非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6h5,XcO4
function z = zernfun(n,m,r,theta,nflag) {:63% j
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. R4#56#d<
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mRECdGst
% and angular frequency M, evaluated at positions (R,THETA) on the ]8m_+:`=
% unit circle. N is a vector of positive integers (including 0), and Vx~N`|yY
% M is a vector with the same number of elements as N. Each element ![ce=9@t<
% k of M must be a positive integer, with possible values M(k) = -N(k) !4/s|b9K
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, zrazbHI
% and THETA is a vector of angles. R and THETA must have the same j><8V Qx
% length. The output Z is a matrix with one column for every (N,M) 4Odf6v,*@
% pair, and one row for every (R,THETA) pair. x1O]@Z{d\
% Zv"qA
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .H33C@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #~I.F4
% with delta(m,0) the Kronecker delta, is chosen so that the integral >.76<fni
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, oIJ.Tv@N(
% and theta=0 to theta=2*pi) is unity. For the non-normalized Mb1K:U
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. PCcI(b>?l
% 0ECQ>Ux:
% The Zernike functions are an orthogonal basis on the unit circle. b~u53
% They are used in disciplines such as astronomy, optics, and
ds#om2)
% optometry to describe functions on a circular domain. |EjMpRNE
% sT<XZLu
% The following table lists the first 15 Zernike functions. skeXsls
% Q+ogV vMq>
% n m Zernike function Normalization %n!7'XF'[
% -------------------------------------------------- EQvZ(-_;4
% 0 0 1 1 kWKAtv5@w
% 1 1 r * cos(theta) 2 m35$4
% 1 -1 r * sin(theta) 2 s6YnNJ,SK
% 2 -2 r^2 * cos(2*theta) sqrt(6) )/Mk\``j
% 2 0 (2*r^2 - 1) sqrt(3) ~snYf7
% 2 2 r^2 * sin(2*theta) sqrt(6) +FGw)>g8'm
% 3 -3 r^3 * cos(3*theta) sqrt(8) s~)I1G
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \Q~HL_fy|Y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) z7PmyU
>
% 3 3 r^3 * sin(3*theta) sqrt(8) 3yXSv1
% 4 -4 r^4 * cos(4*theta) sqrt(10) DZ*m"Bi
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "/~KB~bB
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Q\qI+F2?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tDQo1,(oY
% 4 4 r^4 * sin(4*theta) sqrt(10) 6$ \69
% -------------------------------------------------- b&_u+g
% $psPNJG
% Example 1: UVlXDebl
% S4!}7NOh
% % Display the Zernike function Z(n=5,m=1) vkK8D#K
% x = -1:0.01:1; -SeHz.`N
% [X,Y] = meshgrid(x,x); *vS)aRK
% [theta,r] = cart2pol(X,Y); v*3tqT(%
% idx = r<=1; a*3h|b<
% z = nan(size(X)); 6jpfo'uB$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #BOLq`9f
% figure 8oxYgj&~X
% pcolor(x,x,z), shading interp 37U$9]
% axis square, colorbar pY"&=I79tb
% title('Zernike function Z_5^1(r,\theta)') RkTO5XO
% C?-_8OA
% Example 2: hI}rW^o^
% F*{1, gb
% % Display the first 10 Zernike functions h#?)H7ft
% x = -1:0.01:1; _Y8RP%
% [X,Y] = meshgrid(x,x); !IAd.<,
% [theta,r] = cart2pol(X,Y); gg+!e#-X
% idx = r<=1; h5p,BRtu
% z = nan(size(X)); d:GAa
% n = [0 1 1 2 2 2 3 3 3 3]; wNtPh&
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; +|c1G[Jh
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !`qw"i
% y = zernfun(n,m,r(idx),theta(idx)); K!A;C#b!
