切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11528阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 <*4BT}r,^2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Gec?  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {%"n[DLps  
    function z = zernfun(n,m,r,theta,nflag) pr) `7VuKp  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. KS3>c7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9[5qN!P;y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the fK %${   
    %   unit circle.  N is a vector of positive integers (including 0), and K|{IX^3)V  
    %   M is a vector with the same number of elements as N.  Each element iiw\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) *:+&Sx L  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, %tOGs80_{  
    %   and THETA is a vector of angles.  R and THETA must have the same `Pcbc\"*y  
    %   length.  The output Z is a matrix with one column for every (N,M) D["~G v  
    %   pair, and one row for every (R,THETA) pair. j+9;Cp]NV  
    % 'BiR ,M$mY  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %wDE+&M  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), S#^2k!(|G  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hn -!W;j  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <0w"$.K#3  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c&mLK1A6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1z6$>{FUR  
    % I0qS x{K  
    %   The Zernike functions are an orthogonal basis on the unit circle. QH d^?H*  
    %   They are used in disciplines such as astronomy, optics, and !<8-juY  
    %   optometry to describe functions on a circular domain. i0TbsoKh:  
    % "?X,);5S  
    %   The following table lists the first 15 Zernike functions. @|2L>N  
    % XY h)59oM%  
    %       n    m    Zernike function           Normalization aob+_9o  
    %       -------------------------------------------------- (^@rr[. o7  
    %       0    0    1                                 1 I""zg^Rq  
    %       1    1    r * cos(theta)                    2 Pss$[ %  
    %       1   -1    r * sin(theta)                    2 IW{}l=D/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) X7g@.Oy`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mM$|cge"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) sP'U9l  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) AbExJ~JV\g  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _ g8CvH)?!  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) HVHd@#pDZ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P2!+ZJ&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;}dvc7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) q?* z<)#  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) m}$7d5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j%`% DQ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) kdP*{  
    %       -------------------------------------------------- cp)BPg  
    % z%E ok  
    %   Example 1: ~z kzuh  
    % @"G+kLv0  
    %       % Display the Zernike function Z(n=5,m=1) !\}X?G f  
    %       x = -1:0.01:1; 1VR|z  
    %       [X,Y] = meshgrid(x,x); Pxvf"SXX  
    %       [theta,r] = cart2pol(X,Y); >lV'}0u)  
    %       idx = r<=1; rHa*WA;TE  
    %       z = nan(size(X)); DP8%/CV!*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _qO'(DKylC  
    %       figure 5<>"d :9  
    %       pcolor(x,x,z), shading interp II'"Nkxd  
    %       axis square, colorbar fjd)/Gg  
    %       title('Zernike function Z_5^1(r,\theta)') 0 L$[w  
    % `PUGg[Zx^  
    %   Example 2: X=KC +1e  
    % {ew; /;  
    %       % Display the first 10 Zernike functions N`HiNb [  
    %       x = -1:0.01:1; /os,s[w  
    %       [X,Y] = meshgrid(x,x); /U 3Uuk:  
    %       [theta,r] = cart2pol(X,Y); ,(A $WT@e  
    %       idx = r<=1; y}U}AUt  
    %       z = nan(size(X)); `*ALb|4ilG  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )kT.3 Q  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l86gs6>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; bs&>QsI?j  
    %       y = zernfun(n,m,r(idx),theta(idx)); !+u K@z&G  
    %       figure('Units','normalized') we/sv9v}n  
    %       for k = 1:10 i*((@:  
    %           z(idx) = y(:,k); 4q"4N2  
    %           subplot(4,7,Nplot(k)) ueyQ&+6r  
    %           pcolor(x,x,z), shading interp *>h|<|T'  
    %           set(gca,'XTick',[],'YTick',[]) Gsu?m  
    %           axis square :>y;*x0w  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lc$wjK[w[  
    %       end IG Ax+3V  
    % !pZ<{|cH  
    %   See also ZERNPOL, ZERNFUN2. q-s(2C  
    D&{CC  
    %   Paul Fricker 11/13/2006 1Ror1%Q"?  
