切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11550阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Xq)%w#l5?  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! BNm va  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p+D 6Z'B  
    function z = zernfun(n,m,r,theta,nflag) !T(Omve)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. l#.,wOO{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -{SiK  
    %   and angular frequency M, evaluated at positions (R,THETA) on the M:f=JuAx  
    %   unit circle.  N is a vector of positive integers (including 0), and 80>!qG  
    %   M is a vector with the same number of elements as N.  Each element * %BI*p  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R*C+Yk)Tkt  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, " CoR?[,x  
    %   and THETA is a vector of angles.  R and THETA must have the same )Dpt<}}\  
    %   length.  The output Z is a matrix with one column for every (N,M) g}KZL-p4\m  
    %   pair, and one row for every (R,THETA) pair. xmx;tq  
    % g$LwXfg  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @ &yj7-]  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ' uw&f;/E  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral TBT*j&!L  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #vwXxr  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized HN@)/5BY  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6^u(PzlA|~  
    % s\R?@  
    %   The Zernike functions are an orthogonal basis on the unit circle. Yk&{VXU<  
    %   They are used in disciplines such as astronomy, optics, and 0lN8#k>H  
    %   optometry to describe functions on a circular domain. xhS/X3<th  
    % |%;txD  
    %   The following table lists the first 15 Zernike functions. >vy+U  
    % XnOl*#P  
    %       n    m    Zernike function           Normalization qEz'l'%(  
    %       -------------------------------------------------- TvwIro  
    %       0    0    1                                 1 HE'8  
    %       1    1    r * cos(theta)                    2 ibw;BU  
    %       1   -1    r * sin(theta)                    2 ZfikNQU9r  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7?] p\`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) RVx<2,['  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ma#-'J  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $c47cJO)W  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #::vMnT  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) <2d@\"AoHE  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z(eAwmuli  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !{;RtUPz*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vrh],xK7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #Qd3A  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0n=E.qZ9c  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) "FS.&&1(  
    %       -------------------------------------------------- {NDP}UATw  
    % _"V0vV   
    %   Example 1: k]g\` gc  
    % _AHVMsz@  
    %       % Display the Zernike function Z(n=5,m=1) =1capix 1r  
    %       x = -1:0.01:1; pC8i &_A  
    %       [X,Y] = meshgrid(x,x); `_)dEu  
    %       [theta,r] = cart2pol(X,Y); ;v\n[  
    %       idx = r<=1; _R6> Ayw*  
    %       z = nan(size(X)); 6'zy"UkH  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); V.1sZYA9  
    %       figure JM%#L*;  
    %       pcolor(x,x,z), shading interp &@-glF5  
    %       axis square, colorbar 'h6RZKG T  
    %       title('Zernike function Z_5^1(r,\theta)') _3S{n=9  
    % 1 Y& d%AA  
    %   Example 2: hg @Jpg  
    % jU$PO\UTk  
    %       % Display the first 10 Zernike functions P+UK@~D+G  
    %       x = -1:0.01:1; Tp13V.|  
    %       [X,Y] = meshgrid(x,x); sTz*tSwQv  
    %       [theta,r] = cart2pol(X,Y); Ui&$/%Z|  
    %       idx = r<=1; "Wp<^ssMo  
    %       z = nan(size(X)); D6WsEd>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4{KsCd)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,z3b2$ &A  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; (Q+3aEUE  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]u';zJ.  
