非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 kpQXnDm2
function z = zernfun(n,m,r,theta,nflag) zHT22o56X
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,[j'OyR
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O0i)Iu(J7;
% and angular frequency M, evaluated at positions (R,THETA) on the 4?vTuZ/
M
% unit circle. N is a vector of positive integers (including 0), and ]-7$wVQ<
% M is a vector with the same number of elements as N. Each element AlH\IP
% k of M must be a positive integer, with possible values M(k) = -N(k) >E:V7Fa
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, e; #"t
% and THETA is a vector of angles. R and THETA must have the same BPH-g\q
% length. The output Z is a matrix with one column for every (N,M) L)!9+!PKD
% pair, and one row for every (R,THETA) pair. F(5(cr 7K
% `62iW3y
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ck;>9>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Kj+=?R~}S
% with delta(m,0) the Kronecker delta, is chosen so that the integral w QnW2)9!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;n"Nv}<C
% and theta=0 to theta=2*pi) is unity. For the non-normalized .0gF&>I}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b;AGw3SF
% 6(9S'~*'R
% The Zernike functions are an orthogonal basis on the unit circle. o;#9$j7QP!
% They are used in disciplines such as astronomy, optics, and B>!OW2q0D
% optometry to describe functions on a circular domain. Oosr`e@S
% bL)7/E
% The following table lists the first 15 Zernike functions. W
^MF3
% q!sazVaDp
% n m Zernike function Normalization 6')pM&`t
% --------------------------------------------------
FK2* O
% 0 0 1 1 |hlc#t?
% 1 1 r * cos(theta) 2 yN4K^#
% 1 -1 r * sin(theta) 2 ;YYo^9Lh}
% 2 -2 r^2 * cos(2*theta) sqrt(6) ohod)8
% 2 0 (2*r^2 - 1) sqrt(3) (/oHj^>3N`
% 2 2 r^2 * sin(2*theta) sqrt(6) 2^*a$OJ
% 3 -3 r^3 * cos(3*theta) sqrt(8)
D ^Cpgha
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2L!wbeTb;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [
BpZ{Ql
% 3 3 r^3 * sin(3*theta) sqrt(8) p}r1@L s
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3a_=e
B
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ew9\Y R}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^@"EI|fsP
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x)h|!T=B~
% 4 4 r^4 * sin(4*theta) sqrt(10) j\o<r0I
% -------------------------------------------------- z3\WcW7|
% (H/2{##
% Example 1: Qel2OI `b
% 1F*3K3T {
% % Display the Zernike function Z(n=5,m=1) Rx}*I00
% x = -1:0.01:1; v *pN~}5
% [X,Y] = meshgrid(x,x); _$oN"pj
% [theta,r] = cart2pol(X,Y); @5im*ubzM
% idx = r<=1; S*5hO) C
% z = nan(size(X)); LrL
ZlJf
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 9MI~yIt`L
% figure wTu_Am
% pcolor(x,x,z), shading interp k/hD2tBLu
% axis square, colorbar [lmghI!
% title('Zernike function Z_5^1(r,\theta)') )Td;2
% &m8#^]*
% Example 2: qVvQ9?
% V ^
% % Display the first 10 Zernike functions G(n
e8L8
% x = -1:0.01:1; AxsTB9/
% [X,Y] = meshgrid(x,x); {Y\W&Edw%
% [theta,r] = cart2pol(X,Y); %+=y!
% idx = r<=1; ,/XeG`vk
% z = nan(size(X)); }r+(Z.BHM
% n = [0 1 1 2 2 2 3 3 3 3]; vzr?#FG
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; h}T+M BA%
% Nplot = [4 10 12 16 18 20 22 24 26 28]; a
(mgz&*
% y = zernfun(n,m,r(idx),theta(idx)); Q"@x,8xW
% figure('Units','normalized') {`Jr$*;
% for k = 1:10 3
W%Bsqn
% z(idx) = y(:,k); \E!a=cL!
% subplot(4,7,Nplot(k)) 'UW(0 PXw
% pcolor(x,x,z), shading interp EINjI:/D
% set(gca,'XTick',[],'YTick',[]) 08+cNT
% axis square lVw77bZ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) CXe2G5
% end tJ_6dH8Y
% N>+s8L.?
% See also ZERNPOL, ZERNFUN2. 3>+9Rru
=}$YZuzmU
% Paul Fricker 11/13/2006 h8ikM&fl
/CE]7m,7~K
e
Qz_,vTk
% Check and prepare the inputs: qId-v =L
% ----------------------------- U@6bH@v5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 06Irx^n
error('zernfun:NMvectors','N and M must be vectors.') t=K;/1
end >\/H2j
QXQ'QEG
if length(n)~=length(m) sM4Qu./
error('zernfun:NMlength','N and M must be the same length.') ek^=Z`
end ;j#(%U]Vp
o`]o(OP
n = n(:); BJ
c'4>
m = m(:); E!,+#%O>
if any(mod(n-m,2)) V[w Y;wj
error('zernfun:NMmultiplesof2', ... w`N|e0G@
'All N and M must differ by multiples of 2 (including 0).') cEP!DUo
end a/nKKhXaM
0L
^WTq
if any(m>n) {hXIP`
error('zernfun:MlessthanN', ... 5Oa`1?C1
'Each M must be less than or equal to its corresponding N.') 9(\eL9^
end <3 b|Sk:T
[32]wgw+{1
if any( r>1 | r<0 ) .[@TC@W
error('zernfun:Rlessthan1','All R must be between 0 and 1.') R>r@I_
end n%SR5+N"
$,/;QP}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *Y4[YnkPE
error('zernfun:RTHvector','R and THETA must be vectors.') \hm;p
end C9,|G7~*q
c Nhy.Z~D
r = r(:); )@IDmz>
theta = theta(:); xbN)z
length_r = length(r); sULCYiT|Hn
if length_r~=length(theta) ?)Psf/
error('zernfun:RTHlength', ... xla64Qld
'The number of R- and THETA-values must be equal.') \1[=t+/
end aB=&X