切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11407阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 dw bR,K  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! PLyity-L[7  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NO"PO @&Wk  
    function z = zernfun(n,m,r,theta,nflag) +eM${JyXH  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. tZrc4$D-  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3FEJ 9ZyG  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Zp_(vOc  
    %   unit circle.  N is a vector of positive integers (including 0), and ^.SYAwL  
    %   M is a vector with the same number of elements as N.  Each element c?p^!zG  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) H"C'<(4*\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u2V-V#jS  
    %   and THETA is a vector of angles.  R and THETA must have the same mP(3[a_Q  
    %   length.  The output Z is a matrix with one column for every (N,M) w2 )Ro:G  
    %   pair, and one row for every (R,THETA) pair. qS!r<'F3dP  
    % n/H OP  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5gszAvOO  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :$5A3i  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral GP|=4T}Bf  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I$n= >s  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized S:\i M:  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nR!e(  
    % ])x1MmRg\  
    %   The Zernike functions are an orthogonal basis on the unit circle. n\#YGL<n  
    %   They are used in disciplines such as astronomy, optics, and fCl}eXg6w  
    %   optometry to describe functions on a circular domain. )*|/5wW1  
    % v0^9 "V:y  
    %   The following table lists the first 15 Zernike functions. &J[a.:..  
    % #Ondhy%h[  
    %       n    m    Zernike function           Normalization E_HB[ 9  
    %       -------------------------------------------------- E*_^+ %  
    %       0    0    1                                 1 DT1gy:?L  
    %       1    1    r * cos(theta)                    2 "cH RGJG#  
    %       1   -1    r * sin(theta)                    2 ]|;+2@kDR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ) "#'   
    %       2    0    (2*r^2 - 1)                    sqrt(3) "}]`64?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2EY"[xK|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) o9?@jjqH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) cw;wv+|k  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3P>gDQP  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0ju1>.p  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) q>q:ZV  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *OVB;]D3+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <3YZ0f f>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k_=SDm a  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &dtk&P{  
    %       --------------------------------------------------  s>rR\`  
    % LzygupxY!  
    %   Example 1: lG*Rw-?a  
    % &[.5@sv  
    %       % Display the Zernike function Z(n=5,m=1) gU9{~-9}  
    %       x = -1:0.01:1; 0oe<=L]F  
    %       [X,Y] = meshgrid(x,x); ]AP1+ &9fN  
    %       [theta,r] = cart2pol(X,Y); I Mgd2qIC  
    %       idx = r<=1; NOz3_k  
    %       z = nan(size(X)); C \ Cc[v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Fc[KIG3@  
    %       figure yIw}n67  
    %       pcolor(x,x,z), shading interp E3L?6Qfx>  
    %       axis square, colorbar ~PQ.l\C  
    %       title('Zernike function Z_5^1(r,\theta)') ;rh.6Dl  
    % ^s,3*cAU  
    %   Example 2: ?M2(8 0  
    % O-- p)\   
    %       % Display the first 10 Zernike functions 61\u{@o$  
    %       x = -1:0.01:1; 1I Yip\:lS  
    %       [X,Y] = meshgrid(x,x); #GsOE#*>T  
    %       [theta,r] = cart2pol(X,Y); l,wlxh$}(  
    %       idx = r<=1; p< R:[rz  
    %       z = nan(size(X)); _8K+iqMZG  
    %       n = [0  1  1  2  2  2  3  3  3  3]; b`0tfXzS5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; SNEhP5!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; gW, [X(  
    %       y = zernfun(n,m,r(idx),theta(idx));  Xo^8o0xi  
    %       figure('Units','normalized') +^I0> \  
    %       for k = 1:10 6K2e]r  
    %           z(idx) = y(:,k); p_r`"  
    %           subplot(4,7,Nplot(k)) 4Z)4WGp!  
