切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11534阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |qtZb}"|  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! hv)d  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R9InUX"k  
    function z = zernfun(n,m,r,theta,nflag) dA$qzQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'E%+ O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7DIFJJE'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =VF%Z[Gm  
    %   unit circle.  N is a vector of positive integers (including 0), and M(<.f}yZQ  
    %   M is a vector with the same number of elements as N.  Each element 9/6=[)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8Oo16LPD  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ? 9;r|G  
    %   and THETA is a vector of angles.  R and THETA must have the same YbuS[l8  
    %   length.  The output Z is a matrix with one column for every (N,M) 1^y^b{  
    %   pair, and one row for every (R,THETA) pair. Kl w9  
    %  +D|E8sz8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~P!%i9e_  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b!z kQ?h  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral B S+=*3J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S&F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized '<&rMn  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wQN/MYF[  
    % cGS7s 8U  
    %   The Zernike functions are an orthogonal basis on the unit circle. 2g%p9-MO]I  
    %   They are used in disciplines such as astronomy, optics, and w>6 cc#>q  
    %   optometry to describe functions on a circular domain. ;g_<i_ *x#  
    % *hkNJ  
    %   The following table lists the first 15 Zernike functions. GqD_6cdh  
    % Io7o*::6iw  
    %       n    m    Zernike function           Normalization +XL|bdK  
    %       -------------------------------------------------- !Q5NV4gd+  
    %       0    0    1                                 1 Pe?b# G  
    %       1    1    r * cos(theta)                    2 BVv{:m{w  
    %       1   -1    r * sin(theta)                    2 1g_Dkv|D  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #\gx.2W7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gt Rs||  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) yIma7H@=L  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) CG[04y  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %lSjC%Z'd  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 'Sjt*2blq  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) .@3bz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0v'!(&m  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6}GcMhU<r  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Q a3+9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o/mGd~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) bSS=<G9  
    %       -------------------------------------------------- qp55U*  
    %  El |Y]f  
    %   Example 1: -)p| i~j^A  
    % lH%-#2]  
    %       % Display the Zernike function Z(n=5,m=1) 287)\FU;3  
    %       x = -1:0.01:1; .?*TU~S  
    %       [X,Y] = meshgrid(x,x); #lO~n.+P  
    %       [theta,r] = cart2pol(X,Y); lW3wmSWn%  
    %       idx = r<=1; 6:qh%ZR  
    %       z = nan(size(X)); 0'~Iv\s  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Yo[Pu< zR  
    %       figure m$B)_WW  
    %       pcolor(x,x,z), shading interp _/cL"Wf  
    %       axis square, colorbar {V5eHn9/Q'  
    %       title('Zernike function Z_5^1(r,\theta)') +<w\K*  
    % {qL}:ha?  
    %   Example 2: dmk_xBy s|  
    % ($[)Tcq*~  
    %       % Display the first 10 Zernike functions |!"qz$8fB  
    %       x = -1:0.01:1; 5yQ\s[;o3  
    %       [X,Y] = meshgrid(x,x); }+i~JK  
    %       [theta,r] = cart2pol(X,Y); 9\KMU@Ne  
    %       idx = r<=1; ~oE@y6Q  
    %       z = nan(size(X)); Pm!/#PtX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; oO][X  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;'4 HR+E"  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; =SLCG.  
    %       y = zernfun(n,m,r(idx),theta(idx)); "D?:8!\!  
    %       figure('Units','normalized') K#4Toc#=V  
    %       for k = 1:10 d2 (3 ,  
    %           z(idx) = y(:,k); 6tv-PgZ  
    %           subplot(4,7,Nplot(k)) Wd]MwDcO  
    %           pcolor(x,x,z), shading interp fE,Io3  
    %           set(gca,'XTick',[],'YTick',[]) <K  GYwLk  
    %           axis square zb& 3{,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^=7XA894  
    %       end c`xgz#]v  
    % EN{o3@ O'  
    %   See also ZERNPOL, ZERNFUN2. !\/J|~XZ  
    ;eT+Ly|{  
    %   Paul Fricker 11/13/2006 m$}Jw<.W  
    _"G./X  
    52#Ac;Y  
    % Check and prepare the inputs: w[Q)b()  
    % ----------------------------- 8N9X1Mb|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d .t$VRO  
        error('zernfun:NMvectors','N and M must be vectors.') j/uu&\e  
    end o2W^!#]=  
    22FHD4  
    if length(n)~=length(m) G'f5MP 1  
        error('zernfun:NMlength','N and M must be the same length.') ;cp,d~mrf  
    end D%!GY1wdn  
    %#iu  
    n = n(:); h #(J6ht  
    m = m(:); :FX|9h  
    if any(mod(n-m,2)) p~f=0K  
        error('zernfun:NMmultiplesof2', ... aYws{Vii  
              'All N and M must differ by multiples of 2 (including 0).') -&JQdrs  
    end yNOoAnGT W  
    c[X:vDUX  
    if any(m>n) 6gTc)rhRT  
        error('zernfun:MlessthanN', ... 0UOjk.~b  
              'Each M must be less than or equal to its corresponding N.') dBEm7.nh  
    end O8)N`#1>+  
    vk.P| Y-;  
    if any( r>1 | r<0 ) u?I2|}#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') <db>~@;X!  
