切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11023阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 a[p$e?gka  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! oxL)Jx\c9A  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :s \zk^h?  
    function z = zernfun(n,m,r,theta,nflag) hQ(^;QcSu  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. K1o>>388G  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vxOnv8(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the N;,zPWa  
    %   unit circle.  N is a vector of positive integers (including 0), and  ? 8/r=  
    %   M is a vector with the same number of elements as N.  Each element ]#W7-Q;]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Pm%5c\ef  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, V'tR \b  
    %   and THETA is a vector of angles.  R and THETA must have the same #!E`%' s]  
    %   length.  The output Z is a matrix with one column for every (N,M) QO0@Ax\b  
    %   pair, and one row for every (R,THETA) pair. :,M+njcFc  
    % u})*6l.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?PqkC&o[q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QT zN  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ({@" {  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,  JZ+6)R  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w>8kBQ?b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. v9FR  
    % [V qiF~o,  
    %   The Zernike functions are an orthogonal basis on the unit circle. X)6G :cD  
    %   They are used in disciplines such as astronomy, optics, and ,|A6l?iV  
    %   optometry to describe functions on a circular domain. o.w/ ?  
    % 63J3NwFt  
    %   The following table lists the first 15 Zernike functions. ITg:OOQ  
    % 'wtb"0 }  
    %       n    m    Zernike function           Normalization Pksr9"Ah  
    %       -------------------------------------------------- GyMN;|  
    %       0    0    1                                 1 M$.bC0}T  
    %       1    1    r * cos(theta)                    2 ](v,2(}=  
    %       1   -1    r * sin(theta)                    2 lNf);!}SM  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7 )[2Ud8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) H }]Zp  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) S7WHOr9XMV  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) )">#bu$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9C2pGfEbn}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .ahY 1CO  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) pdER#7Tq  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) e$P^},0/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4M>pHz4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (9ZW^flY  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R9^vAS4t[O  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 7w" !"W#  
    %       -------------------------------------------------- ;?@Rq"*  
    % ("ix!\1K@  
    %   Example 1: $GU  s\  
    % YgjW%q   
    %       % Display the Zernike function Z(n=5,m=1) X@}7 # Vt  
    %       x = -1:0.01:1; QI U%!9Y  
    %       [X,Y] = meshgrid(x,x); $[ S 33Q  
    %       [theta,r] = cart2pol(X,Y); Pv,PS.,-  
    %       idx = r<=1; |f$ws R`&  
    %       z = nan(size(X)); =,q/FY:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); pfIK9>i  
    %       figure d }fd^x/  
    %       pcolor(x,x,z), shading interp @(oY.PeS<z  
    %       axis square, colorbar {fDRVnI?  
    %       title('Zernike function Z_5^1(r,\theta)') A^+kA)8  
    % sC[#R.eq  
    %   Example 2: ?Fa$lE4  
    % s.rQiD  
    %       % Display the first 10 Zernike functions TCzlu#w  
    %       x = -1:0.01:1; Sin)]zG~0  
    %       [X,Y] = meshgrid(x,x); 2]Cn<zJ  
    %       [theta,r] = cart2pol(X,Y); FN/l/OSb  
    %       idx = r<=1; N#jUqm  
    %       z = nan(size(X)); "Dk@-Ac  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :|S[i('  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; rA8NE>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; T"3LO[j+  
    %       y = zernfun(n,m,r(idx),theta(idx)); w5)KWeGa  
    %       figure('Units','normalized') sx;/xIU|  
    %       for k = 1:10 Iurz?dt4w  
    %           z(idx) = y(:,k); 4clCZ@\K^  
    %           subplot(4,7,Nplot(k)) .t>SbGC  
    %           pcolor(x,x,z), shading interp YGM7?o  
    %           set(gca,'XTick',[],'YTick',[]) 3hBYx@jTO  
