切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11547阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 _/`H<@B_U  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! XPQY*.l&.  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^bG91"0A  
    function z = zernfun(n,m,r,theta,nflag) 5-?*Boi>i  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5DxNHEuS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7*\Cf qrU  
    %   and angular frequency M, evaluated at positions (R,THETA) on the It:,8  
    %   unit circle.  N is a vector of positive integers (including 0), and )/cf%  
    %   M is a vector with the same number of elements as N.  Each element s&7TARd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Fv$oXg/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, |e{ ^Yf4  
    %   and THETA is a vector of angles.  R and THETA must have the same 0"J0JcFX  
    %   length.  The output Z is a matrix with one column for every (N,M) Cm%|hk>fQ  
    %   pair, and one row for every (R,THETA) pair. r%\%tz'`j  
    % *w$3/  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x@#aOf4<U  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), e82xBLxR%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )0?u_Z]w9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Tnoy#w}Ve  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized .oH)eD  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g1v=a  
    % IN7Cpg~9%  
    %   The Zernike functions are an orthogonal basis on the unit circle. K(r@JW  
    %   They are used in disciplines such as astronomy, optics, and Dgc}T8R  
    %   optometry to describe functions on a circular domain.  !U=o<)I  
    % A9Icn>3?`(  
    %   The following table lists the first 15 Zernike functions. \=uD)9 V  
    % OF/hD2V  
    %       n    m    Zernike function           Normalization O;+ sAt  
    %       -------------------------------------------------- =*{Ii]D  
    %       0    0    1                                 1 9";qR,  
    %       1    1    r * cos(theta)                    2 7sq15oL  
    %       1   -1    r * sin(theta)                    2 rT(b t~Z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Y_nl9}&+C0  
    %       2    0    (2*r^2 - 1)                    sqrt(3) BU.O[?@64  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P,@/ap7J  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) yT|44 D2j  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S SfNI>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?7uK:'8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _$_,r H  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) GIhX2EvAS  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4*'ZabDD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]Z?jo#F  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gH yJ~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2Mu@P8O&  
    %       -------------------------------------------------- 'x6rU"e$J  
    % qSt\ 6~  
    %   Example 1: M|fC2[]v B  
    % @,m 7%,  
    %       % Display the Zernike function Z(n=5,m=1) XhUVDmeUMb  
    %       x = -1:0.01:1; 9[R+m3V/`  
    %       [X,Y] = meshgrid(x,x); rvuasr~  
    %       [theta,r] = cart2pol(X,Y); {F;"m&3Lt  
    %       idx = r<=1; Irui{%T  
    %       z = nan(size(X)); .uSVZqJ7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _Kbj?j  
    %       figure gx8i|]  
    %       pcolor(x,x,z), shading interp N}nE?|N=5  
    %       axis square, colorbar '<$*N  
    %       title('Zernike function Z_5^1(r,\theta)') /ke[nr  
    % TE: |w Xe  
    %   Example 2: m 48Ab`  
    % Rn)fwGC  
    %       % Display the first 10 Zernike functions 5Q\ hd*+g  
    %       x = -1:0.01:1; "U/yq  
    %       [X,Y] = meshgrid(x,x); 6^lix9q7  
    %       [theta,r] = cart2pol(X,Y); B=~uJUr  
    %       idx = r<=1; a7!{`fR5  
    %       z = nan(size(X)); a"l\_D'.K8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >qBJK)LHOv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Xl:.`{5L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; qh+&Zx~  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]FgKL0  
    %       figure('Units','normalized') !%[fi[p  
    %       for k = 1:10 PS8^=  
    %           z(idx) = y(:,k); Ym.{ {^=  
    %           subplot(4,7,Nplot(k)) "T*1C=  
    %           pcolor(x,x,z), shading interp gVrfZ&XF84  
    %           set(gca,'XTick',[],'YTick',[]) h_]*|[g  
    %           axis square Y<V$3h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kj6H+@ {  
    %       end N>CNgUyP  
    % T;]Ob3(BpW  
    %   See also ZERNPOL, ZERNFUN2. p[ &b@U#  
    a?xZsR  
    %   Paul Fricker 11/13/2006 &*74 5,e  
    q0DRT4K  
    I E{:{b\  
    % Check and prepare the inputs: z,bK.KFSs  
    % ----------------------------- -{q'Tmst  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K>C@oE[W  
        error('zernfun:NMvectors','N and M must be vectors.') SSq4KFO1  
    end mT #A?C2  
    GS7'pTsYH  
    if length(n)~=length(m) !^o{}*]Pi  
        error('zernfun:NMlength','N and M must be the same length.') \ C>+ubF  
    end TV#>x!5!d  
    B3pjli  
    n = n(:); _90<*{bt.  
