非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Wvl~|Sx]
function z = zernfun(n,m,r,theta,nflag) y&(#C:N
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. e&sH<hWR
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c0wLc,)G
% and angular frequency M, evaluated at positions (R,THETA) on the [%k8l~ 6
% unit circle. N is a vector of positive integers (including 0), and *+v*VH
% M is a vector with the same number of elements as N. Each element 8#!g;`~ D
% k of M must be a positive integer, with possible values M(k) = -N(k) T]wC?gQG
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -!!]1\S*Y
% and THETA is a vector of angles. R and THETA must have the same yPE3Awh5
% length. The output Z is a matrix with one column for every (N,M) ~q`f@I
% pair, and one row for every (R,THETA) pair. ^cZ< .d2
% HMVP71
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,X!) z Amm
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cs6oD!h
% with delta(m,0) the Kronecker delta, is chosen so that the integral ;gBR~W
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a!R*O3
% and theta=0 to theta=2*pi) is unity. For the non-normalized s AFn.W
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Kyx9_2
% f2 ~Aug
% The Zernike functions are an orthogonal basis on the unit circle. Cl'$*h
% They are used in disciplines such as astronomy, optics, and ;_\yg)X,
% optometry to describe functions on a circular domain. h: yJ
% D%+yp
% The following table lists the first 15 Zernike functions. !aSj1
2J
% /KvJjt'8
% n m Zernike function Normalization .I_atv
% -------------------------------------------------- ezw*Lo!
% 0 0 1 1 =rymd3/
% 1 1 r * cos(theta) 2 x8aOXN#w}
% 1 -1 r * sin(theta) 2 ?OW!D?
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]Ea-MeH
% 2 0 (2*r^2 - 1) sqrt(3) CUJq [
% 2 2 r^2 * sin(2*theta) sqrt(6) XQ~Xls%]
% 3 -3 r^3 * cos(3*theta) sqrt(8) Q
z(n41@`
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) N.mRay,
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uxyj6(
% 3 3 r^3 * sin(3*theta) sqrt(8) j-d&4,a:c
% 4 -4 r^4 * cos(4*theta) sqrt(10) e?XFtIj$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e6MBy\*n
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) .Wt3|?\=nd
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U[MeK)*
% 4 4 r^4 * sin(4*theta) sqrt(10) %|JiFDjp
% -------------------------------------------------- ='jT
5Mg
% &]YyV .
% Example 1: tN<X3$aN
% *%/O (ohs@
% % Display the Zernike function Z(n=5,m=1) #
bHkI~
% x = -1:0.01:1; L ~'98C
% [X,Y] = meshgrid(x,x); %|e)s_%XE
% [theta,r] = cart2pol(X,Y); =/K)hI!u
% idx = r<=1; eP"B3Jw
% z = nan(size(X)); @'>RGaPV
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0GxJja
% figure YyYZD{^
% pcolor(x,x,z), shading interp U',C-56z
% axis square, colorbar `(HvD] l
% title('Zernike function Z_5^1(r,\theta)') 7tWC<#
% S3/%;=|
% Example 2: :!MEBqcU
% PS"rXaY
% % Display the first 10 Zernike functions 4GP?t4][
% x = -1:0.01:1; "a].v 8l!
