切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11478阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ',k0 _n?t  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! n.]K"$230  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 x'_I{$C &  
    function z = zernfun(n,m,r,theta,nflag) WCT}OiLsL  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. MIvAugUOl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?WE#%W7U  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 2iHD$tw  
    %   unit circle.  N is a vector of positive integers (including 0), and 0FmYM@Wc  
    %   M is a vector with the same number of elements as N.  Each element O\;Z4qn2=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) U8L%=/N>B  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, hI*gw3V  
    %   and THETA is a vector of angles.  R and THETA must have the same braHWC'VYg  
    %   length.  The output Z is a matrix with one column for every (N,M) HbQ `b  
    %   pair, and one row for every (R,THETA) pair. VqqI%[!Aw  
    % i:W.,w%8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :xISS  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), S 4uX utd  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /tI8JXcUK  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qeLfO  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized x? 3U3\W  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _4F(WCco  
    % h<2o5c|  
    %   The Zernike functions are an orthogonal basis on the unit circle. P3X;&iT  
    %   They are used in disciplines such as astronomy, optics, and $Kgw6  
    %   optometry to describe functions on a circular domain. AE!DftI  
    % gV@FT|j!i  
    %   The following table lists the first 15 Zernike functions.  ZaJg$  
    % @NlE2s6a  
    %       n    m    Zernike function           Normalization /.r|ron:e  
    %       -------------------------------------------------- mxk :P  
    %       0    0    1                                 1  gSQq  
    %       1    1    r * cos(theta)                    2 _7r<RZ  
    %       1   -1    r * sin(theta)                    2 0o~? ]C  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Z18T<e  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0nUcUdIf+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) l&l&e OE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :VpRpj4f  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _u TaN  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z.6M~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P{j2'gg3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A\p'\@f  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,:POo^!/fT  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) xl [3*K   
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E~vM$$O$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;hb;%<xqT  
    %       -------------------------------------------------- R6l`IlG`  
    % QND{3Q  
    %   Example 1: 5{nERKaPf  
    % xR;>n[6  
    %       % Display the Zernike function Z(n=5,m=1) JDPn   
    %       x = -1:0.01:1; EH{m~x[Ei  
    %       [X,Y] = meshgrid(x,x); BSt^QH-'  
    %       [theta,r] = cart2pol(X,Y); j"6r]nc&  
    %       idx = r<=1; ybLl[K(D=  
    %       z = nan(size(X)); KMC]<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); V4I5PPz~  
    %       figure 4/UY*Us&  
    %       pcolor(x,x,z), shading interp UhKC:<%  
    %       axis square, colorbar 0#1hkJ"  
    %       title('Zernike function Z_5^1(r,\theta)') i) v ]  
    % U-~cVk+LI  
    %   Example 2: mQEE?/xX;  
    % "Bl ]_YPv  
    %       % Display the first 10 Zernike functions n;&08M5an}  
    %       x = -1:0.01:1; vbEAd)*S  
    %       [X,Y] = meshgrid(x,x); }j<:hD QP  
    %       [theta,r] = cart2pol(X,Y); SFhi]48&V  
    %       idx = r<=1; cV]c/*z A  
    %       z = nan(size(X)); 1 ; _tu  
    %       n = [0  1  1  2  2  2  3  3  3  3]; SSG57N-T  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; B(tLV9B3Q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; x\( @ v  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7A:k  
    %       figure('Units','normalized') zT$-%  
    %       for k = 1:10 8<V6W F`e  
    %           z(idx) = y(:,k); 38ac~1HjE  
    %           subplot(4,7,Nplot(k)) matW>D;J  
    %           pcolor(x,x,z), shading interp l~ 3H"  
    %           set(gca,'XTick',[],'YTick',[]) r'bctFsD  
    %           axis square $sF'Sr{)y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ogD 8qrZ6J  
    %       end pJ8;7u  
    % &1nZ%J9  
    %   See also ZERNPOL, ZERNFUN2. G<1)N T\u  
    a,eR'L<"*-  
    %   Paul Fricker 11/13/2006 ^a+W!  
    NTq#'O) f  
    x=-dv8N?  
