切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11603阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 OmO#} k<  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! d%"XsbO  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Z8 #nu  
    function z = zernfun(n,m,r,theta,nflag) @M5+12FYt  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c>_ti+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^ ` y7JXI:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the EAGvP&~P  
    %   unit circle.  N is a vector of positive integers (including 0), and [a2]_]E%  
    %   M is a vector with the same number of elements as N.  Each element pCs3-&rI3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S4x9k{Xn  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9\_AB.Z:  
    %   and THETA is a vector of angles.  R and THETA must have the same "GO!^ZG]  
    %   length.  The output Z is a matrix with one column for every (N,M) G% tlV&In  
    %   pair, and one row for every (R,THETA) pair. {EoYU\x  
    % /iU<\+ H  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *#T: _  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), dLiiJ6pl*  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral '~D4%WKT  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (p-q>@m  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized xsZG(Tz  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _QL|pLf-  
    % oMQ4q{&|  
    %   The Zernike functions are an orthogonal basis on the unit circle. &B{zS K$N  
    %   They are used in disciplines such as astronomy, optics, and "lh4Vg\7n  
    %   optometry to describe functions on a circular domain. 4=L>  
    % msBoInhI  
    %   The following table lists the first 15 Zernike functions. }?s-$@$R  
    % .G{cx=;  
    %       n    m    Zernike function           Normalization qVC+q8  
    %       -------------------------------------------------- \f9WpAY  
    %       0    0    1                                 1 >dl5^  
    %       1    1    r * cos(theta)                    2 v`A)GnNiN  
    %       1   -1    r * sin(theta)                    2 7;EDU  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Nk7y2[  
    %       2    0    (2*r^2 - 1)                    sqrt(3) u#76w74  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~ WWhCRq  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) k&$ov  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Hr?lRaV  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @+b$43 ^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) COh#/-`\1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 8^UF0>`'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LYD iqOrx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <_Yd N)x  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <?.eU<+O`S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) d{S'6*`D  
    %       -------------------------------------------------- }~ D WB"  
    % 1&boD\ 7  
    %   Example 1: 1>Sfv|ZP,  
    % g *Js4  
    %       % Display the Zernike function Z(n=5,m=1) ojM'8z 0Hn  
    %       x = -1:0.01:1; <:9 ts@B  
    %       [X,Y] = meshgrid(x,x); \s)MN s  
    %       [theta,r] = cart2pol(X,Y); w-K A~  
    %       idx = r<=1; +``vnC  
    %       z = nan(size(X)); |T<aWZb^=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); wH~A> 4*(  
    %       figure Nc\DXc-N  
    %       pcolor(x,x,z), shading interp ~B;}jI]d[  
    %       axis square, colorbar )> ZT{eF  
    %       title('Zernike function Z_5^1(r,\theta)') $s7U |F,I  
    % %~Yo{4mHs  
    %   Example 2: DTezG':  
    % ^Q8yb*MN  
    %       % Display the first 10 Zernike functions dmF=8nff  
    %       x = -1:0.01:1; +f/ I>9G  
    %       [X,Y] = meshgrid(x,x); ?|5M'o|9  
    %       [theta,r] = cart2pol(X,Y); f;'*((  
    %       idx = r<=1; 5M5Bm[X  
    %       z = nan(size(X)); DT]4C!dh  
    %       n = [0  1  1  2  2  2  3  3  3  3]; z*},N$2=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; IWv(G Qx  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B?j t?  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?}?"m:=  
    %       figure('Units','normalized') -}6ew@GE  
    %       for k = 1:10 UT3Fi@  
    %           z(idx) = y(:,k); vkG#G]Qs";  
    %           subplot(4,7,Nplot(k)) yJ?=##  
    %           pcolor(x,x,z), shading interp mF 1f(  
    %           set(gca,'XTick',[],'YTick',[]) !ZTghX}D  
    %           axis square +R*DE5dz  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \TP$2i%W  
    %       end gv67+Mf  
    % 9nAP%MA`  
    %   See also ZERNPOL, ZERNFUN2. kK75(x  
    Tt: (l/1  
    %   Paul Fricker 11/13/2006 XM\\Imw  
    sa.H,<;  
    xNIrmqm5]  
    % Check and prepare the inputs: "l&SRX?g  
    % ----------------------------- # xO PF9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) KYiJXE[Q-  
        error('zernfun:NMvectors','N and M must be vectors.') m1W) PUy  
    end cW*v))@2  
    V?EX`2S  
    if length(n)~=length(m) UBL{3s^"  
        error('zernfun:NMlength','N and M must be the same length.') lAnq2j|  
    end Wc@ ,#v  
    t'2A)S  
    n = n(:); 6Q:Wo)^!  
