切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11289阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 wB+X@AA  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! " 7g\X$  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 I~Q G  
    function z = zernfun(n,m,r,theta,nflag) 9@>Q7AUCQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0]xp"xOwW  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Xbu P_U'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Ya;y@44  
    %   unit circle.  N is a vector of positive integers (including 0), and O+"a 0:GM  
    %   M is a vector with the same number of elements as N.  Each element 9`tSg!YOh  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) heScIe N^`  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, a FL; E  
    %   and THETA is a vector of angles.  R and THETA must have the same .'bhRQY  
    %   length.  The output Z is a matrix with one column for every (N,M) 0M!GoqaA  
    %   pair, and one row for every (R,THETA) pair. 1ZY~qP+n+  
    % +!mEP>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  {gb` %J  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /vs79^&  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @plh'f}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, SBg|V  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g(dReC  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o>HU4O}  
    % 3fxcH  
    %   The Zernike functions are an orthogonal basis on the unit circle. (_=R<:  
    %   They are used in disciplines such as astronomy, optics, and O!P7Wu  
    %   optometry to describe functions on a circular domain. z) x.6  
    % :!wl/X ~  
    %   The following table lists the first 15 Zernike functions. Ey)ey-'\  
    % ~\+Bb8+hpJ  
    %       n    m    Zernike function           Normalization 3F32 /_`  
    %       -------------------------------------------------- :,V&P_  
    %       0    0    1                                 1 6w~Cyu4Ov  
    %       1    1    r * cos(theta)                    2 Muyi2F)j  
    %       1   -1    r * sin(theta)                    2 KNjU!Z/4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) W5>emx'>  
    %       2    0    (2*r^2 - 1)                    sqrt(3) > D%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 3_"tds <L  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) m qwJya  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  54#P  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) c7D{^$L9 v  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) kK:U+`+  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) JCci*F#r  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G5ShheZd  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) EHK+qrym  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4 %V9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) g(i8HU*{q  
    %       -------------------------------------------------- >[l2KD  
    % (4|R}jv  
    %   Example 1: Ygc|9}  
    % [I}z\3Z %  
    %       % Display the Zernike function Z(n=5,m=1) QD-`jV3  
    %       x = -1:0.01:1; R6TT1Ka3c  
    %       [X,Y] = meshgrid(x,x); &+3RsIl W  
    %       [theta,r] = cart2pol(X,Y); pj$kSS|m6-  
    %       idx = r<=1; @w;$M]o1  
    %       z = nan(size(X)); /D964VR1M\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); I&`aGnr^^  
    %       figure 4s@Tn>%SP  
    %       pcolor(x,x,z), shading interp A0OA7m:~4  
    %       axis square, colorbar bd H+M?k  
    %       title('Zernike function Z_5^1(r,\theta)') }X. Fm'`  
    % %/ "yt}"|  
    %   Example 2: N 1ydL  
    % X#HH7V>  
    %       % Display the first 10 Zernike functions }rUAYr~VZ  
    %       x = -1:0.01:1; CY.4>,  
    %       [X,Y] = meshgrid(x,x); qWf[X'  
    %       [theta,r] = cart2pol(X,Y); (\o4 c0UzK  
    %       idx = r<=1; -/2B fIq  
    %       z = nan(size(X)); j{D tjV8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w O Ou/Y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0f@9y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; +d7 Arg!m  
    %       y = zernfun(n,m,r(idx),theta(idx)); y06xl:iQwF  
    %       figure('Units','normalized') Z}{]/=h  
    %       for k = 1:10 efE=5%O  
    %           z(idx) = y(:,k); }=Xlac_U  
    %           subplot(4,7,Nplot(k)) EwmNgmYq  
    %           pcolor(x,x,z), shading interp I0qJr2[X~  
    %           set(gca,'XTick',[],'YTick',[]) q|0l>DPRp  
    %           axis square jT!?lqr(Rb  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  v7Ps-a)  
    %       end 62MQ+H  
    % }Q@~_3,UJ  
    %   See also ZERNPOL, ZERNFUN2. uUV"86B_  
    +25=u|#4r  
    %   Paul Fricker 11/13/2006 R.DUfU"gp  
    6nR EuT'k  
    A3*(c3  
    % Check and prepare the inputs: X8ZO } X  
    % ----------------------------- G:y+yE4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '$eJATtC  
        error('zernfun:NMvectors','N and M must be vectors.') L62%s[  
    end aGfp"NtL  
    <EcxNj1  
    if length(n)~=length(m) e ;^}@X  
        error('zernfun:NMlength','N and M must be the same length.') ,7k-LAA  
    end hg#O_4D  
    >#'?}@FWQN  
    n = n(:); ~<~ ~C#R  
    m = m(:); hgzNEx%^q  
    if any(mod(n-m,2)) Dv L8}dz  
        error('zernfun:NMmultiplesof2', ... n>7aZ1Qa  
              'All N and M must differ by multiples of 2 (including 0).')  UO#`Ak  
    end yimK"4!j5A  
    0TSB<,9a[  
    if any(m>n) La3rX  
        error('zernfun:MlessthanN', ... l5~O}`gfh  
              'Each M must be less than or equal to its corresponding N.') Iqn (NOq^[  
    end 2Q\\l @b\  
    MJrPI a[pN  
    if any( r>1 | r<0 ) 9_,f)2)~W  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0 x' d^  
    end sHMO9{[7H  
    &%GAPs%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y/"t!   
