切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10629阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 w)# Lu/  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! D#=$? {w  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6h5,XcO4  
    function z = zernfun(n,m,r,theta,nflag) {:63% j  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. R4#56#d<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mRECd Gst  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]8m_+:`=  
    %   unit circle.  N is a vector of positive integers (including 0), and Vx~N`|yY  
    %   M is a vector with the same number of elements as N.  Each element ![ce=9@t<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !4/s|b9K  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, zrazbHI  
    %   and THETA is a vector of angles.  R and THETA must have the same j><8V Qx  
    %   length.  The output Z is a matrix with one column for every (N,M) 4Odf6v,*@  
    %   pair, and one row for every (R,THETA) pair. x1O]@Z{d\  
    % Zv"qA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .H33C@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), # ~I.F4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >.76<fni  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, oIJ.Tv@N(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Mb1K:U  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. PCcI(b>?l  
    % 0ECQ>Ux:  
    %   The Zernike functions are an orthogonal basis on the unit circle. b~u53   
    %   They are used in disciplines such as astronomy, optics, and  ds#om2)  
    %   optometry to describe functions on a circular domain. |EjMpRNE  
    % sT<XZLu  
    %   The following table lists the first 15 Zernike functions. skeXsls  
    % Q+ogVvMq>  
    %       n    m    Zernike function           Normalization %n!7'XF'[  
    %       -------------------------------------------------- EQvZ(-_;4  
    %       0    0    1                                 1 kWKAtv5@w  
    %       1    1    r * cos(theta)                    2 m35$4  
    %       1   -1    r * sin(theta)                    2 s6YnNJ,SK  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )/Mk\``j  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~snYf7  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +FGw)>g8'm  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s~)I1G  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \Q~HL_fy|Y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) z7PmyU >  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3yXSv1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) DZ*m"Bi  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "/~KB~bB  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Q\qI+F2?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tDQo1,(oY  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6$ \69   
    %       -------------------------------------------------- b&_u+g  
    % $psPNJG  
    %   Example 1: UVlXDebl  
    % S4!}7NOh  
    %       % Display the Zernike function Z(n=5,m=1) vk K8D#K  
    %       x = -1:0.01:1; -SeHz.` N  
    %       [X,Y] = meshgrid(x,x); *vS)aRK  
    %       [theta,r] = cart2pol(X,Y); v*3tqT(%  
    %       idx = r<=1; a*3h|b<  
    %       z = nan(size(X)); 6jpfo'uB$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #BOLq`9 f  
    %       figure 8oxYgj&~X  
    %       pcolor(x,x,z), shading interp 37U$9]  
    %       axis square, colorbar pY"&=I79tb  
    %       title('Zernike function Z_5^1(r,\theta)') RkTO5XO  
    % C?-_8OA  
    %   Example 2: hI}rW^o^  
    % F*{1, gb  
    %       % Display the first 10 Zernike functions h#?)H7ft  
    %       x = -1:0.01:1; _Y 8RP%  
    %       [X,Y] = meshgrid(x,x); !IAd.<,  
    %       [theta,r] = cart2pol(X,Y); gg+!e#-X  
    %       idx = r<=1; h5p,BRtu  
    %       z = nan(size(X)); d:GAa   
    %       n = [0  1  1  2  2  2  3  3  3  3]; wNtPh&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +|c1G[Jh  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !`qw" i  
    %       y = zernfun(n,m,r(idx),theta(idx)); K!A;C#b!  
