切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11375阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @ljZw(  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ]m RF[b$  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )tJL@Qo  
    function z = zernfun(n,m,r,theta,nflag) 3xc:Y> *`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Vx0MG{vG1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :k Rv  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Z`e$~n(Bh  
    %   unit circle.  N is a vector of positive integers (including 0), and E>o&GYc  
    %   M is a vector with the same number of elements as N.  Each element L2:oZ&:u`J  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) [I#Q  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, NHst7$Y<  
    %   and THETA is a vector of angles.  R and THETA must have the same wI|bBfd(  
    %   length.  The output Z is a matrix with one column for every (N,M) c`Lpqs`  
    %   pair, and one row for every (R,THETA) pair. Q&\ZC?y4  
    % 89 _&X[X  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?14X8Mb8W_  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,Gf+U7'K  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ":5~L9&G  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &e5^v  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K*hf(w9="%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. H{p[Ghp  
    % vLVSZX  
    %   The Zernike functions are an orthogonal basis on the unit circle. p]atH<^;K  
    %   They are used in disciplines such as astronomy, optics, and s2,`eV  
    %   optometry to describe functions on a circular domain. #l8K8GLuf  
    % i[V,IP +  
    %   The following table lists the first 15 Zernike functions. lk5_s@V l  
    % 0~LnnD N  
    %       n    m    Zernike function           Normalization 'eTpcrS3  
    %       -------------------------------------------------- *}50q9)/  
    %       0    0    1                                 1 NpjsZcA  
    %       1    1    r * cos(theta)                    2 / r`Y'rm  
    %       1   -1    r * sin(theta)                    2 &k {t0>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]}*G[[ ^p  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ^^U)WB  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) pJ<)intcbE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) qCv}+d)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) zXA= se0U  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2l;ge>D J  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) QZeb+r  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &QHA_+88W  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IrVM|8vT3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) vErbX3RY2  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _ ;v _L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -F~9f>  
    %       -------------------------------------------------- mAtG&my)  
    % 0.3[=a4 3  
    %   Example 1: ** "s~  
    % 60SenHKles  
    %       % Display the Zernike function Z(n=5,m=1) -bG#h)yj  
    %       x = -1:0.01:1; 0o\=0bH&s  
    %       [X,Y] = meshgrid(x,x); y[Fw>g1`q  
    %       [theta,r] = cart2pol(X,Y); v: !7n  
    %       idx = r<=1; iz$v8;w  
    %       z = nan(size(X));  Q}`2Y^.  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); pRaoR  
    %       figure Amq8q  
    %       pcolor(x,x,z), shading interp bC>yIjCTn  
    %       axis square, colorbar UBpM8/U  
    %       title('Zernike function Z_5^1(r,\theta)') Z2Y583D  
    % +=lcN~U2  
    %   Example 2: Ix l"'Q_z  
    % LP-KD  
    %       % Display the first 10 Zernike functions uc{Qhw!;:  
    %       x = -1:0.01:1; m/"=5*pA  
    %       [X,Y] = meshgrid(x,x); [~&:`I1  
    %       [theta,r] = cart2pol(X,Y); pu m9x)y1  
    %       idx = r<=1; 7{6cLYl  
    %       z = nan(size(X)); ~P.-3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; pR^Y|NG!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; jmwQc&  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; =iQ`F$M  
    %       y = zernfun(n,m,r(idx),theta(idx)); Toa#>Z*+Rb  
    %       figure('Units','normalized') DdA}A>47  
    %       for k = 1:10 QI^8b\36  
    %           z(idx) = y(:,k); d}A2I  
    %           subplot(4,7,Nplot(k)) Tef3 Z6  
    %           pcolor(x,x,z), shading interp jL[Is2<@  
    %           set(gca,'XTick',[],'YTick',[]) %.Q2r ?j  
    %           axis square lyc{Z%!3  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R,b O{2O  
    %       end 8;dbU*  
    % z]4g`K+  
    %   See also ZERNPOL, ZERNFUN2. A0 w `o  
    !n?*vN=S  
    %   Paul Fricker 11/13/2006 .]d tRH<  
     26klW:2*  
    u\& [@v  
    % Check and prepare the inputs: F7PZV+\  
    % ----------------------------- 3Tte8]0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <38@b ]+  
        error('zernfun:NMvectors','N and M must be vectors.') .TrQ +k>  
    end "oGM> @q=B  
    h[v3G<C~r  
    if length(n)~=length(m) I3y4O^?  
