非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 lhU# /}Z
function z = zernfun(n,m,r,theta,nflag) `x{gF8GV
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %iv'/B8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G$b4`wt
% and angular frequency M, evaluated at positions (R,THETA) on the {[+gM?
% unit circle. N is a vector of positive integers (including 0), and \ZB;K~BV&
% M is a vector with the same number of elements as N. Each element OoNAW<
% k of M must be a positive integer, with possible values M(k) = -N(k) +FR"Gt$g
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, hAdEq$
% and THETA is a vector of angles. R and THETA must have the same IcZ 'KV
% length. The output Z is a matrix with one column for every (N,M) ~S9nLb:O{
% pair, and one row for every (R,THETA) pair. >KJ]\`2>)c
% [nrP;
_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )d~Mag+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PhQD}|S
% with delta(m,0) the Kronecker delta, is chosen so that the integral ;DTNw=
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {ig@Iy~DT
% and theta=0 to theta=2*pi) is unity. For the non-normalized _%]H}N Q
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x$E
l7=.
% qCMcN<:>
% The Zernike functions are an orthogonal basis on the unit circle. -h}J%UV
% They are used in disciplines such as astronomy, optics, and JcP'+@X"
% optometry to describe functions on a circular domain. Velmq'n
% V4>P8cE
% The following table lists the first 15 Zernike functions. *HRRv.iQ
% Cnolka"
% n m Zernike function Normalization HFazqQ[
% -------------------------------------------------- j.K yPWO
% 0 0 1 1 Q.Acmht#
% 1 1 r * cos(theta) 2
O>3'ylBQ
% 1 -1 r * sin(theta) 2 >,v~,<3
i
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,rKN/{M!
% 2 0 (2*r^2 - 1) sqrt(3)
>Pu*MD;
% 2 2 r^2 * sin(2*theta) sqrt(6) C{D2mSS
% 3 -3 r^3 * cos(3*theta) sqrt(8) LLE~V~j
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) )I#kG{z|P;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) d dPJx<
% 3 3 r^3 * sin(3*theta) sqrt(8) g 0L 4
% 4 -4 r^4 * cos(4*theta) sqrt(10)
<j>@Fg#q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dj|S
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) khR3[ju {^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d7&PbITN
% 4 4 r^4 * sin(4*theta) sqrt(10) i0P+,U
% -------------------------------------------------- |lv4X}H
% &Fi8@0Fh
% Example 1: VYwaU^
% E*%{Nn
% % Display the Zernike function Z(n=5,m=1) QqDF_
% x = -1:0.01:1; [Xrq+O,
% [X,Y] = meshgrid(x,x); N P"z
% [theta,r] = cart2pol(X,Y); buoz La
% idx = r<=1; -'nx7wnj2
% z = nan(size(X)); _YY)-H
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Bw$-*FYE
% figure Rm
RV8 WJ6
% pcolor(x,x,z), shading interp ^~0r+w61
% axis square, colorbar Q -+jG7vT
% title('Zernike function Z_5^1(r,\theta)') ?z6C8T~+
% kxP6#8*:
% Example 2: WM#!X!Vo
% |!|`Je3 K
% % Display the first 10 Zernike functions 8c~H![2u
% x = -1:0.01:1; o^ 4+eE
% [X,Y] = meshgrid(x,x); M]W4S4&Y=
% [theta,r] = cart2pol(X,Y); 29GiNy+ob
% idx = r<=1; M_e!s}F
% z = nan(size(X)); 1v Thb
% n = [0 1 1 2 2 2 3 3 3 3]; 4
qnQF]4
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8177x7UG2[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; {r"s.|n
% y = zernfun(n,m,r(idx),theta(idx)); }N[sydL
% figure('Units','normalized')
ql8:s>1T
% for k = 1:10 C{Fo^-3
% z(idx) = y(:,k); 4e:hKv,+4
% subplot(4,7,Nplot(k)) }"T:z{n
% pcolor(x,x,z), shading interp 5mV'k"Om#"
% set(gca,'XTick',[],'YTick',[]) 6QV/8IX
% axis square q"Xls(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) acH.L_B:
% end [7B&<zY/?
