切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10666阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 KH\b_>wU2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! tiN?/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 v&Kqq!DE  
    function z = zernfun(n,m,r,theta,nflag) }w4QP+ x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. AkOO )0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N dMR3)CO  
    %   and angular frequency M, evaluated at positions (R,THETA) on the W2uOR{ '?  
    %   unit circle.  N is a vector of positive integers (including 0), and U-n;xX0=  
    %   M is a vector with the same number of elements as N.  Each element *,BzcZ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DWdW,xG  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, /c):}PJ^#7  
    %   and THETA is a vector of angles.  R and THETA must have the same R *F l8   
    %   length.  The output Z is a matrix with one column for every (N,M) u1xSp<59C  
    %   pair, and one row for every (R,THETA) pair. 9W5onn  
    % o:V|:*1Q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |p$spQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 43V}# DA@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mDZ*E!B  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !'LW_@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized eW|^tH  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z4IgBn(Z_}  
    % }^B6yWUN  
    %   The Zernike functions are an orthogonal basis on the unit circle. LkQX?2>]  
    %   They are used in disciplines such as astronomy, optics, and F:mq'<Q  
    %   optometry to describe functions on a circular domain. 1#1 riM -  
    % imiR/V>N  
    %   The following table lists the first 15 Zernike functions. ZoArQ(YFy  
    % +VQ\mA59  
    %       n    m    Zernike function           Normalization )& u5IA(  
    %       -------------------------------------------------- vzmc}y G  
    %       0    0    1                                 1 5E notp[  
    %       1    1    r * cos(theta)                    2 }<'5 z qS  
    %       1   -1    r * sin(theta)                    2 [V:\\$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) LY-2sa#B$-  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ^wS5>lf7p  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "--t e  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) /> 4"~q)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0@AAulRl  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3MRc 4UlB  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0T46sm r  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kY'T{Sm1^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /a6Xa&(B  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ES40?o*]x  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  rb{P :MX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [|l?2j\  
    %       -------------------------------------------------- O`vTnrY  
    % *YlV-C<}W"  
    %   Example 1: 6S~sVUL9`  
    % VU@9@%TN  
    %       % Display the Zernike function Z(n=5,m=1) 0 Us5  
    %       x = -1:0.01:1; ]KJj6xn  
    %       [X,Y] = meshgrid(x,x); 2=_g f  
    %       [theta,r] = cart2pol(X,Y); +k`!QM>e-  
    %       idx = r<=1; vv=VRhwF  
    %       z = nan(size(X)); f^VP/rdg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); : >>@rF ,  
    %       figure (T2m"Yi:  
    %       pcolor(x,x,z), shading interp r7',3V  
    %       axis square, colorbar 8.[SU  
    %       title('Zernike function Z_5^1(r,\theta)') be +4junf  
    % }*L(;r)q  
    %   Example 2: %AQIGBcgL  
    % 7NJhRz`_  
    %       % Display the first 10 Zernike functions ."FuwKSJCo  
    %       x = -1:0.01:1; p QizJ6  
    %       [X,Y] = meshgrid(x,x); >KJ+-QuO&  
    %       [theta,r] = cart2pol(X,Y); yiO. z  
    %       idx = r<=1; ){UcS/GI=  
    %       z = nan(size(X)); RSo& (Uv  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^yOZArc'r  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; sM9+dh  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ]KmO$4  
    %       y = zernfun(n,m,r(idx),theta(idx)); #t+d iR  
    %       figure('Units','normalized') /i77  
    %       for k = 1:10 ]9 @F~)  
    %           z(idx) = y(:,k);  f& CBU  
    %           subplot(4,7,Nplot(k)) o]opdw  
    %           pcolor(x,x,z), shading interp gg8Uo G  
    %           set(gca,'XTick',[],'YTick',[]) s;A@*Y;v  
    %           axis square KRA/MQ^7~U  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ye MB0Z*r  
    %       end Gn&4V}F  
    % p3 ^ m9J  
    %   See also ZERNPOL, ZERNFUN2. B $mX3B+a  
    /Sh#_\x  
    %   Paul Fricker 11/13/2006 yNTK .  
