切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11372阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ok'1  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! xm5D$m3#  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 , F[mh  
    function z = zernfun(n,m,r,theta,nflag) 19EU[eb  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  <KpQu%2(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]8#{rQ(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the P|?z1JUd  
    %   unit circle.  N is a vector of positive integers (including 0), and 4 R]|  
    %   M is a vector with the same number of elements as N.  Each element &P;x<7h$t?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v7-'H/d.  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, K;95M^C\O*  
    %   and THETA is a vector of angles.  R and THETA must have the same gDv]n^&  
    %   length.  The output Z is a matrix with one column for every (N,M) R8E<;^?j  
    %   pair, and one row for every (R,THETA) pair. v#6.VUAw  
    % =P!Vi6[gF~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,ZSuo4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cA*%K[9  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral p4[W@JV  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, R8 KL4g-d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !\m.&lk'^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ru&RL HFV  
    % 5IepVS(>?v  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9T]]TEv4  
    %   They are used in disciplines such as astronomy, optics, and TcC=_je460  
    %   optometry to describe functions on a circular domain. GHkSU;})  
    % rk~/^(!  
    %   The following table lists the first 15 Zernike functions. H\^^p!^)  
    % KQqlM  
    %       n    m    Zernike function           Normalization ;(sb^O  
    %       -------------------------------------------------- ]8^2(^3ct  
    %       0    0    1                                 1 yU\|dL  
    %       1    1    r * cos(theta)                    2 )sQbDA|p  
    %       1   -1    r * sin(theta)                    2 ovl@[>OB  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %nIjRmqM~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) n5b N/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 9 7g\nq<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) S.I<Hs  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ]mc,FlhU@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) P$Dr6;  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) oH;Y}h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) WRgz]=W3w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7+c@pEU]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qUo(hbp  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8_uDxd  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `8Om*{xg  
    %       -------------------------------------------------- D,7! /u'  
    % <Z5prunov  
    %   Example 1: z/TRqD  
    % QK72 F  
    %       % Display the Zernike function Z(n=5,m=1) E )PEKWK\  
    %       x = -1:0.01:1; 83dOSS2  
    %       [X,Y] = meshgrid(x,x); >hXUq9;:  
    %       [theta,r] = cart2pol(X,Y); ; R67a V,  
    %       idx = r<=1; @.5Ybgn  
    %       z = nan(size(X)); us]ah~U6A  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ."lY>(HJ  
    %       figure u0x\5!?2  
    %       pcolor(x,x,z), shading interp [AU1JO`\"  
    %       axis square, colorbar a}fW3+>  
    %       title('Zernike function Z_5^1(r,\theta)') { sZrI5   
    % hOq1 "kL  
    %   Example 2: 2|T@  
    % ]*@7o^4i  
    %       % Display the first 10 Zernike functions * T-XslI  
    %       x = -1:0.01:1; |XsW)/  
    %       [X,Y] = meshgrid(x,x); ]/a?:24[  
    %       [theta,r] = cart2pol(X,Y); R38 w!6{  
    %       idx = r<=1; 8FMP)N4+  
    %       z = nan(size(X)); ^^[,aBu  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $yt|nO  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zJ\I%7h*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; tpVtbh1)u  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7W>T= @  
    %       figure('Units','normalized') T}zi P  
    %       for k = 1:10 )FB)ZK;  
    %           z(idx) = y(:,k); |[qI2-el?  
    %           subplot(4,7,Nplot(k)) ( R0   
    %           pcolor(x,x,z), shading interp S`-z$ph}  
    %           set(gca,'XTick',[],'YTick',[]) iX,Qh2(ig  
    %           axis square mX#T<_=d  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <l\FHJhjq  
    %       end qaUHcdH  
    % 9/'j<v6M  
    %   See also ZERNPOL, ZERNFUN2. :s4CWE d  
    J3$ihH.  
