切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10992阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 QD{1?aY  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 8<T~AU8'*  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sCY  
    function z = zernfun(n,m,r,theta,nflag) gI2'[OU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. oVZzvK(zR  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wE=I3E%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the e~(e&4pb  
    %   unit circle.  N is a vector of positive integers (including 0), and F5YoEWS  
    %   M is a vector with the same number of elements as N.  Each element u&S0  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `i(b%$|^&Z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, vxk0@k_  
    %   and THETA is a vector of angles.  R and THETA must have the same 2bw) , W  
    %   length.  The output Z is a matrix with one column for every (N,M) O%>*=h`P  
    %   pair, and one row for every (R,THETA) pair. @|t]9  
    % ^ swj!da  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f'5 6IT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^{=UKf{  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `W+-0F@Y?@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :NWIUN  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Wp:vz']V  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d`flYNg4  
    % ;8&/JSN M  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?0KIM* .  
    %   They are used in disciplines such as astronomy, optics, and d oEuKT  
    %   optometry to describe functions on a circular domain. KGc.YUoE  
    % 3w |5%`  
    %   The following table lists the first 15 Zernike functions. `^^t#sT   
    % Cc{{9Ud  
    %       n    m    Zernike function           Normalization wN%lc3[/z2  
    %       -------------------------------------------------- -R]~kGa6m<  
    %       0    0    1                                 1 H? z~V-8  
    %       1    1    r * cos(theta)                    2 FCwE/ 2,  
    %       1   -1    r * sin(theta)                    2 k= 9+"4:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) L;M@]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) -?1R l:rM  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) UNiK6h_%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]v>[r?X#V  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) pi#a!Quf\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z+6WG  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )nj fqg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tl~ZuS/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YCb|eS^u  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) w[ 3a^  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Btzes.  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?<N} Xh  
    %       -------------------------------------------------- (*6 .-Xn  
    % z>,tP  
    %   Example 1: }s'=w]m  
    % "PN4{"`V  
    %       % Display the Zernike function Z(n=5,m=1) Qt>kythi  
    %       x = -1:0.01:1; J[Mj8ee#  
    %       [X,Y] = meshgrid(x,x); oO3 ^9?Z  
    %       [theta,r] = cart2pol(X,Y); )h0>e9z>Y  
    %       idx = r<=1; 4t%Lo2v!X%  
    %       z = nan(size(X)); I9xu3izAmR  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4 Cd5-I  
    %       figure pYAKA1F  
    %       pcolor(x,x,z), shading interp $?z} yx$  
    %       axis square, colorbar DxN\ H"  
    %       title('Zernike function Z_5^1(r,\theta)') *$R9'Yo}F  
    % hPG@iX|V  
    %   Example 2: o(?9vU  
    % T;{}bc&I  
    %       % Display the first 10 Zernike functions ?,v& o>*  
    %       x = -1:0.01:1; Ho*B<#&(A|  
    %       [X,Y] = meshgrid(x,x); +0*\q  
    %       [theta,r] = cart2pol(X,Y); kxEq_FX  
    %       idx = r<=1; [9 :9<#?o^  
    %       z = nan(size(X)); "O$WfpKX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "'Gq4<&y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Ce}m$k  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; a[j]fv*6  
    %       y = zernfun(n,m,r(idx),theta(idx)); Fz<1xyc(  
    %       figure('Units','normalized') wxJ"{(;  
    %       for k = 1:10 $>_`.*I/  
    %           z(idx) = y(:,k); Y?K?*`Pkc1  
    %           subplot(4,7,Nplot(k)) 8tjWVo  
    %           pcolor(x,x,z), shading interp _D{FQRU<YD  
    %           set(gca,'XTick',[],'YTick',[]) H l(W'>*oL  
    %           axis square 0<4'pO.6Hq  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0(u}z  
    %       end !UP B4I  
    % k^;/@:  
    %   See also ZERNPOL, ZERNFUN2. u^]Gc p  
    bW/T}FN D  
    %   Paul Fricker 11/13/2006 _PC<Td>nm  
    l'2vo=IQ  
    {hf_Xro&  
    % Check and prepare the inputs: Ny`SE\B+/  
    % ----------------------------- |cuKC \  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jJvd!,=)  
        error('zernfun:NMvectors','N and M must be vectors.') @Q nKaZ8jW  
    end 1\/vS$bi(  
    Si23w'T  
    if length(n)~=length(m) ]Y->EME:W  
        error('zernfun:NMlength','N and M must be the same length.') "B"ql-K  
    end v5?)J91  
    Q (gA:aQ  
    n = n(:); ^j pQfDe6  
    m = m(:); ,d.5K*?aI  
    if any(mod(n-m,2)) Ji=`XsV  
        error('zernfun:NMmultiplesof2', ... 4/3w *  
              'All N and M must differ by multiples of 2 (including 0).') ~@<o-|#  
    end S_??G:i  
    pV:44  
    if any(m>n) wM;=^br  
        error('zernfun:MlessthanN', ... MZX@Gi<S[  
              'Each M must be less than or equal to its corresponding N.') fU%Mz\t  
    end 5=9Eb  
    5BLBcw\;  
    if any( r>1 | r<0 ) gth_Sz5!#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "5N$u(: b  
    end l`X?C~JhJ  
    ;Tq4!w'rH  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0/z$W.!  
