切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10498阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )`}:8y?  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! I}Q2Vu<  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h.fq,em+H  
    function z = zernfun(n,m,r,theta,nflag) !VK|u8i  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cGD(.=  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N UZ$/Ni  
    %   and angular frequency M, evaluated at positions (R,THETA) on the P }uOJVQ_  
    %   unit circle.  N is a vector of positive integers (including 0), and S@sO;-^+  
    %   M is a vector with the same number of elements as N.  Each element 07$o;W@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fn!KQ`,#  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 39jG8zr=Z[  
    %   and THETA is a vector of angles.  R and THETA must have the same R FH0  
    %   length.  The output Z is a matrix with one column for every (N,M) M@ZI\  
    %   pair, and one row for every (R,THETA) pair. X 8`Sf>  
    % Lh<).<S  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9k=3u;$v  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), IIqUZJ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral D,ln)["xm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, W}1 ;Z(.*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized fxIf|9Qi`  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8x{'@WCG%  
    % 2Hv+W-6v  
    %   The Zernike functions are an orthogonal basis on the unit circle. 2:=  
    %   They are used in disciplines such as astronomy, optics, and <^uBoKB/f  
    %   optometry to describe functions on a circular domain. EZ`{Wnbq  
    %  f V(J|  
    %   The following table lists the first 15 Zernike functions. e0 T\tc  
    % r"R#@V\'1b  
    %       n    m    Zernike function           Normalization d`6 ' Z  
    %       -------------------------------------------------- a@*\o+Su  
    %       0    0    1                                 1 I`p;F!s  
    %       1    1    r * cos(theta)                    2 "wHFN>5B  
    %       1   -1    r * sin(theta)                    2 @OHm#`~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) BF<ikilR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) MqUH',\3  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &! ?eL  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) b%5f&N  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) tnG# IU *  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) w+{LAS  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) vZoaT|3 G]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) v}Fr@0%  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m9Hit8f@Q  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) L,@lp  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bY0|N[ g  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @y&bw9\  
    %       -------------------------------------------------- DDH:)=;z  
    % '08=yqy4N  
    %   Example 1: # Vha7  
    % #YOA`m,'  
    %       % Display the Zernike function Z(n=5,m=1) Z)aUt Srf  
    %       x = -1:0.01:1; z]9MM 2+  
    %       [X,Y] = meshgrid(x,x); $p?aVO  
    %       [theta,r] = cart2pol(X,Y); J9[r|`gJ(  
    %       idx = r<=1; d<N:[Y\4l  
    %       z = nan(size(X));  ][h}  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8pgEix/M5o  
    %       figure Nu7 !8[?r*  
    %       pcolor(x,x,z), shading interp \} :PLCKT  
    %       axis square, colorbar "6?0h[uff  
    %       title('Zernike function Z_5^1(r,\theta)') {,~3.5u   
    % HoL Et8Q  
    %   Example 2: N' `A?&2ru  
    % ;BIY^6,7e  
    %       % Display the first 10 Zernike functions Hg$lXtn]  
    %       x = -1:0.01:1; J S_]FsxD  
    %       [X,Y] = meshgrid(x,x); 5N&?KA-  
    %       [theta,r] = cart2pol(X,Y); <HVt V9R  
    %       idx = r<=1; <yFu*(Q  
    %       z = nan(size(X)); ]`+HO=0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 'ub@]ru|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Fun^B;GA:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ~O &:C{9=  
    %       y = zernfun(n,m,r(idx),theta(idx)); =rCIumqD-}  
    %       figure('Units','normalized') b`O'1r\Y;  
    %       for k = 1:10 /CG"]!2 "  
    %           z(idx) = y(:,k); )f<z% :I+Z  
    %           subplot(4,7,Nplot(k)) 4Ic*9t3  
    %           pcolor(x,x,z), shading interp V /V9B2.$  
    %           set(gca,'XTick',[],'YTick',[]) ,>mrPtxN  
    %           axis square xx%j.zDI]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SJ>vwmA4  
    %       end ^qD$z=z-  
    % ? '{SX9  
    %   See also ZERNPOL, ZERNFUN2. 8C9-_Ng`  
    (jl D+Y_  
    %   Paul Fricker 11/13/2006 ByNn  
    JB[~;nLlC  
    EGF '"L  
    % Check and prepare the inputs: \Et3|Iv  
    % -----------------------------  o!ebs0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l#Y,R 0  
        error('zernfun:NMvectors','N and M must be vectors.') (\YltC@q%  
    end 'Xq| Kf (  
    V/I<g  
    if length(n)~=length(m) ;P%1j|7  
        error('zernfun:NMlength','N and M must be the same length.') {:$>t~=D  
    end PKg@[<g43  
    RO/FF<f  
    n = n(:); 0*D$R`$  
    m = m(:); CD ( :jM?  
