非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `;i|
%$TU
function z = zernfun(n,m,r,theta,nflag) 1{u;-pg
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ) d\Se9!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,@ [Q:fY
% and angular frequency M, evaluated at positions (R,THETA) on the gp$+Qd
% unit circle. N is a vector of positive integers (including 0), and qk:F6kL\`
% M is a vector with the same number of elements as N. Each element g3Ff<P P
% k of M must be a positive integer, with possible values M(k) = -N(k) N\xqy-L9
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, qAG0t{K
% and THETA is a vector of angles. R and THETA must have the same M/B_-8B_D
% length. The output Z is a matrix with one column for every (N,M) {kmaMP
% pair, and one row for every (R,THETA) pair. Q&n|tQ*4
% }3vB_0[r
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike aY"qEH7]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /'ybl^Km
% with delta(m,0) the Kronecker delta, is chosen so that the integral 3`="4
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ef|Y2<P
% and theta=0 to theta=2*pi) is unity. For the non-normalized jMd's|#OP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o_={xrmIA
% czedn_}%Q
% The Zernike functions are an orthogonal basis on the unit circle. ;/e!!P]jP
% They are used in disciplines such as astronomy, optics, and ]C]tLJ!M
% optometry to describe functions on a circular domain. N8m^h:b
% )Hw;{5p@
% The following table lists the first 15 Zernike functions. |w\D6d]o
% 'kYV}rq;l
% n m Zernike function Normalization ?VReKv1\
% -------------------------------------------------- |!&,etu
% 0 0 1 1 /i$&89yod
% 1 1 r * cos(theta) 2 A0&~U0*(~
% 1 -1 r * sin(theta) 2 (VC_vz-
% 2 -2 r^2 * cos(2*theta) sqrt(6) o5zth^p[
% 2 0 (2*r^2 - 1) sqrt(3) '+-R 7#
% 2 2 r^2 * sin(2*theta) sqrt(6) dJCu`34Y'|
% 3 -3 r^3 * cos(3*theta) sqrt(8) r:YAn^Lg
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) S0"OU0`N
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) T@k&YJ
% 3 3 r^3 * sin(3*theta) sqrt(8) ty/jTo}
% 4 -4 r^4 * cos(4*theta) sqrt(10) \`4}h[
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `W|2Xi=^5
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) qr6WSBc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l*%?C*
% 4 4 r^4 * sin(4*theta) sqrt(10) r;S%BFMJS
% -------------------------------------------------- [[TB.'k
% Sgr<z d'b
% Example 1: x\t>|DB
% B?TAS
% % Display the Zernike function Z(n=5,m=1) 2]Y (<PC
% x = -1:0.01:1; ]=h
Ts%]w
% [X,Y] = meshgrid(x,x); ir/ 2/
E
% [theta,r] = cart2pol(X,Y); <!=TxV>}A
% idx = r<=1; <pi q?:ac
% z = nan(size(X)); !.p!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); orTTjV]_m
% figure =m-_0xo
% pcolor(x,x,z), shading interp [i&z_e)
% axis square, colorbar ~ocd4,d=
% title('Zernike function Z_5^1(r,\theta)') hWDgMmo7
% MRmz/ZmRM
% Example 2: ?F`lI""E
% M: `FZ}&L
% % Display the first 10 Zernike functions Bt.W_p
% x = -1:0.01:1; @#o$~'my
% [X,Y] = meshgrid(x,x); LzgD#Kz
% [theta,r] = cart2pol(X,Y); }rGDM
% idx = r<=1; Z$[A.gD4
% z = nan(size(X)); c~c3;
% n = [0 1 1 2 2 2 3 3 3 3]; WgY\m&
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; BNzL+"W
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 6"%[s@C
% y = zernfun(n,m,r(idx),theta(idx)); '^P
Ud`
% figure('Units','normalized') /G84T,H
% for k = 1:10 VgoQz]z
% z(idx) = y(:,k); =OjzBiHR
% subplot(4,7,Nplot(k)) XY%8yII6
% pcolor(x,x,z), shading interp ((X"D/F]
% set(gca,'XTick',[],'YTick',[]) Jl5<9x
% axis square ;tKL/eI
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R~c(^.|r
% end H|,{^b@9
% 5B98}N
% See also ZERNPOL, ZERNFUN2. rj{'X /
N ~LR
% Paul Fricker 11/13/2006 iJsw:Nc
|,yS>kjp
i%\nJs*
% Check and prepare the inputs: 4+ 4?0R
% ----------------------------- /M'b137
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [N$@nA-d
error('zernfun:NMvectors','N and M must be vectors.') ,lN!XP{M6w
end mexI}
iPkG=*Ip(%
if length(n)~=length(m) sRoZvp5
error('zernfun:NMlength','N and M must be the same length.') T!;<Fy"p
end ~I'Z=Wo
{0QA+[Yd&!