        error('zernfun:RTHvector','R and THETA must be vectors.') SWY  
    end nm& pn*1  
    {qbe ye!  
    r = r(:); rGXUV`5Na  
    theta = theta(:); Sk1t~  
    length_r = length(r); "a}fwg9Y  
    if length_r~=length(theta) Hb::;[bm:  
        error('zernfun:RTHlength', ... Dte5g),R  
              'The number of R- and THETA-values must be equal.') R&&&RI3{  
    end =6O*AJ  
    {:#nrD"  
    % Check normalization: <<E 9MIn_  
    % -------------------- -u4")V>  
    if nargin==5 && ischar(nflag) 9jX_Eoxy  
        isnorm = strcmpi(nflag,'norm'); )p1~Jx(\  
        if ~isnorm #p55/54ZI  
            error('zernfun:normalization','Unrecognized normalization flag.') kP^A~ZO.  
        end mo] l_'  
    else y+w,j]  
        isnorm = false; (Nk[ys}%*  
    end q<! -Anc  
    QIlZZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a'/i/@h  
    % Compute the Zernike Polynomials T_=WX_h $  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k.K#i /t  
    j7Ts&;`[*  
    % Determine the required powers of r: yz=X{p1  
    % ----------------------------------- t|i<}2  
    m_abs = abs(m); .UNV &R0  
    rpowers = []; o|xZ?#^h  
    for j = 1:length(n) i}P{{kMJ  
        rpowers = [rpowers m_abs(j):2:n(j)]; X-kOp9/.  
    end #v xq|$e  
    rpowers = unique(rpowers); 4oueLT(zc  
    gGUKB2)  
    % Pre-compute the values of r raised to the required powers, >5:O%zQ@  
    % and compile them in a matrix: $7c,<=  
    % ----------------------------- 1' v!~*af  
    if rpowers(1)==0 z\A ),;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); KXK5\#+L  
        rpowern = cat(2,rpowern{:}); n=C"pH#  
        rpowern = [ones(length_r,1) rpowern]; dXQC}JA  
    else RR ^7/-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A;RV~!xx  
        rpowern = cat(2,rpowern{:}); F;8Q`$n  
    end vr'cR2  
    VZI!rFac  
    % Compute the values of the polynomials: J-,ocO  
    % -------------------------------------- oD9n5/ozo  
    y = zeros(length_r,length(n)); htR.p7&Tn  
    for j = 1:length(n) :op_J!;  
        s = 0:(n(j)-m_abs(j))/2; 3]*1%=~X/  
        pows = n(j):-2:m_abs(j); ByJPSuc D  
        for k = length(s):-1:1 BLO ]78  
            p = (1-2*mod(s(k),2))* ... z]+L=+,,  
                       prod(2:(n(j)-s(k)))/              ... /OzoeI t  
                       prod(2:s(k))/                     ... SeDk/}/~e  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7#%Pry  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); G%t>Ll``C  
            idx = (pows(k)==rpowers); 4d4+%5GE  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bIyg7X)/  
        end C` ky=  
         CssE8p>"F  
        if isnorm *|dK1'Xr  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ix4]^  
        end u"*DI=pwb  
    end Z 9+fTT  
    % END: Compute the Zernike Polynomials A8*zB=C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &4S2fWx  
    `>)Ge](oN  
    % Compute the Zernike functions: :vG0 l\  
    % ------------------------------ D\-\U E/  
    idx_pos = m>0; -LszaMR}  
    idx_neg = m<0; qE8aX*A1/  
    *1<kYrB  
    z = y; {ptHk<K:)  
    if any(idx_pos) .E}lAd.Mn  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gb\PubJ  
    end 3yKmuu!  
