非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sCY
function z = zernfun(n,m,r,theta,nflag) gI2'[OU
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. oVZzvK(zR
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wE=I3E %
% and angular frequency M, evaluated at positions (R,THETA) on the e~(e&4pb
% unit circle. N is a vector of positive integers (including 0), and F5YoEWS
% M is a vector with the same number of elements as N. Each element u&S0
% k of M must be a positive integer, with possible values M(k) = -N(k) `i(b%$|^&Z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, vxk0@k_
% and THETA is a vector of angles. R and THETA must have the same 2bw), W
% length. The output Z is a matrix with one column for every (N,M) O%>*=h`P
% pair, and one row for every (R,THETA) pair. @|t]9
% ^swj!da
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f'5
6IT
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^{=UKf{
% with delta(m,0) the Kronecker delta, is chosen so that the integral `W+-0F@Y?@
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :NWIUN
% and theta=0 to theta=2*pi) is unity. For the non-normalized Wp:vz']V
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d`flYNg4
% ;8&/JS N M
% The Zernike functions are an orthogonal basis on the unit circle. ?0KIM*
.
% They are used in disciplines such as astronomy, optics, and d
oEuKT
% optometry to describe functions on a circular domain. KGc.YUoE
% 3w |5%`
% The following table lists the first 15 Zernike functions. `^^t#sT
% Cc{{9Ud
% n m Zernike function Normalization wN%lc3[/z2
% -------------------------------------------------- -R]~kGa6m<
% 0 0 1 1 H? z~V-8
% 1 1 r * cos(theta) 2 FCwE/ 2,
% 1 -1 r * sin(theta) 2 k=9+"4:
% 2 -2 r^2 * cos(2*theta) sqrt(6) L;M@]
% 2 0 (2*r^2 - 1) sqrt(3) -?1R l:rM
% 2 2 r^2 * sin(2*theta) sqrt(6) UNiK6h_%
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]v>[r?X#V
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) pi#a!Quf\
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z+6WG
% 3 3 r^3 * sin(3*theta) sqrt(8) )nj fqg
% 4 -4 r^4 * cos(4*theta) sqrt(10) tl~ZuS/
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YCb|eS^u
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) w[3a^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Btzes.
% 4 4 r^4 * sin(4*theta) sqrt(10) ?<N} Xh
% -------------------------------------------------- (*6 .-Xn
% z>,tP
% Example 1: }s'=w]m
% "PN4{"`V
% % Display the Zernike function Z(n=5,m=1) Qt>kythi
% x = -1:0.01:1; J[Mj8ee#
% [X,Y] = meshgrid(x,x); oO3^9?Z
% [theta,r] = cart2pol(X,Y); )h0>e9z>Y
% idx = r<=1; 4t%Lo2v!X%
% z = nan(size(X)); I9xu3izAmR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4 Cd5-I
% figure pYAKA1F
% pcolor(x,x,z), shading interp $?z}yx$
% axis square, colorbar DxN\ H"
% title('Zernike function Z_5^1(r,\theta)') *$R9'Yo}F
% hPG@iX|V
% Example 2: o(?9vU
%
T;{}bc&I
% % Display the first 10 Zernike functions ?,v&
o>*
% x = -1:0.01:1; Ho*B<#&(A|
% [X,Y] = meshgrid(x,x); + 0*\q
% [theta,r] = cart2pol(X,Y); kxEq_FX
% idx = r<=1; [9 :9<#?o^
% z = nan(size(X)); "O$WfpKX
% n = [0 1 1 2 2 2 3 3 3 3]; "'Gq4<&y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Ce}m$k
% Nplot = [4 10 12 16 18 20 22 24 26 28]; a[j]fv*6
% y = zernfun(n,m,r(idx),theta(idx)); Fz<1xyc(
% figure('Units','normalized') wxJ"{(;
% for k = 1:10 $>_`.*I/
% z(idx) = y(:,k); Y?K?*`Pkc1
% subplot(4,7,Nplot(k)) 8tjWVo
% pcolor(x,x,z), shading interp _D{FQRU<YD
% set(gca,'XTick',[],'YTick',[]) Hl(W'>*oL
% axis square 0<4'pO.6Hq
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0(u}z
% end !UPB4I
% k^;/@:
% See also ZERNPOL, ZERNFUN2. u^]Gc p
b W/T}FND
% Paul Fricker 11/13/2006 _PC<Td>nm
l'2vo=IQ
{hf_Xro&
% Check and prepare the inputs: Ny`SE\B+/
% ----------------------------- |cuKC \
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jJvd!,=)
error('zernfun:NMvectors','N and M must be vectors.') @QnKaZ8jW
end 1\/vS$bi(
Si23w'T
if length(n)~=length(m) ]Y->EME:W
error('zernfun:NMlength','N and M must be the same length.') "B"ql-K
end v5?)J91
Q
(gA:aQ
n = n(:); ^jpQfD e6
m = m(:); ,d.5K*?aI
if any(mod(n-m,2)) Ji=`XsV
error('zernfun:NMmultiplesof2', ... 4/3w
*
'All N and M must differ by multiples of 2 (including 0).') ~@ <o-|#
end S_??G:i
pV:44
if any(m>n) wM;=^br
error('zernfun:MlessthanN', ... MZX@Gi<S[
'Each M must be less than or equal to its corresponding N.') fU%Mz\t
end 5=9Eb
5BLBcw\;
if any( r>1 | r<0 ) gth_Sz5!#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') "5N$u(: b
end l`X?C~JhJ
;Tq4!w'rH
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0/z$W.!
