切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11542阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 \!>qtFT  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! T0@<u  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 cdL0<J b,  
    function z = zernfun(n,m,r,theta,nflag) `7 Nk;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `my\59T  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ge{%B~x  
    %   and angular frequency M, evaluated at positions (R,THETA) on the EhOB+Mc1  
    %   unit circle.  N is a vector of positive integers (including 0), and HNX/#?3  
    %   M is a vector with the same number of elements as N.  Each element H ;HFen|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) t0ZaIE   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !3*%-8bp  
    %   and THETA is a vector of angles.  R and THETA must have the same SXV f&8  
    %   length.  The output Z is a matrix with one column for every (N,M) J>0RN/38o  
    %   pair, and one row for every (R,THETA) pair. T'14OU2N{Y  
    % X'7MW? q@  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike '"V]>)  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7C@m(oK  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral xI5zP? _v  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^%33&<mB}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2 3A)^j  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2cv=7!K4Uv  
    % 1z8fhE iiE  
    %   The Zernike functions are an orthogonal basis on the unit circle. `S]DHxS  
    %   They are used in disciplines such as astronomy, optics, and 6?l|MU"Q.  
    %   optometry to describe functions on a circular domain. }pT>dbZ  
    % XiyL563gh  
    %   The following table lists the first 15 Zernike functions. T FK#ign  
    % #\O?|bN'q  
    %       n    m    Zernike function           Normalization ;E\e.R  
    %       -------------------------------------------------- tj" EUqKQ  
    %       0    0    1                                 1 )!l1   
    %       1    1    r * cos(theta)                    2 \.`{nq  
    %       1   -1    r * sin(theta)                    2 <IQ}j^u-F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) J~5+=V7OV  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?Aky!43  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) D{]9s  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P)06<n1">Z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9P-I)ZqL  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) IU rGJ#}O  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) fSm|anuKZe  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7pZd?-6M^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z}r9jM  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) lT F#efcW  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vb]H $@0  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) m/1;os5+8  
    %       -------------------------------------------------- }H9V$~}@-  
    % x^!LA,`j  
    %   Example 1: T=T1?@2C  
    % (L7%V !  
    %       % Display the Zernike function Z(n=5,m=1) 7V;wCm#b  
    %       x = -1:0.01:1; ]=sGLd^)E  
    %       [X,Y] = meshgrid(x,x); j:J7  
    %       [theta,r] = cart2pol(X,Y); ZTi KU)  
    %       idx = r<=1; qf B!)Y  
    %       z = nan(size(X)); ne'Y{n(8%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); G/_9!lE  
    %       figure W0 N*c*k  
    %       pcolor(x,x,z), shading interp -F';1D!l%  
    %       axis square, colorbar %`^{Hh`  
    %       title('Zernike function Z_5^1(r,\theta)') TM`6:5ONv  
    % t;)`+K#1:  
    %   Example 2: 4mwAo  
    % ey) 8q.5  
    %       % Display the first 10 Zernike functions 43o!Vr/ S  
    %       x = -1:0.01:1; 9 IY1"j0O  
    %       [X,Y] = meshgrid(x,x); \t']Lf  
    %       [theta,r] = cart2pol(X,Y); {s~t>Rp+  
    %       idx = r<=1; A&qZ:&(OM  
    %       z = nan(size(X)); 2g_2$)2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {~~'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; xSZ+6R|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vI+X9C?  