    %           pcolor(x,x,z), shading interp 3WV(Ok  
    %           set(gca,'XTick',[],'YTick',[]) | %_C$s%  
    %           axis square 0SpB 2>_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &\zYbGU  
    %       end {%jAp11y+O  
    % G1:}{a5i_  
    %   See also ZERNPOL, ZERNFUN2. *miG<  
    VA/2$5Wu  
    %   Paul Fricker 11/13/2006 5f0M{J,KC  
    :]"5UY?oF  
    /iW+<@Mas  
    % Check and prepare the inputs: sYTz6-  
    % ----------------------------- vz^ ] g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e8a^"Z`a  
        error('zernfun:NMvectors','N and M must be vectors.') T+8Yd(:hX  
    end j:9M${~  
    pDQ f(@M[  
    if length(n)~=length(m) 6iFlz9XiI  
        error('zernfun:NMlength','N and M must be the same length.') -oD,F $Rb  
    end p^l#Wq5  
    7T[~~V^x  
    n = n(:); !E70e$Th  
    m = m(:); .j6udiv5  
    if any(mod(n-m,2)) G T>'|~e  
        error('zernfun:NMmultiplesof2', ... wG3L+[,  
              'All N and M must differ by multiples of 2 (including 0).') E4#{&sRT  
    end aRd~T6I  
    bC&A@.g{  
    if any(m>n) b[%@3}E  
        error('zernfun:MlessthanN', ... s|YH_1r  
              'Each M must be less than or equal to its corresponding N.') qLR;:$]Q&8  
    end  ^`H'LD  
    wl=tN{R  
    if any( r>1 | r<0 ) ]aN9mT N  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') eAHY/Y!  
    end g 2Fg  
    f5}afPk  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zzG=!JR  
        error('zernfun:RTHvector','R and THETA must be vectors.') !&)X5oJ  
    end |$.?(FZYu  
    &9jJ\+:7  
    r = r(:); "2e3 <:$  
    theta = theta(:); H4i}gdR  
    length_r = length(r); Km2~nkQ  
    if length_r~=length(theta) N=mvr&arP  
        error('zernfun:RTHlength', ... pEB3 qGA  
              'The number of R- and THETA-values must be equal.') *h^->+0n  
    end 2[ sY?C  
    L F?/60  
    % Check normalization: MmJMx  
    % -------------------- .0Ud?v>=  
    if nargin==5 && ischar(nflag) _/[qBe  
        isnorm = strcmpi(nflag,'norm'); as07~Xvp-  
        if ~isnorm $W._FAAJ#  
            error('zernfun:normalization','Unrecognized normalization flag.') `&;#A*C0  
        end q NGR6i  
    else kHg|!  
        isnorm = false; EeaJUK]z9  
    end NF$6yv9C  
    f,YORJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LP3#f{U  
    % Compute the Zernike Polynomials W3i<Unq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 288mP]a(v_  
    &Vj @){  
    % Determine the required powers of r: CKw-HgXG  
    % ----------------------------------- ueg%yvO  
    m_abs = abs(m); (o>N*?, }  
    rpowers = []; &H _/`Z]Q  
    for j = 1:length(n) o HK   
        rpowers = [rpowers m_abs(j):2:n(j)]; DLwlA !z  
    end t!D'ZLw  
    rpowers = unique(rpowers); Q}#4Qz~n  
    tbQY&TO1  
    % Pre-compute the values of r raised to the required powers, ZfM]A)  
    % and compile them in a matrix: &zn|),  
    % ----------------------------- pI@71~|R  
    if rpowers(1)==0 Yjg$o:M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); besc7!S  
        rpowern = cat(2,rpowern{:}); Ehy(;n)\  
        rpowern = [ones(length_r,1) rpowern]; <n_? $ TJ  
    else h!B{7J  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `!8\ |/  
        rpowern = cat(2,rpowern{:}); hC-uz _/3  
    end 9^^\Z5  
    1dD%a91  
    % Compute the values of the polynomials: +5fB?0D;  
    % -------------------------------------- TjpyU:R,&|  
    y = zeros(length_r,length(n)); $#^3>u  
    for j = 1:length(n) G-CL \G\n  
        s = 0:(n(j)-m_abs(j))/2; .J.}}"+U  
        pows = n(j):-2:m_abs(j); gd[muR ~  
        for k = length(s):-1:1 >$kFYb>~q  
            p = (1-2*mod(s(k),2))* ... H Qj,0#J)  
                       prod(2:(n(j)-s(k)))/              ... /}u:N:HA%  
                       prod(2:s(k))/                     ... \]Y<d  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... II^Rp],>  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); uNewWtUb(  
            idx = (pows(k)==rpowers); 4#t'1tzu#  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @Z0. }}Y  
        end Wv>`x?W  
         _Q:ot'(~0-  
        if isnorm -cUW,>E  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mq{Z Q'  
        end d{TcjZ  
    end CCpRQKb=  
    % END: Compute the Zernike Polynomials M_O$]^I3w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l>jrY1u  
    padV|hF3(e  
    % Compute the Zernike functions: mAH7; u<  
    % ------------------------------ `LH9@Z{  
    idx_pos = m>0; 6l|L/Z_6  
    idx_neg = m<0; QM!UMqdj  
    Qc33C A  
    z = y; W'Gh:73'}  
    if any(idx_pos) @3eMvbI  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W}F~vx.  
