia  
    %   Example 2: -13}]Gls7Q  
    % %@vF%   
    %       % Display the first 10 Zernike functions OK80-/8HI  
    %       x = -1:0.01:1; 'z8FU~oU  
    %       [X,Y] = meshgrid(x,x); NF8<9  
    %       [theta,r] = cart2pol(X,Y); >g{&Qx`&  
    %       idx = r<=1; N4+Cg t(  
    %       z = nan(size(X)); JI .=y5I  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ~ZVz sNrx  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; F9o7=5WAb  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; C~pas~  
    %       y = zernfun(n,m,r(idx),theta(idx)); bIiun a\  
    %       figure('Units','normalized') Q[#}Oh6$  
    %       for k = 1:10 \:J=tAC  
    %           z(idx) = y(:,k); -rsbSt ?_  
    %           subplot(4,7,Nplot(k)) dHIk3j-!  
    %           pcolor(x,x,z), shading interp T<0r,  
    %           set(gca,'XTick',[],'YTick',[]) Li6|c*K'  
    %           axis square z='%NZY  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U)8yd,qG[%  
    %       end Mm@G{J\\  
    % j2Dw7"f3  
    %   See also ZERNPOL, ZERNFUN2. pRun5 )7  
    yIKpyyC9H  
    %   Paul Fricker 11/13/2006 33DP?nI}  
    csW\Q][  
    :*KTpTa  
    % Check and prepare the inputs: u$R5Q{H_  
    % ----------------------------- )7*'r@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ni2#20L  
        error('zernfun:NMvectors','N and M must be vectors.') /8e}c`  
    end  "M5  
    9PKXQp  
    if length(n)~=length(m) {d[Nc,AMb  
        error('zernfun:NMlength','N and M must be the same length.') [cnu K  
    end eY :"\c3  
     .+1I>L  
    n = n(:); ~QbHp|g  
    m = m(:); [<53_2]~  
    if any(mod(n-m,2)) {ze69 h  
        error('zernfun:NMmultiplesof2', ... |2l-s 1|y  
              'All N and M must differ by multiples of 2 (including 0).') L4Jm8sy{  
    end \eKXsO"d  
    f8lyH'z0 @  
    if any(m>n) Hq}g1?b  
        error('zernfun:MlessthanN', ... SvSO?H!-  
              'Each M must be less than or equal to its corresponding N.') [gBf1,bK  
    end /iO"4%v  
    "BSY1?k{  
    if any( r>1 | r<0 ) Y|LL]@Lv  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') yDqwz[v b  
    end <5E'`T  
    ^!S4?<v  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {*O%A  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0E26J@jcZ7  
    end i)e6 U(H  
    bBs{PI2(p1  
    r = r(:);  )58O9b  
    theta = theta(:); zU!{_Ao9  
    length_r = length(r); |V\{U j  
    if length_r~=length(theta) m .(ja  
        error('zernfun:RTHlength', ...  PFX,X  
              'The number of R- and THETA-values must be equal.') Xq$-&~   
    end twr{jdY9  
    ~Yd[&vpQ  
    % Check normalization: XDCm  
    % -------------------- )r46I$]>  
    if nargin==5 && ischar(nflag) KhWy  
        isnorm = strcmpi(nflag,'norm'); E'\gd7t ;  
        if ~isnorm 9wR D=a  
            error('zernfun:normalization','Unrecognized normalization flag.') !d()'N  
        end YxM\qy {Vr  
    else R7Qj<,  
        isnorm = false; 6 EqN>.  
    end _5 SvZ;4  
    K uwhA-IL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }SWfP5D@  
    % Compute the Zernike Polynomials vy~6]hH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5Yv*f:  
    G@DNV3Cc  
    % Determine the required powers of r: ZOfv\(iJ;  
    % ----------------------------------- AHs%?5YTY;  
    m_abs = abs(m); 4|_xz; i  
    rpowers = []; HVA:|Z19  
    for j = 1:length(n) @\F7nhSfa  
        rpowers = [rpowers m_abs(j):2:n(j)]; o`n8Fk}i  
    end 0\!Bh^++1  
    rpowers = unique(rpowers); I?D=Q $s  
    5 b rM..  
