切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10889阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Yn?Xo_Y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! d@b2XCh<K  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mGF)Ot R  
    function z = zernfun(n,m,r,theta,nflag) qc3,/JO1  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?Ho>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 66_=bd(9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the I@#IXH?6  
    %   unit circle.  N is a vector of positive integers (including 0), and X V)ctF4  
    %   M is a vector with the same number of elements as N.  Each element z  61Fq  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6J$I8b#/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, QXy= |  
    %   and THETA is a vector of angles.  R and THETA must have the same Y%r>=Jvu6  
    %   length.  The output Z is a matrix with one column for every (N,M) ) <w`:wD  
    %   pair, and one row for every (R,THETA) pair. wqzpFPk(  
    % P9q=tC3^  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ''z]o#=^9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RfCu5Kn  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral l=$?#^^ /  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, taO(\FOm  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized iYlkc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t/3qD7L  
    % G)o:R iq  
    %   The Zernike functions are an orthogonal basis on the unit circle. |=:hUp Jp  
    %   They are used in disciplines such as astronomy, optics, and #|=lU4Bf  
    %   optometry to describe functions on a circular domain. (rBYE[@,  
    % u1. 0-Y?  
    %   The following table lists the first 15 Zernike functions. q{f (T\  
    % d%E*P4Ua  
    %       n    m    Zernike function           Normalization )6o%6$c  
    %       -------------------------------------------------- GsiKL4|mj  
    %       0    0    1                                 1 |~rKDc  
    %       1    1    r * cos(theta)                    2 .>1Y-NM  
    %       1   -1    r * sin(theta)                    2 S{{wcH$n'i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) -"#jRP]#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1/?K/gL  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2j ]uB0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) h$%h w+"4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) QDb8W*&<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g{K \  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) WQB V~.<Yv  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7fl{<uf  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KUHkjA_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8{6`?qst@  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WB `h)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [N"=rY4G  
    %       -------------------------------------------------- !>GDp>0  
    % z 8#{=e  
    %   Example 1: Pw6%,?lQ  
    % p$*P@qm  
    %       % Display the Zernike function Z(n=5,m=1) vRDs~'f  
    %       x = -1:0.01:1; W?[ C au-  
    %       [X,Y] = meshgrid(x,x); :" JEC'  
    %       [theta,r] = cart2pol(X,Y); J?hs\nA  
    %       idx = r<=1; p )WRsJ8  
    %       z = nan(size(X)); ;sx4w!Y,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8VC%4+.FF  
    %       figure <vxTfE@>bp  
    %       pcolor(x,x,z), shading interp \+x#aN\  
    %       axis square, colorbar 3|EAOoWnK  
    %       title('Zernike function Z_5^1(r,\theta)') ? Y luX  
    % K=pG,[ChA  
    %   Example 2: -*kZ2grLt  
    % g*w}m>O  
    %       % Display the first 10 Zernike functions VAe[x `  
    %       x = -1:0.01:1; jc,Q g2  
    %       [X,Y] = meshgrid(x,x); E;q+u[$  
    %       [theta,r] = cart2pol(X,Y); q &S@\b  
    %       idx = r<=1; 6 tB\X^  
    %       z = nan(size(X)); C3 BoH&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; `v'yGsIV  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; } na@gn  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oqg +<m  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7=&+0@R#/d  
    %       figure('Units','normalized') 'Axe:8LA'  
    %       for k = 1:10 G 6xN R  
    %           z(idx) = y(:,k); (aq-aum-I  
    %           subplot(4,7,Nplot(k)) :z%Zur+n c  
    %           pcolor(x,x,z), shading interp xP27j_*m>  
    %           set(gca,'XTick',[],'YTick',[])  2 av=W  
    %           axis square }U%T6~_wR  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r-Y7wM`TZ  
    %       end @twi<U_  
    % u('`.dwkc  
    %   See also ZERNPOL, ZERNFUN2. 31QDN0o!~  
    #<#-Bv  
    %   Paul Fricker 11/13/2006 BaMF5f+  
    ,4;'s  
    ~3%aEj  
    % Check and prepare the inputs: Y)#,6\=U  
    % ----------------------------- Q:'r p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S@TfZ3Go|  
        error('zernfun:NMvectors','N and M must be vectors.') A-rj: k!  