    %   Paul Fricker 11/13/2006 }3+(A`9h f  
    -wO`o<  
    j;'NJ~NZ$  
    % Check and prepare the inputs: ,7'l$-rl  
    % ----------------------------- G1D(-X4ALZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F'"-4YV>&  
        error('zernfun:NMvectors','N and M must be vectors.') m{1By/U  
    end V9MA)If>  
    0/%zXp&m  
    if length(n)~=length(m) #de]b  
        error('zernfun:NMlength','N and M must be the same length.') `=.{i}V  
    end gU 8'7H2  
    yXkgGY5  
    n = n(:); 0wc+<CUW  
    m = m(:); DZ EA*E>  
    if any(mod(n-m,2)) !?KY;3L:  
        error('zernfun:NMmultiplesof2', ... vzVl2  
              'All N and M must differ by multiples of 2 (including 0).') F:\y#U6"J  
    end =]D##R  
    aMzAA  
    if any(m>n) f",B;C  
        error('zernfun:MlessthanN', ... ?1[go+56X  
              'Each M must be less than or equal to its corresponding N.') 2\7]EW  
    end 63at lq  
     Im#3sn  
    if any( r>1 | r<0 ) j6Vuj/+}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') q-uYfXZ{j  
    end O /GD[9$i  
    ov|s5yH8e  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K%Rx5 S  
        error('zernfun:RTHvector','R and THETA must be vectors.') f'}23\>  
    end &^z~wJ,]  
    r<"1$K~Ka  
    r = r(:); \ii^F?+b  
    theta = theta(:); t4,6`d?C  
    length_r = length(r); /+3|tb  
    if length_r~=length(theta) JNZKzyJ9K  
        error('zernfun:RTHlength', ... ;KnnAZJ  
              'The number of R- and THETA-values must be equal.') }F^c*xt[  
    end ;Yi ;2ttW  
    :FK(*BUh  
    % Check normalization: ~ Iv[  
    % -------------------- Qx {/izc  
    if nargin==5 && ischar(nflag) hLBX,r)u  
        isnorm = strcmpi(nflag,'norm'); H1q>UU:  
        if ~isnorm thkL<  
            error('zernfun:normalization','Unrecognized normalization flag.')  vH` u  
        end 5 1 L:%Af  
    else $o-s?";  
        isnorm = false; R(Z2DEt</  
    end mvYr"6f8  
    ]2v31'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ii;~ xc  
    % Compute the Zernike Polynomials ;N i+TS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qG~O] ($  
    |JrG?:n  
    % Determine the required powers of r: Yj;$hV8j(  
    % ----------------------------------- B:Msn)C~  
    m_abs = abs(m); QHA<7Wg  
    rpowers = []; * \f(E#wa  
    for j = 1:length(n) \ <V{6#Q=  
        rpowers = [rpowers m_abs(j):2:n(j)]; IspY%UMl  
    end $S6AqUk$  
    rpowers = unique(rpowers); ,u! c|4  
     M)Y`u  
    % Pre-compute the values of r raised to the required powers, b PiJCX0d  
    % and compile them in a matrix: hYF<Wn3L  
    % ----------------------------- qc@CV:  
    if rpowers(1)==0 fU$zG"a_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N=-hXgX^  
        rpowern = cat(2,rpowern{:}); MB:E/  
        rpowern = [ones(length_r,1) rpowern]; , Lhgv1  
    else E5.)ro=$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ba|~B8rII[  
        rpowern = cat(2,rpowern{:}); +xB !T1p D  
    end (%\N-[yZ  
    ]#_,?d  
    % Compute the values of the polynomials: Wrt3p-N"D  
    % -------------------------------------- *h$Dh5%P  
    y = zeros(length_r,length(n)); x1wm]|BIf  
    for j = 1:length(n) L1M]ya!l  
        s = 0:(n(j)-m_abs(j))/2; OyFBM>6gh  
        pows = n(j):-2:m_abs(j); |f.=Y~aY  
        for k = length(s):-1:1 4RJ8 2yq-  
            p = (1-2*mod(s(k),2))* ... 8%2*RKj  
                       prod(2:(n(j)-s(k)))/              ... O Y/QA  
                       prod(2:s(k))/                     ... !PJ;d)\T  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )}vQ?n[:'  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 'V .4Nhd  
            idx = (pows(k)==rpowers); wvsTP32]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); =]&R6P>  
        end N%n#mV;  
         Yw4c`MyL  
        if isnorm ]MRE^Je\h  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >\[sNCkf  
        end w=y!|F  
    end A\k@9w\Ll;  
    % END: Compute the Zernike Polynomials kR9G;IZ8s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lD. PNwM  
    DSD#',  
    % Compute the Zernike functions: hPP+lqY[  
    % ------------------------------ 5fSDdaO  
    idx_pos = m>0; ,r+=>vre  
    idx_neg = m<0; 9^)ochY3  
    ;"wU+  
    z = y; 2j*\n|"}{  
    if any(idx_pos) zH}u9IR3`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;F"W6G  
