切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11491阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 'c`jyn  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! n&XGBwgW  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `TKD<&oL  
    function z = zernfun(n,m,r,theta,nflag) )9nElb2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. IO$z%r7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N # '|'r+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the hsLzj\)6  
    %   unit circle.  N is a vector of positive integers (including 0), and !b|'Vp^U  
    %   M is a vector with the same number of elements as N.  Each element H}0dd"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jFG0`n}I  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [bQj,PZ&  
    %   and THETA is a vector of angles.  R and THETA must have the same $a;]_Y  
    %   length.  The output Z is a matrix with one column for every (N,M) ^s/  
    %   pair, and one row for every (R,THETA) pair. irBDGT~  
    % wdE?SDs  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +SXIZ`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !$qKb_#nC  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral w Fn[9_`*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xycH~ ?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }OShT+xeX  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^(x^6d  
    % UH`hOJ?  
    %   The Zernike functions are an orthogonal basis on the unit circle. $So%d9k  
    %   They are used in disciplines such as astronomy, optics, and mz7l'4']+  
    %   optometry to describe functions on a circular domain. u62)QJE  
    % Kf,-4)  
    %   The following table lists the first 15 Zernike functions. VrP}#3I  
    % pb;")Q'  
    %       n    m    Zernike function           Normalization ZFh+x@  
    %       -------------------------------------------------- @$@mqHI}  
    %       0    0    1                                 1 y>VcgLIB  
    %       1    1    r * cos(theta)                    2 /i|z.nNO  
    %       1   -1    r * sin(theta)                    2 $6f\uuTU2"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) |PVt}*0"  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3eIr{xs  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j0-McLc  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9L eNe}9v  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) uYO|5a<f~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /M0/-pV 9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) V2&^!#=s  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /!FWuRe^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rx ~[Zs+*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) yYJY;".H  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /ONV5IkPy  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &Y>zT9]$K  
    %       -------------------------------------------------- x ,/TXTZ6  
    % 8s}J!/2  
    %   Example 1: 5rxA<G s  
    % 5CYo7mJ6+  
    %       % Display the Zernike function Z(n=5,m=1) Y#V8(DTyH  
    %       x = -1:0.01:1; Sq]pQ8  
    %       [X,Y] = meshgrid(x,x); i\}:hU-U  
    %       [theta,r] = cart2pol(X,Y); 0`#(Toe{B  
    %       idx = r<=1; Xg<[fwW  
    %       z = nan(size(X)); VAQ)Hc]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &&8'0 .M{  
    %       figure !-]C;9 Zd  
    %       pcolor(x,x,z), shading interp $+= <(*  
    %       axis square, colorbar JyBp-ii  
    %       title('Zernike function Z_5^1(r,\theta)') [`fI:ao|  
    % $ACx*e%  
    %   Example 2: w; TkkDH  
    % !AN^ ,v]D  
    %       % Display the first 10 Zernike functions U\<-mXv  
    %       x = -1:0.01:1; {[G`Z9]z&-  
    %       [X,Y] = meshgrid(x,x); lPq\=V  
    %       [theta,r] = cart2pol(X,Y); qc-,+sn(  
    %       idx = r<=1; wGKo.lt   
    %       z = nan(size(X)); f_mhD dq  
    %       n = [0  1  1  2  2  2  3  3  3  3];  .jg0a  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >=,ua u7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; x!7yU_ls`  
    %       y = zernfun(n,m,r(idx),theta(idx)); /="HqBI#i  
    %       figure('Units','normalized') eb:A1f4L  
    %       for k = 1:10 mX# "+X|  
    %           z(idx) = y(:,k); y2Bh?>pg  
    %           subplot(4,7,Nplot(k)) BNm4k7 ]M  
    %           pcolor(x,x,z), shading interp {ShgJ ;! Q  
    %           set(gca,'XTick',[],'YTick',[]) _kraMQ>  
    %           axis square AHh#Fx+K  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q s(Bnb;  
    %       end Zc5 :]]  
    % ,{}#8r`+*  
    %   See also ZERNPOL, ZERNFUN2. J\co1kO9/  
    _GaJXWMbk  
    %   Paul Fricker 11/13/2006 , |E$'  
    lJ  
    *YV S|6bs  
    % Check and prepare the inputs: D0bnN1VP  
    % ----------------------------- x"B' zP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4*H"Z(HP  
        error('zernfun:NMvectors','N and M must be vectors.') rzLd"`  
    end zQ)+/e(8  
    'ig, ATY  
    if length(n)~=length(m) [ = M%  
        error('zernfun:NMlength','N and M must be the same length.') ]KK`5Dv|,e  
    end 649 !=  
    I44s(G1j l  
    n = n(:); %_)zWlN  
    m = m(:); Cnh|D^{s  
    if any(mod(n-m,2)) *o?i:LE]  
        error('zernfun:NMmultiplesof2', ... 1 =GI&f2I  
              'All N and M must differ by multiples of 2 (including 0).') ! p.^ITM3S  
    end C3;[e0.1b  
    Ej(2w Q  
    if any(m>n) ]#eh&jw  
        error('zernfun:MlessthanN', ... n Y w\'c  
              'Each M must be less than or equal to its corresponding N.') :hqZPajE  
    end e1(h</MU2  
    n~r 9!m$<  
    if any( r>1 | r<0 ) BSUPS+@+  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !C&%T]  
    end nB@UKX  
    !k&)EWP?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F'W> 8  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4('JwZw\!  
