切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10584阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 wLvM<p7OX  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! oR3t vw.  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 H5o=nWQ6e  
    function z = zernfun(n,m,r,theta,nflag) 8Dn~U :F/?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6qWWfm/6  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QGE0pWL-a  
    %   and angular frequency M, evaluated at positions (R,THETA) on the g${k8.TV  
    %   unit circle.  N is a vector of positive integers (including 0), and b/ h#{'  
    %   M is a vector with the same number of elements as N.  Each element z<.?8bd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) zJ@^Bw;A^@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, w"? RbA  
    %   and THETA is a vector of angles.  R and THETA must have the same kv;P2:"|  
    %   length.  The output Z is a matrix with one column for every (N,M) [ugr<[6  
    %   pair, and one row for every (R,THETA) pair. G^eXJusOv  
    % F07X9s44E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }]JHY P\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), usC$NVdm  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral > `0mn|+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $dA]GWW5A  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized xn,9Wj-  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. NOKU2d4 G  
    % E=`/}2  
    %   The Zernike functions are an orthogonal basis on the unit circle. )V&hS5P=S  
    %   They are used in disciplines such as astronomy, optics, and (L(n%  
    %   optometry to describe functions on a circular domain. mkl^2V13~  
    % %Y>E  
    %   The following table lists the first 15 Zernike functions. 8)ng> l  
    % NB+/S;`  
    %       n    m    Zernike function           Normalization 3xiDt?&H  
    %       -------------------------------------------------- ZDov2W  
    %       0    0    1                                 1 tBX71d T  
    %       1    1    r * cos(theta)                    2 e6^}XRyf  
    %       1   -1    r * sin(theta)                    2 S5d  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) "\ =Phqw   
    %       2    0    (2*r^2 - 1)                    sqrt(3) h_SkX@"/-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =%c\<<]aV  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) +'nMy"j1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) TPak,h(1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) q alrG2  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) <Y2$'ETD  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |q z%6w=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DuIXv7"[  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +T8MQ[(4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NFKvgd@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) K<kl2#  
    %       -------------------------------------------------- ou- uZ"$,c  
    % a6 1!j>Kx  
    %   Example 1: o{^`Y   
    % {8oGWQgrj  
    %       % Display the Zernike function Z(n=5,m=1) HrfS^B  
    %       x = -1:0.01:1; "/mt uU3rt  
    %       [X,Y] = meshgrid(x,x); , 2xv  
    %       [theta,r] = cart2pol(X,Y); N/--6)5~0  
    %       idx = r<=1; (z?j{J  
    %       z = nan(size(X)); JodD6 ;P  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); xu%eg]  
    %       figure v+8Ybq  
    %       pcolor(x,x,z), shading interp Vzo< ma^  
    %       axis square, colorbar 1@JusS0^K  
    %       title('Zernike function Z_5^1(r,\theta)') ]5Dh<QY&.  
    % -6~.;M 5  
    %   Example 2: NzTF2ve(  
    %  Ip:54  
    %       % Display the first 10 Zernike functions V; CPn  
    %       x = -1:0.01:1; C/'w  
    %       [X,Y] = meshgrid(x,x); )*S:C   
    %       [theta,r] = cart2pol(X,Y); Am_>x8z  
    %       idx = r<=1; u6 Lx3  
    %       z = nan(size(X)); )%3T1 D/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :9Jy/7/  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {]Hv*{ ]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; m}\QGtJ6  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3?@6QcHl{  
    %       figure('Units','normalized') eZN"t~\rX  
    %       for k = 1:10 7GWOJ^)  
    %           z(idx) = y(:,k); 7(N+'8  
    %           subplot(4,7,Nplot(k)) 5j6`W?|q  
    %           pcolor(x,x,z), shading interp PP>6  
    %           set(gca,'XTick',[],'YTick',[]) j49Uj}:j  
    %           axis square d7 H*F  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R&J?X Q  
    %       end :dAd5v2f  
    % x3Y)l1gh  
    %   See also ZERNPOL, ZERNFUN2. ,"XiI$Le  
    ?Rx(@  
    %   Paul Fricker 11/13/2006 #/f~LTE  
    13`Mt1R  
    mbGma  
    % Check and prepare the inputs: xZlCFu   
    % ----------------------------- V 3cKbk7~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aR/?YKA  
        error('zernfun:NMvectors','N and M must be vectors.')  mPk'a  
    end .\glNH1d  
    6CIzT.  
