切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11282阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 k\W%^Z  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! @AYO )Y8  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }`M53>C,gQ  
    function z = zernfun(n,m,r,theta,nflag) 3NRxf8  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _): V7Zv  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <8#Q5   
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]4f;%pE  
    %   unit circle.  N is a vector of positive integers (including 0), and +mP&B<=H)  
    %   M is a vector with the same number of elements as N.  Each element AY{#!RtV  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) dE R#)bGj  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^~~&[wY  
    %   and THETA is a vector of angles.  R and THETA must have the same  Khd"  
    %   length.  The output Z is a matrix with one column for every (N,M) # LRN@?P  
    %   pair, and one row for every (R,THETA) pair. &<8Q/m]5  
    % 0\3mS{s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^wesuW@=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m>dZ n  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?Ne@OMc  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +%vBDcf  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized YNV!(>\GE  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xszGao'  
    % 7d&_5Tj:  
    %   The Zernike functions are an orthogonal basis on the unit circle. {;.q?mj  
    %   They are used in disciplines such as astronomy, optics, and h'Tn&2r6  
    %   optometry to describe functions on a circular domain. 9$[I~I#z  
    % f+>l-6M+p  
    %   The following table lists the first 15 Zernike functions. Fe8JsB-  
    % c32IO&W4  
    %       n    m    Zernike function           Normalization  !]]QbB  
    %       -------------------------------------------------- [KrWL;[1 <  
    %       0    0    1                                 1 hT:+x3  
    %       1    1    r * cos(theta)                    2 J[E_n;d1  
    %       1   -1    r * sin(theta)                    2 0ox 8_l  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~3k& =3d]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) W_k;jy_{9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JNhHQvi\  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "E`;8SZa  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9=,^^,q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /*g9drwaa  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }6/L5j:+  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h{zE;!+)D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4R_Vi[i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) jDI)iW`P  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z4YQ5O5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) '[u=q -Lv  
    %       -------------------------------------------------- sj;8[Xy's  
    % Q `$Q(/  
    %   Example 1: aoNTRJ c$  
    % VAkZ@ u3'~  
    %       % Display the Zernike function Z(n=5,m=1) 3$Ecq|4J:  
    %       x = -1:0.01:1; >r Nff!Ow  
    %       [X,Y] = meshgrid(x,x); Be"Swz(n  
    %       [theta,r] = cart2pol(X,Y); zqEMR>px  
    %       idx = r<=1; P'o:Vhm_H  
    %       z = nan(size(X)); cSdkhRAn  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ejq2]^O4c  
    %       figure +rEqE/QF  
    %       pcolor(x,x,z), shading interp rNzsc|a:  
    %       axis square, colorbar {"<6'2T3  
    %       title('Zernike function Z_5^1(r,\theta)') c&zZsJ"~  
    % *2MM   
    %   Example 2: _4E . P  
    % $lkd9r1   
    %       % Display the first 10 Zernike functions [~&C6pR  
    %       x = -1:0.01:1; ]W,K}~!   
    %       [X,Y] = meshgrid(x,x); -ya0!D  
    %       [theta,r] = cart2pol(X,Y); ;K[ G]8  
    %       idx = r<=1; l!2hwRR  
    %       z = nan(size(X)); q/w U7P\%  
    %       n = [0  1  1  2  2  2  3  3  3  3]; BoZ G^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8J|pj4ce  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1FfdW>ay*  
    %       y = zernfun(n,m,r(idx),theta(idx)); QusEWq)}<  
    %       figure('Units','normalized') Qxds]5WB/  
    %       for k = 1:10 aQax85  
    %           z(idx) = y(:,k); Q;O\tl  
    %           subplot(4,7,Nplot(k)) 6 bL+q`3>  
    %           pcolor(x,x,z), shading interp J"w!Q\_  
    %           set(gca,'XTick',[],'YTick',[]) 4m++>q  
    %           axis square .K![<e Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) XQEGMaZ  
    %       end j7;v'eA`;7  
    % |_l\.  