    end K&`Awv  
    00<{:  
    r = r(:); 8I#D`yVKc  
    theta = theta(:); W'$kZ/%[  
    length_r = length(r); \HSicV#i  
    if length_r~=length(theta) Ol+Kp!ocY  
        error('zernfun:RTHlength', ... DdjCn`jqlf  
              'The number of R- and THETA-values must be equal.') uH{'gd,q8  
    end 3)E(RyQA3  
    F @SG((`  
    % Check normalization: ,x#ztdvr  
    % -------------------- S!dHNA:iU  
    if nargin==5 && ischar(nflag) /tKGwX]y  
        isnorm = strcmpi(nflag,'norm'); ~<O,Vs_C/  
        if ~isnorm h7W}OF_=y  
            error('zernfun:normalization','Unrecognized normalization flag.') tY_5Pz(@  
        end _w u*M  
    else 3wt  
        isnorm = false; sBjXE>_#)  
    end `BT^a =5  
    I'_v{k5ZI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zixE Mi[8  
    % Compute the Zernike Polynomials Q"}s>]k3_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bymny>.M  
    Q1V2pP+=@  
    % Determine the required powers of r: /tC9G@Hl  
    % ----------------------------------- *\q8BZ  
    m_abs = abs(m); gGbI3^ r#  
    rpowers = []; ;'1Apy  
    for j = 1:length(n) tgN92Q.i6T  
        rpowers = [rpowers m_abs(j):2:n(j)]; c E76L%O  
    end n2'|.y}Um:  
    rpowers = unique(rpowers); h6QWH  
    6VR[)T%  
    % Pre-compute the values of r raised to the required powers, n7iE8SK|k  
    % and compile them in a matrix: &o.iUk  
    % ----------------------------- -Bv 12ymLG  
    if rpowers(1)==0 l>Av5g)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mxL;;-  
        rpowern = cat(2,rpowern{:}); FAtWsk*pgY  
        rpowern = [ones(length_r,1) rpowern]; jgRCs.6  
    else DTy/jaK  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jsm0kz  
        rpowern = cat(2,rpowern{:}); }tR'Hz2  
    end n-OWwev)  
    d}% (jJ(I  
    % Compute the values of the polynomials: ptR  
    % -------------------------------------- {3 o% d:  
    y = zeros(length_r,length(n)); IwRQL%  
    for j = 1:length(n) <.$,`m,  
        s = 0:(n(j)-m_abs(j))/2; 4x]NUt  
        pows = n(j):-2:m_abs(j); 6Ct0hk4  
        for k = length(s):-1:1 VM;g +RRq  
            p = (1-2*mod(s(k),2))* ... .0 X$rX=  
                       prod(2:(n(j)-s(k)))/              ... m/?h2McS  
                       prod(2:s(k))/                     ... <9N4"d !A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;Jo*|pju  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 32y[  
            idx = (pows(k)==rpowers); =ZMF]|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); |_I[1%&`N  
        end }200g_^  
         p">WK<N  
        if isnorm  2}!R T  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); L9J;8+ge  
        end enPYj.*/0  
    end k+txb?  
