切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10753阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 _cJ2\`M  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! FZtfh  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 bLQ ^fH4ww  
    function z = zernfun(n,m,r,theta,nflag) 7_mw%|m6@  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. l*kPOyB  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'eJ+JM<0%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j|/]#@Yr  
    %   unit circle.  N is a vector of positive integers (including 0), and ?}RSwl  
    %   M is a vector with the same number of elements as N.  Each element ,>:;#2+og  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) zSSB>D  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &znQ;NH#  
    %   and THETA is a vector of angles.  R and THETA must have the same e=Z, Jg  
    %   length.  The output Z is a matrix with one column for every (N,M) z[cyA.  
    %   pair, and one row for every (R,THETA) pair. yfx7{naKC`  
    % oA =4=`  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &Ibu>di4[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8ZKo_I\  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral =ZDAeVz3w  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PB/IFsJ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mXUGe:e8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. NLrPSqz  
    % VGceD$<  
    %   The Zernike functions are an orthogonal basis on the unit circle. '{J&M|<A  
    %   They are used in disciplines such as astronomy, optics, and B:e @0049  
    %   optometry to describe functions on a circular domain. zD(`B+  
    % Pj4/xX  
    %   The following table lists the first 15 Zernike functions. 1\g6)|R-+  
    % "=+ 7-`  
    %       n    m    Zernike function           Normalization )EL!D%<A  
    %       -------------------------------------------------- qnoNT%xazo  
    %       0    0    1                                 1 FRS>KO=3  
    %       1    1    r * cos(theta)                    2 \uXcLhXN  
    %       1   -1    r * sin(theta)                    2 Wt=|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) EC\yz H*X  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1xbK'i:-S  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) LNa$ X5`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;}1xn3THCn  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *_KFW@bC:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #F*1V(!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) fuA&7gNC  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) B"v.* %"&/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UY<e&Npo  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) V0%V5>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %^8^yZz  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }j^\(2  
    %       -------------------------------------------------- .{=$!8|&I9  
    % ]Lm9^q14m  
    %   Example 1: `"@g8PWe  
    % U R%4@   
    %       % Display the Zernike function Z(n=5,m=1) V`RNM%Y  
    %       x = -1:0.01:1; ^RP)>d9Xp{  
    %       [X,Y] = meshgrid(x,x); A5H3%o(6k  
    %       [theta,r] = cart2pol(X,Y); h?f>X"*|(  
    %       idx = r<=1; n':!,a[  
    %       z = nan(size(X)); Pf_S[ sm  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); m@Qt.4m%g  
    %       figure IhBp%^H0-  
    %       pcolor(x,x,z), shading interp !Yw3 d   
    %       axis square, colorbar ;]w<&C!=  
    %       title('Zernike function Z_5^1(r,\theta)') 7 As|Ns`  
    % OZIW_'Wm/  
    %   Example 2: )6w}<W*1E  
    % 2{Chu85   
    %       % Display the first 10 Zernike functions (C\hVy2X?N  
    %       x = -1:0.01:1; ,i0b)=!o  
    %       [X,Y] = meshgrid(x,x); !p[9{U->o;  
    %       [theta,r] = cart2pol(X,Y); \2(SB  
    %       idx = r<=1; t(+) #  
    %       z = nan(size(X)); sj8~?O  
    %       n = [0  1  1  2  2  2  3  3  3  3]; LS5vW|]w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; p?2Y }9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ?0 m\(#  
    %       y = zernfun(n,m,r(idx),theta(idx)); (^5 7UmFv]  
    %       figure('Units','normalized') fsEzpUY:{W  
    %       for k = 1:10 `$~Rxz Z g  
    %           z(idx) = y(:,k); Kv rX{F=  
    %           subplot(4,7,Nplot(k)) 3 AHY|  
    %           pcolor(x,x,z), shading interp je6CDFqw  
    %           set(gca,'XTick',[],'YTick',[])  X!j{o  
    %           axis square wBInq~K_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ErT{(t7  
    %       end !{82D[5  
    % s%!`kWVJ.  