    %       y = zernfun(n,m,r(idx),theta(idx)); Q`[J3-Q*{  
    %       figure('Units','normalized') [[vbw)u  
    %       for k = 1:10 OW1\@CC-69  
    %           z(idx) = y(:,k); vS+E`[  
    %           subplot(4,7,Nplot(k)) bWfT-Jewh  
    %           pcolor(x,x,z), shading interp |j~{gfpSE  
    %           set(gca,'XTick',[],'YTick',[]) =F90SyzTy  
    %           axis square ?M@ff0  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >`D$Jz,  
    %       end CC{{@  
    % ?<eH!MHF  
    %   See also ZERNPOL, ZERNFUN2. n*vhCeL  
    j\@osjUu  
    %   Paul Fricker 11/13/2006 jL9to6 Hmr  
    3q:>NB<  
    w]Z:Y`  
    % Check and prepare the inputs: p& +w  
    % ----------------------------- xC.Tipn>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f|-%.,  
        error('zernfun:NMvectors','N and M must be vectors.') ZH8Oidj`  
    end xBK is\b  
    gC \^"m  
    if length(n)~=length(m) 5Ak6q(\  
        error('zernfun:NMlength','N and M must be the same length.') '"o&BmF  
    end 6`sS8Ar&u  
    KPMId`kf  
    n = n(:); b0!ZA/YC-  
    m = m(:); 3eJ"7sftW  
    if any(mod(n-m,2)) ''~#tK f  
        error('zernfun:NMmultiplesof2', ... ca!DZ%y  
              'All N and M must differ by multiples of 2 (including 0).') n>:|K0u"  
    end a) 5;Od  
    qQx5n  
    if any(m>n) `%A>{A"  
        error('zernfun:MlessthanN', ... i4^1bd  
              'Each M must be less than or equal to its corresponding N.') kxVR#:  
    end <c$K3  
    \?rBtD(  
    if any( r>1 | r<0 ) ]J>{ZL   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,T\)%q  
    end }KCb5_MDF  
    T9=55tpG9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3pk `&'  
        error('zernfun:RTHvector','R and THETA must be vectors.') 55]E<2't  
    end Y<EdFzle  
    <\C/;  
    r = r(:); ~AbTbQ3  
    theta = theta(:); a2\r^fY/  
    length_r = length(r); -P7JaH/Q  
    if length_r~=length(theta) y( uE  
        error('zernfun:RTHlength', ... =%+o4\N,  
              'The number of R- and THETA-values must be equal.') Xj("  
    end b Q6<R4  
    `' "125T  
    % Check normalization: >@wyiBU  
    % -------------------- B2DWSp-8*  
    if nargin==5 && ischar(nflag) VwxLElV  
        isnorm = strcmpi(nflag,'norm'); Eggdj+  
        if ~isnorm 6e.?L  
            error('zernfun:normalization','Unrecognized normalization flag.') {Mx3G*hr  
        end ?,0 5!]  
    else |'" 17c&  
        isnorm = false; ri?>@i-9=  
    end re;^,  
    I? o)X!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }"CX`  
    % Compute the Zernike Polynomials [h^>Iq (Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6~_ TXy/  
    4W$ t28)  
    % Determine the required powers of r: ="*:H)  
    % ----------------------------------- ;)nV  
    m_abs = abs(m); <>tQa5;  
    rpowers = []; h<8.0  
    for j = 1:length(n) ++)3*+N+  
        rpowers = [rpowers m_abs(j):2:n(j)]; q!+&|F  
    end E=9xiS  
    rpowers = unique(rpowers); :xz,PeXo7  
    ':jsCeSB  
    % Pre-compute the values of r raised to the required powers, xOAA1#   
    % and compile them in a matrix: jx7b$x]  
    % ----------------------------- |q:p^;x  
    if rpowers(1)==0 2y0J~P!I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,-GkP>8f(  
        rpowern = cat(2,rpowern{:}); D#I^;Xg0h  
        rpowern = [ones(length_r,1) rpowern]; tB i16=  
    else 6bXR?0$*M.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8r46Wr7Q  
        rpowern = cat(2,rpowern{:}); Z+G.v=2q<  
    end RZg8y+jM  
    Xbp~cn  
    % Compute the values of the polynomials: tDk!]  
