切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11345阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 fS#I?!*}  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! JRYCM}C]  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 eB2a1<S&@  
    function z = zernfun(n,m,r,theta,nflag) q'1 86L87  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @T@lHc  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N i!u:]14>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the >1S39n5z.  
    %   unit circle.  N is a vector of positive integers (including 0), and }>$3B5}  
    %   M is a vector with the same number of elements as N.  Each element X-k$6}D  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 'gv ~M_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gEISnMH  
    %   and THETA is a vector of angles.  R and THETA must have the same bSgdVP-  
    %   length.  The output Z is a matrix with one column for every (N,M) ![Ll$L r  
    %   pair, and one row for every (R,THETA) pair. 'Hv=\p4$1  
    % AXT(D@sI=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fb|%)A=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L<W2a(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,0\P r  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V_"UiN"o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized hZwJ@ Vm#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. aaRc?b'/  
    % Scd_tw.]|  
    %   The Zernike functions are an orthogonal basis on the unit circle. MN<uIqG  
    %   They are used in disciplines such as astronomy, optics, and *iiyU}x  
    %   optometry to describe functions on a circular domain. K.r "KxCm|  
    % v\3$$T)  
    %   The following table lists the first 15 Zernike functions. x=YV*  
    % \#7@"~<  
    %       n    m    Zernike function           Normalization G3${\'<  
    %       -------------------------------------------------- [oD u3Qn  
    %       0    0    1                                 1 OKV/=]GS  
    %       1    1    r * cos(theta)                    2 /vNHb _-  
    %       1   -1    r * sin(theta)                    2 8Os: SC@Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Gy6PS{yY6t  
    %       2    0    (2*r^2 - 1)                    sqrt(3) t .-%@,s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 5fY7[{ 2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :R1F\FT*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) yt[*4gF4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) cH6<'W{*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 8fWk C<f}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) > JP}OS  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1+v!)Y>Z&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) D]'/5]~z<  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U#g ,XJ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Jk} Dj0o  
    %       -------------------------------------------------- |3P dlIbO  
    % &`I7aP|  
    %   Example 1: ]=]fIKd  
    % U0@Qc}y  
    %       % Display the Zernike function Z(n=5,m=1) R "qt}4m  
    %       x = -1:0.01:1; d^qTY?k.  
    %       [X,Y] = meshgrid(x,x); Ft<B[bQ  
    %       [theta,r] = cart2pol(X,Y); S+7u,%n/  
    %       idx = r<=1; \\Te\l|L  
    %       z = nan(size(X)); w)Z-, J  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "'*Qq@!3?  
    %       figure bsv!z\}  
    %       pcolor(x,x,z), shading interp 71G\b|5  
    %       axis square, colorbar 0mR^%+~  
    %       title('Zernike function Z_5^1(r,\theta)') 2bAH)=  
    % JmF:8Q3H  
    %   Example 2: 4,.[B7irR  
    % bj ,cU)t0  
    %       % Display the first 10 Zernike functions RC~C}  
    %       x = -1:0.01:1; 6Sz|3ms  
    %       [X,Y] = meshgrid(x,x); qZYh^\  
    %       [theta,r] = cart2pol(X,Y); L XHDX  
    %       idx = r<=1; 8;$zD]{D1  
    %       z = nan(size(X)); 1 Sz v4  
    %       n = [0  1  1  2  2  2  3  3  3  3]; @n^2UJ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :vJ1Fo!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ZZrv l4h  
    %       y = zernfun(n,m,r(idx),theta(idx)); Q?V'3ZZF!  
    %       figure('Units','normalized') F*p@hl  
    %       for k = 1:10 UTVqoCHA  
    %           z(idx) = y(:,k); Kb~i9x&  
    %           subplot(4,7,Nplot(k)) UId?a} J  
    %           pcolor(x,x,z), shading interp M a^}7D /  
    %           set(gca,'XTick',[],'YTick',[]) Jvr`9<`  
    %           axis square TT^L) d  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &0RKNpw g  
    %       end Vc!'=&*  
    % 8fA8@O}  
    %   See also ZERNPOL, ZERNFUN2. ?/}-&A"  
    85vyt/.,k  
    %   Paul Fricker 11/13/2006 ?X@uR5?{  
    "Bl6 ) qw  
    =)f5JwZPG  
    % Check and prepare the inputs: 4P?R "Lk  
    % ----------------------------- <lP5}F87  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l0lvca=;  
        error('zernfun:NMvectors','N and M must be vectors.') ;8g[y"I  
    end |Ge!;v  
    ?0?+~0sI  
    if length(n)~=length(m) -u~AY#*  
        error('zernfun:NMlength','N and M must be the same length.') BHpj_LB-P  
    end & Tkl-{I  
    ."j=s#OC(  
    n = n(:); ;^ff35EE8  
    m = m(:); rO]2we/B,4  
    if any(mod(n-m,2)) qPn!.m$/  
        error('zernfun:NMmultiplesof2', ... :czUOZ_  
              'All N and M must differ by multiples of 2 (including 0).') B pp(5  
    end / mwsF]Y  
    ld7B{ ?]  
