非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 bLQ ^fH4ww
function z = zernfun(n,m,r,theta,nflag) 7_mw%|m6@
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. l*kPOyB
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'eJ+JM<0%
% and angular frequency M, evaluated at positions (R,THETA) on the j|/]#@Yr
% unit circle. N is a vector of positive integers (including 0), and ?}RSwl
% M is a vector with the same number of elements as N. Each element ,>:;#2+og
% k of M must be a positive integer, with possible values M(k) = -N(k) zSSB>D
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &znQ;NH#
% and THETA is a vector of angles. R and THETA must have the same e=Z,
Jg
% length. The output Z is a matrix with one column for every (N,M) z[cyA.
% pair, and one row for every (R,THETA) pair. yfx7{naKC`
% oA =4=`
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &Ibu>di4[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8ZKo_I\
% with delta(m,0) the Kronecker delta, is chosen so that the integral =ZDAeVz3w
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PB/IFsJ
% and theta=0 to theta=2*pi) is unity. For the non-normalized mXUGe:e8
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. NLr PSqz
% VGceD$<
% The Zernike functions are an orthogonal basis on the unit circle. '{J&M|<A
% They are used in disciplines such as astronomy, optics, and B:e
@0049
% optometry to describe functions on a circular domain. zD(`B+
% Pj4/xX
% The following table lists the first 15 Zernike functions. 1\g6)|R-+
% "=+7-`
% n m Zernike function Normalization )EL!D%<A
% -------------------------------------------------- qnoNT%xazo
% 0 0 1 1 FRS>KO=3
% 1 1 r * cos(theta) 2 \uXcLhXN
% 1 -1 r * sin(theta) 2 Wt=|
% 2 -2 r^2 * cos(2*theta) sqrt(6) EC\yzH*X
% 2 0 (2*r^2 - 1) sqrt(3) 1xbK'i:-S
% 2 2 r^2 * sin(2*theta) sqrt(6) LNa $
X5`
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;}1xn3THCn
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *_KFW@bC:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) #F*1V(!
% 3 3 r^3 * sin(3*theta) sqrt(8) fuA&7gNC
% 4 -4 r^4 * cos(4*theta) sqrt(10) B"v.*
%"&/
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UY <e&Npo
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) V0%V5>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %^8^yZz
% 4 4 r^4 * sin(4*theta) sqrt(10) }j^\(2
% -------------------------------------------------- .{=$!8|&I9
% ]Lm9^q14m
% Example 1: `"@g8PWe
% U
R%4@
% % Display the Zernike function Z(n=5,m=1) V`RNM%Y
% x = -1:0.01:1; ^RP)>d9Xp{
% [X,Y] = meshgrid(x,x); A5H3%o(6k
% [theta,r] = cart2pol(X,Y); h?f>X"*|(
% idx = r<=1; n':! ,a[
% z = nan(size(X)); Pf_S[
sm
% z(idx) = zernfun(5,1,r(idx),theta(idx)); m@Qt.4m%g
% figure IhBp%^H0-
% pcolor(x,x,z), shading interp !Yw3 d
% axis square, colorbar ;]w<&C!=
% title('Zernike function Z_5^1(r,\theta)') 7As|Ns`
% OZIW_'Wm/
% Example 2: )6w}<W*1E
% 2{Chu85
% % Display the first 10 Zernike functions (C\hVy2X?N
% x = -1:0.01:1; ,i0b)=!o
% [X,Y] = meshgrid(x,x); !p[9{U->o;
% [theta,r] = cart2pol(X,Y); \2(SB
% idx = r<=1; t(+)#
% z = nan(size(X)); sj8~?O
% n = [0 1 1 2 2 2 3 3 3 3]; LS5vW|]w
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; p?2Y }9
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ?0
m\(#
% y = zernfun(n,m,r(idx),theta(idx)); (^5 7UmFv]
% figure('Units','normalized') fsEzpUY:{W
% for k = 1:10 `$~RxzZ g
% z(idx) = y(:,k); Kv rX{F=
% subplot(4,7,Nplot(k)) 3 AHY|
% pcolor(x,x,z), shading interp je6CDF qw
% set(gca,'XTick',[],'YTick',[]) X!j{o
% axis square wBInq~K_
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ErT{(t7
% end ! {82D[5
% s%!`kWVJ.
