切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10581阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 IVNH.g'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %R0 Wq4}  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 t\Vng0  
    function z = zernfun(n,m,r,theta,nflag) ;Nn(  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. w/#7G\U  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "'v+*H 3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the :s *  
    %   unit circle.  N is a vector of positive integers (including 0), and Z<X=00,wg  
    %   M is a vector with the same number of elements as N.  Each element =8]`-(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) >$m<R &  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, vMz|'-rm$  
    %   and THETA is a vector of angles.  R and THETA must have the same A%D 'Z85 -  
    %   length.  The output Z is a matrix with one column for every (N,M) B?j t?  
    %   pair, and one row for every (R,THETA) pair. ?}?"m:=  
    % 2y`h'z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike S^%3Vf}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), D6VdgU|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0F)v9EK(W4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $mJv\;t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ze0qRLuH!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m,HE4`g  
    % -Lq+FTezE  
    %   The Zernike functions are an orthogonal basis on the unit circle. -64l f-<  
    %   They are used in disciplines such as astronomy, optics, and {"]!zL  
    %   optometry to describe functions on a circular domain. c6:uM1V{  
    % N@|<3R!N*e  
    %   The following table lists the first 15 Zernike functions. tX^6R  
    % B#g~c<4<  
    %       n    m    Zernike function           Normalization :ts3_-cr  
    %       -------------------------------------------------- 6_`Bo%  
    %       0    0    1                                 1 FJ0I&FyWs  
    %       1    1    r * cos(theta)                    2 FAM{p=t]HT  
    %       1   -1    r * sin(theta)                    2 cW*v))@2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  /b=C  
    %       2    0    (2*r^2 - 1)                    sqrt(3) a"@f< wU~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) aU6l>G`w  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7T/BzXr,B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $#rkvG_w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) q(n"r0)=  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) KS*,'hvY  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Z )c\B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uw3vYYFX  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1m5l((d  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'HW l_M  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2Hd\>{*  
    %       -------------------------------------------------- Hhtl~2t!0  
    % 6xDk3   
    %   Example 1: ,&BNN]k  
    % )%^l+w+&  
    %       % Display the Zernike function Z(n=5,m=1) uGZGI;9f4  
    %       x = -1:0.01:1; j sPavY  
    %       [X,Y] = meshgrid(x,x); 6Amt75RY  
    %       [theta,r] = cart2pol(X,Y); CR$wzjP j  
    %       idx = r<=1; "6d0j)YO  
    %       z = nan(size(X)); !H\;X`W|~D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /phMrL=  
    %       figure i(% 2t(wf+  
    %       pcolor(x,x,z), shading interp ,P9F*;Dj  
    %       axis square, colorbar %np(z&@wi  
    %       title('Zernike function Z_5^1(r,\theta)') o-bH3Jkb]&  
    % O7 ;=g!j  
    %   Example 2: 3zB'AG3b  
    % O84:ejro  
    %       % Display the first 10 Zernike functions o9}\vN0F  
    %       x = -1:0.01:1; gnH {_  
    %       [X,Y] = meshgrid(x,x); 1'/ [x(/]d  
    %       [theta,r] = cart2pol(X,Y); iZG-ca  
    %       idx = r<=1; JtO}i{A  
    %       z = nan(size(X)); )B]s.w  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]EHsRd  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; v]M:HzP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; g7! LX[  
    %       y = zernfun(n,m,r(idx),theta(idx)); w1I07 (  
    %       figure('Units','normalized') 0U7Gl9~  
    %       for k = 1:10 ;~0q23{+;U  
    %           z(idx) = y(:,k); XncX2E4E  
    %           subplot(4,7,Nplot(k)) AO8 #l YP?  