        error('zernfun:RTHvector','R and THETA must be vectors.') vt(}8C+  
    end %g>k0~TRf#  
    bng/v  
    r = r(:); u~'_Uqp  
    theta = theta(:); t v`c" Pb  
    length_r = length(r); &K=) YpT  
    if length_r~=length(theta) CSWA/#&8>  
        error('zernfun:RTHlength', ... wF6a*b@v  
              'The number of R- and THETA-values must be equal.') .p'McCV=  
    end S&cN+r  
    ] ONmWo77o  
    % Check normalization: YF;2jl Nm  
    % -------------------- Gcxz$.(  
    if nargin==5 && ischar(nflag) -Fop<q\b  
        isnorm = strcmpi(nflag,'norm'); W5Jb5  
        if ~isnorm 9&B #@cw  
            error('zernfun:normalization','Unrecognized normalization flag.') hS%oQ)zvE  
        end .K#' Fec  
    else "18cD5-#  
        isnorm = false; 6*|EB|%n  
    end mv$gL  
    /6 x[C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {=3'H?$  
    % Compute the Zernike Polynomials L0%W;m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %(\et%[]  
    'XYjo&w  
    % Determine the required powers of r: pd.pY*B<[  
    % ----------------------------------- l u{6  
    m_abs = abs(m); ?4W6TSW-'  
    rpowers = []; 2G:KaQ)  
    for j = 1:length(n) c,G[Rk  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z)u_2e  
    end i~4$V  
    rpowers = unique(rpowers); 8KdcU [w]  
    /kO%aN  
    % Pre-compute the values of r raised to the required powers, {G|= pM\'  
    % and compile them in a matrix: Ycxv=Et  
    % ----------------------------- \y7\RV>>3b  
    if rpowers(1)==0 J~ z00p`E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uXG$YDKqC  
        rpowern = cat(2,rpowern{:}); HMKogGTTo  
        rpowern = [ones(length_r,1) rpowern]; S[&yO-=p6  
    else b'`C<Rk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w,!N{hv(  
        rpowern = cat(2,rpowern{:}); q((%sWp  
    end ehMpo BL  
    %wJ?+D/  
    % Compute the values of the polynomials: A- #c1KU!  
