切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11445阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ,cxqr3 o  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ~>:JwTy  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 q~qz^E\T  
    function z = zernfun(n,m,r,theta,nflag) }%KQrlbHJl  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. caEIE0H~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GVT 6cR  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6Emn@Mn=  
    %   unit circle.  N is a vector of positive integers (including 0), and -n:2US<  
    %   M is a vector with the same number of elements as N.  Each element Yte*$cJ=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,I iKe_B  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +aL6$  
    %   and THETA is a vector of angles.  R and THETA must have the same 9ERdjS  
    %   length.  The output Z is a matrix with one column for every (N,M) 4H;g"nWqO  
    %   pair, and one row for every (R,THETA) pair. 2`i &6iz  
    % ~Dg:siw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @Hj]yb5  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6?"Gj}|r  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @G& oUhS  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jzi%[c<G  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized [?z;'O}y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ufR|V-BWx  
    % q4:zr   
    %   The Zernike functions are an orthogonal basis on the unit circle. mcwd2)  
    %   They are used in disciplines such as astronomy, optics, and li3X}  
    %   optometry to describe functions on a circular domain. aR6~r^jB  
    % ,>6mc=p  
    %   The following table lists the first 15 Zernike functions. 65B&>`H~  
    % dhLd2WSyH  
    %       n    m    Zernike function           Normalization covCa)kf  
    %       -------------------------------------------------- FUI/ A >  
    %       0    0    1                                 1 m<Gd 6V5  
    %       1    1    r * cos(theta)                    2 |QrVGm@2  
    %       1   -1    r * sin(theta)                    2 W&A^.% 2l  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) B{#Fm6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kb-XEJ}L  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) i{g~u<DH)Q  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &*Z)[Bl  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) p7},ymQ|YQ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b#709VHm  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) x+sSmW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) NrcV%-+u%  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *"|f!t  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;&b=>kPlZ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y}vV.q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =)#XZ[#F  
    %       -------------------------------------------------- kH06Cb  
    % Kj"n Id)  
    %   Example 1: %i&am=  
    % f`}u9!jVR  
    %       % Display the Zernike function Z(n=5,m=1) ?zo7.R-Vac  
    %       x = -1:0.01:1; |r*y63\T  
    %       [X,Y] = meshgrid(x,x); GWx?RIKF  
    %       [theta,r] = cart2pol(X,Y); 1\jj3Y'i'  
    %       idx = r<=1; 5=s|uuw/  
    %       z = nan(size(X)); MNfc1I_#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Mt4`~`6  
    %       figure #;2kN &  
    %       pcolor(x,x,z), shading interp 6_EfOD9  
    %       axis square, colorbar IFSIQ q  
    %       title('Zernike function Z_5^1(r,\theta)') gd)VL}k  
    % d.snD)X  
    %   Example 2: N,)rrBD  
    % y_IF{%i  
    %       % Display the first 10 Zernike functions i;2V   
    %       x = -1:0.01:1; 4YMUkwh  
    %       [X,Y] = meshgrid(x,x); Ud-c+, xX  
    %       [theta,r] = cart2pol(X,Y); Swv =gu  
    %       idx = r<=1; m,J9:S<5;  
    %       z = nan(size(X)); voN,u>U  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -z/>W+k  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Dk~ JH9#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; `yXHb  
    %       y = zernfun(n,m,r(idx),theta(idx)); K>+c2;t;  
    %       figure('Units','normalized') N8wA">u  
    %       for k = 1:10 o<S(ODOfi  
    %           z(idx) = y(:,k); Xp^71A?>  
    %           subplot(4,7,Nplot(k)) Mc|UD*Z  
    %           pcolor(x,x,z), shading interp :JxuaM8  
    %           set(gca,'XTick',[],'YTick',[]) yV@~B;eW0  
    %           axis square K?wo AuY  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) EU7mP MxJ  
    %       end U_0"1+jbq  
    % ~RM_c  
    %   See also ZERNPOL, ZERNFUN2. [MM`#!K%  
    G{s q|1  
    %   Paul Fricker 11/13/2006 } AHR7mu=  
    q-0( Wx9|  
    o 3 G*   
    % Check and prepare the inputs: ,|R\ Z,s  
    % ----------------------------- [{-;cpM \  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k5Df9 7\s  
        error('zernfun:NMvectors','N and M must be vectors.') W GMEZx  
    end sU?%"q  
    SR'u*u!  