    m = m(:); 'w ,gYW  
    if any(mod(n-m,2)) !=YEhQ-  
        error('zernfun:NMmultiplesof2', ... W`x.qumN  
              'All N and M must differ by multiples of 2 (including 0).') .=eEuH  
    end 7^i7U-A<A  
    Rw'}>?k]  
    if any(m>n) qt L]x -O  
        error('zernfun:MlessthanN', ... HO<|EH~lu  
              'Each M must be less than or equal to its corresponding N.') ,&BNN]k  
    end )%^l+w+&  
    9n(68|^$  
    if any( r>1 | r<0 )  T7nI/y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') gGP6"|tc4  
    end L-(bw3Yr>  
    X$@`4  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yy3x]%KK  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3@" :&  
    end (xG%H:6,  
    P^OmJ;""D  
    r = r(:); Pm%xX~H  
    theta = theta(:); Fv]6 a n.  
    length_r = length(r); {@2+oOuYfN  
    if length_r~=length(theta) 2OoANiX  
        error('zernfun:RTHlength', ... 4w+AOWjd  
              'The number of R- and THETA-values must be equal.') _;3,  
    end brmS J7  
    rN 9qH  
    % Check normalization: =0?5hxMd  
    % -------------------- Movm1*&=  
    if nargin==5 && ischar(nflag) &.E/%pQ`  
        isnorm = strcmpi(nflag,'norm'); |? V7E\S  
        if ~isnorm ND1hZ3(^  
            error('zernfun:normalization','Unrecognized normalization flag.') I/w;4!+)  
        end AZ(zM.y!#_  
    else :#g.%&  
        isnorm = false; Tz)Ku  
    end GeJ}myD O  
    <P#BQt f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =6U5^+|d  
    % Compute the Zernike Polynomials m}z6Bbis0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~R[ k^i.Y  
    Y$>NsgQn6  
    % Determine the required powers of r: 9}QIqH\p  
    % ----------------------------------- +IS6l*_y>6  
    m_abs = abs(m); cD]H~D}M  
    rpowers = []; (nO2+@ !  
    for j = 1:length(n) c@g(_%_|2  
        rpowers = [rpowers m_abs(j):2:n(j)]; /)kJ iV  
    end ogIu\kiZ  
    rpowers = unique(rpowers); |@_<^cV110  
    LilK6K  
    % Pre-compute the values of r raised to the required powers, 5Xr})%L  
    % and compile them in a matrix: w=]A;GgA  
    % ----------------------------- xxs +=.2  
    if rpowers(1)==0 :|9vMM^$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u D(C jHM>  
        rpowern = cat(2,rpowern{:}); D]_6OlIE#'  
        rpowern = [ones(length_r,1) rpowern]; 'Y @yW3K  
    else >>$L vQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }>M\iPO.]*  
        rpowern = cat(2,rpowern{:}); rmggP(  
    end |Ogh-<|<  
    @U!&XZ]h  
    % Compute the values of the polynomials: 7>z {2D  
    % -------------------------------------- R +@|#!  
    y = zeros(length_r,length(n)); 1n<4yfJ  
    for j = 1:length(n) :@)R@. -  
        s = 0:(n(j)-m_abs(j))/2; `^#4okg]  
        pows = n(j):-2:m_abs(j); <lR:^M[v5<  
        for k = length(s):-1:1 wlP3 XF?  
