切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11267阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `OMX 9i  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ./XX  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9R8q+2  
    function z = zernfun(n,m,r,theta,nflag) 5@>hjXi"Y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &2u |7U.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]'Eg2(wy  
    %   and angular frequency M, evaluated at positions (R,THETA) on the <J+Oh\8tad  
    %   unit circle.  N is a vector of positive integers (including 0), and xK_UkB-$i  
    %   M is a vector with the same number of elements as N.  Each element V WZpEi  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^AU-hVj  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [ K/l;Zd  
    %   and THETA is a vector of angles.  R and THETA must have the same T2Z$*;,>T  
    %   length.  The output Z is a matrix with one column for every (N,M) ,V 52Fj  
    %   pair, and one row for every (R,THETA) pair. N}U+K  
    % VC/n}7p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike GYQ:G=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), of*T,MUI  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5B:"$vC{=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #sCR}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K Ha,6X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  DlCN  
    % 1W >/4l  
    %   The Zernike functions are an orthogonal basis on the unit circle. K>.}>)0  
    %   They are used in disciplines such as astronomy, optics, and 9~Sa7P  
    %   optometry to describe functions on a circular domain. el5Pe{j '  
    % V.`hk^V,  
    %   The following table lists the first 15 Zernike functions. Q +l{> sL  
    % j7&#R+f  
    %       n    m    Zernike function           Normalization )x\%*ewY  
    %       --------------------------------------------------  m,+PYq  
    %       0    0    1                                 1 E8kD#tL  
    %       1    1    r * cos(theta)                    2 9{fP.ifdv7  
    %       1   -1    r * sin(theta)                    2 m33&obSP  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) iSf%N>y'K  
    %       2    0    (2*r^2 - 1)                    sqrt(3) W gyRK2#!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) d>F7i~W  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mr}o0@5av  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) KB~[nZs7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -'miM ~kG[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) kXhd]7ru  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Y_n/rD>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^jL)<y4`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [\Wl~ a l  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~\-=q^/!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Ynf "g#(  
    %       -------------------------------------------------- fsOlg9  
    % 51eZfJB  
    %   Example 1: am/}V%^  
    % +arh/pd_I  
    %       % Display the Zernike function Z(n=5,m=1) 3"Oipt+  
    %       x = -1:0.01:1; e^q^ AP+*  
    %       [X,Y] = meshgrid(x,x); _hV34:1F  
    %       [theta,r] = cart2pol(X,Y); L>/$l(  
    %       idx = r<=1; &#C&0f8PnD  
    %       z = nan(size(X)); ^3sv2wh^|8  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); qdk!.A{   
    %       figure 2d|^$$#`  
    %       pcolor(x,x,z), shading interp FDuA5At  
    %       axis square, colorbar 4IZAJqw(*  
    %       title('Zernike function Z_5^1(r,\theta)') h/C{  
    % [MAPa  
    %   Example 2: Iw[zN[oz  
    % %6fnL~ A  
    %       % Display the first 10 Zernike functions ]EF"QLNN(  
    %       x = -1:0.01:1; $Xo_8SX,  
    %       [X,Y] = meshgrid(x,x); -{*3<2rFK  
    %       [theta,r] = cart2pol(X,Y); ;ja~Q .}4  
    %       idx = r<=1; 4mW$+lzn  
    %       z = nan(size(X)); iDDq<a.A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; V+sZ;$  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;/Y#ph[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }L Q%%  
    %       y = zernfun(n,m,r(idx),theta(idx)); 2IHS)kkT|  
    %       figure('Units','normalized') _\dC<K *>  
    %       for k = 1:10 F6CuY$0m=  
    %           z(idx) = y(:,k); V 7~9z\lW  
    %           subplot(4,7,Nplot(k)) ]Y$Wv9 S6  
    %           pcolor(x,x,z), shading interp 'Sd+CXS  
    %           set(gca,'XTick',[],'YTick',[]) D3g5#.$,}>  
    %           axis square jm&[8ApW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 76[ qFz  
    %       end ok,O/|E}?  
