切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11323阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 S`!MoIMsD  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 6l{=[\.Xa  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *wml 4lh  
    function z = zernfun(n,m,r,theta,nflag) ]jUxL=]r  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. uvo2W!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0@R @L}m  
    %   and angular frequency M, evaluated at positions (R,THETA) on the OzFA>FK0f;  
    %   unit circle.  N is a vector of positive integers (including 0), and rPV\ F  
    %   M is a vector with the same number of elements as N.  Each element M(,npW  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) *@'\4OO  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, O87Ptr8  
    %   and THETA is a vector of angles.  R and THETA must have the same * \@u,[,  
    %   length.  The output Z is a matrix with one column for every (N,M) Y4PB&pZ$O2  
    %   pair, and one row for every (R,THETA) pair. D0?l$]aE  
    % W/O&(t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;c5Q"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), tqY)  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral V$Y5EX  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G]fl33_}l  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 66"-Xf~u  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. I|=$.i  
    % utq*<,^  
    %   The Zernike functions are an orthogonal basis on the unit circle. 2}P<}-?6  
    %   They are used in disciplines such as astronomy, optics, and (,<ti):  
    %   optometry to describe functions on a circular domain. A*I mruV  
    % i[b?W$]7  
    %   The following table lists the first 15 Zernike functions. pU`4bT(w%  
    % T,h,)|:I^  
    %       n    m    Zernike function           Normalization xN\ PQ,J  
    %       -------------------------------------------------- DCfV  
    %       0    0    1                                 1 "M*Pt  
    %       1    1    r * cos(theta)                    2 !m"(SJn"  
    %       1   -1    r * sin(theta)                    2 CtwMMZXX3  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) wVD-}n1"  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8phc ekh+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) p1p4t40<l  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 3\6 UH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) { U a19~'>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) jyPY]r  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) j;fmmV@  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) iulM8"P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Au'[|Pr r  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) STp}?Cb  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4.bL>Y>c  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) GeN8_i[  
    %       -------------------------------------------------- %k#Q) zWJ  
    % [#H$@g|CT  
    %   Example 1: JZ&]"12]fR  
    % 9PEjV$0E2  
    %       % Display the Zernike function Z(n=5,m=1) Nko;I?Fn  
    %       x = -1:0.01:1; b9HE #*d,  
    %       [X,Y] = meshgrid(x,x); Ftj3`Mu  
    %       [theta,r] = cart2pol(X,Y); MId\ dFu  
    %       idx = r<=1; 0q"&AxNsP  
    %       z = nan(size(X)); SE{$a3`UzP  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Gk2\B]{  
    %       figure <1]# E@  
    %       pcolor(x,x,z), shading interp \}t(g}7T  
    %       axis square, colorbar '6u;KIG  
    %       title('Zernike function Z_5^1(r,\theta)') _ I+#K M  
    % vBQ|h  
    %   Example 2: |_HH[s*U  
    % l"!.aIY"e  
    %       % Display the first 10 Zernike functions d$g-u8  
    %       x = -1:0.01:1; R@t?!`f!+  
    %       [X,Y] = meshgrid(x,x); X:+;d8rCy  
    %       [theta,r] = cart2pol(X,Y); T<~NB5&f  
    %       idx = r<=1; Z6SM7? d  
    %       z = nan(size(X)); K=VYR Y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^3IO.`|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~oz8B^7i;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; py9(z`}  
    %       y = zernfun(n,m,r(idx),theta(idx)); V[Fzh\2n  
    %       figure('Units','normalized') B|gyr4]  
    %       for k = 1:10 Gr&5 mniu  
    %           z(idx) = y(:,k); v! uD]}  
    %           subplot(4,7,Nplot(k)) XKLkJZN  
    %           pcolor(x,x,z), shading interp JadXdK=gE  
    %           set(gca,'XTick',[],'YTick',[]) rgdDkWLXC  
    %           axis square  #-1 ;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T?:Vw laE  
    %       end ~\<Fq\.x  
    % i}N'W V`!  
