切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11579阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 cN,*QN  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! QEyL/#Q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;<+efYmyc  
    function z = zernfun(n,m,r,theta,nflag) U^PXpNQ'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. D \ rns+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `D+zX  
    %   and angular frequency M, evaluated at positions (R,THETA) on the I*rUe#$  
    %   unit circle.  N is a vector of positive integers (including 0), and !#0)`4O  
    %   M is a vector with the same number of elements as N.  Each element :;%Jm  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Wb}-H-O  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, aT0~C.vT  
    %   and THETA is a vector of angles.  R and THETA must have the same @ m`C%7<  
    %   length.  The output Z is a matrix with one column for every (N,M) L.;b( bFe  
    %   pair, and one row for every (R,THETA) pair. Myc-lCE  
    % h#0n2o#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d.&_j`\F  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), MzvhE0ab  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?mH=3 :~  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, UQ0!tFx  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3bRxV @0.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o#m31* o  
    % 1Yb&E7j  
    %   The Zernike functions are an orthogonal basis on the unit circle. Ct=bZW"j/  
    %   They are used in disciplines such as astronomy, optics, and 4  %0s p  
    %   optometry to describe functions on a circular domain. MIJuJ]U}  
    % 5_9`v@-4_  
    %   The following table lists the first 15 Zernike functions. m H:Un{,  
    % %FjUtB  
    %       n    m    Zernike function           Normalization @<W` w  
    %       -------------------------------------------------- e:G~P u`  
    %       0    0    1                                 1 uda++^y:  
    %       1    1    r * cos(theta)                    2 pm O9mWq   
    %       1   -1    r * sin(theta)                    2 k^7!iOK2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }IygU 6{G  
    %       2    0    (2*r^2 - 1)                    sqrt(3) I_1?J* b4k  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 7-S?RU]g  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P>_O :xD  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ? 2}%Rb39  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?+}Su'pv}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 75\ZD-{T:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) CPZ{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5*z>ez2YQ7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <EC"E #p  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >Tf}aI+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) qGX@mo({  
    %       -------------------------------------------------- a?gF;AYk  
    % &g?GF\Y  
    %   Example 1: uzp\V 39  
    % hWly8B[I  
    %       % Display the Zernike function Z(n=5,m=1) SS/vw%  
    %       x = -1:0.01:1; e=LrgRy+  
    %       [X,Y] = meshgrid(x,x); {t;o^pUF  
    %       [theta,r] = cart2pol(X,Y); Oti;wf G7o  
    %       idx = r<=1; P#TPI*qw  
    %       z = nan(size(X)); ~ZafTCa;  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); jI,[(Z>  
    %       figure ,!> ~izB  
    %       pcolor(x,x,z), shading interp \]>821r  
    %       axis square, colorbar 56C8)?  
    %       title('Zernike function Z_5^1(r,\theta)') B~:yM1f@u4  
    % d- ZUuw  
    %   Example 2: ]I*RuDv}  
    % A^aY-V  
    %       % Display the first 10 Zernike functions V_3oAu54s{  
    %       x = -1:0.01:1; FH}?QebSR  
    %       [X,Y] = meshgrid(x,x); K qJE?caw  
    %       [theta,r] = cart2pol(X,Y); (H:c8 0/V  
    %       idx = r<=1; ") 8l'^Mq2  
    %       z = nan(size(X)); .qE  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :uYZ1O  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |ts0j/A]Pi  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ltOS()[X  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7"| Qmyb  
    %       figure('Units','normalized') 6zM:p/  
    %       for k = 1:10 EUSM4djL  
    %           z(idx) = y(:,k); j+3\I>  
    %           subplot(4,7,Nplot(k)) F,vkk{Z>  
    %           pcolor(x,x,z), shading interp !$98 U~L  
    %           set(gca,'XTick',[],'YTick',[]) sd4eG  
    %           axis square \(LD<-a  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SB%D%Zx6'%  
    %       end +aOevkY]  
    % 6EC',=)6R  
    %   See also ZERNPOL, ZERNFUN2. 0$Tb5+H5  
    +1#oVl!  
