切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11424阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 wef QmRK  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! bBDgyFSI <  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `;i| %$TU  
    function z = zernfun(n,m,r,theta,nflag) 1{u;-pg  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ) d\Se9!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,@[Q:fY  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gp$+Qd  
    %   unit circle.  N is a vector of positive integers (including 0), and qk:F6kL\`  
    %   M is a vector with the same number of elements as N.  Each element g3Ff<P P  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) N\xqy-L9  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, q A G0t{K  
    %   and THETA is a vector of angles.  R and THETA must have the same M/B_-8B_D  
    %   length.  The output Z is a matrix with one column for every (N,M)  {kmaMP  
    %   pair, and one row for every (R,THETA) pair. Q&n|tQ*4  
    % }3vB_0[r  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike aY"qEH7]  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /'ybl^Km  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3`="4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ef|Y2<P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized jMd's|#OP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o_={xrmIA  
    % czedn_}%Q  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;/e!!P]jP  
    %   They are used in disciplines such as astronomy, optics, and ]C]tLJ!M  
    %   optometry to describe functions on a circular domain. N8m^h:b  
    % )Hw;{5p@  
    %   The following table lists the first 15 Zernike functions. |w\D6d]o  
    % 'kYV}rq;l  
    %       n    m    Zernike function           Normalization ?VReKv1\  
    %       -------------------------------------------------- |!&,etu  
    %       0    0    1                                 1 /i$&89yod  
    %       1    1    r * cos(theta)                    2 A0&~U0*(~  
    %       1   -1    r * sin(theta)                    2 (VC_vz-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) o5zth^p[  
    %       2    0    (2*r^2 - 1)                    sqrt(3) '+-R 7#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) dJCu`34Y'|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) r:YAn^Lg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S0"O U0`N  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) T@k&YJ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ty/jTo}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \`4}h[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `W|2Xi=^5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qr6WSBc  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l*%?C*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) r;S%BFMJS  
    %       -------------------------------------------------- [[TB.'k  
    % Sgr<z d'b  
    %   Example 1: x\t>|DB  
    % B?TAS  
    %       % Display the Zernike function Z(n=5,m=1) 2]Y (<PC  
    %       x = -1:0.01:1; ]=h Ts%]w  
    %       [X,Y] = meshgrid(x,x); ir/2/ E  
    %       [theta,r] = cart2pol(X,Y); <!=TxV>}A  
    %       idx = r<=1; <pi q?:ac  
    %       z = nan(size(X)); !.p!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); orTTjV]_m  
    %       figure =m-_0xo  
    %       pcolor(x,x,z), shading interp [i&z_e)  
    %       axis square, colorbar ~ocd4,d=  
    %       title('Zernike function Z_5^1(r,\theta)') hWDgMmo7  
    % MRmz/ZmRM  
    %   Example 2: ?F`lI""E  
    % M: `FZ}&L  
    %       % Display the first 10 Zernike functions Bt.W_p  
    %       x = -1:0.01:1; @#o$~'my  
    %       [X,Y] = meshgrid(x,x); LzgD#Kz  
    %       [theta,r] = cart2pol(X,Y); }rGDM  
    %       idx = r<=1; Z$[A.gD4  
    %       z = nan(size(X)); c~c3;  
    %       n = [0  1  1  2  2  2  3  3  3  3]; WgY\m&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; BNzL+"W  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6"%[s@C  
    %       y = zernfun(n,m,r(idx),theta(idx)); '^P Ud`  
    %       figure('Units','normalized') /G84T,H  
    %       for k = 1:10 VgoQz]z  
    %           z(idx) = y(:,k); =OjzBiHR  
    %           subplot(4,7,Nplot(k)) XY%8yII6  
    %           pcolor(x,x,z), shading interp ((X"D/F]  
    %           set(gca,'XTick',[],'YTick',[]) Jl5<9x  
    %           axis square ;tKL/eI  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R~c(^.|r  
    %       end H|,{^b@9  
    % 5B98}N  
    %   See also ZERNPOL, ZERNFUN2. rj{'X  /  
    N ~ LR  
    %   Paul Fricker 11/13/2006 iJsw:Nc  
    |,yS>kjp  
    i%\nJs*  
    % Check and prepare the inputs: 4+ 4? 0R  
    % ----------------------------- /M'b137  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [N$@nA-d  
        error('zernfun:NMvectors','N and M must be vectors.') ,lN!XP{M6w  
    end mexI }  
    iPkG=*Ip(%  
    if length(n)~=length(m)  sRoZvp 5  
        error('zernfun:NMlength','N and M must be the same length.') T!;<Fy"p  
    end ~I'Z=Wo  
    {0QA+[Yd&!  
