切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11607阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 r!WXD9#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Vv<Tjr  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 3Hg}G#]WS  
    function z = zernfun(n,m,r,theta,nflag) cy+EJq I  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. (RtjD`e}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }M+2 ,#l  
    %   and angular frequency M, evaluated at positions (R,THETA) on the g\O&gNq<)-  
    %   unit circle.  N is a vector of positive integers (including 0), and ^>H+#@R  
    %   M is a vector with the same number of elements as N.  Each element LG6k KG  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;p U=>  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 'CkN  
    %   and THETA is a vector of angles.  R and THETA must have the same 60`4 _Uy]_  
    %   length.  The output Z is a matrix with one column for every (N,M) ;?`l1:C5)  
    %   pair, and one row for every (R,THETA) pair. <Z6tRf;B  
    % jh|4Y(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fL7u419=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?*ni5\y5o  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral oy?>e1Sy*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5/{";k)L+  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized  #Lq{_Y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x22:@Ot6  
    % @T6Z3Zj}  
    %   The Zernike functions are an orthogonal basis on the unit circle. Gd08RW  
    %   They are used in disciplines such as astronomy, optics, and O alBr?^  
    %   optometry to describe functions on a circular domain. QoVRZ$!p  
    % iH#b"h{w  
    %   The following table lists the first 15 Zernike functions. 9^5D28y  
    % 6-w'?G37  
    %       n    m    Zernike function           Normalization ZO!  
    %       -------------------------------------------------- Q:#Kt@W  
    %       0    0    1                                 1 &D[pX|!  
    %       1    1    r * cos(theta)                    2 !^ /Mn  
    %       1   -1    r * sin(theta)                    2 6uAo0+-k  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) DIU9Le  
    %       2    0    (2*r^2 - 1)                    sqrt(3) sivd@7r\Fa  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) d'yA"b]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) az=(6PX  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I )LO@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?(!<m'jEy  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /#,3JU$w  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) H"g$qSx  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) q:9#Vcw  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) clwJ+kku@  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?<#2raH-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) i(k]}Di:  
    %       -------------------------------------------------- c T!L+z g  
    % E9yBa=#*c  
    %   Example 1: v\UwL-4[  
    % { _]'EK/w  
    %       % Display the Zernike function Z(n=5,m=1) F$QAWs  
    %       x = -1:0.01:1; +C(v4@=nd  
    %       [X,Y] = meshgrid(x,x); t#0/_tD  
    %       [theta,r] = cart2pol(X,Y); $m:4'r  
    %       idx = r<=1; %!>~2=Q2*  
    %       z = nan(size(X)); $YyN-C  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2+Tu"oG;rB  
    %       figure nnZ|oEF  
    %       pcolor(x,x,z), shading interp 1{.=T&eG#  
    %       axis square, colorbar Viu+#J;l  
    %       title('Zernike function Z_5^1(r,\theta)') +gQn,HX  
    % >+ZD 6l/  
    %   Example 2: ( _{\tgSm  
    % onuhNn_=>  
    %       % Display the first 10 Zernike functions  MR/8  
    %       x = -1:0.01:1; {Y%X  
    %       [X,Y] = meshgrid(x,x); aFj)s?$4]K  
    %       [theta,r] = cart2pol(X,Y); 06&:X^  
    %       idx = r<=1; 2A+I8/zRG  
    %       z = nan(size(X)); .Fy f4^0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; a09]5>*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 'e3[m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |^ao,3h#  
    %       y = zernfun(n,m,r(idx),theta(idx)); oM@X)6P_  
    %       figure('Units','normalized') |Q'l&Gt6  
    %       for k = 1:10 zLs[vg.(  
    %           z(idx) = y(:,k); H@uCbT  
    %           subplot(4,7,Nplot(k)) S'I{'jP5  
    %           pcolor(x,x,z), shading interp {ER%r'(4Z  
    %           set(gca,'XTick',[],'YTick',[]) 8qEK6-  
    %           axis square jZm57{C#*?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j]#-DIL  
    %       end ?T\m V}  
    % K,>D%mJ  
    %   See also ZERNPOL, ZERNFUN2. ;btH[a iV  
     [>'P  
    %   Paul Fricker 11/13/2006 S=^a''bg  
    LN8V&'>  
    ?w}E/(r  
    % Check and prepare the inputs: Fn8d;%C  
    % ----------------------------- ?s<'3I{F`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CL^MIcq?  