    %       figure('Units','normalized') ,+&j/0U  
    %       for k = 1:10 t/g}cR^Q  
    %           z(idx) = y(:,k); }0G Ab2  
    %           subplot(4,7,Nplot(k)) U|nk8 6r  
    %           pcolor(x,x,z), shading interp Jk*MxlA.b  
    %           set(gca,'XTick',[],'YTick',[]) R7i*f/m  
    %           axis square 1F|+4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3[rB:cE/  
    %       end wah`  
    % Qp ,l>k  
    %   See also ZERNPOL, ZERNFUN2. j^.P=;  
    51vK>  
    %   Paul Fricker 11/13/2006 W#!\.m`5  
    :-)[B^0  
    !MC W t  
    % Check and prepare the inputs: q}jf&xUWzH  
    % ----------------------------- c z|IBsa*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "^H+A-R[  
        error('zernfun:NMvectors','N and M must be vectors.') D }\`5L<  
    end v|GvN|_|  
    ; F=_ozWV*  
    if length(n)~=length(m) $$@Tgkg?o  
        error('zernfun:NMlength','N and M must be the same length.') J*k4&l  
    end >@"j9  
    O 2U/zF:X  
    n = n(:); (`xc3-,  
    m = m(:); N5\<w>  
    if any(mod(n-m,2)) iJi|*P5dw  
        error('zernfun:NMmultiplesof2', ... ZeO>Ag^  
              'All N and M must differ by multiples of 2 (including 0).') O,cx9N  
    end aI{[W;43T  
    >BX_Bou  
    if any(m>n) }/VHeHd  
        error('zernfun:MlessthanN', ... ezn>3?S  
              'Each M must be less than or equal to its corresponding N.') pqe**`z@y  
    end pGIeW}2'9  
    fh~&&f}6  
    if any( r>1 | r<0 ) HIF] c  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !cZsIcIe  
    end AOe~VW  
    <da! #12L  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Lh}he:k+  
        error('zernfun:RTHvector','R and THETA must be vectors.') yS*PS='P  
    end so7;h$h!H  
    ,"'agg:St  
    r = r(:); i"'k|TGW^  
    theta = theta(:); 6voK{C4J  
    length_r = length(r); 4M _83WL  
    if length_r~=length(theta) GYYro&aq{  
        error('zernfun:RTHlength', ... MWl@smRh  
              'The number of R- and THETA-values must be equal.') [Ue>KG62=  
    end Z8 T{Xw6%  
    *%O1d.,  
    % Check normalization: 8<^,<?  
    % -------------------- :.dQY=6I  
    if nargin==5 && ischar(nflag) )oj`K,#  
        isnorm = strcmpi(nflag,'norm'); c|7Pnx%gT  
        if ~isnorm HiC\U%We  
            error('zernfun:normalization','Unrecognized normalization flag.') L4NC -  
        end 0^m02\Li  
    else UW+I 8\^  
        isnorm = false; 8p FSm>  
    end ql#K72s  
    R9W(MLe58  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eYagI  
    % Compute the Zernike Polynomials *f(}@U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8{ep`$(K@  
    F JzjS;  
    % Determine the required powers of r: @.})nU  
    % ----------------------------------- !-QKh aY  
    m_abs = abs(m); $*PyzLS  
    rpowers = []; y|p:^41Ro  
    for j = 1:length(n) V><P`  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~ e"^-x  
    end DGU$3w  
    rpowers = unique(rpowers); DxYu   
    ;'h7 j*6  
    % Pre-compute the values of r raised to the required powers, (p. 5J  
    % and compile them in a matrix: ~7ArH9k .  
    % ----------------------------- .,c8cq?  
    if rpowers(1)==0 ?*T`a oB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4uz\Me(  
        rpowern = cat(2,rpowern{:}); "-hgeQX  
        rpowern = [ones(length_r,1) rpowern]; pS%Az)3RZ  
    else }LM_VZj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &L/ C:<.  
        rpowern = cat(2,rpowern{:}); j#*K[  
    end V=YK3){>A  
    +|}~6`  
    % Compute the values of the polynomials: 0trFLX  
    % -------------------------------------- / g&mDYV|  
    y = zeros(length_r,length(n)); !{4p+peqJV  
    for j = 1:length(n) H P7Ec  
        s = 0:(n(j)-m_abs(j))/2; vH?/YhH|  
        pows = n(j):-2:m_abs(j); %|;^[^7+}t  
        for k = length(s):-1:1 #&@&BlIe  
            p = (1-2*mod(s(k),2))* ... qYpHH!!C=  
                       prod(2:(n(j)-s(k)))/              ... iw#luHcJ  
                       prod(2:s(k))/                     ... V{"5)Ly?fu  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aqMZ%~7  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 6@T_1  
            idx = (pows(k)==rpowers); ^iGIF~J9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1D*e u  
        end )X@(>b{  
         5B51^"  
        if isnorm 2/;KZ+U&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >Mn"k\j4  
        end ]-R8W/fDn  
    end p@!"x({@l  
    % END: Compute the Zernike Polynomials o?b"B+#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #0mn_#-P)  