    n = n(:); ,e>ugI_;*  
    m = m(:); $G=\i>R.  
    if any(mod(n-m,2)) s:fnOMv "  
        error('zernfun:NMmultiplesof2', ... FyY;F;4P  
              'All N and M must differ by multiples of 2 (including 0).') $9b||L  
    end VD=$:F]  
    bH,Jddc  
    if any(m>n) tB1Qr**  
        error('zernfun:MlessthanN', ... Th!S?{v   
              'Each M must be less than or equal to its corresponding N.') +ckj]yA;  
    end Kfj*#) SZ  
    ,2?C^gxt  
    if any( r>1 | r<0 ) 'ugG^2Y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0 TS:o/{(a  
    end .{8lG^0U<  
    9xu&n%L=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E+3~w?1  
        error('zernfun:RTHvector','R and THETA must be vectors.') GZ4{<QG  
    end )s^XVs.-  
    +bQn2PG=  
    r = r(:); *tP,Ol  
    theta = theta(:); 1r.q]^Pq~  
    length_r = length(r); +SP5+"y@  
    if length_r~=length(theta) !BQ!] u  
        error('zernfun:RTHlength', ... T]i~GkD\  
              'The number of R- and THETA-values must be equal.') ivGxtx  
    end bqLv81V  
    w{UU(  
    % Check normalization: wr#+q1 v  
    % -------------------- Z1OcGRN!  
    if nargin==5 && ischar(nflag) 6zNN 8  
        isnorm = strcmpi(nflag,'norm'); 8[y7(Xw  
        if ~isnorm _c #P  
            error('zernfun:normalization','Unrecognized normalization flag.') F,EHZ,<V  
        end C3memimN  
    else 9PR&/Q F5  
        isnorm = false; $23R%8j   
    end ?px x,o6l  
    as\V, {<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m1`ln5(R  
    % Compute the Zernike Polynomials :!#-k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XBeHyQp  
    Dic(G[  
    % Determine the required powers of r: Q2#)Jx\6!  
    % ----------------------------------- VSSiuo'5w  
    m_abs = abs(m); bRIb'%=+GA  
    rpowers = []; Z`:V~8=l  
    for j = 1:length(n) }k ,Si9O  
        rpowers = [rpowers m_abs(j):2:n(j)]; \ tQi7yj4  
    end Dljq  
    rpowers = unique(rpowers); fh2Pn!h+  
    1`)R#$h  
    % Pre-compute the values of r raised to the required powers,  T  
    % and compile them in a matrix: ZERd#7@m+  
    % ----------------------------- RnTPU`  
    if rpowers(1)==0 !-7(.i-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t Y^:C[  
        rpowern = cat(2,rpowern{:}); RSkpf94`  
        rpowern = [ones(length_r,1) rpowern]; -'I)2/%g  
    else 'uPqe.#?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j5RM S V  
        rpowern = cat(2,rpowern{:}); *vj5J"Y(;t  
    end ,qr)}s-  
    Cf10 ud   
    % Compute the values of the polynomials: |e pe;/  
    % -------------------------------------- =F:d#j>F  
    y = zeros(length_r,length(n)); g"#+U7O  
    for j = 1:length(n) I015)vFc  
        s = 0:(n(j)-m_abs(j))/2; W*_ifZ0s.  
