非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 H5o=nWQ6e
function z = zernfun(n,m,r,theta,nflag) 8Dn~U:F/?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6qWWfm/6
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QGE0pWL-a
% and angular frequency M, evaluated at positions (R,THETA) on the g${k8.TV
% unit circle. N is a vector of positive integers (including 0), and b/
h#{'
% M is a vector with the same number of elements as N. Each element z<.?8bd
% k of M must be a positive integer, with possible values M(k) = -N(k) zJ@^Bw;A^@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, w"?RbA
% and THETA is a vector of angles. R and THETA must have the same kv;P2:"|
% length. The output Z is a matrix with one column for every (N,M) [ugr<[6
% pair, and one row for every (R,THETA) pair. G^eXJusOv
% F07X9s44E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }]JHY P\
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), usC$NVdm
% with delta(m,0) the Kronecker delta, is chosen so that the integral >`0mn|+
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $dA]GWW5A
% and theta=0 to theta=2*pi) is unity. For the non-normalized xn,9Wj-
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. NOKU2d4 G
% E=`/}2
% The Zernike functions are an orthogonal basis on the unit circle. )V&hS5P=S
% They are used in disciplines such as astronomy, optics, and (L(n%
% optometry to describe functions on a circular domain. mkl^2V13~
% %Y>E
% The following table lists the first 15 Zernike functions. 8 )n g> l
% NB+/S ;`
% n m Zernike function Normalization 3xiDt?&H
% -------------------------------------------------- ZDov2W
% 0 0 1 1 tBX71d
T
% 1 1 r * cos(theta) 2 e6^}XRyf
% 1 -1 r * sin(theta) 2 S5d
% 2 -2 r^2 * cos(2*theta) sqrt(6) "\=Phqw
% 2 0 (2*r^2 - 1) sqrt(3) h_SkX@"/-
% 2 2 r^2 * sin(2*theta) sqrt(6) =%c\<<]aV
% 3 -3 r^3 * cos(3*theta) sqrt(8) +'nMy"j1
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) TPak,h(1
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) q alrG2
% 3 3 r^3 * sin(3*theta) sqrt(8) <Y2$'ETD
% 4 -4 r^4 * cos(4*theta) sqrt(10) |qz%6w=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DuIXv7"[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) +T8MQ[(4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NFKvgd@
% 4 4 r^4 * sin(4*theta) sqrt(10) K<kl2#
% -------------------------------------------------- ou-uZ"$,c
% a6 1!j>Kx
% Example 1: o{^`Y
% {8oGWQgrj
% % Display the Zernike function Z(n=5,m=1)
HrfS^B
% x = -1:0.01:1; "/mtuU3rt
% [X,Y] = meshgrid(x,x); , 2xv
% [theta,r] = cart2pol(X,Y); N/--6)5~0
% idx = r<=1; (z?j{J
% z = nan(size(X)); JodD6;P
% z(idx) = zernfun(5,1,r(idx),theta(idx)); xu%eg]
% figure
v+8Ybq
% pcolor(x,x,z), shading interp Vzo<ma^
% axis square, colorbar 1@Ju sS0^K
% title('Zernike function Z_5^1(r,\theta)') ]5Dh<QY&.
% -6~.;M 5
% Example 2: NzTF2ve(
% Ip:54
% % Display the first 10 Zernike functions V; CPn
% x = -1:0.01:1; C/'w
% [X,Y] = meshgrid(x,x); )*S:C
% [theta,r] = cart2pol(X,Y); Am_>x8z
% idx = r<=1; u6Lx3
% z = nan(size(X)); )%3T1
D/
% n = [0 1 1 2 2 2 3 3 3 3]; :9Jy/7/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {]Hv*{ ]
% Nplot = [4 10 12 16 18 20 22 24 26 28]; m}\QGtJ6
% y = zernfun(n,m,r(idx),theta(idx)); 3?@6QcHl{
% figure('Units','normalized') eZN"t~\rX
% for k = 1:10 7GWOJ^)
% z(idx) = y(:,k); 7(N+'8
% subplot(4,7,Nplot(k)) 5j6`W?|q
% pcolor(x,x,z), shading interp PP>6
% set(gca,'XTick',[],'YTick',[]) j49Uj}:j
% axis square d7
H *F
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R&J?XQ
% end :dAd5v2f
% x3Y)l1gh
% See also ZERNPOL, ZERNFUN2. ,"XiI$Le
?Rx(@
% Paul Fricker 11/13/2006 #/f~LTE
13`Mt1R
mbGma
% Check and prepare the inputs: xZlCFu
% ----------------------------- V3cKbk7~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aR/?YKA
error('zernfun:NMvectors','N and M must be vectors.')
