切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11608阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 5^}\4.eXo  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! B+$%*%b  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .L+6 $8m  
    function z = zernfun(n,m,r,theta,nflag) x" 7H5<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. tCw<Ip  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O8f?; ]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the dR K?~1  
    %   unit circle.  N is a vector of positive integers (including 0), and CVDV)#JA  
    %   M is a vector with the same number of elements as N.  Each element -TLlwxc^%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Dxtp2wu%t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, MO[2~`,Q!  
    %   and THETA is a vector of angles.  R and THETA must have the same HUcq% .  
    %   length.  The output Z is a matrix with one column for every (N,M) !d'GE`w T  
    %   pair, and one row for every (R,THETA) pair. \h+AXs<j  
    % )tG\vk=@  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +|*IZ:w)  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8aZ=?_gvT  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral nz%DM<0$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, k3~}7]O)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @<,X0S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '-wj9OU  
    % FOb0uj=(v  
    %   The Zernike functions are an orthogonal basis on the unit circle. %]\kgRr  
    %   They are used in disciplines such as astronomy, optics, and __uA}f Zp  
    %   optometry to describe functions on a circular domain. CZ8KEBl  
    % G3t xj  
    %   The following table lists the first 15 Zernike functions. XWn VgY s  
    % bT</3>+C  
    %       n    m    Zernike function           Normalization >d@&2FTO  
    %       -------------------------------------------------- |U~<3.:m:  
    %       0    0    1                                 1 U1Q:= yD  
    %       1    1    r * cos(theta)                    2 GXcJ< v  
    %       1   -1    r * sin(theta)                    2 iyN:%ofh  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~W*FCG#E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0*VWzH   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `K*Q5n  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) T _r:4JS  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y2|#V#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) JELT ou  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) rUwZMli  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }q`ts=dlGt  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1Vsz4P"O $  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ><RpEnWZ<  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -M~8{buxv  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) j~"Q3P;V  
    %       -------------------------------------------------- YD <:,|H   
    % >~#yu&*D  
    %   Example 1: Ha(c'\T (\  
    % @X%C>iYa9  
    %       % Display the Zernike function Z(n=5,m=1) E{`kaWmC&~  
    %       x = -1:0.01:1; _uWpJhCT  
    %       [X,Y] = meshgrid(x,x); Q`~jw>x  
    %       [theta,r] = cart2pol(X,Y); Amp#GR1CA  
    %       idx = r<=1; v5/~-uRL%  
    %       z = nan(size(X)); ,%6P0#-  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;m0~L=w  
    %       figure -O1>|y2rU  
    %       pcolor(x,x,z), shading interp .>q8W  
    %       axis square, colorbar QaS1Dh  
    %       title('Zernike function Z_5^1(r,\theta)') 2^Eg9y'  
    % #[,IsEpDO1  
    %   Example 2: # Nk;4:[  
    % NYt&@Z}]  
    %       % Display the first 10 Zernike functions 4Fa~Aog  
    %       x = -1:0.01:1; %!]@J[*1  
    %       [X,Y] = meshgrid(x,x); E8!e:l =Q  
    %       [theta,r] = cart2pol(X,Y); B+Rm>^CBm  
    %       idx = r<=1; Mh~q//  
    %       z = nan(size(X)); 81](T<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^({})T0wu  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Z"Zmo>cV4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .O74V~T  
    %       y = zernfun(n,m,r(idx),theta(idx)); E08 klC0  
    %       figure('Units','normalized') G(Lzf(  
    %       for k = 1:10 \O}E7 -  
    %           z(idx) = y(:,k); FI[A[*fi  
    %           subplot(4,7,Nplot(k)) 4 <9=5q]  