    if any(mod(n-m,2)) 65$+{s  
        error('zernfun:NMmultiplesof2', ... ofw3S |F6  
              'All N and M must differ by multiples of 2 (including 0).') *kDCliL  
    end 8(&[Rs?K  
    \B,@`dw  
    if any(m>n) >rKIG~P_  
        error('zernfun:MlessthanN', ... j0evq+  
              'Each M must be less than or equal to its corresponding N.') mQ 26K~  
    end 1+{{EOZ4  
    Y;^l%ePuW  
    if any( r>1 | r<0 ) Mc_YPR:C  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') hVAn>_(  
    end X296tA>C`  
    W^LY'ypT  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o 5uph=Q{  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3/e.38m|  
    end ;d"F%M y  
    '3D XPR^B6  
    r = r(:); ;1O_M9  
    theta = theta(:); >T3-  
    length_r = length(r); Nk VK  
    if length_r~=length(theta) &n}f?  
        error('zernfun:RTHlength', ... !_D0vI;  
              'The number of R- and THETA-values must be equal.') KD7dye  
    end &zeyE;/Hj  
    e95Lo+:f  
    % Check normalization: (WO]Xq<  
    % -------------------- j8{i#;s!"  
    if nargin==5 && ischar(nflag) s.N/2F& *W  
        isnorm = strcmpi(nflag,'norm'); dx{bB%?Y\=  
        if ~isnorm GmEJhr.3`=  
            error('zernfun:normalization','Unrecognized normalization flag.') j2.|ln"!  
        end {19PL8B~}  
    else )SRefW.v  
        isnorm = false; bj0G5dc=  
    end m6&~HfwN  
    ?; +1)>{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a /l)qB#  
    % Compute the Zernike Polynomials i&66Fi1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }mq6]ZrK  
    cr?Q[8%t1  
    % Determine the required powers of r: L Mbn  
    % ----------------------------------- ex9g?*Q  
    m_abs = abs(m); Ou!2 [oe@M  
    rpowers = []; |w1Bq  
    for j = 1:length(n) 2 %@4]  
        rpowers = [rpowers m_abs(j):2:n(j)]; #TX/aKr:  
    end Cc' 37~6~P  
    rpowers = unique(rpowers); OSWYGnZg  
    m=A(NKZ   
    % Pre-compute the values of r raised to the required powers, K&ZtRRDd  
    % and compile them in a matrix: ," Wr"  
    % ----------------------------- i,E{f  
    if rpowers(1)==0 aS{n8P6vW  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &<5zqsNJ\a  
        rpowern = cat(2,rpowern{:}); )=Z>#iH1  
        rpowern = [ones(length_r,1) rpowern]; N~d?WD\^  
    else Ym{tR,g7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); EQyC1j  
        rpowern = cat(2,rpowern{:}); XQs1eP'{  
    end % X+:o]T  
    ;R5`"`  
    % Compute the values of the polynomials: B=yqW  
    % -------------------------------------- E$:*NSXj  
    y = zeros(length_r,length(n)); ]kG"ubHV?h  
    for j = 1:length(n) ^ft>@=K(|  
        s = 0:(n(j)-m_abs(j))/2; m!4ndO;0vh  
        pows = n(j):-2:m_abs(j); 9T}pT{~V  
        for k = length(s):-1:1 KL:j?.0  
            p = (1-2*mod(s(k),2))* ... *1 ]uH e  
                       prod(2:(n(j)-s(k)))/              ... 7he,?T)vD  
                       prod(2:s(k))/                     ... z(exA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5k3n\sqZA  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); iNz=e=+Si  
            idx = (pows(k)==rpowers); c74.< @w  
            y(:,j) = y(:,j) + p*rpowern(:,idx); m )zUU  
        end 1k5Who@  
         .hP D$o  
        if isnorm G5RR]?@6V  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); axRV:w;E<  
        end z^q0/'  
    end VT%NO'0  
    % END: Compute the Zernike Polynomials TJpD{p}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OwUhdiG  
    ,I$`-$_'  
    % Compute the Zernike functions: vNY{j7l/W  
    % ------------------------------ %@ODs6 R0  
    idx_pos = m>0; f ue(UMF~  
    idx_neg = m<0; AGO+p(6d=g  
    N/'b$m5= S  
    z = y; JEwa &  
    if any(idx_pos) p8H'{f\G  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k>Vci{v  
    end u+e{Mim  
    if any(idx_neg) y8Z_Itlf  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +I:Unp  
    end D|L9Vs`  
    fZzoAzfv2  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Ugt/rf5n  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. n;C :0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated wY % }  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive m@F`!qY~Y\  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, EHIF>@TZ  
    %   and THETA is a vector of angles.  R and THETA must have the same Y%aCMP9j~9  
    %   length.  The output Z is a matrix with one column for every P-value, =sU<S,a*  