% [X,Y] = meshgrid(x,x); yZ{yzv'D&
% [theta,r] = cart2pol(X,Y); oi|N8a2R
% idx = r<=1; @\nQ{\^;
% z = nan(size(X)); ?PWg
% n = [0 1 1 2 2 2 3 3 3 3]; )T"Aji-hy
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; h,FU5iK|
% Nplot = [4 10 12 16 18 20 22 24 26 28]; zc8^#D2y&
% y = zernfun(n,m,r(idx),theta(idx)); el`?:dY H
% figure('Units','normalized') 0 aH&M4
% for k = 1:10 2!0tD+B
% z(idx) = y(:,k); Yw#fQFm
% subplot(4,7,Nplot(k)) rX)&U4#[m
% pcolor(x,x,z), shading interp 0?$|F0U"J
% set(gca,'XTick',[],'YTick',[]) zoi0Z
% axis square =q0V%h{
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VxDIA_@y
% end ^7\kvW
% 1iY4|j;ahV
% See also ZERNPOL, ZERNFUN2. Soq#cl'll-
t3<8n;'y:
% Paul Fricker 11/13/2006 FbroI>" e
\{`^Q+<
0e<>2AL
% Check and prepare the inputs: f|VCi bI
% ----------------------------- _U&HXQ8X
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Xgd-^
error('zernfun:NMvectors','N and M must be vectors.') }?,YE5~
end w r"0+J7
4ams~
if length(n)~=length(m) _!1LV[x!s
error('zernfun:NMlength','N and M must be the same length.') 0F-{YQr>
end ,V,mz?d^9
?Fx~_GT
n = n(:); lXTE#,XVf
m = m(:); C0[U}Y/r2
if any(mod(n-m,2)) 'UhHcMh:
error('zernfun:NMmultiplesof2', ... QNOdt 2NN
'All N and M must differ by multiples of 2 (including 0).') .x%w#
end i*/i"W<
~D3S01ecM
if any(m>n) 1W'Ai"DLw
error('zernfun:MlessthanN', ... d^A]]Xg
'Each M must be less than or equal to its corresponding N.') b]b>i]n
end mq[=,,#
y:98}gW`n
if any( r>1 | r<0 ) uCr& `
error('zernfun:Rlessthan1','All R must be between 0 and 1.') P9yMf~
end 0#OyT'~V%
.2c/V
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) l+@;f(8}
error('zernfun:RTHvector','R and THETA must be vectors.') AwNr}9`
end dvjj"F'Bf
B zS4:e<
r = r(:); Qwpni^D8j
theta = theta(:); OU UV8K
length_r = length(r); J{b#X"i
if length_r~=length(theta) rb-ao\
error('zernfun:RTHlength', ... g0j)k6<6(Y
'The number of R- and THETA-values must be equal.') c+3`hVV
end P6.PjK!Ar
ZwBz\jmbP
% Check normalization: +o`%7r(R
% -------------------- 'Wnh1|z
if nargin==5 && ischar(nflag) nSyLt6zn\
isnorm = strcmpi(nflag,'norm'); n5kGHL2
if ~isnorm |gI>Sp%Fu
error('zernfun:normalization','Unrecognized normalization flag.') xg/(
end -$<oY88
else ? Vd~
isnorm = false; %3qjgyLZ|
end ]0* aE
C
zJ-tEO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ={%'tv`
% Compute the Zernike Polynomials r1< 'l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FTCIfW
Kj4BVs
% Determine the required powers of r: t$n Jmfzm
% ----------------------------------- >
pb}@\;:
m_abs = abs(m); Gw3+TvwU+Q
rpowers = []; ;/$pxD
for j = 1:length(n) -+@N/d5
rpowers = [rpowers m_abs(j):2:n(j)]; T;(,9>Qsu
end B1_9l3RM
rpowers = unique(rpowers); x
t-s"A
`15}jTi
% Pre-compute the values of r raised to the required powers, HNS^:XR
% and compile them in a matrix: m8F$h-
% ----------------------------- MS;^:t1`
if rpowers(1)==0 n{!{,s
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HSNj
rpowern = cat(2,rpowern{:}); =h4uN,
rpowern = [ones(length_r,1) rpowern]; ;)FvTm'"\.
else ^WB[uFt-
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f4 S:L&
rpowern = cat(2,rpowern{:}); K>+ v" x
end w3,KqF
P_3IFHe
% Compute the values of the polynomials: $/"Ymm#"\Y
% -------------------------------------- n~6$CQ5dF(
y = zeros(length_r,length(n)); DGGySO6=$e
for j = 1:length(n) 2x<BU3
s = 0:(n(j)-m_abs(j))/2; XA#qBxp/h
pows = n(j):-2:m_abs(j); Wd7*7']
for k = length(s):-1:1 L;opQ~g
p = (1-2*mod(s(k),2))* ... LmJjO:W}^y
prod(2:(n(j)-s(k)))/ ... 4ct-K)Ris
prod(2:s(k))/ ... .\oW@2,RA9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <~uzHg%Y
prod(2:((n(j)+m_abs(j))/2-s(k))); ?MFC(Wsh
idx = (pows(k)==rpowers); \m|5Aqs
y(:,j) = y(:,j) + p*rpowern(:,idx); pP.`+vPi
end ]~]TZb
mh"PA p
if isnorm ;g?PK5rB(
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .)tQ&2
end @xdtl{5G
end
dHx4yFS
% END: Compute the Zernike Polynomials x} =,'Ko}3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Dsw.@/
O:GP uVb\
% Compute the Zernike functions: Ag0
6M U
% ------------------------------ eg*a Vb
idx_pos = m>0; O<p=&=TD7
idx_neg = m<0; DtBvfYO8)>
).jQ+XE'>
z = y; #L!`n)J"
if any(idx_pos) +Iuu8t
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^!^M Gzu
end vX>{1`e{S
if any(idx_neg) ;L fn&2G
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tLKf]5}f
end &