切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11526阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 jEr/*kv  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! fpbb <Ro  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^|yw)N]Q/  
    function z = zernfun(n,m,r,theta,nflag) -*8|J;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~#/NpKHT@A  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WW33ZJ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -a:+ h\K  
    %   unit circle.  N is a vector of positive integers (including 0), and v'`VyXetl  
    %   M is a vector with the same number of elements as N.  Each element },9Hq~TA  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Fd@n#DR `  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (V2~txMh  
    %   and THETA is a vector of angles.  R and THETA must have the same dg[ &5D1Q  
    %   length.  The output Z is a matrix with one column for every (N,M) c#'t][Ii  
    %   pair, and one row for every (R,THETA) pair.  ismx evD  
    % 6Y4sv5G  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D:`b61sWi_  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~,[<R  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral f9FJ:?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O_%X>Q9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ne7HPSWiOP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jWHv9XtW  
    % 3^m0 k E  
    %   The Zernike functions are an orthogonal basis on the unit circle. _*\:UBZx6  
    %   They are used in disciplines such as astronomy, optics, and zu8   
    %   optometry to describe functions on a circular domain. cMxuG'{=.  
    % ;Fw{p{7<  
    %   The following table lists the first 15 Zernike functions. VJW%y)_[  
    % \\Ps*HN  
    %       n    m    Zernike function           Normalization {%g]Ym=  
    %       -------------------------------------------------- QWL$F:9:  
    %       0    0    1                                 1 ;S Re`  
    %       1    1    r * cos(theta)                    2 $ ?ayE  
    %       1   -1    r * sin(theta)                    2 o+{]&V->gN  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) * E$&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) | Q0Wv8/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ph@hk0dgr/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9FB k|g"U)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) TmI~P+5w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Mr/;$O{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \0gU)tVZ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) klkshlk d  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |~)!8N.{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) AQAZ+g(IK  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '3B"@^]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) {O24:'K&  
    %       -------------------------------------------------- `h%(ZG ~  
    % v6uXik  
    %   Example 1: .|ZO2MCd  
    % ~kHWh8\b:  
    %       % Display the Zernike function Z(n=5,m=1) D(bQFRBY6"  
    %       x = -1:0.01:1; Ife/:v  
    %       [X,Y] = meshgrid(x,x); pBo=omQV  
    %       [theta,r] = cart2pol(X,Y); W(~7e?fO  
    %       idx = r<=1; {lv@V*_Y0  
    %       z = nan(size(X)); V)|]w[(Y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "{TVd>9_  
    %       figure @\ udaZc  
    %       pcolor(x,x,z), shading interp JDbRv'F:(  
    %       axis square, colorbar ~w Ekbq=  
    %       title('Zernike function Z_5^1(r,\theta)') Epo/}y  
    % 3MqyHOOv  
    %   Example 2: o8uak*"{  
    % 5?] Dn k.o  
    %       % Display the first 10 Zernike functions 5~,usA*  
    %       x = -1:0.01:1; Veeuw  
    %       [X,Y] = meshgrid(x,x); },eV?eGj  
    %       [theta,r] = cart2pol(X,Y); _!qi`A  
    %       idx = r<=1; eMHBY6<~=  
    %       z = nan(size(X)); T?lp:~d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; msf%i!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _bsAF^ ;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7{W#i<W  
    %       y = zernfun(n,m,r(idx),theta(idx)); -] @cUx  
    %       figure('Units','normalized') g \;,NW^  
    %       for k = 1:10 Fy#y.jK9v  
    %           z(idx) = y(:,k); ~<.%sVwE  
    %           subplot(4,7,Nplot(k)) k-CW?=  
    %           pcolor(x,x,z), shading interp Ef)v("'w  
    %           set(gca,'XTick',[],'YTick',[]) @ zs.M-F  
    %           axis square Z;'5A2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s~i 73Qk/  
    %       end >f\$~cp  
    % Rz03he  
    %   See also ZERNPOL, ZERNFUN2. $j(laD#AR  
    d?6\  
    %   Paul Fricker 11/13/2006 h/s8".\  
    8wH1x .  
