切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11512阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 yQQDGFTb!=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! cWy*K4O  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *B~:L"N  
    function z = zernfun(n,m,r,theta,nflag) c\rbLr}l)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. EG8R*Cm,}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &,kB7r"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 9}Ave:X^  
    %   unit circle.  N is a vector of positive integers (including 0), and ZV^J5wYE  
    %   M is a vector with the same number of elements as N.  Each element |g^W @.P  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) a7d-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !eoec2h#5  
    %   and THETA is a vector of angles.  R and THETA must have the same p00Bgo  
    %   length.  The output Z is a matrix with one column for every (N,M) !Jp.3,\?~  
    %   pair, and one row for every (R,THETA) pair. F"P:9`/  
    % aJ_Eh(cF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3Qr!?=nf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), nt`l6b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ojqX#>0K  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Cx'=2Y7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized hQx e0Pdt  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &t:MWb;  
    % iDxgAV f*  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?0&>?-?  
    %   They are used in disciplines such as astronomy, optics, and ({b/J0 <@D  
    %   optometry to describe functions on a circular domain. P[oB'  
    % ebVfny$D  
    %   The following table lists the first 15 Zernike functions. 4 /vQ=t  
    % l7um9@[4  
    %       n    m    Zernike function           Normalization 7U0):11X#  
    %       -------------------------------------------------- #!@ ]%4  
    %       0    0    1                                 1 U]3JCZ{]0E  
    %       1    1    r * cos(theta)                    2 u8=|{)yL  
    %       1   -1    r * sin(theta)                    2 k_`S[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) cIkLdh   
    %       2    0    (2*r^2 - 1)                    sqrt(3) :9qB{rLi}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .{>-.&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) QKQy)g  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~vS.Dr  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z)0R$j`2  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) $5O&[/L  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) H^0KNMf(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~8E rl3=5{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #+ =afJ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pTd@i1%Nr  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) g5`YUr+3?h  
    %       -------------------------------------------------- _uacpN/<|  
    % KxI(# }5o&  
    %   Example 1: ps [rYy  
    % 6A<aelE*i  
    %       % Display the Zernike function Z(n=5,m=1) xNU}uW>>T  
    %       x = -1:0.01:1; K+H82$ #  
    %       [X,Y] = meshgrid(x,x); 0'",4=c#V  
    %       [theta,r] = cart2pol(X,Y); n$9!G  
    %       idx = r<=1; r\?*?sL  
    %       z = nan(size(X)); f}A^rWO  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); qm_\#r  
    %       figure QaV*}W  
    %       pcolor(x,x,z), shading interp Fej$`2mRH  
    %       axis square, colorbar )U?W+0[=  
    %       title('Zernike function Z_5^1(r,\theta)') ;#*mB`  
    % Fwtwf{9I  
    %   Example 2: W\/0&H\i  
    % gKnAw+u\  
    %       % Display the first 10 Zernike functions ]d0Dd")n  
    %       x = -1:0.01:1; D  UeT  
    %       [X,Y] = meshgrid(x,x); ZWv$K0agu  
    %       [theta,r] = cart2pol(X,Y); Hmz[pTQ|87  
    %       idx = r<=1; *)Y;`Yg$  
    %       z = nan(size(X)); R_csKj  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X~0P+E#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; gS!M7xy  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; t{ 'QMX  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,QDq+93  
    %       figure('Units','normalized') a&&EjI  
    %       for k = 1:10 jU=)4nx  
    %           z(idx) = y(:,k); Z`[j;=[  
    %           subplot(4,7,Nplot(k)) ,YH.n>`s+  
    %           pcolor(x,x,z), shading interp lD(d9GVm{z  
    %           set(gca,'XTick',[],'YTick',[]) jRGG5w}  
    %           axis square u%2u%-w  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nV'B!q  
    %       end /g2 1.*Z  
    % lB,MVsn18  
    %   See also ZERNPOL, ZERNFUN2. q.*qZ\;K  
    W1#3+  
    %   Paul Fricker 11/13/2006 $.`(2  
    ] O 2_&cs  
    SN11J+  
    % Check and prepare the inputs: Dq\#:NnKvx  
    % ----------------------------- r/PsFv{8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i;)88  
        error('zernfun:NMvectors','N and M must be vectors.') `toSU>:  
    end ]TGJ|X  
    E_$ ST3  
    if length(n)~=length(m) I@.qon2V  
        error('zernfun:NMlength','N and M must be the same length.') ,2u]rLxx;  
    end {`-EX  
    i2y?CI  
    n = n(:); MEg|AhP  
    m = m(:); 5^ pQ=Sgt  
    if any(mod(n-m,2)) ^c+6?  
