切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11130阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 N4{g[[ T  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! m"AyO"}I5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D?H|O[  
    function z = zernfun(n,m,r,theta,nflag)  8*uaI7;*  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. \oP  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N avXBCvP+h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ax 2#XSCO  
    %   unit circle.  N is a vector of positive integers (including 0), and R m2M  
    %   M is a vector with the same number of elements as N.  Each element QP@@h4J^  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jo0XOs  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1D~B\=LL}  
    %   and THETA is a vector of angles.  R and THETA must have the same x"Ij+~i{l  
    %   length.  The output Z is a matrix with one column for every (N,M) u}?{1B!  
    %   pair, and one row for every (R,THETA) pair. 90H/Txq  
    % E <r;J  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >R\@W(-g`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |m$]I4Jr  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 'sk M$jr  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q1|@v#kH6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4!?4Tc!X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5?E;Yy A  
    % o+S?j*mv@  
    %   The Zernike functions are an orthogonal basis on the unit circle. ksYPF&l  
    %   They are used in disciplines such as astronomy, optics, and 2D3mTpw  
    %   optometry to describe functions on a circular domain. = mhg@N4  
    % QX. U:p5C  
    %   The following table lists the first 15 Zernike functions. HLE%f;  
    % owO &[D/  
    %       n    m    Zernike function           Normalization iX>)6)uJ  
    %       -------------------------------------------------- obgO-d9l  
    %       0    0    1                                 1 LM!@LQAMY  
    %       1    1    r * cos(theta)                    2 j?! /#'  
    %       1   -1    r * sin(theta)                    2 gLbTZM4i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) C"h7'+Kw  
    %       2    0    (2*r^2 - 1)                    sqrt(3) of`WP  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,awkL :  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) u$^r(.EV  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~y ?v  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m`@~ZIa?>B  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C{V,=Fo^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A5G@u}YS5  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #}UI  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `3dGn .M  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) os+ ]ct  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Mo4igP  
    %       -------------------------------------------------- 3E8 Gh>J_  
    % ^3Z~RK\}  
    %   Example 1: e&9v`8}   
    % 4&B|rf  
    %       % Display the Zernike function Z(n=5,m=1) M7(]NQ\TQ  
    %       x = -1:0.01:1; -TyBb]  
    %       [X,Y] = meshgrid(x,x); F Zk[w>{  
    %       [theta,r] = cart2pol(X,Y); z*N%kcw"  
    %       idx = r<=1; asYUb&Hz88  
    %       z = nan(size(X)); XBTjb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Z&GjG6t  
    %       figure ?"p.Gy)  
    %       pcolor(x,x,z), shading interp _P=L| U#C  
    %       axis square, colorbar //^{u[lr  
    %       title('Zernike function Z_5^1(r,\theta)') XeAH.i<  
    % ZgxpHo  
    %   Example 2: ESkhCDU  
    % 1_)Y{3L  
    %       % Display the first 10 Zernike functions Dwah_ p8  
    %       x = -1:0.01:1; !LpFK0rw  
    %       [X,Y] = meshgrid(x,x); -.UUa  
    %       [theta,r] = cart2pol(X,Y); :U'Oc3l#Y  
    %       idx = r<=1; XC,by&nY<y  
    %       z = nan(size(X)); |<LW(,|A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; z*/}rk4i  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; F\+!\b*lP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ER<Z!*2  
    %       y = zernfun(n,m,r(idx),theta(idx)); [} "m4+  
    %       figure('Units','normalized') :j;_Xw  
    %       for k = 1:10  `=I@W  
    %           z(idx) = y(:,k); <A] Kg  
    %           subplot(4,7,Nplot(k)) C)ebZ3  
    %           pcolor(x,x,z), shading interp p@+D$  
    %           set(gca,'XTick',[],'YTick',[]) Gq.fQ_oOb  
    %           axis square j.29nJ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^FK-e;J  
    %       end }[By N).  
