切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11163阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 A*E$_N  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Of Y>~d  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]:Ocu--  
    function z = zernfun(n,m,r,theta,nflag) {Km|SG[-q  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `L7 cS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XOVZ'V  
    %   and angular frequency M, evaluated at positions (R,THETA) on the "kVN|Do  
    %   unit circle.  N is a vector of positive integers (including 0), and 5qR76iH) /  
    %   M is a vector with the same number of elements as N.  Each element Z9 }qds6 y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =}u;>[3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }a-ikFQ]  
    %   and THETA is a vector of angles.  R and THETA must have the same I)O%D3wfMW  
    %   length.  The output Z is a matrix with one column for every (N,M) IcI y  
    %   pair, and one row for every (R,THETA) pair. v #IC  
    % cSoZq4  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike el 5F>)  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9F ).i  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral OA&NWAm4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Cf2rRH  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Nbuaw[[iz  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5"]PwC  
    % : :e=6i  
    %   The Zernike functions are an orthogonal basis on the unit circle. _n Oio?  
    %   They are used in disciplines such as astronomy, optics, and $ bD 3  
    %   optometry to describe functions on a circular domain. 82efqzT  
    % M'R^?Jjb  
    %   The following table lists the first 15 Zernike functions. /Y|9!{.  
    % ir3iW*5k  
    %       n    m    Zernike function           Normalization C[_{ $j(J  
    %       -------------------------------------------------- ^k t#[N  
    %       0    0    1                                 1 VS1gg4tCv  
    %       1    1    r * cos(theta)                    2 C} Ewi-  
    %       1   -1    r * sin(theta)                    2 wF$8#=  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) NJLU +b yU  
    %       2    0    (2*r^2 - 1)                    sqrt(3) qA Jgz7=c  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) E':y3T@."  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) C  `k^So)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ukzXQe;l1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >x (^g~i  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) h&;\   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) H2p1gb#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S!up2OseW  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gXc&uR0S  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /,c9&i t(M  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) T->O5t c  
    %       -------------------------------------------------- !>  
    % I]jVnQ>&  
    %   Example 1: -QI1>7sl  
    % oIQor%z  
    %       % Display the Zernike function Z(n=5,m=1) WVf;uob{  
    %       x = -1:0.01:1; ATPc ~f  
    %       [X,Y] = meshgrid(x,x); \E]s]ft;+  
    %       [theta,r] = cart2pol(X,Y); \CX`PZ><  
    %       idx = r<=1; Gk'J'9*  
    %       z = nan(size(X)); w!8h4U. ;  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); r6*0H/*  
    %       figure 52{jq18&  
    %       pcolor(x,x,z), shading interp MpGWt#  
    %       axis square, colorbar 8&3+=<U  
    %       title('Zernike function Z_5^1(r,\theta)') V~NS<!+q  
    % *~:4&$  
    %   Example 2: 3:dQN;=  
    % - "h {B  
    %       % Display the first 10 Zernike functions q J@XVN4   
    %       x = -1:0.01:1; & i)p^AmM  
    %       [X,Y] = meshgrid(x,x);  Z\4l+.R`  
    %       [theta,r] = cart2pol(X,Y); I>C;$Lp]  
    %       idx = r<=1; | t3_E  
    %       z = nan(size(X)); wvBJ?t,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; C4#'`8E  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <+ >y GPp  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; DLJu%5F  
    %       y = zernfun(n,m,r(idx),theta(idx)); n)^B0DnIk  
    %       figure('Units','normalized') MJ4+|riB  
    %       for k = 1:10 ;_1D-Mf  
    %           z(idx) = y(:,k); ,^`+mP  
    %           subplot(4,7,Nplot(k)) f.,S-1D]h  
    %           pcolor(x,x,z), shading interp GwxfnC Ki9  
    %           set(gca,'XTick',[],'YTick',[]) KZsSTB6J  
    %           axis square G0xk @SE  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nhiCV>@y  
    %       end &5~bJ]P   
    % -YJ7ne]  
    %   See also ZERNPOL, ZERNFUN2. Z  r  
    gM^ Hs7o,  
    %   Paul Fricker 11/13/2006 }gGcYRT  
    bTb|@  
    |r%6;8A]i  
    % Check and prepare the inputs: g()YP  
    % ----------------------------- l" *zr ;#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W7_X=>l  
        error('zernfun:NMvectors','N and M must be vectors.') HT[<~c  
    end o~*% g.  
