非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7z&^i-l.
function z = zernfun(n,m,r,theta,nflag) w/0;N`YB
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4=ha$3h$
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N d/?0xL W
% and angular frequency M, evaluated at positions (R,THETA) on the j1@PfKh
% unit circle. N is a vector of positive integers (including 0), and j;rxr1+w
% M is a vector with the same number of elements as N. Each element ~bjT,i
% k of M must be a positive integer, with possible values M(k) = -N(k) v@!r$jZ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 3A b_Z
% and THETA is a vector of angles. R and THETA must have the same Zvz}Z8jW
% length. The output Z is a matrix with one column for every (N,M) }Oy/F
% pair, and one row for every (R,THETA) pair. F.R0c@&W
% na/,1iI<
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike w4&-9[@Y
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (5^SL Y
% with delta(m,0) the Kronecker delta, is chosen so that the integral 7mS_Cz+cB
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 28,HZaXhc
% and theta=0 to theta=2*pi) is unity. For the non-normalized ;xE1#ZT
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?rwHkPJ{*
% 6[1lK8o
% The Zernike functions are an orthogonal basis on the unit circle. Bv=:F5hLG
% They are used in disciplines such as astronomy, optics, and 8g
2'[ci$q
% optometry to describe functions on a circular domain. kh*td(pfP9
% ]O68~+6
% The following table lists the first 15 Zernike functions. ~\+mo
% NEMC
% n m Zernike function Normalization \o!B:Vb<
% -------------------------------------------------- V_Y2 @4
% 0 0 1 1 YcuHYf5
% 1 1 r * cos(theta) 2 E'_$?wWn5
% 1 -1 r * sin(theta) 2 {B\lk:"X
% 2 -2 r^2 * cos(2*theta) sqrt(6) 9O#?r82
% 2 0 (2*r^2 - 1) sqrt(3) !%yd'"6Dl
% 2 2 r^2 * sin(2*theta) sqrt(6) T+<OlXpL
% 3 -3 r^3 * cos(3*theta) sqrt(8) &
Mf nH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) |G>Lud
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6?jSe<4x
% 3 3 r^3 * sin(3*theta) sqrt(8) HFf9^
% 4 -4 r^4 * cos(4*theta) sqrt(10) ,Z]4`9c
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q-S5("
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ehYGw2
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h`p9H2}0
% 4 4 r^4 * sin(4*theta) sqrt(10) xHdv?69,
% -------------------------------------------------- qgLj^{
% TYr"yZ([
% Example 1: X6c ['Zrc
% y <21~g=
% % Display the Zernike function Z(n=5,m=1) 3MFb\s&Fq
% x = -1:0.01:1; +QVe -
% [X,Y] = meshgrid(x,x); aruT eJF
% [theta,r] = cart2pol(X,Y); * d[sja+
% idx = r<=1; 8Ow0A
% z = nan(size(X)); I!-5
#bxD
% z(idx) = zernfun(5,1,r(idx),theta(idx)); }>u<,
% figure .1& F p
% pcolor(x,x,z), shading interp e$@a zi1
% axis square, colorbar mq~L1<f
% title('Zernike function Z_5^1(r,\theta)') ,;wc$-Z!8
% ~w9ZSSb4
% Example 2: {VrjDj+Xy
% -nrfu) G
% % Display the first 10 Zernike functions ('.r_F
% x = -1:0.01:1; @#5PPXp
% [X,Y] = meshgrid(x,x); T8rf+B/.L
% [theta,r] = cart2pol(X,Y); @=1kr ^i
% idx = r<=1; 86\B|!
% z = nan(size(X)); Kzd)Z
fnD0
% n = [0 1 1 2 2 2 3 3 3 3]; q+-Bl
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; x?B 8b-*
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Z}'"c9oB
% y = zernfun(n,m,r(idx),theta(idx));
=:-x;
% figure('Units','normalized') &-0eWwMW
% for k = 1:10 HNtl>H
% z(idx) = y(:,k); S7
Tem:/
% subplot(4,7,Nplot(k)) D#,P-0+%
% pcolor(x,x,z), shading interp w_!]_6%{b
% set(gca,'XTick',[],'YTick',[]) +b]+5!
