非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 I~Q
G
function z = zernfun(n,m,r,theta,nflag) 9@>Q7AUCQ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0]xp"xOwW
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Xbu P_U'
% and angular frequency M, evaluated at positions (R,THETA) on the Ya;y@44
% unit circle. N is a vector of positive integers (including 0), and O+"a0:GM
% M is a vector with the same number of elements as N. Each element 9`tSg!YOh
% k of M must be a positive integer, with possible values M(k) = -N(k) heScIe
N^`
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, a FL;E
% and THETA is a vector of angles. R and THETA must have the same .'bhRQY
% length. The output Z is a matrix with one column for every (N,M) 0M!GoqaA
% pair, and one row for every (R,THETA) pair. 1ZY~qP+n+
% +!mEP>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {gb` %J
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /vs79^&
% with delta(m,0) the Kronecker delta, is chosen so that the integral @plh'f}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, SBg|V
% and theta=0 to theta=2*pi) is unity. For the non-normalized g(dReC
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o>HU4O}
% 3fxcH
% The Zernike functions are an orthogonal basis on the unit circle. (_=R<:
% They are used in disciplines such as astronomy, optics, and O!P7Wu
% optometry to describe functions on a circular domain. z) x.6
% :!wl/X
~
% The following table lists the first 15 Zernike functions. Ey)ey-'\
% ~\+Bb8+hpJ
% n m Zernike function Normalization 3F32 /_`
% -------------------------------------------------- :,V&P_
% 0 0 1 1 6w~Cyu4Ov
% 1 1 r * cos(theta) 2 Muyi2F)j
% 1 -1 r * sin(theta) 2 KNjU!Z/4
% 2 -2 r^2 * cos(2*theta) sqrt(6) W5>emx'>
% 2 0 (2*r^2 - 1) sqrt(3) >D%
% 2 2 r^2 * sin(2*theta) sqrt(6) 3_"tds <L
% 3 -3 r^3 * cos(3*theta) sqrt(8) m qwJya
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 54#P
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) c7D{^$L9v
% 3 3 r^3 * sin(3*theta) sqrt(8) kK:U+`+
% 4 -4 r^4 * cos(4*theta) sqrt(10) JCci*F#r
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G5ShheZd
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) EHK+qrym
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4 %V9
% 4 4 r^4 * sin(4*theta) sqrt(10) g(i8HU*{q
% -------------------------------------------------- >[l2KD
% (4|R}jv
% Example 1: Ygc|9}
% [I}z\3Z
%
% % Display the Zernike function Z(n=5,m=1) QD-`jV3
% x = -1:0.01:1; R6TT1Ka3c
% [X,Y] = meshgrid(x,x); &+3RsIlW
% [theta,r] = cart2pol(X,Y); pj$kSS|m6-
% idx = r<=1; @w;$M]o1
% z = nan(size(X)); /D964VR1M\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); I&`aGnr^^
% figure 4s@Tn>%SP
% pcolor(x,x,z), shading interp A0OA7m:~4
% axis square, colorbar bd H+M?k
% title('Zernike function Z_5^1(r,\theta)') }X. Fm'`
% %/
"yt}"|
% Example 2: N 1ydL
% X#HH7V>
% % Display the first 10 Zernike functions }rUAYr~V Z
% x = -1:0.01:1; CY.4 >,
% [X,Y] = meshgrid(x,x); qWf[X'
% [theta,r] = cart2pol(X,Y); (\o4 c0UzK
% idx = r<=1; -/2B fIq
% z = nan(size(X)); j{D tjV8
% n = [0 1 1 2 2 2 3 3 3 3]; w OOu/Y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 0f@9y
% Nplot = [4 10 12 16 18 20 22 24 26 28]; +d7Arg!m
% y = zernfun(n,m,r(idx),theta(idx)); y06xl:iQwF
% figure('Units','normalized') Z}{]/=h
% for k = 1:10 efE=5%O
% z(idx) = y(:,k); } =Xlac_U
% subplot(4,7,Nplot(k)) EwmNgmYq
% pcolor(x,x,z), shading interp I0qJr2[X~
% set(gca,'XTick',[],'YTick',[]) q|0l>DPRp
% axis square jT!?lqr(Rb
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) v7Ps-a)
% end 62MQ+H
% }Q@~_3,UJ
% See also ZERNPOL, ZERNFUN2. uUV"86B_
+25=u|#4r
% Paul Fricker 11/13/2006 R.DUfU"gp
6nREuT'k
A3*(c3
% Check and prepare the inputs: X8ZO
} X
% ----------------------------- G:y+yE4
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '$eJATtC
error('zernfun:NMvectors','N and M must be vectors.') L62%s[
end aGfp"NtL
<EcxNj1
if length(n)~=length(m) e ;^}@X
error('zernfun:NMlength','N and M must be the same length.') ,7k-LAA
end hg#O_4D
>#'?}@FWQN
n = n(:); ~<~
~C#R
m = m(:); hgzNEx%^q
if any(mod(n-m,2)) Dv
L8}dz
error('zernfun:NMmultiplesof2', ... n>7aZ1Qa
'All N and M must differ by multiples of 2 (including 0).') UO#`Ak
end yimK"4!j5A
0TSB<,9a[
if any(m>n) La3rX
error('zernfun:MlessthanN', ... l5~O}`gfh
'Each M must be less than or equal to its corresponding N.') Iqn
(NOq^[
end 2Q\\l @b\
MJrPI a[pN
if any( r>1 | r<0 ) 9_,f)2)~W
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0
x' d^
end sHMO9{[7H
&%GAPs%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y/"t!