    %   See also ZERNPOL, ZERNFUN2. GD1=Fb"&)  
    G?-27Jk8  
    %   Paul Fricker 11/13/2006 ?p{xt$<p  
    L2ePWctq}  
    j=v1:E  
    % Check and prepare the inputs: % '>S9Ja3  
    % ----------------------------- &s!"pEZWck  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) < 4DWH  
        error('zernfun:NMvectors','N and M must be vectors.') #8;|_RU  
    end .%+`e  
    oF/5mh__(K  
    if length(n)~=length(m) 4)=LOGW  
        error('zernfun:NMlength','N and M must be the same length.') pL$UI3VCP  
    end RVN"lDGA  
    @+",f]  
    n = n(:); )>LQ{ X.  
    m = m(:); ? WWnt^  
    if any(mod(n-m,2)) ?{#P.2  
        error('zernfun:NMmultiplesof2', ... gF% lwq  
              'All N and M must differ by multiples of 2 (including 0).') -B2>~#L  
    end lo:]r.lX{  
    bo&!oY#  
    if any(m>n) b?-%Uzp<  
        error('zernfun:MlessthanN', ... g# ZR, q  
              'Each M must be less than or equal to its corresponding N.') Z,o*M#}  
    end Ah)OyO6  
    {+f@7^/i.  
    if any( r>1 | r<0 ) LGT\1u  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Tgp}k%R~  
    end XgKtg-,  
    5VWXUNe@_q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HZ=Dd4!  
        error('zernfun:RTHvector','R and THETA must be vectors.') M;W{A)0i1  
    end )8oI  s  
    ~BCSm]j  
    r = r(:); 7\^b+*  
    theta = theta(:); JnCY O^Qj  
    length_r = length(r); [(tgoh/  
    if length_r~=length(theta) w5jH#ja  
        error('zernfun:RTHlength', ... UuxWP\~2  
              'The number of R- and THETA-values must be equal.') T3['6%  
    end ro37H2^Ty  
    .hgc1  
    % Check normalization: 1W-t})!a  
    % -------------------- D0PP   
    if nargin==5 && ischar(nflag) ) 0$7{3  
        isnorm = strcmpi(nflag,'norm'); AW6]S*rh  
        if ~isnorm ^BjwPh4Z#  
            error('zernfun:normalization','Unrecognized normalization flag.') fl~k')s  
        end IDzP<u8v  
    else BW:&AP@B  
        isnorm = false; \~xsBPX+x  
    end xXZ$#z\ Z,  
    5 d|*E_yu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {a_= 4a  
    % Compute the Zernike Polynomials mT@UQCG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ezlp~z"_k  
    5<4njo?k  
    % Determine the required powers of r: PiI ):B>  
    % ----------------------------------- 'O]_A57  
    m_abs = abs(m); e`R*6^e  
    rpowers = []; >;o^qi_$  
    for j = 1:length(n) Pf)<6?T  
        rpowers = [rpowers m_abs(j):2:n(j)]; 1SkGG0 W  
    end *%ZfE,bu8<  
    rpowers = unique(rpowers); {^9,Dy_D  
    KBzEEvx/$  
    % Pre-compute the values of r raised to the required powers, '. atbl  
    % and compile them in a matrix: mMrvr9%  
    % ----------------------------- @Sub.z&T{  
    if rpowers(1)==0 i1vBg}WHN  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OjMDxG w  
        rpowern = cat(2,rpowern{:}); }<FBcc(n  
        rpowern = [ones(length_r,1) rpowern]; 0Qw?.#[9  
    else EPI mh  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F#4?@W  
        rpowern = cat(2,rpowern{:}); <3HW!7Ad1  
    end O:r<es1  
    *v:+A E  
    % Compute the values of the polynomials: a>sUq["  
    % -------------------------------------- |Y/iq9l  
    y = zeros(length_r,length(n)); K]@6&H-b|  
    for j = 1:length(n) Ew4DumI  
        s = 0:(n(j)-m_abs(j))/2; T>n,@?#K  
        pows = n(j):-2:m_abs(j); }K"=sE  
        for k = length(s):-1:1 K"Nq_Ddwd  
            p = (1-2*mod(s(k),2))* ... +qpD>5#  
                       prod(2:(n(j)-s(k)))/              ... XpOsnvW  
                       prod(2:s(k))/                     ... k6[t$|lMy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !bH-(K{S6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .d8) *  
            idx = (pows(k)==rpowers); bL *;N3#E  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `mw@"  
        end Ofqe+C  
         f`WmRx]K  
        if isnorm AP3SOT3I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3m7$$ N|  
        end }}t"^ms  
    end .j7|;Ag  
    % END: Compute the Zernike Polynomials 3h 0w8(k;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A!iH g__/t  
    _3A$z A  
    % Compute the Zernike functions: s.zH.q,  
    % ------------------------------ s}|IRDpp  
    idx_pos = m>0; p4{?Rhb6  
    idx_neg = m<0; qcQ`WU{  
    XZp(Po:H  
    z = y; e yTYg  
    if any(idx_pos) XFK$p^qu  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \FVR'A1  
    end 9Od Kh\F (  
    if any(idx_neg) v~uwQ&AH  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ku,Efr  
    end !3yR?Xem}  
