非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ic_q<Y}
function z = zernfun(n,m,r,theta,nflag) Y^~Dr|5%
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. eURj'8o),
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;"77?)
% and angular frequency M, evaluated at positions (R,THETA) on the D[ -Gzqh
% unit circle. N is a vector of positive integers (including 0), and [Q5>4WY
% M is a vector with the same number of elements as N. Each element p%+uv\Ix
% k of M must be a positive integer, with possible values M(k) = -N(k) 2,,t+8"`
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 4)XZ'~|
% and THETA is a vector of angles. R and THETA must have the same c0%.GcF0{
% length. The output Z is a matrix with one column for every (N,M) <+wbnnK
% pair, and one row for every (R,THETA) pair. +7]]=e<[E
% wZ_k]{J
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -U"h3Ye^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), o2C{V1nB
% with delta(m,0) the Kronecker delta, is chosen so that the integral U94Tp A6
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ..g?po
% and theta=0 to theta=2*pi) is unity. For the non-normalized ^t{2k[@
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]a}K%D)H
% hkhk,bhI
% The Zernike functions are an orthogonal basis on the unit circle. 2MapB*
% They are used in disciplines such as astronomy, optics, and `X06JTqf:
% optometry to describe functions on a circular domain. mrgieb%
% '4""Gz
% The following table lists the first 15 Zernike functions. Ki DL]2
% 2#y!(D8
% n m Zernike function Normalization +hJ@w-u,G
% -------------------------------------------------- iVg3=R)[1
% 0 0 1 1 M@=eW Z<
% 1 1 r * cos(theta) 2 gh{Z=_
% 1 -1 r * sin(theta) 2 `(rnD
% 2 -2 r^2 * cos(2*theta) sqrt(6) @FBlF$vG
% 2 0 (2*r^2 - 1) sqrt(3) ?!4xtOA
% 2 2 r^2 * sin(2*theta) sqrt(6) 0A}'@N@G)
% 3 -3 r^3 * cos(3*theta) sqrt(8) YFF\m{#
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) o'8`>rb
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6!e I=h2P
% 3 3 r^3 * sin(3*theta) sqrt(8) EqV]/0-\
% 4 -4 r^4 * cos(4*theta) sqrt(10) wInJ!1
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xElHYh(\
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) t[ Zoe+&
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m1mA:R\zM
% 4 4 r^4 * sin(4*theta) sqrt(10) I}&`IUP
% -------------------------------------------------- f`dQ $Kh
% {O4y Y=G
% Example 1: rk$$gXg9/
% ZT\=:X*e
% % Display the Zernike function Z(n=5,m=1) aOj(=s
% x = -1:0.01:1; W.fsW<{4j
% [X,Y] = meshgrid(x,x); 8hK\Ya:mP
% [theta,r] = cart2pol(X,Y); y$f{P:!"{3
% idx = r<=1; ^`96L
% z = nan(size(X)); jgfl|;I?pg
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a=m7pe^
% figure d'4^c,d
% pcolor(x,x,z), shading interp 'k?%39
% axis square, colorbar \,b@^W6e>
% title('Zernike function Z_5^1(r,\theta)') COF_a%
% iL%Q@!ka
% Example 2: ?G48GxJ
% Xlw8>.\
% % Display the first 10 Zernike functions zO)>(E?
% x = -1:0.01:1; ]
X9e|
% [X,Y] = meshgrid(x,x); uEK9
% [theta,r] = cart2pol(X,Y); sC/5N
% idx = r<=1; w _*|u
% z = nan(size(X)); XpFoSW#K
% n = [0 1 1 2 2 2 3 3 3 3]; -27uh
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; X/5\L.g2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; | m^qA](M
% y = zernfun(n,m,r(idx),theta(idx)); WxN@&g(
% figure('Units','normalized') AS}
FRNIVx
% for k = 1:10 ^sWsP` DV
% z(idx) = y(:,k); ?\
qfuA9.
