切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11458阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 [(B A:x1  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! # 5v 2`|)  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4ZrX= e,  
    function z = zernfun(n,m,r,theta,nflag) kIWQ _2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. P6&@fwJ<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4`)`%R$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the wo5"f}vd#  
    %   unit circle.  N is a vector of positive integers (including 0), and JOS,>;;F4  
    %   M is a vector with the same number of elements as N.  Each element ):; &~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |G&<@8O  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &%+}bt5  
    %   and THETA is a vector of angles.  R and THETA must have the same cod__.  
    %   length.  The output Z is a matrix with one column for every (N,M) lZ.x@hDS  
    %   pair, and one row for every (R,THETA) pair. ~ J^Gzl  
    % Ki(qA(r  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }`E5I&r4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?M. n 9|}y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [wWip1OR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IeLG/ fB  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w{f!t8C*s  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .xS3,O_[  
    % j$'L-kK+  
    %   The Zernike functions are an orthogonal basis on the unit circle. -D?T0>  
    %   They are used in disciplines such as astronomy, optics, and J3KY?,g3O_  
    %   optometry to describe functions on a circular domain. TCYjj:/  
    % B!0o6)u'  
    %   The following table lists the first 15 Zernike functions. ?lW-NPr  
    % lM`M70~  
    %       n    m    Zernike function           Normalization =kH7   
    %       -------------------------------------------------- Tjma'3H*T0  
    %       0    0    1                                 1 +dq&9N/  
    %       1    1    r * cos(theta)                    2 q4'szDYO2  
    %       1   -1    r * sin(theta)                    2 3`uv/O2~i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3/>T/To&2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6Qne rd%Ec  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) jq:FDyOAW  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) (JHzwI8+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 23?\jw3w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $"1Unu&P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /yPFts_q  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) @8E mY,{;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h}r*   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0h/gqlTK1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `T7gfb%1-3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) R_ymTB}<t(  
    %       -------------------------------------------------- A:PQIcR;V  
    % ^ZV1Ev8T6  
    %   Example 1: H^z6.!$m  
    % JJ`RF   
    %       % Display the Zernike function Z(n=5,m=1) EvSo|}JA[  
    %       x = -1:0.01:1; R#gt~]x6k  
    %       [X,Y] = meshgrid(x,x); 6$$4!R-  
    %       [theta,r] = cart2pol(X,Y); 0t[|3A~Q  
    %       idx = r<=1; Y5?*=eM  
    %       z = nan(size(X)); H~IR:WOw  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); t`=TonLb8  
    %       figure Lf0Y|^!S_u  
    %       pcolor(x,x,z), shading interp TbX#K:l  
    %       axis square, colorbar qn) VKx=  
    %       title('Zernike function Z_5^1(r,\theta)') %\Dvng6$  
    % tmT/4Ia  
    %   Example 2: J&Ig%&/  
    % 0?OTa<c  
    %       % Display the first 10 Zernike functions )7!q>^S{ B  
    %       x = -1:0.01:1; j_H"m R  
    %       [X,Y] = meshgrid(x,x); [&12`!;j  
    %       [theta,r] = cart2pol(X,Y); ]."~)  
    %       idx = r<=1; Y3@\uM`2#  
    %       z = nan(size(X)); gS{hfDpk,h  
    %       n = [0  1  1  2  2  2  3  3  3  3]; SNqw 2f5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; u~SvR~OE  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; c1 aCN  
    %       y = zernfun(n,m,r(idx),theta(idx)); xPMTmx?2  
    %       figure('Units','normalized') I~Y1DP)R  
    %       for k = 1:10 Wm ri%  
    %           z(idx) = y(:,k); RW| LL@r  
    %           subplot(4,7,Nplot(k)) (Z(O7X(/  
    %           pcolor(x,x,z), shading interp r:pS[f|4\  
    %           set(gca,'XTick',[],'YTick',[]) XG_h\NIL  
    %           axis square |dNJx<-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) c#o(y6  
    %       end .axJ'*~W  
    % }nh!dVA8lh  
    %   See also ZERNPOL, ZERNFUN2. u\-WArntc  
    aY`qbJy  
    %   Paul Fricker 11/13/2006 .U}"ONd9e  
    ;MRK*sfw{  
    v C,53g  
    % Check and prepare the inputs: 3"v k$  
    % ----------------------------- @o4+MQFn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pc9m,?n  
        error('zernfun:NMvectors','N and M must be vectors.') WRa1VU&f  
    end uWm,mGd9  
    yTt,/+I%gJ  
    if length(n)~=length(m) bm/pLC6%.  