    % END: Compute the Zernike Polynomials 3N3*`?5c<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ij,Yuo  
    B$`d&7I;D  
    % Compute the Zernike functions: !PI0oh  
    % ------------------------------ [oJ& J>U'  
    idx_pos = m>0; ?\d5;%YSr  
    idx_neg = m<0; d~/xGB`<  
    d'q&Lq  
    z = y; 'A1E^rl]=  
    if any(idx_pos) PHQcstW  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i&pMF O  
    end ChVY Vx(  
    if any(idx_neg) )BpIxWd?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Vy r] x  
    end l]>!`'sJL  
    VLx T"]f  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) eA10xpM0  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. i(z+a6^@|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 35}P0+  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $Q#?`j  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, C~:b*X   
    %   and THETA is a vector of angles.  R and THETA must have the same %qONJP  
    %   length.  The output Z is a matrix with one column for every P-value, <BQ%8}  
    %   and one row for every (R,THETA) pair. z 3Zu C{  
    % EI<"DB   
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike -z&9 DWH  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Q.<giBh  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @ljZw(  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 s~/57S  
    %   for all p. rdFs?hO  
    % #qPV Qt  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 RlPjki"Mg  
    %   Zernike functions (order N<=7).  In some disciplines it is xL|?(pQ/BK  
    %   traditional to label the first 36 functions using a single mode )!BB/'DRQ  
    %   number P instead of separate numbers for the order N and azimuthal FV`3,NFk  
    %   frequency M. FU^Y{sbDg  
    % #T Z!#,q  
    %   Example: =":@Foa  
    % rffVfw  
    %       % Display the first 16 Zernike functions ER/\ +Z#Z  
    %       x = -1:0.01:1; T3 =)F%  
    %       [X,Y] = meshgrid(x,x); W&Y4Dq^  
    %       [theta,r] = cart2pol(X,Y); Wnb)*pPP  
    %       idx = r<=1; >Zi|$@7t-  
    %       p = 0:15; :U7;M}0  
    %       z = nan(size(X)); ='KPT1dW*  
    %       y = zernfun2(p,r(idx),theta(idx)); TeOFAIU  
    %       figure('Units','normalized') UzXDi#Ky  
    %       for k = 1:length(p) 4GEjW4E  
    %           z(idx) = y(:,k); <<i=+ed8eP  
    %           subplot(4,4,k) |.^^|@+  
    %           pcolor(x,x,z), shading interp  <Wp`[S]r  
    %           set(gca,'XTick',[],'YTick',[]) $cyLI+uz|  
    %           axis square Ty)gPh6O  
    %           title(['Z_{' num2str(p(k)) '}']) gGF$M `  
    %       end *sIi$1vHu  
    % v\J!yz  
    %   See also ZERNPOL, ZERNFUN. 7$;c6_se  
    ;]|m((15G  
    %   Paul Fricker 11/13/2006 u!sSgx =  
    /M5=tW#e  
    rjfc.l#v  
    % Check and prepare the inputs: lv*Wnn@k  
    % ----------------------------- T]5U_AI@  
    if min(size(p))~=1 avF&F  
        error('zernfun2:Pvector','Input P must be vector.') BF@m )w.v  
    end V*0Y_T{_  
    1t!&xvhG  
    if any(p)>35 m~b#:4D3  
        error('zernfun2:P36', ... *C,$W\6sz  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... wI|bBfd(  
               '(P = 0 to 35).']) c`Lpqs`  
    end :/n ?4K^  
    Ly@U\%.  
