切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10893阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 yGBQ0o7E  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! '1SG(0  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ks;% *d  
    function z = zernfun(n,m,r,theta,nflag) \$*$='6"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ( n{wg(R  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *!e(A ]&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the q~K(]Ya/  
    %   unit circle.  N is a vector of positive integers (including 0), and 9 t n!t  
    %   M is a vector with the same number of elements as N.  Each element iX{G]< n  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]<uQ.~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, OK|qv[  
    %   and THETA is a vector of angles.  R and THETA must have the same ,SlN zR  
    %   length.  The output Z is a matrix with one column for every (N,M) /(C~~XP)  
    %   pair, and one row for every (R,THETA) pair. 4JIYbb-a'  
    % 5 LP?Ij  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >XW*T5aUA  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ra '  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral AF,BwLN  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n";02?@F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;(6g\'m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {Z;t ^:s#  
    % #1-xw~_  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5 x2Ay=s  
    %   They are used in disciplines such as astronomy, optics, and ?wpB`  
    %   optometry to describe functions on a circular domain. a@d=>CT$  
    % ITuq/qts]A  
    %   The following table lists the first 15 Zernike functions. CDy^UQb  
    % @MR?6n*k  
    %       n    m    Zernike function           Normalization 6qvp*35Cx  
    %       -------------------------------------------------- O  OFVnu  
    %       0    0    1                                 1 HHk)ZfWRo  
    %       1    1    r * cos(theta)                    2 Ma-\^S=  
    %       1   -1    r * sin(theta)                    2 _#$9 y1bd  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {[Q0qi =  
    %       2    0    (2*r^2 - 1)                    sqrt(3) hmbj*8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \6|/RFT  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^ ?hA@{T/1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) CE NVp"C/`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) v]:=K-1n  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) XV>JD/K2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tS# `.F~y  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eKZ%2|+j!7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0Rxe~n1o  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :HViX:]H  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jZfx Jm  
    %       --------------------------------------------------  Fnx`Ri  
    % DmqX"x%P  
    %   Example 1: 4_M>OD/"  
    % I{0 k  
    %       % Display the Zernike function Z(n=5,m=1) ("7M b{  
    %       x = -1:0.01:1; 8U2dcx:G3  
    %       [X,Y] = meshgrid(x,x); )QKf7 [:  
    %       [theta,r] = cart2pol(X,Y); I XA>`D  
    %       idx = r<=1; `RQ#.   
    %       z = nan(size(X)); Nw J:!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); DdV'c@rq+  
    %       figure ,0$)yZ3*3,  
    %       pcolor(x,x,z), shading interp l":c  
    %       axis square, colorbar 8Q`WB0E<|  
    %       title('Zernike function Z_5^1(r,\theta)') ]J1S#Q5'  
    % 2R-A@UE2  
    %   Example 2: \~rlgxd  
    % Q<tu)Qo  
    %       % Display the first 10 Zernike functions 1nj(h g  
    %       x = -1:0.01:1; >v;8~pgO  
    %       [X,Y] = meshgrid(x,x); f}%D"gz  
    %       [theta,r] = cart2pol(X,Y); [ANuBNF  
    %       idx = r<=1; &`|:L(+  
    %       z = nan(size(X)); iSK+GQ~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; I lR\  #  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; > Vb@[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; rk2xKm^w  
    %       y = zernfun(n,m,r(idx),theta(idx)); wl=61 Mb  
    %       figure('Units','normalized') w [>;a.$  
