切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11155阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 kF~(B]W(  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Z}uY%]  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 vu*e*b$}  
    function z = zernfun(n,m,r,theta,nflag) 8Re[]bE  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. SZ9Oz-?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .h=n [`RB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the T(?w}i  
    %   unit circle.  N is a vector of positive integers (including 0), and ]|CcQ1#|H  
    %   M is a vector with the same number of elements as N.  Each element m1pA]}Y/5o  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) A[+)PkR  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Qy"Jt]O  
    %   and THETA is a vector of angles.  R and THETA must have the same y2_rm   
    %   length.  The output Z is a matrix with one column for every (N,M) w{*kbGB8s7  
    %   pair, and one row for every (R,THETA) pair. FE!jN-#  
    % MrHJ)x"hy  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :6nD"5(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gvuv>A}vJ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral LVB wWlJ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q8d](MaX  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized kJ5z['4?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W:RjWn@<  
    % p6<JpW5@_  
    %   The Zernike functions are an orthogonal basis on the unit circle. b_~XTWP$l  
    %   They are used in disciplines such as astronomy, optics, and LRu,_2"  
    %   optometry to describe functions on a circular domain. > k\pSV[  
    % 'r]6 GC8Z$  
    %   The following table lists the first 15 Zernike functions. PG63{  
    % %Z_O\zRqy)  
    %       n    m    Zernike function           Normalization [WR"#y  
    %       -------------------------------------------------- @\?ub F  
    %       0    0    1                                 1 $\NqD:fgb  
    %       1    1    r * cos(theta)                    2 :1*E5pX0n  
    %       1   -1    r * sin(theta)                    2 l{dsm1#W~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ev;&n@k_I  
    %       2    0    (2*r^2 - 1)                    sqrt(3) F9j@KC(yg  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Sxq@W8W  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) IQO|)53)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) bs"J]">(N  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^5E9p@d"J  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) kku<0<(N  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]oV{JR]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q<V(#)*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) v=@y7P1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \lQ3j8 U  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !ddyJJ^a  
    %       -------------------------------------------------- 3UUdJh<~  
    % VG 5*17nf5  
    %   Example 1: ?2&= +QaT  
    % wmGcXBHt$  
    %       % Display the Zernike function Z(n=5,m=1) XZKlE F?  
    %       x = -1:0.01:1; nnj<k5  
    %       [X,Y] = meshgrid(x,x); S9l,P-X`  
    %       [theta,r] = cart2pol(X,Y); s<{ Hu0K$  
    %       idx = r<=1; 5bt>MoKxv  
    %       z = nan(size(X)); _ACN  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .3C::~:  
    %       figure \+V"JIStUj  
    %       pcolor(x,x,z), shading interp  !vf:mMo  
    %       axis square, colorbar CKn2ZL  
    %       title('Zernike function Z_5^1(r,\theta)') !Sn|!:N4  
    % Z>`\$1CI  
    %   Example 2: )9`HO?   
    % 1@p,   
    %       % Display the first 10 Zernike functions $~6MR_Yq  
    %       x = -1:0.01:1; n!z!fh  
    %       [X,Y] = meshgrid(x,x); X~jdOaq{F:  
    %       [theta,r] = cart2pol(X,Y); xw9ZRu<z  
    %       idx = r<=1; 5\pS8<RJ;  
    %       z = nan(size(X)); U&#` <R_0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <Ja&z M  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; j<~Wp$\i7>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; f/J/tt  
    %       y = zernfun(n,m,r(idx),theta(idx)); qhY+<S9  
    %       figure('Units','normalized') OCrTzz8  
    %       for k = 1:10 hP+4{F*}-  
    %           z(idx) = y(:,k); INr1bAe$  
    %           subplot(4,7,Nplot(k)) M]PZwW8  
    %           pcolor(x,x,z), shading interp +4%~.,<_to  
    %           set(gca,'XTick',[],'YTick',[]) 5Qq/nUR  
    %           axis square Nb$0pc1J<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u&I c  
    %       end ,A{Bx`o?  
    % I9Ohz!RQ  
    %   See also ZERNPOL, ZERNFUN2. ;=,-C ;`  
    :o!Kz`J  
    %   Paul Fricker 11/13/2006 A:(|"<lA  
    et+lL"&  
    ,ho",y  
    % Check and prepare the inputs: "a[;{s{{.  
