切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11360阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 5g=" #  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! @U}UCG7+  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 [[Z*n/tr  
    function z = zernfun(n,m,r,theta,nflag) 9Gy1T3y5"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. M;V2O;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H:CwUFL  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LE Y$St  
    %   unit circle.  N is a vector of positive integers (including 0), and bk V_ ^8  
    %   M is a vector with the same number of elements as N.  Each element ^JH 4: h  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }^=J]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, s8R.?mhH=  
    %   and THETA is a vector of angles.  R and THETA must have the same &n['#7 <(!  
    %   length.  The output Z is a matrix with one column for every (N,M) 1%>/%eyn5  
    %   pair, and one row for every (R,THETA) pair. rUlXx5f  
    % H=*;3gM,'  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iZ&CE5+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -(Yq$5Zc&  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Z5v\[i@H!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, sVGyHA  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]@_*O$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xgfK0-T|[  
    % 59GS:  
    %   The Zernike functions are an orthogonal basis on the unit circle. hivWQ$6%  
    %   They are used in disciplines such as astronomy, optics, and -2f_e3jF  
    %   optometry to describe functions on a circular domain. mzDbw-#  
    % orJN#0v4  
    %   The following table lists the first 15 Zernike functions. E-CZk_K9  
    % }s? 9Hnqa  
    %       n    m    Zernike function           Normalization 2|m461   
    %       -------------------------------------------------- xse8fGs  
    %       0    0    1                                 1 )[>{ Ie2  
    %       1    1    r * cos(theta)                    2 ^`ny]3JA  
    %       1   -1    r * sin(theta)                    2 yj-BLR5  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) m#ID%[hg$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?nE<Aig  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ?3[as<GZ8  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) (V#5Cs,o:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ?m0|>[j  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) FK<1SOE  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }qxw Nmx  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) CnN PziB  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I~|.Re9a  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <8~bb- U$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `StlG=TB8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Kx7s d i  
    %       -------------------------------------------------- ] %pr1Ey  
    % zW8rC!  
    %   Example 1: 4 +Wti!s  
    % @w?hX K=  
    %       % Display the Zernike function Z(n=5,m=1) ^Yul|0*J  
    %       x = -1:0.01:1; @!`x^Tzz  
    %       [X,Y] = meshgrid(x,x); | bDUekjR  
    %       [theta,r] = cart2pol(X,Y); 3,t3\`=  
    %       idx = r<=1; 8(]*J8/wt  
    %       z = nan(size(X)); d[=~-[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "dQ02y  
    %       figure @p"m{  
    %       pcolor(x,x,z), shading interp br`cxgZ0"  
    %       axis square, colorbar "2# #Fcu=  
    %       title('Zernike function Z_5^1(r,\theta)') dD ?ZF6  
    % yH/m@#  
    %   Example 2: XcL jUz?  
    % 5o2w)<d!  
    %       % Display the first 10 Zernike functions j`7q7}  
    %       x = -1:0.01:1; OO#_ 0qK  
    %       [X,Y] = meshgrid(x,x); '*lVVeSiFw  
    %       [theta,r] = cart2pol(X,Y); 2!QQypQ  
    %       idx = r<=1; =# 0f4z  
    %       z = nan(size(X)); *3 8 u ~n  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (ZSd7qH"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; x4v@o?zW  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; bf@H(gCW=  
    %       y = zernfun(n,m,r(idx),theta(idx)); t\S=u y  
    %       figure('Units','normalized') -aPRL HR  
    %       for k = 1:10 K,j'!VQA4g  
    %           z(idx) = y(:,k); $\Oc]%  
    %           subplot(4,7,Nplot(k)) owQSy9Az  
    %           pcolor(x,x,z), shading interp *!NxtB!LC  
    %           set(gca,'XTick',[],'YTick',[]) ]-g9dV_[>j  
    %           axis square 5v5)vv.kd  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }ff+RGxLIG  
    %       end 5Q7Z$A1a 9  
    % [3D*DyQt  
    %   See also ZERNPOL, ZERNFUN2. TsVU^Z%W  
    u'`eCrKT*  
    %   Paul Fricker 11/13/2006 YpJJ]Rszg  
    }iIZA>eF  
    uo`zAKM&A  
    % Check and prepare the inputs: TAB'oLNp  
    % ----------------------------- [|&#A;{F#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n,D&pl9f  
        error('zernfun:NMvectors','N and M must be vectors.') ghU~H4[xD  
    end L _D#  
    cY]BtJ#  
    if length(n)~=length(m) D,\hRQ  
        error('zernfun:NMlength','N and M must be the same length.') vB<9M-sa0  
    end xB`j* %  
    }i._&x`):  
    n = n(:); g>E.Snj}  
    m = m(:); oZ5 ,y+L4  
    if any(mod(n-m,2)) `NySTd)\  
        error('zernfun:NMmultiplesof2', ... +N}yqgE  
              'All N and M must differ by multiples of 2 (including 0).') %-fQ[@5  
    end zt;aB>jz#  
    *47HN7  
    if any(m>n) HjCe/J ;  
        error('zernfun:MlessthanN', ... WeZ?L|&%w0  
              'Each M must be less than or equal to its corresponding N.') (1e,9!?  