            p = (1-2*mod(s(k),2))* ... zgz!"knVx  
                       prod(2:(n(j)-s(k)))/              ... 7 q!==P=  
                       prod(2:s(k))/                     ... C-A? mIC  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... H ~3.F  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3|!3R'g/ >  
            idx = (pows(k)==rpowers); ujnT B*Cqc  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $gnrd~v4e  
        end uDND o  
         SW%}S*h  
        if isnorm kSiyMDY-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $1B?@~&  
        end c*B< - l<5  
    end x%`YV):*  
    % END: Compute the Zernike Polynomials %\HE1d5;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ilQ}{p6I  
    L4B/ g)K  
    % Compute the Zernike functions: .`~?w+ ~  
    % ------------------------------ Csy$1;"A  
    idx_pos = m>0; zWU]4;,"  
    idx_neg = m<0; 'k]~Q{K$  
    b-/QZvg  
    z = y; b>QdP$>  
    if any(idx_pos) OqS!y( (  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2]?=\_T  
    end QY4;qA  
    if any(idx_neg) qE2VUEv5Y  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \"$P :Uv  
    end  ?;v\wx  
    .'A1Eoo0d  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) q/zU'7%@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. mST8+R@S  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated  s&pnB  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive }\S'oC\[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, y>w;'QR&a  
    %   and THETA is a vector of angles.  R and THETA must have the same \~A qA!)6  
    %   length.  The output Z is a matrix with one column for every P-value, rxX4Cw]\"y  
    %   and one row for every (R,THETA) pair. j24 3oD  
    % r!f UMDS  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  '4{=x]K  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) m-azd ~r[  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Dq~;h \='  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 NjZ~b/  
    %   for all p. NW5OLa")J<  
    % ;6``t+]q   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 2<B'PR-??y  
    %   Zernike functions (order N<=7).  In some disciplines it is 3%5YUG@  
    %   traditional to label the first 36 functions using a single mode hT1JEu  
    %   number P instead of separate numbers for the order N and azimuthal %H\J@{f  
    %   frequency M. DFWO5Y_  
    % Wgh@XB  
    %   Example: 5\z<xpJ  
    % uU3A,-{-  
    %       % Display the first 16 Zernike functions 9o5D3 d K  
    %       x = -1:0.01:1; MuOKauYa  
    %       [X,Y] = meshgrid(x,x); +Mijio  
    %       [theta,r] = cart2pol(X,Y); xrvM}Il  
    %       idx = r<=1; m=l'9j"D  
    %       p = 0:15; $O*@Jg=  
    %       z = nan(size(X)); s*la`(x  
    %       y = zernfun2(p,r(idx),theta(idx)); & V>rq'~;  
    %       figure('Units','normalized') WqF,\y%W*  
    %       for k = 1:length(p) zsJ# CDm  
    %           z(idx) = y(:,k); *'{-!Y  
    %           subplot(4,4,k) G*+^b'7  
    %           pcolor(x,x,z), shading interp !Nx1I  
    %           set(gca,'XTick',[],'YTick',[]) !5lV#w!vb  
    %           axis square YS^!'IyG/B  
    %           title(['Z_{' num2str(p(k)) '}']) T8A(W  
    %       end 7?R600OA  
    % PhC3F4  
    %   See also ZERNPOL, ZERNFUN. mF\!~ag|  
    1V1I[CxlX  
    %   Paul Fricker 11/13/2006 Cty#|6 k  
    Tp;W4]'a*:  
    A_9^S!  
    % Check and prepare the inputs: $!>.h*np  
    % ----------------------------- 3U>-~-DS  
    if min(size(p))~=1 {V6pC  
        error('zernfun2:Pvector','Input P must be vector.') To>,8E+GAb  
    end RX>P-vp  
    iv$YUM+  
    if any(p)>35 2.z-&lFBZ  
        error('zernfun2:P36', ...  eo9/  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ...  %nY\"  
               '(P = 0 to 35).']) L_!ShE  
    end CfU|]<  
    pc*)^S  
    % Get the order and frequency corresonding to the function number: :Mu*E5  
    % ---------------------------------------------------------------- p5#x7*xR6  
    p = p(:); p@G7}'|eyA  
    n = ceil((-3+sqrt(9+8*p))/2); NV4g5)D&L  
    m = 2*p - n.*(n+2); nf /*n  
    G@H!D[wd  
    % Pass the inputs to the function ZERNFUN: 4=tR_s  
    % ---------------------------------------- iwJ_~   
    switch nargin d>hv-n D  
        case 3 geR+v+B,  
            z = zernfun(n,m,r,theta); .}!.4J%q2  
        case 4 /J#(8p  
            z = zernfun(n,m,r,theta,nflag); 2 DW @}[G  
        otherwise gY~r{  
            error('zernfun2:nargin','Incorrect number of inputs.') uMg\s\Z  
    end GkJcd;  
    [Iks8ZWr_  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) \~5|~|9<  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. !&VfOx:PN  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of AYbO~_a\N  
    %   order N and frequency M, evaluated at R.  N is a vector of GDxv2^4  
    %   positive integers (including 0), and M is a vector with the )Z/"P\qo  
    %   same number of elements as N.  Each element k of M must be a &P?2H66s  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) iQ/~?'PB  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is \]9)%3I  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /}?7Eni  
    %   with one column for every (N,M) pair, and one row for every !ZBtXt#P  
    %   element in R. j!u)V1,  
    % kTvM,<  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~Bzzu % S  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is IP62|~Ap  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]O x5F@  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 'X?xn@?  