    % Pre-compute the values of r raised to the required powers, liYsUmjZ=  
    % and compile them in a matrix: 3Y#  
    % ----------------------------- H&ek"nP_  
    if rpowers(1)==0 'G65zz  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !X7z y9  
        rpowern = cat(2,rpowern{:}); =* 'yGB[x)  
        rpowern = [ones(length_r,1) rpowern]; wm#(\dj  
    else #"6l+}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )*}\fmOv{  
        rpowern = cat(2,rpowern{:}); EC$F|T0f  
    end &]a(5  
    (QIU3EN  
    % Compute the values of the polynomials: }BS EK<W  
    % -------------------------------------- e- `9-U%6  
    y = zeros(length_r,length(n)); $DH/  
    for j = 1:length(n)  Fw[1Aa#  
        s = 0:(n(j)-m_abs(j))/2; iyCH)MA  
        pows = n(j):-2:m_abs(j); x(u.(:V  
        for k = length(s):-1:1 BsXF'x<U*  
            p = (1-2*mod(s(k),2))* ... {G=>WAXo  
                       prod(2:(n(j)-s(k)))/              ... 7Q{&L#;  
                       prod(2:s(k))/                     ... 3q/"4D  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0(c,J$I]Z!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); =55)|$hgD  
            idx = (pows(k)==rpowers); a`yCPnB(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); qDG x (d  
        end M#2<|VUW,  
         P}AwE,&Q  
        if isnorm H8"RdKwg?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2 Ax(q&`9  
        end w$$pTk|&n  
    end a?Fz&BE  
    % END: Compute the Zernike Polynomials JT}"CuC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }6LcimQyK  
    )X#$G?|Hn  
    % Compute the Zernike functions: ^'N!k{x  
    % ------------------------------ qK;J:GT>  
    idx_pos = m>0; M GC=L .  
    idx_neg = m<0; ^Mm%`B7W  
    =Cf@!wZ^  
    z = y; w`boQ_Ir  
    if any(idx_pos) 6@0? ~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m6 M/G  
    end zLr:zfl  
    if any(idx_neg) l{rHXST|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); uUaDesz~=  
    end dn~k_J=p  
    T: '<:*pD  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) gv jy'Rm  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. '&AeOn  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated V,7Xeh(+5L  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  X|TGM  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, q|B.@Ng.  
    %   and THETA is a vector of angles.  R and THETA must have the same #B$_ily)  
    %   length.  The output Z is a matrix with one column for every P-value, wXeJjE%j:3  
    %   and one row for every (R,THETA) pair. tp V61L   
    % sBN4:8  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike z[+pN:47  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7B gA+Fz  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 2c9]Ja3:6  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 q>a/',m  
    %   for all p. "Bn]-o|r  
    % Ga"<qmLMc  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Y,%G5X@S<  
    %   Zernike functions (order N<=7).  In some disciplines it is B&lF! ]  
    %   traditional to label the first 36 functions using a single mode l0wvWv*k  
    %   number P instead of separate numbers for the order N and azimuthal :e4[isI  
    %   frequency M. TSd;L u%hr  
    % 0K^G>)l  
    %   Example: q1M16qv5  
    % 1QDAfRx  
    %       % Display the first 16 Zernike functions ;Q8rAsf 9  
    %       x = -1:0.01:1; z9*7fT  
    %       [X,Y] = meshgrid(x,x); A!5)$>!o  
    %       [theta,r] = cart2pol(X,Y); $Xo_C_:B  
    %       idx = r<=1; <j89HtCz  
    %       p = 0:15; A?OaP  
    %       z = nan(size(X)); & AlX).  
    %       y = zernfun2(p,r(idx),theta(idx)); \c$! C8z  
    %       figure('Units','normalized') U_c9T>=  
    %       for k = 1:length(p) HveOG$pT  
    %           z(idx) = y(:,k); gnSb)!i>z  
    %           subplot(4,4,k) liq9P,(  
    %           pcolor(x,x,z), shading interp wp8ocZ-Gj  
    %           set(gca,'XTick',[],'YTick',[]) U.QjB0;  
    %           axis square Y)4&PN~[  
    %           title(['Z_{' num2str(p(k)) '}']) p2~MJ LK4  
    %       end "8Y4;lbN.q  
    % h"G#} C]  
    %   See also ZERNPOL, ZERNFUN. ff9D{$V5  
    eu|cQ^>  
    %   Paul Fricker 11/13/2006 d^WEfH  
    aE( j_`L78  
    jE</a %  
    % Check and prepare the inputs: ?F9:rUyN  
    % ----------------------------- H)5v X+9D  
    if min(size(p))~=1 LCRZ<?O[|  
        error('zernfun2:Pvector','Input P must be vector.') P*6B+8h"5g  
    end r0)X]l7  
    .W<yiB}^  
    if any(p)>35 B6iH[dTy_  
        error('zernfun2:P36', ... C-abc+/  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $5`P~Q'U  
               '(P = 0 to 35).']) ^F `   
    end <m#ov G6  
    |P si?'4  
    % Get the order and frequency corresonding to the function number: {re<S<j&  
    % ---------------------------------------------------------------- [Az<E3H"  
    p = p(:); l* =\0  
    n = ceil((-3+sqrt(9+8*p))/2); c-L1 Bkw  
    m = 2*p - n.*(n+2); B`x rdtW  
    |Fk>NX  
    % Pass the inputs to the function ZERNFUN: ao]Dm#HiO  
    % ---------------------------------------- +pcpb)VL  
    switch nargin J2M[aibV  
        case 3 0HA`  
            z = zernfun(n,m,r,theta); _H9.A I  
        case 4 }j^asuf~c  
            z = zernfun(n,m,r,theta,nflag); {;6Yi!  
