非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 eMzCAO
function z = zernfun(n,m,r,theta,nflag) v2sU$M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :5J6rj;_
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N eov-"SJB
% and angular frequency M, evaluated at positions (R,THETA) on the NkI:
% unit circle. N is a vector of positive integers (including 0), and I9>*Yy5RNS
% M is a vector with the same number of elements as N. Each element T_T{c+,Zd$
% k of M must be a positive integer, with possible values M(k) = -N(k) p>S/6 [X
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ,eCXT=6
% and THETA is a vector of angles. R and THETA must have the same t7FQ.E,T
% length. The output Z is a matrix with one column for every (N,M) x~eEaD5m%J
% pair, and one row for every (R,THETA) pair. S I5QdX
% >,Z{wxzJ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "cM5= ;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I1 O?)x~
% with delta(m,0) the Kronecker delta, is chosen so that the integral qw1J{xoHW
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2s%M,Nb
% and theta=0 to theta=2*pi) is unity. For the non-normalized !*6z=:J
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =:eE!
% f*Js= hvO
% The Zernike functions are an orthogonal basis on the unit circle. Al}PJz\
% They are used in disciplines such as astronomy, optics, and l.l~K%P'h
% optometry to describe functions on a circular domain.
H>6;I
% iZk``5tPE
% The following table lists the first 15 Zernike functions. or`stBx
% 12dW:#[
% n m Zernike function Normalization ku8c)
% -------------------------------------------------- V"iLeC
% 0 0 1 1 :X*LlN
% 1 1 r * cos(theta) 2 G[j79o
% 1 -1 r * sin(theta) 2 BxYA[#fd}
% 2 -2 r^2 * cos(2*theta) sqrt(6) D7/Bp4I#o
% 2 0 (2*r^2 - 1) sqrt(3) |>GIPfVT
% 2 2 r^2 * sin(2*theta) sqrt(6) ^iS:mt
% 3 -3 r^3 * cos(3*theta) sqrt(8) FoCkTp+/
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *DzPkaYD>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .+h
pxZ
% 3 3 r^3 * sin(3*theta) sqrt(8) 3
?~+5DU
% 4 -4 r^4 * cos(4*theta) sqrt(10) _1Gut"!{\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "\?G
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) *wcoDQ b;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,>v9 Y#U
% 4 4 r^4 * sin(4*theta) sqrt(10) v*'\w#
% -------------------------------------------------- ,5*xE\9G
% :exuTn
% Example 1: E,yK` mPp^
% (OQ
@!R&
% % Display the Zernike function Z(n=5,m=1) q.{/{9
% x = -1:0.01:1; \w[%n 0
% [X,Y] = meshgrid(x,x); 1:UC\ WW
% [theta,r] = cart2pol(X,Y); F:GKnbY
% idx = r<=1; F6VIH(
% z = nan(size(X)); f`=T@nA
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5V8C+k)
% figure 5>Yd\(`K
% pcolor(x,x,z), shading interp SJ^?D8
% axis square, colorbar B?Sfcq-
% title('Zernike function Z_5^1(r,\theta)') 6*33k'=;F
% {
BL1j
% Example 2: n3j h\
% }/3pC a
% % Display the first 10 Zernike functions 6'!{0 5=m
% x = -1:0.01:1; OUO^/]
J1S
% [X,Y] = meshgrid(x,x); ){6)?[G
% [theta,r] = cart2pol(X,Y); WVK-dBU
% idx = r<=1; &novkkqY
% z = nan(size(X)); X$Vz
% n = [0 1 1 2 2 2 3 3 3 3]; pF+wHMhUe
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; <dPxy`_
% Nplot = [4 10 12 16 18 20 22 24 26 28]; m@yVG|eP#
% y = zernfun(n,m,r(idx),theta(idx)); 4 xzJql
% figure('Units','normalized') jZ,[{Z(N
% for k = 1:10 lNVAKwW2#
% z(idx) = y(:,k); x`vs-Y:P
% subplot(4,7,Nplot(k)) #(g+jb0E
% pcolor(x,x,z), shading interp ~(OIo7#;
% set(gca,'XTick',[],'YTick',[]) ]Ja8i%LjOG
% axis square lA-!~SM v"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) - :z5m+
% end B&