非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 B'weok
function z = zernfun(n,m,r,theta,nflag) (@sp/:`6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .v\\Tq&"|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G|u3UhyB
% and angular frequency M, evaluated at positions (R,THETA) on the +K$NAT
% unit circle. N is a vector of positive integers (including 0), and }e]f
% M is a vector with the same number of elements as N. Each element K_BPZ5w
% k of M must be a positive integer, with possible values M(k) = -N(k) =o=1"o[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, E]} n(
% and THETA is a vector of angles. R and THETA must have the same lmCZ8 j(FF
% length. The output Z is a matrix with one column for every (N,M) z2yJ#
% pair, and one row for every (R,THETA) pair. 6Y384
% $t=O:
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cO#oH2}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), oFC)
% with delta(m,0) the Kronecker delta, is chosen so that the integral O8u3y
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YJF#)TkF
% and theta=0 to theta=2*pi) is unity. For the non-normalized K
k[`dR;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9.+/~$Ht
% 9'~-U
% The Zernike functions are an orthogonal basis on the unit circle. 3I=kr
% They are used in disciplines such as astronomy, optics, and y2yKm1<Ru<
% optometry to describe functions on a circular domain. ]B4}eBt5)@
% hfM;/
% The following table lists the first 15 Zernike functions. 4FMF|U
% &jQ?v@|1c
% n m Zernike function Normalization ;h/pnmhP
% -------------------------------------------------- g"8 .}1)~r
% 0 0 1 1 lC?Icn|o
% 1 1 r * cos(theta) 2 <G3&z#]#4
% 1 -1 r * sin(theta) 2 O>0VTW
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3.R#&Zxt
% 2 0 (2*r^2 - 1) sqrt(3) U8QX46Br
% 2 2 r^2 * sin(2*theta) sqrt(6) JhK/']R
% 3 -3 r^3 * cos(3*theta) sqrt(8) U9d:@9Y
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^CT&0
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9}tG\0tL*
% 3 3 r^3 * sin(3*theta) sqrt(8) pxINw>\Qv
% 4 -4 r^4 * cos(4*theta) sqrt(10) l:(Rb-Wy
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JWO=!^
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) qv{o|g
QB
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N=1JhjVk"
% 4 4 r^4 * sin(4*theta) sqrt(10) ZU2laqa_
% -------------------------------------------------- j
-O2aL
% W0`Gc
{
% Example 1: #
'|'r+
% hP@(6X,"
% % Display the Zernike function Z(n=5,m=1) 3TuC+'`G
% x = -1:0.01:1; ,d,\-x-+/
% [X,Y] = meshgrid(x,x); ^s/
% [theta,r] = cart2pol(X,Y); g^>#^rLU
% idx = r<=1; vR7HF*8
% z = nan(size(X)); rp34?/Nz
% z(idx) = zernfun(5,1,r(idx),theta(idx)); } /^C|iS7
% figure e_3CSx8Cc
% pcolor(x,x,z), shading interp BNGe
exs@
% axis square, colorbar lT8\}hNI+
% title('Zernike function Z_5^1(r,\theta)') ,Fqz e/
% ZFh+x@
% Example 2: p#8W#t$
% "E!mva*NU
% % Display the first 10 Zernike functions pa
.K-e)Mu
% x = -1:0.01:1; MFit|C
% [X,Y] = meshgrid(x,x); \&xl{64
% [theta,r] = cart2pol(X,Y); W=}Okq)x9I
% idx = r<=1; rx~[Zs+*
% z = nan(size(X)); Al"3 kRJJ
% n = [0 1 1 2 2 2 3 3 3 3]; !3&kQpF
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; h+UnZfm
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %uESrc-;
% y = zernfun(n,m,r(idx),theta(idx)); +54aO
% figure('Units','normalized') pR os{Uq"
% for k = 1:10 H:&?ha,9
% z(idx) = y(:,k); "u^EleE!
% subplot(4,7,Nplot(k)) 3-Bl
% pcolor(x,x,z), shading interp my\&hCE
% set(gca,'XTick',[],'YTick',[]) 1hQN8!: <
% axis square n$+M%}/f
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OmMX$YID
% end &K%aw
% wGKo.lt
% See also ZERNPOL, ZERNFUN2. .QWhK|(.!
w_-+o^
% Paul Fricker 11/13/2006 iDb;_?
!AHAS
:KE/!]z
% Check and prepare the inputs: GuQRn
% ----------------------------- \ {|ImCH
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Fe=8O ^\
error('zernfun:NMvectors','N and M must be vectors.') }7/e8 O2
end ]?l{j
5N/Lk>p1u
if length(n)~=length(m) :-+4:S
error('zernfun:NMlength','N and M must be the same length.') **;p(CI
end %e%7oqR?