    {!-w|&bF  
    % Compute the Zernike functions: [0 W^|=#K  
    % ------------------------------ ]$z~;\T  
    idx_pos = m>0; ^lQej%  
    idx_neg = m<0; sx/g5 ?zh  
    ? 56Zw"89  
    z = y; .M_;mhRI  
    if any(idx_pos) '8}\! i&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); < *XC`Ii  
    end K46mE   
    if any(idx_neg)  1 ft. ZJ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %~6+=*(\  
    end p>MX}^6  
    UboOIx5:  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <,LeFy\zW  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,x_g|J _Y  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated g :O.$  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 3Hq0\Y"Y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, xvgIYc{  
    %   and THETA is a vector of angles.  R and THETA must have the same IQH;`+  
    %   length.  The output Z is a matrix with one column for every P-value, ma-|L3 #  
    %   and one row for every (R,THETA) pair. f(9w FT  
    % ~kYF/B2*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike @w2}WX>  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) [TNYPA> {  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) O *jNeYA  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 L:'Y#VI{  
    %   for all p. Bw{W-&$o  
    % ^%\p; yhL  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 8y+Gvk:  
    %   Zernike functions (order N<=7).  In some disciplines it is ~L?p/3m   
    %   traditional to label the first 36 functions using a single mode L*FnFRhU  
    %   number P instead of separate numbers for the order N and azimuthal (L~3nN;rr  
    %   frequency M. dkCSqNFL)  
    % 8l?]UFM>C  
    %   Example: T nPC\.x  
    % :S,#*rPKBK  
    %       % Display the first 16 Zernike functions Wqy8ZgSC  
    %       x = -1:0.01:1; N["(ZSS   
    %       [X,Y] = meshgrid(x,x); =lVfrna  
    %       [theta,r] = cart2pol(X,Y); m@jOIt!<  
    %       idx = r<=1; y*zZ }>  
    %       p = 0:15; b5yb~;0  
    %       z = nan(size(X)); ,E/vHI8  
    %       y = zernfun2(p,r(idx),theta(idx)); 71wyZJ  
    %       figure('Units','normalized') 4,)=r3;&!  
    %       for k = 1:length(p) `5x,N%9{  
    %           z(idx) = y(:,k); dLjT^ 9  
    %           subplot(4,4,k) }De)_E\~  
    %           pcolor(x,x,z), shading interp {\ .2h  
    %           set(gca,'XTick',[],'YTick',[]) O1/!)E!  
    %           axis square G-rN?R.  
    %           title(['Z_{' num2str(p(k)) '}']) )L_jR%2j  
    %       end ^B5Hjf9  
    % ^GL0|G=(1  
    %   See also ZERNPOL, ZERNFUN. QI!:+8  
    Gew0Y#/  
    %   Paul Fricker 11/13/2006 rNI3_|a  
    4CNK ]2  
    !n !~Bw  
    % Check and prepare the inputs: J,jl(=G  
    % ----------------------------- t6~|T_]  
    if min(size(p))~=1 >O~xu^N?  
        error('zernfun2:Pvector','Input P must be vector.') @Wdnc/o]  
    end Av/|={i  
    1no$|n#  
    if any(p)>35 tMupX-V  
        error('zernfun2:P36', ... ,/Xxj\i  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Oi7:J> [  
               '(P = 0 to 35).']) ~~h9yvW7&  
    end SUx\qz)  
    g%^Zq"  
    % Get the order and frequency corresonding to the function number: 6`EyzB%.$  
    % ---------------------------------------------------------------- WukCE  
    p = p(:); l1YyZ^Z  
    n = ceil((-3+sqrt(9+8*p))/2); mB_ba1r  
    m = 2*p - n.*(n+2); y5l4H8{h}  
    3{,Mpb@  
    % Pass the inputs to the function ZERNFUN: {K:/(\  
    % ---------------------------------------- _{T`ka  
    switch nargin "%0RR?  
        case 3 i"_JF-IbN  
            z = zernfun(n,m,r,theta); en#W<"_"  
        case 4 X~W5Z(w(O  
            z = zernfun(n,m,r,theta,nflag); 40+E#z)  
        otherwise _pk=IHGsB  
            error('zernfun2:nargin','Incorrect number of inputs.') idz6m]{~yT  
    end V GM/ed5-  
    M}us^t*  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) m|e!1_ :H  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. c a$D|3  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Jg: Uv6eN+  
    %   order N and frequency M, evaluated at R.  N is a vector of @bS>XWI>  
    %   positive integers (including 0), and M is a vector with the 2{ }5WH  
    %   same number of elements as N.  Each element k of M must be a ZH/|L?Q1U  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) R%SsHu">  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is +X.iJ$)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix |A &Nv~.)  
