非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 a>egH
og
function z = zernfun(n,m,r,theta,nflag) gCaxZ~o
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :)kWQQ+,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B dxV [SF
% and angular frequency M, evaluated at positions (R,THETA) on the 6o~CX
% unit circle. N is a vector of positive integers (including 0), and #4F0o@Z
% M is a vector with the same number of elements as N. Each element dyt.(2
% k of M must be a positive integer, with possible values M(k) = -N(k) Q6d>tqW hq
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, B+[L/C}=;
% and THETA is a vector of angles. R and THETA must have the same 66HxwY3a
% length. The output Z is a matrix with one column for every (N,M) j!K{1s[.y
% pair, and one row for every (R,THETA) pair. V(F1i%9l g
% >uJU25)|
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike kI,O9z7A7
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3 H`ES_JL
% with delta(m,0) the Kronecker delta, is chosen so that the integral )
-@Dh6F
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Z"E2ZSa0
% and theta=0 to theta=2*pi) is unity. For the non-normalized rXVRX#Lh
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9Qn*frdY,
% =]P|!$!}0
% The Zernike functions are an orthogonal basis on the unit circle. Fr1OzS^&(
% They are used in disciplines such as astronomy, optics, and I1W~;2cK
% optometry to describe functions on a circular domain. r-5xo.J'
% }PzHtA,V
% The following table lists the first 15 Zernike functions. 3j w4#GW
% ]%[. > mR
% n m Zernike function Normalization `,Y/!(:;
% -------------------------------------------------- 1V;,ZGI*
% 0 0 1 1 1_z~<d
@?;
% 1 1 r * cos(theta) 2 V0y_c^x
% 1 -1 r * sin(theta) 2 2Y%E.){
% 2 -2 r^2 * cos(2*theta) sqrt(6) Hf9F:yH
% 2 0 (2*r^2 - 1) sqrt(3) z}2
% 2 2 r^2 * sin(2*theta) sqrt(6) D>K=D"
% 3 -3 r^3 * cos(3*theta) sqrt(8) qIk(ei
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [wcp2g3Px
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) w>&g'
% 3 3 r^3 * sin(3*theta) sqrt(8) )<_:%oB
% 4 -4 r^4 * cos(4*theta) sqrt(10) _tfi6UQ&lY
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !Z%pdqo`.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 4?l:.\fB:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KHoDD=O
% 4 4 r^4 * sin(4*theta) sqrt(10) 3|0OW
Jk
% -------------------------------------------------- JvM:x y9
% k
Hh0&~(
% Example 1: [\.@,Y0j
% idNg&'
% % Display the Zernike function Z(n=5,m=1) n hGh5,
% x = -1:0.01:1; pt~b=+bBm
% [X,Y] = meshgrid(x,x); UKf0cU
% [theta,r] = cart2pol(X,Y); cB}6{c$_sW
% idx = r<=1; ;a`I8F j
% z = nan(size(X)); !p(N
DQm
% z(idx) = zernfun(5,1,r(idx),theta(idx)); vp`s< ;CA
% figure _hi8mo
% pcolor(x,x,z), shading interp >\Ml\CyL
% axis square, colorbar 2w>yW]
% title('Zernike function Z_5^1(r,\theta)') "SU
O2-Gj
% Kl w9
% Example 2: +D|E8sz8
%
~ P!%i9e_
% % Display the first 10 Zernike functions b!z kQ?h
% x = -1:0.01:1; BS+=*3J
% [X,Y] = meshgrid(x,x); fk(h*L|sI
% [theta,r] = cart2pol(X,Y); X!f` !tZ:{
% idx = r<=1; N
m@UM*D
% z = nan(size(X));
@xN)mi
% n = [0 1 1 2 2 2 3 3 3 3]; >jpkR
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; z460a[Wl
% Nplot = [4 10 12 16 18 20 22 24 26 28]; l6< bV#_qe
% y = zernfun(n,m,r(idx),theta(idx)); 9v(k<('_
% figure('Units','normalized') 5VGr<i&A
% for k = 1:10 <CGJ:% AY
% z(idx) = y(:,k);
U].3vju`c
% subplot(4,7,Nplot(k)) F'^?s= QX
% pcolor(x,x,z), shading interp 48n 7<M;I
% set(gca,'XTick',[],'YTick',[]) JI|MR#_u
% axis square ~3qt<"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }Z8DVTpX}
% end v42Z&PO
% "$PX[:
% See also ZERNPOL, ZERNFUN2. nBGcf(BE.$
S/x CX!