        error('zernfun:NMlength','N and M must be the same length.') {UVm0AeUq  
    end 7)5$1  
    .}u(&  
    n = n(:); 9/qS*Zdh)  
    m = m(:); W1,L>Az^Ts  
    if any(mod(n-m,2)) i1H80m s  
        error('zernfun:NMmultiplesof2', ... IgnY* 2FT  
              'All N and M must differ by multiples of 2 (including 0).') ^T J   
    end V5^b6$R@  
    &_x/Dzu!z  
    if any(m>n) y5tAp  
        error('zernfun:MlessthanN', ... CjukD%>sde  
              'Each M must be less than or equal to its corresponding N.') af5`ktx  
    end ,f""|X5  
    2dlV'U_g  
    if any( r>1 | r<0 ) Kgio}y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') HC`3AQ12!&  
    end \EfwS% P  
    4 ~|TKd{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~0$F V  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~;4k UJD  
    end wk 7_(gT`0  
    1&L){hg  
    r = r(:); Y{:/vOj  
    theta = theta(:); P!&CH4+  
    length_r = length(r); :[rKSA]@  
    if length_r~=length(theta) uTloj .  
        error('zernfun:RTHlength', ... 8q LgB  
              'The number of R- and THETA-values must be equal.') u! FSXX<  
    end .7^-*HT}  
     s !vROJ  
    % Check normalization: YxqQg  
    % -------------------- L/+J|_J)  
    if nargin==5 && ischar(nflag) <UL|%9=~  
        isnorm = strcmpi(nflag,'norm'); 4E(5Ccb  
        if ~isnorm -"tgEC\tD  
            error('zernfun:normalization','Unrecognized normalization flag.') NB#*`|qt  
        end hd BC ^n  
    else aw~EK0yU   
        isnorm = false; :pu{3-n.  
    end ;l4 \^E1  
    "4AQpD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ._nKM5.  
    % Compute the Zernike Polynomials IbaL.t\>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R}26"+~  
    ,DO mh<b  
    % Determine the required powers of r: oVsazYJ|?  
    % ----------------------------------- #E@i@'T  
    m_abs = abs(m); R51!j>[fqM  
    rpowers = []; Cb-E<W&2D  
    for j = 1:length(n) 1}M.}G2u/  
        rpowers = [rpowers m_abs(j):2:n(j)]; [1MEA;  
    end WYzaD}  
    rpowers = unique(rpowers); *g6o ;c  
    3 pH` ]m2  
    % Pre-compute the values of r raised to the required powers, <~*Ol+/  
    % and compile them in a matrix: OkUpgXU  
    % ----------------------------- /j@r~mt/pA  
    if rpowers(1)==0 6+z]MT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GK%ovK  
        rpowern = cat(2,rpowern{:}); gQDK?aQX  
        rpowern = [ones(length_r,1) rpowern]; \ \}/2#1=c  
    else <BA&S _=4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,LO-!\L  
        rpowern = cat(2,rpowern{:}); D.!7jA#  
    end y ]%,Y=%X  
    % "^XxVJ*  
    % Compute the values of the polynomials: ~l6Y<-!  
    % -------------------------------------- 3:#rFb  
    y = zeros(length_r,length(n)); ,e_#   
    for j = 1:length(n) wO%:WL$5  
        s = 0:(n(j)-m_abs(j))/2; /CE d 14.  
        pows = n(j):-2:m_abs(j); =lD]sk  
        for k = length(s):-1:1 O3: dOL/C  
            p = (1-2*mod(s(k),2))* ... <]^D({`  
                       prod(2:(n(j)-s(k)))/              ... BAHx7x#(  
                       prod(2:s(k))/                     ... S$WM&9U   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... c10).zZ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nHrCSfK  
            idx = (pows(k)==rpowers); mh]$g<*m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); LTct0Gh  
        end W10fjMC}^  
         1z:N$O _v  
        if isnorm Zx 1z hc  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b15qy?`y  
        end :/qO*&i,N  
    end (=/;rJ`q  
    % END: Compute the Zernike Polynomials =fo/+m5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6Qu*'  
    &Z!2xfQy>  
    % Compute the Zernike functions: uJ[Vv4N%9  
    % ------------------------------ w\*/(E<:  
    idx_pos = m>0; E%B Gf}h  
    idx_neg = m<0; ]SgeZ07  
    AoeW<}MO  
    z = y; efR$s{n!  
