切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10496阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `NWgETf^#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ji)4WG/1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 N{hF [F  
    function z = zernfun(n,m,r,theta,nflag) ueE?"Hk  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. dp[w?AMhM9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Zu0;/_rN  
    %   and angular frequency M, evaluated at positions (R,THETA) on the `J=1&ae{  
    %   unit circle.  N is a vector of positive integers (including 0), and |:e|~sism  
    %   M is a vector with the same number of elements as N.  Each element ^0s\/qyqm  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4$?w D <  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, l\=-+'Y  
    %   and THETA is a vector of angles.  R and THETA must have the same -#S)}N En  
    %   length.  The output Z is a matrix with one column for every (N,M) C7jc6(> m  
    %   pair, and one row for every (R,THETA) pair. pg?i F1  
    % te\h?H  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D-o7yc"K  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ra9cD"/J &  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral jI{~s]Q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Tn@UX(^,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {KU.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?9(o*lp  
    % da00p-U  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1(%>`=R8  
    %   They are used in disciplines such as astronomy, optics, and [j=,g-EOA  
    %   optometry to describe functions on a circular domain. $@_<$t  
    % dDqr B-G  
    %   The following table lists the first 15 Zernike functions. h5&/hBN  
    % SvX=isu!.  
    %       n    m    Zernike function           Normalization oTF^<I-C  
    %       -------------------------------------------------- EREolCASb  
    %       0    0    1                                 1 ]<8B-D?Z  
    %       1    1    r * cos(theta)                    2 q?imE~&U  
    %       1   -1    r * sin(theta)                    2 jNe(w<',P  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [:nx);\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "xDx/d8B  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) B=Zl&1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) jJ*@5?A  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) G%7 4v|cd  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) c?!YFm  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ] Wx>)LT  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6Iv(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yHWi [7$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^])e[RN7?n  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >Lw}KO`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @,x_i8  
    %       -------------------------------------------------- .1.J5>/n  
    % jFuC=6aF  
    %   Example 1: Pv/Pww \  
    % \Y!T>nWn)I  
    %       % Display the Zernike function Z(n=5,m=1) k]SAJ~bS|  
    %       x = -1:0.01:1; & Fg|%,fv]  
    %       [X,Y] = meshgrid(x,x); b&lN%+%}  
    %       [theta,r] = cart2pol(X,Y); F>~ xzc  
    %       idx = r<=1; *M> iZO*@  
    %       z = nan(size(X)); $ ^W-Wmsz  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); G3RrjWtO  
    %       figure y4xT:G/M  
    %       pcolor(x,x,z), shading interp gohAp  
    %       axis square, colorbar May&@x/oMS  
    %       title('Zernike function Z_5^1(r,\theta)') \4h>2y  
    % 87QZun%  
    %   Example 2: hD nM+4D  
    % )Qh>0T+(  
    %       % Display the first 10 Zernike functions $hG;2v  
    %       x = -1:0.01:1; v!NB~"LQ  
    %       [X,Y] = meshgrid(x,x); "sF Xl  
    %       [theta,r] = cart2pol(X,Y); hq/J6 M  
    %       idx = r<=1; c%|vUAq*  
    %       z = nan(size(X)); Dh2:2Rz=#7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; gw_|C|!P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _Ry_K3K  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; az0cS*@  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1<xcMn0et  
    %       figure('Units','normalized') |h5kg<Zgo  
    %       for k = 1:10 Gs[Vu@*  
    %           z(idx) = y(:,k); 0o=!j3RjH  
    %           subplot(4,7,Nplot(k)) s~S?D{!  
    %           pcolor(x,x,z), shading interp z>4 D~HX  
    %           set(gca,'XTick',[],'YTick',[]) 8AT;8I<K  
    %           axis square U?bG`. X  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) + $>N]1  
    %       end :e1'o  
    % JXpoCCe  
    %   See also ZERNPOL, ZERNFUN2. n!GWqle  
    `.{U-U\  
    %   Paul Fricker 11/13/2006 ?n!lUr$:y  
    @Z?7E8(  
    WK pUn8&N  
    % Check and prepare the inputs: |q3f]T&+>{  
    % ----------------------------- `vudS?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +0VG[ c\8  
        error('zernfun:NMvectors','N and M must be vectors.') t,RyeS/  
    end Tdg6kkJ  
    @u,+F0Yd  
    if length(n)~=length(m) [}z?1Gj;W(  
        error('zernfun:NMlength','N and M must be the same length.') ,{?wKXJ}L!  