    if length(n)~=length(m) JLxAk14lc  
        error('zernfun:NMlength','N and M must be the same length.')  cCy*?P@  
    end .ktyA+r8v  
    [tz}H&  
    n = n(:); [)p>pA2GZj  
    m = m(:); >]8H@. \  
    if any(mod(n-m,2)) 2G`tS=Un  
        error('zernfun:NMmultiplesof2', ... [RUYH5>Ik  
              'All N and M must differ by multiples of 2 (including 0).') *p%=u>?&  
    end 6SD9lgF*-  
    RC]-9gd3Q  
    if any(m>n) "f`{4p0v  
        error('zernfun:MlessthanN', ... TzY[- YlvF  
              'Each M must be less than or equal to its corresponding N.') )1 !*N)$  
    end 7%^ /Jm  
    eN ]9=Y~-K  
    if any( r>1 | r<0 ) k| ,F/:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') g~$cnU  
    end h>'Mh;+  
    LZ#SX5N  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ],ISWb  
        error('zernfun:RTHvector','R and THETA must be vectors.') nx'D&, VX  
    end .q (1  
    v|u[BmA)*k  
    r = r(:); Wi{ jC?2Q  
    theta = theta(:); io(Rb\#"  
    length_r = length(r); g flu!C6  
    if length_r~=length(theta) .qk_m-o  
        error('zernfun:RTHlength', ... ;V\l, u  
              'The number of R- and THETA-values must be equal.') ]eZrb%B .  
    end UB1/0o  
    Vu_QwWXO  
    % Check normalization: Qc]Ki3ls  
    % -------------------- BO)Q$*G~JD  
    if nargin==5 && ischar(nflag) m'.y,@^B  
        isnorm = strcmpi(nflag,'norm'); J PK( S~  
        if ~isnorm iqP MCOPZ  
            error('zernfun:normalization','Unrecognized normalization flag.') "_  i:  
        end ^8eu+E.{  
    else E#m|Sq  
        isnorm = false; #)N}F/Od^  
    end 8!(09gW'>  
    -9z!fCu3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =Hwlo!  
    % Compute the Zernike Polynomials 0'0GAh2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o\;cXu h  
    Sr?2~R0&  
    % Determine the required powers of r: Wc qUF"A  
    % ----------------------------------- KN-)m ta&  
    m_abs = abs(m); e${Cf  
    rpowers = []; Ryrvu1 k  
    for j = 1:length(n) %d#h<e|,.  
        rpowers = [rpowers m_abs(j):2:n(j)]; 05gdVa,  
    end (W4H?u@X0  
    rpowers = unique(rpowers); lo:{T _ay  
    Doj>Irj? 7  
    % Pre-compute the values of r raised to the required powers, 6<h ==I   
    % and compile them in a matrix: Xe7/  
    % ----------------------------- >Kjl>bq  
    if rpowers(1)==0 zLda&#+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ic(`Ev  
        rpowern = cat(2,rpowern{:}); ;Wu6f"+Y#  
        rpowern = [ones(length_r,1) rpowern]; 7dbGUbT  
    else (6#, $Ze   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7 I`8r2H  
        rpowern = cat(2,rpowern{:}); I@/+=  
    end 4V9S~^v|  
    \&Zp/;n  
    % Compute the values of the polynomials: TtKV5  
    % -------------------------------------- FLzC kzJ:6  
    y = zeros(length_r,length(n)); # %$U-ti  
    for j = 1:length(n) waI:w,  
        s = 0:(n(j)-m_abs(j))/2; |qFCzK9tD/  
        pows = n(j):-2:m_abs(j); nA?Ks!9T  
        for k = length(s):-1:1 nWz7$O  
            p = (1-2*mod(s(k),2))* ... &K.js  
                       prod(2:(n(j)-s(k)))/              ... vlS+UFH0  
                       prod(2:s(k))/                     ... s7> a  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A5[iFT>  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /_l$h_{DH  
            idx = (pows(k)==rpowers); L.tW]43K  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &;wNJ)Uc  
        end C_ 4(- OWq  
         ]w;!x7bU(  
        if isnorm P")1_!  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +l)[A{  
        end "vL,c]D  
    end _(%;O:i  
    % END: Compute the Zernike Polynomials yJn<S@)VT:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^ 9`O ^  
    wX Kg^%t\  
    % Compute the Zernike functions: :'0.  