    SB:-zQ5  
    if length(n)~=length(m) PZ AyHXY  
        error('zernfun:NMlength','N and M must be the same length.') |z-A;uL<  
    end ysu"+J  
    CM!bD\5  
    n = n(:); PL%U  
    m = m(:); ZZX|MA!  
    if any(mod(n-m,2)) :-69,e  
        error('zernfun:NMmultiplesof2', ... -'*B%yy  
              'All N and M must differ by multiples of 2 (including 0).') Oz-X}eM  
    end [yW0U:m  
    OLXG0@  
    if any(m>n) 8I$>e (  
        error('zernfun:MlessthanN', ... &?#V*-;^  
              'Each M must be less than or equal to its corresponding N.') ovvR{MTc  
    end !w(J]<  
    g;UB+Y 247  
    if any( r>1 | r<0 ) es6!p 7p?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z[[q W f  
    end t ux/@}I  
    |p-, B>p!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v8 I&~_b  
        error('zernfun:RTHvector','R and THETA must be vectors.') >DP9S@W  
    end bLhTgss](  
    H"=%|/1M0  
    r = r(:); iT227v!s  
    theta = theta(:); xVf AlN37(  
    length_r = length(r); AVF(YD<U  
    if length_r~=length(theta) ; {iX_%  
        error('zernfun:RTHlength', ... TMpV .iH  
              'The number of R- and THETA-values must be equal.') .hzzoLI2  
    end 6c$ so  
    SDwTGQ/0  
    % Check normalization: LPc)-t|p"  
    % -------------------- wqkD  
    if nargin==5 && ischar(nflag) {^a"T'+  
        isnorm = strcmpi(nflag,'norm'); | (JxtQqQg  
        if ~isnorm G3 rTzMO  
            error('zernfun:normalization','Unrecognized normalization flag.') iVTC"v  
        end Nj rF":'Y  
    else l=GcgxD+"d  
        isnorm = false; u!hY bCB  
    end C& BRyo  
    >E;kM B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I 8TqK  
    % Compute the Zernike Polynomials ?x1sm"]p'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %IL] Wz<  
    (~q.YJ'  
    % Determine the required powers of r: LmWZ43Z"@  
    % ----------------------------------- qIS9.AL  
    m_abs = abs(m); duFVh8  
    rpowers = []; lqe|1vN  
    for j = 1:length(n) `u$  Rd  
        rpowers = [rpowers m_abs(j):2:n(j)]; b"Hc==`  
    end &&T\PspM  
    rpowers = unique(rpowers); <`rmQ`(}s  
    2[ = =  
    % Pre-compute the values of r raised to the required powers, >HNBTc=~t  
    % and compile them in a matrix: = >CADTU  
    % ----------------------------- N-Fs-uB  
    if rpowers(1)==0 55q!2>Jh.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Heh.CD)Q  
        rpowern = cat(2,rpowern{:}); tg-U x  
        rpowern = [ones(length_r,1) rpowern]; =1sGT;>  
    else 8?LsV<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E)sC:oO  
        rpowern = cat(2,rpowern{:}); "AYm*R  
    end HVjN<HIqM  
    -Pt.  
    % Compute the values of the polynomials: )l?1 dR:sP  
    % -------------------------------------- JYbsta  
    y = zeros(length_r,length(n)); Iue}AGxu:{  
    for j = 1:length(n) : N9,/-s  
        s = 0:(n(j)-m_abs(j))/2; 3r^Ls[ey  
        pows = n(j):-2:m_abs(j); /Js A[}.6  
        for k = length(s):-1:1 3 @ahN2  
            p = (1-2*mod(s(k),2))* ... QiH>!Ssw  
                       prod(2:(n(j)-s(k)))/              ... ,+2!&"zD  
                       prod(2:s(k))/                     ... & pHSX  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... corNw+|/w  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); I;1W6uD=  
            idx = (pows(k)==rpowers); e~oh%l^C72  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &s6;2G&L$  
        end HQ /D)D  
         GdN9bA&,  
        if isnorm ]31>0yj[Q  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $40G$w  
        end f/xQy}4+~E  
    end u00w'=pe)  
    % END: Compute the Zernike Polynomials M>qqe!c*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mrmm@?  
    VAW:h5j2@  
    % Compute the Zernike functions: >0F)^W?  