    % Check and prepare the inputs: R1't W=  
    % ----------------------------- Qm9r>m6p@N  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X}jWNN  
        error('zernfun:NMvectors','N and M must be vectors.') HC1jN8WDY  
    end \ a}6NIo  
    _8zZ.~)  
    if length(n)~=length(m) HJ5 Ktt  
        error('zernfun:NMlength','N and M must be the same length.') (!'=?B "  
    end (]c M ;  
    wWq(|"  
    n = n(:); iakqCjV  
    m = m(:); 2=R}u-@6p  
    if any(mod(n-m,2)) ,orq&#*Wd  
        error('zernfun:NMmultiplesof2', ... {B;<R1  
              'All N and M must differ by multiples of 2 (including 0).') 5&Y%N(  
    end h>0R!Rl8  
    Y9}5&#  
    if any(m>n) dP[vXhc  
        error('zernfun:MlessthanN', ... %w9/ gD  
              'Each M must be less than or equal to its corresponding N.') &P2tzY'  
    end  3)D'Yx  
    ^)i5.o\  
    if any( r>1 | r<0 ) K!AW8FnHkZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +-%&,>R  
    end UQ X.  
    whH_<@!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /-C`*P=:u  
        error('zernfun:RTHvector','R and THETA must be vectors.') =`&7pYd,  
    end V1yY>  
    2il)@&^  
    r = r(:); f{i~hVF  
    theta = theta(:); &- 5`Oln  
    length_r = length(r); ^4G%*-   
    if length_r~=length(theta) p* '%<3ml  
        error('zernfun:RTHlength', ...  !' }  
              'The number of R- and THETA-values must be equal.') OEZ`5"j  
    end DJWm7 t  
    k 4HE'WY  
    % Check normalization: rnOg;|u8  
    % -------------------- T O]wD^`  
    if nargin==5 && ischar(nflag) Q4H(JD1f)  
        isnorm = strcmpi(nflag,'norm'); Xl/ SDm_p  
        if ~isnorm 0c-.h  
            error('zernfun:normalization','Unrecognized normalization flag.') /m"#uC!\  
        end y3Z\ Y[  
    else 7O.?I# 76  
        isnorm = false; bU3P; a(  
    end "d5nVO/  
    p1BMQ?=($  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]J '#KT{  
    % Compute the Zernike Polynomials a+-X\qN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v47S9Vm+  
    B@+&?%ub:  
    % Determine the required powers of r: |>'.(  
    % ----------------------------------- (GCeD-  
    m_abs = abs(m); Wx8oTN  
    rpowers = []; 4uX|2nJ2!;  
    for j = 1:length(n) B2kKEMdGg  
        rpowers = [rpowers m_abs(j):2:n(j)]; w'r?)WW$  
    end R(^2+mV?  
    rpowers = unique(rpowers); HL`=zB%  
    H{d;, KfX  
    % Pre-compute the values of r raised to the required powers, Hxr)`i46  
    % and compile them in a matrix: )%zOq:{\5  
    % ----------------------------- 7u=R5  
    if rpowers(1)==0 |T; ]%<O3E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 78MQoG<  
        rpowern = cat(2,rpowern{:}); mVs<XnA47  
        rpowern = [ones(length_r,1) rpowern]; ,N1I\f  
    else ! ^ DQX=1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W"meH~[Cp  
        rpowern = cat(2,rpowern{:}); 5R%4fzr&g  
    end #Fwf]{J  
    H6oU Ne  
    % Compute the values of the polynomials: NZQl#ZJH:  
    % -------------------------------------- L ,/(^0;  
    y = zeros(length_r,length(n)); ,_iR  
    for j = 1:length(n) ! N!A%  
        s = 0:(n(j)-m_abs(j))/2; l~C=yP(~  
        pows = n(j):-2:m_abs(j); O;6am++M@  
        for k = length(s):-1:1 3UNmUDl[~  
            p = (1-2*mod(s(k),2))* ... /QW-#K|S&  
                       prod(2:(n(j)-s(k)))/              ... \i.Yhl:O  
                       prod(2:s(k))/                     ... ?= R C?K  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0|chRX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); bd;?oYV~  
            idx = (pows(k)==rpowers); K;'s+ZD  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /@O$jlX5I  
        end 05ZF>`g*  
         C[JGt 9{Y  
        if isnorm P$H9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W1\F-:4L@  
        end A dL>?SG%  
    end U{Xx)l/o  
    % END: Compute the Zernike Polynomials Nu[0X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DQ`\HY  
    %NH{%K,  
    % Compute the Zernike functions: -L6V)aK&  
    % ------------------------------ aWk1D.  
