切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11389阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )b~+\xL5J  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 58t_j54  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 wauM|/KG  
    function z = zernfun(n,m,r,theta,nflag) T[-Tqi NT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Qnx?5R-}ZU  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 39x 4(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the '8LHX6FXK  
    %   unit circle.  N is a vector of positive integers (including 0), and d>0 j!+s  
    %   M is a vector with the same number of elements as N.  Each element @P">4xVX{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 55Xfu/hQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 8mC$p6Okd  
    %   and THETA is a vector of angles.  R and THETA must have the same Z ?ATWCa  
    %   length.  The output Z is a matrix with one column for every (N,M) (rQ)0g@  
    %   pair, and one row for every (R,THETA) pair. >ktekO:H  
    % Icx)+Mq  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (e32oP"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P!!:p2fo  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral v?o("I[ C  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M8VsU*aU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ! QKec  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !N/?b^y  
    % WV;[vg]  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]sqp^tQ`e  
    %   They are used in disciplines such as astronomy, optics, and X=VaBy4#  
    %   optometry to describe functions on a circular domain. %htbEKWR  
    % d 1 O+qS  
    %   The following table lists the first 15 Zernike functions. _@Y17L.  
    % ^oEaE#I  
    %       n    m    Zernike function           Normalization ig'4DmNC  
    %       -------------------------------------------------- w!RJ8  
    %       0    0    1                                 1 5IP@_GV|  
    %       1    1    r * cos(theta)                    2 .VkLF6  
    %       1   -1    r * sin(theta)                    2 ^ lG^.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) YVO~0bX:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) \r}*<CRr6  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) LufZ,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) KA."[dVa  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) RohD.`D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) OKCX>'j:S  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ROj=XM:+  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _2eL3xXha.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )J&!>GP  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P#2;1ki>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {\kDu#18Ld  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) y9Q"3LLic`  
    %       -------------------------------------------------- `(L<Q%  
    % w&}UgtEm  
    %   Example 1: !Op18hP$  
    % (z'!'?v;  
    %       % Display the Zernike function Z(n=5,m=1) 5G#K)s(QC  
    %       x = -1:0.01:1; 8;P_KRaE  
    %       [X,Y] = meshgrid(x,x); p+R8Mo;I  
    %       [theta,r] = cart2pol(X,Y); I`}x9t  
    %       idx = r<=1; dYhLk2  
    %       z = nan(size(X)); LiD-su D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); hN_,Vyf  
    %       figure yGPi9j{QXq  
    %       pcolor(x,x,z), shading interp XXZ$^W&  
    %       axis square, colorbar +isaqfy/  
    %       title('Zernike function Z_5^1(r,\theta)') z(beT e  
    % 0"M0tA#  
    %   Example 2: 'p(I!]"uo  
    % :=%`\\  
    %       % Display the first 10 Zernike functions 3yIC@>&y(8  
    %       x = -1:0.01:1; 0N3S@l#,\A  
    %       [X,Y] = meshgrid(x,x); +luW=j0V  
    %       [theta,r] = cart2pol(X,Y); bq` 0$c%hN  
    %       idx = r<=1; f%Bmx{Ttq  
    %       z = nan(size(X)); (?zZvW8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )IZ~!N|-w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; x20sB  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; (`Q_^Bfyl  
    %       y = zernfun(n,m,r(idx),theta(idx)); pi?U|&.1z  
    %       figure('Units','normalized') L}%4YB  
    %       for k = 1:10 K\>CXa  
    %           z(idx) = y(:,k); Z=P=oldH  