    %       figure('Units','normalized')  &C&?kS(  
    %       for k = 1:10 E7AYK&  
    %           z(idx) = y(:,k); ~z&Ho  
    %           subplot(4,7,Nplot(k)) hY}.2  
    %           pcolor(x,x,z), shading interp &:}}T=@M1  
    %           set(gca,'XTick',[],'YTick',[])  97-=Vb  
    %           axis square ^^ +vt8|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) c8}jO=/5+  
    %       end *R8qnvE\()  
    % whb,2=gIE  
    %   See also ZERNPOL, ZERNFUN2. E*]%@6tH  
    .N~YVul[a*  
    %   Paul Fricker 11/13/2006 /}&@1  
    AiOz1Er  
    Rf0F`D k  
    % Check and prepare the inputs: c,FhI~>R  
    % ----------------------------- vI1UFD D  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l~j{i/>  
        error('zernfun:NMvectors','N and M must be vectors.') q%\rj?U_  
    end T*v@hbJ  
    %o4HCzId<  
    if length(n)~=length(m) .In8!hjYy4  
        error('zernfun:NMlength','N and M must be the same length.') n.tJ-l5[  
    end r}~|,O3bc'  
    kp>AZVk  
    n = n(:); +8eW/Bs@2  
    m = m(:); ~h@<14c{X  
    if any(mod(n-m,2)) 3X]\p}]z  
        error('zernfun:NMmultiplesof2', ... IP-}J$$1  
              'All N and M must differ by multiples of 2 (including 0).') [X=J]e^D  
    end ptvM>zw'~g  
    <lFQ4<"m  
    if any(m>n) h& Q9  
        error('zernfun:MlessthanN', ... &XH{,fv$  
              'Each M must be less than or equal to its corresponding N.') mvrg!/0w  
    end UCDvN  
    FEq R7  
    if any( r>1 | r<0 ) .BqS E   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') GFmVR2z_+  
    end `|d&ta[{  
    xK;WJm"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L7 f'  
        error('zernfun:RTHvector','R and THETA must be vectors.') nd?R|._R  
    end @o6^"  
    q[T='!Z\  
    r = r(:); RBM(>lU:  
    theta = theta(:); wD'LX  
    length_r = length(r); ({l!'>?  
    if length_r~=length(theta) T.R(  
        error('zernfun:RTHlength', ... f7Fr%*cO  
              'The number of R- and THETA-values must be equal.') (y;8izp9!  
    end {S;/+X,  
    ~IP3~m D  
    % Check normalization: EPMdR66  
    % -------------------- d}e/f)(  
    if nargin==5 && ischar(nflag) +ysP#uAA  
        isnorm = strcmpi(nflag,'norm'); TRSR5D[  
        if ~isnorm Tr@}  
            error('zernfun:normalization','Unrecognized normalization flag.') Z-BPC|e  
        end ?]bZ6|;2  
    else wtL_c  
        isnorm = false; E%E3h1Ua  
    end l<l6Ey(  
    =W Q_5}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4lqowg0  
    % Compute the Zernike Polynomials gbJz5EEq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3%$nRP X  
    BHW8zY=F  
    % Determine the required powers of r: wZV/]jmlEt  
    % ----------------------------------- ixFuqPij  
    m_abs = abs(m); RO1xcCp  
    rpowers = []; u4kg#+H  
    for j = 1:length(n) B[R1XpB7  
        rpowers = [rpowers m_abs(j):2:n(j)]; jLEwFPz  
    end N>$Nw<wV  
    rpowers = unique(rpowers); +R_w- NI  
    u\-f\Z7  
    % Pre-compute the values of r raised to the required powers, Kpo{:a  
    % and compile them in a matrix: (|PxR#{l<  
    % ----------------------------- fEl,jA  
    if rpowers(1)==0 !a[1rQH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h6dVT9  
        rpowern = cat(2,rpowern{:}); ^dzg'6M  
        rpowern = [ones(length_r,1) rpowern]; [foZO&+!  
    else !PzlrH)M=p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aiKZ$KLC  
        rpowern = cat(2,rpowern{:}); n>Rt9   
    end JKkR963 O  
    fdD?"z  
    % Compute the values of the polynomials: i 7fQj, q  
    % -------------------------------------- U[a;e OLx  
    y = zeros(length_r,length(n)); .cQ<F4)!tu  
    for j = 1:length(n) 9W{=6D86e  
        s = 0:(n(j)-m_abs(j))/2; x"Hi!h)v  
        pows = n(j):-2:m_abs(j); L.[ H   
        for k = length(s):-1:1 L{)e1p]q  
            p = (1-2*mod(s(k),2))* ... ~7W?W<  
                       prod(2:(n(j)-s(k)))/              ... N%A[}Y0;MW  
                       prod(2:s(k))/                     ... - T,;Fr'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K>h=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); D! 1oYr  
            idx = (pows(k)==rpowers); O6^>L0'  
            y(:,j) = y(:,j) + p*rpowern(:,idx); -|MeC  
        end K.Tfu"6  
         8xQ5[Ov  
        if isnorm 9ZL3p!  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g3%Xh0007{  
        end !79^M  
    end o yBBW?m  
    % END: Compute the Zernike Polynomials <|NP!eMsw8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?*~W  
    &i8AB{OU  
    % Compute the Zernike functions: #ra~Yb-F  
    % ------------------------------ 2Y)3Ue  
    idx_pos = m>0; :h tOz.  