    % -------------------------------------- )fke;Y0  
    y = zeros(length_r,length(n)); O;(n[k  
    for j = 1:length(n) R!x /,6,_  
        s = 0:(n(j)-m_abs(j))/2; a5`9mR)Y$'  
        pows = n(j):-2:m_abs(j); ZRa~miKyM  
        for k = length(s):-1:1 Cv`dK=n>  
            p = (1-2*mod(s(k),2))* ... AC?a:{ ./  
                       prod(2:(n(j)-s(k)))/              ... }[;r-5}  
                       prod(2:s(k))/                     ... M=5hp&=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .&KC2#4   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7U&<{U<  
            idx = (pows(k)==rpowers); NV2$ >D  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R:44Gv7  
        end VY!A]S"  
         `4qtmbj  
        if isnorm PiNf;b^9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =u5( zaBe  
        end ng[LSB*57Y  
    end o4B%TW  
    % END: Compute the Zernike Polynomials M(Yt9}Z%Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U)('}u=b  
    FaG&U  
    % Compute the Zernike functions: AnBD~h h  
    % ------------------------------ ?ViU%t8J5  
    idx_pos = m>0; z{U^j:A  
    idx_neg = m<0; {>X2\.Rl  
    ,e*WJh8k[  
    z = y; msZ 3%L  
    if any(idx_pos) i6:O9Km  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (+bt{Ma  
    end p$XvVzW#<  
    if any(idx_neg) RJD(c#r$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,Q+.kAh !G  
    end 9u_D@A"aC`  
    {"*gX&;~  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Ap<j;s4`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ]P4?jKI  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated B[7Fq[.mh  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive aydf# [F  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, :i o[9B [  
    %   and THETA is a vector of angles.  R and THETA must have the same zIc_'Z,b  
    %   length.  The output Z is a matrix with one column for every P-value, M4L<u,\1s  
    %   and one row for every (R,THETA) pair. VO7&<Y}{x  
    % %u*HNo  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike tr%VYc|}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) "lBYn2W  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) qfgw^2aUa  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 |h2=9\:]  
    %   for all p. 7vB6IF  
    % pT<I!,~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ujeN|W  
    %   Zernike functions (order N<=7).  In some disciplines it is n wO5<b;  
    %   traditional to label the first 36 functions using a single mode .2*h!d)E  
    %   number P instead of separate numbers for the order N and azimuthal J L2g!n= K  
    %   frequency M. Z67'/z$0  
    % Zy^ wS1io  
    %   Example: #} `pj}tQ  
    % ?l ](RI  
    %       % Display the first 16 Zernike functions X GDJCN  
    %       x = -1:0.01:1; "V<7X%LIX  
    %       [X,Y] = meshgrid(x,x); S+-V16{i  
    %       [theta,r] = cart2pol(X,Y); 'M% uw85  
    %       idx = r<=1; $`"$ZI6[  
    %       p = 0:15; O|0,= 5  
    %       z = nan(size(X)); LOe l6Ui  
    %       y = zernfun2(p,r(idx),theta(idx)); ~{{@m]P  
    %       figure('Units','normalized') Ihx[S!:  
    %       for k = 1:length(p) Gs(;&fw  
    %           z(idx) = y(:,k); Y?JB%%WWI  
    %           subplot(4,4,k) zB#.EW  
    %           pcolor(x,x,z), shading interp C&RZdh,$  
    %           set(gca,'XTick',[],'YTick',[]) (6X{ &  
    %           axis square ryt`yO  
    %           title(['Z_{' num2str(p(k)) '}']) Md>9Daa~  
    %       end Kq}-)  
    % 3U[:N &Jb  
    %   See also ZERNPOL, ZERNFUN. ~Da-|FKa>  
    W%< z|  
    %   Paul Fricker 11/13/2006 *~8g:;u  
    >$;,1N $bd  
    V_jGL<X|  
    % Check and prepare the inputs: 2:&QBwr+;  
    % ----------------------------- -n6e;p]  
    if min(size(p))~=1 O\}w&BE:h  
        error('zernfun2:Pvector','Input P must be vector.') E&> 2=$~  
    end MQl GEJ  
    H8qWY"<Vd  
    if any(p)>35 ]nm(V  
        error('zernfun2:P36', ... Twpk@2=l  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Z#s-(wf  
               '(P = 0 to 35).']) G%SoC  
    end k3&/Ei5  
    C@@PLsMg  
    % Get the order and frequency corresonding to the function number: |pR'#M4j4A  
    % ---------------------------------------------------------------- 4gn|zSe>^  
    p = p(:); ]N6UY  
    n = ceil((-3+sqrt(9+8*p))/2); nSq$,tk(  
    m = 2*p - n.*(n+2); 4\14HcTcK  
    Y|-:z@n6C  
    % Pass the inputs to the function ZERNFUN: y+$a}=cb0  
    % ---------------------------------------- LN=#&7=$c  
    switch nargin lYy:A%yDT  
        case 3 P&AaD!Qn  
            z = zernfun(n,m,r,theta); Dx.hM[  
        case 4 8n/[oDc]  
            z = zernfun(n,m,r,theta,nflag);  +Q+!#  
        otherwise )4jS}  
            error('zernfun2:nargin','Incorrect number of inputs.') Q VWVZ >l  
    end 0MN)Z(Sa  
