切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11065阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 (e6KSRh2fF  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 91j.%#[v'  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 bZsg7[: C  
    function z = zernfun(n,m,r,theta,nflag) Ffp<|2T2_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. z("Fy  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vswBK-w(Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 2DbM48\E  
    %   unit circle.  N is a vector of positive integers (including 0), and gC qQ~lWZ  
    %   M is a vector with the same number of elements as N.  Each element H0.,h;  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) o{&UT VyGs  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :},/ D*v  
    %   and THETA is a vector of angles.  R and THETA must have the same F"M$ "rC]  
    %   length.  The output Z is a matrix with one column for every (N,M) nmrYBw>  
    %   pair, and one row for every (R,THETA) pair. ,dIo\Lm  
    % N$SJK  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Du2v,n5@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @Ui dQX"b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  kwd)5J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y2,\WKa  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +w pe<T  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kbkq.fYr  
    % B =`"!?we  
    %   The Zernike functions are an orthogonal basis on the unit circle. xz$S5tgDQK  
    %   They are used in disciplines such as astronomy, optics, and d4#Ra%   
    %   optometry to describe functions on a circular domain. z.7'yJIP#  
    % h8MkfHH7{  
    %   The following table lists the first 15 Zernike functions. dnP3{!"b  
    % ].eY]o}=  
    %       n    m    Zernike function           Normalization Xqac$%[3  
    %       -------------------------------------------------- `b{.K,  
    %       0    0    1                                 1 ?)~j>1"S  
    %       1    1    r * cos(theta)                    2 GCgpe(cQ  
    %       1   -1    r * sin(theta)                    2 }w)`)N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) t[ZumQ@HC  
    %       2    0    (2*r^2 - 1)                    sqrt(3) T?Dq2UW  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~?c}=XL-  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) c.\J_^  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) KQ x<{-G6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %Jpb&CEY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) D@ji1$K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) z4nVsgQ$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S}hg*mWn{$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9$xEktfV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Tcglt>tj"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ew n/@;E  
    %       -------------------------------------------------- U&|$B|[  
    % U "qO&;m  
    %   Example 1: X; gN[  
    % dIo|i,-  
    %       % Display the Zernike function Z(n=5,m=1) pw7_j;}l  
    %       x = -1:0.01:1; L^`oJ9k!  
    %       [X,Y] = meshgrid(x,x); adJoT-8P6  
    %       [theta,r] = cart2pol(X,Y); 79^on8k}  
    %       idx = r<=1; }<wj~f([  
    %       z = nan(size(X)); S"=o U}'|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3o'SY@'W  
    %       figure ?ExfxR!~  
    %       pcolor(x,x,z), shading interp n]B)\D+V^  
    %       axis square, colorbar uxto:6),P<  
    %       title('Zernike function Z_5^1(r,\theta)') (8r?'H8ZO  
    % fuH Dif,  
    %   Example 2: ] 05Q4  
    % ^saJfr x  
    %       % Display the first 10 Zernike functions *4zVK/FJ  
    %       x = -1:0.01:1; _OF 8D  
    %       [X,Y] = meshgrid(x,x); uREc9z `Q'  
    %       [theta,r] = cart2pol(X,Y); |yI?}zyR  
    %       idx = r<=1; |7zm!^t$  
    %       z = nan(size(X)); ]T+.kC M  
    %       n = [0  1  1  2  2  2  3  3  3  3]; dBG]J18  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  FFgy=F  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; LwUvM  
    %       y = zernfun(n,m,r(idx),theta(idx)); w9}I*Nra  
    %       figure('Units','normalized') f ( `.q  
    %       for k = 1:10 )`rC"N)  
    %           z(idx) = y(:,k); -}UC daQ3  
    %           subplot(4,7,Nplot(k)) Iw"?%k\U  
    %           pcolor(x,x,z), shading interp eT+MN`  
    %           set(gca,'XTick',[],'YTick',[]) \Mlj 7.u]  
    %           axis square .)Se-'  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +V |]:{3W  
    %       end su=.4JcK  
    % #%e`OA(b  
    %   See also ZERNPOL, ZERNFUN2. :;" 3k64  
    !00%z  
    %   Paul Fricker 11/13/2006 wH#k~`M  
    'q*1HNwGp  
    gr=ke #   
    % Check and prepare the inputs: g{$&j*Q9  
    % ----------------------------- bi^LpyEn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "_)   
        error('zernfun:NMvectors','N and M must be vectors.') v%aD:%wlY@  
    end @V:b Co  
    'd?8OV  
    if length(n)~=length(m) '~ ]b;nA  
        error('zernfun:NMlength','N and M must be the same length.') 9Zrn(D  
    end &P ;6P4x  
    C-6+ZIk4  
    n = n(:); . ~|^du<X  
    m = m(:); !9)*.9[8  
    if any(mod(n-m,2)) !#iP)"O  
        error('zernfun:NMmultiplesof2', ... n6o}$]H  
              'All N and M must differ by multiples of 2 (including 0).') )QZ?Bf  
    end m@c2'*&Y  
    `Ze fSmb  
    if any(m>n) <1jiU%!w  
        error('zernfun:MlessthanN', ... m d C. FO-  
              'Each M must be less than or equal to its corresponding N.') Ar'5kPzY>  
    end I3s}t$`y(  
    *`jEg=)  
    if any( r>1 | r<0 ) hcaH   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') orU4{.e  
    end "J{,P9P6  
    Y66 vJ<lM  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Vfw$>og!  