        error('zernfun:NMmultiplesof2', ... C}45ZI4  
              'All N and M must differ by multiples of 2 (including 0).') m"u 9AOHk  
    end  xU)~)eK  
    F/mD05{  
    if any(m>n) RL($h4d9  
        error('zernfun:MlessthanN', ... WpRi+NC}ln  
              'Each M must be less than or equal to its corresponding N.') )00#Rrt9  
    end vVE^Y  
    K&Zdk (l)  
    if any( r>1 | r<0 ) ?jy^WF`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^fH]Rlx  
    end ~bvx<:8*%  
    B f[D&O  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tBdvk>d  
        error('zernfun:RTHvector','R and THETA must be vectors.') eD G=-a4  
    end D`iWf3a.  
    PL wa!j  
    r = r(:); :N(L7&<  
    theta = theta(:); !i{@B  
    length_r = length(r); Dr<%Lr  
    if length_r~=length(theta) wHdq:,0-!  
        error('zernfun:RTHlength', ... R~)c(jj5  
              'The number of R- and THETA-values must be equal.') 2x'JR yef  
    end 7 -bU9{5  
    o"K{^ L~u  
    % Check normalization: 4TUe*F@ ML  
    % -------------------- /\h&t6B1  
    if nargin==5 && ischar(nflag) XgU]Ktl  
        isnorm = strcmpi(nflag,'norm'); ;\( wJ{u?Y  
        if ~isnorm ZJ  u\  
            error('zernfun:normalization','Unrecognized normalization flag.') Va?wG3w  
        end %]RzC`NZ  
    else |\Jpjm)?  
        isnorm = false; 5=5~GX-kr  
    end ]`]m41+w  
    5>"-lB &  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B4_0+K H  
    % Compute the Zernike Polynomials m>:3Ku  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v6TH-  
    ;g7 nG{  
    % Determine the required powers of r: a4O!q;tu7  
    % ----------------------------------- { ~FYiX  
    m_abs = abs(m); &-s!ko4z  
    rpowers = []; YjoN: z`b  
    for j = 1:length(n) i{ eDV  
        rpowers = [rpowers m_abs(j):2:n(j)]; $yI!YX&  
    end aZ@Ke$jD  
    rpowers = unique(rpowers); +Q8B in  
    hA/K>Z  
    % Pre-compute the values of r raised to the required powers, gNo.&G [  
    % and compile them in a matrix: {{SeD:hx  
    % ----------------------------- Ik(TII_  
    if rpowers(1)==0 DU|0#z=*t5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7.hn@_  
        rpowern = cat(2,rpowern{:}); 0".pw; .}  
        rpowern = [ones(length_r,1) rpowern]; =VH, i/@  
    else /`Yp]l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eICk}gfun  
        rpowern = cat(2,rpowern{:}); e{>X2UNW  
    end C3:4V2<_  
    oZA?}#DRl  
    % Compute the values of the polynomials: )?:V5UO\  
    % -------------------------------------- ;SEH|_/  
    y = zeros(length_r,length(n)); CZS{^6Ye  
    for j = 1:length(n) .u>IjK^  
        s = 0:(n(j)-m_abs(j))/2; CVyqr_n65/  
        pows = n(j):-2:m_abs(j); e@Q<hb0<eU  
        for k = length(s):-1:1 #e((F,1z  
            p = (1-2*mod(s(k),2))* ... .Qn54tS0q  
                       prod(2:(n(j)-s(k)))/              ... S2HGf~rE  
                       prod(2:s(k))/                     ... |-bSoq7t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \`-/\N  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &~29%Ns  
            idx = (pows(k)==rpowers); T9osueh4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4=9To|U*  
        end R+ lwOVX  
         + G#qS1  
        if isnorm k-@CcrepF  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .3l'&".'  