    if any(m>n) [<.dOe7|  
        error('zernfun:MlessthanN', ... $|VD+[jSV  
              'Each M must be less than or equal to its corresponding N.') jH[{V[<# X  
    end ;CDa*(e  
    mw*KLMo42  
    if any( r>1 | r<0 ) GpXU&A'r  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ZJV;&[$[  
    end q OV$4[r  
    y$+_9VzYB  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Dv}VmC""  
        error('zernfun:RTHvector','R and THETA must be vectors.') tS[%C)  
    end z'}z4^35,  
    3w8v.J8q  
    r = r(:); V3$zlzSm,  
    theta = theta(:); ~vKDB$2  
    length_r = length(r); |`O210B@  
    if length_r~=length(theta) eKe[]/}e9  
        error('zernfun:RTHlength', ... gW^0A)5  
              'The number of R- and THETA-values must be equal.') v*^'|QyM7  
    end $.O(K4S  
    OQ+kOE&  
    % Check normalization: oT- Y  
    % -------------------- f<v Z4 IU  
    if nargin==5 && ischar(nflag) +oiuulA  
        isnorm = strcmpi(nflag,'norm'); K Vnz{cx`  
        if ~isnorm 6OZ n7:)Y  
            error('zernfun:normalization','Unrecognized normalization flag.') 4R& pb1eF  
        end mV|Z5= f  
    else M<ba+Qn$  
        isnorm = false; Ur(<  ]  
    end 7@Xi*Azd  
    @+Anp4%;Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i}~U/.P   
    % Compute the Zernike Polynomials ><{Lh@{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c.uD%  
    Z@bKYfGM  
    % Determine the required powers of r: K%YR; )5A  
    % ----------------------------------- uXVs<im  
    m_abs = abs(m); y|(?>\jBl  
    rpowers = []; %)=c#H1  
    for j = 1:length(n) R2y~+tko?  
        rpowers = [rpowers m_abs(j):2:n(j)]; O7yIFqI=/  
    end yK w.69.  
    rpowers = unique(rpowers); ye`-U?7.  
    Z8o8>C\d9/  
    % Pre-compute the values of r raised to the required powers, B1o*phM g  
    % and compile them in a matrix: G],W{<Pe  
    % ----------------------------- U?j[ 8z  
    if rpowers(1)==0 )@6iQ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); AizLzR$OG  
        rpowern = cat(2,rpowern{:}); [N0"mE<  
        rpowern = [ones(length_r,1) rpowern];  dQI6.$?  
    else zRgl`zREr  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); du&9mOrr  
        rpowern = cat(2,rpowern{:}); 3e1^r_YI  
    end GE}>{x=^x  
    @JpkG%eK  
    % Compute the values of the polynomials: *[b22a4H(  
    % -------------------------------------- b1-'q^M  
    y = zeros(length_r,length(n)); nx@ h  
    for j = 1:length(n) ?eri6D,86w  
        s = 0:(n(j)-m_abs(j))/2; &HJ'//bv  
        pows = n(j):-2:m_abs(j); KU (g Zy  
        for k = length(s):-1:1 _W gpk 0  
            p = (1-2*mod(s(k),2))* ... ~a` vk@8  
                       prod(2:(n(j)-s(k)))/              ... }TwSSF|}3  
                       prod(2:s(k))/                     ... [M&.'X  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &E`=pe/e  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); GbJVw\5Z*  
            idx = (pows(k)==rpowers); )UAkg  
            y(:,j) = y(:,j) + p*rpowern(:,idx); nsyeid*  
        end S~Yu;  
         6G]hs gro  
        if isnorm Vv3:x1S  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d^^EfWU  
        end 0M 5m8  
    end fkJElO-F  
    % END: Compute the Zernike Polynomials 4?.L+wL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q(h/C!rKe  
    ><"0GPxrx  
    % Compute the Zernike functions: 8&UwnEk<  
    % ------------------------------ }<g- 0&GLm  
    idx_pos = m>0; !MQVtn^C#  
    idx_neg = m<0; *e *V%w~75  
    )9z3T>QW  
    z = y; pX]"^f1?O  
    if any(idx_pos) wv&#lM(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Eg 8rgiU  
    end OmAa$L,'w  
    if any(idx_neg) lbiMB~rwI  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qfsu# R  
    end :V^|}C#  
    kyu PN<?  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) c@/K}  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ;)rXQm  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,8Q&X~$rY  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 9jW"83*5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, i4H,Ggb  
    %   and THETA is a vector of angles.  R and THETA must have the same  :C9vs  
    %   length.  The output Z is a matrix with one column for every P-value, <_~e/+_.  