    %   with one column for every (N,M) pair, and one row for every TlAY=JwW  
    %   element in R. KvC:(Vqj  
    % MI<hShc\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2<YHo{0BLS  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is :B)w0tVw  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to rt t?4  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 XWk/S $-d  
    %   for all [n,m]. 8={(Vf6  
    % F;`es%8  
    %   The radial Zernike polynomials are the radial portion of the Sd}fse  
    %   Zernike functions, which are an orthogonal basis on the unit -O. MfI+  
    %   circle.  The series representation of the radial Zernike hg=\L5R  
    %   polynomials is U{{RRK|  
    % (#7pGGp*E  
    %          (n-m)/2 pcm|  
    %            __ %k1*&2"1#  
    %    m      \       s                                          n-2s hF!yp7l;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0+M1,?+GfF  
    %    n      s=0 W:hR8 1ci  
    % S\GG(#b!  
    %   The following table shows the first 12 polynomials. \fh.D/@  
    % a]$KI$)e  
    %       n    m    Zernike polynomial    Normalization cXtL3T+  
    %       --------------------------------------------- 2>?GD@GE  
    %       0    0    1                        sqrt(2) Hm%[d;Z7  
    %       1    1    r                           2 @^#y23R U  
    %       2    0    2*r^2 - 1                sqrt(6) />)>~_-3  
    %       2    2    r^2                      sqrt(6) v" y e\ZG  
    %       3    1    3*r^3 - 2*r              sqrt(8) WY0u9M4  
    %       3    3    r^3                      sqrt(8) Sr%~ 5Q[W  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +=U`  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) "fS9Nx3  
    %       4    4    r^4                      sqrt(10) CM8WI~  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) +oe ~j\=  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) KiH#*u S  
    %       5    5    r^5                      sqrt(12) *slZ17xg  
    %       --------------------------------------------- vqv(KsD+::  
    % P4Wd=Xoz6  
    %   Example: _/ P"ulNb  
    % RhX 2qsva-  
    %       % Display three example Zernike radial polynomials )QFT$rmX  
    %       r = 0:0.01:1; +xFtGF)  
    %       n = [3 2 5]; -&@[]/  
    %       m = [1 2 1]; @DY0Lz;  
    %       z = zernpol(n,m,r); DpI_`TF#$Z  
    %       figure 9]7+fu  
    %       plot(r,z) DlfXzKn;  
    %       grid on <f8@Qij  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') vWjK[5 M%  
    % T|ZT&x$z  
    %   See also ZERNFUN, ZERNFUN2. T JLz^%t  
    9CUMqaY2  
    % A note on the algorithm. 5j,)}AYO  
    % ------------------------ C'*1w  
    % The radial Zernike polynomials are computed using the series G@ed2T  
    % representation shown in the Help section above. For many special r3p fG  
    % functions, direct evaluation using the series representation can {%b>/r  
    % produce poor numerical results (floating point errors), because ,&z_ 2m  
    % the summation often involves computing small differences between si%f.A#  
    % large successive terms in the series. (In such cases, the functions 2zArAch  
    % are often evaluated using alternative methods such as recurrence %+xh  
    % relations: see the Legendre functions, for example). For the Zernike P^VV8Z>\&  
    % polynomials, however, this problem does not arise, because the ax7u b  
    % polynomials are evaluated over the finite domain r = (0,1), and 9tk}_+  
    % because the coefficients for a given polynomial are generally all C Hyb{:<  
    % of similar magnitude. C @hnT<e  
    % QBai;p{  
    % ZERNPOL has been written using a vectorized implementation: multiple 0v+5&Jk  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] {hZZU8*  
    % values can be passed as inputs) for a vector of points R.  To achieve dpGaI  
    % this vectorization most efficiently, the algorithm in ZERNPOL -}PD0Pzg;=  
    % involves pre-determining all the powers p of R that are required to B YNOgB1  
