非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 &" 5Yt&{
function z = zernfun(n,m,r,theta,nflag) ?5^DQ|Hg ^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3qDbfO[
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )c 79&S
% and angular frequency M, evaluated at positions (R,THETA) on the m( %PZ*s
% unit circle. N is a vector of positive integers (including 0), and +D[C.is>]}
% M is a vector with the same number of elements as N. Each element b2j~"9
% k of M must be a positive integer, with possible values M(k) = -N(k) I]pz3!On4,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, obv_?i1
% and THETA is a vector of angles. R and THETA must have the same X`-o0HG
% length. The output Z is a matrix with one column for every (N,M) k!x`cp
% pair, and one row for every (R,THETA) pair. ixoN#'y<"
% p;D
{?H/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 'F:Tv[qx
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w4&\-S#
% with delta(m,0) the Kronecker delta, is chosen so that the integral i[z#5;x+<
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Bt1v7M
% and theta=0 to theta=2*pi) is unity. For the non-normalized /^gu&xnS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <K>qK]|C
% A6E~GJa
% The Zernike functions are an orthogonal basis on the unit circle. 0HQTe>!
% They are used in disciplines such as astronomy, optics, and o{l]n*
% optometry to describe functions on a circular domain. 8%a
^j\L
% -q
nOq[
% The following table lists the first 15 Zernike functions. tWQ$`<h
% .ezZ+@LI+#
% n m Zernike function Normalization \J;]g\&I"
% -------------------------------------------------- m%.[|sZ3EM
% 0 0 1 1 5Q8s{WQ
% 1 1 r * cos(theta) 2 ^ ]+vtk
% 1 -1 r * sin(theta) 2 pwB>$7(_h
% 2 -2 r^2 * cos(2*theta) sqrt(6) %F}d'TPx
% 2 0 (2*r^2 - 1) sqrt(3) nyOmNvZf
% 2 2 r^2 * sin(2*theta) sqrt(6) 6uk}4bdvq
% 3 -3 r^3 * cos(3*theta) sqrt(8) THgEHR0,}[
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :KGPQ@:O
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) f|3LeOyz
% 3 3 r^3 * sin(3*theta) sqrt(8) Mp[2A uf
% 4 -4 r^4 * cos(4*theta) sqrt(10) @~&^1%37)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q~rE+?n9F
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?V(+Cc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8KKhD$
% 4 4 r^4 * sin(4*theta) sqrt(10) )M"xCO3a
% -------------------------------------------------- !-&;t7R
% 5{v uN)K3
% Example 1: J: I@kM
% O3#eQs
% % Display the Zernike function Z(n=5,m=1) UA*Kuad
% x = -1:0.01:1; SDk^fTV8x
% [X,Y] = meshgrid(x,x); kQn}lD
% [theta,r] = cart2pol(X,Y); 9oG)\M.6w
% idx = r<=1; VtGZB3
% z = nan(size(X)); p9S>H
% z(idx) = zernfun(5,1,r(idx),theta(idx)); IABF_GwF
% figure ,pVe@ d'
% pcolor(x,x,z), shading interp ft4hzmuzM
% axis square, colorbar ~]'yUd1gSZ
% title('Zernike function Z_5^1(r,\theta)') gyT0h?xDt
% C5e;U
% Example 2: L@ejFXQg
% +%K~HYN
% % Display the first 10 Zernike functions WSGho(\
% x = -1:0.01:1; VssWtL
% [X,Y] = meshgrid(x,x); _g'x=VJF
% [theta,r] = cart2pol(X,Y); 2h)Qz+|7
% idx = r<=1; ktp<o.f[
% z = nan(size(X)); yW"[}Lh4
% n = [0 1 1 2 2 2 3 3 3 3]; >Pvz5Hf/wW
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _N0N#L4M
% Nplot = [4 10 12 16 18 20 22 24 26 28]; @3S:W2k
% y = zernfun(n,m,r(idx),theta(idx)); <|w(Sn
% figure('Units','normalized') rFp>A`TJ
% for k = 1:10 QUh`kt(E
% z(idx) = y(:,k); uH[:R vC0
% subplot(4,7,Nplot(k)) vI,T1%llu
% pcolor(x,x,z), shading interp @Qp#Tg<'
% set(gca,'XTick',[],'YTick',[]) ViG>gMG v
% axis square ?},RN
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k~,
k@mR
% end /!`xqG#
% U"~W3vwJ
% See also ZERNPOL, ZERNFUN2. jX^_(Kg
MT$)A:"
% Paul Fricker 11/13/2006 fVdu9 l
\^jRMIM==
a|4Q6Ycu
% Check and prepare the inputs: su3Wk,MLP
% ----------------------------- p%K(dA
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O=^/58(m
error('zernfun:NMvectors','N and M must be vectors.') g}L>k}I?!W
end ~qK/w0=j
aK
3'u
if length(n)~=length(m) Ch:EL-L
error('zernfun:NMlength','N and M must be the same length.') <d >!%
end F07X9s44E
}]JHY P\
n = n(:); ;WgUhA
;q
m = m(:); ~R50-O
if any(mod(n-m,2)) {<?8Y
error('zernfun:NMmultiplesof2', ... wN :"(mQ
'All N and M must differ by multiples of 2 (including 0).') bR8`Y(=F9b
end ExeZj8U
<Y$(
lszT
if any(m>n) R'" c
error('zernfun:MlessthanN', ... 7+qKA1t^
'Each M must be less than or equal to its corresponding N.') |"+Ufw^
end 9[sOh<W
[1 O{yPV3s
if any( r>1 | r<0 ) A~ _2"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') o^m?w0 \
end !e*T.
