非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "z(fBnv
function z = zernfun(n,m,r,theta,nflag) F|n$0vQ*
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. [V #&sAe
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8G[Y9A(bmP
% and angular frequency M, evaluated at positions (R,THETA) on the fAY2V%Rft
% unit circle. N is a vector of positive integers (including 0), and }HA2ce\
% M is a vector with the same number of elements as N. Each element [r~rIb%Zj
% k of M must be a positive integer, with possible values M(k) = -N(k) _uy5?auQ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 9q0,K" x)
% and THETA is a vector of angles. R and THETA must have the same {7M4SC@p|
% length. The output Z is a matrix with one column for every (N,M) hF=V
?\
% pair, and one row for every (R,THETA) pair. 1!v >I"]
% CgT QGJ}-
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <g|nmu)o$
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $Zu4tuXA
% with delta(m,0) the Kronecker delta, is chosen so that the integral b#\kZ/W
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ETH#IM8J
% and theta=0 to theta=2*pi) is unity. For the non-normalized B"E (Y M
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Jk6/i;4|
% >`,#%MH#
% The Zernike functions are an orthogonal basis on the unit circle. HNHhMi`w
% They are used in disciplines such as astronomy, optics, and 1rm$@L
% optometry to describe functions on a circular domain. enD C#
% UgP=k){
% The following table lists the first 15 Zernike functions. BS<>gA
R;/
% gQ+_&'C
% n m Zernike function Normalization eQ)ioY
% -------------------------------------------------- ?H7p6mu
% 0 0 1 1 5-QvQ&eH.
% 1 1 r * cos(theta) 2 3z/O`z
% 1 -1 r * sin(theta) 2 <&m
% 2 -2 r^2 * cos(2*theta) sqrt(6) j"$b%|
% 2 0 (2*r^2 - 1) sqrt(3) I}Gl*@K&O
% 2 2 r^2 * sin(2*theta) sqrt(6) Nno={i1jk
% 3 -3 r^3 * cos(3*theta) sqrt(8) *}WqYqOow
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) HjF'~n
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;;"c+
% 3 3 r^3 * sin(3*theta) sqrt(8) 7[?}kG
% 4 -4 r^4 * cos(4*theta) sqrt(10) wYxFjXm
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~(doy@0M
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) bA9dbe
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ei(`gp
% 4 4 r^4 * sin(4*theta) sqrt(10) '~6CGqU*
% -------------------------------------------------- >a]
s
% MS^hsUj}
% Example 1: PT*@#:MA
% _@3O`
% % Display the Zernike function Z(n=5,m=1) JC?V].) y5
% x = -1:0.01:1; 6 VJj(9%
% [X,Y] = meshgrid(x,x); Q^5 t]HKn
% [theta,r] = cart2pol(X,Y); )UU6\2^
% idx = r<=1; K0!#l Br
% z = nan(size(X)); E^>7jf09,
% z(idx) = zernfun(5,1,r(idx),theta(idx)); gRd1(S
% figure )t 7HioQ
% pcolor(x,x,z), shading interp Cr\/<zy1-e
% axis square, colorbar gmH0-W)=
% title('Zernike function Z_5^1(r,\theta)') sBG(CpQ
%
nLLHggNAV
% Example 2: YO4ppL~xe
% *} 4;1OVT
% % Display the first 10 Zernike functions [~H`9Ab=
% x = -1:0.01:1; ;iI2K/ 3
% [X,Y] = meshgrid(x,x); @ShJ:
% [theta,r] = cart2pol(X,Y); :z5Ibas:
% idx = r<=1; 46JP1
% z = nan(size(X)); W$ {sD|d-
% n = [0 1 1 2 2 2 3 3 3 3]; e/I{N0SR
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; pv.),Iv-68
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^rb7`s#G
% y = zernfun(n,m,r(idx),theta(idx)); 24k}~"We
% figure('Units','normalized') Olrw>YbW
% for k = 1:10 uPD_s[
% z(idx) = y(:,k); VFp)`+8
% subplot(4,7,Nplot(k)) 9CSz<[
% pcolor(x,x,z), shading interp lt2&uYgp
% set(gca,'XTick',[],'YTick',[]) f*f9:xUY
% axis square
]@
0V
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 78A4n C
% end ;Awzm )Q
% ,
Vr6
% See also ZERNPOL, ZERNFUN2. _'v )Fy
F#9KMu<<cI
% Paul Fricker 11/13/2006 }{PtQc6RL!