    %           pcolor(x,x,z), shading interp B& @ pZYl  
    %           set(gca,'XTick',[],'YTick',[]) :6o%x0l  
    %           axis square ;t*SG*Vi  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A8tJ&O rwY  
    %       end +(= -95qZ  
    % <%YW/k"o  
    %   See also ZERNPOL, ZERNFUN2. `qJJ{<1&U  
    H{n:R *  
    %   Paul Fricker 11/13/2006 2OUx@Vj  
    %.d.h;^T  
    {_b2!!p  
    % Check and prepare the inputs: )jXKPLj  
    % ----------------------------- curYD~7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [\3ZMH *  
        error('zernfun:NMvectors','N and M must be vectors.') q;#AlquY@  
    end -Kg.w*\H7/  
    !:xycLdfUp  
    if length(n)~=length(m) @2T8H  
        error('zernfun:NMlength','N and M must be the same length.') -r,v3n  
    end J.R]) &CB  
    sg=G<50i  
    n = n(:); "*HM8\  
    m = m(:); $e+4Kt ,  
    if any(mod(n-m,2)) Vz0(D  
        error('zernfun:NMmultiplesof2', ...  p0W<K  
              'All N and M must differ by multiples of 2 (including 0).') ^.:&ZsqV  
    end D SX%SE)  
    cO]w*Hti  
    if any(m>n) lD0a<L 3  
        error('zernfun:MlessthanN', ... AM=> P 7  
              'Each M must be less than or equal to its corresponding N.') Qw5-/p=t  
    end =COQv=GT  
    C7F\Y1Wj  
    if any( r>1 | r<0 ) mn03KF=n]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,Z @I" &H  
    end =~JVU  
    l7uTk5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Tv1oy%dK  
        error('zernfun:RTHvector','R and THETA must be vectors.') o@N[O^Q V  
    end j_d}?jh  
    $(gL#"T  
    r = r(:); 8Tg1 >q<  
    theta = theta(:); /fUdb=!Z  
    length_r = length(r); g^H,EaPl  
    if length_r~=length(theta) v {r%/*  
        error('zernfun:RTHlength', ... hiibPc?I  
              'The number of R- and THETA-values must be equal.') }j2;B 8j  
    end !U:&8Le  
    >yKz8SV#  
    % Check normalization: g4k3~,=D3  
    % -------------------- C9?mxa*z  
    if nargin==5 && ischar(nflag) I'BHNZO5tf  
        isnorm = strcmpi(nflag,'norm'); %\HE1d5;  
        if ~isnorm ilQ}{p6I  
            error('zernfun:normalization','Unrecognized normalization flag.') L4B/ g)K  
        end .`~?w+ ~  
    else cY5;~lO  
        isnorm = false; Rd7U5MBEF  
    end ;Q,t65+Am  
    C) R hld  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S'^ q  
    % Compute the Zernike Polynomials kJl^,q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?\8  
    ,\iXZ5"R  
    % Determine the required powers of r: &k,DAx`rN;  
    % ----------------------------------- pTGGJ,  
    m_abs = abs(m); p?#T^{Quz~  
    rpowers = []; C_>XtcU  
    for j = 1:length(n) ;^bfLSWm{  
        rpowers = [rpowers m_abs(j):2:n(j)]; M.,DXEZT  
    end Wcc4/:`Hu  
    rpowers = unique(rpowers);  :QP1!  
    @Ol(:{<  
    % Pre-compute the values of r raised to the required powers, ,vmn{gz  
    % and compile them in a matrix: WPsfl8@D  
    % ----------------------------- ~5N oR  
    if rpowers(1)==0 YFS6YA  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xi{ r-D8Z  
        rpowern = cat(2,rpowern{:}); ;8XRs?xyd  
        rpowern = [ones(length_r,1) rpowern]; +kd1q  
    else `1P|<VbZ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q<u?BA/  
        rpowern = cat(2,rpowern{:}); Lhp&RGy  
    end 9s_^?q  
    zMA;1Na  
    % Compute the values of the polynomials: 2? yo  
    % -------------------------------------- e(/F:ZEh  
    y = zeros(length_r,length(n)); p%meuWV%5  
    for j = 1:length(n) 66F?exr  
        s = 0:(n(j)-m_abs(j))/2; XxMZU(5  
        pows = n(j):-2:m_abs(j); Lfi6b%/z  
        for k = length(s):-1:1 B VeMV4  
            p = (1-2*mod(s(k),2))* ... UA*VqK)Y  
                       prod(2:(n(j)-s(k)))/              ... ws9IO ?|&G  
                       prod(2:s(k))/                     ... SWx: -<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d2Q*1Q@u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); q 0F6MAXj  
            idx = (pows(k)==rpowers); P~{8L.w!>W  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2`riI*fQ  
        end DqQ p47kp  
         0D2I)E72o  
        if isnorm cQhr{W,Un  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :p}8#rb  
        end >nSt<e  
    end "g5{NjimY  
    % END: Compute the Zernike Polynomials f%.Ngf9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xrvM}Il  
    g|]HS4y  
    % Compute the Zernike functions: f0SrPc v  
    % ------------------------------ ko[w#j  
    idx_pos = m>0; :Q"|%#P  
    idx_neg = m<0; Gu~*ZKyJ  
    l~;>KjZg  
    z = y; pAatv;Ex  
    if any(idx_pos) tjFX(;^[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e1-tpD:J  