    %   for all [n,m]. =01X  
    % r`O Yq  
    %   The radial Zernike polynomials are the radial portion of the ~K;QdV=YX  
    %   Zernike functions, which are an orthogonal basis on the unit n<ZPWlJ  
    %   circle.  The series representation of the radial Zernike LIZB!S@V\  
    %   polynomials is sl]< A[jR  
    % cSb;a\el$  
    %          (n-m)/2 )% 7P?^>  
    %            __ x|6]+?l@6  
    %    m      \       s                                          n-2s o<`hj&s  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 3P cVE\GN  
    %    n      s=0 Z?axrGmg0  
    % oh9 ;_~  
    %   The following table shows the first 12 polynomials. W: ]FYC  
    % ~e{ @5.g  
    %       n    m    Zernike polynomial    Normalization _wq?Pa<)e  
    %       --------------------------------------------- -JMn?]  
    %       0    0    1                        sqrt(2) NQ9v[gv  
    %       1    1    r                           2 O`5,L[i1y  
    %       2    0    2*r^2 - 1                sqrt(6) 7zM:z,  
    %       2    2    r^2                      sqrt(6) WgtLKRZ\  
    %       3    1    3*r^3 - 2*r              sqrt(8) <)VgGjZ-H  
    %       3    3    r^3                      sqrt(8) {7NGfzwp;6  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) QU).q65p  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 4qQ,1&!]S  
    %       4    4    r^4                      sqrt(10) P49\A^5S!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 3A7774n=P  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) O*EV~ {K  
    %       5    5    r^5                      sqrt(12) v,KKn\X  
    %       --------------------------------------------- VeoG[Jl  
    % P6:C/B  
    %   Example: oUv26t~  
    % xnP!P2  
    %       % Display three example Zernike radial polynomials ]{>AU^=U  
    %       r = 0:0.01:1; @A/k"Ax{r  
    %       n = [3 2 5]; Jz@~$L  
    %       m = [1 2 1]; :D.0\.p  
    %       z = zernpol(n,m,r); "/W[gP[y%  
    %       figure P?54"$b  
    %       plot(r,z) 22\!Z2@T/  
    %       grid on AU{"G  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') drq3=2  
    % /R)wM#&  
    %   See also ZERNFUN, ZERNFUN2. ^kez]>   
    FfoOJzf~o  
    % A note on the algorithm. jwZ,_CK  
    % ------------------------ \/a6h   
    % The radial Zernike polynomials are computed using the series .fA*WQ!lb  
    % representation shown in the Help section above. For many special )- C3z   
    % functions, direct evaluation using the series representation can "W|A^@r}  
    % produce poor numerical results (floating point errors), because \CbJU  
    % the summation often involves computing small differences between }r:o8+4  
    % large successive terms in the series. (In such cases, the functions sibYJKOy  
    % are often evaluated using alternative methods such as recurrence ccD+AGM.  
    % relations: see the Legendre functions, for example). For the Zernike NxT"A)u  
    % polynomials, however, this problem does not arise, because the )9QtnM  
    % polynomials are evaluated over the finite domain r = (0,1), and Rj8%% G-pt  
    % because the coefficients for a given polynomial are generally all rqdwQ  
    % of similar magnitude. o2 14V\  
    % |c_qq Bd  
    % ZERNPOL has been written using a vectorized implementation: multiple V~J5x >O  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0#q=-M/?`  
    % values can be passed as inputs) for a vector of points R.  To achieve qe~x?FO_>  
    % this vectorization most efficiently, the algorithm in ZERNPOL wj|Zn+{"nF  
    % involves pre-determining all the powers p of R that are required to 7e/+C{3v  
    % compute the outputs, and then compiling the {R^p} into a single % RSZ.  