        otherwise nCZ&FNi{O~  
            error('zernfun2:nargin','Incorrect number of inputs.') S: IhJQ4K  
    end 18ApHp  
    ToWiXH)4  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ]S@zhQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. k!?sHUAj  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of SlU?,)J}  
    %   order N and frequency M, evaluated at R.  N is a vector of 7s8-Uwl<  
    %   positive integers (including 0), and M is a vector with the Iw)}YZmn  
    %   same number of elements as N.  Each element k of M must be a c`S`.WID  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) &B1j,$NRc  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is _C`&(?}  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /g/]Q^  
    %   with one column for every (N,M) pair, and one row for every 5;WESk  
    %   element in R. /!7    
    % 7:[u.cd  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- dC'8orFG+  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _3Kow{y\  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to A9 *P7  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 _HMQx_e0YM  
    %   for all [n,m]. RSfB9)3D  
    % v2Ft=_*G|  
    %   The radial Zernike polynomials are the radial portion of the "A( D}~i  
    %   Zernike functions, which are an orthogonal basis on the unit @\*`rl]  
    %   circle.  The series representation of the radial Zernike dDu8n+(8 L  
    %   polynomials is B4 k5IS  
    % 5q^5DH_;  
    %          (n-m)/2 ]EN+^i1F[  
    %            __ QLm#7ms*y  
    %    m      \       s                                          n-2s ]D.} /g  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r + *W%4e  
    %    n      s=0 *w#^`yeo  
    % G1 K@Ir<  
    %   The following table shows the first 12 polynomials. u+;iR/  
    % +@^FUt=tq  
    %       n    m    Zernike polynomial    Normalization m@i](1*T|  
    %       --------------------------------------------- u<U8LR=)V5  
    %       0    0    1                        sqrt(2) NwcRH9};i  
    %       1    1    r                           2  ^:^  
    %       2    0    2*r^2 - 1                sqrt(6) %jo,Gv  
    %       2    2    r^2                      sqrt(6) w-"tA`F4  
    %       3    1    3*r^3 - 2*r              sqrt(8) j6d{r\!$4  
    %       3    3    r^3                      sqrt(8) F2>W{-H+  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /g>]J70  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) *kt|CXxAS8  
    %       4    4    r^4                      sqrt(10) );/p[Fd2]  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 7\AoMk}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 'kSm}} y  
    %       5    5    r^5                      sqrt(12) Z817f]l  
    %       --------------------------------------------- Ou_2UT  
    % mKLWz1GZ  
    %   Example: 58t_j54  
    % {t*CSI  
    %       % Display three example Zernike radial polynomials +V9(4la  
    %       r = 0:0.01:1; Jz]OWb *  
    %       n = [3 2 5]; #h#_xh'  
    %       m = [1 2 1]; Y 8-;eqH  
    %       z = zernpol(n,m,r); K}DrJ/s  
    %       figure R_=fH\c;  
    %       plot(r,z) uvRX{q 4  
    %       grid on :7*9W|e  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') +Mb}70^  
    % h %5keiA  
    %   See also ZERNFUN, ZERNFUN2. @zJiR{Je-U  
    !Ld[`d.|R!  