        error('zernfun:NMvectors','N and M must be vectors.') WH.5vrY Z  
    end .Q pqbp 8  
    0YsC@r47wL  
    if length(n)~=length(m) G?Y2 b  
        error('zernfun:NMlength','N and M must be the same length.') HS|X//]  
    end 3q=A35*LT>  
    !!=%ty  
    n = n(:); J^@0Ff;=5^  
    m = m(:); u/5I;7cb  
    if any(mod(n-m,2)) DR`d^aBWQ  
        error('zernfun:NMmultiplesof2', ... *3hqz<p4:  
              'All N and M must differ by multiples of 2 (including 0).') e ,_b  
    end EHT5Gf  
    =H_|007C  
    if any(m>n) rNL*(PN}lO  
        error('zernfun:MlessthanN', ... ELp @/c=Wr  
              'Each M must be less than or equal to its corresponding N.') $vS`w4Y  
    end Bf Lh%XC  
    =o5ZcC  
    if any( r>1 | r<0 ) .)W'{2J-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "+js7U-  
    end "YlN_ U  
    1;p'2-x  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4c2*)x$@  
        error('zernfun:RTHvector','R and THETA must be vectors.') .[1"Med J  
    end ~M 6^%  
    &Bbs\ ;  
    r = r(:); -WIT0F4o;  
    theta = theta(:); ^ ~HV`s  
    length_r = length(r); DRLX0Ml]\  
    if length_r~=length(theta) N\IdZX%u  
        error('zernfun:RTHlength', ... fiSc\C~  
              'The number of R- and THETA-values must be equal.') g?ID}E ~<  
    end X[:&p|g]  
    .c'EXuI7),  
    % Check normalization: W@w#A]  
    % -------------------- +_gPZFpbx  
    if nargin==5 && ischar(nflag) f i-E_  
        isnorm = strcmpi(nflag,'norm'); Be{7Rj v  
        if ~isnorm Oo<^~d2=  
            error('zernfun:normalization','Unrecognized normalization flag.') .~0A*a  
        end 8CxC`*L(  
    else lm}mXFf#  
        isnorm = false; d%Zt]1$  
    end dA[Z\  
    00'R1q4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e,qc7BJzK  
    % Compute the Zernike Polynomials >3 Q%Yn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U}7 a;4?  
    7WG"_A~V  
    % Determine the required powers of r: q<rB(j-(  
    % ----------------------------------- 0+b1R}!2  
    m_abs = abs(m); qZlb?b"  
    rpowers = []; Z 4uft  
    for j = 1:length(n) B98&JoS  
        rpowers = [rpowers m_abs(j):2:n(j)]; &ZgB b  
    end _f%Wk>A4  
    rpowers = unique(rpowers); v;X'4/ M  
    qG=9zp4y?Y  
    % Pre-compute the values of r raised to the required powers, n83,MV?-  
    % and compile them in a matrix: N^A&DrMF  
    % ----------------------------- ,~t{Q*#_h  
    if rpowers(1)==0 8V%(SV  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +Sk;  
        rpowern = cat(2,rpowern{:}); 6X5`npf  
        rpowern = [ones(length_r,1) rpowern]; ;2 oR?COW  
    else k 41lw^Jh  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a!}.l< )  
        rpowern = cat(2,rpowern{:}); ^1M:wX r  
    end _8b)Xx@5  
     :\1:n  
    % Compute the values of the polynomials: ~qm<~T_0  
    % -------------------------------------- ;Y#~2eYCz  
    y = zeros(length_r,length(n)); T_O\L[]p*  
    for j = 1:length(n) @2-Eky  
        s = 0:(n(j)-m_abs(j))/2; , KF>PoySA  
        pows = n(j):-2:m_abs(j); }zi:nSpON  
        for k = length(s):-1:1 r*<)QP^B~  
            p = (1-2*mod(s(k),2))* ... uYAPGs#k  
                       prod(2:(n(j)-s(k)))/              ... ]%m0PU#  
                       prod(2:s(k))/                     ... I~EQuQ>=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mXT{)pU  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |D%i3@P&ZR  
            idx = (pows(k)==rpowers); Tm@d;O'E1  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >(Jy=m?  
