非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h.fq,em+H
function z = zernfun(n,m,r,theta,nflag) !VK|u8i
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cGD(.=
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N UZ$/Ni
% and angular frequency M, evaluated at positions (R,THETA) on the P
}uOJVQ_
% unit circle. N is a vector of positive integers (including 0), and S@sO;-^+
% M is a vector with the same number of elements as N. Each element 07 $o;W@
% k of M must be a positive integer, with possible values M(k) = -N(k) fn!KQ`,#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 39jG8zr=Z[
% and THETA is a vector of angles. R and THETA must have the same RFH0
% length. The output Z is a matrix with one column for every (N,M) M@ZI\
% pair, and one row for every (R,THETA) pair. X8`Sf>
% Lh<).<S
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9k=3u;$v
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), IIqUZJ
% with delta(m,0) the Kronecker delta, is chosen so that the integral D,ln)["xm
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, W}1
;Z(.*
% and theta=0 to theta=2*pi) is unity. For the non-normalized fxIf|9Qi`
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8x{'@WCG%
% 2Hv+W-6v
% The Zernike functions are an orthogonal basis on the unit circle. 2:=
% They are used in disciplines such as astronomy, optics, and <^uBoKB/f
% optometry to describe functions on a circular domain. EZ`{Wnbq
% f
V( J|
% The following table lists the first 15 Zernike functions. e0 T\tc
% r"R#@V\'1b
% n m Zernike function Normalization d`6 'Z
% -------------------------------------------------- a@*\o+Su
% 0 0 1 1 I`p;F!s
% 1 1 r * cos(theta) 2 "wHFN>5B
% 1 -1 r * sin(theta) 2 @OHm#`~
% 2 -2 r^2 * cos(2*theta) sqrt(6) BF <ikilR
% 2 0 (2*r^2 - 1) sqrt(3) MqUH',\3
% 2 2 r^2 * sin(2*theta) sqrt(6) &!
?eL
% 3 -3 r^3 * cos(3*theta) sqrt(8) b%5f&N
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) tnG# IU
*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) w+{LAS
% 3 3 r^3 * sin(3*theta) sqrt(8) vZoaT|3
G]
% 4 -4 r^4 * cos(4*theta) sqrt(10) v}Fr@0%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m9Hit8f@Q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) L,@lp
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bY0|N[g
% 4 4 r^4 * sin(4*theta) sqrt(10) @y&bw9\
% -------------------------------------------------- DDH:)=;z
% '08=yqy4N
% Example 1: # Vha7
% #YOA`m,'
% % Display the Zernike function Z(n=5,m=1) Z)aUt
Srf
% x = -1:0.01:1; z]9MM
2+
% [X,Y] = meshgrid(x,x); $p?aVO
% [theta,r] = cart2pol(X,Y); J9[r|`gJ(
% idx = r<=1; d<N:[Y\4l
% z = nan(size(X)); ][h}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8pgEix/M5o
% figure Nu7
!8[?r*
% pcolor(x,x,z), shading interp \} :PLCKT
% axis square, colorbar "6?0h[uff
% title('Zernike function Z_5^1(r,\theta)') {,~3.5u
% HoL
Et8Q
% Example 2: N'`A?&2ru
% ;BIY^6,7e
% % Display the first 10 Zernike functions Hg$lXtn]
% x = -1:0.01:1; J
S_]FsxD
% [X,Y] = meshgrid(x,x); 5N&?KA-
% [theta,r] = cart2pol(X,Y); <HVt
V9R
% idx = r<=1; <yFu*(Q
% z = nan(size(X)); ]`+HO=0
% n = [0 1 1 2 2 2 3 3 3 3]; 'u b@]ru|
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Fun^B;GA:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ~O&:C{9=
% y = zernfun(n,m,r(idx),theta(idx)); =rCIumqD-}
% figure('Units','normalized') b`O'1r\Y;
% for k = 1:10 /C G"]!2 "
% z(idx) = y(:,k); )f<z%:I+Z
% subplot(4,7,Nplot(k)) 4Ic*9t3
% pcolor(x,x,z), shading interp V /V9B2.$
% set(gca,'XTick',[],'YTick',[]) ,>mrPtxN
% axis square xx%j.zDI]
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SJ>vwmA4
% end ^qD$z=z-
% ?'{SX9
% See also ZERNPOL, ZERNFUN2. 8C9-_Ng`
(jl
D+Y_
% Paul Fricker 11/13/2006 ByNn
JB[~;nLlC
EGF '"L
% Check and prepare the inputs: \ Et3|Iv
% ----------------------------- o!ebs0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l#Y,R 0
error('zernfun:NMvectors','N and M must be vectors.') (\YltC@q%
end 'Xq|Kf (
V/I<g
if length(n)~=length(m) ;P%1j| 7
error('zernfun:NMlength','N and M must be the same length.') {:$>t~=D
end PKg@[<g43
RO/FF<f
n = n(:); 0*D$R`$
m = m(:); CD( :jM?
if any(mod(n-m,2)) 65$+{s
error('zernfun:NMmultiplesof2', ... ofw3S|F6
'All N and M must differ by multiples of 2 (including 0).') * kDC liL
end 8(&[Rs?K
\B,@`dw
if any(m>n)
>rKIG~P_
error('zernfun:MlessthanN', ... j0evq+
'Each M must be less than or equal to its corresponding N.') mQ26K~
end 1 +{{EOZ4
Y;^l%ePuW
if any( r>1 | r<0 ) Mc_YPR:C
error('zernfun:Rlessthan1','All R must be between 0 and 1.') hVAn>_(
end X296tA>C`
W^LY'ypT
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o5uph=Q{
error('zernfun:RTHvector','R and THETA must be vectors.') 3/e.38m|
end ;d"F%M
y
'3DXPR^B6
r = r(:); ;1O_M9
theta = theta(:); >T3-
length_r = length(r); Nk VK
if length_r~=length(theta) &n}f?
error('zernfun:RTHlength', ... !_D0vI;
'The number of R- and THETA-values must be equal.') KD7dye
end &zeyE;/Hj
e9 5Lo+:f
% Check normalization: (WO]Xq<
% -------------------- j8{i#;s!"
if nargin==5 && ischar(nflag) s.N/2F&*W
isnorm = strcmpi(nflag,'norm'); dx{bB%?Y\=
if ~isnorm GmEJhr.3`=
error('zernfun:normalization','Unrecognized normalization flag.') j2.|ln"!
end {19PL8B~}
else )SRefW.v
isnorm = false; bj0G5dc=
end m6&~HfwN
?;+1)> {
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a /l)qB#
% Compute the Zernike Polynomials i&66Fi1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}mq6]ZrK
cr?Q[8%t1
% Determine the required powers of r: L Mbn
% ----------------------------------- ex9g?*Q
m_abs = abs(m); Ou!2[oe@M
rpowers = []; |w1Bq
for j = 1:length(n) 2%@4]
rpowers = [rpowers m_abs(j):2:n(j)]; #TX/aKr:
end Cc' 37~6~P
rpowers = unique(rpowers); OSWYGnZg
m=A(NKZ
% Pre-compute the values of r raised to the required powers, K&Z