    % ----------------------------- rQ* w3F?:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  ~frsgHW  
        error('zernfun:NMvectors','N and M must be vectors.') v<v;ZR)  
    end mj'~-$5T  
    5&s6(?,Eu  
    if length(n)~=length(m)  <)TIj6  
        error('zernfun:NMlength','N and M must be the same length.') ( 3B1X  
    end c]E pg)E  
    uNn1qV  
    n = n(:); ysOf=~ 1  
    m = m(:); ^rJTlh 9  
    if any(mod(n-m,2)) )L9eLxI  
        error('zernfun:NMmultiplesof2', ... fsjLD|?|:  
              'All N and M must differ by multiples of 2 (including 0).') P{)D_Bi  
    end w0g@ <( 3  
    @]n8*n  
    if any(m>n) l!:bNMd  
        error('zernfun:MlessthanN', ... "~ID.G|<  
              'Each M must be less than or equal to its corresponding N.') _5 SvZ;4  
    end d=bK NA90  
    VvW4!1Dl  
    if any( r>1 | r<0 ) bWA_a]G  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A>gZl)c  
    end .fzyA5@l  
    F8?,}5j  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y 0p=E^Q M  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1K3XNHF  
    end Z~SAlh T  
    HVA:|Z19  
    r = r(:); p'LLzc##  
    theta = theta(:); 3q4Zwv0z20  
    length_r = length(r); Xd:{.AXW  
    if length_r~=length(theta) %BC%fVdP  
        error('zernfun:RTHlength', ... p|->z  
              'The number of R- and THETA-values must be equal.') P\Qvj7_  
    end OF<:BaRs/  
    Kq")|9=d  
    % Check normalization: h i!K-_Uy  
    % -------------------- >e!J(4.-  
    if nargin==5 && ischar(nflag) E&J<qTH9  
        isnorm = strcmpi(nflag,'norm'); K7 C <}y  
        if ~isnorm (KC08  
            error('zernfun:normalization','Unrecognized normalization flag.') 7Z2D}O +  
        end Ru`afjc  
    else !PoyM[Z"f  
        isnorm = false; 8WDL.IO  
    end ?&0CEfa?  
    G h+;Vrx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% huv|l6   
    % Compute the Zernike Polynomials D>jtz2y=D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2#$7!`6 K  
    WrwbLlE  
    % Determine the required powers of r: xytWE:=  
    % ----------------------------------- Q#yHH]U)X  
    m_abs = abs(m); i +@avoW  
    rpowers = []; 7Q{&L#;  
    for j = 1:length(n) fV4eGIR&  
        rpowers = [rpowers m_abs(j):2:n(j)]; j6^.Q/{^  
    end ds(X[7XGW  
    rpowers = unique(rpowers); aT2%Az@j  
    _K?v^oM#  
    % Pre-compute the values of r raised to the required powers, W\B@0Iso  
    % and compile them in a matrix: uD{-a$6z  
    % ----------------------------- < k(n%  
    if rpowers(1)==0 @8J*vY =e  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "n3n-Y#'  
        rpowern = cat(2,rpowern{:}); "8a V~]~Dj  
        rpowern = [ones(length_r,1) rpowern]; T#rUbi>""  
    else R|Bi%q|4P  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ){/n7*#Th%  
        rpowern = cat(2,rpowern{:}); ]gHrqi%  
    end '`}D+IQ(j  
    wIRU!lIF9  
    % Compute the values of the polynomials: =^M Q 4  
    % -------------------------------------- )]Zdaw)X  
    y = zeros(length_r,length(n)); x s6!NY  
    for j = 1:length(n) Se??E+aX  
        s = 0:(n(j)-m_abs(j))/2; L7 FFa:#  
        pows = n(j):-2:m_abs(j); SgQmR#5  
        for k = length(s):-1:1 |LIcq0Z  
            p = (1-2*mod(s(k),2))* ... .vmCKZ  
                       prod(2:(n(j)-s(k)))/              ... CA|W4f}  
                       prod(2:s(k))/                     ... G@rh/b<$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M Ir[_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); q\P{h ij  
            idx = (pows(k)==rpowers); ow (YgM>t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); rr1,Ijh{D  
        end f~?5;f:E  
         $!'Vn)Z7  
        if isnorm A5fzyG   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }5" Rj<  
        end ]S(nA!]  
