非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 t\Vng0
function z = zernfun(n,m,r,theta,nflag) ;Nn(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. w/#7G\U
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "'v+*H 3
% and angular frequency M, evaluated at positions (R,THETA) on the : s
*
% unit circle. N is a vector of positive integers (including 0), and Z<X=00,wg
% M is a vector with the same number of elements as N. Each element =8]`-(
% k of M must be a positive integer, with possible values M(k) = -N(k) >$m<R&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, vMz|'-rm$
% and THETA is a vector of angles. R and THETA must have the same A%D'Z85
-
% length. The output Z is a matrix with one column for every (N,M) B?j t?
% pair, and one row for every (R,THETA) pair. ?}?"m:=
% 2y`h'z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike S^%3Vf}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), D6VdgU|
% with delta(m,0) the Kronecker delta, is chosen so that the integral 0F)v9EK(W4
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $mJv\;t
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ze0qRLuH!
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m,HE4`g
% -Lq+FTezE
% The Zernike functions are an orthogonal basis on the unit circle. -64lf-<
% They are used in disciplines such as astronomy, optics, and { "]!zL
% optometry to describe functions on a circular domain. c6:uM1V{
% N@|<3R!N*e
% The following table lists the first 15 Zernike functions. tX^6R
% B#g~c<4<
% n m Zernike function Normalization :ts3_-cr
% -------------------------------------------------- 6_`Bo%
% 0 0 1 1 FJ0I&FyWs
% 1 1 r * cos(theta) 2 FAM{p=t]HT
% 1 -1 r * sin(theta) 2 cW*v))@2
% 2 -2 r^2 * cos(2*theta) sqrt(6) /b=C
% 2 0 (2*r^2 - 1) sqrt(3) a"@f< wU~
% 2 2 r^2 * sin(2*theta) sqrt(6) aU6l>G`w
% 3 -3 r^3 * cos(3*theta) sqrt(8) 7T/BzXr,B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $#rkvG_w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) q(n"r0)=
% 3 3 r^3 * sin(3*theta) sqrt(8) KS*,'hvY
% 4 -4 r^4 * cos(4*theta) sqrt(10) Z
)c\B
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uw3vYYFX
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1m5l((d
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'HWl_M
% 4 4 r^4 * sin(4*theta) sqrt(10) 2Hd\>{*
% -------------------------------------------------- Hhtl~2t!0
% 6xDk3
% Example 1: ,&BNN]k
% )%^l+w+&
% % Display the Zernike function Z(n=5,m=1) uGZGI;9f4
% x = -1:0.01:1; j
sPavY
% [X,Y] = meshgrid(x,x); 6Amt75RY
% [theta,r] = cart2pol(X,Y); CR$wzjP j
% idx = r<=1; "6d0j)YO
% z = nan(size(X)); !H\;X`W|~D
% z(idx) = zernfun(5,1,r(idx),theta(idx)); /phMrL=
% figure i(%2t(wf+
% pcolor(x,x,z), shading interp ,P9F*;Dj
% axis square, colorbar %np(z&@wi
% title('Zernike function Z_5^1(r,\theta)') o-bH3Jkb]&
% O7 ;=g!j
% Example 2: 3zB'AG3b
% O84:ejro
% % Display the first 10 Zernike functions o9}\vN0F
% x = -1:0.01:1; gnH{_
% [X,Y] = meshgrid(x,x); 1'/
[x(/]d
% [theta,r] = cart2pol(X,Y); iZG-ca
% idx = r<=1; JtO}i{A
% z = nan(size(X)); )B]s.w
% n = [0 1 1 2 2 2 3 3 3 3]; ]EHsRd
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v]M:HzP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; g7! LX[
% y = zernfun(n,m,r(idx),theta(idx)); w1I07 (
% figure('Units','normalized') 0U7Gl9~
% for k = 1:10 ;~0q23{+;U
% z(idx) = y(:,k); XncX2E4E
% subplot(4,7,Nplot(k)) AO8 #l
YP?
