非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *B~:L"N
function z = zernfun(n,m,r,theta,nflag) c\rbLr}l)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. EG8R*Cm,}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &,kB7r"
% and angular frequency M, evaluated at positions (R,THETA) on the 9}Ave:X^
% unit circle. N is a vector of positive integers (including 0), and ZV^J5wYE
% M is a vector with the same number of elements as N. Each element |g^W @.P
% k of M must be a positive integer, with possible values M(k) = -N(k) a7d-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !eoec2h#5
% and THETA is a vector of angles. R and THETA must have the same p00Bgo
% length. The output Z is a matrix with one column for every (N,M) !Jp.3,\?~
% pair, and one row for every (R,THETA) pair. F"P:9`/
% aJ_Eh(cF
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3Qr!?=nf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), nt`l6b
% with delta(m,0) the Kronecker delta, is chosen so that the integral ojqX#>0K
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Cx'=2Y 7
% and theta=0 to theta=2*pi) is unity. For the non-normalized hQxe0Pdt
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &t:MWb;
% iDxgAV f*
% The Zernike functions are an orthogonal basis on the unit circle. ?0&>?-?
% They are used in disciplines such as astronomy, optics, and ({b/J0<@D
% optometry to describe functions on a circular domain. P[oB'
% ebVfny$D
% The following table lists the first 15 Zernike functions. 4/vQ=t
% l7um9@[4
% n m Zernike function Normalization 7U0):11X#
% -------------------------------------------------- #!@
]%4
% 0 0 1 1 U]3JCZ{]0E
% 1 1 r * cos(theta) 2 u8=|{)yL
% 1 -1 r * sin(theta) 2 k_`S[
% 2 -2 r^2 * cos(2*theta) sqrt(6) cIkLdh
% 2 0 (2*r^2 - 1) sqrt(3) :9qB{rLi}
% 2 2 r^2 * sin(2*theta) sqrt(6) .{>-.&
% 3 -3 r^3 * cos(3*theta) sqrt(8) QKQy)g
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~vS.D r
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z)0R$j`2
% 3 3 r^3 * sin(3*theta) sqrt(8) $5O&[/L
% 4 -4 r^4 * cos(4*theta) sqrt(10) H^0KNMf(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~8E
rl3=5{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #+=afJ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pTd@i1%Nr
% 4 4 r^4 * sin(4*theta) sqrt(10) g5`YUr+3?h
% -------------------------------------------------- _uacpN/<|
% KxI(#}5o&
% Example 1: ps[rYy
% 6A<aelE*i
% % Display the Zernike function Z(n=5,m=1) xNU}uW>>T
% x = -1:0.01:1; K+H82$
#
% [X,Y] = meshgrid(x,x); 0'",4=c#V
% [theta,r] = cart2pol(X,Y); n$9!G
% idx = r<=1; r\?*?sL
% z = nan(size(X)); f}A^rWO
% z(idx) = zernfun(5,1,r(idx),theta(idx)); qm_\#r
% figure QaV*}W
% pcolor(x,x,z), shading interp Fej$`2mRH
% axis square, colorbar )U?W+0[=
% title('Zernike function Z_5^1(r,\theta)') ;#*mB`
% Fwtwf{9I
% Example 2: W\/0&H\i
% gKnAw+u\
% % Display the first 10 Zernike functions ]d0Dd")n
% x = -1:0.01:1; D UeT
% [X,Y] = meshgrid(x,x); ZWv$K0agu
% [theta,r] = cart2pol(X,Y); Hmz[pTQ|87
% idx = r<=1; *)Y;`Yg$
% z = nan(size(X)); R_ csKj
% n = [0 1 1 2 2 2 3 3 3 3]; X~0P+E#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; gS!M7xy
% Nplot = [4 10 12 16 18 20 22 24 26 28]; t{ 'QMX
% y = zernfun(n,m,r(idx),theta(idx)); ,QDq+93
% figure('Units','normalized') a&&EjI
% for k = 1:10 jU=)4nx
% z(idx) = y(:,k); Z`[j;=[
% subplot(4,7,Nplot(k)) ,YH.n>`s+
% pcolor(x,x,z), shading interp lD(d9GVm{z
% set(gca,'XTick',[],'YTick',[]) jRGG5w}
% axis square u%2u%-w
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nV'B!q
% end /g21.*Z
% lB,MVsn18
% See also ZERNPOL, ZERNFUN2. q.*qZ\;K
W1#3+
% Paul Fricker 11/13/2006 $.`(2
]O 2_&cs
SN11J+
% Check and prepare the inputs: Dq\#:NnKvx
% ----------------------------- r/PsFv{8
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i;)88
error('zernfun:NMvectors','N and M must be vectors.') `toSU>:
end ]TGJ|X
E_$ST3
if length(n)~=length(m) I@.qon2V
error('zernfun:NMlength','N and M must be the same length.') ,2u]rLxx;
end { `-EX
i2y?CI
n = n(:); MEg|AhP
m = m(:); 5^pQ=Sgt
if any(mod(n-m,2)) ^c+6?