    %           subplot(4,7,Nplot(k)) NYZI;P1DA  
    %           pcolor(x,x,z), shading interp 5VPP 2;J  
    %           set(gca,'XTick',[],'YTick',[]) a0x/? )DO  
    %           axis square cc$+"7/J^c  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;u: }rA)  
    %       end Fh$Xcz~i  
    % cX/ ["AM  
    %   See also ZERNPOL, ZERNFUN2. ^aO\WKkA  
    a=3{UEi'o  
    %   Paul Fricker 11/13/2006 (1b%);L7  
    FzGla})  
    5%6r,?/7KM  
    % Check and prepare the inputs: !ZlNPPrq}  
    % ----------------------------- .%EEly  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t Sf`  
        error('zernfun:NMvectors','N and M must be vectors.') B%Sp mx8  
    end BpKgUwf;C  
    k"2xyzt*  
    if length(n)~=length(m) /.aDQ>  
        error('zernfun:NMlength','N and M must be the same length.') JMq00_  
    end O~AOZ^a:2  
    p#dpDjh  
    n = n(:); o$DJL11E  
    m = m(:); vMOit,{  
    if any(mod(n-m,2)) .v:K`y;f\(  
        error('zernfun:NMmultiplesof2', ... URD<KIN>  
              'All N and M must differ by multiples of 2 (including 0).') {?9s~{Dl  
    end pJE317 p'  
    \WVrn>%xu  
    if any(m>n) GlVD!0  
        error('zernfun:MlessthanN', ... <ctn_"p Z  
              'Each M must be less than or equal to its corresponding N.') glppb$oB\  
    end cHMS[.=;  
    m ,U`hPJ  
    if any( r>1 | r<0 ) zk@K uBLL  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {^#62Y  
    end <j.bG 7  
    3J{`]v5`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) XK>/i}y  
        error('zernfun:RTHvector','R and THETA must be vectors.') t>T |\WAAL  
    end bG0t7~!{E  
    _KkLH\1g$  
    r = r(:); +`x8[A)-  
    theta = theta(:); O9k9hRE]z  
    length_r = length(r);  98os4}r  
    if length_r~=length(theta) r^k:$wJbRK  
        error('zernfun:RTHlength', ... ~o+HAc`=v  
              'The number of R- and THETA-values must be equal.') M"]~}*  
    end >]k'3|vV  
    '%`W y@  
    % Check normalization: !#nlWX :~  
    % -------------------- rQbL86+  
    if nargin==5 && ischar(nflag) )-2o}KU]>  
        isnorm = strcmpi(nflag,'norm'); gHC -Y 0_  
        if ~isnorm wvm`JOP:A  
            error('zernfun:normalization','Unrecognized normalization flag.') $3sS&i<  
        end Q+[e)YO)  
    else tw]RH(g+#  
        isnorm = false; e1X*}OI  
    end "}]1OL SV  
    <m80e),~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _1`*&k JL~  
    % Compute the Zernike Polynomials DLkNL?a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~3.1. 'A  
    */n)_  
    % Determine the required powers of r: EW{z?/  
    % ----------------------------------- V$+xJ  m  
    m_abs = abs(m); })|+tZ  
    rpowers = []; |Q^Z I  
    for j = 1:length(n) +'?p $@d  
        rpowers = [rpowers m_abs(j):2:n(j)];  XGEAcN  
    end H>[1D H#b  
    rpowers = unique(rpowers); dvk? A$  
    \c+)Y}:D  
    % Pre-compute the values of r raised to the required powers, *lg1iP{]  
    % and compile them in a matrix: qbkvwL9  
    % ----------------------------- l,*v/95h  
    if rpowers(1)==0 u7&r'rZ1_!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !Ljs9 =UF  
        rpowern = cat(2,rpowern{:}); y5.Z<Y  
        rpowern = [ones(length_r,1) rpowern]; 9/RbfV[)  
    else 5f7;pS<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SG8H~]CO)  
        rpowern = cat(2,rpowern{:}); 50(/LV1  
    end qu8i Jq  
    b1jh2pG(V  
    % Compute the values of the polynomials: #"6(Q2| l  
    % -------------------------------------- LQ?J r>4  
    y = zeros(length_r,length(n)); +}X?+Epm  
    for j = 1:length(n) }.7!@!q.  
        s = 0:(n(j)-m_abs(j))/2; Va06(Cq  
        pows = n(j):-2:m_abs(j); Gu<3*@Ng  
        for k = length(s):-1:1 cU5x8[2  
            p = (1-2*mod(s(k),2))* ... L*9^-,  
                       prod(2:(n(j)-s(k)))/              ... _Q/D%7[pa  
                       prod(2:s(k))/                     ... @?{n`K7{`  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ywt_h;:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |,5b[Y"Dt  
            idx = (pows(k)==rpowers); q,2]]K7y  
            y(:,j) = y(:,j) + p*rpowern(:,idx); B N@*CG  
        end >\8Bu#&s4  
         i)\`"&.j>N  
        if isnorm ;k/y[ x}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); LS4c|Dv  
        end s'ntf  
    end $ # @G!  