    % A note on the algorithm. t^=S\1"R\  
    % ------------------------ >x]ir  
    % The radial Zernike polynomials are computed using the series /GF"D5  
    % representation shown in the Help section above. For many special %v0;1m  
    % functions, direct evaluation using the series representation can &{bNa:@  
    % produce poor numerical results (floating point errors), because vcZ"4%w  
    % the summation often involves computing small differences between i&-g  
    % large successive terms in the series. (In such cases, the functions #+ {%>f  
    % are often evaluated using alternative methods such as recurrence ~ymSsoD^  
    % relations: see the Legendre functions, for example). For the Zernike !{!(yP_  
    % polynomials, however, this problem does not arise, because the L% T%6p_  
    % polynomials are evaluated over the finite domain r = (0,1), and QrLXAK\5  
    % because the coefficients for a given polynomial are generally all (e32oP"  
    % of similar magnitude. (hIe!"s *  
    % /px`FuJI(  
    % ZERNPOL has been written using a vectorized implementation: multiple +D?Re%HI  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Uo JMOw[  
    % values can be passed as inputs) for a vector of points R.  To achieve w ; PV &M  
    % this vectorization most efficiently, the algorithm in ZERNPOL b(A;mt#N  
    % involves pre-determining all the powers p of R that are required to k~]\kv=  
    % compute the outputs, and then compiling the {R^p} into a single 5IP@_GV|  
    % matrix.  This avoids any redundant computation of the R^p, and MNX-D0`g  
    % minimizes the sizes of certain intermediate variables. XeXK~  
    % lAAPV  
    %   Paul Fricker 11/13/2006 !^3j9<|@'  
    % %QAC4  
    tp b(.`G  
    % Check and prepare the inputs: 7T?7KS  
    % ----------------------------- {\kDu#18Ld  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %/wfYRp*  
        error('zernpol:NMvectors','N and M must be vectors.') 7P D D  
    end #~[mn_C  
    0>0:ls  
    if length(n)~=length(m) #J4,mFMr  
        error('zernpol:NMlength','N and M must be the same length.') ^Cn_ ODjo  
    end tA9(N>[ *  
     \4&FW|mx  
    n = n(:); s}":lXkrw  
    m = m(:); B9h>  
    length_n = length(n); :6Sb3w5h  
    HltURTbI  
    if any(mod(n-m,2)) evHKq}{  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') (`Q_^Bfyl  
    end ( j~trpe,  
    -%)8=  
    if any(m<0) c95{Xy  
        error('zernpol:Mpositive','All M must be positive.') dNcP_l/A  
    end ;/-#oW@gQ  
    -* ;`~5  
    if any(m>n) jR&AQ-H&  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') WD5ulm?91|  
    end >P\/\xL=  
    T5di#%: s  
    if any( r>1 | r<0 ) +Udlt)H  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') g:nU&-x#R  
    end Qf]ACN  
    oXkxd3  
    if ~any(size(r)==1) 7|Tu@0XXA  
        error('zernpol:Rvector','R must be a vector.') i bwnK?ZA  
    end f i3<  
    OVm $  
    r = r(:); \WVrn>%xu  
    length_r = length(r); i XI:yE;  
    G&Sp }  
    if nargin==4 nUvxO `2  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -3<5,Q{G+  
        if ~isnorm 'L2M  W  
            error('zernpol:normalization','Unrecognized normalization flag.') XK>/i}y  
        end &` u<KKF6  
    else 2|)3Ly9  
        isnorm = false; ODH@ /  
    end /)PD+18  
    Z?5kO-[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WKQVT I&A.  
    % Compute the Zernike Polynomials & ;+u.X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )BY\c7SG  
    _e=R[  
    % Determine the required powers of r: |wZ8O}O{E  
    % ----------------------------------- lV-7bZ  
    rpowers = []; HZdmL-1Z^+  
    for j = 1:length(n) ~n84x  
        rpowers = [rpowers m(j):2:n(j)]; u|7d_3 ::  
    end  )>Oip  
    rpowers = unique(rpowers); PqIGc  
    E {d Mdz  
    % Pre-compute the values of r raised to the required powers, J56+eC(  
    % and compile them in a matrix: @M?N[LG  
    % ----------------------------- \CL |=8[2  
    if rpowers(1)==0 <w}k9(Ds  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3mgFouX2x,  
        rpowern = cat(2,rpowern{:}); bh?Vufd%)  
        rpowern = [ones(length_r,1) rpowern]; r:y *l4  
    else FK{ YRt  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z bxd,|<|  
        rpowern = cat(2,rpowern{:}); 2s;/*<WM  
    end ~ @Ib:M  
    YcGSZ0vQ  
    % Compute the values of the polynomials: L._I"g5 H9  
    % -------------------------------------- XZA3T Z  
    z = zeros(length_r,length_n); !'B.ad  
    for j = 1:length_n Y*3qH]  
        s = 0:(n(j)-m(j))/2; WKqNJN C  
        pows = n(j):-2:m(j); ";9cYoKRY  
        for k = length(s):-1:1 /]T#@>('  
            p = (1-2*mod(s(k),2))* ... /9|1eSUa  
                       prod(2:(n(j)-s(k)))/          ... rOB-2@-  
                       prod(2:s(k))/                 ... 9IMtqL&  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Rs{L  
                       prod(2:((n(j)+m(j))/2-s(k))); on(F8%]zE  
            idx = (pows(k)==rpowers); OAR1u}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); r`i<XGPJ%  
        end F^IYx~:  
         b'O>&V`  
        if isnorm <dD}4c+/t  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 4/S 4bk*8  
        end >yg mE`g  
    end ,JN2q]QPP  
    L"1UUOKy  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n8<o*f&&9>  
    BiGB<Jr  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 W>C!V  
    l`lo5:w  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)