非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 vu*e*b$}
function z = zernfun(n,m,r,theta,nflag) 8Re[]bE
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. SZ9Oz-?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .h=n [`RB
% and angular frequency M, evaluated at positions (R,THETA) on the T(?w}i
% unit circle. N is a vector of positive integers (including 0), and ]|CcQ1#|H
% M is a vector with the same number of elements as N. Each element m1pA]}Y/5o
% k of M must be a positive integer, with possible values M(k) = -N(k) A[+)PkR
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Qy" Jt ]O
% and THETA is a vector of angles. R and THETA must have the same y2_rm
% length. The output Z is a matrix with one column for every (N,M) w{*kbGB8s7
% pair, and one row for every (R,THETA) pair. FE!jN-#
% MrHJ)x"hy
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :6nD "5(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gvuv>A}vJ
% with delta(m,0) the Kronecker delta, is chosen so that the integral LVB wWlJ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q8d](MaX
% and theta=0 to theta=2*pi) is unity. For the non-normalized kJ5z['4?
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W:RjWn @<
% p6<JpW5@_
% The Zernike functions are an orthogonal basis on the unit circle. b_~XTWP$l
% They are used in disciplines such as astronomy, optics, and LRu,_2"
% optometry to describe functions on a circular domain. >k\pSV[
% 'r]6 GC8Z$
% The following table lists the first 15 Zernike functions. PG63{
% %Z_O\zRqy)
% n m Zernike function Normalization [WR"#y
% -------------------------------------------------- @\?ubF
% 0 0 1 1 $\NqD:fgb
% 1 1 r * cos(theta) 2 :1*E5pX0n
% 1 -1 r * sin(theta) 2 l{dsm1#W~
% 2 -2 r^2 * cos(2*theta) sqrt(6) ev;&n@k_I
% 2 0 (2*r^2 - 1) sqrt(3) F9j@KC(yg
% 2 2 r^2 * sin(2*theta) sqrt(6) Sxq@W8W
% 3 -3 r^3 * cos(3*theta) sqrt(8) IQO|)53)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) bs"J]">(N
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ^5E9p@d"J
% 3 3 r^3 * sin(3*theta) sqrt(8) kku<0<(N
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]oV{JR]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q<V(#)*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) v=@y7P1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \lQ3j8U
% 4 4 r^4 * sin(4*theta) sqrt(10) !ddyJJ^a
% -------------------------------------------------- 3UUdJh<~
% VG
5*17nf5
% Example 1: ?2&= +QaT
% wmGcXBHt$
% % Display the Zernike function Z(n=5,m=1) XZKlE
F?
% x = -1:0.01:1; nnj<k5
% [X,Y] = meshgrid(x,x); S9l,P-X`
% [theta,r] = cart2pol(X,Y); s<{ Hu0K$
% idx = r<=1; 5bt>MoKxv
% z = nan(size(X)); _A C N
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .3C::~:
% figure \+V"JIStUj
% pcolor(x,x,z), shading interp !vf:mMo
% axis square, colorbar CK n2ZL
% title('Zernike function Z_5^1(r,\theta)') !Sn|!:N4
% Z>`\$1CI
% Example 2: )9`HO?
% 1@p,
% % Display the first 10 Zernike functions $~6MR_Yq
% x = -1:0.01:1; n!z!fh
% [X,Y] = meshgrid(x,x); X~jdOaq{F:
% [theta,r] = cart2pol(X,Y); xw9ZRu<z
% idx = r<=1; 5\pS8<RJ;
% z = nan(size(X)); U&#`
<R_0
% n = [0 1 1 2 2 2 3 3 3 3]; <Ja&z M
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; j<~Wp$\i7>
% Nplot = [4 10 12 16 18 20 22 24 26 28]; f/J/tt
% y = zernfun(n,m,r(idx),theta(idx)); qhY+<S9
% figure('Units','normalized') OCrTzz8
% for k = 1:10 hP+4{F*}-
% z(idx) = y(:,k); INr1bAe$
% subplot(4,7,Nplot(k)) M]PZwW8
% pcolor(x,x,z), shading interp +4%~.,<_to
% set(gca,'XTick',[],'YTick',[]) 5Qq/nUR
% axis square Nb$0pc1J<
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u&Ic
% end ,A{Bx`o?
% I9Ohz!RQ
% See also ZERNPOL, ZERNFUN2. ;=,-C;`
:o!Kz`J
% Paul Fricker 11/13/2006 A:(|"<lA
et+lL"&
,h o",y
% Check and prepare the inputs: "a[;{s{{.