    % Get the order and frequency corresonding to the function number: \Qe'?LRu{  
    % ---------------------------------------------------------------- k i~Raa/e  
    p = p(:); "i;*\+x  
    n = ceil((-3+sqrt(9+8*p))/2); QSlf=VK*y  
    m = 2*p - n.*(n+2); EfMG(oI  
    F>hVrUD8  
    % Pass the inputs to the function ZERNFUN: Zb5T90s%  
    % ---------------------------------------- gME:\ud$  
    switch nargin c~Q`{2%+  
        case 3 >EPaZp6  
            z = zernfun(n,m,r,theta); D| 3AjzW  
        case 4  p1[WGeV  
            z = zernfun(n,m,r,theta,nflag); \J#I}-a&j  
        otherwise F!DrZd>\  
            error('zernfun2:nargin','Incorrect number of inputs.') FuRn%)DA5  
    end r-Xjy*T  
    @pyA;>U  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) NWq [22X |  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. l-JKcsM  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of oWn_3gzw;  
    %   order N and frequency M, evaluated at R.  N is a vector of W"DxIy  
    %   positive integers (including 0), and M is a vector with the ?N9adL &b  
    %   same number of elements as N.  Each element k of M must be a $txWVjR?\  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) J0{WqA.P  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is $ET/0v"V  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix rSzXa4m(  
    %   with one column for every (N,M) pair, and one row for every ~=aI2(b  
    %   element in R. )@};lmPR  
    % s2 t-T0;  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- YV>VA<c  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _16 &K}<  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 9fk\Ay1P  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 .,(uoK{  
    %   for all [n,m]. kgib$t_7  
    % `XRb:d^  
    %   The radial Zernike polynomials are the radial portion of the CMD`b  
    %   Zernike functions, which are an orthogonal basis on the unit 7~k~S>sO  
    %   circle.  The series representation of the radial Zernike  s`{#[&[  
    %   polynomials is L< nkI  
    % X_Of k  
    %          (n-m)/2 {e!uvz,e  
    %            __ =iQ`F$M  
    %    m      \       s                                          n-2s Toa#>Z*+Rb  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r DdA}A>47  
    %    n      s=0 ;gw!;!T  
    % LKwUpu!  
    %   The following table shows the first 12 polynomials. `qy6 qKl N  
    % R2Fh^x  
    %       n    m    Zernike polynomial    Normalization Z!BQtICs  
    %       --------------------------------------------- js$a^6  
    %       0    0    1                        sqrt(2) t.i9!'Y ]  
    %       1    1    r                           2 DG%%]  
    %       2    0    2*r^2 - 1                sqrt(6) T W;;OS[  
    %       2    2    r^2                      sqrt(6) D -\'P31  
    %       3    1    3*r^3 - 2*r              sqrt(8) c$UpR"+  
    %       3    3    r^3                      sqrt(8) qCFXaj   
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) cbHn\m)J,  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ?tM].\  
    %       4    4    r^4                      sqrt(10) SwmPP-n  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) R<YYf^y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 28L'7  
    %       5    5    r^5                      sqrt(12) 113x9+w[  
    %       --------------------------------------------- \(v_",  
    % bT6)(lm  
    %   Example: ;ZW}47:BS6  
    % 'V1 -iJj9  
    %       % Display three example Zernike radial polynomials ClVpb ew  
    %       r = 0:0.01:1; X9BBnZ  
    %       n = [3 2 5]; i{x0#6_Y  
    %       m = [1 2 1]; 9tW.}5V  
    %       z = zernpol(n,m,r);  B*~Bm.  
    %       figure _WkcJe`  
    %       plot(r,z) NCh(-E  
    %       grid on 9;WOqBD  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') \:)o'-   
    % }\qdow-  
    %   See also ZERNFUN, ZERNFUN2. g|*eN{g]uE  
    f0'Wq^^  
    % A note on the algorithm. H\>I&gC'  
    % ------------------------ 2dlV'U_g  
    % The radial Zernike polynomials are computed using the series Kgio}y  
    % representation shown in the Help section above. For many special HC`3AQ12!&  
    % functions, direct evaluation using the series representation can \EfwS% P  
    % produce poor numerical results (floating point errors), because 4 ~|TKd{  
    % the summation often involves computing small differences between ~0$F V  
    % large successive terms in the series. (In such cases, the functions ~;4k UJD  
    % are often evaluated using alternative methods such as recurrence wk 7_(gT`0  
    % relations: see the Legendre functions, for example). For the Zernike Xv(9 Yh S  
    % polynomials, however, this problem does not arise, because the wuCtg=  
    % polynomials are evaluated over the finite domain r = (0,1), and m6ws #%|[  
    % because the coefficients for a given polynomial are generally all WHk/mAI-s  
    % of similar magnitude. uTloj .  
    % 8q LgB  
    % ZERNPOL has been written using a vectorized implementation: multiple u! FSXX<  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ?cxK~Y\  
    % values can be passed as inputs) for a vector of points R.  To achieve  s !vROJ  
    % this vectorization most efficiently, the algorithm in ZERNPOL l,2z5p  
    % involves pre-determining all the powers p of R that are required to 40sLZa)e  
    % compute the outputs, and then compiling the {R^p} into a single PvBbtC-9b  
    % matrix.  This avoids any redundant computation of the R^p, and w+(wvNmNEK  
    % minimizes the sizes of certain intermediate variables. s7.*o@G  
    % 5K-)X9z?  