    s#BSZP  
    % Check and prepare the inputs: xoe/I[P]U  
    % ----------------------------- 8"=E 0(m  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 52P^0<Wq  
        error('zernfun:NMvectors','N and M must be vectors.') Y@l>4q")  
    end 8-5g6qAS  
    {3@"}Eh  
    if length(n)~=length(m) wn Q% 'Eo  
        error('zernfun:NMlength','N and M must be the same length.') rds 4eUxe  
    end APUpqY  
    JTcE{i  
    n = n(:); 1lLXu  
    m = m(:); hd>_K*oH  
    if any(mod(n-m,2)) 49!(Sa_]j  
        error('zernfun:NMmultiplesof2', ... 8+mu'RZ X  
              'All N and M must differ by multiples of 2 (including 0).') wl N l|+ K  
    end INNTp[  
    J;5G]$s  
    if any(m>n) :"Gd;~p.  
        error('zernfun:MlessthanN', ... Ue&I]/?;$  
              'Each M must be less than or equal to its corresponding N.') pP)> x*1  
    end SO+J5,)HA  
    k &6$S9  
    if any( r>1 | r<0 ) =`EVg>+^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]N^>>k  
    end mV;)V8'  
    ' JAcN@q~z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z}`A'#!  
        error('zernfun:RTHvector','R and THETA must be vectors.') =<.h.n  
    end wDt9Lf O  
    j&l2n2z  
    r = r(:); ekPn`U  
    theta = theta(:); .2f0e[J  
    length_r = length(r); Ksb55cp`  
    if length_r~=length(theta) \E8CC>Jd  
        error('zernfun:RTHlength', ... >>.4@  
              'The number of R- and THETA-values must be equal.') mQ=nU  
    end 7e/K YS+!s  
    |IZFWZd  
    % Check normalization: #eY?6Kjn  
    % -------------------- }kF*I@:g  
    if nargin==5 && ischar(nflag) !{S HlS  
        isnorm = strcmpi(nflag,'norm'); BDcA_= ^R&  
        if ~isnorm evE$$# 6R  
            error('zernfun:normalization','Unrecognized normalization flag.') !glGW[r/7  
        end W@WKdaJ  
    else bnxR)b~  
        isnorm = false; +"3K)9H  
    end -!-1X7v|Fp  
    v"V?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AkX8v66:  
    % Compute the Zernike Polynomials aMO+ y91Y(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NaC}KI`  
    ]cP$aixd  
    % Determine the required powers of r: *k !zdV  
    % ----------------------------------- \heQVWRl  
    m_abs = abs(m); @YI- @  
    rpowers = []; kWxcB7)uk  
    for j = 1:length(n) 5@`DS-7h  
        rpowers = [rpowers m_abs(j):2:n(j)]; a3B^RbDP&8  
    end 8gXf4A(N  
    rpowers = unique(rpowers); x0ICpt{;  
    WXX08"  
    % Pre-compute the values of r raised to the required powers, (k<__W c_t  
    % and compile them in a matrix: xf 4`+[  
    % ----------------------------- o0FVVSl  
    if rpowers(1)==0 4L/8Hj#g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Na>?1F"KHk  
        rpowern = cat(2,rpowern{:}); 5tcJT z  
        rpowern = [ones(length_r,1) rpowern]; i1-wzI  
    else C^9bur/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4qg] oiT  
        rpowern = cat(2,rpowern{:}); ]7 2wv#-  
    end ^<v]x; 3  
    mVEHVz $  
    % Compute the values of the polynomials: (db4.G+0  
    % -------------------------------------- MzCZj  
    y = zeros(length_r,length(n)); xYD.j~  
    for j = 1:length(n) 4qmaL+Q  
        s = 0:(n(j)-m_abs(j))/2; O_[]+5.TX  
        pows = n(j):-2:m_abs(j); =(]||1 .  