    %   See also ZERNPOL, ZERNFUN2. y} AkF2:  
    ]$!-%pNv  
    %   Paul Fricker 11/13/2006 X a#`VDh  
    *xA&t)z(i  
    4]u53`  
    % Check and prepare the inputs: 5Q,#Co  
    % ----------------------------- DzYi> E:*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ".onev^(  
        error('zernfun:NMvectors','N and M must be vectors.') c?"#x-<1s  
    end E$=!l{Ms  
    ie{9zO<d  
    if length(n)~=length(m) lhva|  
        error('zernfun:NMlength','N and M must be the same length.') rR&;2  
    end Z\D!'FX  
    <5rp$AzT  
    n = n(:); ?<bByxa  
    m = m(:); Eb{Zm<TP  
    if any(mod(n-m,2)) b=horvs/!  
        error('zernfun:NMmultiplesof2', ... Hly2{hokq  
              'All N and M must differ by multiples of 2 (including 0).') ='a[(C&Y  
    end yt}Ve6  m  
    L,M=ogdb  
    if any(m>n) pca `nN!  
        error('zernfun:MlessthanN', ... &eKnLGKD  
              'Each M must be less than or equal to its corresponding N.') URdCV{@42  
    end =<MSM\Rb  
    4*< x0  
    if any( r>1 | r<0 ) ET;YAa*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') O{SP4|0JV  
    end b1JXC=*@  
    nh"nSBRxk  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \]dx;,T  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z5/^pyc  
    end 8+5# FC7  
    rrbD0UzFA  
    r = r(:); @(M-ZO!D  
    theta = theta(:); @?lmho?  
    length_r = length(r); XUc(7>k  
    if length_r~=length(theta) ;NQ9A &$)  
        error('zernfun:RTHlength', ... uMKO^D  
              'The number of R- and THETA-values must be equal.') b6Pi:!4  
    end e=&,jg?K  
    `dekaRo  
    % Check normalization: }vzP\  
    % -------------------- #{KYsDtvx  
    if nargin==5 && ischar(nflag) jL o(Uf  
        isnorm = strcmpi(nflag,'norm'); R?Zv  
        if ~isnorm X)^eaw]Q0  
            error('zernfun:normalization','Unrecognized normalization flag.') OV/H&fe  
        end uNSaw['0j  
    else >>/|Q:  
        isnorm = false; ?!TFoD2'  
    end [Z9 lxZ|  
    2-=Ov@y2k!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rYez$e^r  
    % Compute the Zernike Polynomials }#):ZPTs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kT)[<`p  
    3+vbA;R  
    % Determine the required powers of r: :0N} K}  
    % ----------------------------------- 1oU/gm$7\q  
    m_abs = abs(m); xe?!UCUb@  
    rpowers = []; Rr#Zcs!G  
    for j = 1:length(n) m#6RJbEz  
        rpowers = [rpowers m_abs(j):2:n(j)]; "i>?Tg^  
    end S;@nPzhc  
    rpowers = unique(rpowers); `R[cM; c2  
    v2eLH:6  
    % Pre-compute the values of r raised to the required powers, `|kW%L4  
    % and compile them in a matrix: E,IeW {6s  
    % ----------------------------- j=|cx+nb  
    if rpowers(1)==0 )&/ecx"2Q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }@6Tcn1  
        rpowern = cat(2,rpowern{:}); ]q^6az(Ud  
        rpowern = [ones(length_r,1) rpowern]; V'b$P2 ?^  
    else by}C;eN  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9r2l~zE  
        rpowern = cat(2,rpowern{:}); JR6r3W  
    end 709/'#- ^  
    g{ ()   
    % Compute the values of the polynomials: hK]mnA[Y  
    % -------------------------------------- ,bTpD!  