Eu_0n6J
jh!IOtf
% Check and prepare the inputs: N^j''siB
% ----------------------------- M4]|(A
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 438>)=
error('zernfun:NMvectors','N and M must be vectors.') a.ME{:a%
end Cf 8-%
?AH<y/i<Y
if length(n)~=length(m) +PD5pr
error('zernfun:NMlength','N and M must be the same length.') ? 7dDQI7^(
end 3Sb%]f5(
G4]``
n = n(:); 6!V* :.(
m = m(:); 2 z l
if any(mod(n-m,2)) X*;p;N
error('zernfun:NMmultiplesof2', ... RozsRt;i
'All N and M must differ by multiples of 2 (including 0).') !S<~(Ujyw
end !SNtJi$;v
QpZhxp
if any(m>n) hj[g2S%X
error('zernfun:MlessthanN', ... \%*y+I0>
'Each M must be less than or equal to its corresponding N.') .5zJ bZ9
end qTex\qP
b?^<';,5
if any( r>1 | r<0 ) 4df1)<}U-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8BdeqgU/_
end }gt~{9?c
L 32ki}2
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &}?e:PEy
error('zernfun:RTHvector','R and THETA must be vectors.') 11'Tt!
end 'f!Jh<i
m/h0J03'T
r = r(:); :H7 "W<
theta = theta(:); 6C5qW8q]u3
length_r = length(r); G 3x1w/L
if length_r~=length(theta) ]+S QS^4
error('zernfun:RTHlength', ... <;K/Yv'{r
'The number of R- and THETA-values must be equal.') ]].21
end
)BB a
\FM- FQK
% Check normalization: Uh}yHD`K
% -------------------- ;RYKqUE
if nargin==5 && ischar(nflag) Lr &tpB<
isnorm = strcmpi(nflag,'norm'); e4P.G4
if ~isnorm djp(s$:{4
error('zernfun:normalization','Unrecognized normalization flag.') ;U4X
U
end Q^OzFfR6
else glUP
isnorm = false; mUw,q;{
end }2{#=Elh
)$i3j
1[;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YKk%;U*
% Compute the Zernike Polynomials |F`'m":$m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P&VI2k
i=UJ*c
% Determine the required powers of r: Wov_jVdN\
% ----------------------------------- CaMG$X&O
m_abs = abs(m); bHNaaif}P
rpowers = []; x@ )u:0
for j = 1:length(n) gS 3&,^
rpowers = [rpowers m_abs(j):2:n(j)]; Z5K,y19/~
end j.*}W4`Q_
rpowers = unique(rpowers); Dr<Bd;)
4RNzh``u
% Pre-compute the values of r raised to the required powers, C09@2M'
% and compile them in a matrix: im"v75 tc
% ----------------------------- <o
O_wS@:
if rpowers(1)==0 #e[5O|V~
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V7<}
;Lzm
rpowern = cat(2,rpowern{:}); ,q1RJiR
rpowern = [ones(length_r,1) rpowern]; n_j[hA
else jLg4_N1SD
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); AmHIG_'
rpowern = cat(2,rpowern{:}); N 2\,6 <
end t!LvV.g+
UF
tTt`N2
% Compute the values of the polynomials: Hl51R"8o
% -------------------------------------- h";sQ'us
y = zeros(length_r,length(n)); u/:@+rTV_
for j = 1:length(n) d!cx%[
s = 0:(n(j)-m_abs(j))/2; TaH9Nu
pows = n(j):-2:m_abs(j); (J;<&v}Gad
for k = length(s):-1:1 O #"O.GX<
p = (1-2*mod(s(k),2))* ... z!tHn#
prod(2:(n(j)-s(k)))/ ... O B:G5B`
prod(2:s(k))/ ... &%<G2x$
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... W=drp>Uj
prod(2:((n(j)+m_abs(j))/2-s(k))); <\u%ZB
idx = (pows(k)==rpowers); AiuF3`Xa
y(:,j) = y(:,j) + p*rpowern(:,idx); W-MQMHQ
end C|+5F,D
9ZwhCsO
if isnorm 9S}PCAA;
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); dJk.J9Z
end /$E1!9J
end MWB?V?qPSC
% END: Compute the Zernike Polynomials ugz1R+f_4{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gg =z.`}
G8@%)$A
% Compute the Zernike functions: G 7u85cie
% ------------------------------ p-Z5 {by
idx_pos = m>0; Xv9CD
idx_neg = m<0; |dvcDx0|K
^(%>U!<<%,
z = y; 7ORwDR,`5
if any(idx_pos) ),86Y:^4
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -7CkOZT
end &A>J>b
if any(idx_neg) r~X6qC
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4&tY5m>
end ~{J.br`
r(RJ&