error('zernfun:RTHvector','R and THETA must be vectors.') SWY
end nm& pn*1
{qbe
ye!
r = r(:); rGXUV`5Na
theta = theta(:); Sk1t~
length_r = length(r); "a}fwg9Y
if length_r~=length(theta) Hb::;[bm:
error('zernfun:RTHlength', ... Dte5g),R
'The number of R- and THETA-values must be equal.') R&&&RI3{
end =6O*AJ
{:#nrD"
% Check normalization: <<E9MIn_
% -------------------- -u4")V>
if nargin==5 && ischar(nflag) 9jX_Eoxy
isnorm = strcmpi(nflag,'norm'); )p1~Jx( \
if ~isnorm #p55/54ZI
error('zernfun:normalization','Unrecognized normalization flag.') kP^A~ZO.
end mo] l_'
else y+w,j]
isnorm = false; (Nk[ys}%*
end q<!-Anc
QIlZZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a'/i/@h
% Compute the Zernike Polynomials T_=WX_h $
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k.K#i /t
j7Ts&;`[*
% Determine the required powers of r: yz=X{p1
% ----------------------------------- t|i<}2
m_abs = abs(m); .UNV &R0
rpowers = []; o|xZ?#^h
for j = 1:length(n) i}P{{kMJ
rpowers = [rpowers m_abs(j):2:n(j)]; X-kOp9/.
end #vxq|$e
rpowers = unique(rpowers); 4oueLT(zc
gGUKB2)
% Pre-compute the values of r raised to the required powers, >5:O%zQ@
% and compile them in a matrix: $7c,<=
% ----------------------------- 1' v!~*af
if rpowers(1)==0 z\A
),;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); KXK5\#+L
rpowern = cat(2,rpowern{:}); n=C"pH#
rpowern = [ones(length_r,1) rpowern]; dXQ C}JA
else RR
^7/-
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A;RV~!xx
rpowern = cat(2,rpowern{:}); F;8Q`$n
end vr'cR2
VZI!rFac
% Compute the values of the polynomials: J-,ocO
% -------------------------------------- oD9n5/ozo
y = zeros(length_r,length(n)); htR.p7&Tn
for j = 1:length(n) :op_J!;
s = 0:(n(j)-m_abs(j))/2; 3]*1%=~X/
pows = n(j):-2:m_abs(j); ByJPSucD
for k = length(s):-1:1 BLO ]78
p = (1-2*mod(s(k),2))* ... z]+L=+,,
prod(2:(n(j)-s(k)))/ ... /OzoeIt
prod(2:s(k))/ ... SeDk/}/~e
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7#%Pry
prod(2:((n(j)+m_abs(j))/2-s(k))); G%t>Ll``C
idx = (pows(k)==rpowers); 4d4+%5GE
y(:,j) = y(:,j) + p*rpowern(:,idx); bIyg7X)/
end C`ky=
CssE8p>"F
if isnorm *|dK1'Xr
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ix4]^
end u"*DI=pwb
end Z9+fTT
% END: Compute the Zernike Polynomials A8*zB=C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &4S2fWx
`>)Ge](oN
% Compute the Zernike functions: :vG0 l\
% ------------------------------ D\-\U
E/
idx_pos = m>0; -LszaMR}
idx_neg = m<0; qE8aX*A1/
*1<kYrB
z = y; {ptHk<K:)
if any(idx_pos) .E}lAd.Mn
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gb\PubJ
end 3yKmuu!
if any(idx_neg) Tgr,1)T
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %8tE*3iUF
end > ]^'h
0zB[seyE
% EOF zernfun