切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10966阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Js{= i>D  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ; )llt G  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 B'weok  
    function z = zernfun(n,m,r,theta,nflag) (@sp/:`6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .v\\Tq&"|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G|u3UhyB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the +K$NAT  
    %   unit circle.  N is a vector of positive integers (including 0), and }e]f  
    %   M is a vector with the same number of elements as N.  Each element K_BPZ5w  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =o=1"o[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, E]} n(  
    %   and THETA is a vector of angles.  R and THETA must have the same lmCZ8 j(FF  
    %   length.  The output Z is a matrix with one column for every (N,M) z2yJ#  
    %   pair, and one row for every (R,THETA) pair. 6Y384  
    % $t =O:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cO#oH2}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), oFC)  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral O8u3y  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YJF#)TkF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K k[`dR;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9.+/~$Ht  
    % 9'~- U  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3I=kr  
    %   They are used in disciplines such as astronomy, optics, and y2yKm1<Ru<  
    %   optometry to describe functions on a circular domain. ]B4}eBt5)@  
    % hfM;/  
    %   The following table lists the first 15 Zernike functions. 4FMF|U  
    % &jQ?v@|1c  
    %       n    m    Zernike function           Normalization ;h/pnmhP  
    %       -------------------------------------------------- g"8 .}1)~r  
    %       0    0    1                                 1 lC?Icn|o  
    %       1    1    r * cos(theta)                    2 <G3&z#]#4  
    %       1   -1    r * sin(theta)                    2 O>0VTW  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3.R#&Zxt  
    %       2    0    (2*r^2 - 1)                    sqrt(3) U8QX46Br  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JhK/']R  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) U9d:@9Y  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^CT&0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9}tG\0tL*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) pxINw>\Qv  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) l:(Rb-Wy  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JWO=!^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qv{o |g QB  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N=1JhjVk"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ZU2laqa_  
    %       -------------------------------------------------- j -O2aL  
    % W0`Gc {  
    %   Example 1: # '|'r+  
    % hP@(6X,"  
    %       % Display the Zernike function Z(n=5,m=1) 3TuC+'`G  
    %       x = -1:0.01:1; ,d,\-x-+/  
    %       [X,Y] = meshgrid(x,x); ^s/  
    %       [theta,r] = cart2pol(X,Y); g^>#^rLU  
    %       idx = r<=1; vR7HF*8  
    %       z = nan(size(X)); rp34?/Nz  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); } /^C|iS7  
    %       figure e_3CSx8Cc  
    %       pcolor(x,x,z), shading interp BNGe exs@  
    %       axis square, colorbar lT8\}hNI+  
    %       title('Zernike function Z_5^1(r,\theta)') ,Fqz e/  
    % ZFh+x@  
    %   Example 2: p#8W#t$  
    % "E!mva*NU  
    %       % Display the first 10 Zernike functions pa .K-e)Mu  
    %       x = -1:0.01:1; MFit|C  
    %       [X,Y] = meshgrid(x,x); \&xl{64  
    %       [theta,r] = cart2pol(X,Y); W=}Okq)x9I  
    %       idx = r<=1; rx ~[Zs+*  
    %       z = nan(size(X)); Al"3 kRJJ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !3&kQpF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h+UnZfm  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %uESrc-;  
    %       y = zernfun(n,m,r(idx),theta(idx)); +54aO  
    %       figure('Units','normalized') pR o s{Uq"  
    %       for k = 1:10 H:&?ha,9  
    %           z(idx) = y(:,k); "u^EleE!  
    %           subplot(4,7,Nplot(k)) 3-Bl  
    %           pcolor(x,x,z), shading interp my\&hCE  
    %           set(gca,'XTick',[],'YTick',[]) 1hQN8!:<  
    %           axis square n$+M%}/f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O mMX$YID  
    %       end &K%aw  
    % wGKo.lt   
    %   See also ZERNPOL, ZERNFUN2. .QWhK|(.!  
    w_-+o^  
    %   Paul Fricker 11/13/2006 iDb;_?  
    !AHAS  
    :KE/!]z  
    % Check and prepare the inputs: GuQRn  
    % ----------------------------- \{|ImCH  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Fe=8O ^\  
        error('zernfun:NMvectors','N and M must be vectors.') }7/e8 O2  
    end ]?l{j  
    5N/Lk>p1u  
    if length(n)~=length(m) :- +4:S  
        error('zernfun:NMlength','N and M must be the same length.') **;p (CI  
    end %e%7oqR?  
