切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11772阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 5NBV[EP  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! XV!6dh!  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Nb?w|Ne(T  
    function z = zernfun(n,m,r,theta,nflag) *ohL&'y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _C.BFE _p  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hbU+Usx  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -<Hu!V`+  
    %   unit circle.  N is a vector of positive integers (including 0), and . 7zK@6i  
    %   M is a vector with the same number of elements as N.  Each element ~jK{ ,$:=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )=\# UE+W  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Y^36>1.:  
    %   and THETA is a vector of angles.  R and THETA must have the same 79nG|Yj|\  
    %   length.  The output Z is a matrix with one column for every (N,M) U;bK!&Z  
    %   pair, and one row for every (R,THETA) pair. y+!+ D[x  
    % iY`%SmB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )v]/B+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RZ6xdq}>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VmCW6 G#M  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IC6gU$e  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized t^`O{m<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. DKfE.p)  
    % *"WDb|PBb  
    %   The Zernike functions are an orthogonal basis on the unit circle. cKN$ =gd  
    %   They are used in disciplines such as astronomy, optics, and |_}2f  
    %   optometry to describe functions on a circular domain. Kh(ZU^{n  
    % D,;\o7V  
    %   The following table lists the first 15 Zernike functions. !E,A7s  
    % mK[)mC _8  
    %       n    m    Zernike function           Normalization 994` ua+  
    %       -------------------------------------------------- M(RZ/x  
    %       0    0    1                                 1 ` L >  
    %       1    1    r * cos(theta)                    2 <WjF*x p  
    %       1   -1    r * sin(theta)                    2 fR)m%m  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) o[v\|Q`d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $KUo s+%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) z?[r  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) rm4.aO~-F  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) hdnTXs@z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {D? 50Q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) PlF87j (  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d}LRl"_n  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4 SHU  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3<k`+,'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Na$Is'F &p  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) {g2@6ct  
    %       -------------------------------------------------- &=<x#h-  
    % GM<BO8Y.  
    %   Example 1: ebS0qo[oLH  
    % `(v='$6}  
    %       % Display the Zernike function Z(n=5,m=1) t| 9 GS|  
    %       x = -1:0.01:1; GiP`dtK   
    %       [X,Y] = meshgrid(x,x); !:|TdYrmj  
    %       [theta,r] = cart2pol(X,Y); TT50(_8  
    %       idx = r<=1; A,V\"KU  
    %       z = nan(size(X)); #O$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /CuXa%Ci^  
    %       figure T21ky>8E  
    %       pcolor(x,x,z), shading interp HS{(v;  
    %       axis square, colorbar 4J;-Dq  
    %       title('Zernike function Z_5^1(r,\theta)') >ELlnE8  
    % NZP.0coY  
    %   Example 2: d)@<W1;  
    % u5 {JQO  
    %       % Display the first 10 Zernike functions 7M<'ddAN  
    %       x = -1:0.01:1; Q:|l`*.R  
    %       [X,Y] = meshgrid(x,x); %FS$zOsgGK  
    %       [theta,r] = cart2pol(X,Y); #VB')^d<U  
    %       idx = r<=1; Ma'_e=+A  
    %       z = nan(size(X)); V$"ujRp  
    %       n = [0  1  1  2  2  2  3  3  3  3]; VOc8q-hK  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Ypeiy `.  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @%tRhG  
    %       y = zernfun(n,m,r(idx),theta(idx)); :8 jhiB)  
