切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11525阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 %&O'>L  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! {=^<yK2q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $5yH8JU  
    function z = zernfun(n,m,r,theta,nflag) *7/MeE6)i  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5NYYrA8,^  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )0@&pEObm  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .$-%rU:*}  
    %   unit circle.  N is a vector of positive integers (including 0), and (<5&<JC{  
    %   M is a vector with the same number of elements as N.  Each element ^F$iD (f  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 1A 9Gf  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, BO=j*.YKy  
    %   and THETA is a vector of angles.  R and THETA must have the same Q%RI;;YyA  
    %   length.  The output Z is a matrix with one column for every (N,M) IQ}YF]I;  
    %   pair, and one row for every (R,THETA) pair. fxX4 !r  
    % wo!;Bxo N  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d[Rs  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u*H V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c:z<8#A}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,  *}`D2_uP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized QW"BGg~6c  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J|I&{  
    % $P~Tt4068  
    %   The Zernike functions are an orthogonal basis on the unit circle. umj5M5oe3  
    %   They are used in disciplines such as astronomy, optics, and h7W<$ \P  
    %   optometry to describe functions on a circular domain. |h1 Y3  
    % +aIy':P  
    %   The following table lists the first 15 Zernike functions. mMV -IL  
    % 8Ow0A  
    %       n    m    Zernike function           Normalization I!-5 #bxD  
    %       -------------------------------------------------- }>u<,  
    %       0    0    1                                 1 naKB2y]l  
    %       1    1    r * cos(theta)                    2 lvZ:Aw r  
    %       1   -1    r * sin(theta)                    2 6P*2Kg`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) q\6ZmKGnT  
    %       2    0    (2*r^2 - 1)                    sqrt(3) p=U5qM.O  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (!`]S>_w9  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Kf7v_T /  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) E; Z1HF R  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 27KfT] =  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Tn8GLn  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6*H F`@(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b:}+l;e5 2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ' fm}&0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J~vK`+Zs  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) {]\!vG6  
    %       -------------------------------------------------- C %o^AR  
    % ;iEFG^'tG  
    %   Example 1: pI|H9  
    % #r_&Q`!eU  
    %       % Display the Zernike function Z(n=5,m=1) u ?n{r  
    %       x = -1:0.01:1; P*;zDQy  
    %       [X,Y] = meshgrid(x,x); ^d2bl,1  
    %       [theta,r] = cart2pol(X,Y); oUwu:&<Orm  
    %       idx = r<=1; SNK _  
    %       z = nan(size(X));  $VCWc#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x GHS  
    %       figure WSW,}tFp"  
    %       pcolor(x,x,z), shading interp 4h[^!up.7  
    %       axis square, colorbar  /P/S0  
    %       title('Zernike function Z_5^1(r,\theta)') p$cSES>r:  
    % ( nH3  
    %   Example 2: |F 18j9  
    % yr /p3ys  
    %       % Display the first 10 Zernike functions isP4*g&%x  
    %       x = -1:0.01:1; )0:@T)G  
    %       [X,Y] = meshgrid(x,x); n3kYVAgF  
    %       [theta,r] = cart2pol(X,Y); wz P")}[0  
    %       idx = r<=1; }~RH!Q1  
    %       z = nan(size(X)); ~\z\f} w  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w<]Wg^dyQ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; b}[W[J}`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; YbrsXp"  
    %       y = zernfun(n,m,r(idx),theta(idx)); zF[>K4  
    %       figure('Units','normalized') #'-L`])7uw  
    %       for k = 1:10 H+>l][  
    %           z(idx) = y(:,k); `8 Dgk}  
    %           subplot(4,7,Nplot(k)) {AY `\G  
    %           pcolor(x,x,z), shading interp q)uq?sZe  
    %           set(gca,'XTick',[],'YTick',[]) =kspHP<k  
    %           axis square uz1t uX_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o|nj2.  
