非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 <!RkkU&
6
function z = zernfun(n,m,r,theta,nflag) KX9IC5pR
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. r craf4%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %z@ Z^Jv
% and angular frequency M, evaluated at positions (R,THETA) on the J.h` 0$!
% unit circle. N is a vector of positive integers (including 0), and FCNYfjB%
% M is a vector with the same number of elements as N. Each element o%~fJx:]y
% k of M must be a positive integer, with possible values M(k) = -N(k) ?SgFD4<~P
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 4Pc-A
% and THETA is a vector of angles. R and THETA must have the same Q/?`);
% length. The output Z is a matrix with one column for every (N,M) gNP1UH4m
% pair, and one row for every (R,THETA) pair. Ty&1R?
% G(wK(P0j
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9R8q+2
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~xxq.rL"
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5&Yt=)c\
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2fr%_GNu
% and theta=0 to theta=2*pi) is unity. For the non-normalized \u`P(fI!K%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k@lJ8(i^qU
% D%o(HS\E
% The Zernike functions are an orthogonal basis on the unit circle. G3TS?u8Q
% They are used in disciplines such as astronomy, optics, and u]NsCHKlT
% optometry to describe functions on a circular domain. gq+0t
% b>p_w%d[[J
% The following table lists the first 15 Zernike functions. lfM vNv
% 1 jB0gNe
% n m Zernike function Normalization u|}\Af
% -------------------------------------------------- 0' *{BAWx
% 0 0 1 1 m
uO.
% 1 1 r * cos(theta) 2 #1$4<o#M
% 1 -1 r * sin(theta) 2 g^A^@~M
% 2 -2 r^2 * cos(2*theta) sqrt(6) /Q@4HV
% 2 0 (2*r^2 - 1) sqrt(3) w~Q\:<x&~Z
% 2 2 r^2 * sin(2*theta) sqrt(6) 6w &<j&V
% 3 -3 r^3 * cos(3*theta) sqrt(8) rT4Q^t"
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) j}.gK6Yq*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7WmLC
% 3 3 r^3 * sin(3*theta) sqrt(8) cwvJH&%0
% 4 -4 r^4 * cos(4*theta) sqrt(10) \wz^Z{U
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E va&/o?P|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) gD)M7`4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i/_rz.c~3
% 4 4 r^4 * sin(4*theta) sqrt(10) I>.pkf<V
% -------------------------------------------------- Ag0w8F
% #\X)|p2
% Example 1: JmCHwyUK?
% i695P}J2
% % Display the Zernike function Z(n=5,m=1) bTeuOpp
% x = -1:0.01:1; geK;r0(f
% [X,Y] = meshgrid(x,x); .?NfV%vv
% [theta,r] = cart2pol(X,Y); b&`~%f-
% idx = r<=1; )XonFI
% z = nan(size(X)); 'Y2$9qy-L
% z(idx) = zernfun(5,1,r(idx),theta(idx)); KtAEM;g
% figure _$T
!><)y
% pcolor(x,x,z), shading interp _Ml?cT/J.O
% axis square, colorbar cG0)F%?X?
% title('Zernike function Z_5^1(r,\theta)') l,Q`;v5|
% X_X7fRC0
% Example 2: <fBJ@>
% M/W9"N[ta
% % Display the first 10 Zernike functions ?84f\<"
% x = -1:0.01:1; +?6]Vu&|f
% [X,Y] = meshgrid(x,x); -ABj>y[
% [theta,r] = cart2pol(X,Y); HkRvcX
5
% idx = r<=1; 5u9 lKno
% z = nan(size(X)); phb
;D
% n = [0 1 1 2 2 2 3 3 3 3]; 1 M!4hM
Q
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; r:o9:w:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; W<&/5s
% y = zernfun(n,m,r(idx),theta(idx)); xp:I(
% figure('Units','normalized') Iw[zN[oz
% for k = 1:10 %6fnL~A
% z(idx) = y(:,k); ]EF"QLNN(
% subplot(4,7,Nplot(k)) $Xo_8SX,
% pcolor(x,x,z), shading interp )M7yj O!
% set(gca,'XTick',[],'YTick',[]) *fi`DiO
% axis square (&*Bl\YoX
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) IW nG@!
% end tpzWi
W/
% @)Vb?|3
% See also ZERNPOL, ZERNFUN2. hH>a{7V
>N!