        error('zernfun:RTHvector','R and THETA must be vectors.') x`eYCi  
    end  b'{D4/  
    zu|pL`X  
    r = r(:); 3 S5QqAm  
    theta = theta(:); vOP[ND=T  
    length_r = length(r); mA>Pr<aV:  
    if length_r~=length(theta) >$"bwr}'4B  
        error('zernfun:RTHlength', ... Ahebr{u  
              'The number of R- and THETA-values must be equal.') WD)[Ac[  
    end yWK[@;S]%  
    ?4~lA L1  
    % Check normalization: vMI\$E &  
    % -------------------- P 2Eyqd8  
    if nargin==5 && ischar(nflag) p' gv5\u[w  
        isnorm = strcmpi(nflag,'norm'); G![1+2p:Tq  
        if ~isnorm g{a0,B/j  
            error('zernfun:normalization','Unrecognized normalization flag.') @LmUCP~  
        end >3Y&jsh<  
    else %Mu dc  
        isnorm = false; <St`"H  
    end rj5:Y QEH;  
    hmi15VW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2Vi[qS^  
    % Compute the Zernike Polynomials C'$U1%: j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JEd/j zR(  
    j"dbl?og  
    % Determine the required powers of r: z DK+8  
    % ----------------------------------- fAm2ls7c  
    m_abs = abs(m); [gE2lfaEy  
    rpowers = []; Ar$LA"vu4  
    for j = 1:length(n) lwB!ti  
        rpowers = [rpowers m_abs(j):2:n(j)]; "h#=ctCx"  
    end #nd,cn  
    rpowers = unique(rpowers); KG?]MVXA  
    NdZ: 7  
    % Pre-compute the values of r raised to the required powers, i}YnJ  
    % and compile them in a matrix: doa$ ;=wg  
    % ----------------------------- }qg!Um0  
    if rpowers(1)==0 bd9c/>&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <*\J 6:^n  
        rpowern = cat(2,rpowern{:}); xphqgOc12,  
        rpowern = [ones(length_r,1) rpowern]; St3~Y{aI|  
    else 'F~u \m=E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~+g5?y  
        rpowern = cat(2,rpowern{:}); 8 , =$>@u  
    end )2A4vU-IR.  
    iOyYf!yg  
    % Compute the values of the polynomials: l%IOdco#  
    % -------------------------------------- (1o^Dn3  
    y = zeros(length_r,length(n)); ;Cy@TzO/|  
    for j = 1:length(n) Mc6y'w  
        s = 0:(n(j)-m_abs(j))/2; jL8zH  
        pows = n(j):-2:m_abs(j); 4j*}|@x  
        for k = length(s):-1:1 I5~DC  
            p = (1-2*mod(s(k),2))* ... Q&J,"Vxw  
                       prod(2:(n(j)-s(k)))/              ... y/ FisX  
                       prod(2:s(k))/                     ... s6$3[9Vh&9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `#]\Wnp~y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Vh<`MS0X  
            idx = (pows(k)==rpowers); s5pY)6)  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ymzm x$o=  
        end :U 9R 1^}A  
         |); >wV"  
        if isnorm = `^jz}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t'J fiGM  
        end L`#+ZLo  
    end X_qXH5^%  
    % END: Compute the Zernike Polynomials sa`Yan  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s :ruCS  
    (TE2t7ab|M  
    % Compute the Zernike functions: B'Wky>5)  
    % ------------------------------ _x!pM j(A  
    idx_pos = m>0; -: ,h8JyMP  
    idx_neg = m<0; |(%H O@i  
    82X.  