    end  iiQn/%  
    if any(idx_neg) :1UMA@HP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ecs 0iW-,  
    end )pHlWi|h  
    z5$Q"Y.D  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) *z VN6wG{  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. fYUV[Gm  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated >E<ib[vK[  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 7m-%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, _F%`7j  
    %   and THETA is a vector of angles.  R and THETA must have the same hNN[djR  
    %   length.  The output Z is a matrix with one column for every P-value, bOj)Wu  
    %   and one row for every (R,THETA) pair. z;S-Q,  
    % DD$> 3`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike >l &]Ho  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) lNL=Yu2p_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) V_SH90@)+  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 $].htm  
    %   for all p. Z#d#n!Lz  
    % n6% `  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <R$ 2x_  
    %   Zernike functions (order N<=7).  In some disciplines it is Kb?{^\FiU  
    %   traditional to label the first 36 functions using a single mode @[3c1B6K  
    %   number P instead of separate numbers for the order N and azimuthal EhHxB fAQ  
    %   frequency M. U0_^6zd_  
    % =D/zC'l  
    %   Example: l\s!A&L  
    % X@`a_XAfd  
    %       % Display the first 16 Zernike functions KR aL+A  
    %       x = -1:0.01:1; q ;'f3Y  
    %       [X,Y] = meshgrid(x,x); g5B TZZ  
    %       [theta,r] = cart2pol(X,Y); !y _{mE?V(  
    %       idx = r<=1; yQ2=d5'V`  
    %       p = 0:15; d<a|dwAeh  
    %       z = nan(size(X)); ;>?h/tS6  
    %       y = zernfun2(p,r(idx),theta(idx)); o&q>[c  
    %       figure('Units','normalized') !?>V^#c  
    %       for k = 1:length(p) y>a?<*Y+e  
    %           z(idx) = y(:,k); _B^zm-}8|B  
    %           subplot(4,4,k) n"EKVw7Y  
    %           pcolor(x,x,z), shading interp $6"(t=%{  
    %           set(gca,'XTick',[],'YTick',[]) F^O83[S  
    %           axis square A"V mxP  
    %           title(['Z_{' num2str(p(k)) '}']) ~sk p}g]  
    %       end ]Btkoad  
    % KMRPleF  
    %   See also ZERNPOL, ZERNFUN. Nwi|>'\C  
    /\8I l+0  
    %   Paul Fricker 11/13/2006 "313eeIt%i  
    Urr%SIakvM  
    I/f\m}}ba  
    % Check and prepare the inputs: )dT@0Ys%  
    % ----------------------------- !a@)6or  
    if min(size(p))~=1 OBWWcL-  
        error('zernfun2:Pvector','Input P must be vector.') #V!a<w4_  
    end dVQ[@u1,  
    bKo %Ak,  
    if any(p)>35 YQ+hQ:4-  
        error('zernfun2:P36', ... .;?!I_`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... xl\Kj2^  
               '(P = 0 to 35).']) p-[WpY3  
    end 75^6?#GS  
    ":Dm/g  
    % Get the order and frequency corresonding to the function number: ,>  zEG  
    % ---------------------------------------------------------------- 3 t,_{9  
    p = p(:); 8-2 `S*  
    n = ceil((-3+sqrt(9+8*p))/2); Y9+_MxC"  
    m = 2*p - n.*(n+2); 0xB2  
    wX,V:QE  
    % Pass the inputs to the function ZERNFUN: %=aKW[uq]  
    % ---------------------------------------- ?5C'9 V  
    switch nargin TekUY m!G  
        case 3 #4^d#Gj  
            z = zernfun(n,m,r,theta); UnhVppnex  
        case 4 L:G#>  
            z = zernfun(n,m,r,theta,nflag); iod%YjZu  
        otherwise 7>E.0DP  
            error('zernfun2:nargin','Incorrect number of inputs.') "z~ba>,-\  
    end ?{ir$M  
    g*Y, .  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) / ;]5X  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  F!omkN  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of yeo&Qz2vU  
    %   order N and frequency M, evaluated at R.  N is a vector of U ZM #O  
    %   positive integers (including 0), and M is a vector with the Fhoyji4  
    %   same number of elements as N.  Each element k of M must be a 4.RQ3SoDa  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) f-b],YE  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is !gsvF\XDM  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ,^(]zZh  
    %   with one column for every (N,M) pair, and one row for every )#=J<OpG  
    %   element in R. ?e7]U*jEU  
    % ^t;z;.g  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- aB9!}3@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .Eao|;  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to qL(Q1O!  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ahB qYA K9  
    %   for all [n,m]. D&@]  
    % !IxO''4  
    %   The radial Zernike polynomials are the radial portion of the m>>.N?  
