非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?Xj@Sx
function z = zernfun(n,m,r,theta,nflag) Kf# iF*
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <6&Z5mpm$w
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C8%MKNPd
% and angular frequency M, evaluated at positions (R,THETA) on the w\a6ga!xt"
% unit circle. N is a vector of positive integers (including 0), and
@<koL
% M is a vector with the same number of elements as N. Each element |3BxNFe`%
% k of M must be a positive integer, with possible values M(k) = -N(k)
0:$pJtx"
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, e4FR)d0x
% and THETA is a vector of angles. R and THETA must have the same <B!DwMk;.
% length. The output Z is a matrix with one column for every (N,M) piFZu/~Gq\
% pair, and one row for every (R,THETA) pair. gOr%N!5
% qfqL"G
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |3g'~E?$
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~Rw][Ys
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5p ,HkV
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cNMDI
% and theta=0 to theta=2*pi) is unity. For the non-normalized erOj(ce
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ccT
<UIpq
% @U:PXCvh
% The Zernike functions are an orthogonal basis on the unit circle. K/_"ybR7
% They are used in disciplines such as astronomy, optics, and u/ri
{neP{
% optometry to describe functions on a circular domain. X|C=Q
% %~[@5<p
% The following table lists the first 15 Zernike functions. K{:[0oIHc
% Js^(mRv=
% n m Zernike function Normalization %<`sDO6Q?
% -------------------------------------------------- vy-q<6T}:p
% 0 0 1 1 rdsZ[ii
% 1 1 r * cos(theta) 2 #'n.az=1
% 1 -1 r * sin(theta) 2 <fHN^O0TS
% 2 -2 r^2 * cos(2*theta) sqrt(6) D^6Q`o
% 2 0 (2*r^2 - 1) sqrt(3) yd[4l%G(zS
% 2 2 r^2 * sin(2*theta) sqrt(6) lYmxd8
% 3 -3 r^3 * cos(3*theta) sqrt(8) gAgF$H .
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) yb,$UT"]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;rV+eb)I
% 3 3 r^3 * sin(3*theta) sqrt(8) 0"Zxbgu)
% 4 -4 r^4 * cos(4*theta) sqrt(10) FiSx"o
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &Zjs
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <d O~;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #kE8EhQZ
% 4 4 r^4 * sin(4*theta) sqrt(10) pG22Nx
% -------------------------------------------------- sRZ?Ilua6
% 39I|.B"
% Example 1: L`(\ud
% 6 X'#F,M
% % Display the Zernike function Z(n=5,m=1) O*lE0~rJ
% x = -1:0.01:1; v]rbm}uU9
% [X,Y] = meshgrid(x,x); M(I%QD
% [theta,r] = cart2pol(X,Y); Dl,sl>{
% idx = r<=1; {$>.I
% z = nan(size(X)); Y#+Ws0wN
% z(idx) = zernfun(5,1,r(idx),theta(idx)); V+r&Z<&
% figure nJ$2RN
% pcolor(x,x,z), shading interp .m.Ga|;
% axis square, colorbar Yhjv[ 9
% title('Zernike function Z_5^1(r,\theta)') pH(X;OC9S
% Z?'?|vM
% Example 2: *j=58d`n
% ""Oir!4
% % Display the first 10 Zernike functions q>wO=qWx
% x = -1:0.01:1; VVcli*
% [X,Y] = meshgrid(x,x); 3i\Np =
% [theta,r] = cart2pol(X,Y); 5,-:31(j\
% idx = r<=1; M+%qVwp
% z = nan(size(X)); P4.)kK.3q|
% n = [0 1 1 2 2 2 3 3 3 3]; y:_>R=sw
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; u6%\ZK._