        for k = length(s):-1:1 |emZZj  
            p = (1-2*mod(s(k),2))* ... ZfSAXr "(  
                       prod(2:(n(j)-s(k)))/              ... c@)}zcw*  
                       prod(2:s(k))/                     ... p'YNj3&u  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... f}? q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); I;3Uzv  
            idx = (pows(k)==rpowers); D",~?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <"}WpT  
        end JB(P-Y#yyA  
         Vv~:^6il  
        if isnorm Q??nw^8Hi  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); VQ'DNv| 9  
        end MP%pEUomev  
    end 2[TssJQ  
    % END: Compute the Zernike Polynomials bT#re  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JN<IMH  
    @g==U{k;t  
    % Compute the Zernike functions: M$+2f.(>k)  
    % ------------------------------ "%fvA;  
    idx_pos = m>0; h0n,WU/Kw  
    idx_neg = m<0; -8D$[@y(  
    YDdY'd`*  
    z = y; drEND`,@6|  
    if any(idx_pos) oZ"93]3-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5$Aiez~tBq  
    end _)F0o C {  
    if any(idx_neg) EE[JXoke  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /6d:l>4  
    end 3m59EI-p  
    e+7x &-+  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) cri.kr9Y  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 9;k!dM  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ! fSM6Vo  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive E2a00i/9Y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, D?< R5zp  
    %   and THETA is a vector of angles.  R and THETA must have the same 2E d  
    %   length.  The output Z is a matrix with one column for every P-value, 2h^9lrQcQG  
    %   and one row for every (R,THETA) pair. _aLml9f W  
    % v9 K{oB  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike A-XWG9nL  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) FsyM{LT  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Bk9? =  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 .<|.nK`6  
    %   for all p. r7=r~3)  
    % __N#Y/e ]  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 M,j3z #  
    %   Zernike functions (order N<=7).  In some disciplines it is e-.s63hm  
    %   traditional to label the first 36 functions using a single mode Lm}J& ^>  
    %   number P instead of separate numbers for the order N and azimuthal U)g2 7*7  
    %   frequency M. 7)y9% -}  
    % _6 ,Tb]  
    %   Example: 8wQ|Ep\  
    % P-c<[DSM'I  
    %       % Display the first 16 Zernike functions S0uEz;cE  
    %       x = -1:0.01:1; !YCus;B~  
    %       [X,Y] = meshgrid(x,x); qe\JO'g#e  
    %       [theta,r] = cart2pol(X,Y); jaq`A'o5  
    %       idx = r<=1; }3&~YBx;:  
    %       p = 0:15; n'-?CMH`  
    %       z = nan(size(X)); +bv-!rf  
    %       y = zernfun2(p,r(idx),theta(idx)); /o)o7$6Q  
    %       figure('Units','normalized') Y']D_\y  
    %       for k = 1:length(p) Z(=U ZI?  
    %           z(idx) = y(:,k); 6 s$jt-bH  
    %           subplot(4,4,k) MU/3**zoW  
    %           pcolor(x,x,z), shading interp 0p;pTc  
    %           set(gca,'XTick',[],'YTick',[]) _~_E(rTn  
    %           axis square %Z#s9QC  
    %           title(['Z_{' num2str(p(k)) '}']) = g[Cs*  
    %       end $JTQA  
    % 0Zq jq0O#  
    %   See also ZERNPOL, ZERNFUN. F:o<E 42  
    m2o)/:  
    %   Paul Fricker 11/13/2006 }F~4+4B^  
     #mDeA>b  
    k-uwK-B}v+  
    % Check and prepare the inputs: ?\D=DIN-r  
    % ----------------------------- g)@d(EYY  
    if min(size(p))~=1 }#h>*+Q  
        error('zernfun2:Pvector','Input P must be vector.') |VPJaiC~  
    end ub* j&L=  
    \ &S-lsLY  
    if any(p)>35 kA1C&  
        error('zernfun2:P36', ... '"/Yk=EmlU  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... keYvscRBI  
               '(P = 0 to 35).']) apxY2oE&  
    end J"&jR7-9  
    ojA i2uz  
    % Get the order and frequency corresonding to the function number: 3Wl,T5}{  
    % ---------------------------------------------------------------- I|#1u7X%]  
    p = p(:); 1sT%g}w@|  
    n = ceil((-3+sqrt(9+8*p))/2); a9=pZ1QAG  
    m = 2*p - n.*(n+2); V#Px  
    v_$'!i$  
    % Pass the inputs to the function ZERNFUN: =(^-s Jk  
    % ---------------------------------------- A"`^A brm  
    switch nargin 8a;I,DK=j  
        case 3 2unaK<1s  
            z = zernfun(n,m,r,theta); W]t!I}yPR  
        case 4 "&,Gn#'FG  
            z = zernfun(n,m,r,theta,nflag);  d Xiv8B1  
        otherwise %bp8VR sY  
            error('zernfun2:nargin','Incorrect number of inputs.') lOc!KZHUp  
    end \ M_}V[1+  
    79?%g=#=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Y~</vz+H  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ?ep'R&NV  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of TaZw_)4c  
