切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11473阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 1{r3#MVL  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! S/}2;\Xm  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 VGfMN|h  
    function z = zernfun(n,m,r,theta,nflag) tkVbo.[8K  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. NS9B[*"Jl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S\''e`Eb"5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the l]@&D#3ZM  
    %   unit circle.  N is a vector of positive integers (including 0), and }XZ'v_Ti  
    %   M is a vector with the same number of elements as N.  Each element I[=j&rK`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 2{]`W57_=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, V_>\ 9m  
    %   and THETA is a vector of angles.  R and THETA must have the same pwO>h>ik  
    %   length.  The output Z is a matrix with one column for every (N,M) G3{Q"^S"  
    %   pair, and one row for every (R,THETA) pair. M^MdRu  
    % TK5K_V*7  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike il}%7b-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4,..kSA3iw  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?f#y1m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s4G|_==  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized T#M,~lD  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O>qll 6]{@  
    % R#xCkl-  
    %   The Zernike functions are an orthogonal basis on the unit circle. v$~QU{ &  
    %   They are used in disciplines such as astronomy, optics, and ]Gpxhg  
    %   optometry to describe functions on a circular domain. V7GRA#|  
    % @_U;9)  
    %   The following table lists the first 15 Zernike functions. @'YS1N<  
    % ~;Ov-^tp  
    %       n    m    Zernike function           Normalization @*}D$}aR'V  
    %       -------------------------------------------------- A&s:\3*Kh  
    %       0    0    1                                 1 k xP-,MD  
    %       1    1    r * cos(theta)                    2 HqI t74+  
    %       1   -1    r * sin(theta)                    2 EM]s/LD@%  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) O>SLOWgha  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (2$( ?-M  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) lFa02p0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) e@c0WlWa  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Kpb#K[(]&  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 4?0vso*X<:  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) E8>Ru i@9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h lkn%  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .nG#co"r}3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) q+P|l5_ t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8S>&WR%jH]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'I_Qb$  
    %       -------------------------------------------------- F_Z- 8>P  
    % 9U{a{~b  
    %   Example 1: K|Ld,bq  
    % #6ri-n  
    %       % Display the Zernike function Z(n=5,m=1) 5:O-tgig.  
    %       x = -1:0.01:1; ;w:M`#2  
    %       [X,Y] = meshgrid(x,x); MG[o%I96  
    %       [theta,r] = cart2pol(X,Y); ;epV<{e$q4  
    %       idx = r<=1; 8dV=[+  
    %       z = nan(size(X)); 7#@cz5Su  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); W4[V}s5u  
    %       figure ~vs}.kb  
    %       pcolor(x,x,z), shading interp 5Ycco,x  
    %       axis square, colorbar u1t% (_h  
    %       title('Zernike function Z_5^1(r,\theta)') T;@;R %  
    % K/A*<<r ~  
    %   Example 2: $}lbT15a  
    % N5*u]j  
    %       % Display the first 10 Zernike functions hZh9uI7.  
    %       x = -1:0.01:1; mu?Eco`~  
    %       [X,Y] = meshgrid(x,x); x 8Retuv  
    %       [theta,r] = cart2pol(X,Y); b|cyjDMAA  
    %       idx = r<=1; $wmvKQc{lx  
    %       z = nan(size(X)); .gG1kWA-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 350_CN,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n3}!p'-CC  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @Gx.q&H  
    %       y = zernfun(n,m,r(idx),theta(idx)); wSb 1"a  
    %       figure('Units','normalized') U Z.=aQ}M  
    %       for k = 1:10 8aO~/i:(.  
    %           z(idx) = y(:,k); $Z|ffc1  
    %           subplot(4,7,Nplot(k)) b'J'F;zh>  
    %           pcolor(x,x,z), shading interp D@.tkzU@E  
    %           set(gca,'XTick',[],'YTick',[]) 1"/He ` 4  
    %           axis square A/s>PhxV  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {T4  
    %       end e_s&L,ze  
    % #[zI5)Meh  
    %   See also ZERNPOL, ZERNFUN2. \]P!.}nX#  
    &8%e\W\K:/  
    %   Paul Fricker 11/13/2006 V6t,BJjS  
    Vl_:c75"  
    GytXFL3`:  
    % Check and prepare the inputs: -:30:oq  
    % ----------------------------- 43={Xy   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |~'IM3Jw(Y  
        error('zernfun:NMvectors','N and M must be vectors.') GDu~d<RH  
    end P`#Z9 HM4  
    L,mQ   
    if length(n)~=length(m) *.\  
        error('zernfun:NMlength','N and M must be the same length.') '|S%a MLZ)  
    end [[>wB[w  
    *H?!;u=8  
    n = n(:); $-#Yl&?z9  
    m = m(:); U>V&-kxtV  
    if any(mod(n-m,2)) \2ZPj)&-E  
        error('zernfun:NMmultiplesof2', ... ?*?RP)V  
              'All N and M must differ by multiples of 2 (including 0).') A,\6nO67  
    end Fx5d:!]:$?  