    %   Paul Fricker 11/13/2006 7s^b@&Le  
    ksq4t  
    bF9.k  
    % Check and prepare the inputs: 5_y w  
    % ----------------------------- qBF|' .$^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6!i`\>I]  
        error('zernfun:NMvectors','N and M must be vectors.') ((Av3{05H&  
    end e oE)Mq  
    ,~7~ S"  
    if length(n)~=length(m) r]6+&K  
        error('zernfun:NMlength','N and M must be the same length.') ~AWn 1vFc  
    end #i~P])%gNP  
    H%vgPQ8  
    n = n(:); N!.o`4 "z  
    m = m(:); ]ovtH .y  
    if any(mod(n-m,2)) Gt{%O>P8t  
        error('zernfun:NMmultiplesof2', ... A*BN  
              'All N and M must differ by multiples of 2 (including 0).') wYe;xk`>  
    end Yv=L'0K&  
    7x.j:{2  
    if any(m>n) %V;* E]  
        error('zernfun:MlessthanN', ... NEIF1( :  
              'Each M must be less than or equal to its corresponding N.') H6Zo|n  
    end "~ =O`5V  
    WS6Qp`c )e  
    if any( r>1 | r<0 ) XRV~yBIS  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0++RxYFCL  
    end w nBvJb]4l  
    h>>~Bi  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ADF<5#I  
        error('zernfun:RTHvector','R and THETA must be vectors.') 6  _V1s1F  
    end pj7a l;  
    7 2i&-`&4  
    r = r(:); {|$kI`h,3-  
    theta = theta(:); s Y4w dG  
    length_r = length(r); s5v}S'uO{  
    if length_r~=length(theta) LRw-I.z  
        error('zernfun:RTHlength', ... qYoU\y7  
              'The number of R- and THETA-values must be equal.') pFs/ipZX^*  
    end A;X3z-[[  
    d l Ab`ne  
    % Check normalization: ^f N/  
    % -------------------- % dtn*NU  
    if nargin==5 && ischar(nflag) 'h;qI&  
        isnorm = strcmpi(nflag,'norm'); [g`4$_9S  
        if ~isnorm Gv]94$'J9  
            error('zernfun:normalization','Unrecognized normalization flag.') )Pubur %,  
        end ` >>]$ZJ  
    else S@[NKY  
        isnorm = false; B*)mHSs2  
    end Rt,po  
    N`d%4)|{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uzb|yV'B  
    % Compute the Zernike Polynomials >B``+ Z^2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,Y| ;V  
    +BM[@?"hrh  
    % Determine the required powers of r: 1fV)tvU$  
    % ----------------------------------- Jj0:p"  
    m_abs = abs(m); s(Wys^[g  
    rpowers = []; "PS ) "t  
    for j = 1:length(n) }s"].Xm^2  
        rpowers = [rpowers m_abs(j):2:n(j)]; &*8.%qe;  
    end =oq=``%  
    rpowers = unique(rpowers); PB*G#2W  
    J!|R1  
    % Pre-compute the values of r raised to the required powers, N/#x  
    % and compile them in a matrix: @+ T33X)h%  
    % ----------------------------- uwi.Sg11  
    if rpowers(1)==0 ;P}007;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~-G_c=E?  
        rpowern = cat(2,rpowern{:}); kZ6:= l  
        rpowern = [ones(length_r,1) rpowern]; vV=rBO0a?  
    else c M<08-:v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); OrL4G `O  
        rpowern = cat(2,rpowern{:}); #N|JC d_  
    end yK"HHdYTV  
    UHk)!P>  
    % Compute the values of the polynomials: *q\>DE=7  
    % -------------------------------------- s`G}MU  
    y = zeros(length_r,length(n)); ?MfwRWY  
    for j = 1:length(n) > Xij+tt{  
        s = 0:(n(j)-m_abs(j))/2; uT=5zu  
        pows = n(j):-2:m_abs(j); n``9H 91  
        for k = length(s):-1:1 I!(BwYd  
            p = (1-2*mod(s(k),2))* ... {md5G$* %  
                       prod(2:(n(j)-s(k)))/              ... F.@|-wq&  
                       prod(2:s(k))/                     ... g-u4E^,*|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Gf+X<a  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); CRiqY_gBf  
            idx = (pows(k)==rpowers); 8 .K; 2  
            y(:,j) = y(:,j) + p*rpowern(:,idx); PQ;9iv  
        end zmu+un"\j  
         8N |K   
        if isnorm kaoiSL<[6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )lz)h*%#  
        end p)z#%BY56  
    end R?#=^$7U  
    % END: Compute the Zernike Polynomials 1`s^r+11:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q<^MC/]  
    ]Nssn\X7  
    % Compute the Zernike functions: C7AD1rl  
    % ------------------------------ k}qCkm27  
    idx_pos = m>0; f<oU" WM  
    idx_neg = m<0; Brd9"M|d  
    zTPNQ0=|  
    z = y; 'R- g:X\{  
    if any(idx_pos) \"L0d1DK)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6kAGOjO  
    end WjSu4   
    if any(idx_neg) r=7!S8'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); e^x%d[sU  
    end W1LR ,:$  
