切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10623阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~D$#>'C#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! hYs82P|2Ol  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (,d4"C  
    function z = zernfun(n,m,r,theta,nflag) `</=AY>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }3 fLV  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iX0]g45o  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /y+;g{  
    %   unit circle.  N is a vector of positive integers (including 0), and v Ie=wf~D`  
    %   M is a vector with the same number of elements as N.  Each element )&b}^1  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) A&X  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "t3uW6&  
    %   and THETA is a vector of angles.  R and THETA must have the same A)O_es 2  
    %   length.  The output Z is a matrix with one column for every (N,M) wR 5\^[GN  
    %   pair, and one row for every (R,THETA) pair. SXT@& @E  
    % _RA{SO  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F)[XIY&2/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wsdB; 6%$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral !3b|*].B  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [="g|/M)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized op.PS{_t  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yH0yO*R Z  
    % bv:0EdVr  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,u8ZS|9  
    %   They are used in disciplines such as astronomy, optics, and xr7-[)3Q$  
    %   optometry to describe functions on a circular domain. : pE-{3I  
    % "Gi+zkVm  
    %   The following table lists the first 15 Zernike functions. JN;TGtB^p  
    % U#UVenp@  
    %       n    m    Zernike function           Normalization .&* ({UM  
    %       -------------------------------------------------- ArEH%e  
    %       0    0    1                                 1 l\A}lC0?J  
    %       1    1    r * cos(theta)                    2 eY6gb!5u  
    %       1   -1    r * sin(theta)                    2 YKs^%GO+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) wHo#%Y,Nmi  
    %       2    0    (2*r^2 - 1)                    sqrt(3) it/C y\f  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "R\\\I7u  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) U:etcnb4w>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $@ T6g  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z7KB?1{G  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2S7H_qo$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |RvpEy7 6  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nCSd:1DY  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) iBPdCp%]`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W:;`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) F_M~!]<na  
    %       -------------------------------------------------- 1VPN#Q!  
    % &a2V-|G',  
    %   Example 1: ,pGCgOG#}c  
    % kHo;9j-U  
    %       % Display the Zernike function Z(n=5,m=1) [w#x5Xsn  
    %       x = -1:0.01:1; zYgK$u^H  
    %       [X,Y] = meshgrid(x,x); *fuGVA  
    %       [theta,r] = cart2pol(X,Y); 46.q a nh  
    %       idx = r<=1; 8en#PH }  
    %       z = nan(size(X)); !z4Hj{A_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0F;(_2V-  
    %       figure 40l#'< y;  
    %       pcolor(x,x,z), shading interp yrK--C8  
    %       axis square, colorbar Ik@Q@ T"  
    %       title('Zernike function Z_5^1(r,\theta)') "#eNFCo7k  
    % Jj^<:t5{rN  
    %   Example 2: 5sV/N] !  
    % _ /2 8Cw  
    %       % Display the first 10 Zernike functions ~:RDw<PWp  
    %       x = -1:0.01:1; ~1wdAq`'a  
    %       [X,Y] = meshgrid(x,x); 2dV\=vd  
    %       [theta,r] = cart2pol(X,Y); M@LaD 5  
    %       idx = r<=1; '\E*W!R.]  
