非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 3Hg}G#]WS
function z = zernfun(n,m,r,theta,nflag) cy+EJq I
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (RtjD`e}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }M+2 ,#l
% and angular frequency M, evaluated at positions (R,THETA) on the g\O&gNq<)-
% unit circle. N is a vector of positive integers (including 0), and ^>H+#@R
% M is a vector with the same number of elements as N. Each element LG6k
KG
% k of M must be a positive integer, with possible values M(k) = -N(k)
;p U=>
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 'CkN
% and THETA is a vector of angles. R and THETA must have the same 60`4
_Uy]_
% length. The output Z is a matrix with one column for every (N,M) ;?`l1:C5)
% pair, and one row for every (R,THETA) pair. <Z6tRf;B
% jh|4Y(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fL7u419=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?*ni5\y5o
% with delta(m,0) the Kronecker delta, is chosen so that the integral oy?>e1Sy*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5/{";k)L+
% and theta=0 to theta=2*pi) is unity. For the non-normalized #Lq{_Y
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x22:@Ot6
% @T6Z3Zj}
% The Zernike functions are an orthogonal basis on the unit circle. Gd08RW
% They are used in disciplines such as astronomy, optics, and OalBr?^
% optometry to describe functions on a circular domain. QoVRZ $!p
% iH#b"h{w
% The following table lists the first 15 Zernike functions. 9^5D28y
% 6-w'? G37
% n m Zernike function Normalization ZO !
% -------------------------------------------------- Q:#Kt@W
% 0 0 1 1 &D[pX|!
% 1 1 r * cos(theta) 2 !^/Mn
% 1 -1 r * sin(theta) 2 6uAo0+-k
% 2 -2 r^2 * cos(2*theta) sqrt(6) DIU9Le
% 2 0 (2*r^2 - 1) sqrt(3) sivd@7r\Fa
% 2 2 r^2 * sin(2*theta) sqrt(6) d'yA"b]
% 3 -3 r^3 * cos(3*theta) sqrt(8) az=(6PX
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) I
)LO@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ?(!<m'jEy
% 3 3 r^3 * sin(3*theta) sqrt(8) /#,3JU$w
% 4 -4 r^4 * cos(4*theta) sqrt(10) H"g$qSx
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) q:9#Vcw
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) clwJ+kku@
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?<#2raH-
% 4 4 r^4 * sin(4*theta) sqrt(10) i(k]}Di:
% -------------------------------------------------- c T!L+zg
% E9yBa=#*c
% Example 1: v\UwL-4[
% {_]'EK/w
% % Display the Zernike function Z(n=5,m=1) F$QAWs
% x = -1:0.01:1; +C(v4@=nd
% [X,Y] = meshgrid(x,x); t#0/_tD
% [theta,r] = cart2pol(X,Y); $m:4'r
% idx = r<=1; %!>~2=Q2*
% z = nan(size(X)); $YyN-C
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 2+Tu"oG;rB
% figure nnZ|oEF
% pcolor(x,x,z), shading interp 1{.=T&eG#
% axis square, colorbar Viu+#J;l
% title('Zernike function Z_5^1(r,\theta)') +gQn,HX
% >+ZD 6l/
% Example 2: ( _{\tgSm
% onuhNn_=>
% % Display the first 10 Zernike functions MR/8
% x = -1:0.01:1; {Y%X
% [X,Y] = meshgrid(x,x); aFj)s?$4]K
% [theta,r] = cart2pol(X,Y); 06&:X^
% idx = r<=1; 2A+I8/zRG
% z = nan(size(X)); .Fy f4^0
% n = [0 1 1 2 2 2 3 3 3 3]; a09]5>*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 'e3[m
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |^ao,3h#
% y = zernfun(n,m,r(idx),theta(idx)); oM@X)6P_
% figure('Units','normalized') |Q'l&Gt6
% for k = 1:10 zLs[vg.(
% z(idx) = y(:,k); H@uCbT
% subplot(4,7,Nplot(k)) S'I{'jP5
% pcolor(x,x,z), shading interp {ER%r'(4Z
% set(gca,'XTick',[],'YTick',[]) 8qEK6-
% axis square jZm57{C#*?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j]#-DIL
% end ?T\m
V}
% K,>D%mJ
% See also ZERNPOL, ZERNFUN2. ;btH[a iV
[>'P
% Paul Fricker 11/13/2006 S=^a''bg
LN8V&'>
?w}E/(r
% Check and prepare the inputs: Fn8d;%C
% ----------------------------- ?s<'3I{F`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CL^MIcq?
