非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 tf|/_Y2
function z = zernfun(n,m,r,theta,nflag) j/3827jw=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (S0MqX*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .x$+R%5U
% and angular frequency M, evaluated at positions (R,THETA) on the 4pV.R5:
% unit circle. N is a vector of positive integers (including 0), and ~/Aw[>_;
% M is a vector with the same number of elements as N. Each element ;4 R1
% k of M must be a positive integer, with possible values M(k) = -N(k) IGEf*!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6xr$
% and THETA is a vector of angles. R and THETA must have the same Un^QNd>
% length. The output Z is a matrix with one column for every (N,M) ?;,s=2
% pair, and one row for every (R,THETA) pair. h|yv*1/|
% [|d:QFx
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike C/"fS#<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ge@./SGT
% with delta(m,0) the Kronecker delta, is chosen so that the integral eJilSFp1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ldrKk'S,B
% and theta=0 to theta=2*pi) is unity. For the non-normalized Im{50%Y
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. oaHg6PT!
% jU)r~QhN
% The Zernike functions are an orthogonal basis on the unit circle. TU$/3fp*
% They are used in disciplines such as astronomy, optics, and &zlwV"W
% optometry to describe functions on a circular domain. tq}sXt
% ;TF(opW:
% The following table lists the first 15 Zernike functions. 24Z7;'
% ylLQKdcL
% n m Zernike function Normalization 9bl&\Ykt.
% -------------------------------------------------- '{\VOU
% 0 0 1 1 #R"9(Q&
% 1 1 r * cos(theta) 2 %CfJ.;BDNE
% 1 -1 r * sin(theta) 2 ,G
e7
9(
% 2 -2 r^2 * cos(2*theta) sqrt(6) Tc,Bv7:
% 2 0 (2*r^2 - 1) sqrt(3) cE/7B'cR
% 2 2 r^2 * sin(2*theta) sqrt(6) UAnq|NJO
% 3 -3 r^3 * cos(3*theta) sqrt(8) Zn1+} Z@I
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z8(1QU,~2
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8;P8CKe
% 3 3 r^3 * sin(3*theta) sqrt(8) S9<J\`FG
% 4 -4 r^4 * cos(4*theta) sqrt(10) IQMk :
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,]i ^/fT
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) JHwkLAuz
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $@FD01h.t3
% 4 4 r^4 * sin(4*theta) sqrt(10) 2JYp.CJv
% -------------------------------------------------- %Xh/16X${
% [^A.$,
% Example 1: {0q;:7Bt
% El Z'/l*\
% % Display the Zernike function Z(n=5,m=1) F}DdErd!f
% x = -1:0.01:1; vpFN{UfD
% [X,Y] = meshgrid(x,x); Id
*Gs>4U
% [theta,r] = cart2pol(X,Y); lInq=
% idx = r<=1; Ra'0 ^4t
% z = nan(size(X)); A)2vjM9}K
% z(idx) = zernfun(5,1,r(idx),theta(idx)); AEX]_1TG
% figure iH#~eg
% pcolor(x,x,z), shading interp A,W-=TC
% axis square, colorbar yX,2`&c
% title('Zernike function Z_5^1(r,\theta)') QN9$n%Z
% mk~i (Ee
% Example 2: `FHHh
% MxuwEV|^
% % Display the first 10 Zernike functions }e6Ta_Z~
% x = -1:0.01:1; C (vi ns
% [X,Y] = meshgrid(x,x); -9~kp'_a
% [theta,r] = cart2pol(X,Y); 9<k<HmkD
% idx = r<=1; [3nhf<O
% z = nan(size(X)); _J6|ju\
% n = [0 1 1 2 2 2 3 3 3 3]; o*:VG\#Z6
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; p.n]y=o.)
% Nplot = [4 10 12 16 18 20 22 24 26 28]; r) T^ Td1
% y = zernfun(n,m,r(idx),theta(idx)); ZD6rD(l9
% figure('Units','normalized') i6-q%%]6
% for k = 1:10 GfUIF]X
% z(idx) = y(:,k); :4}?%3&;
% subplot(4,7,Nplot(k)) a_^3:}i~D
% pcolor(x,x,z), shading interp }9R45h}{<
% set(gca,'XTick',[],'YTick',[]) F@kOj*5,[
% axis square #^gn,^QQ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .LEQ r)
% end ,ZJI]Q=!
% CM>/b3nOW
% See also ZERNPOL, ZERNFUN2. V5i_\A
i/Q*AG>b
% Paul Fricker 11/13/2006 /R8>f
I--WS[
yUq,9.6Ig
% Check and prepare the inputs: GIWgfE?
