切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11100阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~?lmkfy  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! KZ/2W9r_,  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Z|$OPMLX  
    function z = zernfun(n,m,r,theta,nflag) {o.i\"x;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;PX>] r5U0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \@:mq]Y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7-MkfWH2b6  
    %   unit circle.  N is a vector of positive integers (including 0), and s4{>7`N2  
    %   M is a vector with the same number of elements as N.  Each element o51jw(wO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $r= tOD4;  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Z\*jt B:  
    %   and THETA is a vector of angles.  R and THETA must have the same RE75TqYW  
    %   length.  The output Z is a matrix with one column for every (N,M) *z\L  
    %   pair, and one row for every (R,THETA) pair. [cf!%3>53  
    % y8=H+Y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $2gZpO|  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W%^;:YQ9i  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral kG$U  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, iwT PJGK|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized XfH[: XG3  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. IH~[/qNk  
    % $y+Bril5W  
    %   The Zernike functions are an orthogonal basis on the unit circle. @t?uhT*Z=  
    %   They are used in disciplines such as astronomy, optics, and \L{V|}"X  
    %   optometry to describe functions on a circular domain. ; )J\k2  
    % /%w3(e  
    %   The following table lists the first 15 Zernike functions. n|f Huv  
    % *.F4?i2D  
    %       n    m    Zernike function           Normalization *b+ ~@o  
    %       -------------------------------------------------- M[7$cfp-Y~  
    %       0    0    1                                 1 Ow4H7 sl  
    %       1    1    r * cos(theta)                    2 +LsACSB  
    %       1   -1    r * sin(theta)                    2 MF/@Efjn ]  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ky-9I<Z,,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?hS&OtW   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'PVxc %[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z. G<'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ea\Khf]2  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b;%>?U`>p  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) I&G"{Dl94  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Pmj%QhOYE  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %#$K P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,@4~:OY  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eT6T@C](  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) j0+l-]F-  
    %       -------------------------------------------------- - HiRXB  
    % ==)q{e5  
    %   Example 1: n!$zO{P  
    % W 2.Ap  
    %       % Display the Zernike function Z(n=5,m=1) U/l3C(bc!  
    %       x = -1:0.01:1; 5VR=D\j  
    %       [X,Y] = meshgrid(x,x); @UCr`>  
    %       [theta,r] = cart2pol(X,Y); kx31g,cf]w  
    %       idx = r<=1; /Mmts=^Ja  
    %       z = nan(size(X)); Ny2. C?2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); {IA3`y~  
    %       figure @[. 0,  
    %       pcolor(x,x,z), shading interp J_rb3  
    %       axis square, colorbar |Pj]sh[^Y  
    %       title('Zernike function Z_5^1(r,\theta)') <Po$|$_~  
    % >JckN4 v  
    %   Example 2: rK} =<R  
    % ur K~]68  
    %       % Display the first 10 Zernike functions xfK@tLEZ-1  
    %       x = -1:0.01:1; LZH~VkK@m}  
    %       [X,Y] = meshgrid(x,x); j;SK{Oq  
    %       [theta,r] = cart2pol(X,Y); V Bv|7S  
    %       idx = r<=1; *9O@DF&*6  
    %       z = nan(size(X)); h1REL^!c  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >PmnR>x-rj  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zW9/[Db  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r"xs?P&/$  
    %       y = zernfun(n,m,r(idx),theta(idx)); PJ3M,2H1b.  
    %       figure('Units','normalized') iV2v<ap.n  
    %       for k = 1:10 !@3"vd{^  
    %           z(idx) = y(:,k); 5VZZk%oy  
    %           subplot(4,7,Nplot(k)) Q"F" 13  
    %           pcolor(x,x,z), shading interp ^ZPynduR  
    %           set(gca,'XTick',[],'YTick',[]) 5/YGu=,  
    %           axis square _ 2 oZhJ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :Fh#"<A&&  
    %       end {j[a'Gb  
    % #G!\MYfQt  
    %   See also ZERNPOL, ZERNFUN2. mr2fNA>kR  
    i# bcjH  
    %   Paul Fricker 11/13/2006 b>]k=zd  
    tg6iHFa  
    {L/hhKT  
    % Check and prepare the inputs: e82xBLxR%  
    % ----------------------------- Lq2ZgKd!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jG["#5<?  