    end l#IN)">1  
    vN&(__3((  
    if any( r>1 | r<0 ) O@HL%ha  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') r17"i.n  
    end v` h n9O  
    R =kXf/y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \AeM=K6q+D  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z H2   
    end 0oQJ}8t  
    [2{2w68D!  
    r = r(:); (<2!^v0.M  
    theta = theta(:); / %1-tGh  
    length_r = length(r); % oJH 6F  
    if length_r~=length(theta) RiG]-K:  
        error('zernfun:RTHlength', ... #(}'G*  
              'The number of R- and THETA-values must be equal.') `y>BbJqy  
    end H1c>3c  
    LNcoTdv}k  
    % Check normalization: }Gva=N:  
    % -------------------- -e O>d}  
    if nargin==5 && ischar(nflag) $px1D$F!  
        isnorm = strcmpi(nflag,'norm'); cHC1l  
        if ~isnorm Y0yu,   
            error('zernfun:normalization','Unrecognized normalization flag.') {>UT'fa-  
        end l} @C'Np  
    else NvvD~B b  
        isnorm = false; B[~Q0lPih  
    end G/ H>M%M  
    ,]tEh:QC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vRb7=fXf  
    % Compute the Zernike Polynomials &z05h<]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _6m{zvyX>  
    dDA,Ps  
    % Determine the required powers of r: 4-BrE&2f  
    % ----------------------------------- MU4BAN   
    m_abs = abs(m); tn;Uaw  
    rpowers = []; `ff@f]|3^  
    for j = 1:length(n) %?3$~d\n  
        rpowers = [rpowers m_abs(j):2:n(j)]; Bk] `n'W  
    end L|8&9F\  
    rpowers = unique(rpowers); FqZD'Uu7  
    >>c%I c  
    % Pre-compute the values of r raised to the required powers, Pv|sPIIB7  
    % and compile them in a matrix: Yyw9IYB;  
    % ----------------------------- 1:RK~_E  
    if rpowers(1)==0 ]c1#_MW  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \*M;W|8aB  
        rpowern = cat(2,rpowern{:}); ]E.\ |I(  
        rpowern = [ones(length_r,1) rpowern]; .l,]yWwfK  
    else XqGa]/;}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *^KEb")$  
        rpowern = cat(2,rpowern{:}); ]@m`bs_6  
    end r`$P60,@C  
    ^ U);MH8  
    % Compute the values of the polynomials: /]?e^akA  
    % -------------------------------------- vR (nd  
    y = zeros(length_r,length(n)); hY/qMK5  
    for j = 1:length(n) b'I@TLE')  
        s = 0:(n(j)-m_abs(j))/2; J3XG?' }  
        pows = n(j):-2:m_abs(j); {N << JX  
        for k = length(s):-1:1 b\t?5z-Z  
            p = (1-2*mod(s(k),2))* ... nt@uVwfQ  
                       prod(2:(n(j)-s(k)))/              ... dGUiMix{N  
                       prod(2:s(k))/                     ... --k!KrL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %!DTq`F  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0$i\/W+  
            idx = (pows(k)==rpowers); Tkn8W j  
            y(:,j) = y(:,j) + p*rpowern(:,idx); g][n1$%  
        end Jpy~5kS  
         q;#bFPh  
        if isnorm >`|Wg@_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :QF`Orb!^  
        end d6ifJ  
    end E2tUL#  
    % END: Compute the Zernike Polynomials {b-SK5%]L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~Lq`a@]A  
    >}/T&S  
    % Compute the Zernike functions: 2&=CC4<!d  
    % ------------------------------ *,)1Dcv(  
    idx_pos = m>0; &XW ~l>!+  
    idx_neg = m<0; }rnu:7  
    iVo-z#  
    z = y; nm)/BK  
    if any(idx_pos) $oJjgAxcZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); fl4 0jo]  
    end ;&!Q N#_  
    if any(idx_neg) 4pZKm-dM^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +jS<n13T  
    end YDZB$?&a  
    aiZZz1C   
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) -=n!k^?lK  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ] VEc9?  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated -S&d5(R  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive H_ NoW  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 'Tskx  
    %   and THETA is a vector of angles.  R and THETA must have the same 69t6lB#;!  