    % END: Compute the Zernike Polynomials g||{Qmr=1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '@wYr|s4  
    =+97VO(w]G  
    % Compute the Zernike functions: KSuP'.l  
    % ------------------------------ ,m!j2H}8  
    idx_pos = m>0; bP6QF1L  
    idx_neg = m<0; `,aPK/  
    WYwsTsG{_  
    z = y; [Zl  
    if any(idx_pos) Qwk  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 18Pc4~ >0  
    end *(s+u~, I  
    if any(idx_neg) 8=T;R&U^M  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); vAq`*]W+  
    end 6t TLyI$+  
    +XJj:%yt  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "Q A#  
    %ZERNFUN2 Single-index Zernike functions on the unit circle.  {IYfq)c  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated rv&(yA  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive d%81}4f:  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, R?Ki~'k=  
    %   and THETA is a vector of angles.  R and THETA must have the same qWHH% L;  
    %   length.  The output Z is a matrix with one column for every P-value, '73dsOTIT  
    %   and one row for every (R,THETA) pair. IaH8#3+a  
    % jB:$+k|~.  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  ^vYH"2  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) {tV)+T  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) XN5EZ#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 a:Y6yg%1>  
    %   for all p. `ndesP  
    %  VD;Ot<%  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 nY'0*:'u  
    %   Zernike functions (order N<=7).  In some disciplines it is ,_r"=>?@  
    %   traditional to label the first 36 functions using a single mode rBkLwJ]  
    %   number P instead of separate numbers for the order N and azimuthal 5CueD]  
    %   frequency M. d `>M-:dF  
    % 75r>~@)*  
    %   Example:  >zFe)  
    % bA@!0,m  
    %       % Display the first 16 Zernike functions #Bg88!-4  
    %       x = -1:0.01:1;  nk>  
    %       [X,Y] = meshgrid(x,x); VtUe$ft  
    %       [theta,r] = cart2pol(X,Y); V'#dY~E-P  
    %       idx = r<=1; }BKEz[G(  
    %       p = 0:15; }\:3}'S.$  
    %       z = nan(size(X)); LUl6^JU  
    %       y = zernfun2(p,r(idx),theta(idx)); /WRS6n  
    %       figure('Units','normalized') 4!i`9w$$"  
    %       for k = 1:length(p) }7RR",w  
    %           z(idx) = y(:,k); `$ZX]6G  
    %           subplot(4,4,k) \6-x~%xK  
    %           pcolor(x,x,z), shading interp bvuoGG*  
    %           set(gca,'XTick',[],'YTick',[]) ]iRE^o6  
    %           axis square 81eDN6 M\  
    %           title(['Z_{' num2str(p(k)) '}']) 7cr@;%#  
    %       end s:7^R-"  
    % .9 mwRYgD  
    %   See also ZERNPOL, ZERNFUN. NKvBNf|D  
    b4Br!PL@G  
    %   Paul Fricker 11/13/2006 K:Wxx "  
    yQ}$G ,x  
    mM!'~{r[-  
    % Check and prepare the inputs: Y;8Ys&/t  
    % ----------------------------- "=@b>d6U+  
    if min(size(p))~=1 l~;H~h!h/  
        error('zernfun2:Pvector','Input P must be vector.') PUV)w\!&is  
    end :'91qA%Wr  
    :6S!1roi  
    if any(p)>35 !Y>lAxd  
        error('zernfun2:P36', ... <k<K"{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... .+MJ' bW  
               '(P = 0 to 35).']) |!E>I  
    end vH%AXz IA  
    CnSfGsE>  
    % Get the order and frequency corresonding to the function number: /vll*}}  
    % ---------------------------------------------------------------- B8UtD  
    p = p(:); Ehi)n)HhG"  
    n = ceil((-3+sqrt(9+8*p))/2); XAwo ~E  
    m = 2*p - n.*(n+2); bXF>{%(}E  
    -G e5gQ=  
    % Pass the inputs to the function ZERNFUN: X ,n4_=f  
    % ---------------------------------------- $h`(toTyF  
    switch nargin px %xoY  
        case 3 P?p>'avP  
            z = zernfun(n,m,r,theta); SNV~;@(h  
        case 4 3sIW4Cs7)U  
            z = zernfun(n,m,r,theta,nflag); LSQWveZz  
        otherwise v#0F1a?]D  
            error('zernfun2:nargin','Incorrect number of inputs.') _8P"/( `Rw  
    end Zt4g G KG  
    u\wdb^8ds  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ph{p[QI:{X  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. :xJ]# t..  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ~\kJir  
