切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11594阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 v&#=1Zb  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! h3udS{9 '8  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 kpQXnDm 2  
    function z = zernfun(n,m,r,theta,nflag) zHT22o56X  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,[j'OyR  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O0i)Iu(J7;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 4?vTuZ/ M  
    %   unit circle.  N is a vector of positive integers (including 0), and ]-7$wVQ<  
    %   M is a vector with the same number of elements as N.  Each element AlH\IP  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) >E:V7Fa  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e ; #"t  
    %   and THETA is a vector of angles.  R and THETA must have the same BPH-g\q  
    %   length.  The output Z is a matrix with one column for every (N,M) L)!9+!PKD  
    %   pair, and one row for every (R,THETA) pair. F(5(cr 7K  
    % `62iW3y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ck;>9>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Kj+=?R~}S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral wQnW2)9!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;n"Nv }<C  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized .0gF&>I}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b;AGw3SF  
    % 6(9S'~*'R  
    %   The Zernike functions are an orthogonal basis on the unit circle. o;#9$j7QP!  
    %   They are used in disciplines such as astronomy, optics, and B>!OW2q0D  
    %   optometry to describe functions on a circular domain. Oosr`e@S  
    % bL)7 /E  
    %   The following table lists the first 15 Zernike functions. W ^MF3  
    % q!sazVaDp  
    %       n    m    Zernike function           Normalization 6')pM&`t  
    %       -------------------------------------------------- FK2* O  
    %       0    0    1                                 1 |hlc#t ?  
    %       1    1    r * cos(theta)                    2 yN4K^#  
    %       1   -1    r * sin(theta)                    2 ;YYo^9Lh}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ohod)8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (/oHj^>3N`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2^*a$ OJ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D^Cpgha  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2L!wbeTb;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) [ BpZ{Ql  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p}r1@L s  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3a_=e B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ew9\Y R}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^@"EI|fsP  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x)h|!T=B~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) j\o<r0I  
    %       -------------------------------------------------- z3\WcW7|  
    % (H/2{##  
    %   Example 1: Qel2OI`b  
    % 1F*3K3T {  
    %       % Display the Zernike function Z(n=5,m=1) Rx}*I00  
    %       x = -1:0.01:1; v*pN~}5  
    %       [X,Y] = meshgrid(x,x); _$oN"pj  
    %       [theta,r] = cart2pol(X,Y); @5i m*ubzM  
    %       idx = r<=1; S*5hO) C  
    %       z = nan(size(X)); LrL ZlJf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 9MI~yIt`L  
    %       figure wTu_Am  
    %       pcolor(x,x,z), shading interp k /hD2tBLu  
    %       axis square, colorbar [lmghI!  
    %       title('Zernike function Z_5^1(r,\theta)') )Td;2  
    % &m8#^]*  
    %   Example 2: qVvQ9?  
    % V^  
    %       % Display the first 10 Zernike functions G(n e8L8  
    %       x = -1:0.01:1; AxsTB9/  
    %       [X,Y] = meshgrid(x,x); {Y\W&Edw%  
    %       [theta,r] = cart2pol(X,Y); %+=y!  
    %       idx = r<=1; ,/XeG`vk  
    %       z = nan(size(X)); }r+(Z.BHM  
    %       n = [0  1  1  2  2  2  3  3  3  3]; vzr?#FG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h}T+M BA%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; a (mgz&*  
    %       y = zernfun(n,m,r(idx),theta(idx)); Q"@x,8xW  
    %       figure('Units','normalized') {`Jr$*;  
    %       for k = 1:10 3 W%Bsqn  
    %           z(idx) = y(:,k); \E!a=cL!  
    %           subplot(4,7,Nplot(k)) 'UW(0 PXw  
    %           pcolor(x,x,z), shading interp EINjI:/D  
    %           set(gca,'XTick',[],'YTick',[]) 08+cNT  
    %           axis square lVw77bZ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) CXe2G5  
    %       end tJ_6dH8Y  
    % N>+s8L.?  
