切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10859阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `D,mZj/b  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Co^^rd@  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 O3En+m~3n)  
    function z = zernfun(n,m,r,theta,nflag) w%uM=YmuT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Sh;Z\nj  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N YGsg0I't  
    %   and angular frequency M, evaluated at positions (R,THETA) on the D&|HS!  
    %   unit circle.  N is a vector of positive integers (including 0), and 3( o~|%  
    %   M is a vector with the same number of elements as N.  Each element %Y-KjSs+l  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~@%#eg  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =j^wa')  
    %   and THETA is a vector of angles.  R and THETA must have the same :P?zy|aBi  
    %   length.  The output Z is a matrix with one column for every (N,M) 3hPp1wZd   
    %   pair, and one row for every (R,THETA) pair. )F3>  
    % W;^6=(&xn  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [t+qYe8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), * amZ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ^2-+MWW.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, byN4?3 F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >7(7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ( yv)zg9  
    % jm&PGZ#n=R  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3!Cab/T  
    %   They are used in disciplines such as astronomy, optics, and AVi,+n  
    %   optometry to describe functions on a circular domain. FKU)# Eo  
    % UYkuz  
    %   The following table lists the first 15 Zernike functions. !~!\=etm  
    % 2bt).gGm  
    %       n    m    Zernike function           Normalization jVInTR0f[  
    %       -------------------------------------------------- Gi Max  
    %       0    0    1                                 1 oA`G\Xh_E  
    %       1    1    r * cos(theta)                    2 .,&6 x.  
    %       1   -1    r * sin(theta)                    2 3bZ:*6W.6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) M2piJ'T4u  
    %       2    0    (2*r^2 - 1)                    sqrt(3) G`R_kg9$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ZL+46fj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 3fq'<5 ^  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) M <c cfU!  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 4R28S]Gb  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) QB6. o6  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4mwLlYZ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C sx EN4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wd<jh,Y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C3-I5q(V]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \$Aw[ 5&t  
    %       -------------------------------------------------- |v@ zyOq&b  
    % naiy] oY"  
    %   Example 1: uE^5o\To  
    % Q'c[yu  
    %       % Display the Zernike function Z(n=5,m=1) IIUTo  
    %       x = -1:0.01:1; l ^;=0UR_  
    %       [X,Y] = meshgrid(x,x); U{PFeR,Uk  
    %       [theta,r] = cart2pol(X,Y); ,Lr}P  
    %       idx = r<=1; R~N'5#.*M  
    %       z = nan(size(X)); u=& $Z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )g[7XB/w  
    %       figure q|S,^0cU  
    %       pcolor(x,x,z), shading interp 4{#0ci{  
    %       axis square, colorbar cW?~]E'<  
    %       title('Zernike function Z_5^1(r,\theta)') t[%ELHV  
    % (tz fyZ M  
    %   Example 2: of0 hJR  
    % 41^ $  
    %       % Display the first 10 Zernike functions &D#B"XI  
    %       x = -1:0.01:1; XE?,)8  
    %       [X,Y] = meshgrid(x,x); $##LSTA  
    %       [theta,r] = cart2pol(X,Y); "J*LR  
    %       idx = r<=1; 2/RW(U  
    %       z = nan(size(X)); ?Y'r=Q{w  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Rq,Fp/  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; e\WG-zi/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; V2BsvR`  
    %       y = zernfun(n,m,r(idx),theta(idx)); R*>EbOuI  
    %       figure('Units','normalized') R~d{Yv  
    %       for k = 1:10 0JX/@LNg0  
    %           z(idx) = y(:,k); V<0J j  
    %           subplot(4,7,Nplot(k)) U'Fc\M5l/l  
    %           pcolor(x,x,z), shading interp z[*Y%o8-r  
    %           set(gca,'XTick',[],'YTick',[]) mcLxX'c6<h  
    %           axis square MVZ9x%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HRW }Yl  
    %       end >|_B=<!99W  
    % 6M X4h  
    %   See also ZERNPOL, ZERNFUN2. =(W l'iG   
    y3!#*NU  
    %   Paul Fricker 11/13/2006 [*v- i%U}  
    ;7bY>zc(w  
    n_1,-(t  
    % Check and prepare the inputs: /V f L(  
    % ----------------------------- @j+X>TD  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .tt=\R  
        error('zernfun:NMvectors','N and M must be vectors.') &T[BS;  
    end 15wwu} X  
    kf2e-)uUs  
    if length(n)~=length(m) K])| V  
        error('zernfun:NMlength','N and M must be the same length.') _Rey~]iJJ8  
    end O*-sSf   
    H'wh0K(  
    n = n(:); Zm#qW2a]P  
    m = m(:); Mp)|5<%  
    if any(mod(n-m,2)) nQM7@"R  
        error('zernfun:NMmultiplesof2', ... n8 e4`-cY  
              'All N and M must differ by multiples of 2 (including 0).') ~R\U1XXyUY  
    end g@IYD  
    o>oZh1/\T,  
    if any(m>n) @ )m9#F  
        error('zernfun:MlessthanN', ... OvtiFN^s'  
              'Each M must be less than or equal to its corresponding N.') O>sE~~g]?  