    m = m(:); ~FQHT?DAo  
    if any(mod(n-m,2)) PT }J.Dwx  
        error('zernfun:NMmultiplesof2', ... MkhD*\D /  
              'All N and M must differ by multiples of 2 (including 0).') Y`(~eNX^%  
    end "0,FB4L[U5  
    R1/c@HQw?  
    if any(m>n) /]U;7)  
        error('zernfun:MlessthanN', ... IRueq @4  
              'Each M must be less than or equal to its corresponding N.') 7XLqP  
    end gVe]?Jva`  
    ! ,{zDMA  
    if any( r>1 | r<0 ) J_fs}Y1q\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') s;..a&C'  
    end |28'<BL  
    ; O(Ml}z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uE<8L(*B  
        error('zernfun:RTHvector','R and THETA must be vectors.') \<\H1;=.@'  
    end ' MBXk2?b  
    a 9{:ot8,  
    r = r(:); 99(@O,*(Y  
    theta = theta(:); h"/'H)G7_&  
    length_r = length(r); \yZVn6GVr  
    if length_r~=length(theta) _/'VD!(MV  
        error('zernfun:RTHlength', ... J@"UFL'^  
              'The number of R- and THETA-values must be equal.') jm@,Ihz=wI  
    end FJ4,|x3v[x  
    QqRF?%7q"q  
    % Check normalization: g{i= $xc  
    % -------------------- fVf:voh  
    if nargin==5 && ischar(nflag) 0kNKt(_  
        isnorm = strcmpi(nflag,'norm'); Kn<+Au_]L  
        if ~isnorm V.*y_=i8t  
            error('zernfun:normalization','Unrecognized normalization flag.') }2;iIw`  
        end xm1'  
    else 4/k`gT4  
        isnorm = false; +2}cR66%  
    end !>D[Y  
    H(tC4'tA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qe\vx1GRLH  
    % Compute the Zernike Polynomials lM}-'8tt?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s^SU6P/ ]  
    {I0U 4]  
    % Determine the required powers of r: 09 trFj$L  
    % ----------------------------------- I>JE\## ^n  
    m_abs = abs(m); _hJdC|/   
    rpowers = []; 3 o$zT9j  
    for j = 1:length(n) a!/\:4-uc  
        rpowers = [rpowers m_abs(j):2:n(j)]; #z _<{' P"  
    end ]z5hTY  
    rpowers = unique(rpowers); e^3D`GA  
    M. % p'^5  
    % Pre-compute the values of r raised to the required powers, RgUQ:  
    % and compile them in a matrix: ]s\vc:cc?  
    % ----------------------------- -CuuO=h  
    if rpowers(1)==0 7s3=Fa:9Q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pgiZA?r*<  
        rpowern = cat(2,rpowern{:}); E:dN)  
        rpowern = [ones(length_r,1) rpowern]; U,Uy0s2r  
    else 8>W52~^fU  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /} z9(  
        rpowern = cat(2,rpowern{:}); 2G$p x  
    end {? Y \T  
    [DDe}D3C  
    % Compute the values of the polynomials: i{TPf1OY`M  
    % -------------------------------------- ej@4jpHQN  
    y = zeros(length_r,length(n)); |>.MH  
    for j = 1:length(n) ~3M8"}X;L  
        s = 0:(n(j)-m_abs(j))/2; 7)5G 1  
        pows = n(j):-2:m_abs(j); )^AZmUYZ  
        for k = length(s):-1:1 HcJ!(  
            p = (1-2*mod(s(k),2))* ... *$|f9jVh  
                       prod(2:(n(j)-s(k)))/              ... Z37Dv;&ZD  
                       prod(2:s(k))/                     ... L.yM"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +6$+] u]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >r7PK45.K  
            idx = (pows(k)==rpowers); 036m\7+Qj  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bf+C=A)s0  
        end |h 6!bt!=  
         `h'l"3l  
