切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11577阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 NT2XG& $W>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -Bq]E,Xf)  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =L@CZ"  
    function z = zernfun(n,m,r,theta,nflag) {qlcTc  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. U}4I29M  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N t9MCT$U  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?-%(K^y4r  
    %   unit circle.  N is a vector of positive integers (including 0), and tBfmjxv  
    %   M is a vector with the same number of elements as N.  Each element FfxD=\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]b]J)dDI  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ,;5%&T  
    %   and THETA is a vector of angles.  R and THETA must have the same PH&Qw2(Sx  
    %   length.  The output Z is a matrix with one column for every (N,M) 2z" <m2 a  
    %   pair, and one row for every (R,THETA) pair.  @;KYvDY  
    % 3bXfR,U  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?9O#b1f N  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b{,v?7^4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral A`JE(cIz3  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >&:}L%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,C"6@/:l  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,?Ie!r$6  
    % q]C_idK=  
    %   The Zernike functions are an orthogonal basis on the unit circle. _&\'Va$  
    %   They are used in disciplines such as astronomy, optics, and  ^|zag  
    %   optometry to describe functions on a circular domain. 16]Ay&Kn!  
    % ~4Gc~"  
    %   The following table lists the first 15 Zernike functions. TmftEw>u  
    % iPV-w_HQ  
    %       n    m    Zernike function           Normalization KAD2_@l  
    %       -------------------------------------------------- v0!|TI3s  
    %       0    0    1                                 1 %.u*nM7sos  
    %       1    1    r * cos(theta)                    2 ` L 1+j  
    %       1   -1    r * sin(theta)                    2 Y'm;xA  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &*'^uCna  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ybsw{[X>M  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 9xj }<WM  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) hu} vYA7ZH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) t_xK?``  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z3YKG{g  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &4KUXn[F  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2L;=wP2?{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5@r6'Z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +ctU7 rVy  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^'`(E_2u  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) i ]8bj5j{  
    %       -------------------------------------------------- VD@$y^!H  
    % nyqX\m-  
    %   Example 1: $#+D:W)az  
    % eR>8V8@  
    %       % Display the Zernike function Z(n=5,m=1) 6nE/8m  
    %       x = -1:0.01:1; =No#/_  
    %       [X,Y] = meshgrid(x,x); l1lYb;C  
    %       [theta,r] = cart2pol(X,Y); QICxSk  
    %       idx = r<=1; j;E$7QH[  
    %       z = nan(size(X)); T%& vq6  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %i/|}K  
    %       figure ;` Xm?N  
    %       pcolor(x,x,z), shading interp Y$"m*0  
    %       axis square, colorbar $z*"@  
    %       title('Zernike function Z_5^1(r,\theta)') d>mZY66P  
    % - EGZ  
    %   Example 2: J ;z`bk^  
    % w0Nm.=I-   
    %       % Display the first 10 Zernike functions B0gD4MX/  
    %       x = -1:0.01:1; _V1:'T8  
    %       [X,Y] = meshgrid(x,x); >itabG-&  
    %       [theta,r] = cart2pol(X,Y); Ns1n|^9  
    %       idx = r<=1; %Rf9 KQ  
    %       z = nan(size(X)); O9d"Z$~n=j  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0iZeU:FE  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 1Dc6v57  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -Z:x!M[Xr  
    %       y = zernfun(n,m,r(idx),theta(idx)); 'Ca;gi !U  
    %       figure('Units','normalized') c%hXj#;  
    %       for k = 1:10 +%,oq ]<[,  
    %           z(idx) = y(:,k); Z ]  G#:  
    %           subplot(4,7,Nplot(k)) aACPyfGQ  
    %           pcolor(x,x,z), shading interp bri8o"  