\
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7 U-}Y
% y = zernfun(n,m,r(idx),theta(idx)); p'6XF{
% figure('Units','normalized') =yoR>llbBC
% for k = 1:10 )l/
.<`|
% z(idx) = y(:,k); bdfs'udt9
% subplot(4,7,Nplot(k))
lnK
% pcolor(x,x,z), shading interp Jfo'iNOu
% set(gca,'XTick',[],'YTick',[]) sLFZ61rT
% axis square mwsdl^c
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ; 6PRi/@
% end u,{R,hTDS
% G/#m.=t
% See also ZERNPOL, ZERNFUN2. Lf%=vd
Ep:hObWG)
% Paul Fricker 11/13/2006 5ArgM%
i7cUp3
78 ]Kv^l^_
% Check and prepare the inputs: ,In%r`{i
% ----------------------------- FnI}N;"
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2-jXj9kp`
error('zernfun:NMvectors','N and M must be vectors.') o7WAH@g
end $ M/1pZ
+-9-%O.(;
if length(n)~=length(m) |=KzQY|u
error('zernfun:NMlength','N and M must be the same length.') _l1"X ^Aa
end =f [/Pv
w%..*+P
n = n(:); wwQ2\2w>Hm
m = m(:); /y|ZAN
if any(mod(n-m,2)) FP}I+Ys
error('zernfun:NMmultiplesof2', ... Ryh 0r
'All N and M must differ by multiples of 2 (including 0).') :U=3*f.{
end qL`yaU
ww[||
=
if any(m>n) fM|s,'Q1x
error('zernfun:MlessthanN', ... l9OpaOVfJ
'Each M must be less than or equal to its corresponding N.') #I*{_|}=
end OU}eTc(FeC
1P'A*`!K
if any( r>1 | r<0 ) .tppCy
error('zernfun:Rlessthan1','All R must be between 0 and 1.') wa{!%qu5.R
end ngmC~l*,
iSR"$H{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;\6@s3
error('zernfun:RTHvector','R and THETA must be vectors.') G-|c%g!ejf
end <SQR";
i*$~uuY
r = r(:); (6NDY5h~=n
theta = theta(:); |)" y
length_r = length(r); cruBJZr*
if length_r~=length(theta) hdcB*j?4
error('zernfun:RTHlength', ... i+_=7(e
'The number of R- and THETA-values must be equal.') 6xwjKh:9
end ARt{ 2|
8x LXXB
% Check normalization: "Nb2[R
% -------------------- 7R
m\#
if nargin==5 && ischar(nflag) Ge=^q.
isnorm = strcmpi(nflag,'norm'); );_ /0:
if ~isnorm /5z,G r
error('zernfun:normalization','Unrecognized normalization flag.') :T?WN+3
end <66%(J>
else LwxJ:Kz.
isnorm = false; esE!i0%
end X}i2 qv
,x!r^YO=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {.p;V
% Compute the Zernike Polynomials i2rSP$j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TBQ68o
6-tIe_5
% Determine the required powers of r: Z2`M8xEiH
% ----------------------------------- 7l/lY-zO
m_abs = abs(m); M!mw6';k
rpowers = []; =+Odu
for j = 1:length(n) 4c{j9mh
rpowers = [rpowers m_abs(j):2:n(j)]; t 4zUj%F
end 9-q> W
rpowers = unique(rpowers); QV HI}3~
2Xk;]-T!
% Pre-compute the values of r raised to the required powers, x V`l6QS
% and compile them in a matrix: 7&wxnxSk^
% ----------------------------- [7~AWZU3
if rpowers(1)==0 + 9|0\Q
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G4P*U3&p
rpowern = cat(2,rpowern{:}); vu.?@k@
rpowern = [ones(length_r,1) rpowern]; U^
,!
else dlCiqY:}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8#tuB8>
rpowern = cat(2,rpowern{:}); ^b`-zFL7
end r-L& ee
oqysfLJ
% Compute the values of the polynomials: _'1 ]CoR
% -------------------------------------- oIx|)[
y = zeros(length_r,length(n)); ER~RBzp
for j = 1:length(n) rC!"<