切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11564阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 W Qe Q`pM  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 6L-3cxqf\  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9{-H/YS\_s  
    function z = zernfun(n,m,r,theta,nflag) ].@8/. rg  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  $kxu-  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BoHNni  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7H?lR~w  
    %   unit circle.  N is a vector of positive integers (including 0), and ,]tMZ?n8  
    %   M is a vector with the same number of elements as N.  Each element <lRjh7  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jT4 m(j  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {gB9EGY  
    %   and THETA is a vector of angles.  R and THETA must have the same s6Il3K f  
    %   length.  The output Z is a matrix with one column for every (N,M) bj@f<f`  
    %   pair, and one row for every (R,THETA) pair. ~eXI}KhBw6  
    % x}OJ~Yk]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FW3uq^  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )hD77(c  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (XV+aQ\A  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |)[&V3+|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?2K~']\S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2|${2u`$&y  
    % 5 axt\  
    %   The Zernike functions are an orthogonal basis on the unit circle. }wC=p>zA  
    %   They are used in disciplines such as astronomy, optics, and ~NIqO4 D  
    %   optometry to describe functions on a circular domain. af&P;#U  
    % D&D-E~b^  
    %   The following table lists the first 15 Zernike functions. n m.5!.  
    % Q5*"t*L!N  
    %       n    m    Zernike function           Normalization !z]{zM%  
    %       -------------------------------------------------- % "^CrG  
    %       0    0    1                                 1 p\tA&>3-  
    %       1    1    r * cos(theta)                    2 4XSq\.@G  
    %       1   -1    r * sin(theta)                    2 !y3XIbdS"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) fjm 3X$tR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :DFtH13qO  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,v#3A7"yW  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) S"@@BQ#mf  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) XLlJ|xhY-K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]G,BSttD  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) I:YE6${k!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) YOUX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m(CsO|pz  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) pJ/{X=y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5.lg*vh  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u|(Iu}sE=  
    %       -------------------------------------------------- rfV{+^T;  
    % v3cLU7bi?2  
    %   Example 1: +; =XiB5R  
    % fBKN?]BdN  
    %       % Display the Zernike function Z(n=5,m=1) /pJr%}sc  
    %       x = -1:0.01:1; }*7Gq  
    %       [X,Y] = meshgrid(x,x); R  xc  
    %       [theta,r] = cart2pol(X,Y); -$`q:j  
    %       idx = r<=1; G#6O'G N  
    %       z = nan(size(X)); @QDpw1;V'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); F`.W 9H3  
    %       figure CH$* =3M  
    %       pcolor(x,x,z), shading interp q'%!qa+  
    %       axis square, colorbar U:8cz=#  
    %       title('Zernike function Z_5^1(r,\theta)') m[Qr>="  
    % @`aPr26>?  
    %   Example 2: DO~~  
    % sAjN<P  
    %       % Display the first 10 Zernike functions x6Q_+!mnk  
    %       x = -1:0.01:1; sfsK[c5bm  
    %       [X,Y] = meshgrid(x,x); #y1M1Og  
    %       [theta,r] = cart2pol(X,Y); Rj-4K@a8#N  
    %       idx = r<=1; y4Nam87;/?  
    %       z = nan(size(X)); Ee=!bv(%70  
    %       n = [0  1  1  2  2  2  3  3  3  3]; H:o=gP60]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \mw5 ~Rf;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1(jx.W3  
    %       y = zernfun(n,m,r(idx),theta(idx)); `-5gsJ  
    %       figure('Units','normalized') ~jJe|zg>  
    %       for k = 1:10 0VIR =Pbp  
    %           z(idx) = y(:,k); 3H%bbFy  
    %           subplot(4,7,Nplot(k)) 6`5DR~  
    %           pcolor(x,x,z), shading interp unyU|B  
    %           set(gca,'XTick',[],'YTick',[]) 2 y& k  
    %           axis square t]xR`Rr;X  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q>uJ:[x+  
    %       end ge% tj O  
    % 3&B- w  
    %   See also ZERNPOL, ZERNFUN2. vh^?M#\  
    x'V:qv*O  
    %   Paul Fricker 11/13/2006 Jv~^hN2  
    >FL%H=]  
    !)FKF7'  
    % Check and prepare the inputs: ]MB6++.e  
    % ----------------------------- mA5sK?W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) COA>y?  