error('zernfun:NMvectors','N and M must be vectors.') WH.5vrY Z
end .Qpqbp 8
0YsC@r47wL
if length(n)~=length(m) G?Y2 b
error('zernfun:NMlength','N and M must be the same length.') HS|X//]
end 3q=A35*LT>
!!=%ty
n = n(:); J^@0Ff;=5^
m = m(:); u/5I;7cb
if any(mod(n-m,2)) DR`d^aBWQ
error('zernfun:NMmultiplesof2', ... *3hqz<p4:
'All N and M must differ by multiples of 2 (including 0).') e,_b
end EHT5Gf
=H_|007C
if any(m>n) rNL*(PN}lO
error('zernfun:MlessthanN', ... ELp @/c=Wr
'Each M must be less than or equal to its corresponding N.') $vS`w4Y
end BfLh%XC
=o5ZcC
if any( r>1 | r<0 ) .)W'{2J-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') "+js7U-
end "YlN_U
1;p'2-x
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4c2*)x$@
error('zernfun:RTHvector','R and THETA must be vectors.') .[1"Med J
end ~M 6^%
&Bbs\
;
r = r(:); -WIT0F4o;
theta = theta(:); ^ ~HV`s
length_r = length(r); DRLX0Ml]\
if length_r~=length(theta) N\IdZX%u
error('zernfun:RTHlength', ... fiSc\C ~
'The number of R- and THETA-values must be equal.') g?ID}E~<
end X[:&p|g]
.c'EXuI7),
% Check normalization: W@w#A]
% -------------------- +_gPZFpbx
if nargin==5 && ischar(nflag) f i-E_
isnorm = strcmpi(nflag,'norm'); Be{7Rj v
if ~isnorm Oo<^~d2=
error('zernfun:normalization','Unrecognized normalization flag.') .~0A*a
end 8CxC`*L(
else lm}mXFf#
isnorm = false; d%Zt]1$
end dA[Z\
00'R1q4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e,qc7BJzK
% Compute the Zernike Polynomials >3
Q%Yn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U}7a;4?
7WG"_A~V
% Determine the required powers of r: q<rB(j-(
% ----------------------------------- 0+b1R}!2
m_abs = abs(m); qZlb?b"
rpowers = []; Z
4uft
for j = 1:length(n) B98&JoS
rpowers = [rpowers m_abs(j):2:n(j)]; &ZgB b
end _f%Wk>A4
rpowers = unique(rpowers); v;X'4/M
qG=9zp4y?Y
% Pre-compute the values of r raised to the required powers, n83,MV?-
% and compile them in a matrix: N^A&DrMF
% ----------------------------- ,~t{Q*#_h
if rpowers(1)==0 8V%(SV
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +Sk ;
rpowern = cat(2,rpowern{:}); 6X5`npf
rpowern = [ones(length_r,1) rpowern]; ;2
oR?COW
else k41lw^Jh
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a!}.l< )
rpowern = cat(2,rpowern{:}); ^1M :wXr
end _8 b)Xx@5
:\1:n
% Compute the values of the polynomials: ~qm<~T_0
% -------------------------------------- ;Y#~2eYCz
y = zeros(length_r,length(n)); T_O\L[]p*
for j = 1:length(n) @2-Eky
s = 0:(n(j)-m_abs(j))/2; ,KF>PoySA
pows = n(j):-2:m_abs(j); }zi:nSpON
for k = length(s):-1:1 r*<)QP^B~
p = (1-2*mod(s(k),2))* ... uYAPGs#k
prod(2:(n(j)-s(k)))/ ... ]%m0PU#
prod(2:s(k))/ ... I~EQuQ >=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mXT{)pU
prod(2:((n(j)+m_abs(j))/2-s(k))); |D%i3@P&ZR
idx = (pows(k)==rpowers); Tm@d;O'E1
y(:,j) = y(:,j) + p*rpowern(:,idx); >(Jy=m?
end ,2vPmff
>}h/$bU
if isnorm CXGq>cQ=d
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ]L4B
end
.Ya]N+r*
end ^EE3E'
% END: Compute the Zernike Polynomials uBw1Xud[YI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8'?V5.6?|~
?"\`u;
% Compute the Zernike functions: =1fO"|L
% ------------------------------ EZ*FGt6(
idx_pos = m>0; =YkJS%)M)
idx_neg = m<0; "0Uh(9Fv
GEXT8f(7
z = y; ET1/oG<@
if any(idx_pos) HJ]\VP9Zb
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mV0F^5
end lq=|=
if any(idx_neg) M0DdrL/
L
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |&WeXVH E
end x F7C1g(
4]RGLN
% EOF zernfun