    d0Ubt  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) h qhX  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. MR5[|kHJT  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated .RAyi>\e  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ]Wjcr2Wq  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, m],.w M8  
    %   and THETA is a vector of angles.  R and THETA must have the same Nz*,m'-1e  
    %   length.  The output Z is a matrix with one column for every P-value, jaavh6h)  
    %   and one row for every (R,THETA) pair. Br{(sL0e  
    % lF40n4}  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ^j10 f$B  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ZSD7%gE<D  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) f/\S:x-B  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 )iK:BL*Nw  
    %   for all p. V eY&pPQ  
    % oS<Gj I:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 rce._w }  
    %   Zernike functions (order N<=7).  In some disciplines it is Gxxz4    
    %   traditional to label the first 36 functions using a single mode T2tvU*[=  
    %   number P instead of separate numbers for the order N and azimuthal iE_[]Vgc  
    %   frequency M. Zu>-y#Bw  
    % pp7 $Q>6  
    %   Example: R9"}-A  
    % I36%oA  
    %       % Display the first 16 Zernike functions <%rm?;PBl  
    %       x = -1:0.01:1; _%\%  
    %       [X,Y] = meshgrid(x,x); .Y8P6_  
    %       [theta,r] = cart2pol(X,Y); hsYE&Np_Q  
    %       idx = r<=1; c9c3o{(6Y  
    %       p = 0:15; bGy|T*@  
    %       z = nan(size(X)); 0_Elxc  
    %       y = zernfun2(p,r(idx),theta(idx)); Qgv g*KX  
    %       figure('Units','normalized') 0 VG;z#{J  
    %       for k = 1:length(p) B%k C>J  
    %           z(idx) = y(:,k); Ai^0{kF6  
    %           subplot(4,4,k) /& c2y=/'C  
    %           pcolor(x,x,z), shading interp guf*>qNr  
    %           set(gca,'XTick',[],'YTick',[]) \i}-Y[Dg  
    %           axis square D@ !r?E`  
    %           title(['Z_{' num2str(p(k)) '}']) gX(Xj@=(&  
    %       end T/ eX7p1  
    % vifw FPe  
    %   See also ZERNPOL, ZERNFUN. _6`GHx   
    YU)%-V\  
    %   Paul Fricker 11/13/2006 N^PkSf[)h5  
    s1#A0%gx  
    L$+_  
    % Check and prepare the inputs: 6U$e;cr6  
    % ----------------------------- 1wd c4>  
    if min(size(p))~=1 T\= #y  
        error('zernfun2:Pvector','Input P must be vector.') 'O.f}m SS  
    end SyT{k\[  
    G!G:YVWXP  
    if any(p)>35 !y>up+cRjl  
        error('zernfun2:P36', ... N7 hlM  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... F#RNm5  
               '(P = 0 to 35).']) W,H=K##6<  
    end u?g&(h  
    t.VVE:A^%  
    % Get the order and frequency corresonding to the function number: :PY6J}:&#  
    % ---------------------------------------------------------------- ?,+&NX3m  
    p = p(:); =PNkzFUo  
    n = ceil((-3+sqrt(9+8*p))/2); G -K{  
    m = 2*p - n.*(n+2); D]rYg'  
    B.;@i;7L  
    % Pass the inputs to the function ZERNFUN: 0 z]H=  
    % ---------------------------------------- }m%&|:PH  
    switch nargin %6Vb1?x  
        case 3 W=LJhCpRHj  
            z = zernfun(n,m,r,theta); Z#(Y%6[u  
        case 4 )PYh./_2  
            z = zernfun(n,m,r,theta,nflag); )C{20_  
        otherwise I&gd"F _v}  
            error('zernfun2:nargin','Incorrect number of inputs.') G51-CLM,  
    end E?bv<L,"  
    ?D_iib7  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) WS(m#WFQr  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. YWDgRb  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5L~lF8  
    %   order N and frequency M, evaluated at R.  N is a vector of (: k n)  
    %   positive integers (including 0), and M is a vector with the ggkz fg&  
    %   same number of elements as N.  Each element k of M must be a L;L_$hu)  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) )Y'g;  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4g}r+!T  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix <SOG?Lh~  
    %   with one column for every (N,M) pair, and one row for every I|K!hQ"m  
    %   element in R. v<)&JlR  
    % 02tN=}Cj)  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- iC^G^~V+H  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %[9ty`UE  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 0T#z"l<L  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 2Q@Jp`# ,4  
    %   for all [n,m]. -)Vy)hD,  
    % D+! S\~u  
    %   The radial Zernike polynomials are the radial portion of the =OV5DmVmQ  
    %   Zernike functions, which are an orthogonal basis on the unit V>E7!LIn.  