error('zernfun:NMmultiplesof2', ... C}45ZI4
'All N and M must differ by multiples of 2 (including 0).') m"u 9AOH k
end xU)~)eK
F/mD05{
if any(m>n) RL($h4d9
error('zernfun:MlessthanN', ... WpRi+NC}ln
'Each M must be less than or equal to its corresponding N.') )00#Rrt9
end vVE^Y
K&Zdk (l)
if any( r>1 | r<0 ) ?jy^WF`
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^fH]Rlx
end ~bvx<:8*%
Bf[D&O
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tBdvk>d
error('zernfun:RTHvector','R and THETA must be vectors.') eDG=-a4
end D`iWf3a.
PLwa!j
r = r(:); :N(L7&<
theta = theta(:); !i{@B
length_r = length(r); Dr<% Lr
if length_r~=length(theta) wHdq :,0-!
error('zernfun:RTHlength', ... R~)c(jj5
'The number of R- and THETA-values must be equal.') 2x'JR yef
end 7-bU9{5
o"K{^ L~u
% Check normalization: 4TUe*F@
ML
% -------------------- /\h&t6B1
if nargin==5 && ischar(nflag) XgU]Ktl
isnorm = strcmpi(nflag,'norm'); ;\(wJ{u?Y
if ~isnorm ZJ u\
error('zernfun:normalization','Unrecognized normalization flag.') Va?wG3 w
end %]RzC`NZ
else |\Jpjm)?
isnorm = false; 5=5~GX-kr
end ]`]m41+w
5>"-lB &
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B4_0+K H
% Compute the Zernike Polynomials m>:3Ku
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v6TH-
;g7nG{
% Determine the required powers of r: a4O!q;tu7
% ----------------------------------- { ~FYiX
m_abs = abs(m);
&-s!ko4z
rpowers = []; YjoN:z`b
for j = 1:length(n) i{
eDV
rpowers = [rpowers m_abs(j):2:n(j)]; $yI!YX&
end aZ@Ke$jD
rpowers = unique(rpowers); +Q8Bin
hA/K>Z
% Pre-compute the values of r raised to the required powers, gNo.&G [
% and compile them in a matrix: {{SeD:hx
% ----------------------------- Ik(TII_
if rpowers(1)==0 DU|0#z=*t5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7.hn@_
rpowern = cat(2,rpowern{:}); 0".pw; .}
rpowern = [ones(length_r,1) rpowern]; =VH, i/@
else /`Yp]l
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eICk}gfun
rpowern = cat(2,rpowern{:}); e{>X2UNW
end C3:4V2<_
oZA?}#DRl
% Compute the values of the polynomials: )?:V5UO\
% -------------------------------------- ;SEH|_/
y = zeros(length_r,length(n)); CZS{^6Ye
for j = 1:length(n) .u>IjK^
s = 0:(n(j)-m_abs(j))/2; CVyqr_n65/
pows = n(j):-2:m_abs(j); e@Q<hb0<eU
for k = length(s):-1:1 #e((F,1z
p = (1-2*mod(s(k),2))* ... .Qn54tS0q
prod(2:(n(j)-s(k)))/ ... S2HGf~rE
prod(2:s(k))/ ... |-bSoq7t
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \`-/\N
prod(2:((n(j)+m_abs(j))/2-s(k))); &~29 %Ns
idx = (pows(k)==rpowers); T9osueh4
y(:,j) = y(:,j) + p*rpowern(:,idx); 4=9To|U*
end R+
lwOVX
+ G#qS1
if isnorm k-@CcrepF
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .3l'&".'
end lX/6u
E_%
end RY2`v
pv
% END: Compute the Zernike Polynomials *z!!zRh3x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *y9 iuJ}
g Q%'2m+
% Compute the Zernike functions: (Hb
i+IHV
% ------------------------------ 6TvlK*<r=
idx_pos = m>0; :?2+'+%'
idx_neg = m<0; ]1>U@oK
6?b9~xRW
z = y; TK<~(Dk
if any(idx_pos)
Pou-AzEP$
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); cVv+,l4V0
end 3U9]&7^
if any(idx_neg) !:PF |dZ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); dtw1Am#Ci
end *T'
/5,rX2
SV}q8z\
% EOF zernfun