    % C*Dco{ EQ>  
    %   See also ZERNPOL, ZERNFUN2. ?"T *{8  
    S6c>D&Q  
    %   Paul Fricker 11/13/2006 WNiM&iU  
    X@@7Qk  
    t~ z;G%a  
    % Check and prepare the inputs: |`@7G`x  
    % ----------------------------- c.;<+dYsm*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PKt;]T0  
        error('zernfun:NMvectors','N and M must be vectors.') HJOoCf  
    end S~.%G)R  
    ~@'DYZb- H  
    if length(n)~=length(m) mUwGr_)wj  
        error('zernfun:NMlength','N and M must be the same length.') $Q56~AP  
    end 7u[$  
    bN.U2%~!  
    n = n(:); s^-o_K\*c  
    m = m(:); Q%_MO`<]$  
    if any(mod(n-m,2)) >W=^>8u  
        error('zernfun:NMmultiplesof2', ... \Oa11c`6  
              'All N and M must differ by multiples of 2 (including 0).') nbSu|sX~r5  
    end Z(o]8*;A i  
    VKHzGfv  
    if any(m>n) lA ZBlO  
        error('zernfun:MlessthanN', ... b@)nB  
              'Each M must be less than or equal to its corresponding N.') cK1RmL"3  
    end d{RMX<;G  
    :X#'E Lo|  
    if any( r>1 | r<0 ) <l^#FH  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &uG@I=}TIY  
    end Yj>ezFo  
    8fQaMn4V  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 87:V-*8  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;%$wA5"2M  
    end z]=jer  
    ^%m~VLH  
    r = r(:); 5t[7taLX\  
    theta = theta(:); QhmOO-Z?  
    length_r = length(r); _Wo(;'.  
    if length_r~=length(theta) .jbT+hhM  
        error('zernfun:RTHlength', ... 420yaw/":  
              'The number of R- and THETA-values must be equal.') Ia*T*q Ju  
    end ]Kp -2KW  
    lX%e  
    % Check normalization: NLO&.Q]#  
    % -------------------- cW\Y1=Gv|  
    if nargin==5 && ischar(nflag) 3+ WostOx  
        isnorm = strcmpi(nflag,'norm'); &W-1W99auE  
        if ~isnorm 6YYDp&nqEj  
            error('zernfun:normalization','Unrecognized normalization flag.') YC d  
        end 9c=`Q5  
    else vK8!V7o~h%  
        isnorm = false; aDjYT/`l  
    end ?E.MP7Y# V  
    [fr!J?/@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $C9['GGR  
    % Compute the Zernike Polynomials {DbWk>[DkG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rb<9/z5-  
    &3bhK5P  
    % Determine the required powers of r: "0Yb 2>F  
    % ----------------------------------- k= oCpXq^  
    m_abs = abs(m); =FXq=x%9+  
    rpowers = []; P(Q}r 7F~(  
    for j = 1:length(n) (c1Kg   
        rpowers = [rpowers m_abs(j):2:n(j)]; Z^ }4bR]  
    end :A]CD (  
    rpowers = unique(rpowers); |bv7N@?e  
    .Sjg  
    % Pre-compute the values of r raised to the required powers, %pr}Xs(-f  
    % and compile them in a matrix: L QA6iZBP  
    % ----------------------------- ed4`n!3  
    if rpowers(1)==0 HWi: CDgm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .vhEm6wJUM  
        rpowern = cat(2,rpowern{:}); 3C(V<R?  
        rpowern = [ones(length_r,1) rpowern]; ETtoY<`#  
    else X16r$~Pb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }R2afTn[;  
        rpowern = cat(2,rpowern{:}); udGZ%Mr_  
    end Ue2k^a*Ww  
    @w@ `-1  
    % Compute the values of the polynomials: s!\G i5b  
    % -------------------------------------- Cw]bhaG g  
    y = zeros(length_r,length(n)); 9:]|TIPi  
    for j = 1:length(n) 3pI)  
        s = 0:(n(j)-m_abs(j))/2; +]jJ:V  
        pows = n(j):-2:m_abs(j); 8Xk,Nbcqt  
        for k = length(s):-1:1 pJPP6Be<  
            p = (1-2*mod(s(k),2))* ... W)fh}|.5  
                       prod(2:(n(j)-s(k)))/              ... \:`-"Ou(*  
                       prod(2:s(k))/                     ... |A19IXZ\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... u^]Z{K_B  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); p )w{}@%r  
            idx = (pows(k)==rpowers); T96M=?wh!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _"'0^F$I  
        end 5qQ\H}  
         BF+i82$zo  
        if isnorm 3IDX3cM9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); iE=:}"pI"  
        end XCQPVSh  
    end e? n8S  
    % END: Compute the Zernike Polynomials _Q6` Wp6m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "|W``&pM  