    % -------------------------------------- }KZt7)  
    y = zeros(length_r,length(n)); ,4&?`Q  
    for j = 1:length(n) ][IEzeI_LN  
        s = 0:(n(j)-m_abs(j))/2; f1_b``M  
        pows = n(j):-2:m_abs(j); (ndTEnpp  
        for k = length(s):-1:1 -~'{WSJ  
            p = (1-2*mod(s(k),2))* ... " A}S92  
                       prod(2:(n(j)-s(k)))/              ... 'q_^28rK  
                       prod(2:s(k))/                     ... Z&VH7gi  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F^/1 u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P wY~L3,  
            idx = (pows(k)==rpowers); C =6.~&(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); | pA  
        end ?{Rv/np=F  
         8w Xnc%  
        if isnorm nbECEQ:|B  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); */7+pk(  
        end T|o ]8z  
    end Z Vin+z  
    % END: Compute the Zernike Polynomials H>qw@JiO!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?b8 :  
    jrl'?`O  
    % Compute the Zernike functions: H`:2J8   
    % ------------------------------ ,@#))2<RK  
    idx_pos = m>0; Yi5^# G  
    idx_neg = m<0; fUg<+|v*  
    pp2,d`01[L  
    z = y; nbMxQOD k  
    if any(idx_pos) l 7XeZ} S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2.>WR~ \  
    end ~mR@L`"l  
    if any(idx_neg) l[AQyR1+/  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); oE H""Bd  
    end s6k@WT?"^  
    [@&0@/s*t'  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) I0qS x{K  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Tx19\\r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2YbI."ob  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ?^Q8#Y^M  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, RXD*;B$v  
    %   and THETA is a vector of angles.  R and THETA must have the same `k.Tfdu)K  
    %   length.  The output Z is a matrix with one column for every P-value, bih%hqny  
    %   and one row for every (R,THETA) pair. J\@W+/#dF  
    % W0 n?S "  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike X"k:+  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Sf>#Zqj/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) cs]h+yE  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 hb.^ &  
    %   for all p. #B!HPlrv  
    % ..K@'*u  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 fFNs cY<4w  
    %   Zernike functions (order N<=7).  In some disciplines it is 4x)etH^o  
    %   traditional to label the first 36 functions using a single mode p=jpk@RX  
    %   number P instead of separate numbers for the order N and azimuthal _u{z$;  
    %   frequency M. L7`=ec<  
    % mp:xR^5c  
    %   Example: QhJuH_f 0  
    % ]wZlJK`K  
    %       % Display the first 16 Zernike functions _t/~C*=:=  
    %       x = -1:0.01:1; F%tV^$%  
    %       [X,Y] = meshgrid(x,x); TFAd  
    %       [theta,r] = cart2pol(X,Y);  ;H4s[#K  
    %       idx = r<=1; 1VR|z  
    %       p = 0:15; Vm*E^ v  
    %       z = nan(size(X)); KbSE=3  
    %       y = zernfun2(p,r(idx),theta(idx)); ) w1`<7L  
    %       figure('Units','normalized') E Xxv  
    %       for k = 1:length(p) qN"Q3mU^h*  
    %           z(idx) = y(:,k); WqJrDj~  
    %           subplot(4,4,k) Z_h-5VU-  
    %           pcolor(x,x,z), shading interp (UB?UJc  
    %           set(gca,'XTick',[],'YTick',[]) 8-PHW,1@a3  
    %           axis square fpa ~~E-  
    %           title(['Z_{' num2str(p(k)) '}']) h.*v0cq:  
    %       end ]<*-pRN  
    % !kS/Ei  
    %   See also ZERNPOL, ZERNFUN. _M) G  
    |kGQ~:k+P  
    %   Paul Fricker 11/13/2006 dLfB){>S  
    Fy$f`w_H@  
    |E9'ii&?B  
    % Check and prepare the inputs: bgYUsc*uR  
    % ----------------------------- {ldt/dl~  
    if min(size(p))~=1 DS1{~_>nFu  
        error('zernfun2:Pvector','Input P must be vector.') 8Drz i!}  
    end agkGUK/  
    WS ^,@>A  
    if any(p)>35 kW7$Gw]-  
        error('zernfun2:P36', ... .>a [  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... NZ"nG<;5  
               '(P = 0 to 35).']) jx{wOb~oO)  
    end #:NY9.\o  
    4l`[,BJ  
    % Get the order and frequency corresonding to the function number: c;Gf$9?iC  
    % ---------------------------------------------------------------- ph$ vP;}  
    p = p(:); q5G`q&O5  
    n = ceil((-3+sqrt(9+8*p))/2); DF>3)oTF  
    m = 2*p - n.*(n+2); w>o/)TTJL  
    .b? Aq^i8  
    % Pass the inputs to the function ZERNFUN: YsMM$rjP +  
    % ---------------------------------------- brX[-  
    switch nargin [w90gp1O[  