    %           pcolor(x,x,z), shading interp b $'FvZbk  
    %           set(gca,'XTick',[],'YTick',[]) D~biKrg?=  
    %           axis square L E&RY[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ={_C&57N1  
    %       end ;l4[%xld  
    % :X0k]p  
    %   See also ZERNPOL, ZERNFUN2. 2!0c4a^z  
    wi;Br[d  
    %   Paul Fricker 11/13/2006 4 kn|^  
    V E#Wb7  
    _+p4Wvu~0  
    % Check and prepare the inputs: }e!x5g   
    % ----------------------------- zxMX Xm;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'GB. UKlR  
        error('zernfun:NMvectors','N and M must be vectors.') #J@[Wd  
    end RzxNbeki[W  
    yQU_>_!n  
    if length(n)~=length(m) t'?.8}?)I&  
        error('zernfun:NMlength','N and M must be the same length.') Mx&&0#;r  
    end 0M*Z'n +  
    T3~k>"W  
    n = n(:); t|a2;aq_  
    m = m(:); OPwtV9%  
    if any(mod(n-m,2)) (^s>m,h  
        error('zernfun:NMmultiplesof2', ... MTsM]o  
              'All N and M must differ by multiples of 2 (including 0).') >go,K{cK6  
    end <nE>XAI_7  
    Hcl(3> Jn2  
    if any(m>n) RzBF~2 >i  
        error('zernfun:MlessthanN', ... &atuK*W>  
              'Each M must be less than or equal to its corresponding N.') (gy#js #  
    end ,.rs(5.z8/  
    Z9:-rcr  
    if any( r>1 | r<0 ) z,Medw6[  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') qo p^;~  
    end e]`[yf  
    d_CKP"TA  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?h.wK  
        error('zernfun:RTHvector','R and THETA must be vectors.') h^?\xm|  
    end Gnf~u[T6  
    yGWxpzmRS  
    r = r(:); "*m_> IU  
    theta = theta(:); m4aB*6<lq  
    length_r = length(r); u2[ iMd  
    if length_r~=length(theta) Ge2q%  
        error('zernfun:RTHlength', ... I`p+Qt  
              'The number of R- and THETA-values must be equal.') O]lSWEe  
    end Ai:BEPKe  
    i'4B3  
    % Check normalization: (}a8"]Z  
    % -------------------- {wO3<9  
    if nargin==5 && ischar(nflag) u\ #"L  
        isnorm = strcmpi(nflag,'norm'); PfreAEv,  
        if ~isnorm +,2:g}5  
            error('zernfun:normalization','Unrecognized normalization flag.') V@Rrn <l  
        end cVubb}ou  
    else vk+VP 1D  
        isnorm = false; h?rp|uPQ  
    end _(Sa4Vb=Q6  
    +g` 'J$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #z&& M"*a|  
    % Compute the Zernike Polynomials r YogW!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hn^<;av=  
    #1`-*.u  
    % Determine the required powers of r: *FC=X)_&W  
    % ----------------------------------- L%BNz3:Dt  
    m_abs = abs(m); k40* e\  
    rpowers = []; 2r!s*b\Ix  
    for j = 1:length(n) <0H"|:W>I]  
        rpowers = [rpowers m_abs(j):2:n(j)]; 0ZBJ ~W  
    end <\Eh1[F  
    rpowers = unique(rpowers); ,RJtm%w  
    MNC*Glj=  
    % Pre-compute the values of r raised to the required powers, "B =  
    % and compile them in a matrix: fG}tMSI  
    % ----------------------------- ,8:(OB|a  
    if rpowers(1)==0 %<E$,w>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N F2/B#q  
        rpowern = cat(2,rpowern{:}); 'SCidN(n  
        rpowern = [ones(length_r,1) rpowern]; LO <  
    else ;ado0-VQi'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hCCiD9gz  
        rpowern = cat(2,rpowern{:}); vY%d   
    end 5|l* `J)  
    {U!8|(  
    % Compute the values of the polynomials: <%maDM^_\(  
    % -------------------------------------- qp/v^$EA  
    y = zeros(length_r,length(n)); .C&ktU4  
    for j = 1:length(n) CZ(/=3,3n  
        s = 0:(n(j)-m_abs(j))/2; 0/!dUWdKH  
        pows = n(j):-2:m_abs(j); ? i( %  
        for k = length(s):-1:1 l7W 6qNB  
            p = (1-2*mod(s(k),2))* ... 7bk%mQk  
                       prod(2:(n(j)-s(k)))/              ... 0}$Hi  
                       prod(2:s(k))/                     ... 5!l0zLQP o  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F_;vO%}  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nyBJb(5"B  
            idx = (pows(k)==rpowers); J13>i7]L%  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L%Ow#.[C2  
        end c%&: 6QniZ  
         LM}Ib.  
        if isnorm sA'6ty  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )+}]+xRWGj  
        end T(e!_VY|m  
    end c}y [[EX  
    % END: Compute the Zernike Polynomials I3,= 0z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c:-!'l$ !  