    if length(n)~=length(m) Z>Mv$F"p:  
        error('zernfun:NMlength','N and M must be the same length.') ;'= cNj  
    end e)g &q'O  
    $[n:IDa*@1  
    n = n(:); HP1QI/*v  
    m = m(:); G7Sw\wW  
    if any(mod(n-m,2)) d%"XsbO  
        error('zernfun:NMmultiplesof2', ... ow.!4kx{d  
              'All N and M must differ by multiples of 2 (including 0).') gJ'pwSA  
    end d6YXITL)\>  
    d#H9jg15e  
    if any(m>n) E<[ s+iX  
        error('zernfun:MlessthanN', ... a[(OeVQ5  
              'Each M must be less than or equal to its corresponding N.') O9(z"c  
    end Z,A$h>Z  
    e12QYoh  
    if any( r>1 | r<0 ) Q>Zc eJ;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =I@t%Y  
    end D5D *$IC  
    0f.j W O  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0)332}Oh  
        error('zernfun:RTHvector','R and THETA must be vectors.') =abcLrf2G  
    end ?<TJ}("/  
    Aj4 a-vd.  
    r = r(:); E,}{iqAb  
    theta = theta(:); N8{jvat  
    length_r = length(r); H.@$#D  
    if length_r~=length(theta) \}s/<Q  
        error('zernfun:RTHlength', ... %+N]$Q  
              'The number of R- and THETA-values must be equal.') ,=P&{38\q  
    end T8x)i\<  
    4a+gM._+O  
    % Check normalization: bOFzq>k_  
    % -------------------- 3SP";3+  
    if nargin==5 && ischar(nflag) O -1O@:}c  
        isnorm = strcmpi(nflag,'norm'); FklR!*oL,)  
        if ~isnorm $Es\ld  
            error('zernfun:normalization','Unrecognized normalization flag.') :ZV |8xI  
        end "w'pIUQ3,  
    else b0{i +R  
        isnorm = false; &*=!B9OBI  
    end ew~Z/ A   
    ]?tRO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6dRhK+|  
    % Compute the Zernike Polynomials *c$[U{Px  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vW1^  
    pj$JA  
    % Determine the required powers of r: 73;Y(uh9  
    % ----------------------------------- Lt't   
    m_abs = abs(m); )!2@v@SQ  
    rpowers = []; 9&n9J^3L  
    for j = 1:length(n) 4 XjwU`  
        rpowers = [rpowers m_abs(j):2:n(j)]; = :gKh  
    end Rql/@j`JX  
    rpowers = unique(rpowers); t0m;tb bg  
    }qn>#ETi  
    % Pre-compute the values of r raised to the required powers, ,t9EL 21  
    % and compile them in a matrix: h;gc5"mG  
    % ----------------------------- 9Da{|FyrD  
    if rpowers(1)==0 qzUiBwUi@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NP T-d  
        rpowern = cat(2,rpowern{:}); tYu<(Z(l)  
        rpowern = [ones(length_r,1) rpowern]; $0_K&_5w~  
    else Kjd3!%4mB  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x77L"5g  
        rpowern = cat(2,rpowern{:}); u}@N Qeg  
    end >G6kF!V  
    wk|+[Rl;L  
    % Compute the values of the polynomials: o08WC'bX  
    % -------------------------------------- <=M5)#  
    y = zeros(length_r,length(n)); 8;@y\0  
    for j = 1:length(n) "cKD#  
        s = 0:(n(j)-m_abs(j))/2; JbPkC*.  