    ALQ-aXJ  
    tv_&PIu]L  
    % Check and prepare the inputs: s1]m^,  
    % ----------------------------- Xp.$FJ1)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PX*}.L *x  
        error('zernfun:NMvectors','N and M must be vectors.') ~1&WR`U  
    end 3$_JNF`  
    A5T&i]  
    if length(n)~=length(m) y_' 6bpb  
        error('zernfun:NMlength','N and M must be the same length.') 2){O&8A  
    end N8iLI`  
    ` {qt4zd0  
    n = n(:); jU-aa+  
    m = m(:); 6>]w1 H  
    if any(mod(n-m,2)) jV[;e15+  
        error('zernfun:NMmultiplesof2', ... fx-8mf3  
              'All N and M must differ by multiples of 2 (including 0).') S Rk%BJ? ~  
    end /9=r.Vxh  
    \zc R7 5  
    if any(m>n) *M)M!jTv  
        error('zernfun:MlessthanN', ... =I aWf  
              'Each M must be less than or equal to its corresponding N.') la}cGZ; p.  
    end +n<W#O %  
    2qot(Zs1i  
    if any( r>1 | r<0 ) 84!Hd.H  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') pC]XbokES  
    end $A`m8?bY  
    Gj?$HFa  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) r1TdjnP,2^  
        error('zernfun:RTHvector','R and THETA must be vectors.') !6l*Jc3  
    end Cs(sar:7  
    T%;V_iW-  
    r = r(:); JA*+F1s  
    theta = theta(:); z-qbe97  
    length_r = length(r); pztfm'  
    if length_r~=length(theta) Y]7503J  
        error('zernfun:RTHlength', ... I tb_ H  
              'The number of R- and THETA-values must be equal.') =P%&]5ts  
    end Q:|W/RD~  
    3FtL<7B '.  
    % Check normalization: Vm[F~2+HX  
    % -------------------- L+*:VP6WD  
    if nargin==5 && ischar(nflag) `yP`5a/  
        isnorm = strcmpi(nflag,'norm'); e_|Z&  
        if ~isnorm 'zbvg0T  
            error('zernfun:normalization','Unrecognized normalization flag.') |;7mDhj=  
        end qvLh7]sbK:  
    else $_iE^zZaU^  
        isnorm = false; *`rfD*  
    end , /%'""`w  
    @({=~ W^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m^0vux  
    % Compute the Zernike Polynomials %ioVNbrR7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lKB9n}P  
    co~NXpqg  
    % Determine the required powers of r: T@=C2 1  
    % ----------------------------------- S2e3d  
    m_abs = abs(m); =kfa1kD&{  
    rpowers = []; k qL.ZR  
    for j = 1:length(n) f9 \$,7F  
        rpowers = [rpowers m_abs(j):2:n(j)]; x\U[5d   
    end eZ+6U`^t  
    rpowers = unique(rpowers); pr,,E[  
    hHhDs>tB  
    % Pre-compute the values of r raised to the required powers, pY@QR?F\  
    % and compile them in a matrix: k#zDY*kj  
    % ----------------------------- i6KB\W2  
    if rpowers(1)==0 p<{P#?4 g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); oX8EY l  
        rpowern = cat(2,rpowern{:}); TIxOMYy  
        rpowern = [ones(length_r,1) rpowern]; \yu7,v  
    else D*Zj oU  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l'/`2Y1  
        rpowern = cat(2,rpowern{:}); vUVFW'-  
    end _FYA? d}  
    `!/[9Y#Hp  
    % Compute the values of the polynomials: ~1%*w*  
    % -------------------------------------- ]c~yMA+]FZ  
    y = zeros(length_r,length(n)); W~0rSVD$<z  
    for j = 1:length(n) K^U ="  
        s = 0:(n(j)-m_abs(j))/2; B=r DU$z  
        pows = n(j):-2:m_abs(j); aTTkj\4  
        for k = length(s):-1:1 9zb1t1[ W  
            p = (1-2*mod(s(k),2))* ... xy]O8> b  
                       prod(2:(n(j)-s(k)))/              ... >]pZ;e$  
                       prod(2:s(k))/                     ... BLy V~   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F5qA!jZ1]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P*A+k"DU1  
            idx = (pows(k)==rpowers); *{vH9TO  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ig t*8px  
        end s`_EkFw>Gl  
         Q $}#&  
        if isnorm aWIkp5BFj  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _i}b]xfM  
        end 6qHD&bv\%C  
    end a8J AJkFB  
    % END: Compute the Zernike Polynomials 8Y.q P"s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ik$$Tn&;  
    eO <N/?t  
    % Compute the Zernike functions: m2\\!C]f  
    % ------------------------------ 7h}gIm7e"  
    idx_pos = m>0; AQUAQZc  
    idx_neg = m<0; Yi%lWbr  
    }bv+^#  
    z = y; } +}nrJv  
    if any(idx_pos) .Qx5,)@9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =|]h-[P'  
    end 1~c\J0h)d  
    if any(idx_neg) ng3ZK  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "00j]e.  