        error('zernfun:NMvectors','N and M must be vectors.') hdYd2 j  
    end SI7r `'7A'  
    \sS0@gnDI  
    if length(n)~=length(m) U+ V yH4"  
        error('zernfun:NMlength','N and M must be the same length.') ?F|F~A8dr  
    end ex|h&Vma2V  
    ne=CN!=  
    n = n(:); ~FnY'F<35  
    m = m(:); E+Dcw  
    if any(mod(n-m,2)) u3IhB8'  
        error('zernfun:NMmultiplesof2', ... tQ`|MO&o  
              'All N and M must differ by multiples of 2 (including 0).') KR>o 2  
    end  Bm&6  
    &cy<"y  
    if any(m>n) @Z Dd(xB&  
        error('zernfun:MlessthanN', ... ]i8t  
              'Each M must be less than or equal to its corresponding N.') LmPpt3[  
    end xU |8.,@  
    E*QLw* H  
    if any( r>1 | r<0 ) *Z3b6X'e  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') kk}_AZ0eK  
    end i\kDb=  
    lO HW9Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lDZ~  
        error('zernfun:RTHvector','R and THETA must be vectors.') [$Jsel<T=  
    end dHtEyF  
    b T** y?2  
    r = r(:); ~ F>'+9?Sn  
    theta = theta(:); vHb^@z=  
    length_r = length(r); -a7BVEFts  
    if length_r~=length(theta) [x -<O:r=P  
        error('zernfun:RTHlength', ... W4)bEWO+q  
              'The number of R- and THETA-values must be equal.') 5JS*6|IbD{  
    end ."ytBF  
    l6.&<0pLT  
    % Check normalization: ,vuC0{C^  
    % -------------------- s $ ?;C  
    if nargin==5 && ischar(nflag) T `o[whr  
        isnorm = strcmpi(nflag,'norm'); Uv!VzkPfo  
        if ~isnorm \9]- (j6[H  
            error('zernfun:normalization','Unrecognized normalization flag.') ~Jlq.S'  
        end uS! V_]  
    else V9wL3*  
        isnorm = false; E|W7IgS  
    end _!9I f  
    T[2<_nn=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kv<(N  
    % Compute the Zernike Polynomials hd)WdGJp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $}=r 45e0K  
    K+Pa b ?  
    % Determine the required powers of r: )-25?B  
    % ----------------------------------- q&^H" fF  
    m_abs = abs(m); =Ea,8bpn  
    rpowers = []; $ SZIJe"K  
    for j = 1:length(n) NosOd*S  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7yOBxb   
    end w4l]rH  
    rpowers = unique(rpowers); ?5wsgP^  
    bl\;*.s'  
    % Pre-compute the values of r raised to the required powers, f,ql8q(|J  
    % and compile them in a matrix: N:,V{Pw  
    % ----------------------------- LdnTdh?  
    if rpowers(1)==0 mB%m<Zo\U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ..=lM:13|  
        rpowern = cat(2,rpowern{:}); %Lq}5zB  
        rpowern = [ones(length_r,1) rpowern]; nPH\Lra  
    else =`l><  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fyxc4-D  
        rpowern = cat(2,rpowern{:}); Q+Eqaz`  
    end 9 7pnq1b  
    $)'LbOe  
    % Compute the values of the polynomials: /Z]hX*QR  
    % -------------------------------------- j?VHR$  
    y = zeros(length_r,length(n)); ^=qV)j  
    for j = 1:length(n) Y@+9Ukd/  
        s = 0:(n(j)-m_abs(j))/2; J!}R>mR  
        pows = n(j):-2:m_abs(j); m/`L3@7Tt  
        for k = length(s):-1:1 OK2\2&G  
            p = (1-2*mod(s(k),2))* ... }&%&0$%  
                       prod(2:(n(j)-s(k)))/              ... ""h%RhcZ\  
                       prod(2:s(k))/                     ... rY)m"'puP  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &uI33=   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); AOx8OiqE:  
            idx = (pows(k)==rpowers); ".?y!VY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?i}wm`  
        end a~zh5==QD  
         .:tR*Kst`7  
        if isnorm y8]vl;88yY  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); R9UC0D:-x  
        end 'lmjZ{k  
    end 0UQ DB5u  
    % END: Compute the Zernike Polynomials c$_}   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >"Zn# FY  
    tR_DN  
    % Compute the Zernike functions: id]}10  
    % ------------------------------ 01IfvK  
    idx_pos = m>0; Uh^j;s\y  
    idx_neg = m<0; ;}k_  
    @== "$uRw  
    z = y; rK4 pYo  
    if any(idx_pos) 3w! NTvp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2(R{3E4.  