        end ,2vPmff  
         >}h/$bU  
        if isnorm CXGq>cQ=d  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  ] L4B  
        end .Ya]N+r*  
    end ^EE 3E'  
    % END: Compute the Zernike Polynomials uBw1Xud[YI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8'?V5.6?|~  
    ?"\`u;  
    % Compute the Zernike functions: =1fO"|L  
    % ------------------------------ EZ*FGt6(  
    idx_pos = m>0; =YkJS%)M)  
    idx_neg = m<0; "0Uh(9Fv  
    GEXT8f(7  
    z = y; ET1/oG<@  
    if any(idx_pos) HJ]\VP9Zb  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mV0F ^5  
    end lq=| =  
    if any(idx_neg) M0DdrL/ L  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |&WeXVH E  
    end x F7C1g(  
    4]RGLN  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) O{rgx~lLJt  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. y-O# +{7  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ww82)m8  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive o1='Fr  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, He="S3XON  
    %   and THETA is a vector of angles.  R and THETA must have the same =XsdR?C  
    %   length.  The output Z is a matrix with one column for every P-value, {@1.2AWg  
    %   and one row for every (R,THETA) pair. iJuh1+6:c9  
    % LS@[O])$'  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike &#aQ mgDF  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) =wHHR1e  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) EL $"MT}p  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 2f ]CnD0$  
    %   for all p. t QkEJ pj  
    % $Z(fPKRN/  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Gjq:-kX\  
    %   Zernike functions (order N<=7).  In some disciplines it is #k5WTcE  
    %   traditional to label the first 36 functions using a single mode [RG&1~  
    %   number P instead of separate numbers for the order N and azimuthal /-JBz U$  
    %   frequency M. XbdoTriE  
    % e|u|b  
    %   Example: ).@8+}`  
    % J"'2zg1&  
    %       % Display the first 16 Zernike functions .f 4a+w  
    %       x = -1:0.01:1; jca7Cx`sm  
    %       [X,Y] = meshgrid(x,x); {ve86 POY  
    %       [theta,r] = cart2pol(X,Y); Va,M9)F  
    %       idx = r<=1;  uZ][#[u  
    %       p = 0:15; j J6Yz  
    %       z = nan(size(X)); "f\2/4EIl  
    %       y = zernfun2(p,r(idx),theta(idx)); eSf e s  
    %       figure('Units','normalized') peqoLeJI  
    %       for k = 1:length(p) |E$Jt-'  
    %           z(idx) = y(:,k); {bnNY  
    %           subplot(4,4,k) ! )$ PD@  
    %           pcolor(x,x,z), shading interp y]Q G;  
    %           set(gca,'XTick',[],'YTick',[]) Y, K): ~T  
    %           axis square D7cOEL<  
    %           title(['Z_{' num2str(p(k)) '}']) *m:h0[[J  
    %       end V!G&Aen  
    % <y1V2Np  
    %   See also ZERNPOL, ZERNFUN. !PUbaF-.6  
    ?T-6|vZA  
    %   Paul Fricker 11/13/2006 6dQa|ACX_  
    .E:[ \H"  
    -C.x;@!k  
    % Check and prepare the inputs: Okm&b g  
    % ----------------------------- R)?b\VK2$  
    if min(size(p))~=1 f2Frb  
        error('zernfun2:Pvector','Input P must be vector.') INSI$tA~  
    end |VM c,_D  
    ^ a%U *>P  
    if any(p)>35 opTDW)  
        error('zernfun2:P36', ... iA*Z4FKkT  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... wJ-G7V,)  
               '(P = 0 to 35).']) 1L1_x'tT%  
    end <y5V],-U  
    )\_xB_K\  
    % Get the order and frequency corresonding to the function number: u%?u`n2'  
    % ---------------------------------------------------------------- L;30& a  
    p = p(:); 1BQTvUAA  
    n = ceil((-3+sqrt(9+8*p))/2); b9%}< w  
    m = 2*p - n.*(n+2); -a(f-  
    /!ZeMY:x  
    % Pass the inputs to the function ZERNFUN: j-|YE?AA  
    % ---------------------------------------- 'Ht$LqG  
    switch nargin _.0c~\VA  
        case 3 d{+ H|$L`  
            z = zernfun(n,m,r,theta); :0>wm@qCQ  
        case 4 )3v0ex@Jl  
            z = zernfun(n,m,r,theta,nflag); @ fm\ H  
        otherwise B[7|]"L@  