    end )))2f skZ  
    XJe/tR  
    n = n(:); K} +S+ *_  
    m = m(:); S|HY+Z6n'  
    if any(mod(n-m,2)) BsKbn@'uC  
        error('zernfun:NMmultiplesof2', ... o6*/o ]]  
              'All N and M must differ by multiples of 2 (including 0).') z1F9$ ^  
    end g;8M<`qvf  
    D/Rv&>Jh  
    if any(m>n) MFv Si  
        error('zernfun:MlessthanN', ... C1 W>/?XC  
              'Each M must be less than or equal to its corresponding N.') g[M]i6h2  
    end qYx!jA]O  
    h%' N hV  
    if any( r>1 | r<0 ) 5? Wg%@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') D-6  
    end oew|23Ytb  
    A^-iHm  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <KtBv Ip]  
        error('zernfun:RTHvector','R and THETA must be vectors.') _74UdD{^o  
    end R;r|cep  
    KGu= ;  
    r = r(:); d<#p %$A4  
    theta = theta(:); *%X.ym'  
    length_r = length(r); OZ^h\m4  
    if length_r~=length(theta) _ \l HI  
        error('zernfun:RTHlength', ... ZW>o5x__b  
              'The number of R- and THETA-values must be equal.') |) O):  
    end H<,bq*@  
    #pX8{Tf[  
    % Check normalization: glx2I_y  
    % -------------------- ! tGiTzzp  
    if nargin==5 && ischar(nflag) n'yl)HA~>`  
        isnorm = strcmpi(nflag,'norm'); yxvjg\!&  
        if ~isnorm k {a)gFH O  
            error('zernfun:normalization','Unrecognized normalization flag.') ilv_D~|  
        end ;u,rtEMy;  
    else I0iY+@^5  
        isnorm = false; ,ijW(95{k  
    end  DwXU  
    U+} y %3l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GMdI0jaG#  
    % Compute the Zernike Polynomials  ;1@C_5C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P{cos&X|  
    @ u+|=x];  
    % Determine the required powers of r: KY g3U  
    % ----------------------------------- N!L'W\H,  
    m_abs = abs(m); Lyr2(^#:  
    rpowers = []; =UNT.]  
    for j = 1:length(n) T%kKVr  
        rpowers = [rpowers m_abs(j):2:n(j)]; KzG_ <<  
    end 0R|K0XH#$  
    rpowers = unique(rpowers); B9*Sfw%  
    "Hht g:  
    % Pre-compute the values of r raised to the required powers, #EG?9T  
    % and compile them in a matrix: tq&Yek>C  
    % ----------------------------- n' ?4.tb  
    if rpowers(1)==0 j;iL&eo>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f>niFPW"  
        rpowern = cat(2,rpowern{:}); hO6RQ0Iv@  
        rpowern = [ones(length_r,1) rpowern]; MtUY?O.P2  
    else 6.'$EtH  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); y"-{$N  
        rpowern = cat(2,rpowern{:}); q`^3ov^</  
    end |{f~Ks%  
    (B:uc_+  
    % Compute the values of the polynomials: 2h )8Fq_"  
    % -------------------------------------- BC({ EE~R)  
    y = zeros(length_r,length(n)); YBvd q1  
    for j = 1:length(n) G#0,CLGN^  
        s = 0:(n(j)-m_abs(j))/2; =Z`0>R`  
        pows = n(j):-2:m_abs(j); )b92yP{  
        for k = length(s):-1:1 6e# wR/  
            p = (1-2*mod(s(k),2))* ... ;&kn"b}G;  
                       prod(2:(n(j)-s(k)))/              ... Pbe7SRdr^  
                       prod(2:s(k))/                     ... ?E7=:h(@t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "0-y*1/m  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); hk} t:<  
            idx = (pows(k)==rpowers); O>AFF@=  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H)5QqZ8  
        end =/9<(Tt%m  
         o1k#."wHr  
        if isnorm p=B?/Sqa  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7/"@yVBW  
        end J`<f  
    end wyw<jH  
    % END: Compute the Zernike Polynomials `W"G!X-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8=F%+  
    hVUIBJ/5(-  
    % Compute the Zernike functions: 2y kCtRe  
    % ------------------------------ DA=1KaJ.  