    end V9<CeTl'  
    +d/^0^(D\5  
    if any( r>1 | r<0 ) kJ:zMVN  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q2K)Nl >_  
    end 'w!8`LPu  
    6jo+i[h  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wVY;)1?  
        error('zernfun:RTHvector','R and THETA must be vectors.') OCYC Dn  
    end "RMvWuNt  
    W.VyH|?  
    r = r(:); j aq/]I7  
    theta = theta(:);  =[G)  
    length_r = length(r); Ehf3L |9   
    if length_r~=length(theta) N6*v!M+  
        error('zernfun:RTHlength', ... +Y|HO[  
              'The number of R- and THETA-values must be equal.') MtIhpTX  
    end z]F4Z'(e.  
    vV+>JM6<K  
    % Check normalization: &yQM 8J~  
    % -------------------- {_5PN^J  
    if nargin==5 && ischar(nflag) L}5IX)#gH  
        isnorm = strcmpi(nflag,'norm'); Lmw{ `R  
        if ~isnorm HRZ3}8Qj  
            error('zernfun:normalization','Unrecognized normalization flag.') d( +E0  
        end um$K^  
    else NK0hT,_  
        isnorm = false; ."\&;:ZNv  
    end yyVv@  
    lg!{?xM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uSi/|  
    % Compute the Zernike Polynomials /]*#+;;%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kVu-,OU  
    Nd.Tda!Kg  
    % Determine the required powers of r: 7Vxe]s  
    % ----------------------------------- FI|@=l;_  
    m_abs = abs(m); k 1   
    rpowers = []; 58 Rmq/6s  
    for j = 1:length(n) Uv"GG: K_  
        rpowers = [rpowers m_abs(j):2:n(j)]; >J[Wd<~t  
    end !rMl" Y[  
    rpowers = unique(rpowers); ooPH [p  
    8FY/57.W  
    % Pre-compute the values of r raised to the required powers, Fl^}tC  
    % and compile them in a matrix: h f1f  
    % ----------------------------- "x$RTuWA9  
    if rpowers(1)==0 Kzd`|+?'`M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -j 6U{l  
        rpowern = cat(2,rpowern{:}); >@o}l:*  
        rpowern = [ones(length_r,1) rpowern]; \PB~ 6  
    else ii :h E=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #815h,nP+  
        rpowern = cat(2,rpowern{:}); Z 7M%}V%  
    end Oy!j`  
    hA81(JWG  
    % Compute the values of the polynomials: L('G1J}  
    % -------------------------------------- = ?hx+-'  
    y = zeros(length_r,length(n)); (]mh}=:KDg  
    for j = 1:length(n) $*{$90 Q  
        s = 0:(n(j)-m_abs(j))/2; ]d@@E_s]  
        pows = n(j):-2:m_abs(j); R.EA5X|_  
        for k = length(s):-1:1 {A2SG#}  
            p = (1-2*mod(s(k),2))* ... = e)[?{H  
                       prod(2:(n(j)-s(k)))/              ... `[;b#.  
                       prod(2:s(k))/                     ... *L9s7RR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... icf[.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ReCmv/AE  
            idx = (pows(k)==rpowers); Hop$w  
            y(:,j) = y(:,j) + p*rpowern(:,idx); EMe6Z!k  
        end $z+iB;x  
         AVR9G^ce_  
        if isnorm nJ|8#U7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2b]'KiX  
        end $e|G#mMd-  
    end 7FVu [Qu  
    % END: Compute the Zernike Polynomials qYW{$K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gq6C6   
    C'hI{4@P  
    % Compute the Zernike functions: )CzWq}:  
    % ------------------------------ q($lL~Ls  
    idx_pos = m>0; V X<ZB +R  
    idx_neg = m<0; ~7!J/LHg  
    +SmcZ^\OZ  
    z = y; zJ#e3o .  