    !|O~$2O@  
    % Compute the Zernike functions: V#cqRE3XNi  
    % ------------------------------ U}MXT <6  
    idx_pos = m>0; 5$wpL(:R(  
    idx_neg = m<0; JS*m65e  
    bKrhIU[  
    z = y; 3jlh}t>$l  
    if any(idx_pos) h&Efg   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Svc|0Ad&  
    end )=AHf?hn  
    if any(idx_neg) x9;gT&@H  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7RUofcax  
    end :cq9f2)  
    ^1Zeb$Nw'  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) NX|v=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. qEpi]=|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ADpmvW f?  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive N 5i+3&  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, R}lsnX<  
    %   and THETA is a vector of angles.  R and THETA must have the same p;W.lcO`0  
    %   length.  The output Z is a matrix with one column for every P-value, Td G!&:>  
    %   and one row for every (R,THETA) pair. !<SA6m#  
    % [1F* bI  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike D3)zk@N  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) q|8{@EMT  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 91$]Qg,lB  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 :_t}QP"  
    %   for all p. U2`'qsR1  
    % \'9PZ6q{  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 wg0 \_@3  
    %   Zernike functions (order N<=7).  In some disciplines it is | fSe>uVZ  
    %   traditional to label the first 36 functions using a single mode L2, 1Kt7  
    %   number P instead of separate numbers for the order N and azimuthal ~ug= {b  
    %   frequency M. Hd,p!_  
    % nS&3?lx9_  
    %   Example: tkXEHsRT  
    % ]79:yMD~ba  
    %       % Display the first 16 Zernike functions u$-U*r  
    %       x = -1:0.01:1; 5g9; +}X;  
    %       [X,Y] = meshgrid(x,x); # g_Bx  
    %       [theta,r] = cart2pol(X,Y); /w]!wM  
    %       idx = r<=1; :dLAs@z  
    %       p = 0:15; t`+'r}=d  
    %       z = nan(size(X)); sgO'wXcoP  
    %       y = zernfun2(p,r(idx),theta(idx)); D5:{fWVsV/  
    %       figure('Units','normalized') Q",0F{'  
    %       for k = 1:length(p) [+OnV&  
    %           z(idx) = y(:,k); L5qwWvbT  
    %           subplot(4,4,k) LrAT Sq@  
    %           pcolor(x,x,z), shading interp S-YM%8A[  
    %           set(gca,'XTick',[],'YTick',[]) XK: 9r{r{  
    %           axis square HO[wTB|D]  
    %           title(['Z_{' num2str(p(k)) '}']) +3&z N(  
    %       end Q4*fc^?u  
    % Y_]De3:V0B  
    %   See also ZERNPOL, ZERNFUN. 2 ho>eRX  
    Fr%d}g  
    %   Paul Fricker 11/13/2006 =IUUeFv +r  
    \#rIQOPl?  
    z^GDJddG  
    % Check and prepare the inputs: _z54Ycr4H  
    % ----------------------------- J]q%gcM  
    if min(size(p))~=1 @"o@}9=d  
        error('zernfun2:Pvector','Input P must be vector.') %~jkB.\* )  
    end l2&`J_"  
    SL,p36N  
    if any(p)>35 h68]=KyK  
        error('zernfun2:P36', ... P(;?kg}0  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 1y lk4@`  
               '(P = 0 to 35).']) ;L,mBQB?0b  
    end ixV0|P8,c  
    qY >{cjo  
    % Get the order and frequency corresonding to the function number: |=EZ1<KzD  
    % ---------------------------------------------------------------- on8WQf'A#  
    p = p(:); h(F<h_  
    n = ceil((-3+sqrt(9+8*p))/2); 8@PX7!9  
    m = 2*p - n.*(n+2); gd0Vp Xf'  
    Q7g>4GZC  
    % Pass the inputs to the function ZERNFUN: 6: ]*c[7  
    % ---------------------------------------- ;/0 Q1-  
    switch nargin ) /v6l  
        case 3 iR\Hv'|  
            z = zernfun(n,m,r,theta); nwN@DqO  
        case 4 B}eA\O4}I  
            z = zernfun(n,m,r,theta,nflag); l$YC/ bP  
        otherwise \T;\XAGr  
            error('zernfun2:nargin','Incorrect number of inputs.') &<+ A((/i  
    end _$p$")  
    NBF MN%  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .>(Q)"v  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. x)UwV  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of < Z|Ep1W  
    %   order N and frequency M, evaluated at R.  N is a vector of 5qf BEPJ  
    %   positive integers (including 0), and M is a vector with the Sggq3l$Qc  
    %   same number of elements as N.  Each element k of M must be a 5~.ZlGd  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) lKkN_ (/j  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #UtFD^h  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix q\rC5gk >  
    %   with one column for every (N,M) pair, and one row for every fgj^bcp-  
    %   element in R. bT6sb#"W  
    % j Y6MjZI  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- NjE</Empb%  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is QW_agm  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 5`]UE7gT  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 dtPoo\@  
    %   for all [n,m]. O,<IGO  
    % yIb,,!y9{  
    %   The radial Zernike polynomials are the radial portion of the cV-1?h63  
    %   Zernike functions, which are an orthogonal basis on the unit hfcIvs/!  
