非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .L+6 $8m
function z = zernfun(n,m,r,theta,nflag) x" 7H5<
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. t Cw<Ip
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O8f?; ]
% and angular frequency M, evaluated at positions (R,THETA) on the dR
K?~1
% unit circle. N is a vector of positive integers (including 0), and CVDV)#JA
% M is a vector with the same number of elements as N. Each element -TLlwxc^%
% k of M must be a positive integer, with possible values M(k) = -N(k) Dxtp2wu%t
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, MO[2~`,Q!
% and THETA is a vector of angles. R and THETA must have the same HUcq%.
% length. The output Z is a matrix with one column for every (N,M) !d'GE`w T
% pair, and one row for every (R,THETA) pair. \h+AXs<j
% )tG\vk=@
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +|*IZ:w)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8aZ=?_gvT
% with delta(m,0) the Kronecker delta, is chosen so that the integral nz%DM<0$
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, k3~}7]O)
% and theta=0 to theta=2*pi) is unity. For the non-normalized @<,X0S
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '-wj9OU
% FOb0uj=(v
% The Zernike functions are an orthogonal basis on the unit circle. %]\kgRr
% They are used in disciplines such as astronomy, optics, and __uA}fZp
% optometry to describe functions on a circular domain. CZ8KEBl
% G3txj
% The following table lists the first 15 Zernike functions. XWnVgY s
% bT</3>+C
% n m Zernike function Normalization >d@&2F TO
% -------------------------------------------------- |U~<3.:m:
% 0 0 1 1 U1Q:= yD
% 1 1 r * cos(theta) 2 GXcJ< v
% 1 -1 r * sin(theta) 2 iyN:%ofh
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~W*FCG#E
% 2 0 (2*r^2 - 1) sqrt(3) 0*VWzH
% 2 2 r^2 * sin(2*theta) sqrt(6) `K*Q5n
% 3 -3 r^3 * cos(3*theta) sqrt(8) T
_r:4JS
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Y2|#V#
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) JELTo u
% 3 3 r^3 * sin(3*theta) sqrt(8) rUwZMli
% 4 -4 r^4 * cos(4*theta) sqrt(10) }q`ts=dlGt
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1Vsz4P"O $
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ><RpEnWZ<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -M~8{buxv
% 4 4 r^4 * sin(4*theta) sqrt(10) j~"Q3P;V
% -------------------------------------------------- YD<:,|H
% >~#yu&*D
% Example 1: Ha(c'\T(\
% @X%C>iYa9
% % Display the Zernike function Z(n=5,m=1) E{`kaWmC&~
% x = -1:0.01:1; _uWpJhCT
% [X,Y] = meshgrid(x,x); Q`~jw>x
% [theta,r] = cart2pol(X,Y); Amp#GR1CA
% idx = r<=1; v5/~-uRL%
% z = nan(size(X)); ,%6P0#-
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ;m0~L=w
% figure -O1>|y2rU
% pcolor(x,x,z), shading interp .>q8W
% axis square, colorbar QaS1Dh
% title('Zernike function Z_5^1(r,\theta)') 2^Eg9y'
% #[,IsEpDO1
% Example 2: # Nk;4:[
% NYt&@Z}]
% % Display the first 10 Zernike functions 4Fa~Aog
% x = -1:0.01:1; %!]@J[*1
% [X,Y] = meshgrid(x,x); E8!e:l
=Q
% [theta,r] = cart2pol(X,Y); B+Rm>^CBm
% idx = r<=1; Mh~q//
% z = nan(size(X)); 81](T<
% n = [0 1 1 2 2 2 3 3 3 3]; ^({})T0wu
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Z"Zmo>cV4
% Nplot = [4 10 12 16 18 20 22 24 26 28]; .O74V~T
% y = zernfun(n,m,r(idx),theta(idx)); E08klC0
% figure('Units','normalized') G(Lzf(
% for k = 1:10 \O}E7-
% z(idx) = y(:,k); FI[A[*fi
% subplot(4,7,Nplot(k)) 4<9=5 q]
% pcolor(x,x,z), shading interp b $'FvZbk
% set(gca,'XTick',[],'YTick',[]) D~biKrg?=