    ZW4aY}~)$  
    n = n(:); +++pI.>(*Q  
    m = m(:); I44s(G1j l  
    if any(mod(n-m,2)) [s6C ZcL  
        error('zernfun:NMmultiplesof2', ... #a~"K|' G  
              'All N and M must differ by multiples of 2 (including 0).') #gZ|T M/h  
    end [~%`N*G  
    Zr/r2  
    if any(m>n) [1Dm<G u@  
        error('zernfun:MlessthanN', ... DguB  
              'Each M must be less than or equal to its corresponding N.') D'i6",Z>  
    end dk5|@?pe  
    7>.OVh<  
    if any( r>1 | r<0 ) oK+Lzb\d{M  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |r =DBd3  
    end  W'/>et  
    NB)t7/Us  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7sV /_3H+  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3)E(RyQA3  
    end *@M3p}',M  
    C3"&sdLb$  
    r = r(:); 2i:zz? 'p`  
    theta = theta(:); &=w|vB)(p  
    length_r = length(r); W<'<'z5  
    if length_r~=length(theta) ~[18q+,  
        error('zernfun:RTHlength', ... 6Z c)0I'  
              'The number of R- and THETA-values must be equal.') KTmaglgp  
    end Q1V2pP+=@  
    zO.6WJ  
    % Check normalization: @YZ 4AC  
    % -------------------- Uf2:gLrF  
    if nargin==5 && ischar(nflag) 3M*Y= ?pI  
        isnorm = strcmpi(nflag,'norm'); qx%jAs+~  
        if ~isnorm  P\(30  
            error('zernfun:normalization','Unrecognized normalization flag.') *zQOJsg"e  
        end S aNN;X0  
    else Czu1)y  
        isnorm = false; qS]G&l6QF  
    end ~CFMIQ et  
    n~%}Z[5D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lz6*H1~   
    % Compute the Zernike Polynomials ;1E_o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A2_Ls;]  
    %UG/ak%z  
    % Determine the required powers of r: ZR mPP  
    % ----------------------------------- ..$>7y}  
    m_abs = abs(m); M,G8*HI"  
    rpowers = []; Iaa|qJ4  
    for j = 1:length(n) pn*d[M|k  
        rpowers = [rpowers m_abs(j):2:n(j)]; BvJ\x)  
    end sD2Qm  
    rpowers = unique(rpowers); E7 L bSZ  
    /&6Q)   
    % Pre-compute the values of r raised to the required powers, [oJ& J>U'  
    % and compile them in a matrix: FvA|1c  
    % ----------------------------- s kY0\V  
    if rpowers(1)==0 Gl"wEL*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5iv@@1c  
        rpowern = cat(2,rpowern{:}); 7YD\ !2b  
        rpowern = [ones(length_r,1) rpowern]; D:6N9POB  
    else 7_7xL(F/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BiE$mM  
        rpowern = cat(2,rpowern{:}); !,R  
    end Y` q!V=  
    qs "s/$  
    % Compute the values of the polynomials: wH!}qz /  
    % -------------------------------------- % dYI5U89  
    y = zeros(length_r,length(n)); nE^wxtY  
    for j = 1:length(n) QdirE4W  
        s = 0:(n(j)-m_abs(j))/2; qjzZ}  
        pows = n(j):-2:m_abs(j); C~:b*X   
        for k = length(s):-1:1 )v};C<  
            p = (1-2*mod(s(k),2))* ... Le_CIk 5YL  
                       prod(2:(n(j)-s(k)))/              ... Y0rf9  
                       prod(2:s(k))/                     ... $=7H1 w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +6uOg,;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <%he  o  
            idx = (pows(k)==rpowers); p-a]"l+L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W;5N04ko  
        end |%n|[LP'  
         IM$ 'J  
        if isnorm Xx=K?Z?3.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |WQD=J%~(  
        end #cR57=M}  
    end fQ^h{n  
    % END: Compute the Zernike Polynomials "tpvENz2s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jBT*~DyN z  
    F>p%2II/  
    % Compute the Zernike functions: GcPB'`!M  
    % ------------------------------ _.u~)Q`6  
    idx_pos = m>0; g8C+1G8  
    idx_neg = m<0; "X\q%%P=?  
    fN~8L}!l  
    z = y; SZNFE  
    if any(idx_pos) N;%j#(v j  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0%vixR52  
    end [I#Q  
    if any(idx_neg) >?H_A  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #u!y`lek  
    end D7 8) 4>X  
    J$o[$G_Z  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) SV$ASs  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |wl")|b%  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^+YGSg7  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive oQE_?">w  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, y2d_b/  
    %   and THETA is a vector of angles.  R and THETA must have the same vM$#m1L?  
