切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11213阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 gt&|T j  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )Nv1_en<!  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 vccWe7rh  
    function z = zernfun(n,m,r,theta,nflag) BEZ~<E&0H  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ! \] ^c  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,RP-)j"Wff  
    %   and angular frequency M, evaluated at positions (R,THETA) on the R^Rc!G}  
    %   unit circle.  N is a vector of positive integers (including 0), and c=\tf~}^Ms  
    %   M is a vector with the same number of elements as N.  Each element ^Fk;t  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) [ X*p [  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6*8Wtq  
    %   and THETA is a vector of angles.  R and THETA must have the same LvG.ocCG  
    %   length.  The output Z is a matrix with one column for every (N,M)  a+h$u  
    %   pair, and one row for every (R,THETA) pair. wNONh`b  
    % }v1wpv/b(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;!yK~OBxt  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bT,:eA  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral FU|brS t  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, w+o5iPLX  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =;Id["+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. PSrx !  
    % _ %s#Cb  
    %   The Zernike functions are an orthogonal basis on the unit circle. W? 7l-k=S  
    %   They are used in disciplines such as astronomy, optics, and ~C-Sr@ a?/  
    %   optometry to describe functions on a circular domain. uf(ayDE  
    % P \7DA4]  
    %   The following table lists the first 15 Zernike functions. S :HOlJze  
    % Ht`fC|E  
    %       n    m    Zernike function           Normalization 5zuwqOD*  
    %       -------------------------------------------------- 2Gyq40  
    %       0    0    1                                 1 ~NGM6+9  
    %       1    1    r * cos(theta)                    2 l,ny=Q$[1'  
    %       1   -1    r * sin(theta)                    2 l\U Q2i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 1- RY5R}VR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) j*=!M# D  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) dQX-s=XJ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^[ae )}  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) verI~M$v{  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +/OSg.  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) w7)pBsI  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) I2}W/}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N,t9X7G&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) KbJ6U75|f  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rcnH^P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) bC&A@.g{  
    %       -------------------------------------------------- 1nVQYqT_  
    % ]l7W5$26 @  
    %   Example 1: "tEp8m  
    % lH fZw})d  
    %       % Display the Zernike function Z(n=5,m=1) +Z#=z,.^  
    %       x = -1:0.01:1; FlO?E3d  
    %       [X,Y] = meshgrid(x,x); SX3'|'-  
    %       [theta,r] = cart2pol(X,Y); EPo)7<|>  
    %       idx = r<=1; 8)B{x[?|  
    %       z = nan(size(X)); X)g X9DA  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); A#>wbHjWF  
    %       figure ]+lT*6P*  
    %       pcolor(x,x,z), shading interp D@=]mh6vl  
    %       axis square, colorbar VPCI5mS_  
    %       title('Zernike function Z_5^1(r,\theta)') =^"Sx??V  
    % Q0*E&;|  
    %   Example 2: vgW(l2,@  
    % hvt]VC]]  
    %       % Display the first 10 Zernike functions \Y#  
    %       x = -1:0.01:1; MmJMx  
    %       [X,Y] = meshgrid(x,x); .0Ud?v>=  
    %       [theta,r] = cart2pol(X,Y); _/[qBe  
    %       idx = r<=1; s>9I#_4]  
    %       z = nan(size(X)); :?f<tNU$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )L<.;`g4x  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !D22HSv(w  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 6v@Prw@.b  
    %       y = zernfun(n,m,r(idx),theta(idx)); 0jp].''RK\  
    %       figure('Units','normalized') <3Ftq=  
    %       for k = 1:10 v]JET9hY  
    %           z(idx) = y(:,k); >^8O:.  
    %           subplot(4,7,Nplot(k)) Rsx6vF8]5  
    %           pcolor(x,x,z), shading interp aru2H6  
    %           set(gca,'XTick',[],'YTick',[]) _ep&`K  
    %           axis square o!xCM:+J  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jMT[+f  
    %       end ?[Yn<|  
    % 6O4 *OR<&  
    %   See also ZERNPOL, ZERNFUN2. }3 /io0"D  
    p{?duq=  
    %   Paul Fricker 11/13/2006 V``|<`!gd  
    GTs,?t16/  
    {\Pk;M{Y&  
    % Check and prepare the inputs: 5%'ybh)@   
    % ----------------------------- -6MPls+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AA-$;s  
        error('zernfun:NMvectors','N and M must be vectors.') 4'faE="1)S  
    end % :G78.  