    %       figure('Units','normalized') p8kr/uMP ;  
    %       for k = 1:10 u)ev{)$TM  
    %           z(idx) = y(:,k); k% sO 0  
    %           subplot(4,7,Nplot(k)) ;<$H)`*  
    %           pcolor(x,x,z), shading interp ! iptT(2  
    %           set(gca,'XTick',[],'YTick',[]) rC.eyq,105  
    %           axis square a-"k/P#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :Xn7Ha[f  
    %       end {/X4(;~0  
    % i `s|,"0o  
    %   See also ZERNPOL, ZERNFUN2. "S&@F/  
    JCPUM *g8  
    %   Paul Fricker 11/13/2006 %&->%U|'  
    aM@z^<Ub  
    J[A14z]#`  
    % Check and prepare the inputs: B!dU>0&Ct  
    % ----------------------------- wO:Sg=,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a@@M+9Q  
        error('zernfun:NMvectors','N and M must be vectors.') o]ag"Q  
    end \S*$UE]uG  
    h)6GaJ=  
    if length(n)~=length(m) ) c/% NiN  
        error('zernfun:NMlength','N and M must be the same length.') !IC-)C,q  
    end $`8Ar,Xz`  
    9%iUG(DC  
    n = n(:); "+z?x~rk  
    m = m(:); kM'"4[,nz  
    if any(mod(n-m,2)) [97KBoSU  
        error('zernfun:NMmultiplesof2', ... RrhT'':[  
              'All N and M must differ by multiples of 2 (including 0).') &X|<@'933  
    end !" JfOu  
    7R3fqU.Rq  
    if any(m>n) nLwiCf e  
        error('zernfun:MlessthanN', ... ui "3ak+F  
              'Each M must be less than or equal to its corresponding N.') Fhv2V,nZ<  
    end 7_wJpTz  
    65oWD-  
    if any( r>1 | r<0 ) ]Ni;w]KE  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &f>eQ S=(  
    end p1D[YeF4  
    ( =16PYs  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -UZ@G~K  
        error('zernfun:RTHvector','R and THETA must be vectors.') fQ'.8'>T  
    end =(EI~N  
    tM,%^){p$  
    r = r(:); 4"@GNk~e  
    theta = theta(:); ?f*Q>3S)  
    length_r = length(r); ewuXpv%vwW  
    if length_r~=length(theta) K7e4_ZGI  
        error('zernfun:RTHlength', ... `^(jm  
              'The number of R- and THETA-values must be equal.') Q \]Xm>  
    end ? b[n|^wS  
    2oZ9laJO  
    % Check normalization: e8h,,:l3j  
    % -------------------- T *I?9d{k  
    if nargin==5 && ischar(nflag) EQIUSh)M  
        isnorm = strcmpi(nflag,'norm'); 0G <hn8>  
        if ~isnorm <e)o1+[w  
            error('zernfun:normalization','Unrecognized normalization flag.') 2b=)6H1  
        end G~wFnl%  
    else .fzu"XAPu  
        isnorm = false; o<l 2r  
    end &[a Tw{2  
    Q<6P. PTya  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |2`"1gt  
    % Compute the Zernike Polynomials -fgC" 2H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F_ 7H!F  
    Ch_xyuJ  
    % Determine the required powers of r: p<`+sf}A:  
    % ----------------------------------- TFR( 4W  
    m_abs = abs(m); 6  P`)%zj  
    rpowers = []; !r+IXuqV,!  
    for j = 1:length(n) ukuo:P<a  
        rpowers = [rpowers m_abs(j):2:n(j)]; |xr\H8:(!  
    end 6QZ5|T ]  
    rpowers = unique(rpowers); 9 L?;FY)_  
    aF8k/$u  
    % Pre-compute the values of r raised to the required powers, m"-[".-l-  
    % and compile them in a matrix: XM|%^ry  
    % ----------------------------- ,WWj-X|+=  
    if rpowers(1)==0 h:/1X' 3d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /^#G0f*N  
        rpowern = cat(2,rpowern{:}); p|XAlia  
        rpowern = [ones(length_r,1) rpowern]; Rt(J/%;  
    else O'NW Ebl/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); va|rO#.=  
        rpowern = cat(2,rpowern{:}); ;\y ;  
    end IeF keE  
    U5/qf8)yO  
    % Compute the values of the polynomials: JmOW~W  
    % -------------------------------------- GZ }/leR  
    y = zeros(length_r,length(n)); 5V-jMB  
    for j = 1:length(n) % do1i W  
        s = 0:(n(j)-m_abs(j))/2; #T~&]|{,  
        pows = n(j):-2:m_abs(j); 4B-yTyO  
        for k = length(s):-1:1 V/"}ku  
            p = (1-2*mod(s(k),2))* ... Omag)U)IPh  
                       prod(2:(n(j)-s(k)))/              ... sI 4yG  
                       prod(2:s(k))/                     ... ~# 7wdP  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -NM0LTF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \ Aq;Q?  