    % ------------------------------ CP0;<}k  
    idx_pos = m>0; /U$5'BoS  
    idx_neg = m<0; hgg 8r#4q  
    M$u.lI  
    z = y; W&~\@j]!D  
    if any(idx_pos) lXpbAW  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *kY JwO^  
    end srlxp_^  
    if any(idx_neg) b:WA}x V  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8:t!m>(*  
    end rEHlo[7^  
    :o3>  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) qnb#~=x^  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. mE\)j*Nnv  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Mfn^v:Q#  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive VUon>XQ G  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, / Q| Z&-c  
    %   and THETA is a vector of angles.  R and THETA must have the same |A.nP9hW  
    %   length.  The output Z is a matrix with one column for every P-value, $^e(?P q  
    %   and one row for every (R,THETA) pair. |&"/u7^  
    % xX?9e3(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ).)^\  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) W7W(jMH  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) w=_q<1a  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 .],:pL9d  
    %   for all p. -zg 6^f_pW  
    % c(b2f-0!4  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 f AY(ro9Q(  
    %   Zernike functions (order N<=7).  In some disciplines it is *(s0X[-  
    %   traditional to label the first 36 functions using a single mode k4d;4D?  
    %   number P instead of separate numbers for the order N and azimuthal ;Q8`5h   
    %   frequency M. aX,6y1  
    % DH7]TRCMZ)  
    %   Example: {[4.<|26  
    % "!Qi$ ]  
    %       % Display the first 16 Zernike functions j.!5&^;u4  
    %       x = -1:0.01:1; e ?7y$H-  
    %       [X,Y] = meshgrid(x,x); j #~ S"t  
    %       [theta,r] = cart2pol(X,Y); IyEfisOK?  
    %       idx = r<=1; "8p<NsU   
    %       p = 0:15; 0.S7uH%"  
    %       z = nan(size(X)); 2]y Hxo/6  
    %       y = zernfun2(p,r(idx),theta(idx)); J`4V\D}n  
    %       figure('Units','normalized') 0GW69 z  
    %       for k = 1:length(p) -mP2}BNM  
    %           z(idx) = y(:,k); =Fc}T%  
    %           subplot(4,4,k) ZkWMo= vL  
    %           pcolor(x,x,z), shading interp 1#3eY? Nb  
    %           set(gca,'XTick',[],'YTick',[]) [!C!R$AMa  
    %           axis square $O&N  
    %           title(['Z_{' num2str(p(k)) '}']) #@' B\!<@=  
    %       end o5['5?i}/  
    % d/3bE*gr  
    %   See also ZERNPOL, ZERNFUN. d}aMdIF!e  
    z6Fl$FFP  
    %   Paul Fricker 11/13/2006 V*r/0|vd  
    wy^mh.= UX  
    Z<W f/  
    % Check and prepare the inputs: He$v '87]  
    % ----------------------------- 3kh!dL3D  
    if min(size(p))~=1 z}iz~WZ  
        error('zernfun2:Pvector','Input P must be vector.') G*=&yx."E  
    end Xq_h C"s  
    A8QUfg@uK~  
    if any(p)>35 5R)IL 2~  
        error('zernfun2:P36', ... o6RT4`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... *%\Xw*\0  
               '(P = 0 to 35).']) %__ @G_M  
    end r oPC ^Q  
    R%~~'/2V  
    % Get the order and frequency corresonding to the function number: ++UxzUd  
    % ---------------------------------------------------------------- fT{jD_Q+3  
    p = p(:); [VLq/lg*  
    n = ceil((-3+sqrt(9+8*p))/2); :#\jx  
    m = 2*p - n.*(n+2); JvEW0-B^l,  
    9=FH2|Z  
    % Pass the inputs to the function ZERNFUN: 4=%,0.yt  
    % ---------------------------------------- -GCU6U|  
    switch nargin $m-C6xC/  
        case 3 lYS "  
            z = zernfun(n,m,r,theta); aK(e%Ed t"  
        case 4 >l=jJTJ;q  
            z = zernfun(n,m,r,theta,nflag); P8H2v_)X&  
        otherwise Q);}1'c  
            error('zernfun2:nargin','Incorrect number of inputs.') zlB[Eg^X  
    end CKSs(-hkJ  
    ~[kI! [  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) In;P33'p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. EMxMJ=  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of KxBvL[/  
    %   order N and frequency M, evaluated at R.  N is a vector of +QOK]NJN  
    %   positive integers (including 0), and M is a vector with the n 4co s  
    %   same number of elements as N.  Each element k of M must be a Qs?p)3qp  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ({$rb-  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 56u_viZ=8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix fN21[Jv3  
    %   with one column for every (N,M) pair, and one row for every _PQk<QZ  
    %   element in R. Au{b1n  
    % <u1`o`|-  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ;TK$?hrv*1  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )3V1aC  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to b_u; `^  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 T11>&K)  
    %   for all [n,m]. '#oH1$W]  
    % #;+SAoN  
    %   The radial Zernike polynomials are the radial portion of the >wFn|7\)s>  
    %   Zernike functions, which are an orthogonal basis on the unit -i_XP]b&  
    %   circle.  The series representation of the radial Zernike kw7E<aF!  