        error('zernfun:NMlength','N and M must be the same length.') > mI1wV[  
    end %C8p!)Hu  
    *B<Ig^c  
    n = n(:); J-iFA KN  
    m = m(:); ~V#MI@]V~  
    if any(mod(n-m,2)) bEO\oS  
        error('zernfun:NMmultiplesof2', ... JH3$G,:zM  
              'All N and M must differ by multiples of 2 (including 0).') `N;}Gf-'  
    end ,Sz`$'^c  
    k55s-%Ayr  
    if any(m>n) {jyI7 r#X  
        error('zernfun:MlessthanN', ... $y%X#:eLJ  
              'Each M must be less than or equal to its corresponding N.') Z8vMVo  
    end s?-@8.@  
    etnq{tE5  
    if any( r>1 | r<0 ) U(xN}Y ?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {tS^Q*F  
    end ++>HU{  
    qW~Z#Si  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +M )ep\j  
        error('zernfun:RTHvector','R and THETA must be vectors.') hM_0/o-  
    end C:r@)Mhq  
    ENx1)]  
    r = r(:); F7fpsAt7  
    theta = theta(:); 2EO WbN}M  
    length_r = length(r); \\ZR~f!<  
    if length_r~=length(theta) g5",jTn#  
        error('zernfun:RTHlength', ... y4N8B:j%  
              'The number of R- and THETA-values must be equal.') Rs$fNW@P  
    end [N@t/^gRC  
    rC !!X  
    % Check normalization: /#<R  
    % -------------------- gKPqWh  
    if nargin==5 && ischar(nflag) seQSDCsvw*  
        isnorm = strcmpi(nflag,'norm'); 9F~e^v]zp  
        if ~isnorm Bqcih$`BVU  
            error('zernfun:normalization','Unrecognized normalization flag.') aNt+;M7g`  
        end u& 4i=K'x8  
    else dM-qd`  
        isnorm = false; d+caGpaR  
    end u"$=:GK  
    i}tBB~]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \C{Dui) F  
    % Compute the Zernike Polynomials k<&zVV '  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yr;~M{{4  
    z_i (o  
    % Determine the required powers of r: D,3Kx ^  
    % ----------------------------------- %>];F~z  
    m_abs = abs(m); ~nP~6Q'wSH  
    rpowers = []; cVV@MC  
    for j = 1:length(n) @p$Nw.{'  
        rpowers = [rpowers m_abs(j):2:n(j)]; l1M %   
    end mM[KT} A  
    rpowers = unique(rpowers); :CeK 'A\  
    (^{tu89ab  
    % Pre-compute the values of r raised to the required powers, B|f =hlY  
    % and compile them in a matrix: 3-=f@uH!  
    % ----------------------------- c 5%uiv]  
    if rpowers(1)==0 (yJY/|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N1',`L5  
        rpowern = cat(2,rpowern{:}); ~|:U"w\[=  
        rpowern = [ones(length_r,1) rpowern]; 0I v(ioB=  
    else a<NZC  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "  jBc5*  
        rpowern = cat(2,rpowern{:}); &g.do?  
    end |#b]e|aP  
    cj64.C  
    % Compute the values of the polynomials: ?5IF;vk  
    % -------------------------------------- >fq]c  
    y = zeros(length_r,length(n)); 6*aU^#Hz6  
    for j = 1:length(n) w=QlQ\  
        s = 0:(n(j)-m_abs(j))/2; CyV2=o!F w  
        pows = n(j):-2:m_abs(j); '+s?\X4VC  
        for k = length(s):-1:1 W?:e4:Q  
            p = (1-2*mod(s(k),2))* ... uGc0Lv4i/  
                       prod(2:(n(j)-s(k)))/              ... ez-jVi-Fi  
                       prod(2:s(k))/                     ... !,cL c}a  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?Tlt(%f  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); G`e!WvC  
            idx = (pows(k)==rpowers); u]z87#4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /'l"Us},^!  