    y]J89  
    if any(m>n) {]E+~%Va  
        error('zernfun:MlessthanN', ... K$M^gh0  
              'Each M must be less than or equal to its corresponding N.') N@O8\oQG  
    end L:_bg8eD#  
    6)vSG7Ise  
    if any( r>1 | r<0 ) L3 G \  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') PQK(0iCo4  
    end ]4R[<<hd  
    \e!vj.PU  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z"+Mrew  
        error('zernfun:RTHvector','R and THETA must be vectors.') GP&vLt51  
    end r*$Ner  
    Z^]|o<.<I  
    r = r(:); {e+-vl  
    theta = theta(:); 1Ab>4UhD  
    length_r = length(r); OiE;B  
    if length_r~=length(theta) -RS7h  
        error('zernfun:RTHlength', ... \0mb 3Q'  
              'The number of R- and THETA-values must be equal.') ;=<-5;rI  
    end ' v\L @"  
    "Kc>dJ@W  
    % Check normalization: RjWqGr;bO  
    % -------------------- :$_6SQ<?  
    if nargin==5 && ischar(nflag) :=8t"rO=W  
        isnorm = strcmpi(nflag,'norm'); J?Dq>%+ ^  
        if ~isnorm j'aHF#_  
            error('zernfun:normalization','Unrecognized normalization flag.') LwhyE:1  
        end )ZBY* lk9  
    else E\IlF 6  
        isnorm = false; H(Q.a=&4!p  
    end *;m5'}jsy  
    OM|Fwr$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F29v a  
    % Compute the Zernike Polynomials 'yV?*a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -0_d/'d  
    K =wBpLB  
    % Determine the required powers of r: sf]s",t~J  
    % ----------------------------------- c\ia6[3sX  
    m_abs = abs(m); hSK;V<$[Z  
    rpowers = []; rQEyD  
    for j = 1:length(n) RPIyO  
        rpowers = [rpowers m_abs(j):2:n(j)]; C=s1R;"H  
    end aB]m*~  
    rpowers = unique(rpowers); $b<6y/"  
    k51Eyy50(  
    % Pre-compute the values of r raised to the required powers, <`jLY)sw  
    % and compile them in a matrix: ,(.MmP`  
    % ----------------------------- <L{(Mj%Z  
    if rpowers(1)==0 _[Vf547vS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P ~#>H{  
        rpowern = cat(2,rpowern{:}); 8a_[B~  
        rpowern = [ones(length_r,1) rpowern]; 8[|UgI,>z  
    else i~3u>CT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Gcb|W&  
        rpowern = cat(2,rpowern{:}); eL4NB$Fb  
    end {t Thy#  
    -F=v6N{  
    % Compute the values of the polynomials: }?&k a$rI  
    % -------------------------------------- P i Fm|  
    y = zeros(length_r,length(n)); +3a?` Z  
    for j = 1:length(n) C-8qj>  
        s = 0:(n(j)-m_abs(j))/2; hXb%;GL  
        pows = n(j):-2:m_abs(j); n!')wIk  
        for k = length(s):-1:1 K9vIm4::d$  
            p = (1-2*mod(s(k),2))* ... Qj3a_p$)P  
                       prod(2:(n(j)-s(k)))/              ... xl"HotsX-x  
                       prod(2:s(k))/                     ... D;I6Q1I  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cgb2K$B_"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 'S[++w?Qq  
            idx = (pows(k)==rpowers); @]q BF]6  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +4\U)Z/\  
        end S}f?.7  
         DAwqo.m  
        if isnorm s;1]tD  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |A%<Z(  
        end }gkM^*$:%  
    end Hg9CZM ko  
    % END: Compute the Zernike Polynomials JT9N!CGZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?=VOD#)  
    pA;-v MpMj  
    % Compute the Zernike functions: v4RlLg dS%  
    % ------------------------------ hky;CD~$  
    idx_pos = m>0; or k=`};  
    idx_neg = m<0; T~fmk f$  
    [xh*"wT#g  
    z = y; 4lqH8l.  
