非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "4<RMYQ
function z = zernfun(n,m,r,theta,nflag) Yev] Lp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4&r[`gL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ONH!ms(kb
% and angular frequency M, evaluated at positions (R,THETA) on the 6y)TXp
% unit circle. N is a vector of positive integers (including 0), and @i'RIL}
% M is a vector with the same number of elements as N. Each element 9E'fM
% k of M must be a positive integer, with possible values M(k) = -N(k) ^HgQ"dD
<
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "9'~6b
% and THETA is a vector of angles. R and THETA must have the same $5yH(Z[[
% length. The output Z is a matrix with one column for every (N,M) )a
AKO`
% pair, and one row for every (R,THETA) pair. q_bE?j{
% %PRG;kR
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wzVx16Rvc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2&MIt(\-
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2BZYC5jy
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ROlef;/A
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~b}a|K
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. S96H`kedZo
% ~P8 6=Vw
% The Zernike functions are an orthogonal basis on the unit circle. f4UnLig
% They are used in disciplines such as astronomy, optics, and m?'H7cFR
% optometry to describe functions on a circular domain. a\;1%2a
% cyrVz4_a
% The following table lists the first 15 Zernike functions. +Z> Y//
% $mdmuUIy-3
% n m Zernike function Normalization GKT2x '(e
% -------------------------------------------------- YXz*B5R
% 0 0 1 1 <Hd8Jd4f
% 1 1 r * cos(theta) 2 vT/e&8w
% 1 -1 r * sin(theta) 2 BIGln`;,f
% 2 -2 r^2 * cos(2*theta) sqrt(6) B7PkCS&X
% 2 0 (2*r^2 - 1) sqrt(3) Hdvtgss!
% 2 2 r^2 * sin(2*theta) sqrt(6) \9"
% 3 -3 r^3 * cos(3*theta) sqrt(8) b-?wJSf|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) q^!_jMN5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ],`xd_=]=
% 3 3 r^3 * sin(3*theta) sqrt(8) ]oT8H?%*Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) eTg8I/)%B
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R[_Q}W'HG
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) p7{2/mj
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6/-]
% 4 4 r^4 * sin(4*theta) sqrt(10) !8g419Yg
% -------------------------------------------------- uqz HS>GM
% E_q/*}]pE
% Example 1: ))T@U?r
% r ^=rs!f@
% % Display the Zernike function Z(n=5,m=1) pbCj
^
% x = -1:0.01:1; bG0
|+k3O
% [X,Y] = meshgrid(x,x); 1G}f83yR
% [theta,r] = cart2pol(X,Y); V}3'0
% idx = r<=1; z*V 8l*
% z = nan(size(X)); 5!QT
}Um
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 6a*?m{
% figure *wk?{ U
% pcolor(x,x,z), shading interp 3Pu8IXW
% axis square, colorbar A<h^.{
% title('Zernike function Z_5^1(r,\theta)') z`"*60b
% v)p'0F#6A
% Example 2: (k^%j
% V`
T l$EF
% % Display the first 10 Zernike functions 8Y]% S9.
% x = -1:0.01:1; mjQZ"h0
% [X,Y] = meshgrid(x,x); a(J@]X>'
% [theta,r] = cart2pol(X,Y); vjL +fH<0:
% idx = r<=1; <x8I<K
% z = nan(size(X)); Ucx"\/"
% n = [0 1 1 2 2 2 3 3 3 3]; hW!2C6
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; (*M*muk
% Nplot = [4 10 12 16 18 20 22 24 26 28]; eMV{rFmT
% y = zernfun(n,m,r(idx),theta(idx)); ZaBmH|k
% figure('Units','normalized') yhkKakg,)
% for k = 1:10 HA J[Y3d<
% z(idx) = y(:,k); <{+U- ^rzR
% subplot(4,7,Nplot(k)) zfD@/kU
% pcolor(x,x,z), shading interp GlHP`&;UH
% set(gca,'XTick',[],'YTick',[]) =F2`X#x_j
% axis square 4Q!|fn0Sv
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pO/vD~C>
% end HUAbq }
% y|0!sNg
% See also ZERNPOL, ZERNFUN2. QuP)j1"X
i[?VF\Y(
% Paul Fricker 11/13/2006 W
]$/qyc&J
V'tqsKQ!
