非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ks;%*d
function z = zernfun(n,m,r,theta,nflag) \$*$='6"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (n{wg(R
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *!e(A ]&
% and angular frequency M, evaluated at positions (R,THETA) on the q~K(]Ya/
% unit circle. N is a vector of positive integers (including 0), and 9 t
n!t
% M is a vector with the same number of elements as N. Each element iX{G]< n
% k of M must be a positive integer, with possible values M(k) = -N(k) ]<uQ.~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
OK|qv [
% and THETA is a vector of angles. R and THETA must have the same ,SlN zR
% length. The output Z is a matrix with one column for every (N,M) /(C~~XP)
% pair, and one row for every (R,THETA) pair. 4JIYbb-a'
% 5
LP?Ij
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >XW*T5aUA
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ra '
% with delta(m,0) the Kronecker delta, is chosen so that the integral AF,BwLN
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n";02?@F
% and theta=0 to theta=2*pi) is unity. For the non-normalized ;(6g\'m
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {Z;t ^:s#
% #1-xw~_
% The Zernike functions are an orthogonal basis on the unit circle. 5x2Ay=s
% They are used in disciplines such as astronomy, optics, and ?wpB`
% optometry to describe functions on a circular domain. a@d=>CT$
% ITuq/qts]A
% The following table lists the first 15 Zernike functions. CDy^UQb
% @MR?6 n*k
% n m Zernike function Normalization 6qvp*35Cx
% -------------------------------------------------- O OFVnu
% 0 0 1 1 HHk)ZfWRo
% 1 1 r * cos(theta) 2 Ma-\^S=
% 1 -1 r * sin(theta) 2 _#$9 y1bd
% 2 -2 r^2 * cos(2*theta) sqrt(6) {[Q0qi =
% 2 0 (2*r^2 - 1) sqrt(3) hmbj*8
% 2 2 r^2 * sin(2*theta) sqrt(6) \6|/RFT
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^
?hA@{T/1
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) CENVp"C/`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) v]:=K-1n
% 3 3 r^3 * sin(3*theta) sqrt(8) XV>JD/K2
% 4 -4 r^4 * cos(4*theta) sqrt(10) tS# `.F~y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eKZ%2|+j!7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0Rxe~n1o
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :HViX:]H
% 4 4 r^4 * sin(4*theta) sqrt(10) jZfx Jm
% --------------------------------------------------
Fnx`Ri
% DmqX"x%P
% Example 1: 4_M>OD/"
% I{0k
% % Display the Zernike function Z(n=5,m=1) ("7M
b{
% x = -1:0.01:1; 8U2dcx:G3
% [X,Y] = meshgrid(x,x); )QKf7 [:
% [theta,r] = cart2pol(X,Y); I XA>`D
% idx = r<=1; `RQ#.
% z = nan(size(X)); Nw J:!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); DdV'c@rq+
% figure ,0$)yZ3*3,
% pcolor(x,x,z), shading interp l":c
% axis square, colorbar 8Q`WB0E<|
% title('Zernike function Z_5^1(r,\theta)') ]J1S#Q5'
% 2R-A@UE2
% Example 2: \~rlgxd
% Q<tu) Qo
% % Display the first 10 Zernike functions 1nj(hg
% x = -1:0.01:1; >v;8~pgO
% [X,Y] = meshgrid(x,x); f}%D"gz
% [theta,r] = cart2pol(X,Y); [ANuBNF
% idx = r<=1; &`|:L(+
% z = nan(size(X)); iSK+GQ~
% n = [0 1 1 2 2 2 3 3 3 3]; I lR\
#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; > Vb@[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; rk2xKm^w
% y = zernfun(n,m,r(idx),theta(idx)); wl=61Mb
% figure('Units','normalized') w [>;a.$
% for k = 1:10 qgt[ ~i*
% z(idx) = y(:,k); JD>d\z2QC
% subplot(4,7,Nplot(k)) 2B~wHv
% pcolor(x,x,z), shading interp qL5I#?OMkU
% set(gca,'XTick',[],'YTick',[]) iSRpfU
% axis square Eq%@"-mo
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T4e\0.If
% end _Yb_D/
% Q }k.JS~#
% See also ZERNPOL, ZERNFUN2. ~iBgw&Y
W~T}@T:EN
% Paul Fricker 11/13/2006 KP;(Q+qTx
AT
Zhr.