    % ------------------------------ x@*!MC #  
    idx_pos = m>0; zz_(*0,Qcr  
    idx_neg = m<0; tEFbL~n  
    /fDXO;tN  
    z = y; JK y0 6I  
    if any(idx_pos) O ! iN  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); nc/F@HCB  
    end dlJc~|  
    if any(idx_neg) e WWtMnq  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F+ Q(^Nk  
    end Sxzt|{  
    ,|G~PC8  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) /n-!dXi  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. `*-rz<G  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated >1S39n5z.  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive }>$3B5}  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, O f.%rpgy  
    %   and THETA is a vector of angles.  R and THETA must have the same uG,*m'x']  
    %   length.  The output Z is a matrix with one column for every P-value, -?vII~a9y  
    %   and one row for every (R,THETA) pair. +Jw+rjnP  
    % ![Ll$L r  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 'Hv=\p4$1  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) N4rDe]JnPR  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ZZ2vdy38  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 GMOnp$@H^s  
    %   for all p. 4D=^24f`0  
    % !Y^3%B%  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 %Rm`+  
    %   Zernike functions (order N<=7).  In some disciplines it is uRCZGg&V?#  
    %   traditional to label the first 36 functions using a single mode `/RcE.5n\@  
    %   number P instead of separate numbers for the order N and azimuthal ,,+iPGa<  
    %   frequency M. :sA$LNj}  
    % PQvpJFpb~h  
    %   Example: ,.]1N:   
    % /ei(Q'pc[  
    %       % Display the first 16 Zernike functions |] cFsB#G  
    %       x = -1:0.01:1; G7SmlFn?  
    %       [X,Y] = meshgrid(x,x);  uq\[^  
    %       [theta,r] = cart2pol(X,Y); witx_r  
    %       idx = r<=1; RG e2N |  
    %       p = 0:15; B2T=O%  
    %       z = nan(size(X)); U^ ;H{S  
    %       y = zernfun2(p,r(idx),theta(idx)); ;Q\MH t*  
    %       figure('Units','normalized') V)jF]u~g  
    %       for k = 1:length(p) Ng|c13A=  
    %           z(idx) = y(:,k); J. $U_k  
    %           subplot(4,4,k) Xv2Q8-}w  
    %           pcolor(x,x,z), shading interp +<rWYF(ii/  
    %           set(gca,'XTick',[],'YTick',[]) \V%l.P4>e  
    %           axis square pKkBA r,  
    %           title(['Z_{' num2str(p(k)) '}']) H$rNT/C  
    %       end rcUJOI  
    % v ocWV/  
    %   See also ZERNPOL, ZERNFUN. HyC826~-rI  
    'mYUAVmSC#  
    %   Paul Fricker 11/13/2006 #u/5 nm  
    l|sC\;S  
    ICD; a  
    % Check and prepare the inputs: O#n=mJ  
    % ----------------------------- |"aop|  
    if min(size(p))~=1 XOT|:  
        error('zernfun2:Pvector','Input P must be vector.') ~%!"!Z4  
    end EYSBC",  
    f^|r*@o  
    if any(p)>35 CfEACH4_  
        error('zernfun2:P36', ... a/TeBx#yG  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... fb?YDM  
               '(P = 0 to 35).']) FO{?Z%& ;  
    end "U|u-ka8B  
    E-v^eMWX  
    % Get the order and frequency corresonding to the function number: `=P=i>,  
    % ---------------------------------------------------------------- -9; XNp  
    p = p(:); E~ +g6YlT  
    n = ceil((-3+sqrt(9+8*p))/2); 1~y\MD*-j  
    m = 2*p - n.*(n+2); e'T|5I0K  
    h@jk3J9^  
    % Pass the inputs to the function ZERNFUN: B\\M%!a>  
    % ---------------------------------------- &f-x+y  
    switch nargin q{uv?{I  
        case 3 FJ] ?45  
            z = zernfun(n,m,r,theta); ~S~4pK  
        case 4 tqXCj}mR  
            z = zernfun(n,m,r,theta,nflag); mWTV)z57  
        otherwise 8A: =#P^O\  
            error('zernfun2:nargin','Incorrect number of inputs.') z<OfSS_]R  
    end  ?)2;W  
    5%]O'h  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 51 "v`O+  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 7`HKa@  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 6+/BYN!&4  
    %   order N and frequency M, evaluated at R.  N is a vector of F7\nG}#s  
    %   positive integers (including 0), and M is a vector with the 9`cj9zz7  