    if any(idx_pos) ZpHT2-baVe  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ! G%LYHx  
    end <4y1[/S  
    if any(idx_neg) Jr18faEZw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KLXv?4!  
    end hltH{4  
    | %af}# FQ  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) qqSk*oH~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |Gjd  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 9c806>]U^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive mqk~Pno|<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, v|jBRKU99  
    %   and THETA is a vector of angles.  R and THETA must have the same  :XF;v  
    %   length.  The output Z is a matrix with one column for every P-value, l_u1 ~K  
    %   and one row for every (R,THETA) pair. IBU(Hm1,  
    % q:-8W[_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike sRo%=7Z  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) >  K,Q`sS  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) lMp)T**  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 pr/yDG ia  
    %   for all p. _p7c<$ ;  
    % i}RxTmG<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 B{QY-F~  
    %   Zernike functions (order N<=7).  In some disciplines it is v4(!~S  
    %   traditional to label the first 36 functions using a single mode ;,Sl+)@h  
    %   number P instead of separate numbers for the order N and azimuthal @g""*T1:$  
    %   frequency M. Ol"p^sqwj  
    % ? YX2CJ6N  
    %   Example: 8:-[wl/@  
    % 6+FmYp  
    %       % Display the first 16 Zernike functions bR49(K$~  
    %       x = -1:0.01:1; R#Id"O  
    %       [X,Y] = meshgrid(x,x); Tm[IOuhM'?  
    %       [theta,r] = cart2pol(X,Y); zF(I#|Vo  
    %       idx = r<=1;  F[115/  
    %       p = 0:15; 9<P1?Q  
    %       z = nan(size(X)); \x)T_]Gcm  
    %       y = zernfun2(p,r(idx),theta(idx)); =4/lJm``  
    %       figure('Units','normalized') r_ I7Gd  
    %       for k = 1:length(p) KCDEMs}}zM  
    %           z(idx) = y(:,k); {Rjj  
    %           subplot(4,4,k) bKmR &  
    %           pcolor(x,x,z), shading interp "m _wYX  
    %           set(gca,'XTick',[],'YTick',[]) N4}/n  
    %           axis square hI;tB6  
    %           title(['Z_{' num2str(p(k)) '}']) A"#Gg7]tl'  
    %       end 5>"$95D  
    % +l2{EiQw  
    %   See also ZERNPOL, ZERNFUN. cW26TtU(  
    : UD<1fh  
    %   Paul Fricker 11/13/2006 [$]vi`c2  
    br>"96A1l  
    CG@ LYN  
    % Check and prepare the inputs: XJC|6"n  
    % ----------------------------- }X)mZyM[  
    if min(size(p))~=1 m /JpYv~  
        error('zernfun2:Pvector','Input P must be vector.') 3uz@JY"mK  
    end zm9>"(H  
    +I5@Gys  
    if any(p)>35 -j`tBv)  
        error('zernfun2:P36', ... @ bPQhn#(g  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... W'-B)li   
               '(P = 0 to 35).']) %w=*4!NWb  
    end 0tC+?  
    uYhm Fp  
    % Get the order and frequency corresonding to the function number: gsqlWfa  
    % ---------------------------------------------------------------- 8U*}D~%!  
    p = p(:); |(*ReQ?=  
    n = ceil((-3+sqrt(9+8*p))/2); F# y5T3(P  
    m = 2*p - n.*(n+2); V?t^ J7{'  
    tVvRT*>Wb  
    % Pass the inputs to the function ZERNFUN: 1xar L))  
    % ---------------------------------------- /^G1wz2  
    switch nargin lDnF(  
        case 3 weU'3nNN  
            z = zernfun(n,m,r,theta); /d&zE|!  
        case 4 ^0R.'XL  
            z = zernfun(n,m,r,theta,nflag); z^T/kK3I  
        otherwise Qn ME|j\  
            error('zernfun2:nargin','Incorrect number of inputs.') S2kFdx*Zf  
    end p2GkI/6)uu  
    y-)|u:~h  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) X+z!?W*a  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Wl/oun~o  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @#hd8_)A.  