error('zernfun:RTHvector','R and THETA must be vectors.') vt(}8C+
end %g>k0~TRf#
bng/v
r = r(:); u~'_Uqp
theta = theta(:); tv`c"Pb
length_r = length(r); &K=)YpT
if length_r~=length(theta) CSWA/#&8>
error('zernfun:RTHlength', ... wF6a*b@v
'The number of R- and THETA-values must be equal.') .p'McCV=
end S&cN+r
] ONmWo77o
% Check normalization: YF;2jl Nm
% -------------------- Gcxz$.(
if nargin==5 && ischar(nflag) -Fop<q\b
isnorm = strcmpi(nflag,'norm'); W5Jb5
if ~isnorm 9&B#@cw
error('zernfun:normalization','Unrecognized normalization flag.') hS%oQ)zvE
end .K#'
Fec
else "18cD5-#
isnorm = false; 6*|EB|%n
end mv$gL
/6 x[C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {=3'H?$
% Compute the Zernike Polynomials L0%W;m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %(\et%[]
'XYjo&w
% Determine the required powers of r: pd.pY*B<[
% ----------------------------------- l
u{6
m_abs = abs(m); ?4W6TSW-'
rpowers = []; 2G:KaQ)
for j = 1:length(n) c,G[R k
rpowers = [rpowers m_abs(j):2:n(j)]; Z)u_2e
end i~4$V
rpowers = unique(rpowers); 8KdcU[w]
/kO%aN
% Pre-compute the values of r raised to the required powers, {G|= pM\'
% and compile them in a matrix: Ycxv=Et
% ----------------------------- \y7\RV>>3b
if rpowers(1)==0 J~ z00p`E
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uXG$YDKqC
rpowern = cat(2,rpowern{:}); HMKogGTTo
rpowern = [ones(length_r,1) rpowern]; S[&yO-=p6
else b'`C<Rk
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w,!N{hv(
rpowern = cat(2,rpowern{:}); q((%sWp
end ehMpo BL
%wJ?+D/
% Compute the values of the polynomials: A- #c1KU!
% -------------------------------------- )fke;Y0
y = zeros(length_r,length(n)); O;(n[k
for j = 1:length(n) R!x
/,6,_
s = 0:(n(j)-m_abs(j))/2; a5`9mR)Y$'
pows = n(j):-2:m_abs(j); ZRa~miKyM
for k = length(s):-1:1 Cv`dK=n>
p = (1-2*mod(s(k),2))* ... AC?a:{./
prod(2:(n(j)-s(k)))/ ...
}[;r-5}
prod(2:s(k))/ ... M=5hp&=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .&KC2#4
prod(2:((n(j)+m_abs(j))/2-s(k))); 7U&<{U<
idx = (pows(k)==rpowers); NV2$ >D
y(:,j) = y(:,j) + p*rpowern(:,idx); R:44Gv7
end VY!A]S"
`4qt mbj
if isnorm PiNf;b^9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =u5( zaBe
end ng[LSB*57Y
end
o4B%TW
% END: Compute the Zernike Polynomials M(Yt9}Z%Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U)('}u=b
FaG&U
% Compute the Zernike functions: AnBD~h h
% ------------------------------ ?Vi U%t8J5
idx_pos = m>0; z{U^j:A
idx_neg = m<0; {>X2\.Rl
,e*WJh8k[
z = y; msZ3%L
if any(idx_pos) i6:O9Km
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (+bt{Ma
end p$XvVzW#<
if any(idx_neg) RJD(c#r$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,Q+.kAh !G
end 9u_D@A"aC`
{"*gX&;~
% EOF zernfun