    end  [6@bsXiw  
    if any(idx_neg) eDo4>k"5  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *K>2B99TXu  
    end F_u ?.6e]  
    DKo6lP`  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :wzbD,/M  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. B8cg[;e81  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated  :A#'8xE/  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive [)Ia Xa  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ILNghtm-  
    %   and THETA is a vector of angles.  R and THETA must have the same KW0KXO06a  
    %   length.  The output Z is a matrix with one column for every P-value, WbFCj0  
    %   and one row for every (R,THETA) pair. v&sp;%I6=  
    % 4&]NC2I  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )`=N+k]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) >iJxq6!  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 8}z PDs  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 4P2p|Gc3  
    %   for all p. 84(jg P  
    % q9(O=7O]-  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Pi&\GMzd  
    %   Zernike functions (order N<=7).  In some disciplines it is Kd#64NSi$A  
    %   traditional to label the first 36 functions using a single mode v@X[0J_8  
    %   number P instead of separate numbers for the order N and azimuthal Z,3CMWHg  
    %   frequency M. RplcM%YJn  
    % EY1L5 Ba.  
    %   Example: 6{Bvl[mhI  
    % ]~WIGl"g  
    %       % Display the first 16 Zernike functions ,! ~U5~  
    %       x = -1:0.01:1; e?aSM  
    %       [X,Y] = meshgrid(x,x); KE)^S [Da  
    %       [theta,r] = cart2pol(X,Y); [xs`Pi  
    %       idx = r<=1; B*Q.EKD8s  
    %       p = 0:15; '?|.#D#-c  
    %       z = nan(size(X)); 5o|u!#6  
    %       y = zernfun2(p,r(idx),theta(idx)); ~"~uXNd  
    %       figure('Units','normalized') bF@iO316H  
    %       for k = 1:length(p) {-IRX)m*  
    %           z(idx) = y(:,k); R[lA@q:  
    %           subplot(4,4,k) m<9W#  
    %           pcolor(x,x,z), shading interp z Hj_q%A  
    %           set(gca,'XTick',[],'YTick',[]) 4_eFc$^  
    %           axis square {XS2<!D  
    %           title(['Z_{' num2str(p(k)) '}']) atFu KYI  
    %       end X<"#=u(  
    % Bsz;GnD|r  
    %   See also ZERNPOL, ZERNFUN. Bq:: 5,v  
    \AR3DDm  
    %   Paul Fricker 11/13/2006 k.0pPl  
    HQ|{!P\/?U  
    _`94CC:  
    % Check and prepare the inputs: E}w<-]8  
    % ----------------------------- PDh1*bf{u  
    if min(size(p))~=1 PJcz] <  
        error('zernfun2:Pvector','Input P must be vector.') rNHV  
    end 20uR?/|@  
    =>h~<88#5  
    if any(p)>35 @l2AL9z$m>  
        error('zernfun2:P36', ... T\HP5&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Xp3cYS*u  
               '(P = 0 to 35).']) #^/&fdK~A  
    end [26([H  
    KWV{wW=-  
    % Get the order and frequency corresonding to the function number: q} R"  
    % ---------------------------------------------------------------- 65A>p:OO  
    p = p(:); gs|%3k|  
    n = ceil((-3+sqrt(9+8*p))/2); >^Z!  
    m = 2*p - n.*(n+2); esEOV$s}  
    _^ @}LVv+E  
    % Pass the inputs to the function ZERNFUN: )%OV|\5#  
    % ---------------------------------------- 4B8{\ "6  
    switch nargin {GH 0 J"  
        case 3 RT2a:3f  
            z = zernfun(n,m,r,theta); ?G-a:'1!6  
        case 4 hMx/}Tw wt  
            z = zernfun(n,m,r,theta,nflag); <BN)>NqM  
        otherwise ~ #~Kxh  
            error('zernfun2:nargin','Incorrect number of inputs.') 86@@j*c(@k  
    end 5G=CvGu  
    Om2 )$(  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) GRj{*zs  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. an<tupi[E  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of  o*QhoDjc  
    %   order N and frequency M, evaluated at R.  N is a vector of $y >J=  
    %   positive integers (including 0), and M is a vector with the R16" lG  
    %   same number of elements as N.  Each element k of M must be a ?z60b=f8  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 4 ITSDx  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #tBbvs+%  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix QTK{JZf  
    %   with one column for every (N,M) pair, and one row for every p2 y h  
    %   element in R. H1=R(+-s  
    % (85F1"Jp  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- R m *"SG  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is +;z4.C{gM  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to '89D62\89  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 x<=+RYz#^:  
    %   for all [n,m]. JX/rAnc@  
    % KFCzf_P!  
