非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 v&Kqq!DE
function z = zernfun(n,m,r,theta,nflag) }w4QP+ x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. AkOO)0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N dMR3)CO
% and angular frequency M, evaluated at positions (R,THETA) on the W2uOR{
'?
% unit circle. N is a vector of positive integers (including 0), and U-n;xX0=
% M is a vector with the same number of elements as N. Each element *,Bzc Z
% k of M must be a positive integer, with possible values M(k) = -N(k) DWdW, xG
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, /c):}PJ^#7
% and THETA is a vector of angles. R and THETA must have the same R *F l8
% length. The output Z is a matrix with one column for every (N,M) u1xSp<59C
% pair, and one row for every (R,THETA) pair. 9W5onn
% o:V|:*1Q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |p$spQ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 43V}#DA@
% with delta(m,0) the Kronecker delta, is chosen so that the integral mDZ*E !B
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !'LW_@
% and theta=0 to theta=2*pi) is unity. For the non-normalized eW|^tH
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z4IgBn(Z_}
% }^B6yWUN
% The Zernike functions are an orthogonal basis on the unit circle. LkQX?2>]
% They are used in disciplines such as astronomy, optics, and F: mq'<Q
% optometry to describe functions on a circular domain. 1#1 riM -
% imiR/V>N
% The following table lists the first 15 Zernike functions. ZoArQ(YFy
% +VQ\mA59
% n m Zernike function Normalization )&
u5IA(
% -------------------------------------------------- vzmc}y G
% 0 0 1 1 5E notp[
% 1 1 r * cos(theta) 2 }<'5 z
qS
% 1 -1 r * sin(theta) 2 [V:\\$
% 2 -2 r^2 * cos(2*theta) sqrt(6) LY-2sa#B$-
% 2 0 (2*r^2 - 1) sqrt(3) ^wS5>lf7p
% 2 2 r^2 * sin(2*theta) sqrt(6) "--t e
% 3 -3 r^3 * cos(3*theta) sqrt(8) /> 4"~q)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 0@AAulRl
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3MRc4UlB
% 3 3 r^3 * sin(3*theta) sqrt(8) 0T46sm r
% 4 -4 r^4 * cos(4*theta) sqrt(10) kY'T{Sm1^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /a6Xa&(B
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ES40?o*]x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rb{P :MX
% 4 4 r^4 * sin(4*theta) sqrt(10) [|l?2j\
% -------------------------------------------------- O`vTnrY
% *YlV-C<}W"
% Example 1: 6S~sVUL9`
% VU@9@%TN
% % Display the Zernike function Z(n=5,m=1) 0
Us5
% x = -1:0.01:1; ]KJj6xn
% [X,Y] = meshgrid(x,x); 2=_gf
% [theta,r] = cart2pol(X,Y); +k`!QM>e-
% idx = r<=1; vv=VRhwF
% z = nan(size(X)); f^VP/rdg
% z(idx) = zernfun(5,1,r(idx),theta(idx)); : >>@rF ,
% figure (T2m"Yi:
% pcolor(x,x,z), shading interp r7',3V
% axis square, colorbar 8.[SU
% title('Zernike function Z_5^1(r,\theta)') be +4junf
% }*L(;r)q
% Example 2: %AQIGBcgL
% 7NJhRz`_
% % Display the first 10 Zernike functions ."FuwKSJCo
% x = -1:0.01:1; p QizJ6
% [X,Y] = meshgrid(x,x); >KJ+-QuO&
% [theta,r] = cart2pol(X,Y); yiO.z
% idx = r<=1; ){UcS/GI=
% z = nan(size(X)); RSo&