        pows = n(j):-2:m_abs(j); ]IoS-)$Z/  
        for k = length(s):-1:1 MW&;{m?2(  
            p = (1-2*mod(s(k),2))* ... (*M(gM{;  
                       prod(2:(n(j)-s(k)))/              ... IYj-cm  
                       prod(2:s(k))/                     ... swJwy~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .rMGI "  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); -MU^%t;-  
            idx = (pows(k)==rpowers); fY6&PuDf.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +-{H T+W  
        end czT$mKj3  
         q= tDMK'h  
        if isnorm D)mqe-%1  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Eu0 _/{:  
        end f"PApV9[  
    end pQqZ4L6v  
    % END: Compute the Zernike Polynomials t<`BaU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UV:_5"-  
    .+8w\>w6g  
    % Compute the Zernike functions: v0HFW%YJ^J  
    % ------------------------------ XBDlQe|>  
    idx_pos = m>0; L>PpXTWwy  
    idx_neg = m<0; ~+|p.(I  
    :|d3BuY  
    z = y; dpE+[O_  
    if any(idx_pos) %i96@ 6O  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =?/J.[)<*  
    end *W0`+#Dcv  
    if any(idx_neg) D!y Cnq=8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); kdv>QZ  
    end } $OQw'L[  
    \75%[;.  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) l3.HL> o  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. xKIm2% U9  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated I|08[ mO  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive TMq\}k-I5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, I*'QD)  
    %   and THETA is a vector of angles.  R and THETA must have the same 6Si z9  
    %   length.  The output Z is a matrix with one column for every P-value, 0;]tC\D1  
    %   and one row for every (R,THETA) pair. 3VcG /rf  
    % >7 4'g }  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike x! Z|^q  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) (?$}Vp  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;i\i+:=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 3'IF? ](]U  
    %   for all p. I>fEwMk~  
    % P1)9OE  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Azu$F5G!n  
    %   Zernike functions (order N<=7).  In some disciplines it is ?7(`2=J  
    %   traditional to label the first 36 functions using a single mode Dy5'm?  
    %   number P instead of separate numbers for the order N and azimuthal ,US]  
    %   frequency M. iN=-N=  
    % ,7<5dIdZ  
    %   Example: \V}?K0#bt  
    % U%"v7G-  
    %       % Display the first 16 Zernike functions L`3 g5)V  
    %       x = -1:0.01:1; YJF!_kg.  
    %       [X,Y] = meshgrid(x,x); qm] k (/w  
    %       [theta,r] = cart2pol(X,Y); {&G0jsA  
    %       idx = r<=1; 0oc5ahp  
    %       p = 0:15; F"~uu9u  
    %       z = nan(size(X)); Bv@NE2  
    %       y = zernfun2(p,r(idx),theta(idx)); 3 /oVl 6  
    %       figure('Units','normalized') x2(hp  
    %       for k = 1:length(p) Uz[#t1*  
    %           z(idx) = y(:,k); #jbo! wdg  
    %           subplot(4,4,k) r +d%*Dx  
    %           pcolor(x,x,z), shading interp <4D.P2ct  
    %           set(gca,'XTick',[],'YTick',[]) evz{@;.R  
    %           axis square IL*C/y  
    %           title(['Z_{' num2str(p(k)) '}']) o[&*vc)  
    %       end ALJ^XvB4V  
    % AEp|#H' >  
    %   See also ZERNPOL, ZERNFUN. 6XKiVP;h%  
    ]?-8[v~{C  
    %   Paul Fricker 11/13/2006 =c[9:&5Q  
    :$L^l{gT  
    SI^!e1@M[  
    % Check and prepare the inputs: dXg.[|S*  
    % ----------------------------- !^:b?M  
    if min(size(p))~=1 (V!:6  
        error('zernfun2:Pvector','Input P must be vector.') :I[nA?d[&  
    end Z vM~]8m  
    1-.6psE  
    if any(p)>35 7vF+Di(B  
        error('zernfun2:P36', ... K!=Y4"5%  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 4|ML#aRz  
               '(P = 0 to 35).']) :6:;Z qn  
    end 7A<X!a  
    W+k SL{0  
    % Get the order and frequency corresonding to the function number: qkPvE;"  
    % ---------------------------------------------------------------- `O/1aW1  
    p = p(:); #{-B`FAQ  
    n = ceil((-3+sqrt(9+8*p))/2); ckykRqk}  
    m = 2*p - n.*(n+2); FhpS#, Y$  
    suiO%H^t  
    % Pass the inputs to the function ZERNFUN: r01Z 0>  
    % ---------------------------------------- pMndyuoJl  
    switch nargin {DlQTgP  
        case 3 Qu"zzb"k  
            z = zernfun(n,m,r,theta); | KY6IGcqV  
        case 4 lC|`DG-B  
            z = zernfun(n,m,r,theta,nflag); "tdF#>x  
        otherwise __LR!F]=i  
            error('zernfun2:nargin','Incorrect number of inputs.') AWo\u!j  
    end ~XU%_Hz  
    L6<.>\^Z"  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ? $$Xg3w_#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }B1f_T  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of x_L5NsO:  
    %   order N and frequency M, evaluated at R.  N is a vector of ]8 vsr$E#  
    %   positive integers (including 0), and M is a vector with the [Z]%jABR  
