非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D?H|O[
function z = zernfun(n,m,r,theta,nflag) 8*uaI7;*
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. \oP
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N avXBCvP+h
% and angular frequency M, evaluated at positions (R,THETA) on the ax2#XSCO
% unit circle. N is a vector of positive integers (including 0), and R m2M
% M is a vector with the same number of elements as N. Each element QP@@h4J^
% k of M must be a positive integer, with possible values M(k) = -N(k) jo0XOs
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1D~B\=LL}
% and THETA is a vector of angles. R and THETA must have the same x"Ij+~i{l
% length. The output Z is a matrix with one column for every (N,M) u}?{1B!
% pair, and one row for every (R,THETA) pair. 90H/Txq
% E
<r;J
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >R\@W(-g`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |m$]I4Jr
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'sk M$jr
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q1|@v#kH6
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4!?4Tc!X
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5?E;YyA
% o+S?j*mv@
% The Zernike functions are an orthogonal basis on the unit circle. ksYPF&l
% They are used in disciplines such as astronomy, optics, and 2D3mTpw
% optometry to describe functions on a circular domain. = mhg@N4
% QX.U:p5C
% The following table lists the first 15 Zernike functions. HLE%f;
% owO&[D/
% n m Zernike function Normalization iX>)6)uJ
% -------------------------------------------------- obgO-d9l
% 0 0 1 1 LM!@LQAMY
% 1 1 r * cos(theta) 2 j?!/#'
% 1 -1 r * sin(theta) 2 gLbTZM4i
% 2 -2 r^2 * cos(2*theta) sqrt(6) C"h7'+Kw
% 2 0 (2*r^2 - 1) sqrt(3) of`WP
% 2 2 r^2 * sin(2*theta) sqrt(6) ,awkL
:
% 3 -3 r^3 * cos(3*theta) sqrt(8) u$ ^r(.EV
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~y ?v
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) m`@~ZIa?>B
% 3 3 r^3 * sin(3*theta) sqrt(8) C{V,=Fo^
% 4 -4 r^4 * cos(4*theta) sqrt(10) A5G@u}YS5
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #}UI
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `3dGn.M
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) os+]ct
% 4 4 r^4 * sin(4*theta) sqrt(10) Mo4igP
% -------------------------------------------------- 3E8 Gh>J_
% ^3Z~RK\}
% Example 1: e&9v`8}
% 4&B|rf
% % Display the Zernike function Z(n=5,m=1) M7(]NQ\TQ
% x = -1:0.01:1; -TyBb]
% [X,Y] = meshgrid(x,x); F Zk[w>{
% [theta,r] = cart2pol(X,Y); z*N%kcw"
% idx = r<=1; asYUb&Hz88
% z = nan(size(X)); XBTjb
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Z&GjG6t
% figure ?"p.Gy)
% pcolor(x,x,z), shading interp _P=L| U#C
% axis square, colorbar //^{u[lr
% title('Zernike function Z_5^1(r,\theta)') XeAH.i<
% ZgxpHo
% Example 2: ESkhCDU
% 1_)Y{3L
% % Display the first 10 Zernike functions Dwah_ p8
% x = -1:0.01:1; !LpFK0rw
% [X,Y] = meshgrid(x,x); -.UUa
% [theta,r] = cart2pol(X,Y); :U'Oc3l#Y
% idx = r<=1; XC,by&nY<y
% z = nan(size(X)); |<LW(,|A
% n = [0 1 1 2 2 2 3 3 3 3]; z*/}rk4i
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; F\+!\b*lP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ER<Z!*2
% y = zernfun(n,m,r(idx),theta(idx)); [}"m4+
% figure('Units','normalized') :j;_Xw
% for k = 1:10 ` =I@W
% z(idx) = y(:,k); <A]
Kg
% subplot(4,7,Nplot(k)) C)ebZ3
% pcolor(x,x,z), shading interp p@+D$
% set(gca,'XTick',[],'YTick',[]) Gq.fQ_oOb
% axis square j.29nJ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^FK-e;J
% end }[ByN).