    %   length.  The output Z is a matrix with one column for every P-value, 7UqDPEXU]`  
    %   and one row for every (R,THETA) pair. uc\G)BN  
    % A<(Fn_ &W  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike `uqe[u;`6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 4F<wa s/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) $7-S\sDr  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 e&K7n@  
    %   for all p. 9JeT1\VvHY  
    % m63>P4h?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 VMS3Q)Ul  
    %   Zernike functions (order N<=7).  In some disciplines it is di ]CYLf  
    %   traditional to label the first 36 functions using a single mode l\2"u M#7  
    %   number P instead of separate numbers for the order N and azimuthal <e wcWr  
    %   frequency M. _`Y%Y6O1/  
    % 7#*`7 K'P!  
    %   Example: O7od2fV(i7  
    % zQ+ %^DT1  
    %       % Display the first 16 Zernike functions &V%faa1  
    %       x = -1:0.01:1; %`s1 Ocvp  
    %       [X,Y] = meshgrid(x,x); |o ^mg9  
    %       [theta,r] = cart2pol(X,Y); 3ly ]DTbz  
    %       idx = r<=1; \5a;_N[Ed  
    %       p = 0:15; 8|u8J0^  
    %       z = nan(size(X)); @wVDe\% ,  
    %       y = zernfun2(p,r(idx),theta(idx)); U} Pr1  
    %       figure('Units','normalized') [<}W S} .  
    %       for k = 1:length(p) Gs4t6+Al  
    %           z(idx) = y(:,k);  feM(  
    %           subplot(4,4,k) Yf1%7+V35  
    %           pcolor(x,x,z), shading interp 9)n3f^,Oj*  
    %           set(gca,'XTick',[],'YTick',[]) i-4?]h k  
    %           axis square mR#"ng  
    %           title(['Z_{' num2str(p(k)) '}']) ,,g: x  
    %       end cnDF`7xrT  
    % BFqM6_/J  
    %   See also ZERNPOL, ZERNFUN. @udc/J$  
    \_)mWK,h  
    %   Paul Fricker 11/13/2006 1l^ `  
    oHF,k  
    ?xwZ< A  
    % Check and prepare the inputs: Gsy90  
    % ----------------------------- jS|jPk|I.  
    if min(size(p))~=1 &x@N5j5Q  
        error('zernfun2:Pvector','Input P must be vector.') <! *O[0s  
    end P` Gb }]rW  
    $_|jI ^  
    if any(p)>35 `:dGPB BO  
        error('zernfun2:P36', ... bkm: #K  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... |T*t3}  
               '(P = 0 to 35).']) MB6lKLy6~  
    end R#ya9GN{  
    b8 6c[2  
    % Get the order and frequency corresonding to the function number: 20M]gw]  
    % ---------------------------------------------------------------- 3'7X[{uBr  
    p = p(:); iE]^ 6i  
    n = ceil((-3+sqrt(9+8*p))/2); )X6I #q8  
    m = 2*p - n.*(n+2); MEtKFC|p  
    }To-c'  
    % Pass the inputs to the function ZERNFUN: ! OOOc  
    % ---------------------------------------- K~qKr<)  
    switch nargin JP]-a!5Ru  
        case 3 JaN53,&<  
            z = zernfun(n,m,r,theta); -(E-yC u  
        case 4 #BI6+rfv|  
            z = zernfun(n,m,r,theta,nflag); wFJ*2W:  
        otherwise Gd|jE  
            error('zernfun2:nargin','Incorrect number of inputs.') `Tr !Gj_  
    end I=k`VId:  
    2p*L~! iM  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) "ZG2olOqLI  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. sv#/78~|  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of *#B"%;Ln  
    %   order N and frequency M, evaluated at R.  N is a vector of |3gWH4M4**  
    %   positive integers (including 0), and M is a vector with the s~I#K[[5  
    %   same number of elements as N.  Each element k of M must be a _9z+xl  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) l R^W*w4y  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is T>v`UN Bl]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix eGI&4JgJ.  