    if any(idx_neg) Tgr,1) T  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %8tE*3iUF  
    end > ]^'h  
    0zB[seyE  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^x: lB>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ezp%8IZ;  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated I1U2wD  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive =x\`yxsG  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, LD}~]  
    %   and THETA is a vector of angles.  R and THETA must have the same nm,LKS7  
    %   length.  The output Z is a matrix with one column for every P-value, Q7$o&N{  
    %   and one row for every (R,THETA) pair. {4G/HW28  
    % 5?^L))  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike _V-KyK  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 1^}I?PbqV  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Tn#Co$<  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 $ItjVc@U  
    %   for all p. wwB3m&  
    % dWvVK("Wj  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 WQ.0}n}d  
    %   Zernike functions (order N<=7).  In some disciplines it is rTIu'  
    %   traditional to label the first 36 functions using a single mode ZP<<cyY  
    %   number P instead of separate numbers for the order N and azimuthal pi?MAE*f  
    %   frequency M. {7OHEArv  
    % GBbnR:hM  
    %   Example: a4__1N^Qj  
    % PC#^L$cg}  
    %       % Display the first 16 Zernike functions IT_I.5*A2  
    %       x = -1:0.01:1; ,|({[ 9jA  
    %       [X,Y] = meshgrid(x,x); 9qB0F_xl  
    %       [theta,r] = cart2pol(X,Y); I4X9RYB6c  
    %       idx = r<=1; T$xB H  
    %       p = 0:15; V*uE83x 1  
    %       z = nan(size(X)); !wfW0?eu  
    %       y = zernfun2(p,r(idx),theta(idx)); FQDf?d5  
    %       figure('Units','normalized') fORkH^Y(&  
    %       for k = 1:length(p) g"evnp  
    %           z(idx) = y(:,k); `OBzOM  
    %           subplot(4,4,k) 8Y?M:^f~  
    %           pcolor(x,x,z), shading interp ,twx4r^  
    %           set(gca,'XTick',[],'YTick',[]) :CyHo6o9  
    %           axis square \!-BR0+y;  
    %           title(['Z_{' num2str(p(k)) '}']) hw^&{x  
    %       end y2G Us&09  
    % ?l0Qi  
    %   See also ZERNPOL, ZERNFUN. WEimJrAn  
    j<B9$8x&  
    %   Paul Fricker 11/13/2006 5`QcPDp{z  
    /o;M ?Nt6  
    hxO}'`:  
    % Check and prepare the inputs: `t~jHe4!Y  
    % ----------------------------- ;.A}c)b  
    if min(size(p))~=1 s<9g3Gh  
        error('zernfun2:Pvector','Input P must be vector.') m+TAaK  
    end 'r?ULft1  
    -zR<m  
    if any(p)>35 \H fAKBT  
        error('zernfun2:P36', ... NBYJ'nA%;f  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... K3yQ0k |  
               '(P = 0 to 35).']) .,bpFcQ  
    end _QPqF{iI  
    *; Jb=  
    % Get the order and frequency corresonding to the function number: ;o_F<68QP  
    % ---------------------------------------------------------------- :!%VSem  
    p = p(:);  ?Y(  
    n = ceil((-3+sqrt(9+8*p))/2); k{}> *pCU  
    m = 2*p - n.*(n+2); oJ74Mra  
    qb>41j9_t  
    % Pass the inputs to the function ZERNFUN: jx: IK  
    % ---------------------------------------- j[G`p^ul  
    switch nargin fZGY'o&5  
        case 3 C0wtMD:G  
            z = zernfun(n,m,r,theta); B*(]T|ff<  
        case 4 HN7CcE+l  
            z = zernfun(n,m,r,theta,nflag); .uuhoqG0  
        otherwise ~||0lj.D  
            error('zernfun2:nargin','Incorrect number of inputs.') r;#"j%z  
    end mptFd  
    No^gKh24  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) GWA"!~Hu  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. a>wCBkD  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5 ~Wg=u<6  
    %   order N and frequency M, evaluated at R.  N is a vector of uzYB`H<  
    %   positive integers (including 0), and M is a vector with the m2(>KMbi  
    %   same number of elements as N.  Each element k of M must be a nBh+UT}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Q_5 l.M/9]  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is {w@qFE'b  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ]I?.1X5d0  
    %   with one column for every (N,M) pair, and one row for every .WSyL  
    %   element in R. '!HTE` Aj  