        if isnorm Yj>4*C9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0)g]pG8&ro  
        end V^R,j1*  
    end BYMdX J  
    % END: Compute the Zernike Polynomials X/cb1#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gC(S(osF  
    d/j?.\  
    % Compute the Zernike functions: NfPWcK [  
    % ------------------------------ u&uFXOc'  
    idx_pos = m>0; ;$zvm`|:  
    idx_neg = m<0; L(K 5f7\  
    j0~am,yZ  
    z = y; 97\K] Tr  
    if any(idx_pos) ;22?-F^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pTG[F  
    end Y:O|6%00Y  
    if any(idx_neg) C]8w[)d[`;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \V!{z;.fA  
    end k<Gmb~Tg1  
    DJ<+" .v!  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =|aZNHqH  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {g1"{  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated _,60pr3D'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive C.:S@{sK  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, n0co* ]X+k  
    %   and THETA is a vector of angles.  R and THETA must have the same BK4S$B  
    %   length.  The output Z is a matrix with one column for every P-value, z"yW):X  
    %   and one row for every (R,THETA) pair. /"st sF  
    % JD0s0>q_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike c}n66qJF5  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) \9OKf|#j  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) i"iy 0 ?  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 L-E?1qhP>  
    %   for all p. f!yl&ulKU  
    % 467"pqT  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 R,78}7B  
    %   Zernike functions (order N<=7).  In some disciplines it is $`W3`}#fM  
    %   traditional to label the first 36 functions using a single mode Y% \3N  
    %   number P instead of separate numbers for the order N and azimuthal !Whx^B:  
    %   frequency M. qGH[kd  
    % ysK J=  
    %   Example: Ewr2popK  
    % 2e1%L,y{W  
    %       % Display the first 16 Zernike functions TO5y.M|7  
    %       x = -1:0.01:1; $dKfUlO  
    %       [X,Y] = meshgrid(x,x); eq%cRd]u  
    %       [theta,r] = cart2pol(X,Y); 7Ko*`-p  
    %       idx = r<=1; =>c0NT  
    %       p = 0:15; (nmsw6 X  
    %       z = nan(size(X)); E_A5KLP  
    %       y = zernfun2(p,r(idx),theta(idx)); aWRi`poZT  
    %       figure('Units','normalized') v&;JVai  
    %       for k = 1:length(p) 0_ST2I"Ln  
    %           z(idx) = y(:,k); <)a$5"AP  
    %           subplot(4,4,k) dF 6od  
    %           pcolor(x,x,z), shading interp -f ~1Id  
    %           set(gca,'XTick',[],'YTick',[]) kZG; \  
    %           axis square n=JV*h0  
    %           title(['Z_{' num2str(p(k)) '}']) ; % KS?;%[  
    %       end 6c(b*o  
    % bcwb'D\a  
    %   See also ZERNPOL, ZERNFUN. 3]9wfT%d  
    qzORv  
    %   Paul Fricker 11/13/2006 ./3/3& 6  
    QQN6\(;-  
    0iM'),v[]  
    % Check and prepare the inputs: _u6N aB  
    % ----------------------------- rp<~=X  
    if min(size(p))~=1 eP:\\; ;  
        error('zernfun2:Pvector','Input P must be vector.') :}fA98S  
    end R"HV|Dm|m  
    cE`qfz  
    if any(p)>35 TAOsg0  
        error('zernfun2:P36', ... +RM!j9Rq  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 9eHqOmz  
               '(P = 0 to 35).']) E A55!  