        end lX/6u E_%  
    end RY2`v pv  
    % END: Compute the Zernike Polynomials *z!!zRh3x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *y9 iuJ}  
    gQ %'2m+  
    % Compute the Zernike functions: (Hb i+IHV  
    % ------------------------------ 6TvlK*<r=  
    idx_pos = m>0; :?2+'+%'  
    idx_neg = m<0; ]1>U@oK  
    6?b 9~xRW  
    z = y; TK<~ (Dk  
    if any(idx_pos) Pou-AzEP$  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); cVv+,l4 V0  
    end 3U9]&7^  
    if any(idx_neg) !:PF |dZ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); dtw1Am#Ci  
    end *T' /5,rX2  
    SV}q8z\  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :=WiT_M  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ZnSDq_Uk  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ieXhOA  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive >F+Mu-^  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, c+chwU0W  
    %   and THETA is a vector of angles.  R and THETA must have the same &.D3f"  
    %   length.  The output Z is a matrix with one column for every P-value, # le<R  
    %   and one row for every (R,THETA) pair. {E`[ `Kf  
    % 2Pn  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 5W_u|z+/g  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ?;Dh^mc  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) A.tONPi  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 rUvjc4O}  
    %   for all p.  U, _nEx  
    % ): HjpJvF  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 FG]xn(E  
    %   Zernike functions (order N<=7).  In some disciplines it is (#x <qi,T  
    %   traditional to label the first 36 functions using a single mode ({JXv  
    %   number P instead of separate numbers for the order N and azimuthal K s 8  
    %   frequency M. /W&Ro5-  
    % N>qOiw[  
    %   Example: d l_ h0  
    % 3aIP^I1  
    %       % Display the first 16 Zernike functions l_bvwo  
    %       x = -1:0.01:1; I^erMQn[ z  
    %       [X,Y] = meshgrid(x,x); xVk|6vA7  
    %       [theta,r] = cart2pol(X,Y); *Kj*|>)  
    %       idx = r<=1; cojtQ D6  
    %       p = 0:15; 'z$BgXh\  
    %       z = nan(size(X)); f P'qUN  
    %       y = zernfun2(p,r(idx),theta(idx)); Y_m/? [:  
    %       figure('Units','normalized') ;UuCSfs{  
    %       for k = 1:length(p) 9gNQ,c \gT  
    %           z(idx) = y(:,k); `x=W)o }  
    %           subplot(4,4,k) -*xm<R],  
    %           pcolor(x,x,z), shading interp Q9,H 0r-%  
    %           set(gca,'XTick',[],'YTick',[]) #OlU|I  
    %           axis square N-XOPwx'  
    %           title(['Z_{' num2str(p(k)) '}']) q@K8,=/.#  
    %       end TZ#(G  
    % _$s ;QI]x  
    %   See also ZERNPOL, ZERNFUN. R@*mMWW,  
    zTA+s 2  
    %   Paul Fricker 11/13/2006 p4l^b[p  
    S$9>9!1>*  
    hf5yTs  
    % Check and prepare the inputs: Xvy3D@o  
    % ----------------------------- 'Xj9sAB  
    if min(size(p))~=1 B[XVTok  
        error('zernfun2:Pvector','Input P must be vector.') m417=wf  
    end lw/zgR#|  
    %x$1g)  
    if any(p)>35 -1\*}m%1e  
        error('zernfun2:P36', ... D@jG+k-Lm  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Ql~9a [8T~  
               '(P = 0 to 35).']) -e#~CE-  
    end ZUDdLJ  
    um/2.Sn>  
    % Get the order and frequency corresonding to the function number: ?-'m#5i"  
    % ---------------------------------------------------------------- )C?bb$  G  
    p = p(:); <d2?A}<  
    n = ceil((-3+sqrt(9+8*p))/2); &b!L$@6  
    m = 2*p - n.*(n+2); x#wkODLqi  
    >Yr-aDV  
    % Pass the inputs to the function ZERNFUN: YH_mWN\Wu  
    % ---------------------------------------- Yd} Jz  
    switch nargin $-HP5Kj(k-  
        case 3 M:%6$``  
            z = zernfun(n,m,r,theta); nC-=CMWWr  
        case 4 <K^{36h  
            z = zernfun(n,m,r,theta,nflag); J%8M+!`F  
        otherwise Z*AT &7  
            error('zernfun2:nargin','Incorrect number of inputs.') <F>^ffwGH-  
    end jkTh)Bm|'  
    Y]zy=8q  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) e9LP!"@EY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Mr0<b?I  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ifXGH>C  
    %   order N and frequency M, evaluated at R.  N is a vector of 9wTN *y  