    %   See also ZERNPOL, ZERNFUN2. %&Fk4Z}M  
    "&/]@)TPz  
    %   Paul Fricker 11/13/2006 )m&U#S _;  
    eVR5Xar  
    X<MO7I  
    % Check and prepare the inputs: yCXrVN:`,  
    % ----------------------------- &I({T`=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $XU5??8  
        error('zernfun:NMvectors','N and M must be vectors.') %"X-&1vV  
    end a2f^x@0k  
    3-%Cw2ds  
    if length(n)~=length(m) 2qHf'  
        error('zernfun:NMlength','N and M must be the same length.') i`0v#P  
    end =rd|0K"(r  
    Jj= ;  
    n = n(:); O Lc}_  
    m = m(:); DS2)@  
    if any(mod(n-m,2)) pCu!l#J  
        error('zernfun:NMmultiplesof2', ... $x#FgD(iI  
              'All N and M must differ by multiples of 2 (including 0).') <|*'O5B  
    end KT.?Xp:z  
    NJ MJ  
    if any(m>n) @O}7XRJ_8  
        error('zernfun:MlessthanN', ... /?6gdN  
              'Each M must be less than or equal to its corresponding N.') 8*SP~q  
    end <N(oDaU  
    {3Y )rY!z  
    if any( r>1 | r<0 ) +"ueq  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') u0RS)&  
    end \#rO!z d  
    (5 <^p&  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,WQ^tI=O  
        error('zernfun:RTHvector','R and THETA must be vectors.') / EMJSr  
    end W><dYy=z5  
    `T2<<<  
    r = r(:); tQ~WEC  
    theta = theta(:); D%7kBfCb  
    length_r = length(r); }K(o9$V ^!  
    if length_r~=length(theta) i1oKrRv  
        error('zernfun:RTHlength', ... Ao7`G':  
              'The number of R- and THETA-values must be equal.') )B!d,HKt;  
    end W"Jn(:&  
     ?W0(|9  
    % Check normalization: CodSJ,  
    % -------------------- + q''y  
    if nargin==5 && ischar(nflag) +jqj6O@Tjr  
        isnorm = strcmpi(nflag,'norm'); nW+YOX|+  
        if ~isnorm XjE>k!=I  
            error('zernfun:normalization','Unrecognized normalization flag.') j}+5vB|0  
        end jko"MfJ  
    else ?`zgq>R}w[  
        isnorm = false; 3|rn] yZ  
    end 6<5Jq\-h  
    E4D (,s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {6d b{ ay_  
    % Compute the Zernike Polynomials 7W9~1 .SC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !7U\J]  
    N8!TZ~1$  
    % Determine the required powers of r: gor <g))\  
    % ----------------------------------- AaN"7.Z/  
    m_abs = abs(m); ze'.Y%]  
    rpowers = []; NNa1EXZ[  
    for j = 1:length(n) fj 4^VXD  
        rpowers = [rpowers m_abs(j):2:n(j)]; #^&jW  
    end M0-,M/]l  
    rpowers = unique(rpowers); XNH4==4  
    DI&MC9j(   
    % Pre-compute the values of r raised to the required powers, kA7(CqUW  
    % and compile them in a matrix: c[0oh.  
    % ----------------------------- t]^_ l$  
    if rpowers(1)==0 s6=YV0w(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4?/7 bc  
        rpowern = cat(2,rpowern{:}); %HSl)zEo>C  
        rpowern = [ones(length_r,1) rpowern]; {@r*+~C3  
    else "]t>ZT:OJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); agd)ag4"[u  
        rpowern = cat(2,rpowern{:}); }#=Od e  
    end 16@);Ot  
    HP a|uDVv  
    % Compute the values of the polynomials: 9b6!CNe!  
    % -------------------------------------- [BBpQN.^q6  
    y = zeros(length_r,length(n)); $Kq<W{H3ut  
    for j = 1:length(n) yty` 2$O  
        s = 0:(n(j)-m_abs(j))/2; agaq`^[(P  
        pows = n(j):-2:m_abs(j); C>*n9l[M~  
        for k = length(s):-1:1 xaL#MIR"u"  
            p = (1-2*mod(s(k),2))* ... wq4nMY:#  
                       prod(2:(n(j)-s(k)))/              ... \]Z&P,}w  
                       prod(2:s(k))/                     ... u fw cF*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kb|eQtH  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4&N$:j<  
            idx = (pows(k)==rpowers); z/1hqxHl  
            y(:,j) = y(:,j) + p*rpowern(:,idx); JJl7JwSTW  
        end e`sw*m5  
         ,deUsc  
        if isnorm i<u9:W  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _ K/swT{f  
        end %yaG,;>U  
    end M^ 5e~y  
    % END: Compute the Zernike Polynomials K&UE0JO'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F^'v{@C  
    0yHjrxc$  
    % Compute the Zernike functions: .v,bXU$@YG  
    % ------------------------------ 9bn2UiJ k  
    idx_pos = m>0; 55hyV{L%  
    idx_neg = m<0; Lh 9S8EU  
    S?,_<GD)w  
    z = y; :l~EE!  