    %       end 7='M&Za  
    % :B<lDcFKJ  
    %   See also ZERNPOL, ZERNFUN2. )up!W4h6o  
    "(+ >#  
    %   Paul Fricker 11/13/2006 UUx0#D/U0C  
    `q 4%  
    [lsr[`SJ<  
    % Check and prepare the inputs: $e! i4pM  
    % ----------------------------- \7}X^]UVx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) shlL(&Py  
        error('zernfun:NMvectors','N and M must be vectors.') 8yH) 8:w  
    end +x!V;H(  
    SZCF db  
    if length(n)~=length(m) sY t8NsQ  
        error('zernfun:NMlength','N and M must be the same length.') @^vVou_  
    end JeJc(e  
    mb*L'y2r  
    n = n(:); rBP!RSl1  
    m = m(:); ]OoqU-q  
    if any(mod(n-m,2)) 1e;^Mz B"  
        error('zernfun:NMmultiplesof2', ... Zjt3U;Y  
              'All N and M must differ by multiples of 2 (including 0).') j"E_nV:Qc  
    end j0k"iv  
    e/WR\B'1  
    if any(m>n) "YGs<)S  
        error('zernfun:MlessthanN', ... *N$#cz  
              'Each M must be less than or equal to its corresponding N.') N"b>]Ab] ;  
    end bgd1j,PWbW  
    d;ElqRC&  
    if any( r>1 | r<0 ) YXJjqH3  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') <BQ4x.[  
    end 8KD7t&H  
    74%,v|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J%3%l5 /  
        error('zernfun:RTHvector','R and THETA must be vectors.') x~}RL-Y2o  
    end D a)[mxJ  
    W:P4XwR{  
    r = r(:); ]7ROCJ;  
    theta = theta(:); :JSOj@s  
    length_r = length(r); _EOQ*K#=Ct  
    if length_r~=length(theta) D:llGdU#2  
        error('zernfun:RTHlength', ... &gkloP @  
              'The number of R- and THETA-values must be equal.') k@AOE0m  
    end E'e#axF;  
    ^zQ;8)ng  
    % Check normalization: v[ru }/4  
    % -------------------- iwL\Ha  
    if nargin==5 && ischar(nflag) jj#K[@u  
        isnorm = strcmpi(nflag,'norm'); LI?rz<H!D  
        if ~isnorm jjkiic+tDN  
            error('zernfun:normalization','Unrecognized normalization flag.') ~;|  
        end 5-bd1!o  
    else 7,_N9Q]rB  
        isnorm = false; [[?:,6I  
    end |J2R w f  
    G7`7e@{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6d,jR[JP  
    % Compute the Zernike Polynomials gmWRw{nS+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rZ1${/6  
    0,nDyTS^  
    % Determine the required powers of r: #OH-LWZh  
    % ----------------------------------- xF5q=%n  
    m_abs = abs(m); DPi%[CRH  
    rpowers = []; M=e]v9  
    for j = 1:length(n) GLt#]I"LY  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9>qR6k ?  
    end `RfhxzI  
    rpowers = unique(rpowers); PV>-"2n  
    ) ]U-7  
    % Pre-compute the values of r raised to the required powers, /_?Ly$>'  
    % and compile them in a matrix: nvxftbfE^D  
    % ----------------------------- N/Z3 EF_  
    if rpowers(1)==0 p}!rPd*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;58l_ue  
        rpowern = cat(2,rpowern{:}); d> `9!)  
        rpowern = [ones(length_r,1) rpowern]; Ip( IGR"  
    else 2Q)"~3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 91r#lDR  
        rpowern = cat(2,rpowern{:}); L\5j"] }`  
    end Tl%#N"  
    ZyT9y  
    % Compute the values of the polynomials: $Dd IY}  
    % -------------------------------------- 3.?PdK&C  
    y = zeros(length_r,length(n)); W sQo+Ua  
    for j = 1:length(n) }f<.07  
        s = 0:(n(j)-m_abs(j))/2; %.BbPR7?h  
        pows = n(j):-2:m_abs(j); 9n$GeRO  
        for k = length(s):-1:1 ! 9k)hP  
            p = (1-2*mod(s(k),2))* ... !t{3IE  
                       prod(2:(n(j)-s(k)))/              ... X26gl 'U  
                       prod(2:s(k))/                     ... 'u{m37ZJ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v1QE|@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); o';sHa'  
            idx = (pows(k)==rpowers); "44VvpQC  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~a4htj  
        end x,STt{I=  
         \('8 _tqI"  
        if isnorm qXkc~{W_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); SY["dcx+  
        end A /,7%bB1  
    end Ti!j  
    % END: Compute the Zernike Polynomials vdYd~>w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A{Z=[]r1`E  
    B8'" ^a^&-  
    % Compute the Zernike functions: :z56!qU  
    % ------------------------------ KO<Yc`Fs  
    idx_pos = m>0; }L{en  