    end #VynADPs`o  
    5dkXDta[G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) B\Uocn  
        error('zernfun:RTHvector','R and THETA must be vectors.') MkX=34oc^  
    end }0idFotck  
    ]..7t|^b&  
    r = r(:); 3H ,?ZFFGz  
    theta = theta(:); /M Z^;XG  
    length_r = length(r); "WZ|   
    if length_r~=length(theta) 7mtX/w9  
        error('zernfun:RTHlength', ... ! q5qA*  
              'The number of R- and THETA-values must be equal.') p,7, tx  
    end z4{ :X Da  
    2sH1) ,\  
    % Check normalization: 5&TH\2u  
    % -------------------- j9~lf  
    if nargin==5 && ischar(nflag) '; ;X{a  
        isnorm = strcmpi(nflag,'norm'); JasA w7  
        if ~isnorm 4Be\5Byr  
            error('zernfun:normalization','Unrecognized normalization flag.') FA!!S`{\  
        end DTvCx6:!  
    else ~DP_1V?  
        isnorm = false; vW4n>h}]  
    end 4/AE;y X  
    u7lO2 C7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #jM-XK  
    % Compute the Zernike Polynomials 7> 8L%(7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KZ@'NnQ  
    \IZY\WU}2  
    % Determine the required powers of r: d r$E:kr  
    % ----------------------------------- pT/z`o$#V  
    m_abs = abs(m); .?kq\.rQ  
    rpowers = []; Ui.S)\B  
    for j = 1:length(n) (9Q@I8}Iy  
        rpowers = [rpowers m_abs(j):2:n(j)]; lRR A2Kql  
    end GQ2/3kt  
    rpowers = unique(rpowers); Z}S7%m  
    Z):Nd9  
    % Pre-compute the values of r raised to the required powers, 9qUkw&}H  
    % and compile them in a matrix: ZlP+t>  
    % ----------------------------- EYA=fU  
    if rpowers(1)==0 U1O8u-X  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?NR&3 q  
        rpowern = cat(2,rpowern{:}); 9_fbl:qk;\  
        rpowern = [ones(length_r,1) rpowern]; **JBZ\'  
    else Lg{M<Q)4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  fj'7\[nZ  
        rpowern = cat(2,rpowern{:}); &%m%b5  
    end #mkf2Z=t-  
    EB VG@  
    % Compute the values of the polynomials: :0Z\-7iK  
    % -------------------------------------- e, fZ>EJ  
    y = zeros(length_r,length(n)); /xj`'8  
    for j = 1:length(n) IKV!0-={!z  
        s = 0:(n(j)-m_abs(j))/2; |-L7qZu%  
        pows = n(j):-2:m_abs(j); }=Ul8 <  
        for k = length(s):-1:1 9g]%}+D  
            p = (1-2*mod(s(k),2))* ... HoK+g_9~  
                       prod(2:(n(j)-s(k)))/              ... KwU;+=_.  
                       prod(2:s(k))/                     ... &x7iEbRs  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zd/kr  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K&eT*JW>  
            idx = (pows(k)==rpowers); E+lr{~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W/g_XQ   
        end 4:5M,p  
         m`}mbm^  
        if isnorm  1D_&n@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Cz &3=),G  
        end E^A S65%bL  
    end +lb&_eD  
    % END: Compute the Zernike Polynomials B<i(Y1n[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LI].*n/v  
    v3]5`&3~  
    % Compute the Zernike functions: W^)mz,%x  
    % ------------------------------ IqiU  
    idx_pos = m>0; )ZI#F]  
    idx_neg = m<0; `jSegG'  
    ea]qX6)UZ  
    z = y; I]hjv  
    if any(idx_pos) .>z1BP:(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?U+hse3e~  
    end VXW*LEk  
    if any(idx_neg) 8i5S }  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); lv9Tq5C  
    end '~ H`Ffd.  