            idx = (pows(k)==rpowers); zuL7%qyv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 3+YbA)i;  
        end tkuc/Z/@  
         dL;HV8z^  
        if isnorm MonS hIz  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A8?[6^%O|  
        end X)uDSI~  
    end ]UNZd/hIL  
    % END: Compute the Zernike Polynomials \gccQig1CJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0jB X5  
    8&}~'4[b[$  
    % Compute the Zernike functions: 'pP-rdx  
    % ------------------------------ @?&Wm3x9  
    idx_pos = m>0; $W!]fcZlB  
    idx_neg = m<0; hSqMaX%G  
    P#G.lft"O  
    z = y; zp=!8Av  
    if any(idx_pos) o;J;*~g  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X<MpN5%|Wo  
    end -S; &Q'Mt  
    if any(idx_neg) 4/wwn6I}G  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); E`p'L!z  
    end WOndE=(V  
    6w#nkF  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) e`DsP8-&v  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. d7i#w #  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated cS~!8`Fwy  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive f4]&pcK  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {'(ej5,6  
    %   and THETA is a vector of angles.  R and THETA must have the same ATO 5  
    %   length.  The output Z is a matrix with one column for every P-value, ~PUsgL^  
    %   and one row for every (R,THETA) pair. oMTY)`me  
    % )y\BY8  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 5LMj!)3  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) A c:\c7M;  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 75(W(V(q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 {( HxG4~  
    %   for all p. 4]"w b5%  
    % XqFu(Lm8=  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 eJf>"IF-  
    %   Zernike functions (order N<=7).  In some disciplines it is xT+ ;w[s  
    %   traditional to label the first 36 functions using a single mode ib Ue*Z["1  
    %   number P instead of separate numbers for the order N and azimuthal ;qVG \wQq  
    %   frequency M. _SF!T6A  
    % DB Xm  
    %   Example: ||gEs/6-  
    % 1,u{&%yL"w  
    %       % Display the first 16 Zernike functions x[}06k'  
    %       x = -1:0.01:1; (1y='L2rj  
    %       [X,Y] = meshgrid(x,x); W8uVd zQ   
    %       [theta,r] = cart2pol(X,Y); %Ht ^yemQ  
    %       idx = r<=1; T+BIy|O  
    %       p = 0:15; )v-Cj_W5]"  
    %       z = nan(size(X)); %g-0O#8}  
    %       y = zernfun2(p,r(idx),theta(idx)); b.6ZfB,+G  
    %       figure('Units','normalized') o~}1 oN  
    %       for k = 1:length(p) oYg/*k7EDX  
    %           z(idx) = y(:,k); 5)x6Q|-u  
    %           subplot(4,4,k) 0Ts!(b]B  
    %           pcolor(x,x,z), shading interp  qV?sg  
    %           set(gca,'XTick',[],'YTick',[]) 1bDJ}M~]z  
    %           axis square !Pe1o-O  
    %           title(['Z_{' num2str(p(k)) '}']) y$v@wb5  
    %       end cCYl$MskZ  
    % >EeAPO4  
    %   See also ZERNPOL, ZERNFUN. G/%Ubi6%  
    ,?#*eJD  
    %   Paul Fricker 11/13/2006 8q{1E];:q  
    I<9n(rA  
    HD~jU>}}  
    % Check and prepare the inputs: mj,qQ=n;p  
    % ----------------------------- !}j,TPpG  
    if min(size(p))~=1 v?%0~!  
        error('zernfun2:Pvector','Input P must be vector.') T!&jFy*W  
    end u[: P  
    ,?;sT`Mh)  
    if any(p)>35 g!.Ut:8L9  
        error('zernfun2:P36', ... #EEG>M*xB  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 9DY|Sa]#=  
               '(P = 0 to 35).'])  Q;Q  
    end 7s$6XO!  