        pows = n(j):-2:m_abs(j); $hhXsu=  
        for k = length(s):-1:1 F1#{(uW  
            p = (1-2*mod(s(k),2))* ... \sNgs#{7E7  
                       prod(2:(n(j)-s(k)))/              ... &=g3J4$z  
                       prod(2:s(k))/                     ... o[ZjXLJzV  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a{kJ`fK   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .4zzPD$1  
            idx = (pows(k)==rpowers); fDy*dp4z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "ko*-FrQ  
        end z% 8`F%2  
         sFpg  
        if isnorm 9\Jc7[b  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); FRQ.ix2  
        end @xWWN  
    end m!FuC=e  
    % END: Compute the Zernike Polynomials /wJ#-DZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% & kC  
    c4fH/-  
    % Compute the Zernike functions: qp})4XTv  
    % ------------------------------ 4Zbn8GpC  
    idx_pos = m>0; v"k ? e  
    idx_neg = m<0; pP| @Z{7d`  
    R-Edht|{  
    z = y; .LDZqWr-  
    if any(idx_pos) pJHdY)Cz  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); eFiG:LS7  
    end ]}L'jK 0  
    if any(idx_neg) :h(HKMSk1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <m-(B"F X  
    end ##jJa SxG  
    w%])  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) m9[ 7"I  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Y<T0yl?  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated p/Ul[7A4e  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive u9"kF  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ]+I9{%zB%8  
    %   and THETA is a vector of angles.  R and THETA must have the same PysDDU}v  
    %   length.  The output Z is a matrix with one column for every P-value, 9k6s  
    %   and one row for every (R,THETA) pair. Jqxd92 bI  
    % DtANb^  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike s{^B98d+W  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9Q9{>d#"  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) g (w/  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 }d. X2?  
    %   for all p. xa)p ,  
    % _^_3>}y5op  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ](JrEg$K  
    %   Zernike functions (order N<=7).  In some disciplines it is yY8zTWji_  
    %   traditional to label the first 36 functions using a single mode 6:8s,a3&[k  
    %   number P instead of separate numbers for the order N and azimuthal =`+D/ W\[Y  
    %   frequency M. _[[0rn$  
    % Htgo=7!?\3  
    %   Example: )c11_1;  
    % $OZ= L  
    %       % Display the first 16 Zernike functions U`6|K$@  
    %       x = -1:0.01:1; ]gBnzh.  
    %       [X,Y] = meshgrid(x,x); f\R_a/Us  
    %       [theta,r] = cart2pol(X,Y); !.UE}^TV  
    %       idx = r<=1; ST{Vi';}  
    %       p = 0:15; utmJ>GWSI  
    %       z = nan(size(X)); p$,G`'l  
    %       y = zernfun2(p,r(idx),theta(idx)); }ktIG|GC  
    %       figure('Units','normalized') $NR[U+  
    %       for k = 1:length(p) ZLzc\>QX  
    %           z(idx) = y(:,k); Vit-)o{zr  
    %           subplot(4,4,k) C_J@:HlJ  
    %           pcolor(x,x,z), shading interp 4M&$wi  
    %           set(gca,'XTick',[],'YTick',[]) ~ky;[  
    %           axis square xgxfPcI  
    %           title(['Z_{' num2str(p(k)) '}']) ?>;b,^4  
    %       end mh8fJ6j29N  
    % \ ITd\)F%N  
    %   See also ZERNPOL, ZERNFUN. 5Y+YN1  
    1 iox0  
    %   Paul Fricker 11/13/2006 !; >s.]  
    1 *' /B  
    $IQPB_:  
    % Check and prepare the inputs: "s|P,*Xf  
    % ----------------------------- 6>]  
    if min(size(p))~=1 l 73% y  
        error('zernfun2:Pvector','Input P must be vector.') rXW.F'=K6  
    end :a{dWgN  
    E3 % ~!ZC  
    if any(p)>35 tMw65Xei6b  
        error('zernfun2:P36', ... 93*d:W8Vr  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... g-K;J4 K%  
               '(P = 0 to 35).']) },d^y:m  
    end [;wJM|Z J0  
    ;B@#,6t/  
    % Get the order and frequency corresonding to the function number: _&]7  
    % ---------------------------------------------------------------- :fj>JF\[  
    p = p(:); 2-@)'6"n  
    n = ceil((-3+sqrt(9+8*p))/2); '1D $ ;  
    m = 2*p - n.*(n+2); P%:?"t+J`;  
    lG-B) F  
    % Pass the inputs to the function ZERNFUN: *OA(v^@tx7  
    % ---------------------------------------- kSV(T'#x  
    switch nargin )n)AmNpq   
        case 3 BI%^7\HZ  
            z = zernfun(n,m,r,theta); (2eS:1+'8  
        case 4 ,marNG  
            z = zernfun(n,m,r,theta,nflag); ,< g%}P/  
        otherwise [y8(v ~H  
            error('zernfun2:nargin','Incorrect number of inputs.') E#_/#J]UQn  
    end |fKT@2(  
    4^r6RS@z  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) u D(C jHM>  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  p0W<K  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 2FZ T  
    %   order N and frequency M, evaluated at R.  N is a vector of q6pHL  
    %   positive integers (including 0), and M is a vector with the g$NUu  
    %   same number of elements as N.  Each element k of M must be a F m:Ys](  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 6fw7\u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is F5X9)9S  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix YZ<z lU  
    %   with one column for every (N,M) pair, and one row for every d-b<_k{p  
    %   element in R. gbYM1guiD  
    % l@&-be  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0rL.~2)V  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %Mj,\J!  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 9n is8  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 x"sbm  
    %   for all [n,m]. C[.Xi  
    % R`]@.i4tt  
    %   The radial Zernike polynomials are the radial portion of the d`TiY`!  