    %           axis square S{bp'9]$y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *^7^g!=z2  
    %       end }id)~h_@  
    % i !sVQ(:  
    %   See also ZERNPOL, ZERNFUN2. F?MVQ!K*  
    ? eI)m  
    %   Paul Fricker 11/13/2006 u81F^72U  
    y]obO|AH  
    (QqeMG,Y  
    % Check and prepare the inputs: ] s 2ec  
    % ----------------------------- oNl-! W   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) psx_gv,  
        error('zernfun:NMvectors','N and M must be vectors.') Z ]ZUK  
    end h82y9($cZ  
    sA: /!9  
    if length(n)~=length(m) oa7 N6  
        error('zernfun:NMlength','N and M must be the same length.') Wt!;Y,1 s  
    end A>F&b1  
    yGWl8\,j0  
    n = n(:); ^i WGGnGS  
    m = m(:); veh=^K%G |  
    if any(mod(n-m,2)) 9"1=um=  
        error('zernfun:NMmultiplesof2', ... WTt /y\'6  
              'All N and M must differ by multiples of 2 (including 0).') ^tm2Duv  
    end >b3IZ^SB#$  
    j+/EG^*/  
    if any(m>n) <b\.d^=B  
        error('zernfun:MlessthanN', ... R*W1<W%q=  
              'Each M must be less than or equal to its corresponding N.') Ue,eEer  
    end m|+zMf&  
    d@cyQFX  
    if any( r>1 | r<0 ) "Ya ;&F.'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') #&S<{75A  
    end {O!;cI~  
    $1)NYsSH/H  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uF|[MWcy0#  
        error('zernfun:RTHvector','R and THETA must be vectors.') e 1bV&  
    end O f-gG~  
    7|"G 3ck  
    r = r(:); jl]p e7-  
    theta = theta(:); WwSyw?T  
    length_r = length(r); G~*R6x2g  
    if length_r~=length(theta) 436SIh  
        error('zernfun:RTHlength', ... Pj8Vl)8~NV  
              'The number of R- and THETA-values must be equal.') 5HvYy *B/  
    end {EU]\Mp0j  
    #^i+'Z=L  
    % Check normalization: 5=8_Le  
    % -------------------- vl%Pg !l  
    if nargin==5 && ischar(nflag) b_~KtMO  
        isnorm = strcmpi(nflag,'norm'); &w%%^ +n |  
        if ~isnorm ;4oKF7]   
            error('zernfun:normalization','Unrecognized normalization flag.') =<= [E:B  
        end zCwb>v  
    else d +eb![fi  
        isnorm = false; o+<hI  
    end V-i:t,*lk(  
    g@>y`AFnr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9x8Ai  
    % Compute the Zernike Polynomials G CcSI;w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E/ku VZX  
     :KRe==/  
    % Determine the required powers of r: 6X VJ/qZ  
    % ----------------------------------- "rQ?2?  
    m_abs = abs(m); :J5CmU $  
    rpowers = []; ooYs0/,{  
    for j = 1:length(n) oX/#Mct{s  
        rpowers = [rpowers m_abs(j):2:n(j)]; U.W Mu%  
    end *O Kve  
    rpowers = unique(rpowers); AlgVsE%Va  
    xU9^8,6  
    % Pre-compute the values of r raised to the required powers, T5 BoOVgO  
    % and compile them in a matrix: k1FG$1.  
    % ----------------------------- bqR0./V  
    if rpowers(1)==0 m%OX< T!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gBd~:ZUa  
        rpowern = cat(2,rpowern{:}); r3Ih]|FK#  
        rpowern = [ones(length_r,1) rpowern]; ;wr]_@<~  
    else +G!;:o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ."v&?o Ck]  
        rpowern = cat(2,rpowern{:}); nQ'AB~ Do  
    end v{U1B  
    y {Mh ?H  
    % Compute the values of the polynomials: iJu$&u  
    % -------------------------------------- ~x +24/qT  
    y = zeros(length_r,length(n)); f^XfIH_#  
    for j = 1:length(n) _~ 7cn  
        s = 0:(n(j)-m_abs(j))/2; pM@0>DVi  
        pows = n(j):-2:m_abs(j); W}oAgUd  
        for k = length(s):-1:1 rMUQh~a/  
            p = (1-2*mod(s(k),2))* ... Wuji'sxTs  
                       prod(2:(n(j)-s(k)))/              ... *:,7 A9LY  
                       prod(2:s(k))/                     ... LZ~$=<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1FC 1*7A[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); C  F<  
            idx = (pows(k)==rpowers); 9DmQ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >E(IkpZ  
        end uwb>q"M  
         3gmu-t v  
        if isnorm 8c'E  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); nF| m*_DW  
        end Ucok&)7-  
    end )8Sm}aC  
    % END: Compute the Zernike Polynomials o//PlG~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (z<& PP  
    ^ )/oDyO  
    % Compute the Zernike functions: 9Fxz9_ i  
    % ------------------------------ ;;- I<TL  
    idx_pos = m>0; L~(`zO3f  
    idx_neg = m<0; T\Q)"GB  
    re} P  
    z = y; *gzX=*;x+?  
