非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 x'_I{$C&
function z = zernfun(n,m,r,theta,nflag) WCT}OiLsL
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. MIvAugUOl
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?WE#%W7U
% and angular frequency M, evaluated at positions (R,THETA) on the 2iHD$tw
% unit circle. N is a vector of positive integers (including 0), and 0FmYM@Wc
% M is a vector with the same number of elements as N. Each element O\;Z4qn2=
% k of M must be a positive integer, with possible values M(k) = -N(k) U8L%=/N>B
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, hI*gw3V
% and THETA is a vector of angles. R and THETA must have the same braHWC'VYg
% length. The output Z is a matrix with one column for every (N,M) HbQ `b
% pair, and one row for every (R,THETA) pair. VqqI%[!Aw
% i:W.,w%8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike : xI SS
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), S4uX utd
% with delta(m,0) the Kronecker delta, is chosen so that the integral /tI8JXcUK
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q eLfO
% and theta=0 to theta=2*pi) is unity. For the non-normalized x? 3U3\W
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _4F(WC co
% h<2o5c|
% The Zernike functions are an orthogonal basis on the unit circle. P3X;&iT
% They are used in disciplines such as astronomy, optics, and $Kgw6
% optometry to describe functions on a circular domain. AE!DftI
% gV@FT|j!i
% The following table lists the first 15 Zernike functions. ZaJg$
% @NlE2s6a
% n m Zernike function Normalization /.r|ron:e
% -------------------------------------------------- mxk :P
% 0 0 1 1 gSQq
% 1 1 r * cos(theta) 2 _7r<RZ
% 1 -1 r * sin(theta) 2 0o~? ]C
% 2 -2 r^2 * cos(2*theta) sqrt(6) Z18T<e
% 2 0 (2*r^2 - 1) sqrt(3) 0nUcUdIf+
% 2 2 r^2 * sin(2*theta) sqrt(6) l&l&eOE
% 3 -3 r^3 * cos(3*theta) sqrt(8) :VpRpj4f
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _u TaN
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z .6M~
% 3 3 r^3 * sin(3*theta) sqrt(8) P{j2'gg3
% 4 -4 r^4 * cos(4*theta) sqrt(10) A\p'\@f
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,:POo^!/fT
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) xl [3*K
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E~vM$$O$
% 4 4 r^4 * sin(4*theta) sqrt(10) ;hb;%<xqT
% -------------------------------------------------- R6l`IlG`
% QND{3Q
% Example 1: 5{nERKaPf
% xR;>n[6
% % Display the Zernike function Z(n=5,m=1) JDPn
% x = -1:0.01:1; EH{m~x[Ei
% [X,Y] = meshgrid(x,x); BSt^QH-'
% [theta,r] = cart2pol(X,Y); j"6r]nc&
% idx = r<=1; ybLl[K(D=
% z = nan(size(X)); KMC]<
% z(idx) = zernfun(5,1,r(idx),theta(idx)); V4I5PPz~
% figure 4/UY*Us&
% pcolor(x,x,z), shading interp
UhKC:<%
% axis square, colorbar 0#1hkJ"
% title('Zernike function Z_5^1(r,\theta)') i) v
]
% U-~cVk+LI
% Example 2: mQEE?/xX;
% "Bl]_YPv
% % Display the first 10 Zernike functions n;&08M5an}
% x = -1:0.01:1; vbEAd)*S
% [X,Y] = meshgrid(x,x); }j<:hDQP
% [theta,r] = cart2pol(X,Y); SFhi]48&V
% idx = r<=1; cV]c/*zA
% z = nan(size(X)); 1;_tu
% n = [0 1 1 2 2 2 3 3 3 3]; SSG57N-T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; B(tLV9B3Q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; x\(@v
% y = zernfun(n,m,r(idx),theta(idx)); 7A:k
% figure('Units','normalized') zT$-%
% for k = 1:10 8<V6W F`e
% z(idx) = y(:,k); 38ac~1HjE
% subplot(4,7,Nplot(k)) matW>D;J
% pcolor(x,x,z), shading interp l~
3 H"
% set(gca,'XTick',[],'YTick',[]) r'bctFsD
% axis square $sF'Sr{)y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ogD 8qrZ6J
% end pJ8;7u
% &1nZ%J9
% See also ZERNPOL, ZERNFUN2. G<1)NT\u
a,eR'L<"*-
% Paul Fricker 11/13/2006 ^a+W!
NTq#'O) f
x=-dv8N?
