切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11199阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $[Nf?`f(t_  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \h0+` ;Q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _Vt9ckaA  
    function z = zernfun(n,m,r,theta,nflag) MAX?,- x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1E4`&?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <1x u&Z7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /Zx"BSu  
    %   unit circle.  N is a vector of positive integers (including 0), and B !rb*"[  
    %   M is a vector with the same number of elements as N.  Each element V}Q`dEk2r  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8)Vl2z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, P9S)7&+DL  
    %   and THETA is a vector of angles.  R and THETA must have the same GlJOb|WOX  
    %   length.  The output Z is a matrix with one column for every (N,M) Su +<mW  
    %   pair, and one row for every (R,THETA) pair. 5UK}AkEe&x  
    % KRP6b:+4L  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .]<gm9l  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), UxMei  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral H3iYE~^#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, XGYsTquSe  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized oGbh *  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. fmLDufx  
    % =t~]@?]1D  
    %   The Zernike functions are an orthogonal basis on the unit circle. [IHG9Xg  
    %   They are used in disciplines such as astronomy, optics, and 5dX0C  
    %   optometry to describe functions on a circular domain. w=ufJR j  
    % *`Ge8?qC  
    %   The following table lists the first 15 Zernike functions. hX-^h2eV  
    % 'fzJw  
    %       n    m    Zernike function           Normalization 'cK{FiIT  
    %       -------------------------------------------------- $t5>1G1j7  
    %       0    0    1                                 1 ox";%|PP1  
    %       1    1    r * cos(theta)                    2 oJE<}~_k  
    %       1   -1    r * sin(theta)                    2 #a]\3X  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `J7@G]X;2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kaECjZ _&+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "/taatcH  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) HuN_$aP  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,Vz-w;oDn  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) tpgD{BY^wJ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) <p` F/p-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Z`%^?My  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C8(0|XX  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  2q9$5   
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NKVLd_f k  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) c2Y\bKeN  
    %       -------------------------------------------------- ybIqn0&[  
    % #??[;xjs!  
    %   Example 1: ,,S 2>X*L  
    % UZ:z|a3  
    %       % Display the Zernike function Z(n=5,m=1) 4O{,oN~7  
    %       x = -1:0.01:1; d@Wze[M?0  
    %       [X,Y] = meshgrid(x,x); Y%zWaH  
    %       [theta,r] = cart2pol(X,Y); Y|KT3  
    %       idx = r<=1;  Tx'anP  
    %       z = nan(size(X)); .^ba*qb`{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); md/h\o&  
    %       figure -BwZ  
    %       pcolor(x,x,z), shading interp !rZZ/M"i  
    %       axis square, colorbar OU?.}qc<wE  
    %       title('Zernike function Z_5^1(r,\theta)') wRX#^;O9?>  
    % h`p=~u +  
    %   Example 2: @v\8+0  
    %  -f<}lhmQ  
    %       % Display the first 10 Zernike functions p@@*F+  
    %       x = -1:0.01:1; .GCJA`0h  
    %       [X,Y] = meshgrid(x,x); ? a/\5`gnN  
    %       [theta,r] = cart2pol(X,Y); |`AJP  
    %       idx = r<=1; B,ao%3t  
    %       z = nan(size(X)); @)ls+}=Y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $L'[_J  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 2frwU~y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !_iv~Q zv  
    %       y = zernfun(n,m,r(idx),theta(idx)); Jgq#m~M6  
    %       figure('Units','normalized') ~svea>Fmr  
    %       for k = 1:10 )]zsAw`/  
    %           z(idx) = y(:,k); [[ll4|  
    %           subplot(4,7,Nplot(k)) mWMtz]M}  
    %           pcolor(x,x,z), shading interp "|E'E"_1  
    %           set(gca,'XTick',[],'YTick',[]) +'[/eW  
    %           axis square iBY16_q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m:9|5W  
    %       end xd+aO=)Td  
    % Xhpcu1nA  
    %   See also ZERNPOL, ZERNFUN2. 8 9maN  
    n3\~H9  
    %   Paul Fricker 11/13/2006 3/,}&SX  
    "9NWsy}<c  
    $OzVo&P;  
    % Check and prepare the inputs: jK{qw  
    % ----------------------------- M>{*PHze0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4(`U]dNcs  
        error('zernfun:NMvectors','N and M must be vectors.') jq_ i&~S  
    end 2r@9|}La  
    Z~;rp`P  
    if length(n)~=length(m) rG%8ugap  
        error('zernfun:NMlength','N and M must be the same length.') .OlPVMFt  
    end \ #la8,+9  
    c1 j@*6B  
    n = n(:); }V 4u`=  
    m = m(:); A,?6|g`q'  
    if any(mod(n-m,2)) 4)p ID`  
        error('zernfun:NMmultiplesof2', ... R}D[ z7  
              'All N and M must differ by multiples of 2 (including 0).') ]\/"-Y#4Q  
    end /^WOrMR  
    oE,TA2  
    if any(m>n) 8zho\'  
        error('zernfun:MlessthanN', ... ~1nKL0C6u  
              'Each M must be less than or equal to its corresponding N.') 64Tb,AL_  
    end :OA;vp~$x  
    -U|Z9sia  
    if any( r>1 | r<0 ) 5+q dn|9%T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'oUTY *  
    end FRsp?i K)  
    u>*qDr* d  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ONF x -U]  
        error('zernfun:RTHvector','R and THETA must be vectors.') [i_evsUj?  