    %           set(gca,'XTick',[],'YTick',[]) 3{~(_  
    %           axis square <EgJm`V  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7- LjBlH  
    %       end fU ;H  
    % ,q#SAZ/N  
    %   See also ZERNPOL, ZERNFUN2. ,9jk<)m]L  
    @{fwM;me]P  
    %   Paul Fricker 11/13/2006 Gvdok<o  
    \db=]L=|  
    T-ST M"~%  
    % Check and prepare the inputs: ]nebL{}5  
    % ----------------------------- 56c[$ q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yv]|Ce@8A  
        error('zernfun:NMvectors','N and M must be vectors.') .'H$|"( v  
    end L)\<7  
    DjN1EP\Xx  
    if length(n)~=length(m) :7.k E  
        error('zernfun:NMlength','N and M must be the same length.') ^&mrY[;S  
    end fgj$ u  
    tw<Oy^ i  
    n = n(:); ulW>8bW&  
    m = m(:); Pf%I6bVN9  
    if any(mod(n-m,2)) ke;=Vg|  
        error('zernfun:NMmultiplesof2', ... n.'Ps+G(  
              'All N and M must differ by multiples of 2 (including 0).') L"dN $ A  
    end T{^mh(3/"  
    B[7,Hy,R  
    if any(m>n) #prYZcHv:_  
        error('zernfun:MlessthanN', ... nIlTzrf6  
              'Each M must be less than or equal to its corresponding N.') oxeu%wj_  
    end ,:J[|9  
    ]R}(CaT1  
    if any( r>1 | r<0 ) `@1e{ ?$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3w |5%`  
    end zY*~2|q,s  
    zGz}.-F  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YRBJ(v"9  
        error('zernfun:RTHvector','R and THETA must be vectors.') '-N 5F  
    end MS#*3Md&y  
    u tkdL4G}'  
    r = r(:); iJoYxx  
    theta = theta(:); +L'Cbv="  
    length_r = length(r); :tnW ivrwR  
    if length_r~=length(theta) xq,ql@7  
        error('zernfun:RTHlength', ... <Rn-B).3bs  
              'The number of R- and THETA-values must be equal.') +UX~'t_'v  
    end _U4@W+lhX_  
    O9?.J,,mVh  
    % Check normalization: P* &0HbJ  
    % -------------------- RR+kjK?  
    if nargin==5 && ischar(nflag) z(%tu  
        isnorm = strcmpi(nflag,'norm'); Pn9;&`t  
        if ~isnorm 6[R6P:v&'G  
            error('zernfun:normalization','Unrecognized normalization flag.') H$WD7/?j  
        end }xBO;  
    else FF^h(Ea  
        isnorm = false; jz=V*p}6  
    end LdOme [C1  
    Vfk"}k/do  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C_q2bI  
    % Compute the Zernike Polynomials D8~\*0->  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c*zeO@AAn  
    ND.(N'/O  
    % Determine the required powers of r: /\mYXi \  
    % ----------------------------------- 8O{V#aop  
    m_abs = abs(m); k1yqe rA  
    rpowers = []; 3[_WTwX0  
    for j = 1:length(n) '4#NVXVQm  
        rpowers = [rpowers m_abs(j):2:n(j)]; +'93%/:  
    end $iy!:Did  
    rpowers = unique(rpowers); -^`s#0( y^  
    yN`&oya  
    % Pre-compute the values of r raised to the required powers, c C) <Y#1  
    % and compile them in a matrix: Aep](je  
    % ----------------------------- b~* iL!<  
    if rpowers(1)==0 )OFN0'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jxm#4  
        rpowern = cat(2,rpowern{:}); r|uR!=*|?  
        rpowern = [ones(length_r,1) rpowern]; keD?#yY  
    else <wFmfrx+v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N+ ]O#Js?  
        rpowern = cat(2,rpowern{:}); XI$W  
    end pnx^a}|px  
    gn.)_  
    % Compute the values of the polynomials: .9z}S=ZK  
    % -------------------------------------- [hH>BEtm  
    y = zeros(length_r,length(n)); 9mXmghoCO  
    for j = 1:length(n) <1lB[:@%U  
        s = 0:(n(j)-m_abs(j))/2; m*iSW]&  
        pows = n(j):-2:m_abs(j); u^^jt(j  
        for k = length(s):-1:1 rc>}3?o  
            p = (1-2*mod(s(k),2))* ... Z<AZO ^  
                       prod(2:(n(j)-s(k)))/              ... ]lyQ*gM  
                       prod(2:s(k))/                     ... !@ P{s'<:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jZmL7 V  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0i8\Lu6  
            idx = (pows(k)==rpowers); jp~Tlomp  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $}S0LZ_H  
        end M3!;u%~} s  
         p^w)@^f  
        if isnorm izl-GitP  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0d:t=LKw)  
        end sD?Ynpt  
    end %1GKN|7  
    % END: Compute the Zernike Polynomials uuh._H}-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n|Y}M]u,  
    C-,#t5eir  
    % Compute the Zernike functions: x@O )QaBN!  