    %   positive integers (including 0), and M is a vector with the %Tv2op  
    %   same number of elements as N.  Each element k of M must be a EbfE/_I  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) .jXD0~N8q  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is vcmB)P-T`O  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix hf JeVT-/v  
    %   with one column for every (N,M) pair, and one row for every |]Eli%mNe  
    %   element in R. 5LX%S.CW  
    % nF)b4`Nd  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- /<R[X>]<F  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~pC\"LU`  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to anzt;V.;Y  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 d:L|BkQ7*  
    %   for all [n,m]. 0| }]=XN^  
    % tKX+eA]  
    %   The radial Zernike polynomials are the radial portion of the W{i s2s  
    %   Zernike functions, which are an orthogonal basis on the unit 4lF(..Ix  
    %   circle.  The series representation of the radial Zernike \-W|)H  
    %   polynomials is }T~ }W8H  
    % ?'IY0^  
    %          (n-m)/2 s# 9*`K  
    %            __ &cSZ?0R  
    %    m      \       s                                          n-2s '* eeup  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ^2a63_  
    %    n      s=0 :pCv!g2  
    % _+6aD|7x  
    %   The following table shows the first 12 polynomials. \|YIuzlO4  
    % i}gsxq%  
    %       n    m    Zernike polynomial    Normalization ["1Iz{  
    %       --------------------------------------------- v+vM:At4  
    %       0    0    1                        sqrt(2) Fnc MIzp  
    %       1    1    r                           2 ".7\>8A#a  
    %       2    0    2*r^2 - 1                sqrt(6) +A-z>T(  
    %       2    2    r^2                      sqrt(6) @h,3"2W{Ev  
    %       3    1    3*r^3 - 2*r              sqrt(8) Y[rRz6.*(  
    %       3    3    r^3                      sqrt(8) Ih<.2  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) c->.eL%   
    %       4    2    4*r^4 - 3*r^2            sqrt(10) t Uk)S  
    %       4    4    r^4                      sqrt(10) )dfwYS*[n  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ~0Z.,p_  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |c[= V?AC  
    %       5    5    r^5                      sqrt(12) \IP 9EFA  
    %       --------------------------------------------- -<l2 $&KS  
    % b8LA|#]i  
    %   Example: oc"7|YG  
    % qH(HcsgD  
    %       % Display three example Zernike radial polynomials d*_rJE}B  
    %       r = 0:0.01:1; 8`z  
    %       n = [3 2 5]; )lU9\"?o  
    %       m = [1 2 1]; DN;|?oNZ  
    %       z = zernpol(n,m,r);  }=d}q *  
    %       figure SQJ +C%   
    %       plot(r,z) zvn3i5z  
    %       grid on PlR$s  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') "fC>]iA8I  
    % mNOx e  
    %   See also ZERNFUN, ZERNFUN2. 4BZ7R,m#.  
    ft1V1 c  
    % A note on the algorithm. +ryB*nT  
    % ------------------------ !JtM`x/yR  
    % The radial Zernike polynomials are computed using the series tgj 5l#P  
    % representation shown in the Help section above. For many special -<:w{cV  
    % functions, direct evaluation using the series representation can i>KgkRZL#  
    % produce poor numerical results (floating point errors), because (Q=:ln;kM  
    % the summation often involves computing small differences between vX_;Y#uD  
    % large successive terms in the series. (In such cases, the functions %2\6.c=c  
    % are often evaluated using alternative methods such as recurrence \Hw*q|  
    % relations: see the Legendre functions, for example). For the Zernike )q`.tsR>  
    % polynomials, however, this problem does not arise, because the -qBdcbi|x)  
    % polynomials are evaluated over the finite domain r = (0,1), and [+L!c}#  
    % because the coefficients for a given polynomial are generally all 4"UH~A;^  
    % of similar magnitude. 1bjz :^  
    % <fE ^S  
    % ZERNPOL has been written using a vectorized implementation: multiple ;ik,6_/Y  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] "ruYMSpU  
    % values can be passed as inputs) for a vector of points R.  To achieve _St ":9'uU  