    %   order N and frequency M, evaluated at R.  N is a vector of 'X d_8.  
    %   positive integers (including 0), and M is a vector with the Z,^`R] 9  
    %   same number of elements as N.  Each element k of M must be a }A\s`H m  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ]B/Gz  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is {`2! 3= "  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _ [su?C  
    %   with one column for every (N,M) pair, and one row for every Hm!ffqO_  
    %   element in R. 9E5Ec~l  
    % h.d-a/  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- gHpA@jdC*  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 18f!k  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to T"xq^h1\  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 m-Q!V+XQp  
    %   for all [n,m]. ecDni>W  
    % k&wCa<Rs~R  
    %   The radial Zernike polynomials are the radial portion of the B +[ri&6X\  
    %   Zernike functions, which are an orthogonal basis on the unit Tw *:Vw  
    %   circle.  The series representation of the radial Zernike o@*eC L=  
    %   polynomials is -c|dTZ8D)8  
    % z SDRZ!  
    %          (n-m)/2 NF8'O  
    %            __ M3P\1  
    %    m      \       s                                          n-2s r6S-G{o  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r }K':tX?  
    %    n      s=0 _uwM%M;  
    % wCw-EGLR  
    %   The following table shows the first 12 polynomials. > Dy<@e  
    % N3O3V5':!  
    %       n    m    Zernike polynomial    Normalization 7iMBDkb7  
    %       --------------------------------------------- m}ZkNWH  
    %       0    0    1                        sqrt(2) sdN@ZP  
    %       1    1    r                           2 4efIw<1_  
    %       2    0    2*r^2 - 1                sqrt(6) Sk7l&B  
    %       2    2    r^2                      sqrt(6) 9 Rl-Jz8g  
    %       3    1    3*r^3 - 2*r              sqrt(8) (mbC! !>  
    %       3    3    r^3                      sqrt(8) {9?++G"\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) KYa}k0tVAp  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) qaJ$0,]H+  
    %       4    4    r^4                      sqrt(10) riw0w  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) m}Xb#NAF8  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) @uA=v/>+  
    %       5    5    r^5                      sqrt(12) c=d` DJ  
    %       --------------------------------------------- RN:VsopL  
    % )S?.YCv?  
    %   Example: SB~HHx09  
    % m8M2ka  
    %       % Display three example Zernike radial polynomials 1i=lJmr  
    %       r = 0:0.01:1; ^4MRG6G  
    %       n = [3 2 5]; Ac^hZ.qPz  
    %       m = [1 2 1]; QIl=Ho"c  
    %       z = zernpol(n,m,r); )/4eT\=  
    %       figure CCoT  
    %       plot(r,z) qZQB"Q.*  
    %       grid on ?e=3G4N  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 55O_b)$  
    % )R %>g-dw  
    %   See also ZERNFUN, ZERNFUN2. a|}v?z\  
    ^.3(o{g  
    % A note on the algorithm. JG^fu*K  
    % ------------------------ Nm {|  
    % The radial Zernike polynomials are computed using the series B:mtl?69g  
    % representation shown in the Help section above. For many special F:$*0!  