    %   order N and frequency M, evaluated at R.  N is a vector of WP@IV;i  
    %   positive integers (including 0), and M is a vector with the ~_z"So'|F_  
    %   same number of elements as N.  Each element k of M must be a  fn1G^a=  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) y~w -z4  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I.M@we/bR}  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix JVoW*uA  
    %   with one column for every (N,M) pair, and one row for every RO([R=.`/  
    %   element in R. #DN5S#Ic  
    % %SwN/rna  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ?3{R'Buv]  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 4TBK:Vm5  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 8+L,a_q-  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 }w#Ek=,s#o  
    %   for all [n,m]. wQ7G_kVp  
    % qm.30 2  
    %   The radial Zernike polynomials are the radial portion of the =*AAXNs@3  
    %   Zernike functions, which are an orthogonal basis on the unit P~>E  
    %   circle.  The series representation of the radial Zernike {EoRY/]  
    %   polynomials is UogkQ& B  
    % :N826_q  
    %          (n-m)/2 jL|y4  
    %            __ H9x,C/r,  
    %    m      \       s                                          n-2s N34.Bt  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Tr^Egw]  
    %    n      s=0 f1a >C  
    % Myl!tXawe8  
    %   The following table shows the first 12 polynomials. LEq"g7YH  
    % %<g(EKl  
    %       n    m    Zernike polynomial    Normalization "!9hcv- ;  
    %       --------------------------------------------- GJUorj&  
    %       0    0    1                        sqrt(2) WMo   
    %       1    1    r                           2 woHB![Q,  
    %       2    0    2*r^2 - 1                sqrt(6) xm)s%"6n  
    %       2    2    r^2                      sqrt(6) JQ>GKu~  
    %       3    1    3*r^3 - 2*r              sqrt(8) SNV[KdvP*  
    %       3    3    r^3                      sqrt(8) aKLA_-E  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) G2bZl% ,D  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) !J5k?J&{=  
    %       4    4    r^4                      sqrt(10) _^)Wrf+  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) o]&w"3vOP0  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) F/"Q0%(m  
    %       5    5    r^5                      sqrt(12) 0Cox+QJt  
    %       --------------------------------------------- AhZ`hj   
    % ^J?ExMu  
    %   Example: 7j>NUx=j3  
    % yqy5i{Y  
    %       % Display three example Zernike radial polynomials KuU]enC3  
    %       r = 0:0.01:1; 5wy1%/;  
    %       n = [3 2 5]; 3'd(=hJ45$  
    %       m = [1 2 1]; u,zA^%   
    %       z = zernpol(n,m,r); Bs@!S?  
    %       figure h,Y!d]2w  
    %       plot(r,z) x[mxp/ /P  
    %       grid on F{:ZHCm  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 0ssKZ9Lc  
    % \m3'4#  
    %   See also ZERNFUN, ZERNFUN2. >-2eZ(n)"  
    I)xB I~x  
    % A note on the algorithm. .6,+q2tyk,  
    % ------------------------ IL:d`Kbqf  
    % The radial Zernike polynomials are computed using the series thoAEG80  
    % representation shown in the Help section above. For many special [-Zp[  
    % functions, direct evaluation using the series representation can Di[}y;  
    % produce poor numerical results (floating point errors), because +GgJFBl  
    % the summation often involves computing small differences between )'<B\P/  
    % large successive terms in the series. (In such cases, the functions wq[\Fb`  
    % are often evaluated using alternative methods such as recurrence 1g_(xwUp+  
    % relations: see the Legendre functions, for example). For the Zernike O/X;(qYd  
    % polynomials, however, this problem does not arise, because the 9Tgl/}q)  
    % polynomials are evaluated over the finite domain r = (0,1), and O*hd@2hd  
    % because the coefficients for a given polynomial are generally all 3)F9:Tzw1  
    % of similar magnitude. hEO#uAR^Z  
    % Wq bfZx  
    % ZERNPOL has been written using a vectorized implementation: multiple QHt;c  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] :$bp4+3>  
    % values can be passed as inputs) for a vector of points R.  To achieve u!k]Q#2ZR  
    % this vectorization most efficiently, the algorithm in ZERNPOL Q^^.@FU"x  
    % involves pre-determining all the powers p of R that are required to a,o>E4#c  
    % compute the outputs, and then compiling the {R^p} into a single '}3m('u  
    % matrix.  This avoids any redundant computation of the R^p, and 'Zq$ W]i  
    % minimizes the sizes of certain intermediate variables. l!n<.tQW  
    % sU {'  
    %   Paul Fricker 11/13/2006 f@ &?K<  
    '%W'HqVcG1  
    ;z6Gk&?  