    idx_neg = m<0; SgHLs  
    9Y- Sqk+  
    z = y; =GTltFqI1  
    if any(idx_pos) 4T`u?T]  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @3K)VjY7  
    end bBc<yaN  
    if any(idx_neg) @|6n.'f+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4iBp!k7  
    end G\?fWqx  
    ec[S?-  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 9w^1/t&=04  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. m:59f9WXA  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated <->Nex  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive J4#t1P@Na  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8C#R  
    %   and THETA is a vector of angles.  R and THETA must have the same r9sW:cM:e  
    %   length.  The output Z is a matrix with one column for every P-value, ` /#f8R1g  
    %   and one row for every (R,THETA) pair. tI|?k(D  
    % 8Gzc3  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike UM(tM9  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) jxU1u"WU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) O6NgI2[O  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 "~0m_brf  
    %   for all p. Q<3=s6@T  
    % 47ra`*  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ~0,Utqy  
    %   Zernike functions (order N<=7).  In some disciplines it is tI0d!8K  
    %   traditional to label the first 36 functions using a single mode Xi^3o  
    %   number P instead of separate numbers for the order N and azimuthal S H2|xn  
    %   frequency M. 4d#w}  
    % Z|K+{{C  
    %   Example: l69&-Nyg  
    % JziuwL5,  
    %       % Display the first 16 Zernike functions N@lTn}U  
    %       x = -1:0.01:1; 9"Oz-!Y4  
    %       [X,Y] = meshgrid(x,x); k3h,c;  
    %       [theta,r] = cart2pol(X,Y); A9' [x7N  
    %       idx = r<=1; 1{i)7 :Y  
    %       p = 0:15; I&?(=i)N  
    %       z = nan(size(X)); 47.c  
    %       y = zernfun2(p,r(idx),theta(idx)); jFY6}WY)}7  
    %       figure('Units','normalized') (lq7 ct  
    %       for k = 1:length(p) kRo dC(f @  
    %           z(idx) = y(:,k); '^)Ve:K-.  
    %           subplot(4,4,k) HgPRz C  
    %           pcolor(x,x,z), shading interp YhYcqE8  
    %           set(gca,'XTick',[],'YTick',[]) 1OJD!juL$  
    %           axis square Fk@A;22N  
    %           title(['Z_{' num2str(p(k)) '}']) +b"RZ:tKp  
    %       end +e?mKLw14  
    % d0$dQg  
    %   See also ZERNPOL, ZERNFUN. SIv8EMGo  
    SN+B8*!  
    %   Paul Fricker 11/13/2006 QlmZBqK}&  
    GO{o #}  
    ,e{(r0  
    % Check and prepare the inputs: NWWag}  
    % ----------------------------- L1A0->t  
    if min(size(p))~=1 \]ouQR.t@\  
        error('zernfun2:Pvector','Input P must be vector.') H=Rqr  
    end X~|P  
    ]L#6'|W  
    if any(p)>35 ~L$B]\/A5  
        error('zernfun2:P36', ... W`_pjld  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... =!u9]3)  
               '(P = 0 to 35).']) =<mpZ'9gW  
    end :+,>0%  
    d MQ]=  
    % Get the order and frequency corresonding to the function number: bh9rsRb}O  
    % ---------------------------------------------------------------- to{/@^ D  
    p = p(:); 4+%;eY.A  
    n = ceil((-3+sqrt(9+8*p))/2); sk !92mQ  
    m = 2*p - n.*(n+2); R|aA6} /I  
    37GJ}%Qs  
    % Pass the inputs to the function ZERNFUN: 8Q&.S)hrN  
    % ---------------------------------------- zK`fX  
    switch nargin Gh}k9-L  
        case 3 w:xLg.Eq6  
            z = zernfun(n,m,r,theta); 7KIOI,qb6  
        case 4 WM$)T6M  
            z = zernfun(n,m,r,theta,nflag); ^% y<7>%  
        otherwise #v!(uuq,  
            error('zernfun2:nargin','Incorrect number of inputs.') "{>I5<:t  
    end NX7(;02  
    Lt ; !q b.  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Wy^43g38'p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 'Gwa[ |6i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of )zw}+z3st  
    %   order N and frequency M, evaluated at R.  N is a vector of rN6 @=uB  
    %   positive integers (including 0), and M is a vector with the mNkS!(L6  
    %   same number of elements as N.  Each element k of M must be a mXZOkx{  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) JqWMO!1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is XE8~R5  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix r,}U-S.w  