    idx_neg = m<0; +-=w`  
    `/:ZB6  
    z = y; k[]B P4  
    if any(idx_pos) $!L'ZO1_r  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); fQ5V RpWGn  
    end O+Fu zCWj  
    if any(idx_neg) + RX{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9Xt5{\PJ  
    end 1MH[-=[Q  
    ,YYyFMC7S  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) &13qlc6  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. @U CGsw  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated &v7$*n27  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Yy6Mkw7X  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /s"mqBXCG  
    %   and THETA is a vector of angles.  R and THETA must have the same n=#AH;42  
    %   length.  The output Z is a matrix with one column for every P-value, Bb2;zOGdA  
    %   and one row for every (R,THETA) pair. 0Ym+10g  
    % ?!=yp#  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike !63p?Q=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) =&RpW7]  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5qzFH,  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U}ei2q\  
    %   for all p. {3F;:%$`c  
    % _KBN  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 z^z_!@7v   
    %   Zernike functions (order N<=7).  In some disciplines it is +;uP) "Q/L  
    %   traditional to label the first 36 functions using a single mode P,-f]k[_  
    %   number P instead of separate numbers for the order N and azimuthal yOwo(+ 2  
    %   frequency M. W($}G_j[B1  
    % TbqH-R3W  
    %   Example: f8yE>qJP  
    % RKoM49W  
    %       % Display the first 16 Zernike functions )[&'\SOO  
    %       x = -1:0.01:1; 0Q? XU.v  
    %       [X,Y] = meshgrid(x,x); `yYoVu*  
    %       [theta,r] = cart2pol(X,Y); e P]L  
    %       idx = r<=1; wVU.j$+_#  
    %       p = 0:15; $VOSd<87  
    %       z = nan(size(X)); Y5nj _xQJL  
    %       y = zernfun2(p,r(idx),theta(idx)); .J0s_[  
    %       figure('Units','normalized') IE7%u 92  
    %       for k = 1:length(p) W^{zlg  
    %           z(idx) = y(:,k); "M#A `b  
    %           subplot(4,4,k) 28,Hd!{  
    %           pcolor(x,x,z), shading interp -]$q8 Q(hM  
    %           set(gca,'XTick',[],'YTick',[]) KE>|,U r  
    %           axis square 4&b*|"Iw  
    %           title(['Z_{' num2str(p(k)) '}']) FXMrD,qVg  
    %       end ?=zF]J:G1w  
    % NWnUXR  
    %   See also ZERNPOL, ZERNFUN. f793yCiG  
    D d['e  
    %   Paul Fricker 11/13/2006 1dDK(RBbQ  
    ^pgVU&-~]/  
    KrVP#|9%"  
    % Check and prepare the inputs: =.T50~+M  
    % ----------------------------- P1cI]rriW  
    if min(size(p))~=1 Ruy qB>[o  
        error('zernfun2:Pvector','Input P must be vector.') %gBulvg  
    end kA c8[Hn  
    lICpfcc(+  
    if any(p)>35 90g=&O5@O  
        error('zernfun2:P36', ... >\f'QQ  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }eKY%WU>O  
               '(P = 0 to 35).']) qPal'c0  
    end ckDWY<@v  
    ZC7ZlL _  
    % Get the order and frequency corresonding to the function number: 73C7g< Mx  
    % ---------------------------------------------------------------- :$k] ;  
    p = p(:); B\WIoz;'  
    n = ceil((-3+sqrt(9+8*p))/2); V46=48K.  
    m = 2*p - n.*(n+2); i&K-|[3{g  
    .VD:FFkW  
    % Pass the inputs to the function ZERNFUN: LVHIQ9  
    % ---------------------------------------- {&u`d.Lk2p  
    switch nargin JSp V2c5Q  
        case 3 Y\7WCaSgi  
            z = zernfun(n,m,r,theta); g>gVO@"b2  
        case 4 Qqm$Jl!  