    end 6!([Hu#= *  
    XI,=W  
    r = r(:); lWUQkS  
    theta = theta(:); .dwbJT  
    length_r = length(r); VeOM `jy  
    if length_r~=length(theta) B) dG:~  
        error('zernfun:RTHlength', ... 8= g~+<A  
              'The number of R- and THETA-values must be equal.') & s:\t L  
    end Y3SV6""y/  
    $v5 >6+-n  
    % Check normalization: S#Tu/2<}  
    % -------------------- ^4et; F%  
    if nargin==5 && ischar(nflag) |+qsO ;  
        isnorm = strcmpi(nflag,'norm'); bEmzigN[  
        if ~isnorm .0MY$0s  
            error('zernfun:normalization','Unrecognized normalization flag.') #8y"1I=i&  
        end JkKbw&65  
    else gLK0L%"5  
        isnorm = false; LXTtV0F  
    end n3$u9!|P  
    ;s8\F]K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?A-f_0<0  
    % Compute the Zernike Polynomials pwV~[+SS_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s|X_:3\x  
    _9?v?mL5;  
    % Determine the required powers of r: FU;a { irB  
    % ----------------------------------- 'lOQb)  
    m_abs = abs(m); nQ{~D5y,,  
    rpowers = []; bH!_0+$P  
    for j = 1:length(n) mE &SAm5#d  
        rpowers = [rpowers m_abs(j):2:n(j)]; J|VDZ# c7  
    end >:BgatyPH  
    rpowers = unique(rpowers); Iz>\qC}  
    s +E4AG1r  
    % Pre-compute the values of r raised to the required powers, ;Eh"]V,e  
    % and compile them in a matrix: ?8;WP&  
    % ----------------------------- ?yu@eo  
    if rpowers(1)==0 fUPYCw6F  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Dn#UcMO>W  
        rpowern = cat(2,rpowern{:}); -#R63f&  
        rpowern = [ones(length_r,1) rpowern]; ;vn0b"Fi3  
    else 12: Q`   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  `YO&  
        rpowern = cat(2,rpowern{:}); @q{.  
    end Qh* }v!3Jo  
    5xU}}[|~-  
    % Compute the values of the polynomials: fA=Lb^,M  
    % -------------------------------------- `'gcF });  
    y = zeros(length_r,length(n)); Dj6^|R$z&  
    for j = 1:length(n) _qh \  
        s = 0:(n(j)-m_abs(j))/2; =5uhIU0O  
        pows = n(j):-2:m_abs(j); 12Fnv/[n'K  
        for k = length(s):-1:1 k L4#  
            p = (1-2*mod(s(k),2))* ... ngk:q5Tp  
                       prod(2:(n(j)-s(k)))/              ... @g*[}`8]y  
                       prod(2:s(k))/                     ... Y@qugQM>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2EO9IxIf  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); u#Bj#y!  
            idx = (pows(k)==rpowers); Ak$9\Sl  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ;";>7k/}  
        end 0T 0I<t  
         gADqIPu]  
        if isnorm MJa` 4[/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o ,xy'  
        end _ozg=n2(  
    end x@:98P  
    % END: Compute the Zernike Polynomials tCGA3t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }r"E\~E  
    NGEE'4!i7T  
    % Compute the Zernike functions: > kwhZ/x  
    % ------------------------------ )QmmI[,tq  
    idx_pos = m>0; (&, E}{p9  
    idx_neg = m<0; V9%9nR!'  