    end A<QYW,:|  
    if any(idx_neg) +|r) ;>b  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); DTI+VY .W^  
    end `{<2{}2M  
    Y)?4OB=n  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) *Iyv${  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. DbH{; Fb  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated )|q,RAn  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive gjk=`lU  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 2< qq[2  
    %   and THETA is a vector of angles.  R and THETA must have the same e(6g|h  
    %   length.  The output Z is a matrix with one column for every P-value, g*AnrQ}P  
    %   and one row for every (R,THETA) pair. b'St14_  
    % n)8bkcZCp+  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike JOx75}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) %]nLCoQh  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Cx} Yp-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U]@t\T3W  
    %   for all p. )jn|+M  
    % l)Q,*i  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 8n,i5>!d  
    %   Zernike functions (order N<=7).  In some disciplines it is W#8qhmt  
    %   traditional to label the first 36 functions using a single mode -!I.:97 N  
    %   number P instead of separate numbers for the order N and azimuthal VQ$=F8ivG  
    %   frequency M. x EOR\(Z^  
    % <u&uwD~A  
    %   Example: 0/#XUX 4  
    % 7Q/v#_e(  
    %       % Display the first 16 Zernike functions psta&u\ q  
    %       x = -1:0.01:1; {Ejv8UdA9  
    %       [X,Y] = meshgrid(x,x); m Wsegq4  
    %       [theta,r] = cart2pol(X,Y); fu?>O /Gn/  
    %       idx = r<=1; N?p9h{DG  
    %       p = 0:15; KQNSYI7a  
    %       z = nan(size(X)); YL;ZZ2A  
    %       y = zernfun2(p,r(idx),theta(idx)); }^pnwo9vV  
    %       figure('Units','normalized') ;KbnaUAS8  
    %       for k = 1:length(p) fFqK.^Tn  
    %           z(idx) = y(:,k); k&n7 _[]n  
    %           subplot(4,4,k) FJ!N)`[  
    %           pcolor(x,x,z), shading interp VVYQIR]!yk  
    %           set(gca,'XTick',[],'YTick',[]) SrN0f0  
    %           axis square 13}=;4O  
    %           title(['Z_{' num2str(p(k)) '}']) 3r%I *  
    %       end S2*-UluG  
    % OE}L})"  
    %   See also ZERNPOL, ZERNFUN. #D .H2'_}  
    TEE$1RxV(  
    %   Paul Fricker 11/13/2006 \$yI'q  
    qV@xEgW#r  
    jQ4Pv`  
    % Check and prepare the inputs: 6(ju!pE`  
    % ----------------------------- hkRv0q.'  
    if min(size(p))~=1 kVe^g]F  
        error('zernfun2:Pvector','Input P must be vector.') (=)+as"u9*  
    end !:c7I@  
    )qzJu*cQ  
    if any(p)>35 b0rC\^x  
        error('zernfun2:P36', ... n?YGX W/  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 3 ^{U:"N0  
               '(P = 0 to 35).']) cJ&l86/l1  
    end Rdwr?:y(]  
    sog?Mvoq  
    % Get the order and frequency corresonding to the function number: H-1@z$p  
    % ---------------------------------------------------------------- !#f4t]FM`B  
    p = p(:); rw ^^12)  
    n = ceil((-3+sqrt(9+8*p))/2); Y xGIv8O]  
    m = 2*p - n.*(n+2); -XPGl  
    N{q5E,}  
    % Pass the inputs to the function ZERNFUN: $QNfy.6Tn  
    % ---------------------------------------- jO3Q@N0_  
    switch nargin CImB,AXS  
        case 3 XFG]%y=/6  
            z = zernfun(n,m,r,theta); $O%lYQY]  
        case 4 w^A8ZT0^7  
            z = zernfun(n,m,r,theta,nflag); @ns2$(wkm@  
        otherwise zOg#=ql  
            error('zernfun2:nargin','Incorrect number of inputs.') oT\B-lx  
    end z]gxkol\  
    {pd%I  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) rYJt;/RtR}  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8ENAif   
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q>]v~  
    %   order N and frequency M, evaluated at R.  N is a vector of y{!`4CxF  
    %   positive integers (including 0), and M is a vector with the E+ JGqk  
    %   same number of elements as N.  Each element k of M must be a bxrByu~|1  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) BL]!j#''KE  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [9[tn -  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix rya4sxCh  
    %   with one column for every (N,M) pair, and one row for every nFw&vR/q  
    %   element in R. K 2LLuS!  