    end PGJh>[ s  
    SYY x>1;8`  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) [t?tLUg|6  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Vc(4d-d5  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ._G ,uP$  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 09-8Xzz  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~a ([e\~  
    %   and THETA is a vector of angles.  R and THETA must have the same ,%TBW,>  
    %   length.  The output Z is a matrix with one column for every P-value, +c))fPuV  
    %   and one row for every (R,THETA) pair. lgaSIXDK  
    % `q-+r1u  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike yjjq&Cn  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) JD$g%hcVZa  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 1%+-}yo<  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 uCDe>Q4@/  
    %   for all p. ;d6Dm)/(  
    % UH!(`Z\C  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 TmG);B}  
    %   Zernike functions (order N<=7).  In some disciplines it is y|6n:<o  
    %   traditional to label the first 36 functions using a single mode ddfGR/1X  
    %   number P instead of separate numbers for the order N and azimuthal &>zH.6%$  
    %   frequency M. NfvPE]S  
    % *6/IO&y1a  
    %   Example: )%K<pIk  
    % c*)T4n[e  
    %       % Display the first 16 Zernike functions MT-Tt  
    %       x = -1:0.01:1; 9-;-jnDy  
    %       [X,Y] = meshgrid(x,x); *D?_,s  
    %       [theta,r] = cart2pol(X,Y); k_7m[o  
    %       idx = r<=1; ^O_Z5NbC3  
    %       p = 0:15; oV vA`}  
    %       z = nan(size(X)); wb$uq/|  
    %       y = zernfun2(p,r(idx),theta(idx)); CeYhn\m5K0  
    %       figure('Units','normalized') 7l53&,s   
    %       for k = 1:length(p) +K1M&(  
    %           z(idx) = y(:,k); ZM.'W}J{ *  
    %           subplot(4,4,k) = -2~>B  
    %           pcolor(x,x,z), shading interp OIP]9lM$nC  
    %           set(gca,'XTick',[],'YTick',[]) Y :!L  
    %           axis square XQy`5iv  
    %           title(['Z_{' num2str(p(k)) '}']) 1p}Wj*mc  
    %       end  gHe:o`  
    % gK rUv0&F  
    %   See also ZERNPOL, ZERNFUN. R(wUu#n$  
    oPKLr31zt  
    %   Paul Fricker 11/13/2006 ?8-Am[xH  
    z5jw\jBD  
    OS z71;j  
    % Check and prepare the inputs: KnG7w^  
    % ----------------------------- }^&S^N 7  
    if min(size(p))~=1 $:~;U xh=  
        error('zernfun2:Pvector','Input P must be vector.') MNu0t\`p4  
    end )pHtsd.eP  
    g6,DBkv2  
    if any(p)>35 7zG r+Px  
        error('zernfun2:P36', ... l!tR<$|  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 17s~mqy  
               '(P = 0 to 35).']) {srP3ll P  
    end `;UWq{"  
    CYaN;HV@_  
    % Get the order and frequency corresonding to the function number: ;xwcK-A  
    % ---------------------------------------------------------------- "/'3I/}  
    p = p(:); ?4b0\ -  
    n = ceil((-3+sqrt(9+8*p))/2); XO <0;9|  
    m = 2*p - n.*(n+2); OH t)z.  
    9+@h2"|N4*  
    % Pass the inputs to the function ZERNFUN:  QHNyH  
    % ---------------------------------------- Tc^ 0W=h  
    switch nargin n\"6ol}>E  
        case 3 cw<I L  
            z = zernfun(n,m,r,theta);  i;O_B5 d  
        case 4 *{ rorir  
            z = zernfun(n,m,r,theta,nflag); F rc  kA  
        otherwise (tg.]q_=u  
            error('zernfun2:nargin','Incorrect number of inputs.') 2z-Nw <bA  
    end :{%[6lE^G  
    ]E/0iM5  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) b G:\*1T  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >PA*L(Dh%  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of wMVUTm  
    %   order N and frequency M, evaluated at R.  N is a vector of a}y b~:TC  
    %   positive integers (including 0), and M is a vector with the `>sOOA  
    %   same number of elements as N.  Each element k of M must be a EVPQe-  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 5MnP6(3$  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is UePkSz9EU  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Jpapl%7v  
    %   with one column for every (N,M) pair, and one row for every leC!Yj  
    %   element in R. $S#Z>d*1!  