    % this vectorization most efficiently, the algorithm in ZERNPOL {9* l  
    % involves pre-determining all the powers p of R that are required to nd$92H  
    % compute the outputs, and then compiling the {R^p} into a single "gFw:t"VV  
    % matrix.  This avoids any redundant computation of the R^p, and I>q!co9n  
    % minimizes the sizes of certain intermediate variables. Ly z8DwZ  
    % ]L2b|a3  
    %   Paul Fricker 11/13/2006 ^Vi{._r  
    ,& wd  
    hl0\$  
    % Check and prepare the inputs: uzT+,  
    % ----------------------------- L={\U3 __k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u}P:9u&h6X  
        error('zernpol:NMvectors','N and M must be vectors.') Gqj(2.AY  
    end o'Fyo4Qd  
    Vl3-cW@p  
    if length(n)~=length(m) 9m)gp19YA  
        error('zernpol:NMlength','N and M must be the same length.') !pC`vZG"  
    end #U4 f9.FY*  
    eeBW~_W  
    n = n(:); ohs`[U=%~  
    m = m(:); 'h^Ya?g  
    length_n = length(n); ex^9 l b  
    lEw;X78+  
    if any(mod(n-m,2)) ysPm4am$  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =k,?+h~  
    end `$XB_ o%@  
    6=Wevb5YJ  
    if any(m<0) O hRf&5u$  
        error('zernpol:Mpositive','All M must be positive.') "ZPgl 8  
    end !X||ds  
    'nq~1 >i  
    if any(m>n) y^[t3XA6Q  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') IG7,-3  
    end vxug>2  
    -ssmj8:Q\|  
    if any( r>1 | r<0 ) mkfDDl2 GP  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') }/#*opcv  
    end vexF|'!}0#  
    A,xPA  
    if ~any(size(r)==1) |i~-,:/-Y  
        error('zernpol:Rvector','R must be a vector.') D>;_R HK  
    end 8TG|frS  
    s5 {B1e  
    r = r(:); zbr^ulr  
    length_r = length(r); m 9\"B3sr  
    :_]0 8  
    if nargin==4 +>%51#2.Q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 6!?] (  
        if ~isnorm ~H:=p  
            error('zernpol:normalization','Unrecognized normalization flag.') q317~ z_nl  
        end X y`2ux+>/  
    else mIp> ~  
        isnorm = false; A:D9qp  
    end j l]3B  
    }s:3_9mE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %IE;'aa }  
    % Compute the Zernike Polynomials j%D{z5,nKm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RZKx!X4=q  
    E:k]Z  
    % Determine the required powers of r: [b&V^41W  
    % ----------------------------------- 2+?W{yAEi  
    rpowers = []; `rK@> -  
    for j = 1:length(n) IW>~Yl?  
        rpowers = [rpowers m(j):2:n(j)]; r> Xk1~<!  
    end {0n p  
    rpowers = unique(rpowers); KATf9-Sz  
    2y|n!p T  
    % Pre-compute the values of r raised to the required powers, W}"tf L8  
    % and compile them in a matrix: $E[M[1j  
    % ----------------------------- n~BQq-1  
    if rpowers(1)==0 _Pa@%/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,3c25.,*  
        rpowern = cat(2,rpowern{:}); Oo-4WqRJ  
        rpowern = [ones(length_r,1) rpowern]; u 8<[Q]5  
    else 7E#h(bt j  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u^B!6Sj8  
        rpowern = cat(2,rpowern{:}); gm n b  
    end [s\8@5?E  
    63_#*6Pv28  
    % Compute the values of the polynomials: 8a]g>g  
    % -------------------------------------- MK@rx6<9  
    z = zeros(length_r,length_n); wq,&0P-v  
    for j = 1:length_n 0v9i43[S|J  
        s = 0:(n(j)-m(j))/2; !Q<3TfC  
        pows = n(j):-2:m(j); Vgkj4EE  
        for k = length(s):-1:1 l:bbc!3  
            p = (1-2*mod(s(k),2))* ... ZMr[:,Jp  
                       prod(2:(n(j)-s(k)))/          ... oM^vJ3  
                       prod(2:s(k))/                 ... Cg%Owe/E?0  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 2hso6Oy/v{  
                       prod(2:((n(j)+m(j))/2-s(k))); zY@0R`{@p  
            idx = (pows(k)==rpowers); kP/<S<h,g  
            z(:,j) = z(:,j) + p*rpowern(:,idx); n @R/zy  
        end =qoOr~  
         bA2[=6  
        if isnorm {dP6fr1z  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ZR%$f-  
        end 2TQZu3$c  
    end iPY)Ew`Im  
    [`s.fkb8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  XR#?gx.}  
    X%B2xQM 5  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^c sOXP=Yp  
    8{CBWXo$)  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)