非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =L@CZ"
function z = zernfun(n,m,r,theta,nflag) {qlcTc
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. U}4I29M
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N t9MCT$U
% and angular frequency M, evaluated at positions (R,THETA) on the ?-%(K^y4r
% unit circle. N is a vector of positive integers (including 0), and tBfmjxv
% M is a vector with the same number of elements as N. Each element FfxD=\
% k of M must be a positive integer, with possible values M(k) = -N(k) ]b]J)dDI
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ,;5%&T
% and THETA is a vector of angles. R and THETA must have the same PH&Qw2(Sx
% length. The output Z is a matrix with one column for every (N,M) 2z"<m2a
% pair, and one row for every (R,THETA) pair. @;KYvDY
% 3bXfR,U
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?9O#b1f N
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b{,v?7^4
% with delta(m,0) the Kronecker delta, is chosen so that the integral A`JE(cIz3
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >&:}L%
% and theta=0 to theta=2*pi) is unity. For the non-normalized ,C"6@/:l
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,?Ie!r$6
% q]C_idK=
% The Zernike functions are an orthogonal basis on the unit circle. _&\'Va$
% They are used in disciplines such as astronomy, optics, and ^|zag
% optometry to describe functions on a circular domain. 16]Ay&Kn!
% ~4Gc~ "
% The following table lists the first 15 Zernike functions. TmftEw>u
% iPV-w_HQ
% n m Zernike function Normalization KAD2_@l
% -------------------------------------------------- v0!|TI3s
% 0 0 1 1 %.u*nM7sos
% 1 1 r * cos(theta) 2 `L 1+j
% 1 -1 r * sin(theta) 2 Y 'm;xA
% 2 -2 r^2 * cos(2*theta) sqrt(6) &*'^uCna
% 2 0 (2*r^2 - 1) sqrt(3) ybsw{[X>M
% 2 2 r^2 * sin(2*theta) sqrt(6) 9xj }<WM
% 3 -3 r^3 * cos(3*theta) sqrt(8) hu} vYA7ZH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) t_xK?``
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z3YKG{g
% 3 3 r^3 * sin(3*theta) sqrt(8) &4 KUXn[F
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2L;=wP2?{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5@r6'Z
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) +ctU7
rVy
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^'`(E_2u
% 4 4 r^4 * sin(4*theta) sqrt(10) i ]8bj5j{
% -------------------------------------------------- VD@$y^!H
% nyqX\m-
% Example 1: $#+D:W)az
% eR>8V8@
% % Display the Zernike function Z(n=5,m=1) 6nE/8m
% x = -1:0.01:1; =No#/_
% [X,Y] = meshgrid(x,x); l1lYb;C
% [theta,r] = cart2pol(X,Y); QICxSk
% idx = r<=1; j;E$7QH[
% z = nan(size(X)); T%&vq6
% z(idx) = zernfun(5,1,r(idx),theta(idx)); %i/|}K
% figure ;`Xm?N
% pcolor(x,x,z), shading interp Y$"m*0
% axis square, colorbar $z*"@
% title('Zernike function Z_5^1(r,\theta)') d>mZY66P
% - E GZ
% Example 2: J
;z`bk^
% w0Nm.=I-
% % Display the first 10 Zernike functions B0gD4MX/
% x = -1:0.01:1; _V1:'T8
% [X,Y] = meshgrid(x,x); >itabG-&
% [theta,r] = cart2pol(X,Y); Ns1n|^9
% idx = r<=1; %Rf9KQ
% z = nan(size(X)); O9d"Z$~n=j
% n = [0 1 1 2 2 2 3 3 3 3]; 0iZeU:FE
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 1Dc6v57
% Nplot = [4 10 12 16 18 20 22 24 26 28]; -Z:x!M[Xr
% y = zernfun(n,m,r(idx),theta(idx)); 'Ca;gi !U
% figure('Units','normalized') c%hXj#;
% for k = 1:10 +%,oq]<[,
% z(idx) = y(:,k); Z]G#:
% subplot(4,7,Nplot(k)) aACPyfGQ
% pcolor(x,x,z), shading interp bri8o"
% set(gca,'XTick',[],'YTick',[]) 3{~(_
% axis square <EgJm`V
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7- LjBlH
% end fU
;H
% ,q#SAZ/N
% See also ZERNPOL, ZERNFUN2. ,9jk<)m]L
@{fwM;me]P