    % functions, direct evaluation using the series representation can !O )je>A  
    % produce poor numerical results (floating point errors), because xWRkg$A  
    % the summation often involves computing small differences between EBQ,Ypv  
    % large successive terms in the series. (In such cases, the functions \B/!}Tn;  
    % are often evaluated using alternative methods such as recurrence 0G; b+  
    % relations: see the Legendre functions, for example). For the Zernike S?Y%}  
    % polynomials, however, this problem does not arise, because the  N>V\  
    % polynomials are evaluated over the finite domain r = (0,1), and %"[`   
    % because the coefficients for a given polynomial are generally all (#e,tu  
    % of similar magnitude. K92nh/}y  
    % pu-X -j  
    % ZERNPOL has been written using a vectorized implementation: multiple r..&6-%:N  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] \9t/*%:  
    % values can be passed as inputs) for a vector of points R.  To achieve k'6x_ G  
    % this vectorization most efficiently, the algorithm in ZERNPOL hqDnmzG  
    % involves pre-determining all the powers p of R that are required to {!0f.nv  
    % compute the outputs, and then compiling the {R^p} into a single i<\WRzVT  
    % matrix.  This avoids any redundant computation of the R^p, and =Ju%3ptH0  
    % minimizes the sizes of certain intermediate variables. :,Zs {\oI3  
    % z:1"d R   
    %   Paul Fricker 11/13/2006 } "QL"%  
    62.)fCQ^  
    hQb3 8W[  
    % Check and prepare the inputs: ,gO(zI-1  
    % ----------------------------- TI5<' U)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F[q)ME+`)  
        error('zernpol:NMvectors','N and M must be vectors.') YMG~k3Yb  
    end e6`g[Ap  
    Cfr2 ~w  
    if length(n)~=length(m) sq rY<@%  
        error('zernpol:NMlength','N and M must be the same length.') pQ,|l$^m  
    end <`)vp0  
    h"}c_l Y9  
    n = n(:); 0_&5S`tj  
    m = m(:); ]Uj7f4)k  
    length_n = length(n); `g+Kv&546  
    \"7U,y',  
    if any(mod(n-m,2)) [,yYr  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') BMdcW MYU\  
    end jvQpf d  
    }PUY~ u  
    if any(m<0) @ JfQ}`  
        error('zernpol:Mpositive','All M must be positive.') bHRRgR`,  
    end GIM'H;XG  
    Ud:;kI%Vj  
    if any(m>n) $y_P14  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') G2 0   
    end f0@4 >\g  
    Uz_OUTFM  
    if any( r>1 | r<0 ) [;Y*f,UG_-  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ' e:rL.  
    end Y52TC@'  
    s}lp^Uh=  
    if ~any(size(r)==1) HVz|*?&6  
        error('zernpol:Rvector','R must be a vector.') g/+|gHq^  
    end U|~IJU3-  
    /l` "@  
    r = r(:); Mi<l;ZP  
    length_r = length(r); SG@E*yT1  
    {d '>J<Da  
    if nargin==4 G`r/ tesW  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); XK{KFB-  
        if ~isnorm ,1 ^IFBJ  
            error('zernpol:normalization','Unrecognized normalization flag.') @5j3[e  
        end {k uC+~R  
    else rVM?[_'O  
        isnorm = false; :>-&  
    end \Lg{GN.  
    Oj1B @QE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YBupC!R  
    % Compute the Zernike Polynomials AhU   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =rN_8&  
    RjxFlKs8  
    % Determine the required powers of r: av"dJm  
    % ----------------------------------- m\f}?t  
    rpowers = []; Rm[{^V.Z$  
    for j = 1:length(n) 4Z0Y8y8)  
        rpowers = [rpowers m(j):2:n(j)]; u= Vt3%q  
    end O ]!/fZ;(  
    rpowers = unique(rpowers); si1Szmx,  
    m](q,65 2  
    % Pre-compute the values of r raised to the required powers, rm%MQmF  
    % and compile them in a matrix: Y' O3RA5E  
    % ----------------------------- 8SN4E  
    if rpowers(1)==0 >Yx,%a@~R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2CRgOFR  
        rpowern = cat(2,rpowern{:}); GhR%fxe  
        rpowern = [ones(length_r,1) rpowern]; 85rjM#~  
    else : ~Ppv5W.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BnU3oP  
        rpowern = cat(2,rpowern{:}); X\1.,]O >  
    end Yan,Bt{YJ  
    #{g6'9PMz  
    % Compute the values of the polynomials: jm0v=m7  
    % -------------------------------------- {ewo-dva  
    z = zeros(length_r,length_n); (/jZ &4T  
    for j = 1:length_n )sLXtV)nm6  
        s = 0:(n(j)-m(j))/2; '8c-V aa  
        pows = n(j):-2:m(j); Gj&`+!\  
        for k = length(s):-1:1 qS[KB\RN1  
            p = (1-2*mod(s(k),2))* ... h| N!U/(U  
                       prod(2:(n(j)-s(k)))/          ... $H"(]>~  
                       prod(2:s(k))/                 ... T:g=P@  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... qa,i:T(w  
                       prod(2:((n(j)+m(j))/2-s(k))); H|z:j35\  
            idx = (pows(k)==rpowers); g|<$ \}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); T7Qw1k  
        end ?sc lOOh  
         <|;)iT1VeT  
        if isnorm aA=7x&z@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Qsg([K  
        end =2/[n8pSsM  
    end N4u-tlA  
    {7^D!lis  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    854
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  D8f4X w}=  
    raJv$P  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 RiiwsnjC  
    Qm>2,={h  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)