    % +YvF+E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2d .$V,U<  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is r XJx~ g  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ga +, P  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 cr!8Tp;2A  
    %   for all [n,m]. QD@O!}; T  
    % Vgj#-7bdyi  
    %   The radial Zernike polynomials are the radial portion of the j.&dHtp  
    %   Zernike functions, which are an orthogonal basis on the unit nqy*>X`  
    %   circle.  The series representation of the radial Zernike Q4cCg7|0  
    %   polynomials is {xZY4b2  
    % &Sd5]r@+  
    %          (n-m)/2 U6&`s%mIa  
    %            __ q=X<QhK  
    %    m      \       s                                          n-2s $}&a*c>  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r :M"+  
    %    n      s=0 8$}<4 `39  
    % g7zl5^o3j  
    %   The following table shows the first 12 polynomials.  nYx /q  
    % pbx*Y`v  
    %       n    m    Zernike polynomial    Normalization :`N&BV  
    %       --------------------------------------------- 0Q{lyu  
    %       0    0    1                        sqrt(2) j#//U2VdN  
    %       1    1    r                           2 xrg"/?84  
    %       2    0    2*r^2 - 1                sqrt(6) D)-LZbPa  
    %       2    2    r^2                      sqrt(6) 21v--wZ  
    %       3    1    3*r^3 - 2*r              sqrt(8) SMZ*30i  
    %       3    3    r^3                      sqrt(8) QGpj$ _b  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ) h]+cGM  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) rnK]3Ust  
    %       4    4    r^4                      sqrt(10) +Csb8  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 4FaO+Eo,8  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 77M!2S_E  
    %       5    5    r^5                      sqrt(12) GKoYT{6  
    %       --------------------------------------------- +^BTh rB  
    % p(RF   
    %   Example: D|zuj]  
    % $]|3^(y``  
    %       % Display three example Zernike radial polynomials Dl/ C?Fll  
    %       r = 0:0.01:1; }`w(sec:3  
    %       n = [3 2 5]; A"7YkOfwH  
    %       m = [1 2 1]; p6j-8ggL  
    %       z = zernpol(n,m,r); A-r;5?S  
    %       figure =aVvv+T  
    %       plot(r,z) |5vJ:'`I  
    %       grid on F${sEtH  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Osqk#Oh  
    % 25OQY.>bE  
    %   See also ZERNFUN, ZERNFUN2. ,WE2.MWR  
    fn<dr(Dx  
    % A note on the algorithm. e`0C0GaP  
    % ------------------------ }5fd:Bm;  
    % The radial Zernike polynomials are computed using the series }[eUAGhDU  
    % representation shown in the Help section above. For many special b]u=I za  
    % functions, direct evaluation using the series representation can NV./p`k  
    % produce poor numerical results (floating point errors), because t`6]eRR  
    % the summation often involves computing small differences between 9Z -2MF  
    % large successive terms in the series. (In such cases, the functions 0o8`Y  
    % are often evaluated using alternative methods such as recurrence CG%bZco((  
    % relations: see the Legendre functions, for example). For the Zernike nT|WJ%  
    % polynomials, however, this problem does not arise, because the CNRSc 4Le  
    % polynomials are evaluated over the finite domain r = (0,1), and q;9X8 _  
    % because the coefficients for a given polynomial are generally all QDxs+<#  
    % of similar magnitude. ]pm/5|  
    % ;SXkPs3q  
    % ZERNPOL has been written using a vectorized implementation: multiple 2(d  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] T}!9T!(HdF  
    % values can be passed as inputs) for a vector of points R.  To achieve uT]$R  
    % this vectorization most efficiently, the algorithm in ZERNPOL Sv#MlS>  
    % involves pre-determining all the powers p of R that are required to c7+6[y DVE  
    % compute the outputs, and then compiling the {R^p} into a single xtGit}  
    % matrix.  This avoids any redundant computation of the R^p, and i5r<CxS  
    % minimizes the sizes of certain intermediate variables. IS8 sJ6")  
    % al#(<4sJ  
    %   Paul Fricker 11/13/2006 jIaaNO)  
    ?u2\ *@C  
    ">7xSWR*4  
    % Check and prepare the inputs: h_ t`)]-  
    % ----------------------------- pq0Z<b;2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >C,0}lj  
        error('zernpol:NMvectors','N and M must be vectors.') Gw) y<h  
    end /[ m7~B]QE  
    FqJd  
    if length(n)~=length(m) kVLZdXn,q2  
        error('zernpol:NMlength','N and M must be the same length.') Dh^l :q+c  
    end 6c+29@  
    FTUfJIVN(  
    n = n(:); r~=+>, _  
    m = m(:); G>pedE\  
    length_n = length(n); 6Zpa[,gm  
    W.4R+kF<  
    if any(mod(n-m,2)) C1A  X  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') D*@'%<?  