    z = y; +@Y[i."^J  
    if any(idx_pos) (Y>MsqwWfC  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^6+x0[13  
    end 4(R2V]  
    if any(idx_neg) x3Ud0[(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wGvgMZ]?'  
    end F MVmH!E  
    a5-\=0L~  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) @m V C  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. hptuTBD  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated q3F5\6aN  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive f[b YjIX  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, eEQ[^i  
    %   and THETA is a vector of angles.  R and THETA must have the same kre&J  
    %   length.  The output Z is a matrix with one column for every P-value, $J6.a!5IE  
    %   and one row for every (R,THETA) pair. B$l`9!,  
    % sh ;uKzQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 6mdnEmFM]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) R(sM(x5a`  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) B5:g{,C  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 CeTr%j  
    %   for all p. j&A3s{S4A  
    % (fa?f tK  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 l,.?-|Poa  
    %   Zernike functions (order N<=7).  In some disciplines it is ` l2q G#  
    %   traditional to label the first 36 functions using a single mode P0xLx  
    %   number P instead of separate numbers for the order N and azimuthal ~7pjk  
    %   frequency M. |8 bO5l:  
    % cA? x(  
    %   Example: n*Vd<m;w  
    % VA'X!(Cv  
    %       % Display the first 16 Zernike functions @@83PJFid  
    %       x = -1:0.01:1; .KucjRI  
    %       [X,Y] = meshgrid(x,x); L\NZDkd  
    %       [theta,r] = cart2pol(X,Y); gvNZrp>e!  
    %       idx = r<=1; 6 ]Oxx{|}  
    %       p = 0:15; </gp3WQ.  
    %       z = nan(size(X)); jJ!-hg4?]  
    %       y = zernfun2(p,r(idx),theta(idx)); OZD!#YI  
    %       figure('Units','normalized') hw$c@:pW;  
    %       for k = 1:length(p) )7GLS\uf<%  
    %           z(idx) = y(:,k); U5!f++  
    %           subplot(4,4,k) UglG!1L  
    %           pcolor(x,x,z), shading interp ~AanU1U<  
    %           set(gca,'XTick',[],'YTick',[]) HhmVV"g  
    %           axis square _AYC|R|  
    %           title(['Z_{' num2str(p(k)) '}']) kLt9; <L  
    %       end &_d/ciq1f  
    % |<-F|v9og  
    %   See also ZERNPOL, ZERNFUN. :z.Y$]F@  
    <m,yFk  
    %   Paul Fricker 11/13/2006 _sR9   
    UVc<C 1 q  
    f&}A!uLe4x  
    % Check and prepare the inputs: neh;`7~5@K  
    % ----------------------------- +'/}[1q1/T  
    if min(size(p))~=1 `E5"Pmg  
        error('zernfun2:Pvector','Input P must be vector.') ej%;%`C-  
    end Hpi%9SAM  
    dAr)%RZ  
    if any(p)>35 =HY1l}\  
        error('zernfun2:P36', ... [W$Z60?RR  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 1@^Ek8C  
               '(P = 0 to 35).']) /%YiZ#  
    end H [Lt%:r  
    ZBmXaP[9  
    % Get the order and frequency corresonding to the function number: a4( ?]ND~6  
    % ---------------------------------------------------------------- [z%?MIT  
    p = p(:); wB>S\~i  
    n = ceil((-3+sqrt(9+8*p))/2); y[p$/$bgC5  
    m = 2*p - n.*(n+2); #)0Tt>d6  
    Bw<zc=%  
    % Pass the inputs to the function ZERNFUN: $54=gRo^  
    % ---------------------------------------- 0<@KDlF  
    switch nargin Vp $wHB&  
        case 3 tB7K&ssi  
            z = zernfun(n,m,r,theta); /Pn.)Lxfl  
        case 4 ) p<fL  
            z = zernfun(n,m,r,theta,nflag); <s/<b*T ^  
        otherwise |Vwc/9`t]>  
            error('zernfun2:nargin','Incorrect number of inputs.') NdsX*o@a  
    end zD2.Q%`IM  
    0^9:KZ.!  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 3+(yI 4  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. u3Usq=Ij{  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7-".!M  
    %   order N and frequency M, evaluated at R.  N is a vector of 5 [ ,+\  
    %   positive integers (including 0), and M is a vector with the v Zb|!#I  
    %   same number of elements as N.  Each element k of M must be a C5es2!^-]O  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) F1gt3 ae  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Cf0|Z  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix &so-O90  
    %   with one column for every (N,M) pair, and one row for every ]8$#qDS@  
    %   element in R. i}PK $sa#c  
    % *wC\w  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 5/B#)gm  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 0A#*4ap  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to (9mbF%b  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 6FL?4>MZ  
    %   for all [n,m]. R=-+YBw7/  
    % oL<BLr9>  
    %   The radial Zernike polynomials are the radial portion of the lSH ZV Fd  
    %   Zernike functions, which are an orthogonal basis on the unit {TyCj?3B  
    %   circle.  The series representation of the radial Zernike ;asm 0H(  
    %   polynomials is F:M>z=  
    % -$+,]t^GV  
    %          (n-m)/2 >=if8t!  