    end >uE<-klv  
    if any(idx_neg) Ah zV?6e  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \p)eY#A  
    end {<i(aq?  
    lLEEre  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ictOC F  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. cN)noGkp  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^L'<%_# .  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Gn<e&|4>i}  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, &cf_?4  
    %   and THETA is a vector of angles.  R and THETA must have the same \G6V-W  
    %   length.  The output Z is a matrix with one column for every P-value, d)0 hAdh  
    %   and one row for every (R,THETA) pair. M*F`s& vM  
    % Y }8HJTMB  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Dj w#{WR  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) DMT2~mh  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) R I]x=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Hlj3z3  
    %   for all p. RG- ,<G`  
    % C(}Kfi@6N  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 oSP^ .BJ$  
    %   Zernike functions (order N<=7).  In some disciplines it is Qq\hD@Z|  
    %   traditional to label the first 36 functions using a single mode Rz33_ qA  
    %   number P instead of separate numbers for the order N and azimuthal ~bfjP2 g  
    %   frequency M. [O6JVXO>  
    % 83Fmu/(  
    %   Example: P2 +^7x?  
    % /-g%IeF  
    %       % Display the first 16 Zernike functions "=0JYh)%_  
    %       x = -1:0.01:1; gn[h:+H&  
    %       [X,Y] = meshgrid(x,x); >  !WFY  
    %       [theta,r] = cart2pol(X,Y); M5+K[Ir/y9  
    %       idx = r<=1; ['l}*  
    %       p = 0:15; @T{I;8S  
    %       z = nan(size(X)); WQHlf 0]  
    %       y = zernfun2(p,r(idx),theta(idx)); wr2F]1bh@  
    %       figure('Units','normalized') /fxv^C82yv  
    %       for k = 1:length(p) N'8}5Kx5  
    %           z(idx) = y(:,k); hle@= e/n  
    %           subplot(4,4,k) _u;34H&/  
    %           pcolor(x,x,z), shading interp _"qX6Jc  
    %           set(gca,'XTick',[],'YTick',[]) _i0,?U2C  
    %           axis square E D_J8 +  
    %           title(['Z_{' num2str(p(k)) '}']) Xyw;Nh!!d  
    %       end E\~!E20^  
    % 5Veybchy "  
    %   See also ZERNPOL, ZERNFUN. e'dZ2;X$zo  
    &P>a  
    %   Paul Fricker 11/13/2006 _({K6adb  
    Fh^Ax3P(  
    *l'5z)]  
    % Check and prepare the inputs: {c=H#- A  
    % ----------------------------- |A:+[35  
    if min(size(p))~=1 m[&pR2T  
        error('zernfun2:Pvector','Input P must be vector.') N#vV;  
    end .T7S1C $HP  
    MT.D#jv&  
    if any(p)>35 /Y*6mQ:  
        error('zernfun2:P36', ... Ga $EM  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... %<'PSri  
               '(P = 0 to 35).']) q]z%<`.9*  
    end <{A|Xs  
    (k>I!Z/&2  
    % Get the order and frequency corresonding to the function number: @4j!M1} 4  
    % ---------------------------------------------------------------- hgF4PdO1e  
    p = p(:); !T26#>mV  
    n = ceil((-3+sqrt(9+8*p))/2); SWMi+)  
    m = 2*p - n.*(n+2);  c|~f[  
    {b26DKkQS  
    % Pass the inputs to the function ZERNFUN: M1=y-3dW3  
    % ---------------------------------------- \ dZD2e4  
    switch nargin 2]-xmS>|b  
        case 3 _iW-i  
            z = zernfun(n,m,r,theta); GZNfx8zsY+  
        case 4 ^+Stvj:N  
            z = zernfun(n,m,r,theta,nflag); Ck^jgB.7  
        otherwise 5\P3JoH:Yg  
            error('zernfun2:nargin','Incorrect number of inputs.') c!>",rce  
    end 6R%N jEW:  
    atjrn:X  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) P :D6w){  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. B3iU#   
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of %4HpTx  
    %   order N and frequency M, evaluated at R.  N is a vector of Dh{sVRA  
    %   positive integers (including 0), and M is a vector with the iWu^m+"k  
    %   same number of elements as N.  Each element k of M must be a z9[BQ(9t  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 9<S};I;  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ]NgEN  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix :6X?EbXhK  
    %   with one column for every (N,M) pair, and one row for every 7Yd]#K{$  
    %   element in R. f8?c[%br  
    % \%011I4  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- # ~T K C|G  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %O_Ed {G4t  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to \LZVazXD  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 d 1bx5U  
    %   for all [n,m]. oN6 '%   
    % S`?cs^?  
