切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11498阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 xc3Q7u!|  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ?! Gt. fb  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 lhU#/}Z  
    function z = zernfun(n,m,r,theta,nflag) `x{gF8GV  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %iv'/B8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G$b4`wt  
    %   and angular frequency M, evaluated at positions (R,THETA) on the {[+gM?  
    %   unit circle.  N is a vector of positive integers (including 0), and \ZB;K~BV&  
    %   M is a vector with the same number of elements as N.  Each element OoNAW<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) +FR"Gt$g  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, hAdEq$  
    %   and THETA is a vector of angles.  R and THETA must have the same IcZ'KV  
    %   length.  The output Z is a matrix with one column for every (N,M) ~S9nLb:O{  
    %   pair, and one row for every (R,THETA) pair. >KJ]\`2>)c  
    % [nrP; _  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )d~Mag+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PhQD}|S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;DTNw=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {ig@Iy~DT  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _%]H}N Q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x$E l7=.  
    % qCMcN<:>  
    %   The Zernike functions are an orthogonal basis on the unit circle. -h}J%UV  
    %   They are used in disciplines such as astronomy, optics, and JcP'+@X"  
    %   optometry to describe functions on a circular domain. Velmq'n  
    % V4>P8cE  
    %   The following table lists the first 15 Zernike functions. *HRRv.iQ  
    % Cnolka"  
    %       n    m    Zernike function           Normalization HFazqQ[  
    %       -------------------------------------------------- j.K yPWO  
    %       0    0    1                                 1 Q.Acmht#  
    %       1    1    r * cos(theta)                    2  O>3'ylBQ  
    %       1   -1    r * sin(theta)                    2 >,v~,<3 i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,rKN/{M!  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  >Pu*MD;  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) C{D2mSS  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) LLE~V~j  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )I#kG{z|P;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) d dPJx<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) g 0L 4  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) <j>@Fg#q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dj|S  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) khR3[ju{^  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d7&PbITN  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) i0P+,U  
    %       -------------------------------------------------- |lv4X }H  
    % &Fi8@0Fh  
    %   Example 1: VYwaU^  
    % E*%{Nn  
    %       % Display the Zernike function Z(n=5,m=1) QqDF_  
    %       x = -1:0.01:1; [Xrq+O,  
    %       [X,Y] = meshgrid(x,x); N  P"z  
    %       [theta,r] = cart2pol(X,Y); buoz La  
    %       idx = r<=1; -'nx7wnj2  
    %       z = nan(size(X)); _YY)-H  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Bw$-*FYE  
    %       figure Rm RV8 WJ6  
    %       pcolor(x,x,z), shading interp ^~0 r+w61  
    %       axis square, colorbar Q -+jG7vT  
    %       title('Zernike function Z_5^1(r,\theta)') ?z6C8T~+  
    % kxP6#8*:  
    %   Example 2: WM#!X!Vo  
    % |!|`Je3 K  
    %       % Display the first 10 Zernike functions 8c~H![2u  
    %       x = -1:0.01:1; o^ 4+eE  
    %       [X,Y] = meshgrid(x,x); M]W4S4&Y=  
    %       [theta,r] = cart2pol(X,Y); 29GiNy+ob  
    %       idx = r<=1; M_e! s}F  
    %       z = nan(size(X)); 1vThb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4 qnQF]4  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8177x7UG2[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; {r"s.|n  
    %       y = zernfun(n,m,r(idx),theta(idx));  }N[sydL  
    %       figure('Units','normalized') ql8:s>1T  
    %       for k = 1:10 C{Fo^-3  
    %           z(idx) = y(:,k); 4e:hKv,+4  
    %           subplot(4,7,Nplot(k)) }"T:z{n  
    %           pcolor(x,x,z), shading interp 5mV'k"Om#"  
    %           set(gca,'XTick',[],'YTick',[]) 6QV/8IX  
    %           axis square q"Xls(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) acH.L _B:  
    %       end [7B&<zY/?  