    zw+RDo  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) CAC%lp  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 1Iy1xiP  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated /_})7I52  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive :9av]Yv&  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  %S%IW  
    %   and THETA is a vector of angles.  R and THETA must have the same )z\#  
    %   length.  The output Z is a matrix with one column for every P-value, jXLd#6  
    %   and one row for every (R,THETA) pair. }79O[&  
    % #4./>}G  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 3UaW+@  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) xT]t3'y|-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi)  V?1[R  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Hy1$Kvub  
    %   for all p. KE ?NQMU  
    % df$.gP  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Zp^O1&\SK?  
    %   Zernike functions (order N<=7).  In some disciplines it is (WJ)!  
    %   traditional to label the first 36 functions using a single mode ?_d6 ;  
    %   number P instead of separate numbers for the order N and azimuthal T.3{}230<  
    %   frequency M. 9 :Oz-b  
    % vi *A 5  
    %   Example: ]XbMqHGS  
    % 3qn_9f]  
    %       % Display the first 16 Zernike functions l)*(UZ"  
    %       x = -1:0.01:1; %~x?C4L8  
    %       [X,Y] = meshgrid(x,x); }6!/Nb  
    %       [theta,r] = cart2pol(X,Y); >mX6;6FF  
    %       idx = r<=1; sYBmL]Hr  
    %       p = 0:15; tT>LOI_z  
    %       z = nan(size(X)); 9?MzIt  
    %       y = zernfun2(p,r(idx),theta(idx)); ]95VM yN  
    %       figure('Units','normalized') pB\:.?.pd  
    %       for k = 1:length(p) '/NpmNY:L  
    %           z(idx) = y(:,k); bj}Lxc],  
    %           subplot(4,4,k) X!K>.r_Dg  
    %           pcolor(x,x,z), shading interp ""jW'%wR  
    %           set(gca,'XTick',[],'YTick',[]) Qv5 fK  
    %           axis square N|$9v{ j_  
    %           title(['Z_{' num2str(p(k)) '}']) ]t~.?)Ad+2  
    %       end S'8+jY  
    % mjWU0.  
    %   See also ZERNPOL, ZERNFUN. NI#]#yM+  
    P O 5Wi  
    %   Paul Fricker 11/13/2006 vReX7  
    !5(DU~S*@S  
    hdCd:6   
    % Check and prepare the inputs: j :B/ FL  
    % ----------------------------- rAfz?  
    if min(size(p))~=1 " Q?~LB  
        error('zernfun2:Pvector','Input P must be vector.') Ba8=nGa4KY  
    end '"E!av>  
    qvSYrnpn  
    if any(p)>35 F0p=|W  
        error('zernfun2:P36', ... sWte&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 6vsA8u(|V#  
               '(P = 0 to 35).']) 'k[qx}  
    end ];hqI O#nM  
    zUL,~u  
    % Get the order and frequency corresonding to the function number: M,_ $s,  
    % ---------------------------------------------------------------- j=irx5:  
    p = p(:); 2I [zV7 @t  
    n = ceil((-3+sqrt(9+8*p))/2); P0}{xq'k9v  
    m = 2*p - n.*(n+2); ?&#LmeZ}K  
    NOQ^HEi  
    % Pass the inputs to the function ZERNFUN: B6 (\1  
    % ---------------------------------------- 2P^|juc)sU  
    switch nargin <`uu e  
        case 3 dT*Yv`h  
            z = zernfun(n,m,r,theta); 6wh PW .  
        case 4 1*u]v{JJ(  
            z = zernfun(n,m,r,theta,nflag); 'wk,t^)  
        otherwise qisvGHo  
            error('zernfun2:nargin','Incorrect number of inputs.') (l^7EpNs  
    end {\D &*  
    h'-4nu;*  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) *uyP+f2O  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. I;t@wbY,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of U<w8jVE  
    %   order N and frequency M, evaluated at R.  N is a vector of b!@PS$BTxq  
    %   positive integers (including 0), and M is a vector with the d#0:U Y%~  
    %   same number of elements as N.  Each element k of M must be a 6P{^j  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) X>[i<ei  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is UA8hYWRP  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Mqd'XU0L  
    %   with one column for every (N,M) pair, and one row for every 60!%^O =  
    %   element in R. z)^|.  