    )fy <P;g  
    % Get the order and frequency corresonding to the function number: qYDj*wqf  
    % ---------------------------------------------------------------- B>ge, }{  
    p = p(:); a$laRtId7  
    n = ceil((-3+sqrt(9+8*p))/2); e%'z=%(  
    m = 2*p - n.*(n+2); %zRiLcAT  
    @\S]]oLn  
    % Pass the inputs to the function ZERNFUN: )Xq@v']%~9  
    % ---------------------------------------- d~vTD|Et  
    switch nargin ./'; P <)  
        case 3 8Yo-~,Gb  
            z = zernfun(n,m,r,theta); DXt]b,  
        case 4 )#)nBM2\  
            z = zernfun(n,m,r,theta,nflag); <8g *O2  
        otherwise 3^j~~ "2,w  
            error('zernfun2:nargin','Incorrect number of inputs.') e!.7no  
    end 5#yJK>a7  
    ze*&*csO  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) <Gbn PG?  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. E`A<]dAoK  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of aW52.X z%8  
    %   order N and frequency M, evaluated at R.  N is a vector of 1}i&HIr!b  
    %   positive integers (including 0), and M is a vector with the ~uP r]#  
    %   same number of elements as N.  Each element k of M must be a Y\+(rC27  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ?7fQ1/emhO  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is SJ1w1^#Pz  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (#!(Q) ]  
    %   with one column for every (N,M) pair, and one row for every ?/o2#iJx  
    %   element in R. KK&<Vw|O\  
    % EX+={U|ua$  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (#f m (@T  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is g;u<[>'I  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ;zfQ3$@9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 >reaIBT  
    %   for all [n,m]. Qs}/x[I  
    % g:G%Ei~sF  
    %   The radial Zernike polynomials are the radial portion of the vjOG?-  
    %   Zernike functions, which are an orthogonal basis on the unit GnSgO-$"  
    %   circle.  The series representation of the radial Zernike 4jC4X*  
    %   polynomials is .g6PrhzFbk  
    % 3i@ "D  
    %          (n-m)/2 7yq7a[Ra  
    %            __ h|(Z XCH  
    %    m      \       s                                          n-2s M<SbVP|V "  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ``2QOu 1  
    %    n      s=0 }}4 sh5z  
    % rX|y/0)F  
    %   The following table shows the first 12 polynomials. b0~H>cnA  
    % zIAu3  
    %       n    m    Zernike polynomial    Normalization BCj`WF@8l{  
    %       --------------------------------------------- jc%{a*n"vr  
    %       0    0    1                        sqrt(2) d- Z+fz  
    %       1    1    r                           2 7yqSt)/U  
    %       2    0    2*r^2 - 1                sqrt(6) AF9[2AH=Y  
    %       2    2    r^2                      sqrt(6) 4 ~MJ4:  
    %       3    1    3*r^3 - 2*r              sqrt(8) \-$b o=s.  
    %       3    3    r^3                      sqrt(8) Z1)jRE2dl  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) QK``tWLIg7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) SIaUrC  
    %       4    4    r^4                      sqrt(10) XEvGhy#  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Ef,7zKG  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ,w9#%=xE  
    %       5    5    r^5                      sqrt(12) ex@,F,u>o  
    %       --------------------------------------------- 8xD<A|  
    % a=:{{\1o  
    %   Example: ]<\;d B  
    % |d B1R%  
    %       % Display three example Zernike radial polynomials )JY_eG&2Dx  
    %       r = 0:0.01:1; Z uFV tW@  
    %       n = [3 2 5]; &.+n L  
    %       m = [1 2 1]; cKi^C  
    %       z = zernpol(n,m,r); @aqd'O  
    %       figure ?'ez.a}  
    %       plot(r,z) /A[oj2un  
    %       grid on aUIc=Z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') [0tf Y0  
    % v3hQv)j)  
    %   See also ZERNFUN, ZERNFUN2. +s/N@]5nW  
    XL.CJ5y>  
    % A note on the algorithm. k+7M|t.?4  
    % ------------------------ O#Zs3k  
    % The radial Zernike polynomials are computed using the series p^4;fD  
    % representation shown in the Help section above. For many special  ^ :  
    % functions, direct evaluation using the series representation can fzkCI  
    % produce poor numerical results (floating point errors), because t=E|RYC(k  
    % the summation often involves computing small differences between c:@OX[##  
    % large successive terms in the series. (In such cases, the functions >^a"Z[s[  
    % are often evaluated using alternative methods such as recurrence R+kZLOE  
    % relations: see the Legendre functions, for example). For the Zernike w.T=Lzp  
    % polynomials, however, this problem does not arise, because the qUoMg%Z%l  
    % polynomials are evaluated over the finite domain r = (0,1), and N?2 #YTjR  
    % because the coefficients for a given polynomial are generally all JXSqtk=  
    % of similar magnitude. MWn L#!  