    %   with one column for every (N,M) pair, and one row for every w)}@svv"  
    %   element in R. sP%J`L@h  
    % e!4Kl:  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- rU7t~DKS  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is pF:C   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to DjiWg(X  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 31mlnDif  
    %   for all [n,m]. .U,>Qn4/  
    % '>% c@C[  
    %   The radial Zernike polynomials are the radial portion of the )GJlQ1x  
    %   Zernike functions, which are an orthogonal basis on the unit -raZ6?Zjc  
    %   circle.  The series representation of the radial Zernike 1 <wolTf  
    %   polynomials is R-\"^BV#Z  
    % 9~}8?kPNw=  
    %          (n-m)/2 _;k))K^  
    %            __ Ap`D{u/  
    %    m      \       s                                          n-2s oRl@AhS  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4cAx9bqA  
    %    n      s=0 =5M '+>  
    % $)7Af6xD  
    %   The following table shows the first 12 polynomials. ~#iAW@  
    % jHc/ EZB  
    %       n    m    Zernike polynomial    Normalization [.4D<}e  
    %       --------------------------------------------- d6"B_,*b  
    %       0    0    1                        sqrt(2) 15!b]':  
    %       1    1    r                           2 4\2~wSr  
    %       2    0    2*r^2 - 1                sqrt(6) 2Zw]Uu`sb  
    %       2    2    r^2                      sqrt(6) "C9.pdP\8  
    %       3    1    3*r^3 - 2*r              sqrt(8) @%#!-wC-5  
    %       3    3    r^3                      sqrt(8) v0 |"[qGb  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ]w9syz8X  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Td![Id  
    %       4    4    r^4                      sqrt(10) U,nQnD"!t&  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) b]\V~ZaXG  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) )"y]_}  
    %       5    5    r^5                      sqrt(12) +,bgOq\aG  
    %       --------------------------------------------- QK`2^  
    % axd9b,  
    %   Example: K.\-  
    % & /lmg!6  
    %       % Display three example Zernike radial polynomials C,3yu,'  
    %       r = 0:0.01:1; o`[X _  
    %       n = [3 2 5]; 3S1`av(tD  
    %       m = [1 2 1]; LY(h>`  
    %       z = zernpol(n,m,r); SlUt&+)  
    %       figure Px"K5c*  
    %       plot(r,z) R$VeD1n@  
    %       grid on & A@ !g  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') %b`B.A  
    % 7)a u#K6  
    %   See also ZERNFUN, ZERNFUN2. *wfkjG  
    ?C9>bKo*2H  
    % A note on the algorithm. c9;oB|8|  
    % ------------------------ Q@#Gm9m  
    % The radial Zernike polynomials are computed using the series >.#tNFAs  
    % representation shown in the Help section above. For many special BcD%`vGJ  
    % functions, direct evaluation using the series representation can K?aUIkVs  
    % produce poor numerical results (floating point errors), because -q/FxESp  
    % the summation often involves computing small differences between +v'n[xa1v  
    % large successive terms in the series. (In such cases, the functions XvW $B|  
    % are often evaluated using alternative methods such as recurrence auQfWO[ u  
    % relations: see the Legendre functions, for example). For the Zernike +)K yG  
    % polynomials, however, this problem does not arise, because the 9 !qVYU42(  
    % polynomials are evaluated over the finite domain r = (0,1), and j<* `?V^  
    % because the coefficients for a given polynomial are generally all >@U lhJtW  
    % of similar magnitude. yj{:%Km:`  
    % 5Ai$1'*p  
    % ZERNPOL has been written using a vectorized implementation: multiple <0I=XsE1iX  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] H0i\#)Xs  
    % values can be passed as inputs) for a vector of points R.  To achieve tc<t%]c  
    % this vectorization most efficiently, the algorithm in ZERNPOL _ a,XL<9I  
    % involves pre-determining all the powers p of R that are required to YJ^TO\4WM  
    % compute the outputs, and then compiling the {R^p} into a single a'ODm6#  
    % matrix.  This avoids any redundant computation of the R^p, and 6 _\j_$  
    % minimizes the sizes of certain intermediate variables. ~j2=hkS  
    % n;Etn!4M  
    %   Paul Fricker 11/13/2006 uP[:P?,t  
    bwAL:  
    mF !=H%  
    % Check and prepare the inputs: da&f0m U  
    % ----------------------------- :WBl0`kW]4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DY%#E9   
        error('zernpol:NMvectors','N and M must be vectors.') in6iJ*E@'  
    end MhpR^VM'.  
