非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (,d4"C
function z = zernfun(n,m,r,theta,nflag) `</=AY>
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }3
fLV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iX0]g45o
% and angular frequency M, evaluated at positions (R,THETA) on the /y+;g{
% unit circle. N is a vector of positive integers (including 0), and v
Ie=wf~D`
% M is a vector with the same number of elements as N. Each element )&b}^1
% k of M must be a positive integer, with possible values M(k) = -N(k) A &X
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "t3uW6&
% and THETA is a vector of angles. R and THETA must have the same A)O_es2
% length. The output Z is a matrix with one column for every (N,M) wR5\^[GN
% pair, and one row for every (R,THETA) pair. SXT@& @E
% _RA{SO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F)[XIY&2/
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wsdB;
6%$
% with delta(m,0) the Kronecker delta, is chosen so that the integral !3b|*].B
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [="g|/M)
% and theta=0 to theta=2*pi) is unity. For the non-normalized op.PS{_t
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yH0yO*RZ
% bv:0EdVr
% The Zernike functions are an orthogonal basis on the unit circle. , u8ZS|9
% They are used in disciplines such as astronomy, optics, and xr7-[)3Q$
% optometry to describe functions on a circular domain. : pE-{3I
% "G i+zkVm
% The following table lists the first 15 Zernike functions. JN;TGtB^p
% U#UVenp@
% n m Zernike function Normalization .&*
({UM
% -------------------------------------------------- ArEH%e
% 0 0 1 1 l\A}lC0?J
% 1 1 r * cos(theta) 2 eY6gb!5u
% 1 -1 r * sin(theta) 2 YKs^%GO+
% 2 -2 r^2 * cos(2*theta) sqrt(6) wHo#%Y,Nmi
% 2 0 (2*r^2 - 1) sqrt(3) it/C y\f
% 2 2 r^2 * sin(2*theta) sqrt(6) "R\\\I7u
% 3 -3 r^3 * cos(3*theta) sqrt(8) U:etcnb4w>
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $@ T6g
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z7KB?1{G
% 3 3 r^3 * sin(3*theta) sqrt(8) 2S7H_qo$
% 4 -4 r^4 * cos(4*theta) sqrt(10) |RvpEy76
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nCSd:1DY
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) iBPdCp%]`
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W:;`
% 4 4 r^4 * sin(4*theta) sqrt(10) F_M~!]<na
% -------------------------------------------------- 1VPN#Q!
% &a2V-|G',
% Example 1: ,pGCgOG#}c
% kHo;9j-U
% % Display the Zernike function Z(n=5,m=1) [w#x5Xsn
% x = -1:0.01:1; zYgK$u^H
% [X,Y] = meshgrid(x,x); *fuGVA
% [theta,r] = cart2pol(X,Y); 46.q anh
% idx = r<=1; 8en#PH }
% z = nan(size(X)); !z4Hj{A_
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0F;(_2V-
% figure 40l#'< y;
% pcolor(x,x,z), shading interp yrK--C8
% axis square, colorbar Ik@Q@ T"
% title('Zernike function Z_5^1(r,\theta)') "#eNFCo7k
% Jj^<:t5{rN
% Example 2: 5sV/N] !
% _
/28Cw
% % Display the first 10 Zernike functions ~:RDw<PWp
% x = -1:0.01:1; ~1wdAq`'a
% [X,Y] = meshgrid(x,x); 2dV\=vd
% [theta,r] = cart2pol(X,Y); M@LaD 5
% idx = r<=1; '\E*W!R.]
% z = nan(size(X)); ekk&TTp#
% n = [0 1 1 2 2 2 3 3 3 3]; 3K'o&>}L
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ` $x#_-Hn
% Nplot = [4 10 12 16 18 20 22 24 26 28]; o4I!VK(C#s
% y = zernfun(n,m,r(idx),theta(idx)); ;HLMU36q
% figure('Units','normalized') k~s>8N:&G
% for k = 1:10 9|kEq>d
% z(idx) = y(:,k); smLDm
% subplot(4,7,Nplot(k)) |yl0}.()
% pcolor(x,x,z), shading interp +EB,7<5<
% set(gca,'XTick',[],'YTick',[]) |Nx!g fU
% axis square Z@aL"@2]a
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) GzZ|T7fm
% end 5)zh@aJ@
% >J75T1PH=
% See also ZERNPOL, ZERNFUN2. '>WuukC
Bc"}nSjH
% Paul Fricker 11/13/2006 O t4+VbB6
X=c
,`&^
LXEu^F~{u#
% Check and prepare the inputs: !&:W1Jkp(
% ----------------------------- Z-sN4fr a
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ai_|)
error('zernfun:NMvectors','N and M must be vectors.') q
]R @:a/
end nR |LV'(
%IH|zSr)EM
if length(n)~=length(m) VFaK>gQ
error('zernfun:NMlength','N and M must be the same length.') !vo '8r?&
end +mQC:B7>
. eag84_
n = n(:); 2D_Vo ])l/
m = m(:); DBh/V#* D
if any(mod(n-m,2)) d~f0]O
error('zernfun:NMmultiplesof2', ... QO`Sn N}
'All N and M must differ by multiples of 2 (including 0).') '*{Rn7B5
end 0~L8yMM
ppo$&W
&z
if any(m>n) `&Of82*w
error('zernfun:MlessthanN', ... .1q~,}toX
'Each M must be less than or equal to its corresponding N.') #Uk6Fmu]
end ]=XL9MI
]~x/8%e76
if any( r>1 | r<0 ) ,xM*hN3A
error('zernfun:Rlessthan1','All R must be between 0 and 1.') uXW.