        error('zernfun:NMvectors','N and M must be vectors.') R@~=z5X( Q  
    end i+ICgMcd  
    GUn$IPOM  
    if length(n)~=length(m) <%?!3 n*  
        error('zernfun:NMlength','N and M must be the same length.') +; / s0  
    end {R8)DK  
    |'qvq/#^  
    n = n(:); .H 9 r_  
    m = m(:); Te2 C<c  
    if any(mod(n-m,2)) &lnM 1W  
        error('zernfun:NMmultiplesof2', ... :hTmt{LjN  
              'All N and M must differ by multiples of 2 (including 0).') kX%vTl7F  
    end Qo\?(E M  
    O-&^;]ieJ  
    if any(m>n) @Nn'G{8OG  
        error('zernfun:MlessthanN', ... t?wVh0gT  
              'Each M must be less than or equal to its corresponding N.') 7:e5l19 uI  
    end nxMZd=Y  
    <f#pS[A  
    if any( r>1 | r<0 ) wC?>,LOl  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') MO@XbPZB  
    end ~,7Tj  
    TeRH@oI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |[!7^tU*  
        error('zernfun:RTHvector','R and THETA must be vectors.') `Wd4d2aLG  
    end ~S\8 '  
    hc*tQ2  
    r = r(:); $Y M(NC  
    theta = theta(:); wOg#J  
    length_r = length(r); L)c]i'WZ  
    if length_r~=length(theta) *Hz]<b?  
        error('zernfun:RTHlength', ... B#r"|x#[  
              'The number of R- and THETA-values must be equal.') XtqhK"f%  
    end +GncQs y  
    =q}Z2 OoYh  
    % Check normalization: ^hcK&  
    % -------------------- <%.lPO]&E  
    if nargin==5 && ischar(nflag) ?x/Lb*a^  
        isnorm = strcmpi(nflag,'norm'); qOv`&%txW  
        if ~isnorm Y`."=8R~  
            error('zernfun:normalization','Unrecognized normalization flag.') yz"hU  
        end k}C4:?AT  
    else 3_8W5J3I  
        isnorm = false; ,Xxp]*K2  
    end f>|W d;7l:  
    $18?Q+?3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rl,i,1t  
    % Compute the Zernike Polynomials #v; :K8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iJ`zWpj+{Q  
    $,B;\PX  
    % Determine the required powers of r: 0g9y4z{H  
    % ----------------------------------- f@2F!  
    m_abs = abs(m); +8Y|kC{9"  
    rpowers = []; Ehxu`>@N  
    for j = 1:length(n) &?}A/(#  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5O;D\M{>  
    end my0iE:  
    rpowers = unique(rpowers); Xzl$Qc  
    a"`> J!  
    % Pre-compute the values of r raised to the required powers, ]( FFvqA  
    % and compile them in a matrix: #r/5!*3  
    % ----------------------------- axOEL:-|Bu  
    if rpowers(1)==0 Ckc5;:b&m  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [^W +^3V  
        rpowern = cat(2,rpowern{:}); H%>^_:h  
        rpowern = [ones(length_r,1) rpowern]; O`5hj q#  
    else eV~"T2!Sb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >.I9S{7  
        rpowern = cat(2,rpowern{:}); f[ KI T  
    end U }AIOtUw  
    wbvOf X  
    % Compute the values of the polynomials: {u+=K-Bj  
    % -------------------------------------- *s<cgPKJ @  
    y = zeros(length_r,length(n)); ;/t~MH  
    for j = 1:length(n) m2P&DdN[  
        s = 0:(n(j)-m_abs(j))/2; 1 e]D=2y  
        pows = n(j):-2:m_abs(j); L6#4A3yh  
        for k = length(s):-1:1 Te`@{>  
            p = (1-2*mod(s(k),2))* ... x4(8 =&Z  
                       prod(2:(n(j)-s(k)))/              ... *(qj!U43  
                       prod(2:s(k))/                     ... B3pjli  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bDm7$ (  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); s4QCun~m  
            idx = (pows(k)==rpowers); Lz!JLiMEET  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ud7Z7?Ym  
        end ns *:mGh  
         3 q J00A  
        if isnorm 81C;D`!K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); slhMvHOk-  
        end K7@|2;e  
    end evpy%/D  
    % END: Compute the Zernike Polynomials ANJL8t-m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ve:Oe{Ie{  