    l?%U*~*  
    if length(n)~=length(m) v{2 Vg  
        error('zernpol:NMlength','N and M must be the same length.') *oX~z>aE  
    end >, }m=X8  
    "i_}\p.,X  
    n = n(:); dO[w3\~  
    m = m(:); XOy#? X/`  
    length_n = length(n); -m~[z  
    QYL ';  
    if any(mod(n-m,2)) cIgicp}U  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Kv:ih=?  
    end q}["Nww-  
    \l leO|m  
    if any(m<0) c!%:f^7g  
        error('zernpol:Mpositive','All M must be positive.') TY|]""3 f9  
    end prY9SQd  
    f(E  'i>  
    if any(m>n) /vB%gqJvX  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Do|`wpR  
    end ? I}T[j  
    :q4 Mnr  
    if any( r>1 | r<0 ) ^ffh  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') LHWh-h(s  
    end |JL47FR  
    S-h1p`  
    if ~any(size(r)==1) Q=9S?p M  
        error('zernpol:Rvector','R must be a vector.') 5aTyM_x  
    end 7c6-S@L  
    @]HV:7<q  
    r = r(:); ";e0-t6:  
    length_r = length(r); viBf" .  
    .-N9\GlJ,d  
    if nargin==4 W3K"5E0ck  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Q_#X*I  
        if ~isnorm JCZJ\f*EZ  
            error('zernpol:normalization','Unrecognized normalization flag.') )x"Z$jIs  
        end <96ih$5D1  
    else ? xX`_l  
        isnorm = false; y\ @;s?QL  
    end  N _r*Ig  
    ki^[~JS>'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _ #l b\  
    % Compute the Zernike Polynomials (vjQF$Hp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9#6ilF:F  
    | _~BV&g,N  
    % Determine the required powers of r: M)EUR0>8  
    % ----------------------------------- ~%Yh`c EP  
    rpowers = []; AJ:@c7:eS  
    for j = 1:length(n) YKl!M/  
        rpowers = [rpowers m(j):2:n(j)]; uW[s?  
    end &H5 6mL{  
    rpowers = unique(rpowers); N &p=4  
    Z/uRz]Hi  
    % Pre-compute the values of r raised to the required powers, 5 |C;]pq  
    % and compile them in a matrix: =OO_TPEZ  
    % ----------------------------- jO:<"l^+u  
    if rpowers(1)==0 8N-~.p  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,bmTB ZV  
        rpowern = cat(2,rpowern{:}); =4JVUu~Z  
        rpowern = [ones(length_r,1) rpowern]; P!YT{}  
    else WM=kr$/3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q}BQu@'H  
        rpowern = cat(2,rpowern{:}); T*h+"TmE  
    end 6x/ X8zu  
    A7_*zR @  
    % Compute the values of the polynomials: b<.+WkO  
    % -------------------------------------- l/rhA6kEU  
    z = zeros(length_r,length_n); /'VCJjzZ  
    for j = 1:length_n ]\ r~"*TZ  
        s = 0:(n(j)-m(j))/2; $X*$,CCIB  
        pows = n(j):-2:m(j); JG}U,{7(  
        for k = length(s):-1:1 "v*RY "5#  
            p = (1-2*mod(s(k),2))* ... " 31C8  
                       prod(2:(n(j)-s(k)))/          ... A7b7IM[  
                       prod(2:s(k))/                 ... `&9#!T.  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... y'yaCf  
                       prod(2:((n(j)+m(j))/2-s(k))); J?%D4AeS]v  
            idx = (pows(k)==rpowers); 9'5,V{pj  
            z(:,j) = z(:,j) + p*rpowern(:,idx); q9WSQ$:z8  
        end :f/ p5 c  
         &*)tqQeQf  
        if isnorm H#Og0gEE}5  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); `XWxC:j3%  
        end *.nqQhW  
    end @MB;Ez v  
    (J^ Tss  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  YF -w=Y6  
    <]'"e]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 q`aY.dD=O  
    3\KII9  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)