    y = zeros(length_r,length(n)); _43'W{%  
    for j = 1:length(n) P^'TI[\L9  
        s = 0:(n(j)-m_abs(j))/2; 'Fq +\J#%  
        pows = n(j):-2:m_abs(j); T'6MAxEZUq  
        for k = length(s):-1:1  iYaS  
            p = (1-2*mod(s(k),2))* ... P{m(.EC_  
                       prod(2:(n(j)-s(k)))/              ... vJ,r}$H3  
                       prod(2:s(k))/                     ... W kP`qD3  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5aZbNV}-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); @ T.+:U@S  
            idx = (pows(k)==rpowers); ^(F@#zN}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b-8}TTL>  
        end nh XVc((  
         hs^K9Jt  
        if isnorm |hl:!j.t  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E .N@qMn~  
        end L;GkG! g  
    end UaCfXTG  
    % END: Compute the Zernike Polynomials X 0vcBHh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 2:FlW>  
    ?3 S{>+'  
    % Compute the Zernike functions: 5Z@0XI  
    % ------------------------------ y5{Vx{V"Q  
    idx_pos = m>0; AZ.$g?3w  
    idx_neg = m<0; 2A=q{7s  
    3N[Rrxe2  
    z = y; *fCmZ$U:{  
    if any(idx_pos) c_4K  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); zq(4@S-TU  
    end r03%+:  
    if any(idx_neg) |:w)$i& *  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S=<OS2W7+r  
    end 1*GL;W~ix*  
    6gs0Vm  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 9=q&SG  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. !bCSt?}@u  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated '}^qz#w   
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ]Twyj  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Aydpr_lp  
    %   and THETA is a vector of angles.  R and THETA must have the same &]h`kvtBC  
    %   length.  The output Z is a matrix with one column for every P-value, $1$0M  
    %   and one row for every (R,THETA) pair. u`ry CZo#g  
    % +%f6{&q$  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike "}"/d(  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) jOU99X\0  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) riL|B 3  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 5 JlgnxRq  
    %   for all p. %JHv2[r^P  
    % O/U?Wq  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 "=w:LRw  
    %   Zernike functions (order N<=7).  In some disciplines it is  )m#Y^  
    %   traditional to label the first 36 functions using a single mode a>6D3n W  
    %   number P instead of separate numbers for the order N and azimuthal #mU<]O  
    %   frequency M. &09&;KJ  
    % =;4K5l{c  
    %   Example: jEE!H /  
    % wz)s  
    %       % Display the first 16 Zernike functions U)xebU.!S  
    %       x = -1:0.01:1; ,]@K,|pC)  
    %       [X,Y] = meshgrid(x,x); eR,/} g\  
    %       [theta,r] = cart2pol(X,Y); et/:vLl13  
    %       idx = r<=1; q9dplEe5  
    %       p = 0:15; >|z:CX$]  
    %       z = nan(size(X)); kia[d984w  
    %       y = zernfun2(p,r(idx),theta(idx)); $/lM %yXe  
    %       figure('Units','normalized') q 'd]  
    %       for k = 1:length(p) #IZ.px  
    %           z(idx) = y(:,k); fgs@oaoZ  
    %           subplot(4,4,k) EjFn\|VK  
    %           pcolor(x,x,z), shading interp I-}ms  
    %           set(gca,'XTick',[],'YTick',[]) (5@H<c^6  
    %           axis square &l0K~7)b  
    %           title(['Z_{' num2str(p(k)) '}']) 4 ob?M:S  
    %       end ]tXIe?>9  
    % }AA">FF'y4  
    %   See also ZERNPOL, ZERNFUN. Ge/K.]>i  
    >DUTmJxv  
    %   Paul Fricker 11/13/2006 m94PFD@N  
    <5D4h!  
    n807?FORB  
    % Check and prepare the inputs: f=k#o2  
    % ----------------------------- ZG 0^O"B0  
    if min(size(p))~=1 bZ1*:k2  
        error('zernfun2:Pvector','Input P must be vector.') \I:27:iAL  
    end ]E-3/r$_cO  
    Q 8Hl7__^  
    if any(p)>35 aoZ| @x  
        error('zernfun2:P36', ... p3Qls*  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... [.^ol6  
               '(P = 0 to 35).']) aXQS0>G%(  
    end u178vby;l  
    c+&Kq.~K  
    % Get the order and frequency corresonding to the function number: ,@c1X:  
    % ---------------------------------------------------------------- r-wCAk}m*?  