    % compute the outputs, and then compiling the {R^p} into a single jk) V[7P  
    % matrix.  This avoids any redundant computation of the R^p, and -wvJZ  
    % minimizes the sizes of certain intermediate variables. ++Az~{W7  
    % 6;[iX`LL  
    %   Paul Fricker 11/13/2006 ?HZ+fS ,-  
    }^)M)8zS  
    D#^v=U  
    % Check and prepare the inputs: 2R:['QT  
    % ----------------------------- `'+[Y;s_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f^m8 4o'  
        error('zernpol:NMvectors','N and M must be vectors.') ;l}TUo  
    end P0}uTee  
    mbJ#-^}V  
    if length(n)~=length(m) z}u  
        error('zernpol:NMlength','N and M must be the same length.') u+XZdV  
    end wjKW 3  
    S WYiI  
    n = n(:); [eG- &u  
    m = m(:); jO!!. w  
    length_n = length(n); 8%vk"h:u:  
    PNg,bcl  
    if any(mod(n-m,2)) fvN2]@:  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') vV8 y_  
    end EQu M|4$ix  
    n8R{LjJ2@  
    if any(m<0) c_HYB/'  
        error('zernpol:Mpositive','All M must be positive.') ]5uCs[  
    end \T<?=A  
    Wa ,[#H  
    if any(m>n) $;$_N43  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]UFf-  
    end {9_CH<$W%U  
    F0Rk[GM  
    if any( r>1 | r<0 ) <@@.~Qm'  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 6ZCt xs!  
    end HQv#\Xi1  
    2Hy$SSH  
    if ~any(size(r)==1) H }</a%y  
        error('zernpol:Rvector','R must be a vector.') -DU[dU*~  
    end +}X@{DB  
    ML Id3#Q  
    r = r(:); eUx|_*`  
    length_r = length(r); won%(n,HT  
    s.Yywy  
    if nargin==4 L[##w?Xf.  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); U*[/F)!  
        if ~isnorm gQ,PG  
            error('zernpol:normalization','Unrecognized normalization flag.') viY _Y.Yjy  
        end mA3C)V  
    else LT# *nr  
        isnorm = false; <:>a51HBX  
    end 8;Yx a8ie  
    b s:E`Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e9N"{kDs6  
    % Compute the Zernike Polynomials \BUr2]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vY }/CBmg  
    ~ hYG%  
    % Determine the required powers of r: %'k^aq FL  
    % ----------------------------------- <Cn-MOoM  
    rpowers = []; ewY+a , t  
    for j = 1:length(n) cFD(Ap  
        rpowers = [rpowers m(j):2:n(j)]; RzFv``g  
    end co@Q   
    rpowers = unique(rpowers); 'd0]`2tVg4  
    mqw& SxU9  
    % Pre-compute the values of r raised to the required powers, K`PF|=z  
    % and compile them in a matrix: ?5jkb  
    % ----------------------------- n\wO[l)  
    if rpowers(1)==0 h]vA%VuE'E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ` *h-j/M  
        rpowern = cat(2,rpowern{:}); 4CfPa6_  
        rpowern = [ones(length_r,1) rpowern]; ?IGT!'  
    else !NjC+ps]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y2QlK1.8V  
        rpowern = cat(2,rpowern{:}); ~48Uch\LG:  
    end |4ONGU*`E  
    bC)d iC  
    % Compute the values of the polynomials: C!%BW%"R  
    % -------------------------------------- DY0G ;L 3  
    z = zeros(length_r,length_n); 7p@qzE  
    for j = 1:length_n %j{gZTz-  
        s = 0:(n(j)-m(j))/2; :W-"UW,  
        pows = n(j):-2:m(j); I[@}+p0  
        for k = length(s):-1:1 Abd&p N  
            p = (1-2*mod(s(k),2))* ... `=vL?w^QS  
                       prod(2:(n(j)-s(k)))/          ... SA)}---"  
                       prod(2:s(k))/                 ... F{B__Kf  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ixE72bX  
                       prod(2:((n(j)+m(j))/2-s(k))); Ql3hq.E  
            idx = (pows(k)==rpowers); bj ZcWYT  
            z(:,j) = z(:,j) + p*rpowern(:,idx); aXhgzI5]  
        end j#Bea ,  
         _Cj u C`7  
        if isnorm V)f/umT%g  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); j%#n}H  
        end L6J=m#Ld  
    end nO,<`}pV  
    *'1qA0Xc  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  /=4 m4  
    3<">1] /,  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 QCjC|T9  
    m?wPZ^u  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)