非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 O3En+m~3n)
function z = zernfun(n,m,r,theta,nflag) w%uM=YmuT
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Sh;Z\nj
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N YGsg0I't
% and angular frequency M, evaluated at positions (R,THETA) on the D&|HS!
% unit circle. N is a vector of positive integers (including 0), and 3(
o~|%
% M is a vector with the same number of elements as N. Each element %Y-KjSs+l
% k of M must be a positive integer, with possible values M(k) = -N(k) ~@%#eg
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, =j^wa')
% and THETA is a vector of angles. R and THETA must have the same :P?zy| aBi
% length. The output Z is a matrix with one column for every (N,M) 3hPp1wZd
% pair, and one row for every (R,THETA) pair. )F3>
% W;^6=(&xn
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [t+qYe8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), * amZ
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^2-+MWW.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, byN4?3F
% and theta=0 to theta=2*pi) is unity. For the non-normalized >7(7
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (yv)zg9
% jm&PGZ#n=R
% The Zernike functions are an orthogonal basis on the unit circle. 3!Ca b/T
% They are used in disciplines such as astronomy, optics, and AVi,+n
% optometry to describe functions on a circular domain. FKU)# Eo
% UYkuz
% The following table lists the first 15 Zernike functions. !~!\=etm
% 2bt).gGm
% n m Zernike function Normalization jVInTR0f[
% -------------------------------------------------- Gi Max
% 0 0 1 1 oA`G\Xh_E
% 1 1 r * cos(theta) 2 .,&6 x.
% 1 -1 r * sin(theta) 2 3bZ:*6W.6
% 2 -2 r^2 * cos(2*theta) sqrt(6) M2piJ'T4u
% 2 0 (2*r^2 - 1) sqrt(3) G`R_kg9$
% 2 2 r^2 * sin(2*theta) sqrt(6) ZL+46fj
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3fq'<5 ^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) M <ccfU!
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 4R28S]Gb
% 3 3 r^3 * sin(3*theta) sqrt(8) QB6.
o6
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4mwLlYZ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C sx
EN4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) wd<jh,Y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C3-I5q(V]
% 4 4 r^4 * sin(4*theta) sqrt(10) \$Aw[
5&t
% -------------------------------------------------- |v@ zyOq&b
% naiy] oY"
% Example 1: uE^5o\To
% Q'c[yu
% % Display the Zernike function Z(n=5,m=1) IIUTo
% x = -1:0.01:1; l^;=0UR_
% [X,Y] = meshgrid(x,x); U{PFeR,Uk
% [theta,r] = cart2pol(X,Y); ,Lr}P
% idx = r<=1; R~N'5#.*M
% z = nan(size(X)); u=&$Z
% z(idx) = zernfun(5,1,r(idx),theta(idx)); )g[7XB/w
% figure q|S,^0cU
% pcolor(x,x,z), shading interp 4{#0ci{
% axis square, colorbar cW?~]E'<
% title('Zernike function Z_5^1(r,\theta)') t[%ELHV
% (tzfyZ M
% Example 2: of0hJR
%
41^
$
% % Display the first 10 Zernike functions &D#B"XI
% x = -1:0.01:1; XE?,)8
% [X,Y] = meshgrid(x,x); $##LSTA
% [theta,r] = cart2pol(X,Y); "J*LR
% idx = r<=1; 2/RW( U
% z = nan(size(X)); ?Y'r=Q{w
% n = [0 1 1 2 2 2 3 3 3 3]; Rq,Fp/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; e\WG-zi/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; V2BsvR`
% y = zernfun(n,m,r(idx),theta(idx)); R*>EbOuI
% figure('Units','normalized') R~d{Yv
% for k = 1:10 0JX/@LNg0
% z(idx) = y(:,k); V<0J j
% subplot(4,7,Nplot(k)) U'Fc\M5l/l
% pcolor(x,x,z), shading interp z[*Y%o8-r
% set(gca,'XTick',[],'YTick',[]) mcLxX'c6<h
% axis square MVZ9x%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HRW}Yl
% end >|_B=<!99W
% 6M X4h
% See also ZERNPOL, ZERNFUN2. =(Wl'iG
y3!#*NU
% Paul Fricker 11/13/2006 [*v-i%U}
;7bY>zc(w
n_1,-(t
% Check and prepare the inputs: /V
f L(
% ----------------------------- @j+X>TD
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .tt= \R
error('zernfun:NMvectors','N and M must be vectors.') &T[BS;
end 15wwu} X
kf2e-)uUs
if length(n)~=length(m) K])|
V
error('zernfun:NMlength','N and M must be the same length.') _Rey~]iJJ8
end O*-sSf
H'wh0K(
n = n(:); Zm#qW2a]P
m = m(:); Mp)|5<%
if any(mod(n-m,2)) nQM7@"R
error('zernfun:NMmultiplesof2', ... n8 e4`-cY
'All N and M must differ by multiples of 2 (including 0).') ~R\U1XXyUY
end g@IYD
o>oZh1/\T,
if any(m>n) @ )m9#F
error('zernfun:MlessthanN', ... OvtiFN^s'
'Each M must be less than or equal to its corresponding N.') O>sE~~g]?