% C*Dco{
EQ>
% See also ZERNPOL, ZERNFUN2. ?"T *{8
S6c>D&Q
% Paul Fricker 11/13/2006 WNiM&iU
X@@7Qk
t~
z;G%a
% Check and prepare the inputs: |`@7G`x
% ----------------------------- c.;<+dYsm*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PKt;]T0
error('zernfun:NMvectors','N and M must be vectors.') HJOoCf
end S~.%G)R
~@'DYZb-
H
if length(n)~=length(m) mUwGr_)wj
error('zernfun:NMlength','N and M must be the same length.') $Q56~AP
end 7u[$
bN.U2 %~!
n = n(:); s^-o_K\*c
m = m(:); Q%_MO`<]$
if any(mod(n-m,2)) >W=^>8u
error('zernfun:NMmultiplesof2', ... \Oa11c`6
'All N and M must differ by multiples of 2 (including 0).') nbSu|sX~r5
end Z(o]8*;Ai
VKHzGfv
if any(m>n) l AZBlO
error('zernfun:MlessthanN', ... b@)nB
'Each M must be less than or equal to its corresponding N.') cK1RmL"3
end d{RMX<;G
:X#'ELo|
if any( r>1 | r<0 ) <l^#FH
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &uG@I=}TIY
end Yj>ezFo
8fQaMn4V
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 87:V-*8
error('zernfun:RTHvector','R and THETA must be vectors.') ;%$wA5"2M
end z]=jer
^%m~V LH
r = r(:); 5t[7taLX\
theta = theta(:); QhmOO-Z?
length_r = length(r); _Wo(;'.
if length_r~=length(theta) .jbT+hhM
error('zernfun:RTHlength', ... 420yaw/":
'The number of R- and THETA-values must be equal.') Ia*T*qJu
end ]Kp -2KW
lX%e
% Check normalization: NLO&.Q]#
% -------------------- cW\Y1=Gv|
if nargin==5 && ischar(nflag) 3+WostOx
isnorm = strcmpi(nflag,'norm'); &W-1W99auE
if ~isnorm 6YYDp&nqEj
error('zernfun:normalization','Unrecognized normalization flag.')
YC d
end 9c=`Q5
else vK8!V7o~h%
isnorm = false; aDjYT/`l
end ?E.MP7Y#V
[fr!J?/@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $C9['GGR
% Compute the Zernike Polynomials {DbWk>[DkG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rb<9/z5-
&3bh K5P
% Determine the required powers of r: "0Yb
2>F
% ----------------------------------- k= oCpXq^
m_abs = abs(m); =FXq=x%9+
rpowers = []; P(Q}r7F~(
for j = 1:length(n) (c1Kg
rpowers = [rpowers m_abs(j):2:n(j)]; Z^ }4bR]
end
:A]CD(
rpowers = unique(rpowers); |bv7N@?e
.Sjg
% Pre-compute the values of r raised to the required powers, %pr}Xs(-f
% and compile them in a matrix: L QA6iZBP
% ----------------------------- ed4`n!3
if rpowers(1)==0 HWi: CDgm
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .vhEm6wJUM
rpowern = cat(2,rpowern{:}); 3C(V<R?
rpowern = [ones(length_r,1) rpowern]; ETtoY<`#
else X16r$~Pb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }R2afTn[;
rpowern = cat(2,rpowern{:}); udGZ%Mr_
end Ue2k^a*Ww
@w@ `-1
% Compute the values of the polynomials: s!\Gi5b
% -------------------------------------- Cw]bhaG
g
y = zeros(length_r,length(n)); 9:]|TIPi
for j = 1:length(n) 3pI)
s = 0:(n(j)-m_abs(j))/2; +]jJ: V
pows = n(j):-2:m_abs(j); 8Xk,Nbcqt
for k = length(s):-1:1 pJPP6Be<
p = (1-2*mod(s(k),2))* ... W)fh}|.5
prod(2:(n(j)-s(k)))/ ... \:`-"Ou(*
prod(2:s(k))/ ... |A19IXZ\
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... u^]Z{K_B
prod(2:((n(j)+m_abs(j))/2-s(k))); p)w{}@%r
idx = (pows(k)==rpowers); T96M=?wh!
y(:,j) = y(:,j) + p*rpowern(:,idx); _"'0^F$I
end 5qQ\ H}
BF+i82$zo
if isnorm 3IDX3cM9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); iE=:}"pI"
end XCQPVSh
end e?
n8S
% END: Compute the Zernike Polynomials _Q6` Wp6m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "| W``&pM
xmbFJUMH
% Compute the Zernike functions: PHQ99&F1
% ------------------------------ i@hW" [A
idx_pos = m>0; fD ?w!7f-1
idx_neg = m<0; tboc7Hor4
bx=9XZ9g
z = y; v.Zr,Z=eV
if any(idx_pos) TC^fyxq
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f,QBj{M,
end j<C p&}X
if any(idx_neg) [pYjH+<
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Swnom?t
end 7)37AK w
V{yk
% EOF zernfun