    h(WlJCln  
    if length(n)~=length(m) e`Yj}i*bx]  
        error('zernfun:NMlength','N and M must be the same length.') 8Y SvBy  
    end qMaO1cE\  
    ,|f=2t+5X  
    n = n(:); 8;M,l2pmR{  
    m = m(:); e_-g|ukC  
    if any(mod(n-m,2)) #kQ! GMZH  
        error('zernfun:NMmultiplesof2', ... n3e,vP? R  
              'All N and M must differ by multiples of 2 (including 0).') e"@r[pq-{u  
    end q~>!_q]FE  
    zDg*ds\  
    if any(m>n) R/u0,  
        error('zernfun:MlessthanN', ... 4n#u?)  
              'Each M must be less than or equal to its corresponding N.') mjOxmwo  
    end {UH45#Ua  
    ?`TQ!m6y  
    if any( r>1 | r<0 ) ]xf89[;0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :F d1k Jm  
    end QXI~Toddj  
    Eq@sU?j  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I/'>MDB!  
        error('zernfun:RTHvector','R and THETA must be vectors.') b$w66q8  
    end 28JVW3&)  
    *wAX&+);  
    r = r(:); +sJ{9#6  
    theta = theta(:); tE>FL  
    length_r = length(r);  -raK  
    if length_r~=length(theta) oD%n}  
        error('zernfun:RTHlength', ... NO/$} vw  
              'The number of R- and THETA-values must be equal.') C,,T7(: k  
    end ?Gf'G{^}  
    :qS~"@?<  
    % Check normalization: bLTX_ R  
    % -------------------- +:m)BLA4l  
    if nargin==5 && ischar(nflag) /XG7M=A$o  
        isnorm = strcmpi(nflag,'norm'); j gV^{8qG  
        if ~isnorm TaF*ZT2  
            error('zernfun:normalization','Unrecognized normalization flag.') (9bU\4F\  
        end 5hqXMs  
    else DKo6lP`  
        isnorm = false; W)`>'X`  
    end :~s"]*y  
    j %MY6"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VK9E{~0=  
    % Compute the Zernike Polynomials uP7|#>1%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e?\Od}Hbw  
    ]Y & 2&  
    % Determine the required powers of r: Y&VypZ"G>  
    % ----------------------------------- AU*]D@H  
    m_abs = abs(m); dyqk[$(  
    rpowers = []; HH*,Oe   
    for j = 1:length(n) :wzbD,/M  
        rpowers = [rpowers m_abs(j):2:n(j)]; YTgT2w  
    end =PU@'OG  
    rpowers = unique(rpowers); (3 ,7  
    $sL+k 'dY  
    % Pre-compute the values of r raised to the required powers, `U?S 9m  
    % and compile them in a matrix: aorL,l  
    % ----------------------------- c5CxR#O  
    if rpowers(1)==0 lYS4Q`z$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bq7()ocA  
        rpowern = cat(2,rpowern{:}); *~`oA~-Q  
        rpowern = [ones(length_r,1) rpowern]; AED 9vDE  
    else w6 Y+Y;,'f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )W@  
        rpowern = cat(2,rpowern{:}); VQ~eg wJL  
    end EZQ!~  
    ?`*`A9@  
    % Compute the values of the polynomials: 4pDZ +}p  
    % -------------------------------------- U:/_T>f%  
    y = zeros(length_r,length(n)); ~9f Ts4U  
    for j = 1:length(n) 4yu=e;C wy  
        s = 0:(n(j)-m_abs(j))/2; |bRi bB  
        pows = n(j):-2:m_abs(j); { F0"U=  
        for k = length(s):-1:1 hO3C _}  
            p = (1-2*mod(s(k),2))* ... xoSBMf  
                       prod(2:(n(j)-s(k)))/              ... ;?o"{mbb  
                       prod(2:s(k))/                     ... F7p`zf@O]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8W.-Y|[5?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); fQU_A  
            idx = (pows(k)==rpowers); RvW>kATb_F  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^-}3 +YA  
        end +c'I7bBr  
         Tq6@ 1j6p  
        if isnorm F, 5}3$  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 51%<N\>/4  
        end k/xNqN(  
    end [s!cc:JR  
    % END: Compute the Zernike Polynomials $L"-JNS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RML'C:1  
    ku5g`ho  
    % Compute the Zernike functions: U&tR1v'  
    % ------------------------------ TwE&5F*  
    idx_pos = m>0; "jl`FAu)q  
    idx_neg = m<0; H~qY7t  
    H% c{ }F  
    z = y; 0xutG/-&N  
    if any(idx_pos) 5al44[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xeHqC9Ou  
    end 7w"YCRKh  
    if any(idx_neg) Kib?JRYt  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q->46{s|  
    end Z$@XMq!  