1Kz
tBX71d
T
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5}c8v2R:B
error('zernfun:RTHvector','R and THETA must be vectors.') 0N$FIw2
end cLw|[!5:
II!~"-WH
r = r(:); l@ (:Q!Sk
theta = theta(:); Y*S:/b~y
length_r = length(r); 1Kd6tnX
if length_r~=length(theta) =itQ@``r
error('zernfun:RTHlength', ... t[@>u'YKt
'The number of R- and THETA-values must be equal.') 0m"Ni:KEf
end n9n)eI)R
A7|L|+ ?
% Check normalization: z,4 D'F&
% -------------------- sx}S,aIU
if nargin==5 && ischar(nflag) _uXb>V*8
isnorm = strcmpi(nflag,'norm'); e`OQ6|.k8
if ~isnorm bdG@%K',
error('zernfun:normalization','Unrecognized normalization flag.') d ez4g
end =%7s0l3z
else P,9Pn)M|
isnorm = false; S>S7\b'
end Aa4Tq2G
?~!9\dek,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >?rMMR+A
% Compute the Zernike Polynomials To5hVL<Ex"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $*T?}r>
UGj |)/
% Determine the required powers of r: 5t"FNL
<(M
% ----------------------------------- .{} 8mFi1
m_abs = abs(m); R=F_U
rpowers = []; aB?usVoS
for j = 1:length(n) j<k6z
rpowers = [rpowers m_abs(j):2:n(j)]; xwi6#>
end v(!:HK0oeT
rpowers = unique(rpowers); /
*PHX@
zn7)>cQ905
% Pre-compute the values of r raised to the required powers, 32j}ep.*
% and compile them in a matrix: 7 )rL<+
% -----------------------------
E)ZL+(
if rpowers(1)==0 qb/}&J7+
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H-U_
rpowern = cat(2,rpowern{:}); eZN"t~\rX
rpowern = [ones(length_r,1) rpowern]; Y#tur`N
else D79:L:
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5j6`W?|q
rpowern = cat(2,rpowern{:}); PP>6
end j49Uj}:j
d7
H *F
% Compute the values of the polynomials: R&J?XQ
% -------------------------------------- :dAd5v2f
y = zeros(length_r,length(n)); x3Y)l1gh
for j = 1:length(n) ,"XiI$Le
s = 0:(n(j)-m_abs(j))/2; ?Rx(@
pows = n(j):-2:m_abs(j); upL3M`
for k = length(s):-1:1 'A3skznX{
p = (1-2*mod(s(k),2))* ... VqpC@C$
prod(2:(n(j)-s(k)))/ ... v{fcQb
prod(2:s(k))/ ... . R/y`:1:W
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -!:5jfT"
prod(2:((n(j)+m_abs(j))/2-s(k))); ne/JC(
idx = (pows(k)==rpowers); 0FgF,
y(:,j) = y(:,j) + p*rpowern(:,idx); ]|+M0:2?
end L/V^ #$
]L7A$sTUQ
if isnorm ;'= cNj
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); nGkSS_X
end =4a:)g'
end S!.sc
% END: Compute the Zernike Polynomials !W9:)5^X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u0 tlf
Cl]?qH*:
% Compute the Zernike functions: O6R)>Y4
% ------------------------------ Qop,~yK
idx_pos = m>0; rUj\F9*5#
idx_neg = m<0; }:
HG)V
kzDN(_<1
z = y; )J}v.8
if any(idx_pos) Oo}h:3?
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); O'mcN*
end bYnq,JRA
if any(idx_neg) ,T<JNd'
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); DylO;+
end "J 1A9|
L ,dh$F
% EOF zernfun