ZW4aY}~)$
n = n(:); +++pI.>(*Q
m = m(:); I44s(G1jl
if any(mod(n-m,2)) [s6C
ZcL
error('zernfun:NMmultiplesof2', ... #a~"K|'G
'All N and M must differ by multiples of 2 (including 0).') #gZ|T
M/h
end [~%`N*G
Zr/r2
if any(m>n) [1Dm<G
u@
error('zernfun:MlessthanN', ... D guB
'Each M must be less than or equal to its corresponding N.') D'i6",Z>
end dk5|@?pe
7>.OVh<
if any( r>1 | r<0 ) oK+Lzb\d{M
error('zernfun:Rlessthan1','All R must be between 0 and 1.') |r=DBd3
end W'/>et
NB)t7/Us
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7sV/_3H+
error('zernfun:RTHvector','R and THETA must be vectors.') 3)E(RyQA3
end *@M3p}',M
C3"&sdLb$
r = r(:); 2i:zz?
'p`
theta = theta(:); &=w|vB)(p
length_r = length(r); W<'<'z5
if length_r~=length(theta) ~[18q+,
error('zernfun:RTHlength', ... 6Z c)0I'
'The number of R- and THETA-values must be equal.') KTmaglgp
end Q1V2pP+=@
zO.6WJ
% Check normalization: @YZ
4AC
% -------------------- Uf2:gLrF
if nargin==5 && ischar(nflag) 3M*Y= ?pI
isnorm = strcmpi(nflag,'norm'); qx%jAs+~
if ~isnorm P\(30
error('zernfun:normalization','Unrecognized normalization flag.') *zQOJsg"e
end SaNN;X0
else Czu1 )y
isnorm = false; qS]G&l6QF
end ~CFMIQ et
n~%}Z[5D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lz6*H1~
% Compute the Zernike Polynomials ;1E_o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A2_Ls;]
%UG/ak%z
% Determine the required powers of r: ZR
mPP
% ----------------------------------- ..$>7y}
m_abs = abs(m); M,G8*HI"
rpowers = []; Iaa|qJ4
for j = 1:length(n) pn*d[M|k
rpowers = [rpowers m_abs(j):2:n(j)]; BvJ\x)
end sD2Qm
rpowers = unique(rpowers); E7LbSZ
/&6Q)
% Pre-compute the values of r raised to the required powers, [oJ& J>U'
% and compile them in a matrix: FvA|1c
% ----------------------------- s
kY0 \V
if rpowers(1)==0 Gl"wEL*
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5 iv@@1c
rpowern = cat(2,rpowern{:}); 7YD\ !2b
rpowern = [ones(length_r,1) rpowern]; D:6N9POB
else 7_7xL(F/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BiE$mM
rpowern = cat(2,rpowern{:}); !,R
end Y`q!V=
qs "s/$
% Compute the values of the polynomials: wH!}qz/
% -------------------------------------- % dYI5U89
y = zeros(length_r,length(n)); nE^wxtY
for j = 1:length(n) QdirE4W
s = 0:(n(j)-m_abs(j))/2; qjzZ}
pows = n(j):-2:m_abs(j); C~:b* X
for k = length(s):-1:1 )v};C<
p = (1-2*mod(s(k),2))* ... Le_CIk 5YL
prod(2:(n(j)-s(k)))/ ... Y0rf9
prod(2:s(k))/ ... $=7H1 w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +6uOg,;
prod(2:((n(j)+m_abs(j))/2-s(k))); <%he
o
idx = (pows(k)==rpowers); p-a]"l+L
y(:,j) = y(:,j) + p*rpowern(:,idx); W;5N04ko
end |%n|[LP'
IM$'J
if isnorm Xx=K?Z?3.
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |WQD=J%~(
end #cR57=M}
end fQ^h{n
% END: Compute the Zernike Polynomials "tpvENz2s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jBT*~DyN
z
F>p%2II/
% Compute the Zernike functions: GcPB'`!M
% ------------------------------ _.u~)Q`6
idx_pos = m>0; g8C+1G8
idx_neg = m<0; "X\q%%P=?
fN~8L}!l
z = y; SZNFE
if any(idx_pos) N;%j#(v
j
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0%v ixR52
end [I#Q
if any(idx_neg) >?H_A
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #u!y`lek
end D7 8)4>X
J$o[$G_Z
% EOF zernfun