    @l2AL9z$m>  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ZGOI8M]@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. I-q@@! =  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Uz!cVs?-  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive T+/Gz'  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, v4< x 4  
    %   and THETA is a vector of angles.  R and THETA must have the same ~ #~Kxh  
    %   length.  The output Z is a matrix with one column for every P-value, 86@@j*c(@k  
    %   and one row for every (R,THETA) pair. 5G=CvGu  
    % bs mnh_YRj  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 0?j+d8*  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) UIv 2wA2  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @le23+q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0)qLW& w  
    %   for all p. MgLz:2 :F  
    % 8 YBsYKC  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \G*vY#]  
    %   Zernike functions (order N<=7).  In some disciplines it is D &wm7,  
    %   traditional to label the first 36 functions using a single mode 'm"H*f  
    %   number P instead of separate numbers for the order N and azimuthal P z+8u&~p  
    %   frequency M. G>{;@u  
    % ODM<$Yo:d  
    %   Example: 'bg%9}  
    % 'u.`!w '|L  
    %       % Display the first 16 Zernike functions mv xg|<  
    %       x = -1:0.01:1; 'gE_xn7j  
    %       [X,Y] = meshgrid(x,x);  o*QhoDjc  
    %       [theta,r] = cart2pol(X,Y); $y >J=  
    %       idx = r<=1; R16" lG  
    %       p = 0:15; ?z60b=f8  
    %       z = nan(size(X)); 4 ITSDx  
    %       y = zernfun2(p,r(idx),theta(idx)); #tBbvs+%  
    %       figure('Units','normalized') NzRL(A6V  
    %       for k = 1:length(p) s4}}MV3X  
    %           z(idx) = y(:,k); t9x.O  
    %           subplot(4,4,k) (F7!&]8%  
    %           pcolor(x,x,z), shading interp :/Nz' n  
    %           set(gca,'XTick',[],'YTick',[]) 4Kt?; y ;  
    %           axis square Hj;j\R >2  
    %           title(['Z_{' num2str(p(k)) '}']) J2H8r 'T  
    %       end Md_\9G .e  
    % diqG8KaK  
    %   See also ZERNPOL, ZERNFUN. A HKS [ N  
    f=J#mmH w$  
    %   Paul Fricker 11/13/2006 q^dI!93n|  
    ipKkz  
    poHDA=# 3  
    % Check and prepare the inputs: 8'#%7+ "=!  
    % ----------------------------- F{f "xM  
    if min(size(p))~=1  ;nv4lxm  
        error('zernfun2:Pvector','Input P must be vector.') |g 4!Yd  
    end >1mCjP  
    K| Y r  
    if any(p)>35 +V7*vlx-  
        error('zernfun2:P36', ... JVTG3:zD  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... @eT!v{o  
               '(P = 0 to 35).']) )kgy L,9  
    end z6FG^  
    35jP</  
    % Get the order and frequency corresonding to the function number: Vv=d*  
    % ---------------------------------------------------------------- T?7 ZF+yo6  
    p = p(:); kRE^G*?  
    n = ceil((-3+sqrt(9+8*p))/2); xb_35'$M  
    m = 2*p - n.*(n+2); 'n.eCd j  
    -_pI:K[  
    % Pass the inputs to the function ZERNFUN: l= !KZaH  
    % ---------------------------------------- w},k~5U^s  
    switch nargin UwdcU^xt9  
        case 3 NY1olnI  
            z = zernfun(n,m,r,theta); Te!q(;L`4  
        case 4 R0\E?9P  
            z = zernfun(n,m,r,theta,nflag); S <|e/![@  
        otherwise S| !U=&  
            error('zernfun2:nargin','Incorrect number of inputs.') t91v%L   
    end "vjz $.  
     i)8,u  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) hMeE@Q0  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. G4MNcy  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Ck(D: % ~s  
    %   order N and frequency M, evaluated at R.  N is a vector of Gv6EJV1i  
    %   positive integers (including 0), and M is a vector with the eA#J7=eC  
    %   same number of elements as N.  Each element k of M must be a d^WVWk K  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) qeSxE`E"  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is xQ7>u -^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix pz@_%IUS  
    %   with one column for every (N,M) pair, and one row for every SAc}5.  