    [W7CXZDd  
    GN2Sn` ;  
    % Check and prepare the inputs: G nG>7f[v  
    % ----------------------------- OE-gC2&Bm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jB(|";G  
        error('zernfun:NMvectors','N and M must be vectors.') a0#J9O_  
    end GmP@;[H"  
    5@BBo eG  
    if length(n)~=length(m) mrjswF27$o  
        error('zernfun:NMlength','N and M must be the same length.') %ALwz[~]  
    end X)% A6M  
    ZEx}$<)_  
    n = n(:); hr)B[<9  
    m = m(:); \QCJ4}\CS  
    if any(mod(n-m,2)) )<tI!I][j  
        error('zernfun:NMmultiplesof2', ... u`RI;KF~F  
              'All N and M must differ by multiples of 2 (including 0).') eYvWZJa4  
    end NN?`"Fww  
    y9Usn8  
    if any(m>n) b"{'T]"*j  
        error('zernfun:MlessthanN', ... k1D@fiz  
              'Each M must be less than or equal to its corresponding N.') <Pi|J-Y  
    end 6g)G Y"49  
    K>@+m  
    if any( r>1 | r<0 ) Bn &Ws  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &eX!#nQ_.  
    end D-._z:_  
    ZNvEW  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OL^l 3F  
        error('zernfun:RTHvector','R and THETA must be vectors.') fNW"+ <W  
    end }|8_9Rx0*  
    ybKWOp:O  
    r = r(:); bl&nhI)w  
    theta = theta(:); &n8_0|gK  
    length_r = length(r); @y\X R  
    if length_r~=length(theta) G\+L~t  
        error('zernfun:RTHlength', ... rr02pM0  
              'The number of R- and THETA-values must be equal.') 8p:e##%  
    end VL` z[|e @  
    =h5H~G5AT  
    % Check normalization: o9dY9o+Z  
    % -------------------- N@Uy=?)ZJ  
    if nargin==5 && ischar(nflag) 2OVRf0.R~  
        isnorm = strcmpi(nflag,'norm'); 2`N,,  
        if ~isnorm A"dR{8&0  
            error('zernfun:normalization','Unrecognized normalization flag.') Oagsoik  
        end =V-|#j  
    else ^Dn D>h@q  
        isnorm = false; U!*M*s  
    end Ku} Z  
    WGZ9B^A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \=ux atw  
    % Compute the Zernike Polynomials FWG6uKv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~lsl@  
    UMm!B`M  
    % Determine the required powers of r: (jRm[7H  
    % ----------------------------------- ]rH\`0  
    m_abs = abs(m); 8h*Icf  
    rpowers = []; nz=G lO'[  
    for j = 1:length(n) PuA9X[=  
        rpowers = [rpowers m_abs(j):2:n(j)]; !W}9no  
    end Pama#6?OPh  
    rpowers = unique(rpowers); YSic-6z0Ms  
    7` zHX&-W  
    % Pre-compute the values of r raised to the required powers, -~v2BN/  
    % and compile them in a matrix: '}Z~JYa0  
    % ----------------------------- jZ~n[ f+Q  
    if rpowers(1)==0 9CWF{"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ( +Q&[E"87  
        rpowern = cat(2,rpowern{:}); Uyg5i[&X@  
        rpowern = [ones(length_r,1) rpowern]; $!-c-0ub  
    else IYS)7`{]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V)~.~2$  
        rpowern = cat(2,rpowern{:}); <66X Xh.  
    end 8"2=U6*C  
    t!W(_8j  
    % Compute the values of the polynomials: i]YV {  
    % -------------------------------------- e478U$  
    y = zeros(length_r,length(n)); p6#g;$V$  
    for j = 1:length(n) IoQEtA  
        s = 0:(n(j)-m_abs(j))/2; 4U+xb>  
        pows = n(j):-2:m_abs(j); (a.z9nqGA  
        for k = length(s):-1:1 j<V Fn~*_  
            p = (1-2*mod(s(k),2))* ... e.7EU  
                       prod(2:(n(j)-s(k)))/              ... -pf}  
                       prod(2:s(k))/                     ... H8Bs<2  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +./H6!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); N kb|Fd/s  
            idx = (pows(k)==rpowers); 5\5/  
            y(:,j) = y(:,j) + p*rpowern(:,idx); B%)%  
        end ;c-(ObSm  
         1 d}Z(My  
        if isnorm v7BA[jQr  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9kN}c<o  
        end GP!?^r:en  
    end {5U{8b]k  
    % END: Compute the Zernike Polynomials GK )?YM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% , pDnRRJ!  