    ` mCcD  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }b\d CGVr  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. X*S|aNaLWW  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated mhlJzGr*q  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive jgEiemh&  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, CUxSmN2[  
    %   and THETA is a vector of angles.  R and THETA must have the same 7;|6g8=  
    %   length.  The output Z is a matrix with one column for every P-value, Ypv"u0  
    %   and one row for every (R,THETA) pair. Ap}:^k5{  
    % lX5(KUN  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike $: Qi9N   
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) FpW{=4yk  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) p(0!TCBs  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 GVEjB;  
    %   for all p. 3)Paf`mr  
    % ,C=Fgxw(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \n<N>j@3  
    %   Zernike functions (order N<=7).  In some disciplines it is {Lq uOC1  
    %   traditional to label the first 36 functions using a single mode h ?p^DPo  
    %   number P instead of separate numbers for the order N and azimuthal Y=}b/[s6;  
    %   frequency M. y\x!Be;6Z.  
    % @9vz%1B<l  
    %   Example: cp.)K!$  
    % kv (N/G  
    %       % Display the first 16 Zernike functions _|6{(  
    %       x = -1:0.01:1;  d(v )SS  
    %       [X,Y] = meshgrid(x,x); fep#Kb%"e  
    %       [theta,r] = cart2pol(X,Y); S4?ss I  
    %       idx = r<=1; xhqIE3gd  
    %       p = 0:15; TAzhD.6C  
    %       z = nan(size(X)); Sl 6}5  
    %       y = zernfun2(p,r(idx),theta(idx)); W"wP%  
    %       figure('Units','normalized') PJ #uYM  
    %       for k = 1:length(p) KtV_DjH:  
    %           z(idx) = y(:,k); uOW9FAW  
    %           subplot(4,4,k) 39m#  
    %           pcolor(x,x,z), shading interp .` ,YUr$.  
    %           set(gca,'XTick',[],'YTick',[]) 'iL['4~.  
    %           axis square ~Dkje  
    %           title(['Z_{' num2str(p(k)) '}']) <cepRjDn  
    %       end !vett4C* K  
    % =AR'Pad  
    %   See also ZERNPOL, ZERNFUN. :5CwRg  
     "&C'K  
    %   Paul Fricker 11/13/2006 @+xkd(RfN  
    x%x[5.CT  
    5RlJybN"o  
    % Check and prepare the inputs: g<.VW 0  
    % ----------------------------- ?}lCS7&  
    if min(size(p))~=1 O[`n{Vl/  
        error('zernfun2:Pvector','Input P must be vector.') Iqo4INGIi  
    end t3bDi/m  
    ^(&:=r.PC  
    if any(p)>35 S)Ld^0w  
        error('zernfun2:P36', ... # <&=ZLN  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... M}@^8  
               '(P = 0 to 35).']) tnKzg21%  
    end UGR5ILf  
    Txw,B2e)>  
    % Get the order and frequency corresonding to the function number: +o_`k!  
    % ---------------------------------------------------------------- nTYqZlI,  
    p = p(:); ,L_p"A  
    n = ceil((-3+sqrt(9+8*p))/2); =ohdL_6  
    m = 2*p - n.*(n+2); Ui1K66{  
    TWxMexiW  
    % Pass the inputs to the function ZERNFUN: LW,!B.`@  
    % ---------------------------------------- 1 k H  
    switch nargin ~8|$KD4I  
        case 3 u2U@Qrs2  
            z = zernfun(n,m,r,theta); LXw&d]P  
        case 4 kv5D=0r  
            z = zernfun(n,m,r,theta,nflag); N 8mK^{  
        otherwise AY *  
            error('zernfun2:nargin','Incorrect number of inputs.') :Eob"WH  
    end VDQ&Bm JE  
    kuUH 2:L  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Ya,>E@oc  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. tc# rL   
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ozGK -$  
    %   order N and frequency M, evaluated at R.  N is a vector of ]Q)TqwYF  
    %   positive integers (including 0), and M is a vector with the U>:p`@  
    %   same number of elements as N.  Each element k of M must be a 6%fU}si,  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) i44KTC"sB  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is {qh`8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix .>H7i`1D`  
    %   with one column for every (N,M) pair, and one row for every >0~y "~M  
    %   element in R. 5@Rf]'1B0  
    % wdp 4-*  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- QMkLAZ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 7Qq>?H -  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to HK ;C*;vC%  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Fv(zql  
    %   for all [n,m]. eBBh/=Zc  
    % )|2g#hH5  
    %   The radial Zernike polynomials are the radial portion of the iaPY>EP1  
    %   Zernike functions, which are an orthogonal basis on the unit aP4r6lLv+  
    %   circle.  The series representation of the radial Zernike 2"%d!"  