    %   same number of elements as N.  Each element k of M must be a ZY*_x)h+#7  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) "0m\y+%8  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 8=-#LVo~c  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix qPn!.m$/  
    %   with one column for every (N,M) pair, and one row for every :czUOZ_  
    %   element in R. B pp(5  
    % / mwsF]Y  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ld7B{ ?]  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is [<.dOe7|  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to $|VD+[jSV  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 jH[{V[<# X  
    %   for all [n,m]. ;CDa*(e  
    % ;aDYw [  
    %   The radial Zernike polynomials are the radial portion of the =U}!+ 8f  
    %   Zernike functions, which are an orthogonal basis on the unit { {+:Vy  
    %   circle.  The series representation of the radial Zernike +r$VrNVs  
    %   polynomials is ~|&To >  
    % 3bagL)'iz  
    %          (n-m)/2 "@L|Z6U(  
    %            __ >S@><[C  
    %    m      \       s                                          n-2s )<`/Aaie  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r : 2A\X' @  
    %    n      s=0 O +Xu ?W]  
    % +kx#"L:  
    %   The following table shows the first 12 polynomials. xG|lmYt76  
    % H={5>;8G  
    %       n    m    Zernike polynomial    Normalization N3ccn  
    %       --------------------------------------------- {4r }jH  
    %       0    0    1                        sqrt(2) __i))2  
    %       1    1    r                           2 s[%@3bY!7  
    %       2    0    2*r^2 - 1                sqrt(6) G&@_,y|  
    %       2    2    r^2                      sqrt(6) scyv]5Hm!  
    %       3    1    3*r^3 - 2*r              sqrt(8) 1 Ay.^f  
    %       3    3    r^3                      sqrt(8) ]Uul~T  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) &"=<w  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 8r.3t\o)X  
    %       4    4    r^4                      sqrt(10) /U= ?D(>x  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 86 W.z6  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 6A-nhvDP  
    %       5    5    r^5                      sqrt(12) %D>cY!  
    %       --------------------------------------------- h%]  D[g  
    % 'h>CgR^NM1  
    %   Example: J )UCy;Y  
    % 7o9[cq w  
    %       % Display three example Zernike radial polynomials wj\kx\+  
    %       r = 0:0.01:1; \iAs  
    %       n = [3 2 5]; MZ_dI"J ,  
    %       m = [1 2 1]; 35Fs/Gf-n  
    %       z = zernpol(n,m,r); i.''\  
    %       figure ms#|Y l1/|  
    %       plot(r,z) n8o(>?Kw  
    %       grid on ,p6o "-  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') "T.Qb/97@  
    % ' [%?j?2r  
    %   See also ZERNFUN, ZERNFUN2. -|GX]jx(Y  
    >uwd3XW5  
    % A note on the algorithm. 43Ua@KNi  
    % ------------------------ >Dq&[9,8  
    % The radial Zernike polynomials are computed using the series v|:TYpku3  
    % representation shown in the Help section above. For many special ZX0!BS  
    % functions, direct evaluation using the series representation can ^TAf+C^Ry  
    % produce poor numerical results (floating point errors), because oEsqLh9a|  
    % the summation often involves computing small differences between K*N8Vpz(  
    % large successive terms in the series. (In such cases, the functions _aw49ag;  
    % are often evaluated using alternative methods such as recurrence % {A%SDh  
    % relations: see the Legendre functions, for example). For the Zernike d>Ky(wS  
    % polynomials, however, this problem does not arise, because the trlZ  
    % polynomials are evaluated over the finite domain r = (0,1), and 2Jqr"|sw  
    % because the coefficients for a given polynomial are generally all *u!l"0'\  
    % of similar magnitude. 4GexYDk'#  
    % PF:'dv  
    % ZERNPOL has been written using a vectorized implementation: multiple TTo5"r9I 8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] cfL:#IM  
    % values can be passed as inputs) for a vector of points R.  To achieve W@61rT} c  
    % this vectorization most efficiently, the algorithm in ZERNPOL -o YJ&r  