    %   Paul Fricker 11/13/2006 a~TZ9yg+HL  
    M HB]'  
    &>b1ES.>  
    % Check and prepare the inputs: r/<JY5  
    % ----------------------------- 6OW-Dif^AG  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pNWp3+a'  
        error('zernpol:NMvectors','N and M must be vectors.') >^ar$T;Ys  
    end *w,gi.Y3  
    TmZ[?IL,  
    if length(n)~=length(m) beR)8sC3q  
        error('zernpol:NMlength','N and M must be the same length.') U: jf9L2  
    end vj$ 6  
    N9|.D.#MF  
    n = n(:); w[G_w:$a  
    m = m(:); vaZZzv{H  
    length_n = length(n); {4q:4 i  
    0>MI*fnY"  
    if any(mod(n-m,2)) Bb"4^EOZ,  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') F7l:*r,O  
    end ?C2;:ol  
    j]D =\  
    if any(m<0) <\EfG:e  
        error('zernpol:Mpositive','All M must be positive.') <%7 V`,*g/  
    end xJGeIh5  
    .u?$h0u5  
    if any(m>n) GP'Y!cl  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?zu{&aOX|  
    end K7VG\Ec  
    ][1u:V/ U  
    if any( r>1 | r<0 ) EC&,0i4n:  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') =Q/>g6  
    end *v3 |  
    93DBZqN  
    if ~any(size(r)==1) eF1%5;" W  
        error('zernpol:Rvector','R must be a vector.') _q4m7C<  
    end $3B?  
    <~+  
    r = r(:); 0M98y!A 5^  
    length_r = length(r); mhuaXbr  
    PtOnj)Q  
    if nargin==4 R  |%  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); *b_54X%3  
        if ~isnorm ;BVhkW A  
            error('zernpol:normalization','Unrecognized normalization flag.') 1iDo$]TEK  
        end H12@12v  
    else n82Q.M-H  
        isnorm = false; *)I1gR~  
    end W2N7  
    .&xNJdsY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f|0QN#$  
    % Compute the Zernike Polynomials #Q7$I.O]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sdD[`#  
    ,+9r/}K]/  
    % Determine the required powers of r: A,)ELVk1F  
    % ----------------------------------- ?Fpl.t~  
    rpowers = []; <DS6-y  
    for j = 1:length(n) p]eD@3Wz  
        rpowers = [rpowers m(j):2:n(j)]; n<*]`do,w  
    end -5.%{Go$[  
    rpowers = unique(rpowers); 2N 4>  
    ,&G M\FTeb  
    % Pre-compute the values of r raised to the required powers, qKC*j DW  
    % and compile them in a matrix: mO.U )tL[  
    % ----------------------------- s3 $Q_8H  
    if rpowers(1)==0 pnJT]?},  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !g"9P7p  
        rpowern = cat(2,rpowern{:}); ^ ni_%`Ag  
        rpowern = [ones(length_r,1) rpowern]; (=rv `1  
    else J}CK|}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W<o0Z OO  
        rpowern = cat(2,rpowern{:}); m)}MkC-  
    end *rT(dp!Y  
    E2D8s=r  
    % Compute the values of the polynomials: !k9h6/ b6  
    % -------------------------------------- F JhVbAMd  
    z = zeros(length_r,length_n); GGtrH~zx  
    for j = 1:length_n 2z3A"HrlA  
        s = 0:(n(j)-m(j))/2; IOl"Xgn5  
        pows = n(j):-2:m(j); U$uO%:4%  
        for k = length(s):-1:1 2Zip8f!  
            p = (1-2*mod(s(k),2))* ... W^Y0>W~  
                       prod(2:(n(j)-s(k)))/          ... uD5yw #`  
                       prod(2:s(k))/                 ... 926oM77  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Hc|U@G  
                       prod(2:((n(j)+m(j))/2-s(k))); [rU8 #4.  
            idx = (pows(k)==rpowers); :`1g{8.+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ypo=y/!  
        end +to9].O7y  
         !3# }ZC2  
        if isnorm ]M;! ])b$  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Xm'K6JH'  
        end =lQ[%&  
    end bz]O(`  
    %;$Y|RbmqE  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  VXc+Wm*W  
    k4F"UG-`  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 <.=#EV^i  
    H (NT|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)