% ka5>9E
% See also ZERNPOL, ZERNFUN2. 5ZSw0A(w
/v8qT'$^
% Paul Fricker 11/13/2006 7}*5Mir p
0QPipuP
_V;J7Vz
% Check and prepare the inputs: s"'1|^od
% ----------------------------- eI[z%j[Y*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b"gYNGgX
error('zernfun:NMvectors','N and M must be vectors.') LC}]6
end jJf|Ok:G{
T4UY%E!0
if length(n)~=length(m) h$k(|/+
error('zernfun:NMlength','N and M must be the same length.') E>ev /6ox
end 464Z0C
c" l~=1Dr
n = n(:); &O'yhAP] j
m = m(:); bNC1[GG[
if any(mod(n-m,2)) c(~M<nL0
error('zernfun:NMmultiplesof2', ... n;MoMGnPh,
'All N and M must differ by multiples of 2 (including 0).') iD\joh-C
end cx$Oh`-Car
9uq|
VU5
if any(m>n) | zA ey\
error('zernfun:MlessthanN', ... )TWf/Lcp
'Each M must be less than or equal to its corresponding N.') )j$Bo{
end \/5 8#
0
cQf_o
if any( r>1 | r<0 ) |k^X!C 0
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A[b'MNsv
end A(C3kISM
vEb~QX0~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zR/ATm]9
error('zernfun:RTHvector','R and THETA must be vectors.') L4dbrPE*0
end 2Zl65
Mn=_lhWK
r = r(:); OZ-F+#d
theta = theta(:); Ji7A9Hk
length_r = length(r); :O{ :;X)
if length_r~=length(theta) E{FN sa
error('zernfun:RTHlength', ... Ao,lEjN I
'The number of R- and THETA-values must be equal.') 6L4B$'&KQZ
end *BF1Sso
{ u;ntDr
% Check normalization: _x:K%1_[
% -------------------- dx~F [
if nargin==5 && ischar(nflag) Wl*\kQ}U
isnorm = strcmpi(nflag,'norm'); 6=zme6D
if ~isnorm R; IB o
error('zernfun:normalization','Unrecognized normalization flag.') lKm?Xu'yH
end aWit^dp
else ZJx:?*0a
isnorm = false; s*VZLKO
end `W-:@?PmQx
ld3,)ZY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tvg7mU]l
% Compute the Zernike Polynomials `T mIrc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v"s}7trWV
pIh@!C
% Determine the required powers of r: H
kg0;)
% ----------------------------------- 1e&`m~5K+
m_abs = abs(m); +xWT)h/
rpowers = []; 'SuYNA)
for j = 1:length(n) pE=wP/#
rpowers = [rpowers m_abs(j):2:n(j)]; o`&idn|,
end C[[z3tn
rpowers = unique(rpowers); ?.4u'Dkn=
ov|s5yH8e
% Pre-compute the values of r raised to the required powers, [@/G?sAQm\
% and compile them in a matrix: JiRW|+`pe
% ----------------------------- Hiw{1E:rW
if rpowers(1)==0 G;tIhq[$Vb
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); DB?[h<^m
rpowern = cat(2,rpowern{:}); n9)/(=)>*
rpowern = [ones(length_r,1) rpowern]; zJ#q*2A(Z
else `T}e3l
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R^K<u#>K
rpowern = cat(2,rpowern{:}); <8H`y(S
end $ccI(J`zux
C=.
% Compute the values of the polynomials: $biCm$a
% -------------------------------------- u[cbRn,W
y = zeros(length_r,length(n)); ptUnV3h
for j = 1:length(n) }|x]8zL8G
s = 0:(n(j)-m_abs(j))/2; AN^;~m ^
pows = n(j):-2:m_abs(j); 9g>ay-W[(
for k = length(s):-1:1 'a4xi0**I
p = (1-2*mod(s(k),2))* ... br0gB3r
prod(2:(n(j)-s(k)))/ ... ~(FyGB}
prod(2:s(k))/ ... 0C3CqGP
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }J:~}?^%n
prod(2:((n(j)+m_abs(j))/2-s(k))); W~gFY#w
idx = (pows(k)==rpowers); ]T+{]t
y(:,j) = y(:,j) + p*rpowern(:,idx); b`1P%OjC
end c1Dhx,]ad
+]B^*99
if isnorm UP#]n
69y
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6n<:ph,h;
end eoow]me
end "&7v.-Yk(
% END: Compute the Zernike Polynomials /\C9FGS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ][D<J0
IUI>/87u
% Compute the Zernike functions: /SZsXaC '
% ------------------------------ tV%M2DxS
idx_pos = m>0; W4T>@b.
idx_neg = m<0; WtdWD_\%Y\
Z~$fTW6g
z = y; w!tQU9+*
if any(idx_pos) +\Rp N
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U
JY`P4(
end yl)}1DPP
if any(idx_neg) skr^m%W
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RaG-9gujI
end 0;o`7f
hO\_RhsRy?
% EOF zernfun