非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8+uwzBNZ:
function z = zernfun(n,m,r,theta,nflag) J%;TK6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %?C{0(Z{
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %u43Pj
% and angular frequency M, evaluated at positions (R,THETA) on the g R(*lXm5w
% unit circle. N is a vector of positive integers (including 0), and 5HioxHL
% M is a vector with the same number of elements as N. Each element HT5G HkT
% k of M must be a positive integer, with possible values M(k) = -N(k) >b |l6#%
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 3Cwqy#X#8
% and THETA is a vector of angles. R and THETA must have the same K,^{|5'3q
% length. The output Z is a matrix with one column for every (N,M) e4ajT
% pair, and one row for every (R,THETA) pair. ?PSm)
~Oa
% 'UT 4x9&z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vr f` :%
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q'M-a tE.
% with delta(m,0) the Kronecker delta, is chosen so that the integral VD.p"F(]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j+J)S1
% and theta=0 to theta=2*pi) is unity. For the non-normalized Sz"J-3b^
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w=3@IW
% M>0=A
% The Zernike functions are an orthogonal basis on the unit circle. ^C@uP9g
% They are used in disciplines such as astronomy, optics, and r+>E`GGQ
% optometry to describe functions on a circular domain. U^~K-!0
% W9Bl'e
% The following table lists the first 15 Zernike functions. ho@f}4jhQ3
% ^`\c;!)F<
% n m Zernike function Normalization vBQ5-00YY=
% -------------------------------------------------- ~c :e0}
% 0 0 1 1 7^Jszd:c08
% 1 1 r * cos(theta) 2 RWXj)H)w
% 1 -1 r * sin(theta) 2 FcsEv {#U
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^,b*.6t
% 2 0 (2*r^2 - 1) sqrt(3) l8%x(N4
% 2 2 r^2 * sin(2*theta) sqrt(6) P~i^V;g
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z%XBuq:BY
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z.:5<oEKg
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) b2H!{a"
% 3 3 r^3 * sin(3*theta) sqrt(8) !Il>,q&F
% 4 -4 r^4 * cos(4*theta) sqrt(10) 91%+Bf()J6
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <h
U ZD;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @C7S^|eo
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #d*mG =
% 4 4 r^4 * sin(4*theta) sqrt(10) *
C~
% -------------------------------------------------- |RwD]2H
% ay'=M`uO_
% Example 1: Fkz+Qz
% =q^o6{d0"
% % Display the Zernike function Z(n=5,m=1) [t<^WmgtxL
% x = -1:0.01:1; X`:(-3T
% [X,Y] = meshgrid(x,x); l?a(=
% [theta,r] = cart2pol(X,Y); ^;NM'Z
% idx = r<=1; q!""pr<n
% z = nan(size(X)); ]NuY{T&:
% z(idx) = zernfun(5,1,r(idx),theta(idx)); u-pE
;|
% figure g84~d(\?
% pcolor(x,x,z), shading interp } ~=53$+
% axis square, colorbar s:R>uGYOd
% title('Zernike function Z_5^1(r,\theta)') Zx55mSfx:
% hof$0Fg
% Example 2: GfJm&'U&
% %6L!JN
% % Display the first 10 Zernike functions _"a(vfl#
% x = -1:0.01:1; d<V+;">2
% [X,Y] = meshgrid(x,x); =a?l@dI]
% [theta,r] = cart2pol(X,Y); p4W->AVv$
% idx = r<=1; sryujb.,
% z = nan(size(X)); K,|Gtaa~
% n = [0 1 1 2 2 2 3 3 3 3]; h}z^NX
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !;'U5[}8
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (Y,
@-V
% y = zernfun(n,m,r(idx),theta(idx)); REoFP;H~
% figure('Units','normalized') P)^K&7X
% for k = 1:10 @6
gA4h
% z(idx) = y(:,k); >Bskw2
% subplot(4,7,Nplot(k)) Y$Js5K@F
% pcolor(x,x,z), shading interp X LA
% set(gca,'XTick',[],'YTick',[]) 5p94b*l
% axis square 9:fVHynr
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a%;$l_wVT:
% end 5$GE 3IER8
% -Qiay/tlu
% See also ZERNPOL, ZERNFUN2. bW3e*O$V
8\. #
% Paul Fricker 11/13/2006 2p@Rr7
4rwfY<G
4eBM/i
% Check and prepare the inputs: e0j*e7$
% ----------------------------- [*vk&
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +X
cB 5S>
error('zernfun:NMvectors','N and M must be vectors.') ]8d]nftY
end T9RR.