% figure('Units','normalized') &C&?kS(
% for k = 1:10 E7AYK&
% z(idx) = y(:,k); ~z&Ho
% subplot(4,7,Nplot(k)) hY}.2
% pcolor(x,x,z), shading interp &:}}T=@M1
% set(gca,'XTick',[],'YTick',[]) 97-=Vb
% axis square ^^+vt8|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) c8}jO=/5+
% end *R8qnvE\()
% whb,2=gIE
% See also ZERNPOL, ZERNFUN2. E*]%@6tH
.N~YVul[a*
% Paul Fricker 11/13/2006 /}&@1
AiOz1Er
Rf0F`D k
% Check and prepare the inputs: c,FhI~>R
% ----------------------------- vI1UFD
D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l~j{i/>
error('zernfun:NMvectors','N and M must be vectors.') q%\rj?U_
end T*v@hbJ
%o4HCzId<
if length(n)~=length(m) .In8!hjYy4
error('zernfun:NMlength','N and M must be the same length.') n.tJ-l5[
end r}~|,O3bc'
kp>AZVk
n = n(:); +8eW/Bs@2
m = m(:); ~h@<14c{X
if any(mod(n-m,2)) 3X]\p}]z
error('zernfun:NMmultiplesof2', ... IP-}J$$1
'All N and M must differ by multiples of 2 (including 0).') [X=J]e^D
end ptvM>zw'~g
<lFQ4<"m
if any(m>n) h&Q9
error('zernfun:MlessthanN', ... &XH{,fv$
'Each M must be less than or equal to its corresponding N.') mvrg!/0w
end UCDvN
FEqR7
if any( r>1 | r<0 ) .BqSE
error('zernfun:Rlessthan1','All R must be between 0 and 1.') GFmVR2z_+
end `|d&ta[{
xK;WJm"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L7 f'
error('zernfun:RTHvector','R and THETA must be vectors.') nd?R|._R
end @o6^"
q[T='!Z\
r = r(:); RBM(>lU:
theta = theta(:); wD'LX
length_r = length(r); ({l !'>?
if length_r~=length(theta) T.R(
error('zernfun:RTHlength', ... f7Fr%*cO
'The number of R- and THETA-values must be equal.') (y;8izp9!
end {S;/+X,
~IP3~m D
% Check normalization: EPMdR66
% -------------------- d}e/f)(
if nargin==5 && ischar(nflag) +ysP#uAA
isnorm = strcmpi(nflag,'norm'); TRSR5D[
if ~isnorm Tr@}
error('zernfun:normalization','Unrecognized normalization flag.') Z-BPC|e
end ?]bZ6|;2
else wtL_c
isnorm = false; E%E3h1Ua
end l<l6Ey(
=W
Q_5}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4lqowg0
% Compute the Zernike Polynomials gbJz5EEq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3%$nRP
X
BHW8zY=F
% Determine the required powers of r: wZV/]jmlEt
% ----------------------------------- ixFuqPij
m_abs = abs(m); RO1xcCp
rpowers = []; u4kg#+H
for j = 1:length(n) B[R1XpB7
rpowers = [rpowers m_abs(j):2:n(j)]; jLEwFPz
end N>$Nw<wV
rpowers = unique(rpowers); +R_w- NI
u\-f\Z7
% Pre-compute the values of r raised to the required powers, Kpo{:a
% and compile them in a matrix: (|PxR#{l<
% ----------------------------- fEl,jA
if rpowers(1)==0 !a[1rQH
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h6dVT9
rpowern = cat(2,rpowern{:}); ^dzg'6M
rpowern = [ones(length_r,1) rpowern]; [foZO&+!
else !PzlrH)M=p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aiKZ$KLC
rpowern = cat(2,rpowern{:}); n>Rt9
end JKkR963 O
fdD?"z
% Compute the values of the polynomials: i7fQj,
q
% -------------------------------------- U[a;eOLx
y = zeros(length_r,length(n)); .cQ<F4)!tu
for j = 1:length(n) 9W{=6D86e
s = 0:(n(j)-m_abs(j))/2; x"Hi!h)v
pows = n(j):-2:m_abs(j); L.[ H
for k = length(s):-1:1 L{)e1 p]q
p = (1-2*mod(s(k),2))* ... ~7W?W<
prod(2:(n(j)-s(k)))/ ... N%A[}Y0;MW
prod(2:s(k))/ ... -
T,;Fr'
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K>h=
prod(2:((n(j)+m_abs(j))/2-s(k))); D! 1oYr
idx = (pows(k)==rpowers); O6^>L0'
y(:,j) = y(:,j) + p*rpowern(:,idx); -|MeC
end K.Tfu"6
8xQ5[Ov
if isnorm 9ZL3p!
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g3%Xh0007{
end !79^M
end oyBBW?m
% END: Compute the Zernike Polynomials <|NP!eMsw8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?*~W
&i8AB{OU
% Compute the Zernike functions: #ra~Yb-F
% ------------------------------ 2Y)3Ue
idx_pos = m>0; :h
tOz.
idx_neg = m<0; +-=w`
`/:ZB6
z = y; k[]B
P4
if any(idx_pos) $!L'ZO1_r
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); fQ5VRpWGn
end O+Fu zCWj
if any(idx_neg) + RX{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9Xt5{\PJ
end 1MH[-=[Q
,YYyFMC7S
% EOF zernfun