    idx_pos = m>0; <hv7s,i  
    idx_neg = m<0; bSrZ{l  
    "IwM:v  
    z = y; aZKXD! 4  
    if any(idx_pos) z0Xa_w=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e$wt&^W  
    end gS$A   
    if any(idx_neg) DYRE1!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tU:FX[&?R  
    end i03gX<=*  
    85z;Zt0{  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) r1Z<:}ZwK  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 4#:\?HAu!  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated D{C:d\ e)$  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive maDz W_3  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, zu<3^=3  
    %   and THETA is a vector of angles.  R and THETA must have the same TpP8=8_Lh  
    %   length.  The output Z is a matrix with one column for every P-value, ~G `J r  
    %   and one row for every (R,THETA) pair. p)/ p!d[T/  
    % )N7n,_#T>  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike <TxC!{<  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) A]?^ H<  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) bx>i6 R2  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 uRQ_'l  
    %   for all p. 16$y`~c-z  
    % GZ8:e3ri  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Bq!cY Wj  
    %   Zernike functions (order N<=7).  In some disciplines it is &71e5<(dG  
    %   traditional to label the first 36 functions using a single mode L'9N9CR{i  
    %   number P instead of separate numbers for the order N and azimuthal c3k|G<C2  
    %   frequency M. sX:lE^)-z  
    % Zq*eX\#C  
    %   Example: s, XM9h>P4  
    % wFL3& *  
    %       % Display the first 16 Zernike functions ]W) jmw'mo  
    %       x = -1:0.01:1; Q)^g3J  
    %       [X,Y] = meshgrid(x,x); n )K6i7]xk  
    %       [theta,r] = cart2pol(X,Y); SLoo:)  
    %       idx = r<=1; f0oek{  
    %       p = 0:15; V8"Wpl9Cz  
    %       z = nan(size(X)); g-@h>$< 1  
    %       y = zernfun2(p,r(idx),theta(idx)); J_ J+cRwq  
    %       figure('Units','normalized') k/lFRi-i  
    %       for k = 1:length(p) cwynd=^nC  
    %           z(idx) = y(:,k);  Q2\  
    %           subplot(4,4,k) sR*Nq5F#9  
    %           pcolor(x,x,z), shading interp l4ouZR  
    %           set(gca,'XTick',[],'YTick',[]) )|]Z>>%t  
    %           axis square  @E_zR  
    %           title(['Z_{' num2str(p(k)) '}']) 2 F?kjg,  
    %       end P(h5=0`*PR  
    % /F~X,lm*~  
    %   See also ZERNPOL, ZERNFUN. ;nB2o-%  
    0*7*RX  
    %   Paul Fricker 11/13/2006 & _K*kI:  
    8D~x\!(p\  
    '6zd;l9Z  
    % Check and prepare the inputs: zWIeHIt  
    % ----------------------------- }<[Db}?9  
    if min(size(p))~=1 ,{{SI  
        error('zernfun2:Pvector','Input P must be vector.') 6/2v  
    end c> G@+  
    =n0*{~r  
    if any(p)>35 e.;M.8N#SQ  
        error('zernfun2:P36', ... t(?<#KUB-  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... T;?+kC3  
               '(P = 0 to 35).']) UK3a{O[ 5  
    end )5yj/0oT  
    t ;-L{`mW  
    % Get the order and frequency corresonding to the function number: kx{!b3"  
    % ---------------------------------------------------------------- vA-PR&  
    p = p(:); {XnPx? V  
    n = ceil((-3+sqrt(9+8*p))/2); :vQM>9l7  
    m = 2*p - n.*(n+2); crn k|o  
    *fhX*e8y  
    % Pass the inputs to the function ZERNFUN: GGE[{Gb9  
    % ---------------------------------------- 6 = gp:I  
    switch nargin aWaw&u  
        case 3 lrys3  
            z = zernfun(n,m,r,theta); U e*$&VlT  
        case 4 D ,M@8 h,  
            z = zernfun(n,m,r,theta,nflag); '_o@V O  
        otherwise ^:DyT@hQB5  
            error('zernfun2:nargin','Incorrect number of inputs.') u O'/|[`8  
    end \P?A7vuhLs  
    A1_ J sS  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) GZ3/S|SMP  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. g42T#p8^  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of _4R,Ej}  
    %   order N and frequency M, evaluated at R.  N is a vector of (=JueF@J  
    %   positive integers (including 0), and M is a vector with the &jm[4'$ *z  
    %   same number of elements as N.  Each element k of M must be a ?}sOG?{  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) CEqZ:c  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is treXOC9^B8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix <]Y[XI(kr  
    %   with one column for every (N,M) pair, and one row for every "{( [!  