    <EQaYZY=  
    % Compute the Zernike functions: bWSc&/ 9y  
    % ------------------------------ `HO] kJpX  
    idx_pos = m>0; ^d@2Y0hH  
    idx_neg = m<0; uE<8L(*B  
    |>[qC O  
    z = y; #C~ </R%  
    if any(idx_pos) a 9{:ot8,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 99(@O,*(Y  
    end h"/'H)G7_&  
    if any(idx_neg) ^*.+4iHx  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tTF<DD}8  
    end J@"UFL'^  
    jm@,Ihz=wI  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ZNM9@;7  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Qe\vx1GRLH  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated WG@3+R>{  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive PTLlLa85<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~, E }^  
    %   and THETA is a vector of angles.  R and THETA must have the same qp/1 tC`  
    %   length.  The output Z is a matrix with one column for every P-value, L6DYunh}^N  
    %   and one row for every (R,THETA) pair. 3;VH'hh_  
    % B :S8{  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike sW'_K.z  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Jwfb%Xge~  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7}y@VO6]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Kw$@_~BJ6  
    %   for all p. zi3v, Kq  
    % B@NBN&Fr  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 cm_5,wB(w  
    %   Zernike functions (order N<=7).  In some disciplines it is ACi,$Uq6R  
    %   traditional to label the first 36 functions using a single mode `GW&*[.7  
    %   number P instead of separate numbers for the order N and azimuthal ^<-)rzTI  
    %   frequency M. E:dN)  
    % U,Uy0s2r  
    %   Example: 8>W52~^fU  
    % /} z9(  
    %       % Display the first 16 Zernike functions rab$[?]  
    %       x = -1:0.01:1; s~2o<#  
    %       [X,Y] = meshgrid(x,x); t-o,iaPG3  
    %       [theta,r] = cart2pol(X,Y); h@\-]zN{  
    %       idx = r<=1; [Z"Z5e`  
    %       p = 0:15; -j]c(Q MA]  
    %       z = nan(size(X)); YY:{/0?  
    %       y = zernfun2(p,r(idx),theta(idx)); `4snTM!v&  
    %       figure('Units','normalized') 7M7Lj0Y)L  
    %       for k = 1:length(p) pe0ax- Zv  
    %           z(idx) = y(:,k); D_0sXIbg  
    %           subplot(4,4,k) yo->mD  
    %           pcolor(x,x,z), shading interp Sn4xv2/  
    %           set(gca,'XTick',[],'YTick',[]) y6tqemz  
    %           axis square J`)/\9'&&  
    %           title(['Z_{' num2str(p(k)) '}']) s>I]_W)Pt  
    %       end Yl>Y.SO  
    % O/FI>RT\H  
    %   See also ZERNPOL, ZERNFUN. vs[!B-  
    /g!ZU2&l  
    %   Paul Fricker 11/13/2006 6H: fg  
    *]NfT}}  
    6vAZLNG3  
    % Check and prepare the inputs: $Wj{B@k  
    % ----------------------------- ar\|D\0V  
    if min(size(p))~=1 =pi,]m  
        error('zernfun2:Pvector','Input P must be vector.') ~!~i_L\V  
    end A+8)VlE\  
    Zv!XNc!"$y  
    if any(p)>35 l7jen=(Zb;  
        error('zernfun2:P36', ... NQ;X|$!zH  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +aL  
               '(P = 0 to 35).']) PN?;\k)"  
    end k(^TXUK\o  
    mj e9i  
    % Get the order and frequency corresonding to the function number: J&fIW Z  
    % ---------------------------------------------------------------- #}B1W&\sw  
    p = p(:); W)bSLD   
    n = ceil((-3+sqrt(9+8*p))/2); 0$c(<+D  
    m = 2*p - n.*(n+2); _q#pEv  
    @@U  
    % Pass the inputs to the function ZERNFUN: XP o#qT8n  
    % ---------------------------------------- hBnUpYec  
    switch nargin \By_mw  
        case 3 f4\$<g/~  
            z = zernfun(n,m,r,theta); 2^ ]^Yc  
        case 4 Z\`SDC  
            z = zernfun(n,m,r,theta,nflag); SO *oBA'  
        otherwise \P+^BG!  