    % ByoI+n* U  
    %   See also ZERNPOL, ZERNFUN2. -|#/KKF  
    \s8h.xjU  
    %   Paul Fricker 11/13/2006 kQ\l7xd  
    cJm},  
    B;Z _'.i,d  
    % Check and prepare the inputs: +{6:]  
    % ----------------------------- e"EGqn&!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _{if"  
        error('zernfun:NMvectors','N and M must be vectors.') -k>k<bDAI  
    end 4Z{R36 {  
    Pj56,qd>s  
    if length(n)~=length(m) xZq, kP^  
        error('zernfun:NMlength','N and M must be the same length.') &>.QDO  
    end c;29GHs2  
    yhK9rcJq6}  
    n = n(:); Y -BZV |  
    m = m(:); o^uh3,.  
    if any(mod(n-m,2)) GdScYAC   
        error('zernfun:NMmultiplesof2', ... t,w/L*r+w  
              'All N and M must differ by multiples of 2 (including 0).') c-7Zk!LfD  
    end pIm ]WNX(  
    b+AxTe("  
    if any(m>n) N-}OmcO]e  
        error('zernfun:MlessthanN', ... 9-A@2&J1  
              'Each M must be less than or equal to its corresponding N.') rmX5-k  
    end g-x;a0MQx  
    DKlHXEt>  
    if any( r>1 | r<0 ) ga1b%5]v.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') o+^e+ptc  
    end <VN< ~sz  
    HF&d HD2f  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <T'fJcR  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0^2e^qf  
    end Zia6m[^Q  
    l~f9F`~'  
    r = r(:); `x L@%  
    theta = theta(:); NXOvC!<  
    length_r = length(r); LBpAR|  
    if length_r~=length(theta) F')E)tV  
        error('zernfun:RTHlength', ... I2z7}*<u  
              'The number of R- and THETA-values must be equal.') Vhm^<I-d  
    end u91  
    4^6Oh#p0  
    % Check normalization: ]/R>nT  
    % -------------------- >NpW$P{'  
    if nargin==5 && ischar(nflag) `Sj8IxO  
        isnorm = strcmpi(nflag,'norm'); @X/-p3729  
        if ~isnorm &t@ $]m(  
            error('zernfun:normalization','Unrecognized normalization flag.') hL;??h,!_  
        end A}"uEk(R  
    else ?K.!^G  
        isnorm = false; </fTn_{2s8  
    end G<*h,'B  
    b]8\% =d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ws]d,]  
    % Compute the Zernike Polynomials Y(R],9h8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DEv,!8  
    b DF_  
    % Determine the required powers of r: wp/x|AV  
    % ----------------------------------- !\&4,l(  
    m_abs = abs(m); +hT9V1'-D  
    rpowers = []; xJvalb   
    for j = 1:length(n) P_@ty~u  
        rpowers = [rpowers m_abs(j):2:n(j)]; @ 6b;sv1W  
    end 8,m:  
    rpowers = unique(rpowers); ?H!X p  
    Ga *  
    % Pre-compute the values of r raised to the required powers, LGCeYXic  
    % and compile them in a matrix: NL ceBok  
    % ----------------------------- cja-MljD  
    if rpowers(1)==0 Rn whkb&&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y7yzM1?t  
        rpowern = cat(2,rpowern{:}); m )<N:|  
        rpowern = [ones(length_r,1) rpowern]; tkix@Q!;\  
    else qSVg.<+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <DdzDbgax  
        rpowern = cat(2,rpowern{:}); E~Y%x/oX  
    end z<<aT  
    ewinG-hX_  
    % Compute the values of the polynomials: o\y qf:V8  
    % -------------------------------------- rmnnV[@o  
    y = zeros(length_r,length(n)); =u&NdMy  
    for j = 1:length(n) }% ?WS  
        s = 0:(n(j)-m_abs(j))/2; 23UXOY0BW  
        pows = n(j):-2:m_abs(j); `VOLw*Ci  
        for k = length(s):-1:1 Z~7}  
            p = (1-2*mod(s(k),2))* ... e}"k8 ./  
                       prod(2:(n(j)-s(k)))/              ... m9m~2   
                       prod(2:s(k))/                     ... ^m^,:]I0P  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "}UYsXg  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \cq.M/p  
            idx = (pows(k)==rpowers); %u$dN9cw  
            y(:,j) = y(:,j) + p*rpowern(:,idx); O[')[uo8s  
        end }pPt- k  
         i>rsq[l  
        if isnorm [k6,!e[/uG  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); C)s*1@af  
        end ["?WVXCF8|  
    end j(=zc6m  
    % END: Compute the Zernike Polynomials u]Y NF[]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N_8L8ds5  
    : ]JsUb{YK  
    % Compute the Zernike functions: C}mWX7<Z.  
