非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R(#;yn
function z = zernfun(n,m,r,theta,nflag) +mel0ZStS
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. vTa23YDW
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "alO"x8t
% and angular frequency M, evaluated at positions (R,THETA) on the H0:6zSsc=|
% unit circle. N is a vector of positive integers (including 0), and W`rE\P
% M is a vector with the same number of elements as N. Each element h!3Z%M
% k of M must be a positive integer, with possible values M(k) = -N(k) yD'h5)yu
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Nr7.BDA
% and THETA is a vector of angles. R and THETA must have the same K*D]\/; ^
% length. The output Z is a matrix with one column for every (N,M) 'r3}= z4Y
% pair, and one row for every (R,THETA) pair. ZI*A0_;L
% DD3yl\#,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MZ[g|o!)v
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Kct +QO(
% with delta(m,0) the Kronecker delta, is chosen so that the integral }|,\?7,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, AZP>\Dq
% and theta=0 to theta=2*pi) is unity. For the non-normalized w6Ny>(T/
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k0=y_7
=(5
% "s^@PzQpN
% The Zernike functions are an orthogonal basis on the unit circle. */qc%!YV9
% They are used in disciplines such as astronomy, optics, and y(g
Otg
% optometry to describe functions on a circular domain. Y'":OW#oN
% c_=zd6 b$S
% The following table lists the first 15 Zernike functions. X'p%$HsMG
% M0\[hps~X
% n m Zernike function Normalization ;qQzF
% -------------------------------------------------- %}MM+1eu
% 0 0 1 1 N>iCb:_
T;
% 1 1 r * cos(theta) 2 yr DYw T
% 1 -1 r * sin(theta) 2 1Vvx@1
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4&WzGnK
% 2 0 (2*r^2 - 1) sqrt(3) p 8rAtz>=J
% 2 2 r^2 * sin(2*theta) sqrt(6) clV/i&]Qa
% 3 -3 r^3 * cos(3*theta) sqrt(8) dXN&<Q,
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ;0{*V5A
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) oMf h|B
% 3 3 r^3 * sin(3*theta) sqrt(8) 2(x KE_|
% 4 -4 r^4 * cos(4*theta) sqrt(10) IKj1{nZvDc
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k !r z8S"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f2XD^:Gc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5Uz(Bi
% 4 4 r^4 * sin(4*theta) sqrt(10) AE~}^(G`
% -------------------------------------------------- 7guxkN#
% }e|]G,NZO
% Example 1: |bUmkw
% #J9XcD{1
% % Display the Zernike function Z(n=5,m=1) Jx7^|A
% x = -1:0.01:1; Ee| y[y,
% [X,Y] = meshgrid(x,x); SpQ6A]M gm
% [theta,r] = cart2pol(X,Y); x$4'a~E
% idx = r<=1; p8bTR!rvz
% z = nan(size(X)); 9a,CiH%@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ywBo9|%T
% figure cE?J]5#^
% pcolor(x,x,z), shading interp I<f M8t.Y>
% axis square, colorbar X ^)5O>>|t
% title('Zernike function Z_5^1(r,\theta)') 5T*7HC[
% JE!Xf}nEi
% Example 2: BGOI
% xJlq2cK
% % Display the first 10 Zernike functions $80/ub:R
% x = -1:0.01:1; J>&GP#7}
% [X,Y] = meshgrid(x,x); "=O)2}
% [theta,r] = cart2pol(X,Y); 3iwZUqyq
% idx = r<=1; 4Yk(ldR~
% z = nan(size(X)); j$Co-b1
% n = [0 1 1 2 2 2 3 3 3 3]; M3;B]iRQD
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; jeNEC&J
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <#Dc(VhT
% y = zernfun(n,m,r(idx),theta(idx)); /qr8
% figure('Units','normalized') 7 |A,GH
% for k = 1:10 |&.)_+w
% z(idx) = y(:,k); ~{{:-XkVB
% subplot(4,7,Nplot(k)) Qmn5-yiw1d
% pcolor(x,x,z), shading interp 2q bpjm
% set(gca,'XTick',[],'YTick',[]) \Ld7fP
% axis square L"0L_G
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z9ZAY!Zhq]
% end nz+KA\iW
% G@2M&0'