    %   order N and frequency M, evaluated at R.  N is a vector of D X GClH  
    %   positive integers (including 0), and M is a vector with the R,R[.2Vi  
    %   same number of elements as N.  Each element k of M must be a 5v <>%=  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) )]WWx-Uf'  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is %|E'cdvkX  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix $2B _a  
    %   with one column for every (N,M) pair, and one row for every cKuU#&FaV  
    %   element in R. **_`AM~  
    % Atsi}zTR\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ?PVJeFH  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is y6NOHPp@  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to o#3?")>|  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 uT'_}cw  
    %   for all [n,m]. F}3<q   
    % ^,u0kMG5l  
    %   The radial Zernike polynomials are the radial portion of the ALvj)I`Al  
    %   Zernike functions, which are an orthogonal basis on the unit 2{;&c  
    %   circle.  The series representation of the radial Zernike ?~~sOf AP  
    %   polynomials is >2h|$6iWP  
    % %x@ D i`;  
    %          (n-m)/2 NbOeF7cq+  
    %            __ rt">xVl  
    %    m      \       s                                          n-2s PN9^ sLx=  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r vzV,} S*c  
    %    n      s=0 #p& &w1  
    % -c-af%xD  
    %   The following table shows the first 12 polynomials. 2WQKj9iyN  
    % _G s*4:  
    %       n    m    Zernike polynomial    Normalization 3sG7G:4  
    %       --------------------------------------------- Oop5bg  
    %       0    0    1                        sqrt(2) V.zKjoky@  
    %       1    1    r                           2 q-s! hiK  
    %       2    0    2*r^2 - 1                sqrt(6) q/y4HT,x  
    %       2    2    r^2                      sqrt(6) 0#(K}9T)  
    %       3    1    3*r^3 - 2*r              sqrt(8) kk]f*[Zi5  
    %       3    3    r^3                      sqrt(8) ,M2u (9  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) XMhDx  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) @X`~r8&  
    %       4    4    r^4                      sqrt(10) K&FGTS,  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) GMmz`O XN  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) VBc[(8o  
    %       5    5    r^5                      sqrt(12) *9:oTN  
    %       --------------------------------------------- tP; &$y.8  
    % )aoB -Lu  
    %   Example: D|-^}I4  
    % f[,9WkC  
    %       % Display three example Zernike radial polynomials ?^Sk17G  
    %       r = 0:0.01:1; !iKR~&UpAL  
    %       n = [3 2 5]; y,qP$ 5xiq  
    %       m = [1 2 1]; 5dffF e  
    %       z = zernpol(n,m,r); k=w;jX&;`  
    %       figure zJ{?'kp  
    %       plot(r,z) _XT],"  
    %       grid on xml@]N*D#E  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') RjS;Ck@;  
    % o(xRq;i  
    %   See also ZERNFUN, ZERNFUN2. =Y`P}vI]w%  
    '\%c"?  
    % A note on the algorithm. `5 py6,  
    % ------------------------ Zgp]s+%E  
    % The radial Zernike polynomials are computed using the series mv@cGdxu  
    % representation shown in the Help section above. For many special ?pgdj|"a  
    % functions, direct evaluation using the series representation can <hi@$.u_Q^  
    % produce poor numerical results (floating point errors), because *8}Y0V\s  
    % the summation often involves computing small differences between nb(4"|8}  
    % large successive terms in the series. (In such cases, the functions "|W .o=R  
    % are often evaluated using alternative methods such as recurrence K/RQ-xd4  
    % relations: see the Legendre functions, for example). For the Zernike Zu(eYH=Q  
    % polynomials, however, this problem does not arise, because the 3/I Q]8g"  
    % polynomials are evaluated over the finite domain r = (0,1), and 8r[ZGUV  
    % because the coefficients for a given polynomial are generally all ;9r Z{'i+|  
    % of similar magnitude. {Z[yY6Nu  
    % rQiX7  
    % ZERNPOL has been written using a vectorized implementation: multiple Z=%+U _,  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] \8\)5#?  