    %   length.  The output Z is a matrix with one column for every P-value, @idp8J [td  
    %   and one row for every (R,THETA) pair. D0"yZp}  
    % lVO(9sl*i  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike jw&}N6^G  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3n=cw2FG  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) t2U]CI%  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 =h1 QN  
    %   for all p. 9fk\Ay1P  
    % Y=#mx3.  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 y0Q/B|&[  
    %   Zernike functions (order N<=7).  In some disciplines it is  \1c`)  
    %   traditional to label the first 36 functions using a single mode 7xa@wa?!L  
    %   number P instead of separate numbers for the order N and azimuthal gEe W1:AB  
    %   frequency M. M@z_Z+q 9  
    % 67hPQ/S1  
    %   Example: e&VR>VJEA  
    % LKwUpu!  
    %       % Display the first 16 Zernike functions ~dX@5+Gd  
    %       x = -1:0.01:1; j,V$vKP  
    %       [X,Y] = meshgrid(x,x); /A`zy  
    %       [theta,r] = cart2pol(X,Y); \/e*quxx  
    %       idx = r<=1; Hi 0df3t  
    %       p = 0:15; K^1O =1gY  
    %       z = nan(size(X)); "vHAp55B{  
    %       y = zernfun2(p,r(idx),theta(idx)); T"0)%k8lJ  
    %       figure('Units','normalized') =xQfgj  
    %       for k = 1:length(p) d?+oT0pCH  
    %           z(idx) = y(:,k); ;ZW}47:BS6  
    %           subplot(4,4,k) UHDI9>G~,  
    %           pcolor(x,x,z), shading interp Ydd>A\v\;  
    %           set(gca,'XTick',[],'YTick',[]) x~Esu}x7  
    %           axis square >Ki]8 &  
    %           title(['Z_{' num2str(p(k)) '}']) ""KN?qh9  
    %       end b.u8w2(  
    % W;9X*I8f8  
    %   See also ZERNPOL, ZERNFUN. k=/|?%  
    Kgio}y  
    %   Paul Fricker 11/13/2006 ,(Hmk(,  
    ^+l\YB7pD  
    a/`Yh>ou  
    % Check and prepare the inputs: *"bp}3$^^  
    % ----------------------------- P!&CH4+  
    if min(size(p))~=1 x!Y@31!Dy  
        error('zernfun2:Pvector','Input P must be vector.') Xr6 !b:UX  
    end $%"}N_M  
    l,2z5p  
    if any(p)>35 P T.jR*  
        error('zernfun2:P36', ... !>);}J!e]  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... (dt_ D  
               '(P = 0 to 35).']) :pu{3-n.  
    end ~0{Kga  
    s;M*5|-  
    % Get the order and frequency corresonding to the function number: nY0UnlB`  
    % ---------------------------------------------------------------- dct#E CT  
    p = p(:); 9>>}-;$  
    n = ceil((-3+sqrt(9+8*p))/2); ?a9k5@s  
    m = 2*p - n.*(n+2); [1MEA;  
    0>MI*fnY"  
    % Pass the inputs to the function ZERNFUN: vfDb9QP  
    % ---------------------------------------- OIT;fKl9  
    switch nargin -{%''(G  
        case 3 oA%[x  
            z = zernfun(n,m,r,theta); o+Z9h1z%,  
        case 4 zL}hFmh  
            z = zernfun(n,m,r,theta,nflag); Z!eq/  
        otherwise -y.AJ~T  
            error('zernfun2:nargin','Incorrect number of inputs.') W (=B H  
    end ljON_*  
    Cw5K*  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Am  $L  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. v{ Ve sf  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 3kY4V*9@-  
    %   order N and frequency M, evaluated at R.  N is a vector of #+k[[; 0  
    %   positive integers (including 0), and M is a vector with the Jo<6M'  
    %   same number of elements as N.  Each element k of M must be a n.RhA-O  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) nDy=ZsK  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ^i\1c-/  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Bn q\Gg  
    %   with one column for every (N,M) pair, and one row for every q2vz#\A?  
