非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 B# ?2,
function z = zernfun(n,m,r,theta,nflag) JZ%F
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6}T%m?/ }
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N k2uiu
% and angular frequency M, evaluated at positions (R,THETA) on the 9xQ8` 7
% unit circle. N is a vector of positive integers (including 0), and T{<@MK%],d
% M is a vector with the same number of elements as N. Each element &&}5>kg>d
% k of M must be a positive integer, with possible values M(k) = -N(k) [/Z'OV"tU
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, qZJ*J+
% and THETA is a vector of angles. R and THETA must have the same !"J#,e|
% length. The output Z is a matrix with one column for every (N,M) dn\F!
% pair, and one row for every (R,THETA) pair. NoO+xLHw8
% 8>{W:?I
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /plUzy2Yu
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F!&pENQ
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,imvA5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L{LU@.;1
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~J-|,ZMd
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /HuYduGdP
% }#G"!/ZA0:
% The Zernike functions are an orthogonal basis on the unit circle. &U~r}=
% They are used in disciplines such as astronomy, optics, and uT} TSwgp
% optometry to describe functions on a circular domain. T#n1@FgC
% vif8{S
% The following table lists the first 15 Zernike functions. kr(<Y|
% B^_Chj*m
% n m Zernike function Normalization F> QT|
% -------------------------------------------------- N+M&d3H`
% 0 0 1 1 ]rg+nc3
% 1 1 r * cos(theta) 2 [b.'3a++
% 1 -1 r * sin(theta) 2 >I&
jurU#
% 2 -2 r^2 * cos(2*theta) sqrt(6) K@P`_yxN
% 2 0 (2*r^2 - 1) sqrt(3) d%lHa??/h
% 2 2 r^2 * sin(2*theta) sqrt(6) sk
?'^6Xh
% 3 -3 r^3 * cos(3*theta) sqrt(8) Yv>BOK
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^Y7 /Ow
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Ok>(>K<r
% 3 3 r^3 * sin(3*theta) sqrt(8) e:J'&r& 1
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6
r.H8
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V 7l{hEo3?
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6"i{P
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lP*
% 4 4 r^4 * sin(4*theta) sqrt(10) FGwnESCC
% -------------------------------------------------- #<wpSs
% 9c6GYWIFt&
% Example 1: A6N~UV*_
% '}Wu3X
% % Display the Zernike function Z(n=5,m=1) |[Ie.&)
% x = -1:0.01:1; *NW QmC~
% [X,Y] = meshgrid(x,x); ^.#X<8hr
% [theta,r] = cart2pol(X,Y); @?Gw|bP
% idx = r<=1; /S]:dDY9K
% z = nan(size(X)); V5O=iMP
% z(idx) = zernfun(5,1,r(idx),theta(idx)); nU&NopD+*G
% figure {jhmp\PN
% pcolor(x,x,z), shading interp u`Z0{d
% axis square, colorbar {^cF(7p
% title('Zernike function Z_5^1(r,\theta)') q#99iiG1
% -XVEV
% Example 2: wb6 L?t
% @VC .>
% % Display the first 10 Zernike functions *:\:5*SY
% x = -1:0.01:1; A<SOT >m]
% [X,Y] = meshgrid(x,x); a|QE *s.
% [theta,r] = cart2pol(X,Y); 5wH54gj}
% idx = r<=1; EmX>T>~#D
% z = nan(size(X)); dP$8JI{
% n = [0 1 1 2 2 2 3 3 3 3]; zb;(?!Bd#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; y9C;T(oi;
% Nplot = [4 10 12 16 18 20 22 24 26 28]; QqiJun_m
% y = zernfun(n,m,r(idx),theta(idx)); =.36y9Mfo
% figure('Units','normalized') K`QOU-M@}
% for k = 1:10 lt{lpH
% z(idx) = y(:,k); Y=vVxVI\
% subplot(4,7,Nplot(k)) R"U/RS
% pcolor(x,x,z), shading interp XM6".eF)M
% set(gca,'XTick',[],'YTick',[]) vi]r
% axis square *jM_ wwG
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =db'#m{$
% end C8IkpAD
% M{?zvq?d
% See also ZERNPOL, ZERNFUN2. ,3Wb4so
b7B+eN ?z
% Paul Fricker 11/13/2006 E X%6''ys
.dx
4,|6
0xJ7M.
