切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10744阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 t,H,*2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \q,w)BE  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 wUSWB{y  
    function z = zernfun(n,m,r,theta,nflag) 7>4t{aRf_8  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. WAQv4&xGM  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7eq;dNB@gq  
    %   and angular frequency M, evaluated at positions (R,THETA) on the A+dY~@*a  
    %   unit circle.  N is a vector of positive integers (including 0), and \myc n/e  
    %   M is a vector with the same number of elements as N.  Each element C= Zuy^  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) & v`kyc  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, : Z.mM5  
    %   and THETA is a vector of angles.  R and THETA must have the same y"]> Rr  
    %   length.  The output Z is a matrix with one column for every (N,M) n^A=ar.  
    %   pair, and one row for every (R,THETA) pair. Pgo5&SQb  
    % kBT cN D|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :_^YEm+A  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jG/kT5S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `W/6xm(X5;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, '|+_~ZO*d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized vXf#gX!Y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6 tzn% ?  
    % {!="PnB  
    %   The Zernike functions are an orthogonal basis on the unit circle. dxd}:L~z  
    %   They are used in disciplines such as astronomy, optics, and %:/;R_  
    %   optometry to describe functions on a circular domain. FJD*A`a  
    % fY `A  
    %   The following table lists the first 15 Zernike functions. #2dmki"~(  
    % E>[~"~x"pV  
    %       n    m    Zernike function           Normalization oNdO@i%.q4  
    %       -------------------------------------------------- 'R$~U?i8  
    %       0    0    1                                 1 /)G9w]|T  
    %       1    1    r * cos(theta)                    2 J d`NS3;*p  
    %       1   -1    r * sin(theta)                    2 c9& 8kq5  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >s>5k O  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }%}eyLm(  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) HsXFglQ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ="4jk=on  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) z4<h)hh"k6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) U_J|{*4S.!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) c=K M[s.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :r6 bw  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^=@%@mR/[C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wg[*]_,a  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K>q,?x b  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) (2{1m#o  
    %       -------------------------------------------------- ?LW1D+  
    % 63~i6  
    %   Example 1: FkS{Z s  
    % )Y:CV,`  
    %       % Display the Zernike function Z(n=5,m=1) q80?C.,`  
    %       x = -1:0.01:1; \0:l9;^4  
    %       [X,Y] = meshgrid(x,x); g"!B |  
    %       [theta,r] = cart2pol(X,Y); yf$7<gwX  
    %       idx = r<=1; MdPwuXI  
    %       z = nan(size(X)); bySw#h_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Sz . _XY^  
    %       figure 3sL#_@+yz  
    %       pcolor(x,x,z), shading interp vu1:8j  
    %       axis square, colorbar CR _A{(  
    %       title('Zernike function Z_5^1(r,\theta)') `,|7X]%b  
    % @Wv*`  
    %   Example 2: n. T [a  
    % Io:xG6yG  
    %       % Display the first 10 Zernike functions D]0#A|n F  
    %       x = -1:0.01:1; [`:\(( 8  
    %       [X,Y] = meshgrid(x,x); ;TR.UUT  
    %       [theta,r] = cart2pol(X,Y); .z9JoQ  
    %       idx = r<=1;  g6~uf4;  
    %       z = nan(size(X)); y@(U 6ZOyx  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Lkb?,j5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; `yf#(YP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *AJW8tIP  
    %       y = zernfun(n,m,r(idx),theta(idx)); %8v?dB;>x`  
    %       figure('Units','normalized') +XQS -=  
    %       for k = 1:10 zi5;>Iv0}  
    %           z(idx) = y(:,k); .IgCC_C9  
    %           subplot(4,7,Nplot(k)) L-Hl.UV  
    %           pcolor(x,x,z), shading interp Z)ObFJMG5  
    %           set(gca,'XTick',[],'YTick',[]) wvgX5P>  
    %           axis square )UxF lp;\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ul:jn]S*  