    % R?Iv<(I  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- v@Otp  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is oYlq1MB?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to B,e@v2jO|  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 _L%/NXu,  
    %   for all [n,m]. &e cf5jFy  
    % `S;pn+5  
    %   The radial Zernike polynomials are the radial portion of the Fe"0Hp+  
    %   Zernike functions, which are an orthogonal basis on the unit :bLGDEC  
    %   circle.  The series representation of the radial Zernike h,TDNR<1L  
    %   polynomials is cMC1|3  
    % /e4hB  
    %          (n-m)/2 ~qFi0<-M  
    %            __ ?#J~ X\5  
    %    m      \       s                                          n-2s &|/C*2A  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r H# 2'\0u  
    %    n      s=0 NawnC!~ $  
    % zT!JHG  
    %   The following table shows the first 12 polynomials. J@!Sf7k42  
    % rf1-E57#  
    %       n    m    Zernike polynomial    Normalization >]ZojdOl)  
    %       --------------------------------------------- J5@_OIc1y  
    %       0    0    1                        sqrt(2) J[VQ6fD%  
    %       1    1    r                           2 < g6 [mS  
    %       2    0    2*r^2 - 1                sqrt(6) e0v&wSi  
    %       2    2    r^2                      sqrt(6) ?y ]3kU  
    %       3    1    3*r^3 - 2*r              sqrt(8) Qnr' KbK  
    %       3    3    r^3                      sqrt(8) 2s|[!:L5  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) n?kU  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) J*a`qU   
    %       4    4    r^4                      sqrt(10) k3S**&i!CR  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) pOnZ7(  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ]=@>;yP)  
    %       5    5    r^5                      sqrt(12) s49 AF  
    %       --------------------------------------------- AHn^^'&x[  
    % v,Ep2$  
    %   Example: n+Fl|4  
    % o#%2N+w  
    %       % Display three example Zernike radial polynomials xjR/K&[m  
    %       r = 0:0.01:1; Nl;rg*@o  
    %       n = [3 2 5]; `lcpUWn  
    %       m = [1 2 1]; *( D_g!a  
    %       z = zernpol(n,m,r); JGGss5  
    %       figure ~l{CUQU  
    %       plot(r,z) iCc@N|~  
    %       grid on eR8h4M~O  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') O23f\pm&  
    % A3Ltk 2<  
    %   See also ZERNFUN, ZERNFUN2. N-_2d*l3  
    "z@q G]#5  
    % A note on the algorithm. m(*CuM[E  
    % ------------------------ .hETqE`E  
    % The radial Zernike polynomials are computed using the series cJi5\<b  
    % representation shown in the Help section above. For many special Er~5\9,/<]  
    % functions, direct evaluation using the series representation can Hr96sN.R   
    % produce poor numerical results (floating point errors), because  <&$!;d8  
    % the summation often involves computing small differences between BR"*-$u0;  
    % large successive terms in the series. (In such cases, the functions ~3/>;[!  
    % are often evaluated using alternative methods such as recurrence x<9|t(  
    % relations: see the Legendre functions, for example). For the Zernike =_.Zv  
    % polynomials, however, this problem does not arise, because the l ^\5Jr03  
    % polynomials are evaluated over the finite domain r = (0,1), and LLaoND6  
    % because the coefficients for a given polynomial are generally all [S3X  
    % of similar magnitude. tao3Xr^?  
    % ph^qQDA  
    % ZERNPOL has been written using a vectorized implementation: multiple ?z Ms;  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] dIIsO{Zqv  
    % values can be passed as inputs) for a vector of points R.  To achieve 3ywBq9FGhp  
    % this vectorization most efficiently, the algorithm in ZERNPOL Q:=s99  
    % involves pre-determining all the powers p of R that are required to }{]{`\  
    % compute the outputs, and then compiling the {R^p} into a single Z1^S;#v  
    % matrix.  This avoids any redundant computation of the R^p, and .\*\bvyCw  
    % minimizes the sizes of certain intermediate variables. 9Tjvc!4_b  
    % 2 B5kpmH:  
    %   Paul Fricker 11/13/2006 _y5b>+  
    aViJ?*  
    -$[=AqJXp;  
    % Check and prepare the inputs: I:AlM ?  