    %   The radial Zernike polynomials are the radial portion of the )mZ`j.  
    %   Zernike functions, which are an orthogonal basis on the unit ^yu^Du  
    %   circle.  The series representation of the radial Zernike 7IZ(3B<87t  
    %   polynomials is jvm "7)h  
    % 4(YKwY2_L  
    %          (n-m)/2 OY`G_=6!N  
    %            __ !cE)LG  
    %    m      \       s                                          n-2s ( {zp$P}  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r )CXJRo`j0  
    %    n      s=0 <<&:BK   
    % #!y|cP~;I  
    %   The following table shows the first 12 polynomials. m(Bv}9  
    % wEzLfZ Oz/  
    %       n    m    Zernike polynomial    Normalization ZT_EpT=1  
    %       --------------------------------------------- x_(B7ob  
    %       0    0    1                        sqrt(2) g >-iBxml  
    %       1    1    r                           2 E9226  
    %       2    0    2*r^2 - 1                sqrt(6) mKnkHGM  
    %       2    2    r^2                      sqrt(6) S` X;2\:  
    %       3    1    3*r^3 - 2*r              sqrt(8) R`>E_SY  
    %       3    3    r^3                      sqrt(8) h.~S^uKi*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) JYKA@sZHe  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (g~&$&pa  
    %       4    4    r^4                      sqrt(10) tp*AA@~  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) h+ELtf  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ;Cyt2]F  
    %       5    5    r^5                      sqrt(12) S]{K^Q),  
    %       --------------------------------------------- eVbHPu4  
    % :fpYraBM  
    %   Example: Te!q(;L`4  
    % I#S6k%-'  
    %       % Display three example Zernike radial polynomials p#J}@a  
    %       r = 0:0.01:1; xp>r a2A  
    %       n = [3 2 5]; t91v%L   
    %       m = [1 2 1]; "vjz $.  
    %       z = zernpol(n,m,r);  i)8,u  
    %       figure ZZFa<AK4  
    %       plot(r,z) cy/;qd+!M  
    %       grid on Y@^M U->+  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 4(  ^Ht  
    % MWsBZJRr  
    %   See also ZERNFUN, ZERNFUN2. vVZ@/D6w  
    pt|u?T_+  
    % A note on the algorithm. xk.\IrB_  
    % ------------------------  @;d(>_n  
    % The radial Zernike polynomials are computed using the series LYavth`@h  
    % representation shown in the Help section above. For many special 0rA&_K[#-<  
    % functions, direct evaluation using the series representation can /[t]m,p$yq  
    % produce poor numerical results (floating point errors), because g;eMsoJG  
    % the summation often involves computing small differences between )UZ 's>O  
    % large successive terms in the series. (In such cases, the functions ShHm7+fV  
    % are often evaluated using alternative methods such as recurrence E@P8-x'i  
    % relations: see the Legendre functions, for example). For the Zernike 3MiNJi#=2  
    % polynomials, however, this problem does not arise, because the EQz`o+  
    % polynomials are evaluated over the finite domain r = (0,1), and Ry[VEn>C1  
    % because the coefficients for a given polynomial are generally all JyYg)f  
    % of similar magnitude. RP z0WP  
    % O\B_=KWDO  
    % ZERNPOL has been written using a vectorized implementation: multiple XrtB&h|C  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ;VYL7Xu](  
    % values can be passed as inputs) for a vector of points R.  To achieve ^0A'XCULG  
    % this vectorization most efficiently, the algorithm in ZERNPOL +;pdG[N  
    % involves pre-determining all the powers p of R that are required to }O5c.3  
    % compute the outputs, and then compiling the {R^p} into a single x>;! `}x  
    % matrix.  This avoids any redundant computation of the R^p, and |z Gwt Z  
    % minimizes the sizes of certain intermediate variables. Nx;U]O6A  
    % xhj A!\DS  
    %   Paul Fricker 11/13/2006 6#KRI%adw`  
    -GDX#A-J  
    r^VH [c@c  
    % Check and prepare the inputs: XNf%vC>  
    % ----------------------------- :_i1)4[!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %{5mkO&,2  
        error('zernpol:NMvectors','N and M must be vectors.') a@lvn/b2  
    end S;a{wYF6v  
    9eH(FB  
    if length(n)~=length(m) $^y6>@~  
        error('zernpol:NMlength','N and M must be the same length.') e ,k,L  
    end ,57g_z]V  
    IdUMoLL?  