    end C]ho7qC  
    % END: Compute the Zernike Polynomials U>n.+/ss  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R90chl   
    JvT#Fxjk  
    % Compute the Zernike functions: ]$)};8;7W  
    % ------------------------------ )MN6\v  
    idx_pos = m>0; qoQ,3&<  
    idx_neg = m<0; ak}k e  
    %MtaWZ  
    z = y; h/aG."U  
    if any(idx_pos) s*CBYzOm  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q2Gm8>F1y.  
    end IH=%%AS  
    if any(idx_neg) 9Z2aFW9  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sN[<{;K4  
    end 4[r:DM|8  
    vKbGG   
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) NUY sQO)  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. o2y #Yk  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated }N3Ur~X\  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive DQ6pe)E|  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, AIQ]lQ(  
    %   and THETA is a vector of angles.  R and THETA must have the same yle~hL  
    %   length.  The output Z is a matrix with one column for every P-value, |msQ  
    %   and one row for every (R,THETA) pair. t2-bw6U  
    % t-hN4WKH_A  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike IrP6Rxh  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8{.:$T  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) }?d l.=eq  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 w`Z@|A  
    %   for all p. =H^^AG\}  
    % f;W>:`'  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 :e4[isI  
    %   Zernike functions (order N<=7).  In some disciplines it is `{@?O%UB  
    %   traditional to label the first 36 functions using a single mode ])T_&%  
    %   number P instead of separate numbers for the order N and azimuthal u $T'#p1  
    %   frequency M. %lK]m`(  
    % (Bfy   
    %   Example: ~u80v h'  
    % HuL9' M  
    %       % Display the first 16 Zernike functions (/_Z^m9   
    %       x = -1:0.01:1; u/ 74E0$S  
    %       [X,Y] = meshgrid(x,x); r`=!4vY2  
    %       [theta,r] = cart2pol(X,Y); !P* z=  
    %       idx = r<=1; SJI+$L\'  
    %       p = 0:15; Xn8r3Nb$A  
    %       z = nan(size(X)); F;dUqXUu  
    %       y = zernfun2(p,r(idx),theta(idx)); h3L{zOff  
    %       figure('Units','normalized') 0 Pa\:^/6  
    %       for k = 1:length(p) A?OaP  
    %           z(idx) = y(:,k); $zV[- d  
    %           subplot(4,4,k) DadlCEZv  
    %           pcolor(x,x,z), shading interp #%tN2cFDN  
    %           set(gca,'XTick',[],'YTick',[]) ?IV3"\5  
    %           axis square O!\\m0\ e  
    %           title(['Z_{' num2str(p(k)) '}']) faaFmEC  
    %       end w6l8RNRe  
    % [VwoZX:  
    %   See also ZERNPOL, ZERNFUN. fDY#&EO: %  
    > jvi7  
    %   Paul Fricker 11/13/2006 \XlT  
    [L@ vC>G  
    ~I)\d/7o  
    % Check and prepare the inputs: $nbZ+~49  
    % ----------------------------- GKKf#r74  
    if min(size(p))~=1 k GzosUt  
        error('zernfun2:Pvector','Input P must be vector.') w;Na9tR  
    end [Y]\sF;J  
    x+7jJ=F  
    if any(p)>35 '|i<?]U  
        error('zernfun2:P36', ... 7*r7Q'  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... YTpO4bX  
               '(P = 0 to 35).']) J Covk1  
    end }@:vq8%Q  
    @d Coh-Q3  
    % Get the order and frequency corresonding to the function number: &iDX+*(  
    % ---------------------------------------------------------------- E5G=Kh[NP  
    p = p(:); lf\]^yM #  
    n = ceil((-3+sqrt(9+8*p))/2); ( XoL,lJ  
    m = 2*p - n.*(n+2); ;  u0 MY  
    !bG%@{WT  
    % Pass the inputs to the function ZERNFUN: rOu7r4  
    % ---------------------------------------- LCRZ<?O[|  
    switch nargin  *w538Vb  
        case 3 Jtxwt[  
            z = zernfun(n,m,r,theta); 8D U|j-I8  
        case 4 fWywegh  
            z = zernfun(n,m,r,theta,nflag); ^?H3:CS  
        otherwise ?_9A`LC*  
            error('zernfun2:nargin','Incorrect number of inputs.') u<l[S  
    end + AyrKs?h  
    -*u7MFq_  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) MV<2x7S  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >'^Tp7\  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of a'zf8id  
    %   order N and frequency M, evaluated at R.  N is a vector of oZkjg3  
    %   positive integers (including 0), and M is a vector with the A&OU;j]  
    %   same number of elements as N.  Each element k of M must be a +wU9d8W  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  ]CD  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is FabzP_<b  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix -rSp gk0wL  
    %   with one column for every (N,M) pair, and one row for every ?H\K];  
    %   element in R. RG9YA&1ce  
    % }]ak6'|[  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- "/e:V-W   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is dC$z q~q  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 5J^S-K^r  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 pPSmSWD?  