    %   Zernike functions, which are an orthogonal basis on the unit 3Qd/X&P  
    %   circle.  The series representation of the radial Zernike Rd HCbk  
    %   polynomials is l$1?@l$j  
    % {96MfhkeBv  
    %          (n-m)/2 Yr"Of*VNH  
    %            __ Pk;/4jt4  
    %    m      \       s                                          n-2s ~ Rk.x +  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %0 {_b68x  
    %    n      s=0 Z$INmo6  
    % w0;4O)H$O  
    %   The following table shows the first 12 polynomials. Io*H}$Gf  
    % J:"@S%gy%  
    %       n    m    Zernike polynomial    Normalization ##BbR  
    %       --------------------------------------------- qpFxl  
    %       0    0    1                        sqrt(2) 3 1c*^ZE.  
    %       1    1    r                           2  &lU\9  
    %       2    0    2*r^2 - 1                sqrt(6) aV7VbC  
    %       2    2    r^2                      sqrt(6) }F0<8L6%  
    %       3    1    3*r^3 - 2*r              sqrt(8) ;o'r@4^&$R  
    %       3    3    r^3                      sqrt(8) ]VQd *~ -  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) I5E =Ujc_  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 59{X;  
    %       4    4    r^4                      sqrt(10) kh# QT_y  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) PX/Y?DP  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) *Sdx:G~gp  
    %       5    5    r^5                      sqrt(12) N$e mS  
    %       --------------------------------------------- '*L6@e#U  
    % w>cqsTq  
    %   Example: #8M?y*<I  
    % hDTC~~J/  
    %       % Display three example Zernike radial polynomials x#3*C|A  
    %       r = 0:0.01:1; #<==7X#  
    %       n = [3 2 5]; -5  
    %       m = [1 2 1]; UFT JobU  
    %       z = zernpol(n,m,r); RtR@wZ2\s  
    %       figure 9tv,,I;iU  
    %       plot(r,z) sgi5dQ  
    %       grid on 'u x!:b"  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5PZ!ZO&  
    % (_4DZMf  
    %   See also ZERNFUN, ZERNFUN2. _p4]\LA  
    Lu6g`O:['  
    % A note on the algorithm. {|>Wwa2e  
    % ------------------------ deaB_cjdI  
    % The radial Zernike polynomials are computed using the series n"RV!{&  
    % representation shown in the Help section above. For many special G3:!]}  
    % functions, direct evaluation using the series representation can M1WD^?tKQ.  
    % produce poor numerical results (floating point errors), because J)n_u),  
    % the summation often involves computing small differences between nS3Aadm  
    % large successive terms in the series. (In such cases, the functions l 3p :}A  
    % are often evaluated using alternative methods such as recurrence =q]!"yU[d  
    % relations: see the Legendre functions, for example). For the Zernike 9MfU{4:;I  
    % polynomials, however, this problem does not arise, because the R 39_!  
    % polynomials are evaluated over the finite domain r = (0,1), and v.<mrI#?  