% axis square w oS I
2i
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $VCWc#
% end x GHS
% WSW,}tFp"
% See also ZERNPOL, ZERNFUN2. 4h[^!up.7
/P/S0
% Paul Fricker 11/13/2006 "~lGSWcU
G}b LWA
*Q8d&$ ^
% Check and prepare the inputs: yXx}'=&!0
% ----------------------------- t~0}Emgp<(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _%HyXd
error('zernfun:NMvectors','N and M must be vectors.') CL$mK5u
end `)W}4itm
Dab1^H!KT
if length(n)~=length(m) JUlV$b.)J
error('zernfun:NMlength','N and M must be the same length.') .Lk2S "+
end .{1MM8 Q
v&EHp{8Qd
n = n(:); @: s |X
m = m(:); _YH)E^If
if any(mod(n-m,2)) YrR}55V,
error('zernfun:NMmultiplesof2', ... m{bw(+r
'All N and M must differ by multiples of 2 (including 0).') b)A$lP%`
end IRZ?'Im
S/
Y1NH
if any(m>n) VlVd"jW
error('zernfun:MlessthanN', ... 5"[Qs|VjA6
'Each M must be less than or equal to its corresponding N.') TY=BP!s
end m*BtD-{
}>w;(R
if any( r>1 | r<0 ) *HwTq[y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;q&>cnLDR
end *p.P/w@1
hNV"{V3`{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vTD`Ja#h
error('zernfun:RTHvector','R and THETA must be vectors.') Xa2QtJq
end [Uezi1I
]~z2s;J{/
r = r(:); wL2d.$?TEg
theta = theta(:); > @ulvHL
length_r = length(r); I hvL2zB
if length_r~=length(theta) L44-: 3
error('zernfun:RTHlength', ... iaq0\d.[7
'The number of R- and THETA-values must be equal.') $o`N% ]
end u8*Uia*vwH
(d[)U<
% Check normalization: pbivddi2
% -------------------- h{]l?6`
if nargin==5 && ischar(nflag) AO9F.A<T5
isnorm = strcmpi(nflag,'norm'); i8nCTW
if ~isnorm %/H
error('zernfun:normalization','Unrecognized normalization flag.') HzM^Zn57%
end w*ig[{
I
else 5w`v
3o
isnorm = false; tWi@_Rlx;
end #Vanw !
r}P{opn$t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .h^."+TJ
% Compute the Zernike Polynomials -\j}le6;c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =F
ZvtcCa
9[|Ql
% Determine the required powers of r: nVoPTr
% ----------------------------------- Z-b^{uP
m_abs = abs(m); L^VG?J
rpowers = []; Xb42R1
for j = 1:length(n) -lyT8qZ:(
rpowers = [rpowers m_abs(j):2:n(j)]; pd,5.d
end R\+p`n$
rpowers = unique(rpowers); <UG}P \N
2_0OSbFv'P
% Pre-compute the values of r raised to the required powers, z@$7T:H>
% and compile them in a matrix: g!<@6\RB
% ----------------------------- j3 ~: \H
if rpowers(1)==0 Tc@r#!.m
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0vUX^<
rpowern = cat(2,rpowern{:}); _ 9Tv*@
rpowern = [ones(length_r,1) rpowern]; QdG_zK>|e
else K!k,]90Ko
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); r 9@W8](\
rpowern = cat(2,rpowern{:}); }7vX4{Yn
end 9xC,i
)
Ud:v3"1
% Compute the values of the polynomials: APuG8
<R,
% -------------------------------------- 8(D>ws$
y = zeros(length_r,length(n)); \Btv76*,
for j = 1:length(n) eQno]$-\
s = 0:(n(j)-m_abs(j))/2; kVQKP U
pows = n(j):-2:m_abs(j); ;]MHU/
for k = length(s):-1:1 w:&m_z#M
p = (1-2*mod(s(k),2))* ... +is;$1rq
prod(2:(n(j)-s(k)))/ ... waW2$9O
prod(2:s(k))/ ... :=^JHE{
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^!1mChf
prod(2:((n(j)+m_abs(j))/2-s(k))); AU$W=Z*
idx = (pows(k)==rpowers); I1
j-Q8
y(:,j) = y(:,j) + p*rpowern(:,idx); #Z}\;a{vZ
end %K
/=7
k#E D#']N
if isnorm 3IZ^!J
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t&wtw
end veAGUE
%3
end ~DVAk|fc
% END: Compute the Zernike Polynomials qp^O\>c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (J][(=s;a
F>)u<f,C
% Compute the Zernike functions: ^$24231^
% ------------------------------ MMD4b}p
idx_pos = m>0; E:(flW=
idx_neg = m<0; ;_,=
U/m6% )Yx(
z = y; 2md1GWyP
if any(idx_pos) 1-1x,U7w
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \q(RqD
end WL7R.!P
if any(idx_neg) D&/(Avx.
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); d
/jO~+jP
end q*\#HC
1[a;2xA~
% EOF zernfun