% ----------------------------- Q
nDy mVF
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I}puN!
error('zernfun:NMvectors','N and M must be vectors.') N:)`+}
end I.fV_
H^
n4 KiC!*i0
if length(n)~=length(m) Bg-C:Ok2'
error('zernfun:NMlength','N and M must be the same length.') -DlKFN
end k)'hNk"x
$G"PZ7
n = n(:); K)]7e?:Wu
m = m(:); Y:FV+ SI
if any(mod(n-m,2)) X8ev uN
error('zernfun:NMmultiplesof2', ... U_ V0
'All N and M must differ by multiples of 2 (including 0).') N;F1Z-9
end 6]\F_Z41
kN`[Q$B
if any(m>n) C(3yJzg>y
error('zernfun:MlessthanN', ... r%xp^j}
'Each M must be less than or equal to its corresponding N.') uwj/]#`
end \_!FOUPz(
G`R Ed-Z[
if any( r>1 | r<0 ) a)(j68c
error('zernfun:Rlessthan1','All R must be between 0 and 1.') M`FsKK`
end F]
+t/
9HLn_|yU
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YdV5\!
error('zernfun:RTHvector','R and THETA must be vectors.') R#
8D}5[&
end ,M>W) TSH
C N"Vw
r = r(:); hAOXOj1
theta = theta(:); Gc~A,_(
length_r = length(r); $.QnM
if length_r~=length(theta) fm;1Iu#
error('zernfun:RTHlength', ... :GIY"l'
'The number of R- and THETA-values must be equal.') V{HZ/p_Y
end *-ZD -B*?
itm;, Sbg
% Check normalization: q+~z# jFX
% -------------------- GLwL'C'591
if nargin==5 && ischar(nflag) =P'=P0G
isnorm = strcmpi(nflag,'norm'); {uM0J$P :
if ~isnorm 6O"Vy
error('zernfun:normalization','Unrecognized normalization flag.') ;G0~f9
end ~`#.ZMO
else MCurKT<pQ
isnorm = false; 56G5JSB=\
end R=i$*6}a
MQQiQ 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sj+gf~~
% Compute the Zernike Polynomials !H~!i.m'-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <z#r3J
/_*:
% Determine the required powers of r: ;p BXAl
% ----------------------------------- [_|iW%<`
m_abs = abs(m); %saTyF,
rpowers = []; N?kXATB
for j = 1:length(n) \tyL`&)
rpowers = [rpowers m_abs(j):2:n(j)]; %p/Qz|W
end ~NpnRIt
rpowers = unique(rpowers); E-*udQ
3 V8SKBS
% Pre-compute the values of r raised to the required powers, \z:p"eua z
% and compile them in a matrix: `*KS`
z?
% ----------------------------- >/6v`
8F
if rpowers(1)==0 7vNS@[8
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y3 LWh}~E
rpowern = cat(2,rpowern{:}); +O j28vR
rpowern = [ones(length_r,1) rpowern]; HjGT{o
else \Y>^L{
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :7W5R
rpowern = cat(2,rpowern{:}); ]
X%bU*4
end qf2{Te1
Oq*a4_R'YV
% Compute the values of the polynomials: Vn];vN
% -------------------------------------- ClaYy58v
y = zeros(length_r,length(n)); E4}MvV=
for j = 1:length(n) &|9mM=^
s = 0:(n(j)-m_abs(j))/2; QdUl-(
pows = n(j):-2:m_abs(j); *:BNLM
for k = length(s):-1:1 )lB-D;3[_
p = (1-2*mod(s(k),2))* ... @a%,0Wn
prod(2:(n(j)-s(k)))/ ... %04>R'mN
prod(2:s(k))/ ... I #1_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... TCmWn$LeE
prod(2:((n(j)+m_abs(j))/2-s(k))); nqgfAQsE)
idx = (pows(k)==rpowers); U!3nn#!yE
y(:,j) = y(:,j) + p*rpowern(:,idx); ?B@hCd)
end MMhd -B1O&
#kLM=a/_NO
if isnorm 8'^eH1d'
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (C6Y*Zm\
end u>k;PUH4
end \Q^\z
% END: Compute the Zernike Polynomials 5Tn4iyg;B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5:iril
O-|RPW}
% Compute the Zernike functions: Q>TaaGc
% ------------------------------ #n2GW^x
idx_pos = m>0; fQOaTsyA
idx_neg = m<0; o }Tv^>L
HFo}r~
z = y; FuEHO 6nx
if any(idx_pos) s15f <sp
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -7=pb#y
end =%2 E|/
if any(idx_neg) \sp7[}Sw
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;pAkdX&b