非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 cdL0<J b,
function z = zernfun(n,m,r,theta,nflag) `7 Nk;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. `my\59T
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ge{%B~x
% and angular frequency M, evaluated at positions (R,THETA) on the EhOB+Mc1
% unit circle. N is a vector of positive integers (including 0), and HNX/#?3
% M is a vector with the same number of elements as N. Each element H ;HFen|
% k of M must be a positive integer, with possible values M(k) = -N(k) t0ZaI E
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !3*%-8bp
% and THETA is a vector of angles. R and THETA must have the same SXV
f&8
% length. The output Z is a matrix with one column for every (N,M) J>0RN/38o
% pair, and one row for every (R,THETA) pair. T'14OU2N{Y
% X'7MW?
q@
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike '"V]>)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7C@m(oK
% with delta(m,0) the Kronecker delta, is chosen so that the integral xI5zP?
_v
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^%33&<mB}
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2
3A)^j
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2cv=7!K4Uv
% 1z8fhE iiE
% The Zernike functions are an orthogonal basis on the unit circle. `S]DHxS
% They are used in disciplines such as astronomy, optics, and 6?l|MU"Q.
% optometry to describe functions on a circular domain. }pT>dbZ
% XiyL563gh
% The following table lists the first 15 Zernike functions. T FK#ign
% #\O?|bN'q
% n m Zernike function Normalization ;E\ e.R
% -------------------------------------------------- tj" EUqKQ
% 0 0 1 1 ) !l1
% 1 1 r * cos(theta) 2 \.`{nq
% 1 -1 r * sin(theta) 2 <IQ}j^u-F
% 2 -2 r^2 * cos(2*theta) sqrt(6) J~5+=V7OV
% 2 0 (2*r^2 - 1) sqrt(3) ?Aky!43
% 2 2 r^2 * sin(2*theta) sqrt(6) D{]9s
% 3 -3 r^3 * cos(3*theta) sqrt(8) P)06<n1">Z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9P-I)ZqL
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) IU rGJ#}O
% 3 3 r^3 * sin(3*theta) sqrt(8) fSm|anuKZe
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7p Zd?-6M^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z}r9jM
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) lT F#efcW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vb]H$@0
% 4 4 r^4 * sin(4*theta) sqrt(10) m/1;os5+8
% -------------------------------------------------- }H9V$~}@-
% x^!LA,`j
% Example 1: T=T1?@2C
% (L7%V !
% % Display the Zernike function Z(n=5,m=1) 7V;wCm#b
% x = -1:0.01:1; ]=sGLd^)E
% [X,Y] = meshgrid(x,x); j:J7
% [theta,r] = cart2pol(X,Y); ZTi KU)
% idx = r<=1; qfB!)Y
% z = nan(size(X)); ne'Y {n(8%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); G/_9!lE
% figure W0N*c*k
% pcolor(x,x,z), shading interp -F';1D!l%
% axis square, colorbar %`^{Hh`
% title('Zernike function Z_5^1(r,\theta)') TM`6:5ONv
% t;)`+K#1:
% Example 2: 4mwA o
% ey) 8q.5
% % Display the first 10 Zernike functions 43o!Vr/S
% x = -1:0.01:1; 9
IY1"j0O
% [X,Y] = meshgrid(x,x); \t' ]Lf
% [theta,r] = cart2pol(X,Y); {s~t>R p+
% idx = r<=1; A&qZ:&(OM
% z = nan(size(X)); 2g_2$)2
% n = [0 1 1 2 2 2 3 3 3 3]; {~~'
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
xSZ+6R|
% Nplot = [4 10 12 16 18 20 22 24 26 28]; vI+X9C?
% y = zernfun(n,m,r(idx),theta(idx)); Q`[J3-Q*{
% figure('Units','normalized') [[vb w)u
% for k = 1:10 OW1\@CC-69
% z(idx) = y(:,k); vS+E`[
% subplot(4,7,Nplot(k)) bWfT-Jewh
% pcolor(x,x,z), shading interp |j~{gfpSE
% set(gca,'XTick',[],'YTick',[]) =F90SyzTy
% axis square ?M@ff0
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >`D$Jz,
% end CC{{@
% ?<eH!MHF
% See also ZERNPOL, ZERNFUN2. n*vhCeL
j\@osjUu
% Paul Fricker 11/13/2006 jL9to6 Hmr
3q:>NB<
w]Z:Y`
% Check and prepare the inputs: p& +w
% ----------------------------- xC.Tipn>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f|-%.,
error('zernfun:NMvectors','N and M must be vectors.') ZH8Oidj`
end xBKis\b
gC\^"m
if length(n)~=length(m) 5Ak6 q(\
error('zernfun:NMlength','N and M must be the same length.') '"o&BmF
end 6`sS8Ar&u
KPMId`kf
n = n(:); b0!ZA/YC-
m = m(:); 3eJ"7sftW
if any(mod(n-m,2)) ''~#tK
f
error('zernfun:NMmultiplesof2', ... ca!DZ%y
'All N and M must differ by multiples of 2 (including 0).')