    %   same number of elements as N.  Each element k of M must be a 'Hf+Y/`  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8SGqDaRt  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Z; 6N7U  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "zE>+zRl  
    %   with one column for every (N,M) pair, and one row for every ly9tI-E  
    %   element in R. zy'e|92aO  
    % a=_:`S]}  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 6K7DZ96L  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _|jEuif  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 7H])2:)  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 V |cPAT%  
    %   for all [n,m]. n?(sn  
    % N++ ;}j  
    %   The radial Zernike polynomials are the radial portion of the R,8 W7 3  
    %   Zernike functions, which are an orthogonal basis on the unit @b&_xT  
    %   circle.  The series representation of the radial Zernike 4++ &P9  
    %   polynomials is "UYlC0 S\  
    % dD351!-  
    %          (n-m)/2 [zJ|61^  
    %            __ `;Od0uh  
    %    m      \       s                                          n-2s `a6AES'w$  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r (&i c3/-  
    %    n      s=0 X<sM4dwxE  
    % FFtB#  
    %   The following table shows the first 12 polynomials. 6w `.'5  
    % ;:  xE'-  
    %       n    m    Zernike polynomial    Normalization %`bn=~T^  
    %       --------------------------------------------- ##6u  
    %       0    0    1                        sqrt(2) oL U!x  
    %       1    1    r                           2 }vxRjO,  
    %       2    0    2*r^2 - 1                sqrt(6) >PYc57S1c  
    %       2    2    r^2                      sqrt(6) 0e +Qn&$#4  
    %       3    1    3*r^3 - 2*r              sqrt(8) hG2WxYk  
    %       3    3    r^3                      sqrt(8) s5\<D7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 1lYQR`Uh  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) P"{yV?CNg  
    %       4    4    r^4                      sqrt(10) 3~%M4(  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) }ijFvIHV  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) "_0sW3rG  
    %       5    5    r^5                      sqrt(12) 9\Md.>  
    %       --------------------------------------------- B7.<A#y2  
    %  G){A&F  
    %   Example: o&$Of  
    % 14`S9SL{V  
    %       % Display three example Zernike radial polynomials \E1CQP-  
    %       r = 0:0.01:1; .6c Bx  
    %       n = [3 2 5]; B{K_?ae!  
    %       m = [1 2 1]; ;TKsAU  
    %       z = zernpol(n,m,r); GdM|?u&s"  
    %       figure LfvNO/:,  
    %       plot(r,z) u p zBd]  
    %       grid on }XD=N#p@z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /Yj; '\3  
    % !{F\ \D/  
    %   See also ZERNFUN, ZERNFUN2. XnKf<|j6k  
    ky{@*fg.  
    % A note on the algorithm. 0HI0/Tvu$<  
    % ------------------------ =, 64Qbau  
    % The radial Zernike polynomials are computed using the series ^7Ebg5<  
    % representation shown in the Help section above. For many special .[ s6x5M  
    % functions, direct evaluation using the series representation can z(#CO<C.t  
    % produce poor numerical results (floating point errors), because q}]z8 L  
    % the summation often involves computing small differences between JSoInR1E  
    % large successive terms in the series. (In such cases, the functions )`#SMLMy~  
    % are often evaluated using alternative methods such as recurrence mUfANlQ:  
    % relations: see the Legendre functions, for example). For the Zernike IN@ =UAc&  
    % polynomials, however, this problem does not arise, because the v2ab84 C*  
    % polynomials are evaluated over the finite domain r = (0,1), and je74As[  
    % because the coefficients for a given polynomial are generally all ^YB3$:@$U  
    % of similar magnitude. yPf,GB"  
    % m0*_  
    % ZERNPOL has been written using a vectorized implementation: multiple O{Z bpa^  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _=K\E0I.m  
    % values can be passed as inputs) for a vector of points R.  To achieve bwK1XlfD.s  
    % this vectorization most efficiently, the algorithm in ZERNPOL :n OCs  
    % involves pre-determining all the powers p of R that are required to C_ W%]8u  
    % compute the outputs, and then compiling the {R^p} into a single +FC+nE}O  
    % matrix.  This avoids any redundant computation of the R^p, and 7WHq'R{@  
    % minimizes the sizes of certain intermediate variables. h$d`Jmaq  
    % @`nU=kY/  
    %   Paul Fricker 11/13/2006 +;a\ gF^  
    7Q|v5@;pU  
    'DUY f5nF  
    % Check and prepare the inputs: |~+bbN|b  
    % ----------------------------- gb26Y!7%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;Ouu+#s  
        error('zernpol:NMvectors','N and M must be vectors.') ]YUst]gu3  
    end d z\yP v~  
    ^ x_+ &  
    if length(n)~=length(m) *X 2dS {  
        error('zernpol:NMlength','N and M must be the same length.') B7n1'?  