    end 0sCWIGU W  
    $FZcvo3@*S  
    if length(n)~=length(m) CdtCxy5  
        error('zernfun:NMlength','N and M must be the same length.') aN!,\D  
    end NSq29#  
    lwjA07 i  
    n = n(:); 9hJ a K  
    m = m(:); =F5zU5`i  
    if any(mod(n-m,2)) /_yAd,^-+  
        error('zernfun:NMmultiplesof2', ... ,|j\x  
              'All N and M must differ by multiples of 2 (including 0).') S,a:H*Hf  
    end EiyHZ  
    Z>dvth  
    if any(m>n) \XfLTv  
        error('zernfun:MlessthanN', ... D z[ ,;  
              'Each M must be less than or equal to its corresponding N.') *qxv"PptX  
    end 7|o}m}yVx  
    1@F>E;YjL=  
    if any( r>1 | r<0 )  lsgZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &2n 5m&   
    end !P":z0K4  
    [<>%I#7ulG  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c4s,T"H  
        error('zernfun:RTHvector','R and THETA must be vectors.') ZmJ<FF4  
    end i@ 86Ez  
    n]>L"D,  
    r = r(:); Q9Go}}n  
    theta = theta(:); w{4#Q[  
    length_r = length(r); o  WAy[  
    if length_r~=length(theta) 1O1MB&5%  
        error('zernfun:RTHlength', ... G+\&8fi0  
              'The number of R- and THETA-values must be equal.') |D[LU[<C  
    end _:Jma  
    E `V?Io  
    % Check normalization: aY DM)b}  
    % -------------------- #T8PgmR  
    if nargin==5 && ischar(nflag) ]?NiY:v  
        isnorm = strcmpi(nflag,'norm'); G-#rWZ&  
        if ~isnorm f>m ! }F:  
            error('zernfun:normalization','Unrecognized normalization flag.') !LsIHDs4  
        end c(!pcB8  
    else .\3gb6S}  
        isnorm = false; "#h/sAIs  
    end mApl;D X  
    K?yMy,9%Yw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }}oIZP\qM  
    % Compute the Zernike Polynomials $2a_!/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n1b^o~agwC  
    cs[nFfM  
    % Determine the required powers of r: `H9 !Z$7G  
    % ----------------------------------- >x ]{c b/m  
    m_abs = abs(m); sWi4+PAM0  
    rpowers = []; E/gfX   
    for j = 1:length(n) M} +s_h9  
        rpowers = [rpowers m_abs(j):2:n(j)]; `9A`pC  
    end r&~]6 U  
    rpowers = unique(rpowers); <<-BQ l~  
    6p.y/LMO  
    % Pre-compute the values of r raised to the required powers, ^KV:.up6  
    % and compile them in a matrix: |\)Y,~;P  
    % ----------------------------- (@bq@0g  
    if rpowers(1)==0 ET%F+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gj&5>brP  
        rpowern = cat(2,rpowern{:}); gb}ov* *  
        rpowern = [ones(length_r,1) rpowern]; pi/&WMZ<  
    else G}aM~,v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ml )<4@  
        rpowern = cat(2,rpowern{:}); VmZDU(M  
    end )"63g   
    Q,};O$h  
    % Compute the values of the polynomials: ![eipOX  
    % -------------------------------------- w,X J8+B  
    y = zeros(length_r,length(n)); 7UUu1"|a|  
    for j = 1:length(n) 3w/z$bj  
        s = 0:(n(j)-m_abs(j))/2; 2<d'!cm  
        pows = n(j):-2:m_abs(j); ( v$ i  
        for k = length(s):-1:1 6H0aHCM  
            p = (1-2*mod(s(k),2))* ... -WGlOpg0;  
                       prod(2:(n(j)-s(k)))/              ... GY"c1 KE$  
                       prod(2:s(k))/                     ... iaQFVROu  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2/x~w~3U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Wxi;Tq9C@_  
            idx = (pows(k)==rpowers); HaF&ooI5+  
            y(:,j) = y(:,j) + p*rpowern(:,idx); w*u.z(:a`  
        end fr8';Jm  
         }Q-Tw,j  
        if isnorm 'Hu+8,xA  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); },O7NSG<o  
        end BLm}mb#/{  
    end ?DY6V;&F@f  
    % END: Compute the Zernike Polynomials }$* z:E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |_a^+!P  
    x$pz(Q&v  
    % Compute the Zernike functions: bvT$/ (7  
    % ------------------------------ V-"#Kf9  
    idx_pos = m>0; ghk"XJ|  
    idx_neg = m<0; ft!D2M  
    s,M]f,T  
    z = y; u5`b")a  
    if any(idx_pos) "J `#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); y"H(F,(N  
    end A>*#Nw5L  
    if any(idx_neg) q~{O^,4S  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zJOyr"B'8  
    end \8k4v#wH  
    I~-sBMm(w  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) $6d5W=u$H  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ~SwGZ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated k~JTQh*,w  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive M0]J `fL@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /5Yl, P  
    %   and THETA is a vector of angles.  R and THETA must have the same 04a@  
    %   length.  The output Z is a matrix with one column for every P-value, Z[kVVE9b?  