            error('zernfun2:nargin','Incorrect number of inputs.') J/K~8s c  
    end qQ^CSn98J  
    !;(Wm6~*ad  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9q$^x/z!  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. (0Br`%!F  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 8CRbo24"s  
    %   order N and frequency M, evaluated at R.  N is a vector of G \MeJSt*  
    %   positive integers (including 0), and M is a vector with the H!7?#tRU  
    %   same number of elements as N.  Each element k of M must be a *,CJ 3< >  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) $`7Fk%#+e  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [<U=)!Swg  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0nCiN;sA  
    %   with one column for every (N,M) pair, and one row for every  w (RRu~J  
    %   element in R. 1aS:bFi`  
    % n:wAxU  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Gr&e]M[l  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is >Tl/3{V  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to xS%&l)dT  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 'D`lVUB  
    %   for all [n,m]. `ql8y'  
    % aWRi`poZT  
    %   The radial Zernike polynomials are the radial portion of the ]!sCWR  
    %   Zernike functions, which are an orthogonal basis on the unit r`<e<C  
    %   circle.  The series representation of the radial Zernike <)a$5"AP  
    %   polynomials is dF 6od  
    % ~ L%,9  
    %          (n-m)/2 kZG; \  
    %            __ qonStIP  
    %    m      \       s                                          n-2s o:ow"cOEf  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r F7jkl4  
    %    n      s=0 D :j5/ *  
    % V6d,}Z+"z'  
    %   The following table shows the first 12 polynomials. /~WBqcl  
    % --"5yGOL  
    %       n    m    Zernike polynomial    Normalization PR!0=E*}  
    %       --------------------------------------------- 9v;[T%%  
    %       0    0    1                        sqrt(2)  G$'UK  
    %       1    1    r                           2 v)O].Hd  
    %       2    0    2*r^2 - 1                sqrt(6) nM &a2Z,T  
    %       2    2    r^2                      sqrt(6) Tf!6N<dRXR  
    %       3    1    3*r^3 - 2*r              sqrt(8) `u_MdB}<x;  
    %       3    3    r^3                      sqrt(8) %7`eT^  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ;PG= 3j_  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) MHt ~ZVH  
    %       4    4    r^4                      sqrt(10) "2-D[rYZ  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) !mqIq} h  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 2^`k6V!  
    %       5    5    r^5                      sqrt(12) ndDF(qHr  
    %       --------------------------------------------- ^CQp5kp]  
    % u@:[ dbJ  
    %   Example: gV9bt ~  
    % 2f%+1uU  
    %       % Display three example Zernike radial polynomials t+F_/_"B  
    %       r = 0:0.01:1; J9tV|0  
    %       n = [3 2 5]; 'lpCwH  
    %       m = [1 2 1]; iuXXFuh  
    %       z = zernpol(n,m,r); 'J0I$-QYk  
    %       figure ws QuJrG  
    %       plot(r,z) sl@>GbnS  
    %       grid on o/a2n<4  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7D>_<)%d=  
    % HbPn<x^7  
    %   See also ZERNFUN, ZERNFUN2. vpT\ CjXHZ  
    F?FfRzZ[  
    % A note on the algorithm. z#`Qfvu6Hi  
    % ------------------------ \v=@'  
    % The radial Zernike polynomials are computed using the series Crj7n/mp]s  
    % representation shown in the Help section above. For many special GNuIcy  
    % functions, direct evaluation using the series representation can ' e!WZvr  
    % produce poor numerical results (floating point errors), because h$9ut@I  
    % the summation often involves computing small differences between =a+  } 6  
    % large successive terms in the series. (In such cases, the functions {0+WVZ4u  
    % are often evaluated using alternative methods such as recurrence Q;z!]hjBM  
    % relations: see the Legendre functions, for example). For the Zernike pZ*%zt]-a  
    % polynomials, however, this problem does not arise, because the $.w$x1  
    % polynomials are evaluated over the finite domain r = (0,1), and FAc^[~E  
    % because the coefficients for a given polynomial are generally all KlS#f  
    % of similar magnitude. j$ lf>.[I  
    % -'D ~nd${  