    p = p(:); ?IYu"UO<)|  
    n = ceil((-3+sqrt(9+8*p))/2); kmc_%Wm}  
    m = 2*p - n.*(n+2); 1&! i:F#  
    R;!@ xy  
    % Pass the inputs to the function ZERNFUN: CV\^gTPmx  
    % ---------------------------------------- &:5*^1oP  
    switch nargin McN[  
        case 3 ;  ?f+  
            z = zernfun(n,m,r,theta); rbnAC*y8'L  
        case 4  :`N ZD  
            z = zernfun(n,m,r,theta,nflag); ^7wqb'xg  
        otherwise >vp4R`  
            error('zernfun2:nargin','Incorrect number of inputs.') i_Hm?Bi!F  
    end <zR{'7L/  
    ?[d4HKs  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _i {Y0d+  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 9tJ0O5  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of f~T7?D0u}N  
    %   order N and frequency M, evaluated at R.  N is a vector of  >9!J?HA  
    %   positive integers (including 0), and M is a vector with the @KK6JyOTQ  
    %   same number of elements as N.  Each element k of M must be a 3T8d?%.l  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  I8?  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is T4] 2R  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix EW*sTI3  
    %   with one column for every (N,M) pair, and one row for every *rmC3'}s  
    %   element in R. $KYGQP  
    % A:< %>  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- H[u9C:}9b  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )vS0Au^C~  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to YK6LJv}  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 x|a&wC2,{  
    %   for all [n,m]. UsyNn39  
    % 9$\s v5  
    %   The radial Zernike polynomials are the radial portion of the p[JIH~nb  
    %   Zernike functions, which are an orthogonal basis on the unit 4>=M"D hB  
    %   circle.  The series representation of the radial Zernike 2.aCo, Kb;  
    %   polynomials is >`0U2K  
    % o6MFMA+vi  
    %          (n-m)/2 %PYO9:n  
    %            __ Nu6NyYs  
    %    m      \       s                                          n-2s ^$: w  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r FE\E%_K'n7  
    %    n      s=0 Ax&!Nz+?  
    % ,!l_  
    %   The following table shows the first 12 polynomials. TI DgIK  
    % 3P6O]x<-?  
    %       n    m    Zernike polynomial    Normalization ]gq)%T]  
    %       --------------------------------------------- mcV<)UA}  
    %       0    0    1                        sqrt(2) 9,'m,2%W  
    %       1    1    r                           2 $\BYN=#  
    %       2    0    2*r^2 - 1                sqrt(6) $(9QnH1KY  
    %       2    2    r^2                      sqrt(6) [Kwj 7q`  
    %       3    1    3*r^3 - 2*r              sqrt(8) `f>!/Zm%9  
    %       3    3    r^3                      sqrt(8) %XG m\p  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) =:&xdphZ+  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ,,{;G'R|  
    %       4    4    r^4                      sqrt(10) =sYILe[  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) fs ufYIf  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 9~Dg<wQ  
    %       5    5    r^5                      sqrt(12) tVRN3fJH  
    %       --------------------------------------------- ,/w*sE  
    % .rtA sbp.!  
    %   Example: 8z1z<\  
    % *&I>3;~%^}  
    %       % Display three example Zernike radial polynomials i=EOk}R  
    %       r = 0:0.01:1; O=2|'L'h!  
    %       n = [3 2 5]; J{ju3jo  
    %       m = [1 2 1]; zl1*GVg  
    %       z = zernpol(n,m,r); wmr?ANk  
    %       figure ^&?,L@fW  
    %       plot(r,z) }/a%-07R  
    %       grid on '|IcL1c=I  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') +yP!7]  
    % BD C DQ  
    %   See also ZERNFUN, ZERNFUN2. f)*"X[)o  
    jA{5)-g  
    % A note on the algorithm. jo:Z  
    % ------------------------ 4`,(*igEv  
    % The radial Zernike polynomials are computed using the series bCw{9El!K4  
    % representation shown in the Help section above. For many special ~*iF`T6  
    % functions, direct evaluation using the series representation can ;MS.ag#  
    % produce poor numerical results (floating point errors), because RM|J |R  
    % the summation often involves computing small differences between 6j6CA?|  
    % large successive terms in the series. (In such cases, the functions KYpS4&Xh  
    % are often evaluated using alternative methods such as recurrence gs'M^|e)  
    % relations: see the Legendre functions, for example). For the Zernike Pp_ 4B  
    % polynomials, however, this problem does not arise, because the D;Qx9^.  