    if any(idx_pos) l4Y}<j\;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :j,e0#+sA  
    end BI6o@d;=4  
    if any(idx_neg) =2[cpF]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  kQm\;[R  
    end pfvNVu  
    ^Q4m1? 40  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) m:~s6c6H  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. &sQtS  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated e&u HU8k*  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Y&5h_3K;<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, BY$%gIB6>  
    %   and THETA is a vector of angles.  R and THETA must have the same CxtH?9# |  
    %   length.  The output Z is a matrix with one column for every P-value, '%R Yo#  
    %   and one row for every (R,THETA) pair. _, ;c2  
    % vf(\?Js ,  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike L +s,,k  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) X Jy]d/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LE!3'^Zq  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 DY{JA *N  
    %   for all p. G?d28p',.  
    % Y0U<l1(|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 R28h%KN  
    %   Zernike functions (order N<=7).  In some disciplines it is Rj% q)aw'  
    %   traditional to label the first 36 functions using a single mode Qp${/  
    %   number P instead of separate numbers for the order N and azimuthal 8<6;X7<-  
    %   frequency M. 7@rrAs-"Z  
    % Jh[fFg]  
    %   Example: (a1s~  
    % hun/H4f|  
    %       % Display the first 16 Zernike functions Y] nY.5irL  
    %       x = -1:0.01:1; o$YL\ <qp  
    %       [X,Y] = meshgrid(x,x); O- &>Dc  
    %       [theta,r] = cart2pol(X,Y); o% !a  
    %       idx = r<=1; jzu1>*ok  
    %       p = 0:15; 0=&Hm).  
    %       z = nan(size(X)); <$HP"f+<S5  
    %       y = zernfun2(p,r(idx),theta(idx)); W04-D  
    %       figure('Units','normalized') Pd\S{ Y~wk  
    %       for k = 1:length(p) #Gs] u  
    %           z(idx) = y(:,k); ^'C1VQ%  
    %           subplot(4,4,k) aBT|Q@Y.  
    %           pcolor(x,x,z), shading interp p}}o#a~V),  
    %           set(gca,'XTick',[],'YTick',[]) kL,AY-Iu{@  
    %           axis square &B7X LO[  
    %           title(['Z_{' num2str(p(k)) '}']) HkEfBQmh  
    %       end {cKKTDN  
    % !5Kv9P79  
    %   See also ZERNPOL, ZERNFUN. o|AV2FM)  
    $ T.c>13  
    %   Paul Fricker 11/13/2006 Yyby 1  
    L*1C2EL/q  
    +^!&-g@(  
    % Check and prepare the inputs: 7 rOziKZ"  
    % ----------------------------- ,)nO   
    if min(size(p))~=1 &aaXw?/zr  
        error('zernfun2:Pvector','Input P must be vector.') J(VJMS;_  
    end Y+sycdq  
    u:3~Ius  
    if any(p)>35 =zt@*o{F  
        error('zernfun2:P36', ... kl_JJX6jPP  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... SI)u@3hl&w  
               '(P = 0 to 35).']) X4lz?Y:*  
    end 5EIh5Y EU>  
    vz*QzVk1  
    % Get the order and frequency corresonding to the function number: [F/>pL5U$  
    % ---------------------------------------------------------------- 4WZ:zr N  
    p = p(:); cWP34;NNM  
    n = ceil((-3+sqrt(9+8*p))/2); NB;8 e>8  
    m = 2*p - n.*(n+2); kb ]PW Oz  
    1p<m>s=D=e  
    % Pass the inputs to the function ZERNFUN: I8)x 0)Lx  
    % ---------------------------------------- (qnzz!s  
    switch nargin r'uD|T H  
        case 3 znzh$9tH  
            z = zernfun(n,m,r,theta); b'4{l[3~nl  
        case 4 %%}U -*b  
            z = zernfun(n,m,r,theta,nflag); 3G dWq*  
        otherwise {A2(a7vV  
            error('zernfun2:nargin','Incorrect number of inputs.') &aqF ||v%)  
    end 7 /w)^&8  
    9"K EHf!  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) DpH+lpC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. F~2bCy[Z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of I{U7BZy  
    %   order N and frequency M, evaluated at R.  N is a vector of : a @_GIC  
    %   positive integers (including 0), and M is a vector with the GuPxN}n 5  
    %   same number of elements as N.  Each element k of M must be a $8vZiB!"  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) U,Ya^2h%  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is U1}-]^\  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix iqm]sC`  
    %   with one column for every (N,M) pair, and one row for every bfcQ(m5  
    %   element in R. 7v3'JG1r-  
    % :jlKj}4A  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ul$k xc=N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is `>-fU<Q1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ce@1#}*  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 $5N%!  