    %   and one row for every (R,THETA) pair. i1Y<[s  
    % O44Fj)  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike |"}rC >+  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) r4]hcoU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) k?Njge6@  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 |#B)`r8  
    %   for all p. ZtpbKy!\$B  
    % XMLl>w2z  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^[q/w<_j~  
    %   Zernike functions (order N<=7).  In some disciplines it is {$C"yksr  
    %   traditional to label the first 36 functions using a single mode T5_rPz  
    %   number P instead of separate numbers for the order N and azimuthal \WZSY||C|_  
    %   frequency M. ] B>.}  
    % LE g#W  
    %   Example: c3O&sa V!  
    % o\nFSG kn  
    %       % Display the first 16 Zernike functions Qo80u? *  
    %       x = -1:0.01:1; F*y7 4j,  
    %       [X,Y] = meshgrid(x,x); mqiCn]8G  
    %       [theta,r] = cart2pol(X,Y); E .CG  
    %       idx = r<=1; yz%o?%@  
    %       p = 0:15; qh6Q#s>tH  
    %       z = nan(size(X)); ?%b#FXA  
    %       y = zernfun2(p,r(idx),theta(idx)); gc W'  
    %       figure('Units','normalized') [`1@`5SL-  
    %       for k = 1:length(p) mD,fxm{G  
    %           z(idx) = y(:,k); xBE}/F$ 45  
    %           subplot(4,4,k) cfHtUv  
    %           pcolor(x,x,z), shading interp +y 48.5  
    %           set(gca,'XTick',[],'YTick',[]) QPB ^%8  
    %           axis square 0 l+Jq  
    %           title(['Z_{' num2str(p(k)) '}']) 6N/6WrQEeg  
    %       end  y`pgJO  
    % N\fj[?f[  
    %   See also ZERNPOL, ZERNFUN. tl=e!  
    ?4_ME3$t  
    %   Paul Fricker 11/13/2006 0fN; L;v  
    @ b} -<~  
    'lOpoWDL  
    % Check and prepare the inputs: OS=~<ba  
    % ----------------------------- 43!E>mq  
    if min(size(p))~=1 ye4GHAm,p  
        error('zernfun2:Pvector','Input P must be vector.') _DYe<f.  
    end <4-g2.\  
    yxi*4R  
    if any(p)>35 3E!3kSh|  
        error('zernfun2:P36', ... t* =i8`8  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... w$jSlgUHy)  
               '(P = 0 to 35).']) tSVS ogGd  
    end C-^8;xd  
    c7]0 >nU;  
    % Get the order and frequency corresonding to the function number: <lRjh7  
    % ---------------------------------------------------------------- jT4 m(j  
    p = p(:); {gB9EGY  
    n = ceil((-3+sqrt(9+8*p))/2); s6Il3K f  
    m = 2*p - n.*(n+2); bj@f<f`  
    ~eXI}KhBw6  
    % Pass the inputs to the function ZERNFUN: x}OJ~Yk]  
    % ---------------------------------------- FW3uq^  
    switch nargin )hD77(c  
        case 3 (XV+aQ\A  
            z = zernfun(n,m,r,theta); |)[&V3+|  
        case 4 |J~A )Bw?  