    $"#M:V @  
    z = y; {}=5uU2Tu  
    if any(idx_pos) Ki%)LQAg  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); dkSd Y+Q  
    end A>(EM}\,  
    if any(idx_neg) "j.Q*Hazg  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); auM1k]  
    end C[;7i!Dv  
    .'2"83f  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Z$35`:x&h  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ur]WNk8bN  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ]*0t?'go'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive +RK/u  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9yLPh/!Ob  
    %   and THETA is a vector of angles.  R and THETA must have the same ]HRHF'4  
    %   length.  The output Z is a matrix with one column for every P-value, g26 l:1P  
    %   and one row for every (R,THETA) pair. AAF;M}le,  
    % 2"o <>d  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike QEmktc1 7  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9mpQusM  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) P+3 ]g{2w  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 dtXtZ!g2  
    %   for all p. $A(3-n5=  
    % l 5f'R  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 .0|_J|{  
    %   Zernike functions (order N<=7).  In some disciplines it is Q"qJ0f)  
    %   traditional to label the first 36 functions using a single mode FE06,i\{  
    %   number P instead of separate numbers for the order N and azimuthal TJ,?C$3  
    %   frequency M. wOH 3[SKo  
    % u4[JDB7tH  
    %   Example: V7+/|P_  
    % paxZlA o  
    %       % Display the first 16 Zernike functions _ CzAv%  
    %       x = -1:0.01:1; CKDg3p';  
    %       [X,Y] = meshgrid(x,x); va.Ve# N  
    %       [theta,r] = cart2pol(X,Y); qtP*O#1q  
    %       idx = r<=1; 4@-Wp]  
    %       p = 0:15; (c[DQSj  
    %       z = nan(size(X)); kioIyV\=  
    %       y = zernfun2(p,r(idx),theta(idx)); @*$"6!3s5  
    %       figure('Units','normalized') #;"lBqxY`  
    %       for k = 1:length(p) `Cu9y+t  
    %           z(idx) = y(:,k); ork{a.1-_w  
    %           subplot(4,4,k) D P:}<  
    %           pcolor(x,x,z), shading interp pFwe&_u]  
    %           set(gca,'XTick',[],'YTick',[]) ;uuBX0B  
    %           axis square gER(&L4[  
    %           title(['Z_{' num2str(p(k)) '}']) 1DF8-|+  
    %       end 9|9/8a6A  
    % F<,"{L  
    %   See also ZERNPOL, ZERNFUN. &7c#i  
    F+V[`w*k  
    %   Paul Fricker 11/13/2006 V("T9g  
    TI7)yxa=`  
    ay=f1<a  
    % Check and prepare the inputs: Ft>,  
    % ----------------------------- n$"B F\eM  
    if min(size(p))~=1 D,s[{RW+q  
        error('zernfun2:Pvector','Input P must be vector.') u 0 K1n_  
    end 1mx;b)4t  
    6V1 Z(K  
    if any(p)>35 1_LGlu~&  
        error('zernfun2:P36', ... G:MQ_tfr&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... oMN Qv%U  
               '(P = 0 to 35).']) ITjg]taD  
    end ,9 .NMFn  
    L!2Ef4,wAz  
    % Get the order and frequency corresonding to the function number: hrbeTtqi  
    % ---------------------------------------------------------------- ]Vf2Mn=]"  
    p = p(:); `P;uPQDzZ3  
    n = ceil((-3+sqrt(9+8*p))/2); =&vRT;6  
    m = 2*p - n.*(n+2); 1 ,6Y)_  
    CWnRRZ}r  
    % Pass the inputs to the function ZERNFUN: m9aP]I3g]\  
    % ---------------------------------------- JWQ.Efe  
    switch nargin SxM5'KQ  
        case 3 }z2K"eGt  
            z = zernfun(n,m,r,theta); TI3@/SB>  
        case 4 t%Y}JKLR  
            z = zernfun(n,m,r,theta,nflag); &F +hh{  
        otherwise (m=F  
            error('zernfun2:nargin','Incorrect number of inputs.') hx@E,  
    end p2 m`pT  
    <*$IZl6I  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ~g;lVj,N'  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. {+|Em(M  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of {hKf 'd9E  
    %   order N and frequency M, evaluated at R.  N is a vector of \H.1I=<  
    %   positive integers (including 0), and M is a vector with the i>@"&  
    %   same number of elements as N.  Each element k of M must be a ^g n7DiIPH  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) @*~cmf&FIQ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &?yVLft  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix gz"I=9  
    %   with one column for every (N,M) pair, and one row for every 0'^zIL#.  