    if any(idx_pos) a=XW[TY1  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }|B=h  
    end SxK:]Aw  
    if any(idx_neg) ~2d:Q6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?:|-Dq,  
    end }n7t h  
    m%"uPv\  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) h;V,n  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. b dJ+@r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated mp~{W  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ?R-9W+U%f  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, -[OXSaf6  
    %   and THETA is a vector of angles.  R and THETA must have the same wh:1PP  
    %   length.  The output Z is a matrix with one column for every P-value, j#0j)k2Q  
    %   and one row for every (R,THETA) pair. 8h<ehNX ^I  
    % qn"D#K'&(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike =e><z9hY  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) s cdtWA  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 0)9"M.AIvo  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ;eigOU]  
    %   for all p. _ nP;Fx  
    % M+wt_ _vHf  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 >QHo@Zqj(  
    %   Zernike functions (order N<=7).  In some disciplines it is m-T~fJ  
    %   traditional to label the first 36 functions using a single mode >x3ug]Bu  
    %   number P instead of separate numbers for the order N and azimuthal )'Wb&A'  
    %   frequency M.  ==/n(LBD  
    % < Fs-3(V+\  
    %   Example: JK#vkCkyM  
    % m}$+Hdk+7  
    %       % Display the first 16 Zernike functions 9Q W&$n^  
    %       x = -1:0.01:1; 69kJC/1+l  
    %       [X,Y] = meshgrid(x,x); ,pK| SL  
    %       [theta,r] = cart2pol(X,Y); Q36)7=at  
    %       idx = r<=1; 5j"1z1_&  
    %       p = 0:15; &~B5.sppnB  
    %       z = nan(size(X)); g8ES8S M  
    %       y = zernfun2(p,r(idx),theta(idx)); 4c~>ci,N?(  
    %       figure('Units','normalized') %;z((3F  
    %       for k = 1:length(p) ~un%4]U  
    %           z(idx) = y(:,k); J NC  
    %           subplot(4,4,k) Y{f7 f'_  
    %           pcolor(x,x,z), shading interp j2 h[70fWC  
    %           set(gca,'XTick',[],'YTick',[]) \g-j9|0  
    %           axis square !c<wS Q,  
    %           title(['Z_{' num2str(p(k)) '}']) &jV_"_3n  
    %       end %Hi~aRz  
    % dMl+ko  
    %   See also ZERNPOL, ZERNFUN. l{P\No  
    DE{h5-g  
    %   Paul Fricker 11/13/2006 0MIUI<;j  
    lS{r=y_0.  
    YpdNX.P,  
    % Check and prepare the inputs: ,7|;k2  
    % ----------------------------- &h$|j  
    if min(size(p))~=1 MM{_Ur7Q  
        error('zernfun2:Pvector','Input P must be vector.') % U`xu.  
    end ned2lC&'d>  
    K2'O]#  
    if any(p)>35 IGj`_a  
        error('zernfun2:P36', ... :ipoD%@  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... kpfwqHT  
               '(P = 0 to 35).']) ,<ya@Fi{  
    end !)NidG  
    m8R=?U~!S  
    % Get the order and frequency corresonding to the function number: Sn3:x5H,l  
    % ---------------------------------------------------------------- J/D|4fC  
    p = p(:); }GHxG9!z  
    n = ceil((-3+sqrt(9+8*p))/2); UWG+#,1J.\  
    m = 2*p - n.*(n+2); 00vBpsZj2;  
    Yq'4e[i  
    % Pass the inputs to the function ZERNFUN: s<T?pH  
    % ---------------------------------------- h.tY 'F  
    switch nargin  5K56!*Y  
        case 3 e`U Qz$4!  
            z = zernfun(n,m,r,theta); p5 ]_}I`+2  
        case 4 eE:&qy^  
            z = zernfun(n,m,r,theta,nflag); ,axDMMDI  
        otherwise LZ~`29qw(  
            error('zernfun2:nargin','Incorrect number of inputs.') k1N$+h ;\  
    end ^nDal':*  
    (wt+`_6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Up?=m^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. K}x/ BhE+  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of H7IW"UkBR  
    %   order N and frequency M, evaluated at R.  N is a vector of o'UHStk  
    %   positive integers (including 0), and M is a vector with the `bP?o  
    %   same number of elements as N.  Each element k of M must be a C|e+0aW  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 9&jPp4qG  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is yFeeG3 n3  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix e@ oWwhpE  
    %   with one column for every (N,M) pair, and one row for every !EFBI+?&  
    %   element in R. ( tn< VK.  