    % matrix.  This avoids any redundant computation of the R^p, and IK~&`n](>  
    % minimizes the sizes of certain intermediate variables. +6m.f,14q  
    % i!wU8 @  
    %   Paul Fricker 11/13/2006 Q?{%c[s  
    /7Q|D sa  
    =OVDJ0ozZ  
    % Check and prepare the inputs: 6 SSDc/  
    % ----------------------------- FR&`R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !3ggQG!e  
        error('zernpol:NMvectors','N and M must be vectors.') NkE0S`Xf  
    end ,Kit@`P%  
    =bVPHrKNQ  
    if length(n)~=length(m) .6B\fr.za  
        error('zernpol:NMlength','N and M must be the same length.') vqf$("  
    end Hvl n>x@  
    6% D9;-N)  
    n = n(:); niVR!l  
    m = m(:); KWTV!Wxb=K  
    length_n = length(n); ]BQYVx/  
    t>"%exdoZ  
    if any(mod(n-m,2)) x-^6U  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') gT+/nSrLV  
    end Dn- gP  
    D7Q+w  
    if any(m<0) gr=h!'m  
        error('zernpol:Mpositive','All M must be positive.') p7h#.m~Qu  
    end 1+o]+Jz|  
    x3@-E  
    if any(m>n) f)I5=Ijy(  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') E+td~&x  
    end k3\N.@\  
    N^^0j,  
    if any( r>1 | r<0 ) #cbgp;,M{I  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Zed Fhm  
    end ^5mc$~1`  
    !e$gp (4  
    if ~any(size(r)==1) 8fR(y~_gF  
        error('zernpol:Rvector','R must be a vector.') (FuIOR  
    end $YYWpeW '  
    ~%{2Z_t$  
    r = r(:); "4j~2{{ F  
    length_r = length(r); WJ7|0qb  
    HpwMm^  
    if nargin==4 (IJNBJb  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); n*4`Tduu^  
        if ~isnorm {]vD@)k  
            error('zernpol:normalization','Unrecognized normalization flag.') 2*Z2uV^  
        end  EM ,C  
    else ]@q%dsz  
        isnorm = false; <@<rU:o=V  
    end =x~I'|%3  
    >rG>Bz^Pu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5dBftTv?  
    % Compute the Zernike Polynomials GW2\YU^{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 18g_v"6o  
    _03?XUKV  
    % Determine the required powers of r: d@%"B($nR  
    % ----------------------------------- >J"IN I  
    rpowers = []; r8k(L{W  
    for j = 1:length(n) kmB!NxF>)F  
        rpowers = [rpowers m(j):2:n(j)]; jU,Xlgz(A  
    end $JE,u' JQ  
    rpowers = unique(rpowers); -(VJ,)8t2  
    .Po"qoGy  
    % Pre-compute the values of r raised to the required powers, 9+.wj/75  
    % and compile them in a matrix: *4,Q9K_  
    % ----------------------------- Uj@th  
    if rpowers(1)==0 ~^t@TMk$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jnH\}IB  
        rpowern = cat(2,rpowern{:}); N(/)e  
        rpowern = [ones(length_r,1) rpowern]; %idBR7?`g  
    else > A#5` $i  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b0P3S!E  
        rpowern = cat(2,rpowern{:}); dBWny&  
    end Z9{~t  
    A=|XlP$6  
    % Compute the values of the polynomials: _\!]MV  
    % -------------------------------------- MJn-] E  
    z = zeros(length_r,length_n); }nx)|J*p  
    for j = 1:length_n 0.GFg${v`  
        s = 0:(n(j)-m(j))/2; ,0l Od<  
        pows = n(j):-2:m(j); \Lx=iKs<  
        for k = length(s):-1:1 4vhf!!1  
            p = (1-2*mod(s(k),2))* ... =C %)(|  
                       prod(2:(n(j)-s(k)))/          ... n. %QWhUB  
                       prod(2:s(k))/                 ... 7*:zN  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... AGhenDN V  
                       prod(2:((n(j)+m(j))/2-s(k))); 7vRtTP  
            idx = (pows(k)==rpowers); ]>3Y~KH(  
            z(:,j) = z(:,j) + p*rpowern(:,idx); %"RJi?  
        end c-Gp|.C  
         ;$p!dI\-Q  
        if isnorm ^z,3#gK  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); <'Q6\R}:vC  
        end Y2|i>5/|<  
    end $H:!3 -/  
    y:G%p3h)[  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?]><#[?'L  
    BX/3{5Y>{  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 &S4*x|-C&  
    .\_):j*  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)