% Paul Fricker 11/13/2006 JG=z~ STz
NnqAr ,
wZKEUJpQ
% Check and prepare the inputs: .X{U\{c| a
% ----------------------------- 2G)q?_Q4S
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #iP5@:!Wm~
error('zernfun:NMvectors','N and M must be vectors.') +X!QH/ 8
end 6Wc'5t3
(GbZt{.
if length(n)~=length(m) JId|LHf*P
error('zernfun:NMlength','N and M must be the same length.') TV*@h2C"i
end eTZ2f
QZamf
lk
n = n(:); v_NL2eQ~
m = m(:); ,w0Io
if any(mod(n-m,2)) S~Yu;
error('zernfun:NMmultiplesof2', ... 6G]hsgro
'All N and M must differ by multiples of 2 (including 0).') Vv3:x1S
end d^^EfWU
0M 5m8
if any(m>n) fkJE lO-F
error('zernfun:MlessthanN', ... 4?.L+wL
'Each M must be less than or equal to its corresponding N.') AMc`qh
end yf2$HF
Gc{s?rB_
if any( r>1 | r<0 ) HR$;QHl~F
error('zernfun:Rlessthan1','All R must be between 0 and 1.') |oV_7%mlu
end C,nU.0
n+:}pD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *#Hw6N0#
error('zernfun:RTHvector','R and THETA must be vectors.') |ZJ<N\\h-
end 8 ;o*c6+
[?nM)4d
r = r(:); x`VA3nE9
theta = theta(:); d^ZrI\AJ
length_r = length(r); Kld#C51X f
if length_r~=length(theta) zM!2JC
error('zernfun:RTHlength', ... ]c\d][R N
'The number of R- and THETA-values must be equal.') )@a_|q@V
end FFpG>+*3
1cY,)Z%l #
% Check normalization: &~#y-o"
% -------------------- #Hi$squJ
if nargin==5 && ischar(nflag) NAh^2X
isnorm = strcmpi(nflag,'norm'); X^9eCj;c
if ~isnorm eGQ-Ht,N
error('zernfun:normalization','Unrecognized normalization flag.') "*Gp@
end N=~aj7B%
else )|j?aVqZ
isnorm = false; hLF ;MH@
end jC_m0Iwc
klSA Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?"L ^0%
% Compute the Zernike Polynomials *g!7PzJ'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )l[bu6bM
=uD^#AX
% Determine the required powers of r: mk]8}+^.
% ----------------------------------- ^@OdY&5^
m_abs = abs(m); R;`C;Rbf
rpowers = []; Q+a"Z^Z|
for j = 1:length(n) se&Q\!&M
rpowers = [rpowers m_abs(j):2:n(j)]; -mY,nMDb
end @tg4rl
rpowers = unique(rpowers); ]8dzTEjk
.vWwYG
% Pre-compute the values of r raised to the required powers, MyaJhA6c
% and compile them in a matrix: 1AAOg+Y@U"
% ----------------------------- ^b^}6L'Z
if rpowers(1)==0 j-TRa,4bN
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h"t\x}8qq
rpowern = cat(2,rpowern{:}); %hCd*[Z}j
rpowern = [ones(length_r,1) rpowern]; G*%:"qleT$
else JUdQ Q
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E8"$vl&c]
rpowern = cat(2,rpowern{:}); Lf+"Gp
end ^vha4<'-qG
3V%ts7: a
% Compute the values of the polynomials: V?&P).5)
% -------------------------------------- |ZtNCB5{^j
y = zeros(length_r,length(n)); 'mO>hD`V
for j = 1:length(n) J/B`c(
s = 0:(n(j)-m_abs(j))/2; +a0` ,Jc
pows = n(j):-2:m_abs(j); #dDM
"s
for k = length(s):-1:1 U6F1QLSLz
p = (1-2*mod(s(k),2))* ... 6o<(,\ad[
prod(2:(n(j)-s(k)))/ ... OU'm0Jlk
prod(2:s(k))/ ... t$g@+1p4
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v:?l C<,
prod(2:((n(j)+m_abs(j))/2-s(k))); D-4{9[
idx = (pows(k)==rpowers); y7|
3]>Z
y(:,j) = y(:,j) + p*rpowern(:,idx);
y85R"d
end ,)ZI&BL5
Kjt\A]R%
if isnorm do:IkjU~
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }No8t o
end #Fz/}lO
end /X%+z5
% END: Compute the Zernike Polynomials _)[UartKx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "NtY[sT{V
,-[z?dvO
% Compute the Zernike functions: 0t7vg#v|
% ------------------------------ 0sI7UK`m
idx_pos = m>0; a!B"WNb+
idx_neg = m<0; ziC%Q8
8p_6RvG
z = y; V6Y0#sTU
if any(idx_pos) i>e?$H,/
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bX>R9i$
end vwAtX($
if any(idx_neg) a'(B}B=h
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YO9;NA{sH
end oS^KC}X
Ug\$Ob5=q
% EOF zernfun