    %            __ )@}A r  
    %    m      \       s                                          n-2s U/ ?F:QD4  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r q*\NRq  
    %    n      s=0 lijB#1<8*  
    % ,*/Pg 52?  
    %   The following table shows the first 12 polynomials. 7MY)\aH  
    % ,{k<JA {  
    %       n    m    Zernike polynomial    Normalization i=oTg  
    %       --------------------------------------------- \V]t!mZ-}l  
    %       0    0    1                        sqrt(2) gaQ[3g  
    %       1    1    r                           2 O\6vVM[  
    %       2    0    2*r^2 - 1                sqrt(6) /"=29sWB  
    %       2    2    r^2                      sqrt(6) j!YNg*H  
    %       3    1    3*r^3 - 2*r              sqrt(8) kMM'[w  
    %       3    3    r^3                      sqrt(8) {!L=u/qs"  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 0|g[o:;fl_  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) :'Zx{F`  
    %       4    4    r^4                      sqrt(10) {'NBp0i  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ?RHn @$g8M  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) WFouoXlG0  
    %       5    5    r^5                      sqrt(12) HLVQ7  
    %       --------------------------------------------- '|Qd0,Z  
    % P{?;T5ap6  
    %   Example: d$w(-tV42  
    % ;;:">@5  
    %       % Display three example Zernike radial polynomials Gb;99mE  
    %       r = 0:0.01:1; tl|ijR  
    %       n = [3 2 5]; S+r^B?a<oM  
    %       m = [1 2 1]; jh[ #p?:  
    %       z = zernpol(n,m,r); -$. 0Dc)3!  
    %       figure TN5>"? ?"  
    %       plot(r,z) B`i$Wt<7  
    %       grid on H nK!aa  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') lr,q{;  
    % I?B,sl_w  
    %   See also ZERNFUN, ZERNFUN2. 6 Ew@L<v  
    Pb#P`L7OB  
    % A note on the algorithm. sm0fAL  
    % ------------------------ ]% K' fXj$  
    % The radial Zernike polynomials are computed using the series rvwa!YY}  
    % representation shown in the Help section above. For many special ["u#{>(X  
    % functions, direct evaluation using the series representation can "Ht'{&  
    % produce poor numerical results (floating point errors), because +~N!9eMc  
    % the summation often involves computing small differences between uQnT[\k?  
    % large successive terms in the series. (In such cases, the functions C0QM#"[  
    % are often evaluated using alternative methods such as recurrence HmMO*k<6@  
    % relations: see the Legendre functions, for example). For the Zernike V@[rf<,  
    % polynomials, however, this problem does not arise, because the + ~ "5!  
    % polynomials are evaluated over the finite domain r = (0,1), and UbO4%YHt  
    % because the coefficients for a given polynomial are generally all |d[5l^6  
    % of similar magnitude. YScvyh?E  
    % P;73Hr[E#  
    % ZERNPOL has been written using a vectorized implementation: multiple M ,`w A  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] :|rPT)yT]  
    % values can be passed as inputs) for a vector of points R.  To achieve nq1 'F  
    % this vectorization most efficiently, the algorithm in ZERNPOL /& r|ec5  
    % involves pre-determining all the powers p of R that are required to M*w'1fT  
    % compute the outputs, and then compiling the {R^p} into a single sef]>q  
    % matrix.  This avoids any redundant computation of the R^p, and <`)iA-Df;9  
    % minimizes the sizes of certain intermediate variables. Ke!'gohv  
    % -\4zwIH  
    %   Paul Fricker 11/13/2006 -}P7$|O &  
    V^TbP.  
