非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p+D6Z'B
function z = zernfun(n,m,r,theta,nflag) !T(Omve)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. l#.,wOO{
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -{SiK
% and angular frequency M, evaluated at positions (R,THETA) on the M:f=JuAx
% unit circle. N is a vector of positive integers (including 0), and 80>!qG
% M is a vector with the same number of elements as N. Each element *%BI*p
% k of M must be a positive integer, with possible values M(k) = -N(k) R*C+Yk)Tkt
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "
CoR?[,x
% and THETA is a vector of angles. R and THETA must have the same )Dpt<}}\
% length. The output Z is a matrix with one column for every (N,M) g}KZL-p4\m
% pair, and one row for every (R,THETA) pair. xmx;tq
% g$LwXfg
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @&yj7-]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '
uw&f;/E
% with delta(m,0) the Kronecker delta, is chosen so that the integral TBT*j&!L
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #vwXx r
% and theta=0 to theta=2*pi) is unity. For the non-normalized HN@)/5BY
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6^u(PzlA|~
% s\R?@
% The Zernike functions are an orthogonal basis on the unit circle. Yk&{VXU<
% They are used in disciplines such as astronomy, optics, and 0lN8#k>H
% optometry to describe functions on a circular domain. xhS/X3<th
% |%;txD
% The following table lists the first 15 Zernike functions. >vy+U
% XnOl*#P
% n m Zernike function Normalization qEz'l'%(
% -------------------------------------------------- TvwIro
% 0 0 1 1 HE'8
% 1 1 r * cos(theta) 2 ibw;BU
% 1 -1 r * sin(theta) 2 ZfikNQU9r
% 2 -2 r^2 * cos(2*theta) sqrt(6) 7?] p\`
% 2 0 (2*r^2 - 1) sqrt(3) RVx<2,['
% 2 2 r^2 * sin(2*theta) sqrt(6) Ma#-'J
% 3 -3 r^3 * cos(3*theta) sqrt(8) $c47cJO)W
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #::vMnT
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <2d@\"AoHE
% 3 3 r^3 * sin(3*theta) sqrt(8) z(eAwmuli
% 4 -4 r^4 * cos(4*theta) sqrt(10) !{;RtUPz*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vrh],xK7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #Qd3A
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0n=E.qZ9c
% 4 4 r^4 * sin(4*theta) sqrt(10) "FS.&&1(
% -------------------------------------------------- {NDP}UATw
% _"V0vV
% Example 1: k]g\`
gc
% _AHVMsz@
% % Display the Zernike function Z(n=5,m=1) =1capix 1r
% x = -1:0.01:1; pC8i&_A
% [X,Y] = meshgrid(x,x); `_)dEu
% [theta,r] = cart2pol(X,Y); ;v\n[
% idx = r<=1; _R6> Ayw*
% z = nan(size(X)); 6'zy"UkH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); V.1sZYA9
% figure JM%#L *;
% pcolor(x,x,z), shading interp &@-glF5
% axis square, colorbar 'h6RZKG T
% title('Zernike function Z_5^1(r,\theta)') _3S{n=9
% 1 Y&d%AA
% Example 2: hg @Jpg
% jU$PO\UTk
% % Display the first 10 Zernike functions P+UK@~D+G
% x = -1:0.01:1; Tp13V.|
% [X,Y] = meshgrid(x,x); sTz*tSwQv
% [theta,r] = cart2pol(X,Y); Ui&$/%Z|
% idx = r<=1; "Wp<^s sMo
% z = nan(size(X)); D6WsEd>
% n = [0 1 1 2 2 2 3 3 3 3]; 4{KsCd)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ,z3b2$
&A
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (Q+3aEUE
% y = zernfun(n,m,r(idx),theta(idx)); ]u ';zJ.
% figure('Units','normalized') ,+&j/0U
% for k = 1:10 t/g}cR^Q
% z(idx) = y(:,k); }0G Ab2
% subplot(4,7,Nplot(k)) U|nk86r
% pcolor(x,x,z), shading interp Jk*MxlA.b
% set(gca,'XTick',[],'YTick',[]) R7i*f/m
% axis square 1F|+4
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3[rB:cE/
% end wah`
% Qp,l>k
% See also ZERNPOL, ZERNFUN2. j^.P=;
51vK>
% Paul Fricker 11/13/2006 W#!\.m`5
:-)[B^0
!MC Wt
% Check and prepare the inputs: q}jf&xUWzH
% ----------------------------- c
z|IBsa*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "^H+A-R[
error('zernfun:NMvectors','N and M must be vectors.') D }\`5L<
end v|GvN|_|
;
F=_ozWV*
if length(n)~=length(m) $$@Tgkg?o
error('zernfun:NMlength','N and M must be the same length.') J*k4&l
end >@" j9
O 2U/zF:X
n = n(:); (`xc3-,
m = m(:); N5\<w>
if any(mod(n-m,2)) iJi|* P5dw
error('zernfun:NMmultiplesof2', ... ZeO>Ag^
'All N and M must differ by multiples of 2 (including 0).') O,cx9N
end aI{[W;43T
>BX_Bou
if any(m>n) }/VHeHd
error('zernfun:MlessthanN', ... ezn>3?S
'Each M must be less than or equal to its corresponding N.') pqe**`z@y
end pGIeW}2'9
fh~&&f