    % polynomials are evaluated over the finite domain r = (0,1), and aRMlE*yW  
    % because the coefficients for a given polynomial are generally all  \(\a=  
    % of similar magnitude. LE8<JMB  
    % 9z#8K zXg  
    % ZERNPOL has been written using a vectorized implementation: multiple L )JB^cxf  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ps{4_V-3u  
    % values can be passed as inputs) for a vector of points R.  To achieve *cb|9elF^  
    % this vectorization most efficiently, the algorithm in ZERNPOL rt+4-WuK>  
    % involves pre-determining all the powers p of R that are required to 7H3v[ f^Q  
    % compute the outputs, and then compiling the {R^p} into a single OXQ*Xpc  
    % matrix.  This avoids any redundant computation of the R^p, and ^@^8iZ  
    % minimizes the sizes of certain intermediate variables. Jp=qPG|  
    % *I]]Ogpq=  
    %   Paul Fricker 11/13/2006 ,R{&x7  
    &O' W+4FAc  
    A%8 Q}s$<s  
    % Check and prepare the inputs: *O_fw 0jV  
    % ----------------------------- z0}j7ns]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ='m$ O  
        error('zernpol:NMvectors','N and M must be vectors.') CQWXLQED>  
    end uFWA] ":is  
    W[&nQW$E  
    if length(n)~=length(m) C7%R2>}?f  
        error('zernpol:NMlength','N and M must be the same length.') (e7!p=D  
    end o,rF15  
    egq,)6>  
    n = n(:); vvxxwZa=O  
    m = m(:); t=P+m   
    length_n = length(n); xTAfV N  
    2b$>1O&2  
    if any(mod(n-m,2)) 9+ 1{a.JO  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') _5p$#U`  
    end WzzA:X  
    TUp\,T^2  
    if any(m<0) [K4cxqlfk  
        error('zernpol:Mpositive','All M must be positive.') hV7EjQp  
    end e@h{Ns.1-  
    ^?lpY{aa  
    if any(m>n) &hWELZe0vv  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "^4*,41U  
    end ` i[26Qb  
    8&@=Anc&q  
    if any( r>1 | r<0 ) rp@:i _]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') mE<_oRM)  
    end Lvf<g}?4  
    >6C\T@{lJ  
    if ~any(size(r)==1) HkD. W6A3  
        error('zernpol:Rvector','R must be a vector.') e4YfJd  
    end mV^w|x  
    7\UHADr  
    r = r(:); L~ &S<5?  
    length_r = length(r); /4r2B. 91O  
    ; <FAc R  
    if nargin==4 o9xc$hX}  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [Hx}#Kds  
        if ~isnorm :BxO6@>Xc  
            error('zernpol:normalization','Unrecognized normalization flag.') s@L ;3WdO  
        end ?T/4 =  
    else S|=)^$:  
        isnorm = false; b~^'P   
    end LW<Lg N"L-  
    MXSD8]je  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vsI;ooR>  
    % Compute the Zernike Polynomials #eJfwc1JY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vC,FE )'  
    ?A@y4<8R|  
    % Determine the required powers of r: 6/;YS[jX  
    % ----------------------------------- 6[t<g=  
    rpowers = []; NCk-[I?R  
    for j = 1:length(n) 7@{%S~TN  
        rpowers = [rpowers m(j):2:n(j)]; v6)QLp  
    end ' #K@%P  
    rpowers = unique(rpowers); "W5MZ  
    g=td*S  
    % Pre-compute the values of r raised to the required powers, 8>x5|  
    % and compile them in a matrix: W1)SgiXnuy  
    % ----------------------------- QbdXt%gZe  
    if rpowers(1)==0 URVW5c  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 'pA%lc)  
        rpowern = cat(2,rpowern{:}); :3M ,]W]  
        rpowern = [ones(length_r,1) rpowern]; rRevyTs  
    else ewcFzlA@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0j$=KA  
        rpowern = cat(2,rpowern{:}); ]:f.="  
    end 4<s;xSCL  
    fS}Eu4Xe  
    % Compute the values of the polynomials: Uv59 XF$  
    % -------------------------------------- $l ,U)  
    z = zeros(length_r,length_n); @6ckB (  
    for j = 1:length_n R V#w 0 r  
        s = 0:(n(j)-m(j))/2; #Shy^58$  
        pows = n(j):-2:m(j); 7Ydqg&  
        for k = length(s):-1:1 .EhC\QpP  
            p = (1-2*mod(s(k),2))* ... 1 k!gR  
                       prod(2:(n(j)-s(k)))/          ... Rc)]A&J  
                       prod(2:s(k))/                 ... b#7nt ?`7p  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 6ud?US(  
                       prod(2:((n(j)+m(j))/2-s(k))); Cnpl0rV~5  
            idx = (pows(k)==rpowers); JSg=9p$  
            z(:,j) = z(:,j) + p*rpowern(:,idx); rE*yT(:w  
        end E `N`  
         azmeJpC  
        if isnorm 0^{Tq0Ri[  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7'+`vt#E  
        end EW]DzL 3  
    end tic3a1  
    ${Lrj}93  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  $5l=&  
    <N;HB&mr  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 |N>TPK&Xt  
    w+owx(mN@  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)