    xm bFJUMH  
    % Compute the Zernike functions: PHQ99&F1  
    % ------------------------------ i@hW" [A  
    idx_pos = m>0; fD ?w!7f-1  
    idx_neg = m<0; tboc7Hor4  
    bx=9XZ9g  
    z = y; v.Zr,Z=eV  
    if any(idx_pos) TC^fyxq  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f,QBj{M,  
    end j<C p&}X  
    if any(idx_neg) [pYjH+<  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Swnom?t  
    end 7) 37AKw  
    V { yk  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ;iT ZzmB  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 8$C?j\J|*  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated dtd}P~  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive N/i {j.=  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4]mAV\1  
    %   and THETA is a vector of angles.  R and THETA must have the same `sPH7^R  
    %   length.  The output Z is a matrix with one column for every P-value, )G=hgqy  
    %   and one row for every (R,THETA) pair. "E}38  
    % /w2jlu}yt  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike zaMKwv}BR  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) hz*H,E!>  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) $61j_;WF`  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 yy#4DYht  
    %   for all p. +je{%,*  
    % JPGEE1!B{b  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 *#g[ jl4  
    %   Zernike functions (order N<=7).  In some disciplines it is _8'z"w F  
    %   traditional to label the first 36 functions using a single mode BNpc-O~  
    %   number P instead of separate numbers for the order N and azimuthal &JHqUVs^  
    %   frequency M. d<+@cf_9  
    % HlC[Nu^6U  
    %   Example: (4oO8 aBB  
    % lz88//@gZ  
    %       % Display the first 16 Zernike functions j=5hW.fI  
    %       x = -1:0.01:1; aYd`E4S+  
    %       [X,Y] = meshgrid(x,x); *e}1KcJ  
    %       [theta,r] = cart2pol(X,Y); `d6,]'  
    %       idx = r<=1; GG$&=.$  
    %       p = 0:15; ~ w,hJ `  
    %       z = nan(size(X)); P[<EFj E  
    %       y = zernfun2(p,r(idx),theta(idx)); D;QV`Z% I  
    %       figure('Units','normalized') _ !H8j/b  
    %       for k = 1:length(p) nHTb~t5Ke  
    %           z(idx) = y(:,k); U Rb  
    %           subplot(4,4,k) tX 3y{W10"  
    %           pcolor(x,x,z), shading interp  TDR2){I  
    %           set(gca,'XTick',[],'YTick',[]) kQQhZ8Ch  
    %           axis square w6FVSU]sY  
    %           title(['Z_{' num2str(p(k)) '}']) nMU[S +  
    %       end h(MS>=  
    % L qdz qq  
    %   See also ZERNPOL, ZERNFUN. A ^U`c'$  
    C3GI?| b  
    %   Paul Fricker 11/13/2006 l_z@.</8P@  
    TSHH=`cx  
    Jl|^  
    % Check and prepare the inputs: JDj^7\`  
    % ----------------------------- \bzT=^Z;2  
    if min(size(p))~=1 `R{ ZED l'  
        error('zernfun2:Pvector','Input P must be vector.') 9i*Xd$ G  
    end 71inHg  
    EGIwqci:  
    if any(p)>35 4 N{5i )  
        error('zernfun2:P36', ... ruTj#tWSo  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ' &j]~m  
               '(P = 0 to 35).']) ![CF >:e  
    end \(a!U,]LM  
    ~u+|NtF  
    % Get the order and frequency corresonding to the function number: bf&k:.v'8  
    % ---------------------------------------------------------------- h(Ccm44  
    p = p(:); |{JJ2c\W  
    n = ceil((-3+sqrt(9+8*p))/2); \jGvom.  
    m = 2*p - n.*(n+2); Kt/Wd  
    k>mqKzT0$+  
    % Pass the inputs to the function ZERNFUN: 2i_X{!0}  
    % ---------------------------------------- ?2$0aq  
    switch nargin ]`GDZw`  
        case 3 t ?404  
            z = zernfun(n,m,r,theta); j+7ok 5J#  
        case 4 Z5%TpAu[  
            z = zernfun(n,m,r,theta,nflag); J0a#QvX!  
        otherwise r]'Q5l4j6"  
            error('zernfun2:nargin','Incorrect number of inputs.') X"pp l7o  
    end v'W`\MKY)  
    q26%Z)'nf  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) !ii'hwFm$  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Wy.Xx-3W  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of e:H9!  