    if any(idx_pos) /)TEx}wk  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $(=1A>40  
    end q:^Cw8  
    if any(idx_neg) %'z3es0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _6 `4_<c=  
    end jRAL(r|  
    2A+,. S_!x  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 7gcG|kKT  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0+LloB  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ArK9E!`^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive wP?q5r5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, K~T\q_ZPZ  
    %   and THETA is a vector of angles.  R and THETA must have the same a*y mBGF  
    %   length.  The output Z is a matrix with one column for every P-value, g1 ,  
    %   and one row for every (R,THETA) pair. faX#KRpfd  
    % ]5/U}Um  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Ya 4$7|(  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) D7/Bp4I#o  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) yG$@!*|  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 -74T C  
    %   for all p. }4%)m  
    % " SqKS,J  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Dj(7'jT  
    %   Zernike functions (order N<=7).  In some disciplines it is . *xq =  
    %   traditional to label the first 36 functions using a single mode WEAXqDjM  
    %   number P instead of separate numbers for the order N and azimuthal p5VSSvV\K  
    %   frequency M. z-gG(  
    % #SNI dc>9\  
    %   Example: ;tiU OixJ  
    % r0 C6Ww7u  
    %       % Display the first 16 Zernike functions f om"8iL1  
    %       x = -1:0.01:1; >]8.xkQq  
    %       [X,Y] = meshgrid(x,x); >irT|VTf  
    %       [theta,r] = cart2pol(X,Y); 1G.gPx[  
    %       idx = r<=1; tta0sJ8 i  
    %       p = 0:15; Nn1^#kc  
    %       z = nan(size(X)); -$ z"74  
    %       y = zernfun2(p,r(idx),theta(idx)); LfXr(2u  
    %       figure('Units','normalized') T?{9Z  
    %       for k = 1:length(p) o{W]mr3D  
    %           z(idx) = y(:,k); ABmDSV5i  
    %           subplot(4,4,k) \RyA}P5 S  
    %           pcolor(x,x,z), shading interp wJ*-K-  
    %           set(gca,'XTick',[],'YTick',[]) UyKG$6F?3  
    %           axis square /,$\H  
    %           title(['Z_{' num2str(p(k)) '}']) wQB{K3  
    %       end ?u!AHSr(  
    % X>8?p'*  
    %   See also ZERNPOL, ZERNFUN. K/ m)f#  
    3eP0v  
    %   Paul Fricker 11/13/2006 Kg-X]yu*0  
    L b;vrh;A  
    E9 q;>)}  
    % Check and prepare the inputs: 8lSn*;S,  
    % ----------------------------- aZGDtzNG5h  
    if min(size(p))~=1 ~c$ts&Cl  
        error('zernfun2:Pvector','Input P must be vector.') [j U  
    end N4|q2Jvj6  
    eE`1;13;  
    if any(p)>35 \[I .  
        error('zernfun2:P36', ... u;qMo`-  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... \+Ln~\Sv  
               '(P = 0 to 35).']) ptni'W3  
    end 2BA9T nxC  
    ^6y4!='ci  
    % Get the order and frequency corresonding to the function number: M 8j(1&(:  
    % ---------------------------------------------------------------- <`UG#6z8  
    p = p(:); <;E[)tv  
    n = ceil((-3+sqrt(9+8*p))/2); RXS|-_$  
    m = 2*p - n.*(n+2); U]U)'  
     I4f  
    % Pass the inputs to the function ZERNFUN: _s-HlE?C  
    % ---------------------------------------- q,JA~GG  
    switch nargin 1za'u_  
        case 3 rnv7L^9^A  
            z = zernfun(n,m,r,theta); ;VlZd*M?  
        case 4 |$?Ux,(6  
            z = zernfun(n,m,r,theta,nflag); VSpt&19  
        otherwise 7r[ %| :  
            error('zernfun2:nargin','Incorrect number of inputs.') D6)Cjc>a  
    end jl-Aos"/  
    J$9xC{L4  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ]pRfY9w  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Jt>[]g$  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of cv*Q]F1%  
    %   order N and frequency M, evaluated at R.  N is a vector of 7l#2,d4  
    %   positive integers (including 0), and M is a vector with the g y e(/N+I  
    %   same number of elements as N.  Each element k of M must be a *iRm`)zC(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) PVD ~W)0m*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is _95}ifSVm  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix m,gy9$  
    %   with one column for every (N,M) pair, and one row for every 60aKT:KLC_  
    %   element in R. &I}T<v{f  
    % Rw/JPC"  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- _L4<^Etfm  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is jq("D,  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to FSU%?PxO  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )}Rfa}MD  
    %   for all [n,m]. P7wqZ?  