    % ------------------------------ !~7lY]_U  
    idx_pos = m>0; v&9:Wd*Iz'  
    idx_neg = m<0; Ji=`XsV  
    s{X+0_@Q  
    z = y; OaoHN& "  
    if any(idx_pos) ~@<o-|#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S_??G:i  
    end pV:44  
    if any(idx_neg) wM;=^br  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); MZX@Gi<S[  
    end &E!m(|6?+  
    5=9Eb  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) &K=) YpT  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ?wIEXKI  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated <+%y  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive #!yX2lR  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, n1R{[\ >1  
    %   and THETA is a vector of angles.  R and THETA must have the same :y{@=E=XSC  
    %   length.  The output Z is a matrix with one column for every P-value, 0R]'HA>  
    %   and one row for every (R,THETA) pair. y6G6wk;  
    % c5Kc iTD^  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ,]9p&xu  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ^foCcO  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) $|!3ks  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 rT4qx2u  
    %   for all p. pf yJL?_%  
    % w; f LnEz_  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 CA$|3m9)NM  
    %   Zernike functions (order N<=7).  In some disciplines it is EQHCw<e  
    %   traditional to label the first 36 functions using a single mode 2`FDY3n  
    %   number P instead of separate numbers for the order N and azimuthal o9]!*Y!RA  
    %   frequency M. Ne1W!0YLK  
    % r=RiuxxTq  
    %   Example: #&K}w 0}k  
    % Fs=E8' b  
    %       % Display the first 16 Zernike functions l u{6  
    %       x = -1:0.01:1; ?4W6TSW-'  
    %       [X,Y] = meshgrid(x,x); 2G:KaQ)  
    %       [theta,r] = cart2pol(X,Y); c,G[Rk  
    %       idx = r<=1; 7s0y.i~  
    %       p = 0:15; ^8?px&B y:  
    %       z = nan(size(X)); NVf_#p"h  
    %       y = zernfun2(p,r(idx),theta(idx)); $c+:dO|Fb  
    %       figure('Units','normalized') '8@4FXK  
    %       for k = 1:length(p) Mt~2&$>  
    %           z(idx) = y(:,k); LTb#1JC  
    %           subplot(4,4,k) >4=7t&h  
    %           pcolor(x,x,z), shading interp >pq=5Ha&  
    %           set(gca,'XTick',[],'YTick',[]) qyY/:&E,Z  
    %           axis square IFF1wfC  
    %           title(['Z_{' num2str(p(k)) '}']) [raj: 7yQ  
    %       end I "R<XX  
    % `w "ooK  
    %   See also ZERNPOL, ZERNFUN. #Qu|9Q[QH  
    9wC='  
    %   Paul Fricker 11/13/2006 PvxU.  
    G/1V4-@  
    ]0}NF  
    % Check and prepare the inputs: og*ti!Z  
    % ----------------------------- eFQz G+/  
    if min(size(p))~=1 5F 8'f)  
        error('zernfun2:Pvector','Input P must be vector.') AC?a:{ ./  
    end j#H&~f  
    Y)AHM0;g  
    if any(p)>35 *44E'Dxv  
        error('zernfun2:P36', ... [F,s=,S'M  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... -e+im(2D=  
               '(P = 0 to 35).']) 5~i}!n  
    end ECuNkmUI  
    4%SA%]a L1  
    % Get the order and frequency corresonding to the function number: H" pwIiC  
    % ---------------------------------------------------------------- `TDS 4Y  
    p = p(:); "haJwV6-  
    n = ceil((-3+sqrt(9+8*p))/2); u6*0% Km  
    m = 2*p - n.*(n+2); J@4 Z+l9  
    v dU)  
    % Pass the inputs to the function ZERNFUN: 0\o5+  
    % ---------------------------------------- 92/_!P>  
    switch nargin FeZGPxc~  
        case 3 W)odaab7  
            z = zernfun(n,m,r,theta); >H]|R }h  
        case 4 z) "(&__  
            z = zernfun(n,m,r,theta,nflag); v 5&8C  
        otherwise <;!#+|L/  
            error('zernfun2:nargin','Incorrect number of inputs.') i%r+/D)KvG  
    end .H86f !=  
    MeO2 cy!5q  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) vyruUYFWe  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. B5#>ieM*  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of $1|65j[e  
    %   order N and frequency M, evaluated at R.  N is a vector of z3|5E#m  
    %   positive integers (including 0), and M is a vector with the ~Z ;.n p(T  
    %   same number of elements as N.  Each element k of M must be a f;3k Yh^4  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) %$+bO/f  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 34aSRFsk*  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix W@vCMy!  