        end Nd h  
         #iiXJnG  
        if isnorm "!B\c9q  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YlhyZ&a,  
        end rj ] ~g  
    end !jTxMf  
    % END: Compute the Zernike Polynomials `9Rj;^NJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T!jMh-8  
    !{+a2wi  
    % Compute the Zernike functions: 5-RA<d#  
    % ------------------------------ =T-jG_.H  
    idx_pos = m>0; r [E4/?_  
    idx_neg = m<0; 1KadT7<0}  
    ujf]@L?  
    z = y; 1wg#4h43l  
    if any(idx_pos) ,Dy9-o  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8~}~ d}wW  
    end eyzXHS*s;L  
    if any(idx_neg) VZ]}9k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j0~ dJ#  
    end 0JXXJ:dB  
    7$JOIsM  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 4jw q$G  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. +TC##}Zmb  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated U.Fs9F4M#  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive P#9Pq,I  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, \HL66%b[  
    %   and THETA is a vector of angles.  R and THETA must have the same 4*9BAv  
    %   length.  The output Z is a matrix with one column for every P-value, zXW;W$7V4  
    %   and one row for every (R,THETA) pair. re fAgS!=q  
    % @GWlo\rM6^  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike #!C|~=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) s_P[lbHt.  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) u/apnAW@M  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ul{D)zm\D  
    %   for all p. wA o6:)  
    % }vd72P B  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 (@NW2  
    %   Zernike functions (order N<=7).  In some disciplines it is a5/r|BiBK  
    %   traditional to label the first 36 functions using a single mode v.53fx  
    %   number P instead of separate numbers for the order N and azimuthal ?L"x>$  
    %   frequency M. 2S//5@~_m  
    % gNC'kCx0c  
    %   Example: %3yrX>Js  
    % +4F; m_G6  
    %       % Display the first 16 Zernike functions 5R6QZVc  
    %       x = -1:0.01:1; epI~w  
    %       [X,Y] = meshgrid(x,x); [W99}bi$  
    %       [theta,r] = cart2pol(X,Y); Pf~0JNnc  
    %       idx = r<=1; Rl'xEtaN  
    %       p = 0:15; j:$Z-s  
    %       z = nan(size(X)); MhjIE<OI=  
    %       y = zernfun2(p,r(idx),theta(idx)); Of#"nu  
    %       figure('Units','normalized') v 8TNBsEL  
    %       for k = 1:length(p) tILnD1q  
    %           z(idx) = y(:,k); %reW/;)l{  
    %           subplot(4,4,k) zVis"g`  
    %           pcolor(x,x,z), shading interp f\;f&GI  
    %           set(gca,'XTick',[],'YTick',[]) ; hU9_e  
    %           axis square bYYjP.rcF  
    %           title(['Z_{' num2str(p(k)) '}']) Yc5<Y-W  
    %       end 0R;`)V\^  
    % orFB*{/Z  
    %   See also ZERNPOL, ZERNFUN. r;O?`~2'4  
    [6?x 6_M  
    %   Paul Fricker 11/13/2006 fVYv 2  
    GS*_m4.Ry6  
    ]''tuo2g8  
    % Check and prepare the inputs: lUiO|  
    % ----------------------------- m/WDJ$d  
    if min(size(p))~=1 @h5Q?I  
        error('zernfun2:Pvector','Input P must be vector.') _I%mY!x\`  
    end F#o{/u?T  
    0Qg%48u  
    if any(p)>35 U+ uIuhz  
        error('zernfun2:P36', ... &VxK AQMxN  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... UJ`%uLR~  
               '(P = 0 to 35).']) M#yUdl7d  
    end iHWt;]  
    :~p_(rE  
    % Get the order and frequency corresonding to the function number: BbI),iP  
    % ---------------------------------------------------------------- cGW L'r)P  
    p = p(:); 17 VNw/Y  
    n = ceil((-3+sqrt(9+8*p))/2); &# @"^(} 6  
    m = 2*p - n.*(n+2); &A^2hPe}  
    xG(:O@  
    % Pass the inputs to the function ZERNFUN: K,*IfHi6[  
    % ---------------------------------------- x!onan  
    switch nargin th=45y"C  
        case 3 UHDcheeRD  
            z = zernfun(n,m,r,theta); '=IuwCB|;  
        case 4 efh1-3f  
            z = zernfun(n,m,r,theta,nflag); obw:@i#  
        otherwise "H{#ib_c_  
            error('zernfun2:nargin','Incorrect number of inputs.') ;8gODj:dO  
    end w$Mb+b$  
    P2)g%$ME  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) UOI Z8Po  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. q{.~=~  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of tQ4{:WPG  
    %   order N and frequency M, evaluated at R.  N is a vector of 3lNw*M|")  
    %   positive integers (including 0), and M is a vector with the P q( )2B  
    %   same number of elements as N.  Each element k of M must be a !i6 aA1'  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) $Vm J[EF1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is POQ1K O  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix *Xd_=@L&B  
    %   with one column for every (N,M) pair, and one row for every g? \pH:|79  
    %   element in R. M~!LjJg;  