            error('zernfun2:nargin','Incorrect number of inputs.') Frn#?n)S9  
    end /G`&k{SiK  
    p.i$[6M  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) :/ns/~5xa:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. K !8+~[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of XP5q4BM  
    %   order N and frequency M, evaluated at R.  N is a vector of 0K7]<\)  
    %   positive integers (including 0), and M is a vector with the At%g^  
    %   same number of elements as N.  Each element k of M must be a 'dM &~L SQ  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 6,M>'s,N  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is VpMpZ9oM<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix mH*42XC*  
    %   with one column for every (N,M) pair, and one row for every b_ Sh#d&  
    %   element in R. D2|-\vJ>  
    % pr>Qu:  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- )/2* <jr  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is R?+Eo(0q,  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to E*IkI))X0  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 td4*+)'FY  
    %   for all [n,m]. #O]F5JB  
    % 1YR;dn  
    %   The radial Zernike polynomials are the radial portion of the H7G*Vg  
    %   Zernike functions, which are an orthogonal basis on the unit ,0[8/)$M  
    %   circle.  The series representation of the radial Zernike cRz7.9-<  
    %   polynomials is {@g3AG%  
    % Tz58@VYV  
    %          (n-m)/2 #0`2wuo {  
    %            __ CU6rw+Vax  
    %    m      \       s                                          n-2s t)g1ICt  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r = sedkrM  
    %    n      s=0 KXcG;b[7n  
    % ]tH/87qJ  
    %   The following table shows the first 12 polynomials. }r`!p5\$K0  
    % ?PiJ7|  
    %       n    m    Zernike polynomial    Normalization `Q1T-H_  
    %       --------------------------------------------- gj\r>~S  
    %       0    0    1                        sqrt(2) KJ,{w?p~ )  
    %       1    1    r                           2 '1ff|c!x9  
    %       2    0    2*r^2 - 1                sqrt(6) h0 Acpd2  
    %       2    2    r^2                      sqrt(6) L':;Vv~-  
    %       3    1    3*r^3 - 2*r              sqrt(8) EiI3$y3;  
    %       3    3    r^3                      sqrt(8) s['F?GWg  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) En+4@BC  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) *kgbcUf8  
    %       4    4    r^4                      sqrt(10) ?v#t{e0eQ  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _]1dm)%  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ywmx6q4MFL  
    %       5    5    r^5                      sqrt(12) G hLgV  
    %       --------------------------------------------- nk1(/~`  
    % B;N40d*W  
    %   Example: vuuID24:  
    % )gvX eJ  
    %       % Display three example Zernike radial polynomials wke$  
    %       r = 0:0.01:1; FOB9CsMe  
    %       n = [3 2 5]; z1f~:AdL  
    %       m = [1 2 1]; ({Fus@/  
    %       z = zernpol(n,m,r); 9/D+6hJ]:  
    %       figure $q DH  
    %       plot(r,z) O-wR48Q  
    %       grid on CY)Wuv ^  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') @`k!7? Sq  
    % f!P.=Qo[=  
    %   See also ZERNFUN, ZERNFUN2. 8l>/ZZ.NXi  
    WXNJc  
    % A note on the algorithm. nE]R0|4h  
    % ------------------------ [sFD-2y  
    % The radial Zernike polynomials are computed using the series [HtU-8:  
    % representation shown in the Help section above. For many special *ky5SM(NR  
    % functions, direct evaluation using the series representation can _zJY1cr  
    % produce poor numerical results (floating point errors), because %whPTc0P  
    % the summation often involves computing small differences between 0Z2![n  
    % large successive terms in the series. (In such cases, the functions A[XEbfDO  
    % are often evaluated using alternative methods such as recurrence KLsTgo|J  
    % relations: see the Legendre functions, for example). For the Zernike PPDm*,T.  
