非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {%"n[DLps
function z = zernfun(n,m,r,theta,nflag) pr) `7VuKp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. KS3>c7
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9[5qN!P;y
% and angular frequency M, evaluated at positions (R,THETA) on the fK %${
% unit circle. N is a vector of positive integers (including 0), and K|{IX^3)V
% M is a vector with the same number of elements as N. Each element iiw\
% k of M must be a positive integer, with possible values M(k) = -N(k) *:+&SxL
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %tOGs80_{
% and THETA is a vector of angles. R and THETA must have the same `Pcbc\"*y
% length. The output Z is a matrix with one column for every (N,M) D["~G v
% pair, and one row for every (R,THETA) pair. j+9;Cp]N V
% 'BiR ,M$mY
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %wDE+&M
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), S#^2k!(|G
% with delta(m,0) the Kronecker delta, is chosen so that the integral hn-!W;j
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <0w"$.K#3
% and theta=0 to theta=2*pi) is unity. For the non-normalized c&mLK1A6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1z6$>{FUR
% I0qSx{K
% The Zernike functions are an orthogonal basis on the unit circle. QH d^?H*
% They are used in disciplines such as astronomy, optics, and !<8-juY
% optometry to describe functions on a circular domain. i0TbsoKh:
% "?X,);5S
% The following table lists the first 15 Zernike functions. @|2L>N
% XYh)59oM%
% n m Zernike function Normalization aob+_9o
% -------------------------------------------------- (^@rr[.o7
% 0 0 1 1 I""zg^Rq
% 1 1 r * cos(theta) 2 Pss$[ %
% 1 -1 r * sin(theta) 2 IW{}l=D/
% 2 -2 r^2 * cos(2*theta) sqrt(6) X7g@.Oy`
% 2 0 (2*r^2 - 1) sqrt(3) mM $|cge"
% 2 2 r^2 * sin(2*theta) sqrt(6) sP'U9l
% 3 -3 r^3 * cos(3*theta) sqrt(8) AbExJ~JV\g
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _ g8CvH)?!
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) HVHd@#pDZ
% 3 3 r^3 * sin(3*theta) sqrt(8) P2!+ZJ&
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;}dvc7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) q?*
z<)#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) m}$7d5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j%`%
DQ
% 4 4 r^4 * sin(4*theta) sqrt(10) kdP*{
% -------------------------------------------------- cp)BPg
% z%Eok
% Example 1: ~z kzuh
% @"G+kLv0
% % Display the Zernike function Z(n=5,m=1) !\}X?Gf
% x = -1:0.01:1; 1VR|z
% [X,Y] = meshgrid(x,x); Pxvf"SXX
% [theta,r] = cart2pol(X,Y); >lV'}0u)
% idx = r<=1; rHa*WA;TE
% z = nan(size(X)); DP8%/CV!*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _qO'(DKylC
% figure 5<>"d :9
% pcolor(x,x,z), shading interp II'"Nkxd
% axis square, colorbar fjd)/Gg
% title('Zernike function Z_5^1(r,\theta)') 0 L$[w
% `PUGg[Zx^
% Example 2: X=KC+1e
% {ew;
/;
% % Display the first 10 Zernike functions N`HiNb
[
% x = -1:0.01:1; /os,s[w
% [X,Y] = meshgrid(x,x); /U
3Uuk:
% [theta,r] = cart2pol(X,Y); ,(A
$WT@e
% idx = r<=1; y}U}AUt
% z = nan(size(X)); `*ALb|4ilG
% n = [0 1 1 2 2 2 3 3 3 3]; )kT.3
Q
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l86gs6>
% Nplot = [4 10 12 16 18 20 22 24 26 28]; bs&>QsI?j
% y = zernfun(n,m,r(idx),theta(idx)); !+u
K@z&G
% figure('Units','normalized') we/sv9v}n
% for k = 1:10 i*((@:
% z(idx) = y(:,k); 4q"4N2
% subplot(4,7,Nplot(k)) ueyQ&+6r
% pcolor(x,x,z), shading interp *>h|<|T'
% set(gca,'XTick',[],'YTick',[]) Gsu?m
% axis square :>y;*x0w
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lc$wjK[w[
% end IG Ax+3V
% !pZ<{|cH
% See also ZERNPOL, ZERNFUN2. q-s(2C
D&{CC
% Paul Fricker 11/13/2006 1Ror1%Q"?