    %       for k = 1:10 qgt[~i*  
    %           z(idx) = y(:,k); JD>d\z2QC  
    %           subplot(4,7,Nplot(k))  2B~wHv  
    %           pcolor(x,x,z), shading interp qL5I#?OMkU  
    %           set(gca,'XTick',[],'YTick',[]) iSRpfU  
    %           axis square Eq% @"-m o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T4e\0.If  
    %       end _Yb _D/  
    % Q }k.JS~#  
    %   See also ZERNPOL, ZERNFUN2. ~iBgw&Y  
    W~T}@T:EN  
    %   Paul Fricker 11/13/2006 KP;(Q+qTx  
    AT Zhr. H  
    3{% LS"c  
    % Check and prepare the inputs: Qq-"Cg@-/  
    % ----------------------------- 4S0>-?{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "e3["'  
        error('zernfun:NMvectors','N and M must be vectors.') :!&;p  
    end {'+Q H)w(  
    UUo;`rkT  
    if length(n)~=length(m) ]-o"}"3Ef  
        error('zernfun:NMlength','N and M must be the same length.') I<b?vR 'F  
    end R$kpiqK  
    }!#gu3  
    n = n(:); jo +w>  
    m = m(:); tL SN`6[:  
    if any(mod(n-m,2)) \/7i-B]G7  
        error('zernfun:NMmultiplesof2', ... YKZrEP 4^  
              'All N and M must differ by multiples of 2 (including 0).') ivgpS5 M`Y  
    end k#TYKft  
    *="8?Z  
    if any(m>n) bSwWszd~  
        error('zernfun:MlessthanN', ... $$Vt7"F  
              'Each M must be less than or equal to its corresponding N.') X#a`K]!B  
    end Wm'QP4`  
    W_O)~u8  
    if any( r>1 | r<0 ) C8N{l:1f]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8qi+IGRg  
    end Sgb*tE)T  
    nq} Q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Sx gYjIa-  
        error('zernfun:RTHvector','R and THETA must be vectors.') .N4  
    end tHD  
    '+'CbWgY  
    r = r(:); 3XiO@jzre  
    theta = theta(:); $v.C0 x  
    length_r = length(r); 1xNVdI   
    if length_r~=length(theta) BIaDY<j90  
        error('zernfun:RTHlength', ... %,@vWmn  
              'The number of R- and THETA-values must be equal.') <BWkUZz\P|  
    end /5AW?2)  
    ub0zJTFJ#  
    % Check normalization: Mkp/0|Q*  
    % -------------------- 1RLY $M  
    if nargin==5 && ischar(nflag) <O?y-$~  
        isnorm = strcmpi(nflag,'norm'); sH,kW|D  
        if ~isnorm 2s*#u<I  
            error('zernfun:normalization','Unrecognized normalization flag.') 1PaUI#X"2F  
        end ^da44Qqu  
    else HC {XX>F^  
        isnorm = false; A|#`k{+1-  
    end 5\mTr)\R  
    C;AA/4Ib  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X#xFFDzN  
    % Compute the Zernike Polynomials c;f!!3&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pi(-A  
    87!C@XlK_  
    % Determine the required powers of r: js^ ,(CS  
    % ----------------------------------- A % Q!^d  
    m_abs = abs(m); [@ <sFP;g  
    rpowers = []; Op.8a`XLt&  
    for j = 1:length(n) D\~zS`}  
        rpowers = [rpowers m_abs(j):2:n(j)]; 05Fz@31~  
    end VO3pm6r5  
    rpowers = unique(rpowers); d|9b~_::V  
    JE 5  
    % Pre-compute the values of r raised to the required powers, qM4c]YIaSl  
    % and compile them in a matrix: uy_wp^  
    % ----------------------------- aeyNdMk -  
    if rpowers(1)==0 9L0GLmLk1u  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %\O#&=$E  
        rpowern = cat(2,rpowern{:}); A*h{Lsx;  
        rpowern = [ones(length_r,1) rpowern]; +1JH  
    else g3n'aD@'x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S 6,4PP  
        rpowern = cat(2,rpowern{:}); r'LVa6e"N  
    end rj ]F87"  
    8eIUsI.o  
    % Compute the values of the polynomials: |rw%FM{F  
    % -------------------------------------- z2gk[zY&  
    y = zeros(length_r,length(n)); Th[f9H%  
    for j = 1:length(n) qL$a c}`  
        s = 0:(n(j)-m_abs(j))/2; A$0H .F>  
        pows = n(j):-2:m_abs(j); (;x3} ]  
        for k = length(s):-1:1 ^{$FI`P  
            p = (1-2*mod(s(k),2))* ... M6 9 w-  
                       prod(2:(n(j)-s(k)))/              ... l} ^3fQXI  
                       prod(2:s(k))/                     ... =.<@`1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0l*]L`]L#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nZ1zJpBmI  
            idx = (pows(k)==rpowers); "@@I!RwA  