    % "?sLi  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- R7By=Y!t  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is  Ia)^  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Q_a%$a.rV  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ?rV c}  
    %   for all [n,m]. SHPZXJ{  
    % 9a_(_g>S  
    %   The radial Zernike polynomials are the radial portion of the d>7bwG+k  
    %   Zernike functions, which are an orthogonal basis on the unit ;d  >  
    %   circle.  The series representation of the radial Zernike __||cQ  
    %   polynomials is jfrUOl'l  
    % YuDNm}r[  
    %          (n-m)/2 uO-R:MC  
    %            __ L:EJ+bNG  
    %    m      \       s                                          n-2s xE.=\UzJ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r h-h}NCP  
    %    n      s=0 DSHpM/7  
    % ("BFI  
    %   The following table shows the first 12 polynomials. Yui:=GgUrr  
    % 9/|i. 2&  
    %       n    m    Zernike polynomial    Normalization &On0)G3Rc  
    %       --------------------------------------------- X]*W +  
    %       0    0    1                        sqrt(2) `o*g2fW!  
    %       1    1    r                           2 Qs{Qg<}  
    %       2    0    2*r^2 - 1                sqrt(6) 3/@'tLtN  
    %       2    2    r^2                      sqrt(6) z95V 7E  
    %       3    1    3*r^3 - 2*r              sqrt(8) _mL9G5~r  
    %       3    3    r^3                      sqrt(8) aa1XY&G"!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) w G Q{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) +=@Z5eu  
    %       4    4    r^4                      sqrt(10) z:R2Wksg  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) et]*5Y6  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) YKvFZH)  
    %       5    5    r^5                      sqrt(12) _?_Svx2  
    %       --------------------------------------------- RN:#+S(8  
    % U>x2'B v  
    %   Example: z_l3=7R  
    % z(orA} [  
    %       % Display three example Zernike radial polynomials JnY3]  
    %       r = 0:0.01:1; JT^E `<nn  
    %       n = [3 2 5]; )x|BY>  
    %       m = [1 2 1]; 7<^D7  
    %       z = zernpol(n,m,r); Azz]TO  
    %       figure  2 5ZGuM  
    %       plot(r,z) n8G#TQrAE  
    %       grid on |H_)u  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') (\/HGxv  
    % c)6Y.[).  
    %   See also ZERNFUN, ZERNFUN2. 3Yj}ra}  
    X0Oq lAw  
    % A note on the algorithm. Sc~kO4  
    % ------------------------ |f?C*t',  
    % The radial Zernike polynomials are computed using the series *E)Y?9u"  
    % representation shown in the Help section above. For many special ^]R0d3?>\  
    % functions, direct evaluation using the series representation can :M[E-j;  
    % produce poor numerical results (floating point errors), because rw\4KI@ L  
    % the summation often involves computing small differences between }Rux<=cd|  
    % large successive terms in the series. (In such cases, the functions wD,F=O  
    % are often evaluated using alternative methods such as recurrence j'J*QK&Q  
    % relations: see the Legendre functions, for example). For the Zernike MM8)yCI  
    % polynomials, however, this problem does not arise, because the My`%gP~%g  
    % polynomials are evaluated over the finite domain r = (0,1), and YKc{P"'/ |  
    % because the coefficients for a given polynomial are generally all eu:_V+  
    % of similar magnitude. M7> \Qk  
    % Csc2yI%3  
    % ZERNPOL has been written using a vectorized implementation: multiple ,6buo~?W:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] GKd>AP_  
    % values can be passed as inputs) for a vector of points R.  To achieve `( a^=e5  
    % this vectorization most efficiently, the algorithm in ZERNPOL ^ KjqS\<  
    % involves pre-determining all the powers p of R that are required to #129 i2  
    % compute the outputs, and then compiling the {R^p} into a single 86I*  
    % matrix.  This avoids any redundant computation of the R^p, and YWZF*,4  
    % minimizes the sizes of certain intermediate variables. 1a!h&!$9  
    % 7=AKQ7BB>b  
    %   Paul Fricker 11/13/2006 uU\iji\  
    ?3Fo:Z`@F  
    >PJ-Z~O'   
    % Check and prepare the inputs: ,/ : )FV  
    % ----------------------------- &L?Dogo  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t]o gn(  
        error('zernpol:NMvectors','N and M must be vectors.') db XG?K][  
    end M:SxAo-D2  
    "}EbA3  
    if length(n)~=length(m) '~cEdGD9H  
        error('zernpol:NMlength','N and M must be the same length.') HY:@=%R  
    end g0U ?s  
    TatyD**(  
    n = n(:); I(CI')Q  
    m = m(:); #?=cg]v_  
    length_n = length(n); .0|J+D  
    m&%b;%,J  
    if any(mod(n-m,2)) L' pZ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6J*`<k/ S  
    end >?'FH +2K  
    @6!JW(,]\  
    if any(m<0) gZUy0`E  
        error('zernpol:Mpositive','All M must be positive.') Vel;t<1  
    end 7GUJ&U) J  
    !tdfTf$  
    if any(m>n) xVyUUzXs  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %E\%nTV  
    end yBj)#m5!  