    % ka5>9E  
    %   See also ZERNPOL, ZERNFUN2. 5ZSw0A(w  
    /v8qT'$^  
    %   Paul Fricker 11/13/2006 7}*5Mir p  
    0QPipuP  
    _V;J7Vz  
    % Check and prepare the inputs: s"'1|^od  
    % ----------------------------- eI[z%j[Y*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b"gYNGgX  
        error('zernfun:NMvectors','N and M must be vectors.') LC}]6  
    end jJf|Ok:G{  
    T4UY%E!0  
    if length(n)~=length(m) h$k(|/+  
        error('zernfun:NMlength','N and M must be the same length.') E>ev/6ox  
    end 464Z0C  
    c" l~=1Dr  
    n = n(:); &O'yhAP] j  
    m = m(:); bNC1[GG[  
    if any(mod(n-m,2)) c(~M<nL0  
        error('zernfun:NMmultiplesof2', ... n;MoMGnPh,  
              'All N and M must differ by multiples of 2 (including 0).') iD\joh-C  
    end cx$Oh`-Car  
    9uq| VU5  
    if any(m>n) | zAey\  
        error('zernfun:MlessthanN', ... )TWf/L cp  
              'Each M must be less than or equal to its corresponding N.') )j$Bo{  
    end \/5 8#  
    0 cQf_o  
    if any( r>1 | r<0 ) |k^X!C0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A[b'MNsv  
    end A(C3kISM  
    vEb~QX0~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zR/ATm]9  
        error('zernfun:RTHvector','R and THETA must be vectors.') L4dbrPE*0  
    end 2Zl65  
    Mn=_lhW K  
    r = r(:); OZ-F+#d  
    theta = theta(:); Ji7A9Hk  
    length_r = length(r); :O{:;X)  
    if length_r~=length(theta) E{FNsa  
        error('zernfun:RTHlength', ... Ao,lEjNI  
              'The number of R- and THETA-values must be equal.') 6L4B$'&KQZ  
    end *BF1 Sso  
    { u;ntDr  
    % Check normalization: _x:K%1_[  
    % -------------------- dx~F [  
    if nargin==5 && ischar(nflag) Wl*\kQ}U  
        isnorm = strcmpi(nflag,'norm'); 6=zme6D  
        if ~isnorm R; IB o  
            error('zernfun:normalization','Unrecognized normalization flag.') lKm?Xu'yH  
        end aWit^dp  
    else ZJx:?*0a  
        isnorm = false; s*VZLKO  
    end `W-:@?PmQx  
    ld3,)ZY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tvg7mU]l  
    % Compute the Zernike Polynomials `T mIrc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v"s}7trWV  
    pIh@!C  
    % Determine the required powers of r: H kg0;)  
    % ----------------------------------- 1e&`m~5K+  
    m_abs = abs(m); +x WT)h/  
    rpowers = []; 'SuYNA)  
    for j = 1:length(n) pE=wP/#  
        rpowers = [rpowers m_abs(j):2:n(j)]; o`& idn|,  
    end C[[z3tn  
    rpowers = unique(rpowers); ?.4u'Dkn=  
    ov|s5yH8e  
    % Pre-compute the values of r raised to the required powers, [@/G?sAQm\  
    % and compile them in a matrix: JiRW|+`pe  
    % ----------------------------- Hiw{1E:rW  
    if rpowers(1)==0 G;tIhq[$Vb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); DB?[h<^m  
        rpowern = cat(2,rpowern{:}); n9)/(=)>*  
        rpowern = [ones(length_r,1) rpowern]; zJ#q*2A(Z  
    else `T}e3l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R^K<u#>K  
        rpowern = cat(2,rpowern{:}); <8H`y(S  
    end $ccI(J`zux  
    C=.  
    % Compute the values of the polynomials: $ biCm$a  
    % -------------------------------------- u[cbRn,W  
    y = zeros(length_r,length(n)); ptUnV3h  
    for j = 1:length(n) }|x]8zL8G  
        s = 0:(n(j)-m_abs(j))/2; AN^;~m^  
        pows = n(j):-2:m_abs(j); 9g>ay-W[(  
        for k = length(s):-1:1 'a4xi0**I  
            p = (1-2*mod(s(k),2))* ... br0gB3 r  
                       prod(2:(n(j)-s(k)))/              ... ~(Fy GB}  
                       prod(2:s(k))/                     ... 0C3CqGP  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }J:~}?^%n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W~gFY#w  
            idx = (pows(k)==rpowers); ]T+{]t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b`1P%OjC  
        end c1Dhx,]ad  
         +]B^*99  
        if isnorm UP#]n 69y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6n<:ph,h;  
        end eoow]me  
    end "&7v.-Y k(  
    % END: Compute the Zernike Polynomials /\C9FGS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ][D<J0  
    IUI >/87u  
    % Compute the Zernike functions: /SZsXaC '  
    % ------------------------------ tV%M2 DxS  
    idx_pos = m>0; W4T>@ b.  