            y(:,j) = y(:,j) + p*rpowern(:,idx); YG:3Fhx0~  
        end >% p{38  
         S0h'50WteJ  
        if isnorm @53k8  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); WtQ8X|\`  
        end  %R#L  
    end N qHy%'R  
    % END: Compute the Zernike Polynomials X5fmz%VK@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |@?%Ct  
    ( m\$hX  
    % Compute the Zernike functions: _iKq~\v2  
    % ------------------------------ 6%`&+Lq  
    idx_pos = m>0; # ?1Sm/5k`  
    idx_neg = m<0; Ng><n}  
    @Q&3L~K"  
    z = y; =@Dwlze  
    if any(idx_pos) \}6;Kf}\  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Dih6mTP{  
    end %+ 7p lM  
    if any(idx_neg) -m'j]1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); G CRz<)1  
    end f:*vr['d  
    VUTacA Y>L  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) i'd2[A.7I  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. $,I q;*7N  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated {NpM.;  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive [' z[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 3X9b2RY*L/  
    %   and THETA is a vector of angles.  R and THETA must have the same I8oo~2Q w  
    %   length.  The output Z is a matrix with one column for every P-value, i'stw6*J  
    %   and one row for every (R,THETA) pair. MT(o"ltQ  
    % NmK8<9`u  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike A5,t+8`aci  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8x`.26p  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Sxjub&=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 C]^H&  
    %   for all p. t+oJV+@  
    % OY[e.N t&  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 (SSRY9  
    %   Zernike functions (order N<=7).  In some disciplines it is 5J8r8` t  
    %   traditional to label the first 36 functions using a single mode Bq/:Nd[y  
    %   number P instead of separate numbers for the order N and azimuthal ~['Kgh_;  
    %   frequency M. \~P=U;l=pO  
    % yH][(o=2  
    %   Example: }@if6(0  
    % f7Ul(D:j\  
    %       % Display the first 16 Zernike functions NM)k/?fA  
    %       x = -1:0.01:1; ]weoTn:  
    %       [X,Y] = meshgrid(x,x); zy*/T>{#  
    %       [theta,r] = cart2pol(X,Y); hdTzCfeZ5@  
    %       idx = r<=1; t|t#vcB  
    %       p = 0:15; aq7~QX_0G  
    %       z = nan(size(X)); !w BJ,&E  
    %       y = zernfun2(p,r(idx),theta(idx)); #plY\0E@  
    %       figure('Units','normalized') $mF_,|  
    %       for k = 1:length(p) j }b\Z9)!  
    %           z(idx) = y(:,k); &.TTJsKG h  
    %           subplot(4,4,k) \uss Uv  
    %           pcolor(x,x,z), shading interp %s19KGpA  
    %           set(gca,'XTick',[],'YTick',[]) 8[6o (  
    %           axis square @p\}pY$T  
    %           title(['Z_{' num2str(p(k)) '}']) Dk48@`l2  
    %       end \EseGgd21  
    % 1CLL%\V  
    %   See also ZERNPOL, ZERNFUN. boG_f@dv(  
    /VG2.:  
    %   Paul Fricker 11/13/2006 |>@W ]CX[  
    q -8t'7  
    Z"unF9`"1  
    % Check and prepare the inputs: ctcS:<r/3@  
    % ----------------------------- .k,YlFvj  
    if min(size(p))~=1 yDNOtC|  
        error('zernfun2:Pvector','Input P must be vector.') yCCrK@{oo  
    end FVh U^  
    2wF8 P)  
    if any(p)>35 uw lr9nB  
        error('zernfun2:P36', ...  }-~l!  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... dH( ('u[  
               '(P = 0 to 35).']) <FZ@Q[RP  
    end LdJYE;k Ju  
    ws4cF N9P?  
    % Get the order and frequency corresonding to the function number: arf8xqR-U]  
    % ---------------------------------------------------------------- eYx Kp!f  
    p = p(:); [$[:"N_  
    n = ceil((-3+sqrt(9+8*p))/2); A_KW(;50  
    m = 2*p - n.*(n+2); I}R0q  
    bV/jfV"%E  
    % Pass the inputs to the function ZERNFUN: QY== GfHt  
    % ---------------------------------------- #c2ymQm  
    switch nargin sH\5/'?  
        case 3 Dc)dE2  
            z = zernfun(n,m,r,theta); (Cq n6 dWK  
        case 4 8V~vXnkM  
            z = zernfun(n,m,r,theta,nflag); 2;w*oop,O  
        otherwise dO%W+K  
            error('zernfun2:nargin','Incorrect number of inputs.') mc4i@<_?  