    %   element in R. 4 K{4=uU  
    % I6'U[)%  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- tX&Dum$  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is xAQ=oF +  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ezCsbV;. [  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 UFm E`|le  
    %   for all [n,m]. 6 }qNH29  
    % &T}~h^/t  
    %   The radial Zernike polynomials are the radial portion of the .0cm mpUNq  
    %   Zernike functions, which are an orthogonal basis on the unit "f(iQI  
    %   circle.  The series representation of the radial Zernike l)HF4#Bs  
    %   polynomials is KE&Y~y8O\  
    % n4qj"x Q  
    %          (n-m)/2 6}n>Nb;L"  
    %            __ ^'*9,.ltd  
    %    m      \       s                                          n-2s d1D{wZ3g  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r kdITh9nx<r  
    %    n      s=0 D%Hz'G0|  
    % 2zh?]if  
    %   The following table shows the first 12 polynomials. QrHI}r  
    % W$v5o9\Px  
    %       n    m    Zernike polynomial    Normalization <<@$0RW  
    %       --------------------------------------------- >QU1_'1r  
    %       0    0    1                        sqrt(2) {(Drw~/@  
    %       1    1    r                           2 | ?~-k[|  
    %       2    0    2*r^2 - 1                sqrt(6) / \!hW-+]W  
    %       2    2    r^2                      sqrt(6) C5\bnk{  
    %       3    1    3*r^3 - 2*r              sqrt(8) qeb:n$  
    %       3    3    r^3                      sqrt(8) a7)q^;:O  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Ma: xxsH.  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0:@:cz=#*  
    %       4    4    r^4                      sqrt(10) _hMMm6a|  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) >mgbs>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ;KWR/?ec  
    %       5    5    r^5                      sqrt(12) d /+sR@\  
    %       --------------------------------------------- w t? 8-_  
    % N9r02c  
    %   Example: KtA0 8?B  
    % W r );A{  
    %       % Display three example Zernike radial polynomials 89Svx5S  
    %       r = 0:0.01:1; &-470Z%/  
    %       n = [3 2 5]; d>M&jSCL  
    %       m = [1 2 1]; #'mb9GWD3  
    %       z = zernpol(n,m,r); 7,d^?.~S  
    %       figure cwlXb!S$  
    %       plot(r,z) sf2_x>U1  
    %       grid on r3mB"("Z'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') qDxz`}Ly=  
    % & %ej=O  
    %   See also ZERNFUN, ZERNFUN2. #9,!IW]l  
    p)(mF"\8=  
    % A note on the algorithm. KN'l/9.  
    % ------------------------ `Yn^ -W  
    % The radial Zernike polynomials are computed using the series )Mx[;IwE  
    % representation shown in the Help section above. For many special n6ETWjP  
    % functions, direct evaluation using the series representation can HIcx "y  
    % produce poor numerical results (floating point errors), because >&f .^p  
    % the summation often involves computing small differences between R|Z$aHQ  
    % large successive terms in the series. (In such cases, the functions 7v}4 Pl,$4  
    % are often evaluated using alternative methods such as recurrence .Kv>*__-Q  
    % relations: see the Legendre functions, for example). For the Zernike #r `hK)  
    % polynomials, however, this problem does not arise, because the {d.`0v9h  
    % polynomials are evaluated over the finite domain r = (0,1), and WIb\+!  
    % because the coefficients for a given polynomial are generally all {6!Mf+Xq  
    % of similar magnitude. \7nlwFAO  
    % Ka1 F7b  
    % ZERNPOL has been written using a vectorized implementation: multiple wO@b=1j  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] @tdX=\[~  
    % values can be passed as inputs) for a vector of points R.  To achieve f#pT6  
    % this vectorization most efficiently, the algorithm in ZERNPOL &THM]3:  
    % involves pre-determining all the powers p of R that are required to ps[TiW{q;  
    % compute the outputs, and then compiling the {R^p} into a single B!K{y>|.  
    % matrix.  This avoids any redundant computation of the R^p, and mDC{c ?  
