非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 n
`&/D
function z = zernfun(n,m,r,theta,nflag) Xejo_SV&?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9Uj$K>:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NG "C&v
% and angular frequency M, evaluated at positions (R,THETA) on the rH_\d?b
% unit circle. N is a vector of positive integers (including 0), and (tIo:j
% M is a vector with the same number of elements as N. Each element &cxRD
% k of M must be a positive integer, with possible values M(k) = -N(k) gW>uR3Ca4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Fl kcU
`j
% and THETA is a vector of angles. R and THETA must have the same tzZ`2pSh
% length. The output Z is a matrix with one column for every (N,M) :S<f?*
}:
% pair, and one row for every (R,THETA) pair. 8u6:=fxb
% 6-z%633DL
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %?}33yV
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 95 ;x=ju
% with delta(m,0) the Kronecker delta, is chosen so that the integral 9$cWU_q{
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WY?[,_4U
% and theta=0 to theta=2*pi) is unity. For the non-normalized QZ6D7tUc8
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e+~\+:[?
% }+.}J
% The Zernike functions are an orthogonal basis on the unit circle. `|{-+m
% They are used in disciplines such as astronomy, optics, and QEz?w}b*
% optometry to describe functions on a circular domain. cAY: AtD
% fI&t]
% The following table lists the first 15 Zernike functions. 06O2:5zF
% oB}BU`-l
% n m Zernike function Normalization yE:+Lo`>
% -------------------------------------------------- c3jx+Q
% 0 0 1 1 OGK}EI
% 1 1 r * cos(theta) 2 kD=WO4}
% 1 -1 r * sin(theta) 2 lAb*fafQy
% 2 -2 r^2 * cos(2*theta) sqrt(6) w,#>G07D
% 2 0 (2*r^2 - 1) sqrt(3) /N =b\-]
% 2 2 r^2 * sin(2*theta) sqrt(6) \-h%O
jf4
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8(pp2r lR
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) d,+Hd2o^X
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) }>>1<P<8-
% 3 3 r^3 * sin(3*theta) sqrt(8) T|nDTezr
% 4 -4 r^4 * cos(4*theta) sqrt(10) U'H$`$Ov
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PVe
xa|aaX
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (}Z@R#njH
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I'A_x$ib6
% 4 4 r^4 * sin(4*theta) sqrt(10)
e?0l"
% -------------------------------------------------- [tlI!~Z
% \pPY37l
% Example 1: >0/i[k-dk
% C _'%NlJ'
% % Display the Zernike function Z(n=5,m=1) l4F%VR4KT
% x = -1:0.01:1; +"rDT1^V
% [X,Y] = meshgrid(x,x); tr<Nm6!
% [theta,r] = cart2pol(X,Y); SIBtmm1W
% idx = r<=1; J\+0[~~
% z = nan(size(X)); u(@$a4z
% z(idx) = zernfun(5,1,r(idx),theta(idx)); uaT!(Y6
% figure Bmr>n6|
% pcolor(x,x,z), shading interp xN5)
% axis square, colorbar *=8JIs A>!
% title('Zernike function Z_5^1(r,\theta)') u_@f$
% CDsSrKhx
% Example 2: J"!vu.[
% ")SFi^]
% % Display the first 10 Zernike functions &5\iM^
% x = -1:0.01:1; VEWi_;=J1
% [X,Y] = meshgrid(x,x); Fq0i`~L~
% [theta,r] = cart2pol(X,Y);
?9!6%]2D
% idx = r<=1; Nv#t:J9f
% z = nan(size(X)); /5S30 |K
% n = [0 1 1 2 2 2 3 3 3 3]; 9]k @Q_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v[
.cd*b
% Nplot = [4 10 12 16 18 20 22 24 26 28]; i+A3~w5c
% y = zernfun(n,m,r(idx),theta(idx)); =$u!
59_dE
% figure('Units','normalized') 8[a=OP
% for k = 1:10 qB5j;@r
% z(idx) = y(:,k); IdzxS
% subplot(4,7,Nplot(k)) D9<!mH
% pcolor(x,x,z), shading interp B^1>PE
% set(gca,'XTick',[],'YTick',[]) p)`{Sos
% axis square 2<i!{;u$qL
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :0Bq^G"ge
% end PY{
G [
% m4**~xfC
% See also ZERNPOL, ZERNFUN2. tI`Q /a5@
#jkf1"8 C
% Paul Fricker 11/13/2006 [A~y%bI"
U_M$#i{_
m,VOx7%n
% Check and prepare the inputs: {&cJDqz5=
% ----------------------------- =b%MXT
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Yrb{ByO&
error('zernfun:NMvectors','N and M must be vectors.') DGRXd#
end *QpMF/<?