    end Ci rZ+o  
    D= 7c(  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) uG<}N=  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. W6Y@U$P#G  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of CD8}I85 K  
    %   order N and frequency M, evaluated at R.  N is a vector of t%8d-+$  
    %   positive integers (including 0), and M is a vector with the tor!Dl@Mo  
    %   same number of elements as N.  Each element k of M must be a  Tgl}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Q$fmD  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is H*r>Y  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7VP32Eh[  
    %   with one column for every (N,M) pair, and one row for every [<KM?\"1<  
    %   element in R. 9+pmS#>_  
    % eY e,r  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- edPUG N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is yxc=Z0~1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3)RsLI9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 '}9JCJ  
    %   for all [n,m]. &y#r;L<9  
    % [ Fz`D/  
    %   The radial Zernike polynomials are the radial portion of the LcE+GC  
    %   Zernike functions, which are an orthogonal basis on the unit 9VbOQ{8  
    %   circle.  The series representation of the radial Zernike Sf r&p>{,  
    %   polynomials is Pfs;0}h5  
    % L{c q, jk  
    %          (n-m)/2 ,#8e_3Z$  
    %            __ !Ta>U^ 7  
    %    m      \       s                                          n-2s .c$316  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r y.q(vzg\_  
    %    n      s=0 z0do;_x]E  
    % !Xph_SQ!B=  
    %   The following table shows the first 12 polynomials. l(Q?rwI8Y  
    % ~^cMys |'  
    %       n    m    Zernike polynomial    Normalization ki)#d' }  
    %       --------------------------------------------- \!ej<T+JR>  
    %       0    0    1                        sqrt(2) {,L+1h  
    %       1    1    r                           2 Kde9 $  
    %       2    0    2*r^2 - 1                sqrt(6) wT{nu[=GH*  
    %       2    2    r^2                      sqrt(6) ,tg0L$qC  
    %       3    1    3*r^3 - 2*r              sqrt(8) 3Gip<\$v  
    %       3    3    r^3                      sqrt(8) n-@j5w+k4  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) o-Ga3i 8  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) NG6& :4!  
    %       4    4    r^4                      sqrt(10) Q6r7.pk"SU  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) RG4sQ0  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) cSm%s  
    %       5    5    r^5                      sqrt(12) |.3DD"*  
    %       --------------------------------------------- _x5 3g A  
    % jfqopiSi  
    %   Example: W='> :H  
    % 6!(@@^7{*  
    %       % Display three example Zernike radial polynomials "T- `$'9  
    %       r = 0:0.01:1; s S7c!  
    %       n = [3 2 5]; VZl6t;cn  
    %       m = [1 2 1]; QMpoa5ZQG  
    %       z = zernpol(n,m,r); ;I!MLI  
    %       figure cx0*X*  
    %       plot(r,z) s91JBP|B7  
    %       grid on N~xLu8,  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') qZA).12qS  
    % w/K_B:s  
    %   See also ZERNFUN, ZERNFUN2. 5hy""i  
    @Rw!'T  
    % A note on the algorithm. ,YMp<C  
    % ------------------------ =7o"u3hG  
    % The radial Zernike polynomials are computed using the series (/j); oSK  
    % representation shown in the Help section above. For many special +o51x'Ld*  
    % functions, direct evaluation using the series representation can L;f!.FX#  
    % produce poor numerical results (floating point errors), because GF^071]G  
    % the summation often involves computing small differences between x a06i#  
    % large successive terms in the series. (In such cases, the functions >cCR2j,r  
    % are often evaluated using alternative methods such as recurrence KkE9KwZ]W  
    % relations: see the Legendre functions, for example). For the Zernike ez6EjUk  
    % polynomials, however, this problem does not arise, because the }B.H|*uO  
    % polynomials are evaluated over the finite domain r = (0,1), and x3"#POp  
    % because the coefficients for a given polynomial are generally all [`):s= FC  
    % of similar magnitude. M )2`+/4  
    %  1OF& *  
    % ZERNPOL has been written using a vectorized implementation: multiple ,5*eX  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] v3jg~"!  