    % polynomials, however, this problem does not arise, because the /4w&! $M-  
    % polynomials are evaluated over the finite domain r = (0,1), and SWO$# X /  
    % because the coefficients for a given polynomial are generally all +H/^RvUjF  
    % of similar magnitude. 3?Bq((  
    % RFDwL~-p  
    % ZERNPOL has been written using a vectorized implementation: multiple )Y Qtrc\91  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] W)<us?5Ec5  
    % values can be passed as inputs) for a vector of points R.  To achieve b,D+1'  
    % this vectorization most efficiently, the algorithm in ZERNPOL h:" <x$F  
    % involves pre-determining all the powers p of R that are required to O9p8x2  
    % compute the outputs, and then compiling the {R^p} into a single }OI;M^5L  
    % matrix.  This avoids any redundant computation of the R^p, and B Gh%3"q  
    % minimizes the sizes of certain intermediate variables. Z?G-~3]e  
    % 7O;v5k~iQ  
    %   Paul Fricker 11/13/2006 "1&C\}.7  
    pHni"i T  
    CO0Nq/@  
    % Check and prepare the inputs: zvdtP'&uj  
    % ----------------------------- }c| Xr^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [#)-F_S  
        error('zernpol:NMvectors','N and M must be vectors.') ,8c`  
    end 7tUl$H;I/R  
    mxq'A  
    if length(n)~=length(m) e {N8|l  
        error('zernpol:NMlength','N and M must be the same length.') IBQmm(+v  
    end Uj0DX >I  
    N02N w(pi  
    n = n(:); <{9E.6G`n  
    m = m(:); Goz9"yazg  
    length_n = length(n); op"RrZAZBT  
    <{3VK  
    if any(mod(n-m,2)) 'd|_i6:y&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9@Cqg5Kx'  
    end IM}#k$vM:  
    Ue^upx  
    if any(m<0) v\c.xtjI5x  
        error('zernpol:Mpositive','All M must be positive.') Q^DKKp  
    end K {!eHTU  
    (VWTYG7  
    if any(m>n) :?U1^!$$1  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') o\g",O4-  
    end }PK8[N  
    3E+u)f lmB  
    if any( r>1 | r<0 ) 31  QT  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Cc]t*;nU_  
    end {E@Vh  
    iU~oPp[e  
    if ~any(size(r)==1) #QXB2x<*  
        error('zernpol:Rvector','R must be a vector.') [9Q2/V;Uk%  
    end [wjA8d.  
    oZmni9*SD  
    r = r(:); JyjS#BWi  
    length_r = length(r); c9=;:E  
    &`Z>zT}  
    if nargin==4 =sG  C  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); /V2Ih  
        if ~isnorm U9y[b82  
            error('zernpol:normalization','Unrecognized normalization flag.') Mf<P ms\F  
        end H`9E_[  
    else `CUTb*{`  
        isnorm = false; [_^K}\/+  
    end TC<_I0jCh  
    MkRRBvk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |/Ggsfmby  
    % Compute the Zernike Polynomials ("}TW-r~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {3i.U028]  
    f-k%P$"X&  
    % Determine the required powers of r: bsmZR(EnU  
    % ----------------------------------- G9 ;X=c  
    rpowers = []; E"b+Q  
    for j = 1:length(n) l7ZqkGG]  
        rpowers = [rpowers m(j):2:n(j)]; `&LPqb  
    end $GSn#} yz  
    rpowers = unique(rpowers); q$yTG!q*  
    sPyq.oG  
    % Pre-compute the values of r raised to the required powers, G yvEc3|@  
    % and compile them in a matrix: p[!&D}&6h  
    % ----------------------------- %|I~8>m  
    if rpowers(1)==0 *_}ft-*w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;*BG{rkr  
        rpowern = cat(2,rpowern{:}); f1rP+l-C<  
        rpowern = [ones(length_r,1) rpowern]; 0B>hVaj>-  
    else 7YV}F9h4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z{wJQZ9"  
        rpowern = cat(2,rpowern{:}); P6!c-\  
    end H!y1&  
    u3a"[DB9c  
    % Compute the values of the polynomials: t3}>5cAxy  
    % -------------------------------------- CCNrjaA  
    z = zeros(length_r,length_n); h#dp_#  
    for j = 1:length_n 08n2TL;EsX  
        s = 0:(n(j)-m(j))/2; 5V':3o;D__  
        pows = n(j):-2:m(j); ^RAst1q7  
        for k = length(s):-1:1 &GGJ=c\  
            p = (1-2*mod(s(k),2))* ... FO<PMK   
                       prod(2:(n(j)-s(k)))/          ... 6 6(|3DX  
                       prod(2:s(k))/                 ... W4%I%&j  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... )\s{\u \  
                       prod(2:((n(j)+m(j))/2-s(k))); x"9`w 42\r  
            idx = (pows(k)==rpowers); 93Kd7x-3  
            z(:,j) = z(:,j) + p*rpowern(:,idx); tg_xk+x  
        end T`mG+"O  
         7hQXGY,q  
        if isnorm 2Nrb}LH  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); P(a!I{A(  
        end h6Ovl  
    end e{EKM4  
    H*51GxK  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2##;[  
    `>0%Ha   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 v%rmfIU  
    b)eoFc)lc  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)