    %   circle.  The series representation of the radial Zernike \w1',"l`  
    %   polynomials is |M t2  
    % +~o f#  
    %          (n-m)/2 =_g#I  
    %            __ p[At0Gc L  
    %    m      \       s                                          n-2s +/kOUz/]  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r  cC|  
    %    n      s=0 4b`Fi@J\  
    % c+T`X?.j  
    %   The following table shows the first 12 polynomials. NG:4Q.G1g  
    % 3PL0bejaT7  
    %       n    m    Zernike polynomial    Normalization |r?0!;bN0  
    %       --------------------------------------------- s6 (md<r  
    %       0    0    1                        sqrt(2) F1B/cd  
    %       1    1    r                           2 @2d9 7.X  
    %       2    0    2*r^2 - 1                sqrt(6) C2=PGq  
    %       2    2    r^2                      sqrt(6) k{b|w')  
    %       3    1    3*r^3 - 2*r              sqrt(8) +%Kk zdS'  
    %       3    3    r^3                      sqrt(8) h)j#?\KYm9  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) aK|  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) tX1`/}``  
    %       4    4    r^4                      sqrt(10) S Te8*=w  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) YDYNAOThnb  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) FV aC8Kw  
    %       5    5    r^5                      sqrt(12) qTwl\dcncC  
    %       --------------------------------------------- @(E6P;+{  
    % F`(;@LO  
    %   Example: \T<F#a  
    % Qy4Pw\  
    %       % Display three example Zernike radial polynomials |JWYsqJ0U  
    %       r = 0:0.01:1; jTV4iX  
    %       n = [3 2 5]; QfPw50N;  
    %       m = [1 2 1]; pr4y*!|Y$  
    %       z = zernpol(n,m,r); *3@8,~_tp  
    %       figure B1E:P`t  
    %       plot(r,z) T \- x3i  
    %       grid on Lyn{Uag  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') #D JZ42  
    % PU1YR;[Fe  
    %   See also ZERNFUN, ZERNFUN2. F:jtzy"  
    i!3*)-a\~`  
    % A note on the algorithm. -wl&~}%M  
    % ------------------------ 7F~gA74h  
    % The radial Zernike polynomials are computed using the series `/N={  
    % representation shown in the Help section above. For many special (. YSs   
    % functions, direct evaluation using the series representation can  < ]+Mdy  
    % produce poor numerical results (floating point errors), because C0Fd<|[  
    % the summation often involves computing small differences between 0L#i c61U  
    % large successive terms in the series. (In such cases, the functions -JPkC(V7]  
    % are often evaluated using alternative methods such as recurrence gN[t  
    % relations: see the Legendre functions, for example). For the Zernike @W$ha y  
    % polynomials, however, this problem does not arise, because the #6 [F&  
    % polynomials are evaluated over the finite domain r = (0,1), and ycOnPTh  
    % because the coefficients for a given polynomial are generally all EK0~ 3HSZ  
    % of similar magnitude. 2|B@s3a  
    % !Yn#3c  
    % ZERNPOL has been written using a vectorized implementation: multiple _zzNF93Bn  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] .v'`TD).6  
    % values can be passed as inputs) for a vector of points R.  To achieve iT O Y  
    % this vectorization most efficiently, the algorithm in ZERNPOL <6,,:=#  
    % involves pre-determining all the powers p of R that are required to 3K/ tB1  
    % compute the outputs, and then compiling the {R^p} into a single P,WQN[(+  
    % matrix.  This avoids any redundant computation of the R^p, and 3$5E1*ed  
    % minimizes the sizes of certain intermediate variables. k W 8>VnW  
    % d^!3&y&  
    %   Paul Fricker 11/13/2006 ,mi7WW9  
    4/mz>eK"  
    qIQ 61><  
    % Check and prepare the inputs: O#O"]A  
    % ----------------------------- B|$o.$5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7j&EQm5\9  
        error('zernpol:NMvectors','N and M must be vectors.') ;E.f%   
    end s] ;P<  
    um_J%v6ER  
    if length(n)~=length(m) 8d Fqwpw8  
        error('zernpol:NMlength','N and M must be the same length.') \QF0(*!!  