    %   polynomials is )>iPx.hVSS  
    % DMSC(Sz  
    %          (n-m)/2 PsS.lhj0"  
    %            __ ~BE=z:  
    %    m      \       s                                          n-2s O%aHQL%Sz  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r r gi4>  
    %    n      s=0 B?e] Ht  
    % AM#s2.@  
    %   The following table shows the first 12 polynomials. l<(jm{q?u  
    % 7j(gW  
    %       n    m    Zernike polynomial    Normalization E8wkqZN  
    %       --------------------------------------------- T[g(S0dz  
    %       0    0    1                        sqrt(2) 5d# 73)x$  
    %       1    1    r                           2 !CY*SGO  
    %       2    0    2*r^2 - 1                sqrt(6) Y:Jgr&*,z  
    %       2    2    r^2                      sqrt(6) <^W5UU#Pg  
    %       3    1    3*r^3 - 2*r              sqrt(8) A6E~GJa  
    %       3    3    r^3                      sqrt(8) 0HQTe>!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 7h:EU7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 8%a ^j\L  
    %       4    4    r^4                      sqrt(10) -q nOq[  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) tWQ$`<h  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) E}#&2n8Y  
    %       5    5    r^5                      sqrt(12) ZsYY)<n  
    %       --------------------------------------------- Q )8I(*  
    % G c ,  
    %   Example: 9Sa6v?sRor  
    % ?+%bEZ`  
    %       % Display three example Zernike radial polynomials 5Q8s{WQ  
    %       r = 0:0.01:1; n;:C{5  
    %       n = [3 2 5]; =+[` 9  
    %       m = [1 2 1]; ~at:\h4:  
    %       z = zernpol(n,m,r); nyOmNvZf  
    %       figure q]s_hWWv  
    %       plot(r,z) NQcg}y  
    %       grid on FJ{&R Ld  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') jz>b>;  
    % M=4b  
    %   See also ZERNFUN, ZERNFUN2. qd~9uo&[Ig  
    Q~rE+?n9 F  
    % A note on the algorithm. ?V(+Cc  
    % ------------------------ 8KKhD$  
    % The radial Zernike polynomials are computed using the series )M"xCO3a  
    % representation shown in the Help section above. For many special !-&;t7R  
    % functions, direct evaluation using the series representation can xX Dj4j,  
    % produce poor numerical results (floating point errors), because C AN1~  
    % the summation often involves computing small differences between k%aJ%(  
    % large successive terms in the series. (In such cases, the functions {K:] dO  
    % are often evaluated using alternative methods such as recurrence x`2du/ C  
    % relations: see the Legendre functions, for example). For the Zernike I\Cg-&e  
    % polynomials, however, this problem does not arise, because the ^f,%dM=i=  
    % polynomials are evaluated over the finite domain r = (0,1), and 8kE3\#);\  
    % because the coefficients for a given polynomial are generally all 1qm*#4x  
    % of similar magnitude. r$x;rL4  
    % M~+DxnJ=  
    % ZERNPOL has been written using a vectorized implementation: multiple :YLurng/]  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ~]'yUd1gSZ  
    % values can be passed as inputs) for a vector of points R.  To achieve g yT0h?xDt  
    % this vectorization most efficiently, the algorithm in ZERNPOL C 5e;U  
    % involves pre-determining all the powers p of R that are required to .SNg2.  