    end <%"CQT6g %  
    8p]Krs:  
    n = n(:); }q)dXFL=I#  
    m = m(:); #VuiY  
    length_n = length(n); qSQsY:]j0  
    5r^u7k  
    if any(mod(n-m,2)) 7Pr5`#x#  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') w"!zLB&9[  
    end K>Tv M&  
    tj:>o#D  
    if any(m<0) 3 Ol`i$  
        error('zernpol:Mpositive','All M must be positive.') > M4QEv  
    end !I Byv%m&\  
    {+ WI>3  
    if any(m>n) @|}=W Q  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') `IK3e9QpcA  
    end Bz6Zy)&sAL  
    H?j}!JzAC  
    if any( r>1 | r<0 ) gal.<SVW  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') mg *kB:p  
    end <a=k"'0  
    zg{  
    if ~any(size(r)==1) M!iYj+nrP  
        error('zernpol:Rvector','R must be a vector.') h|.*V$3  
    end s ]Db<f  
    5x}Or fDU  
    r = r(:); I< Rai"  
    length_r = length(r); ea!Znld]  
    ET q~, g'  
    if nargin==4 6E.64+PJw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); XLFo"f  
        if ~isnorm u/4|Akui  
            error('zernpol:normalization','Unrecognized normalization flag.') |79n 1;+\?  
        end `L {dF  
    else G 4 C 7  
        isnorm = false; :_+Fe,h>|  
    end f"A?\w @  
    4vf,RjB-5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -_~T;cj6  
    % Compute the Zernike Polynomials Z sbE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A[X~:p.^G  
    \B D'"  
    % Determine the required powers of r: YGr^uTQb  
    % ----------------------------------- S-)%#  
    rpowers = []; I)F3sS45}  
    for j = 1:length(n) ;PhX[y^*  
        rpowers = [rpowers m(j):2:n(j)]; `xd{0EvF  
    end JheF}/Bx  
    rpowers = unique(rpowers); H He~OxWg  
    6WX+p3Kv  
    % Pre-compute the values of r raised to the required powers, #[ hJm'G  
    % and compile them in a matrix: w1P8p>vA1  
    % ----------------------------- }u8D5Q<(  
    if rpowers(1)==0 [lX3":)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :1\QM'O  
        rpowern = cat(2,rpowern{:}); KRh95B GU  
        rpowern = [ones(length_r,1) rpowern]; 3QzHQU  
    else ,-{ 2ai_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x'wT%/hp  
        rpowern = cat(2,rpowern{:}); \!,@pe_  
    end c`h/x>fa  
    (@1*-4l  
    % Compute the values of the polynomials: l/w<R  
    % -------------------------------------- Mlr}v^"G  
    z = zeros(length_r,length_n); xYCX}bksh  
    for j = 1:length_n Xm}~u?$3  
        s = 0:(n(j)-m(j))/2; >E`p@ e+  
        pows = n(j):-2:m(j); -964#>n[  
        for k = length(s):-1:1 4`#3p@-  
            p = (1-2*mod(s(k),2))* ... RAW(lZ(  
                       prod(2:(n(j)-s(k)))/          ... pn6!QpV5  
                       prod(2:s(k))/                 ... yp:_W@  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... TGe{NUO  
                       prod(2:((n(j)+m(j))/2-s(k))); 7I_lTu(  
            idx = (pows(k)==rpowers); 4#BoS9d2I<  
            z(:,j) = z(:,j) + p*rpowern(:,idx); =+j>?Yi  
        end `* =Tf  
         YaDr.?  
        if isnorm +]%d'h  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Ge]2g0  
        end jTJ]: EN  
    end idr,s\$>  
    E)dV;1t  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  rIg1]q  
    Y@N}XH<4R  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 "o/:LCE  
    ;sCf2TD,_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)