    idx_pos = m>0; O?OG`{k  
    idx_neg = m<0; "/g\?Nce  
    17ol %3 M  
    z = y; {x\lK;  
    if any(idx_pos) tPz!C&.=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rk)h_zN  
    end ~a06x^=j  
    if any(idx_neg) n:P++^ j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9k*1_  
    end qZB}}pM#  
    ><DXT nt'x  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) w(cl,W/w  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. *Hed^[sO  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \Pt_5.bTs[  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive VI(2/**  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, S&z8-D=8k  
    %   and THETA is a vector of angles.  R and THETA must have the same BW{&A&j  
    %   length.  The output Z is a matrix with one column for every P-value, h/xV;oj  
    %   and one row for every (R,THETA) pair. BWev(SF{Ny  
    % b75en{aDi*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike }WM!e"  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) K0-AP $  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .]y"04@]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 R.)w l  
    %   for all p. i"OY=iw-N  
    % mNdEn<W  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 5hg ^K^ZZ  
    %   Zernike functions (order N<=7).  In some disciplines it is R$M>[Kjn  
    %   traditional to label the first 36 functions using a single mode qt,;Yxx#^  
    %   number P instead of separate numbers for the order N and azimuthal 9`|~- b  
    %   frequency M. gK",D^6T*Y  
    % d45mKla(V  
    %   Example: 5169E*  
    % b6ui&Y8z  
    %       % Display the first 16 Zernike functions ~(Xzm  
    %       x = -1:0.01:1; f6U i~  
    %       [X,Y] = meshgrid(x,x); h%+6 y  
    %       [theta,r] = cart2pol(X,Y); 35 3*D%8  
    %       idx = r<=1; ^w+)A;?W  
    %       p = 0:15; R|JBzdK+P  
    %       z = nan(size(X)); [e?vqm .  
    %       y = zernfun2(p,r(idx),theta(idx)); +H6cZ,  
    %       figure('Units','normalized') n"|1A..^  
    %       for k = 1:length(p) i564<1`x  
    %           z(idx) = y(:,k); rw%1>]os  
    %           subplot(4,4,k) )Bpvi4O  
    %           pcolor(x,x,z), shading interp 3.@ I\p}  
    %           set(gca,'XTick',[],'YTick',[]) f;cY&GC  
    %           axis square @*"H{xo.U  
    %           title(['Z_{' num2str(p(k)) '}']) Cy2)M(RW  
    %       end p{W'[A{J .  
    % C~q&  
    %   See also ZERNPOL, ZERNFUN. )Nkf'&  
    A#x_>fV  
    %   Paul Fricker 11/13/2006 Q zq3{%^x_  
    L)-1( e<x  
    &eY&6I  
    % Check and prepare the inputs: L/7YI\C2  
    % ----------------------------- lm\~_ 4l1  
    if min(size(p))~=1 \ ix& U  
        error('zernfun2:Pvector','Input P must be vector.') ^7,`6g  
    end #@8JYzMq%  
    jPA^SxM  
    if any(p)>35 Ers8J V  
        error('zernfun2:P36', ... >8=rD  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 3Sl2c  
               '(P = 0 to 35).']) l2 mO{'|C  
    end Jt|W%`X>D  
    NjP7?nXSx  
    % Get the order and frequency corresonding to the function number: )L/o|%r!  
    % ---------------------------------------------------------------- ql2O%B.6?  
    p = p(:); 5rUDRFO6  
    n = ceil((-3+sqrt(9+8*p))/2); *z6m644H  
    m = 2*p - n.*(n+2); tVqc!][   
    tL}_kK_!  
    % Pass the inputs to the function ZERNFUN: pL pBP+i  
    % ---------------------------------------- SU>cJ*  
    switch nargin f,0,:)  
        case 3 ]m@p? A$  
            z = zernfun(n,m,r,theta); C{2y*sx  
        case 4 K</="3 HK  
            z = zernfun(n,m,r,theta,nflag); <EM'|IR?  