    B# fzMaC  
    if any( r>1 | r<0 ) D=>^m=?0  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') bH{aI:9Fb  
    end ;^*!<F%t9R  
    zOOX>3^  
    if ~any(size(r)==1) ftPw6  
        error('zernpol:Rvector','R must be a vector.') lRr-S%  
    end Q ?t  
    ^!qmlx*  
    r = r(:); hI8C XG  
    length_r = length(r); z{d5Lrk  
    "/?qT;<$)  
    if nargin==4 .[fz x`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); QO.gt*"  
        if ~isnorm }$1 ;<  
            error('zernpol:normalization','Unrecognized normalization flag.') 2>k)=hl:  
        end SEIu4 l$E  
    else Y(zN  
        isnorm = false; c1J)yv1y  
    end ^^SfIK?p  
    *"\Q ~#W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1}E@lOc  
    % Compute the Zernike Polynomials ,`zRlkX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dj+Osh  
    e}[we:  
    % Determine the required powers of r: I uj=d~|>  
    % ----------------------------------- Zbh]O CN  
    rpowers = []; Xh"iP%  
    for j = 1:length(n) })lT fy  
        rpowers = [rpowers m(j):2:n(j)]; %UQB?dkf$  
    end }%ThnFFBw  
    rpowers = unique(rpowers); ON0+:`3\  
    k)V%.Eobf  
    % Pre-compute the values of r raised to the required powers, 5]l7Z35  
    % and compile them in a matrix: O + & xb  
    % ----------------------------- J*!:ar  
    if rpowers(1)==0 tC:,!4 P$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); PX2k,%  
        rpowern = cat(2,rpowern{:}); d J:x1j  
        rpowern = [ones(length_r,1) rpowern]; Bq]O &>\hX  
    else l6c%_<P|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "q^'5p]  
        rpowern = cat(2,rpowern{:}); j(C UYm  
    end (iOCzZ6S  
    N%A`rY}u  
    % Compute the values of the polynomials: 7&1~O#  
    % -------------------------------------- o`mIi  
    z = zeros(length_r,length_n); m%c0#=D  
    for j = 1:length_n Jx$#GUl#j  
        s = 0:(n(j)-m(j))/2; <>i+R#u{  
        pows = n(j):-2:m(j); @1?]$?u&  
        for k = length(s):-1:1 ,Kf8T9z`  
            p = (1-2*mod(s(k),2))* ... pptM &Y  
                       prod(2:(n(j)-s(k)))/          ... LDEW00zL  
                       prod(2:s(k))/                 ... `]P5,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... `u\z!x'  
                       prod(2:((n(j)+m(j))/2-s(k))); DsJn#>?Kh  
            idx = (pows(k)==rpowers); nQ17E{^pR  
            z(:,j) = z(:,j) + p*rpowern(:,idx); iEVA[xy=D  
        end pJIE@Q|hi  
         CEuk1$  
        if isnorm ob0 8xGj  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); b]<HhU  
        end 3E}NiD\V}  
    end `XSc >  
    (:-Jl"&R@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :~t<L%tYF  
    d4d\0[  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 |.j^G2x  
    /"(b.&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)