非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 bZsg7[: C
function z = zernfun(n,m,r,theta,nflag) Ffp<|2T2_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. z("Fy
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vswBK-w(Z
% and angular frequency M, evaluated at positions (R,THETA) on the 2DbM48\E
% unit circle. N is a vector of positive integers (including 0), and gC qQ~lWZ
% M is a vector with the same number of elements as N. Each element H0 .,h;
% k of M must be a positive integer, with possible values M(k) = -N(k) o{&UT VyGs
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :},/D*v
% and THETA is a vector of angles. R and THETA must have the same F"M$ "rC]
% length. The output Z is a matrix with one column for every (N,M) nmrYB w>
% pair, and one row for every (R,THETA) pair. ,dIo\Lm
% N$SJK
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Du2v,n5@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @UidQX"b
% with delta(m,0) the Kronecker delta, is chosen so that the integral kwd)5J
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y2,\WKa
% and theta=0 to theta=2*pi) is unity. For the non-normalized +w
pe<T
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kbkq.fYr
% B=`"!?we
% The Zernike functions are an orthogonal basis on the unit circle. xz$S5tgDQK
% They are used in disciplines such as astronomy, optics, and d4#Ra%
% optometry to describe functions on a circular domain. z.7'yJIP#
% h8MkfHH7{
% The following table lists the first 15 Zernike functions. dnP3{!"b
% ].eY]o}=
% n m Zernike function Normalization Xqac$%[3
% -------------------------------------------------- `b{.K,
% 0 0 1 1 ?) ~j>1"S
% 1 1 r * cos(theta) 2 GCgpe(cQ
% 1 -1 r * sin(theta) 2 }w)`)N
% 2 -2 r^2 * cos(2*theta) sqrt(6) t[ZumQ@HC
% 2 0 (2*r^2 - 1) sqrt(3) T?Dq2UW
% 2 2 r^2 * sin(2*theta) sqrt(6) ~?c}=XL-
% 3 -3 r^3 * cos(3*theta) sqrt(8) c.\J_^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) KQ x<{-G6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) %Jpb&CEY
% 3 3 r^3 * sin(3*theta) sqrt(8) D@ji1$K
% 4 -4 r^4 * cos(4*theta) sqrt(10) z4nVsgQ$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S}hg*mWn{$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9$xEktfV
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Tcglt>tj"
% 4 4 r^4 * sin(4*theta) sqrt(10) ewn/@;E
% -------------------------------------------------- U&|$B|[
% U "qO&;m
% Example 1: X; gN[
% dIo|i,-
% % Display the Zernike function Z(n=5,m=1) pw7_j;}l
% x = -1:0.01:1; L^`oJ9k!
% [X,Y] = meshgrid(x,x); adJoT-8P6
% [theta,r] = cart2pol(X,Y); 79^on8 k}
% idx = r<=1; }<wj~f([
% z = nan(size(X)); S"=oU}'|
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 3o'SY@'W
% figure ?ExfxR!~
% pcolor(x,x,z), shading interp n]B)\D+V^
% axis square, colorbar uxto:6),P<
% title('Zernike function Z_5^1(r,\theta)') (8r?'H8ZO
% fuH Dif,
% Example 2: ] 05Q4
% ^saJfr x
% % Display the first 10 Zernike functions *4zVK/FJ
% x = -1:0.01:1; _OF8D
% [X,Y] = meshgrid(x,x); uREc9z`Q'
% [theta,r] = cart2pol(X,Y); |yI?}zyR
% idx = r<=1; |7zm!^t$
% z = nan(size(X)); ]T+.kC
M
% n = [0 1 1 2 2 2 3 3 3 3]; dBG]J18
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
FFgy=F
% Nplot = [4 10 12 16 18 20 22 24 26 28]; LwUvM
% y = zernfun(n,m,r(idx),theta(idx)); w9}I*Nra
% figure('Units','normalized') f (
`.q
% for k = 1:10 )`rC"N)
% z(idx) = y(:,k); -}UCdaQ3
% subplot(4,7,Nplot(k)) Iw"?%k\U
% pcolor(x,x,z), shading interp eT+MN`
% set(gca,'XTick',[],'YTick',[]) \Mlj
7.u]
% axis square .)Se-'
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +V|]:{3W
% end su=.4JcK
% #%e`OA(b
% See also ZERNPOL, ZERNFUN2. :;"3k64
!00%z
% Paul Fricker 11/13/2006 wH#k~`M
'q*1HNwGp
gr=ke #
% Check and prepare the inputs: g{$&j*Q9
% ----------------------------- bi^LpyEn
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "_)
error('zernfun:NMvectors','N and M must be vectors.') v%aD:%wlY@
end @V :b Co
'd?8OV
if length(n)~=length(m) '~ ]b;nA
error('zernfun:NMlength','N and M must be the same length.') 9Zrn(D
end &P ;6P4x
C-6+ZIk4
n = n(:); .