    %       z = nan(size(X)); ekk&TTp#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 3K'o&>}L  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; `$x#_-Hn  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; o4I!VK(C#s  
    %       y = zernfun(n,m,r(idx),theta(idx)); ; HLMU36q  
    %       figure('Units','normalized') k~s>8N:&G  
    %       for k = 1:10 9|kEq>d  
    %           z(idx) = y(:,k); smLD m  
    %           subplot(4,7,Nplot(k)) |yl0}. ()  
    %           pcolor(x,x,z), shading interp +EB,7<5<  
    %           set(gca,'XTick',[],'YTick',[]) |Nx!g fU  
    %           axis square Z@aL"@2]a  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) GzZ|T7fm  
    %       end 5)zh@aJ@  
    % >J75T1PH=  
    %   See also ZERNPOL, ZERNFUN2. '>WuukC  
    Bc"}nSjH  
    %   Paul Fricker 11/13/2006 O t4+VbB6  
    X=c ,`&^  
    LXEu^F~{u#  
    % Check and prepare the inputs: !&:W1Jkp(  
    % ----------------------------- Z-sN4fr a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ai_|)  
        error('zernfun:NMvectors','N and M must be vectors.') q ]R @:a/  
    end nR|LV'(  
    %IH|zSr)EM  
    if length(n)~=length(m) VFaK>gQ  
        error('zernfun:NMlength','N and M must be the same length.') !vo'8r?&  
    end +mQC:B7>  
    . eag84_  
    n = n(:); 2D_Vo ])l/  
    m = m(:); DBh/V#* D  
    if any(mod(n-m,2)) d~f0]O  
        error('zernfun:NMmultiplesof2', ... QO`SnN}  
              'All N and M must differ by multiples of 2 (including 0).') '*{Rn7B5  
    end 0~L 8yMM  
    ppo$&W &z  
    if any(m>n) `&Of82*w  
        error('zernfun:MlessthanN', ... .1q~,}toX  
              'Each M must be less than or equal to its corresponding N.') #Uk6Fmu ]  
    end ]=XL9MI  
    ]~x/8%e76  
    if any( r>1 | r<0 ) ,xM*hN3A  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') uXW. (x7"f  
    end o6yZ@R  
    ]X;*\-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~322dG  
        error('zernfun:RTHvector','R and THETA must be vectors.') T[9jTO?W2  
    end %B un@  
    yW,#&>]# |  
    r = r(:); K dQ|$t  
    theta = theta(:); kk./-G  
    length_r = length(r); GN"LU>9|  
    if length_r~=length(theta) ]]QCJf@p  
        error('zernfun:RTHlength', ... hr"+0KeX  
              'The number of R- and THETA-values must be equal.') qf&{O:,Z  
    end WD`{kqc  
    Z42Suy  
    % Check normalization: 0_Z|y/I.  
    % -------------------- <T~fh>a  
    if nargin==5 && ischar(nflag) ZaV66Y>  
        isnorm = strcmpi(nflag,'norm'); [?o v J  
        if ~isnorm gK_[3FiKt  
            error('zernfun:normalization','Unrecognized normalization flag.') FNRE_83  
        end y/*Tvb #TJ  
    else >bP7}T  
        isnorm = false; e$|)wOwU  
    end PsT v\!  
    B9Tztg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $>37PVVW  
    % Compute the Zernike Polynomials o:\j/+]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |Dpfh  
    7027@M?A?  
    % Determine the required powers of r: ,'DrFlI  
    % ----------------------------------- MM$" 6Jor  
    m_abs = abs(m); H LGy"P  
    rpowers = []; W 9MZ  
    for j = 1:length(n) \5c -L_  
        rpowers = [rpowers m_abs(j):2:n(j)]; jmVy4* P_  
    end e[o ;l  
    rpowers = unique(rpowers); A{T@O5ucj  
    &!fcLJd  
    % Pre-compute the values of r raised to the required powers, Gl:T  
    % and compile them in a matrix: rZ4<*Zegv  
    % ----------------------------- mV]g5>Q\  
    if rpowers(1)==0 V!tBipX%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X,CF Y  
        rpowern = cat(2,rpowern{:}); $F$R4?_  
        rpowern = [ones(length_r,1) rpowern]; 4?uG> ;V  
    else 1caod0gor  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HBGA lZ  
        rpowern = cat(2,rpowern{:}); UHHKI)(  
    end 70(?X/5#  
    =xP{f<`   
    % Compute the values of the polynomials: % E_{L  
    % -------------------------------------- |^!@  
    y = zeros(length_r,length(n)); 6;V 1PK>9  
    for j = 1:length(n) IcA~f@  
        s = 0:(n(j)-m_abs(j))/2; 1<e%)? G  
        pows = n(j):-2:m_abs(j); K0a 50@B]  
        for k = length(s):-1:1 SXF_)1QO\W  
            p = (1-2*mod(s(k),2))* ... sUMn (@r  
                       prod(2:(n(j)-s(k)))/              ... '~a$f;: Dv  
                       prod(2:s(k))/                     ... M&-/ &>n!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... j"8N)la  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >:|q J$J.  
            idx = (pows(k)==rpowers); be@uHikp;v  
            y(:,j) = y(:,j) + p*rpowern(:,idx); E.9k%%X]  
        end =LA@E&,j  
         zt}p-U2I  
        if isnorm (LPD  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *&MkkI#  
        end `vBa.)u  
    end X.|0E87  
    % END: Compute the Zernike Polynomials  #0H[RU?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 63$m& ]x  
    ;Bi{;>3  
    % Compute the Zernike functions: KHiJOeLc  
    % ------------------------------ BT0hx!Ti  
    idx_pos = m>0; 3/05ee;|  
    idx_neg = m<0; "KwKO8f  
    t,nB`g?  