    %   See also ZERNPOL, ZERNFUN2. 3>+9Rru  
    =}$YZuzmU  
    %   Paul Fricker 11/13/2006 h8ikM&fl  
    /CE]7m,7~K  
    e Qz_,vTk  
    % Check and prepare the inputs: qId-v =L  
    % ----------------------------- U@6bH@v5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 06Irx^n  
        error('zernfun:NMvectors','N and M must be vectors.') t=K;/ 1  
    end >\/H2j  
    QXQ'QEG  
    if length(n)~=length(m) sM4Qu./  
        error('zernfun:NMlength','N and M must be the same length.') ek^=Z`  
    end ;j#(%U]Vp  
    o `]o(OP  
    n = n(:); BJ c'4>  
    m = m(:); E!,+#%O>  
    if any(mod(n-m,2)) V[w Y;wj  
        error('zernfun:NMmultiplesof2', ... w`N|e0G@  
              'All N and M must differ by multiples of 2 (including 0).') cEP!DUo  
    end a/n KKhXaM  
    0L ^WTq  
    if any(m>n) {hXIP`  
        error('zernfun:MlessthanN', ... 5Oa`1?C1  
              'Each M must be less than or equal to its corresponding N.') 9(\eL9^  
    end <3 b|Sk:T  
    [32]wgw+{1  
    if any( r>1 | r<0 ) .[@TC@W  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') R>r@I_  
    end n%SR5+N"  
    $,/;QP}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *Y4[YnkPE  
        error('zernfun:RTHvector','R and THETA must be vectors.') \hm;p  
    end C9,|G7~*q  
    c Nhy.Z~D  
    r = r(:); )@IDmz>  
    theta = theta(:); xb N)z  
    length_r = length(r); sULCYiT|Hn  
    if length_r~=length(theta) ?)Psf/  
        error('zernfun:RTHlength', ... xla64Qld  
              'The number of R- and THETA-values must be equal.') \1[=t+/  
    end aB=&XGV9  
    nB~hmE)  
    % Check normalization: ZQ%4]=w  
    % -------------------- 9*thqs3J#d  
    if nargin==5 && ischar(nflag) \),DW)  
        isnorm = strcmpi(nflag,'norm'); 5-=&4R\k  
        if ~isnorm #><P28m  
            error('zernfun:normalization','Unrecognized normalization flag.') I 3ZlKI  
        end r I-A)b4  
    else V!|:rwG2  
        isnorm = false; /K@_O\+;Q  
    end UdIl5P  
    !LG 5q/}&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% feSj3,<!  
    % Compute the Zernike Polynomials "vH>xBR[%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;Sc}e/WJj  
     3ih3O  
    % Determine the required powers of r: ~]d3 f  
    % ----------------------------------- ~6<'cun@x  
    m_abs = abs(m); Dc2U+U(J  
    rpowers = []; {\SJr:  
    for j = 1:length(n) b3zxiq x  
        rpowers = [rpowers m_abs(j):2:n(j)]; [i9.#*  
    end SZ;Is,VgU4  
    rpowers = unique(rpowers); 0xSWoz[i6~  
    <\9M+  
    % Pre-compute the values of r raised to the required powers, bm</qF'T6  
    % and compile them in a matrix: M6j!_0j  
    % ----------------------------- e"){B  
    if rpowers(1)==0 Bb~Q]V=x;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ib-)T7V`  
        rpowern = cat(2,rpowern{:}); Y]9AC  
        rpowern = [ones(length_r,1) rpowern]; cLZaQsS%  
    else e[>c>F^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GY%2EM(  
        rpowern = cat(2,rpowern{:}); wa)E.(x  
    end THOXs; k0  
    PQ#zF&gL9t  
    % Compute the values of the polynomials: lCX*Q{s22  
    % -------------------------------------- J%:D%=9 )  
    y = zeros(length_r,length(n)); )6t=Bel  
    for j = 1:length(n) 3YFbT Z  
        s = 0:(n(j)-m_abs(j))/2; k)a3j{{  
        pows = n(j):-2:m_abs(j); f3p)Q<H>`(  
        for k = length(s):-1:1 2i4&*& A  
            p = (1-2*mod(s(k),2))* ... S5,y!K]C~  
                       prod(2:(n(j)-s(k)))/              ... %mO.ur>21  
                       prod(2:s(k))/                     ... |([|F|"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... C{5bG=Sg~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); kdam]L:9  
            idx = (pows(k)==rpowers); w]% |^:  
            y(:,j) = y(:,j) + p*rpowern(:,idx); mF6 U{=  
        end TTfU(w%&P  
         wH<'*>/  
        if isnorm Jn+k$'6 %#  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >$g+Gx\v4  
        end /Cl=;^)  
    end ag7(nn0!  