    %   element in R. Gah lS*W  
    % k18$JyaG  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Y:pRcO.4g  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @ER1zKK?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Jz$ >k$!UD  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 RWikJ   
    %   for all [n,m]. |s|/]aD}o  
    % K-4tdC3  
    %   The radial Zernike polynomials are the radial portion of the v@_in(dk  
    %   Zernike functions, which are an orthogonal basis on the unit :`J>bHE  
    %   circle.  The series representation of the radial Zernike ZQ[~*)  
    %   polynomials is rzV"Dm$'  
    % $l"MXxx5I  
    %          (n-m)/2 2U%qCfh6|  
    %            __ Zh,]J `  
    %    m      \       s                                          n-2s P<L&c_u  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $4Y&j}R  
    %    n      s=0 F+*Q <a4  
    % B] i:)   
    %   The following table shows the first 12 polynomials. an KuTI  
    % 76cEKHa<  
    %       n    m    Zernike polynomial    Normalization -f.R#J$2  
    %       --------------------------------------------- |nm2Uy/0  
    %       0    0    1                        sqrt(2) `a'` $'j  
    %       1    1    r                           2 N84qcc  
    %       2    0    2*r^2 - 1                sqrt(6) ,n5a])Dg  
    %       2    2    r^2                      sqrt(6) XRa#2 1pQ  
    %       3    1    3*r^3 - 2*r              sqrt(8) ]) n0MF)p  
    %       3    3    r^3                      sqrt(8) oKiD8':  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) owM mCR  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) hbnS~sva  
    %       4    4    r^4                      sqrt(10) xBWx+My  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) s3< F  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) V}:'Xgp*N  
    %       5    5    r^5                      sqrt(12) w_H2gaQ  
    %       --------------------------------------------- hVZo"XUb  
    % (}0S1)7t  
    %   Example: w\DspF  
    % 7TdQRB  
    %       % Display three example Zernike radial polynomials Ff)@L-Y\K  
    %       r = 0:0.01:1; G>0)I  
    %       n = [3 2 5]; k<O y%+C  
    %       m = [1 2 1]; R&!]Rl9hf  
    %       z = zernpol(n,m,r); UoRDeYQ`E  
    %       figure _ n_sfT6)B  
    %       plot(r,z) e YDUon  
    %       grid on B^m!t7/,  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') r=0j7^B#  
    % $rTu6(i1  
    %   See also ZERNFUN, ZERNFUN2. 4k$0CbHx0  
    0etwz3NuW  
    % A note on the algorithm. >{F!ntEj  
    % ------------------------ l $w/Fz  
    % The radial Zernike polynomials are computed using the series .qinR 6=  
    % representation shown in the Help section above. For many special Nm"<!a<F  
    % functions, direct evaluation using the series representation can J {!'f| J  
    % produce poor numerical results (floating point errors), because cD8Ea(  
    % the summation often involves computing small differences between 6Pijvx^0  
    % large successive terms in the series. (In such cases, the functions #%WCL'6B  
    % are often evaluated using alternative methods such as recurrence Y"oDFo,  
    % relations: see the Legendre functions, for example). For the Zernike raF] k0{  
    % polynomials, however, this problem does not arise, because the Ge1duRGa  
    % polynomials are evaluated over the finite domain r = (0,1), and {\Ys@FF  
    % because the coefficients for a given polynomial are generally all Dt|fDw$]D  
    % of similar magnitude. L ]*`4 L  
    % WP!il(Gr  
    % ZERNPOL has been written using a vectorized implementation: multiple ki4Xp'IK  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] dFMAh&:>  
    % values can be passed as inputs) for a vector of points R.  To achieve ,\}k~ U99  
    % this vectorization most efficiently, the algorithm in ZERNPOL yF;?Hg  
    % involves pre-determining all the powers p of R that are required to _eh3qs:  
    % compute the outputs, and then compiling the {R^p} into a single HSC6;~U  