    end PE6,9i0ee  
    { g[kn^|  
    % Get the order and frequency corresonding to the function number: QR(;a:  
    % ---------------------------------------------------------------- xbw;s}B  
    p = p(:); fW=<bf  
    n = ceil((-3+sqrt(9+8*p))/2); 73S N\  
    m = 2*p - n.*(n+2); Q6URaw#Yt`  
    GY@:[u.&  
    % Pass the inputs to the function ZERNFUN: ucz~y! 4L{  
    % ---------------------------------------- NQuqM`LSQ  
    switch nargin 4noy!h  
        case 3 5`e;l$ M`  
            z = zernfun(n,m,r,theta); p>J@"?%^  
        case 4 bM?29cs  
            z = zernfun(n,m,r,theta,nflag); tj*0Y-F~  
        otherwise gzvgXZ1q"  
            error('zernfun2:nargin','Incorrect number of inputs.') x;:jF_  
    end ep},~tPZn  
    <3j`Z1J  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) @^ &p$:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. f<rn't{  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ! N!pvK;  
    %   order N and frequency M, evaluated at R.  N is a vector of .)bNi*&  
    %   positive integers (including 0), and M is a vector with the %#&njP  
    %   same number of elements as N.  Each element k of M must be a "LkBN0D  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) [lSQMoi3  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is d)Z&_v<|  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix B1U!*yzG6  
    %   with one column for every (N,M) pair, and one row for every QT!>izgc U  
    %   element in R. Gl|n}wo$  
    % H n]( )/  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 6yAZvX  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~UeTV?)  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to I][&*V1  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 [7 r^fD A  
    %   for all [n,m]. <z#Fj`2{  
    % KkpbZ7\@  
    %   The radial Zernike polynomials are the radial portion of the [S~Bt78d%r  
    %   Zernike functions, which are an orthogonal basis on the unit kQd|qZ=:w  
    %   circle.  The series representation of the radial Zernike 0&CXR=U5  
    %   polynomials is :qB|~"9O  
    % ^LB]  
    %          (n-m)/2 Wuk8&P3  
    %            __ Dyo^O=0c  
    %    m      \       s                                          n-2s N`?/kubD  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6=,zkU*i ^  
    %    n      s=0 ~a_X 7  
    % @b.,pwZF  
    %   The following table shows the first 12 polynomials. ),Yk53G6c  
    % yVGf[ ~X  
    %       n    m    Zernike polynomial    Normalization nsVLgTbx  
    %       --------------------------------------------- H-u SdT  
    %       0    0    1                        sqrt(2) ;;Z'd@  
    %       1    1    r                           2 (5th   
    %       2    0    2*r^2 - 1                sqrt(6) /)K;XtcN  
    %       2    2    r^2                      sqrt(6) EN/t5d  
    %       3    1    3*r^3 - 2*r              sqrt(8)  |xg#Q`O  
    %       3    3    r^3                      sqrt(8) T!41[vm(  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) -gt ?5H h  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [Y, L=p  
    %       4    4    r^4                      sqrt(10) OX]P;#4tU  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 0#uB[N  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =23@"ji@D  
    %       5    5    r^5                      sqrt(12) > cWE@P  
    %       --------------------------------------------- y`7<c5zD  
    % , .;0xyc  
    %   Example:  s7:H  
    % .o C! ~'  
    %       % Display three example Zernike radial polynomials k%O3\q  
    %       r = 0:0.01:1; a:HN#P)12  
    %       n = [3 2 5]; Y[R>?w  
    %       m = [1 2 1]; ]W2#8:i  
    %       z = zernpol(n,m,r); +O9x8OPHW  
    %       figure GGcODjY>  
    %       plot(r,z) CP%^)LX *  
    %       grid on &^HVuYa.0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') f$-n %7  
    % NR k~  
    %   See also ZERNFUN, ZERNFUN2. F |5Au>t  
    LJ@r+|>  
    % A note on the algorithm. yx4pQL7  
    % ------------------------ &zEBfr  
    % The radial Zernike polynomials are computed using the series 2@z.ory.  
    % representation shown in the Help section above. For many special {}Is&^3Z  
    % functions, direct evaluation using the series representation can y6[le*T  
    % produce poor numerical results (floating point errors), because ~re}6-?  