    % Check and prepare the inputs: Wvhg:vup  
    % ----------------------------- u9WQ0.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Qg)=4(<Hr  
        error('zernpol:NMvectors','N and M must be vectors.') 4T*RJ3Fz!  
    end RwH<JaL:  
    b&LfL$  
    if length(n)~=length(m) o8 A]vaa  
        error('zernpol:NMlength','N and M must be the same length.') -qki^!Y?  
    end 8>: kv:MId  
    -rU~  
    n = n(:); ryz [A:^G  
    m = m(:); O"otzla  
    length_n = length(n); DVu_KT[Hd  
    \z}/=Qgc  
    if any(mod(n-m,2)) /Q7cQ2[EU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') O|#N$a&_N  
    end pRsYA7Ti  
    >".,=u'  
    if any(m<0) jL$&]sQ`O)  
        error('zernpol:Mpositive','All M must be positive.') | v? pS  
    end 3Lxk7D>0c  
    &G5=?ub  
    if any(m>n) p_!;N^y.  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') zVLv-U/=d  
    end 0> pOP  
    ^!]Hm&.a  
    if any( r>1 | r<0 ) [OI&_WIw  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 2.I'`A  
    end Wsn}Y-x  
    s*R \!L  
    if ~any(size(r)==1) 32_{nLV$[  
        error('zernpol:Rvector','R must be a vector.') 4X2XSK4  
    end &9CKI/K:  
    v1hrRf2<  
    r = r(:); ALw5M'6q0\  
    length_r = length(r); qyP|`Pm4  
    sSLs%)e|:  
    if nargin==4 h&7]Bp  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); b\zRwp  
        if ~isnorm @MfuV4*  
            error('zernpol:normalization','Unrecognized normalization flag.') @`:n+r5u  
        end KKm0@Y   
    else =d/\8\4  
        isnorm = false; Lc>9[! +#  
    end VjU;[  
    im&E \`L7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h+mM  
    % Compute the Zernike Polynomials Sd;/yC8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &tFVW[(  
    #C?T  
    % Determine the required powers of r: nZ>bOP+,  
    % ----------------------------------- t<O5_}R%d  
    rpowers = []; -GkNA"2M[  
    for j = 1:length(n) /^~3Ib8Fw+  
        rpowers = [rpowers m(j):2:n(j)]; ~Mv@Bl  
    end |]a =He;  
    rpowers = unique(rpowers); q# W|*kL3  
    L&1VPli  
    % Pre-compute the values of r raised to the required powers, QDlEby m  
    % and compile them in a matrix: !g /&ws&  
    % ----------------------------- W1X\!Y  
    if rpowers(1)==0 4!Ez#\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SWr?>dl  
        rpowern = cat(2,rpowern{:}); [>"bL$tlo*  
        rpowern = [ones(length_r,1) rpowern]; F_ ~L&jHP  
    else ;dl>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); i^9PiP|U  
        rpowern = cat(2,rpowern{:}); !j8h$+:K  
    end qO=_i d  
    hd~X c  
    % Compute the values of the polynomials: P&3'N~k-  
    % -------------------------------------- ]%IcUd}  
    z = zeros(length_r,length_n); )r v5QH`i  
    for j = 1:length_n 3kFOs$3  
        s = 0:(n(j)-m(j))/2; 0$3\D S<E  
        pows = n(j):-2:m(j); ]trVlmZXH}  
        for k = length(s):-1:1 ^Ye i9bXl  
            p = (1-2*mod(s(k),2))* ... y@[}FgVOh  
                       prod(2:(n(j)-s(k)))/          ... &?^S`V8R*  
                       prod(2:s(k))/                 ... jw$3cwddH  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... J=4R" _yo  
                       prod(2:((n(j)+m(j))/2-s(k))); <Vyv)#32o3  
            idx = (pows(k)==rpowers); '~i} 2e.  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &| %<=\  
        end ryzz!0l  
         mH> oF|  
        if isnorm $:"r$7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); U'S}7gya  
        end \1'3--n  
    end *6~ODiB  
    FjIS:9^)t5  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >B>[_8=f@  
    j8n_:;i*  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 O b'B?  
    y4*i V;"  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)