~|^du<X
m = m(:); !9)*. 9[8
if any(mod(n-m,2)) !#iP)"O
error('zernfun:NMmultiplesof2', ... n6o}$]H
'All N and M must differ by multiples of 2 (including 0).') )QZ?Bf
end m@c2'*&Y
`ZefSmb
if any(m>n) <1jiU%!w
error('zernfun:MlessthanN', ... m dC. FO-
'Each M must be less than or equal to its corresponding N.') Ar'5kPzY>
end I3s}t$`y(
*`jEg=)
if any( r>1 | r<0 ) hcaH
error('zernfun:Rlessthan1','All R must be between 0 and 1.') orU4{.e
end "J{,P9P6
Y66 vJ<lM
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Vfw $>og!
error('zernfun:RTHvector','R and THETA must be vectors.') x`eYC i
end b'{D4/
zu|pL`X
r = r(:); 3S5QqAm
theta = theta(:); vOP[ND=T
length_r = length(r); mA>Pr<aV:
if length_r~=length(theta) >$"bwr}'4B
error('zernfun:RTHlength', ... Ahebr{u
'The number of R- and THETA-values must be equal.') WD)[Ac[
end yWK[@;S]%
?4~lA
L1
% Check normalization: vMI \$E&
% -------------------- P2Eyqd8
if nargin==5 && ischar(nflag) p' gv5\u[w
isnorm = strcmpi(nflag,'norm'); G![1+2p:Tq
if ~isnorm g{ a0,B/j
error('zernfun:normalization','Unrecognized normalization flag.') @LmUCP~
end >3Y&jsh<
else %Mu dc
isnorm = false; <St`"H
end rj5:YQEH;
hmi15VW
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2Vi[qS^
% Compute the Zernike Polynomials C'$U1%:
j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JEd/j
zR(
j"dbl?og
% Determine the required powers of r: z DK+8
% ----------------------------------- fAm2ls7c
m_abs = abs(m); [gE2lfaEy
rpowers = []; Ar$LA"vu4
for j = 1:length(n) lwB!ti
rpowers = [rpowers m_abs(j):2:n(j)]; " h#=ctCx"
end #nd,c n
rpowers = unique(rpowers); KG?]MVXA
NdZ:
7
% Pre-compute the values of r raised to the required powers,
i}YnJ
% and compile them in a matrix: doa$
;=wg
% ----------------------------- }qg!Um0
if rpowers(1)==0 bd9c/>&
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <*\J 6:^n
rpowern = cat(2,rpowern{:}); xphqgOc12,
rpowern = [ones(length_r,1) rpowern]; St3~Y{aI|
else 'F~u \m=E
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~+g5?y
rpowern = cat(2,rpowern{:}); 8,=$>@u
end )2A4vU-IR.
iOyYf!yg
% Compute the values of the polynomials: l%IOdco#
% -------------------------------------- (1o^Dn3
y = zeros(length_r,length(n)); ;Cy@TzO/|
for j = 1:length(n) Mc6y'w
s = 0:(n(j)-m_abs(j))/2; jL8zH
pows = n(j):-2:m_abs(j); 4j*}|@x
for k = length(s):-1:1 I5~DC
p = (1-2*mod(s(k),2))* ... Q&J,"Vxw
prod(2:(n(j)-s(k)))/ ... y/FisX
prod(2:s(k))/ ... s6$3[9Vh&9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `#]\Wnp~y
prod(2:((n(j)+m_abs(j))/2-s(k))); Vh<`MS0X
idx = (pows(k)==rpowers); s5pY)6)
y(:,j) = y(:,j) + p*rpowern(:,idx); ymzm x$o=
end :U9R
1^}A
|);>wV"
if isnorm =
` ^jz}
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t'J
fiGM
end L`#+ZLo
end X_qXH5^%
% END: Compute the Zernike Polynomials sa` Yan
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s:ruCS
(TE2t7ab|M
% Compute the Zernike functions: B'Wky>5)
% ------------------------------ _x!pMj(A
idx_pos = m>0; -:,h8JyMP
idx_neg = m<0; |(%H O@i
82X.
z = y; +@Y[i."^J
if any(idx_pos) (Y>MsqwWfC
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^6+x0[13
end 4(R2V]
if any(idx_neg) x3Ud0[(
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wGvgMZ ]?'
end FMVmH!E
a5-\=0L~
% EOF zernfun