    %   element in R. pSFWNWQ'B  
    % 8$Yf#;m[  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- @x +#ZD(  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is J7o?h9  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Hc|U@G  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 89mre;v`  
    %   for all [n,m]. HC,@tfS  
    % ts>}>}@vc  
    %   The radial Zernike polynomials are the radial portion of the ] i2\2MTW8  
    %   Zernike functions, which are an orthogonal basis on the unit vW3ZuB  
    %   circle.  The series representation of the radial Zernike ZRGZ'+hw  
    %   polynomials is Un{ln*AR\  
    % S\gP=.G  
    %          (n-m)/2 ,>v9 Y#U  
    %            __ [S+-ovl  
    %    m      \       s                                          n-2s 5T#D5Z<m  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r d<nB=r!*  
    %    n      s=0 1Z8oN3  
    % KBA%  
    %   The following table shows the first 12 polynomials. w8I&:"^7<  
    % j88sE MZ  
    %       n    m    Zernike polynomial    Normalization o;_bs~}y  
    %       --------------------------------------------- 1[9j`~[([  
    %       0    0    1                        sqrt(2) ^|(4j_.(e  
    %       1    1    r                           2 )^f Q@C8  
    %       2    0    2*r^2 - 1                sqrt(6) vaJXX  
    %       2    2    r^2                      sqrt(6) })vr*[  
    %       3    1    3*r^3 - 2*r              sqrt(8) 0.+eF }'H  
    %       3    3    r^3                      sqrt(8) UC/2&7 ?  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 1?#9K j{ql  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) a;(zH*/XK  
    %       4    4    r^4                      sqrt(10) Er1u1@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #ic 2ofI  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) fYM6wYJ  
    %       5    5    r^5                      sqrt(12) EFt`<qwj  
    %       --------------------------------------------- G_N-}J>EP  
    % aX'g9E  
    %   Example: zQ %z "tQ  
    % |$?Ux,(6  
    %       % Display three example Zernike radial polynomials O| 6\g>ew  
    %       r = 0:0.01:1; >VUQTg  
    %       n = [3 2 5]; 3H}~eEg,  
    %       m = [1 2 1]; S*m`'  
    %       z = zernpol(n,m,r); JBEgiQ/  
    %       figure AKC foJ  
    %       plot(r,z) Etc?;Z[F#  
    %       grid on \M"^Oe{Dy?  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') j[J@tM#  
    % M:UB>-`bW  
    %   See also ZERNFUN, ZERNFUN2. 2*q: ^  
    0Q- Mxcj  
    % A note on the algorithm. %*6oUb  
    % ------------------------ x+y!P  
    % The radial Zernike polynomials are computed using the series ?}3PJVy?  
    % representation shown in the Help section above. For many special Lr}b,  
    % functions, direct evaluation using the series representation can x1V2|~;p|  
    % produce poor numerical results (floating point errors), because :{i$2\DH6  
    % the summation often involves computing small differences between {[t"O u  
    % large successive terms in the series. (In such cases, the functions Jt>[]g$  
    % are often evaluated using alternative methods such as recurrence kuj1 2  
    % relations: see the Legendre functions, for example). For the Zernike 7l#2,d4  
    % polynomials, however, this problem does not arise, because the g y e(/N+I  
    % polynomials are evaluated over the finite domain r = (0,1), and Op/79 ]$  
    % because the coefficients for a given polynomial are generally all f{^M.G@  
    % of similar magnitude. L_lDFF  
    % M o"JV  
    % ZERNPOL has been written using a vectorized implementation: multiple x !:9c<  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] q 5v?`c  
    % values can be passed as inputs) for a vector of points R.  To achieve bxhg*A  
    % this vectorization most efficiently, the algorithm in ZERNPOL JXLWRe  
    % involves pre-determining all the powers p of R that are required to g#'fd/?Q  
    % compute the outputs, and then compiling the {R^p} into a single 42J';\)oP  
    % matrix.  This avoids any redundant computation of the R^p, and gF,[u  
    % minimizes the sizes of certain intermediate variables. k$-~_^4m  
    % o!=l B fI  
    %   Paul Fricker 11/13/2006 U%^eIXV|  
    G V:$;  
    ^#BGA|j  
    % Check and prepare the inputs: Z`oaaO  
    % ----------------------------- &8Jg9#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /K,|k EE'n  
        error('zernpol:NMvectors','N and M must be vectors.') 5rfH;`  
    end ne"?90~  
    X<Th{kM2  
    if length(n)~=length(m) ckf<N9  
        error('zernpol:NMlength','N and M must be the same length.') KZrMf77=  
    end $W/+nmb)@K  
    p]h*6nH>~  
    n = n(:); o=-Vt,2{  
    m = m(:); $h 08Z  
    length_n = length(n); xBL$]>  
    Tf#2"(!  