% ----------------------------- rQ*w3F?:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )
~frsgHW
error('zernfun:NMvectors','N and M must be vectors.') v<v;Z R)
end mj'~-$5T
5&s6(?,Eu
if length(n)~=length(m)
<)TIj6
error('zernfun:NMlength','N and M must be the same length.') (
3B1X
end c]Epg)E
uNn1qV
n = n(:); ysOf=~1
m = m(:); ^rJTlh
9
if any(mod(n-m,2)) )L9eLxI
error('zernfun:NMmultiplesof2', ... fsjLD|?|:
'All N and M must differ by multiples of 2 (including 0).') P{)D_Bi
end w0g@ <(
3
@]n8*n
if any(m>n) l!:bNMd
error('zernfun:MlessthanN', ... "~ID.G|<
'Each M must be less than or equal to its corresponding N.') _5 SvZ;4
end d=bKNA90
VvW4!1Dl
if any( r>1 | r<0 ) bWA_a]G
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A>gZl)c
end .fzyA5@l
F8?,}5j
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y0p=E^QM
error('zernfun:RTHvector','R and THETA must be vectors.') 1K3XNHF
end Z~SAlhT
HVA:|Z19
r = r(:); p'LLzc##
theta = theta(:); 3q4Zwv0z20
length_r = length(r); Xd:{.AXW
if length_r~=length(theta) %BC%fVdP
error('zernfun:RTHlength', ... p|-> z
'The number of R- and THETA-values must be equal.') P\Qvj7_
end OF<:BaRs/
Kq")|9=d
% Check normalization: h
i!K-_Uy
% -------------------- >e!J(4.-
if nargin==5 && ischar(nflag) E&J<qTH9
isnorm = strcmpi(nflag,'norm'); K7C
<}y
if ~isnorm (KC08
error('zernfun:normalization','Unrecognized normalization flag.') 7Z2D}O+
end Ru`afjc
else !PoyM[Z"f
isnorm = false; 8WDL.IO
end ?&0CEfa?
G h+;Vrx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% huv|l6
% Compute the Zernike Polynomials D>jtz2y=D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2#$7!`6K
WrwbLl E
% Determine the required powers of r: xytWE:=
% ----------------------------------- Q#yHH]U)X
m_abs = abs(m); i +@avoW
rpowers = []; 7Q{&L#;
for j = 1:length(n) fV4eGIR&
rpowers = [rpowers m_abs(j):2:n(j)]; j6^.Q/{^
end ds(X[7XGW
rpowers = unique(rpowers); aT2%Az@j
_K?v^oM#
% Pre-compute the values of r raised to the required powers, W\B@0Is o
% and compile them in a matrix: uD{-a$6z
% ----------------------------- < k(n%
if rpowers(1)==0 @8J*vY =e
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "n3n-Y#'
rpowern = cat(2,rpowern{:}); "8a
V~]~Dj
rpowern = [ones(length_r,1) rpowern]; T#rUbi>""
else R|Bi%q|4P
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ){/n7*#Th%
rpowern = cat(2,rpowern{:}); ]gHrqi%
end '`}D+IQ(j
wIRU!lIF9
% Compute the values of the polynomials: =^M Q 4
% -------------------------------------- )]Zdaw)X
y = zeros(length_r,length(n)); xs6!NY
for j = 1:length(n) Se??E+aX
s = 0:(n(j)-m_abs(j))/2; L7 FFa:#
pows = n(j):-2:m_abs(j); SgQmR#5
for k = length(s):-1:1 |LIcq0Z
p = (1-2*mod(s(k),2))* ... .vmCKZ
prod(2:(n(j)-s(k)))/ ... CA|W4f}
prod(2:s(k))/ ... G@rh/b<$
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... MIr[_
prod(2:((n(j)+m_abs(j))/2-s(k))); q\P{h ij
idx = (pows(k)==rpowers); ow (YgM>t
y(:,j) = y(:,j) + p*rpowern(:,idx); rr1,Ijh{D
end f~?5;f:E
$!'Vn)Z7
if isnorm A5fzyG
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); } 5"Rj<
end ]S(nA!]
end C]ho7qC
% END: Compute the Zernike Polynomials U>n.+/ss
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R90chl
JvT#Fxj k
% Compute the Zernike functions: ]$)};8;7W
% ------------------------------ )MN 6\v
idx_pos = m>0; qoQ,3&<
idx_neg = m<0; ak}ke
%MtaWZ
z = y; h/aG."U
if any(idx_pos) s*CBYzOm
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q2Gm8>F1y.
end IH=%%AS
if any(idx_neg) 9Z2aFW9
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sN[<{;K4
end 4[r:DM|8
vKbGG
% EOF zernfun