ng
' "~|L>F%G
if length(n)~=length(m) *@cXBav/<
error('zernfun:NMlength','N and M must be the same length.') K$#(\-M
end %OfaBv&
2B=yT8
n = n(:); %Ni)^
m = m(:); ]#j]yGV
if any(mod(n-m,2)) *1ku2e]z
error('zernfun:NMmultiplesof2', ... *vCJTz
'All N and M must differ by multiples of 2 (including 0).') f@[q# }6
end *;Hvx32I
Ga.a"\F.V
if any(m>n) N=zrY`Vd
error('zernfun:MlessthanN', ... _;v4]MU
'Each M must be less than or equal to its corresponding N.') MHI0>QsI
end yGZb
V. =! ^0'A
if any( r>1 | r<0 ) EXS
1.3>
error('zernfun:Rlessthan1','All R must be between 0 and 1.') BtVuI5*h
end IObGmc
+QtK
"5M
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?bmP<(N5/
error('zernfun:RTHvector','R and THETA must be vectors.') (/v(.t
end Cb x/
jU@qQ@|
r = r(:); => )l6**UE
theta = theta(:); }/SbmW8(1
length_r = length(r); xs.>+(@|;
if length_r~=length(theta) \P^WUWY
error('zernfun:RTHlength', ... %%G2w63M
'The number of R- and THETA-values must be equal.') &Jk0SUk MP
end xl5mI~n_~
;} Ty b
% Check normalization: 3-lJ] 7OT
% -------------------- vCFMO3
if nargin==5 && ischar(nflag) ;&s`g
isnorm = strcmpi(nflag,'norm'); r_@;eh
if ~isnorm i"0^Gr
error('zernfun:normalization','Unrecognized normalization flag.') '.c[7zL
end *6df|q
else =v:vc~G6
isnorm = false; vfK^^S
end SBzJQt@Hs
ltwX-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #:3ca] k
% Compute the Zernike Polynomials i!*w'[G->Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u+&BR1)C
i'H{cN6
% Determine the required powers of r: 5 qt]~v%y
% ----------------------------------- \v)Dy)Vhg2
m_abs = abs(m); J LT10c3
rpowers = []; FF0N{bY
for j = 1:length(n) Oq7M1|{
rpowers = [rpowers m_abs(j):2:n(j)]; Ckj2$c~
end ?S~HnIn
rpowers = unique(rpowers); SGXXv
5@%$M$E
% Pre-compute the values of r raised to the required powers, M/EEoK^K@
% and compile them in a matrix: X#EMmB!
% ----------------------------- Y}&//S A
if rpowers(1)==0 Y4_/G4C
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f-F+Y`P
rpowern = cat(2,rpowern{:}); ZgP=maQk
rpowern = [ones(length_r,1) rpowern]; Q})x4
else ({v$!AAv
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); O:IU|INq8
rpowern = cat(2,rpowern{:}); jV2L;APCq
end /x c<&
LBq~?Q.e
% Compute the values of the polynomials: 'Ybd'|t{}
% -------------------------------------- (dd+wx't
y = zeros(length_r,length(n)); d&BocJ
for j = 1:length(n) `O?Kftv*
s = 0:(n(j)-m_abs(j))/2; 4zkn~oy
pows = n(j):-2:m_abs(j); >v7fR<(%s
for k = length(s):-1:1 |`+kZ-M*
p = (1-2*mod(s(k),2))* ... )r3}9J
prod(2:(n(j)-s(k)))/ ... 4nK\gXz19
prod(2:s(k))/ ... [=7=zV;}4
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cKJf0S:cx-
prod(2:((n(j)+m_abs(j))/2-s(k))); 9^6E>S{=
idx = (pows(k)==rpowers); N:?UA
y(:,j) = y(:,j) + p*rpowern(:,idx); 4wjy)VD_
end NRN3*YGo
d[E~}Dq3#
if isnorm c7UmR?m
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4[m})X2(
end tS!FnQg4
end *oopdGue
% END: Compute the Zernike Polynomials $\M<gW6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \X.CYkgK
ZKy)F-yX
% Compute the Zernike functions: q,`"Z)97
% ------------------------------ B~+3<# B
idx_pos = m>0; =lT~
idx_neg = m<0; Oxo?\
:T
~QgyhJM_h=
z = y; R % [ZQK
if any(idx_pos) 7=i8$v&GX
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); zx` %)r
end POvxZU
if any(idx_neg) -FQ!
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 'D`O4TsP>
end ;;e\"%}@=q
BIGln`;,f
% EOF zernfun