    % wsJ%* eYf  
    %   The radial Zernike polynomials are the radial portion of the N;x<| %peL  
    %   Zernike functions, which are an orthogonal basis on the unit oWx_O-_._  
    %   circle.  The series representation of the radial Zernike TXJY2J*24  
    %   polynomials is m/<F 5R  
    % KM6N'x^z  
    %          (n-m)/2 W`Q$t56  
    %            __ uh5Pn#da^  
    %    m      \       s                                          n-2s [<Os~bfOv  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r NlF0\+h  
    %    n      s=0 zY1s7/$ i  
    % ksu}+i,a  
    %   The following table shows the first 12 polynomials. Y%fVt|  
    % LmXF`Y$  
    %       n    m    Zernike polynomial    Normalization s^g.42?u  
    %       --------------------------------------------- &}nBenYp  
    %       0    0    1                        sqrt(2) (aJP: ^  
    %       1    1    r                           2 rQcRjh+E H  
    %       2    0    2*r^2 - 1                sqrt(6) 97(Xu=tX  
    %       2    2    r^2                      sqrt(6) dSe8vA!)  
    %       3    1    3*r^3 - 2*r              sqrt(8) \]T=j#.S$  
    %       3    3    r^3                      sqrt(8) *gd?>P7\0  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) vnC<*k4&v  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) . 0 s[{x  
    %       4    4    r^4                      sqrt(10) vv2vW=\  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) $(@o$%d  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) \K?(  
    %       5    5    r^5                      sqrt(12) Qe>i{:N  
    %       --------------------------------------------- xb9Pc.A[  
    % =% q?Cr  
    %   Example: IpWy)B>Fl3  
    % UCn*UX  
    %       % Display three example Zernike radial polynomials MX!u$ei  
    %       r = 0:0.01:1; ;-KA UgL2  
    %       n = [3 2 5]; Ml8 YyF/~  
    %       m = [1 2 1]; yn/?= ?0  
    %       z = zernpol(n,m,r); GOy=p3mQ  
    %       figure #`jE%ONC  
    %       plot(r,z) gDQkn {T.%  
    %       grid on [=F>#8=  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') hWD !  
    % h4CTTe)  
    %   See also ZERNFUN, ZERNFUN2. pk-yj~F}  
    `Yx-~y5X  
    % A note on the algorithm. qQfqlD<  
    % ------------------------ jM5_8nS&d  
    % The radial Zernike polynomials are computed using the series  4%g6_KB  
    % representation shown in the Help section above. For many special 0U82f1ei  
    % functions, direct evaluation using the series representation can DtzA$|Q}  
    % produce poor numerical results (floating point errors), because p?+lAbe6H  
    % the summation often involves computing small differences between =n@F$/h  
    % large successive terms in the series. (In such cases, the functions #ZG3|#Q=L  
    % are often evaluated using alternative methods such as recurrence x9&-(kBU  
    % relations: see the Legendre functions, for example). For the Zernike B4]AFRI  
    % polynomials, however, this problem does not arise, because the #yW.o'S+  
    % polynomials are evaluated over the finite domain r = (0,1), and -O|&c9W.O  
    % because the coefficients for a given polynomial are generally all EY+/.=$x  
    % of similar magnitude. 3@^MvoC  
    % slU  
    % ZERNPOL has been written using a vectorized implementation: multiple qqnclqkw&  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] eeuZUf+~]  
    % values can be passed as inputs) for a vector of points R.  To achieve +>JdYV<?0  
    % this vectorization most efficiently, the algorithm in ZERNPOL P^ptsZ%  
    % involves pre-determining all the powers p of R that are required to Z?m -&%  
    % compute the outputs, and then compiling the {R^p} into a single -O'{:s~  
    % matrix.  This avoids any redundant computation of the R^p, and 5]jx5!N  
    % minimizes the sizes of certain intermediate variables. 1 6"#i  
