非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1bSD,;$sQ
function z = zernfun(n,m,r,theta,nflag) x=*L-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;^ 3$kF
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 78]gtJ
% and angular frequency M, evaluated at positions (R,THETA) on the Im)EDTm$
% unit circle. N is a vector of positive integers (including 0), and cp%ii'
% M is a vector with the same number of elements as N. Each element d#>y }H9
% k of M must be a positive integer, with possible values M(k) = -N(k) :=fvZA WD
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >emcJVYV`[
% and THETA is a vector of angles. R and THETA must have the same <kbyZXV@K
% length. The output Z is a matrix with one column for every (N,M) Wi$dZOcSJ
% pair, and one row for every (R,THETA) pair. %Q~CB7ILK
% }ZzLs/v%X
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike c-8!#~M(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @cv{rr
% with delta(m,0) the Kronecker delta, is chosen so that the integral RH[+1z8
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2"&)W dm
% and theta=0 to theta=2*pi) is unity. For the non-normalized f*fE};
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Cq\I''~8
%
'Cc(3
% The Zernike functions are an orthogonal basis on the unit circle. &leK}je [
% They are used in disciplines such as astronomy, optics, and $$1qF"GF
% optometry to describe functions on a circular domain. #/
"+
% a$JLc a
% The following table lists the first 15 Zernike functions. i9m*g*"2
% b{5K2k&,
% n m Zernike function Normalization xs!p|
% -------------------------------------------------- X?o(
b/F-
% 0 0 1 1 !'0S0a8
% 1 1 r * cos(theta) 2 >/^#Drwb!i
% 1 -1 r * sin(theta) 2 x0Z5zV9
% 2 -2 r^2 * cos(2*theta) sqrt(6) }roG(
% 2 0 (2*r^2 - 1) sqrt(3) 1-VT}J(
% 2 2 r^2 * sin(2*theta) sqrt(6) O#_b7i
% 3 -3 r^3 * cos(3*theta) sqrt(8) JTW)*q9a
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6`\ya@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 2]WE({P
% 3 3 r^3 * sin(3*theta) sqrt(8) P Sx304
% 4 -4 r^4 * cos(4*theta) sqrt(10) \Fb| {6+
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (^n*Am;zlH
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) e3m*i}K}
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uk7'K 0j
% 4 4 r^4 * sin(4*theta) sqrt(10) EKZVF`L
% -------------------------------------------------- ..<3%fL3
% :}q\tNY<
% Example 1: i7Z=|&
% Ee2c5C!|C
% % Display the Zernike function Z(n=5,m=1) K@:m/Z}|4
% x = -1:0.01:1; z@VP:au
% [X,Y] = meshgrid(x,x); Fn|gVR
% [theta,r] = cart2pol(X,Y); <{J5W6
% idx = r<=1; w4:\N U
% z = nan(size(X)); jC, FG'P
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <4`eQ
% figure |qN'P}L
% pcolor(x,x,z), shading interp y,Q5;$w8
% axis square, colorbar 0ejdKdYN
% title('Zernike function Z_5^1(r,\theta)') ,FQK;BU!lh
% & >JDPB?5
% Example 2: #exss=as/
% H+C6[W=
% % Display the first 10 Zernike functions 7^:4A'
% x = -1:0.01:1; `a]44es9q
% [X,Y] = meshgrid(x,x); xUWr}j4;
% [theta,r] = cart2pol(X,Y); BavO\{J#|0
% idx = r<=1; r':TMhzHq?
% z = nan(size(X)); bGXR7u&K
% n = [0 1 1 2 2 2 3 3 3 3]; my.`k'
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8E^@yZo{
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #-#NqX:
% y = zernfun(n,m,r(idx),theta(idx)); *r,b=8|
% figure('Units','normalized') oFC)
% for k = 1:10 y'M#z_.z
% z(idx) = y(:,k); ^ 4hO8
% subplot(4,7,Nplot(k)) k|E]YvnfG
% pcolor(x,x,z), shading interp G*}F5.>8(
% set(gca,'XTick',[],'YTick',[]) 1s7^uA$}6
% axis square @y|_d
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `
%?9=h%
% end D!LX?_cD1i
% !K0JV|-?t
% See also ZERNPOL, ZERNFUN2. /Z%>ArAx
mY&ud>,U:
% Paul Fricker 11/13/2006 F
# YPOH
TH1B#Y#<J
7"v$- W y
% Check and prepare the inputs: u5E]t9~Pq
% ----------------------------- S"2qJ!.u
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) dZ(|uC!?