    %   The radial Zernike polynomials are the radial portion of the Rt10:9Kz$  
    %   Zernike functions, which are an orthogonal basis on the unit 8st~ O  
    %   circle.  The series representation of the radial Zernike G Za<  
    %   polynomials is v22ZwP  
    % L=."<,\  
    %          (n-m)/2 @G;\gJT*  
    %            __ fA>FU/r  
    %    m      \       s                                          n-2s wth*H$iF  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r FlQ(iv)P  
    %    n      s=0 i VIpe  
    % dF/HKBJ  
    %   The following table shows the first 12 polynomials. V}UYr Va#9  
    % c- {;P>L  
    %       n    m    Zernike polynomial    Normalization ' ;PHuMY#X  
    %       --------------------------------------------- >*aqYNft  
    %       0    0    1                        sqrt(2) 49m}~J=*  
    %       1    1    r                           2 e+=P)Zp/  
    %       2    0    2*r^2 - 1                sqrt(6) SYsbe 5j  
    %       2    2    r^2                      sqrt(6) G`" 9/FI7  
    %       3    1    3*r^3 - 2*r              sqrt(8) #+,O  
    %       3    3    r^3                      sqrt(8) #XJ`/\E]  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Pwh0Se5Z  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 5*W<6ia  
    %       4    4    r^4                      sqrt(10) KDzTe9  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (jY -MF3  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) N }tiaL4  
    %       5    5    r^5                      sqrt(12) wkwsBi  
    %       --------------------------------------------- ^E3i]Oem  
    % zU1[+JJY"{  
    %   Example:  + Y  
    % AT%@T|  
    %       % Display three example Zernike radial polynomials j >wT-s  
    %       r = 0:0.01:1; !?~>f>js_l  
    %       n = [3 2 5]; ] oh.w  
    %       m = [1 2 1]; PLmf.hD\  
    %       z = zernpol(n,m,r); )+ss)L EC  
    %       figure ,B=;NKo  
    %       plot(r,z) R%Y#vUmBV{  
    %       grid on JM-rz#;1  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 8={ " j  
    % ]7ZY|fP2  
    %   See also ZERNFUN, ZERNFUN2. f\~OG#AaX  
    ]VU a $$  
    % A note on the algorithm. 09psqXU@I  
    % ------------------------ sC=fXCGW\p  
    % The radial Zernike polynomials are computed using the series &CEZ+\bA  
    % representation shown in the Help section above. For many special LYv$U;*+  
    % functions, direct evaluation using the series representation can tb@&!a$`?  
