非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $5yH8JU
function z = zernfun(n,m,r,theta,nflag) *7/MeE6)i
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5NYYrA8,^
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )0@&pEObm
% and angular frequency M, evaluated at positions (R,THETA) on the .$-%rU:*}
% unit circle. N is a vector of positive integers (including 0), and (<5&<JC{
% M is a vector with the same number of elements as N. Each element ^F$iD (f
% k of M must be a positive integer, with possible values M(k) = -N(k) 1A9Gf
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, BO=j*.YKy
% and THETA is a vector of angles. R and THETA must have the same Q%RI;;YyA
% length. The output Z is a matrix with one column for every (N,M) IQ}YF]I;
% pair, and one row for every (R,THETA) pair. fxX4 !r
% wo!;Bxo
N
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d[Rs
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u*H
V
% with delta(m,0) the Kronecker delta, is chosen so that the integral c:z<8#A}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *}`D2_uP
% and theta=0 to theta=2*pi) is unity. For the non-normalized QW"BGg~6c
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J|I&{
% $P~Tt 4068
% The Zernike functions are an orthogonal basis on the unit circle. umj5M5oe3
% They are used in disciplines such as astronomy, optics, and h7W<$\P
% optometry to describe functions on a circular domain. |h1Y3
% +aIy':P
% The following table lists the first 15 Zernike functions. mMV-IL
% 8Ow0A
% n m Zernike function Normalization I!-5
#bxD
% -------------------------------------------------- }>u<,
% 0 0 1 1 naKB2y]l
% 1 1 r * cos(theta) 2 lvZ:Aw
r
% 1 -1 r * sin(theta) 2 6P*2Kg`
% 2 -2 r^2 * cos(2*theta) sqrt(6) q\6ZmKGnT
% 2 0 (2*r^2 - 1) sqrt(3) p=U5qM.O
% 2 2 r^2 * sin(2*theta) sqrt(6) (!`]S>_w9
% 3 -3 r^3 * cos(3*theta) sqrt(8) Kf7v_T/
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) E; Z1HF
R
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 27KfT]=
% 3 3 r^3 * sin(3*theta) sqrt(8) Tn8GLn
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6*H F`@(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b:}+l;e52
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ' fm}&0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J~vK`+Zs
% 4 4 r^4 * sin(4*theta) sqrt(10) {]\!vG6
% -------------------------------------------------- C %o^AR
% ;iEFG^'tG
% Example 1: pI|H9
% #r_&Q`!eU
% % Display the Zernike function Z(n=5,m=1) u?n{r
% x = -1:0.01:1; P*;zDQy
% [X,Y] = meshgrid(x,x); ^d2bl,1
% [theta,r] = cart2pol(X,Y); oUwu:&<Orm
% idx = r<=1; SNK
_
% z = nan(size(X)); $VCWc#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); x GHS
% figure WSW,}tFp"
% pcolor(x,x,z), shading interp 4h[^!up.7
% axis square, colorbar /P/S0
% title('Zernike function Z_5^1(r,\theta)') p$cSES>r:
% ( nH3
% Example 2: |F 18j9
% yr
/p3ys
% % Display the first 10 Zernike functions isP4*g&%x
% x = -1:0.01:1; )0:@T)G
% [X,Y] = meshgrid(x,x); n3kYVAgF
% [theta,r] = cart2pol(X,Y); wz P")}[0
% idx = r<=1; }~RH!Q1
% z = nan(size(X)); ~\z\f}w
% n = [0 1 1 2 2 2 3 3 3 3]; w<]Wg^dyQ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; b}[W[J}`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; YbrsXp"
% y = zernfun(n,m,r(idx),theta(idx)); zF[>K4
% figure('Units','normalized') #'-L`])7uw
% for k = 1:10 H+>l][
% z(idx) = y(:,k); `8 Dgk}
% subplot(4,7,Nplot(k)) {AY`\G
% pcolor(x,x,z), shading interp q)uq?sZe
% set(gca,'XTick',[],'YTick',[]) =kspHP<k
% axis square uz1t uX_
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o|nj2 .