    % ------------------------------ 9!6yo  
    idx_pos = m>0; K,GX5c5  
    idx_neg = m<0; 1HNX 6  
    vro5G')  
    z = y; }\\6"90g*  
    if any(idx_pos) r;aP`MVO<  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _b 8XF&O  
    end ?GGh )";y  
    if any(idx_neg) zn{[]J  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g7W\  &  
    end EC| b7  
    j~Xn\~*n  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ;w}5:3+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. eL!G, W  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated >(HUW^T/9z  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive !P26$US%P  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, L:F:ZOM6`  
    %   and THETA is a vector of angles.  R and THETA must have the same =<[ZFO~v  
    %   length.  The output Z is a matrix with one column for every P-value,  goT:\2  
    %   and one row for every (R,THETA) pair. /`Lki>"  
    % oYN# T=Xi  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike {N,w5!cP  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) T {lJ[M  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]g; K_>@  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Zb#  
    %   for all p. uNY]%[AnJ  
    % .tb~f@xL  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 | Y1<P^  
    %   Zernike functions (order N<=7).  In some disciplines it is 3?uP$(l  
    %   traditional to label the first 36 functions using a single mode wB( igPi  
    %   number P instead of separate numbers for the order N and azimuthal 6l$o^R^D  
    %   frequency M. Q$9`QY*6"p  
    % [ @/[#p  
    %   Example: ;"nEEe]?  
    % =;$&:Zjy/%  
    %       % Display the first 16 Zernike functions ;mb 6i_  
    %       x = -1:0.01:1; Z [5HI;  
    %       [X,Y] = meshgrid(x,x); fwQ%mU+  
    %       [theta,r] = cart2pol(X,Y); #z t+U^#)  
    %       idx = r<=1; \ca4X{x  
    %       p = 0:15; i,,>@R  
    %       z = nan(size(X)); Dx[t?-  
    %       y = zernfun2(p,r(idx),theta(idx)); ;@ d<*  
    %       figure('Units','normalized') 2s6Hr;^w.1  
    %       for k = 1:length(p) 8YN+ \  
    %           z(idx) = y(:,k); +o/;bm*U<K  
    %           subplot(4,4,k) q#Qr@Jf  
    %           pcolor(x,x,z), shading interp }%R6Su]y  
    %           set(gca,'XTick',[],'YTick',[]) CsR~qQ 5  
    %           axis square uj/le0  
    %           title(['Z_{' num2str(p(k)) '}'])  5>w>J  
    %       end 1^Zx-p3J  
    % 1ck2Gxn  
    %   See also ZERNPOL, ZERNFUN. =8dCk\/  
    g}qK$>EPS  
    %   Paul Fricker 11/13/2006 `u-VGd\  
    M3F8@|2  
    +dh]k=6  
    % Check and prepare the inputs: >k\*NW  
    % ----------------------------- s_Dl8O4u  
    if min(size(p))~=1 C.(ZXU7  
        error('zernfun2:Pvector','Input P must be vector.') 3nK'yC  
    end >uJrq""+  
    "3j0)  
    if any(p)>35 up2%QbN(  
        error('zernfun2:P36', ... iKS9Xss8  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... U0N[~yW(t1  
               '(P = 0 to 35).']) m&A/IW,.  