    % X8 qIia  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- >[3X]n,0  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is xdF guV8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to j@P5(3r  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 nxRwWj57  
    %   for all [n,m]. !t-K<'  
    % P/ aDd@j  
    %   The radial Zernike polynomials are the radial portion of the %8D?$v"#Z  
    %   Zernike functions, which are an orthogonal basis on the unit <aVfJd/fT  
    %   circle.  The series representation of the radial Zernike  X4I]9 t\  
    %   polynomials is 6"%qv`.Fp  
    % P4%>k6X  
    %          (n-m)/2 LZV}U*  
    %            __ Vipp /WV  
    %    m      \       s                                          n-2s p{C9`wi)  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r FzhT$7Gw  
    %    n      s=0 8-A|C< "  
    % 5faj;I{%JY  
    %   The following table shows the first 12 polynomials. QMb^&?;s  
    % TG]}X\c+V|  
    %       n    m    Zernike polynomial    Normalization hWxT!  
    %       --------------------------------------------- /.ZaE+  
    %       0    0    1                        sqrt(2) &7][@v  
    %       1    1    r                           2 4K,''7N3  
    %       2    0    2*r^2 - 1                sqrt(6) TcZN %  
    %       2    2    r^2                      sqrt(6) FfXZ|o$;  
    %       3    1    3*r^3 - 2*r              sqrt(8) ak2dn]]D  
    %       3    3    r^3                      sqrt(8) csvO g[  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 41 'EA \V  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) X%`KYo%  
    %       4    4    r^4                      sqrt(10) ewQe/Fq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [d:@1yc  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) d$Em\*C  
    %       5    5    r^5                      sqrt(12) 1*c>I@I;  
    %       --------------------------------------------- H5p5S\g-)  
    % DPeVKyjU  
    %   Example: wT% "5:  
    % R-C5*$  
    %       % Display three example Zernike radial polynomials bX&e_Pd  
    %       r = 0:0.01:1; uN(b.5y  
    %       n = [3 2 5]; EE9vk*[@C  
    %       m = [1 2 1]; 9fCO7AE0#  
    %       z = zernpol(n,m,r); d5' )6  
    %       figure ?%;B`2 nDR  
    %       plot(r,z) #^; s<YZ`  
    %       grid on 6`W|V+6|7  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /&QQ p3  
    % j`Nh7+qs  
    %   See also ZERNFUN, ZERNFUN2. vnVZJ}]w\  
    EqQ3=XMUL@  
    % A note on the algorithm. V^vLN[8_\  
    % ------------------------ /.)2d8,  
    % The radial Zernike polynomials are computed using the series tx)OJY  
    % representation shown in the Help section above. For many special w5 Z2N[hy  
    % functions, direct evaluation using the series representation can 8>d q=0:  
    % produce poor numerical results (floating point errors), because z.j4tc9F/5  
    % the summation often involves computing small differences between Un\Ubqi0  
    % large successive terms in the series. (In such cases, the functions D{W SKn  
    % are often evaluated using alternative methods such as recurrence ?"u'#f_  
    % relations: see the Legendre functions, for example). For the Zernike t .L4%1OF  
    % polynomials, however, this problem does not arise, because the Yg|"-  
    % polynomials are evaluated over the finite domain r = (0,1), and g~|y$T  
    % because the coefficients for a given polynomial are generally all , | <jjq)  
    % of similar magnitude. 7 y>(H<^>  
    % $>(9~Yh0  
    % ZERNPOL has been written using a vectorized implementation: multiple Md?acWE*L  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] q /:T1a7!  
