非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 M_BG:P5
function z = zernfun(n,m,r,theta,nflag) "39\@Ow
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ctk~}(1#
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z(h.)$yH*=
% and angular frequency M, evaluated at positions (R,THETA) on the azBYh*s=5{
% unit circle. N is a vector of positive integers (including 0), and s^\
*jZ6
% M is a vector with the same number of elements as N. Each element HP,sNiw
% k of M must be a positive integer, with possible values M(k) = -N(k) C
srxi'Pe
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, @y ImR+^.7
% and THETA is a vector of angles. R and THETA must have the same I,8f{T!O@"
% length. The output Z is a matrix with one column for every (N,M) #];b+ T
% pair, and one row for every (R,THETA) pair. od=x?uBVd
% MrU0Jrk4+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4>t'4p6{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ovXU +8
% with delta(m,0) the Kronecker delta, is chosen so that the integral d}:eLC
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, w!kWG,{C
% and theta=0 to theta=2*pi) is unity. For the non-normalized nhdOo
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4AWL::FU5
% rGDx9KR4K!
% The Zernike functions are an orthogonal basis on the unit circle. w,)O*1't
% They are used in disciplines such as astronomy, optics, and 3bN]2\
% optometry to describe functions on a circular domain. (/ qOY
% ;}>g/lw
% The following table lists the first 15 Zernike functions. -s6k't
% 7{JIHY+
% n m Zernike function Normalization o)]mJb~XG-
% -------------------------------------------------- `m")v0n3
% 0 0 1 1 ]I^b&N
% 1 1 r * cos(theta) 2 `uh+d
% 1 -1 r * sin(theta) 2 oE.59dx
% 2 -2 r^2 * cos(2*theta) sqrt(6) yQz6K6p
% 2 0 (2*r^2 - 1) sqrt(3) `k;MGs)&
% 2 2 r^2 * sin(2*theta) sqrt(6)
}N0$DqP
% 3 -3 r^3 * cos(3*theta) sqrt(8) S*3*Q l*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) o)2KQ$b>Q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) EGMIw?%Y`-
% 3 3 r^3 * sin(3*theta) sqrt(8) \8<ZPqt9
% 4 -4 r^4 * cos(4*theta) sqrt(10) o|cx?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
zB68%
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _c $F?9:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PP-U.
% 4 4 r^4 * sin(4*theta) sqrt(10) I<+i87=
% -------------------------------------------------- Q8Fqf
;4
% J`[v u4
% Example 1: wrhGZ=k{
% H.)Y*zK0.
% % Display the Zernike function Z(n=5,m=1) M 8NWQ^Y
% x = -1:0.01:1; DJJd_
% [X,Y] = meshgrid(x,x); 1@:BUE;jZ
% [theta,r] = cart2pol(X,Y); ss0`9:z
% idx = r<=1; V'^E'[Dd{
% z = nan(size(X)); Liv.i;-qE
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5<$8.a#
% figure =@ d/SZ|(E
% pcolor(x,x,z), shading interp ?RPVd8PUhN
% axis square, colorbar w.o>G2u
% title('Zernike function Z_5^1(r,\theta)') UC@Jsj~f
% *8Kx y@
% Example 2: 7R7e3p,K
% ?#~km0~F)
% % Display the first 10 Zernike functions 7!g"q\s
% x = -1:0.01:1; H8!)zZ
% [X,Y] = meshgrid(x,x); 8|) $;.
% [theta,r] = cart2pol(X,Y); SpC6dkxD\
% idx = r<=1; N8KH.P+
% z = nan(size(X)); 6Z#$(oC
% n = [0 1 1 2 2 2 3 3 3 3]; %7hf6Xo=
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; &dky_H
% Nplot = [4 10 12 16 18 20 22 24 26 28]; )}$]~
f4R
% y = zernfun(n,m,r(idx),theta(idx)); 2|A?9aE%0
% figure('Units','normalized') Qf($F,)K
% for k = 1:10 x8!uI)#tS
% z(idx) = y(:,k); QAzwNXE+
% subplot(4,7,Nplot(k)) VOSq%hB
% pcolor(x,x,z), shading interp E_D0Nm%n
% set(gca,'XTick',[],'YTick',[]) -q30tO.