    end A23K!a2u&  
    Ip{hg,>  
    if any(m<0) =9,mt K~  
        error('zernpol:Mpositive','All M must be positive.') Q:) 4  
    end (f"Qz~R|6_  
     @mw1__?  
    if any(m>n) 2L^/\!V#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Rm3W&hQ  
    end c2V_|oL  
    #HL$`&m  
    if any( r>1 | r<0 ) &=t~_ Dc  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') {31X  
    end &5jc &CS  
    #}.{|'L  
    if ~any(size(r)==1) .\H-?6R^  
        error('zernpol:Rvector','R must be a vector.') 4grV2xtX  
    end yq, qS0Fo  
    6&+dpr&c~=  
    r = r(:); bZSt<cH3  
    length_r = length(r); >l}v _k*~B  
    {B=64,D^7R  
    if nargin==4 oTk\r$4eb  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); FXk*zXn6  
        if ~isnorm }#Up:o]A!  
            error('zernpol:normalization','Unrecognized normalization flag.') E5gt_,j>  
        end B$c'^ )  
    else Bph(\= W  
        isnorm = false; ?`vGpi~  
    end D0\*WK$  
    [)}`w;#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `0s3to%7  
    % Compute the Zernike Polynomials 1_&W1o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0dx%b677d  
    WjVm{7?{  
    % Determine the required powers of r: Ku6ndc  
    % ----------------------------------- O 8l`1  
    rpowers = []; y2g)*T!m  
    for j = 1:length(n) 1OY 5tq  
        rpowers = [rpowers m(j):2:n(j)]; !*^+7M  
    end aa]|  
    rpowers = unique(rpowers); Lz9|"F"V  
    =H-BsX?P  
    % Pre-compute the values of r raised to the required powers, r 'ioH"=  
    % and compile them in a matrix: ?/3{gOgI$`  
    % ----------------------------- 1"A"AMZf  
    if rpowers(1)==0 9~ V(wG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t`6~ ud>  
        rpowern = cat(2,rpowern{:}); =f=>buD  
        rpowern = [ones(length_r,1) rpowern]; v*y,PY1*  
    else iMYJVB=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ) fuAdG  
        rpowern = cat(2,rpowern{:}); | v>W  
    end j`u2\ ;  
    q.hpnE~#lh  
    % Compute the values of the polynomials: c8l\1ce?7  
    % -------------------------------------- nKwOSGPQt  
    z = zeros(length_r,length_n); }P!:0w3  
    for j = 1:length_n !y1qd  
        s = 0:(n(j)-m(j))/2; \J~@r1  
        pows = n(j):-2:m(j); Kr<a6BEv5  
        for k = length(s):-1:1 [*vR&4mk  
            p = (1-2*mod(s(k),2))* ... 8N<2RT8W  
                       prod(2:(n(j)-s(k)))/          ... 9D5v0Qi  
                       prod(2:s(k))/                 ... ]<iD'=a  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... &)Vuh=  
                       prod(2:((n(j)+m(j))/2-s(k))); G`v(4`tA  
            idx = (pows(k)==rpowers); 2j^8{Agz  
            z(:,j) = z(:,j) + p*rpowern(:,idx); :2t?0YR  
        end %B>>J%  
         uq!d8{IMu  
        if isnorm Urm(A9|N  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); /u'V>=D;f  
        end =b3<}]  
    end fQfd1=4  
    a{I(Qh!}  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  !1cVg ls|  
    %[H|3  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 wDz}32wB  
    b1ma(8{{{  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)