非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;<+efYmyc
function z = zernfun(n,m,r,theta,nflag) U^PXpNQ'
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. D \ rns+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `D+zX
% and angular frequency M, evaluated at positions (R,THETA) on the I*rUe#$
% unit circle. N is a vector of positive integers (including 0), and !#0)`4O
% M is a vector with the same number of elements as N. Each element :;%Jm
% k of M must be a positive integer, with possible values M(k) = -N(k) Wb}-H-O
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, aT0~C.vT
% and THETA is a vector of angles. R and THETA must have the same @ m`C%7<
% length. The output Z is a matrix with one column for every (N,M) L.;b(bFe
% pair, and one row for every (R,THETA) pair. Myc-lCE
% h#0n2o #
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d.&_j`\F
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), MzvhE0ab
% with delta(m,0) the Kronecker delta, is chosen so that the integral ?mH=3
:~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, UQ0!tFx
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3bRxV
@0.
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o#m31*o
% 1Yb &E7j
% The Zernike functions are an orthogonal basis on the unit circle. Ct=bZW"j/
% They are used in disciplines such as astronomy, optics, and 4%0s p
% optometry to describe functions on a circular domain. MIJuJ]U}
% 5_9`v@-4_
% The following table lists the first 15 Zernike functions. m
H:Un{,
% %FjUtB
% n m Zernike function Normalization @<W` w
% -------------------------------------------------- e:G~P
u`
% 0 0 1 1 uda++^y:
% 1 1 r * cos(theta) 2 pm
O9mWq
% 1 -1 r * sin(theta) 2 k^7!iOK2
% 2 -2 r^2 * cos(2*theta) sqrt(6) }IygU 6{G
% 2 0 (2*r^2 - 1) sqrt(3) I_1?J*
b4k
% 2 2 r^2 * sin(2*theta) sqrt(6) 7-S?RU]g
% 3 -3 r^3 * cos(3*theta) sqrt(8) P>_O :xD
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ? 2}%Rb39
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ?+}Su'pv}
% 3 3 r^3 * sin(3*theta) sqrt(8) 75\ZD-{T:
% 4 -4 r^4 * cos(4*theta) sqrt(10) CPZ{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5*z>ez2YQ7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <EC"E #p
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >Tf}aI+
% 4 4 r^4 * sin(4*theta) sqrt(10) qGX@mo({
% -------------------------------------------------- a?gF;AYk
% &g?GF\Y
% Example 1: uzp\V
39
% hWly8B[I
% % Display the Zernike function Z(n=5,m=1) SS/vw%
% x = -1:0.01:1; e=LrgRy+
% [X,Y] = meshgrid(x,x); {t;o^pUF
% [theta,r] = cart2pol(X,Y); Oti;wf G7o
% idx = r<=1; P#TPI*qw
% z = nan(size(X)); ~ZafTCa;
% z(idx) = zernfun(5,1,r(idx),theta(idx)); jI,[(Z>
% figure ,!>
~izB
% pcolor(x,x,z), shading interp \]>821r
% axis square, colorbar 56C8)?
% title('Zernike function Z_5^1(r,\theta)') B~:yM1f@u4
% d- ZUuw
% Example 2: ]I*RuDv}
% A^aY-V
% % Display the first 10 Zernike functions V_3oAu54s{
% x = -1:0.01:1; FH}?QebSR
% [X,Y] = meshgrid(x,x); K qJE?caw
% [theta,r] = cart2pol(X,Y); (H:c80/V
% idx = r<=1; ")8l'^Mq2
% z = nan(size(X)); [60y.qE
% n = [0 1 1 2 2 2 3 3 3 3]; :uYZ1O
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |ts0j/A]Pi
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ltOS()[X
% y = zernfun(n,m,r(idx),theta(idx)); 7"|Qmyb
% figure('Units','normalized') 6zM:p/
% for k = 1:10 EUSM4djL
% z(idx) = y(:,k); j+3\I>
% subplot(4,7,Nplot(k)) F,vkk{Z>
% pcolor(x,x,z), shading interp !$98U~L
% set(gca,'XTick',[],'YTick',[]) sd4eG
% axis square \(LD<-a
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SB%D%Zx6'%
% end +aOevkY]
% 6EC',=)6R
% See also ZERNPOL, ZERNFUN2. 0$Tb5+H5
+1#oVl!