    %   and one row for every (R,THETA) pair. %#iu  
    % h #(J6ht  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  7 j8Ou3  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) K| '`w.  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) !i5~>p|4@  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Q$8&V}jVW  
    %   for all p. gt)wk93d>  
    % s0*@zn>h  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 6Eyinv  
    %   Zernike functions (order N<=7).  In some disciplines it is p d(W(-`8!  
    %   traditional to label the first 36 functions using a single mode u?I2|}#  
    %   number P instead of separate numbers for the order N and azimuthal !"<~n-$B  
    %   frequency M. w'7=CzfYn  
    % _BHEK  
    %   Example: P9jPdls  
    % ki'CW4x  
    %       % Display the first 16 Zernike functions 0Ait7`  
    %       x = -1:0.01:1; hD9b2KZv  
    %       [X,Y] = meshgrid(x,x); *I9O+/,  
    %       [theta,r] = cart2pol(X,Y); s"B+),Jod  
    %       idx = r<=1; )>I-j$%=2  
    %       p = 0:15; r>cN,C  
    %       z = nan(size(X)); njckPpyb@  
    %       y = zernfun2(p,r(idx),theta(idx)); @^Yr=d ba  
    %       figure('Units','normalized') 9A ?)n<3d  
    %       for k = 1:length(p) >p 9~'  
    %           z(idx) = y(:,k); C@{-$z)  
    %           subplot(4,4,k) 6QAhVg: A  
    %           pcolor(x,x,z), shading interp f[wxt n'r  
    %           set(gca,'XTick',[],'YTick',[]) iB#*XJ;q  
    %           axis square t4Pi <m:7  
    %           title(['Z_{' num2str(p(k)) '}']) Kjt\A]R%  
    %       end do:IkjU~  
    % }No8to  
    %   See also ZERNPOL, ZERNFUN. #Fz/}lO  
    /X%+z5  
    %   Paul Fricker 11/13/2006 _)[UartKx  
    "NtY[sT{V  
    ,-[z?dvO  
    % Check and prepare the inputs: 0t7vg#v|  
    % ----------------------------- 0sI7UK`m  
    if min(size(p))~=1 a!B"WNb+  
        error('zernfun2:Pvector','Input P must be vector.') q![`3m-d.  
    end L :Ldk  
    :f~qt%%/  
    if any(p)>35 + f,Kt9Cy  
        error('zernfun2:P36', ... ]i\;#pj}  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ZQ{-6VCjl  
               '(P = 0 to 35).']) v?0F  
    end nt8& Mf  
    u=t.1eS5  
    % Get the order and frequency corresonding to the function number: g cb6*@u!  