    %   order N and frequency M, evaluated at R.  N is a vector of ?g~g GQV  
    %   positive integers (including 0), and M is a vector with the maopr$r  
    %   same number of elements as N.  Each element k of M must be a Wr+1G 8  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 2E X Rq  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is B{+ Ra  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix =-GHs$u%f  
    %   with one column for every (N,M) pair, and one row for every LUjev\Re  
    %   element in R. m&X6a C'[  
    % ' y9yx[P  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 61^5QHur  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is U%,N"]`  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to :$"L;"  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 1S26Y|L)  
    %   for all [n,m]. zrJ/Fs+s  
    % z}[qk:  
    %   The radial Zernike polynomials are the radial portion of the umo@JWr  
    %   Zernike functions, which are an orthogonal basis on the unit wWNHZ v&  
    %   circle.  The series representation of the radial Zernike H!NyM}jsr  
    %   polynomials is ]2Q:&T  
    %  4[] /  
    %          (n-m)/2 P,[O32i#  
    %            __ /Xd s+V^Z  
    %    m      \       s                                          n-2s L9=D,C~  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r T]fu[yRVvg  
    %    n      s=0 CrIt h/Z  
    % ~yvOR`2Gg  
    %   The following table shows the first 12 polynomials. Uc3-n`C  
    % 79svlq=  
    %       n    m    Zernike polynomial    Normalization Q< q&a8~  
    %       --------------------------------------------- h^D]@H  
    %       0    0    1                        sqrt(2) m% {4  
    %       1    1    r                           2 LJ|2=lI+jb  
    %       2    0    2*r^2 - 1                sqrt(6) JM@}+pX  
    %       2    2    r^2                      sqrt(6) AGN5=K*D  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9w=GB?/  
    %       3    3    r^3                      sqrt(8) x1}7c9n K  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) DP D%8a)?  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) t TAql n|  
    %       4    4    r^4                      sqrt(10) lc71Pp>  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) =k1 ,jn+  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) #iOoi9(  
    %       5    5    r^5                      sqrt(12) xjOj1Hv  
    %       --------------------------------------------- AIvIQ$6}  
    % K;u<-?En  
    %   Example: {5=Iu\e  
    % bJo)rM :m  
    %       % Display three example Zernike radial polynomials \V#2K><  
    %       r = 0:0.01:1; Qw{LD+r(  
    %       n = [3 2 5]; .#,!&Lt  
    %       m = [1 2 1]; |-HV@c]  
    %       z = zernpol(n,m,r); oT4A|M  
    %       figure 5xm^[o2#y  
    %       plot(r,z) . _5g<aw;  
    %       grid on rSUarfZ<  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') c7[<X<yk  
    % f;C*J1y  
    %   See also ZERNFUN, ZERNFUN2. cu4&*{  
    S0\;FmLIc  
    % A note on the algorithm. *Op;].>E  
    % ------------------------ ^ 2"r't  
    % The radial Zernike polynomials are computed using the series B>3joe}  
    % representation shown in the Help section above. For many special tSVN}~1\  
    % functions, direct evaluation using the series representation can eC^UL5>%  
    % produce poor numerical results (floating point errors), because hE41$9?TJ  
    % the summation often involves computing small differences between ze<Lc/;X~  
    % large successive terms in the series. (In such cases, the functions GHaOFLY  
    % are often evaluated using alternative methods such as recurrence (cX;a/BR  
    % relations: see the Legendre functions, for example). For the Zernike fb7Gy  
    % polynomials, however, this problem does not arise, because the gAA2S5th  
    % polynomials are evaluated over the finite domain r = (0,1), and v2e*mNK5  
    % because the coefficients for a given polynomial are generally all qn VxP&  
    % of similar magnitude. %T hY6y(  
    % sw.cw}1  
    % ZERNPOL has been written using a vectorized implementation: multiple uES|jU{]b  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] B>&Q]J+R  
    % values can be passed as inputs) for a vector of points R.  To achieve Ak`7f$z  
    % this vectorization most efficiently, the algorithm in ZERNPOL $^Is|]^  
    % involves pre-determining all the powers p of R that are required to 7~@9=e8G  
    % compute the outputs, and then compiling the {R^p} into a single }fps~R  
    % matrix.  This avoids any redundant computation of the R^p, and g\CRx^s  
    % minimizes the sizes of certain intermediate variables. B? $9M9  
    % PuvC MD  
    %   Paul Fricker 11/13/2006 ra L!}  
    iGxlB  
    4l/hh|3@  
    % Check and prepare the inputs: x;&01@m.  
