非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `TKD<&oL
function z = zernfun(n,m,r,theta,nflag) )9nElb2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. IO$z%r7
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #
'|'r+
% and angular frequency M, evaluated at positions (R,THETA) on the hsLzj\)6
% unit circle. N is a vector of positive integers (including 0), and !b|' Vp^U
% M is a vector with the same number of elements as N. Each element H}0dd"
% k of M must be a positive integer, with possible values M(k) = -N(k) jFG0`n}I
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [bQj,PZ&
% and THETA is a vector of angles. R and THETA must have the same $a;]_ Y
% length. The output Z is a matrix with one column for every (N,M) ^s/
% pair, and one row for every (R,THETA) pair. irBDGT~
% wdE?SD s
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +SXIZ`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !$qKb_#nC
% with delta(m,0) the Kronecker delta, is chosen so that the integral wFn[9_`*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xycH~ ?
% and theta=0 to theta=2*pi) is unity. For the non-normalized }OShT+xeX
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^(x^6d
% UH`h OJ?
% The Zernike functions are an orthogonal basis on the unit circle. $So%d9k
% They are used in disciplines such as astronomy, optics, and mz7l'4']+
% optometry to describe functions on a circular domain. u62 )QJE
% Kf,-4)
% The following table lists the first 15 Zernike functions. VrP}#3I
% pb;")Q'
% n m Zernike function Normalization ZFh+x@
% -------------------------------------------------- @$@mqHI}
% 0 0 1 1 y>VcgLIB
% 1 1 r * cos(theta) 2 /i|z.nNO
% 1 -1 r * sin(theta) 2 $6f\uuTU2"
% 2 -2 r^2 * cos(2*theta) sqrt(6) |PVt}*0"
% 2 0 (2*r^2 - 1) sqrt(3) 3eIr{xs
% 2 2 r^2 * sin(2*theta) sqrt(6) j0-McLc
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9L eNe}9v
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) uYO|5a<f~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /M0/-pV9
% 3 3 r^3 * sin(3*theta) sqrt(8) V2&^!#=s
% 4 -4 r^4 * cos(4*theta) sqrt(10) /!FWuRe^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rx~[Zs+*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) yYJY;".H
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /ONV5IkPy
% 4 4 r^4 * sin(4*theta) sqrt(10) &Y>zT9]$K
% -------------------------------------------------- x ,/TXTZ6
% 8s}J!/2
% Example 1: 5rxA<Gs
% 5CYo7mJ6+
% % Display the Zernike function Z(n=5,m=1) Y#V8(DTyH
% x = -1:0.01:1; Sq]pQ8
% [X,Y] = meshgrid(x,x); i\}:hU-U
% [theta,r] = cart2pol(X,Y); 0`#(Toe{B
% idx = r<=1; Xg<[fwW
% z = nan(size(X)); VAQ)Hc]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); &&8'0.M{
% figure !-]C;9Zd
% pcolor(x,x,z), shading interp $+=
<(*
% axis square, colorbar JyBp-ii
% title('Zernike function Z_5^1(r,\theta)') [`fI:ao|
% $ACx*e%
% Example 2: w; TkkDH
% !AN^ ,v]D
% % Display the first 10 Zernike functions U\<-mXv
% x = -1:0.01:1; {[G`Z9]z&-
% [X,Y] = meshgrid(x,x); lPq\=V
% [theta,r] = cart2pol(X,Y); qc-,+sn(
% idx = r<=1; wGKo.lt
% z = nan(size(X)); f_mhD dq
% n = [0 1 1 2 2 2 3 3 3 3];
.jg0a
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; >=,uau7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; x!7yU_ls`
% y = zernfun(n,m,r(idx),theta(idx)); /="HqBI#i
% figure('Units','normalized') eb:A1f4L
% for k = 1:10 mX# "+X|
% z(idx) = y(:,k); y2Bh?>pg
% subplot(4,7,Nplot(k)) BNm4k7
]M
% pcolor(x,x,z), shading interp {ShgJ;! Q
% set(gca,'XTick',[],'YTick',[]) _kraMQ>
% axis square AHh#Fx+K
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q
s(Bnb;
% end Zc5
:]]
% ,{}#8r` +*
% See also ZERNPOL, ZERNFUN2. J\co1kO9/
_GaJXWMbk
% Paul Fricker 11/13/2006 , |E$'
lJ
*YV
S|6bs
% Check and prepare the inputs: D0bnN1VP
% ----------------------------- x"B'zP
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4*H"Z(HP
error('zernfun:NMvectors','N and M must be vectors.') rzLd"`
end zQ)+/e(8
'ig, ATY
if length(n)~=length(m) [=M%
error('zernfun:NMlength','N and M must be the same length.') ]KK`5Dv|,e
end 649 !=
I44s(G1jl
n = n(:); %_)zWlN
m = m(:); Cnh|D^{s
if any(mod(n-m,2)) *o?i:LE]
error('zernfun:NMmultiplesof2', ... 1=GI&f2I
'All N and M must differ by multiples of 2 (including 0).') !p.^ITM3S
end C3 ;[e0.1b
Ej(2w Q
if any(m>n) ]#eh&jw
error('zernfun:MlessthanN', ... nYw\'c
'Each M must be less than or equal to its corresponding N.') :hqZPajE
end e1(h</M U2
n~r 9!m$<
if any( r>1 | r<0 ) BSUPS+@+
error('zernfun:Rlessthan1','All R must be between 0 and 1.') !C&%T]
end
nB@UKX
!k&)EWP?