    idx_neg = m<0; WtdWD_\%Y\  
    Z~$fTW6g  
    z = y; w!tQU9+ *  
    if any(idx_pos) +\Rp N  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U JY`P4(  
    end yl)}1DPP  
    if any(idx_neg) skr^m%W  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RaG-9gujI  
    end 0;o`7f  
    hO\_RhsRy?  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) &QLCij5:  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. %0. o(U  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated wvsTP32]  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive sl>4O]N  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, JYs*1<  
    %   and THETA is a vector of angles.  R and THETA must have the same `dMl5b  
    %   length.  The output Z is a matrix with one column for every P-value, $0NWX  
    %   and one row for every (R,THETA) pair. lB.P   
    % ?}lgwKBHl;  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike wE;??'O'l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) (\>_{"*=  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) "\]kK @,  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 K4snp u hC  
    %   for all p. E.t9F3  
    % ngn%"xYX  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 v`bX#\It  
    %   Zernike functions (order N<=7).  In some disciplines it is pNCk~OM  
    %   traditional to label the first 36 functions using a single mode uXyNj2(d.  
    %   number P instead of separate numbers for the order N and azimuthal x]J{EA{+  
    %   frequency M. kfM}j  
    % :/K 'P`JaL  
    %   Example: !nC Z,  
    % &}wKC:LSP  
    %       % Display the first 16 Zernike functions i=]IUjx<  
    %       x = -1:0.01:1; wnN@aO6g*  
    %       [X,Y] = meshgrid(x,x); )d_)CuUBe  
    %       [theta,r] = cart2pol(X,Y); ')}$v+9h  
    %       idx = r<=1; coiTVDwA  
    %       p = 0:15; YNH>^cD1  
    %       z = nan(size(X)); 45W:b/n\  
    %       y = zernfun2(p,r(idx),theta(idx)); v93+<@Z  
    %       figure('Units','normalized') GL9R 5  
    %       for k = 1:length(p) $BwWhR  
    %           z(idx) = y(:,k); ;xXHSxa:=W  
    %           subplot(4,4,k) g=:%j5?.e  
    %           pcolor(x,x,z), shading interp Fu(e4E  
    %           set(gca,'XTick',[],'YTick',[]) ]nEN3RJ  
    %           axis square `3*>tq  
    %           title(['Z_{' num2str(p(k)) '}']) &W)k s  
    %       end 0[x?Q[~S_0  
    % TJ ;4QL  
    %   See also ZERNPOL, ZERNFUN. )|q,RAn  
    gjk=`lU  
    %   Paul Fricker 11/13/2006 > rB7ms/@E  
    EAqTXB@XU  
     QSmE:Y  
    % Check and prepare the inputs: N|WnUlf]:  
    % ----------------------------- Z[slN5]([  
    if min(size(p))~=1 )U`H7\*)  
        error('zernfun2:Pvector','Input P must be vector.') 72@8M  
    end ^kch]?  
    _Oh;._PS  
    if any(p)>35 cJGA5m/{I  
        error('zernfun2:P36', ... v'2EYTVNJD  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... bv)E>%Yy  
               '(P = 0 to 35).']) Z"mpE+U*  
    end L/c$p`-  
    GKZn|<Y|{c  
    % Get the order and frequency corresonding to the function number: mdoy1a  
    % ---------------------------------------------------------------- 6Bo~7gnc  
    p = p(:); =5+M]y E<  
    n = ceil((-3+sqrt(9+8*p))/2); "mSDL:$  
    m = 2*p - n.*(n+2); LGgEq -  
    J<H$B +;qR  
    % Pass the inputs to the function ZERNFUN: :nd }e  
    % ---------------------------------------- P zzX Ds6  
    switch nargin EN+WEMro  
        case 3 t'Nu^_#  
            z = zernfun(n,m,r,theta); Qo0okir  
        case 4 VX[{X8PkS  
            z = zernfun(n,m,r,theta,nflag); @lc1Ipfk"  
        otherwise (|I0C 'Ki  
            error('zernfun2:nargin','Incorrect number of inputs.') w(k7nGU]  
    end .]k(7F!W  
    pW:U|m1dS  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) /7h}_zs6  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. kVe^g]F  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of &pZ]F=.r+  
    %   order N and frequency M, evaluated at R.  N is a vector of `Rm2G  
    %   positive integers (including 0), and M is a vector with the ~5:]Oux  
    %   same number of elements as N.  Each element k of M must be a '355Pce/  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) l9qq;hhGP,  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 5\S)8j `8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix $_S^Aw?  
