非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `R[Hxi
function z = zernfun(n,m,r,theta,nflag) Y?0/f[Ax,y
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. qLN\%}69/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9njl,Q:
% and angular frequency M, evaluated at positions (R,THETA) on the ;5Sdx5`_
% unit circle. N is a vector of positive integers (including 0), and 4%(Ji
% M is a vector with the same number of elements as N. Each element 6}4})B2
% k of M must be a positive integer, with possible values M(k) = -N(k) jj5S+ >4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, gYKz,$
% and THETA is a vector of angles. R and THETA must have the same ScPVjqG2{
% length. The output Z is a matrix with one column for every (N,M) aB]0?C y9(
% pair, and one row for every (R,THETA) pair. XjX
% F/>_PH57
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike / ;]5X
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9j,g&G.K
% with delta(m,0) the Kronecker delta, is chosen so that the integral 3N7H7(IR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M;(,0d k
% and theta=0 to theta=2*pi) is unity. For the non-normalized .|UQ)J?s
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hx;f/EPx
% 5(1:^:LGK
% The Zernike functions are an orthogonal basis on the unit circle. 6
63o
% They are used in disciplines such as astronomy, optics, and * QgKo$IF
% optometry to describe functions on a circular domain. d$dy6{/YD
% {1W:@6tl
% The following table lists the first 15 Zernike functions. NxT"A)u
% XX6Z|Y5.
% n m Zernike function Normalization {@Mr7*u
% -------------------------------------------------- |c_qq Bd
% 0 0 1 1 qQ&uU7,#
% 1 1 r * cos(theta) 2 'rQ"Dc1D
% 1 -1 r * sin(theta) 2 ?pDr"XH~
% 2 -2 r^2 * cos(2*theta) sqrt(6) Gr"CHz/
% 2 0 (2*r^2 - 1) sqrt(3) QLA.;`HIE
% 2 2 r^2 * sin(2*theta) sqrt(6) em$pU*`P
% 3 -3 r^3 * cos(3*theta) sqrt(8) yV30x9i!2
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) C0rf
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~E<2gMKjO
% 3 3 r^3 * sin(3*theta) sqrt(8) ,Kit@`P%
% 4 -4 r^4 * cos(4*theta) sqrt(10) eim +oms
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FMfpjuHk
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6%D9;-N)
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wb-yAQ8
% 4 4 r^4 * sin(4*theta) sqrt(10) {h<D/:^v
% -------------------------------------------------- [,%=\%5
% *6uccx7{
% Example 1: D7Q+w
% Fe+
@;
% % Display the Zernike function Z(n=5,m=1) +Y\:Q<eMFg
% x = -1:0.01:1; b}J%4Lx%m
% [X,Y] = meshgrid(x,x); boh?Xt-$
% [theta,r] = cart2pol(X,Y); >.h:Y5
% idx = r<=1; u8e_Lqx?
% z = nan(size(X)); 8;PkuJR_]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); K*6 "c.D
% figure 8~=*\
@^
% pcolor(x,x,z), shading interp "Fz.#U
% axis square, colorbar U"oNJ8&%|
% title('Zernike function Z_5^1(r,\theta)') KKeMi@N
% MvVpp;bd
% Example 2: 99m2aT()
% Zg;$vIhn
% % Display the first 10 Zernike functions >rG>Bz^Pu
% x = -1:0.01:1; %36x'Dn?
% [X,Y] = meshgrid(x,x); P
rt}
01$
% [theta,r] = cart2pol(X,Y); .nV2n@SR
% idx = r<=1; 8^mE<
% z = nan(size(X)); j!;LN)s@?
% n = [0 1 1 2 2 2 3 3 3 3]; [B0BHJ~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8\"<t/_
W
% Nplot = [4 10 12 16 18 20 22 24 26 28]; OATdmHW
% y = zernfun(n,m,r(idx),theta(idx)); 1/_g36\l$
% figure('Units','normalized') [K{{P|(q
% for k = 1:10 +X?ErQm
% z(idx) = y(:,k); b0P3S!E
% subplot(4,7,Nplot(k)) b
F=MQ
% pcolor(x,x,z), shading interp !oLn=
% set(gca,'XTick',[],'YTick',[]) i,Ct AbMx
% axis square pP<8zTLn
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HR>Y?B{
% end fv+]iK<{
% }$6L]
% See also ZERNPOL, ZERNFUN2. 24sMX7Q,i
C=D*
% Paul Fricker 11/13/2006 K;K0D@>]HR
]4:QqdV
wmVmGa
R
% Check and prepare the inputs: 9#8vPjXW}.