    % ---------------------------------------------------------------- 0+F--E4  
    p = p(:); U=PTn(2  
    n = ceil((-3+sqrt(9+8*p))/2); 8p]9A,Uq&  
    m = 2*p - n.*(n+2); !RSJb  
    G`RQl@W>)(  
    % Pass the inputs to the function ZERNFUN: bE?X?[K  
    % ---------------------------------------- f$ 7C 5  
    switch nargin 7 j6<  
        case 3 <QD[hO^/  
            z = zernfun(n,m,r,theta); b8E7/~<z3  
        case 4 qP]1}-  
            z = zernfun(n,m,r,theta,nflag); 3~:9ZWQ/  
        otherwise 'qJ0338d#U  
            error('zernfun2:nargin','Incorrect number of inputs.') 9}5o> iR  
    end " =6kH,  
    ^h^.;Iqr=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) LI].*n/v  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. #k?.dWZ!  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of '6; {DX  
    %   order N and frequency M, evaluated at R.  N is a vector of uehu\umt=  
    %   positive integers (including 0), and M is a vector with the )ZI#F]  
    %   same number of elements as N.  Each element k of M must be a `jSegG'  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Vl;zd=  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is d::9,~  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ja9=b?]0,  
    %   with one column for every (N,M) pair, and one row for every NfnPXsad  
    %   element in R. ?5J>]: +ZZ  
    % <ZheWl  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- <p}7T]a7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is wl&T9O;?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +(PUiiP'"v  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 DQ30\b"gU  
    %   for all [n,m]. =fJU+N+<  
    % b $yIM  
    %   The radial Zernike polynomials are the radial portion of the (Ldvx_  
    %   Zernike functions, which are an orthogonal basis on the unit OF03]2j7<|  
    %   circle.  The series representation of the radial Zernike Yxbg _RQm  
    %   polynomials is dr c-5{M  
    % (Gw*x sn1  
    %          (n-m)/2 YC')vv3o(  
    %            __ $v #  
    %    m      \       s                                          n-2s ~_Fx2T:X  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r JsNj!aeU%  
    %    n      s=0 } C:i0Q  
    % Il Qk W<  
    %   The following table shows the first 12 polynomials. OTE,OCB[  
    % 6 &0r/r  
    %       n    m    Zernike polynomial    Normalization j#~~_VA~  
    %       --------------------------------------------- ^b$_I31D  
    %       0    0    1                        sqrt(2) Wy}^5]R0E  
    %       1    1    r                           2 kDDC@A $  
    %       2    0    2*r^2 - 1                sqrt(6) ;mT}Q;F#  
    %       2    2    r^2                      sqrt(6) -gm5E qi  
    %       3    1    3*r^3 - 2*r              sqrt(8) ZE-vroh  
    %       3    3    r^3                      sqrt(8) qxDMDMN  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) g'b|[ q  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) #:+F  
    %       4    4    r^4                      sqrt(10) >}\s-/  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) jU~ x^Y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) :L@n(bu RN  
    %       5    5    r^5                      sqrt(12) !Ve0:$  
    %       --------------------------------------------- ]WYV  
    % }8" |q3k  
    %   Example: l _%<U  
    % ?&-1(&  
    %       % Display three example Zernike radial polynomials Jx~H4y=z  
    %       r = 0:0.01:1; 8toOdh  
    %       n = [3 2 5]; &3Yj2 Fw  
    %       m = [1 2 1]; l cHf\~  
    %       z = zernpol(n,m,r); C\;l)h_{  
    %       figure h x&"fe  
    %       plot(r,z) 8QK8q: |  
    %       grid on KILX?Pt[7  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') f)j*P<V  
    % %~PcJhz  
    %   See also ZERNFUN, ZERNFUN2. NLY=o@<  
    ij;NM:|Sd  
    % A note on the algorithm. vQyY %  
    % ------------------------ 38D5vT)n  
    % The radial Zernike polynomials are computed using the series &>C+5`bg  
    % representation shown in the Help section above. For many special +^+'.xQ  
    % functions, direct evaluation using the series representation can :>JfBJ]|  
    % produce poor numerical results (floating point errors), because wpuK?fP  
    % the summation often involves computing small differences between ^;<d<V}*  
    % large successive terms in the series. (In such cases, the functions !5(DU~S*@S  
    % are often evaluated using alternative methods such as recurrence hdCd:6   
    % relations: see the Legendre functions, for example). For the Zernike ]sqLGmUL  
    % polynomials, however, this problem does not arise, because the p|.5;)%|  
    % polynomials are evaluated over the finite domain r = (0,1), and 4qp|g'uXT  
    % because the coefficients for a given polynomial are generally all $QwpoVp`~  
    % of similar magnitude. Mq)]2>"v  
    % +1YEOOfVY  
    % ZERNPOL has been written using a vectorized implementation: multiple OQ hQ!6  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <+g77NL  
    % values can be passed as inputs) for a vector of points R.  To achieve XDJE]2^52?  