    if any(mod(n-m,2)) .|-l+   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 5oU`[&=Ob  
    end \]T=j#.S$  
    ]>)u+|  
    if any(m<0) FJ{,=@  
        error('zernpol:Mpositive','All M must be positive.') mvHh"NJ  
    end BKC7kDK3H  
    QE 45!Z g  
    if any(m>n) lh\ICN\O  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ':4}O#  
    end cBLR#Yu;O5  
    ceFsGdS  
    if any( r>1 | r<0 ) [lNqT1%]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') K\IYx|Hm a  
    end &Y54QE".  
    _{LN{iqDv  
    if ~any(size(r)==1) %@}o'=[  
        error('zernpol:Rvector','R must be a vector.') KE/-VjZu  
    end ~A`&/U  
    9Fy\t{ks  
    r = r(:); nT.L}1@  
    length_r = length(r); gppBFS  
    7?=43bZl  
    if nargin==4 ORGv)>C|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [G{rHSK5tQ  
        if ~isnorm M.ZEqV+k  
            error('zernpol:normalization','Unrecognized normalization flag.') 0'?V|V=v  
        end #XTY7,@ P  
    else =\~E n5  
        isnorm = false; P%zH>K  
    end cGgM8  
    {$EH@$./  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sa3I?+  
    % Compute the Zernike Polynomials =?/N5O(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <y@,3DD3A9  
    ]\ CU9J|H8  
    % Determine the required powers of r: , CJAzGBS  
    % ----------------------------------- }3v'Cp0L  
    rpowers = []; t"<s}~  
    for j = 1:length(n) Ts|--,  
        rpowers = [rpowers m(j):2:n(j)]; t)-*.qZh  
    end WnD^F>  
    rpowers = unique(rpowers); %1Bn_  
    p"Ot5!F >  
    % Pre-compute the values of r raised to the required powers, &|v{#,ymeb  
    % and compile them in a matrix: iO!27y  
    % ----------------------------- Zimh _  
    if rpowers(1)==0 duX0Mc. 0P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aSc{Ft/O  
        rpowern = cat(2,rpowern{:}); q=|R89  
        rpowern = [ones(length_r,1) rpowern]; $o]r ]#B+  
    else Dc08D4   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); i 3m3zXt  
        rpowern = cat(2,rpowern{:}); v#  
    end QL2Nz@|k  
    ;W]D ~X&  
    % Compute the values of the polynomials: 4L8z>9D  
    % -------------------------------------- Lp_$?MCD.  
    z = zeros(length_r,length_n); Ls&+XlrX8  
    for j = 1:length_n G+0><,S  
        s = 0:(n(j)-m(j))/2; ,eR8 ~(`=  
        pows = n(j):-2:m(j); b9!.-^<8y  
        for k = length(s):-1:1 94\t1fE  
            p = (1-2*mod(s(k),2))* ... &~RR&MdZ2  
                       prod(2:(n(j)-s(k)))/          ... BR+nL6sU  
                       prod(2:s(k))/                 ... z9[[C^C  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... puOC60zI  
                       prod(2:((n(j)+m(j))/2-s(k))); C)NC&fV  
            idx = (pows(k)==rpowers); Rj^7#,993  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4t04}vp  
        end >ajuk  
         MhNFW'_  
        if isnorm }.p<wCPy6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _2b9QP p  
        end o/C(4q6d  
    end P}0*{%jB  
    Frk cO  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  <#GB[kQa  
    6 15s5ZA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Zk8|K'oHx  
    :!a 2]-D}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)