% Check and prepare the inputs: R1'tW=
% ----------------------------- Qm9r>m6p@N
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X}j WNN
error('zernfun:NMvectors','N and M must be vectors.') HC1jN8WDY
end \
a}6NIo
_8zZ.~)
if length(n)~=length(m)
HJ5 Ktt
error('zernfun:NMlength','N and M must be the same length.') (!'=?B "
end (]cM;
wWq(|"
n = n(:); iakqCjV
m = m(:); 2=R}u-@6p
if any(mod(n-m,2)) ,orq*Wd
error('zernfun:NMmultiplesof2', ... {B;<R1
'All N and M must differ by multiples of 2 (including 0).') 5&Y%N(
end h>0R!Rl8
Y9}5&#
if any(m>n) dP[vXhc
error('zernfun:MlessthanN', ... %w9/gD
'Each M must be less than or equal to its corresponding N.') &P2tzY'
end 3)D' Yx
^)i5.o\
if any( r>1 | r<0 ) K!AW8FnHkZ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +-%&,>R
end UQX.
whH_<@!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /-C`*P=:u
error('zernfun:RTHvector','R and THETA must be vectors.') =`&7pYd,
end V1yY>
2il)@&^
r = r(:); f{i~hVF
theta = theta(:); &-5`Oln
length_r = length(r); ^4G%*-
if length_r~=length(theta) p*'%<3ml
error('zernfun:RTHlength', ... !'
}
'The number of R- and THETA-values must be equal.') OEZ`5"j
end DJWm7 t
k4HE'WY
% Check normalization: rnOg;|u8
% -------------------- T
O]wD^`
if nargin==5 && ischar(nflag) Q4H(JD1f)
isnorm = strcmpi(nflag,'norm'); Xl/SDm_p
if ~isnorm 0c-.h
error('zernfun:normalization','Unrecognized normalization flag.') /m"#uC!\
end y3Z\ Y[
else 7O.?I#
76
isnorm = false; bU3P;a(
end "d5nVO/
p1BMQ?=($
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]J '#KT{
% Compute the Zernike Polynomials a+-X\qN
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v47S9Vm+
B@+&?%ub:
% Determine the required powers of r: |>'.(
% ----------------------------------- (GCe D-
m_abs = abs(m);
Wx8oTN
rpowers = []; 4uX|2nJ2!;
for j = 1:length(n) B2kKEMdGg
rpowers = [rpowers m_abs(j):2:n(j)]; w'r?)WW$
end R(^2+mV?
rpowers = unique(rpowers); HL`=zB%
H{d;,KfX
% Pre-compute the values of r raised to the required powers, Hxr)`i46
% and compile them in a matrix: )%zOq:{\5
% ----------------------------- 7u=R5
if rpowers(1)==0 |T;]%<O3E
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 78MQoG<
rpowern = cat(2,rpowern{:}); mVs<XnA47
rpowern = [ones(length_r,1) rpowern]; ,N1I\f
else !
^ DQX=1
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W"meH~[Cp
rpowern = cat(2,rpowern{:}); 5R%4fzr&g
end #Fwf]{J
H6oU Ne
% Compute the values of the polynomials: NZQl#ZJH:
% -------------------------------------- L,/(^0;
y = zeros(length_r,length(n)); ,_iR
for j = 1:length(n) ! N!A%
s = 0:(n(j)-m_abs(j))/2; l ~C=yP(~
pows = n(j):-2:m_abs(j); O;6am++M@
for k = length(s):-1:1 3UNmUDl[~
p = (1-2*mod(s(k),2))* ... /QW-#K|S&
prod(2:(n(j)-s(k)))/ ... \i.Yhl:O
prod(2:s(k))/ ... ?= RC?K
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0|chRX
prod(2:((n(j)+m_abs(j))/2-s(k))); bd;?oYV~
idx = (pows(k)==rpowers); K;'s+ZD
y(:,j) = y(:,j) + p*rpowern(:,idx); /@O$jlX5I
end 05ZF>`g*
C[JGt9{Y
if isnorm P$H9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W1\F-:4L@
end AdL>?SG%
end U{Xx)l/o
% END: Compute the Zernike Polynomials Nu[0X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DQ`\HY
%NH{%K,
% Compute the Zernike functions: -L6V)aK&
% ------------------------------ aWk1D.
idx_pos = m>0; O?OG`{k
idx_neg = m<0; "/g\?Nce
17ol %3 M
z = y; {x\lK;
if any(idx_pos) tPz!C&.=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rk)h_zN
end ~a06x^=j
if any(idx_neg) n:P++^ j
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9k*1_
end qZB}}pM#
><DXT nt'x
% EOF zernfun