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F'W>
8
error('zernfun:RTHvector','R and THETA must be vectors.') 4('JwZw\!
end K&`Awv
00<{:
r = r(:); 8I#D`yVKc
theta = theta(:); W'$kZ/%[
length_r = length(r); \HSicV#i
if length_r~=length(theta) Ol+Kp!ocY
error('zernfun:RTHlength', ... DdjCn`jqlf
'The number of R- and THETA-values must be equal.') uH{'gd,q8
end 3)E(RyQA3
F@SG((`
% Check normalization: ,x#ztdvr
% -------------------- S!dHNA:iU
if nargin==5 && ischar(nflag) /tKGwX]y
isnorm = strcmpi(nflag,'norm'); ~<O,Vs_C/
if ~isnorm h7W}OF_=y
error('zernfun:normalization','Unrecognized normalization flag.') tY_5Pz(@
end _wu*M
else 3 wt
isnorm = false; sBjXE>_#)
end `BT^a
=5
I'_v{k5ZI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zixEMi[8
% Compute the Zernike Polynomials Q"}s>]k3_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bymny>.M
Q1V2pP+=@
% Determine the required powers of r: /tC9G@Hl
% ----------------------------------- *\q8BZ
m_abs = abs(m); gGbI3^r#
rpowers = []; ;'1Apy
for j = 1:length(n) tgN92Q.i6T
rpowers = [rpowers m_abs(j):2:n(j)]; c E76L%O
end n2'|.y}Um:
rpowers = unique(rpowers); h6QWH
6VR[)T%
% Pre-compute the values of r raised to the required powers, n7iE8SK|k
% and compile them in a matrix: &o.iUk
% ----------------------------- -Bv12ymLG
if rpowers(1)==0 l>Av5g)
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mxL;;-
rpowern = cat(2,rpowern{:}); FAtWsk*pgY
rpowern = [ones(length_r,1) rpowern]; jgRCs.6
else DTy/jaK
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jsm0kz
rpowern = cat(2,rpowern{:}); }tR'Hz2
end n-OWwev)
d}% (jJ(I
% Compute the values of the polynomials: ptR
% -------------------------------------- {3 o%d:
y = zeros(length_r,length(n)); IwRQL%
for j = 1:length(n) <.$,`m,
s = 0:(n(j)-m_abs(j))/2; 4x]NUt
pows = n(j):-2:m_abs(j); 6Ct0hk4
for k = length(s):-1:1 VM;g+RRq
p = (1-2*mod(s(k),2))* ... .0
X$rX=
prod(2:(n(j)-s(k)))/ ... m/?h2McS
prod(2:s(k))/ ... <9N4"d!A
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;Jo*|pju
prod(2:((n(j)+m_abs(j))/2-s(k))); 3 2y[
idx = (pows(k)==rpowers); =ZMF ]|
y(:,j) = y(:,j) + p*rpowern(:,idx); |_I[1%&`N
end }200g_^
p">WK<N
if isnorm
2}!R
T
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); L9J;8+ge
end enPYj.*/0
end k+txb?
% END: Compute the Zernike Polynomials 3N3*`?5c<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ij,Yuo
B$`d&7I;D
% Compute the Zernike functions: !PI0oh
% ------------------------------ [oJ& J>U'
idx_pos = m>0; ?\d5;%YSr
idx_neg = m<0; d~/xGB`<
d'q&Lq
z = y; 'A1E^rl]=
if any(idx_pos) PHQcstW
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i&pMF O
end ChVY
Vx(
if any(idx_neg) )BpIxWd?
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Vy r]
x
end l]>!`'sJL
VLx T"]f
% EOF zernfun