    %   polynomials is Zb}=?fcL;@  
    % ~Ilgc CF  
    %          (n-m)/2 WXGLo;+>I  
    %            __ y+X%qTB  
    %    m      \       s                                          n-2s b}k`'++2,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Aja'`Mu  
    %    n      s=0 H#Vs3*VK  
    % "esV#%:#J  
    %   The following table shows the first 12 polynomials. JqFFI:Q5a  
    % |ukEnjI`u  
    %       n    m    Zernike polynomial    Normalization F5E KWP  
    %       --------------------------------------------- 3B;B#0g50  
    %       0    0    1                        sqrt(2) q}+9$v  
    %       1    1    r                           2 'm-s8]-W  
    %       2    0    2*r^2 - 1                sqrt(6) T#h`BtET[  
    %       2    2    r^2                      sqrt(6) CJ%7M`zy  
    %       3    1    3*r^3 - 2*r              sqrt(8) O^`Y>>a  
    %       3    3    r^3                      sqrt(8) n {^D_S  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) -LQ%)'J ZN  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) {OB\~$TH  
    %       4    4    r^4                      sqrt(10) m-ZVlj  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 9g " ?`_  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Rrk3EL  
    %       5    5    r^5                      sqrt(12) {t9'8R3  
    %       --------------------------------------------- <51(q_f  
    % C+2*m=r  
    %   Example: T;.#=h  
    % n?:s/6tP  
    %       % Display three example Zernike radial polynomials M-0BQs`N  
    %       r = 0:0.01:1; -w^E~J0*L  
    %       n = [3 2 5]; C2bN<K  
    %       m = [1 2 1]; @u$4{sjgf\  
    %       z = zernpol(n,m,r); Z?1.Y7Npr  
    %       figure X@ jml$;$  
    %       plot(r,z) T2^ @x9  
    %       grid on h.G/HHz  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Hz+edM UL  
    % rN_\tulOF  
    %   See also ZERNFUN, ZERNFUN2. iQs(Dh=*  
    r@k&1*&  
    % A note on the algorithm. |P~TZ  
    % ------------------------ CA:t](xqQ  
    % The radial Zernike polynomials are computed using the series +*F ;l\R  
    % representation shown in the Help section above. For many special Q>= :$I  
    % functions, direct evaluation using the series representation can \$GlB+ iCx  
    % produce poor numerical results (floating point errors), because '6[0NuB  
    % the summation often involves computing small differences between \vojF\  
    % large successive terms in the series. (In such cases, the functions ~eE2!/%9  
    % are often evaluated using alternative methods such as recurrence 'TezUBRAz  
    % relations: see the Legendre functions, for example). For the Zernike q[7C,o>/  
    % polynomials, however, this problem does not arise, because the X_O(j!h  
    % polynomials are evaluated over the finite domain r = (0,1), and @k ~Xem%<  
    % because the coefficients for a given polynomial are generally all zJXU>'obe  
    % of similar magnitude. #L[Atx  
    % (t fADaJM  
    % ZERNPOL has been written using a vectorized implementation: multiple M0 =K#/  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] k q_B5L?  