b,5~b&<h
if length(n)~=length(m) y`VyQWW
error('zernfun:NMlength','N and M must be the same length.') vq0Vq(V=
end bfFeBBi
SzAJ2:qhl
n = n(:); @ju@WY45$^
m = m(:); r A`V}>Xj
if any(mod(n-m,2)) 8*W#DH!
error('zernfun:NMmultiplesof2', ... pM+ AjPr
'All N and M must differ by multiples of 2 (including 0).') ]3x?
end @'w"R/,n-@
w^?>e;/\
if any(m>n) ~Y `ldL
error('zernfun:MlessthanN', ... )mg:_K
'Each M must be less than or equal to its corresponding N.') sQ=]NF)\
end Z~AO0zUKY
S
^"y4-2
if any( r>1 | r<0 ) >W%EmnLK
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q!o'}nA
end oL!EYbFD'Z
.~)q};Z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ],>@";9u"
error('zernfun:RTHvector','R and THETA must be vectors.') 4qO+_!x{)
end 18|m)(W
Tre]"2l
r = r(:); EOIN^4V"
theta = theta(:); :WjpzgPuN
length_r = length(r); wu7Lk3
if length_r~=length(theta) {'NZ.
error('zernfun:RTHlength', ... US+Q~GTA
'The number of R- and THETA-values must be equal.') 68NYIyTW9
end (lXGmx8
S{Kiy#ltWc
% Check normalization: FTH|9OP
% -------------------- ZXu>,Jy
if nargin==5 && ischar(nflag) [^R^8k
isnorm = strcmpi(nflag,'norm'); i{Uc6R6
if ~isnorm QHDXW1+|^
error('zernfun:normalization','Unrecognized normalization flag.') &x=.$76
end v6[!o<@"a
else .sxcCrQE
isnorm = false; uX"H4lO~
end )s)I2Z+
T] R|qlZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% szb_*)k
% Compute the Zernike Polynomials S(o#K|)>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x5|I
O#n8=B4
% Determine the required powers of r: Bz_^~b7
% ----------------------------------- 45=bGf#
m_abs = abs(m); a Fc1|.Nm
rpowers = []; 6 +Sxr
for j = 1:length(n) }^4Xv^dW>g
rpowers = [rpowers m_abs(j):2:n(j)]; %OtFHhb
end Eav[/cU
rpowers = unique(rpowers); H ;7(}:.
0v6)t.]s
% Pre-compute the values of r raised to the required powers, u~r=)His
% and compile them in a matrix: 00<cYy
% ----------------------------- )}''L{k-
if rpowers(1)==0 W$QcDp]#p}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O ~(pg
rpowern = cat(2,rpowern{:}); 7WZrSC
rpowern = [ones(length_r,1) rpowern]; LZ\q37UV
else )r';lGh2#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VGLaN%|
rpowern = cat(2,rpowern{:}); <z+t,<3D
end Okgv!Nt8)A
cO-7ke
% Compute the values of the polynomials: 68bQ;Dv
% -------------------------------------- Q0$8j-1I
y = zeros(length_r,length(n)); Om \o#{D
for j = 1:length(n) #:%&x@@c3P
s = 0:(n(j)-m_abs(j))/2; ,4hJT
pows = n(j):-2:m_abs(j); @(l^]9(V\
for k = length(s):-1:1 y9_V
p = (1-2*mod(s(k),2))* ... -Btk 3
prod(2:(n(j)-s(k)))/ ... Z<U6<{b
prod(2:s(k))/ ... OHv[#xGuV?
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `{4i)n%e&
prod(2:((n(j)+m_abs(j))/2-s(k))); 3NZK*!@'
idx = (pows(k)==rpowers); M])ZK
y(:,j) = y(:,j) + p*rpowern(:,idx); 3sc+3-TF
end c@YI;HS_g
"-y-iJ
if isnorm wWgWWXGT}
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); k2E0/ @f{k
end JgG$?n\
end $v,dz_O*\
% END: Compute the Zernike Polynomials &6DMk-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M-\Y"]sW
XV!6dh!
% Compute the Zernike functions: X"MB|Ny
% ------------------------------ dCb`xR}
idx_pos = m>0; TPVVck-T8
idx_neg = m<0; w'L\?pI
\Fl+\?~D
z = y; M=.:,wRm
if any(idx_pos) <wZQc
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !P ~_Dl2d
end PEc,l>u9
if any(idx_neg) Qg^cf<X{i
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); k-Q%.o
end z+
s6)Ad
KuWWUjCE
% EOF zernfun