    %   and one row for every (R,THETA) pair.  #ut  
    % 1 ~*7f>  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )Y0!~# `  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) qu@~g cE  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 0c]/bs{}  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 l -mfFN  
    %   for all p. A_ZY=jP   
    % 9dLV96  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 NC`aP0S  
    %   Zernike functions (order N<=7).  In some disciplines it is q=m'^ ,gPS  
    %   traditional to label the first 36 functions using a single mode M,,bf[p$  
    %   number P instead of separate numbers for the order N and azimuthal 1~`fVg  
    %   frequency M. :zbQD8jv  
    % P[ck84F/  
    %   Example: DGF5CK.O  
    % [`[|l  
    %       % Display the first 16 Zernike functions TnA-;Ha  
    %       x = -1:0.01:1; a :`E0}C  
    %       [X,Y] = meshgrid(x,x); 6=/F$|  
    %       [theta,r] = cart2pol(X,Y); e4_rC'=  
    %       idx = r<=1; |O+H[;TB6  
    %       p = 0:15; yNo0ubY  
    %       z = nan(size(X)); rJT a  
    %       y = zernfun2(p,r(idx),theta(idx)); EwT"uL*V;  
    %       figure('Units','normalized') [Ek7b *  
    %       for k = 1:length(p) QXFo1m  
    %           z(idx) = y(:,k); $G+@_'  
    %           subplot(4,4,k)  vF+7V*<  
    %           pcolor(x,x,z), shading interp IdYt\^@>  
    %           set(gca,'XTick',[],'YTick',[]) 1#2 I  
    %           axis square =zPCrEk0  
    %           title(['Z_{' num2str(p(k)) '}']) vWv"  
    %       end a0E)2vt4  
    % pRpBhm;iJ  
    %   See also ZERNPOL, ZERNFUN. XFpjYwn  
    h"Q8b}$^)  
    %   Paul Fricker 11/13/2006 #L;dI@7C  
    N!=v4f  
    ]|a g  
    % Check and prepare the inputs:  A,<E\  
    % ----------------------------- 7U"g3 a)=  
    if min(size(p))~=1 W,n!3:7 s  
        error('zernfun2:Pvector','Input P must be vector.') #A/  
    end sb*G!8j  
    Eyqa?$R  
    if any(p)>35 P4'Q/Sj  
        error('zernfun2:P36', ... :\c ^*K(9  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... LA5(sp@O  
               '(P = 0 to 35).']) #q$HQ&k  
    end SHgN~ Um  
    FVbb2Y?R  
    % Get the order and frequency corresonding to the function number: !i}w~U<  
    % ---------------------------------------------------------------- _< V)-Y  
    p = p(:); i9|Sa6vuI  
    n = ceil((-3+sqrt(9+8*p))/2); 1n8/r}q'H  
    m = 2*p - n.*(n+2); NwvC[4  
    P3=G1=47U  
    % Pass the inputs to the function ZERNFUN: -@2iaQ(5a2  
    % ---------------------------------------- |SSSH  
    switch nargin d&Zpkbh"  
        case 3 lfgq=8d  
            z = zernfun(n,m,r,theta); rXP,\ ]r+  
        case 4 L`TLgH&?R  
            z = zernfun(n,m,r,theta,nflag); 8/#A!Ww]  
        otherwise *:7rdzn  
            error('zernfun2:nargin','Incorrect number of inputs.') Mfuv0P~  
    end pah'>dAL  
    {}n^cq  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 0[(8   
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. zC!t;*8a  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @,+5y\]C  
    %   order N and frequency M, evaluated at R.  N is a vector of H*R"ntI?w  
    %   positive integers (including 0), and M is a vector with the  V}CG:9;  
    %   same number of elements as N.  Each element k of M must be a cV6D<,)  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 90rol~M&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  mq.`X:e  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix K\r8g=U  
    %   with one column for every (N,M) pair, and one row for every CAhXQ7w'Z  
    %   element in R. +O{*M9 B  
    % 2/^3WY1U  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~<bZ1TD   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #c!lS<z  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U8?mc  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 g3y~bf  
    %   for all [n,m]. W ac&b  
    % :5<UkN)R(  
    %   The radial Zernike polynomials are the radial portion of the k y7Gwc  
    %   Zernike functions, which are an orthogonal basis on the unit kTgEd]^&D  
    %   circle.  The series representation of the radial Zernike x 9fip-  
    %   polynomials is 1Pu~X \sO  
    % 8nV+e~-w  
    %          (n-m)/2 <]2wn  
    %            __ T8$y[W-c  
    %    m      \       s                                          n-2s 73;GW4,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r W${Ue#w77  
    %    n      s=0 Svmy(w~m  
    % 99QU3c<.  