    % HJAiQ[m5s  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- PK2;Ywk`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is X!Z)V)@J8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to WT ;2aS:  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 %, psUOY  
    %   for all [n,m]. Pz2 b  
    % }(t`s  
    %   The radial Zernike polynomials are the radial portion of the t<##0#xS.  
    %   Zernike functions, which are an orthogonal basis on the unit T ?[28|  
    %   circle.  The series representation of the radial Zernike rQimQ|+  
    %   polynomials is fwz:k]vk  
    % =o##z5j K  
    %          (n-m)/2 &!CVF  
    %            __ t`H1]`c?  
    %    m      \       s                                          n-2s 9S|sTf  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r TF/NA\0c$  
    %    n      s=0 ]#]Z]9w  
    % Dds-;9  
    %   The following table shows the first 12 polynomials. ^y/Es2A#t  
    % %1Q:{m  
    %       n    m    Zernike polynomial    Normalization *<xu3){:c  
    %       --------------------------------------------- blgA`)GI  
    %       0    0    1                        sqrt(2) =PRQ3/?5  
    %       1    1    r                           2 {}YA7M:L  
    %       2    0    2*r^2 - 1                sqrt(6) x 7by|G(  
    %       2    2    r^2                      sqrt(6) ^w^e~0 S  
    %       3    1    3*r^3 - 2*r              sqrt(8) h:8P9WhWF  
    %       3    3    r^3                      sqrt(8) d-~V.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 6j|Ncv  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) g{]6*`/Z  
    %       4    4    r^4                      sqrt(10) S $p>sItO  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) U80=f2  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ytIPY7E  
    %       5    5    r^5                      sqrt(12) Km(i}:6"  
    %       --------------------------------------------- 3<^Up1CaZ  
    % > ubq{'  
    %   Example: M~2Us{ `  
    % S&!(h {O  
    %       % Display three example Zernike radial polynomials i&:SWH=  
    %       r = 0:0.01:1; NuQ!huh  
    %       n = [3 2 5]; 7 XxZF43  
    %       m = [1 2 1]; k77IXT_7u  
    %       z = zernpol(n,m,r); U*C^g}iA  
    %       figure MR1I"gqE}I  
    %       plot(r,z) sG u.G  
    %       grid on %P0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 0 %~~IT}U  
    % K ";Et  
    %   See also ZERNFUN, ZERNFUN2. *K|~]r(F?  
    3*h"B$g!  
    % A note on the algorithm. <,)R`90_X6  
    % ------------------------ n*7^lAa2  
    % The radial Zernike polynomials are computed using the series /2Wg=&H  
    % representation shown in the Help section above. For many special =>;&M)+q  
    % functions, direct evaluation using the series representation can /"Vd( K2Z  
    % produce poor numerical results (floating point errors), because <r#FI8P;X  
    % the summation often involves computing small differences between oy8jc];SO  
    % large successive terms in the series. (In such cases, the functions v?VDASR2`  
    % are often evaluated using alternative methods such as recurrence ^K<3_D>1>  
    % relations: see the Legendre functions, for example). For the Zernike r'*$'QY-N  
    % polynomials, however, this problem does not arise, because the /i,n75/y?  
    % polynomials are evaluated over the finite domain r = (0,1), and ZHNL ~=r}  
    % because the coefficients for a given polynomial are generally all mWv$eR  
    % of similar magnitude. \n[kzi7  
    % o.ZR5`.  
    % ZERNPOL has been written using a vectorized implementation: multiple `<nxXsLe  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] G3DgB!  