    % q=|R89  
    %   Paul Fricker 11/13/2006 $o]r ]#B+  
    7#QLtU  
    i 3m3zXt  
    % Check and prepare the inputs: P @zz"~f7  
    % ----------------------------- 6}ce1|mkg/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7FAIew\r  
        error('zernpol:NMvectors','N and M must be vectors.') 9 |' |BC  
    end #EJhAJ  
    Aj [?aL  
    if length(n)~=length(m) !X^Hi=aV  
        error('zernpol:NMlength','N and M must be the same length.') {vs 4vS6  
    end c\At0.QCA  
    w{pUUo:<  
    n = n(:); XC=%H'p  
    m = m(:); )FRM_$t  
    length_n = length(n); >DHp*$y  
    vu=me?m?(  
    if any(mod(n-m,2)) K*~]fy  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') lWW+5  
    end t)` p@]j  
    {9L5Q  
    if any(m<0) yQ9ZhdQS  
        error('zernpol:Mpositive','All M must be positive.') rah,dVE]  
    end :M06 ;:e  
    %m9CdWb=w  
    if any(m>n) l71 gf.4g  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') z"lqrSJ:  
    end *l{yW"Su  
    Guh%eR'Wt  
    if any( r>1 | r<0 ) "< v\M85&  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') @:Di`B_{  
    end &uv0G'"\  
    [QT 1Ju64  
    if ~any(size(r)==1) P.djd$#  
        error('zernpol:Rvector','R must be a vector.') Z`Pd2VRp  
    end ;imRh'-V6  
    $$hv`HE^l  
    r = r(:); n"6;\  
    length_r = length(r); Wqra8u#  
    9Y/L?km_(  
    if nargin==4 in<}fAro6  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); cq*=|m0}Z  
        if ~isnorm c"7j3/p  
            error('zernpol:normalization','Unrecognized normalization flag.') ~]BMrgn  
        end Jic}+X*0  
    else m*Lo|F  
        isnorm = false; [$\z'}  
    end z% 1{  
    +Ng0WS_0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P}V=*g  
    % Compute the Zernike Polynomials |ETiLR=&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mf' ]O,  
    *#y;8  
    % Determine the required powers of r: XX6 T$pA6  
    % ----------------------------------- !"Q}R p  
    rpowers = []; 3xNMPm  
    for j = 1:length(n) 2Vk\L~K  
        rpowers = [rpowers m(j):2:n(j)]; fQ+\;iAU  
    end B@O@1?c[  
    rpowers = unique(rpowers); .R5y:O  
    -kpswP  
    % Pre-compute the values of r raised to the required powers,  )zq.4  
    % and compile them in a matrix: K=?VDN  
    % ----------------------------- Z{R[Wx  
    if rpowers(1)==0 ]3B%8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |.P/:e9  
        rpowern = cat(2,rpowern{:}); w~Ff%p@9  
        rpowern = [ones(length_r,1) rpowern]; |E@djosyC  
    else Xf d*D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4=Gph  
        rpowern = cat(2,rpowern{:}); 5,pSg  
    end  U47}QDh  
    8' K0L(3[  
    % Compute the values of the polynomials:  npp[@*~  
    % -------------------------------------- d2S~)/@S  
    z = zeros(length_r,length_n); .>pgU{C`!  
    for j = 1:length_n UsQ4~e 4-  
        s = 0:(n(j)-m(j))/2; w$|l{VI  
        pows = n(j):-2:m(j); pV(lhDNoQ  
        for k = length(s):-1:1 Xm1[V&  
            p = (1-2*mod(s(k),2))* ... @}s$]i$|-  
                       prod(2:(n(j)-s(k)))/          ... |3hY6aty  
                       prod(2:s(k))/                 ... !@A#=(4R4  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Y+~g\z-]c  
                       prod(2:((n(j)+m(j))/2-s(k))); T]T;$  
            idx = (pows(k)==rpowers); c+dg_*^  
            z(:,j) = z(:,j) + p*rpowern(:,idx); b;GD/UI  
        end Pw0Ci  
         <3okiV=ox  
        if isnorm =gh`JN6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &~e$:8 +  
        end ? 1*m,;Z  
    end 1 " #*)MF  
    " =] -%B  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  hs tbz  
    u,}{I}x_  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 )_/5*Ly@  
    Sz H"  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)