    qT{U(  
    % Compute the Zernike functions: F\JM\{&F  
    % ------------------------------ nBjqTud  
    idx_pos = m>0; d6} r#\  
    idx_neg = m<0; TJ_$vI  
    0=@?ob7  
    z = y; ?26I,:;  
    if any(idx_pos) -LK B$   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #^l L5=  
    end Cc+t}"^  
    if any(idx_neg) R]}}$R`j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); s @&`f{  
    end :q$.,EZ4#n  
    <k eVrCR  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 63q^ $I  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 3EV;LH L  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated /7a BDc-v  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive HmiR.e%<b  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, *]ly0nP  
    %   and THETA is a vector of angles.  R and THETA must have the same YZLkL26[  
    %   length.  The output Z is a matrix with one column for every P-value, B-?6M6#  
    %   and one row for every (R,THETA) pair. Ed0QQyC@9  
    % 1t:Q_j0Ym  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 0IwA#[m1`  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) (yu/l 6[  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) e}D3d=6`  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ;X8yFq  
    %   for all p. <6EeD5{*  
    % PXK7b2fE.  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 kW2sY^Rg  
    %   Zernike functions (order N<=7).  In some disciplines it is y~Bh  
    %   traditional to label the first 36 functions using a single mode @)UZ@ ~R  
    %   number P instead of separate numbers for the order N and azimuthal xHUsFm s  
    %   frequency M. gQo]  
    % O!m vJD  
    %   Example: t9,\Hdo  
    % 8|):`u  
    %       % Display the first 16 Zernike functions k52/w)Ro,$  
    %       x = -1:0.01:1; )<oJnxe]  
    %       [X,Y] = meshgrid(x,x); j|4<i9^}  
    %       [theta,r] = cart2pol(X,Y); sNj)ZWgd>  
    %       idx = r<=1; yWg@v +  
    %       p = 0:15; RTvqCp  
    %       z = nan(size(X)); 6TQoqH8@U  
    %       y = zernfun2(p,r(idx),theta(idx)); [="e ziM{  
    %       figure('Units','normalized') b=g8eMm  
    %       for k = 1:length(p) _g+JA3sIJ  
    %           z(idx) = y(:,k); ta35 K"  
    %           subplot(4,4,k) H2&@shOOQJ  
    %           pcolor(x,x,z), shading interp q+Lr"&'Q  
    %           set(gca,'XTick',[],'YTick',[]) aO]ZZleNS  
    %           axis square ~T ]m>A!  
    %           title(['Z_{' num2str(p(k)) '}']) SFB~ ->db  
    %       end I~q#eO)  
    % aDq5C-MzG  
    %   See also ZERNPOL, ZERNFUN. 1%EBd%`#  
    M2HomO/X)  
    %   Paul Fricker 11/13/2006 k&&2Tq  
    }O/U;4Z  
    9)y/:sO<P  
    % Check and prepare the inputs: W0y '5`  
    % ----------------------------- !2 LCLN\  
    if min(size(p))~=1 NhfJ30~  
        error('zernfun2:Pvector','Input P must be vector.') 5\N(PL  
    end 3 *d"B tg  
    {!.(7wV\  
    if any(p)>35 SHvq.lYJ  
        error('zernfun2:P36', ... ZW-yP2  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... D!Q">6_"z  
               '(P = 0 to 35).']) *v;!-F&8>  
    end qHsUP;7  
    E4gYemuN  
    % Get the order and frequency corresonding to the function number: -u&6X,Oq\u  
    % ---------------------------------------------------------------- n1qQ+(xC  
    p = p(:); D;oe2E{I  
    n = ceil((-3+sqrt(9+8*p))/2); x4g3 rmp  
    m = 2*p - n.*(n+2); O?NeSx 1  
    hhSy0  
    % Pass the inputs to the function ZERNFUN: dA-2%uJ  
    % ---------------------------------------- kQ4dwF~  
    switch nargin BHd&yIyI  
        case 3 |>27'#JC  
            z = zernfun(n,m,r,theta); 3,>0a  
        case 4 9iXeBC  
            z = zernfun(n,m,r,theta,nflag); Scp7X7{N  
        otherwise =7-9[{  
            error('zernfun2:nargin','Incorrect number of inputs.') M8INk,si  
    end `Y BC  
    Wc,_RN-  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ^cV;~&|.Xk  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. |w_7_J2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of _=+V/=  
    %   order N and frequency M, evaluated at R.  N is a vector of e@c0WlWa  
    %   positive integers (including 0), and M is a vector with the Kpb#K[(]&  