            z = zernfun(n,m,r,theta,nflag); ?2K~']\S  
        otherwise UW{C`^?=B  
            error('zernfun2:nargin','Incorrect number of inputs.') 5 axt\  
    end }wC=p>zA  
    ~NIqO4 D  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) e_3B\59k  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. I:YE6${k!  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .+~9 vH  
    %   order N and frequency M, evaluated at R.  N is a vector of QM{B(zH  
    %   positive integers (including 0), and M is a vector with the pJ/{X=y  
    %   same number of elements as N.  Each element k of M must be a 5.lg*vh  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) u|(Iu}sE=  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is rfV{+^T;  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix v3cLU7bi?2  
    %   with one column for every (N,M) pair, and one row for every VI)hA ^ S  
    %   element in R. 1{G@'# (  
    % yjM!M|  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- f 2k~(@!h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ,t39~w  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ONLhQJCb  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Pxgal4{6  
    %   for all [n,m]. 0<nW nD,z  
    % c&"1Z/tR  
    %   The radial Zernike polynomials are the radial portion of the g ~%IA.$c  
    %   Zernike functions, which are an orthogonal basis on the unit WmE4TL^8?  
    %   circle.  The series representation of the radial Zernike >bg{  
    %   polynomials is G'Uq595'-  
    % /1.gv~`+  
    %          (n-m)/2 vX$|/74  
    %            __ 3lgD,_&  
    %    m      \       s                                          n-2s aUKa+"`S  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 'r} y{`3M  
    %    n      s=0 +B4i,]lCx  
    % UFeQ%oRa8  
    %   The following table shows the first 12 polynomials. %< Jj[F  
    % M+7jJ?n  
    %       n    m    Zernike polynomial    Normalization u89Q2\z~"M  
    %       --------------------------------------------- |2I/r$Q  
    %       0    0    1                        sqrt(2) 35YDP|XZb  
    %       1    1    r                           2 TIno"tc3  
    %       2    0    2*r^2 - 1                sqrt(6) j{H IdP  
    %       2    2    r^2                      sqrt(6) S~GS:E#  
    %       3    1    3*r^3 - 2*r              sqrt(8) W&2r{kCsQ  
    %       3    3    r^3                      sqrt(8) I3YSW  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) -90X^]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) *?o 'sTH  
    %       4    4    r^4                      sqrt(10) ?*cCn-|  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) `(~oZbErM  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) }jYVB|2  
    %       5    5    r^5                      sqrt(12) \_/dfmlIZ  
    %       --------------------------------------------- ][>-r&V  
    % b3q&CJ4|  
    %   Example: K^%ONultv  
    % 2=X.$&a  
    %       % Display three example Zernike radial polynomials I1JF2" {c  
    %       r = 0:0.01:1; //yz$d>JN  
    %       n = [3 2 5]; zn5|ewl@"  
    %       m = [1 2 1]; 'Ge8l%p  
    %       z = zernpol(n,m,r); qG#ZYcVec  
    %       figure #}[NleTVt  
    %       plot(r,z) H)5"<=]  
    %       grid on 8 LsJ}c  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') l^rQo_alk  
    % 66scBi_d  
    %   See also ZERNFUN, ZERNFUN2. =an 0PN  
    Xkf|^-n  
    % A note on the algorithm. a!, X@5  
    % ------------------------ \Z-Fu=8J8^  
    % The radial Zernike polynomials are computed using the series 2W;2._  
    % representation shown in the Help section above. For many special "fu@2y4^  
    % functions, direct evaluation using the series representation can % ejq|i7  
    % produce poor numerical results (floating point errors), because c+:^0&l  
    % the summation often involves computing small differences between ~zQxfl/  
    % large successive terms in the series. (In such cases, the functions ^_uCSA'X  
    % are often evaluated using alternative methods such as recurrence p-,Bq!aG$  
    % relations: see the Legendre functions, for example). For the Zernike , jCE hb  
    % polynomials, however, this problem does not arise, because the @R;&PR#5  
    % polynomials are evaluated over the finite domain r = (0,1), and MZ>Q Rf  
    % because the coefficients for a given polynomial are generally all BxB B](  
    % of similar magnitude. JG{`tTu  
    % !'>,37()  
    % ZERNPOL has been written using a vectorized implementation: multiple >txeo17Ba\  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Tj!rAMQk  
    % values can be passed as inputs) for a vector of points R.  To achieve fD%20P`.  