    z = y; UlytxWkUX  
    if any(idx_pos) i*j+<R@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [N)M]u  
    end m,O !M t  
    if any(idx_neg) _r'M^=yx[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !CKUkoX  
    end _Oq\YQb v  
    &.B6P|N'  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) RkzBn  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ibyA~YUN/  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Q2Rj0E`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive b??1Up  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, |#6Lcz7[  
    %   and THETA is a vector of angles.  R and THETA must have the same z^.0eP8\j  
    %   length.  The output Z is a matrix with one column for every P-value, 5@ug1F&   
    %   and one row for every (R,THETA) pair. eHR<(8c'f  
    % {,=,0NQKn  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike L8ke*O$  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ':3KZ4/C  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) oV`sCr5%  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ~@lNBF  
    %   for all p.  ~A/_\-  
    % pyKag;ZtP  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 )w-?|2-w5  
    %   Zernike functions (order N<=7).  In some disciplines it is a 2TC,   
    %   traditional to label the first 36 functions using a single mode M %~kh"  
    %   number P instead of separate numbers for the order N and azimuthal d/1XL[&  
    %   frequency M. Cx[4 /~_<  
    % j$6}r  
    %   Example: Sls> OIc  
    % Pp2 )P7  
    %       % Display the first 16 Zernike functions Npqbxb  
    %       x = -1:0.01:1; VM[8w`  
    %       [X,Y] = meshgrid(x,x); *rLs!/[Z_  
    %       [theta,r] = cart2pol(X,Y); pC6_ jIZ  
    %       idx = r<=1; $$a"A(Y  
    %       p = 0:15; }8HLyK,4  
    %       z = nan(size(X)); e 3K  
    %       y = zernfun2(p,r(idx),theta(idx)); .FUE F)  
    %       figure('Units','normalized') ioggD  
    %       for k = 1:length(p) |Bp?"8%*l  
    %           z(idx) = y(:,k); $Tg$FfD6&  
    %           subplot(4,4,k) !T*izMX}  
    %           pcolor(x,x,z), shading interp KVuv%?  
    %           set(gca,'XTick',[],'YTick',[]) #=rR[:M  
    %           axis square #^Y,,GA  
    %           title(['Z_{' num2str(p(k)) '}']) :Lx]`dSk  
    %       end kbY@Y,:w  
    % VZ8L9h<{"  
    %   See also ZERNPOL, ZERNFUN. jkq+j^  
    $dR%8@.H  
    %   Paul Fricker 11/13/2006 9L};vkYk#  
    k;sUDmrO  
    <  -Nj  
    % Check and prepare the inputs: V;"'!dVX  
    % ----------------------------- ^|Y!NHYH$Z  
    if min(size(p))~=1 c\Dv3bF  
        error('zernfun2:Pvector','Input P must be vector.') x?3p3[y  
    end }49?Z3  
    * XJSa  
    if any(p)>35 E O5Vg  
        error('zernfun2:P36', ... QUt!fF@t  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... pPE4~g 05h  
               '(P = 0 to 35).']) DCj!m<Y&  
    end <x/&Ml+  
    Nx99dr  
    % Get the order and frequency corresonding to the function number: 8PQt8G.  
    % ---------------------------------------------------------------- <XNLeJdY  
    p = p(:); 0PN{ +<? .  
    n = ceil((-3+sqrt(9+8*p))/2); PJ'l:IU  
    m = 2*p - n.*(n+2); L,i-T:Z~=  
    YW*ti|u|w  
    % Pass the inputs to the function ZERNFUN: vQ;Z 0_  
    % ---------------------------------------- -8]$a6`{_  
    switch nargin }{$@|6)R   
        case 3 ,q4Y N-3  
            z = zernfun(n,m,r,theta); ?IK[]=!  
