非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mGF)Ot R
function z = zernfun(n,m,r,theta,nflag) qc3,/JO1
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?Ho>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 66_=bd(9
% and angular frequency M, evaluated at positions (R,THETA) on the I@#IXH?6
% unit circle. N is a vector of positive integers (including 0), and XV)ctF4
% M is a vector with the same number of elements as N. Each element z 61F q
% k of M must be a positive integer, with possible values M(k) = -N(k) 6J$I8b#/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QXy=|
% and THETA is a vector of angles. R and THETA must have the same Y%r>=Jvu6
% length. The output Z is a matrix with one column for every (N,M) ) <w`:wD
% pair, and one row for every (R,THETA) pair. wqzpFPk(
% P9q=tC3^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ''z]o#=^9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RfCu5Kn
% with delta(m,0) the Kronecker delta, is chosen so that the integral l=$?#^^ /
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, taO(\FOm
% and theta=0 to theta=2*pi) is unity. For the non-normalized iYlkc
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t/3qD7L
% G)o:R iq
% The Zernike functions are an orthogonal basis on the unit circle. |=:hUp Jp
% They are used in disciplines such as astronomy, optics, and #|=lU4Bf
% optometry to describe functions on a circular domain. (rBYE[@,
% u1.0-Y?
% The following table lists the first 15 Zernike functions. q{f (T\
% d%E*P4Ua
% n m Zernike function Normalization )6o%6$c
% -------------------------------------------------- GsiKL4|mj
% 0 0 1 1 |~rKD c
% 1 1 r * cos(theta) 2 .>1Y-NM
% 1 -1 r * sin(theta) 2 S{{wcH$n'i
% 2 -2 r^2 * cos(2*theta) sqrt(6) -"#jRP]#
% 2 0 (2*r^2 - 1) sqrt(3) 1/?K/gL
% 2 2 r^2 * sin(2*theta) sqrt(6) 2j]uB0
% 3 -3 r^3 * cos(3*theta) sqrt(8) h$%h w+"4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) QDb8W*&<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g{K \
% 3 3 r^3 * sin(3*theta) sqrt(8) WQBV~.<Yv
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7fl{<uf
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KUHkjA_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8{6`?qst@
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WB `h)
% 4 4 r^4 * sin(4*theta) sqrt(10) [N"=rY4G
% -------------------------------------------------- !>GDp >0
% z 8#{=e
% Example 1: Pw6%,?lQ
% p$*P@qm
% % Display the Zernike function Z(n=5,m=1) vRDs~'f
% x = -1:0.01:1; W?[
C
au-
% [X,Y] = meshgrid(x,x); :"
JE C'
% [theta,r] = cart2pol(X,Y); J?hs\nA
% idx = r<=1; p
)WRsJ8
% z = nan(size(X)); ;sx4w!Y,
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8VC%4+.FF
% figure <vxTfE@>bp
% pcolor(x,x,z), shading interp \+x#aN\
% axis square, colorbar 3|EAOoWnK
% title('Zernike function Z_5^1(r,\theta)') ? YluX
% K=pG,[ChA
% Example 2: -*kZ2grLt
% g*w}m>O
% % Display the first 10 Zernike functions VAe[x
`
% x = -1:0.01:1; jc,Qg2
% [X,Y] = meshgrid(x,x); E;q+u[$
% [theta,r] = cart2pol(X,Y); q &S@\b
% idx = r<=1; 6
tB\X^
% z = nan(size(X)); C3
BoH&
% n = [0 1 1 2 2 2 3 3 3 3]; `v'yGsIV
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }
na@gn
% Nplot = [4 10 12 16 18 20 22 24 26 28]; oqg +<m
% y = zernfun(n,m,r(idx),theta(idx)); 7=&+0@R#/d
% figure('Units','normalized') 'Axe:8LA'
% for k = 1:10 G6xNR
% z(idx) = y(:,k); (aq-aum-I
% subplot(4,7,Nplot(k)) :z%Zur+n c
% pcolor(x,x,z), shading interp xP27j_*m>
% set(gca,'XTick',[],'YTick',[]) 2av=W
% axis square }U%T6~_wR
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r- Y7wM`TZ
% end @twi<U_
% u('`.dwkc
% See also ZERNPOL, ZERNFUN2. 31QDN0o!~
#<#-B v
% Paul Fricker 11/13/2006 BaMF5f+
,4;'s
~3%aEj
% Check and prepare the inputs: Y)#,6\=U
% ----------------------------- Q:'r
p
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S@TfZ3Go|
error('zernfun:NMvectors','N and M must be vectors.') A-rj: k!