    %   element in R. _gP-$&JC  
    % BO-=X 78f@  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- mybjcsV4  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is OW8"7*irT  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to [+4--#&{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =h}IyY@o  
    %   for all [n,m]. 8 @4)p.{5I  
    % P 4jg]g  
    %   The radial Zernike polynomials are the radial portion of the /'>#1J|TlK  
    %   Zernike functions, which are an orthogonal basis on the unit z8n]6FDiE  
    %   circle.  The series representation of the radial Zernike WiclG8l  
    %   polynomials is /g]m,Y{OI  
    % Nn|~ :9#  
    %          (n-m)/2 x-ShY&k  
    %            __ t0gLz J  
    %    m      \       s                                          n-2s }\)O1  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +;wu_CQu  
    %    n      s=0 M }tr*L  
    % 6/eh~ME=  
    %   The following table shows the first 12 polynomials. j`kw2(  
    % 1t7S:IZ  
    %       n    m    Zernike polynomial    Normalization Ym "Nj  
    %       --------------------------------------------- A!j6JY.w  
    %       0    0    1                        sqrt(2) .jC-&(R +  
    %       1    1    r                           2 <hbxerg  
    %       2    0    2*r^2 - 1                sqrt(6) (E(kw="  
    %       2    2    r^2                      sqrt(6) gsp|?) ]x  
    %       3    1    3*r^3 - 2*r              sqrt(8) w6[uM%fHG  
    %       3    3    r^3                      sqrt(8) ] 6rr;S  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) eZ~ZWb,%  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Z &R{jQ,  
    %       4    4    r^4                      sqrt(10) 2Aq%;=+*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) geRD2`3;  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) `FL!L59nz  
    %       5    5    r^5                      sqrt(12) C~dD'Tq]  
    %       --------------------------------------------- <kr%ylhIu  
    % 3mnq=.<(w  
    %   Example: i0-zGEMB.  
    % -hIDL'5u-I  
    %       % Display three example Zernike radial polynomials Ju"*>66  
    %       r = 0:0.01:1; e$+?l~  
    %       n = [3 2 5]; ^s&1,  
    %       m = [1 2 1]; REvY`   
    %       z = zernpol(n,m,r); l|P(S(ikh  
    %       figure H%:~&_D  
    %       plot(r,z) sOBy)vq?\  
    %       grid on Z@I.socA  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') J9 iQW  
    % FF"`F8-w>Z  
    %   See also ZERNFUN, ZERNFUN2. `kd P)lI `  
    8UyYN$7V  
    % A note on the algorithm. b{o%`B*  
    % ------------------------ g&30@D"  
    % The radial Zernike polynomials are computed using the series cR+9^DzA  
    % representation shown in the Help section above. For many special Wl:vO^  
    % functions, direct evaluation using the series representation can s innHQ  
    % produce poor numerical results (floating point errors), because jJF(*D  
    % the summation often involves computing small differences between aa1^cw 5}  
    % large successive terms in the series. (In such cases, the functions yI 6AafS~  
    % are often evaluated using alternative methods such as recurrence tNI~<#+lg  
    % relations: see the Legendre functions, for example). For the Zernike U0/X!@F-  
    % polynomials, however, this problem does not arise, because the v]tbs)x;h  
    % polynomials are evaluated over the finite domain r = (0,1), and \*0ow`|K  
    % because the coefficients for a given polynomial are generally all BEkxH.   
    % of similar magnitude. PZQ n]lbak  
    % $DOBC@xxzT  
    % ZERNPOL has been written using a vectorized implementation: multiple 0b0.xz\~U  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 5!T\L~tyt  
    % values can be passed as inputs) for a vector of points R.  To achieve )h0F'MzW  
    % this vectorization most efficiently, the algorithm in ZERNPOL %hzl3>().  
    % involves pre-determining all the powers p of R that are required to ~97T0{E3  
    % compute the outputs, and then compiling the {R^p} into a single `eat7O  
    % matrix.  This avoids any redundant computation of the R^p, and {VPF2JFB[  
    % minimizes the sizes of certain intermediate variables. sILkTzs w  
    % BiQ7r=Dd.  