    %   with one column for every (N,M) pair, and one row for every  0gJ{fcI  
    %   element in R. \{}5VVw-S?  
    % |I=GI]I  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- '.t{\  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is +)*oPSQ5  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to v}uzUY  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 7k#0EhN1>  
    %   for all [n,m]. zw%1 a 3!  
    % ##yH*{/&  
    %   The radial Zernike polynomials are the radial portion of the 8 v<*xy  
    %   Zernike functions, which are an orthogonal basis on the unit -b'/}zz  
    %   circle.  The series representation of the radial Zernike >d^DN;p  
    %   polynomials is BBRZlx  
    % Mdy4H[Odq  
    %          (n-m)/2 +-MieiKv  
    %            __ BVxk}#d  
    %    m      \       s                                          n-2s l }]"X@&G  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r S1_):JvV  
    %    n      s=0 v2f|%i;tq  
    % +}^^]J$Nh  
    %   The following table shows the first 12 polynomials. ZE6W"pbjU  
    % .|2[! 7CXH  
    %       n    m    Zernike polynomial    Normalization E{IY7Xz^>  
    %       --------------------------------------------- \|C~VU@  
    %       0    0    1                        sqrt(2) dY.NQ1@"  
    %       1    1    r                           2 k$ w#:Sx  
    %       2    0    2*r^2 - 1                sqrt(6) )bK3%>H#  
    %       2    2    r^2                      sqrt(6) 6@ =ipPCR  
    %       3    1    3*r^3 - 2*r              sqrt(8) fI-f Gx  
    %       3    3    r^3                      sqrt(8) xnC5WF7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) #8a k=lL  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Ca#T?HL  
    %       4    4    r^4                      sqrt(10) jUrUM.CJ\N  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 4-W~ 1  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) #c`/ f6z  
    %       5    5    r^5                      sqrt(12) | =tGrHL  
    %       --------------------------------------------- QT[4\)  
    % r5PZ=+F  
    %   Example: 3F{R$M}  
    % \!Ap<  
    %       % Display three example Zernike radial polynomials a]0hB:  
    %       r = 0:0.01:1; F)=*Ga  
    %       n = [3 2 5]; 7$Pf  
    %       m = [1 2 1]; saVX2j6Y  
    %       z = zernpol(n,m,r); T&]IPOH9  
    %       figure UMlvu?u2p1  
    %       plot(r,z) SBamgc  
    %       grid on w,;ox2  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5ih5=qX  
    % QTjnXg?Ri  
    %   See also ZERNFUN, ZERNFUN2. 9Q&]5| x  
    /Ca M(^W   
    % A note on the algorithm. hF9y^Hx4  
    % ------------------------ HnY.=_G  
    % The radial Zernike polynomials are computed using the series ]|B_3* A  
    % representation shown in the Help section above. For many special X@%4N<  
    % functions, direct evaluation using the series representation can OZ2faf  
    % produce poor numerical results (floating point errors), because ^6PKSEba  
    % the summation often involves computing small differences between E^x/v_,$w!  