end 0sCWIGUW
$FZcvo3@*S
if length(n)~=length(m) CdtCxy5
error('zernfun:NMlength','N and M must be the same length.') aN!,\D
end NSq29#
lwjA07i
n = n(:); 9hJ
a K
m = m(:); =F5zU5`i
if any(mod(n-m,2)) /_yAd,^-+
error('zernfun:NMmultiplesof2', ... ,| j\x
'All N and M must differ by multiples of 2 (including 0).') S,a:H*Hf
end EiyHZ
Z>dvth
if any(m>n) \XfLTv
error('zernfun:MlessthanN', ... D z[,;
'Each M must be less than or equal to its corresponding N.') *qxv"PptX
end 7|o}m}yVx
1@F>E;YjL=
if any( r>1 | r<0 ) lsgZ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &2n5m&
end !P":z0K4
[<>%I#7ulG
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c4s,T"H
error('zernfun:RTHvector','R and THETA must be vectors.') ZmJ<FF4
end i@ 86Ez
n]>L"D,
r = r(:); Q9Go}}n
theta = theta(:); w{4#Q[
length_r = length(r); o
WAy[
if length_r~=length(theta) 1O1MB&5%
error('zernfun:RTHlength', ... G+\&8fi0
'The number of R- and THETA-values must be equal.') |D[LU[<C
end _:Jma
E
`V?Io
% Check normalization: aY DM)b}
% -------------------- #T8PgmR
if nargin==5 && ischar(nflag) ]?NiY:v
isnorm = strcmpi(nflag,'norm'); G-#rWZ&
if ~isnorm f>m! }F:
error('zernfun:normalization','Unrecognized normalization flag.') !LsIHDs4
end c(!pcB8
else .\3gb6S}
isnorm = false; "#h/sAIs
end mApl;D X
K?yMy,9%Yw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }}oIZP\qM
% Compute the Zernike Polynomials $2a_!/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n1b^o~agwC
cs[nFfM
% Determine the required powers of r: `H9!Z$7G
% ----------------------------------- >x
]{cb/m
m_abs = abs(m); sWi4+PAM0
rpowers = [];
E/gfX
for j = 1:length(n) M}
+s_h9
rpowers = [rpowers m_abs(j):2:n(j)]; `9A`pC
end r&~]6
U
rpowers = unique(rpowers); <<-BQ
l~
6p.y/LMO
% Pre-compute the values of r raised to the required powers, ^KV:.up6
% and compile them in a matrix: |\)Y,~;P
% ----------------------------- (@bq@0g
if rpowers(1)==0 ET%F+
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gj&5>brP
rpowern = cat(2,rpowern{:}); gb}ov**
rpowern = [ones(length_r,1) rpowern]; pi/&WMZ<
else G}aM~, v
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ml)<4@
rpowern = cat(2,rpowern{:}); VmZDU(M
end )"63g
Q,};O$h
% Compute the values of the polynomials: ![eipOX
% -------------------------------------- w,X J8+B
y = zeros(length_r,length(n)); 7UUu1"|a|
for j = 1:length(n) 3w/z$bj
s = 0:(n(j)-m_abs(j))/2; 2<d'!cm
pows = n(j):-2:m_abs(j); (v$
i
for k = length(s):-1:1 6H0aHCM
p = (1-2*mod(s(k),2))* ... -WGlOpg0;
prod(2:(n(j)-s(k)))/ ... GY"c1KE$
prod(2:s(k))/ ... iaQFVROu
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2/x~w~3U
prod(2:((n(j)+m_abs(j))/2-s(k))); Wxi;Tq9C@_
idx = (pows(k)==rpowers); HaF&ooI5+
y(:,j) = y(:,j) + p*rpowern(:,idx); w*u.z(:a`
end fr8';Jm
}Q-Tw,j
if isnorm 'Hu+8,xA
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); },O7NSG<o
end BLm}mb#/{
end ?DY6V;&F@f
% END: Compute the Zernike Polynomials }$* z:E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |_a^+!P
x$pz(Q&v
% Compute the Zernike functions: bvT$/(7
% ------------------------------ V-"#Kf9
idx_pos = m>0; ghk"XJ|
idx_neg = m<0; ft!D2M
s,M]f,T
z = y; u5`b")a
if any(idx_pos) "J`#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); y"H(F,(N
end A>*#Nw5L
if any(idx_neg) q~{O^,4S
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zJOyr"B'8
end \8k4v#wH
I~-sBMm(w
% EOF zernfun