% See also ZERNPOL, ZERNFUN2. %&Fk4Z}M
"&/]@)TPz
% Paul Fricker 11/13/2006 )m&U#S _;
eVR5Xar
X<MO7I
% Check and prepare the inputs: yCXrVN:`,
% ----------------------------- &I({T`=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $XU5??8
error('zernfun:NMvectors','N and M must be vectors.') %"X-&1vV
end a2f^x@0k
3-%Cw2ds
if length(n)~=length(m) 2qHf'
error('zernfun:NMlength','N and M must be the same length.') i `0v#P
end =rd|0K"(r
J j=;
n = n(:); O Lc}_
m = m(:); DS2)@
if any(mod(n-m,2)) pCu!l#J
error('zernfun:NMmultiplesof2', ... $x#FgD(iI
'All N and M must differ by multiples of 2 (including 0).') <|*'O5B
end KT.?Xp:z
NJ MJ
if any(m>n) @O}7XRJ_8
error('zernfun:MlessthanN', ... /?6gdN
'Each M must be less than or equal to its corresponding N.') 8*SP~q
end <N(oDa U
{3Y )rY!z
if any( r>1 | r<0 ) +"ueq
error('zernfun:Rlessthan1','All R must be between 0 and 1.') u0RS)&
end \#rO!z
d
(5<^p&
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,WQ^tI=O
error('zernfun:RTHvector','R and THETA must be vectors.') /EMJSr
end W><dYy=z5
`T2 <<<
r = r(:); tQ~W EC
theta = theta(:); D%7kBfCb
length_r = length(r); }K(o9$V ^!
if length_r~=length(theta) i1oKrRv
error('zernfun:RTHlength', ... Ao7 `G':
'The number of R- and THETA-values must be equal.') )B!d,HKt;
end W"Jn(:&
?W0(|9
% Check normalization: CodSJ,
% -------------------- + q''y
if nargin==5 && ischar(nflag) +jqj6O@Tjr
isnorm = strcmpi(nflag,'norm'); nW+YOX|+
if ~isnorm X jE>k!=I
error('zernfun:normalization','Unrecognized normalization flag.') j}+5vB|0
end jko"MfJ
else ?`zgq>R}w[
isnorm = false; 3|rn] yZ
end 6<5Jq\-h
E4D (,s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {6d b{ ay_
% Compute the Zernike Polynomials 7W9~1
.SC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !7U\J]
N8!TZ~1$
% Determine the required powers of r: gor<g))\
% ----------------------------------- AaN"7.Z/
m_abs = abs(m); ze'.Y%]
rpowers = []; NNa1EXZ[
for j = 1:length(n) fj4^VXD
rpowers = [rpowers m_abs(j):2:n(j)]; #^&jW
end M0-,M/]l
rpowers = unique(rpowers); XNH4==4
DI&MC9j(
% Pre-compute the values of r raised to the required powers, kA7(CqUW
% and compile them in a matrix: c[0oh.
% ----------------------------- t]^_l$
if rpowers(1)==0 s6=YV0w(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4?/7
bc
rpowern = cat(2,rpowern{:}); %HSl)zEo>C
rpowern = [ones(length_r,1) rpowern]; {@r*+~C3
else "]t>ZT:OJ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); agd)ag4"[u
rpowern = cat(2,rpowern{:}); }#= Od e
end 16@);Ot
HPa|uDVv
% Compute the values of the polynomials: 9b6!CNe!
% -------------------------------------- [BBpQN.^q6
y = zeros(length_r,length(n)); $Kq<W{H3ut
for j = 1:length(n) yty`2$O
s = 0:(n(j)-m_abs(j))/2; agaq`^[(P
pows = n(j):-2:m_abs(j); C>*n9l[M~
for k = length(s):-1:1 xaL#MIR"u"
p = (1-2*mod(s(k),2))* ... wq4nMY:#
prod(2:(n(j)-s(k)))/ ... \]Z&P,}w
prod(2:s(k))/ ... u fw cF*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kb|eQtH
prod(2:((n(j)+m_abs(j))/2-s(k))); 4&N$: j<
idx = (pows(k)==rpowers); z/1hqxHl
y(:,j) = y(:,j) + p*rpowern(:,idx); JJl7JwSTW
end e`sw*m5
, deUsc
if isnorm i<u9:W
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _
K/swT{f
end %yaG,;>U
end M^ 5e~y
% END: Compute the Zernike Polynomials K&UE0JO'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F^'v{@C
0yHjrxc$
% Compute the Zernike functions: .v,bXU$@YG
% ------------------------------ 9bn2UiJk
idx_pos = m>0; 55hyV{L%
idx_neg = m<0; Lh 9S8EU
S?,_<GD)w
z = y; :l~E E!
if any(idx_pos) \|Qb[{<:,
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8D2yR#3
end G&o64W;-s
if any(idx_neg) ;i9>}]6
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); O3ZM:,.
end l#6&WWmr
Wg(bD,
% EOF zernfun