    % the summation often involves computing small differences between VzHrKI  
    % large successive terms in the series. (In such cases, the functions qs bo"29  
    % are often evaluated using alternative methods such as recurrence m}RZ )c  
    % relations: see the Legendre functions, for example). For the Zernike ,>kVVpu  
    % polynomials, however, this problem does not arise, because the MOCcp s*  
    % polynomials are evaluated over the finite domain r = (0,1), and u|AMqS  
    % because the coefficients for a given polynomial are generally all ' F9gp!s8~  
    % of similar magnitude. dc1Zh W4  
    % hf2bM `d  
    % ZERNPOL has been written using a vectorized implementation: multiple )mBYW}} T  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] =4SXntU!e  
    % values can be passed as inputs) for a vector of points R.  To achieve Y2.zT6i  
    % this vectorization most efficiently, the algorithm in ZERNPOL ~ |A0*  
    % involves pre-determining all the powers p of R that are required to S1y6G/e9  
    % compute the outputs, and then compiling the {R^p} into a single N_iy4W(NU  
    % matrix.  This avoids any redundant computation of the R^p, and wi jO2F  
    % minimizes the sizes of certain intermediate variables. G bclu.4  
    % ;l @lA)i  
    %   Paul Fricker 11/13/2006 ,3f>-mP  
    YCxwIzIR  
    :0 n+RL*5  
    % Check and prepare the inputs: ?0* [ L  
    % ----------------------------- ~:f..|JM  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) L2EQ 9i'[  
        error('zernpol:NMvectors','N and M must be vectors.') QdQ1+*/+U  
    end @Bhcb.kbq  
    YOGj__:  
    if length(n)~=length(m) #m?)XB^_  
        error('zernpol:NMlength','N and M must be the same length.') >jIn&s!}  
    end @/^mFqr2  
    z5M6  
    n = n(:); _]4 p51r0  
    m = m(:); F5/,S   
    length_n = length(n); 0^o/c SF  
    C&vi7Yx  
    if any(mod(n-m,2)) gz[3xH~  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [{u3g4`}  
    end ;xzaW4(3  
    YJ"D"QD  
    if any(m<0) Q#SQ@oUzD  
        error('zernpol:Mpositive','All M must be positive.') ;zD4 #7=  
    end $VF,l#aR  
    2 Kjd!~Z$  
    if any(m>n) 23L>)Q  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') LAxN?ok9gD  
    end O=}Rp 1  
    8t*sp-cy|  
    if any( r>1 | r<0 ) J({D~  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') I(pq3_9$  
    end Qm[s"pM  
    eeCG#NFY5  
    if ~any(size(r)==1) wv{ Qx^  
        error('zernpol:Rvector','R must be a vector.') HV/:OCK  
    end ={oNY.(Q  
    TK\3mrEI  
    r = r(:); U[?_|=~7  
    length_r = length(r); N2A6C$s  
    si6CWsb_f  
    if nargin==4 X7L:cVBg  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); KU` *LB:  
        if ~isnorm Y&O2;q/B  
            error('zernpol:normalization','Unrecognized normalization flag.') 6 V0Ayxg7  
        end qq&U)-`  
    else C){Q;`M-<  
        isnorm = false; ( uD^_N]3  
    end bT2G G  
    S5TVfV5LI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~>=.^  
    % Compute the Zernike Polynomials <.4(#Ebd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NC-K`)  
    5<ruN11G  
    % Determine the required powers of r: klm>/MXI`  
    % ----------------------------------- BK%B[f*[OA  
    rpowers = []; P1LOj  
    for j = 1:length(n) 5>f"  
        rpowers = [rpowers m(j):2:n(j)]; 9Tt%~m^  
    end [//i "Nm  
    rpowers = unique(rpowers); aHW34e@ebL  
    gU x}vE-  
    % Pre-compute the values of r raised to the required powers, VM\R-[  
    % and compile them in a matrix: d%'#-w'  
    % ----------------------------- lY tt|J  
    if rpowers(1)==0 -GPBX?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lF}@@e)N  
        rpowern = cat(2,rpowern{:}); _< .VP  
        rpowern = [ones(length_r,1) rpowern]; iXnXZ|M  
    else xE<H@@w  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }UW*[dCf>C  
        rpowern = cat(2,rpowern{:}); G:$kGzhJ  
    end Gr2}N"X=  
    C][hH?.  
    % Compute the values of the polynomials: C+s/KA%  
    % -------------------------------------- F:ycV~bE  
    z = zeros(length_r,length_n); >E J{ *  
    for j = 1:length_n T/P\j0hR  
        s = 0:(n(j)-m(j))/2; ?tjEXg>ny  
        pows = n(j):-2:m(j); H;nzo3x  
        for k = length(s):-1:1 E72N=7v"  
            p = (1-2*mod(s(k),2))* ... #2_FM!e  
                       prod(2:(n(j)-s(k)))/          ... d5gwc5X  
                       prod(2:s(k))/                 ... :;e OhZ=_  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... q%;cu1^"M  
                       prod(2:((n(j)+m(j))/2-s(k))); L!Y|`P#Yr  
            idx = (pows(k)==rpowers); LvG$J*  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ; D<k  
        end 2v ~8fr4  
         3?FY?Q[  
        if isnorm @9 S ::  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ^R@)CIQ  
        end 2PSExK57  
    end GCN-T1HvA2  
    49*f=gpGj2  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  eZa7brC|  
    P^"RH&ZQJ  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 kiJ=C2'&  
    EGgw#JAi#t  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)