% pcolor(x,x,z), shading interp B& @ pZYl
% set(gca,'XTick',[],'YTick',[]) :6o%x0l
% axis square ;t*SG*Vi
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A8tJ&O
rwY
% end +(=-95qZ
% <%YW/k"o
% See also ZERNPOL, ZERNFUN2. `qJJ{<1&U
H{n:R *
% Paul Fricker 11/13/2006 2OUx@Vj
%.d.h;^T
{_b2!!p
% Check and prepare the inputs: )jXKPLj
% ----------------------------- curYD~7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [\3ZMH
*
error('zernfun:NMvectors','N and M must be vectors.') q;#AlquY @
end -Kg.w*\H7/
!:xycLdfUp
if length(n)~=length(m) @2T8H
error('zernfun:NMlength','N and M must be the same length.') -r,v3n
end J.R])
&CB
sg=G<50i
n = n(:); "*HM8\
m = m(:); $e+4Kt
,
if any(mod(n-m,2)) Vz0(D
error('zernfun:NMmultiplesof2', ... p0W<K
'All N and M must differ by multiples of 2 (including 0).') ^.:&ZsqV
end D SX%SE)
cO]w*Hti
if any(m>n) lD0a<L3
error('zernfun:MlessthanN', ... AM=> P7
'Each M must be less than or equal to its corresponding N.') Qw5-/p=t
end =COQv= GT
C7F\Y1Wj
if any( r>1 | r<0 ) mn03KF=n]
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,Z
@I"&H
end =~J VU
l 7uTk5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Tv1oy%dK
error('zernfun:RTHvector','R and THETA must be vectors.') o@N[O^Q
V
end j_d}?jh
$(gL#"T
r = r(:); 8Tg1 >q<
theta = theta(:); / fUdb=!Z
length_r = length(r); g^H,EaPl
if length_r~=length(theta) v {r %/*
error('zernfun:RTHlength', ... hiibPc?I
'The number of R- and THETA-values must be equal.') }j2;B 8j
end !U:&8Le
>yKz8SV#
% Check normalization: g4k3~,=D3
% -------------------- C9?mxa*z
if nargin==5 && ischar(nflag) I'BHNZO5tf
isnorm = strcmpi(nflag,'norm'); %\HE1d5;
if ~isnorm
ilQ}{p6I
error('zernfun:normalization','Unrecognized normalization flag.') L4B/
g)K
end .`~?w+ ~
else cY5;~lO
isnorm = false; Rd7U5MBEF
end ;Q,t65+Am
C)R hld
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S'^ q
% Compute the Zernike Polynomials kJl^,q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?\8
,\iXZ5"R
% Determine the required powers of r: &k,DAx`rN;
% ----------------------------------- pTGGJ,
m_abs = abs(m); p?#T^{Quz~
rpowers = []; C_>XtcU
for j = 1:length(n) ;^bfLSWm{
rpowers = [rpowers m_abs(j):2:n(j)]; M.,DXEZT
end Wcc4/:`Hu
rpowers = unique(rpowers);
:QP1!
@Ol(:{<
% Pre-compute the values of r raised to the required powers, ,v mn{gz
% and compile them in a matrix: WPsfl8@D
% ----------------------------- ~5N
oR
if rpowers(1)==0 YFS6YA
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xi{r-D8Z
rpowern = cat(2,rpowern{:}); ;8XRs?xyd
rpowern = [ones(length_r,1) rpowern];
+kd1q
else `1P|<VbZ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q<u?BA/
rpowern = cat(2,rpowern{:}); Lhp&RGy
end 9s_^?q
zMA;1Na
% Compute the values of the polynomials: 2?
yo
% -------------------------------------- e(/F:ZEh
y = zeros(length_r,length(n)); p%meuWV%5
for j = 1:length(n) 66F?exr
s = 0:(n(j)-m_abs(j))/2; XxMZU(5
pows = n(j):-2:m_abs(j); Lfi6b%/z
for k = length(s):-1:1 BVeMV4
p = (1-2*mod(s(k),2))* ... UA*VqK)Y
prod(2:(n(j)-s(k)))/ ... ws9IO ?|&G
prod(2:s(k))/ ... SWx: -<
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d2Q*1Q@u
prod(2:((n(j)+m_abs(j))/2-s(k))); q 0F6MAXj
idx = (pows(k)==rpowers); P~{8L.w!>W
y(:,j) = y(:,j) + p*rpowern(:,idx); 2`riI*fQ
end DqQp47kp
0D 2I)E72o
if isnorm cQhr{W,Un
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :p}8#rb
end >nSt<e
end "g5{NjimY
% END: Compute the Zernike Polynomials f%.Ngf9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xrvM}Il
g|]HS4y
% Compute the Zernike functions: f0SrPc v
% ------------------------------ k o[w#j
idx_pos = m>0; :Q"|%#P
idx_neg = m<0; Gu~*ZKyJ
l~;>KjZg
z = y; pAatv;Ex
if any(idx_pos) tjFX(;^[
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e1-tpD:J
end
iiQn/%
if any(idx_neg) :1UMA@HP
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ecs 0iW-,
end )pHlWi|h
z5$Q"Y.D
% EOF zernfun