    if any(idx_pos) \|Qb[{<:,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8D2yR#3  
    end G&o64W;-s  
    if any(idx_neg) ;i9>}]6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); O3ZM:,.  
    end l#6&WWmr  
    Wg(bD,  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) l7Y8b`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. h^d\xn9GT#  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated .M+v?A d  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 4OEKx|:5n  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, SKJW%(|3  
    %   and THETA is a vector of angles.  R and THETA must have the same Tc,$TCF  
    %   length.  The output Z is a matrix with one column for every P-value, !u%9;>T7  
    %   and one row for every (R,THETA) pair. bqjr0A7{  
    % kdBV1E+:C  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 7(@(Hm  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) {,F/KL^u  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) (!ZV9S  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 3d@ef |  
    %   for all p. u0'i!@795  
    % Q,n4i@E  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }\4p3RQrz  
    %   Zernike functions (order N<=7).  In some disciplines it is /B=l,:TnJ  
    %   traditional to label the first 36 functions using a single mode qM*S*,s  
    %   number P instead of separate numbers for the order N and azimuthal Q^|6J#o[9  
    %   frequency M. Ym:{Mm=ud  
    % a6qwL4  
    %   Example: m8u=u4z("  
    % lY->ucS %P  
    %       % Display the first 16 Zernike functions u/#&0_ P  
    %       x = -1:0.01:1; 9H[/Tj-;  
    %       [X,Y] = meshgrid(x,x); `11#J;[@G  
    %       [theta,r] = cart2pol(X,Y); ,{pGP#  
    %       idx = r<=1;  yIa[yJq  
    %       p = 0:15; -^R b7 g-  
    %       z = nan(size(X)); +Tp%5+E  
    %       y = zernfun2(p,r(idx),theta(idx)); 0&Qsk!-B  
    %       figure('Units','normalized') :Dt\:`(r'  
    %       for k = 1:length(p) U81;7L8  
    %           z(idx) = y(:,k); []r T? -  
    %           subplot(4,4,k) CvP`2S\  
    %           pcolor(x,x,z), shading interp OFIMi^@  
    %           set(gca,'XTick',[],'YTick',[]) d>;2,srUf  
    %           axis square '}T;b}&s  
    %           title(['Z_{' num2str(p(k)) '}']) pY, O_ t$  
    %       end Dw*Arc+3V  
    % E;xMPK$  
    %   See also ZERNPOL, ZERNFUN. n+X1AOE[L  
    R|$[U  
    %   Paul Fricker 11/13/2006 [h^f%  
    zdqnL^wb  
    ;C+cE#   
    % Check and prepare the inputs: &7fY_~)B  
    % ----------------------------- {vLTeIxf.G  
    if min(size(p))~=1 6TY){P w  
        error('zernfun2:Pvector','Input P must be vector.') a6k(9ZF  
    end 6GY32\Ac  
    )>?! xx_`  
    if any(p)>35 Mq76]I%  
        error('zernfun2:P36', ... @uoT{E[  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... aN:HG)$@  
               '(P = 0 to 35).']) ot]>}[  
    end g>UBZA4  
    8g.AT@ ,Q  
    % Get the order and frequency corresonding to the function number: Is<x31R  
    % ---------------------------------------------------------------- >6XDX=JVI  
    p = p(:); FT<H ]Nf  
    n = ceil((-3+sqrt(9+8*p))/2); g)X7FxS,z  
    m = 2*p - n.*(n+2); {3.*7gnY\L  
    DL %S(l  
    % Pass the inputs to the function ZERNFUN: NP$e-" 1  
    % ---------------------------------------- W^003*m~~K  
    switch nargin 2wGF-V  
        case 3 +g)_4fV0|  
            z = zernfun(n,m,r,theta); wH+FFXGJs  
        case 4 zjea4>!A2  
            z = zernfun(n,m,r,theta,nflag); Ft)t`E'%j  
        otherwise mVa?aWpez  
            error('zernfun2:nargin','Incorrect number of inputs.') ]bs+:  
    end 5r^1CFO  
     <V7SSm  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) D LNa6  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. @YEw^J~  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of caGML|DeI  
    %   order N and frequency M, evaluated at R.  N is a vector of u+I3IdU3  
    %   positive integers (including 0), and M is a vector with the kX@ bv"i  
    %   same number of elements as N.  Each element k of M must be a f0/jwfL  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) UN-T ^  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is o9_(DJ<{  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Y8D7<V~Md  
    %   with one column for every (N,M) pair, and one row for every TTeAa  
    %   element in R. X!,#'&p&  
    % jN31\)/i  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- c_@XQ&DC`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~!8%_J_  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to {z.[tvE8h  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 2=igS#h  