    %   for all [n,m]. mQdF+b1o  
    % IcRA[ g  
    %   The radial Zernike polynomials are the radial portion of the Ut.%=o;&[  
    %   Zernike functions, which are an orthogonal basis on the unit A?i ~*#wE  
    %   circle.  The series representation of the radial Zernike #@FMH*?xX6  
    %   polynomials is OGW,[k= 2{  
    % vy&'A$ H  
    %          (n-m)/2 @yp#k>  
    %            __ #t N9#w[K{  
    %    m      \       s                                          n-2s n@|5PI"bx  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0z&]imU  
    %    n      s=0 3,`I\>No  
    % O*0%AjT6  
    %   The following table shows the first 12 polynomials. 6 G.(o  
    % 'EzKu~*  
    %       n    m    Zernike polynomial    Normalization 'u@,,FFz[K  
    %       --------------------------------------------- IAyyRl\  
    %       0    0    1                        sqrt(2) kNq>{dNRx  
    %       1    1    r                           2 NULew]:5  
    %       2    0    2*r^2 - 1                sqrt(6) : EA-L  
    %       2    2    r^2                      sqrt(6) Z p8\n:  
    %       3    1    3*r^3 - 2*r              sqrt(8) by07l5  
    %       3    3    r^3                      sqrt(8) t5O '7x  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 6mp8v`b  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) CjR!dh1w_  
    %       4    4    r^4                      sqrt(10) M3q%(!2  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Uh[MB wK  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) wwh1aV *  
    %       5    5    r^5                      sqrt(12) u@&e{w~0  
    %       --------------------------------------------- <pA%|]  
    % x[u4>f  
    %   Example: X1DE   
    % X~UrAG}_  
    %       % Display three example Zernike radial polynomials XLHi  
    %       r = 0:0.01:1; }2xgm9j<  
    %       n = [3 2 5]; L%S(z)xX3  
    %       m = [1 2 1]; aSse' C<a  
    %       z = zernpol(n,m,r); UHyGW$B  
    %       figure V.w L  
    %       plot(r,z) CFK{.{d]B  
    %       grid on ,~Y[XazT  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') aH/8&.JLi  
    % 88x2Hf5I  
    %   See also ZERNFUN, ZERNFUN2. fQm3D%  
    [0bp1S~  
    % A note on the algorithm. DpCe_Vb%M  
    % ------------------------ ,FIG5-e,}  
    % The radial Zernike polynomials are computed using the series u@]rR&h`  
    % representation shown in the Help section above. For many special GG &J  
    % functions, direct evaluation using the series representation can W3+;1S$k  
    % produce poor numerical results (floating point errors), because )7c/i+FsC  
    % the summation often involves computing small differences between mzO5&h7  
    % large successive terms in the series. (In such cases, the functions q$7w?(Lk  
    % are often evaluated using alternative methods such as recurrence @\U;?N~k  
    % relations: see the Legendre functions, for example). For the Zernike L;\f^v(  
    % polynomials, however, this problem does not arise, because the xs 1V?0  
    % polynomials are evaluated over the finite domain r = (0,1), and SA{noM  
    % because the coefficients for a given polynomial are generally all t $m:  
    % of similar magnitude. sA~Ijg"6  
    % _xsHU`(J#  
    % ZERNPOL has been written using a vectorized implementation: multiple &?@gCVNO,  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ''^2rF^  
    % values can be passed as inputs) for a vector of points R.  To achieve 3>>Ca;>$  
    % this vectorization most efficiently, the algorithm in ZERNPOL C>A} e6o  
    % involves pre-determining all the powers p of R that are required to *j~ObE_y  
    % compute the outputs, and then compiling the {R^p} into a single DX0#q #  
    % matrix.  This avoids any redundant computation of the R^p, and t5CJG'!ql  
    % minimizes the sizes of certain intermediate variables. =Q,D3F -+f  
    % j'x@P+A  
    %   Paul Fricker 11/13/2006 %)ri:Qq  
    ,UYe OM2Ao  
    f4O}WU}l{s  
    % Check and prepare the inputs: #.<Dq8u  
    % ----------------------------- &t U&ZH  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &E]<KbVx  
        error('zernpol:NMvectors','N and M must be vectors.') )Vz=:.D  
    end v65]$%F?  