    %   Zernike functions, which are an orthogonal basis on the unit U.%Kt,qB  
    %   circle.  The series representation of the radial Zernike {z#2gc'Q  
    %   polynomials is *H>rvE.K?  
    % K2   
    %          (n-m)/2 i|YS>Pw~j  
    %            __ v9*m0|T0M  
    %    m      \       s                                          n-2s &p0e)o~Ux  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r UO/sv2CN  
    %    n      s=0 VtreOJ+  
    % je4l3Hl  
    %   The following table shows the first 12 polynomials. .g*j]!_]  
    % @f!X%)\;x  
    %       n    m    Zernike polynomial    Normalization okNo- \Dh!  
    %       --------------------------------------------- sp9gz~Kq  
    %       0    0    1                        sqrt(2) d0 cL9&~qW  
    %       1    1    r                           2 NFK`,  
    %       2    0    2*r^2 - 1                sqrt(6) $6hPTc<C  
    %       2    2    r^2                      sqrt(6) @ZKf3,J0  
    %       3    1    3*r^3 - 2*r              sqrt(8) 8)i""OD@I  
    %       3    3    r^3                      sqrt(8) f8 d 3ZK  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 1H)mJVIKkB  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) hsZ/Vnn`  
    %       4    4    r^4                      sqrt(10) ~(5r+Z}*`  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8`Ya7c>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12)  >@ t  
    %       5    5    r^5                      sqrt(12) <g4}7l8  
    %       --------------------------------------------- tYS4"Nfb+  
    % taQE r 2Zy  
    %   Example: 2iAC_"n  
    % DL]tg [w{  
    %       % Display three example Zernike radial polynomials v9$!v^U"D  
    %       r = 0:0.01:1; I<SgKva;c  
    %       n = [3 2 5]; y4V:)@ P  
    %       m = [1 2 1]; 8xpplo8  
    %       z = zernpol(n,m,r); q2GW3t  
    %       figure FhE{khc#  
    %       plot(r,z) &y[NC AeA  
    %       grid on _;<!8e$C  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ==[,;g x  
    % uOxHa>h  
    %   See also ZERNFUN, ZERNFUN2. !_S>ER  
    D$>_W,*V  
    % A note on the algorithm. `]Bb0h1![  
    % ------------------------ s6H'}[E<  
    % The radial Zernike polynomials are computed using the series ,Z. sGv  
    % representation shown in the Help section above. For many special (!j#u)O  
    % functions, direct evaluation using the series representation can xU *:a[g  
    % produce poor numerical results (floating point errors), because ,Q`qnn&  
    % the summation often involves computing small differences between +)]YvZ6%[,  
    % large successive terms in the series. (In such cases, the functions p!.~hw9  
    % are often evaluated using alternative methods such as recurrence y(A' *G9  
    % relations: see the Legendre functions, for example). For the Zernike J~YT~D 2L  
    % polynomials, however, this problem does not arise, because the GK?ual1  
    % polynomials are evaluated over the finite domain r = (0,1), and 'U@o!\=a  
    % because the coefficients for a given polynomial are generally all |WS)KR !  