Xey
% Paul Fricker 11/13/2006 qYe`</
0K"+u9D^
[%LGiCU]
% Check and prepare the inputs: F',1R"/}
% ----------------------------- cyd_xB5K
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P)y2'JKL
error('zernfun:NMvectors','N and M must be vectors.') s3ASA.*
end >9nVR
76[qFz
if length(n)~=length(m) ok ,O/|E}?
error('zernfun:NMlength','N and M must be the same length.') ByoI+n* U
end -|#/KKF
\s8h.xjU
n = n(:); kQ\l7xd
m = m(:); cJm},
if any(mod(n-m,2)) B;Z _'.i,d
error('zernfun:NMmultiplesof2', ... Q!-"5PX
'All N and M must differ by multiples of 2 (including 0).') e"EGqn&!
end _{if"
-k>k<bDAI
if any(m>n) 4Z{R36 {
error('zernfun:MlessthanN', ... wk'(g_DP
'Each M must be less than or equal to its corresponding N.') Z<C39s
end ,lCFe0>k!=
HIj:?y
if any( r>1 | r<0 ) B[&l<*O-y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') K vPLA{
end Ia9!ucN7DA
"7(@I^'t6
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v8uUv%Hkd
error('zernfun:RTHvector','R and THETA must be vectors.') `K$;K8! 1
end w5-^Py
gi:M=
r = r(:); k_^
4NU
theta = theta(:); o}wRgG
length_r = length(r); FbdC3G|oA
if length_r~=length(theta) 8j]QnH0&
error('zernfun:RTHlength', ... 01aw+o
'The number of R- and THETA-values must be equal.') D@{m
end 1G(wESe
\Ym$to
% Check normalization: 3uvl'1(%J
% -------------------- Pa; *%7
if nargin==5 && ischar(nflag) w3fD6$
isnorm = strcmpi(nflag,'norm'); y
</i1qM
if ~isnorm BlqfST#6
error('zernfun:normalization','Unrecognized normalization flag.') >9g^-~X;v
end 4Im}!q5;:<
else )i-`AJK-'v
isnorm = false; /3"S_KE1@+
end Xn!=/<TIVz
+tlbO?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "1P2`Ep;
% Compute the Zernike Polynomials q{yzux
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =/xXB
2<2a3'pG
% Determine the required powers of r: 4g.S!-H@R
% ----------------------------------- 5(\[Gke
m_abs = abs(m); lvk*Db$
rpowers = []; 9 771D
for j = 1:length(n) el^<M,7!
rpowers = [rpowers m_abs(j):2:n(j)]; #TP Y%
end kl&_O8E+K
rpowers = unique(rpowers); 7vH4}S\
q
jd+HIR
% Pre-compute the values of r raised to the required powers, `lO/I+8
% and compile them in a matrix: }u5J<*:bZ
% ----------------------------- R, zp&L
if rpowers(1)==0 $i
`@0+:
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uMC0XE|S
rpowern = cat(2,rpowern{:}); $- Z/UHT
rpowern = [ones(length_r,1) rpowern]; mL,{ZL ^
else M?$tHA~OX
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SYOU&*
rpowern = cat(2,rpowern{:}); 8HSGOs =8
end t6+>Zr
URTJA<r8D
% Compute the values of the polynomials: %ZlnGr
% -------------------------------------- G~4|]^`g
y = zeros(length_r,length(n)); {\=NZ\
for j = 1:length(n) N4_V
s = 0:(n(j)-m_abs(j))/2; J=DD/Gp
pows = n(j):-2:m_abs(j); afcyAzIB&
for k = length(s):-1:1 9+>%U~U<
p = (1-2*mod(s(k),2))* ... -g vS3`lX
prod(2:(n(j)-s(k)))/ ... Od]wh
prod(2:s(k))/ ... %A(hmC
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yD ur9Qd6
prod(2:((n(j)+m_abs(j))/2-s(k))); *-_joAWTG
idx = (pows(k)==rpowers); 'VY\ut
y(:,j) = y(:,j) + p*rpowern(:,idx); Fg^zz*e
end RKz _GEH)
3dI(gm6
if isnorm OoAZ t
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l_=kW!l
end SYK?5_804
end RQ51xTOL4]
% END: Compute the Zernike Polynomials rg+3pX\{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YpbJoHiSH
Hkj|
e6
% Compute the Zernike functions: ;W#/;C
_h
% ------------------------------ o Bp.|8-
idx_pos = m>0; $2*&\/;-E!
idx_neg = m<0; }(if|skau
ok9G 9|HA
z = y; mZ
t:
if any(idx_pos) SVyJUd_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qS2]|7q?Tc
end [$GQ]Y
if any(idx_neg) 27jZ~Bp$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); e%DF9}M
end @sb00ad2q
;%aWA
% EOF zernfun