    % ----------------------------- eI8rnp( Ia  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vUEG0{8l  
        error('zernpol:NMvectors','N and M must be vectors.') (yjx+K_[  
    end "P) f,n  
    LUGyc( h  
    if length(n)~=length(m) Zl5cHejM  
        error('zernpol:NMlength','N and M must be the same length.') I}djDtJ  
    end O)y|G%O  
    A"(XrL-pV  
    n = n(:); &cDLSnR  
    m = m(:); J1@X6U!{  
    length_n = length(n); m0}Pq{ g  
    )HHG3cvU  
    if any(mod(n-m,2)) )-D{]>8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ~*OQRl6F  
    end ^}JGWGib=+  
    G:$Ta6=  
    if any(m<0) i3bH^WwE&k  
        error('zernpol:Mpositive','All M must be positive.') a$0,T_wD  
    end F't4Q  
    K4 \{G  
    if any(m>n) Gk<M@d^hQ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') :@BAiKa[wa  
    end bXVH7Fy  
    =L,s6J8_'  
    if any( r>1 | r<0 ) pKeK6K\8  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [BPK0  
    end _[D6 WY+  
    (v<l9}!  
    if ~any(size(r)==1) Gjhpi5?%8  
        error('zernpol:Rvector','R must be a vector.') HPz9Er  
    end Y nD_:ZK  
    5c(mgEvq  
    r = r(:); 5 )tDgm  
    length_r = length(r); ]!@z3Hv3  
    criQa<N"  
    if nargin==4 W 9i}w&  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); DGR[2C)@N  
        if ~isnorm (u/-ud1p  
            error('zernpol:normalization','Unrecognized normalization flag.') I-?PTr  
        end ~.FeLWP  
    else >XTDN  
        isnorm = false; ]H ze  
    end D<V[:~-o  
    VFmG\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y {&"g  
    % Compute the Zernike Polynomials 9%{V?r]k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I&2)@Zw  
    Uq}FrK}  
    % Determine the required powers of r: (8JL/S;Z$  
    % -----------------------------------  "! -  
    rpowers = []; ss{y=O%9"  
    for j = 1:length(n) Alo;kt@x  
        rpowers = [rpowers m(j):2:n(j)]; WruSL|4iH  
    end 9'$\GN{0  
    rpowers = unique(rpowers); +c7e[hz  
    49('pq?D  
    % Pre-compute the values of r raised to the required powers, ,, 8hU7P  
    % and compile them in a matrix: }PC_qQF  
    % ----------------------------- A_8UPGh8  
    if rpowers(1)==0 )6~s;y!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,,FO6+4f  
        rpowern = cat(2,rpowern{:}); 6_G[&   
        rpowern = [ones(length_r,1) rpowern]; ,.<[iHC}9  
    else |:H 9#=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); UyFvj4SU  
        rpowern = cat(2,rpowern{:}); y cT@ D/  
    end O V"5:){  
    3I"xuKxc  
    % Compute the values of the polynomials: [9<c;&$LU  
    % -------------------------------------- Q1Jw7R#?l  
    z = zeros(length_r,length_n); '' Pu  
    for j = 1:length_n +69[06F  
        s = 0:(n(j)-m(j))/2; hFW{qWP  
        pows = n(j):-2:m(j); b0(bL_,  
        for k = length(s):-1:1 i% FpPni  
            p = (1-2*mod(s(k),2))* ... ;hf{B7  
                       prod(2:(n(j)-s(k)))/          ... A$JL"~R  
                       prod(2:s(k))/                 ... **,(>4j  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 8I>'x f  
                       prod(2:((n(j)+m(j))/2-s(k))); rtjUHhF  
            idx = (pows(k)==rpowers); B;vpG?s{9  
            z(:,j) = z(:,j) + p*rpowern(:,idx); MD4RSl<F  
        end ;bYpMcH  
          BN_I#8r  
        if isnorm e) \PW1b  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); TPBL|^3K  
        end 6"o,)e/z  
    end 5~R1KjjvA  
    ! %~P[;.  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  i?D)XXB85  
    l}~9xa}:D|  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 IweNe`Z  
    c!a1@G  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)