    % I'/3_AX  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- F2"fOS  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is WyN ;lId  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to `|dyT6V0I_  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 3SVGx< ,2  
    %   for all [n,m]. Xka REE  
    % 66yw[,Y  
    %   The radial Zernike polynomials are the radial portion of the ]}2)U  
    %   Zernike functions, which are an orthogonal basis on the unit =RoG?gd{R  
    %   circle.  The series representation of the radial Zernike 3BFOZV+  
    %   polynomials is UcRP/LR%C  
    % TZn 15-O  
    %          (n-m)/2 %w;qu1j  
    %            __ slQn  
    %    m      \       s                                          n-2s CMt<oT6.?  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r @\K[WqF$$q  
    %    n      s=0 YF%gs{  
    % }w0pi  
    %   The following table shows the first 12 polynomials. &7L7|{18  
    % CIudtY(:  
    %       n    m    Zernike polynomial    Normalization MmF&jd-=  
    %       --------------------------------------------- 0SQ!lr  
    %       0    0    1                        sqrt(2) *uvM6F$ut  
    %       1    1    r                           2 YpZB-9Krf  
    %       2    0    2*r^2 - 1                sqrt(6) djd/QAfSC  
    %       2    2    r^2                      sqrt(6) 6u[fCGi%  
    %       3    1    3*r^3 - 2*r              sqrt(8) w"hd_8cO  
    %       3    3    r^3                      sqrt(8) #Hw|P  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) <b 5DX  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) \J'}CX*aQ  
    %       4    4    r^4                      sqrt(10) T{{:p\<]_  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Y|Iq~Qy~  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) TW|K.t@5#H  
    %       5    5    r^5                      sqrt(12) mZ)>^.N6  
    %       --------------------------------------------- wKJG 31I^  
    % (s};MdXIz  
    %   Example: 1`cH EAa  
    % 9*q wXU_aV  
    %       % Display three example Zernike radial polynomials c~ss^[qx|  
    %       r = 0:0.01:1; u`bD`kfT>  
    %       n = [3 2 5]; Pv -4psdw  
    %       m = [1 2 1]; ?qh-#,O9B  
    %       z = zernpol(n,m,r); %a%xUce&-X  
    %       figure  a"Qf  
    %       plot(r,z) WAu>p3   
    %       grid on K;F1'5+=D  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') a4Q@sn;]  
    % GVY7`k"km  
    %   See also ZERNFUN, ZERNFUN2. >eJ <-3L;  
    zsL@0]e&  
    % A note on the algorithm. HC iRk1  
    % ------------------------ fz'qB-F Y  
    % The radial Zernike polynomials are computed using the series c_8&4  
    % representation shown in the Help section above. For many special 0ho;L0Nr'  
    % functions, direct evaluation using the series representation can I8xdE(o8+  
    % produce poor numerical results (floating point errors), because %:3XYO.w-  
    % the summation often involves computing small differences between _w^,j"  
    % large successive terms in the series. (In such cases, the functions n0(Q/  
    % are often evaluated using alternative methods such as recurrence >0^<<=m  
    % relations: see the Legendre functions, for example). For the Zernike HNzxF nh  
    % polynomials, however, this problem does not arise, because the pH '_k k  
    % polynomials are evaluated over the finite domain r = (0,1), and 4XkI? l  
    % because the coefficients for a given polynomial are generally all *22Vc2[i;  
    % of similar magnitude. Tzq@ic#!B  
    % jJ$\WUQ.  
    % ZERNPOL has been written using a vectorized implementation: multiple kK &w5'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ?sN{U\  
    % values can be passed as inputs) for a vector of points R.  To achieve B[b>T=  
    % this vectorization most efficiently, the algorithm in ZERNPOL -Vn#Ab_C  
    % involves pre-determining all the powers p of R that are required to kR=sr/{  
    % compute the outputs, and then compiling the {R^p} into a single mU5Ox4>&9  
    % matrix.  This avoids any redundant computation of the R^p, and W+h2rv  
    % minimizes the sizes of certain intermediate variables. BgQEd@cN  
    % mixsJ}e  
    %   Paul Fricker 11/13/2006 `/O`%6,f1!  