    %   with one column for every (N,M) pair, and one row for every TAi |]U!  
    %   element in R. E IsA2 f  
    % lh(A=hn"n  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ;k (}~_  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is DJr 8<u  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to VE wv22'  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^X)U^Qd  
    %   for all [n,m]. {S~2m2up0L  
    % $QNfy.6Tn  
    %   The radial Zernike polynomials are the radial portion of the jO3Q@N0_  
    %   Zernike functions, which are an orthogonal basis on the unit CImB,AXS  
    %   circle.  The series representation of the radial Zernike XFG]%y=/6  
    %   polynomials is b3#c0GL  
    % ]m=* =LLC  
    %          (n-m)/2 O)\xElu  
    %            __ yXg783B|v  
    %    m      \       s                                          n-2s nUs)  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4AZlr*U  
    %    n      s=0 !}l)okQH<#  
    % P-7!\[];te  
    %   The following table shows the first 12 polynomials. %vxd($Ti"  
    % v?K X Tc%Z  
    %       n    m    Zernike polynomial    Normalization   
    %       --------------------------------------------- I]~xs0$4#  
    %       0    0    1                        sqrt(2) M GN*i9CE  
    %       1    1    r                           2 HTQ .kV  
    %       2    0    2*r^2 - 1                sqrt(6) }{bO ~L7  
    %       2    2    r^2                      sqrt(6)  T~ /Bf  
    %       3    1    3*r^3 - 2*r              sqrt(8) No =f&GVg  
    %       3    3    r^3                      sqrt(8) c ?V,a`6  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ^ }U{O A  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) /n@_Ihx  
    %       4    4    r^4                      sqrt(10) 87YT;Z;U&  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) jcXb@FE6  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 0=t_ a]+  
    %       5    5    r^5                      sqrt(12) d0MX4bhZ  
    %       --------------------------------------------- yc_(L-'n  
    % !xj>~7  
    %   Example: sFC1PdSk4T  
    % 0}Kl47}aD  
    %       % Display three example Zernike radial polynomials MCz +l0  
    %       r = 0:0.01:1; va~:oA  
    %       n = [3 2 5]; \@MGO aR]  
    %       m = [1 2 1]; 5c'rnMW4+p  
    %       z = zernpol(n,m,r); Wj8\~B=('  
    %       figure 3|P P+<o  
    %       plot(r,z) f>#\'+l'  
    %       grid on 4y>G6TD^  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3j]La  
    % >Q[]i4*A  
    %   See also ZERNFUN, ZERNFUN2. hL67g  
    7:jSP$  
    % A note on the algorithm. *Ty>-aS1  
    % ------------------------ n." j0kc7=  
    % The radial Zernike polynomials are computed using the series goRoi\z $  
    % representation shown in the Help section above. For many special bnB}VRal  
    % functions, direct evaluation using the series representation can q^(A6W  
    % produce poor numerical results (floating point errors), because D dt9`j  
    % the summation often involves computing small differences between d!Y,i!l!  