% axis square LE&RY[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ={_C&57N1
% end ;l4[%xld
% :X0k]p
% See also ZERNPOL, ZERNFUN2. 2!0c4a^z
wi;Br[d
% Paul Fricker 11/13/2006 4 kn|^
VE#Wb7
_+p4Wvu~0
% Check and prepare the inputs: }e!x5g
% ----------------------------- zxMXXm;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'GB.UKlR
error('zernfun:NMvectors','N and M must be vectors.') #J@[Wd
end RzxNbeki[W
yQU_>_!n
if length(n)~=length(m) t'?.8}?)I&
error('zernfun:NMlength','N and M must be the same length.') Mx&&0#;r
end 0M*Z'n
+
T3~k>"W
n = n(:); t|a2;aq_
m = m(:); OPwtV9%
if any(mod(n-m,2)) (^s>m,h
error('zernfun:NMmultiplesof2', ... MTsM]o
'All N and M must differ by multiples of 2 (including 0).') >go,K{cK6
end <nE>XAI_7
Hcl(3>Jn2
if any(m>n) RzBF~2 >i
error('zernfun:MlessthanN', ... &atuK*W>
'Each M must be less than or equal to its corresponding N.') (gy#js#
end ,.rs(5.z8/
Z9:-rcr
if any( r>1 | r<0 ) z,Medw6[
error('zernfun:Rlessthan1','All R must be between 0 and 1.') qo p^;~
end e]`[yf
d_CKP"TA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?h.wK
error('zernfun:RTHvector','R and THETA must be vectors.') h^?\xm|
end Gnf~u[T6
yGWxpzmRS
r = r(:); "*m_> IU
theta = theta(:); m4aB*6<lq
length_r = length(r); u2[iM d
if length_r~=length(theta) Ge2q%
error('zernfun:RTHlength', ... I`p+Qt
'The number of R- and THETA-values must be equal.') O]lSWEe
end Ai:BEPKe
i'4B3
% Check normalization: (}a8"]Z
% -------------------- {wO3<9
if nargin==5 && ischar(nflag) u\ #"L
isnorm = strcmpi(nflag,'norm'); PfreAEv,
if ~isnorm +,2:g}5
error('zernfun:normalization','Unrecognized normalization flag.') V@Rrn <l
end cVubb}ou
else vk+VP 1D
isnorm = false; h?rp|uPQ
end _(Sa4Vb=Q6
+g` 'J$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #z&&M"*a|
% Compute the Zernike Polynomials r
YogW!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hn^<;av=
#1`-*.u
% Determine the required powers of r: *FC=X) _&W
% ----------------------------------- L%BNz3:Dt
m_abs = abs(m); k40* e\
rpowers = []; 2r!s*b\Ix
for j = 1:length(n) <0H"|:W>I]
rpowers = [rpowers m_abs(j):2:n(j)]; 0ZBJ~W
end <\Eh1[F
rpowers = unique(rpowers); ,RJtm%w
MNC*Glj=
% Pre-compute the values of r raised to the required powers, "B=
% and compile them in a matrix: fG}tMSI
% ----------------------------- ,8:(OB|a
if rpowers(1)==0 %<E$,w>
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N
F2/B#q
rpowern = cat(2,rpowern{:}); 'SCidN(n
rpowern = [ones(length_r,1) rpowern]; LO
<
else ;ado0-VQi'
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hCCiD9gz
rpowern = cat(2,rpowern{:}); vY%d
end 5|l* `J)
{U!8|(
% Compute the values of the polynomials: <%maDM^_\(
% -------------------------------------- qp/v^$EA
y = zeros(length_r,length(n)); .C&ktU4
for j = 1:length(n) CZ(/=3,3n
s = 0:(n(j)-m_abs(j))/2; 0/!dUWdKH
pows = n(j):-2:m_abs(j); ? i( %
for k = length(s):-1:1
l7W 6qNB
p = (1-2*mod(s(k),2))* ... 7bk%mQk
prod(2:(n(j)-s(k)))/ ... 0}$Hi
prod(2:s(k))/ ... 5!l0zLQPo
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F_;vO%}
prod(2:((n(j)+m_abs(j))/2-s(k))); nyBJb(5"B
idx = (pows(k)==rpowers); J13>i7]L%
y(:,j) = y(:,j) + p*rpowern(:,idx); L%Ow#.[C2
end c%&:6QniZ
LM}Ib.
if isnorm sA'6ty
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )+}]+xRWGj
end T(e!_VY|m
end c}y [[EX
% END: Compute the Zernike Polynomials I3,= 0z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c:-!'l$ !
!|O~$2O@
% Compute the Zernike functions: V#cqRE3XNi
% ------------------------------ U}MXT<6
idx_pos = m>0; 5$wpL(:R(
idx_neg = m<0; JS*m65e
bKrhIU[
z = y; 3jlh}t>$l
if any(idx_pos) h&Efg