end V9<CeTl'
+d/^0^(D\5
if any( r>1 | r<0 ) kJ:zMVN
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q2K)Nl >_
end 'w!8`LPu
6 jo+i[h
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wVY;)1?
error('zernfun:RTHvector','R and THETA must be vectors.') OCYC
Dn
end "RM vWuNt
W.VyH|?
r = r(:); j aq/]I7
theta = theta(:);
=[G)
length_r = length(r); Ehf3L |9
if length_r~=length(theta) N6*v!M+
error('zernfun:RTHlength', ... +Y|HO[
'The number of R- and THETA-values must be equal.') MtIhpTX
end z]F4Z'(e.
vV+>JM6<K
% Check normalization: &yQM8J~
% -------------------- {_5PN^J
if nargin==5 && ischar(nflag) L}5IX)#gH
isnorm = strcmpi(nflag,'norm'); Lmw{ `R
if ~isnorm HRZ3}8Qj
error('zernfun:normalization','Unrecognized normalization flag.') d( +E0
end um$ K^
else NK0hT,_
isnorm = false; ."\&;:ZNv
end yyVv@
lg!{?xM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uSi/|
% Compute the Zernike Polynomials /]*#+;;%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kVu-,OU
Nd.Tda!Kg
% Determine the required powers of r: 7Vxe]s
% ----------------------------------- FI|@=l;_
m_abs = abs(m); k1
rpowers = []; 58 Rmq/6s
for j = 1:length(n) Uv"GG:
K_
rpowers = [rpowers m_abs(j):2:n(j)]; >J[Wd<~t
end !rMl" Y[
rpowers = unique(rpowers); ooPH [p
8FY/57.W
% Pre-compute the values of r raised to the required powers, Fl^}tC
% and compile them in a matrix: hf1f
% ----------------------------- "x$RTuWA9
if rpowers(1)==0 Kzd`|+?'`M
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -j 6U{l
rpowern = cat(2,rpowern{:}); >@o}l:*
rpowern = [ones(length_r,1) rpowern]; \PB ~6
else ii:h
E=
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #815h,nP+
rpowern = cat(2,rpowern{:}); Z 7M%}V%
end Oy!j `
hA81(JWG
% Compute the values of the polynomials: L('G1J}
% -------------------------------------- = ?hx+-'
y = zeros(length_r,length(n)); (]mh}=:KDg
for j = 1:length(n) $*{$90Q
s = 0:(n(j)-m_abs(j))/2; ]d@@E_s]
pows = n(j):-2:m_abs(j); R.EA5X|_
for k = length(s):-1:1 {A2SG#}
p = (1-2*mod(s(k),2))* ... =e)[?{H
prod(2:(n(j)-s(k)))/ ... `[;b#.
prod(2:s(k))/ ... *L9s7RR
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... i cf[.
prod(2:((n(j)+m_abs(j))/2-s(k))); ReCmv/AE
idx = (pows(k)==rpowers); Hop$w
y(:,j) = y(:,j) + p*rpowern(:,idx); EMe6Z!k
end $z+iB;x
AVR9G^ce_
if isnorm nJ|8#U7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2b]'KiX
end $e|G#mMd-
end 7FVu[Qu
% END: Compute the Zernike Polynomials qYW{$K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gq6C6
C'hI{4@P
% Compute the Zernike functions: )CzWq}:
% ------------------------------ q($lL~Ls
idx_pos = m>0; VX<ZB +R
idx_neg = m<0; ~7!J/LHg
+SmcZ^\OZ
z = y; zJ#e3o .
if any(idx_pos) ZpHT2-baVe
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ! G%LYHx
end <4y1[/S
if any(idx_neg) Jr18faEZw
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KLXv?4!
end hltH{4
|
%af}#
FQ
% EOF zernfun