    (fYYcpd,k  
    if length(n)~=length(m) 4`Cgz#v {  
        error('zernpol:NMlength','N and M must be the same length.') v4qpE!W27~  
    end TH"<6*f2L  
    L)i6UAo  
    n = n(:); V~_6t{L  
    m = m(:); H'IxB[  
    length_n = length(n); a|5<L  
    00LL&ot  
    if any(mod(n-m,2)) mGpBj9jr1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') R5 i xG9  
    end \WqC^Di  
    N(e>]ui  
    if any(m<0) t*`G@Nj  
        error('zernpol:Mpositive','All M must be positive.') ! o?E.  
    end HBNX a  
    ai<K6)  
    if any(m>n) aI>F8R?  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') D W>O]\I  
    end (&=3Y8  
    +y_V$q$G  
    if any( r>1 | r<0 ) ec,Bu7'8  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3!h3flE  
    end de9e7.(2  
    [s[!PlazX  
    if ~any(size(r)==1) cj4o[l  
        error('zernpol:Rvector','R must be a vector.') 2uT@jfj:r  
    end | 2GrOM&S  
    pxI[/vS N  
    r = r(:); M96Nt&P`  
    length_r = length(r); 24po}nrO  
    5s%FHa  
    if nargin==4 ac,<+y7A  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); r3Kx  
        if ~isnorm )h]tKYx  
            error('zernpol:normalization','Unrecognized normalization flag.')  T4J WZ  
        end /eBcPu"[Vb  
    else EUq6) K  
        isnorm = false; _7R6%^  
    end *&5./WEOH  
    p m<K6I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pz|}[Cx-  
    % Compute the Zernike Polynomials mC$ te  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M=fhRCUB  
    Z1h6Y>j  
    % Determine the required powers of r: *o6QBb  
    % ----------------------------------- s]HJcgI  
    rpowers = []; Sq5}v]k@&  
    for j = 1:length(n) Va4AE)[/*  
        rpowers = [rpowers m(j):2:n(j)]; " ;o, D  
    end <J]N E|:  
    rpowers = unique(rpowers); ]E*xn  
    3W[Ps?G  
    % Pre-compute the values of r raised to the required powers, _$mS=G(  
    % and compile them in a matrix: X;{U?`b-  
    % ----------------------------- >w1jfpQ@t$  
    if rpowers(1)==0 #UnGU,J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :2lM7|@/  
        rpowern = cat(2,rpowern{:}); QvzE:]pyi  
        rpowern = [ones(length_r,1) rpowern]; {\ VmNnw  
    else 9S?b &]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aw3rTT(  
        rpowern = cat(2,rpowern{:}); o{7w&Pgs2  
    end t?p>L*  
    m xy=3cUi  
    % Compute the values of the polynomials: "77l~3  
    % -------------------------------------- 0 d2to5 (  
    z = zeros(length_r,length_n); m.U&O=]5  
    for j = 1:length_n =]L#v2@  
        s = 0:(n(j)-m(j))/2; ]Gl5Qf:+z  
        pows = n(j):-2:m(j); i;67< f}-  
        for k = length(s):-1:1 ^izf&W.j!  
            p = (1-2*mod(s(k),2))* ... oTeQY[%$  
                       prod(2:(n(j)-s(k)))/          ... >SS979  
                       prod(2:s(k))/                 ... Lf,C5 0  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... .Zx7+`i  
                       prod(2:((n(j)+m(j))/2-s(k))); b~+\\,q}  
            idx = (pows(k)==rpowers); hw&~OJeo  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 1k)`C<l  
        end r+n hm"9  
         af/;Dr@  
        if isnorm H"rIOoxf  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); z.:IUm{z  
        end AH ]L C6-  
    end =Y R+`[bfI  
    a{iG0T.{Yh  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  5DEK`#*  
    u._B7R&>  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 oXef<- :  
    ,u1Yn}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)