    % END: Compute the Zernike Polynomials Y\e8oIYu7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H[u[3  
    B=R9K3f  
    % Compute the Zernike functions: O 8\wH  
    % ------------------------------ m j!P ]  
    idx_pos = m>0; ,lUroO^^  
    idx_neg = m<0; 3[a&|!Yw  
    s (hJ *  
    z = y; 0&W*U{0F\  
    if any(idx_pos) *=KX0%3  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `El)uTnuZ[  
    end SXJ]()L?[v  
    if any(idx_neg) 1p DL()t  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); v=Y) A?  
    end F s{}bQyQ  
    O^_$cq  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 0\X'a}8Bu  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ]CnqPLqL  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated X  *f le  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ,RYahu  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, c1 ~=   
    %   and THETA is a vector of angles.  R and THETA must have the same Bt?.8H6Y  
    %   length.  The output Z is a matrix with one column for every P-value, g:&V9~FR  
    %   and one row for every (R,THETA) pair. /yd<+on^  
    % )yyS59s  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike o<f#Zi  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) h{BO\^6x  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) F,NS:mE  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #R#o/@|  
    %   for all p. Sd\+f6x  
    % %(v<aEQtt  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 @0qDhv s  
    %   Zernike functions (order N<=7).  In some disciplines it is )h&*b9[B=  
    %   traditional to label the first 36 functions using a single mode 4or8fG  
    %   number P instead of separate numbers for the order N and azimuthal )`V__^  
    %   frequency M. i4p2]Nr t  
    % ->0OqVQA  
    %   Example: )tB1jcI;  
    % 2{gd4Kt6.  
    %       % Display the first 16 Zernike functions  (r!d4  
    %       x = -1:0.01:1; Cjn)`Q8  
    %       [X,Y] = meshgrid(x,x); 2TZ+R7B?  
    %       [theta,r] = cart2pol(X,Y); 'aAay*1  
    %       idx = r<=1; iJsa;|2/  
    %       p = 0:15; noLb  
    %       z = nan(size(X)); +'{@Xe}  
    %       y = zernfun2(p,r(idx),theta(idx)); S^/:O.X)c,  
    %       figure('Units','normalized') {z j<nu  
    %       for k = 1:length(p) zr1,A#BV  
    %           z(idx) = y(:,k); X"z!52*3]  
    %           subplot(4,4,k) ; ^cc-bLvF  
    %           pcolor(x,x,z), shading interp P:3%#d~q  
    %           set(gca,'XTick',[],'YTick',[]) 50Kv4a"  
    %           axis square uJX(s6["=  
    %           title(['Z_{' num2str(p(k)) '}']) 320g!r  
    %       end UB7H`)C}  
    % (8?5REz  
    %   See also ZERNPOL, ZERNFUN. /[|ODfY  
    h4 X>  
    %   Paul Fricker 11/13/2006 R8K ?! Z  
    &8^1:CcE  
    ~ ""?:  
    % Check and prepare the inputs: Dqu][~oQ  
    % ----------------------------- Jc74A=sT  
    if min(size(p))~=1 0u7\*Iy  
        error('zernfun2:Pvector','Input P must be vector.') nOE 1bf^l  
    end hV6=-QL*B  
    TM1D|H  
    if any(p)>35 ^^m3 11=  
        error('zernfun2:P36', ... mEM/}]2  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... a!?&8$^<  
               '(P = 0 to 35).']) V.8pxD5 s  
    end >FRJvZ6  
    Z%uDz3I\Q"  
    % Get the order and frequency corresonding to the function number: ~=pAy>oV  
    % ---------------------------------------------------------------- g\n0v~T+  
    p = p(:); s,2gd'  
    n = ceil((-3+sqrt(9+8*p))/2); B,]:<1l~  
    m = 2*p - n.*(n+2); fsxZQ=-PW  
    Fm3f/]>k#_  
    % Pass the inputs to the function ZERNFUN: U $ bLt  
    % ---------------------------------------- g^qbd$}  
    switch nargin :.k)!  