    % ZERNPOL has been written using a vectorized implementation: multiple W?wt$'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] | X#!5u  
    % values can be passed as inputs) for a vector of points R.  To achieve (xTGt",_Jo  
    % this vectorization most efficiently, the algorithm in ZERNPOL %LmsywPPp  
    % involves pre-determining all the powers p of R that are required to 8EdaxeDq  
    % compute the outputs, and then compiling the {R^p} into a single b+arnKo1fk  
    % matrix.  This avoids any redundant computation of the R^p, and +03/A`PKrB  
    % minimizes the sizes of certain intermediate variables. o+XQMg  
    % GNrRc3dr$  
    %   Paul Fricker 11/13/2006 v{"yrC  
    q=`n3+N_H~  
    ?>V>6cDQ  
    % Check and prepare the inputs: ^\`a-l^  
    % ----------------------------- +%klS `_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a-F I`Dv  
        error('zernpol:NMvectors','N and M must be vectors.') aqQ+A:g  
    end KkpbZ7\@  
    dXM8iP  
    if length(n)~=length(m) kQd|qZ=:w  
        error('zernpol:NMlength','N and M must be the same length.') 0&CXR=U5  
    end :qB|~"9O  
    ^LB]  
    n = n(:); Wuk8&P3  
    m = m(:); {{M/=WqC  
    length_n = length(n); :Ru8Nm  
    w8UUeF  
    if any(mod(n-m,2)) B@dCCKc%/  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') @b.,pwZF  
    end  !j%  
    yVGf[ ~X  
    if any(m<0) nsVLgTbx  
        error('zernpol:Mpositive','All M must be positive.') "zXrfn  
    end ;;Z'd@  
    (5th   
    if any(m>n) )Qe]!$tqfD  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') jpZq]E9`P  
    end wWf_d jd  
    =v<A&4  
    if any( r>1 | r<0 ) f##/-NG  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') oyk&]'>  
    end 7j=KiiI  
    ^=5y;  
    if ~any(size(r)==1) )wD/<7;  
        error('zernpol:Rvector','R must be a vector.') %3t;[$n#  
    end gCG #?f  
    Kj3Gm>B<y  
    r = r(:); QT%vrXzz  
    length_r = length(r); 6H  U*,  
    TKGaGMx6@  
    if nargin==4 >35w"a7S  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); I''n1v?N  
        if ~isnorm <pHm=q/U  
            error('zernpol:normalization','Unrecognized normalization flag.') eu_ZsseZ  
        end M,li\)J!&  
    else f#GMJ mCQs  
        isnorm = false; ?r8hl.Z>  
    end $2i@@#g8  
    (&v|,.c^)1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m F+8Q  
    % Compute the Zernike Polynomials ,t wB" *  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $^?VyHXvY  
    A9K$:mL<2  
    % Determine the required powers of r: f>ktv76  
    % ----------------------------------- &zEBfr  
    rpowers = []; )b2O!p  
    for j = 1:length(n) m$v >r\*X  
        rpowers = [rpowers m(j):2:n(j)]; i(cKg&+ktd  
    end }Kp<w,  
    rpowers = unique(rpowers); zYY]+)k?  
    R@tEC)Zn  
    % Pre-compute the values of r raised to the required powers, 3Os0<1@H  
    % and compile them in a matrix: GtZ.' ?-  
    % ----------------------------- (6a<{  
    if rpowers(1)==0 u SQ#Y^V_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wik<# ke  
        rpowern = cat(2,rpowern{:}); p0zC(v0*  
        rpowern = [ones(length_r,1) rpowern]; &}2@pu[S?7  
    else &V (6N%A^U  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BU??}{  
        rpowern = cat(2,rpowern{:}); Ma$~B0!;s  
    end Ny$3$5/  
    eh]sye KBj  
    % Compute the values of the polynomials: L)F4)VL  
    % -------------------------------------- . 43cI(  
    z = zeros(length_r,length_n); M")/6PH8  
    for j = 1:length_n Jkbeh.  
        s = 0:(n(j)-m(j))/2; GCO: !,1  
        pows = n(j):-2:m(j); M_ %-A  
        for k = length(s):-1:1 N5sVRL"7  
            p = (1-2*mod(s(k),2))* ... 2Zuo).2a.  
                       prod(2:(n(j)-s(k)))/          ... R"P-+T=7M  
                       prod(2:s(k))/                 ... C5TV}Bq\  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Y.Z:H!P);$  
                       prod(2:((n(j)+m(j))/2-s(k))); },JJ!3  
            idx = (pows(k)==rpowers); 0\ (:y^X  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 3Z*o5@RI  
        end L{8_6s(:  
         zN]%p>,)HB  
        if isnorm -40X3  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); -6NoEmb)\'  
        end QOg >|"KL  
    end 0^o/c SF  
    C&vi7Yx  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  _D4qnb@  
    &EV%g6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 !ZUUn*e{5  
    _9lMa 7i  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)