    % values can be passed as inputs) for a vector of points R.  To achieve -_=0PW5{  
    % this vectorization most efficiently, the algorithm in ZERNPOL v+-f pl&  
    % involves pre-determining all the powers p of R that are required to eeIh }t>[  
    % compute the outputs, and then compiling the {R^p} into a single o?\)!_Z|  
    % matrix.  This avoids any redundant computation of the R^p, and <%eY>E  
    % minimizes the sizes of certain intermediate variables. kg[u@LgvoN  
    % 'Z2:u!E  
    %   Paul Fricker 11/13/2006 EM/NT/  
    y7SOz'd  
    jB }O6u[%  
    % Check and prepare the inputs: R`=3lY;  
    % ----------------------------- 0?uX}8w  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ) Kfk\  
        error('zernpol:NMvectors','N and M must be vectors.') #QJ  mAA  
    end  {ZFa +  
    $mm =$.  
    if length(n)~=length(m) ?7-#iC`  
        error('zernpol:NMlength','N and M must be the same length.') Mq) n=M  
    end :1u>T3L.z  
    /=Ug}%.  
    n = n(:); 9dA(f~  
    m = m(:); `;fh<kv  
    length_n = length(n); mY-Z$8r  
    =/=x"q+X  
    if any(mod(n-m,2)) zjgK78!<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1wUZ0r1'  
    end j`Lf/S!}  
    O;M_?^'W  
    if any(m<0) =fMSmn1S  
        error('zernpol:Mpositive','All M must be positive.')  l|`FW  
    end ':# ?YQ}2  
    47I:o9E  
    if any(m>n) Fk D  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 2>Kq)Ii  
    end 43rM?_72  
     N>`+{  
    if any( r>1 | r<0 ) >`*iM  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ;a!o$y  
    end *lv)9L+0  
    c 5P52_@  
    if ~any(size(r)==1) i=_leC)rl  
        error('zernpol:Rvector','R must be a vector.') 7UHqiA`L  
    end .G+}Kn9!  
    ~ C5iyXR  
    r = r(:); (Br$(XJoK}  
    length_r = length(r); Orh5d 7+S  
    $}oQ=+c5  
    if nargin==4 L5T)_iQ5  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); *F:]mgg  
        if ~isnorm Wy#`*h,  
            error('zernpol:normalization','Unrecognized normalization flag.') r0G#BPgdR  
        end vVyO}Q`  
    else B0=:A  
        isnorm = false; OdQ >h$ gZ  
    end 7^sU/3z  
    0vG}c5;F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OfTcF_%  
    % Compute the Zernike Polynomials *wt yyP@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g|<)J-`Q  
    CkoPno  
    % Determine the required powers of r: sxL;o >{  
    % ----------------------------------- P@9>4}r$  
    rpowers = []; &_4A6  
    for j = 1:length(n) 5K'EuI)  
        rpowers = [rpowers m(j):2:n(j)]; QXJD' c  
    end ?f']*pD8  
    rpowers = unique(rpowers); %fP^Fh   
    W3UK[_qK  
    % Pre-compute the values of r raised to the required powers, M0Z>$Az]t  
    % and compile them in a matrix: 'lC"wP&$  
    % ----------------------------- 2DQ'h}BI  
    if rpowers(1)==0 O RQGay  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b("CvD8  
        rpowern = cat(2,rpowern{:}); {DN c7G  
        rpowern = [ones(length_r,1) rpowern]; zQ{ Q>"-  
    else HKOJkbVZ2^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BT>*xZLpS  
        rpowern = cat(2,rpowern{:}); `RGZ-Q{_  
    end :^%s oEi  
    ^%_B'X9  
    % Compute the values of the polynomials: ^e@c Ozt  
    % -------------------------------------- R5]R pW=G  
    z = zeros(length_r,length_n); L*FmJ{Yf  
    for j = 1:length_n ?Tuh22J{Q  
        s = 0:(n(j)-m(j))/2; s^C*uP;R  
        pows = n(j):-2:m(j); A!^K:S:@  
        for k = length(s):-1:1 {(a@3m~a%  
            p = (1-2*mod(s(k),2))* ... a]X6)6  
                       prod(2:(n(j)-s(k)))/          ... N)poe2[  
                       prod(2:s(k))/                 ... 1<\cMY6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... yWzvE:!)  
                       prod(2:((n(j)+m(j))/2-s(k))); u"T5m  
            idx = (pows(k)==rpowers); LV8,nTYvE  
            z(:,j) = z(:,j) + p*rpowern(:,idx); o\|dm. "f  
        end nt;A7pI`  
         0?p_|X'_  
        if isnorm ,6t0w|@-k  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Fg#*rzA  
        end }$qy_Esl  
    end u x:,io  
    X0vkdNgW  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :heJ5* !,  
    l%U9g  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  ?Z!KV=  
    Jg Xbs+.  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)