    % this vectorization most efficiently, the algorithm in ZERNPOL k:Y\i]#yP  
    % involves pre-determining all the powers p of R that are required to =~hb&  
    % compute the outputs, and then compiling the {R^p} into a single 38p"lT  
    % matrix.  This avoids any redundant computation of the R^p, and Hz GwO^tbK  
    % minimizes the sizes of certain intermediate variables. =Q40]>bpx  
    % &{.IUg  
    %   Paul Fricker 11/13/2006 BP@tI|  
    e' o2PW  
    9>w~B|/  
    % Check and prepare the inputs: RB+Jp  
    % ----------------------------- Au'y(KB  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o& FOp'  
        error('zernpol:NMvectors','N and M must be vectors.') "H[K3  
    end yiQ?p:DM  
    wpM2{NTP  
    if length(n)~=length(m) zp;!HP;/=  
        error('zernpol:NMlength','N and M must be the same length.') UgGa]b[9A  
    end xj;:B( i  
    IS&qFi}W|W  
    n = n(:); (l^7EpNs  
    m = m(:); {\D &*  
    length_n = length(n); h'-4nu;*  
    ?h&XIM(  
    if any(mod(n-m,2)) JkJ @bh Eu  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 8F8?1  
    end B1)Eo2i#  
    yO1 7C  
    if any(m<0) dgpE3 37Lt  
        error('zernpol:Mpositive','All M must be positive.') 49Jnp>h  
    end oYkd%N9P  
    6]b"n'G  
    if any(m>n) XeI2 <=@%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') XYzaSp=bb  
    end \uOM,98xS  
    bwXeEA@{  
    if any( r>1 | r<0 ) V'j+)!w5  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') \s&Mz;:  
    end y(Gn+  
    :,0(aB  
    if ~any(size(r)==1) a{T.U-0   
        error('zernpol:Rvector','R must be a vector.') ]@Zv94Z(  
    end :E.a.-  
    mp8GHV  
    r = r(:); (p%|F`  
    length_r = length(r); -j3Lgm  
    HJAiQ[m5s  
    if nargin==4 PK2;Ywk`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~|} ]  
        if ~isnorm {h+8^   
            error('zernpol:normalization','Unrecognized normalization flag.') +Umsr  
        end tr<f ii 3<  
    else Qjfgxy]  
        isnorm = false; fwz:k]vk  
    end >8(i;)(3  
    Z&n[6aV'F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D!o[Sm}JO[  
    % Compute the Zernike Polynomials TF/NA\0c$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O%T?+1E  
    (I}owr5:  
    % Determine the required powers of r: $z%(He  
    % ----------------------------------- !vgY3S0?rq  
    rpowers = []; T/'z,,Y  
    for j = 1:length(n) QXZXj#`  
        rpowers = [rpowers m(j):2:n(j)]; "@nH;Xlq  
    end X,v.1#[  
    rpowers = unique(rpowers); YbP @  
    c#N4XsG,  
    % Pre-compute the values of r raised to the required powers, ZW [&7[4  
    % and compile them in a matrix: eG,x\  
    % ----------------------------- wSjDa.?'  
    if rpowers(1)==0 @njNP^'Kx  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z`tmuu  
        rpowern = cat(2,rpowern{:}); oPmz$]_Z  
        rpowern = [ones(length_r,1) rpowern]; YcobK#c  
    else 0DicrnH8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3<^Up1CaZ  
        rpowern = cat(2,rpowern{:}); > ubq{'  
    end M~2Us{ `  
    S&!(h {O  
    % Compute the values of the polynomials: i&:SWH=  
    % -------------------------------------- NuQ!huh  
    z = zeros(length_r,length_n); 7 XxZF43  
    for j = 1:length_n k77IXT_7u  
        s = 0:(n(j)-m(j))/2; U*C^g}iA  
        pows = n(j):-2:m(j); MR1I"gqE}I  
        for k = length(s):-1:1 sG u.G  
            p = (1-2*mod(s(k),2))* ... %P0  
                       prod(2:(n(j)-s(k)))/          ... 3lp'U&3`5  
                       prod(2:s(k))/                 ... ~!Nj DDk  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... XH?//.q  
                       prod(2:((n(j)+m(j))/2-s(k))); H4y9\ -  
            idx = (pows(k)==rpowers); Gm B&TD m  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Z<.&fZ^jS  
        end O^MI073Q>t  
         UDG1F_&h  
        if isnorm w#b@6d  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); f5V-;  
        end ./F:]/Mt  
    end PMytk`<`zw  
    Xq;|l?,O  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  rNk'W,FU  
    Rj";?.R*e  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 K@7%i|H  
    HX2u{2$  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)