    % involves pre-determining all the powers p of R that are required to a t%qowt  
    % compute the outputs, and then compiling the {R^p} into a single mf\@vI  
    % matrix.  This avoids any redundant computation of the R^p, and 59k-,lyU,  
    % minimizes the sizes of certain intermediate variables. iM"L%6*I^  
    % =6[R,{|C  
    %   Paul Fricker 11/13/2006 ,m;G:3}48  
    z/|tsVK  
    V(OD^GU  
    % Check and prepare the inputs: _q`f5*Z[  
    % ----------------------------- #<yKG\X?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $#FA/+<&$  
        error('zernpol:NMvectors','N and M must be vectors.') @"0n8y  
    end Y |aaZ|+  
    VX e7b  
    if length(n)~=length(m) =8E GB\P  
        error('zernpol:NMlength','N and M must be the same length.') #w;%{C[D  
    end ?]0bR]}y  
    ^']*UD;  
    n = n(:); p0C|ECH  
    m = m(:); 9tIE+RD  
    length_n = length(n); n@9R|biO  
    YH{FTVOt{C  
    if any(mod(n-m,2)) J;Eg"8x]  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') TFtD>q X  
    end TTz_w-68  
    >0I\w$L  
    if any(m<0) )0{ZZ-beG  
        error('zernpol:Mpositive','All M must be positive.') @vvGhJ1m`  
    end `,)%<}  
    mxl"Y&l2<  
    if any(m>n) d? 4-"9Y  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 'Jl73#3  
    end o<!tN OH  
    U Kf0cU  
    if any( r>1 | r<0 ) cB}6{c$_sW  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ;a`I8Fj  
    end Mgg m~|9)  
    \(ju0qFqH  
    if ~any(size(r)==1) n4/Jx*  
        error('zernpol:Rvector','R must be a vector.') I|)U>bV  
    end ^q/_D%]C  
    A(wuRXnVWK  
    r = r(:); F^X:5g~K  
    length_r = length(r); )%~<EJ*&Z  
    -PskUl'  
    if nargin==4 -h{|u{t  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 8Xz \,}$O  
        if ~isnorm aaFt=7(K  
            error('zernpol:normalization','Unrecognized normalization flag.') ?Z"<&tsZ  
        end )"f*Mp  
    else /xkF9   
        isnorm = false; &#<>fT_  
    end B^"1V{M  
    Mtq^6`JJ'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /U@Y2$TOF  
    % Compute the Zernike Polynomials 3/4r\%1b+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Io7o*::6iw  
    #~6au6LMC  
    % Determine the required powers of r: | gP%8nh'C  
    % ----------------------------------- X&cm)o%5Fe  
    rpowers = []; '"J``=  
    for j = 1:length(n) y!jq!faqt  
        rpowers = [rpowers m(j):2:n(j)]; t? [8k&Z  
    end v42Z&PO   
    rpowers = unique(rpowers); "$PX [:  
    +cC$4t0$^A  
    % Pre-compute the values of r raised to the required powers, 9M1UkS$`@  
    % and compile them in a matrix: ,2lH*=m;  
    % ----------------------------- obSLy Ed  
    if rpowers(1)==0 nx@ h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T#-U\C~o  
        rpowern = cat(2,rpowern{:}); /%i:(Ny  
        rpowern = [ones(length_r,1) rpowern]; yPVK>em5  
    else 9Vtn62+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); mI-9=6T_  
        rpowern = cat(2,rpowern{:}); & _mp!&5XV  
    end kr>F=|R]  
    >m8~Fs0  
    % Compute the values of the polynomials: =x} p>#o,J  
    % -------------------------------------- 4pZ=CB+j  
    z = zeros(length_r,length_n); e6uVUzP4  
    for j = 1:length_n Z,5B(Xj  
        s = 0:(n(j)-m(j))/2; vlh$NK+F  
        pows = n(j):-2:m(j); peGh-  
        for k = length(s):-1:1 tqicyNL  
            p = (1-2*mod(s(k),2))* ...  R]"3^k*  
                       prod(2:(n(j)-s(k)))/          ... 's 'H&sa  
                       prod(2:s(k))/                 ... 0p1~!X=I  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... E  *{_=pX  
                       prod(2:((n(j)+m(j))/2-s(k))); AMc`qh  
            idx = (pows(k)==rpowers); 9 hdz<eFL  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {Q AV  
        end +l(lpp>,  
         <F-W fR  
        if isnorm y rmi:=N(  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); SB =%(]S  
        end `nEe-w^9)I  
    end ^4[|&E:  
    %)!b254  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n50W HlMtt  
    #p2`9o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 lRR A2Kql  
    EO%"[k  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)