        otherwise EU4j'1!&g<  
            error('zernfun2:nargin','Incorrect number of inputs.')  j*#k%;c  
    end 'Z 82+uU%  
    o7 1f<&1  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) r"W,G /;h  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H:!pFj  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of >v1ajI>O&{  
    %   order N and frequency M, evaluated at R.  N is a vector of B(qwTz 51  
    %   positive integers (including 0), and M is a vector with the &.)ST0b4  
    %   same number of elements as N.  Each element k of M must be a 9KDm<Q-mf  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8s)(e9Sr  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 9f_Qs4  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix *4?%Y8;bF6  
    %   with one column for every (N,M) pair, and one row for every cByUP#hW  
    %   element in R. 3iBUIv  
    % Dhzm C  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- <g'0q*qE  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #Pe|}!)u  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to DE!P[$J  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 08F~6e6a8  
    %   for all [n,m]. k btQ  
    % Pe)SugCs  
    %   The radial Zernike polynomials are the radial portion of the <-O^ol,fX  
    %   Zernike functions, which are an orthogonal basis on the unit .BrYz:#A  
    %   circle.  The series representation of the radial Zernike 35Cm>X  
    %   polynomials is  #[yZP9  
    % I|R;)[;X  
    %          (n-m)/2 -i*]Sgese  
    %            __ qz&?zzz;  
    %    m      \       s                                          n-2s  [kL`'yi  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +5qY*$dn  
    %    n      s=0 (;cvLop  
    % CjZIBMGc  
    %   The following table shows the first 12 polynomials. JE ''Th}  
    % lCiRvh1K  
    %       n    m    Zernike polynomial    Normalization [VY265)g  
    %       ---------------------------------------------  RR[1mM  
    %       0    0    1                        sqrt(2) ~R  C\  
    %       1    1    r                           2 EKf!j3  
    %       2    0    2*r^2 - 1                sqrt(6) 0+6=ag%  
    %       2    2    r^2                      sqrt(6) O2N~&<^  
    %       3    1    3*r^3 - 2*r              sqrt(8) d0}P  
    %       3    3    r^3                      sqrt(8) 2"8qtG`Et  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) B(,j*,f  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [J +5  
    %       4    4    r^4                      sqrt(10) UthM?g^  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <P0&!yN  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) fO,m_ OR:)  
    %       5    5    r^5                      sqrt(12) 3%YDsd vQx  
    %       --------------------------------------------- z(Q 5?+P  
    % 8<PQ31  
    %   Example: %eW2w@8]  
    % ?#Y1E~N  
    %       % Display three example Zernike radial polynomials "V{v*Aei0  
    %       r = 0:0.01:1; h_\OtoRa  
    %       n = [3 2 5]; H-jxH,mJmW  
    %       m = [1 2 1]; <Xb$YB-c  
    %       z = zernpol(n,m,r); |)+45e  
    %       figure bEli!N$  
    %       plot(r,z) @H61^K<  
    %       grid on V*H7m'za  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') g![?P"i^t  
    % $mcq/W   
    %   See also ZERNFUN, ZERNFUN2. Q(/F7 "m  
    ,QPo%{:p  
    % A note on the algorithm. Z!*k0 <Z  
    % ------------------------ R/Te ;z  
    % The radial Zernike polynomials are computed using the series m*'87a9q0  
    % representation shown in the Help section above. For many special ^EcwY- Qr  
    % functions, direct evaluation using the series representation can 7O<K?;I  
    % produce poor numerical results (floating point errors), because Dn@Sjsj>  
    % the summation often involves computing small differences between J8?V1Ad{  
    % large successive terms in the series. (In such cases, the functions npMPjknl  
    % are often evaluated using alternative methods such as recurrence x/uC)xm  
    % relations: see the Legendre functions, for example). For the Zernike /kNSB;  
    % polynomials, however, this problem does not arise, because the `Tc"a_p9t  
    % polynomials are evaluated over the finite domain r = (0,1), and 9"f  
    % because the coefficients for a given polynomial are generally all .wf$]oQQ  
    % of similar magnitude. #D .hZ=!  