% Paul Fricker 11/13/2006 Gv dok<o
\db=]L=|
T-STM"~%
% Check and prepare the inputs: ]nebL{}5
% ----------------------------- 56c[$ q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yv]|Ce@8A
error('zernfun:NMvectors','N and M must be vectors.') .'H$|"(v
end L)\<7
DjN1EP\Xx
if length(n)~=length(m) :7.k E
error('zernfun:NMlength','N and M must be the same length.') ^&mrY[;S
end fgj$
u
tw<Oy^i
n = n(:); ulW>8bW&
m = m(:); Pf%I6bVN9
if any(mod(n-m,2)) ke;=Vg|
error('zernfun:NMmultiplesof2', ... n.'Ps+G(
'All N and M must differ by multiples of 2 (including 0).') L"dN
$ A
end T{^mh(3/"
B[7,Hy,R
if any(m>n) #prYZcHv:_
error('zernfun:MlessthanN', ... nIlTzrf6
'Each M must be less than or equal to its corresponding N.') oxeu%wj_
end ,:J[|9
]R}(CaT1
if any( r>1 | r<0 ) `@1e{?$
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3w |5%`
end zY*~2|q,s
zGz}.-F
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YRBJ(v"9
error('zernfun:RTHvector','R and THETA must be vectors.') '-N5F
end MS#*3Md&y
u tkdL4G}'
r = r(:); iJoYxx
theta = theta(:); +L'Cbv= "
length_r = length(r); :tnW ivrwR
if length_r~=length(theta) xq,ql@7
error('zernfun:RTHlength', ... <Rn-B).3bs
'The number of R- and THETA-values must be equal.') +UX~'t_'v
end _U4@W+lhX_
O9?.J,,mVh
% Check normalization: P* &0HbJ
% -------------------- RR+kjK?
if nargin==5 && ischar(nflag) z(%tu
isnorm = strcmpi(nflag,'norm'); Pn9;&`t
if ~isnorm 6[R6P:v&'G
error('zernfun:normalization','Unrecognized normalization flag.') H$WD7/?j
end }xBO;
else FF^h(Ea
isnorm = false; jz=V*p}6
end LdOme[C1
Vfk"}k/do
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C_q2bI
% Compute the Zernike Polynomials D8~\*0->
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c*zeO@AAn
ND.(N'/O
% Determine the required powers of r: /\mYXi\
% ----------------------------------- 8O{V#aop
m_abs = abs(m); k1yqerA
rpowers = []; 3[_WTwX0
for j = 1:length(n) '4#NVXVQm
rpowers = [rpowers m_abs(j):2:n(j)]; +'93%/:
end $iy!:Did
rpowers = unique(rpowers); -^`s#0( y^
yN `&oya
% Pre-compute the values of r raised to the required powers, c C) <Y#1
% and compile them in a matrix: A ep](je
% ----------------------------- b~ *iL!<
if rpowers(1)==0 )OFN0'
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jxm#4
rpowern = cat(2,rpowern{:}); r|u R!=*|?
rpowern = [ones(length_r,1) rpowern]; keD?#yY
else <wFmfrx+v
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N+ ]O#Js?
rpowern = cat(2,rpowern{:}); XI$W
end pnx^a}|px
gn.)_
% Compute the values of the polynomials: .9z}S=ZK
% -------------------------------------- [hH>BEtm
y = zeros(length_r,length(n)); 9mXmghoCO
for j = 1:length(n) <1lB[:@%U
s = 0:(n(j)-m_abs(j))/2; m*iSW]&
pows = n(j):-2:m_abs(j); u^^jt(j
for k = length(s):-1:1 rc>}3?o
p = (1-2*mod(s(k),2))* ... Z<AZO ^
prod(2:(n(j)-s(k)))/ ... ]lyQ*gM
prod(2:s(k))/ ... !@P{s'<:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jZmL7
V
prod(2:((n(j)+m_abs(j))/2-s(k))); 0i8\Lu6
idx = (pows(k)==rpowers); j p~Tlomp
y(:,j) = y(:,j) + p*rpowern(:,idx); $}S0LZ_H
end M3!;u%~}s
p^w)@^f
if isnorm izl-GitP
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0d:t=LKw)
end sD?Ynpt
end %1GKN|7
% END: Compute the Zernike Polynomials uuh._H}-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n|Y}M]u,
C-,#t5eir
% Compute the Zernike functions: x@O)QaBN!
% ------------------------------ !~7lY]_U
idx_pos = m>0; v&9:Wd*Iz'
idx_neg = m<0; Ji=`XsV
s{X+0_@Q
z = y; OaoHN& "
if any(idx_pos) ~@ <o-|#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S_??G:i
end pV:44
if any(idx_neg) wM;=^br
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); MZX@Gi<S[
end &E!m(|6?+
5=9Eb
% EOF zernfun