    % values can be passed as inputs) for a vector of points R.  To achieve K^?/  
    % this vectorization most efficiently, the algorithm in ZERNPOL ;S2^f;q~$  
    % involves pre-determining all the powers p of R that are required to -hyY5!rD  
    % compute the outputs, and then compiling the {R^p} into a single .kGg }  
    % matrix.  This avoids any redundant computation of the R^p, and &F)P3=  
    % minimizes the sizes of certain intermediate variables. #k5Nnv#(J  
    % - =QA{n  
    %   Paul Fricker 11/13/2006 lP\7=9rh^x  
    d#Ql>PrY  
    )t&j0`Yq  
    % Check and prepare the inputs: 1Ep!U#Del  
    % ----------------------------- @6(4}&sEdm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UC\CCDV#^  
        error('zernpol:NMvectors','N and M must be vectors.') ST] h NM  
    end :a nUr<  
    g]N!_Ib/!  
    if length(n)~=length(m) ~UEft  
        error('zernpol:NMlength','N and M must be the same length.') k7'B5zVd  
    end ggXg4~WL  
    (Lp<T!"  
    n = n(:); rp{q.fy'U  
    m = m(:); K;k&w; j  
    length_n = length(n); _cQTQ  
    cxp>4[gH  
    if any(mod(n-m,2)) 6;"jq92in*  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 3g0[( ;  
    end ^fQ ]>/u  
    n&p i  
    if any(m<0) 'K"V{  
        error('zernpol:Mpositive','All M must be positive.') f{t5r  
    end .|G([O^H  
    )C|[j@MD  
    if any(m>n) GNgPf"}K  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') *G7/  
    end ! c4pFQB  
    6X$]d^)h{  
    if any( r>1 | r<0 ) q5p!Ty"  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ]O,;t>  
    end x9hkE!{8  
    :&S6AP  
    if ~any(size(r)==1) I'Ui` :A  
        error('zernpol:Rvector','R must be a vector.') mG*[5?=r  
    end >ZTRwy`_(  
    /5b,&  
    r = r(:); fzT|{vG8  
    length_r = length(r); wrSw>sE"  
    ,qz$6oxh\  
    if nargin==4 3WHj|ENW  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); |_x U{Pu  
        if ~isnorm VJ8cls<  
            error('zernpol:normalization','Unrecognized normalization flag.') 3MPmLV#f  
        end 8E`A`z  
    else dUegHBw_`R  
        isnorm = false; P-[6'mw`  
    end *~YU0o  
    cv})^E$x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,UNCBnv1  
    % Compute the Zernike Polynomials <$7HX/P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =4+Wx8ZeW  
    I?<5 %  
    % Determine the required powers of r: plcz m 2  
    % ----------------------------------- [CTE"@A  
    rpowers = []; ~\B1\ G  
    for j = 1:length(n) Tk\?$n  
        rpowers = [rpowers m(j):2:n(j)]; (1Q G]1q  
    end VJviX[V?4  
    rpowers = unique(rpowers); E]Dcb*t  
    eb&#sZ  
    % Pre-compute the values of r raised to the required powers, _ `5?/\7  
    % and compile them in a matrix: v/gxQy+l  
    % ----------------------------- %P@V7n  
    if rpowers(1)==0 )nE=H,U?y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HG kL6o=  
        rpowern = cat(2,rpowern{:}); U?]}K S;6  
        rpowern = [ones(length_r,1) rpowern]; wyWe2d  
    else jNV)=s^ed[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1fajTT?  
        rpowern = cat(2,rpowern{:}); sa6/$  
    end b`: n i   
    '9@} =pE  
    % Compute the values of the polynomials: +OEqDXR+_  
    % -------------------------------------- sKD sps^$  
    z = zeros(length_r,length_n); s9^r[l@W0U  
    for j = 1:length_n "]H_;:{f  
        s = 0:(n(j)-m(j))/2; 0G?*i_u\  
        pows = n(j):-2:m(j); $D&N^}alW  
        for k = length(s):-1:1 re}_+sv U  
            p = (1-2*mod(s(k),2))* ... N(ov.l;  
                       prod(2:(n(j)-s(k)))/          ... FLf< gz  
                       prod(2:s(k))/                 ... b&]_5 GGc  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... :]]#X ~J  
                       prod(2:((n(j)+m(j))/2-s(k))); 3(&f!<Uy  
            idx = (pows(k)==rpowers); uUmkk  
            z(:,j) = z(:,j) + p*rpowern(:,idx); q%&JAX=  
        end KNvvYwFH]  
         =*2_B~`  
        if isnorm q)N]*~  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); oyfY>^bs  
        end vU(uu:U9  
    end |-+IF,j  
    kxvzAKz~  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  1:;S6{oQ  
    BVzMgn;  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Zg&o][T  
    jB"IJ$cD  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)