    % values can be passed as inputs) for a vector of points R.  To achieve 'f6H#V*C  
    % this vectorization most efficiently, the algorithm in ZERNPOL r84^/+"T  
    % involves pre-determining all the powers p of R that are required to p]mN)  
    % compute the outputs, and then compiling the {R^p} into a single G(7%*@SX  
    % matrix.  This avoids any redundant computation of the R^p, and lbAhP+B  
    % minimizes the sizes of certain intermediate variables. Z^|N]Ej  
    % ~$u9  
    %   Paul Fricker 11/13/2006 MZV$YD^S  
    e\V -L_  
    KZ%i&w#<  
    % Check and prepare the inputs: ;stjqTd  
    % ----------------------------- O>h`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5sT3|yq  
        error('zernpol:NMvectors','N and M must be vectors.') 9rMO=  
    end v@=qVwX  
    hoq2zDjD  
    if length(n)~=length(m) u#Ig!7iUu  
        error('zernpol:NMlength','N and M must be the same length.') Yj@ Sy  
    end aZb\uMePK  
    HEVj K$  
    n = n(:); D./{f8  
    m = m(:); !5} }mf  
    length_n = length(n); "9_$7.q<y  
    ; dzL9P9IU  
    if any(mod(n-m,2)) /9pxEidVAS  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') %+l95Dv1  
    end (,h2qP-;ud  
    r-y;"h'  
    if any(m<0) ]VjvG};  
        error('zernpol:Mpositive','All M must be positive.') 5mZ2CDV  
    end dL$ iTSfz"  
    G!Brt&_'  
    if any(m>n) 6.)ug7aF  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') h[>pC"s?K  
    end b&P)J|Fe  
    B@(d5i{h  
    if any( r>1 | r<0 ) ^s{Ff+]W  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') V[(fE=cIN~  
    end c-k3<|H`  
    _{jC?rzb  
    if ~any(size(r)==1) }.A]=Ew  
        error('zernpol:Rvector','R must be a vector.') ~LS</_N  
    end 'V?FeWp  
    0OM^,5%8  
    r = r(:); WK6,K92  
    length_r = length(r); c]u ieig0~  
    ZPH_s^  
    if nargin==4 ;O}%SCF7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); gO8d2?Oh  
        if ~isnorm Fl_}Auj{&(  
            error('zernpol:normalization','Unrecognized normalization flag.') ':(AiD-}  
        end 23tX"e  
    else a<&K^M&  
        isnorm = false; {d.z/Buu  
    end N~,Ipf  
    _3aE]\O[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9K@ I  
    % Compute the Zernike Polynomials 3Z" ;a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  4v`/~a  
    HS <Jp44  
    % Determine the required powers of r: m+!.H\  
    % ----------------------------------- 5[4wN( )  
    rpowers = []; x[58C+  
    for j = 1:length(n) M*0^<e~]F  
        rpowers = [rpowers m(j):2:n(j)]; v/ N[)<  
    end v^ ^Ibv  
    rpowers = unique(rpowers); Es+I]o0K  
    +bE{g@%@ +  
    % Pre-compute the values of r raised to the required powers, R$awo/'^  
    % and compile them in a matrix: /F;2wT;  
    % ----------------------------- vcFR Td  
    if rpowers(1)==0 _p6 r5Y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); AAQ!8!  
        rpowern = cat(2,rpowern{:}); f5*qlQJFz\  
        rpowern = [ones(length_r,1) rpowern]; l6bY!I>  
    else A M[f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sm`c9[E  
        rpowern = cat(2,rpowern{:}); 4MPy}yT*  
    end rp4D_80q  
    RFRXOyGz$  
    % Compute the values of the polynomials: h\[@J rDa  
    % -------------------------------------- zwV!6xG  
    z = zeros(length_r,length_n); d` ttWWPw  
    for j = 1:length_n n$C- ^3 c  
        s = 0:(n(j)-m(j))/2; &9flNoNR9  
        pows = n(j):-2:m(j); R5ra*!|L)  
        for k = length(s):-1:1 (B4)L%  
            p = (1-2*mod(s(k),2))* ... 2A\b-;4EP  
                       prod(2:(n(j)-s(k)))/          ... \(pwHNSafk  
                       prod(2:s(k))/                 ... p/ (Z2N"  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... U*~-\jN1pb  
                       prod(2:((n(j)+m(j))/2-s(k))); ;D~#|CB  
            idx = (pows(k)==rpowers); _\4#I(  
            z(:,j) = z(:,j) + p*rpowern(:,idx); =H)]HxEEM  
        end d0)]^4HT|y  
         |p/ *OFC6  
        if isnorm )l`Ks  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); W!<7OA g$  
        end 8e-nzc,]  
    end JlnmG<WLT  
    82@^vX  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  kwaZn~  
    Z[VrRT,\c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 5cf?u3r!qJ  
    o|d:rp!^  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)