    % large successive terms in the series. (In such cases, the functions >9X+\eg-  
    % are often evaluated using alternative methods such as recurrence ZKVM9ofXRi  
    % relations: see the Legendre functions, for example). For the Zernike -5,+gakSk  
    % polynomials, however, this problem does not arise, because the [.nkNda5)v  
    % polynomials are evaluated over the finite domain r = (0,1), and HK`r9frn  
    % because the coefficients for a given polynomial are generally all )C $1))  
    % of similar magnitude. mJME1#j$/|  
    % ``Rg0o  
    % ZERNPOL has been written using a vectorized implementation: multiple 'F7UnkKO|  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] d@{#F"o  
    % values can be passed as inputs) for a vector of points R.  To achieve r-&* `Jh  
    % this vectorization most efficiently, the algorithm in ZERNPOL a0hgF_O1  
    % involves pre-determining all the powers p of R that are required to q `L}\}o  
    % compute the outputs, and then compiling the {R^p} into a single MG3xX;  
    % matrix.  This avoids any redundant computation of the R^p, and S vW{1  
    % minimizes the sizes of certain intermediate variables. f!JSb?#3  
    % Y$FhV~m  
    %   Paul Fricker 11/13/2006 J&;' gT  
    M&0U@ r-  
    "cDc~~3/@  
    % Check and prepare the inputs: /!W',9ua6  
    % ----------------------------- e(jD[q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) bl4I4RB  
        error('zernpol:NMvectors','N and M must be vectors.') HVNX"`]"  
    end gflO0$i  
    ky[^uQ>0  
    if length(n)~=length(m) [B%:!Q)@  
        error('zernpol:NMlength','N and M must be the same length.') Gvqu v\  
    end h]k1vp)Q y  
    hu:x,;`9H  
    n = n(:); TR!7@Mu 3  
    m = m(:); b`|,rfq^AZ  
    length_n = length(n); <Mf(2`T  
    k~qZ^9QB~  
    if any(mod(n-m,2)) 7:wf!\@ I  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') x24&mWgU  
    end *TYOsD**9  
    y@dTdR2Wc  
    if any(m<0) yH.Z%*=xQa  
        error('zernpol:Mpositive','All M must be positive.') 13/U4-%b2  
    end `5Em: 8 M  
    5>rjL ;  
    if any(m>n) S|T*-?|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^fvx2<  
    end \`8?=_ST  
    6KKQ)DNu_  
    if any( r>1 | r<0 ) +}NQ |y V  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') DK(8Ml:k  
    end -7A2@g  
    PAv<J<d  
    if ~any(size(r)==1) I =nvL  
        error('zernpol:Rvector','R must be a vector.') \n0MqXs#  
    end tdn|mX#  
    &p.7SPQ8/  
    r = r(:); 4_o+gG%HaM  
    length_r = length(r); wK  Je^7  
    \w2X.2b.F  
    if nargin==4 BXLw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); >;k~B  
        if ~isnorm d6~d)E  
            error('zernpol:normalization','Unrecognized normalization flag.') W";Po)YC  
        end vPx#TXY=b}  
    else k]yv#Pa  
        isnorm = false; tD No; f  
    end %QX"oRMn0  
    (z X&feq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S?# 'Y*h  
    % Compute the Zernike Polynomials ou [Wz{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :A`jRe.  
    N1X;&qZDd  
    % Determine the required powers of r: Q@.%^1Mp  
    % ----------------------------------- n$3w=9EX *  
    rpowers = []; vf['$um  
    for j = 1:length(n) PpR eqmo  
        rpowers = [rpowers m(j):2:n(j)]; ~{!,ZnO*  
    end n2&M?MGX  
    rpowers = unique(rpowers); QHe:  
    -A1:S'aN-  
    % Pre-compute the values of r raised to the required powers, N#7_)S[@0l  
    % and compile them in a matrix: Xb7G!Hk#g  
    % ----------------------------- YtY.,H;  
    if rpowers(1)==0 /P/::$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <u2iXH5w  
        rpowern = cat(2,rpowern{:}); j9 &0/ ~/  
        rpowern = [ones(length_r,1) rpowern]; ,pVq/1  
    else l6HT}x7OiH  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aN~x3G  
        rpowern = cat(2,rpowern{:}); n16TQe"8  
    end ]C$$Cx)Ex  
    gEnc;qb  
    % Compute the values of the polynomials: n|!O .+\b  
    % -------------------------------------- 8Tm/gzx  
    z = zeros(length_r,length_n); %YI!{  
    for j = 1:length_n B \>W  
        s = 0:(n(j)-m(j))/2; Q?-uJ1J  
        pows = n(j):-2:m(j); M pLn)  
        for k = length(s):-1:1 hV"2L4/E  
            p = (1-2*mod(s(k),2))* ... juBzpQYj  
                       prod(2:(n(j)-s(k)))/          ... X$ 76#x  
                       prod(2:s(k))/                 ... Vvk \ $'  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... t: qPW<wc  
                       prod(2:((n(j)+m(j))/2-s(k))); I}1<epd ,  
            idx = (pows(k)==rpowers); 60%EmX ;  
            z(:,j) = z(:,j) + p*rpowern(:,idx); a1A3uP  
        end 0p!N'7N  
          `/eh  
        if isnorm W[.UM  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _tVrLb7`s  
        end }t5pz[zl  
    end iuWw(dJk  
    B~/ejC!  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  [J|)DUjt  
    'MHbXFM  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 H0 YxPk)  
    xED`8PCfu  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)