    %   with one column for every (N,M) pair, and one row for every :NB|r  
    %   element in R. hKq <e%oVH  
    % q~*3Bk~  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9y=$ |"<(  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Mazjn?f  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to d>"t* >i]>  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *&p`8:  
    %   for all [n,m]. "=)i'x"0"  
    % (ov=D7>t0  
    %   The radial Zernike polynomials are the radial portion of the o6f^DG3*  
    %   Zernike functions, which are an orthogonal basis on the unit .#n1p:}[  
    %   circle.  The series representation of the radial Zernike {l&6= z  
    %   polynomials is <3\t J  
    % 5`mRrEA  
    %          (n-m)/2 c +Pg[1-  
    %            __ #PYTFB%  
    %    m      \       s                                          n-2s =XWew*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r cJ9:XWW  
    %    n      s=0 HfN-WYiR  
    % kIS&! V  
    %   The following table shows the first 12 polynomials. Xh==F:  
    % c-nBB  
    %       n    m    Zernike polynomial    Normalization pQ0yZpN%;  
    %       --------------------------------------------- sW%U3,j  
    %       0    0    1                        sqrt(2) b 62 o  
    %       1    1    r                           2 p"^^9'`=  
    %       2    0    2*r^2 - 1                sqrt(6) 0ZQ|W%tS  
    %       2    2    r^2                      sqrt(6) + >o/Ob  
    %       3    1    3*r^3 - 2*r              sqrt(8) F5Ce:+h  
    %       3    3    r^3                      sqrt(8) ju8mO&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) =IBdnEz:M  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) dP0!?J Y  
    %       4    4    r^4                      sqrt(10) 0Eq.l<  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ;6aTt2BQ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) x#yL&+'?Mj  
    %       5    5    r^5                      sqrt(12) Alh"G6  
    %       --------------------------------------------- ;w1?EdaO  
    % x9r5 ;5TI  
    %   Example: Nx4_Oc^hY  
    % .E:QZH'M  
    %       % Display three example Zernike radial polynomials 7NG^X"N{Ul  
    %       r = 0:0.01:1; \~ O6S`,  
    %       n = [3 2 5]; cWIX!tc8  
    %       m = [1 2 1]; e"en ma\_  
    %       z = zernpol(n,m,r); Q7]:vs)%  
    %       figure !Dp4uE:Pq  
    %       plot(r,z) s]Z/0:`  
    %       grid on ,ZjbbBZ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') !?B9 0(  
    % yBO88rfh>  
    %   See also ZERNFUN, ZERNFUN2. D6Ov]E:fa  
    C/dqCUX:  
    % A note on the algorithm. kK!An!9C  
    % ------------------------ Eugt~j3  
    % The radial Zernike polynomials are computed using the series ,vP9oY[n  
    % representation shown in the Help section above. For many special ) ^PY-~o[  
    % functions, direct evaluation using the series representation can Vf6lu)Z c1  
    % produce poor numerical results (floating point errors), because 88Yp0T<1  
    % the summation often involves computing small differences between R:YX{Tq  
    % large successive terms in the series. (In such cases, the functions o2?[*pa  
    % are often evaluated using alternative methods such as recurrence @V)k*h3r+  
    % relations: see the Legendre functions, for example). For the Zernike qNER 6  
    % polynomials, however, this problem does not arise, because the h &9Ld:p  
    % polynomials are evaluated over the finite domain r = (0,1), and R7cY$ K{j  
    % because the coefficients for a given polynomial are generally all FCQIfJ#  
    % of similar magnitude. ' U{?"FP  
    % 7dI+aJ  
    % ZERNPOL has been written using a vectorized implementation: multiple R(@7$  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ]od]S 8$5  
    % values can be passed as inputs) for a vector of points R.  To achieve 7QL>f5Q  
    % this vectorization most efficiently, the algorithm in ZERNPOL [r_,BH\nu  
    % involves pre-determining all the powers p of R that are required to 3EB8ls2  
    % compute the outputs, and then compiling the {R^p} into a single k!O#6Z  
    % matrix.  This avoids any redundant computation of the R^p, and |0n h  
    % minimizes the sizes of certain intermediate variables. cl{x5>.'#  
    % }K9Vr!  
