非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Z=0iPy,m>
function z = zernfun(n,m,r,theta,nflag) )x y9X0
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. UzXDi#Ky
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HW^{ ;'kH~
% and angular frequency M, evaluated at positions (R,THETA) on the oC5gME"2
% unit circle. N is a vector of positive integers (including 0), and t!NrB X
% M is a vector with the same number of elements as N. Each element r#ks>s
% k of M must be a positive integer, with possible values M(k) = -N(k) }o~Tw?z-|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, L!`*R)I45
% and THETA is a vector of angles. R and THETA must have the same _.u~)Q`6
% length. The output Z is a matrix with one column for every (N,M) RJQ/y3
% pair, and one row for every (R,THETA) pair. (L]T*03#
% w;@`Yi.WQ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4&#vU(-H
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 77)OW$G
% with delta(m,0) the Kronecker delta, is chosen so that the integral mm3zQ!2j.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :k Rv
% and theta=0 to theta=2*pi) is unity. For the non-normalized A;K{ &x
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FA5k45wL
% QSO5 z2|
% The Zernike functions are an orthogonal basis on the unit circle. KB$ vQ@N
% They are used in disciplines such as astronomy, optics, and LPtx|Sx![
% optometry to describe functions on a circular domain. u0<d2Y
% <6~/sa4GN
% The following table lists the first 15 Zernike functions. {6REfY
c
% w; yar=n
% n m Zernike function Normalization rCV$N&rK
% -------------------------------------------------- GA({r i
% 0 0 1 1 J$o[$G_Z
% 1 1 r * cos(theta) 2 ,Gf+U7'K
% 1 -1 r * sin(theta) 2 !&W"f#_Z
% 2 -2 r^2 * cos(2*theta) sqrt(6) uOy\{5s8
% 2 0 (2*r^2 - 1) sqrt(3) "Wzij&WkQ
% 2 2 r^2 * sin(2*theta) sqrt(6) pP=_@3 D
% 3 -3 r^3 * cos(3*theta) sqrt(8) U`},)$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) C`=`Ce~|d
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (cbB%
% 3 3 r^3 * sin(3*theta) sqrt(8) O% j,:t'"
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;tZ}i4Ud
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BbXmT"@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) $\=6."R5<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &q kl*#]
% 4 4 r^4 * sin(4*theta) sqrt(10) dA3`b*nC
% --------------------------------------------------
iX&Z
% Br?++\
% Example 1: ZVCv(J
% 5k!(#@a_T
% % Display the Zernike function Z(n=5,m=1) kr &:;
% x = -1:0.01:1; @DjG?yLK$
% [X,Y] = meshgrid(x,x); 7]0\[9DyJ
% [theta,r] = cart2pol(X,Y); 5Lo==jHif
% idx = r<=1; -0[>}!l=G
% z = nan(size(X)); ^+.e5roBKj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); EV;;N
% figure 7ipY*DT8
% pcolor(x,x,z), shading interp ?L.p9o-S0
% axis square, colorbar ixUiXP
% title('Zernike function Z_5^1(r,\theta)') >Kqj{/SWK
% o>!~*b';g,
% Example 2: 6r?cpJV{
% e3bAT.P
% % Display the first 10 Zernike functions s`dkEaS
% x = -1:0.01:1; B@:XC&R^
% [X,Y] = meshgrid(x,x); wZ#~+ }T
% [theta,r] = cart2pol(X,Y); TO8\4p*tE
% idx = r<=1; J^e|"0d
% z = nan(size(X)); ,&
{5,=
% n = [0 1 1 2 2 2 3 3 3 3]; 4%Wn}@
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *PA1iNdKS
% Nplot = [4 10 12 16 18 20 22 24 26 28]; =h1 QN
% y = zernfun(n,m,r(idx),theta(idx)); 2T{-J!k
% figure('Units','normalized') ^Ypb"Wx8
% for k = 1:10 Rg!aKdDl$
% z(idx) = y(:,k); a|^-z|.