    %       end ;Z8K3p  
    % !]"T`^5,Y  
    %   See also ZERNPOL, ZERNFUN2. uYs+x X_  
    g.veHh|;_  
    %   Paul Fricker 11/13/2006 Mbi)mybM  
    JU~l  
    Xf.SJ8G  
    % Check and prepare the inputs: $V@IRBm  
    % ----------------------------- PB`94W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VbZZ=q=Kd  
        error('zernfun:NMvectors','N and M must be vectors.') gXF.e.uU  
    end H_jMl$f)j  
    1c\$ziB  
    if length(n)~=length(m) khyV uWN  
        error('zernfun:NMlength','N and M must be the same length.') -ERDWY  
    end tW 9vo-{+  
    jirxzj  
    n = n(:); |{Oe&j3|  
    m = m(:); OpiN,>;  
    if any(mod(n-m,2)) mH;\z;lyK  
        error('zernfun:NMmultiplesof2', ... +H+OYQ>^  
              'All N and M must differ by multiples of 2 (including 0).') i5rAb<q`  
    end V a<L[8  
    &OsJnkY<<  
    if any(m>n) o8Tt|Lxb$8  
        error('zernfun:MlessthanN', ... RU@`+6 j+  
              'Each M must be less than or equal to its corresponding N.') oo<,hOv   
    end SkS vu}  
    yQh":"$k  
    if any( r>1 | r<0 ) k|&@xEbS  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0*+i~g,Kl@  
    end B1\}'g8%f  
    %\CsP!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) O,hT< s "  
        error('zernfun:RTHvector','R and THETA must be vectors.') hg |DpP  
    end N5o jXX!l%  
    f BukrPsV  
    r = r(:); Z}WMpp^r  
    theta = theta(:); >NK*$r8  
    length_r = length(r); =%p0r z|b  
    if length_r~=length(theta) \y{C>! WX4  
        error('zernfun:RTHlength', ... s<aJ pi{n4  
              'The number of R- and THETA-values must be equal.') )]?sCNb  
    end r 5:DIA!  
    IL&Mf9m  
    % Check normalization: |&3[YZY  
    % -------------------- XZ}]H_, n  
    if nargin==5 && ischar(nflag) K&\xbT  
        isnorm = strcmpi(nflag,'norm'); ZI}7#K<9X  
        if ~isnorm 3u _[=a  
            error('zernfun:normalization','Unrecognized normalization flag.') AYfW}V"  
        end ,d$V-~2,  
    else >]s|'HTxF  
        isnorm = false; 3D(/k%;)  
    end )Z,O*u*  
    7gNJ}pLDx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B&VruOP0  
    % Compute the Zernike Polynomials (~#{{Ja  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3* 1cCM42  
    2ntL7F<ow  
    % Determine the required powers of r: UBLr|e>dQE  
    % ----------------------------------- ^cn%]X#.  
    m_abs = abs(m); %`?IY<  
    rpowers = []; <Y9%oJn%  
    for j = 1:length(n) C%vR!Az  
        rpowers = [rpowers m_abs(j):2:n(j)]; /0A9d-Qd<  
    end scT,yNV  
    rpowers = unique(rpowers); xk7 MMRb  
    & =)HPzC  
    % Pre-compute the values of r raised to the required powers, \oA>%+]5  
    % and compile them in a matrix: 49W@?: b  
    % ----------------------------- \!x~FVA  
    if rpowers(1)==0 .nl!KzO6g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); oc7&iL  
        rpowern = cat(2,rpowern{:}); "wy|gnQJ  
        rpowern = [ones(length_r,1) rpowern]; B<zoa=  
    else @y ] ek/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8iA[w-Pv  
        rpowern = cat(2,rpowern{:}); G)t_;iNL|  
    end r$T\@oTL  
    <Nwqt[.  
    % Compute the values of the polynomials: 0n<>X&X  
    % -------------------------------------- >pdWR1ox  
    y = zeros(length_r,length(n)); y(^t&tgjS  
    for j = 1:length(n) @G,pM: t  
        s = 0:(n(j)-m_abs(j))/2; K2|2Ks_CS  
        pows = n(j):-2:m_abs(j); _Wg?H:\  
        for k = length(s):-1:1 :{BD/6  
            p = (1-2*mod(s(k),2))* ... A#k(0e!O  
                       prod(2:(n(j)-s(k)))/              ... = p{55dR  
                       prod(2:s(k))/                     ... ]ie38tX$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wz`\R HL  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); : 8h\x  
            idx = (pows(k)==rpowers); M~+}ss  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1K{u>T  
        end ( f]@lNmx  
         E.LD1Pm0  
        if isnorm KTtB!4by  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Bm"-X:='  
        end ?TWve)U  
    end -+y lJo[D  
    % END: Compute the Zernike Polynomials fJ<I|ZZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (w[#h9j  
    J,(@1R]KF:  
    % Compute the Zernike functions: 03p D<  
    % ------------------------------ N> 7sG(!'"  
    idx_pos = m>0; qtrN=c3x  
    idx_neg = m<0; %B}<5iO  
    NVnId p  
    z = y; {#`O'F>  
    if any(idx_pos) *Ri\7CqU"6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c~``)N  
    end I-Q@v`  
    if any(idx_neg) }_mVXjF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .q90+9Ek=  
    end b!p]\B!  