    end H_8@J  
    "| Q&  
    % Get the order and frequency corresonding to the function number: ln=zGX.e  
    % ---------------------------------------------------------------- yMSRUQ x  
    p = p(:); $uLzC]  
    n = ceil((-3+sqrt(9+8*p))/2); ci^-0l_O  
    m = 2*p - n.*(n+2); oC[wYUDg  
    n`:l`n>N$  
    % Pass the inputs to the function ZERNFUN: uN\9c Q  
    % ---------------------------------------- *,n7&  
    switch nargin &gEu%s^wR  
        case 3 CWN=6(y  
            z = zernfun(n,m,r,theta); Om1z  
        case 4 7e=a D~f  
            z = zernfun(n,m,r,theta,nflag); wFd*6%  
        otherwise W>Rv  
            error('zernfun2:nargin','Incorrect number of inputs.') R&alq  
    end <s7{6n')  
    25 ~$qY_  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [qI*]  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. &+^ # `nq  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of `x#~ -  
    %   order N and frequency M, evaluated at R.  N is a vector of 'q^Gg;c>+  
    %   positive integers (including 0), and M is a vector with the O``MUb b  
    %   same number of elements as N.  Each element k of M must be a {pg@JA  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) j bGH3 L  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is g`6wj|@ =W  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7w$R-Y/E  
    %   with one column for every (N,M) pair, and one row for every /uc/x+(_  
    %   element in R. Iw:("A&~  
    % ,6bMf z  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- U+RPn?Q  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is '_<`dzz  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U`Ag|R  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 zn x_p /V  
    %   for all [n,m]. ^MW%&&,BL  
    % MGz> ,c^wW  
    %   The radial Zernike polynomials are the radial portion of the .0-m=3mp2  
    %   Zernike functions, which are an orthogonal basis on the unit $"(YE #]|  
    %   circle.  The series representation of the radial Zernike 4Qo1f5 >N  
    %   polynomials is |G@)B!>  
    % :Ir:OD# o  
    %          (n-m)/2 9C 05  
    %            __ =arsoCa  
    %    m      \       s                                          n-2s \|t0~sRwh  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r DmrfD28j~F  
    %    n      s=0 -]A#G`'  
    % 614/wI8(  
    %   The following table shows the first 12 polynomials. y m{/0&7  
    % [L(l++.z  
    %       n    m    Zernike polynomial    Normalization "poTM[]tZ7  
    %       --------------------------------------------- m wCnP8:K  
    %       0    0    1                        sqrt(2) Y fA\#N0;3  
    %       1    1    r                           2 c]r|I %D  
    %       2    0    2*r^2 - 1                sqrt(6) L _y|l5  
    %       2    2    r^2                      sqrt(6) b . j^US^  
    %       3    1    3*r^3 - 2*r              sqrt(8) TjK5UML  
    %       3    3    r^3                      sqrt(8) SkA'+(  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) .rm7Sd4K  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Lx{N%;t*E  
    %       4    4    r^4                      sqrt(10) `VE&Obp[  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) cZzZNGY^ts  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) z}tp0~C  
    %       5    5    r^5                      sqrt(12) &RrQ()<as  
    %       --------------------------------------------- =ol][)Bd  
    % ncr-i!Jjk  
    %   Example: hUxhYOp  
    % * _l o;  
    %       % Display three example Zernike radial polynomials RbM~E~$  
    %       r = 0:0.01:1; O mIBk  
    %       n = [3 2 5]; Ur(o&,  
    %       m = [1 2 1]; WG luY>C;  
    %       z = zernpol(n,m,r); hb8XBBKR  
    %       figure =hOa 0X=  
    %       plot(r,z) WN/#9]` P  
    %       grid on \X.=3lc&  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') KAcri<^G  
    % E}vO*ZZEw  
    %   See also ZERNFUN, ZERNFUN2. N>Y50  
    786_QV  
    % A note on the algorithm. $ ].k6,%{p  
    % ------------------------ SvP\JQ<c  
    % The radial Zernike polynomials are computed using the series LC\:xia{X  
    % representation shown in the Help section above. For many special ^!F5Cz 48  
    % functions, direct evaluation using the series representation can cgXF|'yI&l  
    % produce poor numerical results (floating point errors), because i!oj&&  
    % the summation often involves computing small differences between F'$S!K58  
    % large successive terms in the series. (In such cases, the functions ;6txTcn`=  
    % are often evaluated using alternative methods such as recurrence o[[r_v_d  
    % relations: see the Legendre functions, for example). For the Zernike ,wi=!KzX  
