非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =">NQ)98u
function z = zernfun(n,m,r,theta,nflag) nDW9NQ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4\i[m:e=@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N f!"w5qC^
% and angular frequency M, evaluated at positions (R,THETA) on the 7o4\oRGV
% unit circle. N is a vector of positive integers (including 0), and fR|A(u#9
% M is a vector with the same number of elements as N. Each element Ep}s}Stlr}
% k of M must be a positive integer, with possible values M(k) = -N(k) cNH7C"@GVu
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, g=rbPbu
% and THETA is a vector of angles. R and THETA must have the same s @C}P
% length. The output Z is a matrix with one column for every (N,M) `{Ul!
% pair, and one row for every (R,THETA) pair. -HuA
\0J
% 7d vnupLh
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j<x_ &1
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Mfs?x
a
% with delta(m,0) the Kronecker delta, is chosen so that the integral t^L]/$q
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j#6.Gq
% and theta=0 to theta=2*pi) is unity. For the non-normalized 9VT;ep
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2?x4vI
np;
% a9 G8q>h]O
% The Zernike functions are an orthogonal basis on the unit circle. UI#h&j5pW
% They are used in disciplines such as astronomy, optics, and w(rE`IgW
% optometry to describe functions on a circular domain. P%zK;#8V
% Y0>y8UV
% The following table lists the first 15 Zernike functions. D]}G.v1
% rGO8!X 3d
% n m Zernike function Normalization fIF8%J ^3
% -------------------------------------------------- kP"9&R`E
% 0 0 1 1 "}!G!k:
% 1 1 r * cos(theta) 2 HV.t6@\};
% 1 -1 r * sin(theta) 2 =Uh$&m
% 2 -2 r^2 * cos(2*theta) sqrt(6) Jb(H %NJ
% 2 0 (2*r^2 - 1) sqrt(3) #S(Hd?34,
% 2 2 r^2 * sin(2*theta) sqrt(6) KSvE~h[#+
% 3 -3 r^3 * cos(3*theta) sqrt(8) <qSC#[xu
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) wbHb;]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) OCUr{Nh
% 3 3 r^3 * sin(3*theta) sqrt(8) 0mnw{fE8_
% 4 -4 r^4 * cos(4*theta) sqrt(10) pFXEu=$3
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;fJ.8C
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (?c-iKGc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G9lUxmS<
% 4 4 r^4 * sin(4*theta) sqrt(10)
$k?>DP4
% -------------------------------------------------- :0ep(<|;
% IU[ [H#
% Example 1: <!+Az,-
% .h[:xYm
% % Display the Zernike function Z(n=5,m=1) *Uh!>Iv;
% x = -1:0.01:1; g*Phv|kI
% [X,Y] = meshgrid(x,x); B6"0OIDY"
% [theta,r] = cart2pol(X,Y); `gJ(0#ac
% idx = r<=1; 74u&%Rj
% z = nan(size(X)); aYeR{Y]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); GmG5[?)
% figure g\U-VZ6;p
% pcolor(x,x,z), shading interp JVJMgim)0
% axis square, colorbar >Q/Dk7 #
% title('Zernike function Z_5^1(r,\theta)') XkqCZHYkS
% ;*N5Y}?j'
% Example 2: :Al!1BJQ
% @,}UWU
% % Display the first 10 Zernike functions u y+pP!<
% x = -1:0.01:1; =vPj%oLp'a
% [X,Y] = meshgrid(x,x); So;<6~
% [theta,r] = cart2pol(X,Y); XG?8s
&
% idx = r<=1; GVz6-T~\>
% z = nan(size(X)); ibw;}^m(
% n = [0 1 1 2 2 2 3 3 3 3]; )1z@
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; q| 7(
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ':q p05t
% y = zernfun(n,m,r(idx),theta(idx)); GB^B r6
% figure('Units','normalized') edD)TpmE,
% for k = 1:10 so;
]&
% z(idx) = y(:,k); pdMc}=K
% subplot(4,7,Nplot(k)) ye97!nIg@
% pcolor(x,x,z), shading interp Lr+$_ t}r
% set(gca,'XTick',[],'YTick',[]) Y@v>FlqI{
% axis square =%7-ZH9
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +mPx8P&%
% end t7pFW^&
% Fu~j8K
% See also ZERNPOL, ZERNFUN2. df=f62
x38QD;MT
% Paul Fricker 11/13/2006 ]iWRo'
@ZJS&23E
*i,%,O96Nz
% Check and prepare the inputs: rjP/l6
~'
% ----------------------------- "7
yD0T)2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >!JS:5|
error('zernfun:NMvectors','N and M must be vectors.') JC"z&ka
end QPx^_jA
maZ)cW?