    % large successive terms in the series. (In such cases, the functions TD!QqLW  
    % are often evaluated using alternative methods such as recurrence /3FC@?l w4  
    % relations: see the Legendre functions, for example). For the Zernike w2/%e$D!9  
    % polynomials, however, this problem does not arise, because the dkG-Yz~  
    % polynomials are evaluated over the finite domain r = (0,1), and dH#o11[  
    % because the coefficients for a given polynomial are generally all _ F@>?\B  
    % of similar magnitude. FZj tQ{M  
    % G]QD6b9~  
    % ZERNPOL has been written using a vectorized implementation: multiple KhXW5hS1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] #<yR:3  
    % values can be passed as inputs) for a vector of points R.  To achieve eHPGzN Xb  
    % this vectorization most efficiently, the algorithm in ZERNPOL w`F}3zm  
    % involves pre-determining all the powers p of R that are required to ~Z.lvdA_5  
    % compute the outputs, and then compiling the {R^p} into a single 8Vl!&j0s^  
    % matrix.  This avoids any redundant computation of the R^p, and R0oP##]  
    % minimizes the sizes of certain intermediate variables. N{|N_}X`Y  
    % M={k4r_t  
    %   Paul Fricker 11/13/2006 ]7h&ZF  
    j%[|XfM  
    V%o:Qa[a  
    % Check and prepare the inputs: s x`C<c~u  
    % ----------------------------- Q? W]g%:)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %8S!l;\H5  
        error('zernpol:NMvectors','N and M must be vectors.') ]%>;R^HY  
    end #G)ZhgB^  
    .$99/2[90  
    if length(n)~=length(m) R4@C>\c %m  
        error('zernpol:NMlength','N and M must be the same length.') Nm#KHA='Z  
    end f.rHX<%q9B  
    JGGss5  
    n = n(:); 0DS<(  
    m = m(:); ;9B:E"K?@1  
    length_n = length(n); <aL$d7  
    ?%oPWmj}  
    if any(mod(n-m,2)) hb`b Q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') N-_2d*l3  
    end "z@q G]#5  
    m(*CuM[E  
    if any(m<0) .hETqE`E  
        error('zernpol:Mpositive','All M must be positive.') cJi5\<b  
    end Er~5\9,/<]  
    Hr96sN.R   
    if any(m>n) l$zo3[  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 'T+3tGCy+  
    end hj0uv6t.c  
    qI5/ME(}  
    if any( r>1 | r<0 ) z@T;N'EM  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') lt}|Y9h  
    end - Nplx  
    LLaoND6  
    if ~any(size(r)==1) i1|-  
        error('zernpol:Rvector','R must be a vector.') 0~an\4nh  
    end ~~'XY(\L@  
    r95$B6  
    r = r(:); <(s+  
    length_r = length(r); TxPP{6t  
    X Uh)z  
    if nargin==4  BX+-KvT  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); U/0NN>V  
        if ~isnorm P%%Cd  
            error('zernpol:normalization','Unrecognized normalization flag.') d~GT w:  
        end {9'"!fH  
    else N \A)P  
        isnorm = false; b>I -4  
    end i"sVk8+o!  
    n# Z6d`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fwXk{P/  
    % Compute the Zernike Polynomials $\m=-5 0-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >$HMZbsE  
    NTgk0cq  
    % Determine the required powers of r: Z*s/%4On  
    % ----------------------------------- f>Bcr9]]  
    rpowers = []; r{6 ,;  
    for j = 1:length(n) o(|`atvK  
        rpowers = [rpowers m(j):2:n(j)]; !Bu<6  
    end |$7!u DU8  
    rpowers = unique(rpowers); }Ct_i'Ow  
    wQ(ME7 t  
    % Pre-compute the values of r raised to the required powers, 3cQTl5,  
    % and compile them in a matrix: bF?EuL  
    % ----------------------------- r`28fC  
    if rpowers(1)==0 4lvo9R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (VwS 9:`  
        rpowern = cat(2,rpowern{:}); .eq-i>  
        rpowern = [ones(length_r,1) rpowern]; D zl#[|q  
    else KJcdX9x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }6m5MH$7q  
        rpowern = cat(2,rpowern{:}); +(UrqK4Av  
    end SZvw>=)a  
    NjsP"  
    % Compute the values of the polynomials: od?Q&'A  
    % -------------------------------------- o.}^6.h"  
    z = zeros(length_r,length_n); 5\EHu8  
    for j = 1:length_n bKG:_mWe w  
        s = 0:(n(j)-m(j))/2; D.R5-  
        pows = n(j):-2:m(j); -v>BeVF  
        for k = length(s):-1:1 n1buE1r?  
            p = (1-2*mod(s(k),2))* ... ,iiWVA"  
                       prod(2:(n(j)-s(k)))/          ... Jg;Hg[  
                       prod(2:s(k))/                 ... -+Quw2465^  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... >D<nfG<s Z  
                       prod(2:((n(j)+m(j))/2-s(k))); uTB; Bva  
            idx = (pows(k)==rpowers); }wj*^>*  
            z(:,j) = z(:,j) + p*rpowern(:,idx);  /=[M  
        end D1#E&4   
         POUB{ba  
        if isnorm YJeZ{Wws  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); S,Zjol%p  
        end pN4!*7M  
    end l]3g6c  
    W+Gu\=s%O  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  _=}Y lR  
    Ir}&|"~H  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =BGc@:2  
    '`3-X];p  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)