    % ----------------------------- fwXk{P/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $\m=-5 0-  
        error('zernpol:NMvectors','N and M must be vectors.') F!^ Y!Y@H  
    end TtKBok  
    +,c;Dff  
    if length(n)~=length(m) f>Bcr9]]  
        error('zernpol:NMlength','N and M must be the same length.') r{6 ,;  
    end o(|`atvK  
    cs~ }k7><  
    n = n(:); |$7!u DU8  
    m = m(:); }Ct_i'Ow  
    length_n = length(n); wQ(ME7 t  
    3cQTl5,  
    if any(mod(n-m,2)) bF?EuL  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') r`28fC  
    end 4lvo9R  
    (VwS 9:`  
    if any(m<0) Oh<Z0M)  
        error('zernpol:Mpositive','All M must be positive.') D zl#[|q  
    end KJcdX9x  
    }6m5MH$7q  
    if any(m>n) H\^5>ccU>V  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') SZvw>=)a  
    end NjsP"  
    od?Q&'A  
    if any( r>1 | r<0 ) o.}^6.h"  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') N|7<*\o  
    end (WN'wp  
    |w /txn8G|  
    if ~any(size(r)==1) /KlA7MH6  
        error('zernpol:Rvector','R must be a vector.') ,7/un8:%c  
    end r/3 !~??x  
    x1mxM#ql  
    r = r(:); +zz9u?2C`  
    length_r = length(r); 98o;_tU'  
    Ldt7?Y(V(  
    if nargin==4 &v3r#$Hj[  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); kD MS7y<s  
        if ~isnorm Fk=_Q LI  
            error('zernpol:normalization','Unrecognized normalization flag.') --",}%-  
        end BFj@Z'7P  
    else _Y\@{T;^Zb  
        isnorm = false; ~]c^v'k  
    end rv|k8  
    ^b>E_u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Nk}Hvg*(  
    % Compute the Zernike Polynomials UY%@i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bs%]xf ~D;  
    gtjgC0   
    % Determine the required powers of r: If!0w ;h  
    % ----------------------------------- [>Q{70 c[  
    rpowers = []; },[S9I`p  
    for j = 1:length(n) =CRaMjN  
        rpowers = [rpowers m(j):2:n(j)]; a-i#?hld  
    end $. V(_  
    rpowers = unique(rpowers); b39;Sv|#  
    iVXR=A\er  
    % Pre-compute the values of r raised to the required powers, >SfC '*1  
    % and compile them in a matrix: Y5ebpw+B-  
    % -----------------------------  _%i|*  
    if rpowers(1)==0 Hvor{o5|tB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rhNdXYY>  
        rpowern = cat(2,rpowern{:}); `Rj i=k>  
        rpowern = [ones(length_r,1) rpowern]; Zd~s5  
    else #c/v2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vbwEX6  
        rpowern = cat(2,rpowern{:}); =bv8W < #  
    end aoF>{Z4&B  
    +zL=UEBN  
    % Compute the values of the polynomials: t*.v!   
    % -------------------------------------- o~es> ;  
    z = zeros(length_r,length_n); `yuD/-j  
    for j = 1:length_n RA.@(DN&  
        s = 0:(n(j)-m(j))/2; r OB\u|Pg  
        pows = n(j):-2:m(j); C .YtjLQP$  
        for k = length(s):-1:1 nW|[poQK  
            p = (1-2*mod(s(k),2))* ... T("Fh}  
                       prod(2:(n(j)-s(k)))/          ... |U7{!yy%MF  
                       prod(2:s(k))/                 ... 3]} W  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Ej.D!@   
                       prod(2:((n(j)+m(j))/2-s(k))); X8;03EW;  
            idx = (pows(k)==rpowers); GIZNHG   
            z(:,j) = z(:,j) + p*rpowern(:,idx); dF1Bo  
        end fCEd :Kr  
         8eOQRC33  
        if isnorm ZTt% 7K"L  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); gfr``z=>O  
        end w2$HP/90j  
    end 6{+~B2Ef  
    k"Sw,"e>+  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  > ZNL pJQ  
    tHu8|JrH+  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }& 1_gn15  
    +"p" ,Z  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)