            z = zernfun(n,m,r,theta,nflag); _8QHx;}  
        otherwise C!,|Wi2&  
            error('zernfun2:nargin','Incorrect number of inputs.') B}?$kp  
    end FaA'%P@  
    ][D/=-  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9coN >y  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. V#Pz `D  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 6+.8nx:9X  
    %   order N and frequency M, evaluated at R.  N is a vector of 5Sh.4A\  
    %   positive integers (including 0), and M is a vector with the U L3++bt  
    %   same number of elements as N.  Each element k of M must be a 7g%.:H =  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) (@(rz/H  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 'Dx_n7&=  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ZHN}:W/p  
    %   with one column for every (N,M) pair, and one row for every `VL<pqPP  
    %   element in R. b0:5i<"w6  
    % 0}4FwcCr\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- zNh$d;(O$^  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is UmNh0nS  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 1)N~0)dO  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *.P3fVlZ  
    %   for all [n,m]. C< B1zgX  
    % r1]DkX <6  
    %   The radial Zernike polynomials are the radial portion of the o|njgmF;\  
    %   Zernike functions, which are an orthogonal basis on the unit +cf.In,{  
    %   circle.  The series representation of the radial Zernike kf -/rC)>  
    %   polynomials is .>^iU}  
    % ;=i$0w9W  
    %          (n-m)/2 ,!I'0x1OR  
    %            __ R![)B97^  
    %    m      \       s                                          n-2s .!2Ac  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,/1[(^e  
    %    n      s=0 >sZ207*  
    % XJ*W7HD  
    %   The following table shows the first 12 polynomials. HLYo+;j3|  
    % TM*<hC  
    %       n    m    Zernike polynomial    Normalization  Z5[f  
    %       --------------------------------------------- xA#'%|"  
    %       0    0    1                        sqrt(2) K[Ao_v2g  
    %       1    1    r                           2 WEZ)>[Xj?  
    %       2    0    2*r^2 - 1                sqrt(6) 1 GB  
    %       2    2    r^2                      sqrt(6) Zt{\<5j  
    %       3    1    3*r^3 - 2*r              sqrt(8) $?Yw{%W  
    %       3    3    r^3                      sqrt(8) noSBwP| v*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) # fkOm Y7X  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) k_A 9gj1  
    %       4    4    r^4                      sqrt(10) kFZjMchm A  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8pE0ANbq  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) <f/wWu}  
    %       5    5    r^5                      sqrt(12) *p>1s!i  
    %       --------------------------------------------- R3!3TJ  
    % `mo>~c7  
    %   Example: {z0PB] U  
    % (Gp|K6  
    %       % Display three example Zernike radial polynomials 1 z5\>F  
    %       r = 0:0.01:1; *s}j:fJ  
    %       n = [3 2 5]; 7nOn^f D  
    %       m = [1 2 1]; -_xC,dwK  
    %       z = zernpol(n,m,r); cd?arIV5  
    %       figure |@lVFEl]  
    %       plot(r,z) d*(wU>J '  
    %       grid on z;KUIWg  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') p}{V%!`_  
    % B9Z=`c.T  
    %   See also ZERNFUN, ZERNFUN2. B'` jdyaE9  
    8C4 =f  
    % A note on the algorithm. .|Bmg6g*  
    % ------------------------ \&)k{P>=  
    % The radial Zernike polynomials are computed using the series /c9%|<O%  
    % representation shown in the Help section above. For many special "RG #e +  
    % functions, direct evaluation using the series representation can Pln*?o  
    % produce poor numerical results (floating point errors), because q oJ4w7  
    % the summation often involves computing small differences between .jps6{  
    % large successive terms in the series. (In such cases, the functions r1!]<=&\  
    % are often evaluated using alternative methods such as recurrence }5qjGD  
    % relations: see the Legendre functions, for example). For the Zernike y9'F D5\s  
    % polynomials, however, this problem does not arise, because the k3FpD=N  
    % polynomials are evaluated over the finite domain r = (0,1), and 9b}AZ]$  
    % because the coefficients for a given polynomial are generally all nM,5KHU4a  
    % of similar magnitude. ?=lnYD j  
    % lS:R##  
    % ZERNPOL has been written using a vectorized implementation: multiple Vy:MK9U2  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] \ mt> R[  
    % values can be passed as inputs) for a vector of points R.  To achieve af WEt -  
    % this vectorization most efficiently, the algorithm in ZERNPOL :.,3Zw{l  
    % involves pre-determining all the powers p of R that are required to ;n-IpR#|  
    % compute the outputs, and then compiling the {R^p} into a single av*M #  
    % matrix.  This avoids any redundant computation of the R^p, and }{(|^s=  
    % minimizes the sizes of certain intermediate variables. 9&t!U+  
    % hm5A@Z   
    %   Paul Fricker 11/13/2006 te b~KM  
    6qgII~F'  
    >X(,(mKi  
    % Check and prepare the inputs: ~"ij,Op,3  
    % ----------------------------- M+N7JpR  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;<yVJox  
        error('zernpol:NMvectors','N and M must be vectors.') )5M9Ro7  
    end rLm:qu(F1  
    }M I9?\"q  
    if length(n)~=length(m) T'TxC)  
        error('zernpol:NMlength','N and M must be the same length.') E*t0ia8  
    end U.@j !UrZ  
    fDa$TbhjI  
    n = n(:); @$(/6]4p  
    m = m(:);  xedbr  
    length_n = length(n); Y=6b oT  
    .7nr:P  
    if any(mod(n-m,2)) s: .5S  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') #VwA?$4g`  
    end 2Rp'ju~O)/  
    |5}~n"R5  
    if any(m<0) y&.[Nt '+  
        error('zernpol:Mpositive','All M must be positive.') 3GSoHsNk  
    end W,^(FR.  