    % produce poor numerical results (floating point errors), because 6GZ zNhz  
    % the summation often involves computing small differences between Jm l4EW7  
    % large successive terms in the series. (In such cases, the functions _Bh ^<D-  
    % are often evaluated using alternative methods such as recurrence ZV; lr Vv  
    % relations: see the Legendre functions, for example). For the Zernike DWQ@]\  
    % polynomials, however, this problem does not arise, because the C=z7Gk=  
    % polynomials are evaluated over the finite domain r = (0,1), and j\Z/R1RcW  
    % because the coefficients for a given polynomial are generally all `V1D &}H+G  
    % of similar magnitude. U[Pll~m2b  
    % LmKG6>Q1#1  
    % ZERNPOL has been written using a vectorized implementation: multiple _ IqUp Y  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] i9FHEu_  
    % values can be passed as inputs) for a vector of points R.  To achieve E4nj*Lp~+  
    % this vectorization most efficiently, the algorithm in ZERNPOL 85Hb~|0  
    % involves pre-determining all the powers p of R that are required to FB-_a  
    % compute the outputs, and then compiling the {R^p} into a single i"{ \ >  
    % matrix.  This avoids any redundant computation of the R^p, and dsh S+d  
    % minimizes the sizes of certain intermediate variables. E9L)dMZSpj  
    % c8'! >#$  
    %   Paul Fricker 11/13/2006 vl'2O7  
    HJn  
    3 oG5E"G  
    % Check and prepare the inputs: RU1+ -   
    % ----------------------------- Y GZX}-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W\tSXM-Hg  
        error('zernpol:NMvectors','N and M must be vectors.') 5+gSpg]i  
    end JY|f zL  
    cG"+n@ \  
    if length(n)~=length(m) `zjEs8`'  
        error('zernpol:NMlength','N and M must be the same length.') nzdJ*C  
    end BihXYux*  
    HW)4#nLhh  
    n = n(:); %b H1We  
    m = m(:); [a&|c%h  
    length_n = length(n); 4EO,9#0  
    86s.qPB0  
    if any(mod(n-m,2)) o0nKgq'w|x  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') g?'4G$M  
    end i9NUv3#  
    k|^e=I   
    if any(m<0) MMMuT^X  
        error('zernpol:Mpositive','All M must be positive.') b-1cA1#_cP  
    end d{UyiZm\  
    `@acQs;0  
    if any(m>n) F0O/SI(cA  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') @c<*l+Qc  
    end Pw^ lp'dO  
    ~f[AEE~,s+  
    if any( r>1 | r<0 ) bN6FhKg|  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') v>2gx1F"?  
    end [f'V pId8  
    ^MyuD?va  
    if ~any(size(r)==1) qeK_w '  
        error('zernpol:Rvector','R must be a vector.') ohHKZZ  
    end H0zKL]D'>  
    >Jl(9)e  
    r = r(:); =AhXEu^  
    length_r = length(r); iUv#oX H  
    ay\e# )  
    if nargin==4 Ylc[ghx  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); nMK,g>wp  
        if ~isnorm  [>IAS>  
            error('zernpol:normalization','Unrecognized normalization flag.') akuV9S  
        end 1 rr\l`  
    else @O7hY8",  
        isnorm = false; fh0a "#L{  
    end $YM>HZe-  
    *CHLs^)   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )Q_^f'4  
    % Compute the Zernike Polynomials 6dG:3n}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %1uY  
    CzF#feTA  
    % Determine the required powers of r: .^<4]  
    % ----------------------------------- "T`Q,  
    rpowers = []; vJheM*C  
    for j = 1:length(n)  vO 85h  
        rpowers = [rpowers m(j):2:n(j)]; Le&SN7I  
    end S H"e x,=  
    rpowers = unique(rpowers); 5 ",@!1ju  
    *C~O[:6D  
    % Pre-compute the values of r raised to the required powers, ,)u\G(N  
    % and compile them in a matrix: mHqw,28}  
    % ----------------------------- oUMY?[Wp  
    if rpowers(1)==0 JG%y_ Qy?K  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lKo07s6u  
        rpowern = cat(2,rpowern{:}); wf4?{H  
        rpowern = [ones(length_r,1) rpowern]; }B=`nbgIG7  
    else sLGut7@Sg  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +Ar=89  
        rpowern = cat(2,rpowern{:}); l.r i ]e  
    end F;Q8^C0e*c  
    -^m]Tb<u  
    % Compute the values of the polynomials: J2\%rb,  
    % -------------------------------------- iw!kV  
    z = zeros(length_r,length_n); l$ABOtM@  
    for j = 1:length_n 'lPt.*Y<u  
        s = 0:(n(j)-m(j))/2; i%m]<yElm  
        pows = n(j):-2:m(j); 7!0~sf9A  
        for k = length(s):-1:1 -!OFt}  
            p = (1-2*mod(s(k),2))* ... Ccmo(W+0  
                       prod(2:(n(j)-s(k)))/          ... |/u&%w?W  
                       prod(2:s(k))/                 ... $9pFRQC'q  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... q*,g  
                       prod(2:((n(j)+m(j))/2-s(k))); Xx~za{p  
            idx = (pows(k)==rpowers); R;2tb7o  
            z(:,j) = z(:,j) + p*rpowern(:,idx); o`hVI*D  
        end 0Q^a*7w`8a  
         otQulL)T/  
        if isnorm qJ).;S{AAt  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); cNi)[2o7  
        end N=e-"8  
    end _`4jzJ*  
    2!Ip!IQ:  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  o g.LD7&/  
    wpw~[xd  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 :( A5 ,$  
    I~lX53D  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)