    % minimizes the sizes of certain intermediate variables. >G92k76G  
    % c>{6NSS -  
    %   Paul Fricker 11/13/2006 .^N+'g  
    KW+ps16~  
    DKqFe5rw  
    % Check and prepare the inputs: ^2[0cne  
    % ----------------------------- W1$B6+}Z0V  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lY[>}L*H8  
        error('zernpol:NMvectors','N and M must be vectors.') udX4SBq-pC  
    end ={ c=8G8T  
    M. 1R]x( |  
    if length(n)~=length(m) O66\s q  
        error('zernpol:NMlength','N and M must be the same length.') Zk$AAjC&  
    end XA5gosq  
    e<dFvMO  
    n = n(:); }r3, fH  
    m = m(:); O?p.kf{b  
    length_n = length(n); Ne,7[k  
    l]Jk  }.  
    if any(mod(n-m,2)) 2f]:n  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') N6=cqUM wt  
    end di]z  
    q]=. Aik  
    if any(m<0) }P#%aE&-  
        error('zernpol:Mpositive','All M must be positive.') VV)PSodb  
    end PA 5ET@mD  
    B3@   
    if any(m>n) :T" !6;  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') S;M'qwN  
    end .qi$X!0  
    C(b"0>  
    if any( r>1 | r<0 ) f/H rO6~k%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [Tby+pC  
    end `sQ\j Nu  
    .%+'Ts#ie  
    if ~any(size(r)==1) PvBx<i}A  
        error('zernpol:Rvector','R must be a vector.') h']R P  
    end E `Ualai  
    l <<0:~+q  
    r = r(:); nS"K dPM  
    length_r = length(r); ,*Y*ov23aQ  
    Nt,)5_K <  
    if nargin==4 @/l{  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); (l{+ T#  
        if ~isnorm F#7ZR*ZB1  
            error('zernpol:normalization','Unrecognized normalization flag.') V^QKn+/  
        end J5)e 7  
    else )|@b GEk  
        isnorm = false; %/>\`d?  
    end LO[1xE9  
    yc|C}oQF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l " pCxA  
    % Compute the Zernike Polynomials  ^ 'FC.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %E?:9. :NJ  
    7s; <5xc  
    % Determine the required powers of r: ~QFD ^SoK  
    % ----------------------------------- SKuZik_  
    rpowers = []; $SSE\+|3  
    for j = 1:length(n) V.)y7B  
        rpowers = [rpowers m(j):2:n(j)]; qGuz`&i  
    end N~{0QewMI'  
    rpowers = unique(rpowers); +L;[-]E8  
    _s><>LH~  
    % Pre-compute the values of r raised to the required powers, V9-pY/v 9  
    % and compile them in a matrix: #pBAGm3  
    % ----------------------------- Fkuq'C<|Y  
    if rpowers(1)==0 X_C9Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); H$KE*Wwq  
        rpowern = cat(2,rpowern{:}); )&1yt4 x6%  
        rpowern = [ones(length_r,1) rpowern]; nT` NfN  
    else %}%D8-d}G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 33J}AK^FE  
        rpowern = cat(2,rpowern{:}); Fe.Y4\xz  
    end x5v^@_: jr  
    <4bv=++pS  
    % Compute the values of the polynomials: b5Rjn1@  
    % -------------------------------------- 96]lI3 c  
    z = zeros(length_r,length_n); kF3 EJ  
    for j = 1:length_n vVc:[i  
        s = 0:(n(j)-m(j))/2; jz't!wj  
        pows = n(j):-2:m(j); W=5+k0Q  
        for k = length(s):-1:1 &FHE(7}/#  
            p = (1-2*mod(s(k),2))* ... M$1+,[^f  
                       prod(2:(n(j)-s(k)))/          ... a[\,K4l  
                       prod(2:s(k))/                 ... _bqiS]:  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... &~pj)\_  
                       prod(2:((n(j)+m(j))/2-s(k))); h#zx^F1  
            idx = (pows(k)==rpowers); [?RLvhU|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); +1Si>I  
        end $JqdI/s  
         *0{MAm  
        if isnorm Bh:AY@k  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); F) {f{-@)  
        end v!t*Ng  
    end CWE jX-  
    yZHQql%J O  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  i}HF  
    )K5~r>n&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /8Vh G|Wb  
    <~:  g  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)