    Or8kp/d  
    % Check and prepare the inputs: RbEKP(uw  
    % ----------------------------- ygzxCn|#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) py @( <  
        error('zernpol:NMvectors','N and M must be vectors.') 0OnV0SIL  
    end D<>@ %"%  
    wksl0:BL  
    if length(n)~=length(m) {e"dm5  
        error('zernpol:NMlength','N and M must be the same length.') BEUK}T K4  
    end Y1)!lTG  
    Y%@hbUc}x9  
    n = n(:); ~E)fpGJ  
    m = m(:); }gv8au<  
    length_n = length(n); #$E)b:xj  
    2:SO_O4C  
    if any(mod(n-m,2)) PX2c[CDE^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') uOd& XW  
    end l$XPIC~H  
    Yf}xwpuLk  
    if any(m<0) A%X X5*  
        error('zernpol:Mpositive','All M must be positive.') /TV= $gB`  
    end IeP WOpj3  
    02=lsV!U  
    if any(m>n) dg_Gs>?2  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') QI_4*  
    end ok{!+VCB5  
    H C0w;MG)  
    if any( r>1 | r<0 ) R#W&ery  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Ln!A:dP}c-  
    end \)/yC74r7(  
    cBXWfv4  
    if ~any(size(r)==1) a`!@+6yC  
        error('zernpol:Rvector','R must be a vector.') xfFg,9w8  
    end yK%ebq]  
    z~{&}Em ~  
    r = r(:); [{ ~TcT  
    length_r = length(r); hgj <>H|  
    Bd~1P/  
    if nargin==4 4(8xjL:  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); e<cM[6H'D  
        if ~isnorm y*23$fj(  
            error('zernpol:normalization','Unrecognized normalization flag.') MTOy8 Im  
        end y[?-@7i  
    else ~xLJe`"JUx  
        isnorm = false; !?!C'-ps  
    end SF*n1V3hx  
    8}s.Fg@tE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $I9qgDJ)  
    % Compute the Zernike Polynomials >znRyQ~bM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &#yR;{  
    cyM-)r@YQV  
    % Determine the required powers of r: $F'>yop2b  
    % ----------------------------------- \S~Vx!9w  
    rpowers = []; 3?n>yS  
    for j = 1:length(n) BV#78,8(  
        rpowers = [rpowers m(j):2:n(j)]; NnT g3:.  
    end T~_/Vi  
    rpowers = unique(rpowers); =#gEB#$x:  
    }Gyqq6Aeb  
    % Pre-compute the values of r raised to the required powers, y|wlq3o  
    % and compile them in a matrix: }g7]?Ee  
    % ----------------------------- ',^+bgs5  
    if rpowers(1)==0 Y!J>U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XolZonJr  
        rpowern = cat(2,rpowern{:}); \p{5D`HY  
        rpowern = [ones(length_r,1) rpowern]; ma'FRt  
    else )Gw~XtB2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E.|-?xQ6  
        rpowern = cat(2,rpowern{:}); GVHV =E  
    end I/gjenUK  
     ,Uhb  
    % Compute the values of the polynomials: _j?e~w&0b  
    % -------------------------------------- 1K,1X(0rL8  
    z = zeros(length_r,length_n); ,L bBpi=TJ  
    for j = 1:length_n %wcSM~w  
        s = 0:(n(j)-m(j))/2; VA *y|Q6  
        pows = n(j):-2:m(j); ,<BbpIQ2o  
        for k = length(s):-1:1 2_vbT!_  
            p = (1-2*mod(s(k),2))* ... LJk%#yV|_  
                       prod(2:(n(j)-s(k)))/          ... ^V$Ajt  
                       prod(2:s(k))/                 ... Tm_B^ W}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 4SPy28<f  
                       prod(2:((n(j)+m(j))/2-s(k))); ]I3!fEAWR  
            idx = (pows(k)==rpowers); Mi'8 ~J  
            z(:,j) = z(:,j) + p*rpowern(:,idx); `Qr%+OD  
        end W @|6nPm  
         xk&Jl#v  
        if isnorm AKMm&(fh%  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); $/!{OU.t`  
        end >h0-;  
    end `;%]'F0`  
    @2'Mt}R>  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  < HVl(O  
    tMf}   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 < t,zaIi  
    [YlKR'_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)