    %   for all [n,m]. R#"U/8b>z  
    % %y~`"l$-  
    %   The radial Zernike polynomials are the radial portion of the ]cx"  
    %   Zernike functions, which are an orthogonal basis on the unit qgwv=5|  
    %   circle.  The series representation of the radial Zernike H @_eFlT t  
    %   polynomials is xP8iz?6"V  
    % N90\]dFmy  
    %          (n-m)/2 @`w'   
    %            __ W2}%zux  
    %    m      \       s                                          n-2s B`g<Ge~  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r r{pI-$  
    %    n      s=0 <{$ ev&bQ  
    % )p^m}N 6M]  
    %   The following table shows the first 12 polynomials. e*Uz# w:  
    % K)yCrEZ  
    %       n    m    Zernike polynomial    Normalization ~bQFk?ZN+  
    %       --------------------------------------------- <bEN8b  
    %       0    0    1                        sqrt(2) g0^~J2sDd  
    %       1    1    r                           2 *\=2KIF'  
    %       2    0    2*r^2 - 1                sqrt(6) kV*y_5g  
    %       2    2    r^2                      sqrt(6) 3S[w'  
    %       3    1    3*r^3 - 2*r              sqrt(8) D< nlb-  
    %       3    3    r^3                      sqrt(8) s(1_:  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) LL|_c4$Ky  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c*y$bf<  
    %       4    4    r^4                      sqrt(10) 2x)0?N[$O  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) NWo7wVwc/c  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) *23m-  
    %       5    5    r^5                      sqrt(12) xT_fr,P  
    %       --------------------------------------------- p{A}p9sjx  
    % S[W9G)KWp  
    %   Example: j[$B\H  
    % Z:\;R{D  
    %       % Display three example Zernike radial polynomials ^>,< *p  
    %       r = 0:0.01:1; .nj?;).  
    %       n = [3 2 5]; y)?W-5zL  
    %       m = [1 2 1]; kWZ/ej  
    %       z = zernpol(n,m,r); {ED(O -W  
    %       figure 7,V!Iv^X  
    %       plot(r,z) WmT}t  
    %       grid on  At`1)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Bq$e|t)'  
    % HI"!n$p  
    %   See also ZERNFUN, ZERNFUN2. "TBQNWZ  
    33#7U+~]@  
    % A note on the algorithm. Ft%TnEp  
    % ------------------------ uPv;y!Lsa@  
    % The radial Zernike polynomials are computed using the series 3b g4#c  
    % representation shown in the Help section above. For many special W2r6jm!  
    % functions, direct evaluation using the series representation can GL;x:2XA  
    % produce poor numerical results (floating point errors), because /%J&/2Wz  
    % the summation often involves computing small differences between @e.OU(Bf  
    % large successive terms in the series. (In such cases, the functions nZ`2Z7!  
    % are often evaluated using alternative methods such as recurrence LyJTK1]#  
    % relations: see the Legendre functions, for example). For the Zernike 2fj0 I  
    % polynomials, however, this problem does not arise, because the #a7Amh\nT  
    % polynomials are evaluated over the finite domain r = (0,1), and Z]7;u>2  
    % because the coefficients for a given polynomial are generally all lRF_ k  
    % of similar magnitude. -!C Y,'3  
    % GvZac  
    % ZERNPOL has been written using a vectorized implementation: multiple [6,]9|~  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] :f?,]|]+-  
    % values can be passed as inputs) for a vector of points R.  To achieve 1K? & J2  
    % this vectorization most efficiently, the algorithm in ZERNPOL .T#y N\S1  
    % involves pre-determining all the powers p of R that are required to g:.,}L  
    % compute the outputs, and then compiling the {R^p} into a single  qrkRD*a  
    % matrix.  This avoids any redundant computation of the R^p, and .yK\&q[<  
    % minimizes the sizes of certain intermediate variables. zbIwH6  
    % O?j98H Sya  
    %   Paul Fricker 11/13/2006 .gM>FUH3L  
    jM3Y|}+  
    ! kOl$!X4  
    % Check and prepare the inputs: r?5@Etpg  
    % ----------------------------- <\}Y@g8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $+lz<~R  
        error('zernpol:NMvectors','N and M must be vectors.') L6[rvM|9_  
    end hVT=j ?~  
    sl^s9kx;C$  
    if length(n)~=length(m) \4\\575zp'  
        error('zernpol:NMlength','N and M must be the same length.') E+^} B/"  
    end (2O} B.6  
    2vh!pez_  
    n = n(:); BqLtTo?'  