    % values can be passed as inputs) for a vector of points R.  To achieve ]p\u$VY9  
    % this vectorization most efficiently, the algorithm in ZERNPOL )5'rw<:="  
    % involves pre-determining all the powers p of R that are required to hw|t8 ShW  
    % compute the outputs, and then compiling the {R^p} into a single gu!](yEgl  
    % matrix.  This avoids any redundant computation of the R^p, and XUf7yD  
    % minimizes the sizes of certain intermediate variables. S_j1=6 #^  
    % /Go>5 B>  
    %   Paul Fricker 11/13/2006 j7,13,t1-  
    F6DxvyANr  
    nrF!;:x  
    % Check and prepare the inputs: )FV6,  
    % ----------------------------- Dl&PL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [~!.a\[RW  
        error('zernpol:NMvectors','N and M must be vectors.') 7^&lbzVbm(  
    end S;>4i!Mb ^  
    @OY1`Eu O  
    if length(n)~=length(m) [' ?^>jfr  
        error('zernpol:NMlength','N and M must be the same length.') e"lD`*U8R  
    end OCwW@OC +  
    Z~:/#?/  
    n = n(:); T<XfZZ)l<`  
    m = m(:); t[/\KG8  
    length_n = length(n); Kyu@>9Ok  
    ^uM_b  
    if any(mod(n-m,2)) wG;}TxrLS  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') WI0QLR'  
    end I7A7X*  
    prqyoCfq  
    if any(m<0) QN3 qF|))  
        error('zernpol:Mpositive','All M must be positive.') >G<4R o"  
    end mn(/E/  
    u"*J[M~  
    if any(m>n) 'w'Dwqhmr  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') v*smI7aH  
    end !~?W \b\:  
    -e &$,R>;  
    if any( r>1 | r<0 ) U.Pa7tn  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') /4(Z`e;0  
    end D7EXqo  
    3L?WTS6(u  
    if ~any(size(r)==1) YomwjKyuP  
        error('zernpol:Rvector','R must be a vector.') P_kaIPP  
    end >-UD]?>  
    %uh R'8"  
    r = r(:); 0W;q!H[G  
    length_r = length(r); |GJBwrL^0  
    ) )fDOJ  
    if nargin==4 -6AOK<kfI  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 2;dM:FHLhO  
        if ~isnorm "9)1K!tH  
            error('zernpol:normalization','Unrecognized normalization flag.') n'! -Pv  
        end <m~T>Ql1  
    else u4go*#  
        isnorm = false;  =|^X$H  
    end 32M6EEmPG  
    JJ^iy*v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s.<olxXRW  
    % Compute the Zernike Polynomials N5[_a/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9"m, p  
    >&*6Fqd  
    % Determine the required powers of r: nrxjN(9V%+  
    % ----------------------------------- jK& Nkp  
    rpowers = []; z:d Xc  
    for j = 1:length(n) ztRWIkI q  
        rpowers = [rpowers m(j):2:n(j)]; 'hxs((['\  
    end & gY;`*<  
    rpowers = unique(rpowers); (k7;  
    9m<wcZ  
    % Pre-compute the values of r raised to the required powers, R tXF  
    % and compile them in a matrix: L-^# 02  
    % ----------------------------- 0SAG6k~x  
    if rpowers(1)==0 Rh wt<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 43UJ#rF  
        rpowern = cat(2,rpowern{:}); :7HVBH  
        rpowern = [ones(length_r,1) rpowern]; n,C D4Nv  
    else wJ;9),fL  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9nP*N`  
        rpowern = cat(2,rpowern{:}); M>`?m L  
    end v1`bDS?*Q  
    uYG #c(lc  
    % Compute the values of the polynomials: 3MS3O.0]/  
    % -------------------------------------- k+W  
    z = zeros(length_r,length_n); T=hm#]   
    for j = 1:length_n -~QlHp&SY  
        s = 0:(n(j)-m(j))/2; |N phG|  
        pows = n(j):-2:m(j); 9+WY@du+  
        for k = length(s):-1:1 8cYuzt]..  
            p = (1-2*mod(s(k),2))* ... gJWlWVeq$  
                       prod(2:(n(j)-s(k)))/          ... *!-}lc^4  
                       prod(2:s(k))/                 ... 5#9`ROT9  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... bAA'=z<  
                       prod(2:((n(j)+m(j))/2-s(k)));  e B9m4  
            idx = (pows(k)==rpowers); ZwY`x')  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 6/p]jN  
        end -ucz+{  
         v.~Nv@+kR  
        if isnorm *@b~f&Lx6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); @j)f(Zlu#  
        end LH?gJ8`  
    end ex;Y n{4  
    Mt7X<?GZm  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  enO=-#  
    ]4pC\0c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _O'rZ5}&  
    `[R:L.H1  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)