% end 7='M&Za
% :B<lDcFKJ
% See also ZERNPOL, ZERNFUN2. )up!W4h6o
" (+>#
% Paul Fricker 11/13/2006 UUx0#D/U0C
`q
4%
[lsr[`SJ<
% Check and prepare the inputs: $e! i4pM
% ----------------------------- \7}X^]UV x
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) shlL(&Py
error('zernfun:NMvectors','N and M must be vectors.') 8yH) 8:w
end +x!V;H(
SZCFdb
if length(n)~=length(m) sYt8NsQ
error('zernfun:NMlength','N and M must be the same length.') @^vVou_
end JeJc(e
mb*L'y2r
n = n(:); rBP!RSl1
m = m(:); ]OoqU-q
if any(mod(n-m,2)) 1e;^MzB"
error('zernfun:NMmultiplesof2', ... Zjt3U;Y
'All N and M must differ by multiples of 2 (including 0).') j"E_nV:Qc
end j0k"iv
e/WR\B'1
if any(m>n) "YGs<)S
error('zernfun:MlessthanN', ... *N$#cz
'Each M must be less than or equal to its corresponding N.') N"b>]Ab] ;
end bgd1j,PWbW
d;ElqRC&
if any( r>1 | r<0 ) YXJjqH3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') <BQ4x.[
end 8KD7t&H
74%,v|
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J%3%l5/
error('zernfun:RTHvector','R and THETA must be vectors.') x~}RL-Y2o
end Da)[mxJ
W:P4XwR{
r = r(:); ]7ROCJ;
theta = theta(:); :JSOj@s
length_r = length(r); _EOQ*K#=Ct
if length_r~=length(theta) D:llGdU#2
error('zernfun:RTHlength', ... &gkloP@
'The number of R- and THETA-values must be equal.') k@AOE0m
end E'e#axF;
^zQ;8)ng
% Check normalization: v[ru }/4
% -------------------- iwL\H a
if nargin==5 && ischar(nflag) jj#K[@u
isnorm = strcmpi(nflag,'norm'); LI?rz<H!D
if ~isnorm jjkiic+tDN
error('zernfun:normalization','Unrecognized normalization flag.') ~;|
end 5-bd1!o
else 7,_N9Q]rB
isnorm = false; [[?:,6I
end |J2Rwf
G7`7e@{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6d,jR[JP
% Compute the Zernike Polynomials gmWRw{nS+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rZ1${/6
0,nDyTS^
% Determine the required powers of r: #OH-LWZh
% ----------------------------------- xF5q=%n
m_abs = abs(m); DPi%[CRH
rpowers = []; M=e]v9
for j = 1:length(n) GLt#]I"LY
rpowers = [rpowers m_abs(j):2:n(j)]; 9>qR6k?
end `R fhxzI
rpowers = unique(rpowers); PV>-"2n
) ]U-7
% Pre-compute the values of r raised to the required powers, /_?Ly$>'
% and compile them in a matrix: nvxftbfE^D
% ----------------------------- N/Z3 EF_
if rpowers(1)==0 p}!rPd*
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;58l_ue
rpowern = cat(2,rpowern{:}); d> `9!)
rpowern = [ones(length_r,1) rpowern]; Ip(
IGR"
else 2Q)"~3
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 91r#lDR
rpowern = cat(2,rpowern{:}); L\5j"]
}`
end Tl %#N"
ZyT9y
% Compute the values of the polynomials: $Dd IY}
% -------------------------------------- 3.?PdK&C
y = zeros(length_r,length(n)); WsQo+Ua
for j = 1:length(n) }f<.07
s = 0:(n(j)-m_abs(j))/2; %.BbPR 7?h
pows = n(j):-2:m_abs(j); 9n$GeRO
for k = length(s):-1:1 !9k)hP
p = (1-2*mod(s(k),2))* ... !t{3IE
prod(2:(n(j)-s(k)))/ ... X26gl 'U
prod(2:s(k))/ ... 'u{m37ZJ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v1QE|@
prod(2:((n(j)+m_abs(j))/2-s(k))); o';sHa'
idx = (pows(k)==rpowers); "44VvpQC
y(:,j) = y(:,j) + p*rpowern(:,idx); ~a4htj
end x,STt{I=
\('8_tqI"
if isnorm qXkc~{W_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); SY["dcx+
end A/,7%bB1
end Ti!j
% END: Compute the Zernike Polynomials vdYd~>w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A{Z=[]r1`E
B8'" ^a^&-
% Compute the Zernike functions: :z56!qU
% ------------------------------ KO<Yc`Fs
idx_pos = m>0; }L{en
idx_neg = m<0; SgHLs
9Y- Sqk+
z = y; =GTltFqI1
if any(idx_pos) 4T`u?T]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @3K)VjY7
end bBc<yaN
if any(idx_neg) @|6n.'f+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4iBp!k7
end G \?fWqx
ec[S?-
% EOF zernfun