% Paul Fricker 11/13/2006 7s^b@&Le
ksq4t
bF9.k
% Check and prepare the inputs: 5 _y w
% ----------------------------- qBF|' .$^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6!i`\>I]
error('zernfun:NMvectors','N and M must be vectors.') ((Av3{05H&
end e
oE)Mq
,~7~ S"
if length(n)~=length(m) r]6+&K
error('zernfun:NMlength','N and M must be the same length.') ~AWn 1vFc
end #i~P])%gNP
H%vgPQ8
n = n(:); N!.o`4 "z
m = m(:); ]ovtH.y
if any(mod(n-m,2)) Gt{%O>P8t
error('zernfun:NMmultiplesof2', ... A*BN
'All N and M must differ by multiples of 2 (including 0).') wYe;xk`>
end Yv=L'0K&
7x.j:{2
if any(m>n) %V;*E]
error('zernfun:MlessthanN', ... NEIF1(:
'Each M must be less than or equal to its corresponding N.') H6Zo|n
end "~ =O`5V
WS6Qp`c)e
if any( r>1 | r<0 ) XRV~yBIS
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0++RxYFCL
end w
nBvJb]4l
h>>~B i
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ADF<5#I
error('zernfun:RTHvector','R and THETA must be vectors.') 6 _V1s1F
end pj7al;
7
2i&-`&4
r = r(:); {|$kI`h,3-
theta = theta(:); s Y4wdG
length_r = length(r); s5v}S'uO{
if length_r~=length(theta) LRw-I.z
error('zernfun:RTHlength', ... qYoU\y7
'The number of R- and THETA-values must be equal.') pFs/ipZX^*
end A;X3z-[[
d lAb`ne
% Check normalization: ^fN/
% -------------------- % dtn*NU
if nargin==5 && ischar(nflag) 'h;qI&
isnorm = strcmpi(nflag,'norm'); [g`4$_9S
if ~isnorm Gv]94$'J9
error('zernfun:normalization','Unrecognized normalization flag.') )Pubur %,
end `
>>]$ZJ
else S@[NKY
isnorm = false; B*)mHSs2
end Rt,po
N`d%4)|{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uzb|yV'B
% Compute the Zernike Polynomials >B``+Z^2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,Y|
;V
+BM[@?"hrh
% Determine the required powers of r: 1fV)tvU$
% ----------------------------------- Jj0:p"
m_abs = abs(m); s(Wys^[g
rpowers = []; "PS ) "t
for j = 1:length(n) }s"].Xm^2
rpowers = [rpowers m_abs(j):2:n(j)]; &*8.%qe;
end =oq= ``%
rpowers = unique(rpowers); PB*G#2W
J!|R1
% Pre-compute the values of r raised to the required powers, N/#x
% and compile them in a matrix: @+
T33X)h%
% ----------------------------- uwi.Sg11
if rpowers(1)==0 ;P}007;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~-G_c=E?
rpowern = cat(2,rpowern{:}); kZ6:=l
rpowern = [ones(length_r,1) rpowern]; vV=rBO0a?
else cM<08-:v
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); OrL4G
`O
rpowern = cat(2,rpowern{:}); #N|JC d_
end yK"HHdYTV
UHk)!P>
% Compute the values of the polynomials: *q\>DE=7
% -------------------------------------- s`G}MU
y = zeros(length_r,length(n)); ?MfwRWY
for j = 1:length(n) > Xij+tt{
s = 0:(n(j)-m_abs(j))/2; uT=5zu
pows = n(j):-2:m_abs(j); n``9H91
for k = length(s):-1:1 I!(BwYd
p = (1-2*mod(s(k),2))* ... {md5G$*%
prod(2:(n(j)-s(k)))/ ... F.@|-wq&
prod(2:s(k))/ ... g-u4E^,*|
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Gf+X<a
prod(2:((n(j)+m_abs(j))/2-s(k))); CRiqY_gBf
idx = (pows(k)==rpowers); 8 .K; 2
y(:,j) = y(:,j) + p*rpowern(:,idx); PQ;9iv
end zmu+un"\j
8N |K
if isnorm kaoiSL<[6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )lz)h*%#
end p)z#%BY56
end R?#=^ $7U
% END: Compute the Zernike Polynomials 1`s^r+11:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q<^MC/]
]Nssn\X7
% Compute the Zernike functions: C7AD1rl
% ------------------------------ k}qCkm27
idx_pos = m>0; f<oU"WM
idx_neg = m<0; Brd9"M|d
z TPNQ0=|
z = y; 'R-g:X\{
if any(idx_pos) \"L0d1DK)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6kAGOjO
end WjSu4
if any(idx_neg) r=7!S8'
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); e^x%d[sU
end W1LR ,:$
d0Ubt
% EOF zernfun