% axis square Q2 Dh(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %Y-5L;MI
% end 0.kC|
% Vji:,k=3\
% See also ZERNPOL, ZERNFUN2. aQ*?L
l
|,Kk#`lW<f
% Paul Fricker 11/13/2006 5p]V/<r
Aa+<4
R
{BY(zsl
% Check and prepare the inputs: r
m
% ----------------------------- VDFs.;:s
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <Rfx`mn
error('zernfun:NMvectors','N and M must be vectors.') (L*<CV
end #.{ddY{
}R!t/8K
if length(n)~=length(m) ;(@' +"
error('zernfun:NMlength','N and M must be the same length.') H=*lj.x
end w0X})&,{`m
'{w[).c.
n = n(:); ns#v?D9NF
m = m(:); Y|6gg
if any(mod(n-m,2)) M#k$[w}=
error('zernfun:NMmultiplesof2', ... '#a;n
'All N and M must differ by multiples of 2 (including 0).') &NX7
end 39~te%;C7
to;^'#B
if any(m>n) O7oq1JI]Y
error('zernfun:MlessthanN', ... mwutv8?
'Each M must be less than or equal to its corresponding N.') UPy 4ST
end 7Ue&y8Yf
M(1cf(<+
if any( r>1 | r<0 ) &2nICAN[
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ! u@JH`
end 2^%O%Pc
;`h$xB(
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4Uhh]/
error('zernfun:RTHvector','R and THETA must be vectors.') C;?<WtH
end +4+czfz
5+2qx)FZ
r = r(:); XAN.Plk
theta = theta(:); N/eus"O;
length_r = length(r); "E@A~<RKP
if length_r~=length(theta) gZBb/<
error('zernfun:RTHlength', ... hka%!W5
'The number of R- and THETA-values must be equal.') vVZ+u4y
end 5me#/NqLHY
;ojJXH~$}
% Check normalization: -jzoGzC3
% --------------------
9g|99Z
if nargin==5 && ischar(nflag) <'4 8mip
isnorm = strcmpi(nflag,'norm'); klMpiy
if ~isnorm XQ2YUe]DJ
error('zernfun:normalization','Unrecognized normalization flag.') X]D:vuB
end BMtk/r/
else ++eT
0
isnorm = false; CzIs_/
end @{Dfro
O^q~dda
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yg4#,4---b
% Compute the Zernike Polynomials 8|nc($}~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >S8
n8U
%f?Zg44
% Determine the required powers of r: ^Rtxef
% ----------------------------------- h8 FV2"
m_abs = abs(m); hu>wcOt
rpowers = []; :2V|(:^'
for j = 1:length(n) L
F&!od9[
rpowers = [rpowers m_abs(j):2:n(j)]; IgRi(q^b-
end OdOn wY
rpowers = unique(rpowers); D< kf/hj
MEM(uBYKOb
% Pre-compute the values of r raised to the required powers, #xfav19{.
% and compile them in a matrix: ~pHuh#>
% ----------------------------- f\r"7j
if rpowers(1)==0 G .$KP
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O0s,)8+z5D
rpowern = cat(2,rpowern{:}); }=JSd@`_
rpowern = [ones(length_r,1) rpowern]; o+L[o_er
else S;u.Ds&
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B)/c]"@89
rpowern = cat(2,rpowern{:}); omznSL
end _pzYmQ
i'10qWz
% Compute the values of the polynomials: #R7hk5/8n}
% -------------------------------------- B%`|W@v
y = zeros(length_r,length(n)); ]+b?J0|P<
for j = 1:length(n) s8 u`v1
s = 0:(n(j)-m_abs(j))/2; 76]Z~^Y
pows = n(j):-2:m_abs(j); ,tDLpnB@;
for k = length(s):-1:1
^6b5}{>
p = (1-2*mod(s(k),2))* ... 2
6
>9$S
prod(2:(n(j)-s(k)))/ ... IwOL1\'T4
prod(2:s(k))/ ... k!G{#(++&6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `GlOl-
prod(2:((n(j)+m_abs(j))/2-s(k))); 72/ bC
idx = (pows(k)==rpowers); J1w3g,
y(:,j) = y(:,j) + p*rpowern(:,idx);
E(wS6
end s
Ytn'&$\
Aar]eY\
if isnorm TU;AO%5
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4.Fh4Y:$'
end 7HQL^Q
end <f =<r*6
% END: Compute the Zernike Polynomials t~)4f.F:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n*i&o;5
[P0c,97_
H
% Compute the Zernike functions: i[MBO`FF
% ------------------------------ ,1cpV|mAr
idx_pos = m>0; _\8E/4zh
idx_neg = m<0; -m[ tYp,q
kw} E0uY
z = y; G(wstHT;/
if any(idx_pos) =[[I<[BZq
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ui-Y`
end 9Y2.ob!$}
if any(idx_neg) J`C 2}$
~
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); s&+`>
end dcTZL$
/|#2ehE
% EOF zernfun