    % because the coefficients for a given polynomial are generally all @ :Zk,   
    % of similar magnitude. P #! N  
    % 5C1EdQ4S0  
    % ZERNPOL has been written using a vectorized implementation: multiple 1UJrPM%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] aR6F%7gvz  
    % values can be passed as inputs) for a vector of points R.  To achieve 8u~  
    % this vectorization most efficiently, the algorithm in ZERNPOL +={K -g7U  
    % involves pre-determining all the powers p of R that are required to 9\hI:rI  
    % compute the outputs, and then compiling the {R^p} into a single Rs5lL-I  
    % matrix.  This avoids any redundant computation of the R^p, and #at`7#K@  
    % minimizes the sizes of certain intermediate variables. 2rT^OGw6  
    % m=l'9j"D  
    %   Paul Fricker 11/13/2006 $O*@Jg=  
    D {Ol8:  
    0c`zg7|  
    % Check and prepare the inputs: J6s]vV q"  
    % ----------------------------- R]X 0D.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S j~SG  
        error('zernpol:NMvectors','N and M must be vectors.') "."(<c/3  
    end rWL;pM<  
    o5a=>|?p>  
    if length(n)~=length(m) q 7%p3  
        error('zernpol:NMlength','N and M must be the same length.') J?3/L&seA  
    end :K^J bQ  
    T#-;>@a}  
    n = n(:); ^C'0Y.H S  
    m = m(:); ujxr/8mjV  
    length_n = length(n); p}JOiiHa  
    ;9OhK71}  
    if any(mod(n-m,2)) /_l\7MeI  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =J]WVA,GqA  
    end uRko[W(  
    {7goYzQsi%  
    if any(m<0) c$V5E t  
        error('zernpol:Mpositive','All M must be positive.') 0i_:J  
    end D;C';O  
    @5nFa~*K%  
    if any(m>n) jj[6oNKE1  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') `?Q p>t  
    end d:';s~  
    h[]9F.[  
    if any( r>1 | r<0 ) EWD^=VITL  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') @Iz]:@\cJ  
    end V+Tv:a  
    nFn!6,>E  
    if ~any(size(r)==1) acl<dY6  
        error('zernpol:Rvector','R must be a vector.') nf /*n  
    end *7Q6b 4~"  
    ]Orx %8QS!  
    r = r(:); =Hd yra  
    length_r = length(r); 4MS<t FH)  
    J |q(HpB  
    if nargin==4 ]j*2PSJG  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~+dps i  
        if ~isnorm YGyv)\  
            error('zernpol:normalization','Unrecognized normalization flag.') {=[>N>"  
        end :ZrJL&  
    else *XTd9E^tXq  
        isnorm = false; 0y9 b0G  
    end p +i 1sY  
    xN-,gT'!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5^Qa8yA>7  
    % Compute the Zernike Polynomials yc](  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >Wr%usNxc  
    /IpCo  
    % Determine the required powers of r: C27:ty V  
    % ----------------------------------- /WTEz\k  
    rpowers = []; +x"uP  
    for j = 1:length(n) ]P?< 2,  
        rpowers = [rpowers m(j):2:n(j)]; s/D)X=P1  
    end aZA ``#p+  
    rpowers = unique(rpowers); lME>U_E  
    q\6(_U#Tl  
    % Pre-compute the values of r raised to the required powers, qE~_}4\Z9  
    % and compile them in a matrix: 6TW7E }a.  
    % ----------------------------- 4KH492Nq9  
    if rpowers(1)==0 y"q aa  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ha@; Sz<R  
        rpowern = cat(2,rpowern{:}); "313eeIt%i  
        rpowern = [ones(length_r,1) rpowern]; \]9)%3I  
    else WUYI1Ij;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @ma(py  
        rpowern = cat(2,rpowern{:}); kTvM,<  
    end /5ZX6YkeH  
    n"(!v7YNp  
    % Compute the values of the polynomials: ]O x5F@  
    % -------------------------------------- 'X?xn@?  
    z = zeros(length_r,length_n); Cu[-<>my  
    for j = 1:length_n g":[rXvId  
        s = 0:(n(j)-m(j))/2; iEvQ4S6tD  
        pows = n(j):-2:m(j); 1-_r\sb  
        for k = length(s):-1:1 eM5?fE&!&  
            p = (1-2*mod(s(k),2))* ... +<7Oj s>o  
                       prod(2:(n(j)-s(k)))/          ... @tH9$J*Y<  
                       prod(2:s(k))/                 ... gF)9a_R%p  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... (@1:1K(   
                       prod(2:((n(j)+m(j))/2-s(k))); i>F=XE  
            idx = (pows(k)==rpowers); {OU|'  
            z(:,j) = z(:,j) + p*rpowern(:,idx); S&-K!XyJ  
        end rJ!cma  
         8%[pno |0I  
        if isnorm @]@|H?  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ,EB}IG ]  
        end Y %JQ  
    end %**f`L%jN  
    HK@ij,px  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  xU *:a[g  
    ,Q`qnn&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 +)]YvZ6%[,  
    ~%{2Z_t$  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)