    %   Paul Fricker 11/13/2006 {y=H49  
    {6'5K U*RH  
    : :8UVLX  
    % Check and prepare the inputs: {c|nIwdB  
    % ----------------------------- > taT;[Oa  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]hTYh^'e  
        error('zernpol:NMvectors','N and M must be vectors.') x, a[ p\1  
    end 9ET2uDZpL  
    *>rpcS<l  
    if length(n)~=length(m) 2S}%r4$n}  
        error('zernpol:NMlength','N and M must be the same length.') 6N\~0d>5m  
    end "?lirOD  
    |{cdXbr  
    n = n(:); Hk8:7"4Q  
    m = m(:); bmna*!l^M  
    length_n = length(n); 3JEH sYxs  
    YnuC<y &p  
    if any(mod(n-m,2)) LlL\7?_;  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 3WS`,}  
    end Ta?#o  
    t*y4)I !gR  
    if any(m<0) ~\DC )  
        error('zernpol:Mpositive','All M must be positive.') ~ C6< 75  
    end l*("[?>I  
    U#1T HO`  
    if any(m>n) ^CI.F.#X|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') c`mJrS:  
    end T^S|u8f  
    3G8BYP  
    if any( r>1 | r<0 ) C*ZgjFvB  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') |f'U_nE#R/  
    end W&}YM b  
    %l[Cm4  
    if ~any(size(r)==1) xZPSoxu  
        error('zernpol:Rvector','R must be a vector.') Q bfm*JP~  
    end kmNY ;b6Y$  
    Y }'C'PR  
    r = r(:); Tz+2g&+  
    length_r = length(r); I>bLgt]u3  
    tc\LK_@$/F  
    if nargin==4 %~J90a  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); FyJI@PZdI-  
        if ~isnorm uDK`;o'F  
            error('zernpol:normalization','Unrecognized normalization flag.') I:u xj%  
        end $iDatQ[  
    else #B"ki{Se*  
        isnorm = false; Y1+4ppZ  
    end m7z/@b[  
    rw8O<No4.o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,ZV<o!\  
    % Compute the Zernike Polynomials cQzd0X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |OF<=GGO+  
    QE)I7(  
    % Determine the required powers of r: @5\OM#WT~&  
    % ----------------------------------- 6Bmv1n[X^h  
    rpowers = []; HI#}M|4n  
    for j = 1:length(n) %>Z=#1h/a  
        rpowers = [rpowers m(j):2:n(j)]; mLPQ5`_  
    end wd~e3%JM  
    rpowers = unique(rpowers); WW0N"m'  
    X}0NeG^'O  
    % Pre-compute the values of r raised to the required powers, 1sYwFr5  
    % and compile them in a matrix: =r3Yt9  
    % ----------------------------- Thn-8DT  
    if rpowers(1)==0 p*_g0_^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); a36n}R4Q  
        rpowern = cat(2,rpowern{:}); LTS3[=AB  
        rpowern = [ones(length_r,1) rpowern]; .hn{m9|U  
    else Q/\ <rG4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [{6]iJ  
        rpowern = cat(2,rpowern{:}); %Gl,V5z&  
    end 4?><x[l2{  
    i|Lir{vW  
    % Compute the values of the polynomials: eT[ ,k[#q  
    % -------------------------------------- s!nFc{  
    z = zeros(length_r,length_n); :m_0WT  
    for j = 1:length_n ,[,+ _A  
        s = 0:(n(j)-m(j))/2; o B_c6]K  
        pows = n(j):-2:m(j); "'94E,W  
        for k = length(s):-1:1 mV@.JFXKP  
            p = (1-2*mod(s(k),2))* ... -5>K pgXo\  
                       prod(2:(n(j)-s(k)))/          ... JMuUj_^}7  
                       prod(2:s(k))/                 ... J [2;&-@  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... I"#jSazk  
                       prod(2:((n(j)+m(j))/2-s(k))); W:4]-i?2  
            idx = (pows(k)==rpowers); $n(?oyf  
            z(:,j) = z(:,j) + p*rpowern(:,idx); g % q7  
        end S"CsY2;  
         "^;'.~@e8  
        if isnorm }/x `w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); uh\I'  
        end QKCc5  
    end Ik>sd@X*|  
    KqcelI?-I  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  5>KAVtYvc  
    Lt@4F   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 miZ{V%  
    -66|Y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)