    % values can be passed as inputs) for a vector of points R.  To achieve \<)9?M :  
    % this vectorization most efficiently, the algorithm in ZERNPOL 9b*nLyYVz  
    % involves pre-determining all the powers p of R that are required to ut I"\1hQ  
    % compute the outputs, and then compiling the {R^p} into a single y7i*s^ys{  
    % matrix.  This avoids any redundant computation of the R^p, and Os1>kwC  
    % minimizes the sizes of certain intermediate variables. BFOq8}fX2  
    % w2'f/  
    %   Paul Fricker 11/13/2006 6 jn3`D  
    3z&Fi;<+j  
    @>U-t{W  
    % Check and prepare the inputs: ixT:)|'i  
    % ----------------------------- [F6U+1n8e  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &@yo;kB  
        error('zernpol:NMvectors','N and M must be vectors.') z21|Dhiw&  
    end =^5Alb a/  
    9Q+'n$s0^  
    if length(n)~=length(m) vCw e'q`1  
        error('zernpol:NMlength','N and M must be the same length.') 6Z%U`,S  
    end y`XU~B)J1  
    k-{<=>uM  
    n = n(:); :FTMmW,>'  
    m = m(:); <U\B!fO'  
    length_n = length(n); Y1J=3Y  
    vG"=h%  
    if any(mod(n-m,2)) E`uY1B[c  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') E }nH1  
    end e8#h3lxJ`  
    pxh"B\"4*  
    if any(m<0) Ls] g  
        error('zernpol:Mpositive','All M must be positive.') FK5 <6n,U  
    end AGYc |;  
    &H`jL4S  
    if any(m>n) "pRtczxOgR  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') D5*q7A6  
    end -3=#u_  
    c:o]d)S  
    if any( r>1 | r<0 ) :dQ B R  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') b KN@j'M  
    end 'GS"8w~j  
    -- c"0,7  
    if ~any(size(r)==1) "\o+v|;  
        error('zernpol:Rvector','R must be a vector.') 8Y7Q+p|O  
    end tE`u(B,  
    n+A?"`6*#  
    r = r(:); ?1K#dC52#  
    length_r = length(r); m4l& eEp  
    ''\O v  
    if nargin==4 PC-"gi =h  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); zPjHsulK  
        if ~isnorm }%_ b$  
            error('zernpol:normalization','Unrecognized normalization flag.') ne_TIwfw-  
        end [J4gH^Z_  
    else :i. {  
        isnorm = false; [VsKa\9u  
    end s)6U_  
    ^!<BQP7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !FElW`F  
    % Compute the Zernike Polynomials P;ci9vk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <#u=[_H  
    n T{3o;A  
    % Determine the required powers of r: |m^k_d!d  
    % ----------------------------------- M$>1L  
    rpowers = []; xgKdMW'%g:  
    for j = 1:length(n) 65 #'\+  
        rpowers = [rpowers m(j):2:n(j)]; 5',8 ziJQ  
    end $',K7%y  
    rpowers = unique(rpowers); \ b?" b  
    ECrex>zr%  
    % Pre-compute the values of r raised to the required powers, b2OQtSr a  
    % and compile them in a matrix: /7|V+6jV  
    % ----------------------------- $+Z)  
    if rpowers(1)==0 GycSwQ ,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9NQlI1W z4  
        rpowern = cat(2,rpowern{:}); ;kS&A(  
        rpowern = [ones(length_r,1) rpowern]; '+?"iVVo  
    else pu 7{a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); lFV N07hG  
        rpowern = cat(2,rpowern{:}); 4GY[7^  
    end (nlvl?\d  
    7|$:=4  
    % Compute the values of the polynomials: w1OI4C)~  
    % -------------------------------------- oPXkYW  
    z = zeros(length_r,length_n); uj R_"r|l  
    for j = 1:length_n XkXHGDEf1  
        s = 0:(n(j)-m(j))/2; b`~p.c%(  
        pows = n(j):-2:m(j); MbZJ;,e?  
        for k = length(s):-1:1 DVB{2~7 4  
            p = (1-2*mod(s(k),2))* ... 4{rZppm  
                       prod(2:(n(j)-s(k)))/          ... HUv/ ~^<  
                       prod(2:s(k))/                 ... gy 3i+J  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {MCi<7j<?  
                       prod(2:((n(j)+m(j))/2-s(k))); XINu=N(g  
            idx = (pows(k)==rpowers); O&4SCVZp  
            z(:,j) = z(:,j) + p*rpowern(:,idx); b\$}>O  
        end :UF%K>k2  
         C/vI EYG4  
        if isnorm =u2l. CX  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); d4>Z8FF|1B  
        end aTqd@},?  
    end $RIecv<e_  
    !Wy6/F@Z  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (8Bk;bd  
    &xa(BX%,c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 xl6,s>ob  
    w8kOVN2b  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)