    {{6D4M|s  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) #Z. QMWq  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -=cxUDB  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated !n7'TM '  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive y'5`Uo?\",  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, TTa$wiW7'  
    %   and THETA is a vector of angles.  R and THETA must have the same -1{f(/  
    %   length.  The output Z is a matrix with one column for every P-value, 9r. h^  
    %   and one row for every (R,THETA) pair. @ D,]v:  
    % WKAG)4  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike [I?[N.v  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) de/oK c  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5jq @ nq6  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 A` ~R\j  
    %   for all p. 2$OV`qy@?  
    % v,'k 2H  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 w/z o  
    %   Zernike functions (order N<=7).  In some disciplines it is 2YDD`:R  
    %   traditional to label the first 36 functions using a single mode pwH*&YU  
    %   number P instead of separate numbers for the order N and azimuthal =Vm3f^  
    %   frequency M. t`1M}}.  
    % a&Qr7tT Y"  
    %   Example: /3#h]5Y"T  
    % C$0rl74Wi  
    %       % Display the first 16 Zernike functions /a*8z,x  
    %       x = -1:0.01:1; &S=Qu?H  
    %       [X,Y] = meshgrid(x,x); &MZ{B/;;H  
    %       [theta,r] = cart2pol(X,Y); 6gabnW3  
    %       idx = r<=1; p/yz`m T'w  
    %       p = 0:15; %iB,hGatE  
    %       z = nan(size(X)); kQ]4Bo  
    %       y = zernfun2(p,r(idx),theta(idx)); QQ`tSYgex  
    %       figure('Units','normalized') L +mE&  
    %       for k = 1:length(p) Yy~xNj5OS  
    %           z(idx) = y(:,k); -9~$Ll+2h  
    %           subplot(4,4,k) xw}rFY $  
    %           pcolor(x,x,z), shading interp -^)<FY\  
    %           set(gca,'XTick',[],'YTick',[]) 2TG2<wqvE  
    %           axis square K ton$%Li  
    %           title(['Z_{' num2str(p(k)) '}']) PR/>E60H  
    %       end $Zr \$z2  
    % <BIQc,)2}  
    %   See also ZERNPOL, ZERNFUN. kbL7Xjk  
    b<!' WpY-  
    %   Paul Fricker 11/13/2006 \2!.  
    Wks zN h  
    cTz@ga;!mI  
    % Check and prepare the inputs: 9M^5<8:  
    % ----------------------------- oxBTm|j7  
    if min(size(p))~=1 YZ]}l%e  
        error('zernfun2:Pvector','Input P must be vector.') 8[.&ca/[  
    end S}fQis  
    S\]9mHJI  
    if any(p)>35 );T&pm:C>  
        error('zernfun2:P36', ... # > I_  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... u$CN$ynS  
               '(P = 0 to 35).']) M@l|n  
    end W\($LD"X  
    UD8e,/  
    % Get the order and frequency corresonding to the function number: *o5[P\'6  
    % ---------------------------------------------------------------- qRgFVX+vc  
    p = p(:); '4 It>50b  
    n = ceil((-3+sqrt(9+8*p))/2);  _X  
    m = 2*p - n.*(n+2); "Bv V89  
    fN@ZJ~F%j  
    % Pass the inputs to the function ZERNFUN: \[qxOZ{  
    % ---------------------------------------- ~+d{:WY  
    switch nargin Tay$::V  
        case 3 H0 Z o.Np  
            z = zernfun(n,m,r,theta); !4!qHJISa  
        case 4 b)x0;8<  
            z = zernfun(n,m,r,theta,nflag); *|j4>W\J  
        otherwise H5#]MOAP  
            error('zernfun2:nargin','Incorrect number of inputs.') m,"-/)  
    end N p*T[J  
    H)h^|A/vO  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ?&zi{N  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ',!jYh}Uxk  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of gvc/Z <Y  
    %   order N and frequency M, evaluated at R.  N is a vector of d>mT+{3  
    %   positive integers (including 0), and M is a vector with the oH&@F@r:+  
    %   same number of elements as N.  Each element k of M must be a  @)0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 94et ]u%7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is \2=I//YF  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  DAiS|x  
    %   with one column for every (N,M) pair, and one row for every sV-P R]  
    %   element in R. ?% 8%1d  
    % M9o/6  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ]cv|dc=  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is F-b]>3r  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to nS h~ mP  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 9_d# F'#F  
    %   for all [n,m]. f8SO:ihXL  
    % UCjx   
    %   The radial Zernike polynomials are the radial portion of the /;w(sU  
    %   Zernike functions, which are an orthogonal basis on the unit '(C+qwdRv  
    %   circle.  The series representation of the radial Zernike F!g1.49""  
    %   polynomials is Hc@_@G  
    % AG}j'   
    %          (n-m)/2 }aVzr}!  