    % this vectorization most efficiently, the algorithm in ZERNPOL ~\ v"xV  
    % involves pre-determining all the powers p of R that are required to h/*@ML+bB8  
    % compute the outputs, and then compiling the {R^p} into a single ?B<.d8i  
    % matrix.  This avoids any redundant computation of the R^p, and S(_DR 8  
    % minimizes the sizes of certain intermediate variables. )g`~,3G  
    % X5+$:jq&  
    %   Paul Fricker 11/13/2006 N: 5 N}am  
    dyB@qh~H  
    LXf|n  
    % Check and prepare the inputs: j)#GoU=w  
    % ----------------------------- i_av_I-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =0SJf 3  
        error('zernpol:NMvectors','N and M must be vectors.') .d+zF,02Z  
    end SA?1*dw)  
    Nr`v|_U  
    if length(n)~=length(m) rnBp2'EM  
        error('zernpol:NMlength','N and M must be the same length.') y8 dOx=c  
    end 9rT"_d#  
    X#o;`QM  
    n = n(:); P[jh^!<j  
    m = m(:); T NF  
    length_n = length(n); )*aAkM  
    Wl]XOUZ  
    if any(mod(n-m,2)) {"db1Gbfg  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') So4#n7  
    end UkC'`NWF*  
    @)@tIhw  
    if any(m<0) rVp^s/A^;  
        error('zernpol:Mpositive','All M must be positive.') JX`>N(K4\  
    end l0tFj>q"  
    j_S3<wEJ  
    if any(m>n) k;r[m ,$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') X,D ]S@  
    end ..=lM:13|  
    %Lq}5zB  
    if any( r>1 | r<0 ) nPH\Lra  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ;s#]."v_=  
    end NWj4U3x  
    F1p|^hYDW  
    if ~any(size(r)==1) y(=0  
        error('zernpol:Rvector','R must be a vector.') ;Hb"SB  
    end T#HF! GH]  
    X7?j90tH  
    r = r(:); Cj J n  
    length_r = length(r); 7**zO3 H  
    n;y[%H!g  
    if nargin==4 S KGnx  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); #hXuGBZEI  
        if ~isnorm M{p9b E[j  
            error('zernpol:normalization','Unrecognized normalization flag.') ""h%RhcZ\  
        end Zt 1nH  
    else |I3&a=,  
        isnorm = false; qipS`:TER  
    end !. :b}t  
    3M>y.MS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ACF_;4%&  
    % Compute the Zernike Polynomials pE$*[IvQ'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1U ='"  
    y|3!E>Up  
    % Determine the required powers of r: ^[v>B@p*{  
    % ----------------------------------- |RDE/  
    rpowers = []; mFE7#OM  
    for j = 1:length(n) ,QLy }=N  
        rpowers = [rpowers m(j):2:n(j)]; jEK{47i v  
    end /K_*Drk>  
    rpowers = unique(rpowers); ;XXEvRk  
    Vc+~yh.)  
    % Pre-compute the values of r raised to the required powers, E&Sr+D aPD  
    % and compile them in a matrix: E cd~H+  
    % ----------------------------- ~O 4@b/!4  
    if rpowers(1)==0 TBgiA}|\D  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S}K-\[i?  
        rpowern = cat(2,rpowern{:}); 2t7=GA+j  
        rpowern = [ones(length_r,1) rpowern]; T%**:@}+  
    else $BOpjDV8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); NC|VZwQtm  
        rpowern = cat(2,rpowern{:}); w7~&Xxa/  
    end A64c,Uv  
    EpENhC0  
    % Compute the values of the polynomials: z0T6a15f!P  
    % -------------------------------------- %t$)sg]  
    z = zeros(length_r,length_n); ")w~pZE&+  
    for j = 1:length_n zF&_9VNk=c  
        s = 0:(n(j)-m(j))/2; =HMuAUa.  
        pows = n(j):-2:m(j); nDNK}O~'  
        for k = length(s):-1:1 >,f5 5  
            p = (1-2*mod(s(k),2))* ... E%$[*jZ  
                       prod(2:(n(j)-s(k)))/          ... <O{G&  
                       prod(2:s(k))/                 ... cN)noGkp  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ,;yaYF 6|/  
                       prod(2:((n(j)+m(j))/2-s(k))); %gTY7LIe1z  
            idx = (pows(k)==rpowers); &cf_?4  
            z(:,j) = z(:,j) + p*rpowern(:,idx); f1t?<=3Ek<  
        end Q|Nw @7$`  
         TaZlfe5z  
        if isnorm I2?g'tz  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); GA.cp*2 ~  
        end +^a@U^V  
    end R I]x=  
    Hlj3z3  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  %.;`0}b  
    NKS-G2 Y<P  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 \hT=U*dMR  
    ^\zf8kPti  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)