    %   for all [n,m]. [%M=nJ{8  
    % N,9W18 @  
    %   The radial Zernike polynomials are the radial portion of the iYi3x_A`  
    %   Zernike functions, which are an orthogonal basis on the unit -\OvOkr  
    %   circle.  The series representation of the radial Zernike Em?Z  
    %   polynomials is h\#\hx  
    % slC 38  
    %          (n-m)/2 #)&kF+  
    %            __ Cku#[?G  
    %    m      \       s                                          n-2s \&K{v#g ~  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ?6;9r[ p  
    %    n      s=0 w\o?p.drp=  
    % +{(f@,&~{  
    %   The following table shows the first 12 polynomials. F<K;tt  
    % ^=f<WKn  
    %       n    m    Zernike polynomial    Normalization ?RyeZKf  
    %       --------------------------------------------- 0x&-/qce6W  
    %       0    0    1                        sqrt(2) ,Jm2|WKH  
    %       1    1    r                           2 \$.8iTr@  
    %       2    0    2*r^2 - 1                sqrt(6) OPVF)@"ptM  
    %       2    2    r^2                      sqrt(6) {t<E*5N]a  
    %       3    1    3*r^3 - 2*r              sqrt(8) By& T59  
    %       3    3    r^3                      sqrt(8) }^!8I7J.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ;L1Q"Hxh  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) u^HC1r|%  
    %       4    4    r^4                      sqrt(10) S{HAFrkm7  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #|<\q*<  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 5bKBVkJ'  
    %       5    5    r^5                      sqrt(12) 1:!_AU?  
    %       --------------------------------------------- @d&(*9Y  
    % . V5Pr}"y  
    %   Example: BvQMq5&  
    % k!?sHUAj  
    %       % Display three example Zernike radial polynomials 7+_TdDBYs  
    %       r = 0:0.01:1; U"nk AW  
    %       n = [3 2 5]; Rcg q7W  
    %       m = [1 2 1]; "Y%fk/v8  
    %       z = zernpol(n,m,r); BlwAD  
    %       figure LqNt.d @  
    %       plot(r,z) O+iNR9O  
    %       grid on ?4k/V6n@y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') WP*xu-(:  
    % b#~K>  
    %   See also ZERNFUN, ZERNFUN2. ``X1xiB  
    ;Gc,-BDFw  
    % A note on the algorithm. #`Af  
    % ------------------------ J,iS<lV_  
    % The radial Zernike polynomials are computed using the series =VC"X?N  
    % representation shown in the Help section above. For many special i}u,_ }  
    % functions, direct evaluation using the series representation can ~Up5+7k@  
    % produce poor numerical results (floating point errors), because %y96]e1  
    % the summation often involves computing small differences between / thFs4  
    % large successive terms in the series. (In such cases, the functions ZhqGUb  
    % are often evaluated using alternative methods such as recurrence P 2-^j)  
    % relations: see the Legendre functions, for example). For the Zernike hn`yc7<}(u  
    % polynomials, however, this problem does not arise, because the ,> Ya%;h2k  
    % polynomials are evaluated over the finite domain r = (0,1), and {lam],#r  
    % because the coefficients for a given polynomial are generally all %#go9H(K  
    % of similar magnitude. xG_LEk( zD  
    % nXU`^<nA  
    % ZERNPOL has been written using a vectorized implementation: multiple W;Y"J_  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4{PN9i E  
    % values can be passed as inputs) for a vector of points R.  To achieve ;H' ,PjU  
    % this vectorization most efficiently, the algorithm in ZERNPOL ys/U.e|)!  