    %   circle.  The series representation of the radial Zernike -AYA~O(&  
    %   polynomials is cE iu)2*e  
    % >\ u<&>i  
    %          (n-m)/2 AkU<g  
    %            __ Ke-)vPc  
    %    m      \       s                                          n-2s `mH %!{P  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r L'i-fM[#  
    %    n      s=0 [~\PQYm'  
    % muW!xY  
    %   The following table shows the first 12 polynomials. B$KwkhMe  
    % $hR)i  
    %       n    m    Zernike polynomial    Normalization 93IFcmO.H@  
    %       --------------------------------------------- PS S?|Vk  
    %       0    0    1                        sqrt(2) q@hp.(V  
    %       1    1    r                           2 <e%F^#y_  
    %       2    0    2*r^2 - 1                sqrt(6) U6[ang'l  
    %       2    2    r^2                      sqrt(6) dP]1tAO,y  
    %       3    1    3*r^3 - 2*r              sqrt(8) L5IbExjV  
    %       3    3    r^3                      sqrt(8) YHV-|UNF  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) t!1$$e?`r  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) rs=q! P"u[  
    %       4    4    r^4                      sqrt(10) B`$L'  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) U"f ??y%)  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 3E^M?N2oc  
    %       5    5    r^5                      sqrt(12) HftxS  
    %       --------------------------------------------- $[@0^IJq=K  
    % I1U7.CT  
    %   Example: qP*}.Sqk7  
    % dz#5q-r  
    %       % Display three example Zernike radial polynomials /cFzotr"9  
    %       r = 0:0.01:1; gLE7Edcp6V  
    %       n = [3 2 5]; RE3Z%;'  
    %       m = [1 2 1]; uqyB5V0gh  
    %       z = zernpol(n,m,r); KyP)Qzp  
    %       figure 7?"y{R>E  
    %       plot(r,z) w(nHD*nm  
    %       grid on I/x iT  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') (/ " &  
    % V+wH?H=  
    %   See also ZERNFUN, ZERNFUN2. IB9%QW"0  
    Z< b"`ty.  
    % A note on the algorithm. T_<BVM  
    % ------------------------ pN[0YmY#  
    % The radial Zernike polynomials are computed using the series UFn8kBk  
    % representation shown in the Help section above. For many special N?4q  
    % functions, direct evaluation using the series representation can 4YU/uQm  
    % produce poor numerical results (floating point errors), because S\NL+V?7h  
    % the summation often involves computing small differences between \'?#i @O  
    % large successive terms in the series. (In such cases, the functions bzmr"/#D3  
    % are often evaluated using alternative methods such as recurrence K_-d(  
    % relations: see the Legendre functions, for example). For the Zernike fn{S "33"  
    % polynomials, however, this problem does not arise, because the PHM:W%g:  
    % polynomials are evaluated over the finite domain r = (0,1), and Ek.&Sf$cd'  
    % because the coefficients for a given polynomial are generally all !{_yaVF  
    % of similar magnitude. 9vGs;  
    % $<?X7n^  
    % ZERNPOL has been written using a vectorized implementation: multiple pF=g||gS  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I12KT~z<r  
    % values can be passed as inputs) for a vector of points R.  To achieve -[#n+`M  
    % this vectorization most efficiently, the algorithm in ZERNPOL 1ywU@].6J]  
    % involves pre-determining all the powers p of R that are required to u~ F ;x Q  
    % compute the outputs, and then compiling the {R^p} into a single WN a0,  
    % matrix.  This avoids any redundant computation of the R^p, and s0LA^2U  
    % minimizes the sizes of certain intermediate variables. T*q"N?/4  
    % iT )WR90  
    %   Paul Fricker 11/13/2006 _EYB 8e  
    IvBGpT"(I  
    V`a+Hi<P\  
    % Check and prepare the inputs: KAA3iA@>+  
    % ----------------------------- q{4|Kpx@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t)1phg4H)  
        error('zernpol:NMvectors','N and M must be vectors.') ~0tdfK0c  
    end F#q&(  
    f5dR 5G  
    if length(n)~=length(m) u"VS* hSH  
        error('zernpol:NMlength','N and M must be the same length.') uOk%AL>  
    end Bmr<O !  