n = n(:); ,e>ugI_;*
m = m(:); $G=\i>R.
if any(mod(n-m,2)) s:fnOMv
"
error('zernfun:NMmultiplesof2', ... FyY;F;4P
'All N and M must differ by multiples of 2 (including 0).') $9b||L
end VD=$:F]
bH,Jddc
if any(m>n) tB1Qr**
error('zernfun:MlessthanN', ... Th!S?{v
'Each M must be less than or equal to its corresponding N.') +ckj]yA;
end Kfj*#)SZ
,2?C^gxt
if any( r>1 | r<0 ) 'ugG^2Y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0 TS:o/{(a
end .{8lG^0U<
9xu&n%L=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E+3~w?1
error('zernfun:RTHvector','R and THETA must be vectors.') GZ4{<QG
end )s^XVs.-
+bQn2PG=
r = r(:); *tP,Ol
theta = theta(:); 1r.q]^Pq~
length_r = length(r); +SP5+"y@
if length_r~=length(theta) !BQ!]u
error('zernfun:RTHlength', ... T]i~GkD\
'The number of R- and THETA-values must be equal.') ivGxtx
end bqLv81 V
w{UU(
% Check normalization: wr#+q1v
% -------------------- Z1OcGRN!
if nargin==5 && ischar(nflag) 6zNN 8
isnorm = strcmpi(nflag,'norm'); 8[y7(Xw
if ~isnorm _c #P
error('zernfun:normalization','Unrecognized normalization flag.') F,EHZ,<V
end C3memimN
else
9PR&/Q
F5
isnorm = false; $23R%8j
end ?pxx,o6l
as\V,
{<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m1`ln5(R
% Compute the Zernike Polynomials :!#-k
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XBeHyQp
Dic(G[
% Determine the required powers of r: Q2#)Jx\6!
% ----------------------------------- VSSiuo'5w
m_abs = abs(m); bRIb'%=+GA
rpowers = []; Z`:V~8=l
for j = 1:length(n) }k,Si9O
rpowers = [rpowers m_abs(j):2:n(j)]; \tQi7yj4
end Dljq
rpowers = unique(rpowers); fh 2Pn!h+
1`)R#$h
% Pre-compute the values of r raised to the required powers, T
% and compile them in a matrix: ZERd#7@m+
% ----------------------------- Rn TPU`
if rpowers(1)==0 !-7(.i -
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t
Y^:C[
rpowern = cat(2,rpowern{:}); RSkpf94`
rpowern = [ones(length_r,1) rpowern]; -'I)2/%g
else 'uPqe.#?
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j5RMS V
rpowern = cat(2,rpowern{:}); *vj5J"Y(;t
end ,qr)}s-
Cf10 ud
% Compute the values of the polynomials: |epe;/
% -------------------------------------- = F:d#j>F
y = zeros(length_r,length(n)); g"#+U7O
for j = 1:length(n) I015)vFc
s = 0:(n(j)-m_abs(j))/2; W*_ifZ0s.
pows = n(j):-2:m_abs(j); ]IoS-)$Z/
for k = length(s):-1:1 MW&;{m?2(
p = (1-2*mod(s(k),2))* ... (*M(gM{;
prod(2:(n(j)-s(k)))/ ... IYj-cm
prod(2:s(k))/ ... swJwy~
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .rMGI"
prod(2:((n(j)+m_abs(j))/2-s(k))); -MU^%t;-
idx = (pows(k)==rpowers); fY6&PuDf.
y(:,j) = y(:,j) + p*rpowern(:,idx); +-{HT+W
end czT$mKj3
q=
tDMK'h
if isnorm D)mqe-%1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Eu0_/{:
end f"PApV9[
end pQqZ4L6v
% END: Compute the Zernike Polynomials t<`BaU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UV:_5"-
.+8w\>w6g
% Compute the Zernike functions: v0HFW%YJ^J
% ------------------------------ XBDlQe|>
idx_pos = m>0; L>PpXTWwy
idx_neg = m<0; ~+|p.(I
:|d3BuY
z = y; dpE+[O_
if any(idx_pos) %i96@6O
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =?/J.[)<*
end *W0`+#Dcv
if any(idx_neg) D!y
Cnq=8
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); kdv>QZ
end }$OQw'L[
\75%[;.
% EOF zernfun