% subplot(4,7,Nplot(k)) ugZ-*e7
% pcolor(x,x,z), shading interp DQ<{FN
% set(gca,'XTick',[],'YTick',[]) `YZK$
-,
% axis square Eagl7'x
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ux<2!vh
% end _o
2pyV&
% 8f^QO:
% See also ZERNPOL, ZERNFUN2. :f~[tox
Slk__eC
% Paul Fricker 11/13/2006 Mn-f
Lq&;`)BJ
U_ -9rkUa
% Check and prepare the inputs: 0X`sQNx
% ----------------------------- xHA6
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) * 5H
error('zernfun:NMvectors','N and M must be vectors.') \Bg;^6U
end -|?I'~[#(
/_N*6a~
if length(n)~=length(m) @E(_H$|E
error('zernfun:NMlength','N and M must be the same length.') 7rc6
end EXdx$I=X
OZ/P@`kN.f
n = n(:); A,tmy',d"
m = m(:); cGevFlnh
if any(mod(n-m,2)) QbF!V%+a's
error('zernfun:NMmultiplesof2', ... i|z=q
'All N and M must differ by multiples of 2 (including 0).') N W/RQ(
end
h:[8$]
%s+H& vfQs
if any(m>n) [hLSK-K 9
error('zernfun:MlessthanN', ... Ur`jmB
'Each M must be less than or equal to its corresponding N.') ,qx;kJJ
end Fq]ht*
'nK(cKDIG
if any( r>1 | r<0 ) ICJp-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') X3z$f(lF%)
end y>:-6)pv
;1S~'B&1Q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
H %Cb
error('zernfun:RTHvector','R and THETA must be vectors.') $ BEIG@qG
end X1A~#w>
,rvw E
r = r(:); Dr;-2$Kt/&
theta = theta(:); E>/kNl
length_r = length(r); b(hnou S
if length_r~=length(theta) H5L~[\
5t
error('zernfun:RTHlength', ... QKj-"y[
'The number of R- and THETA-values must be equal.') IZ<d~ [y
end Ig9gGI,
C*;g!~{
% Check normalization: Ueq*R(9>
% -------------------- DNARe!pK
if nargin==5 && ischar(nflag) HFJna2B`
isnorm = strcmpi(nflag,'norm'); uQ^r1 $#
if ~isnorm "pb$[*_@$
error('zernfun:normalization','Unrecognized normalization flag.') Q(P'4XCm
end `Qf$]Eoft
else uXs.7+f
isnorm = false; }y<p_dZI
end C%s+o0b
Tgpf0(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *z2G(Uac
% Compute the Zernike Polynomials bB|UQaCl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~!*xi
=")}wl=s
% Determine the required powers of r: 2>l
=oXq
% ----------------------------------- *
u_nu>
m_abs = abs(m); \q2#ef@2
rpowers = []; hJqLH?Ri
for j = 1:length(n) GpjyF_L
rpowers = [rpowers m_abs(j):2:n(j)]; BPp`r_m8w}
end `rt
rpowers = unique(rpowers); ()< E?D=
P@gVzx)M
% Pre-compute the values of r raised to the required powers, ^DL}J>F9G
% and compile them in a matrix: w"s;R8
% ----------------------------- )7U^&I,
if rpowers(1)==0 OnNWci|7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -WDU~VSU
rpowern = cat(2,rpowern{:}); _ >)+
u
rpowern = [ones(length_r,1) rpowern]; (=v :@\r
else ^/|agQ7D2
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =0te.io)3O
rpowern = cat(2,rpowern{:}); QXXB>gOY5
end {1RI!#[\
vwVK^B
% Compute the values of the polynomials: +T*=JHOD
% -------------------------------------- Xb0$BAP
y = zeros(length_r,length(n)); Z`5jX;Z!
for j = 1:length(n) 2V6=F[T
s = 0:(n(j)-m_abs(j))/2; {H]xA 3[]
pows = n(j):-2:m_abs(j); r-M:YB
for k = length(s):-1:1 8@Zg@>,
p = (1-2*mod(s(k),2))* ... .\r=1HZ3
prod(2:(n(j)-s(k)))/ ... a;=)`
prod(2:s(k))/ ... "N"$B~W*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #fq%903=
prod(2:((n(j)+m_abs(j))/2-s(k))); >s
4"2X
idx = (pows(k)==rpowers); ?LJDBN
y(:,j) = y(:,j) + p*rpowern(:,idx); %4F
Q~
end ET]PF ,`
j]-0m4QF
if isnorm 8>T#sO?+
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3[R<JrO
end }2WscxL
end qJjXN+/D
% END: Compute the Zernike Polynomials iFJ2dFA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~}uv4;0l]
N_dHPa
% Compute the Zernike functions: iD*%' #u
% ------------------------------ DtXQLL*fl(
idx_pos = m>0; #BB,6E
idx_neg = m<0; "Di27Rq
C$"N)6%q
z = y; sK)fEx
if any(idx_pos) ~UrKyA
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1u?h4wC
end ;kSRv=S
if any(idx_neg) eWKFs)C]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {{hp;&x
end
HaJs)j
[}xVz"8 V
% EOF zernfun