    %            __ -BI!ZsC'  
    %    m      \       s                                          n-2s R&6@*Nn  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +6l#hO7h  
    %    n      s=0 6M`gy|"(~  
    % rm ;U' &{  
    %   The following table shows the first 12 polynomials. D!OY<?  
    % o?m1  
    %       n    m    Zernike polynomial    Normalization C>x)jDb?  
    %       --------------------------------------------- ^`i z%^  
    %       0    0    1                        sqrt(2) d/F^ez  
    %       1    1    r                           2 A?lR[`'u\  
    %       2    0    2*r^2 - 1                sqrt(6) _aOs8#(X  
    %       2    2    r^2                      sqrt(6) *P9"1K +  
    %       3    1    3*r^3 - 2*r              sqrt(8) $0K@= 7ms  
    %       3    3    r^3                      sqrt(8) )=()  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) yQ[;.<%v  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0SWqC@AR%  
    %       4    4    r^4                      sqrt(10) RQ[/s lg  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _EP]|DTfr  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) `JDZR:bMaT  
    %       5    5    r^5                      sqrt(12) <XG]aYBR  
    %       --------------------------------------------- oy#(]K3`O  
    % T?f{.a)  
    %   Example: n.a2%,|v  
    % QwpX3 k6  
    %       % Display three example Zernike radial polynomials OomC%9/=,  
    %       r = 0:0.01:1; Y$"m*0  
    %       n = [3 2 5]; 1U.X[}e  
    %       m = [1 2 1]; =bja\r{  
    %       z = zernpol(n,m,r); M^8zqAA  
    %       figure l3ogMRq@  
    %       plot(r,z) 41d+z>a]  
    %       grid on <yX  u!  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') E9I08AODS  
    % w{dRf!b69  
    %   See also ZERNFUN, ZERNFUN2. Y DHP-0?  
    K-\wx5#l/  
    % A note on the algorithm. cf$ hIB)Oi  
    % ------------------------ VVAcbAGJ  
    % The radial Zernike polynomials are computed using the series aXqig&:  
    % representation shown in the Help section above. For many special d9U)O6=  
    % functions, direct evaluation using the series representation can &PL=nI\)  
    % produce poor numerical results (floating point errors), because Mb[4_Dc  
    % the summation often involves computing small differences between *_YR*e0^nN  
    % large successive terms in the series. (In such cases, the functions F.aG7  
    % are often evaluated using alternative methods such as recurrence 1aIGC9xQ`  
    % relations: see the Legendre functions, for example). For the Zernike t7u*j-YE  
    % polynomials, however, this problem does not arise, because the $ -<(geI  
    % polynomials are evaluated over the finite domain r = (0,1), and <_t]?XHB[  
    % because the coefficients for a given polynomial are generally all "&f|<g5  
    % of similar magnitude. l#T %N@X  
    % |5dNJF8;Q  
    % ZERNPOL has been written using a vectorized implementation: multiple b/m.VL  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] QgYt(/S  
    % values can be passed as inputs) for a vector of points R.  To achieve 0{ B<A^Bf  
    % this vectorization most efficiently, the algorithm in ZERNPOL :vEfJSA 1<  
    % involves pre-determining all the powers p of R that are required to M[z1B!rT  
    % compute the outputs, and then compiling the {R^p} into a single !e<2o2~.  
    % matrix.  This avoids any redundant computation of the R^p, and 2*O# m  
    % minimizes the sizes of certain intermediate variables. z&9MkbH1  
    % MK/8<i<.  