        case 3 |,G=k,?_p  
            z = zernfun(n,m,r,theta); '/@] V  
        case 4 J|Xu]fg0  
            z = zernfun(n,m,r,theta,nflag); " ~X;u8m  
        otherwise >[U.P)7;  
            error('zernfun2:nargin','Incorrect number of inputs.') V L&5TZtz  
    end (6WSQqp  
    PilV5Gg  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) #n[1%8l,  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. qC%[J:RwF  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of P 3CzX48^  
    %   order N and frequency M, evaluated at R.  N is a vector of njk1x  
    %   positive integers (including 0), and M is a vector with the P0En&g+~  
    %   same number of elements as N.  Each element k of M must be a bwm?\l.A  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) PKx ewd  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &d`z|Gx9  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix kUdl2["MZ  
    %   with one column for every (N,M) pair, and one row for every B3P#p^  
    %   element in R. ~[CtsCiQ  
    % E/MNz}+  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- JVORz-uBs  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %>cl0W3x  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =.]>,N`C  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ?`nF"u>  
    %   for all [n,m]. H8ws6}C  
    % }Ot I8;>  
    %   The radial Zernike polynomials are the radial portion of the =!G3YZ  
    %   Zernike functions, which are an orthogonal basis on the unit Ef1R?<  
    %   circle.  The series representation of the radial Zernike fDn|o"  
    %   polynomials is +n ${6/  
    % -,;Iob56!  
    %          (n-m)/2 6!,Am^uXM  
    %            __ C^ hHt,&  
    %    m      \       s                                          n-2s `FP)-^A8  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 3q>6gaTv  
    %    n      s=0 _d$0(  
    % uF!3a$4]  
    %   The following table shows the first 12 polynomials. hm%'k~  
    % R|%R-J]  
    %       n    m    Zernike polynomial    Normalization a:o Z5PX=  
    %       --------------------------------------------- K8`M~P.  
    %       0    0    1                        sqrt(2) [I;5V=bKW  
    %       1    1    r                           2 ;BEg"cm  
    %       2    0    2*r^2 - 1                sqrt(6) i4Y_5  
    %       2    2    r^2                      sqrt(6) b"ypS7 _  
    %       3    1    3*r^3 - 2*r              sqrt(8) <bwsK,C  
    %       3    3    r^3                      sqrt(8) iI[Z|"a21  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) H:X=v+W  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) wo>srZs  
    %       4    4    r^4                      sqrt(10) wp!<u %  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ]U]22I'+$2  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 3gW4\2|T  
    %       5    5    r^5                      sqrt(12) |kwkikGQS  
    %       --------------------------------------------- i>9/vwe  
    % y@;4F n/  
    %   Example: 8 oHyNo  
    % }LH>0v_<Y  
    %       % Display three example Zernike radial polynomials JD^&d~n_  
    %       r = 0:0.01:1; G\\zk  
    %       n = [3 2 5]; BX|+"AeF  
    %       m = [1 2 1]; aW8Bx\q  
    %       z = zernpol(n,m,r); J~5VL |ca  
    %       figure `eIX*R   
    %       plot(r,z) ZDZPJp,  
    %       grid on +w-UK[p  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ~RVx~hh  
    % 2kTLj2 @o,  
    %   See also ZERNFUN, ZERNFUN2. &(fB+VNrOH  
    zaX!f ~;"  
    % A note on the algorithm. j:%~:  
    % ------------------------  0gBD  
    % The radial Zernike polynomials are computed using the series H( `^1  
    % representation shown in the Help section above. For many special IB x?MU#.  
    % functions, direct evaluation using the series representation can \ A\a=A[  
    % produce poor numerical results (floating point errors), because U9;C#9E  
    % the summation often involves computing small differences between _wWh7'u~G  
    % large successive terms in the series. (In such cases, the functions 4-`C !q  
    % are often evaluated using alternative methods such as recurrence 0@rrY  
    % relations: see the Legendre functions, for example). For the Zernike Aa;R_Jz  
    % polynomials, however, this problem does not arise, because the A2z%zMlZc  
    % polynomials are evaluated over the finite domain r = (0,1), and `zHtfox!  