    n = n(:); y 7|x<Z  
    m = m(:); ?o"wyF A*  
    length_n = length(n); ~z^VMr  
    $F`jM/B6  
    if any(mod(n-m,2)) P+wV.pF|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ~aNK)<Fznd  
    end k6QQoLb$V  
    +kd88Fx  
    if any(m<0) Q: [d   
        error('zernpol:Mpositive','All M must be positive.') 8AOJ'~$  
    end G5Y 8]N  
    IO/2iSbW  
    if any(m>n) @]Aul9.h  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') {Fta4D_1N  
    end LwZBM#_g  
    ,Si\ky7L  
    if any( r>1 | r<0 ) ` Cdk b5  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') kb Fr  
    end w6'o<=  
    -z-58FLlO  
    if ~any(size(r)==1) k 9R_27F  
        error('zernpol:Rvector','R must be a vector.') !r,ZyJU  
    end ;m,lS_[c  
    (?72 vCc  
    r = r(:); `f}}z5  
    length_r = length(r); O{,Uge2n,  
    uB>NwCL;  
    if nargin==4 F=EAD3  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $h`?l$jC(@  
        if ~isnorm G9<p Yt{:  
            error('zernpol:normalization','Unrecognized normalization flag.') xO`w| k  
        end `^-?yu@  
    else [#fXmW>N/  
        isnorm = false; vtc} )s\  
    end ^VR1whCrx  
    ;<1O86!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >r2m1}6g"  
    % Compute the Zernike Polynomials  L,!Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VZ &>zF  
    iOm~  
    % Determine the required powers of r: z%Ywjfn'  
    % ----------------------------------- <T[%03  
    rpowers = []; yb1A(~  
    for j = 1:length(n) s[)2z3  
        rpowers = [rpowers m(j):2:n(j)]; dGAthbWJ  
    end ^2[0cne  
    rpowers = unique(rpowers); M@UkXA}  
    ;LELC5[*s  
    % Pre-compute the values of r raised to the required powers, PorBB7iL  
    % and compile them in a matrix: {dhuvB  
    % ----------------------------- e<dFvMO  
    if rpowers(1)==0 =<s+cM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7Av/ZS  
        rpowern = cat(2,rpowern{:}); W%hdS<b  
        rpowern = [ones(length_r,1) rpowern]; _j-k*:  
    else }UMg ph:2:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J\b,rOIf  
        rpowern = cat(2,rpowern{:}); 7qt<C LJ  
    end  %1<No/  
    ?q1&(g]qO  
    % Compute the values of the polynomials: HuBG?4Qd  
    % -------------------------------------- Na=9 ju  
    z = zeros(length_r,length_n); L.$9ernVY  
    for j = 1:length_n {g@Wd2-J}  
        s = 0:(n(j)-m(j))/2; 8Y3c,p/gS>  
        pows = n(j):-2:m(j); EC&t+"=R  
        for k = length(s):-1:1 fu}NH \{  
            p = (1-2*mod(s(k),2))* ... &<R8'  
                       prod(2:(n(j)-s(k)))/          ... V:9|9$G  
                       prod(2:s(k))/                 ... *E+2E^B  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... + _rjA_  
                       prod(2:((n(j)+m(j))/2-s(k))); zLc.4k  
            idx = (pows(k)==rpowers); M7/P&d  
            z(:,j) = z(:,j) + p*rpowern(:,idx); quN7'5ZC[  
        end N{46DS  
         ZZ A!Y9ia2  
        if isnorm t }7hD  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); K~z*P 0g*  
        end 9*GwW&M%1_  
    end M(HU^?B{'  
    /p~"?9b[ i  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  cJ!wZT`  
    }xLwv=Ia  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 b ";#qVv C  
    *sAoYx  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)