        case 3 8'"=y}]H~  
            z = zernfun(n,m,r,theta); <L+1 &H  
        case 4 #g/m^8n?s  
            z = zernfun(n,m,r,theta,nflag); 61w ({F  
        otherwise %:v<&^oDlm  
            error('zernfun2:nargin','Incorrect number of inputs.') unih"};ou  
    end M-Ek(K3SRf  
    ?t5<S]'r$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ez5J+  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. r1TdjnP,2^  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of CBv0fQtL  
    %   order N and frequency M, evaluated at R.  N is a vector of ):[}NDmC  
    %   positive integers (including 0), and M is a vector with the \1SC:gN*#  
    %   same number of elements as N.  Each element k of M must be a 'J$@~P  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) v[2&0&!K#  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I tb_ H  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix =P%&]5ts  
    %   with one column for every (N,M) pair, and one row for every 51u\am'T  
    %   element in R. +4  h!;i  
    % t.dr<  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- C5~n^I|  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is v<t?t<|J  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /z_]7]  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 P@keg*5@  
    %   for all [n,m]. Z+u.LXc|c  
    % :G6aO  
    %   The radial Zernike polynomials are the radial portion of the Jt[,V*:#  
    %   Zernike functions, which are an orthogonal basis on the unit "g)V&Lx#X  
    %   circle.  The series representation of the radial Zernike *:Rs\QH   
    %   polynomials is [_nOo`  
    % E%DT;1  
    %          (n-m)/2 9|lLce$  
    %            __  4=ovm[  
    %    m      \       s                                          n-2s -pIz-*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r W7Y@]QMX  
    %    n      s=0 y|)VNnWM  
    % Aj|->Y  
    %   The following table shows the first 12 polynomials. k qL.ZR  
    % f9 \$,7F  
    %       n    m    Zernike polynomial    Normalization l -xc*lC  
    %       --------------------------------------------- eZ+6U`^t  
    %       0    0    1                        sqrt(2) pr,,E[  
    %       1    1    r                           2 hHhDs>tB  
    %       2    0    2*r^2 - 1                sqrt(6) !6 L!%Oi  
    %       2    2    r^2                      sqrt(6) n| {#5#  
    %       3    1    3*r^3 - 2*r              sqrt(8) :-5[0Mx=  
    %       3    3    r^3                      sqrt(8) N<8\.z5:<  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Y+ UJV6  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 6^WNwe\  
    %       4    4    r^4                      sqrt(10) yKoZj   
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (jA5`4>u  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) x};~8lGT>t  
    %       5    5    r^5                      sqrt(12) .whi0~i  
    %       --------------------------------------------- GTM0Qvf?  
    % DtFHh/X  
    %   Example: #|ts1lD#ah  
    % aZ4?! JW.  
    %       % Display three example Zernike radial polynomials ZX` \so,&,  
    %       r = 0:0.01:1; KCW2 UyE]  
    %       n = [3 2 5]; VaY#_80$s  
    %       m = [1 2 1]; )\#*~73  
    %       z = zernpol(n,m,r); p X{wEc6}  
    %       figure L?j0t*do  
    %       plot(r,z) A4!X{qUT-  
    %       grid on yAryw{(  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') fJ[ ^_,O  
    % .Pponmy  
    %   See also ZERNFUN, ZERNFUN2. <@"rI>=  
    Rey+3*zUb  
    % A note on the algorithm. XZb=;tYo  
    % ------------------------ 88~Nrl=co  
    % The radial Zernike polynomials are computed using the series O{_t*sO9q*  
    % representation shown in the Help section above. For many special < j:\;mi;  
    % functions, direct evaluation using the series representation can JI[8n$pr]  
    % produce poor numerical results (floating point errors), because !i)!|9e  
    % the summation often involves computing small differences between !:!(=(4$P  
    % large successive terms in the series. (In such cases, the functions \ saV8U7B  
    % are often evaluated using alternative methods such as recurrence U-9Aq  
    % relations: see the Legendre functions, for example). For the Zernike RJ'[m~yl5X  
    % polynomials, however, this problem does not arise, because the B=TUZ)  
    % polynomials are evaluated over the finite domain r = (0,1), and ID2->J  
    % because the coefficients for a given polynomial are generally all @01.Pd   