% ----------------------------- xATx2*@X2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y&2FH/(M
error('zernfun:NMvectors','N and M must be vectors.') ~id6^#&>
end `[ZswLE
m^X51,+<
if length(n)~=length(m) *>fr'jj1$
error('zernfun:NMlength','N and M must be the same length.') g_>&R58
end z?/_b
l4C{LZ
n = n(:); F^,:p.ihm<
m = m(:); AXyXK??
if any(mod(n-m,2)) >$Y/B=e
error('zernfun:NMmultiplesof2', ... wMS%/l0p1
'All N and M must differ by multiples of 2 (including 0).') y
oW~
end g`fG84
Y6{^cZ!=
if any(m>n) Vl.,e1)6
error('zernfun:MlessthanN', ... N0 {e7M
'Each M must be less than or equal to its corresponding N.') @SfQbM##%
end ,dC.|P' `
<4r8H-(%
if any( r>1 | r<0 ) s'HsLe0|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *)m:u :
end b.*LmSX#
\Vc[/Qp7Bb
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~${~To8$CW
error('zernfun:RTHvector','R and THETA must be vectors.') ,Ckcc
end U[C>Aoze
Zue3Z{31T
r = r(:); <83Ky;ry
theta = theta(:); EP:`l
length_r = length(r); 0ix(1`Z
if length_r~=length(theta) .W]k8N E
error('zernfun:RTHlength', ... yr\ClIU
'The number of R- and THETA-values must be equal.') Jn+ -G4h$
end @CNJpQ ujn
l";Yw]:^
% Check normalization: !*]i3 ,{7v
% -------------------- BU -;P
if nargin==5 && ischar(nflag) gIo\^ktW
isnorm = strcmpi(nflag,'norm'); n)yDep]$G
if ~isnorm bPVk5G*ruP
error('zernfun:normalization','Unrecognized normalization flag.') nJI2IPZ
end [,Ehu<mEK
else $+j1^
isnorm = false; >zJHvb)b\
end uV:R3#^
(d4btcg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *JK0X
% Compute the Zernike Polynomials @c^ Dl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |]-Zz7N)
dWz?`B{'
% Determine the required powers of r: Pd7\Q]of
% ----------------------------------- DS?.'"n[u
m_abs = abs(m); bK:U:vpYm
rpowers = []; ^kfqw0!
for j = 1:length(n) $udhTI#,
rpowers = [rpowers m_abs(j):2:n(j)]; -
lX4;
end J>(X0@eWz
rpowers = unique(rpowers);
m-t:'B
?tYZ/
% Pre-compute the values of r raised to the required powers, %`F;i)Zz
% and compile them in a matrix: F! =l
r
% ----------------------------- y,5qY}P+
if rpowers(1)==0 8>YF}\D V
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JP8}+
rpowern = cat(2,rpowern{:}); xr'1CP
rpowern = [ones(length_r,1) rpowern]; l5-[a
else 8m")
)i-
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m,)s8_a
rpowern = cat(2,rpowern{:}); IV,4BQ$
end x3ZF6)@
xFF!)k #
% Compute the values of the polynomials: H*0Y_H=
% -------------------------------------- Na91K4r#
y = zeros(length_r,length(n)); dk&e EDvfd
for j = 1:length(n) s70Z&3A
s = 0:(n(j)-m_abs(j))/2; os5$(
pows = n(j):-2:m_abs(j); LwB1~fF
for k = length(s):-1:1 -,")GA+[7
p = (1-2*mod(s(k),2))* ... *?<N3Rr*
prod(2:(n(j)-s(k)))/ ... %}@iz(*}>
prod(2:s(k))/ ... -m@c{&r
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M|blg!j;
prod(2:((n(j)+m_abs(j))/2-s(k))); 2Wzx1_D"a
idx = (pows(k)==rpowers); mn@1c4y
y(:,j) = y(:,j) + p*rpowern(:,idx); l\Ozy
end g@#he95 }
?TA7i b_
if isnorm PIH\*2\/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); jC&fnt,O
end WX4sTxJK
end J2qsZ
% END: Compute the Zernike Polynomials eB~\~@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [~N;d9H+*1
+;W%v7%<
% Compute the Zernike functions: v_zt$bf{Y
% ------------------------------ h8(#\E
idx_pos = m>0; \d"\7SA
idx_neg = m<0; -`'|z+V
65aYH4"
z = y; oB 1Qw'J
w
if any(idx_pos) 4$R!)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -f |/#1
end 30HUY?'K
if any(idx_neg) 9(]_so24,
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TFkG"ev
end br=e+]C Y)
|V5BL<4
% EOF zernfun