    Z?)g'n  
    Ss[[V(-  
    % Check and prepare the inputs: z8\YMr 6o  
    % ----------------------------- ,#Z%0NLe  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aOD h5  
        error('zernpol:NMvectors','N and M must be vectors.') kwjO5 OC8  
    end :=Olp;+_  
    2<D| {  
    if length(n)~=length(m) ]$smFF  
        error('zernpol:NMlength','N and M must be the same length.') xf,[F8 2y  
    end 5m8u:6kQu  
    vJWBr:`L  
    n = n(:); CG1MT(V7?  
    m = m(:); x|O7}oj  
    length_n = length(n); 5B=uvp|Y  
    Pn,I^Ej.  
    if any(mod(n-m,2)) YR?Y:?(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') g=Z52y`N<  
    end EBy7wU`S  
    s%)f<3=a  
    if any(m<0) ifD WN*k6  
        error('zernpol:Mpositive','All M must be positive.') h;V 4|jM  
    end A`7(i'i5]  
    |ADf~-AY  
    if any(m>n) "&6vFmr  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') DU^.5f  
    end Kg%9&l  
    64B.7S88  
    if any( r>1 | r<0 ) VZ9 p "  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ZHTi4JY  
    end ~?\U];l  
    f,G*e367:  
    if ~any(size(r)==1) }0'LKwIR  
        error('zernpol:Rvector','R must be a vector.') {irc0gI  
    end ]?6wU-a  
    w6BBu0,KC  
    r = r(:); Tg{5%~L]   
    length_r = length(r); &5W;E+Pub  
    &gCGc?/R#  
    if nargin==4 D ,kxB~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); u W]gBhO$O  
        if ~isnorm qPDNDkjDD  
            error('zernpol:normalization','Unrecognized normalization flag.') N@d~gE&^  
        end 5wue2/gl  
    else aC1z.?!U  
        isnorm = false; +>PsQ^^x  
    end Yq ]sPE92  
    ;\K]~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $8\u  
    % Compute the Zernike Polynomials N<Sl88+U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 byeO&d  
    h*Fv~j'p  
    % Determine the required powers of r: x?L0R{?WW  
    % ----------------------------------- S~/2Bw!2  
    rpowers = []; ,U""m7   
    for j = 1:length(n) {o~TbnC  
        rpowers = [rpowers m(j):2:n(j)]; e]~p:  
    end in>+D|q c  
    rpowers = unique(rpowers); )U~|QdZ  
    pS$9mzY  
    % Pre-compute the values of r raised to the required powers, cKTjQJ#  
    % and compile them in a matrix: "z9C@T  
    % ----------------------------- 3t-STk?  
    if rpowers(1)==0 }H ~-oYMu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d88A.Z3w  
        rpowern = cat(2,rpowern{:}); L\#YFf  
        rpowern = [ones(length_r,1) rpowern]; q/@2=$]hH3  
    else |enLv12Gm  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Jl_W6gY"Z  
        rpowern = cat(2,rpowern{:}); bMK X9`*o  
    end f2e;N[D  
    d5^^h<'  
    % Compute the values of the polynomials: Y%;J/4dd  
    % -------------------------------------- qur2t8gnxq  
    z = zeros(length_r,length_n); [q|W*[B:@  
    for j = 1:length_n v~ SM"ky#  
        s = 0:(n(j)-m(j))/2; e@P(+.Ke  
        pows = n(j):-2:m(j); +,,(8=5 g  
        for k = length(s):-1:1 @k i|# ro  
            p = (1-2*mod(s(k),2))* ... 35l%iaj]G5  
                       prod(2:(n(j)-s(k)))/          ... Krae^z9R  
                       prod(2:s(k))/                 ... -=5~h  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... sJLOz>  
                       prod(2:((n(j)+m(j))/2-s(k))); 5Npxs&Ea  
            idx = (pows(k)==rpowers); 7"!`<5o^  
            z(:,j) = z(:,j) + p*rpowern(:,idx); )#i@DHt=  
        end PA'&]piPl:  
         e,|gr"$/  
        if isnorm o8X_uKEI  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \-yI dKj  
        end f-18nF7{  
    end x3i}IC  
    ]EKg)E  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  4Et(3[P71  
    5 e+j51  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 C{bxPILw  
    {J==y;dK  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)