非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7L!JP:v
function z = zernfun(n,m,r,theta,nflag) T c WCr
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. EeuYRyK
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H1bR+2s
% and angular frequency M, evaluated at positions (R,THETA) on the xRh 22z
% unit circle. N is a vector of positive integers (including 0), and =X$ ieXq|
% M is a vector with the same number of elements as N. Each element >US*7m }
% k of M must be a positive integer, with possible values M(k) = -N(k) H[=\_X1o(
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, yXJhOCa
% and THETA is a vector of angles. R and THETA must have the same fkV@3sj
% length. The output Z is a matrix with one column for every (N,M) 7Uenr9)M
% pair, and one row for every (R,THETA) pair. ~7]V^tG
% jI-a+LnEm
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike \x<8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^6s im 2
% with delta(m,0) the Kronecker delta, is chosen so that the integral Ew8@{X
y
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eADCT
% and theta=0 to theta=2*pi) is unity. For the non-normalized Uj!3MF
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <:S qMf
% fQ<sq0'e\
% The Zernike functions are an orthogonal basis on the unit circle. m^A2
8X7
% They are used in disciplines such as astronomy, optics, and 'a~@q~!
% optometry to describe functions on a circular domain. pj>R9zpn_
% /3b*dsYsl
% The following table lists the first 15 Zernike functions. SI7rTJ]/
% 1NZ"\9=U
% n m Zernike function Normalization q}{E![ZTu
% -------------------------------------------------- 8D*7{Q
% 0 0 1 1 l]*RiK2AC
% 1 1 r * cos(theta) 2 VvhfD2*T
% 1 -1 r * sin(theta) 2 ;blL\|ch;
% 2 -2 r^2 * cos(2*theta) sqrt(6) vW+6_41ZM
% 2 0 (2*r^2 - 1) sqrt(3) Z\!,f.>g
% 2 2 r^2 * sin(2*theta) sqrt(6) g3^s_*A
% 3 -3 r^3 * cos(3*theta) sqrt(8) }[p{%:tP
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) cx\"r
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) il0K ^i
% 3 3 r^3 * sin(3*theta) sqrt(8) DX_mrG
% 4 -4 r^4 * cos(4*theta) sqrt(10) e"
v%m'G
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bZu'5+(@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) YI0
wr1N
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X=)V<2WO
% 4 4 r^4 * sin(4*theta) sqrt(10) R5HT
EB
% -------------------------------------------------- bvox7V>
% %>|FJ
% Example 1: (J:+'u
% \:vF FK4a
% % Display the Zernike function Z(n=5,m=1) [txOh!sxD
% x = -1:0.01:1; BA;r%?MRL
% [X,Y] = meshgrid(x,x); ,KY;NbL-Jp
% [theta,r] = cart2pol(X,Y); T7[@ lMa?
% idx = r<=1; J
En jc/
% z = nan(size(X)); omG2p
% z(idx) = zernfun(5,1,r(idx),theta(idx)); u0C:q`;z
% figure d4Uw+3ikW
% pcolor(x,x,z), shading interp g6M>S1oOO
% axis square, colorbar Liqo)m
% title('Zernike function Z_5^1(r,\theta)') !=9x=
% +R'8$
% Example 2: c`O~I<(Pm
% I%T+H[,
% % Display the first 10 Zernike functions nrEI0E9
% x = -1:0.01:1; /!6 'K
% [X,Y] = meshgrid(x,x);
}x'*3zI
% [theta,r] = cart2pol(X,Y); GS;GJsAs
% idx = r<=1; j<AOC?
% z = nan(size(X)); *D]:{#C*
% n = [0 1 1 2 2 2 3 3 3 3]; 7oZ:/6_>
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {yn,u)@r9S
% Nplot = [4 10 12 16 18 20 22 24 26 28]; :jiEn
y
% y = zernfun(n,m,r(idx),theta(idx)); `z!AjAT-G
% figure('Units','normalized') FXCBX:LnvU
% for k = 1:10 u8f\)m
% z(idx) = y(:,k); *>m[ZJd %=
% subplot(4,7,Nplot(k)) J;4x$BI
% pcolor(x,x,z), shading interp WjVBz
% set(gca,'XTick',[],'YTick',[]) Qz(D1>5I?
% axis square $QJ3~mG2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @-@Coy 4Tt
% end z{XB_j6\=
% Mc,79Ix"
% See also ZERNPOL, ZERNFUN2. - H?c4? 5
/|EdpHx0
% Paul Fricker 11/13/2006 ] \yIHdcDi
d`sZ"8}j
}7.A~h
% Check and prepare the inputs: 5U84*RY
% ----------------------------- NaR} 0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j0l{Mc5
error('zernfun:NMvectors','N and M must be vectors.') jcCAXk055
end EX)&|2w
L>Y+}]~
if length(n)~=length(m) 2Zu9?