    end W$;qhB  
    ^P]5@dv  
    n = n(:); A<TYt M  
    m = m(:); N$C+le  
    length_n = length(n); |4 2;171  
    R)*l)bpZ#  
    if any(mod(n-m,2)) *vIP\NL?H  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') shy[>\w  
    end zF{~Md1  
    /]-yZ0hX0O  
    if any(m<0) ~!g2+^G7+P  
        error('zernpol:Mpositive','All M must be positive.') f/IQ2yT-:D  
    end UHU ,zgM  
    N'aq4okoL  
    if any(m>n) {[Y7h}7  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') c|aX4=Z  
    end %, iAn gF'  
    XE2rx2k  
    if any( r>1 | r<0 ) v#<{Y' K  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') yJ0 %6],^g  
    end ) )FLM^dj  
    IO=$+c  
    if ~any(size(r)==1) V mQ'  
        error('zernpol:Rvector','R must be a vector.') 9rT^rTV  
    end 6vps`k$,~  
    2e-bt@0t  
    r = r(:); wQd8/&mmk  
    length_r = length(r); jV%=YapF  
    cZ)mp`^n7  
    if nargin==4 ONDO xXs  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); >G%oWRk  
        if ~isnorm .oT'(6#  
            error('zernpol:normalization','Unrecognized normalization flag.') 74:~F)BP  
        end &k)v/  
    else J` gG`?  
        isnorm = false; xDH#K0-#L  
    end t6mv  
    GRkN0|ovfj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /BQqg0 8@L  
    % Compute the Zernike Polynomials Is<XMR|{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c?. i;4yh  
    +/RR!vG,  
    % Determine the required powers of r: ]$9y7Bhj.  
    % ----------------------------------- p8)R#QWz9  
    rpowers = []; @|wU @by{  
    for j = 1:length(n) kN{$-v=K  
        rpowers = [rpowers m(j):2:n(j)]; K*b* ]hf{  
    end -Q JPJ.  
    rpowers = unique(rpowers); Cj`~ntMN  
    fsw[ R0B  
    % Pre-compute the values of r raised to the required powers, p'%S{v@5((  
    % and compile them in a matrix: i\b^}m8c.N  
    % ----------------------------- WG\ _eRj  
    if rpowers(1)==0 ">3t+A  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }79jyS-e  
        rpowern = cat(2,rpowern{:}); e`LkCy[_  
        rpowern = [ones(length_r,1) rpowern]; o 7tUv"Rs  
    else zaLPPm&f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j3`YaWw  
        rpowern = cat(2,rpowern{:}); BN%cX 2j  
    end ~TS!5Wiv  
    Qox/abC h  
    % Compute the values of the polynomials: [TUs^%2@  
    % -------------------------------------- (Sgsy^|N  
    z = zeros(length_r,length_n); %g@\SR.  
    for j = 1:length_n "JLE  
        s = 0:(n(j)-m(j))/2; n^l*oEl  
        pows = n(j):-2:m(j); S5ai@Ks f  
        for k = length(s):-1:1 0,0Z!-Y  
            p = (1-2*mod(s(k),2))* ... UQ;2g\([  
                       prod(2:(n(j)-s(k)))/          ... fpC":EX@r  
                       prod(2:s(k))/                 ... kp<Au)u  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 00dY?d{[D  
                       prod(2:((n(j)+m(j))/2-s(k))); 3F!)7  
            idx = (pows(k)==rpowers); h%W,O,K/  
            z(:,j) = z(:,j) + p*rpowern(:,idx); D]}~`SO  
        end fmQif]J;;  
         )8#-IXxp  
        if isnorm _a& Z$2O  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ]a&riPh"  
        end c*E7nc)u  
    end _b-g^#L%  
    `5wiXsNjLY  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  G O G[^T  
    jll|y0  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ""N~##)8  
    7) RvBcM  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)