    % matrix.  This avoids any redundant computation of the R^p, and -U:2H7  
    % minimizes the sizes of certain intermediate variables. kkL(;H:%  
    % lfgtcR{l5  
    %   Paul Fricker 11/13/2006 [x|)}P7%s  
    {yU0D*#6  
    z g)|rm  
    % Check and prepare the inputs: qZP:@r"  
    % ----------------------------- D=JlA~tS>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `xGT_0&ck  
        error('zernpol:NMvectors','N and M must be vectors.') c l9$g7  
    end iAgOnk[  
    Cg7)S[zl  
    if length(n)~=length(m) $i -zMa  
        error('zernpol:NMlength','N and M must be the same length.') eN4t1 $  
    end :U8k|,~f  
    &rcdr+'  
    n = n(:); s*eyTm  
    m = m(:); w?i)/q  
    length_n = length(n); \ JG #m  
    z :? :  
    if any(mod(n-m,2)) Gj*SPU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') L@+Z)# V  
    end Wy!uRzbBv  
    oLd:3,p}  
    if any(m<0) =CEHRny  
        error('zernpol:Mpositive','All M must be positive.') !;jgzi?z  
    end nqrDT1b**  
    w~p4S+k&  
    if any(m>n) >ks3WMm  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') i:{:xKiCa  
    end AT-0}9z{  
    DgVyy&7>  
    if any( r>1 | r<0 ) /K[]B]1NE  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0xLkyt0  
    end 16L"^EYq  
    k 5t{  
    if ~any(size(r)==1) GG*BN<(>!  
        error('zernpol:Rvector','R must be a vector.') Ls(&HOK[p  
    end pRb<wt7v  
    F~%|3a$Y  
    r = r(:); n00z8B1j(l  
    length_r = length(r); =I7[L{+~Y  
    J#+Op/mmo  
    if nargin==4 }=TqJy1  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =?^-P{:\?  
        if ~isnorm xS-w\vbLV  
            error('zernpol:normalization','Unrecognized normalization flag.')  ]LMiMj  
        end t&3 8@p  
    else v [dAywW  
        isnorm = false; 1+S g"?8  
    end 2UQN*_  
    `..EQ BM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% . c#90RP  
    % Compute the Zernike Polynomials &:-GI)[o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $x/J+9Ww  
    )eVzSj>MT  
    % Determine the required powers of r: \ =S3 L<  
    % ----------------------------------- AwtIWH*e  
    rpowers = []; *13g <#$  
    for j = 1:length(n) x-tm[x@;o  
        rpowers = [rpowers m(j):2:n(j)]; Ct-rD79l  
    end ^kc>m$HY  
    rpowers = unique(rpowers); 9+W!k^VWq  
    $3lt{ %  
    % Pre-compute the values of r raised to the required powers,  y/z9Ce*>  
    % and compile them in a matrix: 1<;\6sg  
    % ----------------------------- LAj}kW~  
    if rpowers(1)==0 {_rZRyr  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BDWim`DK"  
        rpowern = cat(2,rpowern{:}); (\T8!s{AO  
        rpowern = [ones(length_r,1) rpowern]; 4 fZY8  
    else 9zmD6G!}t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F@B  
        rpowern = cat(2,rpowern{:});  F|DR  
    end fLLnf].O  
    f34_?F<h  
    % Compute the values of the polynomials: zuK/(qZ  
    % -------------------------------------- d&O'r[S  
    z = zeros(length_r,length_n); =PI^X\if88  
    for j = 1:length_n B?$S~5  }  
        s = 0:(n(j)-m(j))/2; Q]yV:7  
        pows = n(j):-2:m(j); ^qE<yn  
        for k = length(s):-1:1 <)r,CiS  
            p = (1-2*mod(s(k),2))* ... Z|V"8jE  
                       prod(2:(n(j)-s(k)))/          ... 4x=V|"  
                       prod(2:s(k))/                 ... VaOpO8y`  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... d/"gq}NT  
                       prod(2:((n(j)+m(j))/2-s(k))); Ry3+/]  
            idx = (pows(k)==rpowers); }qG?Vmq*R[  
            z(:,j) = z(:,j) + p*rpowern(:,idx); le "JW/BD  
        end  EGp~Vo-  
         Fr1;)WV  
        if isnorm lCM6T;2ID  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |#Yu.c*  
        end \] tq7  
    end j<`I\Pmv  
     ]2hF!{wc  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  thm3JfQt  
    ncw?;  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1UA~J|&gi^  
    !MF"e|W  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)