% subplot(4,7,Nplot(k)) %[31ZFYB
% pcolor(x,x,z), shading interp y0Q/B|&[
% set(gca,'XTick',[],'YTick',[]) Yqj.z| }Nb
% axis square }@t'rK[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F'T=
Alf
% end N*c?Er@8U
% {mq$W
% See also ZERNPOL, ZERNFUN2. bl QzVp-
88X*:Kf?:
% Paul Fricker 11/13/2006 fuwp p
XzTH,7[n
0Ci"tA3"
% Check and prepare the inputs: GqF.T#|
% ----------------------------- wr6xuoH
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `'{%szmD
error('zernfun:NMvectors','N and M must be vectors.') 5d>YE
end .$T:n[@
"$wPq@
if length(n)~=length(m) w[n>4?"{
error('zernfun:NMlength','N and M must be the same length.') 1Tk\n
end )}g4Rvr
%W|Zj QI^
n = n(:); mk3e^,[A
m = m(:); Z6
|'k:R8
if any(mod(n-m,2))
qCFXaj
error('zernfun:NMmultiplesof2', ... d$C|hT
'All N and M must differ by multiples of 2 (including 0).') ;),O*Z|"v
end 0jx~_zq-j
OrqJo!FEg{
if any(m>n) 8f`b=r(a>
error('zernfun:MlessthanN', ... %l$&_xV-
'Each M must be less than or equal to its corresponding N.') "u>sS
end r:\ 5/0(
Wy-quq03"&
if any( r>1 | r<0 ) b"3T(#2<*
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7XI4=O};&%
end X9BBnZ
i{x0#6_Y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9tW.}5V
error('zernfun:RTHvector','R and THETA must be vectors.') B*~Bm.
end _WkcJe`
NCh(-E
r = r(:); 9;WOqBD
theta = theta(:); \:)o'-
length_r = length(r); }\qdow-
if length_r~=length(theta) g|*eN{g]uE
error('zernfun:RTHlength', ... f0'Wq^^
'The number of R- and THETA-values must be equal.') H\>I&gC'
end 4Xho0lO&
#YMp,i
% Check normalization: GP
kCgb(
% --------------------
vCe<-k
if nargin==5 && ischar(nflag) <("w'd}
isnorm = strcmpi(nflag,'norm'); L5P}%1 _
if ~isnorm mZJzBYM)
error('zernfun:normalization','Unrecognized normalization flag.') B*?PB]
end 2A;[Ek6{q
else uz2s- ,
isnorm = false; 7%x+7
end uM6!RR!~
V# %spW
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'ah0IYe
% Compute the Zernike Polynomials 2 g8P$+;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yt<PKs#E
a9_KQ=&CI
% Determine the required powers of r: Tsp-]-)
% ----------------------------------- ~O7(0RsCN
m_abs = abs(m); %H~gN9Vn#@
rpowers = []; )'CEWc%
for j = 1:length(n) zjZTar1Re
rpowers = [rpowers m_abs(j):2:n(j)]; :NyE d<'
end ]<?)(xz
rpowers = unique(rpowers); ZvKMRW
4gNRln-
% Pre-compute the values of r raised to the required powers, ~0{Kga
% and compile them in a matrix: )GKgK;=~
% ----------------------------- n^)9QQ
if rpowers(1)==0 _Cs}&Bic_
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -Dm.z16
rpowern = cat(2,rpowern{:}); ">&:(<
rpowern = [ones(length_r,1) rpowern]; 1@dx(_
else ~J{{n_G{
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); TRok4uc
rpowern = cat(2,rpowern{:}); :P1c>:j[
end #iDFGkK/
A>2p/iMc
% Compute the values of the polynomials: E,:pIw
% -------------------------------------- @O @yJ{(I
y = zeros(length_r,length(n)); sYP@>tHC
for j = 1:length(n) Xkm2C)
s = 0:(n(j)-m_abs(j))/2; kw}1 CXD
pows = n(j):-2:m_abs(j); <\EfG:e
for k = length(s):-1:1 (:x"p{
p = (1-2*mod(s(k),2))* ... i)3\jO0&GU
prod(2:(n(j)-s(k)))/ ... oA%[x
prod(2:s(k))/ ... i?=.;
0[|
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... x7@HPf
prod(2:((n(j)+m_abs(j))/2-s(k))); * v]UgPk
idx = (pows(k)==rpowers); Y\|J1I,Z4
y(:,j) = y(:,j) + p*rpowern(:,idx); "A+F&C>
end w8ld*z
-y.AJ~T
if isnorm k4rBS
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,e_#
end wO%:WL$5
end /CE d14.
% END: Compute the Zernike Polynomials = lD]sk
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O3:
dOL/C
<]^D({`
% Compute the Zernike functions: BAHx7x#(
% ------------------------------ S$WM&9U
idx_pos = m>0; c10).zZ
idx_neg = m<0; lHqx}n@e
A$6b=2hc>
z = y; 9-6_:N>
if any(idx_pos) "6QMa,)D
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V,5}hQJ
F
end ~Xw?>&
if any(idx_neg) .&