    >* ]B4Q  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ]v0=jm5A  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. KZ|p_{0&  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 10m`LG  
    %   order N and frequency M, evaluated at R.  N is a vector of CjLiLB  
    %   positive integers (including 0), and M is a vector with the W(PNw2  
    %   same number of elements as N.  Each element k of M must be a [V41 Gk  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ~oeX0l>F  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 2z9N/SyN  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +e&Q<q!,q  
    %   with one column for every (N,M) pair, and one row for every (o1o);AO  
    %   element in R. Gvc/o$_  
    % `&SBp }W}  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- *%2,= p  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is I<hMS6$<LE  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to g>_d,#F  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 T$tO[QR/  
    %   for all [n,m]. M3H^s_  
    % I6[=tB  
    %   The radial Zernike polynomials are the radial portion of the *NQsD C.J^  
    %   Zernike functions, which are an orthogonal basis on the unit =${ImMwj  
    %   circle.  The series representation of the radial Zernike Z xR  
    %   polynomials is LO)p2[5#R  
    % BU=Ta$#BZ  
    %          (n-m)/2 [.>g.p,;  
    %            __ 1yjP`N  
    %    m      \       s                                          n-2s 1K[y)q  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r M/jdMfU  
    %    n      s=0 &5 R-bYGW  
    % l1]'3]P(  
    %   The following table shows the first 12 polynomials. %DhLU~VX  
    % PfJfa/#pA  
    %       n    m    Zernike polynomial    Normalization p i\SRDP  
    %       --------------------------------------------- iU4Z9z!  
    %       0    0    1                        sqrt(2) DcEGIaW  
    %       1    1    r                           2 zc!q a"4yM  
    %       2    0    2*r^2 - 1                sqrt(6) rqhRrG{L|&  
    %       2    2    r^2                      sqrt(6) ' y_2"  
    %       3    1    3*r^3 - 2*r              sqrt(8) }K9Ji]tOK:  
    %       3    3    r^3                      sqrt(8) .< -~k@ P  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Lq{/r+tt/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) dt(Lp_&v  
    %       4    4    r^4                      sqrt(10) H:X(><J  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) \,yg@ R  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) OCI{)r<O2m  
    %       5    5    r^5                      sqrt(12) n$ZxN"q <  
    %       --------------------------------------------- fx/If  
    % ^-7-jZ@jz  
    %   Example: x!A5j $k0  
    % eLk:">kj  
    %       % Display three example Zernike radial polynomials nLBi} T  
    %       r = 0:0.01:1; .,gVquqMY  
    %       n = [3 2 5]; \D}$foHg  
    %       m = [1 2 1]; g (V_&Y  
    %       z = zernpol(n,m,r); wy?Hp*E  
    %       figure ;Dc\[r  
    %       plot(r,z) XC\'8hL:  
    %       grid on I9kBe}g3  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') BHZSc(-o  
    % seNH/pRb  
    %   See also ZERNFUN, ZERNFUN2. A]m_&A#  
    p&3~n: Fo  
    % A note on the algorithm. j9 &0/ ~/  
    % ------------------------ ,pVq/1  
    % The radial Zernike polynomials are computed using the series l6HT}x7OiH  
    % representation shown in the Help section above. For many special T$s)aM  
    % functions, direct evaluation using the series representation can V-z F'KI[  
    % produce poor numerical results (floating point errors), because r }Nq"s<  
    % the summation often involves computing small differences between P !~B07y  
    % large successive terms in the series. (In such cases, the functions gEnc;qb  
    % are often evaluated using alternative methods such as recurrence n|!O .+\b  
    % relations: see the Legendre functions, for example). For the Zernike ^%Fn|U\u  
    % polynomials, however, this problem does not arise, because the $EPDa?$*  
    % polynomials are evaluated over the finite domain r = (0,1), and >2;KPV0H  
    % because the coefficients for a given polynomial are generally all R!7a;J}  
    % of similar magnitude. ^uIKwql  
    % |sV@j_TX  
    % ZERNPOL has been written using a vectorized implementation: multiple ((tWgSZ3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <F+9#-  
    % values can be passed as inputs) for a vector of points R.  To achieve k1M?6TW&  
    % this vectorization most efficiently, the algorithm in ZERNPOL [`=:uUf3  
    % involves pre-determining all the powers p of R that are required to 2T}FX4'  
    % compute the outputs, and then compiling the {R^p} into a single Z n]e2  
    % matrix.  This avoids any redundant computation of the R^p, and a|@1RH>7H  
    % minimizes the sizes of certain intermediate variables. WvHy}1W  
    % <^B!.zQ  
    %   Paul Fricker 11/13/2006 ?+y# t?  