    %   Paul Fricker 11/13/2006 $'5rS$]a/  
    Zqe$S +u  
    u&S0  
    % Check and prepare the inputs: `i(b%$|^&Z  
    % ----------------------------- # }}6JM  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xSM1b5=Pu  
        error('zernpol:NMvectors','N and M must be vectors.') fa/o4S<  
    end x"C7NW[$  
    B[7,Hy,R  
    if length(n)~=length(m) #prYZcHv:_  
        error('zernpol:NMlength','N and M must be the same length.') nIlTzrf6  
    end oxeu%wj_  
    ,:J[|9  
    n = n(:); ]R}(CaT1  
    m = m(:); 2SlL`hN>Z  
    length_n = length(n); J!~kqNI  
    1QD49)  
    if any(mod(n-m,2)) =X5w=(&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') J%r:"Jm[y1  
    end AD`5:G  
    Uvc$&j^k  
    if any(m<0) g| 3bM  
        error('zernpol:Mpositive','All M must be positive.')  *BM#fe  
    end `<v$+mG  
    g)$KN,gGuO  
    if any(m>n) .s4v*bng  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') gXs9qY%=  
    end Z+6WG  
    )nj fqg  
    if any( r>1 | r<0 ) oidK_mU9q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') @uV]7d"z(  
    end ?<N} Xh  
    (*6 .-Xn  
    if ~any(size(r)==1) z>,tP  
        error('zernpol:Rvector','R must be a vector.') }s'=w]m  
    end C<T6l'S{?  
    EyU6^  
    r = r(:); b|Ge#o  
    length_r = length(r); ZDp^k{AN9a  
    .nVY" C&  
    if nargin==4 $]};EI#  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); {4/*2IRN9h  
        if ~isnorm d&|5Rk ~  
            error('zernpol:normalization','Unrecognized normalization flag.') F[jqJzCz  
        end 0iR?r+|  
    else <{;'0> ToM  
        isnorm = false; r 9M3rj]  
    end DxN\ H"  
    *$R9'Yo}F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :XAyMK7   
    % Compute the Zernike Polynomials @f|~$$k=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ( [a$Z2m  
    q&?hwX Z7  
    % Determine the required powers of r: T@P~A)>yo  
    % ----------------------------------- 90iveb21}  
    rpowers = []; I!9>"s12  
    for j = 1:length(n) qj:[NPwaM  
        rpowers = [rpowers m(j):2:n(j)]; [hot,\+f  
    end >}NnzZ  
    rpowers = unique(rpowers); >+;} "J  
    ,/V~T<FI  
    % Pre-compute the values of r raised to the required powers, Z{l`X#':  
    % and compile them in a matrix: D'ZUbAh!  
    % ----------------------------- }Ptv[{q]GE  
    if rpowers(1)==0 F|!=]A<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y?K?*`Pkc1  
        rpowern = cat(2,rpowern{:}); 8tjWVo  
        rpowern = [ones(length_r,1) rpowern]; _D{FQRU<YD  
    else H l(W'>*oL  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *>[ q*SF  
        rpowern = cat(2,rpowern{:}); h\Y~sm?!`  
    end lsj9^z7  
    NW;_4g4qE  
    % Compute the values of the polynomials: Y^d#8^cP  
    % -------------------------------------- u-jc8W`Zd  
    z = zeros(length_r,length_n); N:pP@o  
    for j = 1:length_n jg%mWiKwK7  
        s = 0:(n(j)-m(j))/2; ABp8PD  
        pows = n(j):-2:m(j); ^e_uprZWm  
        for k = length(s):-1:1 :iE`=( o  
            p = (1-2*mod(s(k),2))* ... 1lA? 5:  
                       prod(2:(n(j)-s(k)))/          ... ]xb2W~  
                       prod(2:s(k))/                 ... $ Fc}K+  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... `<T4 En  
                       prod(2:((n(j)+m(j))/2-s(k))); ~^'t70 :D  
            idx = (pows(k)==rpowers); ? ][/hL@[  
            z(:,j) = z(:,j) + p*rpowern(:,idx); XJl 3\*  
        end !J{[XT  
         v&9:Wd*Iz'  
        if isnorm "9Q_lVI|Q  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); s{X+0_@Q  
        end OaoHN& "  
    end ~@<o-|#  
    4~oRcO8!Y  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  z{U^j:A  
    (/_w23rr  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 !WD^To  
    #b;TjnC5{$  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)