error('zernfun:NMvectors','N and M must be vectors.') ^ @=^;nB
end ^4$'KIq
4sFv?W
if length(n)~=length(m) 0tz:Wd*<
error('zernfun:NMlength','N and M must be the same length.') 2y GOzc
end lC?Icn|o
sq0 PBEqq
n = n(:); lhLGG
m = m(:); WQePSU
if any(mod(n-m,2)) P\R27Jd
error('zernfun:NMmultiplesof2', ... "4xfrlOc
'All N and M must differ by multiples of 2 (including 0).') Zm TDQ`Ix
end (!K_Fy@
CnF |LTi
if any(m>n) MXh
"Y*}
error('zernfun:MlessthanN', ... K\.5h4k
'Each M must be less than or equal to its corresponding N.') vA% ^`5
end oR#:NtX@
woOy*)@
if any( r>1 | r<0 ) }xb=<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 12`_;[37
end udqS'g&
Sr.;GS5i
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x8#ODuH
error('zernfun:RTHvector','R and THETA must be vectors.')
u=l1s1>
end iZ,YxN<R
JWO=!^
r = r(:); |QZ58)>
theta = theta(:); >v5k{Cbp0
length_r = length(r); dj9?t
if length_r~=length(theta) akuJz
error('zernfun:RTHlength', ... jx`QB')kX
'The number of R- and THETA-values must be equal.') -7]Xjb5
end =bt]JRU
!Jfs?Hy
% Check normalization: #
'|'r+
% -------------------- hsLzj\)6
if nargin==5 && ischar(nflag) !b|' Vp^U
isnorm = strcmpi(nflag,'norm'); H}0dd"
if ~isnorm jFG0`n}I
error('zernfun:normalization','Unrecognized normalization flag.') ik,lSTBD
end }E^S]hdvz
else alFjc.~}
isnorm = false; ;&;W
T
end 76fIC
~[PKcEX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T5lQIr@a
% Compute the Zernike Polynomials )hKS0`$|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tx7~SUr
y6HuN
% Determine the required powers of r: V L( <
% ----------------------------------- jdqj=Yc
m_abs = abs(m); 3ha|0[r9
rpowers = []; lT8\}hNI+
for j = 1:length(n) t` ^Vb-
rpowers = [rpowers m_abs(j):2:n(j)]; xBnbF[
end Lm)\Z P+W
rpowers = unique(rpowers); yl]FP@N(
M~T.n)x2
% Pre-compute the values of r raised to the required powers, cd@.zg'sYn
% and compile them in a matrix: q`|CrOzO
% ----------------------------- P1zK2sL_
if rpowers(1)==0 M@UVpQwgv
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); nY?
rpowern = cat(2,rpowern{:}); {OMgd3%14
rpowern = [ones(length_r,1) rpowern]; #TJk-1XM*q
else rjA@U<o
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N> Jw
rpowern = cat(2,rpowern{:}); 25{ uz
end Xo5$X7m
5t:8.%<UK
% Compute the values of the polynomials: p
QE)p
% -------------------------------------- E;\M1(\u
y = zeros(length_r,length(n)); 7()?C}Ni-
for j = 1:length(n) *6ZCDm&N
s = 0:(n(j)-m_abs(j))/2; *e.*=$
pows = n(j):-2:m_abs(j); +54aO
for k = length(s):-1:1 i\}:hU-U
p = (1-2*mod(s(k),2))* ... 0`#(Toe{B
prod(2:(n(j)-s(k)))/ ... %"3 )TN4
prod(2:s(k))/ ... H.
,;-
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... | FM
}
prod(2:((n(j)+m_abs(j))/2-s(k))); m$Y
:0_^-
idx = (pows(k)==rpowers); yOXO)u1n
y(:,j) = y(:,j) + p*rpowern(:,idx); aC=['a>)
end |(IO=V4P
Q%ad q-B
if isnorm oW}!vf3z
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6o&ZIY