H
3{%LS"c
% Check and prepare the inputs: Qq-"Cg@-/
% ----------------------------- 4S0>-?{
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "e3["'
error('zernfun:NMvectors','N and M must be vectors.') :!&;p
end {'+QH)w(
UUo;`rkT
if length(n)~=length(m) ]-o"}"3Ef
error('zernfun:NMlength','N and M must be the same length.') I<b?vR 'F
end R$kpiqK
}!#gu3
n = n(:); jo+w>
m = m(:); tL
SN`6[:
if any(mod(n-m,2)) \/7i-B]G7
error('zernfun:NMmultiplesof2', ... YKZrEP4^
'All N and M must differ by multiples of 2 (including 0).') ivgpS5 M`Y
end k#TYKft
*=" 8?Z
if any(m>n) bSwWszd~
error('zernfun:MlessthanN', ... $$Vt7"F
'Each M must be less than or equal to its corresponding N.') X#a`K]!B
end Wm'QP4`
W_O)~u8
if any( r>1 | r<0 ) C8N{l:1f]
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8qi+IGRg
end Sgb*tE)T
nq}Q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SxgYjIa-
error('zernfun:RTHvector','R and THETA must be vectors.') .N4
end t HD
'+'CbWgY
r = r(:); 3XiO@jzre
theta = theta(:); $v.C0 x
length_r = length(r); 1xNVdI
if length_r~=length(theta) BIaDY<j90
error('zernfun:RTHlength', ... %,@vWmn
'The number of R- and THETA-values must be equal.') <BWkUZz\P|
end /5AW?2)
ub0zJTFJ#
% Check normalization: Mkp/0|Q*
% -------------------- 1RLY $M
if nargin==5 && ischar(nflag) <O?y-$~
isnorm = strcmpi(nflag,'norm'); sH,kW|D
if ~isnorm 2s*#u<I
error('zernfun:normalization','Unrecognized normalization flag.') 1PaUI#X"2F
end ^da44Qqu
else HC {XX>F^
isnorm = false; A|#`k{+1-
end 5\mTr)\R
C;AA/4Ib
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X#xFFDzN
% Compute the Zernike Polynomials c;f!!3&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pi( -A
87!C@XlK_
% Determine the required powers of r: js^ ,(CS
% ----------------------------------- A% Q!^d
m_abs = abs(m); [@<sFP;g
rpowers = []; Op.8a`XLt&
for j = 1:length(n) D\~zS`}
rpowers = [rpowers m_abs(j):2:n(j)]; 05Fz@31~
end VO3pm6r5
rpowers = unique(rpowers); d|9b~_::V
JE5
% Pre-compute the values of r raised to the required powers, qM4c]YIaSl
% and compile them in a matrix: uy _wp^
% ----------------------------- aeyNdMk-
if rpowers(1)==0 9L0GLmLk1u
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %\O#&=$E
rpowern = cat(2,rpowern{:}); A*h{Lsx;
rpowern = [ones(length_r,1) rpowern]; +1JH
else g3n'aD@'x
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S 6,4PP
rpowern = cat(2,rpowern{:}); r'LVa6e"N
end rj]F87"
8eIUsI.o
% Compute the values of the polynomials: |rw%FM{F
% -------------------------------------- z2gk[zY&
y = zeros(length_r,length(n)); Th[f9H%
for j = 1:length(n) qL$a
c}`
s = 0:(n(j)-m_abs(j))/2; A$0H
.F>
pows = n(j):-2:m_abs(j); (;x3} ]
for k = length(s):-1:1 ^{$FI`P
p = (1-2*mod(s(k),2))* ... M69
w-
prod(2:(n(j)-s(k)))/ ... l}^3fQXI
prod(2:s(k))/ ... =.<@`1
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0l*]L`]L#
prod(2:((n(j)+m_abs(j))/2-s(k))); nZ1zJpBmI
idx = (pows(k)==rpowers); "@@I!RwA
y(:,j) = y(:,j) + p*rpowern(:,idx); YG:3Fhx0~
end >%p{38
S0h'50WteJ
if isnorm @53k8
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); WtQ8X|\`
end %R#L
end NqHy%'R
% END: Compute the Zernike Polynomials X5fmz%VK@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |@?%Ct
( m\$hX
% Compute the Zernike functions: _iKq~\v2
% ------------------------------ 6%`&+Lq
idx_pos = m>0; #
?1Sm/5k`
idx_neg = m<0; Ng><n}
@Q&3L~K"
z = y; =@Dwlze
if any(idx_pos) \}6;Kf}\
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Dih6mTP{
end %+ 7p lM
if any(idx_neg) -m'j]1
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); G CRz<)1
end f:*vr['d
VUTacA Y>L
% EOF zernfun