Q:j~
kutS|
% Check and prepare the inputs: K.=5p/^a
% ----------------------------- !{4'=+
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cij8'("+!
error('zernfun:NMvectors','N and M must be vectors.') [dR#!"6t
end fP[S.7F+No
2z.~K&+x
if length(n)~=length(m) a)4%sX*I
error('zernfun:NMlength','N and M must be the same length.') &"?99E>
end 1S(n3(KRk$
')}itS8
n = n(:); ^D]J68)#a
m = m(:); !g`I*ZE+e
if any(mod(n-m,2)) RH:vd|q+
error('zernfun:NMmultiplesof2', ... v
k=|TE
'All N and M must differ by multiples of 2 (including 0).') ?K;l 5$?%
end 6yBd9= 3K
Z)IF3{*
if any(m>n) Fg 8lX9L
error('zernfun:MlessthanN', ... ,a?oGi
'Each M must be less than or equal to its corresponding N.') FrUqfTi+W
end sYo&@~T
`a:3S@n(}
if any( r>1 | r<0 ) #s81k@#X
error('zernfun:Rlessthan1','All R must be between 0 and 1.') V%)Tu{L
end $}r.fji,c
}JWkV1
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o<iU;15
error('zernfun:RTHvector','R and THETA must be vectors.') *sZH3:
end ZjMnGRP
M|j=J{r
r = r(:); t1 U+7nM
theta = theta(:); :s&dn%5N"
length_r = length(r); ;2\6U;
if length_r~=length(theta) %k32:qe
error('zernfun:RTHlength', ... 'e' p`*
'The number of R- and THETA-values must be equal.') ,~&HL7v
end a;^lOU|L{
$i6z)]rjg
% Check normalization: $.kJBRgV*
% -------------------- 8PH4v\tJEK
if nargin==5 && ischar(nflag) uDXV@;6<
isnorm = strcmpi(nflag,'norm'); '2i !RT-
if ~isnorm L'S,=NYXY
error('zernfun:normalization','Unrecognized normalization flag.') b=xn(HE8|
end 9(q(;|;Hp
else 23i2yT
isnorm = false; NU?<bIQ
end T]Ai{@i
&mmaoWR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :>;F4gGVG
% Compute the Zernike Polynomials ![_0GFbT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;5.&TQT
/z4c>)fV
% Determine the required powers of r: M*ZN]9{^.
% ----------------------------------- Q2- lHn^L:
m_abs = abs(m); .kg 3>*
rpowers = []; dH;2OWM
for j = 1:length(n) w6cl3J&
rpowers = [rpowers m_abs(j):2:n(j)]; oC49c~`8
end OVDuF&0
rpowers = unique(rpowers); 6(d6Uwc`
IF0!@f
% Pre-compute the values of r raised to the required powers, QwWd"Of
% and compile them in a matrix: ed#fDMXGQ%
% ----------------------------- Vez8~r3
if rpowers(1)==0 fxPg"R!1i
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #8"oqqYi
rpowern = cat(2,rpowern{:}); -Q@f),
rpowern = [ones(length_r,1) rpowern]; I
]ZZN6"
else 15Mtlb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }8Y! -qX
rpowern = cat(2,rpowern{:}); }#H,oy;Dz
end )/>BgXwH
O%\cRn8m
% Compute the values of the polynomials: ftxL-7y%
% -------------------------------------- h>\C2Q
y = zeros(length_r,length(n)); (b f
IS
for j = 1:length(n) e6j1Fa9
s = 0:(n(j)-m_abs(j))/2; vnvpb!
@Q
pows = n(j):-2:m_abs(j); J@I>m N1\
for k = length(s):-1:1 n>y,{"J{
p = (1-2*mod(s(k),2))* ... 1$vG Q
prod(2:(n(j)-s(k)))/ ... Ia#!T"]@W6
prod(2:s(k))/ ... C(G.yd
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 49QsT5b)
prod(2:((n(j)+m_abs(j))/2-s(k))); k9rws
idx = (pows(k)==rpowers); S"h;u=5it
y(:,j) = y(:,j) + p*rpowern(:,idx); ct3i^,i
end /\/^= j
R<&Euph
if isnorm cWkg.ri-x
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;b0Q%TDh
end M
co:eE
end 2 L4[~>
% END: Compute the Zernike Polynomials _:m70%i
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rc8HZ
Qjj }k)
% Compute the Zernike functions: L K#A
% ------------------------------
+x
3x
idx_pos = m>0; 3$!QP
N
idx_neg = m<0; `Ow]@flLI
k2D*`\
D
z = y; I_ZJnu<
if any(idx_pos) PuP"(
M
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); D",L.
end %1A8m-u]M
if any(idx_neg) ,zoHmV1Wd+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %]LoR$|Y
end e` 4mrBtz|
#'&-S@/nQs
% EOF zernfun