    % of similar magnitude. Ks P2./N  
    % T0tX%_6`  
    % ZERNPOL has been written using a vectorized implementation: multiple Ze~P6  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] d\JaYizp  
    % values can be passed as inputs) for a vector of points R.  To achieve i90X0b-A  
    % this vectorization most efficiently, the algorithm in ZERNPOL J:N(U0U  
    % involves pre-determining all the powers p of R that are required to =G:Krc8w@  
    % compute the outputs, and then compiling the {R^p} into a single N!(mM;1X)  
    % matrix.  This avoids any redundant computation of the R^p, and G0UaE1n  
    % minimizes the sizes of certain intermediate variables. zsXgpnlHT  
    % %NrH\v{7Q  
    %   Paul Fricker 11/13/2006 &SE}5ddC7  
    ks0Q+YW  
    R^.PKT2E  
    % Check and prepare the inputs: l&ueD& *4&  
    % ----------------------------- 9jTBLp-i#N  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -lhIL}mGf  
        error('zernpol:NMvectors','N and M must be vectors.') '#f<wf n  
    end S&` 6pN  
    * @4@eQF  
    if length(n)~=length(m) !FL"L 9   
        error('zernpol:NMlength','N and M must be the same length.') |Gf<Ql_.4  
    end <{kPa_`'  
    <?KPyg2  
    n = n(:); OJcS%-~  
    m = m(:); e P@#I^_  
    length_n = length(n); v0\l~_|H  
    ,p d -hu  
    if any(mod(n-m,2)) qLmzA@Cv  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') z$?F^3>  
    end @:}c(j  
    Hh1_zd|  
    if any(m<0) [Arf!W-QG  
        error('zernpol:Mpositive','All M must be positive.') ='h2z"}\Bn  
    end @ wR3L:@  
    Y)1/f EM  
    if any(m>n) \ASt&'E  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') GOc   
    end ;;,7Jon2  
    /TpTR-\I0  
    if any( r>1 | r<0 ) <gF]9%2E  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') A9.TRKb=8  
    end ^X96yj'?  
    lp *GJP]T  
    if ~any(size(r)==1) qdix@ @  
        error('zernpol:Rvector','R must be a vector.') ;bE/(nz M  
    end q 6>eb  
    .$&^yp  
    r = r(:); :0r,.)  
    length_r = length(r); #d@wjQ0DW  
    Ol>q(-ea  
    if nargin==4 3(WijtH  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?@rd,:'dE  
        if ~isnorm <+k&8^:bi  
            error('zernpol:normalization','Unrecognized normalization flag.') ;:6\w!fc  
        end hp~q!Q1=  
    else .?45:Ey~g  
        isnorm = false; TF8#I28AD  
    end B7 s{yb  
    `dZ|Ko%k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (DiduSJ  
    % Compute the Zernike Polynomials T?7u [D[[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aFTWzz  
    O52 /fGt  
    % Determine the required powers of r: 8}0wSVsxV$  
    % ----------------------------------- 7zG r+Px  
    rpowers = []; l!tR<$|  
    for j = 1:length(n) M6g8+sio  
        rpowers = [rpowers m(j):2:n(j)]; c2P}P* _  
    end `;UWq{"  
    rpowers = unique(rpowers); CYaN;HV@_  
    ;xwcK-A  
    % Pre-compute the values of r raised to the required powers, "/'3I/}  
    % and compile them in a matrix: ?4b0\ -  
    % ----------------------------- XO <0;9|  
    if rpowers(1)==0 OH t)z.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Lk(ESV;r  
        rpowern = cat(2,rpowern{:}); P6v ANL-B  
        rpowern = [ones(length_r,1) rpowern]; QC+ Z6WS;  
    else )]P(!hW.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1&MCS%UTL  
        rpowern = cat(2,rpowern{:}); t /+;#-  
    end Cab.a)o  
    r)^sHpK:`  
    % Compute the values of the polynomials: xgk~%X%K  
    % -------------------------------------- /*#o1W?wQZ  
    z = zeros(length_r,length_n); +M-tYE 5n  
    for j = 1:length_n D4L&6[W  
        s = 0:(n(j)-m(j))/2; es)^^kGj6f  
        pows = n(j):-2:m(j); Pe _O(  
        for k = length(s):-1:1 x%EGxs;>^  
            p = (1-2*mod(s(k),2))* ... ^ptybVo  
                       prod(2:(n(j)-s(k)))/          ... 4#IT" i  
                       prod(2:s(k))/                 ... ^%7(  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... yNI0Do 2  
                       prod(2:((n(j)+m(j))/2-s(k))); u9"=t  
            idx = (pows(k)==rpowers); X)3(.L  
            z(:,j) = z(:,j) + p*rpowern(:,idx); @62,.\F  
        end >Z!!`0{  
         #^T`vTD-  
        if isnorm wMVUTm  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); %/A>'p,~  
        end c>LP}PGk  
    end EVPQe-  
    5MnP6(3$  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  E#P#{_BR^  
    1V`-D8-?  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 NzZ(N z5  
    UG.:D';3,  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)