    % polynomials, however, this problem does not arise, because the Zt2@?w;  
    % polynomials are evaluated over the finite domain r = (0,1), and =G F  
    % because the coefficients for a given polynomial are generally all +()t8,S,  
    % of similar magnitude. O\Mq<;|7m  
    % [Um4\QvUx  
    % ZERNPOL has been written using a vectorized implementation: multiple j~*Z7iu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] kz;_f  
    % values can be passed as inputs) for a vector of points R.  To achieve akW3\(W}  
    % this vectorization most efficiently, the algorithm in ZERNPOL H"rzRd; S  
    % involves pre-determining all the powers p of R that are required to >[fVl 8G_0  
    % compute the outputs, and then compiling the {R^p} into a single :+Q"MIU  
    % matrix.  This avoids any redundant computation of the R^p, and b\;u9C2y'  
    % minimizes the sizes of certain intermediate variables. :t{vgi D9  
    % .7gE^  
    %   Paul Fricker 11/13/2006 .!8X]trEg  
     pl,Z  
    ?wf+{x-dPP  
    % Check and prepare the inputs: T|s0qQi  
    % ----------------------------- CCh8?sM  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ji:iKkI  
        error('zernpol:NMvectors','N and M must be vectors.') 8{<[fZyC  
    end %;\G@q_p{  
    )Ct*G= N  
    if length(n)~=length(m) -?B9>6 h "  
        error('zernpol:NMlength','N and M must be the same length.') W _,;eyo  
    end ]( =wlq)  
    0 {JK4]C  
    n = n(:); iE^a%|?}  
    m = m(:); rt^45~  
    length_n = length(n); 1!(%<R  
    IiK(^:~%  
    if any(mod(n-m,2)) Az< 9hk  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') V9E6W*IE  
    end z34>,0  
    YZH#5]o8  
    if any(m<0) Hg9.<|+yo  
        error('zernpol:Mpositive','All M must be positive.') M=AvD(+ha  
    end Xs>s|_T  
    3U~lI&  
    if any(m>n) -[pCP_`)u  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !-5S8b  
    end E!I  
    SE^b0ZV*x  
    if any( r>1 | r<0 ) nSxb-Ce  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') W>0"CUp  
    end &oeN#5Es8C  
    (eRKR2% q  
    if ~any(size(r)==1) f' '{.L  
        error('zernpol:Rvector','R must be a vector.') t*a*v;iz  
    end 7SK 3  
    \|~?x#aA  
    r = r(:); ^'7C0ps+A  
    length_r = length(r); MxgLzt Y  
    nQ642i%RQ  
    if nargin==4 dm2CA0   
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); W ~Jzqp9g  
        if ~isnorm *f TG8h  
            error('zernpol:normalization','Unrecognized normalization flag.') Xn/ n|[  
        end \o B'  
    else X7H'Uk9:  
        isnorm = false; |0L=8~M(j  
    end |}M0,AS  
    jJUGZVM6)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~ThVap[*  
    % Compute the Zernike Polynomials ;v1NL@w*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o9ctJf=qn  
    oQ%\[s$  
    % Determine the required powers of r: +mc [S  
    % ----------------------------------- 5pM&h~M  
    rpowers = []; \L ]   
    for j = 1:length(n) `S\zqF<  
        rpowers = [rpowers m(j):2:n(j)]; ;P;"F21^>  
    end 0iJ!K;A2%  
    rpowers = unique(rpowers); J%\- 1  
    ?GO SeV  
    % Pre-compute the values of r raised to the required powers, 5iQmZ [  
    % and compile them in a matrix: PFS;/   
    % ----------------------------- 1yBt/U2  
    if rpowers(1)==0 <&5m N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); veUa|Bx.(v  
        rpowern = cat(2,rpowern{:}); `/O`OrZ1K  
        rpowern = [ones(length_r,1) rpowern]; DH:GI1Yu>I  
    else Xnv@H:$mxk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); U@6jOZ  
        rpowern = cat(2,rpowern{:}); }bf=Ntk  
    end F$Im9T6  
    qKdS7SoS  
    % Compute the values of the polynomials: +VCo$o  
    % -------------------------------------- , 3X: )  
    z = zeros(length_r,length_n); jzs.+dAg  
    for j = 1:length_n ;} lT  
        s = 0:(n(j)-m(j))/2; |h&<_9  
        pows = n(j):-2:m(j); ~:>AR` 9G  
        for k = length(s):-1:1 7tSJniB  
            p = (1-2*mod(s(k),2))* ... S!;L F4VA  
                       prod(2:(n(j)-s(k)))/          ... 7]Al*)  
                       prod(2:s(k))/                 ... l{Jt sI  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ]~-*hOcQ4  
                       prod(2:((n(j)+m(j))/2-s(k))); J I<3\=:+  
            idx = (pows(k)==rpowers); ,~4H{{<j  
            z(:,j) = z(:,j) + p*rpowern(:,idx); n /QfdAg  
        end Y1{B c<tC  
         ]^=|Zd-  
        if isnorm :{LAVMG&^  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); mxQR4"]jY  
        end EgTFwEj  
    end AZwl fdLB  
    ?Jt$a;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  3B0PGvCI1  
    ]fBUT6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 H1/?+N}(  
    QA3/   
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)