    % involves pre-determining all the powers p of R that are required to ~,^pya  
    % compute the outputs, and then compiling the {R^p} into a single S_eD1iY2-  
    % matrix.  This avoids any redundant computation of the R^p, and 83(-/ y  
    % minimizes the sizes of certain intermediate variables. 2ezk<R5q+  
    % CMhl*dH  
    %   Paul Fricker 11/13/2006 Z=+Tw!wR>  
    *x!j:/S`n  
    i C)+5L#'  
    % Check and prepare the inputs: ?4`f@=}'K  
    % ----------------------------- vRhI:E)So#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C.|.0^5  
        error('zernpol:NMvectors','N and M must be vectors.') t6q7 w  
    end HfOaJ'+e<  
    m~I@ q [  
    if length(n)~=length(m) O#_\@f#[  
        error('zernpol:NMlength','N and M must be the same length.') K ' ?`'7  
    end u Vth&4dh9  
    1La?x'{2MP  
    n = n(:); G1 K@Ir<  
    m = m(:); g+j\wvx0  
    length_n = length(n); 1b=,lm  
    SuR+Vv  
    if any(mod(n-m,2)) 9]L4`.HM  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Vg^yjP{sv  
    end (.J6>"K<  
    oA*88c+{f  
    if any(m<0) 2^X<n{0N)  
        error('zernpol:Mpositive','All M must be positive.') #Zg pm"MW  
    end NwcRH9};i  
    og?L 9  
    if any(m>n) g#iRkz%l)&  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') h.pVIO`  
    end %ONU0xtqk  
    5(>ux@[qI:  
    if any( r>1 | r<0 ) 5E#8F  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') -5b#w"^w^  
    end Eo`'6 3  
    rDWwu '  
    if ~any(size(r)==1) &s8vmUt  
        error('zernpol:Rvector','R must be a vector.') 03n+kh  
    end g8R@ol0  
    #e[S+a  
    r = r(:); ?!.L#]23f  
    length_r = length(r); );/p[Fd2]  
    782 oXyD  
    if nargin==4 Z5V_?bm$  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); B un^EJ)  
        if ~isnorm 84lT# ^q  
            error('zernpol:normalization','Unrecognized normalization flag.') _ G$21=  
        end ?>1wZ  
    else Y1;jRIOA  
        isnorm = false; P\y ZcL  
    end v'Pbx  
    q:1n=i Ei  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 12V-EG i  
    % Compute the Zernike Polynomials *m8{yh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L=@8Z i!2<  
    $3S`A]xO  
    % Determine the required powers of r: sk5B} -  
    % ----------------------------------- K1=j7  
    rpowers = []; ,z01 *Yx  
    for j = 1:length(n) u f1s}/M  
        rpowers = [rpowers m(j):2:n(j)]; q8)w Al  
    end ;v!Ef"E|cV  
    rpowers = unique(rpowers); BS2'BS8  
    3T /_#=9TV  
    % Pre-compute the values of r raised to the required powers, E&ReQgBft  
    % and compile them in a matrix: ' ,1[rWyc  
    % ----------------------------- t9.| i H  
    if rpowers(1)==0 EeQ2\'t  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [4Q;5 'Dj  
        rpowern = cat(2,rpowern{:}); ub2B!6f a  
        rpowern = [ones(length_r,1) rpowern]; 5,BvT>zFY  
    else f.c2AY~5[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;D<;pW  
        rpowern = cat(2,rpowern{:}); yb-4[C:i  
    end 5~OKKSUmT  
    4,&f#=Y  
    % Compute the values of the polynomials: #"-DE-I[  
    % -------------------------------------- mMT\"bb'  
    z = zeros(length_r,length_n); l>6p')F!  
    for j = 1:length_n ctPT=i60  
        s = 0:(n(j)-m(j))/2; g)}q3-<AK>  
        pows = n(j):-2:m(j); N"7BV  
        for k = length(s):-1:1 %NcBq3  
            p = (1-2*mod(s(k),2))* ... ] I5&'#%2  
                       prod(2:(n(j)-s(k)))/          ... z%nplG'~|  
                       prod(2:s(k))/                 ... LlD=c  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... K."W/A!  
                       prod(2:((n(j)+m(j))/2-s(k))); (/S6b  
            idx = (pows(k)==rpowers); +fHqGZ]  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &w{z  
        end )1g\v8XT  
         \0)2 u[7  
        if isnorm 39x 4(  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); '8LHX6FXK  
        end d>0 j!+s  
    end @P">4xVX{  
    9R:?vk4  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (1b%);L7  
    c{t(),nAA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 afa7'l=^i  
    &za~=+  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)