    RUlJP  
    0/?=FM >  
    % Check and prepare the inputs: $ iU~p  
    % ----------------------------- &3'zG)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aKkY)  
        error('zernpol:NMvectors','N and M must be vectors.') \|Ya*8V  
    end Fj0h-7L  
    Xc7Qu?}  
    if length(n)~=length(m) Pna2IB+  
        error('zernpol:NMlength','N and M must be the same length.') C'CdVDm X  
    end (1?k_!)T  
    -Khb  
    n = n(:); "AMsBvzgo  
    m = m(:); C**kJ  
    length_n = length(n); S[o R q  
    R3} Z"  
    if any(mod(n-m,2)) qAR}D~t  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ^tKJ}}  
    end b:(*C  
    D`r_ Dz  
    if any(m<0) 6'vt '9  
        error('zernpol:Mpositive','All M must be positive.') qGc>+!y  
    end z}*74lhF  
    ?u /i8  
    if any(m>n) O8S"B6?$~'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Y4n; [nHQ(  
    end pM7xnL4  
    U0%m*i  
    if any( r>1 | r<0 ) `(?x@Y>.Ht  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [P"R+$"   
    end |p{FSS  
    'aW<C>  
    if ~any(size(r)==1) oFUP`p%[  
        error('zernpol:Rvector','R must be a vector.') h` $2/%?  
    end IEJp!P,E  
    $2\k| @)s  
    r = r(:); ce P1mO  
    length_r = length(r); ij~023$DTt  
    #y%?A;  
    if nargin==4 dsJHhsu6  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Gm1vVHAxv  
        if ~isnorm ;'J{ylRQ  
            error('zernpol:normalization','Unrecognized normalization flag.') l<# *[TJ  
        end "Hw%@  
    else d6hso  
        isnorm = false; #s'  
    end _K"X  
    jNA^ (|:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E-q*u(IW  
    % Compute the Zernike Polynomials ="*8ja-K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^zr]#`@G  
    y~\K~qjd  
    % Determine the required powers of r: (j;6}@  
    % ----------------------------------- ?krgZ;Jj  
    rpowers = []; y}bE'Od  
    for j = 1:length(n) H:HJHd"W  
        rpowers = [rpowers m(j):2:n(j)]; H|iY<7@  
    end 4aQb+t,  
    rpowers = unique(rpowers); =K2mR}n\;  
    JH0L^p   
    % Pre-compute the values of r raised to the required powers, &% \`Lwh  
    % and compile them in a matrix: I5J9,j  
    % ----------------------------- R_2JP C  
    if rpowers(1)==0 s$ 2@|;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Qm X(s  
        rpowern = cat(2,rpowern{:}); ~y(- j[  
        rpowern = [ones(length_r,1) rpowern]; L4'FL?~I  
    else IL]VY1'#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yS[Z%]bvU  
        rpowern = cat(2,rpowern{:}); P]G`Y>#$r  
    end {~"6/L  
    eY1$s mh t  
    % Compute the values of the polynomials: 93npzpge  
    % -------------------------------------- 'B>%5'SdD  
    z = zeros(length_r,length_n); C  +%&!Q  
    for j = 1:length_n -B-nTS`  
        s = 0:(n(j)-m(j))/2; I!ykm\<  
        pows = n(j):-2:m(j); THM\-abz  
        for k = length(s):-1:1 [1Yx#t  
            p = (1-2*mod(s(k),2))* ... H0 YxPk)  
                       prod(2:(n(j)-s(k)))/          ... ;_lEu" -  
                       prod(2:s(k))/                 ... qi\!<clv  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {g>k-.  
                       prod(2:((n(j)+m(j))/2-s(k))); {<HL}m@kQ  
            idx = (pows(k)==rpowers); ,HxsU,xiG  
            z(:,j) = z(:,j) + p*rpowern(:,idx); #w4= kWJ[  
        end l ^*GqP5  
         DVNGV   
        if isnorm =;/4j'1}9  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); n#G I& U  
        end 2>3gC_^go  
    end Xp=Y<`dX  
    w`vJE!4B  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  dnNC = siY  
    k$}XZ,Q  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 gnNMuqt  
    H]"Z_n_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)