    (RF>s.B<  
    n = n(:); Zy]s`aa  
    m = m(:); ij)Cm]4(2  
    length_n = length(n); +$beo2x6  
    r:.uBc&_  
    if any(mod(n-m,2)) ?s{C//  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ?AsDk~3  
    end %JoxYy-  
    }N3`gCy9eN  
    if any(m<0) 0-e  
        error('zernpol:Mpositive','All M must be positive.') m3 IP7h'  
    end eO4)|tW  
    WVL#s?=g  
    if any(m>n) }ymvC  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |+EKF.K  
    end fNhT;Bux  
    *%- ?54B  
    if any( r>1 | r<0 ) |_pl;&;:  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') j=3-Qk`"/|  
    end O2#S: ~h  
    )bW<8f2  
    if ~any(size(r)==1) ;h+q  
        error('zernpol:Rvector','R must be a vector.') @W9H9 PWv&  
    end Gp1EJ2d8  
    Zq?_dIX %  
    r = r(:); Wvr+y!F  
    length_r = length(r); d(l|hmj4j9  
    zO2{.4  
    if nargin==4 p?Sl}A@`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); S%+R#A1  
        if ~isnorm M/w{&&  
            error('zernpol:normalization','Unrecognized normalization flag.') ~/c5 hyTx  
        end KS! iL=i  
    else zzf7S%1I  
        isnorm = false; BMjfqX  
    end 'Oy5e@G+?  
    ^![{,o@"A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b>=7B6 Aw  
    % Compute the Zernike Polynomials u5E/m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f'_ S1\  
    8eww7k^R  
    % Determine the required powers of r: ,P{ HE8.  
    % ----------------------------------- I@PJl  
    rpowers = []; qc-C>Ra  
    for j = 1:length(n) u9}!Gq  
        rpowers = [rpowers m(j):2:n(j)]; + U5U.f%  
    end 3/tJDb5  
    rpowers = unique(rpowers); %c0z)R~  
    { y/-:=S)A  
    % Pre-compute the values of r raised to the required powers, hT=f;6$  
    % and compile them in a matrix: (w2(qT&O  
    % ----------------------------- j];G*-iv{  
    if rpowers(1)==0 51/sTx<Z}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?z"YC&Tp  
        rpowern = cat(2,rpowern{:}); U$09p;~$Ww  
        rpowern = [ones(length_r,1) rpowern]; ;&`:|Hf*  
    else lVT&+r~r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~h|m&XK+Q  
        rpowern = cat(2,rpowern{:}); Xoi9d1fO  
    end X!7Xg  
    {e6 KJ@H6  
    % Compute the values of the polynomials: @ay|]w  
    % -------------------------------------- $O]^Xm3{@  
    z = zeros(length_r,length_n); iE+6UK  
    for j = 1:length_n 4g'}h`kh  
        s = 0:(n(j)-m(j))/2; ] j1 vbk  
        pows = n(j):-2:m(j); TPqvp|~2  
        for k = length(s):-1:1 p\ok_*b  
            p = (1-2*mod(s(k),2))* ... JP_kQ  
                       prod(2:(n(j)-s(k)))/          ... M/)B" q  
                       prod(2:s(k))/                 ... /sH0x,V  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... TRCI\  
                       prod(2:((n(j)+m(j))/2-s(k))); j #es2;  
            idx = (pows(k)==rpowers); u!u5g.Q  
            z(:,j) = z(:,j) + p*rpowern(:,idx); H CuK  
        end &$Ci}{{n#  
         l}+Cdy9>  
        if isnorm 64b<0;~  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); m/" J s  
        end 'M lXnHxt  
    end )?9\$^I  
    2i"HqAB  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  T3=-UYx]  
    Fcu Eeca  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ,ivWVsN*]  
    !~6'@UYo  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)