% Check and prepare the inputs: 4q>7OB:e
% ----------------------------- {=UFk-$=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fdlvn*H
error('zernfun:NMvectors','N and M must be vectors.') 6'xomRpYN
end 5D,.^a1 A
#D+7TWDwNt
if length(n)~=length(m) -S"5{ N73
error('zernfun:NMlength','N and M must be the same length.') @#RuSc
end 0b/ir 2
I eG=J4:*
n = n(:); P$Z}
m = m(:); {5^K Xj$B
if any(mod(n-m,2)) nX0HT
)}
error('zernfun:NMmultiplesof2', ... !FTNmyM~F
'All N and M must differ by multiples of 2 (including 0).') *GQDfs`m
end .VT;H1#
*YWk1Cwjo
if any(m>n) I@2 uF-
error('zernfun:MlessthanN', ... ~C&*.ZR
'Each M must be less than or equal to its corresponding N.') aaDP9FW9e
end 4/S=5r}
Sw~(uH_l
if any( r>1 | r<0 ) j'K38@M:MN
error('zernfun:Rlessthan1','All R must be between 0 and 1.') M)&Io6>
end J/2j;,8D
U@G"`RYl
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HcRa`Sfc]/
error('zernfun:RTHvector','R and THETA must be vectors.') [J^
end @@I7$*
vT|`%~Be
r = r(:); <5S@ORN
theta = theta(:); uG!:Z6%p
length_r = length(r); C{EAmv'
if length_r~=length(theta) K]c4"JJ
error('zernfun:RTHlength', ... F^QQ0h]2
'The number of R- and THETA-values must be equal.') vw2`:]Q+
end '+j<n[JLC
-$(Jk<
% Check normalization: j~;;l!({i
% -------------------- OS-sk!
if nargin==5 && ischar(nflag) MtS3p>4
isnorm = strcmpi(nflag,'norm'); ~ 3^='o
if ~isnorm T*?s@$)m4
error('zernfun:normalization','Unrecognized normalization flag.') kH'p\9=
end .N,&Uv-
else tF*szf|$-
isnorm = false; 3iRA$C-p
end As~(7?]r
+Y}V3(w9X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;}qhc l+
% Compute the Zernike Polynomials +k.%PO0np
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ndink$
)KE[!ofD
% Determine the required powers of r: 5;\gJf
% ----------------------------------- 5c5oSy+
m_abs = abs(m); 9T7e\<8"vC
rpowers = []; \\,f{?w
for j = 1:length(n)
%@Oma
rpowers = [rpowers m_abs(j):2:n(j)]; \P;rES'
end ('O}&F1
rpowers = unique(rpowers); Yw'NX5#)g
20b<68h$:
% Pre-compute the values of r raised to the required powers, >G~mp<L
% and compile them in a matrix: L[g0&b%%-
% ----------------------------- LJFG0 W
if rpowers(1)==0 n(1')?"mA
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (@r
`$5D.b
rpowern = cat(2,rpowern{:}); #*9-d/K
rpowern = [ones(length_r,1) rpowern]; .B72C[' c
else `Out(Hn
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3*ixlO:qGk
rpowern = cat(2,rpowern{:}); POAw M
end U!(@q!>G
vAb^]d
% Compute the values of the polynomials: J-xS:Ha'l
% -------------------------------------- ehNzDr\s
y = zeros(length_r,length(n)); Es5f*P0
for j = 1:length(n) 7y^%7U \
s = 0:(n(j)-m_abs(j))/2; GOT1@.Y
pows = n(j):-2:m_abs(j); >&,[H:Z
for k = length(s):-1:1 :s={[KBP
p = (1-2*mod(s(k),2))* ... q[3x2sR
prod(2:(n(j)-s(k)))/ ... -d+aV1n
prod(2:s(k))/ ... 5%zXAQD=<
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... C NsNZJ
prod(2:((n(j)+m_abs(j))/2-s(k))); @I`C#~
idx = (pows(k)==rpowers); urBc=3Rz
y(:,j) = y(:,j) + p*rpowern(:,idx); vb
Y3;+M>
end 2I/xJ+
%" D%:
if isnorm 6$U]9D
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t5B7I59
end <TGn=>u
end i;/xK=L
% END: Compute the Zernike Polynomials nDS}^Ba
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S! Rc|6y%
7 c|bc6?
% Compute the Zernike functions: cD*}..-/4
% ------------------------------ k%s_0
@
idx_pos = m>0; =m89z}Ot
idx_neg = m<0; #Z+i~t{e(
r;BT,jiX
z = y; ~{hxR)x9
if any(idx_pos) E>b2+;Jv
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Zxr!:t7
end Vd^g9
if any(idx_neg) uvDzKMw~R
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); v
^[39*8
end Kt@M)#
$rIoHxh. y
% EOF zernfun