(x7"f
end o6yZ@R
]X;*\-
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~322dG
error('zernfun:RTHvector','R and THETA must be vectors.') T[9jTO?W2
end %Bu n@
yW,#&>]# |
r = r(:); KdQ|$t
theta = theta(:); kk./-G
length_r = length(r); GN"LU>9|
if length_r~=length(theta) ]]QCJf@p
error('zernfun:RTHlength', ... hr"+0KeX
'The number of R- and THETA-values must be equal.') qf&{O:,Z
end WD`{kqc
Z42 Suy
% Check normalization: 0_Z|y/I.
% -------------------- <T~fh>a
if nargin==5 && ischar(nflag) ZaV66Y>
isnorm = strcmpi(nflag,'norm'); [?o vJ
if ~isnorm gK_[3FiKt
error('zernfun:normalization','Unrecognized normalization flag.') FNRE_83
end y/*Tvb #TJ
else >bP7}T
isnorm = false; e$|)wOwU
end PsT v\!
B9Tztg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $>37PVVW
% Compute the Zernike Polynomials o:\j/+]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | Dpfh
7027@M?A?
% Determine the required powers of r: ,'DrFlI
% ----------------------------------- MM$"6Jor
m_abs = abs(m); H LGy"P
rpowers = []; W
9MZ
for j = 1:length(n) \5c -L_
rpowers = [rpowers m_abs(j):2:n(j)]; jmVy4* P_
end e[o
;l
rpowers = unique(rpowers); A{T@O5ucj
&!fcL Jd
% Pre-compute the values of r raised to the required powers, Gl:T
% and compile them in a matrix: rZ4<*Zegv
% ----------------------------- mV]g5>Q\
if rpowers(1)==0 V!tBipX%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X,CFY
rpowern = cat(2,rpowern{:}); $F$R4?_
rpowern = [ones(length_r,1) rpowern]; 4?uG> ;V
else 1caod0gor
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HBGA
lZ
rpowern = cat(2,rpowern{:}); UHHKI)(
end 70(?X/5#
=xP{f<`
% Compute the values of the polynomials: %E_{L
% -------------------------------------- |^!@
y = zeros(length_r,length(n)); 6;V1PK>9
for j = 1:length(n) IcA~f@
s = 0:(n(j)-m_abs(j))/2; 1<e%)? G
pows = n(j):-2:m_abs(j); K0a
50@B]
for k = length(s):-1:1 SXF_)1QO\W
p = (1-2*mod(s(k),2))* ... sUMn
(@r
prod(2:(n(j)-s(k)))/ ... '~a$f;: Dv
prod(2:s(k))/ ... M&-/&>n!
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... j"8N)la
prod(2:((n(j)+m_abs(j))/2-s(k))); >:|q J$J.
idx = (pows(k)==rpowers); be@uHikp;v
y(:,j) = y(:,j) + p*rpowern(:,idx); E.9k%%X]
end =LA@E&,j
zt}p-U2I
if isnorm (LPD
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *&MkkI#
end `vBa.)u
end X.|0E87
% END: Compute the Zernike Polynomials #0H[RU?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 63$m& ]x
;Bi{;>3
% Compute the Zernike functions: KHiJOeLc
% ------------------------------
BT0hx!Ti
idx_pos = m>0; 3/05ee;|
idx_neg = m<0; "KwKO8f
t,nB`g?
z = y; UlytxWkUX
if any(idx_pos) i*j+<R@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [N)M]u
end m,O!Mt
if any(idx_neg) _r'M^=yx[
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !CKUkoX
end _Oq\YQb v
&.B6P|N'
% EOF zernfun