ALQ-aXJ
tv_&PIu]L
% Check and prepare the inputs: s1]m^,
% ----------------------------- Xp.$FJ1)
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PX*}.L *x
error('zernfun:NMvectors','N and M must be vectors.') ~1&WR`U
end 3$_JNF`
A5T&i]
if length(n)~=length(m) y_'6bpb
error('zernfun:NMlength','N and M must be the same length.') 2){O&8 A
end N8iLI`
` {qt4zd0
n = n(:); jU-aa+
m = m(:); 6>]w1
H
if any(mod(n-m,2)) jV[;e15+
error('zernfun:NMmultiplesof2', ... fx-8mf3
'All N and M must differ by multiples of 2 (including 0).') S Rk%BJ? ~
end /9=r.Vxh
\zcR75
if any(m>n) *M)M!jTv
error('zernfun:MlessthanN', ... =I aWf
'Each M must be less than or equal to its corresponding N.') la}cGZ; p.
end +n<W#O%
2qot(Zs1i
if any( r>1 | r<0 ) 84!Hd.H
error('zernfun:Rlessthan1','All R must be between 0 and 1.') pC]XbokES
end $A`m8?bY
Gj?$HFa
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) r1TdjnP,2^
error('zernfun:RTHvector','R and THETA must be vectors.') !6l*Jc3
end Cs(sar:7
T%;V_iW-
r = r(:); JA*+F1s
theta = theta(:); z-qbe97
length_r = length(r); pztfm'
if length_r~=length(theta) Y]7503J
error('zernfun:RTHlength', ... I tb_ H
'The number of R- and THETA-values must be equal.') =P%&]5ts
end Q:|W/RD~
3FtL<7B'.
% Check normalization: Vm[F~2+HX
% -------------------- L+*:VP6WD
if nargin==5 && ischar(nflag) `yP`5a/
isnorm = strcmpi(nflag,'norm'); e_|Z&
if ~isnorm 'zbvg0 T
error('zernfun:normalization','Unrecognized normalization flag.') |;7mDhj=
end qvLh7]sbK:
else $_iE^zZaU^
isnorm = false; *`rfD*
end ,/%'""`w
@({=~
W^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m^0vux
% Compute the Zernike Polynomials %ioVNbrR7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lKB9n}P
co~NXpqg
% Determine the required powers of r: T@=C2
1
% ----------------------------------- S2e3d
m_abs = abs(m); =kfa1kD&{
rpowers = []; k qL.ZR
for j = 1:length(n) f9 \$,7F
rpowers = [rpowers m_abs(j):2:n(j)]; x\U[5d
end eZ+6U`^t
rpowers = unique(rpowers); pr,,E[
hHhDs>tB
% Pre-compute the values of r raised to the required powers, pY@QR?F\
% and compile them in a matrix: k#zDY*kj
% ----------------------------- i6KB\W2
if rpowers(1)==0 p<{P#?4 g
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);
oX8EY l
rpowern = cat(2,rpowern{:}); TIxOMY y
rpowern = [ones(length_r,1) rpowern]; \yu7,v
else D*ZjoU
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l'/`2Y1
rpowern = cat(2,rpowern{:}); vUVFW'-
end _FYA? d}
`!/[9Y#H p
% Compute the values of the polynomials: ~1%*w*
% -------------------------------------- ]c~yMA+]FZ
y = zeros(length_r,length(n)); W~0rSVD$<z
for j = 1:length(n) K^U="
s = 0:(n(j)-m_abs(j))/2; B=r DU$z
pows = n(j):-2:m_abs(j); aTTkj\4
for k = length(s):-1:1 9zb1t1[W
p = (1-2*mod(s(k),2))* ... xy]O8>b
prod(2:(n(j)-s(k)))/ ... >]pZ;e$
prod(2:s(k))/ ... BLyV~
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F5qA!jZ1]
prod(2:((n(j)+m_abs(j))/2-s(k))); P*A+k"DU1
idx = (pows(k)==rpowers); *{vH9TO
y(:,j) = y(:,j) + p*rpowern(:,idx); Ig t*8px
end s`_EkFw>Gl
Q $}#&
if isnorm aWIkp5BFj
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _i}b]xfM
end 6qHD&bv\%C
end a8JAJkFB
% END: Compute the Zernike Polynomials 8Y.qP"s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ik$$Tn&;
eO <N/?t
% Compute the Zernike functions: m2\\!C]f
% ------------------------------ 7h}gIm7e"
idx_pos = m>0; AQUAQZc
idx_neg = m<0; Yi%lWbr
}bv+^#
z = y; } +}nrJv
if any(idx_pos) .Qx5,)@9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =|]h-[P'
end 1~c\J0h)d
if any(idx_neg) ng3ZK
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "00j]e.
end PGJh>[s
SYYx>1;8`
% EOF zernfun