    % because the coefficients for a given polynomial are generally all k/vE|  
    % of similar magnitude. Z8$@}|jN  
    % Ga-AhP  
    % ZERNPOL has been written using a vectorized implementation: multiple x.r~e)x=  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] OHzI!,2]  
    % values can be passed as inputs) for a vector of points R.  To achieve %-+lud  
    % this vectorization most efficiently, the algorithm in ZERNPOL ^f{+p*i}:  
    % involves pre-determining all the powers p of R that are required to uXuMt a* Y  
    % compute the outputs, and then compiling the {R^p} into a single >2 gemTy  
    % matrix.  This avoids any redundant computation of the R^p, and M:OY8=V  
    % minimizes the sizes of certain intermediate variables. [{_JO+)+n  
    % QQKvy0?1  
    %   Paul Fricker 11/13/2006 ZD1UMB0$4  
    {A4"KX(U  
    raGov`  
    % Check and prepare the inputs: 9rX[z :  
    % ----------------------------- VrhG=CK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '$~9~90?Z  
        error('zernpol:NMvectors','N and M must be vectors.') EI2V<v  
    end ?Zu=UVb  
    $Q1:>i@I|g  
    if length(n)~=length(m) oUEpzv,J  
        error('zernpol:NMlength','N and M must be the same length.') GmN} +(  
    end 8 vB~1tl;  
    $%VFk53I  
    n = n(:); ]yN]^% PYH  
    m = m(:); ;$(a+?  
    length_n = length(n); >`8r52  
    *J@2A)ZDv0  
    if any(mod(n-m,2)) 1i9}mzy%  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') &|xN=U/  
    end eKpH|S!x U  
    RNuOwZ1m  
    if any(m<0) .l5y !?  
        error('zernpol:Mpositive','All M must be positive.') 8QDRlF:;<  
    end cS,(HLO91  
    ,;C92XY  
    if any(m>n) "8VCXD  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?<,9X06dP  
    end =-{+y(<"r  
    ?s(%3_h  
    if any( r>1 | r<0 ) t#oY|G3O}  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Z=DAA+T`  
    end !1!;}uzt  
    ]*U\ gm%  
    if ~any(size(r)==1) qev1bBW  
        error('zernpol:Rvector','R must be a vector.') =0`"T!1  
    end #"%oz^~\  
    pox\Gu~.0  
    r = r(:); ? )-*&1cv  
    length_r = length(r); V;ZyAp  
    /iNCb&[  
    if nargin==4 7Q} P}9n  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 4(2}O-~  
        if ~isnorm yInW?3  
            error('zernpol:normalization','Unrecognized normalization flag.') b&~rZ  
        end 83:m 7;  
    else A/%K=H?  
        isnorm = false; ~R7rIP8Wr  
    end 2pH2s\r<UJ  
    z}yntY]n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J`;G9'n2  
    % Compute the Zernike Polynomials $@+\_f'bU>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pq+Gsu1^  
    &CF74AN#  
    % Determine the required powers of r: lh3%2Dq$  
    % ----------------------------------- WZdA<<,:o  
    rpowers = []; Lo @mQ  
    for j = 1:length(n) )7c\wAs  
        rpowers = [rpowers m(j):2:n(j)]; qS>P,>C  
    end UL$^zR3%d  
    rpowers = unique(rpowers); "m0>u,HmI  
    @~'c(+<3  
    % Pre-compute the values of r raised to the required powers, rPkV=9ull,  
    % and compile them in a matrix: #JeZA0r5  
    % ----------------------------- KWCA9.w4q  
    if rpowers(1)==0 AnG/A!G  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CT3wd?)z`  
        rpowern = cat(2,rpowern{:}); "T?%4^:g  
        rpowern = [ones(length_r,1) rpowern]; o;M"C[  
    else fyYT#r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W@AZ<(RI:  
        rpowern = cat(2,rpowern{:}); !0 `44Gbq  
    end 5W>i'6*  
     nsij;C  
    % Compute the values of the polynomials: 2!cP[ Ck  
    % -------------------------------------- NtkEb :  
    z = zeros(length_r,length_n); 6gY5v @!w  
    for j = 1:length_n a"EP`  
        s = 0:(n(j)-m(j))/2; =B4mi.;@i  
        pows = n(j):-2:m(j); LR]P?  
        for k = length(s):-1:1 HviL4iO  
            p = (1-2*mod(s(k),2))* ... @fRB0m"3  
                       prod(2:(n(j)-s(k)))/          ... v)!Rir5  
                       prod(2:s(k))/                 ... 3X89mIDr  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ae{% * \J  
                       prod(2:((n(j)+m(j))/2-s(k))); Ex^7`-2,B  
            idx = (pows(k)==rpowers); Q?L-6]pg  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Ui@Q&%b  
        end 6Y)'p .+g  
         E).N u  
        if isnorm *I(>[m!  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); @sav8 ]  
        end {jcrTjmxe  
    end UMpC2)5  
    YDyOhv  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  jw?/@(AC6  
    k(+ EY%  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 TUHC[#Vb?  
    <k-&Lh:o3  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)