    m = m(:); 8CnI%_Su  
    length_n = length(n); 7+D'W7Yx  
    |oBdryi  
    if any(mod(n-m,2)) \c9t]py<.h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') _pH6uuB  
    end I7q?V1f u4  
    ld!6|~0U  
    if any(m<0) /v bO/Mr  
        error('zernpol:Mpositive','All M must be positive.') RK~FT/  
    end K)h"G#NZM  
    Cb@S </b  
    if any(m>n) (}~eD  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Z0F>"Z _qn  
    end G3_mWppH  
    ~G{$P'[  
    if any( r>1 | r<0 ) 3h D2C'KD  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ir@N>_  
    end -aH?7HV}  
    i"sYf9,  
    if ~any(size(r)==1) 3'sWlhf;  
        error('zernpol:Rvector','R must be a vector.') QN}3S0  
    end S\v&{  
    +4:+qGAJ{  
    r = r(:); M[ ~2,M&H  
    length_r = length(r); 'a-5 U TT  
    t0asW5f  
    if nargin==4 ZB^4(F')H  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Yyo9{4v+p{  
        if ~isnorm n7,6a  
            error('zernpol:normalization','Unrecognized normalization flag.') '#4mDz~  
        end ,a]~hNR*X  
    else zFdz]z3  
        isnorm = false; ,],JI|Rl8c  
    end u'~b<@wHB  
    >D p6@%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e\ l,gQP  
    % Compute the Zernike Polynomials 4na4Jsq{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IjB*myN.  
    o wpJ7S1~  
    % Determine the required powers of r: L1Cn  
    % ----------------------------------- !{]v='   
    rpowers = []; d"d)<f   
    for j = 1:length(n) 9Pob|UA  
        rpowers = [rpowers m(j):2:n(j)]; <k-@R!K~JC  
    end li_pM!dWU_  
    rpowers = unique(rpowers); $NGtxZp  
    l LD)i J1  
    % Pre-compute the values of r raised to the required powers, 0p>:rU~  
    % and compile them in a matrix: ^0ZKHR(}e  
    % ----------------------------- Ay"2W%([`  
    if rpowers(1)==0 <1g1hqK3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #`#aSqGmc  
        rpowern = cat(2,rpowern{:}); 7Yw\%}UL  
        rpowern = [ones(length_r,1) rpowern]; J|2Hqd  
    else A6x_!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R:IS4AaS  
        rpowern = cat(2,rpowern{:}); G4exk5  
    end ! ^*;c#  
    kJ<Xq   
    % Compute the values of the polynomials: ;AL@<,8  
    % -------------------------------------- 7si*%><X  
    z = zeros(length_r,length_n); p4t!T=o/  
    for j = 1:length_n hzPB~obC  
        s = 0:(n(j)-m(j))/2; %]sEt{  
        pows = n(j):-2:m(j); VF!kr1n!  
        for k = length(s):-1:1 Lc:SqF  
            p = (1-2*mod(s(k),2))* ... %qjyk=z+Z  
                       prod(2:(n(j)-s(k)))/          ... $:gSc &mx  
                       prod(2:s(k))/                 ... sv{0XVn+^  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5wFS.!xD  
                       prod(2:((n(j)+m(j))/2-s(k))); 6$vh qg}f  
            idx = (pows(k)==rpowers); z.9FDQLp  
            z(:,j) = z(:,j) + p*rpowern(:,idx); \PMKmJ X0O  
        end M Xt +  
         PN^1  
        if isnorm v/ 00L R  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); !e\R;bYM  
        end twHM~cTS  
    end bb :|1D  
    X$h~d8@r  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  A@AGu#W  
    tvxcd*{  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =,G(1#  
    svjFy/T(lL  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)