    % f9 l<$l  
    % ZERNPOL has been written using a vectorized implementation: multiple Ip7FD9 ^  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] q563,s  
    % values can be passed as inputs) for a vector of points R.  To achieve |0%4G k);  
    % this vectorization most efficiently, the algorithm in ZERNPOL )-6s7  
    % involves pre-determining all the powers p of R that are required to eMm~7\ R  
    % compute the outputs, and then compiling the {R^p} into a single k+q6U[ce  
    % matrix.  This avoids any redundant computation of the R^p, and ]\D6;E8P-~  
    % minimizes the sizes of certain intermediate variables. AHMV@o`V  
    % ?lET45'  
    %   Paul Fricker 11/13/2006 "k6IV&0 3x  
    !OZh fMVd  
    !6tC[W`  
    % Check and prepare the inputs: i9EMi_%  
    % ----------------------------- `6BS-AVO7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "$E!_  
        error('zernpol:NMvectors','N and M must be vectors.') $R$c1C'oX  
    end P8,{k  
    /c$Ht  
    if length(n)~=length(m) #Z=)=  
        error('zernpol:NMlength','N and M must be the same length.') (15Yw9Mv  
    end L(1,W<kYg  
    U:P3Z3Y%  
    n = n(:); i[t=@^|  
    m = m(:); J! 6z  
    length_n = length(n); z$BnEd.y=:  
    3@cJ=   
    if any(mod(n-m,2)) R&=GB\`:a  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).')  4Jk}/_  
    end 7f\^VG  
    Qqhb]<z  
    if any(m<0)  > ^v8N  
        error('zernpol:Mpositive','All M must be positive.') f`9rT c  
    end b%!`fn-;  
    N;ecT@U g  
    if any(m>n) j3[OY  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') B]KLn?zt5  
    end >ya-  
    9hs{uxwuEE  
    if any( r>1 | r<0 ) ='bmjXu  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') *ckrn>E{h  
    end bq6{ty"  
    \IZ4( Z  
    if ~any(size(r)==1) z Hs  
        error('zernpol:Rvector','R must be a vector.') 33KPo0g7  
    end UH^wyK bM  
    8(_g]u#B;  
    r = r(:); '5,,XhP  
    length_r = length(r); "g:&Ge*X  
    s^t1PfP(,  
    if nargin==4 mV(x&`Cx  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ,/b/O4`;y  
        if ~isnorm i+x6aQ24  
            error('zernpol:normalization','Unrecognized normalization flag.') ^57fHlw  
        end ccRk4xR  
    else 7n 95>as  
        isnorm = false; y yR8VO{  
    end @1ta`7#  
    !g&B)0u]*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "A1yqK  
    % Compute the Zernike Polynomials IK?$!jh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3Q~&xNf  
    Nt^&YE7d:  
    % Determine the required powers of r: *pC -`k  
    % ----------------------------------- )B&<Bk+  
    rpowers = []; e/Oj T  
    for j = 1:length(n) S 2 h  
        rpowers = [rpowers m(j):2:n(j)]; 'sQO0611S  
    end PRlo"kN  
    rpowers = unique(rpowers); P_g0G#`4  
    pVa|o&,  
    % Pre-compute the values of r raised to the required powers, wG?kcfu  
    % and compile them in a matrix: XXwhs-:o  
    % ----------------------------- Mh.eAM8_  
    if rpowers(1)==0 U1|4vd9  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _]ttKT(  
        rpowern = cat(2,rpowern{:}); u R%R]X  
        rpowern = [ones(length_r,1) rpowern]; tWOze, N  
    else =+=|{l?F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kGqf@ I+  
        rpowern = cat(2,rpowern{:}); c_qy)N  
    end yaXa8v'oC  
    #Ii.tTk  
    % Compute the values of the polynomials: 2_\|>g|  
    % -------------------------------------- $q$\GOQ 9  
    z = zeros(length_r,length_n); }R5&[hxh4t  
    for j = 1:length_n uv!qE1z@':  
        s = 0:(n(j)-m(j))/2; X$&Sw3c  
        pows = n(j):-2:m(j); /aa;M*Qp  
        for k = length(s):-1:1 W!B4< 'Fjc  
            p = (1-2*mod(s(k),2))* ... v 4b`19}  
                       prod(2:(n(j)-s(k)))/          ... HPdwx V  
                       prod(2:s(k))/                 ... &8i{'k,l  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... RS02>$jo  
                       prod(2:((n(j)+m(j))/2-s(k))); eRy'N|'  
            idx = (pows(k)==rpowers); n4&j<zAV{  
            z(:,j) = z(:,j) + p*rpowern(:,idx); cRr `r[t  
        end  Q<ExfJm  
         9S1V! Jp  
        if isnorm 4H=sD t  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); UnF4RF:A2&  
        end xa0%;nFKe  
    end H 7F~+ Q-}  
    3}1+"? s  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  dD%m=x  
    *p^MAk9=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 LlJvuQ 28  
    dX=^>9hN/  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)