    %   The following table shows the first 12 polynomials. U5de@Y  
    % /J;Kn]5e  
    %       n    m    Zernike polynomial    Normalization 8l`*]1.W<  
    %       --------------------------------------------- (\x]YMLH  
    %       0    0    1                        sqrt(2)  qX{+oy5  
    %       1    1    r                           2 YS0<qSN  
    %       2    0    2*r^2 - 1                sqrt(6) sO@Tf\d  
    %       2    2    r^2                      sqrt(6) n:!_  
    %       3    1    3*r^3 - 2*r              sqrt(8) "chDg(jMZ  
    %       3    3    r^3                      sqrt(8) {P_.~0pc*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ?e 4/p  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ?Uo BV$  
    %       4    4    r^4                      sqrt(10) b \2 ds,  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) .Q 2V}D85  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 'H;*W|:-]  
    %       5    5    r^5                      sqrt(12) xA*<0O\V  
    %       --------------------------------------------- Km$\:Xo  
    % @ j/a=4o[  
    %   Example: ?Ir:g=RP*  
    % InI$:kJ  
    %       % Display three example Zernike radial polynomials \9T7A&  
    %       r = 0:0.01:1; 7%M_'P4 V  
    %       n = [3 2 5]; 8":Q)9;%  
    %       m = [1 2 1]; D0f]$  
    %       z = zernpol(n,m,r); ;2QP7PrSY  
    %       figure w}L[u r;I_  
    %       plot(r,z) es7=%!0  
    %       grid on V'gh 6`v  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ?:0Jav  
    % ZN0P:==  
    %   See also ZERNFUN, ZERNFUN2. Z% UP6%  
    dR]m8mdqc1  
    % A note on the algorithm. v]UwJz3<  
    % ------------------------ CqC`8fD1  
    % The radial Zernike polynomials are computed using the series ]`WJOx4  
    % representation shown in the Help section above. For many special $F.a><1rY  
    % functions, direct evaluation using the series representation can Q"#J6@  
    % produce poor numerical results (floating point errors), because X:{!n({r=  
    % the summation often involves computing small differences between F#E3q|Q"BS  
    % large successive terms in the series. (In such cases, the functions _+MJ%'>S  
    % are often evaluated using alternative methods such as recurrence vl)l'  
    % relations: see the Legendre functions, for example). For the Zernike 8z\xrY  
    % polynomials, however, this problem does not arise, because the J'r^/  
    % polynomials are evaluated over the finite domain r = (0,1), and ,V}WM%Km  
    % because the coefficients for a given polynomial are generally all e*1_8I#2  
    % of similar magnitude. a 1*p*dM#  
    % "0TZTa1e  
    % ZERNPOL has been written using a vectorized implementation: multiple uyx 2;f  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <1!O1ab  
    % values can be passed as inputs) for a vector of points R.  To achieve X@FN|Rdh  
    % this vectorization most efficiently, the algorithm in ZERNPOL hi[pVk~B)  
    % involves pre-determining all the powers p of R that are required to EoDA]6?Lj  
    % compute the outputs, and then compiling the {R^p} into a single d/ @,@8:  
    % matrix.  This avoids any redundant computation of the R^p, and *Pg2c(Vg  
    % minimizes the sizes of certain intermediate variables. g9F?z2^  
    % \l3h0R  
    %   Paul Fricker 11/13/2006 N{>n$ v}  
    #X"@<l4F  
    NGWxN8P6  
    % Check and prepare the inputs: 6W Ur QFK  
    % ----------------------------- @KAI4LP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0m ? )ROaJ  