    % of similar magnitude. KKeMi@N  
    % Q YJ EUC@  
    % ZERNPOL has been written using a vectorized implementation: multiple 0=d2_YzSf  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 1Pf(.&/9_  
    % values can be passed as inputs) for a vector of points R.  To achieve 49$P  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7#8Gn=g  
    % involves pre-determining all the powers p of R that are required to  *kr/,_K  
    % compute the outputs, and then compiling the {R^p} into a single 8:cbr/F<  
    % matrix.  This avoids any redundant computation of the R^p, and #6sz@XfV  
    % minimizes the sizes of certain intermediate variables. !Sq<_TO  
    % :_{8amO  
    %   Paul Fricker 11/13/2006 6&3,fSP  
    =:W2NN'  
    J3 $>~?^1  
    % Check and prepare the inputs: |rmelQ-  
    % ----------------------------- xn8K OwX%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ob d n#Wm=  
        error('zernpol:NMvectors','N and M must be vectors.') 8$00\><r  
    end LiJYyp  
    a6p0_-MF  
    if length(n)~=length(m) Sn CwoxK  
        error('zernpol:NMlength','N and M must be the same length.') nhI+xqfn  
    end _ _Of0<  
    ?u|??z%  
    n = n(:); H DVimoOq  
    m = m(:); 8tvmqe_G  
    length_n = length(n); QV4|f[Ki%  
    ?vXgHDs^T  
    if any(mod(n-m,2)) _0/unJl`  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') PK*Wu<<  
    end WhPP4 #  
    J8|MK.oD  
    if any(m<0) _0H oJ  
        error('zernpol:Mpositive','All M must be positive.') Z~'t'.=z  
    end _k84#E0  
    U>5^:%3  
    if any(m>n) z2=bbm:  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') U,<m%C"  
    end  T:}Q3  
    L3&Ys3-h  
    if any( r>1 | r<0 ) CEy\1D  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') f}otIf  
    end y]9R#\P/  
    )'shpRB;1  
    if ~any(size(r)==1) =?sG~  
        error('zernpol:Rvector','R must be a vector.') w,{h9f  
    end X2w)J?pv  
    Met?G0[  
    r = r(:); 'u,|*o  
    length_r = length(r); D:P(;  
    |k a _Zy  
    if nargin==4 *yq65yZi5  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); RQ+,7Ir  
        if ~isnorm (qn=BP I  
            error('zernpol:normalization','Unrecognized normalization flag.') CTMC78=9}  
        end G|i0n   
    else yi7.9/;a  
        isnorm = false; h*w9{[L  
    end \aSP7DzqQ  
    i'Y8-})  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OVK )]- ~  
    % Compute the Zernike Polynomials >hunV'vu'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;hj lRQ\  
    Rv1W&s&  
    % Determine the required powers of r: -L2.cN_  
    % ----------------------------------- 6?Ncgj &@  
    rpowers = []; 7FX4|]  
    for j = 1:length(n) r@G*Fx8Z  
        rpowers = [rpowers m(j):2:n(j)]; F^,:p.ihm<  
    end /9vi  
    rpowers = unique(rpowers); WfPb7T  
    ?m7:@GOE1  
    % Pre-compute the values of r raised to the required powers, J)nK9  
    % and compile them in a matrix: VcjbRpTy&  
    % ----------------------------- !'f7;%7s  
    if rpowers(1)==0 {C |R@S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5xH=w:  
        rpowern = cat(2,rpowern{:}); ~IhAO}1  
        rpowern = [ones(length_r,1) rpowern]; q,v<:sS9T  
    else wt($trJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GDu^P+^  
        rpowern = cat(2,rpowern{:}); _p$/.~Xo9  
    end ^ h=QpH  
    )O'LE&kQ|  
    % Compute the values of the polynomials: hSehJjEoM  
    % -------------------------------------- -()WTdIy  
    z = zeros(length_r,length_n); 96WzgHPWo  
    for j = 1:length_n .Fb#j+Lq  
        s = 0:(n(j)-m(j))/2; OqtGKda  
        pows = n(j):-2:m(j); J4bP(=w!  
        for k = length(s):-1:1 C qd\n#d/~  
            p = (1-2*mod(s(k),2))* ... *%xbn8  
                       prod(2:(n(j)-s(k)))/          ... %=**cvVy  
                       prod(2:s(k))/                 ... b{0a/&&1O  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... C-M_:kQ[U  
                       prod(2:((n(j)+m(j))/2-s(k))); i>M%)HN  
            idx = (pows(k)==rpowers); =\Q< TY  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 0E.N3iU  
        end oR#W@OK@is  
         0O3O^ 0  
        if isnorm gt{kjrTv&  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ?(ORk|)kU  
        end qu B[S)2}  
    end J[lC$X[  
    $dfc@Fn^x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >[ B.y  
    DMUirA;  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 aDdxR:  
    B[Lm}B[  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)