% See also ZERNPOL, ZERNFUN2. `MS=/x E
^}#!?"Y
% Paul Fricker 11/13/2006 )kUw,F=6
,GlK_-6>
A>k;o0r
% Check and prepare the inputs: c+c^F/
% ----------------------------- *!kg@ _0K
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s.R(3}/
error('zernfun:NMvectors','N and M must be vectors.') g*uO
IF
end 3lqhjA
?u|g2!{_
if length(n)~=length(m) f]ef 1#
error('zernfun:NMlength','N and M must be the same length.') 7+bzCDKU
end dLq!t@?iu>
~%ZO8X:^
n = n(:); xUUp?]9y
m = m(:); 5s9~rm
if any(mod(n-m,2)) ub&1L_K
error('zernfun:NMmultiplesof2', ... L.'N'-BV
'All N and M must differ by multiples of 2 (including 0).') wl4yNC
end hkY E7
,??|R`S
if any(m>n) O(VV-n7U
error('zernfun:MlessthanN', ... MvCBgLN
'Each M must be less than or equal to its corresponding N.') s.U p<Rw
end m,b<b91
?5D7n"jY
if any( r>1 | r<0 ) rm7UFMCR6i
error('zernfun:Rlessthan1','All R must be between 0 and 1.') xnTky1zq
end s]qfLC
Wil+"[Ge
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,~!lN yL
error('zernfun:RTHvector','R and THETA must be vectors.') 4^r}&9C~
end h?b{{
R;%iu0
r = r(:); 9bB~r[k
theta = theta(:); R B!g,u
length_r = length(r); &fcRVku
if length_r~=length(theta) q)/4i9
error('zernfun:RTHlength', ... PSE![whK
'The number of R- and THETA-values must be equal.') MB)xL-j O
end &1&*(oi]X
Je'$V%{E
% Check normalization: ?$?Ni)Z
% -------------------- 3f3?%9
if nargin==5 && ischar(nflag) 9M6&+1XE
isnorm = strcmpi(nflag,'norm'); _Cs.%R!r
if ~isnorm nsPM`dz/
error('zernfun:normalization','Unrecognized normalization flag.') JGtdbD?Fw
end u=4Rn
else GZ1>]HB>r^
isnorm = false; #KIHq2:.4
end SFjN5u
nm)F tX|A
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l"+=z.l6;
% Compute the Zernike Polynomials \%)p7PNY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #>0nNR[$Y
8ViDh
% Determine the required powers of r: ~HELMS~-
% ----------------------------------- $I.'7
&h;
m_abs = abs(m); qnOAIP:0
rpowers = []; cj[y]2{1h
for j = 1:length(n) >7n(*M
rpowers = [rpowers m_abs(j):2:n(j)]; uwbj`lpf
end `
p)#!
rpowers = unique(rpowers); @'S-nn,sO
d-Sm<XHu.
% Pre-compute the values of r raised to the required powers, U@9n7F
% and compile them in a matrix: 6wGf47
% ----------------------------- # RtrHm
if rpowers(1)==0 $ZA71TzMV
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +iXA|L9=
rpowern = cat(2,rpowern{:}); EprgLZ1B
rpowern = [ones(length_r,1) rpowern]; $I_aHhKt
else Q$3%aR-2
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P63f0F-G
rpowern = cat(2,rpowern{:}); H]SnM'Y
end {9z EnVfg
$zJ.4NA
% Compute the values of the polynomials: hgm`6TQ
% -------------------------------------- GR"Jk[W9
y = zeros(length_r,length(n)); x{=ty*E
for j = 1:length(n) ;&iQNXL
s = 0:(n(j)-m_abs(j))/2; 1e}wDMU(
pows = n(j):-2:m_abs(j); 3N;X|pa
for k = length(s):-1:1 spJB6n(
p = (1-2*mod(s(k),2))* ... ]86U-`p
prod(2:(n(j)-s(k)))/ ... u|+O%s TQ
prod(2:s(k))/ ... GSypdEBj+w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U:_&aY_
prod(2:((n(j)+m_abs(j))/2-s(k))); 8tsW^y;S
idx = (pows(k)==rpowers); A;h~Fx6s
y(:,j) = y(:,j) + p*rpowern(:,idx); 291v
R]
end N/Z<v* i"
8NpQ"0X
if isnorm !bQ5CB
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vrH/Z.WD
end 5)0R:
end w*
v%S
% END: Compute the Zernike Polynomials hEDj"`Px
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PQ1\b-I
a6[bF
% Compute the Zernike functions: m+CvU?)gJ
% ------------------------------ q")}vN
idx_pos = m>0; n:HF&j4C,
idx_neg = m<0; kYx|`-PA<r
|ONkRxr@!
z = y; |06G)r&
if any(idx_pos) F e8xOo6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A07FjT5w8
end i: 1V\q%
if any(idx_neg) oveW )~4
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wF}/7b54
end [9X1;bO#f
dY|(
% EOF zernfun