        case 4 aePk^?KbB  
            z = zernfun(n,m,r,theta,nflag); !>M: G:K  
        otherwise v"`w'+  
            error('zernfun2:nargin','Incorrect number of inputs.') y0 xte&  
    end 139_\=5|U/  
    ` sSI;+  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) zhS\|tI  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. o<Q~pd#Ip,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of l2i[wc"9  
    %   order N and frequency M, evaluated at R.  N is a vector of " 5=Gu1  
    %   positive integers (including 0), and M is a vector with the y\S}U{*Z'  
    %   same number of elements as N.  Each element k of M must be a +d<o2n4!  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) s~3"*,3@  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is `2G 0B@  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  Hi#hf"V  
    %   with one column for every (N,M) pair, and one row for every arm26YA-,  
    %   element in R. H+` Zp  
    % >HyZ~M  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- U 1vZ r{\  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is w~Aw?75 t  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ,VI2dNst\  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 S3$&}I <  
    %   for all [n,m]. S/V%<<[>p]  
    % 5 y0 N }}  
    %   The radial Zernike polynomials are the radial portion of the RGsgT^  
    %   Zernike functions, which are an orthogonal basis on the unit tw,uV)xm  
    %   circle.  The series representation of the radial Zernike zt6GJ z1q  
    %   polynomials is xcty  
    % ) vn {?Ulj  
    %          (n-m)/2 :>f}rq  
    %            __ @P@?KZ..v!  
    %    m      \       s                                          n-2s Phr+L9Eog  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \(C6|-:GY  
    %    n      s=0 ;X, A|m$(  
    % s^#B*  
    %   The following table shows the first 12 polynomials. mb,\wZ  
    % g=n{G@*N  
    %       n    m    Zernike polynomial    Normalization 7_HFQT1.N  
    %       --------------------------------------------- {OIB/  
    %       0    0    1                        sqrt(2) {u~JR(C:  
    %       1    1    r                           2 ?k@^U9?R  
    %       2    0    2*r^2 - 1                sqrt(6) qz95)  
    %       2    2    r^2                      sqrt(6) Lcb5^e?'Q  
    %       3    1    3*r^3 - 2*r              sqrt(8) F JCs$0  
    %       3    3    r^3                      sqrt(8) @q]4]U)  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 2u Zb2O  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) AT%6K.  
    %       4    4    r^4                      sqrt(10) >jz9o9?8  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) R"W5R-  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) > 9.%hSy  
    %       5    5    r^5                      sqrt(12) 5\V""fH  
    %       --------------------------------------------- f*}}Az.4  
    % 6%it`A8}  
    %   Example: rtNYX=P  
    % .J <t]  
    %       % Display three example Zernike radial polynomials Q p7h|<  
    %       r = 0:0.01:1; 0 30LT$&!  
    %       n = [3 2 5]; u8.F_'`z  
    %       m = [1 2 1]; fqjBor}  
    %       z = zernpol(n,m,r); ulE5lG0c  
    %       figure tq}MzKI*  
    %       plot(r,z) <2N{oK.  
    %       grid on IdqCk0lVD  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') x$;RfK2&p  
    % 7r&lW<:>  
    %   See also ZERNFUN, ZERNFUN2. EHN(K-  
    'Lq+ONX5  
    % A note on the algorithm. Z_[ P7P  
    % ------------------------ , # =TputM  
    % The radial Zernike polynomials are computed using the series +5S>"KAUt0  
    % representation shown in the Help section above. For many special UB/"&I uo  
    % functions, direct evaluation using the series representation can v4<W57oH  
    % produce poor numerical results (floating point errors), because XLC9B3Jt  
    % the summation often involves computing small differences between "4\k1H"_  
    % large successive terms in the series. (In such cases, the functions dP?prT  
    % are often evaluated using alternative methods such as recurrence q8_(P&  
    % relations: see the Legendre functions, for example). For the Zernike )X-'Q-  
    % polynomials, however, this problem does not arise, because the VwpC UW  
    % polynomials are evaluated over the finite domain r = (0,1), and \_WR:?l  
    % because the coefficients for a given polynomial are generally all R\|,GZ!`+  
    % of similar magnitude. =* G3Khz!  