    %   Paul Fricker 11/13/2006 h9,ui^#d$  
    D<zgs2Ex  
    '{:WxGgi  
    % Check and prepare the inputs: ROr..-[u  
    % ----------------------------- P%v7(bqL4+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x>^r%<WbX  
        error('zernpol:NMvectors','N and M must be vectors.') 7ZbnG@s7  
    end .r/6BDE"  
    j"aimjqd3  
    if length(n)~=length(m) 6^pddGIG  
        error('zernpol:NMlength','N and M must be the same length.') AKVll  
    end E.$1CGd+  
    %.kJ@@_e  
    n = n(:); cCd2f>EHw  
    m = m(:); #TLqo(/  
    length_n = length(n); ^@'LF T)  
    Q]7Rqslz  
    if any(mod(n-m,2)) ` gIlS^Q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -,t2D/xK  
    end T.vkGB=QZ%  
    `CP}1W>  
    if any(m<0) L=u>}?!,Fj  
        error('zernpol:Mpositive','All M must be positive.') *%^Vq  
    end :?VM1!~ga  
    t0*JinK I  
    if any(m>n) R&13P&:g  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^Tbw#x]2  
    end A`|OPi)  
    $okGqu8z.O  
    if any( r>1 | r<0 ) UwuDs2 t  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0Bx.jx0?  
    end ad).X:Qs  
    [:geDk9O#'  
    if ~any(size(r)==1) "pb,|U  
        error('zernpol:Rvector','R must be a vector.') xyK_1n@b  
    end {c|=L@/  
    .` z](s  
    r = r(:); #WD} XOA  
    length_r = length(r); s)dN.'5/  
    \vVGfG?6  
    if nargin==4 wXv\[z L`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ln#Jb&u  
        if ~isnorm _@[M0t}g_  
            error('zernpol:normalization','Unrecognized normalization flag.') eJ+V!K'H2  
        end `wt*7~'=  
    else FWNO/)~t  
        isnorm = false; {umdW x.*  
    end FI1R7A  
    Qo>V N`v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yb8o`j+t  
    % Compute the Zernike Polynomials B[:-SWd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9H~3&-8&  
    IKhpe5}  
    % Determine the required powers of r: 6@`Y6>}$_  
    % ----------------------------------- %xE\IRlR  
    rpowers = []; Ur`Ri?  
    for j = 1:length(n) 5I ,5da  
        rpowers = [rpowers m(j):2:n(j)]; R9X* R3nB  
    end iX 0s4  
    rpowers = unique(rpowers); P!q U8AJkt  
    N5u.V\F!z\  
    % Pre-compute the values of r raised to the required powers, HCHZB*r[  
    % and compile them in a matrix: |7Z7_YWs  
    % ----------------------------- (P {o9  
    if rpowers(1)==0 iGmBG1a\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); TY[{)aH{S  
        rpowern = cat(2,rpowern{:}); E5.3wOE  
        rpowern = [ones(length_r,1) rpowern]; 8YJ8_$Z  
    else UTw f!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f.ku v"  
        rpowern = cat(2,rpowern{:}); ,6Ulj+l  
    end  PDaD:}9  
    Wu]D pe  
    % Compute the values of the polynomials: /P bN!r<1  
    % -------------------------------------- Z)cGe1?q  
    z = zeros(length_r,length_n); @RW=(&<1  
    for j = 1:length_n Gj]*_"T  
        s = 0:(n(j)-m(j))/2; FBpf_=(_1  
        pows = n(j):-2:m(j); `N%q^f~  
        for k = length(s):-1:1  FVOR~z  
            p = (1-2*mod(s(k),2))* ... .b*%c?e  
                       prod(2:(n(j)-s(k)))/          ... n!5 :I#B  
                       prod(2:s(k))/                 ... ml$"C  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... )8Defuxk  
                       prod(2:((n(j)+m(j))/2-s(k))); `!<RP'  
            idx = (pows(k)==rpowers); epa)~/sA  
            z(:,j) = z(:,j) + p*rpowern(:,idx); <`8l8cL  
        end OM,-:H,  
         9mW95YI S  
        if isnorm }Z5#{Sd  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); jRP.Je@t  
        end a>jiq8d]4  
    end DDh$n?2fd  
    .[Ezg(U}ze  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  G,+-}~$_  
    fI:j@Wug  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -*;-T9  
    qcYF&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)