    %   same number of elements as N.  Each element k of M must be a 4?0vso*X<:  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) E8>Ru i@9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is h lkn%  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix .nG#co"r}3  
    %   with one column for every (N,M) pair, and one row for every 3l)hyVf&  
    %   element in R. k:*S&$S!E  
    % xG}(5Tt  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `n$I]_}/%  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is NxjB/N  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to N U|d  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 bx<RV7>0  
    %   for all [n,m]. k spTp>~  
    % Uh7v@YMC  
    %   The radial Zernike polynomials are the radial portion of the }~#pEX~j*  
    %   Zernike functions, which are an orthogonal basis on the unit Sczc5FG  
    %   circle.  The series representation of the radial Zernike Vm%1> '&  
    %   polynomials is ${+ @gJ+S  
    % _Xnqb+  
    %          (n-m)/2 *4_jA](  
    %            __ gfsI6/Y  
    %    m      \       s                                          n-2s t0z!DOODZP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r *&?c(JU;<  
    %    n      s=0 Ae69>bkE0  
    % WtViW=j'  
    %   The following table shows the first 12 polynomials. "5;;)\o ~  
    % SfgU`eF%B  
    %       n    m    Zernike polynomial    Normalization -`<kCW"  
    %       --------------------------------------------- 5nv<^>[J  
    %       0    0    1                        sqrt(2) SxdE?uCUS  
    %       1    1    r                           2 " Om[~-31  
    %       2    0    2*r^2 - 1                sqrt(6) .%.9n\b  
    %       2    2    r^2                      sqrt(6) /TZOJE(2j  
    %       3    1    3*r^3 - 2*r              sqrt(8) A:aE|v/T&  
    %       3    3    r^3                      sqrt(8) S>.SSXlM  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) V2$h8\a  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) s4 6}s{6   
    %       4    4    r^4                      sqrt(10) f` :i.Sr  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )jkXS TZ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) VUVaaOmO  
    %       5    5    r^5                      sqrt(12) I *x[:)X8  
    %       --------------------------------------------- Ul2R'"FB  
    % {z(xFrY  
    %   Example: qtiz a~u  
    % (WK&^,zQn  
    %       % Display three example Zernike radial polynomials ^&bRX4pYo  
    %       r = 0:0.01:1; h.-@ F  
    %       n = [3 2 5]; a["2VY6Eq@  
    %       m = [1 2 1]; s:p[DEj-  
    %       z = zernpol(n,m,r); ox:[f9.5  
    %       figure RE =`  
    %       plot(r,z) :!5IW?2  
    %       grid on M&N B/  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Q2 zjZC*'%  
    % @fs`=lL/  
    %   See also ZERNFUN, ZERNFUN2. (S xR`QP?,  
    I4i2+ *l}  
    % A note on the algorithm. Gp4A.\7  
    % ------------------------ 58%#DX34M  
    % The radial Zernike polynomials are computed using the series >Y_*%QGH_  
    % representation shown in the Help section above. For many special dFH$l  
    % functions, direct evaluation using the series representation can y]J89  
    % produce poor numerical results (floating point errors), because cgl*t+o&  
    % the summation often involves computing small differences between )dY=0"4Z  
    % large successive terms in the series. (In such cases, the functions @;<ht c  
    % are often evaluated using alternative methods such as recurrence *Ho/ZYj3  
    % relations: see the Legendre functions, for example). For the Zernike SV v;q?jZ  
    % polynomials, however, this problem does not arise, because the QmLF[\Oo_  
    % polynomials are evaluated over the finite domain r = (0,1), and SfJ./ny  
    % because the coefficients for a given polynomial are generally all r*$Ner  
    % of similar magnitude. @y82L8G/  
    % *uo'VJI7_,  
    % ZERNPOL has been written using a vectorized implementation: multiple TjHwjRa  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] n| b5? 3  
    % values can be passed as inputs) for a vector of points R.  To achieve H^.IY_I`U*  
