非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NO"PO
@&Wk
function z = zernfun(n,m,r,theta,nflag) +eM${JyXH
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. tZrc4$D-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3FEJ
9ZyG
% and angular frequency M, evaluated at positions (R,THETA) on the Zp_(vOc
% unit circle. N is a vector of positive integers (including 0), and ^.SYAwL
% M is a vector with the same number of elements as N. Each element c?p^!zG
% k of M must be a positive integer, with possible values M(k) = -N(k) H"C'<(4*\
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, u2V-V#jS
% and THETA is a vector of angles. R and THETA must have the same mP(3[a_Q
% length. The output Z is a matrix with one column for every (N,M) w2)Ro:G
% pair, and one row for every (R,THETA) pair. qS!r<'F3dP
% n/H
OP
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5gszAvOO
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :$ 5A3i
% with delta(m,0) the Kronecker delta, is chosen so that the integral GP|=4T}Bf
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I$n=>s
% and theta=0 to theta=2*pi) is unity. For the non-normalized S:\i
M:
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nR!e(
% ])x1MmRg\
% The Zernike functions are an orthogonal basis on the unit circle. n\#YGL<n
% They are used in disciplines such as astronomy, optics, and fCl}eXg6w
% optometry to describe functions on a circular domain. )*|/5wW1
% v0^9"V:y
% The following table lists the first 15 Zernike functions. &J[a.:..
% #Ondhy%h[
% n m Zernike function Normalization E_HB[9
% -------------------------------------------------- E*_^+ %
% 0 0 1 1 DT1gy:?L
% 1 1 r * cos(theta) 2 "cH RGJG#
% 1 -1 r * sin(theta) 2 ]|;+2@kDR
% 2 -2 r^2 * cos(2*theta) sqrt(6) ) "#'
% 2 0 (2*r^2 - 1) sqrt(3) "}]`64?
% 2 2 r^2 * sin(2*theta) sqrt(6) 2EY"[xK|
% 3 -3 r^3 * cos(3*theta) sqrt(8) o9?@jjqH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) cw;wv+|k
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3P>gDQP
% 3 3 r^3 * sin(3*theta) sqrt(8) 0ju1>.p
% 4 -4 r^4 * cos(4*theta) sqrt(10) q>q:ZV
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *OVB;]D3+
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <3YZ0f f>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k_=SDm a
% 4 4 r^4 * sin(4*theta) sqrt(10) &dtk&P{
% -------------------------------------------------- s>rR\`
% LzygupxY!
% Example 1: lG*Rw-?a
% &[.5@sv
% % Display the Zernike function Z(n=5,m=1) gU9{~-9}
% x = -1:0.01:1; 0oe<=L]F
% [X,Y] = meshgrid(x,x); ]AP1+
&9fN
% [theta,r] = cart2pol(X,Y); I Mgd2qIC
% idx = r<=1; NOz3_k
% z = nan(size(X)); C
\ Cc[v
% z(idx) = zernfun(5,1,r(idx),theta(idx)); F c[KIG3@
% figure yI w}n67
% pcolor(x,x,z), shading interp E3L?6Qfx>
% axis square, colorbar ~PQ.l\C
% title('Zernike function Z_5^1(r,\theta)') ;rh.6D l
% ^s,3*cAU
% Example 2: ?M2(80
% O--p)\
% % Display the first 10 Zernike functions 61\u{@o$
% x = -1:0.01:1; 1I Yip\:lS
% [X,Y] = meshgrid(x,x); #GsOE#*>T
% [theta,r] = cart2pol(X,Y); l,wlxh$}(
% idx = r<=1; p<R:[rz
% z = nan(size(X)); _8K+iqMZG
% n = [0 1 1 2 2 2 3 3 3 3]; b`0tfXzS5
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; SNEhP5!
% Nplot = [4 10 12 16 18 20 22 24 26 28]; gW,[X(
% y = zernfun(n,m,r(idx),theta(idx));
Xo^8o0xi
% figure('Units','normalized') +^I0>\
% for k = 1:10 6K2e]r
% z(idx) = y(:,k); p_r` "
% subplot(4,7,Nplot(k)) 4Z)4WGp!