n>:|K0u"
end a) 5;Od
qQx5n
if any(m>n) `%A>{ A"
error('zernfun:MlessthanN', ... i4^1bd
'Each M must be less than or equal to its corresponding N.') kxVR#:
end <c$K3
\?rBtD(
if any( r>1 | r<0 ) ]J>{ZL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,T\)%q
end }KCb5_MDF
T9=55tpG9
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3pk `&'
error('zernfun:RTHvector','R and THETA must be vectors.') 55]E<2't
end Y<EdFzle
<\C/;
r = r(:); ~AbTbQ3
theta = theta(:); a2\r^fY/
length_r = length(r); -P7JaH/Q
if length_r~=length(theta) y(uE
error('zernfun:RTHlength', ... =%+o4\N,
'The number of R- and THETA-values must be equal.') Xj("
end b Q6<R4
`'
"125T
% Check normalization: >@wyiBU
% -------------------- B2DWSp-8*
if nargin==5 && ischar(nflag) VwxLElV
isnorm = strcmpi(nflag,'norm'); Eggdj+
if ~isnorm 6e.?L
error('zernfun:normalization','Unrecognized normalization flag.') {Mx3G*hr
end ?,0 5!]
else |'" 17c&
isnorm = false; ri?>@i-9=
end
re;^,
I? o)X!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }"CX`
% Compute the Zernike Polynomials [h^>Iq
(Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6~_TXy/
4W$t28)
% Determine the required powers of r: ="*:H)
% ----------------------------------- ;)nV
m_abs = abs(m); <>tQa5;
rpowers = []; h<8.0
for j = 1:length(n) ++)3*+N+
rpowers = [rpowers m_abs(j):2:n(j)]; q!+&|F
end E=9xiS
rpowers = unique(rpowers); :xz,PeXo7
':jsCeSB
% Pre-compute the values of r raised to the required powers, xOAA1#
% and compile them in a matrix: jx7b$x]
% -----------------------------
|q:p^;x
if rpowers(1)==0 2y0J~P! I
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,-GkP>8f(
rpowern = cat(2,rpowern{:}); D#I^;Xg0h
rpowern = [ones(length_r,1) rpowern]; tB i16=
else 6bXR?0$*M.
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8r46Wr7Q
rpowern = cat(2,rpowern{:}); Z+G.v=2q<
end
RZg8y+jM
Xbp~cn
% Compute the values of the polynomials: tDk !]
% -------------------------------------- }KZt7)
y = zeros(length_r,length(n)); ,4&?`Q
for j = 1:length(n) ][IEzeI_LN
s = 0:(n(j)-m_abs(j))/2; f1_b``M
pows = n(j):-2:m_abs(j); (ndTEnpp
for k = length(s):-1:1 -~'{WSJ
p = (1-2*mod(s(k),2))* ... " A}S92
prod(2:(n(j)-s(k)))/ ... 'q_^28rK
prod(2:s(k))/ ... Z&VH7gi
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F^/1 u
prod(2:((n(j)+m_abs(j))/2-s(k))); P wY~L3,
idx = (pows(k)==rpowers); C=6.~&(
y(:,j) = y(:,j) + p*rpowern(:,idx); |pA
end ?{Rv/np=F
8wXnc%
if isnorm nbECEQ:|B
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); */7+pk(
end T|o ]8z
end ZVin+ z
% END: Compute the Zernike Polynomials H>qw@JiO!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?b8 :
jrl'?`O
% Compute the Zernike functions: H`:2J8
% ------------------------------ ,@#))2<RK
idx_pos = m>0; Yi5^#G
idx_neg = m<0; fUg<+|v*
pp2,d`01[L
z = y; nbMxQODk
if any(idx_pos) l
7XeZ} S
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2.>WR~\
end ~mR@L `"l
if any(idx_neg) l[AQyR1+/
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); oE
H""Bd
end s6k@W T?"^
[@&0@/s*t'
% EOF zernfun