    % this vectorization most efficiently, the algorithm in ZERNPOL %^1cyk  
    % involves pre-determining all the powers p of R that are required to ?t+5s]  
    % compute the outputs, and then compiling the {R^p} into a single ow0!%|fO  
    % matrix.  This avoids any redundant computation of the R^p, and bYi`R)  
    % minimizes the sizes of certain intermediate variables. YO}1(m  
    % 9lGOWRxR)  
    %   Paul Fricker 11/13/2006 Qu} W/j|3  
    *+uHQgn(  
    ~mO62(8m  
    % Check and prepare the inputs: &g.@u~SI1  
    % ----------------------------- Ee@4 %/v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J|X 6j&-  
        error('zernpol:NMvectors','N and M must be vectors.') uu}x@T@  
    end lY{FSGp  
    G7)Fk%>  
    if length(n)~=length(m) /v/C<]  
        error('zernpol:NMlength','N and M must be the same length.') H|ER  
    end jS+AGE?5e  
    8}fu,$$5  
    n = n(:); mcn 2Wt  
    m = m(:); txcf=)@>V  
    length_n = length(n); HAv{R!*  
    $2M#qkik-  
    if any(mod(n-m,2)) -s|}Rh?Y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') )u/H>;L P  
    end u`olW%C/T  
    - !>}_AH  
    if any(m<0) : C b&v07  
        error('zernpol:Mpositive','All M must be positive.') %e`$p=m  
    end WBNw~|DO]  
    +&Hr4@pgW  
    if any(m>n) @#P,d5^G  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') V^hE}`>z&  
    end /;tPNp{!dw  
    FJ %  
    if any( r>1 | r<0 ) !A>z(eIsv`  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') <)\y#N  
    end KAsS [  
    0b/WpP  
    if ~any(size(r)==1) = <j"M85.  
        error('zernpol:Rvector','R must be a vector.') Iw<jT|y)  
    end rz"txN  
    f+|$&p%  
    r = r(:); M @3"<[g  
    length_r = length(r); Z0`T\ay  
    &AlJ "N|  
    if nargin==4 >@ YtDl8R  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm');  P\]B<  
        if ~isnorm 6<'rG''  
            error('zernpol:normalization','Unrecognized normalization flag.')  Y!WG)u5  
        end Fbu5PWhlc  
    else PG8^.)]M  
        isnorm = false; ?-tVSRKQ  
    end dB+N\HBY  
    kPQtQh]y%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $2<d<Um~z  
    % Compute the Zernike Polynomials BW"&6t#kA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }hYZ" A~  
    <BO)E(  
    % Determine the required powers of r: , =aJVb=C  
    % ----------------------------------- >(y<0   
    rpowers = []; _;4 [Q1  
    for j = 1:length(n) VR  
        rpowers = [rpowers m(j):2:n(j)]; S}f?.7  
    end -QyhwG =  
    rpowers = unique(rpowers);  Y=`  
    sz @p_Z/  
    % Pre-compute the values of r raised to the required powers, MWNPPYww  
    % and compile them in a matrix: ,+g&o^T  
    % ----------------------------- Ne $"g[uFU  
    if rpowers(1)==0 %L [&,a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W5^.-B,(K  
        rpowern = cat(2,rpowern{:}); {V1Pp;A  
        rpowern = [ones(length_r,1) rpowern]; hLDA]s  
    else lQfL3`X!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); []0mX70N  
        rpowern = cat(2,rpowern{:}); Fb/XC:AD  
    end ZhNdB  
    SxK:]Aw  
    % Compute the values of the polynomials: ~2d:Q6  
    % -------------------------------------- ?:|-Dq,  
    z = zeros(length_r,length_n); BYY RoE[P  
    for j = 1:length_n ? <Y+peu  
        s = 0:(n(j)-m(j))/2; *jMk/9oa<N  
        pows = n(j):-2:m(j); XE3'`D !  
        for k = length(s):-1:1 kz"3ZDR  
            p = (1-2*mod(s(k),2))* ... >a1{397Y}  
                       prod(2:(n(j)-s(k)))/          ... =<@\,xN>C  
                       prod(2:s(k))/                 ... 'xv8Gwf"  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... M(d6Z2ibh  
                       prod(2:((n(j)+m(j))/2-s(k))); F`nb21{0y&  
            idx = (pows(k)==rpowers); Qm8) 4?FZ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); N~g :Wf!  
        end |3+m%;X  
         !;6Jng%  
        if isnorm [+w3J#K  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 8F)G7 H ,  
        end X%bFN  
    end 4f~["[*ea  
    $T<}y_nHl  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)   mIc:2.q^  
    v|+5:jFOqb  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Q</h-skLZ  
    K84&sSi  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)