% pcolor(x,x,z), shading interp 3WV(Ok
% set(gca,'XTick',[],'YTick',[]) |%_C$s%
% axis square 0SpB2>_
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &\zYbGU
% end {%jAp11y+O
% G1:}{a5i_
% See also ZERNPOL, ZERNFUN2. *miG<
VA/2$5Wu
% Paul Fricker 11/13/2006 5f0M{J,KC
:]"5UY?oF
/iW+<@Mas
% Check and prepare the inputs: sYTz6-
% ----------------------------- vz^ ] g
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e8a^"Z`a
error('zernfun:NMvectors','N and M must be vectors.') T+8Yd(:hX
end j:9M${~
pDQ
f(@M[
if length(n)~=length(m) 6iFlz9XiI
error('zernfun:NMlength','N and M must be the same length.') -oD,F
$Rb
end p^l#Wq5
7T[~~V^x
n = n(:); !E70e$Th
m = m(:); .j6udiv5
if any(mod(n-m,2)) GT>'|~e
error('zernfun:NMmultiplesof2', ... wG3L+[,
'All N and M must differ by multiples of 2 (including 0).') E4#{&sRT
end aRd~T6I
bC&A@.g{
if any(m>n) b[%@3 }E
error('zernfun:MlessthanN', ... s|YH_1r
'Each M must be less than or equal to its corresponding N.') qLR;:$]Q&8
end ^`H'LD
wl=tN{R
if any( r>1 | r<0 ) ]aN9mT
N
error('zernfun:Rlessthan1','All R must be between 0 and 1.') eAHY/Y!
end g 2Fg
f5}afPk
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z zG=!JR
error('zernfun:RTHvector','R and THETA must be vectors.') !&)X5oJ
end |$.?(FZYu
&9jJ\+:7
r = r(:); "2e3 <:$
theta = theta(:); H4i}gdR
length_r = length(r); Km2~nkQ
if length_r~=length(theta) N=mvr&arP
error('zernfun:RTHlength', ... pEB3qGA
'The number of R- and THETA-values must be equal.') *h^->+0n
end
2[
sY?C
L F?/60
% Check normalization: MmJMx
% -------------------- .0Ud?v>=
if nargin==5 && ischar(nflag) _/[qBe
isnorm = strcmpi(nflag,'norm'); as07~Xvp-
if ~isnorm $W._FAAJ#
error('zernfun:normalization','Unrecognized normalization flag.') `&;#A*C0
end q NGR6i
else kH g|!
isnorm = false; EeaJUK]z9
end NF$6yv9C
f,YORJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LP3#f{U
% Compute the Zernike Polynomials W3i<Unq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 288mP]a(v_
&Vj@){
% Determine the required powers of r: CKw-HgXG
% ----------------------------------- ueg%yvO
m_abs = abs(m); (o>N*?,}
rpowers = []; &H_/`Z]Q
for j = 1:length(n) o HK
rpowers = [rpowers m_abs(j):2:n(j)]; DLwlA!z
end t!D'ZLw
rpowers = unique(rpowers); Q}#4Qz~n
tbQY&TO1
% Pre-compute the values of r raised to the required powers, Zf M]A)
% and compile them in a matrix: &zn|),
% ----------------------------- pI@71~|R
if rpowers(1)==0 Yjg$o:M
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); besc7!S
rpowern = cat(2,rpowern{:}); Ehy(;n)\
rpowern = [ones(length_r,1) rpowern]; <n_?$ TJ
else h!B{7J
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `!8\|/
rpowern = cat(2,rpowern{:}); hC-uz _/3
end 9^^\Z5
1dD%a91
% Compute the values of the polynomials: +5fB?0D;
% -------------------------------------- TjpyU:R,&|
y = zeros(length_r,length(n)); $#^3>u
for j = 1:length(n) G-CL \G\n
s = 0:(n(j)-m_abs(j))/2; .J.}}"+U
pows = n(j):-2:m_abs(j); gd[muR ~
for k = length(s):-1:1 >$kFYb>~q
p = (1-2*mod(s(k),2))* ... H
Qj,0#J)
prod(2:(n(j)-s(k)))/ ... /}u:N:HA%
prod(2:s(k))/ ... \]Y<d
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... II^Rp],>
prod(2:((n(j)+m_abs(j))/2-s(k))); uNewWtUb(
idx = (pows(k)==rpowers); 4#t'1tzu#
y(:,j) = y(:,j) + p*rpowern(:,idx); @Z0. }}Y
end Wv>`x?W
_Q:ot'(~0-
if isnorm -cUW,>E
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mq{Z
Q'
end d{TcjZ
end CCpRQKb=
% END: Compute the Zernike Polynomials M_O$]^I3w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l>jrY1u
padV|hF3(e
% Compute the Zernike functions: mAH7;u<
% ------------------------------ `LH 9@Z{
idx_pos = m>0; 6l|L/Z_6
idx_neg = m<0; QM!UMqdj
Qc33CA
z = y; W'Gh:73'}
if any(idx_pos) @3eMvbI
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W}F~vx.
end [6@bsXiw
if any(idx_neg) eDo4>k"5
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *K>2B99TXu
end F_u?.6e]
DKo6lP`
% EOF zernfun