if length(n)~=length(m)
y7{?Ip4[
error('zernfun:NMlength','N and M must be the same length.') 0J|3kY-n>
end :m;p:l|W
_aphkeqd
n = n(:); \wZe] G%S
m = m(:); + 3gp%`c4
if any(mod(n-m,2)) ("@!>|H
error('zernfun:NMmultiplesof2', ... *a)n62
'All N and M must differ by multiples of 2 (including 0).') !Cs_F&l"j
end X2_=agEP
y5r4&~04
if any(m>n) km(Po}
error('zernfun:MlessthanN', ... s~>}a
'Each M must be less than or equal to its corresponding N.') B~mj 8l4
end n<,BmVQ
&m3lXl
if any( r>1 | r<0 ) do_[&
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =]t|];c%
end x2EUr,7
.`lCWeHN
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) f3;5Am
error('zernfun:RTHvector','R and THETA must be vectors.') mw!F{pw
end 7pd$\$
3]>| i
r = r(:); /z!%d%"
theta = theta(:); F2WKd1U
length_r = length(r); sK{e*[I>W
if length_r~=length(theta) [
3Gf2_
error('zernfun:RTHlength', ... \m,PA'nd/
'The number of R- and THETA-values must be equal.') XSDpRo
end }EPY^VIw
Ba,`TJ%y
% Check normalization: |>Vb9:q9Po
% -------------------- Wzh`or
if nargin==5 && ischar(nflag) j.Hf/vi`z
isnorm = strcmpi(nflag,'norm'); hM{bavd
if ~isnorm w(/S?d
error('zernfun:normalization','Unrecognized normalization flag.') p ?!/+
end =(Mch~
else 3Ul*QN{6
isnorm = false; =&]L00u.
end BLttb
]'}L 1r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8Wx=p#_
% Compute the Zernike Polynomials .]u/O`c]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pb}*\/s
DF= *_,2/
% Determine the required powers of r: %A`+WYeuX
% ----------------------------------- uYN`:b8
m_abs = abs(m); Q?vlfZR`8
rpowers = []; Wc#24:OKe3
for j = 1:length(n) ~ a:
rpowers = [rpowers m_abs(j):2:n(j)]; E
fDH6
end Nc`L;CP
rpowers = unique(rpowers); j_AACq
{.
$I=~S[p
% Pre-compute the values of r raised to the required powers, V&5wRz+`W
% and compile them in a matrix: wj,=$RX
% ----------------------------- 3n _htgcv
if rpowers(1)==0 ,prf;|e?
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A&VG~r$
rpowern = cat(2,rpowern{:}); *pq\MiD/
rpowern = [ones(length_r,1) rpowern]; J zl6eo[;
else (HVGlw'`
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ";F'~}bDA
rpowern = cat(2,rpowern{:}); aOp\91
end G[=c
Ss,
t0S1QC+
% Compute the values of the polynomials: _b 0&!l<
% -------------------------------------- )pa]ui\t
y = zeros(length_r,length(n)); w{KavU5W
for j = 1:length(n) Da|z"I
x
s = 0:(n(j)-m_abs(j))/2; oU8q o-J1H
pows = n(j):-2:m_abs(j); I,tud!p`
for k = length(s):-1:1 ^!d3=}:0
p = (1-2*mod(s(k),2))* ... .nJz G
prod(2:(n(j)-s(k)))/ ... Y4-t7UlS;
prod(2:s(k))/ ... +>,I1{u%&
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _)8s'MjA:&
prod(2:((n(j)+m_abs(j))/2-s(k))); ;uJMG
idx = (pows(k)==rpowers);
P0@,fd<
y(:,j) = y(:,j) + p*rpowern(:,idx); R&&4y 7
end V!Uc(
&
21%zPm
if isnorm .Mbz3;i0
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); aN?zmkPpov
end 9;{CIMg&
end )`:UP~)H
% END: Compute the Zernike Polynomials ?9/G[[(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c{|p.hd
%J(:ADu]
% Compute the Zernike functions: e
,(mR+a8
% ------------------------------ _>+Ld6.T6
idx_pos = m>0; T)/eeZ$
idx_neg = m<0; fhiM U8(&
vXs"Dst
z = y; 1}x%%RD_
if any(idx_pos) N8jIMb'<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #mdc [.
end +7Gwg
if any(idx_neg) Ud?Q%)X
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u`W2+S
end K-v#.e4
q V=!ORuj
% EOF zernfun