    % ,VS(4  
    % ZERNPOL has been written using a vectorized implementation: multiple ULqI]k(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Pr1q X5>=  
    % values can be passed as inputs) for a vector of points R.  To achieve }/dk2!?ig  
    % this vectorization most efficiently, the algorithm in ZERNPOL pJx7S sW  
    % involves pre-determining all the powers p of R that are required to +l^tT&s;f  
    % compute the outputs, and then compiling the {R^p} into a single ffG<hclk  
    % matrix.  This avoids any redundant computation of the R^p, and u8T@W}FX  
    % minimizes the sizes of certain intermediate variables. w+/`l*  
    % VxBBZsZO~  
    %   Paul Fricker 11/13/2006 /i3 JP}  
    lhHH|~t0  
    -Y@tx fu-  
    % Check and prepare the inputs: a;t}'GQGk  
    % ----------------------------- & y5"0mA  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RI@\cJ\}  
        error('zernpol:NMvectors','N and M must be vectors.') o>_})WM1[  
    end R|n  
    "aOs#4N  
    if length(n)~=length(m) AY{KxCr b^  
        error('zernpol:NMlength','N and M must be the same length.') tGgxID  
    end 2uOYuM[7gH  
    ?D6uviQg  
    n = n(:); UxL*I[z5  
    m = m(:); H}$7c`;q  
    length_n = length(n); nS04Ha  
    '|DW#l\n  
    if any(mod(n-m,2)) (iX8YP$%  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Q]YB.n3   
    end =..Bh8P71!  
    \P*_zd@%  
    if any(m<0) 8 MQq3  
        error('zernpol:Mpositive','All M must be positive.') 0n{.96r0R  
    end Ea&|kO|  
    HEBeJ2w  
    if any(m>n) 8cG?p  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') d.FU) )lmD  
    end U?#wWbE1  
    wAKHD*M)  
    if any( r>1 | r<0 ) xj3 qOx$  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') fZ$b8  
    end q#tUDxf(|  
    $Z:O&sD{  
    if ~any(size(r)==1) mux/\TII  
        error('zernpol:Rvector','R must be a vector.') eR$@Q  
    end qD{1X25O  
    Ipk;Nq  
    r = r(:); } :0_%=)N<  
    length_r = length(r); f' ?/P~[  
    R9U{r.AA  
    if nargin==4 --WQr]U/  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); V`y^m@U!  
        if ~isnorm & Q3Fgj  
            error('zernpol:normalization','Unrecognized normalization flag.') 5dePpFD5  
        end Nap[=[rv  
    else w}ji]V}  
        isnorm = false; |-Uh3WUE6  
    end C|V7ZL>W  
    ^ Oh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }R%H?&P  
    % Compute the Zernike Polynomials /'sv7hg+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N1$u@P{  
    {y9G "  
    % Determine the required powers of r: +>"s)R43  
    % ----------------------------------- gQ_<;'m)2  
    rpowers = []; DZSS  
    for j = 1:length(n) &DLWlMGq  
        rpowers = [rpowers m(j):2:n(j)]; G?s9c0f  
    end cUY-  
    rpowers = unique(rpowers); jH< #)R  
    Vu3DP+u|i  
    % Pre-compute the values of r raised to the required powers, fpR|+`k  
    % and compile them in a matrix: =Hg!@5]H  
    % ----------------------------- Fi/iA%,  
    if rpowers(1)==0 |J-X3`^\H  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fz(YP=@ZnP  
        rpowern = cat(2,rpowern{:}); YO$Ig:a#  
        rpowern = [ones(length_r,1) rpowern]; aJ'Fn  
    else i#'K7XM2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [d`E9&Hv3  
        rpowern = cat(2,rpowern{:}); I L*B@E8  
    end csy6_q(  
    ("8Hku?  
    % Compute the values of the polynomials: @7Ec(]yp  
    % -------------------------------------- ^Hx}.?1  
    z = zeros(length_r,length_n); 2lTt  
    for j = 1:length_n "wgPPop  
        s = 0:(n(j)-m(j))/2; OG5{oH#K  
        pows = n(j):-2:m(j); J :O!4gI  
        for k = length(s):-1:1 8,U~ p<Gz  
            p = (1-2*mod(s(k),2))* ... y\T$) XGV  
                       prod(2:(n(j)-s(k)))/          ... Fi i(dmn  
                       prod(2:s(k))/                 ... riIubX#  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~<[+!&<U  
                       prod(2:((n(j)+m(j))/2-s(k))); `NIb? /!f  
            idx = (pows(k)==rpowers); 2 R\K!e  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 2P"643tz  
        end UD-+BUV  
         r8EJ@pOF2w  
        if isnorm Jh-yIk  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); tx09B)0  
        end ?w:\0j5 ~  
    end xrf|c  
    %3`*)cp@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ie[X7$@  
    WL(Y1>|j  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]["%e9#aX  
    D5xQ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)