L ,I
error('zernfun:NMlength','N and M must be the same length.') l*ltS(?
end 1RAkqw<E
]d*9@+Iu
n = n(:);
Zkp~qx
m = m(:); !W}sOK7#
if any(mod(n-m,2)) AG(6.
error('zernfun:NMmultiplesof2', ... {B$CqsvJ
'All N and M must differ by multiples of 2 (including 0).') hFV,FBsAO
end [6VB&
TXImmkC
if any(m>n) c>bns/f
error('zernfun:MlessthanN', ... @eYpARF
'Each M must be less than or equal to its corresponding N.') <) * U/r
end X,Ql6uO
"uH>S+%|b
if any( r>1 | r<0 ) (cj9xROx
error('zernfun:Rlessthan1','All R must be between 0 and 1.') oidZWy
end +n1!xv]
>LBA0ynh
{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *7Vb([x4;
error('zernfun:RTHvector','R and THETA must be vectors.') Jv}
end [8QK @5[
hjL;B'IL
r = r(:); VMah3T!
theta = theta(:); N[Z`tk?-
length_r = length(r); s^u Y
if length_r~=length(theta) 66val"^W
error('zernfun:RTHlength', ... N,Y)'s<
'The number of R- and THETA-values must be equal.') z:Am1B
end \%7*@&
e!VtDJDS
% Check normalization: [CQR
% -------------------- ysnW3q!@
if nargin==5 && ischar(nflag) P<pv@l9)
isnorm = strcmpi(nflag,'norm'); .SC*! ,
if ~isnorm FJvY`zqB
error('zernfun:normalization','Unrecognized normalization flag.') yTZev|ej@
end t}+/GSwT
else *'((_NZ>
isnorm = false; xQsxc
end |k.'w<6mb9
"L3mW=!*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5dj" UxH
% Compute the Zernike Polynomials *PF<J/Pr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dg&6@c|
V 20h\(\\
% Determine the required powers of r: U[wx){[|
% ----------------------------------- o[>d"Kp
m_abs = abs(m); wR%Ta -
rpowers = []; um,f!ho-U
for j = 1:length(n) cC~RW71
rpowers = [rpowers m_abs(j):2:n(j)]; B4.:
9Od3
end 4aO/^Hl
rpowers = unique(rpowers); +byOThuE
7d;|?R-8D
% Pre-compute the values of r raised to the required powers, SAP/jD$5]>
% and compile them in a matrix: gPd
K%"B@
% ----------------------------- AE rPd)yk0
if rpowers(1)==0 6n]+(=
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Gxw1P@<F:
rpowern = cat(2,rpowern{:}); 6ll!7U(9(
rpowern = [ones(length_r,1) rpowern]; 9q"kM
else 5cPyi/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }n^Rcz6HeO
rpowern = cat(2,rpowern{:}); 01A{\O1$j
end A.>mk598
3E*|^*
% Compute the values of the polynomials: x;~:p;]J2F
% -------------------------------------- 4>,X.|9{
y = zeros(length_r,length(n)); A3eCI
for j = 1:length(n) >~o-6g
s = 0:(n(j)-m_abs(j))/2; "D'e
pows = n(j):-2:m_abs(j); ?X@!jB,Pv
for k = length(s):-1:1 Sf?;j{?G
p = (1-2*mod(s(k),2))* ... /2p*uv}IP
prod(2:(n(j)-s(k)))/ ... !Gmnck&+
prod(2:s(k))/ ... 2>o[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... | N/d}
prod(2:((n(j)+m_abs(j))/2-s(k))); >V6t
L;+
idx = (pows(k)==rpowers); &J3QO%
y(:,j) = y(:,j) + p*rpowern(:,idx);
V_h&9]RL
end ,ua1sTgQ
D, ")n75
if isnorm n\+c3
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5f*_K6 ,v
end R/=rNUe
end 4aHogheg
% END: Compute the Zernike Polynomials iVFOOsJ@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >ai,6!
{;{U@Z
% Compute the Zernike functions: VM$n|[C~
% ------------------------------ t'U=K>7
idx_pos = m>0; kyHli~Nr"
idx_neg = m<0; ji ?Hw
qHk{5O3
z = y; <Z^by;d|z
if any(idx_pos) PK+sGV
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Uj5-x%~
end
^.A*mMQ
if any(idx_neg) .lcp5D[(
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @}
Ig*@
end :-RB< Lj
pA!-spgX
% EOF zernfun