    Va1 eG]jQ  
    if any(m>n) EPz$`#Sh"  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Czs4jHTa`  
    end lj1wTiaI(  
    PG1#Z?_  
    if any( r>1 | r<0 ) |x AwiF_  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') oR=^NEJv  
    end ?6bk&"T?  
    @lau?@$ja  
    if ~any(size(r)==1) ve #cz2Z  
        error('zernpol:Rvector','R must be a vector.') V^t5 Y+7  
    end T1y,L<7?  
    R; X8%'   
    r = r(:); G~{xTpL  
    length_r = length(r); l.i"Z pik  
    `O5kI#m)L*  
    if nargin==4 }[u9vZL  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); |f^/((:D  
        if ~isnorm Hy<4q^3$G  
            error('zernpol:normalization','Unrecognized normalization flag.') m<BL/ 7  
        end #lax0IYY=  
    else A}#@(ma7  
        isnorm = false; 3986;>v  
    end X,/@#pSOz  
    n ?%3=~9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DlR&Lnv  
    % Compute the Zernike Polynomials 4 []R?lL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C61KY7iyR  
    [H#I:d-+\  
    % Determine the required powers of r: NA`3   
    % ----------------------------------- gFvFd:"uZ  
    rpowers = []; j\nnx8`7  
    for j = 1:length(n) rbnu:+!  
        rpowers = [rpowers m(j):2:n(j)]; FeS6>/  
    end N1Y*IkW"  
    rpowers = unique(rpowers); G{ rUqo  
    S\Qh#y FT  
    % Pre-compute the values of r raised to the required powers, ,z)7rU`  
    % and compile them in a matrix: 181-m7W  
    % ----------------------------- Y9m'RFZr  
    if rpowers(1)==0 Kbc-$ oneR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q=yQEh|Y  
        rpowern = cat(2,rpowern{:}); 0.nS306  
        rpowern = [ones(length_r,1) rpowern]; piO+K!C0n:  
    else Y}"|J ~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); p;) ;Vm+8  
        rpowern = cat(2,rpowern{:}); J1"u,HF*(  
    end ~?aq=T  
    1+o>#8D  
    % Compute the values of the polynomials: 4i[3|hv'  
    % -------------------------------------- qJW>Y}  
    z = zeros(length_r,length_n); C["^%0lj  
    for j = 1:length_n Z>a_vC  
        s = 0:(n(j)-m(j))/2; V0L^pDLOV  
        pows = n(j):-2:m(j); C9Fc(Y?_  
        for k = length(s):-1:1 u *z$I  
            p = (1-2*mod(s(k),2))* ... qo.~5   
                       prod(2:(n(j)-s(k)))/          ... L]#J?lE&  
                       prod(2:s(k))/                 ... *ZGQ`#1.X6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... [kFX>G4  
                       prod(2:((n(j)+m(j))/2-s(k))); /w!b2KwV  
            idx = (pows(k)==rpowers); ")HTUlcAe}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); <HG~#oBRq  
        end -z0,IYG }  
         < V"'j  
        if isnorm 5Zn3s()  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); )TM![^d  
        end gSu+]N  
    end Yq/|zTe{  
    uGLVY%N  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  #bdJ]v.n  
    +>:X4A *  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 \h0e09& I  
    ZjI^0D8  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)