        error('zernpol:NMvectors','N and M must be vectors.') e>7i_4(C  
    end yV(\R  
    F6dP,(  
    if length(n)~=length(m) ct}9i"H#1  
        error('zernpol:NMlength','N and M must be the same length.') GPkpXVm  
    end bN@ l?w  
    <0?W{3NqI  
    n = n(:); n(]-y@X0_  
    m = m(:); ,7b[!#?8  
    length_n = length(n); Sa5G.^ XI  
    pb=h/8R  
    if any(mod(n-m,2)) VLN_w$iEq  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 0qT%!ku&  
    end 8HdAFRw  
    s"?3]P  
    if any(m<0) O|UC ?]6  
        error('zernpol:Mpositive','All M must be positive.') @xZR9Z8]L  
    end C{wEzM :  
    GvlS%  
    if any(m>n) L4?IHNB  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') D|#E9OQzs  
    end &G$Ucc `  
    NW)1#]gg%  
    if any( r>1 | r<0 ) FU<Jp3<%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 9Lfv^V0  
    end /JU.?M35  
    vSLtFMq^(  
    if ~any(size(r)==1) S>; 5[l 4  
        error('zernpol:Rvector','R must be a vector.') k.15CA`  
    end EDs\,f}  
    ]]j;/TiG  
    r = r(:); b\+`e b8_  
    length_r = length(r); Q.c\/&  
    0'o:#-  
    if nargin==4 B^jc3 VsR  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -`TEVS?`l  
        if ~isnorm $]2vvr  
            error('zernpol:normalization','Unrecognized normalization flag.') "8zDbdK  
        end W'u>#  
    else F^fdIZx  
        isnorm = false; 63x?MY6  
    end wo 5   
    &XUiKnNW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [;myHI`tw  
    % Compute the Zernike Polynomials t.\dpBq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &Z|P2dI  
    =zs`#-^8  
    % Determine the required powers of r: j^2j& Ta  
    % ----------------------------------- 2SR:FUV/  
    rpowers = []; 42ivT_H  
    for j = 1:length(n) &~U ]~;@  
        rpowers = [rpowers m(j):2:n(j)]; 3|Xyl`i4o  
    end DrK{}uM  
    rpowers = unique(rpowers); liz~7RY4  
    2Q:+_v  
    % Pre-compute the values of r raised to the required powers, -!]ZMi9  
    % and compile them in a matrix: l0i^uMS  
    % ----------------------------- @>H75  
    if rpowers(1)==0 F`]2O:[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D=&Me=$  
        rpowern = cat(2,rpowern{:}); t}/( b/VD  
        rpowern = [ones(length_r,1) rpowern]; q?/a~a  
    else gjzuG< 7m  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); YQA ,f#  
        rpowern = cat(2,rpowern{:}); 3>VL}Ui}  
    end WVvvI9  
    Q6I:"2u1  
    % Compute the values of the polynomials: ( Px OE  
    % -------------------------------------- Xh;#  
    z = zeros(length_r,length_n); v^+Sh|z/  
    for j = 1:length_n v0jgki4 t  
        s = 0:(n(j)-m(j))/2; G+\GaY[  
        pows = n(j):-2:m(j); fPW@{~t  
        for k = length(s):-1:1 q{;:SgZ  
            p = (1-2*mod(s(k),2))* ... qPfQy  
                       prod(2:(n(j)-s(k)))/          ... WaR`Kp+>  
                       prod(2:s(k))/                 ... SS.dY""89  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... /J6rv((  
                       prod(2:((n(j)+m(j))/2-s(k))); #|PS&}6wU  
            idx = (pows(k)==rpowers); KRDmY+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); O]1(FWYy  
        end ]f9Cx\d:k  
         yd`mG{Z  
        if isnorm V[vl!XM  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); SQt 4v"  
        end ,]c 1A$Sr0  
    end '}bgLv  
    e(=w(;84  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ]?+p5;{y4  
    f~y%%+{p  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 sRx63{  
    Dhw(#{N  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)