mPk'a
end .\glNH1d
6CIzT.
if length(n)~=length(m) Z>Mv$F"p:
error('zernfun:NMlength','N and M must be the same length.') ;'= cNj
end e)g&q'O
$[n:IDa*@1
n = n(:); HP1QI/*v
m = m(:); G7Sw\wW
if any(mod(n-m,2)) d%"XsbO
error('zernfun:NMmultiplesof2', ... ow.!4kx{ d
'All N and M must differ by multiples of 2 (including 0).') gJ'pwSA
end d6YXITL)\>
d#H9jg15e
if any(m>n) E<[
s+iX
error('zernfun:MlessthanN', ... a[(OeVQ5
'Each M must be less than or equal to its corresponding N.') O9(z"c
end Z,A $h>Z
e12QYoh
if any( r>1 | r<0 ) Q>Zc
eJ;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =I@t%Y
end D5D *$IC
0f.jW O
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0)332}Oh
error('zernfun:RTHvector','R and THETA must be vectors.') =abcLrf2G
end ?<TJ}("/
Aj4 a-vd.
r = r(:); E,}{ iqAb
theta = theta(:); N8{jvat
length_r = length(r);
H.@$#D
if length_r~=length(theta) \}s/<Q
error('zernfun:RTHlength', ... %+N]$Q
'The number of R- and THETA-values must be equal.') ,=P&{38\q
end T8x)i\<
4a+gM._+O
% Check normalization: bOFzq>k_
% -------------------- 3SP";3+
if nargin==5 && ischar(nflag) O -1O@:}c
isnorm = strcmpi(nflag,'norm'); FklR!*oL,)
if ~isnorm $Es\ld
error('zernfun:normalization','Unrecognized normalization flag.') :ZV|8xI
end "w'pIUQ3,
else b0{i +R
isnorm = false; &*=!B9OBI
end ew~Z/ A
]?tRO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 dRhK+|
% Compute the Zernike Polynomials *c$[U{Px
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vW1^
pj$JA
% Determine the required powers of r: 73;Y(uh9
% ----------------------------------- Lt't
m_abs = abs(m); )!2@v@SQ
rpowers = []; 9&n9J^3L
for j = 1:length(n) 4XjwU`
rpowers = [rpowers m_abs(j):2:n(j)]; =:gKh
end Rql/@j`JX
rpowers = unique(rpowers); t0m;tb bg
}qn>#ETi
% Pre-compute the values of r raised to the required powers, ,t9EL 21
% and compile them in a matrix: h;gc5"mG
% ----------------------------- 9Da{|FyrD
if rpowers(1)==0 qzUiBwUi@
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N PT-d
rpowern = cat(2,rpowern{:}); tYu<(Z(l)
rpowern = [ones(length_r,1) rpowern]; $0_K&_5w~
else Kjd3!%4mB
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x77L"5g
rpowern = cat(2,rpowern{:}); u}@N
Qeg
end >G6kF!V
wk|+[Rl;L
% Compute the values of the polynomials: o08WC'bX
% -------------------------------------- <=M5)#
y = zeros(length_r,length(n)); 8;@y\0
for j = 1:length(n) "cKD#
s = 0:(n(j)-m_abs(j))/2; JbPkC*.
pows = n(j):-2:m_abs(j); $hhXsu=
for k = length(s):-1:1 F1#{(uW
p = (1-2*mod(s(k),2))* ... \sNgs#{7E7
prod(2:(n(j)-s(k)))/ ... &=g3J4$z
prod(2:s(k))/ ... o[ZjXLJzV
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a{kJ`fK
prod(2:((n(j)+m_abs(j))/2-s(k))); .4zzPD$1
idx = (pows(k)==rpowers); fDy*dp4z
y(:,j) = y(:,j) + p*rpowern(:,idx); "ko*-FrQ
end z%8`F%2
sFpg
if isnorm 9\Jc7[b
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); FRQ.ix2
end @xWWN
end m!FuC=e
% END: Compute the Zernike Polynomials /wJ#-DZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &
kC
c4fH/-
% Compute the Zernike functions: qp})4XT v
% ------------------------------ 4Zbn8GpC
idx_pos = m>0; v"k ?e
idx_neg = m<0; pP| @Z{7d`
R-Edht|{
z = y; .LDZqWr-
if any(idx_pos) pJHdY)Cz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); eFiG:LS7
end ]}L'jK
0
if any(idx_neg) :h(HKMSk1
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <m-(B"FX
end ##jJaSxG
w%])
% EOF zernfun