    % Ug8>|wCE  
    % ZERNPOL has been written using a vectorized implementation: multiple ,d7o/8u  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] T~)R,OA7m  
    % values can be passed as inputs) for a vector of points R.  To achieve {9XQ~t"m^  
    % this vectorization most efficiently, the algorithm in ZERNPOL ->`R[k  
    % involves pre-determining all the powers p of R that are required to y;=/S?L.:  
    % compute the outputs, and then compiling the {R^p} into a single Y3bZ&G)  
    % matrix.  This avoids any redundant computation of the R^p, and %OJq(}  
    % minimizes the sizes of certain intermediate variables. HiSNEp$-4$  
    % hFMT@Gy  
    %   Paul Fricker 11/13/2006 E{]PfUfFY  
    Jp-6]uW  
    BQL](Y "  
    % Check and prepare the inputs: Pa-{bhllu)  
    % ----------------------------- S3gd'Bahq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PE<(eIr  
        error('zernpol:NMvectors','N and M must be vectors.') `c?8i  
    end ^b6yN\,S  
     S)x5.vo^  
    if length(n)~=length(m) {~EPP .  
        error('zernpol:NMlength','N and M must be the same length.') `gz/?q  
    end V=)' CCi{  
    TnJJ& "~3b  
    n = n(:); 2q ~y\fe  
    m = m(:); #Q$+AdY|  
    length_n = length(n); =`.OKUAn  
    G3j'A{  
    if any(mod(n-m,2)) Le*gdoW.  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') hE;BT>_dn  
    end w3jcit|  
    b=XHE1^rM  
    if any(m<0) ]}L tf,9  
        error('zernpol:Mpositive','All M must be positive.') WB3YN+Xl3  
    end RL b o  
    |Q$9I#rv  
    if any(m>n) rkn'1M&u  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,D2nUk  
    end pMzlpmW;P  
    (W5JVk_o  
    if any( r>1 | r<0 ) Bb.U4#  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 4D sHUc6  
    end ?Lbn R~/J  
    ;&$f~P Q  
    if ~any(size(r)==1) d$:LUxM#  
        error('zernpol:Rvector','R must be a vector.') U3BhoD#f\  
    end IC+!XZqS  
    k1~? }+<e  
    r = r(:); !7Nz_d~n  
    length_r = length(r); a([8r- zP  
    Zu|qN*N4  
    if nargin==4 &{gy{npQ  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); i!yE#zew  
        if ~isnorm CvRO'  
            error('zernpol:normalization','Unrecognized normalization flag.') @k)[p+)E  
        end .q|k459oi  
    else ._TN;tR~'  
        isnorm = false; \e~5Dx1  
    end a;=IOQ  
    Fil6;R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O3tw@ &k  
    % Compute the Zernike Polynomials 5IfC8drAs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T l8`3`e  
    pyp0SGCM:  
    % Determine the required powers of r: m(Iy W734I  
    % ----------------------------------- LvNulMEK  
    rpowers = []; xM![  
    for j = 1:length(n) *M'/z=V?%  
        rpowers = [rpowers m(j):2:n(j)]; {_UOS8j7  
    end Z u/w>  
    rpowers = unique(rpowers); vr } -u  
    1u~a*lO}  
    % Pre-compute the values of r raised to the required powers, iH8V]%  
    % and compile them in a matrix: N 5.kDT  
    % ----------------------------- X=V2^zrt  
    if rpowers(1)==0 Y6m:d&p=}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {Mc;B9W  
        rpowern = cat(2,rpowern{:}); UmG|_7  
        rpowern = [ones(length_r,1) rpowern]; CIj7' V  
    else 'cA(-ghY/E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Hz j%G>  
        rpowern = cat(2,rpowern{:}); 395`Wkv  
    end pj Md  
    CI=M0  
    % Compute the values of the polynomials: r! ~6.  
    % -------------------------------------- * 'Bu-1{  
    z = zeros(length_r,length_n); TT={>R[B  
    for j = 1:length_n gv,1 CK  
        s = 0:(n(j)-m(j))/2; sQn@:Gk  
        pows = n(j):-2:m(j); pO)5NbU  
        for k = length(s):-1:1 8khIy-9-'  
            p = (1-2*mod(s(k),2))* ... eV j7%9  
                       prod(2:(n(j)-s(k)))/          ... KPA.5,ai  
                       prod(2:s(k))/                 ... a#a n+JY3  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $hy0U_}6  
                       prod(2:((n(j)+m(j))/2-s(k))); u}89v1._Jn  
            idx = (pows(k)==rpowers); Fz' s\  
            z(:,j) = z(:,j) + p*rpowern(:,idx); vbfQy2q  
        end }6gum  
         &]pY~zVc  
        if isnorm a|z@5r%  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); z fu)X!t^  
        end pA6A*~QE  
    end xtut S  
    biENRJQ.  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  O"Nr$bS(Y  
    k!}(a0h  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 bX,#z,  
    j7lJ7BIr  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)