    % compute the outputs, and then compiling the {R^p} into a single A5_r(Z-5  
    % matrix.  This avoids any redundant computation of the R^p, and ["<'fq;PJ  
    % minimizes the sizes of certain intermediate variables. ~)6EH`-  
    % k-)Ls~#+  
    %   Paul Fricker 11/13/2006 10bv%ZX7  
    o,@ (]e~  
    +/" \.wYv  
    % Check and prepare the inputs: j[dgY1yE:  
    % ----------------------------- n8`WU3&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ry?f; s  
        error('zernpol:NMvectors','N and M must be vectors.') \eRct_  
    end D6C h6i5$  
    k^zU;  
    if length(n)~=length(m) s%RG_"l  
        error('zernpol:NMlength','N and M must be the same length.') Q8.LlE999  
    end bL+}n8B  
    ;<nJBZB9u  
    n = n(:); >5D;uTy u  
    m = m(:); ,R-aO= %  
    length_n = length(n);  _~S[  
    vF/wV'Kk  
    if any(mod(n-m,2)) jvo^I$|2h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') rd)W+W9  
    end 432]yhQ  
    imKMPO=  
    if any(m<0) QV4FA&f&  
        error('zernpol:Mpositive','All M must be positive.') SDVnyT  
    end wyXQP+9G  
    8# x7q>?  
    if any(m>n) xJA{Hws  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') t6lwKK  
    end Jb-.x_Bf  
    (A "yE4rYK  
    if any( r>1 | r<0 ) \)ZCB7|  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') #7/39zTK  
    end nlaW$b{=  
    Q X-n l~  
    if ~any(size(r)==1) p./0N.  
        error('zernpol:Rvector','R must be a vector.') aM(x--UR=  
    end {-%8RSK=<  
    iq,rS"  
    r = r(:); !(Y,2{  
    length_r = length(r); ;k ,@^f8  
    v *`M3jb  
    if nargin==4 JV_VM{w{K  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); P+QL||>L  
        if ~isnorm |--Jd$ dj  
            error('zernpol:normalization','Unrecognized normalization flag.') aPQxpK?  
        end NFR>[L V  
    else fPPmUM^C9  
        isnorm = false; $g/h=w@  
    end sV\K[4HG  
    uL^`uI#I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T k@~w  
    % Compute the Zernike Polynomials e6^}XRyf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S5d  
    %$i}[ U  
    % Determine the required powers of r: `*D"=5G+  
    % ----------------------------------- =G" ney2  
    rpowers = []; .t/@d(R  
    for j = 1:length(n) )4m`Ya,E3  
        rpowers = [rpowers m(j):2:n(j)]; 6CSoQ|c{  
    end 4I&Mdt<^D  
    rpowers = unique(rpowers); 5pK _-:?  
    Rd|8=`)  
    % Pre-compute the values of r raised to the required powers, ZY@ntV?  
    % and compile them in a matrix: /bPs0>5  
    % ----------------------------- j#Tl\S!m.I  
    if rpowers(1)==0 Vjw u:M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9C0#K\  
        rpowern = cat(2,rpowern{:}); +.OdrvN4)  
        rpowern = [ones(length_r,1) rpowern]; $L?KNXHAF!  
    else b6p'%;Y/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m^=El7+  
        rpowern = cat(2,rpowern{:}); '4Fwh]Ee  
    end ,>8w|951'  
     1X&jlD?  
    % Compute the values of the polynomials: F=e-jKogK  
    % -------------------------------------- N_Kdi%q  
    z = zeros(length_r,length_n); >P&1or)e%  
    for j = 1:length_n fc9@l a  
        s = 0:(n(j)-m(j))/2; -e sQyLx  
        pows = n(j):-2:m(j); 7D4tuXUq2  
        for k = length(s):-1:1 Ak8Y?#"wz  
            p = (1-2*mod(s(k),2))* ... RZ;s_16GQ  
                       prod(2:(n(j)-s(k)))/          ... v"Ax'()  
                       prod(2:s(k))/                 ... v(!:HK0oeT  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... o]<9wc:FZ  
                       prod(2:((n(j)+m(j))/2-s(k))); 4e#$ -V   
            idx = (pows(k)==rpowers); 9 <{C9  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 'W yWO^Bdk  
        end .T3 m%n  
         z|X6\8f  
        if isnorm 9dBxCdpu  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); p:z~>ca  
        end ] _5b   
    end k)|.<  
    TEMxjowr  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  w}xA@JgQ%  
    '~D4%WKT  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 )@NFV*@I  
    >^s2$@J?p  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)